

Lecture Notes in Computer Science 7418
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Hong Gao Lipyeow Lim Wei Wang
Chuan Li Lei Chen (Eds.)

Web-Age
Information Management

13th International Conference, WAIM 2012
Harbin, China, August 18-20, 2012
Proceedings

13

Volume Editors

Hong Gao
Harbin Institute of Technology
Harbin 150001, Heilongjiang, China
E-mail: honggao@hit.edu.cn

Lipyeow Lim
University of Hawaii
Honolulu 96822, HI, USA
E-mail: lipyeow@hawaii.edu

Wei Wang
Fudan University
Shanghai 200433, China
E-mail: weiwang1@fudan.edu.cn

Chuan Li
Sichuan University
Chengdu 610064, Sichuan, China
E-mail: lcharles@scu.edu.cn

Lei Chen
Hong Kong University of Science and Technology
Kowloon, Hong Kong, China
E-mail: leichen@cse.ust.hk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-32280-8 e-ISBN 978-3-642-32281-5
DOI 10.1007/978-3-642-32281-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012943037

CR Subject Classification (1998): H.2.4, H.2.7-8, H.3.3-5, F.2.2, H.2, H.4, C.2, H.5,
G.2.2, I.5.3

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 13th International Conference on
Web-Age Information Management (WAIM), held August 18–20, 2012, in Harbin,
China. WAIM is a leading international conference on research, development,
and applications of Web technologies, database systems and software engineer-
ing. WAIM is based in the Asia-Pacific region, and previous WAIM conferences
were held in Shanghai (2000), Xi’an (2001), Beijing (2002), Chengdu (2003),
Dalian (2004), Hangzhou (2005), Hong Kong (2006), Huangshan (2007), Zhangji-
ajie (2008), Suzhou (2009), Jiuzhaigou (2010), and Wuhan (2011). As the 13th
event in the increasingly popular series, WAIM 2012, which was organized and
supported by Harbin Institute of Technology, attracted outstanding researchers
from all over the world to Harbin, China. In particular, this year WAIM and
Microsoft Research Asia jointly sponsored a database summer school, which was
collocated with WAIM.

This high-quality program would not have been possible without the authors
who chose WAIM as a venue for their publications. Out of 178 submissions from
various countries and regions, we selected 32 full papers and 10 short papers for
publication. The acceptance rate for regular paper was 18% while the overall ac-
ceptance rate is 23.6% including short papers. The contributed papers address a
wide range of topics such as spatial databases, query processing, XML and Web
data, graph and uncertain data, distributed computing, information extraction
and integration, data warehousing and data mining, similarity search, wireless
sensor networks, social networks, data security, etc. We are grateful to our dis-
tinguished keynote speakers Wenfei Fan, Jiawei Han and Rakesh Agrawal for
contributing to the event’s success.

A conference like WAIM can only succeed as a team effort. We want to thank
the Program Committee members and the reviewers for their invaluable efforts.
Special thanks to the local Organizing Committee headed by Jizhou Luo. Many
thanks also go to our Workshop Co-chairs (Xiaochun Yang and Hongzhi Wang),
Publication Co-chairs (Lei Chen and Chuan Li), Publicity Co-chairs (Weiyi Meng
and Guohui Li), Industrial chairs (Mukesh Mohania and Xiaoxin Wu), Panel
Co-chairs (Jian Pei and Zhaonian Zou), and Finance Co-chairs (Howard Leung
and Shengfei Shi). Last but not least, we wish to express our gratitude for the
hard work of our webmaster (Hai Cao), and for our sponsors who generously
supported the smooth running of our conference.

We hope that you enjoy reading the proceedings of WAIM 2012.

August 2012 Hong Gao
Lipyeow Lim

Wei Wang

Conference Organization

General Co-chairs

Jianzhong Li Harbin Institute of Technology, China
Qing Li City University of Hong Kong

Program Committee Co-chairs

Hong Gao Harbin Institute of Technology, China
Lipyeow Lim University of Hawaii, USA
Wei Wang Fudan University, China

Workshop Co-chairs

Xiaochun Yang Northeast University, China
Hongzhi Wang Harbin Institute of Technology, China

Panel Co-chairs

Jian Pei Simon Fraser University, USA
Zhaonian Zou Harbin Institute of Technology, China

Industry Co-chairs

Mukesh Mohania IBM, India
Xiaoxin Wu Huawei, China

Publication Co-chairs

Lei Chen Hong Kong University of Science and Technology,
Hong Kong

Chuan Li Sichuan University, China

Publicity Co-chairs

Weiyi Meng Binghamton University, USA
Guohui Li Huazhong University of Science and Technology,

China

Local Organization Chair

Jizhou Luo Harbin Institute of Technology, China

VIII Conference Organization

Finance Co-chairs

Howard Leung City University of Hong Kong
Shengfei Shi Harbin Institute of Technology, China

Steering Committee Liaison

Xiaofeng Meng Renmin University, China

CCF DBS Liaison

Zhiyong Peng Wuhan University, China

Microsoft Summer School Liaison

Haixun Wang Microsoft Research Asia, China

Program Committee

Alfredo Cuzzocrea University of Calabria, Italy
Aoying Zhou East China Normal University, China
Bin Cui Peking University, China
Carson K. Leung University of Manitoba, Canada
Chengkai Li University of Texas at Arlington, USA
Chuan Li Sichuan University, China
Donghui Zhang Microsoft Jim Gray Systems Lab, USA
Feifei Li Florida State University, USA
Ge Yu Northeast University, China
Giovanna Guerrini Università di Genova, Italy
Heng Tao Shen University of Queensland, Australia
Hiroaki Ohshima Kyoto University, Japan
Hong Chen Chinese University of Hong Kong, Hong Kong
Hongzhi Wang Harbin Institute of Technology, China
Hong Gao Harbin Institute of Technology, China
Hwanjo Yu Pohang University of Science and Technology, Korea
Jeffrey Yu Chinese University of Hong Kong
Jianyong Wang Tsinghua University, China
Jianzhong Li Harbin Institute of Technology, China
JianliangXu Hong Kong Baptist University, Hong Kong
Jimmy Huang York University, Canada
Jizhou Luo Harbin Institute of Technology, China

Conference Organization IX

Jun Gao Peking University, China
Johann Gamper Free University of Bozen-Bolzano, Italy
Lei Duan Sichuan University, China
Lei Chen Hong Kong University of Science and Technology,

Hong Kong
Lei Zou Peking University, China
Ling Feng Tsinghua University, China
Ning Jing National University of Defense Technology, China
Ning Ruan Kent State University, USA
Ning Yang Sichuan University, China
Peng Wang Fudan University, China
Raymond Ng University of British Columbia, Canada
Shuai Ma University of Edinburgh, UK
Shuigeng Zhou Fudan University, China
Shuming Shi Microsoft Research Asia, China
Tao Li Florida International University, USA
Toshiyuki Amagasa University of Tsukuba, Japan
Wei Wang University of New South Wales, Australia
Weiyi Meng State University of New York at Binghamton, USA
Xiangliang Zhang King Abdullah University of Science and Technology,

Saudi Arabia
Xiaofeng Meng Renmin University of China
Xin Dong AT&T Research, USA
Xingquan Zhu University of Technology, Sydney
Xintao Wu University of North Carolina at Charlotte, USA
Xuemin Lin University of New South Wales, Australia
Xiaofang Zhou University of Queensland, Australia
Xiaochun Yang Northeastern University, China
Yanghua Xiao Fudan University, China
Yan Jia National University of Defense Technology, China
Yang-Sae Moon Kangwon National University, Korea
YaokaiFeng Kyushu University, Japan
Yi Cai City University of Hong Kong
Ke Yi Hong Kong University of Science and Technology,

Hong Kong
Yoshiharu Ishikawa Nagoya University, Japan
Yunjun Gao Zhejianing University, China
Yuqing Wu Indiana University at Bloomington, USA
Zhanhuai Li Northwestern Polytechnical University, China
Zhaonian Zou Harbin Institute of Technology, China
Zhiyong Peng Wuhan University, China
Zongmin Ma Northeastern University, China

Table of Contents

Keynotes

Data Quality: Theory and Practice . 1
Wenfei Fan

Construction of Web-Based, Service-Oriented Information Networks:
A Data Mining Perspective (Abstract) . 17

Jiawei Han

Electronic Textbooks and Data Mining . 20
Rakesh Agrawal, Sreenivas Gollapudi, Anitha Kannan, and
Krishnaram Kenthapadi

Session 1: Wireless Sensor Networks

Topology-Based Data Compression in Wireless Sensor Networks 22
Shangfeng Mo, Hong Chen, and Yinglong Li

A Residual Energy-Based Fairness Scheduling MAC Protocol
for Wireless Sensor Networks . 35

Long Tan

Topology-Aided Geographic Routing Protocol for Wireless Sensor
Networks . 47

Guilin Li, Longjiang Guo, Jian Zhang, and Minghong Liao

Polaris: A Fingerprint-Based Localization System over Wireless
Networks . 58

Nan Zhang and Jianhua Feng

Session 2: Data Warehouse and Data Mining

A High-Performance Algorithm for Frequent Itemset Mining 71
Jun-Feng Qu and Mengchi Liu

Mining Link Patterns in Linked Data . 83
Xiang Zhang, Cuifang Zhao, Peng Wang, and Fengbo Zhou

Detecting Positive Opinion Leader Group from Forum 95
Kaisong Song, Daling Wang, Shi Feng, Dong Wang, and Ge Yu

XII Table of Contents

D’MART: A Tool for Building and Populating Data Warehouse Model
from Existing Reports and Tables . 102

Sumit Negi, Manish A. Bhide, Vishal S. Batra,
Mukesh K. Mohania, and Sunil Bajpai

Session 3: Query Proceeding (1)

Continuous Skyline Queries with Integrity Assurance in Outsourced
Spatial Databases . 114

Xin Lin, Jianliang Xu, and Junzhong Gu

Assessing Quality Values of Wikipedia Articles Using Implicit Positive
and Negative Ratings . 127

Yu Suzuki

Form-Based Instant Search and Query Autocompletion on Relational
Data . 139

Hao Wu and Lizhu Zhou

Session 4: Query Proceeding (2)

Range Query Estimation for Dirty Data Management System 152
Yan Zhang, Long Yang, and Hongzhi Wang

Top-k Most Incremental Location Selection with Capacity Constraint . . . 165
Yu Sun, Jin Huang, Yueguo Chen, Xiaoyong Du, and Rui Zhang

An Approach of Text-Based and Image-Based Multi-modal Search
for Online Shopping . 172

Renfei Li, Daling Wang, Yifei Zhang, Shi Feng, and Ge Yu

Categorizing Search Results Using WordNet and Wikipedia 185
Reza Taghizadeh Hemayati, Weiyi Meng, and Clement Yu

Session 5: Spatial Database

Optimal Sequenced Route Query Algorithm Using Visited POI
Graph . 198

Htoo Htoo, Yutaka Ohsawa, Noboru Sonehara, and Masao Sakauchi

A Packaging Approach for Massive Amounts of Small Geospatial Files
with HDFS . 210

Jifeng Cui, Yong Zhang, Chao Li, and ChunXiao Xing

Adaptive Update Workload Reduction for Moving Objects in Road
Networks . 216

Miao Li, Yu Gu, Jia Xu, and Ge Yu

Table of Contents XIII

Session 6: Similarity Search and Queries

An Adaptive Distributed Index for Similarity Queries in Metric
Spaces . 222

Mingdong Zhu, Derong Shen, Yue Kou, Tiezheng Nie, and Ge Yu

Finding Relevant Tweets . 228
Deepak P. and Sutanu Chakraborti

Fgram-Tree: An Index Structure Based on Feature Grams for String
Approximate Search . 241

Xing Tong and Hongzhi Wang

Session 7: XML and Web Data

Efficient Processing of Updates in Dynamic Graph-Structured XML
Data . 254

Lizhen Fu and Xiaofeng Meng

Extracting Focused Time for Web Pages . 266
Sheng Lin, Peiquan Jin, Xujian Zhao, Jie Zhao, and Lihua Yue

Top-Down SLCA Computation Based on Hash Search 272
Junfeng Zhou, Guoxiang Lan, Ziyang Chen, Xian Tang, and
Jingfeng Guo

Session 8: Graph and Uncertain Data

Top-K Graph Pattern Matching: A Twig Query Approach 284
Xianggang Zeng, Jiefeng Cheng, Jeffrey Xu Yu, and Shengzhong Feng

Dynamic Graph Shortest Path Algorithm . 296
Xueli Liu and Hongzhi Wang

A Framework for High-Quality Clustering Uncertain Data Stream
over Sliding Windows . 308

Keyan Cao, Guoren Wang, Donghong Han, Yue Ma, and Xianzhe Ma

Bayesian Network Structure Learning from Attribute Uncertain Data . . . 314
Wenting Song, Jeffrey Xu Yu, Hong Cheng, Hongyan Liu,
Jun He, and Xiaoyong Du

Session 9: Distributed Computing

Bandwidth-Aware Medical Image Retrieval in Mobile Cloud Computing
Network . 322

Yi Zhuang, Nan Jiang, Zhiang Wu, Dickson Chiu,
Guochang Jiang, and Hua Hu

XIV Table of Contents

Efficient Algorithms for Constrained Subspace Skyline Query
in Structured Peer-to-Peer Systems . 334

Khaled M. Banafaa and Ruixuan Li

Processing All k -Nearest Neighbor Queries in Hadoop 346
Takuya Yokoyama, Yoshiharu Ishikawa, and Yu Suzuki

Session 10: Data Security and Management

RGH: An Efficient RSU-Aided Group-Based Hierarchical Privacy
Enhancement Protocol for VANETs . 352

Tao Yang, Lingbo Kong, Liangwen Yu, Jianbin Hu, and Zhong Chen

Locating Encrypted Data Precisely without Leaking Their
Distribution . 363

Liqing Huang and Yi Tang

LB-Logging: A Highly Efficient Recovery Technique for Flash-Based
Database . 375

Zeping Lu, Xiaoying Qi, Wei Cao, and Xiaofeng Meng

Session 11: I nformation Extraction and Integration

An Under-Sampling Approach to Imbalanced Automatic Keyphrase
Extraction . 387

Weijian Ni, Tong Liu, and Qingtian Zeng

A Tourist Itinerary Planning Approach Based on Ant Colony
Algorithm . 399

Lei Yang, Richong Zhang, Hailong Sun, Xiaohui Guo, and
Jinpeng Huai

A Transparent Approach for Database Schema Evolution Using View
Mechanism . 405

Jianxin Xue, Derong Shen, Tiezheng Nie, Yue Kou, and Ge Yu

WYSIWYE: An Algebra for Expressing Spatial and Textual Rules
for Information Extraction . 419

Vijil Chenthamarakshan, Ramakrishna Varadarajan,
Prasad M. Deshpande, Raghuram Krishnapuram, and Knut Stolze

Session 12: Social Networks and Modern Web
Services

A Scalable Algorithm for Detecting Community Outliers in Social
Networks . 434

Tengfei Ji, Jun Gao, and Dongqing Yang

Table of Contents XV

An Efficient Index for Top-k Keyword Search on Social Networks 446
Xudong Du

Engineering Pathway for User Personal Knowledge Recommendation . . . 459
Yunlu Zhang, Guofu Zhou, Jingxing Zhang, Ming Xie, Wei Yu, and
Shijun Li

Pick-Up Tree Based Route Recommendation from Taxi Trajectories 471
Haoran Hu, Zhiang Wu, Bo Mao, Yi Zhuang, Jie Cao, and
Jingui Pan

Author Index . 485

Data Quality: Theory and Practice

Wenfei Fan�

University of Edinburgh and Harbin Institute of Technology

Abstract. Real-life data are often dirty: inconsistent, inaccurate, in-
complete, stale and duplicated. Dirty data have been a longstanding
issue, and the prevalent use of Internet has been increasing the risks, in
an unprecedented scale, of creating and propagating dirty data. Dirty
data are reported to cost US industry billions of dollars each year. There
is no reason to believe that the scale of the problem is any different in any
other society that depends on information technology. With these comes
the need for improving data quality, a topic as important as traditional
data management tasks for coping with the quantity of the data.

We aim to provide an overview of recent advances in the area of data
quality, from theory to practical techniques. We promote a conditional
dependency theory for capturing data inconsistencies, a new form of dy-
namic constraints for data deduplication, a theory of relative information
completeness for characterizing incomplete data, and a data currency
model for answering queries with current values from possibly stale data
in the absence of reliable timestamps. We also discuss techniques for
automatically discovering data quality rules, detecting errors in real-life
data, and for correcting errors with performance guarantees.

1 Data Quality: An Overview

Traditional database systems typically focus on the quantity of data, to support
the creation, maintenance and use of large volumes of data. But such a database
system may not find correct answers to our queries if the data in the database
are “dirty”, i.e., when the data do not properly represent the real world entities
to which they refer.

To illustrate this, let us consider an employee relation residing in a database
of a company, specified by the following schema:

employee (FN, LN, CC, AC, phn, street, city, zip, salary, status)

Here each tuple specifies an employee’s name (first name FN and last name LN),
office phone (country code CC, area code AC, phone phn), office address (street,
city, zip code), salary and marital status. An instance D0 of the employee schema
is shown in Figure 1.

� Fan is supported in part by EPSRC EP/J015377/1, the RSE-NSFC Joint Project
Scheme, the 973 Program 2012CB316200 and NSFC 61133002 of China.

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 1–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 W. Fan

FN LN CC AC phn street city zip salary status
t1: Mike Clark 44 131 null Mayfield NYC EH4 8LE 60k single
t2: Rick Stark 44 131 3456789 Crichton NYC EH4 8LE 96k married
t3: Joe Brady 01 908 7966899 Mtn Ave NYC NJ 07974 90k married
t4: Mary Smith 01 908 7966899 Mtn Ave MH NJ 07974 50k single
t5: Mary Luth 01 908 7966899 Mtn Ave MH NJ 07974 50k married
t6: Mary Luth 44 131 3456789 Mayfield EDI EH4 8LE 80k married

Fig. 1. An employee instance

Consider the following queries posted on relation D0.

(1) Query Q1 is to find the number of employees working in the NYC office
(New York City). The answer to Q1 in D0 is 3, by counting tuples t1, t2 and
t3. However, the answer may not be correct, for the following reasons. First, the
data in D0 are inconsistent. Indeed, the CC and AC values of t1, t2 and t3 have
conflicts with their corresponding city attributes: when CC = 44 and AC = 131,
the city should be Edinburgh (EDI) in the UK, rather than NYC; and similarly,
when CC = 01 and AC = 908, city should be Murray Hill (MH) in the US. It
is thus likely that NYC is not the true city value of t1, t2 and t3. Second, the
data in D0 may be incomplete for employees working in NYC. That is, some
tuples representing employees working in NYC may be missing from D0. Hence
we cannot trust 3 to be the answer to Q1.

(2) Query Q2 is to find the number of distinct employees with FN = Mary. In
D0 the answer to Q2 is 3, by enumerating tuples t4, t5 and t6. Nevertheless, the
chances are that t4, t5 and t6 actually refer to the same person: all these tuples
were once the true values of Mary, but some have become obsolete. Hence the
correct answer to Q2 may be 1 instead of 3.

(3) Query Q3 is to find Mary’s current salary and current last name, provided
that we know that t4, t5 and t6 refer to the same person. Simply evaluating Q3

on D0 will get us that salary is either 50k or 80k, and that LN is either Smith
or Luth. However, it does not tell us whether Mary’s current salary is 50k, and
whether her current last name is Smith. Indeed, reliable timestamps for t4, t5
and t6 may not be available, as commonly found in practice, and hence, we can-
not tell which of 50k or 80k is more current; similarly for LN.

This example tells us that when the data are dirty, we cannot expect a database
system to answer our queries correctly, no matter what capacity it provides to
accommodate large data and how efficient it processes our queries.

Unfortunately, real-life data are often dirty: inconsistent, duplicated, inaccu-
rate, incomplete and/or out of date. Indeed, enterprises typically find data error
rates of approximately 1%–5%, and for some companies it is above 30% [41].
In most data warehouse projects, data cleaning accounts for 30%-80% of the
development time and budget [43], for improving the quality of the data rather
than developing the systems. When it comes to incomplete information, it is

Data Quality: Theory and Practice 3

estimated that “pieces of information perceived as being needed for clinical de-
cisions were missing from 13.6% to 81% of the time” [38]. When data currency
is concerned, it is known that “2% of records in a customer file become obsolete
in one month” [14]. That is, in a database of 500 000 customer records, 10 000
records may go stale per month, 120 000 records per year, and within two years
about 50% of all the records may be obsolete.

Why do we care about dirty data? Data quality has become one of the most
pressing challenges to data management. It is reported that dirty data cost US

businesses 600 billion dollars annually [14], and that erroneously priced data
in retail databases alone cost US consumers $2.5 billion each year [16]. While
these indicate the daunting cost of dirty data in the US, there is no reason to
believe that the scale of the problem is any different in any other society that is
dependent on information technology. Dirty data have been a longstanding issue
for decades, and the prevalent use of Internet has been increasing the risks, in
an unprecedented scale, of creating and propagating dirty data.

These highlight the need for data quality management, to improve the quality
of the data in our databases such that the data consistently, accurately, com-
pletely and uniquely represent the real-world entities to which they refer.

Data quality management is at least as important as traditional data man-
agement tasks for coping with the quantity of data. There has been increasing
demand in industries for developing data-quality management systems, aiming
to effectively detect and correct errors in the data, and thus to add accuracy and
value to business processes. Indeed, the market for data-quality tools is growing
at 16% annually, way above the 7% average forecast for other IT segments [34].
As an example, data quality tools deliver “an overall business value of more
than 600 million GBP” each year at BT [40]. Data quality management is also
a critical part of big data management, master data management (MDM) [37],
customer relationship management (CRM), enterprise resource planning (ERP)
and supply chain management (SCM), among other things.

This paper aims to highlight several central technical issues in connection
with data quality, and to provide an overview of recent advances in data quality
management. We present five important issues of data quality (Section 2), and
outline a rule-based approach to cleaning dirty data (Section 3). Finally, we
identify some open research problems associated with data quality (Section 4).

The presentation is informal, to incite curiosity in the study of data quality.
We opt for breadth rather than depth in the presentation: important results
and techniques are briefly mentioned, but the details are omitted. A survey of
detailed data quality management techniques is beyond the scope of this paper,
and a number of related papers are not referenced due to space constraints.
We refer the interested reader to papers in which the results were presented
for more detailed presentation of the results and techniques. In particular, we
encourage the reader to consult [3,4,9,17,21] for recent surveys on data quality
management. In fact a large part of this paper is taken from [21].

4 W. Fan

2 Central Issues of Data Quality

We highlight five central issues in connection with data quality: data consistency,
data deduplication, data accuracy, information completeness and data currency.

2.1 Data Consistency

Data consistency refers to the validity and integrity of data representing real-
world entities. It aims to detect inconsistencies or conflicts in the data. In a
relational database, inconsistencies may exist within a single tuple, between dif-
ferent tuples in the same table, and between tuples across different relations.

As an example, consider tuples t1, t2 and t3 in Figure 1. There are conflicts
within each of these tuples, as well as inconsistencies between different tuples.

(1) It is known that in the UK (when CC = 44), if the area code is 131, then the
city should be Edinburgh (EDI). In tuple t1, however, CC = 44 and AC = 131,
but city �= EDI. That is, there exist inconsistencies between the values of the CC,
AC and city attributes of t1; similarly for tuple t2. These tell us that tuples t1
and t2 are erroneous.

(2) Similarly, in the US (CC = 01), if the area code is 908, the city should be
Murray Hill (MH). Nevertheless, CC = 01 and AC = 908 in tuple t3, whereas its
city is not MH. This indicates that tuple t3 is not quite correct.

(3) It is also known that in the UK, zip code uniquely determines street. That is,
for any two tuples that refer to employees in the UK, if they share the same zip
code, then they should have the same value in their street attributes. However,
while t1[CC] = t2[CC] = 44 and t1[zip] = t2[zip], t1[street] �= t2[street]. Hence
there are conflicts between t1 and t2.

Inconsistencies in the data are typically identified as violations of data dependen-
cies (a.k.a. integrity constraints [1]). Errors in a single relation can be detected
by intrarelation constraints, while errors across different relations can be identi-
fied by interrelation constraints.

Unfortunately, traditional dependencies such as functional dependencies (FDs)
and inclusion dependencies (INDs) fall short of catching inconsistencies com-
monly found in real-life data, such as the errors in tuples t1, t2 and t3 above.
This is not surprising: the traditional dependencies were developed for schema
design, rather than for improving data quality.

To remedy the limitations of traditional dependencies in data quality manage-
ment, conditional functional dependencies (CFDs [23]) and conditional inclusion
dependencies (CINDs [7]) have recently been proposed, which extend FDs and
INDs, respectively, by specifying patterns of semantically related data values.
It has been shown that conditional dependencies are capable of capturing com-
mon data inconsistencies that FDs and INDs fail to detect. For example, the
inconsistencies in t1–t3 given above can be detected by CFDs.

Data Quality: Theory and Practice 5

A theory of conditional dependencies is already in place, as an extension of
classical dependency theory. More specifically, the satisfiability problem, impli-
cation problem, finite axiomatizability and dependency propagation have been
studied for conditional dependencies, from the complexity to inference systems
to algorithms. We refer the interested reader to [7,6,23,31] for details.

2.2 Data Deduplication

Data deduplication aims to identify tuples in one or more relations that refer
to the same real-world entity. It is also known as entity resolution, duplicate
detection, record matching, record linkage, merge-purge, database hardening,
and object identification (for data with complex structures).

For example, consider tuples t4, t5 and t6 in Figure 1. To answer query Q2

given earlier, we want to know whether these tuples refer to the same employee.
The answer is affirmative if, for instance, there exists another relation which
indicates that Mary Smith and Mary Luth have the same email account.

The need for studying data deduplication is evident: for data cleaning it is
needed to eliminate duplicate records; for data integration it is to collate and
fuse information about the same entity from multiple data sources; and for mas-
ter data management it helps us identify links between input tuples and master
data. The need is also highlighted by payment card fraud, which cost $4.84 billion
worldwide in 2006 [42]. In fraud detection it is a routine process to cross-check
whether a credit card user is the legitimate card holder. As another example,
there was a recent effort to match records on licensed airplane pilots with records
on individuals receiving disability benefits from the US Social Security Admin-
istration. The finding was quite surprising: there were forty pilots whose records
turned up in both databases (cf. [36]).

No matter how important it is, data deduplication is nontrivial. Indeed, tuples
pertaining to the same object may have different representations in various data
sources with different schemas. Moreover, the data sources may contain errors.
These make it hard, if not impossible, to match a pair of tuples by simply
checking whether their attributes pairwise equal. Worse still, it is often too costly
to compare and examine every pair of tuples from large data sources.

Data deduplication is perhaps the most extensively studied data quality prob-
lem. A variety of approaches have been proposed: probabilistic, learning-based,
distance-based, and rule-based (see [15,36,39] for recent surveys).

We promote a dependency-based approach for detecting duplicates, which al-
lows us to capture the interaction between data deduplication and other aspects
of data quality in a uniform logical framework. To this end a new form of de-
pendencies, referred to as matching dependencies, has been proposed for data
deduplication [18]. These dependencies help us decide what attributes to com-
pare and how to compare these attributes when matching tuples. They allow us
to deduce alternative attributes to inspect such that when matching cannot be
done by comparing attributes that contain errors, we may still find matches by
using other, more reliable attributes.

6 W. Fan

In contrast to traditional dependencies that we are familiar with such as
FDs and INDs, matching dependencies are dynamic constraints: they tell us
what data have to be updated as a consequence of record matching. A dynamic
constraint theory has been developed for matching dependencies, from deduction
analysis to finite axiomatizability to inference algorithms (see [18] for details).

2.3 Data Accuracy

Data accuracy refers to the closeness of values in a database to the true values
of the entities that the data in the database represent. Consider, for example, a
person schema:

person (FN, LN, age, height, status)

where each tuple specifies the name (FN, LN), age, height and marital status of
a person. An instance of person is shown below, in which s0 presents the “true”
information for Mike.

FN LN age height status
s0: Mike Clark 14 1.70 single
s1: M. Clark 14 1.69 married
s2: Mike Clark 45 1.60 single

Given these, we can conclude that the values of s1[age, height] are more ac-
curate than s2[age, height], as they are closer to the true values for Mike, while
s2[FN, status] are more accurate than s1[FN, status]. It is more challenging, how-
ever, to determine the relative accuracy of s1 and s2 when the reference s0 is
unknown, as commonly found in practice. In this setting, it is still possible to
find that for certain attributes, the values in one tuple are more accurate than
another by an analysis of the semantics of the data, as follows.

(1) Suppose that we know that Mike is still going to middle school. From this,
we can conclude that s1[age] is more accurate than s2[age]. That is, s1[age] is
closer to Mike’s true age value than s2[age], although Mike’s true age may not
be known. Indeed, it is unlikely that students in a middle school are 45 years
old. Moreover, from the age value (s1[age]), we may deduce that s2[status] may
be more accurate than s1[status].

(2) If we know that s1[height] and s2[height] were once correct, then we may
conclude that s1[height] is more accurate than s2[height], since the height of a
person is typically monotonically increasing, at least when the person is young.

2.4 Information Completeness

Information completeness concerns whether our database has complete infor-
mation to answer our queries. Given a database D and a query Q, we want to
know whether Q can be completely answered by using only the data in D. If
the information in D is incomplete, one can hardly expect its answer to Q to be
accurate or even correct.

Data Quality: Theory and Practice 7

In practice our databases often do not have sufficient information for our
tasks at hand. For instance, the value of t1[phn] in relation D0 of Figure 1 is
missing, as indicated by null. Worse still, tuples representing employees may
also be missing from D0. As we have seen earlier, for query Q1 given above, if
some tuples representing employees in the NYC office are missing from D0, then
the answer to Q1 in D0 may not be correct. Incomplete information introduces
serious problems to enterprises: it routinely leads to misleading analytical results
and biased decisions, and accounts for loss of revenues, credibility and customers.

How should we cope with incomplete information? Traditional work on infor-
mation completeness adopts either the Closed World Assumption (CWA) or the
Open World Assumption (OWA), stated as follows (see, e.g., [1]).

– The CWA assumes that a database has collected all the tuples representing
real-world entities, but some attribute values of the tuples may be missing.

– The OWA assumes that in addition to missing values, some tuples represent-
ing real-world entities may also be missing. That is, our database may only
be a proper subset of the set of tuples that represent real-world entities.

Database textbooks typically tell us that the world is closed: all the real-world
entities of our interest are assumed already represented by tuples residing in
our database. After all, database theory is typically developed under the CWA,
which is the basis of negation in our queries: a fact is viewed as false unless it
can be proved from explicitly stated facts in our database.

Unfortunately, in practice one often finds that not only attribute values but
also tuples are missing from our database. That is, the CWA is often too strong
to hold in the real world. On the other hand, the OWA is too weak: under the
OWA, we can expect few sensible queries to find complete answers.

The situation is not as bad as it seems. In the real world, neither the CWA nor
the OWA is quite appropriate in emerging applications such as master data man-
agement. In other words, real-life databases are neither entirely closed-world nor
entirely open-world. Indeed, an enterprise nowadays typically maintains master
data (a.k.a. reference data), a single repository of high-quality data that provides
various applications with a synchronized, consistent view of the core business en-
tities of the enterprise (see, e.g., [37], for master data management). The master
data contain complete information about the enterprise in certain categories,
e.g., employees, departments, projects, and equipment. Master data can be re-
garded as a closed-world database for the core business entities of the enterprise.
Meanwhile a number of other databases may be in use in the enterprise for,
e.g., sales, project control and customer support. On one hand, the information
in these databases may not be complete, e.g., some sale transaction records may
be missing. On the other hand, certain parts of the databases are constrained by
the master data, e.g., employees and projects. In other words, these databases
are partially closed. The good news is that we often find that partially closed
databases have complete information to answer our queries at hand.

To rectify the limitations of the CWA and the OWA, a theory of relative
information completeness has been proposed [20,19], to specify partially closed

8 W. Fan

databases w.r.t. available master data. In addition, several fundamental prob-
lems in connection with relative completeness have been studied, to determine
whether our database has complete information to answer our query, and when
the database is incomplete for our tasks at hand, to decide what additional data
should be included in our database to meet our requests. The complexity bounds
of these problems have been established for various query languages.

2.5 Data Currency

Data currency is also known as timeliness. It aims to identify the current values
of entities represented by tuples in a database that may contain stale data, and
to answer queries with the current values.

The question of data currency would be trivial if all data values carried valid
timestamps. In practice, however, one often finds that timestamps are unavail-
able or imprecise [46]. Add to this the complication that data values are often
copied or imported from other sources [12,13], which may not support a uniform
scheme of timestamps. These make it challenging to identify the “latest” values
of entities from the data in our database.

For example, recall query Q3 and the employee relation D0 of Figure 1 given
earlier. Assume that tuples t4, t5 and t6 are found pertaining to the same em-
ployee Mary by data deduplication. As remarked earlier, in the absence of reli-
able timestamps, the answer to Q3 in D0 does not tell us whether Mary’s current
salary is 50k or 80k, and whether her current last name is Smith or Luth.

Not all is lost. In practice it is often possible to deduce currency orders from
the semantics of the data, as illustrated below.

(1) While we do not have timestamps associated with Mary’s salary, we know
that the salary of each employee in the company does not decrease, as commonly
found in the real world. This tells us that t6[salary] is more current than t4[salary]
and t5[salary]. Hence we may conclude that Mary’s current salary is 80k.

(2) We know that the marital status can only change from single to married and
from married to divorced; but not from married to single. In addition, employee
tuples with the most current marital status also contain the most current last
name. Therefore, t6[LN] = t5[LN] is more current than t4[LN]. From these we can
infer that Mary’s current last name is Luth.

A data currency model has recently been proposed in [26], which allows us
to specify and deduce data currency when temporal information is only partly
known or not available at all. Moreover, a notion of certain current query answers
is introduced there, to answer queries with current values of entities derived from
a possibly stale database. In this model the complexity bounds of fundamental
problems associated with data currency have been established, for identifying the
current value of an entity in a database in the absence of reliable timestamps,
answering queries with current values, and for deciding what data should be
imported from other sources in order to answer query with current values. We
encourage the interested reader to consult [26] for more detailed presentation.

Data Quality: Theory and Practice 9

2.6 Interactions between Data Quality Issues

To improve data quality we often need to deal with each and every of the five
central issues given above. Moreover, there issues interact with each other, as
illustrated below.

As we have seen earlier, tuples t1, t2 and t3 in the relation D0 of Figure 1 are
inconsistent. We show how data deduplication may help us resolve the incon-
sistencies. Suppose that the company maintains a master relation for its offices,
consisting of consistent, complete and current information about the address and
phone number of each office. The master relation is specified by schema:

office (CC, AC, phn, street, city, zip),

and is denoted by Dm, given as follows:

CC AC phn street city zip
tm1: 44 131 3456789 Mayfield EDI EH4 8LE
tm2: 01 908 7966899 Mtn Ave MH NJ 07974

Then we may “clean” t1, t2 and t3 by leveraging the interaction between data
deduplication and data repairing processes (for data consistency) as follows.

(1) If the values of the CC,AC attributes of these tuples are confirmed accurate,
we can safely update their city attributes by letting t1[city] = t2[city] := EDI,
and t3[city] := MH, for reasons remarked earlier. This yields t′1, t

′
2 and t′3, which

differ from t1, t2 and t3, respectively, only in their city attribute values.

(2) We know that if an employee tuple t ∈ D0 and an office tuple tm ∈ Dm agree
on their address (street, city, zip), then the two tuples “match”, i.e., they refer
to the same address. Hence, we can update t[CC,AC, phn] by taking the corre-
sponding master values from tm. This allows us to change t′2[street] to tm1[street].
That is, we repair t′2[street] by matching t′2 and tm1. This leads to tuple t′′2 , which
differs from t′2 only in the street attribute.

(3) We also know that for employee tuples t1 and t2, if they have the same ad-
dress, then they should have the same phn value. In light of this, we can augment
t′1[phn] by letting t′1[phn] := t′′2 [phn], and obtain a new tuple t′′1 .

One can readily verify that t′′1 , t
′′
2 and t′3 are consistent. In the process above,

we “interleave” operations for resolving conflicts (steps 1 and 3) and operations
for detecting duplicates (step 2). On one hand, conflict resolution helps dedu-
plication: step 2 can be conducted only after t2[city] is corrected. On the other
hand, deduplication also helps us resolve conflicts: t′1[phn] is enriched only after
t′2[street] is fixed via matching.

There are various interactions between data quality issues, including but not
limited to the following.

– Data currency can be improved if more temporal information can be obtained
in the process for improving information completeness.

10 W. Fan

– To determine the current values of an entity, we need to identify tuples
pertaining to the same entity, via data deduplication. For instance, to find
Mary’s LN in relation D0 of Figure 1, we have to ask whether tuples t4, t5
and t6 refer to the same person.

– To resolve conflicts in tuples representing an entity, we have to determine
whether the information about the entity is complete, and only if so, we can
find the true value of the entity from the data available in our database.

These suggest that a practical data quality management system should provide
functionality to deal with each and every of five central issues given above, and
moreover, leverage the interactions between these issues to improve data quality.
There has been preliminary work on the interaction between data deduplication
and data repairing [27], as illustrated by the example above.

3 Improving Data Quality

Real-life data are often dirty, and dirty data are costly. In light of these, effective
techniques have to be in place to improve the quality of our data. But how?

Errors in Real-Life Data. To answer this question, we first classify errors
typically found in the real world. There are two types of errors, namely, syntactic
errors and semantic errors, as illustrated below.

(1) Syntactic errors: violations of domain constraints by the values in our database.
For example, name = 1.23 is a syntactic error if the domain of attribute name
is string, whereas the value is numeric. Another example is age = 250 when the
range of attribute age is [0, 120].

(2) Semantic errors: discrepancies between the values in our database and the
true values of the entities that our data intend to represent. All the examples
we have seen in the previous sections are semantic errors, related to data con-
sistency, deduplication, accuracy, currency and information completeness.

While syntactic errors are relatively easy to catch, it is far more challenging to
detect and correct semantic errors. Below we focus on semantic errors.

Dependencies as Data Quality Rules. A central question concerns how we
can tell whether our data have semantic errors, i.e., whether the data are dirty
or clean? To this end, we need data quality rules to detect semantic errors in
our data and fix those errors. But what data quality rules should we adopt?

A natural idea is to use data dependencies (a.k.a. integrity constraints).
Dependency theory is almost as old as relational databases themselves. Since
Codd [10] introduced functional dependencies, a variety of dependency lan-
guages, defined as various classes of first-order (FO) logic sentences, have been
developed. There are good reasons to believe that dependencies should play an
important role in data quality management systems. Indeed, dependencies spec-
ify a fundamental part of the semantics of data, in a declarative way, such that
errors emerge as violations of the dependencies. Furthermore, inference systems,

Data Quality: Theory and Practice 11

implication analysis and profiling methods for dependencies have shown promise
as a systematic method for reasoning about the semantics of the data. These help
us deduce and discover rules for improving data quality, among other things. In
addition, all the five central aspects of data quality – data consistency, dedupli-
cation, accuracy, currency and information completeness – can be specified in
terms of data dependencies. This allows us to treat various data quality issues
in a uniform logical framework, in which we can study their interactions.

Nevertheless, to make practical use of dependencies in data quality manage-
ment, classical dependency theory has to be extended. Traditional dependencies
were developed to improve the quality of schema via normalization, and to opti-
mize queries and prevent invalid updates (see, e.g., [1]). To improve the quality of
the data, we need new forms of dependencies, such as conditional dependencies
by specifying patterns of semantically related data values to capture data in-
consistencies [23,7], matching dependencies by supporting similarity predicates
to accommodate data errors in record matching [18], containment constraints
by enforcing containment of certain information about core business entities
in master data to reason about information completeness [20,19], and currency
constraints by incorporating temporal orders to determine data currency [26].

Care must be taken when designing dependency languages for improving data
quality. Among other things, we need to balance the tradeoff between expressive
power and complexity, and revisit classical problems for dependencies such as
the satisfiability, implication and finite axiomatizability analyses.

Improve Data Quality with Rules. After we come up with the “right” de-
pendency languages for specifying data quality rules, the next question is how
to effectively use these rules to improve data quality? In a nutshell, a rule-based
data quality management system should provide the following functionality.

Discovering Data Quality Rules. To use dependencies as data quality rules, it is
necessary to have efficient techniques in place that can automatically discover
dependencies from data. Indeed, it is unrealistic to rely solely on human experts
to design data quality rules via an expensive and long manual process, or count
on business rules that have been accumulated. This suggests that we learn infor-
mative and interesting data quality rules from (possibly dirty) data, and prune
away trivial and insignificant rules based on a threshold specified by users.

More specifically, given a database instance D, the profiling problem is to find
a minimal cover of all dependencies (e.g., CFDs, CINDs, matching dependen-
cies) that hold on D, i.e., a non-redundant set of dependencies that is logically
equivalent to the set of all dependencies that hold on D.

To find data quality rules, several algorithms have been developed for discov-
ering CFDs [8,24,35] and matching dependencies [44].

Validating Data Quality Rules. A given set Σ of dependencies, either automat-
ically discovered or manually designed by domain experts, may be dirty itself.
In light of this we have to identify “consistent” dependencies from Σ, i.e., those
rules that make sense, to be used as data quality rules. Moreover, we need to

12 W. Fan

deduce new rules and to remove redundancies from Σ, via the implication or
deduction analysis of those dependencies in Σ.

This problem is, however, nontrivial. It is already NP-complete to decide
whether a given set of CFDs is satisfiable [23], and it becomes undecidable for
CFDs and CINDs taken together [7]. Nevertheless, there has been an approxima-
tion algorithm for extracting a set S′ of consistent rules from a set S of possibly
inconsistent CFDs, while guaranteeing that S′ is within a constant bound of the
maximum consistent subset of S (see [23] for details).

Detecting Errors. After a validated set of data quality rules is identified, the next
question concerns how to effectively catch errors in a database by using these
rules. Given a set Σ of data quality rules and a database D, we want to detect
inconsistencies in D, i.e., to find all tuples in D that violate some rule in Σ.
When it comes to relative information completeness, we want to decide whether
D has complete information to answer an input query Q, among other things.

We have shown that for a centralized database D, given a set Σ of CFDs
and CINDs, a fixed number of SQL queries can be automatically generated such
that, when being evaluated against D, the queries return all and only those
tuples in D that violate Σ [23]. That is, we can effectively detect inconsistencies
by leveraging existing facility of commercial relational database systems.

In practice a database is often fragmented, vertically or horizontally, and is
distributed across different sites. In this setting, inconsistency detection becomes
nontrivial: it necessarily requires certain data to be shipped from one site to an-
other. In this setting, error detection with minimum data shipment or minimum
response time becomes NP-complete [25], and the SQL-based techniques for de-
tecting violations of conditional dependencies no longer work. Nevertheless, effec-
tive batch algorithms [25] and incremental algorithms [29] have been developed
for detecting errors in distributed data, with certain performance guarantees.

Data Imputation. After the errors are detected, we want to automatically localize
the errors, fix the errors and make the data consistent. We also need to identify
tuples that refer to the same entity, and for each entity, determine its latest and
most accurate values from the data in our database. When some data are missing,
we need to decide what data we should import and where to import from, so
that we will have sufficient information for tasks at hand. As remarked earlier,
these should be carried out by capitalizing on the interactions between processes
for improving various aspects of data quality, as illustrated in Section 2.6.

As another example, let us consider data repairing for improving data consis-
tency. Given a set Σ of dependencies and an instance D of a database schema
R, it is to find a candidate repair of D, i.e., an instance D′ of R such that D′

satisfies Σ and D′ minimally differs from the original database D [2]. This is the
method that us national statistical agencies, among others, have been practicing
for decades for cleaning census data [33,36]. The data repairing problem is, nev-
ertheless, highly nontrivial: it is NP-complete even when a fixed set of FDs or a
fixed set of INDs is used as data quality rules [5], even for centralized databases.
In light of these, several heuristic algorithms have been developed, to effectively
repair data by employing FDs and INDs [5], CFDs [11,45], CFDs and matching

Data Quality: Theory and Practice 13

dependencies [27] as data quality rules. A functional prototype system [22] has
also shown promises as an effective tool for repairing data in industry.

The data repairing methods mentioned above are essentially heuristic: while
they improve the consistency of the data, they do not guarantee to find correct
fixes for each error detected, i.e., they do not warrant a precision and recall of
100%. Worse still, they may introduce new errors when trying to repair the data.
In light of these, they are not accurate enough to repair critical data such as
medical data, in which a minor error may have disastrous consequences. This
highlights the quest for effective methods to find certain fixes that are guaranteed
correct. Such a method has recently be proposed in [28]. While it may not be
able to fix all the errors in our database, it guarantees that whenever it updates
a data item, it correctly fixes an error without introducing any new error.

4 Conclusion

Data quality is widely perceived as one of the most important issues for informa-
tion systems. In particular, the need for studying data quality is evident in big
data management, for which two central issues of equivalent importance concern
how to cope with the quantity of the data and the quality of the data.

The study of data quality management has raised as many questions as it has
answered. It is a rich source of questions and vitality for database researchers.
However, data quality research lags behind the demands in industry. A number
of open questions need to be settled. Below we address some of the open issues.

Data Accuracy. Previous work on data quality has mostly focused on data
consistency and data deduplication. In contrast, the study of data accuracy is
still in its infancy. One of the most pressing issues concerns how to determine
whether one value is more accurate than another in the absence of reference
data. This calls for the development of models, quantitative metrics, and effective
methods for determining the relative accuracy of data.

Information Completeness. Our understanding of this issue is still rudimen-
tary. While the theory of relative information completeness [20,19] circumvents
the limitations of the CWA and the OWA and allows us to determine whether
a database has complete information to answer our query, effective metrics and
algorithms are not yet in place for us to conduct the evaluation in practice.

Data Currency. The study of data currency has not yet reached the matu-
rity. The results in this area are mostly theoretical: a model for specifying data
currency, and complexity bounds for reasoning about the currency of data [26].
Among other things, effective methods for evaluating the currency of data in our
databases and for deriving current values from stale data are yet to be developed.

Interaction between Various Issues of Data Quality. As remarked ear-
lier, there is an intimate connection between data repairing and data dedupli-
cation [27]. Similarly, various interactions naturally arise when we attempt to

14 W. Fan

improve the five central aspects of data quality: information completeness is
intimately related to data currency and consistency, and so is data currency to
data consistency and accuracy. These interactions require a full treatment.

Repairing Distributed Data. Already hard to repair data in a centralized
database, it is far more challenging to efficiently fix errors in distributed data.
This is, however, a topic of great interest to the study of big data, which are
typically partitioned and distributed. As remarked earlier, data quality is a cen-
tral aspect of big data management, and hence, effective and scalable repairing
methods for distributed data have to be studied.

The Quality of Complex Data. Data quality issues are on an even larger
scale for data on the Web, e.g., XML data and social graphs. Already hard for
relational data, error detection and repairing are far more challenging for data
with complex structures. In the context of XML, for example, the constraints
involved and their interaction with XML Schema are far more intriguing than
their relational counterparts, even for static analysis [30,32], let alone for data
repairing. In this setting data quality remains by and large unexplored. Another
issue concerns object identification, i.e., to identify complex objects that refer
to the same real-world entity, when the objects do not have a regular structure.
This is critical not only to data quality, but also to Web page clustering, schema
matching, pattern recognition, and spam detection, among other things.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: PODS (1999)

3. Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and Tech-
niques. Springer (2006)

4. Bertossi, L.: Database Repairing and Consistent Query Answering. Morgan & Clay-
pool Publishers (2011)

5. Bohannon, P., Fan, W., Flaster, M., Rastogi, R.: A cost-based model and effective
heuristic for repairing constraints by value modification. In: SIGMOD (2005)

6. Bravo, L., Fan, W., Geerts, F., Ma, S.: Increasing the expressivity of conditional
functional dependencies without extra complexity. In: ICDE (2008)

7. Bravo, L., Fan, W., Ma, S.: Extending dependencies with conditions. In: VLDB
(2007)

8. Chiang, F., Miller, R.: Discovering data quality rules. In: VLDB (2008)
9. Chomicki, J.: Consistent Query Answering: Five Easy Pieces. In: Schwentick, T.,

Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 1–17. Springer, Heidelberg (2006)
10. Codd, E.F.: Relational completeness of data base sublanguages. In: Data Base

Systems: Courant Computer Science Symposia Series 6. Prentice-Hall (1972)
11. Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: Consistency

and accuracy. In: VLDB (2007)
12. Dong, X.L., Berti-Equille, L., Srivastava, D.: Integrating conflicting data: The role

of source dependence. In: VLDB (2009)

Data Quality: Theory and Practice 15

13. Dong, X.L., Berti-Equille, L., Srivastava, D.: Truth discovery and copying detection
in a dynamic world. In: VLDB (2009)

14. Eckerson, W.W.: Data quality and the bottom line: Achieving business success
through a commitment to high quality data. The Data Warehousing Institute
(2002)

15. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A
survey. TKDE 19(1) (2007)

16. English, L.: Plain English on data quality: Information quality management: The
next frontier. DM Review Magazine (April 2000)

17. Fan, W.: Dependencies revisited for improving data quality. In: PODS (2008)
18. Fan, W., Gao, H., Jia, X., Li, J., Ma, S.: Dynamic constraints for record matching.

VLDB J. 20(4), 495–520 (2011)
19. Fan, W., Geerts, F.: Capturing missing tuples and missing values. In: PODS, pp.

169–178 (2010)
20. Fan, W., Geerts, F.: Relative information completeness. TODS 35(4) (2010)
21. Fan, W., Geerts, F.: Foundations of Data Quality Management. Morgan & Clay-

pool Publishers (2012)
22. Fan, W., Geerts, F., Jia, X.: Semandaq: A data quality system based on conditional

functional dependencies. In: VLDB, demo (2008)
23. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional depen-

dencies for capturing data inconsistencies. TODS 33(1) (2008)
24. Fan, W., Geerts, F., Li, J., Xiong, M.: Discovering conditional functional depen-

dencies. TKDE 23(5), 683–698 (2011)
25. Fan, W., Geerts, F., Ma, S., Müller, H.: Detecting inconsistencies in distributed

data. In: ICDE, pp. 64–75 (2010)
26. Fan, W., Geerts, F., Wijsen, J.: Determining the currency of data. TODS (to

appear)
27. Fan, W., Li, J., Ma, S., Tang, N., Yu, W.: Interaction between record matching

and data repairing. In: SIGMOD (2011)
28. Fan, W., Li, J., Ma, S., Tang, N., Yu, W.: Towards certain fixes with editing rules

and master data. VLDB J. 21(2), 213–238 (2012)
29. Fan, W., Li, J., Tang, N., Yu, W.: Incremental detection of inconsistencies in

distributed data. In: ICDE (2012)
30. Fan, W., Libkin, L.: On XML integrity constraints in the presence of DTDs.

J. ACM 49(3), 368–406 (2002)
31. Fan, W., Ma, S., Hu, Y., Liu, J., Wu, Y.: Propagating functional dependencies

with conditions. In: VLDB, pp. 391–407 (2008)
32. Fan, W., Siméon, J.: Integrity constraints for XML. JCSS 66(1), 256–293 (2003)
33. Fellegi, I., Holt, D.: A systematic approach to automatic edit and imputation.

J. American Statistical Association 71(353), 17–35 (1976)
34. Gartner. Forecast: Enterprise software markets, worldwide, 2008-2015, 2011 up-

date. Technical report, Gartner (2011)
35. Golab, L., Karloff, H., Korn, F., Srivastava, D., Yu, B.: On generating near-optimal

tableaux for conditional functional dependencies. In: VLDB (2008)
36. Herzog, T.N., Scheuren, F.J., Winkler, W.E.: Data Quality and Record Linkage

Techniques. Springer (2009)
37. Loshin, D.: Master Data Management. Knowledge Integrity, Inc. (2009)
38. Miller, D.W., et al.: Missing prenatal records at a birth center: A communication

problem quantified. In: AMIA Annu. Symp. Proc. (2005)
39. Naumann, F., Herschel, M.: An Introduction to Duplicate Detection. Morgan &

Claypool Publishers (2010)

16 W. Fan

40. Otto, B., Weber, K.: From health checks to the seven sisters: The data quality
journey at BT (September 2009), BT TR-BE HSG/CC CDQ/8

41. Redman, T.: The impact of poor data quality on the typical enterprise. Commun.
ACM 2, 79–82 (1998)

42. SAS (2006), http://www.sas.com/industry/fsi/fraud/
43. Shilakes, C.C., Tylman, J.: Enterprise information portals. Technical report. Mer-

rill Lynch, Inc., New York (November 1998)
44. Song, S., Chen, L.: Discovering matching dependencies. In: CIKM (2009)
45. Yakout, M., Elmagarmid, A.K., Neville, J., Ouzzani, M.: GDR: a system for guided

data repair. In: SIGMOD (2010)
46. Zhang, H., Diao, Y., Immerman, N.: Recognizing patterns in streams with impre-

cise timestamps. In: VLDB (2010)

http://www.sas.com/industry/fsi/fraud/

Construction of Web-Based, Service-Oriented

Information Networks:
A Data Mining Perspective

(Abstract)

Jiawei Han

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801, U.S.A.
hanj@cs.uiuc.edu

https://www.cs.uiuc.edu/homes/hanj

Abstract. Mining directly on the existing networks formed by explicit
webpage links on the World-Wide Web may not be so fruitful due to
the diversity and semantic heterogeneity of such web-links. However,
construction of service-oriented, semi-structured information networks
from the Web and mining on such networks may lead to many exciting
discoveries of useful information on the Web. This talk will discuss this
direction and its associated research opportunities.

TheWorld-WideWeb can be viewed as a gigantic informationnetwork,whereweb-
pages are the nodes of the network, and links connecting those pages form an in-
tertwined, gigantic network. However, due to the unstructured nature of such a
network and semantic heterogeneity of web-links, it is difficult to mine interesting
knowledge from such a network except for finding authoritative pages and hubs.
Alternatively, one can also view thatWeb is a gigantic repository of multiple infor-
mation sources, such as universities, governments, companies, news, services, sales
of commodities, and so on. An interesting problem is whether this view may pro-
vide any new functions for web-based information services, and if it does, whether
one can construct such kind of semi-structured information networks automati-
cally or semi-automatically from the Web, and whether one can use such new kind
of networks to derive interesting new information and expand web services.

In this talk, we take this alternative view and examine the following issues:
(1) what are the potential benefits if one can construct service-oriented, semi-
structured information networks from the World-Wide Web and perform data
mining on them, (2) whether it is possible to construct such kind of service-
oriented, semi-structured information networks from the World-Wide Web au-
tomatically or semi-automatically, and (3) research problems for constructing
and mining Web-Based, service-oriented, semi-structured information networks.

This view is motivated from our recent work on (1) mining semi-structured
heterogeneous information networks, and (2) discovery of entity Web pages and
their corresponding semantic structures from parallel path structures.

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 17–19, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

18 J. Han

First, real world physical and abstract data objects are interconnected, forming
gigantic, interconnected networks. By structuring these data objects into multi-
ple types, such networks become semi-structured heterogeneous information net-
works. Most real world applications that handle big data, including interconnected
social media and social networks, scientific, engineering, or medical information
systems, online e-commerce systems, and most database systems, can be struc-
tured into heterogeneous information networks. For example, in a medical care
network, objects of multiple types, such as patients, doctors, diseases, medica-
tion, and links such as visits, diagnosis, and treatments are intertwined together,
providing rich information and forming heterogeneous information networks. Ef-
fective analysis of large-scale heterogeneous information networks poses an inter-
esting but critical challenge. Our recent studies show that the semi-structured
heterogeneous information network model leverages the rich semantics of typed
nodes and links in a network and can uncover surprisingly rich knowledge from
interconnected data. This heterogeneous networkmodeling will lead to the discov-
ery of a set of new principles and methodologies for mining interconnected data.
The examples to be used in this discussion include (1) meta path-based similar-
ity search, (2) rank-based clustering, (3) rank-based classification, (4) meta path-
based link/relationship prediction, (5) relation strength-aware mining, as well as
a few other recent developments.

Second, it is not easy to automatically or semi-automatically construct service-
oriented, semi-structured, heterogeneous information networks from the WWW.
However, with the enormous size and diversity of WWW, it is impossible to
construct such information networks manually. Recently, there are progresses on
finding entity-pages and mining web structural information using the structural
and relational information on the Web. Specifically, given a Web site and an
entity-page (e.g., department and faculty member homepage) it is possible to find
all or almost all of the entity-pages of the same type (e.g., all faculty members
in the department) by growing parallel paths through the web graph and DOM
trees. By further developing such methodologies, it is possible that one can
construct service-oriented, semi-structured, heterogeneous information networks
from the WWW for many critical services. By integrating methodologies for
construction and mining of such web-based information networks, the quality of
both construction and mining of such information networks can be progressively
and mutually enhanced.

Finally, we point out some open research problems and promising research
directions and hope that the construction and mining of Web-based, service-
oriented, semi-structured heterogeneous information networks will become an
interesting frontier in the research into Web-aged information management sys-
tems.

References

1. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
In: Proc. 7th Int. World Wide Web Conf. (WWW 1998), Brisbane, Australia, pp.
107–117 (April 1998)

Web-Based Information Network 19

2. Ji, M., Han, J., Danilevsky, M.: Ranking-based classification of heterogeneous infor-
mation networks. In: Proc. 2011 ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining (KDD 2011), San Diego, CA (August 2011)

3. Ji, M., Sun, Y., Danilevsky, M., Han, J., Gao, J.: Graph regularized transduc-
tive classification on heterogeneous information networks. In: Proc. 2010 Euro-
pean Conf. Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECMLPKDD 2010), Barcelona, Spain (September 2010)

4. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46,
604–632 (1999)

5. Sun, Y., Aggarwal, C.C., Han, J.: Relation strength-aware clustering of heteroge-
neous information networks with incomplete attributes. PVLDB 5, 394–405 (2012)

6. Sun, Y., Barber, R., Gupta, M., Aggarwal, C., Han, J.: Co-author relationship pre-
diction in heterogeneous bibliographic networks. In: Proc. 2011 Int. Conf. Advances
in Social Network Analysis and Mining (ASONAM 2011), Kaohsiung, Taiwan (July
2011)

7. Sun, Y., Han, J.: Mining Heterogeneous Information Networks: Principles and
Methodologies. Morgan & Claypool Publishers (2012)

8. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: Meta path-based top-k
similarity search in heterogeneous information networks. In: Proc. 2011 Int. Conf.
Very Large Data Bases (VLDB 2011), Seattle, WA (August 2011)

9. Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., Wu, T.: RankClus: Integrating
clustering with ranking for heterogeneous information network analysis. In: Proc.
2009 Int. Conf. Extending Data Base Technology (EDBT 2009), Saint-Petersburg,
Russia (March 2009)

10. Sun, Y., Yu, Y., Han, J.: Ranking-based clustering of heterogeneous information
networks with star network schema. In: Proc. 2009 ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining (KDD 2009), Paris, France (June 2009)

11. Wang, C., Han, J., Jia, Y., Tang, J., Zhang, D., Yu, Y., Guo, J.: Mining advisor-
advisee relationships from research publication networks. In: Proc. 2010 ACM
SIGKDD Conf. Knowledge Discovery and Data Mining (KDD 2010), Washington
D.C. (July 2010)

12. Weninger, T., Danilevsky, M., Fumarola, F., Hailpern, J., Han, J., Ji, M., Johnston,
T.J., Kallumadi, S., Kim, H., Li, Z., McCloskey, D., Sun, Y., TeGrotenhuis, N.E.,
Wang, C., Yu, X.: Winacs: Construction and analysis of web-based computer sci-
ence information networks. In: Proc. 2011 ACM SIGMOD Int. Conf. Management
of Data (SIGMOD 2011) (system demo), Athens, Greece (June 2011)

13. Weninger, T., Fumarola, F., Lin, C.X., Barber, R., Han, J., Malerba, D.: Growing
parallel paths for entity-page discovery. In: Proc. 2011 Int. World Wide Web Conf.
(WWW 2011), Hyderabad, India (March 2011)

Electronic Textbooks and Data Mining

Rakesh Agrawal, Sreenivas Gollapudi, Anitha Kannan, and Krishnaram Kenthapadi

Search Labs, Microsoft Research,
Mountain View, CA, USA

Abstract. Education is known to be the key determinant of economic growth and
prosperity [8,12]. While the issues in devising a high-quality educational system
are multi-faceted and complex, textbooks are acknowledged to be the educational
input most consistently associated with gains in student learning [11]. They are
the primary conduits for delivering content knowledge to the students and the
teachers base their lesson plans primarily on the material given in textbooks [7].

With the emergence of abundant online content, cloud computing, and
electronic reading devices, textbooks are poised for transformative changes.
Notwithstanding understandable misgivings (e.g. Gutenberg Elegies [6]), text-
books cannot escape what Walter Ong calls ‘the technologizing of the word’ [9].
The electronic format comes naturally to the current generation of ‘digital na-
tives’ [10]. Inspired by the emergence of this new medium for “printing” and
“distributing” textbooks, we present our early explorations into developing a
data mining based approach for enhancing the quality of electronic textbooks.
Specifically, we first describe a diagnostic tool for authors and educators to al-
gorithmically identify deficiencies in textbooks. We then discuss techniques for
algorithmically augmenting different sections of a book with links to selective
content mined from the Web.

Our tool for diagnosing deficiencies consists of two components. Abstract-
ing from the education literature, we identify the following properties of good
textbooks: (1) Focus : Each section explains few concepts, (2) Unity: For every
concept, there is a unique section that best explains the concept, and (3) Sequen-
tiality: Concepts are discussed in a sequential fashion so that a concept is ex-
plained prior to occurrences of this concept or any related concept. Further, the
tie for precedence in presentation between two mutually related concepts is bro-
ken in favor of the more significant of the two. The first component provides an
assessment of the extent to which these properties are followed in a textbook and
quantifies the comprehension load that a textbook imposes on the reader due to
non-sequential presentation of concepts [1,2]. The second component identifies
sections that are not written well and can benefit from further exposition. We
propose a probabilistic decision model for this purpose, which is based on the
syntactic complexity of writing and the notion of the dispersion of key concepts
mentioned in the section [4].

For augmenting a section of a textbook, we first identify the set of key concept
phrases contained in a section. Using these phrases, we find web articles that
represent the central concepts presented in the section and endow the section
with links to them [5]. We also describe techniques for finding images that are
most relevant to a section of the textbook, while respecting the constraint that the
same image is not repeated in different sections of the same chapter. We pose this
problem of matching images to sections in a textbook chapter as an optimization
problem and present an efficient algorithm for solving it [3].

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 20–21, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Electronic Textbooks and Data Mining 21

We finally provide the results of applying the proposed techniques to a corpus
of widely-used, high school textbooks published by the National Council of Edu-
cational Research and Training (NCERT), India. We consider books from grades
IX–XII, covering four broad subject areas, namely, Sciences, Social Sciences,
Commerce, and Mathematics. The preliminary results are encouraging and indi-
cate that developing technological approaches to embellishing textbooks could
be a promising direction for research.

References

1. Agrawal, R., Chakraborty, S., Gollapudi, S., Kannan, A., Kenthapadi, K.: Empowering au-
thors to diagnose comprehension burden in textbooks. In: KDD (2012)

2. Agrawal, R., Chakraborty, S., Gollapudi, S., Kannan, A., Kenthapadi, K.: Quality of text-
books: An empirical study. In: ACM DEV (2012)

3. Agrawal, R., Gollapudi, S., Kannan, A., Kenthapadi, K.: Enriching textbooks with images.
In: CIKM (2011)

4. Agrawal, R., Gollapudi, S., Kannan, A., Kenthapadi, K.: Identifying enrichment candidates
in textbooks. In: WWW (2011)

5. Agrawal, R., Gollapudi, S., Kenthapadi, K., Srivastava, N., Velu, R.: Enriching textbooks
through data mining. In: ACM DEV (2010)

6. Birkerts, S.: The Gutenberg Elegies: The Fate of Reading in an Electronic Age. Faber &
Faber (2006)

7. Gillies, J., Quijada, J.: Opportunity to learn: A high impact strategy for improving educa-
tional outcomes in developing countries. USAID Educational Quality Improvement Program,
EQUIP2 (2008)

8. Hanushek, E.A., Woessmann, L.: The role of education quality for economic growth. Policy
Research Department Working Paper 4122. World Bank (2007)

9. Ong, W.J.: Orality & Literacy: The Technologizing of the Word. Methuen (1982)
10. Prensky, M.: Digital natives, digital immigrants. On the Horizon 9(5) (2001)
11. Verspoor, A., Wu, K.B.: Textbooks and educational development. Technical report. World

Bank (1990)
12. World-Bank. Knowledge for Development: World Development Report: 1998/99. Oxford

University Press (1999)

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 22–34, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Topology-Based Data Compression
in Wireless Sensor Networks

Shangfeng Mo1,2,3, Hong Chen1,2,∗, and Yinglong Li1,2,3

1 Key Laboratory of Data Engineering and Knowledge Engineering of MOE,
Renmin University of China, Beijing 100872, China

2 School of Information, Renmin University of China, Beijing 100872, China
3 Hunan University of Science and Technology, Xiangtan 411201, China
moshangfengxy@yahoo.com.cn, chong@ruc.edu.cn,

liyinglong518@126.com

Abstract. In this paper, we address the problem of Data Compression which is
critical in wireless sensor networks. We proposed a novel Topology-based Data
Compression (TDC) algorithm for wireless sensor networks. We utilize the
topological structure of routing tree to reduce the transmission of message
packets. We analyzed the differences and relations between our algorithm and
other compression algorithms. Extensive experiments are conducted to evaluate
the performance of the proposed TDC approach by using two kinds of data sets:
real data set and synthetic data set. The results show that the TDC algorithm
substantially outperforms Non-compression algorithm in terms of packets
transmitted.

Keywords: WSNs, topology-based, data compression.

1 Introduction

With the development of microelectronics, embedded computing and wireless
communication technology, sensor hardware manufacturing ability is also improved.
Low-power, inexpensive sensor nodes can be integrated with information collection,
data processing and wireless communication functions [1]. Wireless sensor networks
(WSNs) composed by a large number of sensor nodes deployed in the monitoring
regions, are used to collect and process information of perceived objects.

The sensor nodes are usually battery-powered and deployed in harsh physical
environments. It is usually impossible to replace the batteries and the nodes. So the
goal of data compression in wireless sensor networks (WSNs) is to reduce the energy
consumption and prolong the network lifetime. Compare with the calculation, the
communication between sensor nodes consume much more energy [2]. So the key
problem of saving the energy consumption is to reduce the amount of data
transmission.

∗ Corresponding author.

 Topology-Based Data Compression in Wireless Sensor Networks 23

In this paper, we focus on Topology-based Data Compression algorithm (TDC) for
wireless sensor networks. Our TDC algorithm will minimize the amount of data
during transmission, and the sink can obtain the accurate information.

Our contributions are summarized as follows:

(1) We utilize the topological structure of routing tree to reduce the transmission
of common information including node id, sequence number, etc. Whether all
nodes sending their data to the sink or parts of nodes sending their data to the
sink, our compression algorithm TDC is basically better than the Non-
compression Algorithm.

(2) We analyzed the differences and relations between our compression
algorithm TDC and other compression algorithms, such as wavelet
compression algorithms [3] [4], Huffman encoding algorithms [5] [6], etc.

(3) Extensive experiments are conducted to evaluate the performance of the
proposed TDC approach by using two kinds of data sets: real data set and
synthetic data set. The results provide a number of insightful observations and
show that TDC algorithm substantially outperforms Non-compression algorithm
in terms of packets transmitted under various network configurations.

The remainder of this paper is organized as follows. Section 2 summarizes related work.
Section 3 introduces some assumptions. Section 4 describes the proposed TDC scheme in
details. Section 5 presents experimental results. Section 6 concludes the paper.

2 Related Work

There are many compression algorithms in wireless sensor networks, such as wavelet
compression algorithms [3] [4], Huffman encoding algorithms [5] [6], etc.

Wavelet compression algorithms [3] [4] utilize the wavelet transformation to
achieve the data compression. The goal is to achieve large compression ratio and
maintain a certain degree of accuracy. Wavelet compression algorithms will obtain a
good approximation ability and high compression ratio. But the resulting values of the
sink obtained are approximate and not completely accurate, which is not the same as
our compression algorithm. Our compression algorithm is to reduce the amount of
transmission of useless data, and the data which the sink obtained are accurate.

The core idea of Huffman encoding algorithms [5] [6] are to encode the data of
sensor nodes using the shorter codes, as the sensor nodes are farther away from the
base station or the data occur more frequently. Our compression algorithm is to
reduce the amount of transmission of useless data. Therefore, there are no conflict
between Huffman encoding algorithms and our compression algorithm. The
normalized data based on our compression algorithm can be encoded using Huffman
encoding algorithms, which will further increase the compression ratio.

3 Preliminaries

In this paper, there are N sensor nodes randomly deployed in an area, which constitute
a network by self-organized manner. The sensor nodes sample the data periodically.

24 S. Mo, H. Chen, and Y. Li

Each sampling period is called a round. Sink node continuously requests the data in
every sampling period. The i-th sensor node is denoted by si and the corresponding
sensor nodes set S = {s1, s2, ..., sn}, ∣S∣ = N. Each si has the maximum
communication radius R.

We make the following assumptions:

1. All ordinary sensor nodes are homogeneous and have the same capabilities.
When all nodes are deployed, they will be stationary, and each one has a
unique identification (ID).

2. There is only one sink (base station), and the sink node can be recharged.
3. Links are symmetric. If node si can communicate with node sj, node sj can

also communicate with node si.
4. The energy resource of ordinary sensor nodes is highly-limited and

unreplenished.

4 The TDC Scheme

In recent years, there are many routing algorithms appeared in the wireless sensor
networks (WSNs). In general, the routing protocols are classified into two types: flat
routing protocols and hierarchical routing protocols. TAG [7] and HEAR [8] belong to
the flat routing protocols; LEACH [9], EEUC [10], HEED [11] and CCEDG [12] belong
to the hierarchical routing protocols. Flat routing protocols are tree-based routing
approach mostly, and they route data to the sink node through a multi-hop network. In
hierarchical routing protocols, sensor nodes construct clusters for routing and then data
transmission occurs as two steps, i.e., intra-cluster routing and inter-cluster routing [13].

Fig. 1. An example of TAG routing tree

In TAG [7] protocol, as shown in Figure 1, firstly, sink sk broadcasts a building
message to build the tree. The node si which received the building message may be
the child of the sender sk. Then the child node si will transfer the building message to
its neighbors, and so on. The child node si also selects an optimal parent node to send
back the response message for building the routing tree. We will describe our Data

 Topology-Based Data Compression in Wireless Sensor Networks 25

Compression Algorithm based on the topology of TAG routing protocol, and it is also
effective to other topologies: flat routing protocols and hierarchical routing protocols.

4.1 Overview of TDC Algorithm

The sensory data usually consists of two parts. One part is common information, such as
node id, date and time, sequence number or epoch, etc. Another part is the sensory
attributes. For example, in the real dataset [14], the common information include node id,
date and time, epoch; and the sensory attributes include temperature, humidity, light, etc.

In the traditional data transmission process, the data is transmitted along the
routing tree in turn. As shown in Figure 1, if node 4 wants to send its data to the sink,
its data will be sent to its parent node 6 first, then node 8, 9, 10, 14, and finally the
sink. In this process, the useful information is the sensory attributes, and the common
information transmitted to the sink only make the sink identifying the data belong to.
If a node only transmits its sensory attributes and a small number of other auxiliary
information to the sink, the sink can also identify the owner of the sensory attributes
based on the auxiliary information. At the same time, the bytes which the auxiliary
information occupied are less than the common information. This method will reduce
amount of packets transmitted and save the energy consumption.

Fig. 2. The data package of a node

Fig. 3. All nodes need to send their data to the sink

26 S. Mo, H. Chen, and Y. Li

As shown in Figure 2, there is a data package of a node si. The data of descendant
nodes will be encapsulated into the package. Every m (m=4) data of descendant nodes
forms a sub-package, and each sub-package has a sub-package number. If the
descendant node sj sends a data to the sink, the data will be denoted as 1XX… (1 bit
+ sizeof(attribute values)), otherwise denoted as 0.

As shown in Figure 3, all nodes need to send their data to the sink. The leaf nodes in
the tree, such as node 4, 5, 7, etc, have no descendant node. There is only one sub-
package in the data package and the sub-package number starts with 1. The intermediate
nodes in the tree, such as node 6, 8, 9 etc, have one or more than one descendant nodes.
The intermediate node 8 has two child nodes 6 and 7, and the node 6 has two child nodes
4 and 5. The number of descendant nodes of node 8 (including node 8) is 5. The order of
the descendant nodes in the node 8 package is: 4, 5, 6, 7 and 8.

4.2 The Detailed TDC Algorithm

We will describe the constructing process of our Topology-based Data Compression
(TDC) algorithm in this subsection.

1: initialize
2: si.PN = NULL;// Parent Node of si;
3: si.CS = NULL;//Child nodes set of si is null;
4: si.count = 0; //Number of descendant nodes of si (including itself);
5: si.CPSet = NULL; // The set of pair of child and parent node.
6: end-initialize
7: on_receiving_TAG_Response(si. id, sj.id, sj.count, sj. CPSet)_message_from_sj ();
8: si.CPSet = si.CPSet ∪sj.CPSet ∪ { sj.id, si. id};
9: si.CS= si.CS ∪ sj.id;
10: si.count= si.count+ sj.count;
11: sj.CCount = sj.count; //save the number of descendant nodes of child node sj.
12: end_processing_ TAG_Response_message;
13: When_the_timer_t_expires;
//it is the time for si send TAG_Response message to its parent.
14: si.count= si.count+1;// Number of descendant nodes of si (including itself)
15: CSTemp = si.CS;
16: begin=1;
17: while (CSTemp_is_not_null)
18: find_sj’_which_ has_the_smallest_id_number_in_CSTemp;
19: find_sj_which_has_the_same_id_as_sj’_in_si.CS;
20: sj.CBegin= begin;
21: begin= begin+ sj.CCount;
22: delete_sj’_from_ CSTemp;
23: end-while
24: si.CBegin= begin;
//The last ordinal position in the package of node si is reserved for itself.
25: find_a_suitable_node_as_its_parent(); //which is the same as TAG described.
26: send_TAG_Response(si.PN, si.id, si.count, si.CPSet)_message_to_its_parent_node;

Procedure 1. TDC algorithm

 Topology-Based Data Compression in Wireless Sensor Networks 27

Terminologies:
si.PN: Parent Node of si;
si.CS: Child nodes set of si;
si.id: Node id of si;
si.count: Number of descendant nodes of si (including itself);
sj.CBegin: The starting position of descendant nodes of node sj in the package of

node si;
sj.CCount: The number of descendant nodes of child node sj (including sj);
si.CPSet: The set of pair of child and parent node, which will be used by sink to

construct the routing map.

Our TDC algorithm is reflected in the improved TAG response procedure, as shown
in procedure 1. When parent node si receives a TAG_Response message from its child
node sj, parent node si will extract the id and the number of descendant nodes of child
node sj. Parent node si will also merge the pair of child and parent node { sj.id, si. id} to
its set of pair of child and parent node si.CPSet. Parent node si will save the id of child
node sj and the number of descendant nodes of sj, as well as cumulate the number of
descendant nodes of si (Lines 7-12). When the timer t expires, parent node si will
compute the ordinal position of child node sj in the package of parent node si. The
smaller the child node id is, the more the probability is arranged in the front of the
package of node si. The parent node si will select an optimal node as its parent node and
send back the TAG_Response message (Lines 13-26). In the TAG routing tree
formation process, the set of pair of child and parent node will send to the sink ultimately
(Line 26). So the sink will know the whole network topology map. Finally, the sink will
restore the compressed data according to the topology map.

2 3

1

4

Parent node

Children
nodes

CCount=3
CBegin=1

CCount=4
CBegin=4

CCount=1
CBegin=8

X 2 X X X 3 4 1X

The package of node 1

Sub-package 1 Sub-package 2 Sub-package 3

Global offset 1 2 3 4 5 6 7 8 9
Sub-package offset 1 2 3 4 1 2 3 4 1

Fig. 4. The order of descendant nodes

Next, we will show an example of computing the ordinal position of descendant nodes
in the package of parent node si. As shown in Figure 4, the global offset arranges in
ascending order starting from 1, and the sub-package offset arranges from 1 to 4 and
repeated. Parent node 1 has 3 child nodes, which are node 2, 3 and 4 (s1.CS = {2, 3, 4}).
Parent node 1 has 9 descendant nodes (including itself), which means
s1.count=s2.CCount+s3.CCount+s4.CCount+1=3+4+1+1=9. Child node 2 has 3

28 S. Mo, H. Chen, and Y. Li

descendant nodes (including node 2) (s2.CCount=3). The starting position of descendant
nodes of child node 2 in the package of parent node 1 is 1 (s2.CBegin=1; Global
offset=1). Based on the Procedure 1, the ordinal position of child node 2 itself in the
package of parent node 1 is 3 (Global offset = 3), which is the last position in all
descendant nodes of node 2. As shown in Figure 4, the shadow lines parts represent the
ordinal positions of child node 2, 3, 4 and parent node 1 themselves in the package of
parent node 1.

Steady phase:
1: if si receiving_Data_Package_message_from_sj
2: if sj.id ∈si.CS
3: for (sj.CBegin to (sj.CBegin +sj.CCount))
4: compute_the_corresponding_subpackage_number_and_subpackage_offset();
5: copy_data_of_sj_to_package_of_si();
6: end-for
7: end-if
8: end-if

Procedure 2. Data Package transmission procedure

Next, we will describe the Data Package message transmission in the steady phase.
As shown in procedure 2, when parent node si receives a Data Package message
from its child node sj, parent node si will extract the data package of child node sj,
and obtain the sub-package number and the sub-package offset of each data. Then
parent node si will compute the corresponding sub-package number and sub-package
offset in its own package. Finally parent node si will copy the data from node sj to the
corresponding location of node si package.

Fig. 5. Parts of nodes send their data to the
sink

Fig. 6. 3 types of the package

 Topology-Based Data Compression in Wireless Sensor Networks 29

Now, let us to describe the process of computing sub-package number and sub-
package offset. We set the global offset to be o which starting from 1. We set the sub-
package number to be p which starting from 1. We set the sub-package length to be
length. We set the sub-package offset to be q which starting from 1. As shown in
Figure 4, there are 4 data in a sub-package. So the length is 4. The global offset of
child node 3 itself in the package of parent node 1 is 7 (Global offset o = 7). The sub-
package number of child node 3 itself in the package of parent node 1 is 2 (p=2). The
sub-package offset of child node 3 itself in the package of parent node 1 is 3 (q=3).

Assume a node sm is one of descendant nodes of node sj, and node sj is one of
child nodes of node si. The sub-package number and the sub-package offset of
descendant node sm in the package of child node sj are p and q respectively. The
global offset ojm of descendant node sm in the package of child node sj will be ojm=(p-
1)* length+q. The global offset oim of descendant node sm in the package of parent
node si will be oim =sj.CBegin -1+ojm=sj.CBegin -1+(p-1)* length+q. The sub-
package number pim of descendant node sm in the package of parent node si will be
ceil(oim / length). The function ceil(A) returns a minimum integer which is greater
than or equal to A. For example: ceil(5/ 4)=2. The sub-package offset qim of
descendant node sm in the package of parent node si will be oim mod length; if(oim
mod length == 0) return length. For example: 5 mod 4 =1. Finally, the data of
descendant node sm will be copied to the location which is the pimth sub-package and
the qimth sub-package offset of the package of parent node si.

Figure 5 shows an example of parts of data transmitted, where only node 2, 4, 8
and 10 need to send their data to the sink.

4.3 Performance of the TDC Algorithm

Now, we will analyze the performance of the TDC Algorithm.
If node si has 3 data needed to send to the sink, there are 3 types of the package. The

parameters are shown in the table 1. As shown in the Figure 6, type 1 has 1 sub-package,
and the bits want to be transmitted is: 6*8+(4+(1+4*8)+(1+4*8)+(1+4*8)+1)=152; type
2 has 2 sub-packages, and the bits want to be transmitted is: 6*8+(4+(1+4*8)+1+1+1)+
(4+(1+4*8)+(1+4*8)+1+1)=160 ; type 3 has 3 sub-packages, and the bits want to be
transmitted is: 168. If we use the Non-compression Algorithm, it means that each node
will send common information and sensory attributes to the sink. The common
information occupies 6 bytes and the sensory attribute occupies 4 bytes. The data
transmitted using non-compression algorithm is: (6+4)*8*3=240 bits, which is greater
than using TDC algorithm.

As shown in the Table 1, there is the performance of the TDC Algorithm and Non-
compression Algorithm. If node si has n data needed to send to its parent node, and each
data occupies a sub-package, such as the type 3 in Figure 6, there will be n sub-packages
in the package of node si, which has the maximum number of sub-packages. The bits
want to be transmitted is: 48+(4+33+1+1+1)*n=48+40*n. If every sub-package is full,
such as the type 1 in Figure 6, there will be n/4 (if n mod 4 == 0) or ceil (n/4) (if n mod
4 != 0) sub-packages in the package of node si, which is the minimum number of sub-
packages. If n mod 4 == 0, the bits want to be transmitted is: 48+ (n/4)*136, if n mod
4 != 0, the bits want to be transmitted is: 48+((ceil (n/4))-1)*136+(n mod 4)*32+8. The
bits want to be transmitted using the Non-compression Algorithm is 80*n.

30 S. Mo, H. Chen, and Y. Li

Table 1. The performance of the TDC Algorithm and Non-compression Algorithm

Parameters:

Common information includes node id (2 bytes) and sequence
number or epoch (4 bytes). So common information occupied 6
bytes. Sub-package number occupied 4 bits. There is only one
sensory attribute value which occupied 4 bytes. Data transmitted:
1XX… (1 bit+4Bytes); no data transmitted: 0 (1 bit).

Number of
data need to
be
transmitted

Number of sub-
packages

TDC Algorithm (bits)

Non-
compression
Algorithm
(bits)

1 1 88 80

2
1 120 160
2 128 160

3
1 152 240
2 160 240
3 168 240

4

1 184 320
2 192 320
3 200 320
4 208 320

n

minimum number
of sub-packages:
if n mod 4 == 0: n/4
else ceil (n/4)

if n mod 4 == 0: 48+
(n/4)*136;
if n mod 4 != 0:
48+((ceil (n/4))-1)*136+(n
mod 4)*32+8

80*n

maximum number
of sub-packages: n

48+40*n 80*n

If our TDC Algorithm is effective compare to the Non-compression Algorithm, the
maximum bits transmitted should be less than the ones using Non-compression
Algorithm, which means: 48+40*n< 80*n. It can be derived that when
n>(48/40=1.2), which means that when n is greater than or equal to 2, our TDC
Algorithm is better than Non-compression Algorithm.

If n is large enough, in the worst case, each data occupies a sub-package, the
compression ratio is: 1-(48+40*n)/(80*n) ≈1-(40*n)/(80*n)= 50%. In the best case,
every sub-package is full (exclude the last sub-package), the compression ratio is: 1-
(48+(n/4)*136) /(80*n) ≈1-(34*n)/(80*n)=57.5%.

5 Simulation Results

To analyze the performance of our algorithm, we conduct experiments using
omnetpp-4.1. We use two kinds of data sets. One is a real dataset collected by the
Intel Berkeley Research Lab [14]. We use 1000 records from the real data set.

 Topology-Based Data Compression in Wireless Sensor Networks 31

Another data set is a synthetic data set. We randomly deployed 300 homogeneous
sensor nodes in the 400*400 m2 rectangular region and sink is located at the center.

Our scheme is based on the TAG [7] routing algorithm, and assume
communication links are error-free as well as MAC layer is ideal case. To compute
the packets transmitted, we define a sampling period as a round.

The transmission range of sink node is usually greater than the transmission range
of ordinary sensor nodes, so we assume that the transmission range of sink node can
cover most regions of the monitoring networks.

The size of a message packet is 30 bytes. Other parameters are as shown in the
table 1.

As mentioned above, energy consumption is a critical issue for wireless sensor
networks and radio transmission is the most dominate source of energy consumption.
Thus, we use the following two metrics to measure the performance in wireless sensor
networks.

The Average Number of Packets Sent: the average number of packets sent by each
node each round.

The Network Lifetime: the network lifetime refers to the number of rounds from the
first round to the rounds of a node first failure. From the perspective of network
availability, the network lifetime is a more useful metric than the average number of
packets sent. The more the number of packets sent by a node, the more energy
consumed, the faster the node died, the shorter the network lifetime is. So we use the
maximum number of packets sent to measure the network lifetime.

The maximum number of packets sent means that a node which sends the largest
number of packets per round to the sink among all nodes in wireless sensor networks.

Comparison of these two metrics, the maximum number of packets sent is more
important than the average number of packets sent.

0

1

2

3

4

5

6

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
a

x
im

u
m

 P

a
ck

et
s

 S
en

t

Different Probability

Non-compression TDC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v

er
a

ge

P
a

ck
et

s
 S

en
t

Different Probability

Non-compression TDC

(a) Maximum packets sent with different probability (b) Average packets sent with different probability

Fig. 7. The performance comparison of real data set

32 S. Mo, H. Chen, and Y. Li

To simulate parts of nodes sending their data to the sink, we set a parameter
which is probability. If probability is 0.1, only 10 percent of the nodes will send
their data to the sink.

First, we will introduce the performance comparison in the real data set. As shown
in the Figure 7 subfigure (a) and (b), with the probability increasing, the maximum
and average number of packets sent of TDC algorithm and Non-compression
algorithm increases too, and the performance of TDC algorithm is better than the
Non-compression algorithm.

As described in section 4, the compression ratio fluctuates in the range 50%-
57.5%. Experimental results show that the experimental compression ratio is a little
smaller than the theoretical. Why? The definition of package is different with the
definition of message packet. As shown in Figure 2, if the package can be
encapsulated into a message packet, it will be sent in one message packet. Otherwise,
it may split into multiple message packets. When the probability equals to 1, the
maximum number of packets sent of TDC algorithm will reduce to 50% than Non-
compression algorithm, which means the network lifetime will extend 50% than Non-
compression algorithm.

In summary, TDC algorithm is better than Non-compression algorithm, even the
network size is small and where deployed few nodes.

0

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
a

x
im

u
m

 P
a

ck
et

s
 S

en
t

Different Probability

Non-compression TDC

0

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v

er
a

ge

P
a

ck
et

s
 S

en
t

Different Probability

Non-compression TDC

(a) Maximum packets sent with different probability (b) Average packets sent with different probability

Fig. 8. The performance comparison of synthetic data set

Next, we will show the performance comparison in the synthetic data set. As

shown in the Figure 8 subfigure (a) and (b), with the probability increasing, the
maximum and average number of packets sent of TDC algorithm and Non-
compression algorithm increases too, and the performance of TDC algorithm is better
than the Non-compression algorithm.

 Topology-Based Data Compression in Wireless Sensor Networks 33

6 Conclusions and Future Work

In this paper, we proposed a Topology-based Data Compression algorithm (TDC) in
wireless sensor networks. The goal of the scheme is to save the energy consumption
and extend the network lifetime. Our experimental result shows that the proposed
TDC scheme can reduce the number of packets transmitted as well as extend the
network lifetime.

In the future, we plan to extend the proposed Data Compression Algorithm to other
aggregate functions, such as join, average, and sum.

Acknowledgements. This research was supported by the National Natural Science
Foundation of China (61070056, 61033010), the HGJ Important National Science &
Technology Specific Projects of China (2010ZX01042-001-002-002) and the
Doctoral Fund of Ministry of Education of China.

References

1. Institute of Electrical and Electronics Engineers Inc. Ten emerging technologies that will
change your world. IEEE Engineering Management Review 32, 20–30 (2004)

2. Zhang, H., Wu, Z., Li, D., Chen, H.: A Sampling-Based Algorithm for Approximating
Maximum Average Value Region in Wireless Sensor Network. In: 2010 39th International
Conference on Parallel Processing Workshops, ICPPW, pp. 17–23 (2010)

3. Rein, S., Reisslein, M.: Performance evaluation of the fractional wavelet filter: A low-
memory image wavelet transform for multimedia sensor networks. Ad Hoc Networks 9(4),
482–496 (2011)

4. Xie, Z.-J., Wang, L., Chen, H.: Algorithm of Voronoi Tessellation Based Data
Compression over Sensor Networks. Ruan Jian Xue Bao/Journal of Software 20(4), 1014–
1022 (2009) (Language: Chinese)

5. Reinhardt, A., Christin, D., Hollick, M., Schmitt, J., Mogre, P.S., Steinmetz, R.: Trimming
the Tree: Tailoring Adaptive Huffman Coding to Wireless Sensor Networks. In: Silva, J.S.,
Krishnamachari, B., Boavida, F. (eds.) EWSN 2010. LNCS, vol. 5970, pp. 33–48.
Springer, Heidelberg (2010)

6. Yeo, M., Seong, D., Cho, Y., Yoo, J.: Huffman Coding Algorithm for Compression of
Sensor Data in Wireless Sensor Networks. In: ICHIT 2009 - International Conference on
Convergence and Hybrid Information Technology, pp. 296–301 (2009)

7. Madden, S., Franklin, M.J., Hellerstein, J., Hong, W.: TAG: a Tiny Aggregation Service
for Ad-Hoc Sensor Networks. In: Proc. Usenix Fifth Symp. Operating Systems Design and
Implementation (OSDI 2002), pp. 131–146 (December 2002)

8. Wang, J., Cho, J., Lee, S., Chen, K.-C., Lee, Y.-K.: Hop-based Energy Aware Routing
Algorithm forWireless Sensor Networks. IEICE Transactions on
Communications E93B(2), 305–316 (2010)

9. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy efficient communication
protocols for wireless microsensor networks. In: Proceedings of the 33rd Hawaiian
International Conference on Systems Science (January 2000)

10. Li, C., Ye, M., Chen, G., Wu, J.: An Energy-Efficient Unequal Clustering Mechanism for
Wireless Sensor Networks. In: IEEE International Conference on Mobile Adhoc and
Sensor Systems Conference, November 7-10, pp. 1–8. IEEE Press, Washington (2005)

34 S. Mo, H. Chen, and Y. Li

11. Younis, O., Fahmy, S.: HEED: a hybrid, energy-efficient, distributed clustering approach
for ad hoc sensor networks. IEEE Transactions on Mobile Computing 3(4), 660–669
(2004)

12. Mo, S., Chen, H.: Competition-based Clustering and Energy-saving Data Gathering in
Wireless Sensor Networks. In: 1st IET International Conference on Wireless Sensor
Network, IET-WSN 2010 (2010)

13. Kim, D.-Y., Cho, J., Jeong, B.-S.: Practical Data Transmission in Cluster-Based Sensor
Networks. KSII Transactions on Internet and Information Systems 4(3) (June 2010)

14. http://db.csail.mit.edu/labdata/labdata.html

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 35–46, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Residual Energy-Based Fairness Scheduling MAC
Protocol for Wireless Sensor Networks*

Long Tan

School of Computer Science and Technology,
Heilongjiang University, 150080 Harbin, China

Tanlong01@163.com

Abstract. The Residual Energy-Based Fairness Scheduling MAC Protocol
presented in this paper is aimed to solve the problems of how to ensure a
balance energy consumption of WSN，how to reduce the collisions from
interfering nodes in wireless sensor networks by introducing the fluid fair
model into the wireless sensor network. We provide a conception of residual
energy, and distributed energy fair scheduling MAC protocol for nodes to
maintain a neighbor node’s residual-energy queue so as to preserve the long-
term balance energy consuming for every wireless sensor node and avoid the
emerging of the network Island. The effectiveness of the protocol is validated
through the simulation test to ensure the longest lifetime of WSN.

Keywords: wireless sensor network, Fair scheduling, residual energy.

1 Introduction

Wireless Sensor Network (WSN) has gained widespread attention in recent years.
They can be used for testing, sensing, collecting and processing information of
monitored objects and transferring the processed information to users[1]. The network
has a wide range applications including health, military, and security.

Since Wireless Sensor Network works in a shared-medium, medium access control
(MAC) is an important technique that enables the successful operation of the network.
One fundamental task of the MAC protocol is how to avoid collisions among a large
number of neighbor nodes which communicate each other at the same time in a share-
medium. There are many MAC protocols that have been developed for wireless voice
and data communication networks like IEEE802.11[2].

However, sensor nodes are constrained in energy supply and bandwidth[3]. Since
WSN node is usually very cheap, charging or recharging the battery is not usually
feasible and necessary. Therefore, how to maximize the node’s battery lifetime is very
important in WSN. Many research works have been finished to solve energy problem
in [4][5][6][7][8].These works are mainly focused on MAC layer. Of course, we must
know challenges necessitate energy-awareness at all layers of networking protocol

* Supported by the Science Technology Research Project of Heilongjiang educational office

under Grant No.11551349.

36 L. Tan

stack. For example, Network layer protocol, energy aware routing protocol [9],
Directed Diffusion Protocol and so on., are all designed for reducing the energy
consumption of nodes. Many solutions to the problem of idle listening have been
proposed utilizing the technique of duty cycling [10][11].

In this paper, the fluid fair model of the traditional wireless channel is introduced
into the wireless sensor network. By utilizing a variation fair scheduling algorithm of
Start time Fair Queuing (STFQ) [12]based on the S-MAC protocol, we propose a
fairness scheduling model based on the residual energy to realize a balanced
consumption of node energy in WSN and eventually to ensure the longest lifetime of
WSN. Specifically, we make the following work: In the event-driven WSN, the
number of nodes responding to an event and the event-related neighbor nodes
maintain neighbor node’s residual-energy queue. When one node and all its
neighboring nodes sense a event, according to their residual energy hierarchy, the
nodes that have more residual energy have the priority to contending the channel and
transmit the information. The priority is based on the distributed Coordination
Function in the IEEE802.11 stand that the higher energy node has shorter back off
time when conflicts occur and thus get the priority to transmit the report. In addition,
the residual energy of nodes is introduced into the mechanism of data transmission,
period sleep and collision handling in order to ensure a balanced energy consumption,
prolong the lifetime of WSN and prevent the network island.

Meanwhile, in order to ensure the redundancy and reliability, in the sensor
network, N sensor nodes are distributed in the transmitting station, When N
neighboring nodes sense an event at the same time , not all nodes need to transmit
report of it . Only R of N [11]need to report and N-R nodes come into the sleep state
and give up transmission to save the energy so that the energy consumption is
balanced. Finally, the protocol of this paper is introduced on the basis of S-MAC and
the efficiency is tested through experiments.

The rest of the paper is organized as follows. Section Two introduces related work
on wireless fair scheduling in Wireless Packet Switch Network and sensor networks’
contention-based MAC protocol, their requirements and our ongoing research project.
The protocol that this paper proposed is detailed in Section Three. Finally,
simulations and results are presented in Section Four, and concluding in Section Five.

2 Related Work

The focus of this paper is to combine the traditional Fair Scheduling in Wireless
Packet Switch Network with the MAC protocol of WSN in order to establish a
fairness scheduling model based on residual energy to achieve the fair schedule of
node energy in WSN.

2.1 Fair Scheduling in Wireless Packet Switch Network

The Fair Scheduling in Wireless Packet Switch Network aims to solve the conflicts of
achieving the fairness. As we know, the locality of wireless transmission implies that
collisions, and hence contention for the shared medium, are location dependent. When
a single logical wireless channel is shared among multiple contending flows, due to

 A Residual Energy-Based Fairness Scheduling MAC Protocol for WSN 37

the location-dependent contention and multi-hop nature of network, any two flows
that are not interfering with each other can potentially transmit data packets over the
physical channel simultaneously which leads to the conflicts and invalid service. So
how to assign a minimum channel allocation to each flow proportional to its weight,
and maximize the aggregate channel utilization is the goal of the fair scheduling fluid
model[13].

In the fluid model, the granularity of channel sharing is a bit, and each flow f is
assigned a weight. Intuitively, allocation of link bandwidth is fair if equal bandwidth
is allocated in every time interval to all the flows. This concept generalizes to
weighted fairness in which the bandwidth must be allocated in proportion to the
weights associated with the flows.

Formally, if R is the weight of flow f and W t , t is the aggregate service
(in bits) received by it in the interval [t1,t2] , then an allocation is fair if, for all
intervals [t1,t2] in which both flows f and m are backlogged Clearly, this is an
idealized definition of fairness as it assumes that flows can be served in
infinitesimally divisible units. W , R W ,R (1)

The earliest known fair scheduling algorithm is Weighted Fair Queuing (WFQ)[14].
WFQ was designed to emulate a hypothetical bit-by-bit weighted round-robin server
in which the number of bits of a flow served in a round is proportional to the weight
of the flow. Since packets cannot be serviced a bit at a time, WFQ emulates bit-by-bit
round-robin by scheduling packets in the increasing order of their departure times in
the hypothetical server. To compute this departure order, WFQ associates two tags—a
start tag and a finish tag—with every packet of a flow. Specifically, ifP and L denote
the kth packet of flow R and its length, respectively, and if V A P denotes the
arrival time of packet at the server, then start tag S P and finish tag F P of
packet are defined as: S P MAX V A P , F P (2) F P S P L /R (3)
Where V(t) is defined as

V C t / ∑ R∈B (4)

C(t) is the capacity of the server and B(t) is the set of backlogged flows at time.
Wireless Fair Queuing then schedules packets in the increasing order of their finish
tags or start tags to ensure the fairness of the flow.

2.2 MAC Protocol in WSN

Since this paper focuses on a distributed protocol, we’d like to introduce some typical
distributed MAC protocols for WSN.

38 L. Tan

The MAC protocol for WSN is often divided into Contention-based MAC and
contention-free MAC. The contention-based MAC protocol is also known as random
access protocol. Typically, some nodes communicate with each other in a shared-
medium, and only one node can use the channel to communicate with others.
Colliding nodes back off for a random duration and try to compete the channel again.
Distributed coordination function (DCF) is an example of the contention-based
protocol in the standardized IEEE 802.11.

The contention-free MAC is based on reservation and scheduling, such as TDMA-
based protocols. Some examples of the kind of protocol are Time Division Multiple
Access (TDMA); Frequency Division Multiple Access (FDMA); Code Division
Multiple Access (CDMA).

S-MAC protocol is based on IEEE802.11 MAC protocol. It is a MAC protocol
aiming at reducing energy consumption and support self-configuration. S-MAC
protocol assumes that in normal circumstances, data transmission is little in WSN.
The nodes coordinate to communication and the network can tolerate some additional
message latency.

The idea of T-MAC[16] protocol is to reduce the idle listening time by transmitting
all messages in burst of variable length m and sleeping between bursts. There are two
solutions for the early sleeping problems: future request-to-send, FRTS and full buffer
priority. But they are not very effective.

Sift MAC[11] protocol use a fixed-sized contention window and a carefully-chose,
non-uniform probability distribution of transmitting in each slot within the window.
Sift only sends the first R of N reports without collisions. But Sift doesn’t consider
the node’s residual energy, that is, some low energy nodes may run out. The paper
presents a new way of fair scheduling based on the residual energy.

In above-mentioned MAC layer protocols, in order to reduce the energy
consumption, more is considered to lessen the idle listening period, to use period
listening and sleeping, to avoid overhearing and to reduce bit numbers of MAC
address of the communication data packet. But none of them has considered the issue
of residual energy of nodes .Our idea is that the handling of residual energy is
important to the lifetime of WSN. If the energy of some node is nearly exhausted , It
can’t be chosen as working node and needs to be replaced by its neighbor node which
has more residual energy in case that the network island would appear.

At the same time, we believe that to solve the energy balancing problem at the
lower layer has a more performance than higher-layer sensor network protocol. So,
how to balance the energy consumption among the network neighbor nodes at MAC
layer, and how to reduce the channel competition collision, ensure the effective
communication and save energy are the problems that this paper tries to tackle.

The current MAC protocol use traditional binary exponential back off algorithm to
tackle the collision problem in the course of communication. But the algorithm is
designed for the fair distribution of shared channel. This paper has a revision of the
back off mechanism of collision and introduces the idea of nodes residual energy,
which can achieve the fair scheduling of all nodes.

 A Residual Energy-Based Fairness Scheduling MAC Protocol for WSN 39

3 Residual Energy-Based Fairness Scheduling MAC Protocol
(REBFS MAC Protocol)

The main idea of this protocol is when N neighboring nodes sense an event at the
same time, not all nodes need to transmit report of it. Only R of N need to report and
the rest can give up transmission. When the first R nodes of N are chosen to transmit
potential reports, they are chosen according to the residual energy. Fair scheduling
MAC Protocol based on the model of the fluid fair schedule utilized to achieve the
balanced energy consumption of each node in WSN.

3.1 Preliminary Conditions and Assumption

In the event-driven WSN, a single event-ID is distributed for every event. The node
has an event table which includes event-ID, the number of nodes responding to an
event and the event-related neighbor nodes.

Every node needs a neighboring node information table (see table 1) including
neighboring Nodes ID, Residual Energy and the Hops of nodes. One-hop indicates the
neighboring hop and two-hop indicates that the node is the next node of its
neighboring node which can be picked up by the transmission of RTS-CTS packet.
The condition of two-hop is taken consideration in our paper.

Table 1. Neighboring Node Information Table

Neighboring Node-ID Residual Energy Hops
A 55 1
B 30 2
C 80 2
D 10 1

The proposed protocol is derived from the distributed Coordination Function in the
IEEE802.11 stand, which adopts RTS-CTS-DATA-ACK communication mechanism.
Such mechanism can solve the problem of Hidden-station and overhearing. The
following two conditions are necessary. The RTS packet needs to carry Residual
Energy, Event-ID and residual Time of channel usage. The CTS packet needs to carry
Node-ID, Residual Energy and residual Time of channel usage.

The proposed protocol is based on S-MAC. The nodes are put into periodic listen
and sleep. Because of the residual time field of RTS-CTS-DATA-ACK packet, the
neighboring nodes of source node and target node sense these packets, record the
residual time and get into sleep state. The sleep time is equal to the residual time.
When the sleep time is up, the nodes re-listen the channel. In order to reduce energy
consumption, the nodes must be in sleep of low-level energy consumption.
Meanwhile, the idea of residual energy is introduced which can sense collisions of
multi-nodes in one event and balance the energy consumption of networks.

Next, the MAC protocol Design is discussed in Section 3.2

40 L. Tan

3.2 REBFS-MAC Protocol Design

3.2.1 Energy and Neighbor Information Transmission Mechanism
The transmission of the node’s residual energy information among neighboring nodes
is very important for the realization of the proposed protocol.

In this paper, the node’s residual energy is picked up by RTS-CTS-DATA-ACK
packets. For example, when node X acquires the channel, it’ll pass RTS packet which
picks up the node’s residual energy, and X’s neighboring nodes can sense and receive
this information. When the target node Y has received the RTS packet passed by X, it
will pass CTS packet which also carries Y’s residual energy. Then Y’s neighboring
nodes receive the information of Y’s residual energy. Every node having received the
residual energy information will instantly update its local neighboring nodes
information chart. It will modify the residual energy information of the existed node
and append new information if it doesn’t exist in the chart.

As we know, the periodic SYNC packet based on S-MAC Protocol also carries the
information of the node’s residual energy to ensure that the user can renew his
information chart of the neighboring nodes residual energy. And the transmission of
the node’s residual energy information lays a foundation for the carry-out of the
following mechanism.

3.2.2 Node’s Resident Energy Scheduling Model
To every sensor node, a tag value E is attached which indicates residual energy. The
energy consumption is shown in Neighboring Node Information Table from which we
can get the set B t which is the set of all neighboring nodes at time t, when
contending the share channel.

In the average value of energy E ∑ E∈B /n , n is the number of nodes
whose hop is 1 in Neighboring Node Information Table. When N neighboring nodes
sense an event at the same time, not all nodes need to transmit report of it. When the
energy of node E is R+1 in the energy queue, only R of N need to report and the rest
can give up transmission. We can set the value of R is the numbers of node whose
energy is bigger than E 。So E need not respond to the event, and only R can
finish transmitting the report. Every node responding to the event maintains two
variables, namely, the start tag and the finish tag. The former refers that the node has
already got the channel service, while the latter means that new event occurs and new
service is applied for. This means the finish tag includes the start tag.

To node E , the fluid fair model of the traditional wireless channel is introduced
into the wireless sensor network. By utilizing a variation fair scheduling algorithm of
Start Time Fair Queuing (STFQ) [11] based on the S-MAC protocol, we propose a
fairness scheduling model based on the residual energy to realize a balanced
consumption of node energy in WSN and eventually to ensure the longest lifetime of
WSN. The specific process is as follows.

1. The initialization of the nodes. Every node has a quantifying number of its
residual energy and exchanges information by S-MAC protocol. Every node
maintains a neighboring node information table including neighboring Nodes ID,
Residual Energy and the Hops of nodes.

 A Residual Energy-Based Fairness Scheduling MAC Protocol for WSN 41

2. When node I starts responding to event k, the start tag and the finish tag have to be
computed. The start tag of node i is 0 at the initial stage.

3. The formula of the start tag and the finish tag is as follows: S Event MAX V A Event , S Event L E /E (5) F Event S Event L E /E (6) S Event is the service which node i got when event k occurred. Event is event k to which node i is responding. V t is the virtual time to indicate the service got at time t. A Event is the arrival time of event k. L is the length of data transmitted by event k of node i. E is the energy consumed by transmitting one data. V C t / ∑ E∈B ;C(t) is the channel capacity at time t.

4. When an event occurs at time t, the neighboring nodes in Neighboring Node
Information Table begin contending the share wireless channel. The node with the
least value of finish tag has the priority of the channel by choosing the shortest
back-off time slot and send the RTS packet; if the node with the least value of
finish tag is not available, the node with the least value of start tag is chosen to
have the shortest back-off time slot and transmit the RTS packet.

5. To the node achieving the channel, the start tag equals to the finish tag and the
residual energy after the communication is presented in the formula E E E
in which E is the consuming energy.

6. If the node fails to get the channel, it indicates that some neighboring node has
successfully got the channel. It will update the neighboring node in the
Information Table according to the energy information carried by the RTS packet
and get into the sleep state based on the NAV information of the RTS packet.

3.2.3 Contention Window and Collision Handling

1. Contention Window
We assume that N neighboring nodes in one area sense an event simultaneously. But
only R nodes need to pass the data(R/N) because of the redundant nodes. To ensure a
balanced consumption of network energy, R nodes which have more residual energy
will pass the data, and the rest nodes give up. This is the so-called R/N issue which
has been discussed in Sift protocol. But here we propose a different solution.

Our solution is that we assume when one node and all it’s neighboring nodes sense
an event, according to their residual energy hierarchy, the nodes that have more
residual energy have the priority to get the contending channel and transmit the
information. Meanwhile, we choose different back off intervals for nodes with
different residual energy when they sense the channel. The nodes that have more
residual energy and less service are prior to transmit the information, whereas the
nodes with less residual energy and more service have longer back off intervals.
Hence a balanced energy consumption of network nodes is ensured.

42 L. Tan

Based on the above assumption, we can see the fair scheduling is achieved by
combining the back-off interval with the service tags of the nodes. So we have a new
formula of the start tag and the finish tag for E : F Event S Event Scaling_factor L EE (7)

In the formula, scaling_factor[15] is a proportion parameter, and it allows for a certain
tag value of. Meanwhile, backoff interval is presented as B of nodes E . Different B
is calculated for different E . High E value should have low B and low E should
have high B . B Scaling L E /E (8) For each node, It has a E and a back-off interval B . Because of the reciprocal relation between E and B , We define a Qi with: Q Ei ∑ E∈B⁄ (9) Q 1 P , Q ∈ 0.1 ; then we set the value of B : B B Q .Despite that
Bi may be chosen differently by different nodes in the first place and value Qi of
residual energy may be different, Bi which is computed according to above formula
can be same. In order to solve the problem, random number X is generated in
[0.9,1.1]. Then the B , is set: B B Q X Hence, transmitting collision is
decreased.

2. Collision Handling
Transmitting collision is unavoidable. For example when a node moves to the
neighboring area of another node’s wireless signal, it’ll pass the information and
cause the data collision due to the failure to sensing the signal.

Traditional IEEE802.1 uses binary exponential back off algorithm to tackle the
collision problem. The mechanism is as the following:

If a collision occurs, then the following procedure is used. Let node i be one of the
nodes whose transmission has collided with some other node(s). Node i chooses a
new back-off interval as follows: (1) Increment Collision-Counter by 1. (2) Choose
new B uniformly distributed in 1, 2C C CW , where Collision
Window is a constant parameter.

From above we can see, when collision occurs, contention window will double the
size so that communication efficiency is decreased. So, for the second step, we take
the same process: B B Q X and the definition of B , Q and X is the same with above.
The decrease of B i can increase the throughout of the system.

 A Residual Energy-Based Fairness Scheduling MAC Protocol for WSN 43

3.2.4 Message Passing
When an event occurs in WSN, N neighboring nodes sense it simultaneously, but we
are interested in the first R of N potential reports because of the redundant nodes. The
node will take the information down in its event information chart when it senses an
event. At the same time, in order to solve R/N problem, it need to know which
neighboring nodes also sense the event and prepare to transmit.

In other words, the RTS packet is passed by the node carries Event-ID. Once the
node senses the Event-ID carried by the RTS packet, the number of the nodes
responding to the event is added 1 to its counting of the same Event-ID. And the node
will go through the periodic listen and sleep. Whenever the node senses the available
channel and prepare to transmit the information, it’ll check the counting machine first.
If the result exceeds R, The node will give up the transmission, and delete the event
information. It can also transmit by RTS-CTS-DATA-ACK packets and delete the
information from the information chart when the result exceeds R.

The value of R is decided by the distribution density of the nodes, or by the
numbers of a node’s neighboring nodes.

3.2.5 Further Discussion
In the model of fair scheduling based on the residual energy, every node has its back-
off interval according to the residual energy. Suppose node A and B are neighboring
nodes within one hop, and B and C are neighboring nodes within one hop which
means node A and C have two-hop distance. If we only put the residual energy of the
neighboring nodes within one hop into consideration, there will be conflict between
node A and C near B within two hops when both of them have the priority to their
own shared channel. This is the issue of the hidden station. The conflicting nodes will
back off and enlarge the contending window which eventually causes the unbalance
of the energy. This problem will be tackled in this section.

The fair scheduling of all nodes energy within two hops of the node i is the
solution of this problem. The preliminary condition is that when a node is sending
CTS packet, it requires that CTS packet carry the energy of its own node and the
energy of the node which has sent the RTS packet. At the initializing stage, the node i
first acquires its neighboring node by exchanging the SYN, then in the course of
communication, by utilizing the shakehand mechanism of RTS-CTS-DATA-ACK,
the node i can acquire the node in two hops. We use set B i, t to indicate the set of
all nodes with two hops of node i and fair scheduling is applied within this set.

For each node of the set B i, t it has a E and a back-off interval B . Because of
the reciprocal relation between E and B , We define a Q with the following
formula: Q Ei ∑ E∈B ,⁄ (10)
In the formula, we set the value of B : B B Q X and the definition of B , Q and X is the same with 3.2.3. In this way, the collision of every node within two hops
will be decreased and according to the characteristics of the wireless sensor network, the
communication conflicts in the global network will also be decreased largely.

44 L. Tan

The Residual Energy-Based Fairness Scheduling Algorithm is describe as follows:

Residual Energy-Based Fairness Scheduling Algorithm

1. Start_tag : 0; /* start_tag of node i is set 0; */

2. E : ∑ E∈B /n;
3. R: N /*The value of R is set the numbers of node whose

energy is bigger than E */

4. /* When node I starts responding to event k */

5.if Sort_location E)>=R+1 then

6. Node i give up this communication and not update its start stag.

7. Elseif E E and j ∈ B i, t then
8. Q : Ei ∑ E∈B ,⁄
9. Else Q : Ei ∑ E∈B⁄
10. B : B Q X

11./* The node i choose B backoff intervals. */

12.IF(backoff time =0) then

13. Send a RTS packet with own residual energy.

14.Elseif receive a RTS packet then

15. Update or append the energy of the sender in neighbor nodes tables and
 node i will sleep with NAV times of RTS packet.

16.Elseif receive a CTS packet and ER not in B t and ER E then

17. The sender is inserted in neighbor nodes tables and his hops is set 2 hops.
The energy of the sender and receiver are updated or inserted in neighbor
nodes tables.

18.ElseIf receive a CTS packet and ER E then

 Send data packet.

19.If receive a ACK packet and ER E then

 Start_tag Finish_tag ; E : E E ;/* E is the consuming energy*/

 A Residual Energy-Based Fairness Scheduling MAC Protocol for WSN 45

4 Performance Evaluation

Given the difficulty in performing actual measurements in wireless networking, we first
evaluate our system through simulation. We have created a simple simulator capable of
creating an arbitrary multi-hop network topology of a group of networked sensors. Each
program process represents a networked sensor, and a master process is responsible for
synchronizing them to perform bit time simulation. Since our main focus is media access
control. The simulator doesn’t simulate the actual hardware operating in the Tiny OS
environment. However, it preserves the event driven semantics.

We assume the max value of the original energy is 100 and the min value of the
original energy is 80. The value of energy consumption is 1 for transmitting a
RTS/CTS/ACK packet and the value of energy consumption is 5 for transmitting a
DATA packet.

From Figure 1, we can see REBFS-MAC shows good features on saving the
network nodes energy. REBFS-MAC introduces the node’s residual energy based on
S-MAC protocol and choose different back off intervals for nodes of different
residual energy so that collisions are decreased and energy is saved.

Figure 1 demonstrates through simulation the balanced the node’s energy by
REBFS-MAC, S-MAC, Sift and IEEE802.11.

Ten neighbor nodes are checked after the node transmits the information. Figure 2
shows the energy consumption of the neighbor nodes. REBFS-MAC has better
performance on balancing neighbor nodes’ energy than others.

Fig. 1. The lifetime of WSN in different
protocols

Fig. 2. The different balance of the node’s
energy in different protocols

5 Conclusion

The fluid fair model of the traditional wireless channel is introduced into the wireless
sensor network. By utilizing a variation fair scheduling algorithm of Start time Fair
Queuing (STFQ) based on the S-MAC protocol, we propose a fairness scheduling model
based on the residual energy to realize a balanced consumption of node energy in WSN
and eventually to ensure the longest lifetime of WSN. In this paper, the fluid fair model
of the traditional wireless channel is introduced into the wireless sensor network and
residual energy is introduced into the mechanism of data transmission, sleeping and
collision handling to enhanced the communication efficiency, ensure the balanced

46 L. Tan

consumption of the node’s energy, and prevent the phenomenon of network island. The
mechanism proposed in this paper is based on S-MAC protocol and is verified by the
simulation test.

The simulations showed that the distributed handling mechanism utilized in this
protocol adapts the moving nodes better, which is expected to be improved in our
future work.

References

1. Li, J.-Z., Li, J.-B., Shi, S.-F.: Concepts, Issues and Advance of Sensor Networks and Data
Management of Sensor. Journal of Software 14(10), 1717–1725 (2003)

2. LAN MAN Standards Committee of IEEE Computer Society, Wireless LAN medium
control (MAC) and physical layer (PHY) specification, IEEE Std 802.11-1999 edition.
IEEE, New York (1999)

3. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor network: A
survey. Computer Networks 38, 393–422 (2002)

4. Yahya, B., Ben-Othman, J.: Towards a classification of energy aware MAC protocols for
wireless sensor networks. Journal of Wireless Communication and Mobile Computing 4,
1572–1607 (2009)

5. Yahya, B., Ben-Othman, J.: An Energy Efficient Hybrid Medium Access Control Scheme
for Wireless Sensor Networks with Quality of Service Guarantees. In: The Proceedings of
GLOBECOM 2008, New Orleans, LA, USA, November 30-December 4, pp. 123–127
(2008)

6. Rhee, I., Warrier, A., Aia, M., Min, J., Sichitiu, M.L.: Z-MAC: A hybrid MAC for
wireless sensor networks. IEEE/ACM Transactions on Networking 16, 511–524 (2008)

7. Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: A short preamble MAC protocol
for duty-cycled wireless sensor networks. In: Proceedings of the 4th International
Conference on Embedded Networked Sensor Systems, pp. 307–320 (2006)

8. van Dam, T., Langendoen, K.: An adaptive energy-efficient MAC protocol for wireless
sensor networks. In: Proceedings of the First International Conference on Embedded
Networked Sensor Systems, pp. 171–179 (2003)

9. Shah, R., Rabaey, J.: Energy Aware Routing for Low Energy Ad Hoc Sensor Networks.
In: The Proceedings of the IEEE Wireless Communications and Networking Conference
(WCNC), Orlando, pp. 350–355 (March 2002)

10. Ye, W., Heidemann, J., Estrin, D.: An Energy-Efficient MAC Protocoal for Wireless
Sensor Networks. In: Proc. 21st Int’l Annual Joint Conf. IEEE Computer and
Communication Societies, InfoCOMM 2002 (2002)

11. Jamieson, K., Balakrishnan, H., Tay, Y.C.: Sift: A MAC protocol for wireless sensor
networks. In: Proc. 1st Int’l Conf. on Embedded Network Sensor Systems (WenSys), Los
Angeles, CA (2003)

12. Goyal, P., Vin, H.M., Chen, H.: Start-time fair queueing: A scheduling algorithm for
integrated service access. In: ACM SIGCOMM 1996 (1996)

13. Demers, A., Keshav, S., Shenker, S.: Analysis and simulation of a fair queueing algorithm.
In: Proc. ACM SIGCOMM, pp. 1–12 (September 1989)

14. Demers, A., Keshav, S., Shenker, S.: Analysis and simulation of a fair queueing algorithm.
In: ACM SIGCOMM 1989 (1989)

15. Vaidya, N., Bahl, P.: Distributed Fair Scheduling in a Wireless LAN. IEEE Transactions
on Mobile Computing 4(6), 616–629 (2005)

16. Van Dam, T., Langendoen, K.: An adaptive energy-efficient MAC protocol for wireless
sensor network. In: Proc. 1st Int’l Conf. on Embedded Network Sensor System (November
2003)

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 47–57, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Topology-Aided Geographic Routing Protocol
for Wireless Sensor Networks

Guilin Li1, Longjiang Guo2, Jian Zhang1, and Minghong Liao1,*

1 School of Software, Xiamen University, Xiamen 361005, China
2 School of Computer Science and Technology, Heilongjiang University, Harbin 150001, China

{liguilin.cn,longjiangguo,jianzhang9102}@gmail.com,
liao@xmu.edu.cn

Abstract. The problem of the traditional geographic routing protocols for the
wireless sensor networks is that they can only adopt one kind of strategy, such
as the right-hand rule, to bypass a hole, which is not always a proper choice. In
this paper, we propose a topology-aided geographic routing protocol, which
utilizes the topology of the network to guide a packet bypassing a hole in a
shorter path than that of the traditional protocol. Experimental results show that
our topology-aided geographic routing protocol can reduce the length of the
path from the source to the destination.

Keywords: Routing Protocol, Geographic, Topology-Aided, Sensor Networks.

1 Introduction

Geographic routing protocol is one of the most important types of routing protocol for the
wireless sensor networks [1,2,3]. The traditional geographic routing protocol routes a
packet from the source to the destination only based on the local information of a node,
which is not always optimal. In this paper, we propose a topology-aided routing protocol.
With the help of the topology, our protocol can select a shorter path from the source to
the destination than that selected by the traditional geographic routing protocol.

For example, Fig.1 shows a sensor network distributed in a rectangle area with a
hole in it. The source A wants to send a packet to the destination B. The traditional
geographic routing protocol first sends the packet greedily from A to B until the
packet reaches an intermediate node C that can’t find a neighbor whose distance to
the destination is nearer than that of itself. The traditional geographic routing protocol
then transmits the packet around the hole according to some strategy such as the right-
hand rule [1]. In Fig.1, the package is transmitted along the left side of the hole.
Obviously, it is not a good choice. As the traditional geographic routing protocol
routes a packet purely based on the local geographic information, it can only adopt a
certain strategy (such as the right-hand rule) to bypass a hole. In our protocol, when a
packet can’t be transmitted greedily, the intermediate node calculates an optimal path
from itself to the destination according to the topology of the network. Based on the

* Corresponding author.

48 G. Li et al.

path just calculated, the intermediate node can choose a proper direction for the
packet to bypass the hole. In this example, node C will choose the right direction for
the packet to bypass the hole.

A

B

Greedy Based Right-Hand Rule Topology-Aided

C

Fig. 1. Problem of the Traditional Geographic Routing Protocols

In this paper, we first propose a grid based protocol to detect the topology of the
network, which represents the topology of the network as a weighted graph. Based on
the topology detected, a Topology-Aided Geographic Routing (TAGR) protocol is
proposed to route the packet in a short path. Before giving details of the TAGR
protocol, we propose some assumptions used in this paper. We assume that a
homogeneous sensor network is distributed in a rectangular area with some holes in
the area. According to [4], a hole is an empty area enclosed by a series of connected
sensor nodes. Holes of considerable size (a percentage of the network diameter) break
the isotropy of the network and may block the direct path of two nodes. We assume
isotropy among the rest of the network excluding the holes. Each node knows its
coordinate which can be estimated by the localization algorithms [5,6] and the area of
the rectangle where the sensor network is distributed.

The general idea of the paper is as follows. The rectangle area is divided into a lot
of grids, each of which has an ID. Each grid has 8 neighbor grids around it. The
neighbor grids are numbered from 0 to 7 clockwise beginning at the grid to the left of
the center grid. By using the topology detection protocol, each grid tests its
connectivity with all its neighbor grids and forms a bit vector. One bit in the vector
represents the connectivity of the center grid with its corresponding neighbor grid.
After calculating the bit vector for each grid, the grid transmits the vector to other
girds in the network. After receiving the bit vector from all the other grids, the
topology of the network can be constructed as a weighted graph. When the packet is
transmitted to an intermediate node at the edge of a hole, the node can guide a packet
to bypass the hole in a short path with the help of the topology information.

 Topology-Aided Geographic Routing Protocol for Wireless Sensor Networks 49

The contribution of this paper is: First, we propose a topology-aided geographic
routing protocol, which can select a shorter path for a packet than that of the
traditional geographic routing protocols. Second, we verify the performance of our
routing protocol by extensive experiments.

The rest of this paper is organized as follows. In section 2, we give some related
works. We briefly introduce a grid based topology detection algorithm used by our
routing protocol in section 3. The Topology-Aided Geographic Routing (TAGR)
protocol is proposed in section 4. Section 5 evaluates the performance of the TAGR
protocol by extensive experiments. Finally, we draw a conclusion in section 6.

2 Related Works

Routing is one of the most important and fundamental problems for wireless sensor
networks. A lot of routing protocols have been proposed to fit the particular
requirement of wireless sensor networks [7], which can be classified into several
classes, such as the hierarchy based protocol, the geographic routing protocol, the
virtual coordinate based geographic routing protocols, the data centric routing
protocols and the Qos guaranteed protocols.

The hierarchy based protocol [8] divides sensors in a sensor network into two
types, the cluster heads and the ordinary nodes. The ordinary nodes can just
communicate with its cluster head. Communication with other nodes in the same
cluster or in another cluster relies on the cluster heads. In the geographic routing
protocols, every node needs to know its physical coordinate. The basic idea of
geographic routing protocol is that, when transmitting a packet, a node selects the
neighbor that is nearest to the destination as the next hop. The virtual coordinate
based protocols [9,10] works as the same as the geographic routing protocol, except
that they do not need nodes know their physical coordinates. Each node is assigned
some kind of virtual coordinate. Unlike the geographic routing in which the source
node searches for a route to the destination node according some kind of coordinate,
in data centric routing the source searches for a particular data stored on an unknown
subset of nodes. Hence the routing problem is actually a query problem. The routing
algorithm must search for the route to a node with the desired data. Then the data can
be transmitted along the discovered route. Direct diffusion [11] floods a query around
the network so that a path to transmit events from the source node to sink can be
constructed. TAG [12] constructs a tree in the sensor network to answer the aggregate
query. Such kind of query processing algorithm is suitable for continuous query for a
certain type of data. The data can also be distributed in some particular nodes in the
network according to the feature of the data [13]. Queries for the data can be
efficiently found in the structure according to their features. Such kind of method is
suitable for ad hoc query processing. For example, data are stored in different sensors
selected by some kind of hash function [14] according to their types. A query only
needs to visit the hashed location to acquire data of a given type. DIM [15] embeds a
k-d tree like index in the network, which can fulfill the range query easily. Finally, the
Qos guaranteed protocols include the fault tolerant, the real time and long lifetime
routing protocols etc. Fault tolerant protocols [16,17] guarantee the reliability by
transmitting a packet multiple times or through different neighbors. Real-time routing

50 G. Li et al.

protocols [18] select the neighbor to the destination with the minimum transmission
latency as the next hop. Long lifetime routing protocol [19] tries to evenly consume
the energy of different nodes to optimize the lifetime of the network.

3 The Grid-Based Topology Detection Protocol

The grid-based topology detection protocol is composed of two parts, which are the
connectivity detection protocol for grids and the topology detection protocol for the
network. The topology of the network detected by the protocol is represented as a
weighed graph.

3.1 Connectivity Detection Protocol for Grids

Suppose a sensor network is distributed within a rectangle area whose height and
width are h and w. The rectangle area is divided into a lot of identical grids whose
height and width are hg and wg respectively. A sensor node si, whose communication
range is r, knows its coordinate (xi,yi).

Nodes in a grid can be classified into three types, which are the border nodes, the
boundary nodes and the inner nodes. The nodes that can communicate with nodes in
other grids are called the border nodes. A node p is a boundary node if there exists a
location q outside p’s transmission range so that none of the 1-hop neighbors of p is
closer to q than p itself. The other nodes in a grid are called inner nodes. Note a node
can be both a border node and a boundary node. At this time, the node is considered
as a border node.

A node can detect its type by using just the coordinates of its 1-hop neighbors. A
node can determine whether it is a border node by checking the coordinates of its
neighbors. [20] proposed a local algorithm named BOUNDHOLE to make a node
detect itself a boundary node by just using 1-hop neighbor information. If a node is
neither a border node nor a boundary node, it is an inner node.

If there is a communication path between two neighbor grids, we say that the two
grids are connective. The Connectivity Detection Protocol is used by each grid to
detect its connectivity to its 8 neighbor grids, which works as follows.

Firstly, each node in the network calculates the grid it lies in by using (xi,yi), h, w,
hg and wg. Then each node detects its neighbors in the network. According to the
coordinates of the neighbors, a node can decide whether it can communicate with
nodes in other grids. If so, the node is a border node and it sets the corresponding bit
in the bit vector to 1. Recall that each grid has 8 neighbor grids, which are numbered
according to their relative position to the center grid. After constructing the bit vector,
the border node broadcasts a message containing the partial connectivity information
to the other nodes in the grid. A pure boundary node broadcasts a bit vector with all
its bit set to 0, which means the boundary node does not connect to any neighbor
grids. If a boundary node is also a border node, the bit vector is set as a border node.
Only when an inner node receives bit vectors from all its neighbor nodes, whose
distance to the center of the grid is farther than that of itself, it aggregates the
connectivity information it received by doing an OR operation to the bit vectors and
broadcasts the aggregated bit vector out. A node with no neighbor nearer to the center

 Topology-Aided Geographic Routing Protocol for Wireless Sensor Networks 51

of a grid than that of itself is called a cluster head candidate. There may be multiple
cluster head candidates in a grid. After the candidates collect the bit vectors from
neighbors, they broadcast the aggregated bit vector to all nodes in the grid together
with their coordinates and IDs. If there is only one candidate nearest to the center of a
grid among all candidates, it is selected as the cluster head. Otherwise, the candidate
with the smallest ID is selected as the cluster head. After the execution of the
protocol, all nodes in a grid master the connectivity of the grid and the ID of the
cluster head.

3.2 Topology Detection Protocol for the Network

There are holes in the sensor network, which can divide a grid into several parts. The
connectivity detection protocol creates a cluster head for each part of a grid, which
holds the complete connectivity information of the part in a grid.

The topology detection protocol spreads the connectivity information of each cluster
head throughout the network. A cluster head broadcasts a message throughout the
network, which is composed of three parts. The first part is the ID of the cluster head.
The second part is the coordinate of the cluster head. The third part is the bit vector
calculated by the cluster head. Based on the messages received from the cluster heads, a
sensor node can construct the topology for the whole network, which is represented as a
weighted graph. Nodes in the graph are the cluster heads. Edges are the connectivity
between two cluster heads. The weight for each edge is the distance between two cluster
heads of the edge. In this way, our topology-aided geographic routing protocol does not
consume more energy of the cluster head than that of the ordinary node.

4 Topology-Aided Geographic Routing Protocol

In this section, we propose a topology-aided geographic routing protocol, which
utilizes the topology of the network to select a short path for a packet when bypassing
a hole. Before giving details of the protocol, we introduce the next hop selection
algorithm used by a node to transmit a packet around a hole.

4.1 The Next Hop Selection Algorithm

To apply the geographic routing protocol, the boundary nodes in the network need to
be planarized [1] as follows. An edge (u,v) exists between boundary node u and v if
the distance between every other boundary node w, and whichever of u and v is
farther from w. In equational form:

, : (,) max[(,), (,)]w u v d u v d u w d v w∀ ≠ ≤ (1)

We say that two boundary nodes are neighbors only when they satisfy the Eq.(1).
Suppose a source node A transmits a packet to a destination node B in Fig.2. The
packet is transmitted greedily in the same way as the traditional geographic routing
protocol until it reaches a boundary node C, where the packet can’t be transmitted in
greedy mode any more. Node C needs to determine a transmission strategy for the
packet to bypass the hole. It has two choices, the left-hand rule or the right-hand rule.

52 G. Li et al.

An intermediate node (node C in our example) adopts two steps to determine the
transmission strategy for a packet to bypass a hole. First, it selects the next hop from
all its neighbor boundary nodes. Second, it determines the proper transmission
strategy based on the relationship among the intermediate node (node C), the previous
hop of the intermediate node (node C') and the selected next hop (node R).

Fig. 2. The TAGR protocol

In Fig.2, the intermediate node C first decides the next hop for the packet. As node
C knows the topology of the network represented by a weighted graph, it can
calculate the shortest path for the packet to bypass a hole. Node C lies in grid G7 and
the destination node B lies in grid G11. The nearest path from G7 to G11 is
G7 →G8 →G12 →G11, which means node C needs to transmit the packet to the direction
towards G8. Suppose the node H be the cluster head of G8. The transmission direction
can be determined by the vector CH

, called direction vector. The node C constructs

vectors from itself to each of its neighbor boundary nodes (CL

, CR

in Fig.4) and
compares the angles formed by the vectors and the direction vector (HCL∠ , HCR∠ in
Fig.2). The vector with the minimum angle to CH

 is selected and the next hop is the

neighbor boundary node of the selected vector, so node R is selected as the next hop
in Fig.2.

The dot product between two vectors can be used to compare the size of different
angles. According to the definition of dot product of two vectors, the angle HCL∠
between CL

 and CH

 can be calculated by Eq.(2). As the value of cosine is a

decreasing function from 0 toπ , node C can find a smaller angle by selecting a larger
cosine value. The next hop selection algorithm is given in algorithm 1. The input of
the algorithm 1 is the direction vector and its output is the next hop.

cos()
| || |

CL CH
HCL

CL CH
∠ =

 (2)

 Topology-Aided Geographic Routing Protocol for Wireless Sensor Networks 53

Algorithm 1:
S1: Construct vectors to each neighbor boundary node
S2: Calculate the cosine values of the angles between

each vector and the direction vector according to
Eq.(2)

S3: Select the neighbor boundary node with the maximum
cosine value as the next hop

After selecting the next hop, the intermediate node C needs to calculate the
transmission strategy for the packet based on the next hop. In Fig.4, the packet
reaches node C from node C', which forms a vector 'CC

. To transmit the packet to

the next hop node R, node C needs to use the left-hand rule, which turns the vector
'CC

 clockwise around node C.

The cross product between two vectors can be used by the intermediate node to
determine the transmission strategy for a packet. According to the definition of the
cross product, if the sign of cross product result for two vectors is positive, the left-
hand rule is selected. Otherwise, the right-hand rule is used. The transmission strategy
selection algorithm is given in algorithm 2. The input of the algorithm 2 is two
vectors originating from the current node and pointing to the previous hop and the
next hop respectively, such as 'CC

 and CR

 in Fig.2. The output of algorithm 2 is the

transmission strategy.

Algorithm 2:
S1: Calculate the cross product of the two vectors
S2: if(the result is positive)
S3: set the transmission strategy clockwise
S4: else
S5: set the transmission strategy counterclockwise

4.2 The Topology-Aided Geographic Routing Protocol

The topology-aided geographic routing protocol works as follows. A packet in our
protocol can be in one of two exclusive modes: the greedy mode or the perimeter
mode. When a source node A wants to transmit a packet to a destination node B, it
checks whether it has a neighbor whose distance is nearer to the destination than
itself. If so, the packet is set to the greedy mode and the source node transmits the
packet to the neighbor nearest to destination.

When an intermediate node receives a packet in the greedy mode, it repeats the
above procedure until it finds that there is no neighbor whose distance to the
destination is nearer than itself. In this case, the packet has reached a boundary node
in the network. The current node changes the packet into the perimeter mode and does
the following calculation:

54 G. Li et al.

S1: Save the distance between the current node and the
destination in the packet

S2: Determine the destination cluster according to the
coordinate of the destination

S3: Calculate the shortest path from the cluster head of
the current node to the cluster head of the
destination based on the weighted graph G(N,E)

S4: Calculate the direction vector originating from the
current node to the cluster head of the next hop Grid

S5: Selects the next hop according to the algorithm 1
S6: Determine the transmission strategy for the packet

according to the algorithm 2
S7: Store the strategy in a bit of the packet, where 0

represents clockwise and 1 represents
counterclockwise

S8: Transmit the packet to the selected next hop

In step 2, the current node determines the cluster that the destination belongs to. If we
assume that each grid contains only one cluster, it is easy for the current node to calculate
the cluster head of the destination according to the coordinate of the destination. We
leave the case of multiple clusters in a grid as the future work. When an intermediate
node receives a packet in the perimeter mode, the node does the following operations:

S1: Check the value of the bit representing
 transmission strategy
S2: If the value is 0, the node selects the next hop

according to the left-hand rule.
S3: Otherwise, the node selects the next hop according to

the right-hand rule.
S4: Check whether the selected next hop is nearer to the

destination than the distance saved in the received
packet

S5: If so, the node changes the packet into the greedy
mode

S6: Transmit the packet to the selected next hop

The left-hand rule in step 2 means the current node selects its last neighbor
boundary node, except the previous hop, met by turning the vector formed from the
current intermediate node to its previous hop clockwise. The right-hand rule turns the
vector counterclockwise.

5 Experiments

Two experiments were done to test the performance of our protocol. In the first
experiment, we compare the differences of routing path selected by our protocol and

 Topology-Aided Geographic Routing Protocol for Wireless Sensor Networks 55

the traditional geographic routing protocol in different network condition. In the
second experiments, we compare the average length of path between our protocol and
the traditional protocol. The setting of our experiments is as follows. 4379 nodes are
uniformly distributed in a rectangle area of 600*600. The rectangle area is divided
into 64 grids. The transmission range of a node is set to 20.

(a) (b)

(c) (d)

Fig. 3. Comparison of Paths Selected by Different Protocols

5.1 Comparison of Selected Routing Path for Different Protocols

In this experiment, we compare the different paths from a source to a destination
selected by our protocol and the traditional geographic protocol. There are four holes
in the network.

56 G. Li et al.

In Fig.3 (a) and (b), a source node transmits a packet downwards to a destination
node. The routing path of the traditional geographic protocol is shown in Fig.3 (a). In
the first phase, the packet is greedily transmitted until it meets the boundary of the
rectangle hole. Then the traditional protocol adopts the perimeter mode. Based on the
right-hand rule, the traditional protocol selects the counterclockwise direction for
the packet. After bypassing the rectangle hole, the traditional protocol adopts the
greedy mode for the packet to bypass the two circle holes. The path selected by our
protocol is shown in Fig.3 (b). Our protocol selects the same path for the packet as the
traditional protocol until the packet can’t be transmitted greedily. As nodes in our
protocol master the general topology of the network, they can calculate the shortest
path between the current node and the destination node and select the right direction
for the packet to bypass the hole. In Fig.3 (b), our protocol selects the right direction,
which not only reduces the path length to bypass the rectangle hole but also avoids the
packet meeting the big circle hole.

In Fig.3(c) and (d), a source node transmits a packet upwards to a destination node.
The path selected by the traditional protocol is shown in Fig.3(c), whose length is
much longer than that of our protocol shown in Fig.3(d). With the help of the
topology information, our protocol continues to transmit the packet in the left
direction and shortens the path length.

5.2 Comparison of Selected Routing Path for Different Protocols

To test the performance of the topology-aided geographic routing protocol, we
randomly select 100 pairs of nodes around the holes in the network as the source and
destination, which means the path between a source and destination is blocked by
holes. We compare the average path length of the two routing protocols. The results
show that about 40% paths selected by our protocol are more than 2 hops shorter than
that of the traditional protocol. The average path length of our protocol is about 14%
shorter than that of the traditional geographic routing protocol.

6 Conclusion

In this paper, we propose a topology-aided geographic routing protocol. Compared
with the traditional geographic routing protocols for the sensor network, the TAGR
protocol can reduce the length of the path from the source to the destination greatly
when bypassing a hole, with the help of the topology information of the network.

Acknowledgements. This work was supported by a grant from the National Natural
Science Foundation of China (No.61100032), Basal Research Fund of Xiamen
University (No.2010121072) and the Natural Science Foundation of Fujian Province
(No.2010J01342).

 Topology-Aided Geographic Routing Protocol for Wireless Sensor Networks 57

References

1. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless networks. In:
Proceedings of ACM/IEEE MobiCom (2000)

2. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric ad-hoc routing: of theory
and practice. In: Proceedings of the 22nd Annual Symposium on Principles of Distributed
Computing, pp. 63–72. ACM Press (2003)

3. Lee, S., Bhattacharjee, B., Banerjee, S.: Efficient Geographic Routing in Multihop
Wireless Networks. In: Proceedings of MobiHoc. ACM Press (2005)

4. Wang, Y., Gao, J., Mitchell, J.S.B.: Boundary Recognition in Sensor Networks by
Topological Methods. In: Proceedings of ACM MobiCom (2006)

5. Ji, X., Zha, H.: Sensor positioning in wireless ad hoc networks using multidimensional
scaling. In: Proceedings of IEEE INFOCOM (2004)

6. Tran, D.A., Nguyen, T.: Localization in Wireless Sensor Networks Based on Support
Vector Machines. IEEE Transactions on Parallel and Distributed Systems 19(7) (2008)

7. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A Survey on Sensor
Networks. IEEE Communications Magazine 40(8) (2002)

8. Heinzelman, W.: Application-Specific Protocol Architectures for Wireless Networks.
Ph.D. thesis, Massachusetts Institute of Technology (2000)

9. Bruck, J., Gao, J., Jiang, A.A.: MAP: Medial Axis Based Geometric Routing in Sensor
Network. In: Proceedings of ACM MobiCom (2005)

10. Fang, Q., Gao, J., Guibas, L.J., de Silva, V., Zhang, L.: GLIDER: Gradient Landmark-
Based Distributed Routing for Sensor Networks. In: Proceedings of IEEE INFOCOM
(2005)

11. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed Diffusion: A Scalable and Robust
Communication Paradigm for Sensor Networks. In: MobiCom 2000 (2000)

12. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: a tiny AGgregation service
for ad-hoc sensor networks. In: Proceedings of OSDI (2002)

13. Shenker, S., Ratnasamy, S., Karp, B., Govindan, R., Estrin, D.: Data-centric storage in
sensornets. ACM SIGCOMM Computer Communication Review 33(1) (2003)

14. Ratnasamy, R., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R., Shenker, S.: GHT: A
geographic hash table for data centric stroage. In: Proceedings of WSNA (2002)

15. Li, X., Kim, Y.J., Govindan, R., Hong, W.: Multi-dimensional range queries in sensor
networks. In: Proceedings of ACM SenSys 2003 (2003)

16. Zhang, W., Xue, G.L., Misra, S.: Fault-Tolerant Relay Node Placement in Wireless Sensor
Networks: Problems and Algorithms. In: INFOCOM 2007, Anchorage, AL (2007)

17. Luo, X., Dong, M., Huang, Y.: On Distributed Fault-Tolerant Detection in Wireless Sensor
Networks. IEEE Transactions on Computers 55(1), 58–70 (2006)

18. Kim, J., Ravindran, B.: Opportunistic Real-Time Routing in Multi-Hop Wireless Sensor
Networks. In: SAC (2009)

19. Liu, H., Wan, P.J., Jia, X.: Maximal Lifetime Scheduling for Sensor Surveillance Systems
with K Sensors to 1 Target. IEEE Transactions on Parallel and Distributed Systems 17(12)
(2006)

20. Fang, Q., Gao, J., Guibas, L.J.: Locating and Bypassing Routing Holes in Sensor
Networks. In: Proceedings of IEEE INFOCOM 2004 (2004)

Polaris: A Fingerprint-Based Localization

System over Wireless Networks

Nan Zhang and Jianhua Feng

Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China

n-zhang10@mails.tsinghua.edu.cn,

fengjh@tsinghua.edu.cn

Abstract. As the foundation of location-based services, accurate local-
ization has attracted considerable attention. A typical wi-fi localization
system employs a fingerprint-based method, which constructs a finger-
print database and returns user’s location based on similar fingerprints.
Existing systems cannot accurately locate users in a metropolitan-scale
because of the requirement of large fingerprint data sets, complicated
deployment, and the inefficient search algorithm. To address these prob-
lems, we develop a localization system called Polaris. By the contribu-
tion of users, we construct a large fingerprint database. We introduce
an effective localization model based on novel similarity measures of
fingerprints. For fast localization, we devise an efficient algorithm for
matching similar fingerprints, and develop a cluster-based representative
fingerprint selection method to improve the performance. We conduct ex-
tensive experiments on real data sets, and the experimental results show
that our method is accurate and efficient, significantly outperforming
state-of-the-art methods.

1 Introduction

Getting user’s accurate location is the foundation of location-based service. Ex-
isting localization systems[1,2,3,4] return user’s location by using gps, gsm, wi-

fi, etc. Using gps [4] to find the location has its own limitation because of the
requirement of an unobstructed line of sight to four or more gps satellites. Some
other methods use gsm [5,6,7] cellular tower, which has the drawback of a lower
accuracy. Using wi-fi [8,9,1] to locate the user has been more and more popular
because it can provide a more stable service than gps and achieve a much higher
accuracy than gsm localization systems. A fingerprint-based wi-fi localization
method[2,10] first maps the existing fingerprints (a list of signals with unique
identifer and signal strength) with locations and generates user’s location based
on the similar fingerprints. In this paper, we present a fingerprint-based local-
ization system called Polaris, solving three challenges: accuracy, efficiency and
fingerprint database validity.

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 58–70, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Polaris: A Fingerprint-Based Localization System over Wireless Networks 59

(1) The accuracy of a fingerprint-based localization system mainly depends
on the number of fingerprints. The fingerprints should cover all the regions and
more fingerprints bring a higher accuracy. Existing methods either requires care-
ful deployment of access points[2] or a professional crew with specialized and ex-
pensive equipment to perform wardriving[3]. In our system, we use fingerprints
contributed by anonymous users and give them credits. In this way, Polaris
captures a large quantity of fingerprints and always keeps the database fresh.

(2) In order to achieve a higher accuracy, the system needs massive finger-
prints; however, the similar fingerprint candidates for a single query can be sev-
eral thousand; therefore, if the raw fingerprints are not preprocessed and indexed
properly, the search efficiency would be low. We introduce an effective localiza-
tion model and devise a novel cluster-based indexing method to select represen-
tative fingerprints, decreasing the number of candidates. Our search algorithm
can effectively find the user’s location and the pruning technique improves the
performance greatly.

(3) For those changing conditions, i.e., existing wi-fi access points being
moved or removed, the system has a mechanism to capture changes immediately
and refresh the fingerprint data sets. Polaris maintains the coarse locations of
access points and when a fingerprint comes, it first inspects the validity of the in-
dex. We also give an expired time for fingerprints and index them incrementally.
To summarize, we make the following contributions.

– We design and implement an innovative metropolitan-scale localization sys-
tem Polaris, which has been commonly used and widely accepted.

– We develop a localization model based on novel similarity measures of fin-
gerprints and design an efficient algorithm to accurately locate the user.

– We devise a cluster-based incremental representative fingerprint selection
schema to improve the performance, reducing the storage space and de-
creasing the search time significantly.

– We have conducted an extensive set of experiments and results show that
Polaris is more accurate than state-of-the-art methods and the indexing
mechanism performs well.

The rest of this paper is organized as follows. Section 2 formulates the localization
problem and gives an overview of the system. The Polaris model is presented
in Section 3. We introduce the detail of search algorithm and improved repre-
sentative selection algorithm in Section 4. Experimental results are provided in
Section 5. We review the related work in Section 6 and make a conclusion in
Section 7.

2 Polaris Overview

Problem Formulation. Formally, our paper considers a set of fingerprint data
F . Each fingerprint f ∈ F contains a set of signal sources S and a location l,
i.e., f = 〈S, l〉. The similarity value between fi and fj is denoted by Sim(fi,
fj), which will be discussed in Section 3. Specifically, each s ∈ S has a unique

60 N. Zhang and J. Feng

1f 2f

4f
3f

5f
6f

8f7f

(b) Location Generating

1f 2f

4f
3f

5f
6f

8f7f

(c) Fingerprint Clustering

1f 2f

4f
3f

5f
6f

8f7f

(a) Similarity Comparing

Fig. 1. Polaris Framework

identifier p and a value θ, representing the received signal strength, i.e., s = 〈p, θ〉.
The query from a user is a fingerprint without location, denoted by fx. Giving a
threshold τ , our problem is to find all the similar fingerprints fi ∈ F such that
Sim(fi, fx) > τ and uses fi to generate the user’s final location.

Polaris Framework. Polaris framework contains a search part to find the
accurate location and a representative selection part to cluster the fingerprints.

Our localization system first uses the collected fingerprints to construct a
signal index in order to map each fingerprint to its location. When a user queries,
system finds the fingerprints that have higher similarity values with the query
and generates the location using those fingerprints. To reduce the index size and
increase the search speed, our representative selection framework clusters the
similar fingerprints and generates representative ones.

As an example, Figure 1(a) shows a signal map containing eight fingerprints
f1,f2,...,f8. The map is established before the search process, using the data con-
tributed by users. When a query fx, the star, comes, it compares with f1,f2,...,f8
to find the fingerprints that have the higher similarity values with fx, for exam-
ple, f3,f5,f6 in Figure 1(b). The next step is to generate the location using these
fingerprints. For the similar fingerprints, we use a cluster-based representative
selection method to merge them into one fingerprint. In Figure 1(c), the eight fin-
gerprints are clustered into three regions and generate three new representative
fingerprints based on our similarity function.

System Architecture. The Polaris system includes three components:

1) Collector: This component collects the data submitted by anonymous users
when they are able to access their locations. For example, users can submit
data when they are on their way to supermarkets or to a park. We give them
credits to encourage them to upload data; therefore, we can automatically collect
data without carrying the burden of mapping the whole world by ourselves. The
quantity and quality of the data can also be guaranteed.

2) Selector: Since users can submit millions of fingerprints each day, this com-
ponent is crucial to our system. For those noise and repeated data, this compo-
nent first cleans them to reduce the data size. It then clusters the cleaned data

Polaris: A Fingerprint-Based Localization System over Wireless Networks 61

to find representative fingerprints in order to further reduce the index size and
decrease the search time, achieving the metropolitan-scale localization, based
on the similarity function we design. Finally, it builds up a signal index for the
search step.

3) Searcher: Using the signal index and a similarity function, this component
finds the user’s location. When a query comes, system generates the fingerprint
candidates from the index and calculates the similarity value of each candidate
with the query. The result location is generated from those fingerprints that have
higher similarity values.

3 Polaris Model

We present the Polaris models: a similarity model for measuring the similarity
of two fingerprints and a localization model for generating the final location.

Similarity Model. The similarity function is used to represent how similar
two fingerprints are. It groups the signals into levels and then calculates the
similarity value of each signal pair to generate the final value of two fingerprints.

The signal strength θ, measured by dBm (decibel relative to one milliwatt),
has a range from -60 dBm to -99 dBm. Values that are greater than -60 or less
than -99 are considered as noise points caused by equipment mistakes or signal
disturbances. P = 10θ/10 shows the relation between absolute power P and dBm.
For a 3 dBm increase, the power is roughly doubled.

θ′ = 9−
⌈
|θ + 59|

5

⌉
(1)

In real experiments, we find out that although in a fixed location, the θ from
an access point may change for 4 dBm to 6 dBm from time to time caused by
the disturbances of the other signals. To minimize fluctuations in the received
signals, we group the signals into eight levels from 1 to 8 using Equation 1. For
example, a signal with θ = −72 is grouped into level 6. This level mechanism
can describe the similarity value of two signals properly and precisely, taking
both the number differences and the signal powers into consideration.

ω(θ1, θ2) = 1− |2θ′
1 − 2θ

′
2|/28 (2)

Since we have already grouped the θ into different levels, we can use Equation 2
to calculate the similarity value, ω(θ1, θ2), of two signals. |2θ′

1 − 2θ
′
2| represents

the difference of two signals, measuring the distance between them. For ease to
compare, we normalize the difference into [0, 1] by dividing 28 and the normalized
value is then subtracted by 1 to form the final similarity value. Here are some
examples:

ω(−73,−80) = 1−|26 − 24|/28 = 0.813 ω(−83,−90) = 1−|24 − 22|/28 = 0.953

For two fingerprints, the number of same signal pairs takes a large weight in
the function. In Table 1(a), f1 and fx have four same signals, s1, s3, s4, s6 while

62 N. Zhang and J. Feng

Table 1. Fingerprint & Index

(a) A Set of Fingerprints & A Query fx

f1
s θ

s1 5
s2 2
s3 4
s4 1
s6 6

f2
s θ

s1 5
s3 1
s4 3
s6 7
s7 2
s9 4

f3
s θ

s1 6
s2 2
s5 6
s6 7
s7 3
s8 2
s9 2

f4
s θ

s1 5
s3 6
s4 3
s8 1
s9 4

fx
s θ

s1 4
s3 7
s4 3
s6 5
s8 2
s9 4

(b) A Set of Inverted Index

Is1 Is2 Is3 Is4 Is5 Is6 Is7 Is8 Is9

f1 f1 f1 f1 f3 f1 f2 f3 f2
f2 f3 f2 f2 f2 f3 f4 f3
f3 f4 f4 f3 f4
f4

f4 and fx have five same signals, s1, s3, s4, s8, s9. Therefore, the similarity value
Sim(f4, fx) should be greater than Sim(f1, fx). Equation 3 shows the similarity
function of fi and fx; the similarity value is the sum of ω plus n, the number of
same signals.

Sim(fi, fx) =
∑

ω + n (3)

Suppose the example in the Table 1(a), Sim(f1, fx). The two fingerprints have
four same signals and the signal identifiers are s1, s3, s4, s6. Sim(f1, fx) = ω1 +
ω3 + ω4 + ω6 + 4 = 0.9375 + 0.5625 + 0.9766 + 0.875 + 4 = 7.3516.

Localization Model. Based on the similarity model, we first find several finger-
prints that have higher values. Using the locations of those fingerprints, system
generates the final location for user.

The number of fingerprints used to generate the location is an important fac-
tor. We sort the values first. If the value differences are greater than a threshold,
we stop getting fingerprints and use those to generate the location; however,
when the differences are small, this process may add more fingerprints and the
result location would be less accurate. Therefore, we use an alternative way,
which is to use a constant number of fingerprints.

Giving a number α, we use the top α fingerprints to generate the final location.
A straightforward method is to use the most similar fingerprint as the result.
This method is called NN method. Another way is to use α fingerprints, which
is called αNN. For αNN, we use the locations of the α fingerprints to generate a
mini circle and the center of the circle is the user’s location; however, this would
bring errors since the mini circle can be large and the center may be influenced
by less important fingerprints. An alternative way is to calculate the average
location. In the real experiments, we find that using the average value as the
final result has a better performance.

Suppose the example in Table 1(a). We first calculate Sim(f1, fx) = 7.3516,
Sim(f2, fx) = 9.0703, Sim(f3, fx) = 7.6406 and Sim(f4, fx) = 9.6797 and then
sort them as f4, f2, f3, f1. For a α = 1, the location of fx is the location of f4.
For α = 2, the location is generated by the locations of f4 and f2.

Polaris: A Fingerprint-Based Localization System over Wireless Networks 63

Algorithm 1: Basic Indexing Algorithm

Input: F : A collection of fingerprints
Output: I: A collection of inverted indexes

1 begin
2 Initiate a set;
3 for f in F do
4 for s in f.S do
5 s.θ = 9− |s.θ + 59|/5;
6 Is.add(f); set.add(s);

Fig. 2. Basic Indexing Algorithm

4 Polaris Algorithm

In this section, we introduce the detail of Polaris algorithm. In Section 4.1, we
describe the Polaris index. The search algorithm and the pruning technique will
be presented in Section 4.2. To further improve the search efficiency, we devise
a cluster-based representative fingerprint selection algorithm in Section 4.3 and
an incremental improvement of it in Section 4.4.

4.1 Indexing

Scanning each f , Polaris builds an inverted index for each signal s, denoted
by Is. Is includes a list of f that contains s. Table 1(b) shows an inverted
index example, using the raw data f1, f2, f3, f4 in Table 1(a). For example, for
s3, it appears in f1, f2 and f4; therefore, the inverted index Is3 contains those
fingerprints. We give the pseudo-code of our indexing algorithm in Figure 2.

4.2 Search Algorithm

Finding Candidates. Polaris finds out all the fingerprints fi that has inter-
sections with fx (Si ∩Sx �= ∅) and puts the result in a set to avoid duplication.
The finding process can be easily achieved by visiting all the Is where s ∈ Sx.

Sorting Candidates. For all the fingerprint candidates, Polaris calculates
the similarity value using Equation 3. All the values are maintained in a max-
heap. The fingerprint algorithm terminates and returns several fingerprints that
have greater similarity values.

Generating Location. The algorithm gets α top fingerprints that have larger
similarity value, using the model mentioned in Section 3. After calculating the
average location, it gives the location back to the user.

64 N. Zhang and J. Feng

Algorithm 2: Search Algorithm

Input: fx: A query fingerprint; I: A collection of inverted indexes
Output: l: The user’s location

1 begin
2 Initiate a set, a heap, and a list;
3 for s in fx.S do
4 set.add(I.get(s));
5 list = SortFingerprints(set);
6 for f in list do
7 if 2 ∗ f.n > heap.least then
8 w = Sim(f , fx);
9 heap.add(w);

10 else
11 break;

12 l = GenerateLocation(heap);
13 return l;

Fig. 3. Search Algorithm

Pruning Technique. From Equation 3, we see the similarity value is no more
than twice the number of same signals, Sim(fi, fx) =

∑
ω+n ≤ 2∗n. Therefore,

we use 2 ∗ n as an upper bound and the algorithm can be terminated without
calculating all the similarity values. Since we want to find the top α fingerprints,
we first sort the fingerprint candidates using the value of n. During the query,
we maintain α fingerprints in the heap. For the current fingerprint that we need
to calculate the similarity value, if 2 ∗n is less than the smallest similarity value
in the heap, it means from that fingerprint, all the remaining ones cannot be
greater than the least in the heap so they cannot be added. Therefore, the search
process can be terminated and the fingerprints in the heap are the ones we need.

For example, in Table 1(a), we set α = 2. We first sort the fingerprints based
on n, that is f2,f4,f1,f3. Since Sim(f2, fx) = 9.0703, we put f2 in the heap. After
calculating Sim(f4, fx) = 9.6797, the fingerprints in the heap are f4,f2. For the
next fingerprint f1, 2 ∗ n = 8, which is less than the smallest value Sim(f2, fx).
Therefore, the algorithm is terminated and the average location of f4, f2 is given
to the user.

We give the pseudo-code of our search algorithm in Figure 3. Polaris first
initiates a set to maintain the fingerprint candidates and a max-heap for sorting
the candidates with their similarity values (line 2). Then it finds all the finger-
print candidates that need to be compared with fx (line 3), sorts them based
on the number of same signals (line 5), and puts the sorted results in a list. The
algorithm calculates the similarity value using Equation 3 and puts the result
into the heap. It terminates based on the pruning mechanism (line 6 to 11). The
final location is calculated using the model we mentioned in Section 3 (line 12).

Polaris: A Fingerprint-Based Localization System over Wireless Networks 65

4.3 Cluster-Based Representative Selection

For our metropolitan-scale localization system, the fingerprints collected each
day can be more than a million. Maintaining all the fingerprints in the index
lowers the search efficiency and gives burden to the server. Therefore, we present
a cluster-based method to select representative fingerprints, indexing those fin-
gerprints to get a better efficiency.

Sim
′(fi, fj) = (

∑
ω)/n (4)

For a single fingerprint fi, the system first visits all the fingerprints that have
already indexed, comparing with them using Equation 4. Equation 4 is the sum
of similarity values of each similar signal

∑
ω divide the number of same signals

n. It has a slight difference with the similarity function we have defined in Equa-
tion 3. Using Sim

′, we can modify all the similarity values into [0, 1] in order to
control the selection rate. Suppose the example in the Table 1(a), Sim′(f1, f4).
Sim

′(f1, f4) = (ω1 + ω3 + ω4)/3 = (1 + 0.8125 + 0.9766)/3 = 0.9297.
After calculating all the similarity values, we find the fingerprint fk with the

greatest Sim
′ and compare it with a threshold β. If the value is greater than

β, the two fingerprints fi and fk are similar to each other and can be merged
together. We modify the signals in fk and the location of fk. However, if the
value is less than or equal to β, it means that no fingerprints are similar to fi so
we index it and insert it into the fingerprint list as a new one. For example, in
Table 1(a), Sim′(f2, f4) = 0.9395. If β is 0.95, then the two fingerprints cannot
be merged. If β is 0.93, then they can be merged together.

We should also take the validity of the fingerprint into consideration since the
access points are frequently modified. The basic method is to rebuild the index
for every constant period t, for example, five days. During the t period, Polaris
accumulates the data submitted by the users and then selects the representative
fingerprints. We give the pseudo code in Figure 4.

Algorithm 3: Cluster-Based Representative Selection Algorithm

Input: F : Fingerprint list
Output: I: The inverted index

1 begin
2 Initiate a set;
3 for fi in F do
4 w′ = FindTheTopSimilarValue(fi);
5 if w′ > β then
6 MergeFingerprint(fi, fj);

7 else
8 ModifyIndex(fi); set.add(fi);

Fig. 4. Cluster-Based Representative Selection Algorithm

66 N. Zhang and J. Feng

4.4 Incremental Representative Selection

Using the basic method has some drawbacks. First and foremost, during the t pe-
riod, some existing access points may be already relocated or removed; therefore,
the data cannot be trusted. What is more, when we rebuild the index, the service
may stop for a few moment, making it inconvenient to use. Therefore, our goal is
to generate the representative fingerprints using an incremental algorithm.

The difference between basic and incremental method is that we rebuild each
signal’s index instead of rebuilding the whole index. For every signal, we generate
a coarse location to approximately represent the location of that access point.
When a fingerprint comes, Polaris compares the coarse location of each signal
in the fingerprint with the location of that fingerprint. If the location is far
away from the coarse location for γ, for example, 3 kilometers, it means that
access point may have been moved. That signal should be eliminated from all
the fingerprints and the index should also be rebuild.

We give the pseudo-code in Figure 5. For each signal in f , it tests validity
of the data and modifies the index if the access point has been moved (line 4).
It then compares with the existing fingerprints to calculate the similarity value
(line 7). If the top value in the heap is greater than β, then the two fingerprints
are similar and can be merged together (line 10). Otherwise, it adds f into the
set and indexes it as a new one (line 12).

5 Experiment

We have implemented the Polaris system and conducted a set of experiments
on real data sets. We used the data contributed by users in three different regions:
a community, a commercial district and a high technology industrial area. We
then collected data in these regions and randomly chose 50% of the data to be
the test cases. Table 2 shows the detailed information of the data sets.

Fingerprint Evaluation. We evaluated the effects of using different α to gen-
erate the final location in the last step of search algorithm (Figure 3, line 12).
We set the value of α from 1 to 10, running our algorithm on three data sets.
Figure 6(a) shows the result.

We see that the average error of the final result increases with α from less than
5 meters to 15 meters. The reason is that when we choose more fingerprints to
generate the final location, the less similar ones may be included; therefore, the
result error increases. From the figure, we can see, when we set the α value to 1,
that is, choosing the most similar fingerprint to be the result, our algorithm has
a median accuracy less than 5 meters, which is better than the other localization
systems.

Method Comparison. We evaluated our fingerprint algorithm and represen-
tative selection algorithm. Comparing with the state-of-the-art Google Localiza-
tion System1 and SOSO Localization System, our system has a higher accuracy.

1 http://code.google.com/apis/gears/geolocation_network_protocol.html

http://code.google.com/apis/gears/geolocation_network_protocol.html

Polaris: A Fingerprint-Based Localization System over Wireless Networks 67

Algorithm 4: Incremental Representative Selection Algorithm

Input: f : A Fingerprint, set: Indexed fingerprints, L: The coarse locations
Output: I: The inverted index

1 begin
2 for si in f.S do
3 if Distance(L.si,f.l) > γ then
4 Expire(si);

5 Initiate a heap;
6 for fk in set do
7 heap.add(Sim′(f, fk));

8 w′ = heap.pop();
9 if w′ > β then

10 MergeFingerprint(f, fk);

11 else
12 ModifyIndex(f); set.add(f);

Fig. 5. Incremental Representative Selection Algorithm

Table 2. Data Sets

Name Type Fingerprints Test Cases

Data #1 Residential District 21582 10791
Data #2 Commercial District 26890 13445
Data #3 High-Tech District 31863 15932

Figure 6(b) shows that the accuracy of Polaris is at least 10 times better
than Google and 15 times better than SOSO. After compressing the data with
a threshold β = 0.98, the accuracy is at least 4 times better than Google and 6
times better than SOSO. The reason is that they use a triangulation method,
which needs to estimate the location of access points and uses the estimated
locations to generate the result. Therefore, the performance is worse than our
method.

Index Evaluation. We evaluated the effectiveness and efficiency of our repre-
sentative selection algorithm. The four aspects using to evaluate the algorithm
are the number of fingerprints indexed, the number of candidates for each search,
the search time and the result accuracy. We set β from 0.99 to 0.90 and set α = 1,
running the test on three data sets. Figure 7 shows the result.

We see that the size of the index, the fingerprint candidates that need to
compare with fx and the search time decrease greatly with β. Since β is the
threshold we use to verify whether the two fingerprints are similar or not, a
decreasing in β compresses more fingerprints into one; therefore, we reduce a
great many of fingerprints and the index size decreases. As a result, when a query

68 N. Zhang and J. Feng

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

E
rr

or
 (

m
)

Threshold α

Data #1
Data #2
Data #3

(a) The effect of α

 0

 20

 40

 60

 80

 100

 1 2 3

E
rr

or
 (

m
)

Data Set #

Basic Index
Representative Selection

Google
Soso

(b) Comparison with Google & SOSO

Fig. 6. Accuracy Comparison

 2

 4

 6

 8

 10

 12

 14

 0.91 0.93 0.95 0.97 0.99

In
de

x
N

um
be

r
(*

10
00

)

Threshold β

Data #1
Data #2
Data #3

(a) Index

 5

 10

 15

 20

 25

 30

 35

 0.91 0.93 0.95 0.97 0.99C
an

di
da

te
s

N
um

be
r

(*
10

)

Threshold β

Data #1
Data #2
Data #3

(b) Candidate

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0.91 0.93 0.95 0.97 0.99

T
im

e
(m

s)

Threshold β

Data #1
Data #2
Data #3

(c) Time

 0

 5

 10

 15

 20

 25

 30

 0.91 0.93 0.95 0.97 0.99

E
rr

or
 (

m
)

Threshold β

Data #1
Data #2
Data #3

(d) Accuracy

Fig. 7. Effectiveness of Representative Selection

comes, we need to compare with less candidates and the search time decreases.
However, since the index is small, we cannot map all the locations to their
accurate fingerprints; therefore, the median error increases a little. Choosing the
best β has great influence to Polaris. For example, when we set β = 0.96, the
result accuracy is about 15 meters while the other three factors decrease greatly.

The experimental results of Polaris show that our system has a higher accu-
racy and precision than state-of-the-art systems and the incremental representa-
tive selection method can compress the fingerprint data effectively and efficiently.

Polaris: A Fingerprint-Based Localization System over Wireless Networks 69

6 Related Work

Many location systems[1] have been proposed for the past two decades. Some sys-
tems require special equipments in order to locate the user. The Active Badge
system[11] relies on infrared technology, presenting the location of the badge
that emits the infrared; however, the transmission range of infrared is the lim-
itation. The Bat system[12] and Cricket system[13] use ultrasonic technology
for getting a higher accuracy. Receivers get the ultrasonic pulses, which can
be used to calculate the distance. The systems require a large infrastructure
and difficult to deploy. TRIP[14] and SurroundSense[15] use image and adja-
cent contexts to help locate. With the help of the equipments, those systems
can have a better accuracy; however, it is impossible for them to use in a large
area. Some other systems[16,5,6,7] use gsm cellular tower; however, the lower
accuracy cannot reach the standard of an accurate location. Place Lab[3] uses
particle filter method to locate the user in the open area, which has the ac-
curacy about 20 to 30 meters. [17] presents a case study of applying particle
filters to location estimation; however, those methods require more computation
and memory. RADAR[2,10] first proposes the fingerprint method using the pre-
viously collected data. It provides an accurate localization in building but the
massive deployment make it unable to use in the large area. [18,19,20] use similar
method like RADAR but taking into consideration of different kinds of sources.
However, they cannot be used in the open area for the complicated deployment
and inefficient algorithm.

7 Conclusion

In this paper, we present and implement a localization system, called Polaris.
Using a motivate mechanism, our system accumulates the data contributed by
anonymous users, making it easy to deploy. We design a novel localization model
to measure the similarity of two fingerprints and generate the user’s location.
Our search algorithm has a higher accuracy between 5m to 15m. To improve the
performance, we present a novel incremental representative fingerprint selection
schema to compress the massive raw data in order to support the metropolitan-
scale localization. The result from experiments and real-world usage show that
our system has a better performance than the existing state-of-the-art systems
in both the accuracy and capability of dealing with the massive data.

References

1. Hightower, J., Borriello, G.: Location systems for ubiquitous computing. Com-
puter 34(8), 57–66 (2001)

2. Bahl, P., Padmanabhan, V.N.: Radar: An in-building rf-based user location and
tracking system. In: INFOCOM, pp. 775–784 (2000)

70 N. Zhang and J. Feng

3. LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn,
T., Howard, J., Hughes, J., Potter, F., Tabert, J., Powledge, P., Borriello, G.,
Schilit, B.N.: Place Lab: Device Positioning Using Radio Beacons in the Wild. In:
Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468,
pp. 116–133. Springer, Heidelberg (2005)

4. Enge, P., Misra, P.: Special issue on global positioning system. Proceedings of the
IEEE 87(1), 3–15 (1999)

5. Chen, M.Y., Sohn, T., Chmelev, D., Haehnel, D., Hightower, J., Hughes, J.,
LaMarca, A., Potter, F., Smith, I., Varshavsky, A.: Practical Metropolitan-Scale
Positioning for GSM Phones. In: Dourish, P., Friday, A. (eds.) UbiComp 2006.
LNCS, vol. 4206, pp. 225–242. Springer, Heidelberg (2006)

6. Otsason, V., Varshavsky, A., LaMarca, A., de Lara, E.: Accurate GSM Indoor
Localization. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp
2005. LNCS, vol. 3660, pp. 141–158. Springer, Heidelberg (2005)

7. Benikovsky, J., Brida, P., Machaj, J.: Localization in Real GSM Network with Fin-
gerprinting Utilization. In: Chatzimisios, P., Verikoukis, C., Santamaŕıa, I., Laddo-
mada, M., Hoffmann, O. (eds.) MOBILIGHT 2010. LNICST, vol. 45, pp. 699–709.
Springer, Heidelberg (2010)

8. Cheng, Y.C., Chawathe, Y., LaMarca, A., Krumm, J.: Accuracy characterization
for metropolitan-scale wi-fi localization. In: MobiSys, pp. 233–245 (2005)

9. Haeberlen, A., Flannery, E., Ladd, A.M., Rudys, A., Wallach, D.S., Kavraki, L.E.:
Practical robust localization over large-scale 802.11 wireless networks. In: MOBI-
COM, pp. 70–84 (2004)

10. Bahl, P., Balachandran, A., Padmanabhan, V.: Enhancements to the radar user
location and tracking system. Microsoft Research Technical Report (2000)

11. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system.
ACM Trans. Inf. Syst. 10(1), 91–102 (1992)

12. Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The anatomy of a
context-aware application. In: MOBICOM, pp. 59–68 (1999)

13. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support
system. In: MOBICOM, pp. 32–43 (2000)

14. de Ipiña, D.L., Mendonça, P.R.S., Hopper, A.: Trip: A low-cost vision-based loca-
tion system for ubiquitous computing. PUC 6(3), 206–219 (2002)

15. Azizyan, M., Constandache, I., Choudhury, R.R.: Surroundsense: mobile phone
localization via ambience fingerprinting. In: MOBICOM, pp. 261–272 (2009)

16. Laitinen, H., Lahteenmaki, J., Nordstrom, T.: Database correlation method for
gsm location. In: Vehicular Technology Conference, vol. 4, pp. 2504–2508 (2001)

17. Hightower, J., Borriello, G.: Particle Filters for Location Estimation in Ubiquitous
Computing: A Case Study. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp
2004. LNCS, vol. 3205, pp. 88–106. Springer, Heidelberg (2004)

18. Pandya, D., Jain, R., Lupu: Indoor location estimation using multiple wireless
technologies. In: PIMRC, pp. 2208–2212 (2003)

19. Smailagic, A., Kogan, D.: Location sensing and privacy in a context-aware com-
puting environment. IEEE Wireless Communications 9(5), 10–17 (2002)

20. Papapostolou, A., Chaouchi, H.: WIFE: Wireless Indoor Positioning Based on Fin-
gerprint Evaluation. In: Fratta, L., Schulzrinne, H., Takahashi, Y., Spaniol, O.
(eds.) NETWORKING 2009. LNCS, vol. 5550, pp. 234–247. Springer, Heidelberg
(2009)

A High-Performance Algorithm

for Frequent Itemset Mining

Jun-Feng Qu and Mengchi Liu

State Key Lab. of Software Engineering, School of Computer,
Wuhan University, Wuhan 430072, China
cocoqjf@gmail.com, mengchi@sklse.org

Abstract. Frequent itemsets, also called frequent patterns, are impor-
tant information about databases, and mining efficiently frequent item-
sets is a core problem in data mining area. Pattern growth approaches,
such as the classic FP-Growth algorithm and the efficient FPgrowth*
algorithm, can solve the problem. The approaches mine frequent item-
sets by constructing recursively conditional databases that are usually
represented by prefix-trees. The three major costs of such approaches are
prefix-tree traversal, support counting, and prefix-tree construction. This
paper presents a novel pattern growth algorithm called BFP-growth in
which the three costs are greatly reduced. We compare the costs among
BFP-growth, FP-Growth, and FPgrowth*, and illuminate that the costs
of BFP-growth are the least. Experimental data show that BFP-growth
outperforms not only FP-Growth and FPgrowth* but also several famous
algorithms including dEclat and LCM, ones of the fastest algorithms, for
various databases.

Keywords: Algorithm, data mining, frequent itemsets.

1 Introduction

Frequent itemsets derived from databases have been extensively used in associa-
tion rule mining [1], clustering [2], classification [3], and so on. Therefore, mining
efficiently frequent itemsets is very important in data mining area.

1.1 Problem Definition

Let I = {i1, i2, i3, . . . , in} be a set of n distinct items. An itemset X is a subset
of I, i.e., X ⊆ I, and X is called a k-itemset if |X | = k. DB is a transaction
database, where each transaction T is also a subset of I, i.e., T ⊆ I. We say
that transaction T satisfies itemset X if X ⊆ T . Let S(DB) be the number
of transactions in DB and C(X) the number of transactions satisfying X , and
then C(X)/S(DB) is the support of X . Given a user specified minimum support
threshold ξ, an itemset X is called frequent if (C(X)/S(DB)) >= ξ. The fre-
quent itemset mining problem [4] is to enumerate all the frequent itemsets with
their supports given a DB and a ξ. For a database with n items, 2n itemsets
must be checked, and thus the problem is intractable.

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 71–82, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

72 J.-F. Qu and M. Liu

1.2 Previous Solutions

Apriori [5] is one of the most well-known algorithms for frequent itemset mining,
and it uses the downward closure property of itemset support: any superset of an
infrequent itemset is infrequent and any subset of a frequent itemset is frequent.
After scanning a database, Apriori find out all the frequent 1-itemsets from which
it generates the candidate 2-itemsets. Afterwards, Apriori scans iteratively the
database to find out all the frequent k-itemsets (k >= 2) from which it generates
the candidate (k + 1)-itemsets. The qualification as a candidate (k + 1)-itemset
is that all of its subsets containing k items, namely k+1 k-itemsets, are frequent.
The Apriori-based approaches such as [6], [7] are called candidate generation-
and-test approaches.

Pattern growth approaches such as FP-Growth [8] adopt the divide-and-
conquer strategy to mine frequent itemsets. They first identify all the frequent
items in a database, and subsequently divide the database into the disjoint con-
ditional databases according to the frequent items. After that, each conditional
database is recursively processed. For a frequent k-itemset, each frequent item in
its conditional database can be appended to the k-itemset, which makes it grow
into a frequent (k+1)-itemset. Many pattern growth approaches employ prefix-
trees to represent (conditional) databases. Prefix-trees are highly compressed on
which both database scan and support counting can be performed fast.

There are a number of other mining approaches. Using a vertical database lay-
out, the Eclat algorithm [9] links each item up with a set of transaction identifiers
and then intersects the sets to mine frequent itemsets. The TM algorithm [10]
is a variant of Eclat, and the dEclat algorithm [11] incorporating the “diffset”
technique significantly improves Eclat’s performance. The FIUT algorithm [12]
mines frequent itemsets by gradually decomposing a length k transaction into k
length (k − 1) transactions. Tiling [13] makes the best of CPU cache to speed
previous algorithms up; CFP-growth [14] consumes less memory than other algo-
rithms; LCM [15] integrates multiple optimization strategies and achieves good
performance.

1.3 Contribution

The two major costs for a mining algorithm are database scan (or prefix-tree
traversal) and support counting. For the algorithms constructing conditional
databases, the construction cost of conditional databases is also nontrivial.

For a large database and/or a small minimum support, the mining task usually
becomes very intractable because numerous transactions need to be scanned and
a very large number of itemsets must be checked. In this case, a high-performance
algorithm is indispensable. To obtain better performance, a common method is
to reduce the costs of a previous algorithm as much as possible. For example, the
FPgrowth* algorithm [16] significantly improves FP-Growth’s performance by
reducing half the traversal cost. The difficulty of the method is that the decrease

A High-Performance Algorithm for Frequent Itemset Mining 73

in a cost can lead to the increase in another cost. Although FPgrowth* outper-
forms FP-Growth, it is usually neglected that the counting cost of FPgrowth*
is more than that of FP-Growth.

The paper presents a novel algorithm, called BFP-growth, for frequent itemset
mining. BFP-growth employs prefix-trees to represent (conditional) databases
as most pattern growth algorithms do. We compare the traversal, counting, and
construction costs among BFP-growth, FP-Growth, and FPgrowth* in details,
and demonstrate that these costs in BFP-growth are greatly reduced. We con-
duct extensive experiments in which several famous algorithms are tested besides
the three algorithms aforementioned. Experimental data show that BFP-growth
achieves significant performance improvement over previous works. The rest of
the paper is arranged as follows. Section 2 looks back on the classic pattern
growth approach. Section 3 presents the BFP-growth algorithm. The three costs
of BFP-growth, FP-Growth and FPgrowth* are analyzed in Section 4. Section
5 gives experimental data. The paper ends in the conclusion of Section 6.

2 Pattern Growth Approach

The classic pattern growth approach, FP-Growth [8], employs extended prefix-
trees called FP-trees to represent (conditional) databases. FP-Growth first iden-
tifies all the frequent items by a scan over a (conditional) database. After that, it
constructs an (conditional) FP-tree by processing each transaction as follows: (1)
pick out the frequent items from the transaction; (2) sort the items in frequency-
descending order to generate a branch; (3) insert the branch into the FP-tree.
Fig. 1(a) and (b) show a transaction database and the corresponding FP-tree.
A prefix-tree’s node contains two fields: an item and a count, and an FP-tree’s
node holds two extra pointers: a parent-link pointing to its parent node and a
node-link pointing to another node containing the same item. There is a header
table for each FP-tree, in which an entry registers a frequent item, its support,
and the head of the list that links all the nodes containing the item.

FP-Growth processes all the items in a header table one by one. For item i,
the paths from all the nodes containing i to the root constitute the conditional

��������	
��

�� �� �� � �
�� �� ��
�� �� �� �
�� �� �
�� �� �
�� �
�� �
�� �� �
�� �
�� � �
�� �� �
�� ��
�� �� � �

��� �������� � �������� 	����

�������� 	����

�� �� �� � �
�� �� ��
�� �� �� �
�� �
�� �
�
�
�
�
��
�� �� �
�� ��
�� �� � �

����

���

�� ��!

��"��!

�#

��"

��! ��"

�#

�"

��� �$%����

��" ��"

& ' (
� �

�)
� *

� +

&� 	���

'� ��,,
��
(� -��

(���� ���.�

,�����%.	�/

�
�%.	�/

0
�	�	
��. �������
1 	��� 2

� � � � "
� � � � "
� � � "
� � � "

��+

��+

����
& ' (

� +
� +

0
�	�	
��. �$%����
1 	��� 2

��� 0
�	�	
��. �������3�$%����

Fig. 1. Database, FP-tree, and conditional database/FP-tree (minimum support=30%)

74 J.-F. Qu and M. Liu

database of i. FP-Growth traverses the paths along both node-links and parent-
links to count for the items in the paths. After identifying the frequent items in
the conditional database, FP-Growth traverses the paths again to construct the
conditional FP-tree of i. Fig. 1(c) shows the conditional database and conditional
FP-tree of item e.

FPgrowth* is an efficient variant of FP-Growth, and it counts for the items in
an FP-tree when constructing the FP-tree. In this way, FPgrowth* reduces half
the traversal cost of FP-Growth and thereby gains significant performance im-
provement, although it increases the counting cost. FPgrowth* [16] is the fastest
algorithm in IEEE ICDMWorkshop on frequent itemset mining implementations
(FIMI’03). To obtain better performance, the questions are: (1) Can we further
reduce the traversal cost? (2) Why does FPgrowth* increase the counting cost?
Can that be avoided? (3) Can the FP-Growth-based methods mine frequent
itemsets using plain prefix-trees (e.g., Fig. 2) rather than extended prefix-trees?

3 BFP-Growth Algorithm

BFP-growth mines frequent itemsets by constructing recursively conditional
prefix-trees, as most pattern growth approaches do. Different from previous ap-
proaches, for a (conditional) prefix-tree, BFP-growth first builds the counting
vectors for all the items in the tree, and subsequently constructs simultaneously
all the conditional prefix-trees of next level.

3.1 Building Counting Vectors

Given a prefix-tree, the paths from all the nodes containing item i to the root
constitute the conditional database of i. To construct the conditional prefix-tree

����

���

��	
��

��
��

���

��

���
�

���

��
�

�

�

	

�
�� ��

 �

�

�

�

�

�

Fig. 2. Prefix-tree

for

Fig. 3. Building counting vectors

A High-Performance Algorithm for Frequent Itemset Mining 75

of i, all the frequent items in its conditional database should be first identified.
For the purpose, BFP-growth will build the counting vector for i denoted as CVi.
Each item in the conditional database of i corresponds to a component of CVi.
For example, the counting vector for item d of the prefix-tree in Fig. 2 contains
the three components corresponding to items a, b, and c in the conditional
database of d. After initializing the counting vectors for all the items of a prefix-
tree, BFP-growth starts to count for the items in all the conditional databases.

Using a work stack, BFP-growth continually updates the counting vectors for
a prefix-tree in the process of traversing the prefix-tree in depth-first way. The
stack stores the items in the path from the parent node of the current node
to the root. Fig. 3 shows how the counting vectors for the prefix-tree in Fig.
2 are updated when BFP-growth processes each node numbered at its upper
left corner according to the depth-first order. For example, when BFP-growth
arrives at the node numbered 6, the path from the node to the root is a part of
item e’s conditional database. Therefore, items a, b, and c in the path stored in
the stack are counted and the corresponding components in CVe are increased
by 1 (1 is the count of the node numbered 6 and indicates one occurrence of a, b,
and c in e’s conditional database). In this way, BFP-growth builds the counting
vectors for all the items in a prefix-tree by one traversal of the prefix-tree.

3.2 Constructing Conditional Prefix-Trees

After building the counting vectors for all the items in a prefix-tree, BFP-growth
can identify the frequent items in any conditional database. Subsequently, BFP-
growth will traverse the prefix-tree again to construct simultaneously all the
conditional prefix-trees of next level.

When processing the node containing item i, BFP-growth picks first out the
frequent items from the items in the path from the parent node of the node to the
root according to CVi. These frequent items are sorted in frequency-descending

����
���

����

����

����

����

��	

����

��

����

���

���

����

��

���

����

��

��

����

��

����

���

��	

����

�	

���

����

��

��

����

���

���

���

���

���

����
� ����� ���	� �
���� ��
��� ��
��� ���	� �
���� ��
��� ��
��� �
���

���
� � �� ��
 ��
� ��
 � �
 �
� �

��� !"
�#$� � � � 	 � � % & �' �� �	

��(� ��
���)�)���* +� ,)-.�� �,)� $ (

/

Fig. 4. Constructing conditional prefix-trees

76 J.-F. Qu and M. Liu

order and subsequently inserted into CTi (the Conditional prefix-Tree of item
i). Fig. 4 demonstrates BFP-growth’s construction procedure for the prefix-tree
in Fig. 2. Only when a conditional prefix-tree is updated is it depicted in the
figure. For example, when BFP-growth arrives at the node numbered 4, there
are items a, b, and c stored in the stack. According to the counting results in
CVd, only b and c are frequent (the minimum support is 30%). They are sorted
in frequency-descending order, and a branch {cb : 2} is generated (2 is the count
of the node numbered 4 and indicates two occurrences of transaction cb in the
conditional database of item d.). Afterwards, the branch is inserted into CTd.

3.3 Pseudo-code of BFP-Growth

Algorithm 1 shows the pseudo-code of BFP-growth.
BFP-growth first traverses prefix-tree T (the second parameter) to build the

counting vectors for all the items in T (line 1). Component j in counting vector
CVi denoted by CVi[j] stores the support of itemj in the conditional database of
itemi. If CVi[j] exceeds minimum support threshold minsup (the third parame-
ter), itemj is frequent in the conditional database of itemi. Then, the two items
and prefix itemset F (the first parameter) constitute a new frequent itemset,
and the itemset with its support CVi[j] is outputted (lines 2-8). From another
perspective, the counting vectors actually store the supports of all the 2-itemsets
of T . After outputting the frequent itemsets, BFP-growth constructs simulta-
neously all the conditional prefix-trees as stated in Section 3.2 (line 9). The
counting vectors are released before the algorithm enters the recursions of next
level (line 10). At last, for each conditional prefix-tree CTi, BFP-growth gener-
ates its prefix itemset ExF (line 12) and processes it recursively (line 13).

Algorithm 1. BFP-growth

Input: F is a frequent itemset, initially empty;
T is the conditional prefix-tree of F ;
minsup is the minimum support threshold.

Output: all the frequent itemsets with F as prefix.
build the counting vectors (CVs) for all the items in T ;1

foreach itemi in T do2

foreach component j (corresponding to itemj) in CVi do3

if CVi[j]>=minsup then4

output F ∪ itemi ∪ itemj with CVi[j];5

end6

end7

end8

construct the conditional prefix-trees (CTs) for all the items in T ;9

release the counting vectors;10

foreach itemi in T do11

ExF = F ∪ itemi;12

BFP-growth(ExF, CTi, minsup);13

end14

A High-Performance Algorithm for Frequent Itemset Mining 77

Given database DB and minimum support minsup, after prefix-tree T is con-
structed from DB and all the frequent 1-itemsets are outputted, BFP-growth(Ø,
T , minsup) can generate all the frequent k-itemsets (k >= 2).

4 Time Analysis

Most pattern growth algorithms derive from FP-Growth [8], in which FPgrowth*
[16] is very efficient. Prefix-tree traversal, support counting, and prefix-tree con-
struction are the major costs for these algorithms. The section compares the
costs among FP-Growth, FPgrowth*, and BFP-growth.

4.1 Less Traversal Cost

Prefix-tree traversal is always necessary for both support counting and condi-
tional prefix-tree construction, and the traversal cost takes a very large propor-
tion in the whole cost for a mining task. FPgrowth* gains significant performance
improvement over FP-Growth by reducing half the traversal cost.

A prefix-tree/FP-tree T with n items has 2n nodes in the worst case. If the
root is at level 0, the number of nodes at level i is combination number Ci

n. For
a node at level i, FP-Growth counts for the items in the path from the node to
the root, and thereby i nodes are accessed. Let

f(m) = Cm
n + Cm+1

n + · · ·+ Cn
n (1 ≤ m ≤ n)

and n is an even number for convenience of computation. Then, the number of
accessed nodes in FP-Growth’s counting phase for T is:

n∑
i=1

iCi
n = 1C1

n + 2C2
n + 3C3

n + · · ·+ nCn
n

= f(1) + f(2) + f(3) + · · ·+ f(n)

= (f(1)+f(n)) + (f(2)+f(n−1)) + · · ·+ (f(
n

2
)+f(

n

2
+1))

= 2n + 2n + · · ·+ 2n

=
n

2
× 2n

The same number of nodes are accessed in FP-Growth’s construction phase.
Hence, the total number of nodes accessed by FP-Growth for T is:

Accessed node number(FP−Growth) = n×2n (1)

FPgrowth* merges the counting procedure into the construction procedure (see
Section 4.2), and thus the accessed nodes in FPgrowth* for T are half those in
FP-Growth, namely:

Accessed node number(FPgrowth∗) =
n

2
×2n (2)

78 J.-F. Qu and M. Liu

BFP-growth traverses a whole prefix-tree in the counting phase and does it
again in the construction phase, and hence the total number of nodes accessed
by BFP-growth for T is:

Accessed node number(BFP−growth) = 2×2n (3)

On the one hand, there are usually many items in a database, and namely n is
very large (see Fig. 6); On the other hand, there are a large number of prefix-
trees generated during a mining process [17]. Therefore, the traversal cost of
BFP-growth is far less than that of FP-Growth and that of FPgrowth*.

4.2 Should the FP-Array Technique Be Incorporated?

FPgrowth* counts for the items in the conditional databases of all the items in
an FP-tree when constructing the FP-tree (the FP-array technique) and thereby
reduces its traversal cost. Although the technique can also be applied to BFP-
growth, we find out that the FP-array technique leads to the increase in counting
cost. The following example explains this point.

Suppose the minimum support is 15% (rather than 30%), and then items a, b,
c, and d are all frequent in the conditional database of item e for the prefix-tree in
Fig. 2 according to the counting results in CVe in Fig. 3. FPgrowth* constructs
CTe and simultaneously counts for the items in all the conditional databases of
next level, which is demonstrated in Fig. 5(a) (It is the FP-tree that FPgrowth*
constructs, but both parent-links and node-links don’t relate to the analysis
here.). FPgrowth* performs 13 times of counting labeled as shaded blocks when
constructing CTe. The counting procedure of BFP-growth performed after CTe

has been constructed is demonstrated in Fig. 5(b), and there are only 8 times of
counting labeled with asterisks.

The fundamental reason why the times of counting in BFP-growth are fewer
than those in FPgrowth* is that BFP-growth counts for the items in a com-
pressed database (namely a prefix-tree) but FPgrowth* counts in an uncom-
pressed database. Especially for a dense database, there are a relatively large
number of transactions and a corresponding relatively highly-compressed prefix-
tree, and thus counting on the prefix-tree is more efficient than counting on the

�
�
�

� � �

�
�
�

� � �

�
�
�

� � �

�
�
�

� � �

�
�
�

� � �

�
� �
� � �

"
" "
" " "

#
#
" " " # #

#
"

!
#
"

+

����

��"

��"

	�"

�"

����

��#

��"

	�#

�#

����

��!

��"

	�!

�# ��"

����

��+

��"

	�+

�# ��"

����
��	
��"� ��	
�"� ��	��"� ��	�"� �� �� ��

� � 	 � 	

" � � � � � �
+ � � � � �

! + # # � � �

+ + # # " " "

 + # # # # "

������
������

�
� �

� � �
� �

"

#

!

+

� � ��� ���
���
������� � ��� !"%#��
$

$ � ��� ���
��� 	��������
 � ��� 	���� �% &�	����

�

�
� 	���� �% '��� 	������	� �%
 ���(�%����
��� 	���� �%
(���

	������	� �%
 ���(�%����

Fig. 5. Counting comparison between FPgrowth* and BFP-growth

A High-Performance Algorithm for Frequent Itemset Mining 79

transactions. In this case, the FP-array technique cannot significantly speed the
algorithm up because the increase in the counting cost counteracts to a large
extent the decrease in the traversal cost. It is also the reason why FPgrowth*
gives up the FP-array technique when confronted with dense databases [16].
We observed by preparatory experiments that BFP-growth’s performance was
not significantly improved and was even deteriorated a little in some databases
when the counting procedure is merged into the construction procedure. There-
fore, BFP-growth doesn’t incorporate the technique.

4.3 Plain Prefix-Trees

Another advantage of BFP-growth is that it employs plain prefix-trees, but FP-
Growth and FPgrowth* employ extended prefix-trees, namely FP-trees. The
following lemma holds for BFP-growth and FP-Growth/FPgrowth*.

Lemma 1. Given a database and a minimum support, there is a one-to-one
correspondence between the FP-trees constructed by FP-Growth/FPgrowth* and
the prefix-trees constructed by BFP-growth.

Proof. (1) BFP-growth constructs the initial prefix-tree from the database as
FP-Growth/FPgrowth* constructs the initial FP-tree (see Section 2). Hence,
the initial prefix-tree is the same as the initial FP-tree, except that the latter
holds a parent-link and a node-link for each node. (2) Without regard to both
parent-links and node-links, suppose that FP-tree FPT is the same as prefix-tree
PT . For item i in FPT , FP-Growth/FPgrowth* takes the paths from the nodes
containing i to the root as the conditional database of i, and BFP-growth does
so for item i in PT . Therefore, the conditional FP-tree of i constructed by FP-
Growth/FPgrowth* is the same as the conditional prefix-tree of i constructed by
BFP-growth. (3) FP-Growth/FPgrowth* processes all the items in FPT (one
by one), and BFP-growth processes (simultaneously) all the items in PT as well.
The Lemma can be deduced from (1), (2), and (3). �

Because of extra overheads for building parent-links and node-links for FP-trees,
we can conclude from Lemma 1 that the construction cost of BFP-growth is less
than that of FP-Growth/FPgrowth* for a mining task.

5 Experiments

Our experiments include the algorithms: BFP-growth, FP-Growth, FPgrowth*
(the fastest algorithm on FIMI’03), AFOPT [18], dEclat [11], [19], and LCM
[15] (the fastest on FIMI’04). We implemented BFP-growth. To avoid imple-
mentation bias, the implementation of FP-Growth was downloaded from [20],
and the implementations of the other algorithms downloaded from [21]. All of
the codes were written in C/C++, used the same libraries, and were compiled
using gcc (version 4.3.2). Fig. 6 shows the statistical information about the ex-
perimental databases from [21]. The experiments were performed on a 2.83GHz

80 J.-F. Qu and M. Liu

�������� �	
������� ������ ������ ����������� �����������
���	����� �����)�� � �!)� ") �� �!
�#��� � ��� �!�" *� �* �*
�$����� ������� "*��* !�� � �
%$����% ����� "* ������ !�*�)&��� � �)
� ��!��!��' !� *)!!� !����� � � ��&"�� **
(���$�� !)!)��!*" !"���)� ��"*"�" !**&���"*� *! *�

)

Fig. 6. Statistical information about experimental databases

PC (Intel Core2 Q9500) with 4×109 bytes memory, running on a Debian (Linux
2.6.26) OS. Running time contains input time, CPU time, and output (directed
to “/dev/null”) time.

The experimental results are depicted in Fig. 7 (we did not plot when an imple-
mentation terminated abnormally.). For almost all the databases and minimum
supports, BFP-growth performs the best. For example, in Fig. 7(b), the run-
ning times of the algorithms are respectively: BFP-growth (10.975 seconds), FP-
growth* (143.173s), FP-Growth (400.934s), AFOPT (139.097s), dEclat (23.875s),
LCM (19.153s) when the minimum support is 25% for real dense database chess.
For synthetic sparse database T 40I10D100K in Fig. 7(e), their running times are
respectively: BFP-growth (45.777 seconds), FPgrowth* (168.714s), FP-Growth
(2890.735s), AFOPT (186.062s), dEclat (763.604s), LCM (114.614s) when the
minimum support is 0.08%.

Fig. 8 shows BFP-growth’s performance improvement over the previous pat-
tern growth algorithms, in which the execution speed of FP-Growth is normal-
ized as 1. For dense databases, for example, in Fig. 8(b) and (c), FPgrowth*
has a speedup of less than 5-fold compared with FP-Growth, and BFP-growth

3 6 9 12 15 18
100

101

102

103

104

Minimum Support (%)
(a) Running time on accidents

R
un

ni
ng

 ti
m

e
(s

ec
.)

20 25 30 35 40 45
10−1

100

101

102

103

104

Minimum Support (%)
(b) Running time on chess

R
un

ni
ng

 ti
m

e
(s

ec
.)

30 40 50 60 70 80
10−1

100

101

102

103

104

Minimum Support (%)
(c) Running time on connect

R
un

ni
ng

 ti
m

e
(s

ec
.)

0.07 0.075 0.08 0.085 0.09 0.095
100

101

102

103

104

105

Minimum Support (%)
(d) Running time on kosarak

R
un

ni
ng

 ti
m

e
(s

ec
.)

0.08 0.09 0.1 0.11 0.12 0.13
101

102

103

104

Minimum Support (%)
(e) Running time on T40I10D100K

R
un

ni
ng

 ti
m

e
(s

ec
.)

8 10 12 14 16 18
101

102

103

Minimum Support (%)
(f) Running time on webdocs

R
un

ni
ng

 ti
m

e
(s

ec
.)

BFP−growth AFOPT LCM FP−Growth FPgrowth* dEclat

Fig. 7. Performance comparison

A High-Performance Algorithm for Frequent Itemset Mining 81

3 6 9 12 15 18
0

10

20

30

40

50

60

70
Sp

ee
du

p

Minimum Support (%)
(a) Speedup on accidents

20 25 30 35 40 45
0

10

20

30

40

50

60

70

Sp
ee

du
p

Minimum Support (%)
(b) Speedup on chess

30 40 50 60 70 80
0

10

20

30

40

50

60

70

Sp
ee

du
p

Minimum Support (%)
(c) Speedup on connect

0.070.0750.080.0850.090.095
0

10

20

30

40

50

60

70

Sp
ee

du
p

Minimum Support (%)
(d) Speedup on kosarak

0.08 0.09 0.1 0.11 0.12 0.13
0

10

20

30

40

50

60

70

Sp
ee

du
p

Minimum Support (%)
(e) Speedup on T40I10D100K

8 10 12 14 16 18
0

10

20

30

40

50

60

70

Sp
ee

du
p

Minimum Support (%)
(f) Speedup on webdocs

FP−Growth FPgrowth* BFP−growth

Fig. 8. Performance improvement

has a speedup of about 30-fold. A small-size and highly-compressed prefix-tree
is usually constructed from a dense database, which means the relatively small
traversal cost and the relatively large counting cost in the mining task. Based on
FP-Growth, FPgrowth* reduces half the traversal cost but increases the count-
ing cost, whereas BFP-growth reduces the more traversal cost without increasing
the counting cost. Therefore BFP-growth has a larger speedup than FPgrowth*.
For sparse databases, the corresponding bushy prefix-trees mean the relatively
large traversal cost and the relatively small counting cost. In this case, for exam-
ple, in Fig. 8(d) and (e), the speedup of FPgrowth* is more than 5-fold, whereas
BFP-growth is even over 50 times faster than FP-Growth for low minimum sup-
ports. Compared with FPgrowth*, BFP-growth accesses fewer nodes, constructs
simpler trees, and does not increase times of counting, thereby gaining more
performance improvement.

6 Conclusion

In this paper, we proposed the BFP-growth algorithm for frequent itemset min-
ing. The advantages of BFP-growth over the previous pattern growth algorithms
are as follows. (1) For any prefix-tree generated during a mining process, BFP-
growth traverses it only twice and thus dramatically reduces the traversal cost.
(2) The counting cost of BFP-growth is less than that of FPgrowth*, one of
the fastest algorithms. (3) BFP-growth employs plain prefix-trees to represent
databases, and therefore the construction cost of BFP-growth is less than that
of FP-Growth/FPgrowth* representing databases by extended prefix-trees. Ex-
tensive experimental data show that BFP-growth outperforms several famous
algorithms including FPgrowth*, dEclat, and LCM, ones of the fastest algo-
rithms, for various databases.

82 J.-F. Qu and M. Liu

References

1. Ceglar, A., Roddick, J.F.: Association mining. ACM Comput. Surv. 38(2), 1–42
(2006)

2. Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large
data sets. In: Proc. ACM SIGMOD, pp. 394–405 (2002)

3. Cheng, H., Yan, X., Han, J., Yu, P.S.: Direct discriminative pattern mining for
effective classification. In: Proc. ICDE, pp. 169–178 (2008)

4. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Proc. ACM SIGMOD, pp. 207–216 (1993)

5. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proc. VLDB, pp. 487–499 (1994)

6. Savasere, A., Omiecinski, E., Navathe, S.B.: An efficient algorithm for mining as-
sociation rules in large databases. In: Proc. VLDB, pp. 432–444 (1995)

7. Bastide, Y., Taouil, R., Pasquier, N., Gerd, S., Lakhal, L.: Mining frequent patterns
with counting inference. SIGKDD Explor. Newsl. 2(2), 66–75 (2000)

8. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: A frequent-pattern tree approach*. Data Min. Knowl. Disc. 8(1), 53–
87 (2004)

9. Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. Knowl. Data
Eng. 12(3), 372–390 (2000)

10. Song, M., Rajasekaran, S.: A transaction mapping algorithm for frequent itemsets
mining. IEEE Trans. Knowl. Data Eng. 18(4), 472–481 (2006)

11. Zaki, M.J., Gouda, K.: Fast vertical mining using diffsets. In: Proc. ACM SIGKDD,
pp. 326–335 (2003)

12. Tsay, Y.J., Hsu, T.J., Yu, J.R.: Fiut: A new method for mining frequent itemsets.
Inf. Sci. 179(11), 1724–1737 (2009)

13. Ghoting, A., Buehrer, G., Parthasarathy, S., Kim, D., Nguyen, A., Chen, Y.K.,
Dubey, P.: Cache-conscious frequent pattern mining on modern and emerging pro-
cessors. The VLDB Journal 16(1), 77–96 (2007)

14. Schlegel, B., Gemulla, R., Lehner, W.: Memory-efficient frequent-itemset mining.
In: Proc. EDBT, pp. 461–472 (2011)

15. Uno, T., Kiyomi, M., Arimura, H.: Lcm ver. 2: Efficient mining algorithms for
frequent/closed/maximal itemsets. In: Proc. IEEE ICDM Workshop FIMI (2004)

16. Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining using fp-trees.
IEEE Trans. Knowl. Data Eng. 17(10), 1347–1362 (2005)

17. Liu, G., Lu, H., Yu, J.X., Wang, W., Xiao, X.: Afopt: An efficient implementation
of pattern growth approach. In: Proc. IEEE ICDM Workshop FIMI (2003)

18. Liu, G., Lu, H., Lou, W., Xu, Y., Yu, J.X.: Efficient mining of frequent patterns
using ascending frequency ordered prefix-tree. Data Min. Knowl. Disc. 9(3), 249–
274 (2004)

19. Schmidt-thieme, L.: Algorithmic features of eclat. In: Proc. IEEE ICDM Workshop
FIMI (2004)

20. FP-Growth Implementation, http://adrem.ua.ac.be/~goethals/software/
21. Frequent Itemset Mining Implementations Repository, http://fimi.ua.ac.be/

http://adrem.ua.ac.be/~goethals/software/
http://fimi.ua.ac.be/

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 83–94, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Mining Link Patterns in Linked Data

Xiang Zhang1, Cuifang Zhao1, Peng Wang1, and Fengbo Zhou2

1 School of Computer Science and Engineering, Southeast Univesity, Nanjing, China
{x.zhang,cuifangzhao,pwang}@seu.edu.cn

2 Focus Technology Co., Ltd., Nanjing, China
zhoufengbo@made-in-china.com

Abstract. As the explosive growth of online linked data, an emerging problem
is what and how we can learn from these data. An important knowledge we can
obtain is the link patterns among objects, which are helpful for characterizing,
analyzing and understanding of linked data. In this paper, we present a novel
approach of mining link patterns. A Typed Object Graph is proposed as the data
model, and a gSpan-based algorithm is proposed for pattern mining. A type
determination policy is introduced in cases of multi-types and a data clustering
algorithm is proposed to improve scalability. Time performance and mining
results are discussed by experiments.

Keywords: linked data, frequent link pattern, semantic web.

1 Introduction

As the rapid growth of semantic web in this decade, there is an exponential growth in
the scale of online linked data. As indicated by W3C wiki of Linked Datasets1, about
70 publishers open their linked data to public and lots of them contain a scale of
billion triples. There is still enormous amount of linked data produced by social
communities, companies, and even on the desktop of end-users. All these efforts are
now producing an unprecedented huge web of data, bringing the semantic web from
vision to practice. We have faced the problem of lack of semantic data, but now, the
problem is what and how we can learn from these data.

One important thing to learn is the link patterns. Link patterns are consensus
practices characterizing how different types of objects are typically interlinked. For
example, in certain linked data, a Researcher may focuses on a ResearchArea, and
publishes some Papers in Proceedings of a Conference. Besides, he knows some
Researchers in the same ResearchArea. Link patterns describe widely-used relations
among objects, which may or may not be defined explicitly in ontologies.

Link patterns are critical in several topics of research. First, they can be used to find
useful semantic associations between objects by indicating what kind of object links
are typical and thus significant [1]; Second, when accessing distributed RDF stores
relying on different ontologies within different domains, link patterns are helpful in
evaluating the potential contribution of each store to the processing of RDF queries,

1 http://www.w3.org/wiki/DataSetRDFDumps

84 X. Zhang et al.

because link patterns characterizes the content of RDF repositories [2]; finally, in
producing concise and comprehensible summaries for human understanding of linked
data, link patterns can play a role of indicating the most important part of the link data
from the point of view of data providers[3].

Although usage mining in semantic web gains a lot of interest in these years [4, 5],
mining link patterns is still a topic not well-discussed. This is because the lack of a
formal definition of link pattern in linked data, and the complex graph structure of
link patterns also limits the scalability and efficiency of mining. Our contributions in
this paper are: first, we formally define link pattern by a notion of Typed Object
Graph; second, we propose a pattern mining algorithm based on gSpan [6], a
clustering algorithm is also proposed to improve the mining scalability and efficiency.

The rest of the paper is organized as following: Typed Object Graph and Link
Pattern are defined in Section 2. We explain the policy of type determination in
building Typed Object Graph in Section 3. A data clustering algorithm and a gSpan-
based pattern mining approach are proposed in section 4. Experiments on time
performance and mining results are discussed in Section 5.

2 Preliminary Concepts

Link patterns are frequent and typical styles of how different types of object are
interlinked. In order to clearly define the notion of link patterns, we have to introduce
a new data model, which embody object types as well as object links in the model. In
this section, we name our new data as Typed Object Graph, and then we define Link
Pattern based a notion of RDF2Pattern Homomorphism.

2.1 Typed Object Graph

Link patterns cannot be directly mined from RDF graphs. Object types are core
elements in link patterns. In RDF graphs, object types are implicit and can only be
determined by reasoning according to RDF semantics [7]. A novel graph model is
needed for pattern mining, in which object types should be explicitly embodied.

Definition 1 (Link Quintuple): Given an RDF document d, and an Triple , , in d, an Link Quintuple , , , , , , is an
extension of t, where s and o must represent object nodes, p must be object property,
type(s,d) and type(o,d) represent the rdf:type of s and o defined in d respectively.

Definition 2 (Typed Object Graph): A Typed Object Graph comprises a set of
Link Quintuple: , , … , , which is extended from an RDF Graph comprising
a set of RDF Triple: , , … , . And ∈ and ∈ , is extended from .

For simplicity, multiple types are not allowed for an object in a link quintuple. We
will introduce a type determine policy in Section 3.2. Shown in Figure 1, a fragment
of RDF graph is extracted from a linked data of Semantic Web Dog Food2, and the
derived Typed Object Graph is shown aside (object URIs are omitted for simplicity).

2 http://data.semanticweb.org/

 Mining Link Patterns in Linked Data 85

Fig. 1. (a) A fragment of an RDF Graph; (b) A derived Typed Object Graph

2.2 Link Pattern

Definition 3 (RDF2Pattern Homomorphism): Given a subgraph g of a Typed
Object Graph derived from RDF document and a graph p, An RDF2Pattern
Homomorphism is an injective function f: , such that (1) ∈, , u ∈ , and (2) , ∈ , , ∈ , in
which is the edge set of g.

Definition 4 (Link Pattern): Given an RDF document dataset , , …
, a Link Pattern p is a graph, satisfying that:

1) , is a directed graph, in which each vertex is an user-defined class and
each edge is an object property.

2) There exists RDF2Pattern homomorphism in D, and - .
 is the number of RDF documents, in which p is an RDF2Pattern

homomorphism of derived Typed Object Graphs; min-sup is a predefined
minimum support threshold.

3 Type Determination

Before mining link patterns, triples in linked data should be cleaned in advance in
order to remove annotations, schema-level definitions, only object links are preserved.
There is another issue we have to consider. In the definition of Typed Object Graph,
an object must have a single type for the computational complexity of pattern mining.
However practically, an object in linked data often be defined to multi-types. For
example, in Semantic Web Dog Food, an accepted paper can be defined as an
swc:Paper and meanwhile as a swrc:InProceedings. It should be eliminated before
building Typed Object Graph, since multi-types will bring extra complexity in pattern
mining, especially to subgraph homomorphism detection. Given , , … ,
is the document set, and an object o defined in document di with multi-types , , … , , a set of heuristic rules are used to determine the single type of o:

86 X. Zhang et al.

Rule 1: If there is no other document in D defining the type of object o, ,
will be assigned with tk, where 1 and type tk has the largest set of instances
in document di.

Rule 2: If there is more than one document defining the type of o in D, ,
will be assigned with tk, where 1 , and comparing to other types, o is defined
to tk most frequently, or saying, with the highest documents frequency.

Rule 3: For a triple , , in document d, if the type of s or o is not defined
explicitly, and the domain or range of p is defined explicitly, then we have: , and , .

In Rule 1, the single type of an object is assigned to a local dominated type; while in
Rule 2, the single type is assigned to a global dominated type. If the dominance of
each type is not obvious, the type determination becomes random.

There is still a case we have to consider, in which the type of an object may be not
defined explicitly. In this case, Rule 3 will be applicable, and the domain and range
definitions of an ObjectProperty are utilized to determine an objects’ type.

Here we only try to determine the type of objects by exploring the domain and
range of ObjectProperty. More powerful reasoning ability could be utilized for type
determination, such as described in [8]. Here we use a rather lightweight reasoning to
make the pattern mining scalable.

4 Mining Link Patterns

Among some frequent pattern mining algorithms, we select gSpan algorithm for
mining link patterns in linked data. It is efficient in mining frequent graph patterns in
massive data. Before pattern mining, we first cluster related Typed Object Graphs into
groups for the sake of scalability. And then pattern mining is performed on each
group separately in a divide-and-conquer manner.

4.1 Graph Clustering

Given a whole set of a linked data, the occurrences of a link pattern are often
localized in some RDF documents of the same topic, while not in documents of other
topics. For example, in Falcons dataset3, we can find link patterns linking persons and
organizations from some FOAF documents, or patterns linking genes markers and
chromosomes from other bio2rdf documents (originated from bio2rdf4). If we can
cluster RDF documents according to the link patterns being concerned, we can
perform pattern mining in a divide-and-conquer way.

There have been several works on RDF clustering or classification, such as the
RDF metadata clustering [9], instance clustering [10], clustering for snippets
generation [11], and ontology classification [12] [13]. Here we introduce a clustering

3 http://ws.nju.edu.cn/falcons
4 http://bio2rdf.org/

 Mining Link Patterns in Linked Data 87

approach for Typed Object Graphs. The intuition is: if two Typed Object Graphs
share a common link pattern, they are affinitive and should be clustered together.

Definition 5 (Direct Connections between Typed Object Graphs): Given two
Typed Object Graphs: , , … , derived from RDF document d, and , , … , derived from RDF document . and are connected,
denoted as , , iff , , , , , , ∈ and , , , , , , ∈ , satisfying (1) ; (2) , , ; (3) , , .

In Definition 5, two Typed Object Graphs are directly connected if and only if they
share at least one common link pattern. Given a set of Typed Object Graph , , … , it can be divided into a set of disjoint connected clusters through a
testing of connectivity. It is easy to prove that we can use each cluster as a standalone
dataset for pattern mining (although the support is still calculated globally), because
different clusters don’t share common link patterns. An example from Falcons dataset
is shown in Figure 2, in which five fragments of Typed Object Graphs are clustered
into two groups.

Fig. 2. Four Typed Object Graphs in Falcons are clustered into groups

4.2 gSpan-Based Pattern Mining

Our pattern mining approach follows the idea of pattern-growth-based frequent graph
pattern mining algorithms, in which gSpan is a typical and efficient one. Basically, a
candidate frequent pattern is produced by extending a mined frequent pattern by
adding a new edge.

The kernel ideas in gSpan are the minimum DFS code and the rightmost extension.
The minimum DFS code is introduced to canonically identify a pattern by a DFS traverse
path; the rightmost extension is used producing candidates based on mined patterns. Both
ideas can reduce the generation of duplicated candidates. In gSpan, the minimal frequent
patterns are firstly discovered (with 0-edges), and gSpan is called recursively to make a

88 X. Zhang et al.

rightmost extension on mined patterns so that their frequent descendants (with 1-edges,
2edges and so on) are found until their support is lower than min-sup or its DFS code is
not minimum any more. All mined patterns comprise a lexicographic search tree. More
details of gSpan and its expansion can be found in [14].

The original gSpan algorithm is designed for undirected and simple graphs.
However in our scenario, Typed Object Graphs are directed and non-simple graphs.
Self-loops (edges join vertexes to themselves) and multiple edges (multiple edges
connecting two same vertexes) should be taken into consideration. According to
suggestions proposed in CloseGraph [15], we modify gSpan algorithm, especially the
DFS coding, to make it adaptable to Typed Object Graphs.

Given an link quintuple , , , , , , in a Typed Object
Graph, it is represented in our implementation by a 6-tuple: , , , , , , ,
in which i and j are DFS subscripts of vertex s and o; and are labeling
functions of i and j, which equals to , and , respectively; ,
is the edge label, which equals to p; and represents the direction of the edge
between i and j, in which 0 represents , and 1 represents .

There are two parameters to control the mining results in our implementation. One
is min-sup, which indicates the minimum threshold of supports that a discovered link
pattern can be seen as “frequent”; the other is max-edge, which limits the size of link
patterns that can be mined in our algorithm.

We will illustrate the mining process through an example, which is shown in Figure 3.
Three fragments of Typed Object Graphs are extracted from Semantic Web Dog Food, in
which object URIs are omitted. For conciseness, shown in Table 1, we assign with each
node and each edge a new label according to their lexicographical order. According to
the DFS coding rules in gSpan, the minimum DFS code of each graph is:

g1: 0,1, C , p , C , 1 1,2, C , p , C , 1 2,1, C , p , C , 1
g2: 0,1, C , p , C , 1 1,0, C , p , C , 0 1,2, C , p , C , 1 2,1, C , p , C , 1
g3: 0,1, C , p , C , 1 1,2, C , p , C , 0 2,1, C , p , C , 1 1,3, C , p , C , 1
 3,1, C , p , C , 1 3,4, C , p , C , 0

Figure 3 shows the rightmost extension from 1-edge to 3-edge candidate link patterns.
The min-sup is set to 3. Each candidate in dotted-line should be pruned, because their
DFS code is not minimum, which indicates that at least one isomorphic candidate has
already been mined. Other candidates with _ 3 will be qualified as link
patterns in the final result.

Table 1. Relabeling Nodes and Edges

Node URI Label Edge URI Label
foaf:Document C1 dc:creator p1

foaf:Person C2 foaf:maker p2
swrc:ConferenceEvent C3 ical:url p3

swrc:InProceedings C4 swc:hasPart p4
swrc:Proceedings C5 swc:isPartOf p5

 swc:relatedToEvent p6

 Mining Link Patterns in Linked Data 89

Fig. 3. Rightmost extension from 1-edge to 3-edge candidates

5 Experiments

We evaluate our approach on two sets of linked data. The first is Semantic Web Dog
Food, which has a highly unified topic, and the other is a random selected subset of
Falcons dataset, which is a collection of online linked data with various topics. In our
evaluation, we mainly discuss the time performance and the number of discovered
link patterns under the impact of various min-sup and max-edge. Our algorithm is
implemented in C++ and experiments are performed on a 3GHZ Intel Core2 Duo PC
with 4G main memory, running on Windows 7.

5.1 Experiment on Semantic Web Dog Food

Semantic Web Dog Food is a well-known and widely-used linked data for scholars. In
the dataset, detailed information is provided on accepted papers, people who attended,
and other things that have to do with the main conferences and workshops in the area
of Semantic Web research.

This linked data is small in size and it describes limited types of objects. The main
feature of it is that objects in this dataset are densely linked, and RDF documents in
this dataset are highly unified in style: each describes a same topic using a same link
pattern. It is very typical for those centrally generated, domain-specific linked data,
such as each topic of dbpedia, GO annotations, etc.

Table 2 shows the statistics of Semantic Web Dog Food. Since the dataset has a
highly unified topic, all derived Typed Object Graphs are connected, thus they are
clustered into a single group.

Table 2. Statistics of Semantic Web Dog Food

RDF Document Triple Object
47 166,083 16,281

Quintuple Typed Object Graph Cluster
54,540 47 1

90 X. Zhang et al.

The time performance o
patterns are shown in Figu
consumed in mining proces
exponential way. This is ca
Dog Foods are densely con
many candidates are genera

In Figure 5, we perform
in Figure 8, with the increas
link patterns both keep de
supports will lead to a loss
efficiency of mining.

Besides, experiments sho
large link patterns discov
describes a typical scenario
the papers are both include
via an online document.

Fig. 4. Time Performance

Fig. 5. Time Performance

of the mining process and the number of discovered l
ure 5. We fix min-sup to 3. As max-edge increases, ti
ss and discovered link patterns increase dramatically in
aused by the nature of the data. Objects in Semantic W
nnected. Within each iteration of rightmost extension,
ated, which leads to a huge lexicographical search tree.

m an evaluation on the impact of changing min-sup. Sho
se of min-sup, time consumption and number of discove
eclining. This result indicates that a higher threshold
s of frequent patterns, but meanwhile it improves the ti

ows that link patterns can be huge. Figure 6 shows a v
vered in this dataset with 5 . This patt
o when two researchers are co-authors of two papers,
ed in proceedings of a conference and are both accessi

e and number of link patterns with various max-edge (SWDF)

e and number of link patterns with various min-sup (SWDF)

link
ime

n an
Web

too

own
ered
d of
ime

very
tern
and
ible

 Mining Link Patterns in Linked Data 91

Fig. 6. A huge pattern discovered in Semantic Web Dog Food with 23 edges

5.2 Experiment on Falcons Subset

Falcons is a semantic web search engine. It collects online linked data, and provides
searching service of objects, ontologies and RDF documents. The full dataset of
Falcons contains over 2 billion triples. We randomly select a subset of Falcons, and
the statistics in shown in Table 3.

The selected subset is diverse in topics. The 394 derived Typed Object Graphs are
clustered into 8 groups. This dataset is similar to those domain-independent or
crawled linked data, such as Billion Triple Challenge Dataset, etc.

Figure 7 shows the time performance and number of discovered link patterns with
various max-edge and a fixed min-sup = 3:

Table 3. Statistics of Falcons

RDF Document Triple Object
394 481,213 87,135

Quintuple Typed Object Graph Cluster
96,103 394 8

We can see for this dataset, the increasing rate of both time consumption and
discovered link patterns are smaller than the ones of Semantic Web Dog Food. In
Falcons, objects are not linked so densely, and link patterns are not shared frequently
among documents. The nature of sparsely-linked objects results in a relatively smaller
lexicographical search tree, and fewer candidate patterns. The nature also leads to a
comparatively more remarkable decrease rate when increasing min-sup, as shown in
Figure 8.

92 X. Zhang et al.

Fig. 7. Time Performance

Fig. 8. Time Performance

6 Related Works

Finding frequent patterns h
in data mining research. Al
classified into three categ
based algorithms, and graph
classified into Apriori-base
approach has to use the
candidate generation, and t
candidate patterns. gSpan
algorithms, both employing

Basse et al. has propos
patterns in triple store, wh
canonical representation of
then provide a join operat
patterns generated from th
between our work and the

and number of link patterns with various max-edge (Falcons)

e and number of link patterns with various min-sup (Falcons)

has been studied for years and has become a focused the
lgorithms of frequent graph pattern mining can be roug

gories: greedy algorithms, Inductive-Logic-Programmi
h-theory-based algorithm. The last category can be furt
ed [16] and Pattern-Growth Approach. The Apriori-ba

breadth-first search strategy because of its level-w
thus consumes too much memory and produces too m

and CloseGraph [15] are two typical Pattern-Grow
g the depth-first search strategy.
sed in [2] a DFS-based approach for extracting frequ
hich is much closed to our approach. They improve
f RDF graphs based on DFS code proposed by gSpan,
tor to significantly reduce the number of frequent gr
e analysis of the content of triple stores. The differen
eirs lie in that: their motivation of pattern mining is

eme
ghly
ing-
ther
ased
wise

many
wth

uent
the
and

raph
nces
s to

 Mining Link Patterns in Linked Data 93

describe the schematic characteristic of the content of RDF bases, to benefit queries
involving distributed RDF bases maintained in different servers, while our motivation
is to extract typical link patterns for a general purpose of retrieving, understanding
and creating linked data; besides, our definitions of data model, as well as the type
determination policy, data clustering approach, are fully novel.

7 Conclusion and Future Works

With the explosive growth of online linked data, usage mining on linked data is
becoming crucial. In this paper, we present an approach for mining link patterns that
describe how different types of objects are frequently interlinked. A Typed Object
Graph is defined as the data model, and a gSpan-based algorithm is proposed to
discover link patterns. In our algorithm, a policy of type determination is introduced
to handle cases of multi-types and an algorithm of data clustering is proposed to
improve the scalability. Experiments are performed on two dataset. Time performance
and mining results are fully discussed with various parameters.

In our future work, we will explore and compare different pattern mining
approaches, to improve the time efficiency of mining. And we will also study the
approach of reducing candidate patterns by means of semantic filtering, which will
fully utilize the semantics in linked data.

Acknowledgements. The work is supported by the NSFC under Grant 61003055,
61003165, and by NSF of Jiangsu Province under Grant BK2009136, BK2011335.
We would like to thank Huaping Chen for his valuable suggestions and their work on
related experiments.

References

1. Sheth, A., Aleman-Meza, B., Arpinar, B., et al.: Semantic Association Identification and
Knowledge Discovery for National Security Applications. Journal of Database
Management 16(1), 33–53 (2005)

2. Basse, A., Gandon, F., Mirbel, I., et al.: DFS-based Frequent Graph Pattern Extraction to
Characterize the Content of RDF Triple Stores. In: Proceedings of the WebSci1 2010:
Extending the Frontiers of Society Online (2010)

3. Thor, A., Anderson, P., Raschid, L., Navlakha, S., Saha, B., Khuller, S., Zhang, X.-N.:
Link Prediction for Annotation Graphs Using Graph Summarization. In: Aroyo, L., Welty,
C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC
2011, Part I. LNCS, vol. 7031, pp. 714–729. Springer, Heidelberg (2011)

4. Dai, H., Mobasher, B.: Integrating Semantic Knowledge with Web Usage Mining for
Personalization. In: Web Mining: Applications and Techniques, pp. 273–306 (2004)

5. Xu, X., Cong, G., Ooi, B.C., et al.: Semantic Mining and Analysis of Gene Expression
Data. In: Proceedings of the 30th International Conference on Very Large Data Bases, pp.
1261–1264 (2004)

6. Yan, X., Han, J.W.: gSpan: Graph-based Substructure Pattern Mining. In: Proceedings of
the 2002 IEEE International Conference on Data Mining, pp. 721–724 (2002)

7. Hayes, P.: RDF Semantics. W3C Recommendation (February 10, 2004),
http://www.w3.org/TR/rdf-mt/

94 X. Zhang et al.

8. Cheng, G., Qu, Y.: Integrating Lightweight Reasoning into Class-Based Query Refinement
for Object Search. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367,
pp. 449–463. Springer, Heidelberg (2008)

9. Maedche, A., Zacharias, V.: Clustering Ontology-Based Metadata in the Semantic Web.
In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431,
pp. 348–360. Springer, Heidelberg (2002)

10. Grimnes, G.A., Edwards, P., Preece, A.D.: Instance Based Clustering of Semantic Web
Resources. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC
2008. LNCS, vol. 5021, pp. 303–317. Springer, Heidelberg (2008)

11. Penin, T., Wang, H., Tran, T., Yu, Y.: Snippet Generation for Semantic Web Search
Engines. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 493–
507. Springer, Heidelberg (2008)

12. Patel, C., Supekar, K., Lee, Y., Park, E.K.: OntoKhoj: A Semantic Web Portal for
Ontology Searching, Ranking and Classification. In: Proceedings of 5th ACM
International Workshop on Web Information and Data Management, pp. 58–61 (2003)

13. Seidenberg, J., Rector, A.: Web Ontology Segmentation: Analysis, Classification and Use.
In: Proceedings of 15th International Word Wide Web Conference, pp. 13–22 (2006)

14. Han, J.W., Kamber, M.: Data Mining Concepts and Techniques, 2nd edn. Elsevier Inc.
(2006)

15. Yan, X., Han, J.W.: CloseGraph: Mining Closed Frequent Graph Patterns. In: Proceedings
of the 9th ACM SIGKDD Internal Conference on Knowledge Discovery and Data Mining,
pp. 285–295 (2003)

16. Inokuchi, A., Washio, T., Motoda, H.: An Apriori-Based Algorithm for Mining Frequent
Substructures from Graph Data. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.)
PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg (2000)

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 95–101, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Detecting Positive Opinion Leader Group from Forum∗

Kaisong Song1, Daling Wang1,2, Shi Feng1,2, Dong Wang1, and Ge Yu1,2

1 School of Information Science and Engineering, Northeastern University
2 Key Laboratory of Medical Image Computing, Northeastern University,

Ministry of Education, Shenyang 110819, P.R. China
songkaisongabc@126.com,

{wangdaling,fengshi}@ise.neu.edu.cn

Abstract. Forum has long been the main way of communication, and more and
more users publish their opinions by it. The most influential users or opinion
leaders will contribute to the formation of information, especially the positive
influential users who can guide public opinions and make positive influence.
Positive Opinion Leader Group (POLG) represents a group of users, each of
who expresses the similar content and same sentiment orientation with their
followers to a great extent, who are regarded as the most influential men during
the information dissemination process. However, most existing researches pay
less attention to the implicit relationship, heterogeneous structure and positive
influence. In this paper, we focus on modeling multi-themes user network of
forum with explicit and implicit links for this purpose. In detail, we put forward
a data structure Longest Sequence Phrase Tree (LSP-Tree) for representing
comments on forum, measuring the similarity between comments based on
LSP-Tree to obtain implicit links, and further detecting positive opinion leader
group. Experiments using dataset from Tianya forum show that our method can
detect positive opinion leaders group effectively and efficiently.

Keywords: sentiment analysis, opinion mining, positive opinion leader group,
multi-themes user network.

1 Introduction

In recent years, forums have been the main way of communication and lots of rich
reviews contribute to the formation of viewpoints. Detecting opinion leaders is
important in promoting products and guiding public opinions. Although researchers
have done some pioneering work, there are still limitations. (1) Most existing work
neglects the implicit links such as similarity opinion. (2) Many researchers
introduce classical models, but neglect the special structure. (3) As for the implicit
relationships, there are no effective ways to find them. (4) Sentiment orientation is
often neglected.

∗ Project supported by the State Key Development Program for Basic Research of China (Grant

No. 2011CB302200-G), National Natural Science Foundation of China (Grant No. 60973019,
61100026), and the Fundamental Research Funds for the Central Universities(N100704001).

96 K. Song et al.

In this paper, we focus on modeling multi-themes user network of forum with
explicit and implicit links. In detail, we put forward Longest Sequence Phrase Tree
(LSP-Tree) structure for representing comments in forum, measuring the similarity
between comments to obtain implicit links and further detecting positive opinion
leader group. Experiments show that our methods are effective and efficient.

The rest of the paper is organized as follows. Section 2 introduces the related work.
Section 3 gives the problem definition. Section 4 presents various links detection
concerning with multi-themes user network. Section 5 describes the process of
detecting positive opinion leader group. Section 6 shows our experiment results.
Section 7 concludes the research and gives directions for future studies.

2 Related Work

In detecting opinion leader, some researchers have done much related work. Budak [2]
defined four important roles and introduced their functions. Goyal [9] proposed a method
based on time window for detecting opinion leader from community. Xiao [13] proposed
a LeaderRank algorithm to identify the opinion leaders in BBS [12]. Freimut [6, 7]
identified opinion leaders and analyzed opinion evolvement by social network analysis.
Zhou [15] introduced the concept of opinion networks and proposed OpinionRank
algorithm to rank the nodes in an opinion network. Zhai [14] proposed interest-field
based algorithms to identify opinion leaders in BBS. Feng [5] proposed a framework to
identify opinion leaders for a marketing product. We [11] proposed an approach
detecting opinion leader based on single theme from Sina news community.

3 Problem Description

Different from web pages, the structure of forum has different properties, such as
topic, theme and comment. Let C={c0, c1, …, cn} be a comment set, and ci (0≤i≤n) be
an item of comment. We can obtain the sentiment orientation Oi (0≤i≤n) for every
ci∈C by sentiment analysis, and the value of Oi is defined as P, N, and M
corresponding to positive (support), negative (oppose), and neutral sentiment.
Moreover, we give the following definitions.

Definition 1 (explicit link and implicit link). For ci and cj (ci∈C, cj∈C, 0≤i,j≤n),
suppose ci is published earlier than cj. If cj is a reply of ci, cj explicitly links to ci. If cj

isn’t, but has semantic similarity with ci, cj is regarded as having an implicit link to ci.

Definition 2 (positive link and negative link). If cj has the same sentiment
orientation with ci, the link (explicit or implicit) is called as “positive link”, otherwise
as “negative link”.

Based on definition 1 and 2, comment set C can be transferred into a multi-themes
comment network. Then the comment network can be mapped into a user network.

Definition 3 (multi-themes user network). The network can be represented with a
graph UNG(V, E). Where E is edge set including all links of definition 1 and 2, and V
is vertex set including all users corresponding every comment.

 Detecting Positive Opinion Leader Group from Forum 97

Definition 4 (positive opinion leader group). For user set U={u0, u1, …, um}, i.e. the
V in UNG(V, E), any ui∈U has an authority score ui.score. We rank these users by
their scores. Without loss of generality, suppose u1.score>u2.score >…>um.score, we
select top-k users as positive opinion leader group POLG={u1, u2, …, uk}.

Based on above definitions, for detecting POLG, we do the following work in this
paper. (1) Detect explicit and implicit links between comments. (2) Map various links
to ones between users. (3) Model multi-themes user network UNG(V, E) based on the
links. (4) Detect POLG from UNG(V, E).

4 Detection of Links between Comments

As mentioned above, the links between comments include explicit and implicit links,
and every link may be positive or negative. In this section, we obtain sentiment
analysis in Section 4.1, explicit and implicit links in Section 4.2.

4.1 Sentiment Analysis for Positive and Negative Links

Here we also use the same method proposed in [11] for calculating SO (orientation of
each comment). The method accumulates sentiment value, and transfers orientation
by negative words number. SO is 1 (positive), 0 (neutral) and -1 (negative).

4.2 Explicit and Implicit Links Detection

As for explicit links, we detect them according to Definition 1, however implicit links
detection is complex. In order to compare comment similarity, we propose a structure
called Longest Sequence Phrase (LSP) to represent a sentence (have been partitioned
into words). All LSPs compose a LSP-Tree to represent comment, and we measure
similarity by comparing LSP-Trees.

There are several classical phrase structures such as V+(D), V+(D)+O, S+V+(D),
S+V+O+(D). We use ICTCLAS [8] to split sentences into words and extract
structures of each sentence, and then construct LSP-Trees.

In LSP-Tree, the format of each node is “w: ct”. Where w is word corresponding
S/V/D/O, and ct is the count of w in the comment. Moreover, we assign different
values to the words with different pos (part of speech) for different expression ability.
Verb/noun=0.7, adjective=0.5, and pronoun/adverb=0.2. For every path from root
node to leaf node, the words of the path construct a weighted LSP. The Formula (1)
below is used for computing LSP weight value LV.

}2.0,5.0,7.0{.. ∈×= weightwctweightwLV i
i

ii (1)

Suppose LSP-Tree1 and LSP-Tree2 are two LSP-Trees of c1 and c2, c2 is replier. We
firstly find the common path cp1 and cp2, and then calculate common path value CV
similar to LV in Formula (1) according to LSP-Tree1. CV is the value of common path
corresponding to cp. LV is the biggest value of c1’s path containing cp. After detecting
all common paths, we finally calculate the value of ∑CV/∑LV. The calculation is

98 K. Song et al.

based on LSP-Tree1, and LSP-Tree2 only contributes some common paths. Finally,
the similarity Sim(c1, c2) between c1 and c2 is calculated with Formula (2), k is any
common path and m is the number of common paths.

1
1

21
1

21

inLSPsfor

andofpathscommonfor

),(

cLV

ccCV

ccSim
m

k
k

m

k
k

=

== (2)

In addition, we set threshold Pthreshold for CV and Cthreshold for Sim. Pthreshold avoids short
common path, and Cthreshold excludes small Sim. Both are given proper values.

5 Positive Opinion Leader Group Detection

In Section 4, we have prepared related links. In this section, we use these links to
model multi-themes user network, and then detect POLG.

User-Item Table containing user-value pairs is a simplified form of multi-themes
user network UNG(V, E). Our purpose modeling UNG(V, E) is detecting POLG, it
only concerns with the number of links, so modeling UNG(V, E) maintains User-Item
Table. Based on the idea, table will be updated while scanning the dataset. The weight
of link between comments is mapped into corresponding users’ in the process below.

u0

u1

u2

u3

UNG

u0

u0 wt01

u1

u0 wt01+wt02

u1 wt12

u2
u3

u0 wt01+wt02

u2 wt23

u1 wt12+wt13

Process of Updating User-Item Table

Fig. 1. An Example of Maintaining User-Item Table

In Fig.1, suppose uj published comment cj aiming at ui’s comment ci (explicit or
implicit), when processing uj, a weight wtij will be added to ui’s score. According to
content of Section 4.1 to 4.2, we give wtij as Formula (3).

1 explicitly links to and their is the same

1 explicitly links to and their is different

(,)
implicitly links to and their is the same

(,)
implicitly links to and their is different

j i

j i

i j
ij j i

j

i j
j i

j

c c SO

c c SO

Sim c cwt c c SOn

Sim c c
c c SOn

 −

=

−

 (3)

 Detecting Positive Opinion Leader Group from Forum 99

In Formula (3), SO is sentiment orientation, Sim(ci, cj) is from Formula (2), and nj is
the number of comments linked implicitly by cj before ci (including ci). Suppose cj
implicitly links to ck (1≤k≤nj), then cj has the probability 1/nj to be influenced by ck, so
the suppose is appropriate. In following, we give the algorithm as Algorithm 1.

Algorithm 1: Building Multi-Themes User Network;
Input: multi-themes comment set C, Pthreshold, Cthreshold; //see Section 4.2
Output: User-Item Table UT;
Method:
 1) transfer C into XML file X;
 2) for every theme
 3) {create User-item for u0;
 4) for every user ui (i>0)
 5) {for j=0 to i-1
 6) {analyze ui’s comment ci aiming to uj’s comment cj;
 7) if (ci implicitly links to cj and Sim(ci, cj)≥Cthreshold and CV≥Pthreshold)
 8) or (ci explicitly links to cj)
 9) {calculate wtji with Formula (6);
 10) modify User-Item of uj with wtji;}}}}

As mentioned above, detecting POLG only concerns with the number of links, so
User-Item Table can replace multi-themes user network. For user u, score is authority
score of u. We rank users according to their score, and top-k users compose POLG.

6 Experiments

Here we download dataset from “天涯杂谈” (http://www.tianya.cn/bbs/index.shtml).
By multi-themes user network model, we can detect top-k users as POLG. The results
are showed in Fig.2. Parameter k=10, Pthreshold = 0.5 and Cthreshold = 0.65.

0

0.2

0.4

0.6

0.8

1

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

user ID

ra
nk

in
g

sc
or

e

1. 好悲伤的莎士比亚
2. 龚太宏
3 zuochenone
4. 南都深度
5. gzhunyan
6. trust
7. 张苡陌
8. skifay
9. 地狱天堂一线差
10. 爱玛仕妮妮

Fig. 2. Positive Opinion Leader Group from “天涯杂谈”

We have designed experiments for comparison. In Fig.3, There are more implicit
links influencing the ranking result vastly. Fig.4 shows the distribution of each
leader’s positive, negative and neutral comments, and they usually have more positive

100 K. Song et al.

and neutral comments. In Fig.5, POPLGR is positive opinion leader group rank
proposed in this paper, DC is Degree Centrality [10], DP is Degree Prestige [10] and
ACSC is accumulated scores. A standard POLG considering activity, influence
range and ACSC is selected. From Fig.5, our method has better precision, recall and
F-score.

0

100000

200000

300000

400000

200 400 600 844

comment number

l
i
n
k

n
u
m
b
e
r

Explicit Link

Implicit Link

Fig. 3. Distribution of Explicit and Implicit Links

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10
top 10 users

co
m

m
en

t n
um

be
r

Pos

Neg

Neu

Fig. 4. Distribution of Top k users’ Positive, Negative and Neutral comments

0

0.2

0.4

0.6

0.8

1

Precision Recall F-score

m
ea

su
re

 v
al

ue POLGR

DC

DP

ACSC

Fig. 5. Effectivity Comparison among Four Opinion Leader Detection Methods

7 Conclusion

In this paper, we focus on obtaining explicit, implicit links and sentiment orientation
of comments. According to the links, we model multi-themes user network and detect
positive opinion leader group effectively.

 Detecting Positive Opinion Leader Group from Forum 101

Although this paper proposed some useful methods for detecting OPLDG, there are
some limitations. The phrase structure sometimes can’t be extracted exactly. A
convictive OPLDG for comparison has no standard. So they will be our future work.

References

1. Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Computer Networks (CN) 30(1-7), 107–117 (1998)

2. Budak, C., Agrawal, D., Abbadi, A.: Where the Blogs Tip: Connectors, Mavens, Salesmen
and Translators of the Blogosphere,
http://snap.stanford.edu/soma2010/papers/soma2010_15.pdf

3. Dong, Z., Dong, Q.: HowNet (2003),
http://www.keenage.com/html/e_index.html

4. Ester, M., Kriegel, H., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. In: KDD 1996, pp. 226–231 (1996)

5. Feng, L., Timon, C.: Who is talking? An ontology-based opinion leader identification
framework for word-of-mouth marketing in online social blogs. Decision Support Systems
(DSS) 51(1), 190–197 (2011)

6. Freimut, B., Carolin, K.: Detecting opinion leaders and trends in online social networks.
In: CIKM-SWSM 2009, pp. 65–68 (2009)

7. Freimut, B., Carolin, K.: Detecting Opinion Leaders and Trends in Online Communities.
In: ICDS 2010, pp. 124–129 (2010)

8. Golaxy. ICTCLAS, http://www.ictclas.org
9. Goyal, A., Bonchi, F., Lakshmanan, L.: Discovering leaders from community actions. In:

CIKM 2008, pp. 499–508 (2008)
10. Liu, B.: Web Data Mining: Exploring, Hyperlinks, Contents, and Usage Data. Springer,

Heidelberg (2007)
11. Song, K., Wang, D., Feng, S., Yu, G.: Detecting Opinion Leader Dynamically in Chinese

News Comments. In: Wang, L., Jiang, J., Lu, J., Hong, L., Liu, B. (eds.) WAIM 2011.
LNCS, vol. 7142, pp. 197–209. Springer, Heidelberg (2012)

12. Xiao, Y., Xia, L.: Understanding opinion leaders in bulletin board systems: Structures and
algorithms. In: LCN 2010, pp. 1062–1067 (2010)

13. Yu, X., Wei, X., Lin, X.: Algorithms of BBS Opinion Leader Mining Based on Sentiment
Analysis. In: Wang, F.L., Gong, Z., Luo, X., Lei, J. (eds.) WISM 2010. LNCS, vol. 6318,
pp. 360–369. Springer, Heidelberg (2010)

14. Zhai, Z., Xu, H., Jia, P.: Identifying Opinion Leaders in BBS. In: Web Intelligence/IAT
Workshops 2008, pp. 398–401 (2008)

15. Zhou, H., Zeng, D., Zhang, C.: Finding leaders from opinion networks. In: ISI 2009, pp.
266–268 (2009)

D’MART: A Tool for Building and Populating Data
Warehouse Model from Existing Reports and Tables

Sumit Negi1, Manish A. Bhide2, Vishal S. Batra1,
Mukesh K. Mohania1, and Sunil Bajpai3

1 IBM Research, New Delhi, India
{sumitneg,vibatra1,mkmukesh}@in.ibm.com

2 IBM Software Group, Hyderabad, India
abmanish@in.ibm.com

3 Center for Railway Information System, Indian Railways, Delhi, India
bajpai.sunil@cris.org.in

Abstract. As companies grow (organically or inorganically), Data Administra-
tion (i.e. Stage 5 of Nolans IT growth model) becomes the next logical step in
their IT evolution. Designing a Data Warehouse model, especially in the presence
of legacy systems, is a challenging task. A lot of time and effort is consumed in
understanding the existing data requirements, performing Dimensional and Fact
modeling etc. This problem is further exacerbated if enterprise outsource their IT
needs to external vendors. In such a situation no individual has a complete and
in-depth view of the existing data setup. For such settings, a tool that can assist
in building a data warehouse model from existing data models such that there is
minimal impact to the business can be of immense value. In this paper we present
the D’MART tool which addresses this problem. D’MART analyzes the existing
data model of the enterprise and proposes alternatives for building the new data
warehouse model. D’MART models the problem of identifying Fact/Dimension
attributes of a warehouse model as a graph cut on a Dependency Analysis Graph
(DAG). The DAG is built using the existing data models and the BI Report gener-
ation (SQL) scripts. The D’MART tool also uses the DAG for generation of ETL
scripts that can be used to populate the newly proposed data warehouse from data
present in the existing schemas. D’MART was developed and validated as part
of an engagement with Indian Railways which operates one of the largest rail
networks in the world.

1 Introduction

Many organization today use IT to support decision making and planning. A precursor
for achieving this is the need to integrate disparate IT systems and the data that flows
through them. Data Warehousing has been a widely accepted approach for doing this.
However, many firms, especially those with extensive legacy systems find themselves
at a great disadvantage. Having started late, these firms have to play catch up with new
companies that are way ahead in their adoption and use of Decision Support Systems
(DSS). Tools/Processes that can accelerate the data warehouse or data mart develop-
ment in such an environment are of significant value to such companies. Implementing

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 102–113, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

D’MART: A Tool for Building and Populating Data Warehouse Model 103

a data warehouse solution is a challenging and time consuming process. The various
challenges in building a data warehouse include:

– Most warehousing projects begin by understanding how data is currently managed
and consumed in the organization. Even though most of this knowledge exists in
the IT systems that are in place, there is a limited capability to extract this infor-
mation from these systems. For instance the existing data models and target reports
have to be manually scanned to create a “data-inventory”. This can be a very time
consuming process.

– The development of the ETL scripts (which populate the existing tables in the orga-
nization) is typically outsourced to external consultants/vendors. In order to build
the ETL scripts, the data modelers first need to understand the large and complex
data environment which can be a very cumbersome task.

– The above problem is exacerbated by the fact that the data vocabulary could be
inconsistent across departments thereby leading to errors in the (newly) generated
ETL workflows.

One option that has been used by companies is to use a domain dependent warehouse
data model and move all the data from different Lines of Business (LOB) to this new
data model. However, using such a pre-defined data model does not avoid any of the
problems mentioned above. Furthermore, a primary requirement of customers is to en-
sure that all BI Reports that were running on existing data model be re-engineered to run
on the new data model. Considering these challenges and requirements what is required
is an automated approach that utilizes the information present in the existing data mod-
els and BI Reports to recommend an “optimal” and “sufficient” data warehouse model
and ETL scripts.

The D’MART tool presented in this paper analyzes the existing data model and BI
Report generation scripts. It uses this information to do the following:

1. D’MART proposes a new data warehouse schema (Fact and Dimensions) such that
the proposed model reuses (to the maximum possible extent) parts of the original
schema. The tool also identifies shared dimensions and possible hierarchies in the
dimensions.

2. D’MART identifies common attributes across the merging data models that have
different names but similar content. These data elements attributes are candidates
for merging in the new data warehouse. This avoids any duplicate/redundant data
in the warehouse.

3. D’MART ensures that the data characteristics of the newly proposed data ware-
house adheres to various design principles such as dimensions being in second
normal form and fact tables being in third normal form.

4. D’MART generates a skeleton of the ETL scripts for populating the data from the
base tables directly to the new data warehouse.

DMARTs is designed to reuse the existing data model as far as possible. This en-
sures that the amount of effort needed to understand, build and migrate to the new data
warehouse/mart is kept to a minimum.

104 S. Negi et al.

2 Related Work

In this section we describe the different Data Warehouse development approaches and
the uniqueness of the D’MART approach. Existing Data Warehouse development pro-
cesses can be broadly categorized into three basic groups:

1. Data-Driven Methodology: This approach promotes the idea that data warehouse
environments are data driven, in comparison to classical systems, which have a
requirement driven development life cycle. As per this approach business require-
ments are the last thing to be considered in the decision support development life
cycle. These are understood after the data warehouse has been populated with data
and results of queries have been analyzed by users. [5] propose a semi-automated
methodology to build a dimensional data warehouse model from the pre-existing
E/R schemes that represent operational databases. However, like other data-driven
approaches their methodology does not consider end user requirements into the
design process.

2. Goal Driven Methodology: (Business Model driven data warehousing methodol-
ogy) [2]: This approach is based on the SOM (Semantic Object Model) process
modeling technique. The first stage of the development cycle determines goals and
services the company provides to its customers. Then the business process is an-
alyzed by applying the SOM interaction schema. In the final step sequences of
transactions are transformed into sequences of existing dependencies that refer to
information systems. In our opinion this highly complex approach works well only
when business processes are designed throughout the company and are combined
with business goals.

3. User-Driven Methodology [6]: This approach is based on the BI needs. Business
users define goals and gather, priorities as well as define business questions sup-
porting these goals. Afterwards the business questions are prioritized and the most
important business questions are defined in terms of data elements, including the
definition of hierarchies, dimensions.

The User-Driven and Data-driven methodologies are two ends of a spectrum with their
fair share of pros and cons. Our approach adopts a middle ground. The D’MART tool
simultaneously analyzes the schema of the operational databases (bottom up) and the re-
porting requirements i.e. BI Reports (top down) to recommend a data warehouse model.

Paper Organization: We present an overview of the usage scenario of D’MART in the
Indian Railways context in Section 3. The details of the D’MART tool are presented
in Section 4. The experimental evaluation of D’MART is presented in Section 5 and
Section 6 concludes the paper.

3 Indian Railways Scenario

Indian Railways is the state-owned railway company of India, which owns and operates
the largest and busiest rail networks in the world, transporting 20 million passengers
and more than 2 million tons of freight daily. CRIS (Center for Railway Information

D’MART: A Tool for Building and Populating Data Warehouse Model 105

System), which is an umbrella organization of the Indian Railways, caters to all IT
needs of the Indian Railways. CRIS is entrusted with the design and development of IT
applications that serve different LOB (Lines of Business) within the railways such as
freight, passenger services etc.

The IT application landscape at CRIS is as follows. Each application has its own
operational data store and an off-line data summary store. Periodically, data is moved
from the applications operational data store to its off-line data summary store. This is
done using a set of complex stored procedures that read data from the operational data
source perform the required summarization and copy the data to the off-line data sum-
mary store. Reports are generated from the off-line summary database. As each of these
applications was developed at different points in time, each application uses a separate
and isolated data model and vocabulary that is unique to itself. The LOBs (line of busi-
ness) are a logical representation of the morphology of the enterprise, and therefore of
its data. The D’MART tool was conceived to accelerate the design and development
of the data mart schema for different lines of business and to merge these marts into a
single, integrated data warehouse. While the tool has this integration capability, in this
paper we focus on the features of D’MART which were used in CRIS to build a spe-
cific data mart. CRIS is currently in the process of building a data warehouse, and the
efficacy of the D’MART tool in assisting the process would be clearer as this exercise
is taken to its conclusion.

4 D’MART Approach

The D’MART tool recommends a schema for the data warehouse/mart by analyzing
the existing data model and the scripts used to generate the BI reports. The process
of identifying the best possible data warehouse/mart schema consists of the following
steps:

1. Fact Identification
2. Dimension Identification
3. Push Down Analysis
4. Data Analysis
5. Redundancy Analysis.

The first two steps are responsible for finding the set of tables which will form the
fact and dimension tables in the proposed data warehouse. Another task done by the
D’MART tool is that of generating the ETL scripts for populating the new data ware-
house using the existing base table. This task is accomplished by the Push Down Anal-
ysis step. The Data Analysis step ensures that the selected dimensions and facts adhere
to the standard design principles. The final task is that of Redundancy Analysis which
tries to merge similar attributes and tables from multiple base tables. This task might
look similar to the problem of schema matching ([9] [7] [3]), however it has some
subtle but significant differences which are gainfully used by D’MART to improve its
performance. We now explain each of these steps in the following sections.

106 S. Negi et al.

4.1 Fact Identification

The fact identification step finds the set of tables which will form the fact tables of the
proposed data mart. This process of identifying the fact table consists of Fact Attribute
Identification followed by Affinity Analysis.

Fact Attribute Identification. In the first step the tool scans the BI report generation
SQLs to identify set of attributes on which aggregate operation (such as sum, min, max,
average, etc.) is defined. In addition to these attributes, the tool also identifies those at-
tributes which are referred directly in the reports. These attributes can be of two types
namely direct projection attribute and indirect projection attribute. The first type of at-
tribute (i.e. direct projection attribute) is that which is present in the outermost “select”
clause of the report generation SQL, whereas the second type of attribute (i.e. indirect
projection attribute) is the one which is used in the inner query, but is projected out
unchanged (possibly after being renamed) and used in the report. In order to understand
the use of an indirect projection attribute, consider a Delay Report that displays the list
of delayed trains along with the delay (in minutes) during their last run. This report
shows only those trains which were delayed more than 80% of the times in the last
one month. Notice that this report will find the difference between the scheduled arrival
time and actual arrival time for each train in the last one month and will do a count to
identify whether the train was delayed more than 80% of the times. It will then report
the difference between the scheduled arrival time and actual arrival time during its last
run. Thus these two attributes will be indirect projection attributes. They will also have
an aggregate operation defined on it (count), but it will not be used in the report. The
SQL query used to generate this report is given below:

select Name, DATEDIFF(minute, SCHEDULED_ARR, ACTUAL_ARR) as Delay from
(select Name, SCHEDULED_ARR, ACTUAL_ARR from TRAIN_STATUS ii1 where
SCHEDULED_ARR >= (select max(SCHEDULED_ARR) from TRAIN_STATUS ii2 where
ii1.Name = ii2.Name) and DATEDIFF(minute, ii1.SCHEDULED_ARR,
ii1.ACTUAL_ARR) < 0 and ii1.Name in (select Name from
(select Name, count(*) as AA from TRAIN_STATUS where
t1.late = 1 group by Name) t12 where t12.AA > (select 0.8*count(*)
from TR where t2.Name = t12.Name group by t2.Name)))

In our work with Indian Railways, we found that there were very few direct projection
attributes and a large number of indirect projection attributes. Finding the indirect pro-
jection attribute is a very challenging but important task. In the above query, the two
attributes SCHEDULED ARR and ACTUAL ARR are used at multiple places. How-
ever, we are only interested in those attributes which are projected out. In order to find
the right attributes, D’MART uses a graph based representation system to address this
challenge.

D’MART represents the report generation SQL in the form of a Dependency Analy-
sis Graph. This graph represents the transformation that each attribute undergoes before
it is eventually used in the report. At the lowest level of the graph are the (source) at-
tributes of the various tables. At the highest level of the graph are the attributes which
are present in the report. There are multiple paths from the source to the output dur-
ing which the data undergoes various transformations such as sum, min, count, case
statement, etc. We categorize each operation as either being an aggregate operation or

D’MART: A Tool for Building and Populating Data Warehouse Model 107

a cardinality preserving operation. The aggregate operation generates one output for
multiple rows in the input, where as the cardinality preserving operation generates one
row in output for each input row. We are interested in identifying both types of attributes
as they will be part of the fact table. In addition to this, the aggregate attribute are used
for Dimension identification (details in next section).

Building the Dependency Analysis Graph becomes very tricky when an attribute is
renamed, merged and reused in a different form. The Dependency Analysis Graph of
the Delay Report described earlier is shown in Figure 1. In this figure, notice that at first
glance the output attribute ii1.Name appears to be a non aggregate attribute. However,
a closer analysis shows that it has a path to an aggregate operator via T2.Name, AGG,
T2. In order to find such paths, D’MART uses the following rules for traversing the
Dependency Analysis Graph:

– Rule 1: A path starting from the output attribute must not traverse through another
output attribute.

– Rule 2: The path should always start from an output attribute and should terminate
in a node representing a table.

– Rule 3: If for a given output node, there exists at least one path that goes via an
aggregate operator, then the node is deemed as an aggregate node.

Fig. 1. Dependency Analysis Graph

D’MART uses a Breadth First Search based algorithm to start searching from each of
the output nodes. For each of these output nodes, it finds all paths to the base tables
such that they adhere to Rule 1 above. Once these paths are found, all those output
attributes which do not have any path traversing through an aggregation operation are
categorized as either direct or indirect projection attributes. The rest of the attributes are
those which either belong to the dimension tables or are used in the “where” clause of
the report generation SQL. Once the direct and indirect projection attributes have been
found the next step that of Affinity Analysis is performed.

108 S. Negi et al.

Affinity Analysis. Many-a-time, multiple fact tables are required either because these
fact tables contain unrelated data (E.g., invoices and sales) or for reasons of efficiency.
For example, multiple fact tables are often used to hold various levels of aggregated
(summary data). The Affinity Analysis step checks whether there is a need to have
multiple fact tables. Typically when multiple fact tables are used to store unrelated data
no (or very few) reports access data from these different fact tables. D’MART uses this
idea to identify the grouping of attributes identified in Section 4.1. We map this problem
to that of finding a minimum cut in a graph as follows.

Let A be the set of attributes identified in Section 4.1 i.e.A={A1,A2,....An}. Let R be
the set of reports which access these attributes, R={R1,R2,....Rk}. Let A(Ri) represent
the set of attributes accessed by report Ri then A(Ri)={Ai1,Ai2,....,Aim | Aik ∈ A}.
Inversely, let R(Ai) denote the set of reports, in which attribute Ai is used. We map this
set to an undirected graph G={V ,E} where V is the set of vertices in the graph and E
is the set of edges. V = {v1,v2,.....,vn | A(vi) ∈ A}. Thus in this graph, we have one
vertex for each attribute in the schema. The function A(vi) above takes as input a vertex
vi and gives the attribute of A which is represented by the input vertex. Notice that the
function A(vi) is overloaded and it can take as input either a report or an attribute. If
the input is a report then it gives as output the set of attributes accessed by that report
whereas if the input is a vertex, then it outputs the attribute which is represented by that
vertex. The set of edges E in the graph G is defined a follows

E={e1(v
′
1,v

′′
1),,ep(v

′
p,v

′′
p)} s.t. ∃ Ri | A(v

′
i) ∈ A(Ri) ∧ A(v

′′
i) ∈ A(Ri)

Thus, there is an edge between nodes a.k.a attributes, if both the attributes are accessed
by the same report. Thus all the attributes which are accessed in a report will form
a strongly connected component in the graph. We construct this undirected graph by
adding edges corresponding to all the reports. Given such a graph, if there is a need
for multiple fact tables, then notice that there will either be two (or more) disconnected
components in this graph or the graph could be partitioned into multiple sub-graphs
such that the number of edges crossing across each of these sub-graphs is very few (as
compared to the number of edges within the sub-graph). This problem maps to that
of finding the minimum cut in a graph. The minimum-cut of a graph is the partition
of the graph into two disjoint sub-sets such that the number of edges whose endpoints
are in different subsets is the minimum possible. The minimum-cut problem can be
solved in polynomial time using the Edmonds-Karp algorithm [4]. D’MART uses this
algorithm to find the minimum cut [1] [8]. Each sub-set identified by the cut can map
to an independent fact table. In some cases where no natural cut exists, the algorithm
finds a cut whose cut size (i.e., the number of edges whose ends points are in different
sub-sets) is very large (as compared to the number of edges in the smaller sub-set). In
that case D’MART does not suggest the use of multiple fact tables.

Another scenario where D’MART can suggest the use of multiple fact tables is when
multiple reports aggregate data from the fact table at different levels of aggregation.
For example, if 50% of the reports are reporting results on a daily basis where as the
rest of the reports are reporting results on a monthly basis. In such cases D’MART
suggests the use of two fact tables, one aggregating data on a daily basis, whereas the
other aggregating data on a monthly basis. Due to space constraints we skip the details
of this approach.

D’MART: A Tool for Building and Populating Data Warehouse Model 109

4.2 Dimension Identification

A dimension in a data warehouse is responsible for categorizing the data into non-
overlapping regions. In other words, a dimension captures (in a loose sense) the distinct
values of some attributes present in the fact table. Hence, attributes of the dimension
table are typically used as a “group by” column in the BI Report generation SQL. We
use this fact to find the set of attributes that can be part of the dimension table. The
procedure of finding the dimension table is divided into two parts namely Candidate
Set Generation and Hierarchy Generation.

Candidate Set Generation. In the first part, D’MART identifies the set of all attributes
which are used in a “group by” clause of a report generation SQL. Notice that finding
these attributes is a non-trivial task as the report generation SQLs are fairly complex
and large. D’MART uses the Dependency Analysis Graph to find the set of attributes on
which “group by” is defined. These attributes could be anywhere within the SQL such
as a nested query, sub-query, etc. The set of attributes identified by the above procedure
form what we call as the “Candidate Attribute Set”. The set of tables which have at least
one of the attributes from the “Candidate Attribute Set” form the “Candidate Table Set”.
The “Candidate Table Set” is the set of tables which can potentially form a dimension
in our new data warehouse schema. Once the candidate table set has been identified, we
need to identify whether we need to generate a star schema or a snow-flake schema using
these candidate dimension attributes. This is done in the Hierarchy Generation step.

Hierarchy Generation. In order to identify whether we need to use a star schema or a
snowflake schema, we essentially need to find whether any of the candidate dimension
table can be represented as a hierarchy of multiple tables or if a single table represen-
tation suffices. In case we can split a dimension table into multiple tables then we need
to use the snowflake schema, else we use the star schema. As we explain next, there are
two steps for identifying the presence (or absence) of a hierarchy in the dimension ta-
ble. When the data warehouse has a hierarchical dimension, the reports which use these
dimensions would involve multiple joins across all the dimensions in the hierarchy. We
use this information to decide between using a star schema or a snow flake schema as
follows. Notice that if a set of attributes are used together in the “group by” clause, we
would exploit this fact to suggest a hierarchical dimension to improve the efficiency of
report generation. For example, consider the following report generation SQL:

Select T3.city_id,
count(T1.units_sold) from T1, T2 where T1.location_id =
T2.location_id and T2.city_id = T3.city_id group by
T2.location_id, T3.city_id

In the above query the attributes T2.location id and T3.city id appear together in a
“group by” clause and have a “join” between them. This suggests that T2 and T3 form
a hierarchy. In cases where the tables are incorrectly designed, we could have a case
where the city and location information is present in a single table. Even in those cases,
we are able to suggest the use of dimension hierarchy.

We use the fact that attributes appearing together in a “group by” clause could sug-
gest the use of a hierarchy of dimensions. We first identify the set of mutually exclusive

110 S. Negi et al.

super-sets of the candidate attribute set which are used together in the “group by” clause
of the various report generation SQLs. We explain this task with the following example:
Let the candidate attribute set be: {A, B, C, D, E, F}. Let the attributes {A, B, C}, {B},
{A, B}, {D, E, F} and {D} be each used together in the same “group by” clause of a
report generation SQL, i.e., {A, B, C} is used in one “group by” clause of a report gen-
eration SQL where as {A, B} is used in another “group by” clause of (possibly) another
report generation SQL. What we are interested in are those set of attributes which are
used together in the same “group by” clause. The mutually exclusive super-set, for the
above example, will be {A, B, C} and {D, E, F}. The key property of this set is that
any member (attribute) of one super set is never used with a member of another super
set, i.e., A is never used together with say, D in the same “group by” clause of a report
generation SQL. This property helps us to identify the set of attributes which will be
part of the same dimension (or dimension hierarchy).

Given the mutually exclusive super-set, for each super-set we form the set of tables
whose attributes are part of the super-set. As the existing schema in the enterprise may
not well defined, we could end up with a case where the same table could be part of
multiple super set. For example, we could have the following super set for the above
scenario, {T1, T2}, {T1, T3, T4} (mapping to {A, B, C} and {D, E, F}). A common
reason for this is that the table (T1) is not in second normal form, i.e., the table T1 has
some amount of redundant data. If we remove this redundant data, then we can possibly
avoid the overlap across the two super sets. In order to do this we convert the table T1
into second normal form which leads to a split of the table into multiple tables. We then
reconstitute the super set of tables and check if there is any overlap across super set. In
case the overlap still exists, then the same procedure is repeated. This is done for a fixed
number of times (currently set at 3). If the overlap problem is still not solved, then we
report this to the administrator. However, this is rarely required in practice. During our
work for Indian railways, D’MART could automatically remove the overlap in all the
cases.

Once the overlap has been removed, we identify the dimension for each of the super
set. If the set of tables in the super set already have a primary key-foreign key rela-
tionship amongst them, then we use it to form a snowflake schema. In case there is no
relationship, we check if each of these tables is in second normal form. If yes, then each
of these tables form a separate dimension as part of a star schema. If a table is found
as not being in the second normal form, then we convert it to second normal form and
repeat the same procedure again.

4.3 Push Down Analysis

The Push Down Analysis phase tries to suggest the right granularity for the fact table.
As described earlier, D’MART scans the report generation SQLs and identifies whether
all the reports are using a common aggregation before generating the reports. In such
a case, D’MART suggests changes to the granularity of the fact table. In order to do
so, it suggests the aggregation to be pushed to the ETL scripts used to populate the
fact table. It extracts the aggregation operator from the report generation SQL and sug-
gests the same to be used in the ETL scripts. D’MART also suggests changes in the
report generation SQL due to the changes in the fact table. This immensely helps the

D’MART: A Tool for Building and Populating Data Warehouse Model 111

administrator to quickly generate the necessary ETL scripts for populating the newly
defined data warehouse from the base tables.

4.4 Redundancy Analysis

A key aspect of the bottom-up approach is the identification of conformed dimensions.
A conformed dimension is a set of data attributes that have been physically implemented
in multiple database tables using the same structure, attributes, domain values, defi-
nitions and concepts in each implementation. Thus, conformed dimension define the
possible integration “points” between the data marts from different LOBs. The final
phase of D’MART, Redundancy Analysis phase, is responsible for finding candidates
for conformed dimension. At first glance, this looks very similar to schema matching.
However, the key advantage that we have in our setting is that we also have access to the
SQL queries which are used to populate the data in the original data model. We make
use of these queries to identify the commonalities in the schema across departments.

D’MART creates a data model tree for each attribute of the original schema. The
data model tree tries to capture the origins of the attribute, i.e., from where is the data
populated in this attribute, what kinds of transformations are applied to the data before
it is populated in the attribute, etc. The data model tree is created by analyzing the SQL
scripts which populate the attribute. D’MART scans the scripts and converts it into a
graph (Data model tree) similar to that used in Section 4.1. The only difference is that
the graph in Section 4.1 was used to analyze how reports are generated from the existing
schema, whereas the data model tree is used to analyze how existing summary tables
are populated from the source tables. Further, there is only one graph model per report,
where as there is one data model tree per attribute of the original schema.

Once the data model tree has been generated, we find similar trees by comparing the
structure and source of the trees. If two trees are similar, then D’MART suggests them as
candidates for conformed dimension to the administrator. Once these candidates have
been generated, D’MART can then use existing schema matching tools to do further
redundancy analysis. Thus using the five steps described in this section, D’MART finds
the new schema for the enterprise. A byproduct of this is the suggestion for writing
ETL scripts that can be used to populate data in a new data warehouse. The next section
presents an overview of the experimental evaluation of the D’MART tool.

5 Experimental Evaluation

The D’MART tool was applied to multiple Lines of Business at CRIS. In this section
we talk about our experience in applying D’MART to a specific system namely the
PAMS systems (Punctuality Analysis and Monitoring System). The PAMS system is
used to generate reports on punctuality of different trains running in different zones and
division within the Indian Railway network. We were provided with the operational
database schema, BI Reports and corresponding stored procedure details. For instance
for the PAMS system we received 27 reports and 65 stored procedures. The following
SQL snippet has be taken from the Train Status Report, which is one of the 27 reports
of the PAMS systems. This report displays the current status (e.g. canceled,rescheduled
etc) of a particular train running on a given date in a particular region or division.

112 S. Negi et al.

SELECT TRAIN_GAUGE, PAM_TYPE, TRAIN_STATUS, COUNT(TRAIN_STATUS) AS
DELAY_COUNT FROM(SELECT DISTINCT A.TRAIN_NUMBER, A.TRAIN_START_DATE,
DECODE(A.TRAIN_TYPE, ’EXP’, ’MEX’, A.TRAIN_TYPE) AS TRAIN_TYPE, CASE
WHEN EXCEPTION_TYPE = 1 THEN ’CANCELLED’ WHEN EXCEPTION_TYPE = 2
THEN ’SHORT DESTIN’ WHEN EXCEPTION_TYPE = 3 THEN ’DIVERTED’ WHEN
EXCEPTION_TYPE = 4 THEN ’MAJOR UNUSUAL’ WHEN EXCEPTION_TYPE = 5
THEN ’RESCHEDULED’ END AS TRAIN_STATUC, A.TRAIN_GAUGE, B.PAM_TYPE,
A.STATION_CODE FROM COISPHASE1.ST_SCHEDULED_TRAINS_DIVISION A,
COISPHASE2.MAT_TRAIN_TYPE B WHERE A.SCHEDULED_DIVISION="||LOC_CODE||"
AND TRUNC(A.SCHEDULED_DATE)>=TO_DATE("||FROM_DATE||",’DD-MM-YYYY’)
AND TRUNC(A.SCHEDULED_DATE)<=TO_DATE("||TILL_DATE||",’DD-MM-YYYY’)
AND A.EXCEPTION_TYPE IN(1,2,3,5) AND A.TRAIN_TYPE) GROUP BY
TRAIN_GAUGE,PAN_TYPE, TRAIN_STATUS ORDER BY TRAIN_GAUGE,
PAM_TYPE, TRAIN_STATUS

For illustration the extracted Dependency Analysis Graph is shown in Figure 2.
The recommended Fact and Dimension attributes for this SQL are: Fact Attributes =
{ST SCHEDULE TRAIN DIV.EXCEPTION TYPE} , Dimension Attributes
={TRAIN GAUGE, PAM TYPE, TRAIN STATUS}.

Fig. 2. Dependency Analysis Graph

D’MART performed similar processing on the other SQLs from the PAMS system.
For the PAMS system D’MART recommended 1 Fact and 4 Dimension tables. The Fact
table has a set of 18 attributes. Two of the four dimensions have a hierarchy which is
one level deep. To validate the correctness and usefulness of the recommended schema
a user-study was conducted. Data administrators were shown the old and new schema
and asked to rate it on certain parameters. These parameters included factors such as
completeness, correctness (Are all modeled aspects correct with respect to the require-
ments and terms of the domain?), consistency (Are all modeled aspects free of contra-
dictions?), coverage, level of detail and minimality (Is the schema modeled compactly
and without redundancies?). The schema recommended by the D’MART tool was rated
highly on all these parameters.

D’MART: A Tool for Building and Populating Data Warehouse Model 113

6 Conclusion

In this paper we presented the D’MART tool that helps companies accelerate the devel-
opment of a data warehouse/data mart from existing data models. The key advantage of
D’MART is that it proposes a new data warehouse schema with minimal changes to the
existing setup. Such an approach is extremely useful when companies need a phased
approach for building the warehouse. D’MART works by analyzing the existing data
model and BI Reports of the enterprise. D’MART models the problem of identifying
Fact/Dimension attributes of a warehouse model as a graph cut problem on a Depen-
dency Analysis Graph DAG. The DAG is built using the existing data models and the BI
Report generation SQL scripts. The D’MART tools also uses a variant of the DAG for
generation of ETL scripts that can be used to populate the newly proposed data ware-
house from data present in the existing schemas. D’MART was developed and validated
as part of an engagement with Indian Railways which operates one of the largest and
busiest rail networks in the world.

Acknowledgement. We would like to acknowledge and express our heartfelt gratitude
to Mr Vikram Chopra, without whose support this work would not have been possible,
and also thank the CRIS team led by Ms Priya Srivastava for generously contributing
their effort and knowledge.

References

1. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph partitioning
(2009)

2. Chowdhary, P., Mihaila, G., Lei, H.: Model driven data warehousing for business performance
management (2006)

3. Doan, A., Domingos, P., Halevy, A.: Reconciling schemas of disparate data sources: a
machine-learning approach (2001)

4. Edmonds, J., Karp, R.: Theoretical improvements in algorithmic efficiency for network flow
problems (1972)

5. Golfarelli, M., Maio, D., Rizzi, S.: Conceptual design of data warehouses from e/r schemes
(1998)

6. Kimball, R.: The Data Warehouse Toolkit: Practical Techniques For Building Dimensional
Data Warehouse. John Wiley & Sons (1996)

7. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching (2001)
8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press

and McGraw-Hill (2009)
9. Westerman, P.: Data Warehousing using the Wal-Mart Model. Morgan Kaufmann (2001)

Continuous Skyline Queries with Integrity Assurance
in Outsourced Spatial Databases

Xin Lin1,2, Jianliang Xu2, and Junzhong Gu1

1 Department of Computer Science, East China Normal University
{xlin,jzgu}@ecnu.edu.cn

2 Department of Computer Science, Hong Kong Baptist University
xujl@comp.hkbu.edu.hk

Abstract. Integrity assurance is an important problem for query processing in
outsourced spatial databases, where the location-based service (LBS) provides
query services to the clients on behalf of the data owner. If the LBS server is not
trustworthy, it may return incorrect or incomplete query results intentionally or
unintentionally. Therefore, to ensure the query integrity, the data owner needs to
build additional authenticated data structures so that the clients can authenticate
the soundness and completeness of query results. In this paper, we study the in-
tegrity assurance problem for continuous location-based skyline queries. We pro-
pose three novel techniques based on MR-Sky-tree, i.e., using valid scope, visible
region, and incremental VO to reduce the computation and communication cost.
Experimental results show that our proposed techniques achieve shorter compu-
tation time and lower communication cost than the existing approach.

1 Introduction

In outsourced spatial databases, the LBS provides query services to the clients on behalf
of data owners (e.g., government land survey department or non-profit organizations)
for better service quality and lower cost. However, such an outsourcing model brings
great challenges to query integrity. Since the LBS server is not the real owner of data, it
may return incorrect or incomplete query results intentionally or unintentionally. Thus,
there is a need for the clients to authenticate the soundness and completeness of query
results, where soundness means that the original data is not modified by the LBS server
and completeness means that no valid result is missing. This problem is known as au-
thenticated query processing in the literature [3, 6, 7, 10–13, 17, 18].

A typical framework of authenticated query processing is shown in Fig. 1. The data
owner (DO) builds an authenticated data structure (ADS) for the spatial dataset before
outsourcing it to the LBS. To support efficient query processing, the ADS is often a tree-
like index structure, whose root is signed by the DO using her private key. In addition
to the spatial dataset, the DO transfers the ADS and its root signature to the LBS server.
Upon receiving a query from the client, the LBS server returns the query results, the
root signature, and a verification object (VO) that is constructed from the ADS. The
correctness of the query results can be verified by the client using the VO, the root
signature, and the DO’s public key.

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 114–126, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Continuous Skyline Queries with Integrity Assurance in Outsourced Spatial Databases 115

Database

Client

Query

Results, Root
Signature & VO

LBS ServerData Owner

& Root Signature
Dataset, ADS

Fig. 1. Authenticated Query Processing

Authenticated processing of location-based queries is a hot topic in the database
area [16, 18, 19]. Nevertheless, most of the existing studies focused on spatial-only
queries, including range queries [3,16], nearest-neighbor (NN) queries [19], and shortest-
path queries [18]. These queries are not sufficient to support LBS applications that need
to consider both spatial and non-spatial attributes of queried objects. A typical scenario
is finding nearby car parks with cheap parking fees, where the distance is a spatial
attribute and the parking fee is a non-spatial attribute. To deal with this kind of multi-
criterion search, location-based skyline queries (LSQs) have received considerable at-
tention in LBS research (e.g., [4, 9, 15, 20]). In general, the dynamic nature of spatial
attributes makes LSQs unique and challenging, which implies that the skyline results
would differ with respect to different query locations. Taking the above car-park-finding
scenario for example, the distance from a client to a car park varies with the location of
the client. Such dynamic nature of query results signifies the necessity of authenticating
LSQ results.

In a previous work [8], we have proposed an efficient index, called MR-Sky-tree, for
authenticating one-shot LSQs. However, in LBS applications, users may sometimes pre-
fer continuous queries; e.g., a driver may issue a continuous LSQ like “finding nearby
car parks with cheap park fees” as he drives on the street. The authentication prob-
lem for continuous LSQs is more challenging since it is not efficient to repeat one-shot
query authentication whenever the client changes location. In this paper, we propose
three novel techniques, i.e., using valid scope, visible region, and incremental VO to
reduce both the computation and communication cost. Specifically, the valid scope de-
fines an area in which the query results do not change. The visible region is a super
set of valid scopes in which the client is able to compute the new results locally with-
out contacting the server. Lastly, if the query point moves out of the visible region, the
server can return only a part of VO, called incremental VO, to the client so as to save
the communication cost.

On the whole, our contributions made in this paper can be summarized as follows:

– We propose a valid scope computation and authentication algorithm for continuous
LSQs, which can save both the computation and communication cost on the client.

– We propose a concept of visible region, by which the LSQ results can be computed
locally on the client without contacting the server.

– We propose the construction and merge algorithms for incremental VO, which
avoids sending the complete VO and reduces the communication cost when the
query point moves out of the visible region.

– We conduct extensive experiments to evaluate the performance of the proposed
techniques and algorithms. The results show that our proposed techniques perform
efficiently under various system settings.

116 X. Lin, J. Xu, and J. Gu

The rest of this paper proceeds as follows. Section 2 reviews the related work and gives
some preliminaries on the problem to be studied. In Section 3, we propose three opti-
mization techniques for continuous LSQs. The proposed techniques and algorithms are
experimentally evaluated in Section 4. Finally, this paper is concluded in Section 5.

2 Preliminaries and Related Work

In this section, we give the formal definition of location-based skyline queries (LSQs)
and describe our previous work MR-Sky-tree [8], which can be used to authenticate one-
shot LSQs. We consider a set of data objects O. Each object o ∈ O is associated with
one spatial location attribute (denoted by o.x and o.y) and several non-spatial attributes
(e.g., parking fee and service quality, denoted by o.Ai for the i-th non-spatial attribute).
In this paper, we employ the Euclidean distance metric to measure the spatial proximity.

Definition 1. (Dominance) Given two objects o and o′, if o′.Ai is not worse than o.Ai

for any non-spatial attribute Ai, then we say o′ non-spatially dominates o, and o′ is a
non-spatial dominator of o. Formally, it is denoted as o′ � o. The set of o’s non-spatial
dominator objects is denoted as Dom(o). Given a query point q, if (1) o′ non-spatially
dominates o, and (2) o′ is no farther away from q than o (i.e., o′ also spatially dominates
o), then we say o′ dominates o w. r. t. the query point q. Formally, it is denoted as o′�qo.

Definition 2. (Location-based Skyline Query (LSQ)) Given an object set O, the
location-based skyline of a query point q is a subset of O, LSQ(O, q), in which each
object is not dominated by any other object in O w. r. t. q.

Obj. A1 A2 A3 A4 Obj. A1 A2 A3 A4

a 4 4 3 2 g 3 6 1 3
b 9 8 7 6 h 9 11 7 9
c 8 9 6 7 i 8 10 6 8
d 4 5 2 3 j 10 12 8 10
e 7 8 5 6 k 9 12 7 10
f 6 3 2 1

(a) Object Set

(b) Spatial dimension and valid scopes

N1 H1

a d b c f g h j

Level 0

Level 1
(leaf)

Level 2

N2 H2

N3 H3 N4 H4 N5 H5 N6 H6

e

N7 H7

i k

(c) MR-Sky-tree (d) Final VOTree in authentication

Fig. 2. LSQ Example and MR-Sky-Tree

Continuous Skyline Queries with Integrity Assurance in Outsourced Spatial Databases 117

By definition, LSQs have an intuitive characteristic, i.e., for a given query point q,
if an object o is closer than all its non-spatial dominators, o must be a member of
LSQ(O, q). With this characteristic, we define a concept skyline scope, which can be
used to accelerate LSQ processing and authentication.

Definition 3. (Skyline Scope) For any object o ∈ O, its skyline scope in a 2D plane P
is denoted as SS(o) = {q | q ∈ P ∧ o ∈ LSQ(q, O)}, where o ∈ LSQ(q, O) means
∀m ∈ Dom(o), o is closer to q than m, i.e., distS(o, q) < distS(m, q).

The skyline scope of an object o is essentially the Voronoi cell of o in the object set
{o} ∪ Dom(o). If Dom(o) is empty, o’s skyline scope is the entire space. In general,
the Voronoi cell can be computed using a divide-and-conquer algorithm, with a time
complexity of O(|O|log|O|) [2].

With the skyline scopes for all objects, a location-based skyline can be found by
searching the objects whose skyline scopes cover the query point q. For example,
Fig. 2(a) shows the non-spatial attributes (A1 − A4) of objects a - k, where a smaller
non-spatial value is preferred. The spatial location and skyline scope of each object
are shown in Fig. 2(b). Since the query point q is covered by the skyline scopes of
a, b, d, e, fand g (the skyline scopes of a, d, f and g are the entire scope), the LSQ(O, q)
results are these six objects.

To support query authentication, the skyline scopes of all objects are inserted into
an MR-tree [16] as data entries. The MR-tree is a combination of MH-tree [5] and
R*-tree [1]. Each leaf node in the MR-tree is identical to that of R*-tree, which stores
pointers pointing to actual data objects. The digest of a leaf node is obtained by hashing
the concatenation of the binary representations of all objects in the node. Each internal
node contains a number of entries in the form of (ptri,MBRi, Hi),1 where ptri is the
pointer pointing to the i-th child, MBRi and Hi are the minimum bounding rectangle
and the digest of the i-th child, respectively. The digest of an internal node summarizes
the MBRs and digests of all children nodes. The use of digests makes possible the
pruning of index nodes in the VO while being able to verify the correctness of query
results. We call this MR-tree indexing skyline scopes as MR-Sky-tree. Fig. 2(c) shows
the MR-Sky-tree for our running example, where N1, N2, N3 and N5 are the entire
space.

Given LSQ(O, q), the VO of this query is represented by a subtree of the MR-Sky-
tree index (termed as VOTree). In detail, the server checks, from the root and down-
wards, whether each child of an MR-Sky-tree node covers the query point q. If it does
not, the child is pruned, while its MBR and digest are inserted into the VOTree. Oth-
erwise, the node is unfolded and the children of the node are checked recursively by
repeating the above procedure. Fig. 2(d) shows the final VOTree for our running exam-
ple. Since N6 and N7 does not cover q, their digests and MBRs are inserted into VOTree
instead of their children.

To verify the query results, the client checks the following three facts: 1) the skyline
scopes of all objects in the result set should cover the query point q; 2) no MBRs of
the pruned nodes and no skyline scopes of the non-result objects cover q; 3) the root

1 In the actual implementation, all the digests of a node can be stored in a separate page and
pointed by the node. In this way, the original R*-tree structure is not modified.

118 X. Lin, J. Xu, and J. Gu

signature matches the digest computed from VOTree. The fact 3 ensures the soundness
of the results, and facts 1-3 ensure the completeness of the results.

3 Authentication for Continuous LSQs

Algorithm 1. Valid Scope Computation
and VO Construction

INPUT: Skyline set S, root of MR-Sky-
Tree mrRoot
OUTPUT: Valid scope V S, VOTree votree

1: V SV R ← The whole space
2: for each member o in the S do
3: V SV R ← V SV R

⋂
SS(o)

4: V S ← V SV R
5: initialize the root of voTree with mr-

Root (excluding the digest)
6: insert mrRoot into a queue Q
7: while Q is not empty do
8: get the top element e from Q
9: insert e’s children into voTree

10: if e is an index node do
11: for each child c of e do
12: if c intersects with V SV R do
13: insert c to Q
14: else
15: prune c and keep its digest in

the parent node
16: else // e is a leaf node
17: for each child c of e do
18: if c intersects with V S and c �∈

S do
19: remove the c part from V S

Algorithm 2. Incremental VO Construction

INPUT: Previous query point q, current
query point q′, root of MR-Sky-Tree
mrRoot
OUTPUT: Incremental VOTree votree,
skyline set S

1: initialize the root of voTree with mr-
Root (excluding the digest)

2: insert mrRoot into a queue Q
3: while Q is not empty do
4: get the top element e from Q
5: insert e’s children into voTree
6: if e is an index node do
7: for each child c of e do
8: if c covers q′ do
9: insert c to Q

10: else
11: prune c and replace its corre-

sponding node with label ”Hit” in the
votree.

12: else // e is a leaf node
13: if e covers q do
14: replace e’s corresponding node

with label ”Hit” in the votree.
15: else
16: for each child c of e do
17: if c covers q′ do
18: S ← S ∪ {c}

To authenticate continuous LSQs such as “finding nearby car parks with cheap park-
ing fees,” a naive method is to repeat the query processing and VO construction pro-
cesses shown in Section 2, whenever the client changes location. Obviously, this method
is not efficient on both computation and communication cost. In this section, we pro-
pose three techniques to improve the performance. First, we compute the valid scope
of query point q, in which the LSQ results remain the same as LSQ(q, O). By the valid
scope, the clients need not send location updates to the server or re-compute the query
results by itself. Second, we introduce a concept of visible region for each VO. If the
query point is located in the visible region, the new LSQ results can be computed by
the client locally, without contacting the server. Lastly, when the client moves out of the
visible region, we propose an incremental VO technique so that only a small part of VO
needs to be sent back to the client.

Continuous Skyline Queries with Integrity Assurance in Outsourced Spatial Databases 119

3.1 Valid Scope and Its Authentication

As mentioned above, the valid scope of q is the area that shares the same LSQ results
with q. This means if the client moves from q to any point in the valid scope, no skyline
object leaves the skyline set and no non-skyline object enters the skyline set. Hence, the
valid scope can be computed by:

V S(q) =
⋂

o∈LSQ(q,O)

SS(o)−
⋃

u�∈LSQ(q,O)

SS(u). (1)

Fig. 3. An Illustration of Valid Scope

Take Fig. 3 for example. Firstly, we compute the intersection area of the skyline scopes
of all skyline objects. Since the skyline set in our running example is {a, b, d, e, f, g},
the intersection area of their skyline scopes is the shaded area in Fig. 3(a). Secondly, the
part which intersects with the skyline scope of any non-skyline object is removed from
the valid scope. In Fig. 3(a), since c is not a skyline object, the part which intersects with
c’s skyline scope should be removed. As a result, the final valid scope is the shaded area
in Fig. 3(b).

After computing the valid scope, we construct the VOTree, with which the client can
verify the soundness of the valid scope. We define the intersection area of the skyline
scopes of all skyline objects as the valid scope verification region (V SV R) (just like
the shaded area in Fig. 3(a)). The idea is that, if a node in the MR-Sky-tree does not
intersect with V SV R, the node need not be unfolded and only its digest and MBR
are inserted into the VOTree. The pseudo-code of the valid scope computation and VO
construction algorithm is summarized in Algorithm 1.

The following theorem proves the correctness of Algorithm 1.

Theorem 1. The VOTree constructed by Algorithm 1 can be used to verify the correct-
ness of valid scope V S.

Proof. The client can verify V S by the following two facts: 1) all query points inside V S
share the same LSQ results with LSQ(q, O); 2) any query point p outside V S satisfies
LSQ(p,O) �= LSQ(q, O).

120 X. Lin, J. Xu, and J. Gu

For fact 1, since V S is contained in V SV R and all nodes intersects with V SV R are
unfolded and stored in the VOTree, the client has a full view about the skyline scopes that
intersect with V S. As such, the client can verify the LSQ results for any point inside V S.

For fact 2, if p is outside V S but inside V SV R, all the nodes that cover p would
be unfolded according to Algorithm 1. Hence, the client can verify LSQ(p,O) by the
covering skyline scopes. Otherwise, if p is outside V SV R, we show LSQ(p,O) �=
LSQ(q, O) by contradiction. Suppose there exists such a point p that satisfies LSQ(p,O)
= LSQ(q, O). Since p is outside V SV R, p must be outside the skyline scope of some
member(s) in LSQ(q,Q). Hence, such member(s) will not be in the result set of LSQ(p,O)
according to the definition of skyline scope, which leads to LSQ(p,O) �= LSQ(q, O). �
The verification of the valid scope is similar to that of the MR-Sky-tree method (see
Section 2). The client should check: 1) the valid scope is identical to the area computed
by Equation (1); 2) the root signature matches the digest computed from the VO.

3.2 Visible Region

When the client moves out of the valid scope, we may still not need to issue a new
query. It is possible to compute the new results locally. By the current VO, the client
has a full view about the skyline scope coverage of the region that is not covered by any
pruned node. We call such a region as visible region. For example, as shown in Fig. 2(b),
if the client moves form q to q1, we can compute the new LSQ results as {a, c, d, f, g}
locally, since no pruned object in the current VO covers q1.

Formally, the visible region can be obtained as follows:

V R = P −
⋃

n∈PN

MBR(n), (2)

where P denotes the entire space and PN denotes the index nodes which were pruned
in the VO. Take Fig. 2(b) for example. Since the nodes N6 and N7 were pruned in the
VO construction, the client has no idea about the skyline scope distribution in the region
that is cover by these two nodes. Thus, the visible region is P - (N6

⋃
N7).

3.3 Incremental VO

When the client moves out of the visible region, we have to issue a new query to update
the results. A simple method for the server is to reconstruct a new VO and return it to
the client. However, this method is inefficient because it does not reuse the previous
VO to reduce the communication cost. In this section, we propose an incremental VO
technique to address this problem.

The main idea of incremental VO is to reuse the VOTree of the last query, since it
may overlap with the VOTree of the new query. Thus, we modify the VO construction
algorithm in the MR-Sky-tree method by the following changes (Algorithm 2): 1) if a
node does not cover the new query point, its related information (including MBR and
digest) need not be stored in the incremental VO since the client can get them from the
previous VO (we use a label “Hit” to represent such nodes; see Line 11); 2) if a leaf
node covers the last query point, it also need not be returned to the client (Line 14),
since all its members have been available in the previous VO.

Continuous Skyline Queries with Integrity Assurance in Outsourced Spatial Databases 121

Fig. 4. An Incremental VO Example Fig. 5. Merged VO

Revisit our running example. If the query point move from q to q2, the incremental
VO is shown in Fig. 4. The node N7 does not cover the new query point q2, it is replaced
by label “Hit.” Since the leaf nodes N3, N4 and N5 cover the last query point q, they
are also represented by label “Hit.” Only the node N6 covers q2 and does not cover q.
Hence, it is unfolded and all its children skyline scopes are inserted into the incremental
VO. While the storage overhead for label “Hit” is negligible, the main communication
cost here is incurred by the unfolded leaves. Fortunately, the number of such leaves is
usually small for continuous queries.

After the client receives the incremental VO, it will merge the incremental VO with
the previous VO. The merge algorithm traverses the incremental VO and the previous
VO in parallel to construct the merged VO. The type of the incremental VO node deter-
mines what is inserted into the merged VO. We use two heaps INC Q and PRE Q to
temporarily store the nodes of the incremental VOTree and the previous VOTree. Dur-
ing the merge process, if the incremental VO node is an index node, we just insert the
corresponding node of the previous VO into the merged VO. And then their children are
inserted into INC Q and PRE Q for further processing (Line 6-9). If the incremental
VO node is a leave labeled “Hit,” the whole subtree of the corresponding node in the
previous VO is inserted the merged VO without any change (Line 10-11). Otherwise,
the incremental VO node must be an unfolded leaf and is inserted into the merged VO
instead of the previous one (Line 12-13).

4 Experiments

4.1 Experiment Setup

In this section, we evaluate the performance of our proposed techniques and algorithms
through experiments. The spatial object set used in the experiments contains 2,249,727
objects representing the centroids of the street segments in California [14]. All testing
datasets draw objects randomly from this set. The data space is normalized to a 100,000
Unit × 100,000 Unit square, where 1 Unit represents about 1 m. The non-spatial at-
tribute values of these objects are synthesized with a uniform distribution in the interval
[0, 100,000]. The page size is 4K bytes and the size of each object is 320 bytes. The
hashing function we use for the MR-Sky-tree is SHA-512, and the size of each digest
is 64 bytes. Table 1 summarizes the default settings and value ranges of various system
parameters.

We measure the performance of continuous LSQ authentication with three metrics:
communication cost, server computation time and client verification time. We compare
the effects of the three optimization techniques proposed in in Section 3 with the naive

122 X. Lin, J. Xu, and J. Gu

Algorithm 3. VO Merge Algorithm on the Client
INPUT: Incremental VO tree increV O, previous VO tree preV O
OUTPUT: Merged VO tree merV O

1: insert increVO.root into a queue INC Q
2: insert preVO.root into a queue PRE Q
3: while INC Q is not empty do
4: get the top element inc e from INC Q
5: get the top element pre e from PRE Q
6: if inc e is an index node do
7: insert pre e into the merV O
8: insert the children of inc e into INC Q
9: insert the children of pre e into PRE Q

10: else if inc e is a label “Hit” do
11: insert subtree of pre e into the merV O
12: else if inc e is an unfolded leaf
13: insert subtree of inc e into the merV O

Table 1. Parameter Settings

Parameter Default Value Range
Dataset cardinality 100K [10K, 1,000K]
non-spatial attributes 2 2, 4, 6 ,8
Non-spatial attribute values [0, 100,000]
Digest size 64 Bytes
Object size 320 Bytes

method, which repeatedly updates the query results and the corresponding VO when
the client changes location. We assume that the client moves with an average speed of
6 m/s and the location sampling period is 100 seconds.

We conducted the experiments on a workstation (Intel Xeon E5440 2.83GHz CPU)
running on Ubuntu Linux Operating System. The simulation codes were written in Java
(JDK 1.6). Each measurement is the average result over 100 sampling periods.

Communication Cost. We first measure the size of the VO transferred between the
server and clients as the metric of communication cost. We compare the performance
of four schemes: 1) the naive method without any optimization (denoted as Naive); 2)
the MR-Sky-tree based method optimized with the valid scope technique (denoted as
VS); 3) the MR-Sky-tree based method using both the valid scope and visible region
techniques (denoted as VS+VR); 4) the MR-Sky-tree based method optimized with all
proposed techniques (denoted as All). The evaluation results are shown in Figs. 6(a)
through 6(c). We can observe that the communication cost of VS is close to that of
the naive method, while VS+VR and All achieve a much lower cost. This is because
the area of the valid scope is generally very small and the adjacent query points are
seldom located in the same valid scope. If we promote the location update frequency by
reducing the sampling period (see the left part of Fig. 6(c)), this increases the chance

Continuous Skyline Queries with Integrity Assurance in Outsourced Spatial Databases 123

(a) Effect of dataset cardinal-
ity

(b) Effect of non-spatial di-
mensionality

(c) Effect of sampling period

Fig. 6. Average VO Size

that the adjacent query points are located in the same valid scope, which demonstrates
the advantage of VS over the naive method. The visible region is much larger than the
valid scope since many nodes in the MR-Sky-tree will be unfolded as long as they cover
the query point. As a result, VS+VR gains much performance improvement over VS in
most cases tested. Finally, employing the incremental VO technique further reduces the
VO size by a factor of up to 10.

(a) Effect of dataset cardinal-
ity

(b) Effect of non-spatial di-
mensionality

(c) Effect of sampling period

Fig. 7. Average Sever Computation Cost

(a) Effect of dataset cardinal-
ity

(b) Effect of non-spatial di-
mensionality

Fig. 8. Step-Wise Server Computation Time

124 X. Lin, J. Xu, and J. Gu

Server Computation Time. We first measure the effect of the proposed optimization
techniques (denoted as Opt) for continuous LSQs in Fig. 7. All the three proposed
techniques, i.e., the valid scope, visible region, and incremental VO, are applied. We
can see that Opt performs much better than the naive method since many query points
are located in the visible region and their queries need not be sent to the server for
re-evaluation. To examine the time cost of each optimization technique, we break the
query processing into several steps and compare the average time cost for each step
under various settings. As shown in Fig. 8, in the optimized continuous LSQ processing,
the server may spend the computation time in three steps: original VO construction
(denoted as Ori VO), valid scope computation (denoted as VS) and incremental VO
construction (denoted as inc VO). We observe that the valid scope construction costs
the most time since it needs to combine the skyline scopes of all skyline objects and
then remove the part of non-skyline objects. For all three steps, the computation time
increases as increasing dataset cardinality and non-spatial dimensionality. This is as
expected due to the increased size of the skyline result set.

(a) Comparison between
naive and proposed tech-
niques

(b) Effect of dataset cardinal-
ity

(c) Effect of non-spatial di-
mensionality

Fig. 9. Average Client Verification Time

Client Verification Time. As shown in Fig. 9(a), the average client verification time of
the proposed optimization techniques is much better than the naive method for short lo-
cation sampling periods, due to the same reason explained in the previous experiments.
When the location sampling period is long, the query needs to be re-evaluated by the
server at almost every period. In this case, the client would incur some unnecessary
cost in valid scope checking and VO merging. In fact, for the proposed optimization
techniques, the client verification time may be spent on four parts: 1) VO verification
(denoted as VO verify), which is the same as that in one-shot queries; 2) valid scope
checking (denoted as VS check), which checks whether the query point is located in
the valid scope; 3) visible region utilization (denoted as VR), which checks weather the
visible region covers the query point and use the visible region to compute new LSQ
results; 4) VO merging (denoted as VO merge), which merges the incremental VO and
the previous VO to make a new VO. Figs. 9(b) and 9(c) show the average cost of each
step under various settings. We can observe that the valid scope checking uses the least
time, while the costs of the other three parts are similar.

Continuous Skyline Queries with Integrity Assurance in Outsourced Spatial Databases 125

5 Conclusions and Future Work

In this paper, we have studied the problem of authenticating continuous location-based
skyline queries with integrity assurance. We have developed three optimization tech-
niques based on the MR-Sky-tree method, i.e., using valid scope, visible region, and
incremental VO to reduce both the computation and communication cost. The experi-
ment results show that our proposed techniques perform better than the existing method
in terms of various performance metrics.

As for future work, we will extend the authentication problem to road network en-
vironments, where the query distance is defined by network distance. As the skyline
scope does not work for network distance, new query authentication algorithms need to
be developed.

Acknowledgments. This work is supported by GRF Grant HKBU210811, NSFC Grant
60903169, and the Hong Kong Scholars Program. Lin Xin’s research is also supported
by the Fundamental Research Funds for the Central Universities.

References

1. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: An Efficient and Ro-
bust Access Method for Points and Rectangles. In: SIGMOD (1990)

2. Berg, M., Cheong, O., Kreveld, M.: Computational Geometry: Algorithms and Applications,
3rd edn., ch. 7 (2008) ISBN: 978-3-540-77973-5

3. Hu, H., Xu, J., Chen, Q., Yang, Z.: Authenticating Location-based Services without Com-
promising Location Privacy. In: SIGMOD (2012)

4. Huang, Z., Lu, H., Ooi, B.C., Tong, K.H.: Continuous Skyline Queries for Moving Objects.
IEEE Trans. on Knowledge and Data Engineering (TKDE) 18(12), 1645–1658 (2006)

5. Merkle, R.C.: A Certified Digital Signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS,
vol. 435, pp. 218–238. Springer, Heidelberg (1990)

6. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic Authenticated Index Structures
for Outsourced Databases. In: Proc. SIGMOD (2006)

7. Li, F., Yi, K., Hadjieleftheriou, M., Kollios, G.: Proof-Infused Streams: Enabling Authenti-
cation of Sliding Window Queries On Streams. In: VLDB (2007)

8. Lin, X., Xu, J., Hu, H.: Authentication of Location-based Skyline Queries. In: CIKM (2011)
9. Lin, X., Xu, J., Hu, H.: Range-based Skyline Queries in Mobile Environments. TKDE (in

press, 2012)
10. Pang, H., Jain, A., Ramamritham, K., Tan, K.-L.: Verifying Completeness of Relational

Query Results in Data Publishing. In: Proc. SIGMOD (2005)
11. Pang, H., Mouratidis, K.: Authenticating the Query Results of Text Search Engines. PVLDB

(2008)
12. Papadopoulos, S., Yang, Y., Bakiras, S., Papadias, D.: Continuous Spatial Authentication.

In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009. LNCS,
vol. 5644, pp. 62–79. Springer, Heidelberg (2009)

13. Papadopoulos, S., Yang, Y., Papadias, D.: CADS: Continuous Authentication on Data
Streams. In: VLDB, pp. 135–146 (2007)

14. R-tree Portal, http://www.rtreeportal.org/
15. Sharifzadeh, M., Shahabi, C.: The Spatial Skyline Queries. In: Proc. VLDB (2006)

http://www.rtreeportal.org/

126 X. Lin, J. Xu, and J. Gu

16. Yang, Y., Papadopoulos, S., Papadias, D., Kollios, G.: Authenticated Indexing for Outsourced
Spatial Databases. VLDB Journal 18(3), 631–648 (2009)

17. Yang, Y., Papadias, D., Papadopoulos, S., Kalnis, P.: Authenticated Join Processing in Out-
sourced Databases. In: SIGMOD (2009)

18. Yiu, M.L., Lin, Y., Mouratidis, K.: Efficient Verification of Shortest Path Search via Authen-
ticated Hints. In: ICDE, pp. 237–248 (2010)

19. Yiu, M.L., Lo, E., Yung, D.: Authentication of Moving kNN Queries. In: ICDE (2011)
20. Zheng, B., Lee, C.K., Lee, W.-C.: Location-Dependent Skyline Query. In: Proc. Int’l. Conf.

Mobile Data Management (2008)

Assessing Quality Values of Wikipedia Articles
Using Implicit Positive and Negative Ratings

Yu Suzuki

Nagoya University, Furo, Chikusa, Nagoya, Aichi, Japan
suzuki@db.itc.nagoya-u.ac.jp

Abstract. In this paper, we propose a method to identify high-quality
Wikipedia articles by mutually evaluating editors and text using implicit
positive and negative ratings. One of major approaches for assessing
Wikipedia articles is a text survival ratio based approach. However, the
problem of this approach is that many low quality articles are misjudged
as high quality, because of two issues. This is because, every editor does
not always read the whole articles. Therefore, if there is a low quality
text at the bottom of a long article, and the text have not seen by the
other editors, then the text survives beyond many edits, and the survival
ratio of the text is high. To solve this problem, we use a section or a
paragraph as a unit of remaining instead of a whole page. This means
that if an editor edits an article, the system treats that the editor gives
positive ratings to the section or the paragraph that the editor edits. This
is because, we believe that if editors edit articles, the editors may not
read the whole page, but the editors should read the whole sections or
paragraphs, and delete low-quality texts. From experimental evaluation,
we confirmed that the proposed method could improve the accuracy of
quality values for articles.

Keywords: Wikipedia, Edit History, Quality, Reputation.

1 Introduction

Wikipedia1 is one of the most successful and well-known User Generated Content
(UGC) websites. It has more and fresher information than existing paper-based
encyclopedias, because any user can edit any article. Many experts submit texts,
and texts submitted by them should be informative for all who read it. Therefore,
as well as being very large, Wikipedia is also very important. However, a dramatic
increase in the number of editors causes an increase in the number of low-quality
articles. Kittur et al. [6] showed that about 78.6% of 147, 360 articles had not
reached “start” status2. Therefore, automatic or semi-automatic systems should
be developed to identify which part of article is high-quality and which is not.

In this paper, we propose a method to identify high quality texts using edit
history. Here we define the word “quality” as the degrees of excellence. The defi-
nition of quality has many aspects such as credibility, expertise, and correctness.
1 http://www.wikipedia.org/
2 http://en.wikipedia.org/wiki/Template:Grading

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 127–138, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.wikipedia.org/
http://en.wikipedia.org/wiki/Template:Grading

128 Y. Suzuki

Therefore, measuring excellence is difficult task. To solve this problem, we mea-
sure the number of editors who consider the article excellent, which is one of
the important aspects of quality. When many editors consider excellent for an
article, the quality of this article is high, but when a small number of editors
consider the article excellent, the quality is low. In the latter case, even if only a
small number of readers read the article, and these readers consider the article
excellent, we decide that the quality of the article is low. This is because, there
is a small number of evidence to decide whether the quality of the article is high
or low.

If editors find low quality texts, the editors generally reject and delete them.
Adler et al. [2] investigate that the recall for bad-quality short-lived text is 79%.
This means that if a text survives beyond multiple edits by the other editors,
the text should be high-quality. Therefore, using the survival ratio of texts, the
system calculates the quality value of a text.

Example 1: Let us consider a motivating example. One editor ea writes a part
p(ea) of an article. Then, another editor eb edits another part of this article,
but keeps p(ea) intact. In this case, we assume eb remains p(ea) as it is because
s/he judged p(ea) to be high-quality. Next, another editor ec deletes p(ea). We
assume that ec judged p(ea) to be low-quality, hence s/he deleted the text. As
a result, the paragraph p(ea) is confirmed by eb, but not confirmed by ec. If ec

had not delete p(ea), the quality in this case would have been higher than that
in the former case, because the paragraph p(ea) is trusted by one editor in the
former case whereas it was trusted by two editors in the latter case. In this case,
the survival ratio of p(ea) is 1 when eb edits, and 0 when ec edits. Therefore, the
overall survival ratio of p(ea) is 0.5.

In this method, when a text survives beyond multiple edits, the text is judged
as high quality. However, the problem is that every editor does not always read
the whole articles, then if there is low-quality text on long articles, the text is
treated as high-quality. In this paper, to solve this problem, we introduce to use
section and paragraph as a unit instead of the whole page. This means that if an
editor edits an article, the system treats that the editor gives positive ratings to
the section or the paragraph which the editor edits. This is because, we believe
that if editors edit articles, the editors may not read whole pages but should
read whole sections or paragraphs, and delete low-quality texts.

2 Related Work

Adler et al. [1–3], Hu et al. [5], Wilkinson et al. [10], and Suzuki et al. [8] pro-
posed a method for calculating quality values from edit histories. These methods
are based on survival ratios of texts and is similar to the basic idea described
at section 3.2. In these methods, edit distance is used for measuring difference
between old and new versions. In this case, the impact for text quality by dele-
tion and that by remaining are the same. However, these impacts of these two
operations should be different, because the editors can delete a text only once
whereas they can remain a text many times. Therefore, if we treat deletion and

Assessing Quality Values of Wikipedia Articles 129

Wikipedia
D

Article d

+-+ Wikipedia.org

- “RDX Wall Art: The Making Of”
iand new short documentary iand
new short isa new short
- isa new short documentary
- highlighting iand new sho
documentary
- some of the pioneers highlighting
iand new sho
more ...

Wikipedia

+-+ Wikipedia.org +-+ Wikipedia.org

- “RDX Wall Art: The Making Of” iand new
short documentary iand new short isa new
short

+-+ Wikipedia.org

- “RDX Wall Art: The Making Of” iand new short
documentary iand new short isa new short

- isa new short documentary
- highlighting iand new sho documentary
- some of the pioneers highlighting iand new sho
more ...

Wikipedia

Version v1
Version v0 Version v2

Version list V

part p2(e1)

part p1(e1)

part p2(e2)

part p2(e2)

(empty)

Fig. 1. Notations of this paper

remaining texts equivalently, we should separately calculate the impacts from
these operations, and then integrate after normalizing.

Moreover, these methods proposed in the past do not use negative ratings.
Therefore, when an editor writes many texts, and these texts are deleted imme-
diately, the editor of the text do not imposed a penalty, then the quality of the
editor do not decrease. We believe that the quality value of this editor should
be low, then we use both positive ratings and negative ratings.

3 Proposed Method

Our goal is to assess quality value of articles by mutually evaluating quality
values of texts and editors. The process is as follows:

1. The system extracts edit histories of articles
from dumped data, and identify editors of texts.

2. It calculates positive and negative ratings for editors from edit histories.
3. It calculates editor quality values by combining positive and negative ratings.
4. It calculates positive and negative ratings using editor quality values.
5. It calculates editor quality values using modified positive and negative

ratings.
6. Repeat 4. and 5. until editor quality value converges.
7. Calculate version quality values using editor quality values.

3.1 Modeling

In this section, we define notations that are used throughout this paper as shown
in Fig. 1. On Wikipedia, every article has a version list V = {vi|i = 0, 1, · · · , N}

130 Y. Suzuki

where i is the version number, and vN is the latest version. We denote that
if i = 0, v0 is a version with empty contents and no editor. If editor e in all
editors E creates a new article, the system makes two versions, v0 and v1, and
then the system stores the text of editor e in v1 which consist of one part p(e).
We identify editors using editor names, but anonymous editors have no editor
name. In this case, we use the IP address instead of editor name. Then, we define
version vi = {p(e)|e ∈ E} as a set of complete parts that is stored at i-th edit
and that consists of a text by 1, 2, · · · , i-th editors. p(e) is a part of article by
editor e. If e deletes all texts from i-th version, vi is an empty set.

Editor e creates a set of parts P (e) = {p(e)} where p(e) is a part created by e
for all articles. If e does not add any texts to any articles, P (e) is an empty set.
When editors edit one article by same user more than twice consecutively, the
system keeps the last version and deletes the other versions created by the users.
That is, the editor of a version and that of next version are always different.

The aim of our proposed method is calculating version quality value T (vi)
of version vi. To accomplish our mission, we should calculate converged parts
quality value τK(d, e) of parts on article d by editor e, and converted editor
quality value u′

K(e) of editor e. τ0(d, e) is an initial parts quality value, and U0(e)
is an initial editor quality value. In step 6. at section 3.3, we repeat calculating k-
th parts quality value τk(d, e) and k-th editor quality value Uk(e) until converge.
k = 1, 2, · · · , K is the number of repetitions of steps 4 and 5. τK(d, e) and u′

K(e)
is the converged value of τk(d, e) and u′

k(e).

3.2 Key Idea

We show how to calculate quality values of articles using an example of edit
history in Fig. 3. Using this example, we explain how to calculate quality values
of parts p(e1) that are added by editor e1 in version v1. First, we identify the
texts that are added in version v1. In this example, the editor e0 writes all texts
of v0, and the editor e1 adds the texts “Ueshima” and “Prime Minister” as p(e1)
to version v2. At this time, we suppose that e1 gives positive and negative ratings
to e0. e1 remains 21 letters written by e0 (“Yoshihiko”, “is”, “the”, “of Japan”),
then e1 gives 21 letters of positive ratings to e0. e1 deletes 13 letters written by
e0 (“Noda”, “president”), then e1 gives 13 letters of negative ratings to e0.

However, the problem of this method is that if e1 edits small edits, e1 writes
only a small number of letters and remain all texts, the system decides that e1

permits to remain almost all texts. We believe that all editors do not always read
whole articles. Therefore, when there are many editors who do not read whole
articles, the accuracy of quality values should decrease. To solve this problem,
we use section and paragraph as a reading unit.

3.3 Quality Value

In this section, we describe how to calculate positive and negative ratings. Fig.
4 shows an example to explain how to calculate positive and negative ratings.
First, we define a unit of article, section, and paragraph. A unit of whole article

Assessing Quality Values of Wikipedia Articles 131

<xml>
 <article>
 <title>Wiki</
 <contents>

 </contents>
 ...
 </article>

Edit History

+-+ Apirak.com +-+ Apirak.com +-+ Apirak.com

Version list V

Quality of v3

τ(v3) = 0.3

2

1

7

Calculate quality values of parts
(with quality values of editors u(e2))

Extract parts

4

3 Calculate quality value of editors
 (with quality value of parts τ(d,e2))5

6 Repeat 4 and 5 until convergence

p(e2)

p(e1)

p(e2)

p(e1)

p(e2)

p(e1)

p(e3)

p(e2)

v1 v2 v3

v1
v2 v3

Article d1

quality
0.8

p(e2)

Article d2

quality
0.1

p(e2)

Quality of e2

u(e2) = 0.45

Calculate quality of version

+-+ Apirak.com

p(e2)

p(e1)

p(e3)

Quality of e1: 0.4

e2: 0.45

e3: 0.1

v3

Quality of p(e2)

τ(d,e2) = 0.8

Fig. 2. Overview of our proposed method

is defined as texts in the whole article. A unit of section is defined as the texts
divided by symbols which indicate separation of sections. In this example, A
and B belong to the same section, C and D belong to different section. A unit of
paragraph is defined as texts divided by special, not linguistic characters, such
as HTML tags and line break code. In this example, A and B belong to different
paragraph because A and B is divided by line break.

We describe intuitive explanation of positive ratings. In this example, editor
e1 edits a part of article A. When we use whole article as a unit, we assume that
e1 permits to remain parts A, B, C, and D. Therefore, e1 gives positive ratings
to editors who write When we use section as a unit, we assume that e1 permits
to remain parts A and B. In this case, we suppose that e1 do not read C and
D because e1 do not edit. When we use paragraph as a unit, we assume that e1

permits to remain only A. In this case, we suppose that e1 do not read B, C,
and D.

132 Y. Suzuki

+-+ Apirak.com

v1
+-+ Apirak.com

v2
+-+ Apirak.com

v3

e1 e2
Yoshihiko Noda
is the president
of Japan.

Yoshihiko Ueshima
Noda
is the Prime Minister
of Japan.

Yoshihiko Noda
Ueshima
is the president
Prime Minister
of Japan.

p(e1) = {"Prime Minister"} p(e1) = {"Ueshima","Prime Minister"}

Fig. 3. Example of edit history

+- + Apirak.com

v2

e1

Prime Minister is...

Prime minister of Japan

1. Overview

3. Detail

Yoshihiko Noda Ueshima is the
president Prime Minister of
Japan.
He was born in Japan.

2. History
Junichiro Koizumi was the prime
minister of Japan.

article

section
paragraph

A

B

C

D

Fig. 4. Positive and Negative Ratings

We also describe explanation of negative ratings. In this example, editor e1

deletes two parts of A. Then, we assume that e1 do not permit to remain these
two parts. Therefore, e1 gives negative ratings to editors who write these two
parts. However, the degree of positive/negative ratings of e1 should depends on
the quality value of e1. This means that if e1 is a high-quality editor, the positive
and negative ratings by e1 should be large. To solve this problem, we mutually
calculate quality values of parts and editors.

Positive Ratings. Next, we calculate the quality values of parts using the
quality values of editors.

Whole Article as a Unit. We calculate the positive ratings using whole article
τpw
k (d, e) as follows:

τpw
k (d, e) = α · τpw

0 (d, e) + (1 − α)
∑
e′∈E

|δ(e′)|uk−1(e′) (1)

where E is a set of editors who delete p(e), δ(e′) is the letters in p(e) deleted by
e′, |δ(e′)| is the number of letters in δ(e′), and α (0 < α ≤ 1) is the parameter to
control the effect of editor quality value. uk−1(e′) is a quality value of e′ which
is calculated by the method using whole article as a unit.

Assessing Quality Values of Wikipedia Articles 133

The first part of expression of this equation means the part quality values,
which is defined τpw

0 (d, e) =
∑

p(e)∈P̄w
(log |p(e)|+1). When we calculate quality

value of parts, we use a log scale instead of the raw number of letters, because
we face a problem when the editor adds long texts. If an editor adds 10, 000
letters to the article, and the texts survive only one edit, this text quality value
is 10, 000, which is the same quality value as a 100-letter texts that survives
beyond 100 edits. We think that the latter text is higher quality than the former
text. Therefore, we count the number of characters using a log scale.

The second part of expression means the number of deleted letters with quality
values of editors who delete them. If an editor who has a low-quality value deletes
a part p(e), then the value of the second expression is high, then the value of
τpw
k (d, e) is almost the same as τpw

k−1(d, e). Therefore, the editor quality value
does not affect the part quality value. In this case, if the editor who deletes the
part has a high-quality value, the second expression has a high value. Thus, the
value of τpw

k (d, e) decreases more than τpw
k−1(d, e).

Section as a Unit. We calculate the positive ratings of parts using section
τps
k (d, e) by equation (1). E is a set of editors who delete p(e) ∈ P̄s, and uk−1(e′)

is a quality value of e′ which is calculated by the method using section as a unit.

Paragraph as a Unit. We calculate the positive ratings of part using paragraph
τpa
k (d, e) by equation (1). E is a set of editors who delete p(e) ∈ P̄a, and uk−1(e′)

is a quality value of e′ which is calculated by the method using section as a unit.

Negative Ratings. We calculate the negative ratings τn
k (d, e) as follows:

τn
k (d, e) = α · τn

k−1(d, e) + (1 − α)
∑

e′∈En

|δ(e′)|un′
k−1(e

′) (2)

where En is a set of editors who delete p(e) ∈ N , and ub′
k−1(e

′) is a quality
value of e′ which is calculated by the method using negative ratings. We set
τn
0 (d, e) =

∑
p(e)∈N (log |p(e)| + 1).

Quality Values of Parts. We define the quality values τk(d, e) of part of an
article d by editor e using positive and negative ratings as follows:

τk(d, e) = τp
k (d, e) − τn

k (d, e) (3)

where τp
k (d, e) is one of three text quality values τpw

k (d, e), τps
k (d, e), and τpa

k (d, e).

Quality Values of Editors Using Adjusted Quality Values of Parts.
Using part quality values τk(d, e), we define the editor quality values uk(e) of e
as follows:

uk(e) =
1

|D(e)| ·
∑

d∈D(e)

τk(d, e) (4)

134 Y. Suzuki

We normalize uk(e) to range between 0 and 1 as follows:

u′
k(e) =

uk(e) − min
e′∈E

uk(e′)

max
e′∈E

uk(e′) − min
e′∈E

uk(e′)
(5)

We repeat the processes until the values of τk(d, e) and uk(e) converge.

Quality Values of Versions. Using the converged value of u′
K(e), we define

the version quality value T (v) of version v as follows:

T (v) =
1
|v| ·

∑
e∈P (e)

u′
K(e) · |p(e)| (6)

where |v| is the number of letters in v, |p(e)| is the number of letters in p(e),
and u′

K(e) is the editor quality value of e. This function means that the version
quality value is the weighted averaging ratio of part quality values, and the
weight is the number of letters in the parts.

4 Experiments

To determine the accuracy of the quality values calculated by our proposed
system, we did experimental evaluation. In this evaluation, we tried to confirm
that when we use editor quality values to calculate text quality values, the article
quality values are accurate.

In this experiment, we compared 7 systems. 3 systems used only positive rat-
ings; page is the system using article based, sec is the system using section based,
and par is the system using paragraph based positive ratings. 1 system, delete,
using only negative ratings. 3 systems used both positive and negative ratings;
del+page used both article based positive ratings and negative ratings, del+sec
used both section based positive ratings and negative ratings, and del+par used
both paragraph based positive ratings and negative ratings.

We compared these systems using average precision ratio, which is an aver-
aging value of precision ratios at each recall level [4]. We compared the answer
set with the list of articles in ascending order of their quality values. If articles
in the answer set are ranked higher, we will be able to confirm that the system
calculates accurate quality values. The key in this evaluation is the appropriate-
ness of answer sets. In current information system retrieval evaluation, observers
create answer sets by judging relevance of articles. However, judging the qual-
ity of articles is difficult, so we cannot confirm the appropriateness of quality
judgments of articles. Therefore, we put featured and good articles selected by
Wikipedia users in the answer set.

We set α to 0.7 used at equations from (1) to (2). Before these experiments,
we set α from 0.1 to 0.9 in 0.1 increments and calculate averaging precision ratio
as preliminary experiment. In this result, when we set 0.7, we got the highest
averaging precision ratio of our proposed system.

Assessing Quality Values of Wikipedia Articles 135

4.1 Data Sets

In this experiment, we used the Japanese version of Wikipedia edit history
dumped on Jan. 4, 2012, which can be downloaded at the Wikipedia dump
download site3. We randomly select 1, 000 articles which contain 192, 227 ver-
sions. The number of editors is 65, 909 including not registered editors who are
identified by IP addresses, and bots which are listed4. When we select articles,
we referred to Wikipedia statistics5 to decide which articles we select. We do not
select the articles that do not contains at least one link to Wikipedia articles.
We also do not select the articles for specific purposes, such as redirect pages,
notes, and rules of Wikipedia.

In this experiment, we set the answer set of “featured” and “good” articles
as a correct answer set. Featured and good articles are selected by the votes
of Wikipedia users (mainly readers). These articles are evaluated by “Featured
article criteria”6 and peer reviewed by many active users. If vandals nominate
low-quality articles for featured or good articles, the nomination is rejected by
administrators. Therefore, we believe that these articles are high-quality, so we
could use featured and good articles as high-quality articles for the test set. The
number of featured and good articles are 72 and 611 respectively. In our selected
articles, the number of featured and good articles are 2 and 5 respectively. We
decide these 7 articles as answer set.

4.2 Experimental Results and Discussions

Fig. 5 shows an average precision ratio per each repeated count. The meaning
of each line is described at the top of section 4. From this graph, we unveil that
del+par, the system which use paragraph based positive ratings and negative
ratings calculates article quality values more accurately than the other methods.
When we compare the results of par and delete, the order of articles dramatically
changes, different high-quality articles have high quality values. Therefore, when
we combine these positive and negative ratings, we can calculate more accurate
quality values.

However, the repeats of calculation of positive/negative ratings and editor
quality values are not effective in this experiment. From Fig. 5, when repeated
count increases, average precision ratio increases at most 0.02%, almost 0%.
The reason of this is that 61% of all editors edit only one article more than
once. Therefore, when we construct bipartite graph of texts and editors, the
graph is very sparse. When editors edit small number of articles, small number
of the other editors review the articles, then the editors get small number of
positive/negative ratings. To be concrete, second expressions of equation (1)
almost equals to 0, then if we repeated to calculate quality values of parts, these
3 http://dumps.wikimedia.org/jawiki/20120104/
4 http://ja.wikipedia.org/wiki/WP:BOTST
5 Wikipedia: What is an article?:
http://en.wikipedia.org/wiki/Wikipedia:What_is_an_article

6 http://en.wikipedia.org/wiki/Wikipedia:Featured_article_criteria

http://dumps.wikimedia.org/jawiki/20120104/
http://ja.wikipedia.org/wiki/WP:BOTST
http://en.wikipedia.org/wiki/Wikipedia:What_is_an_article
http://en.wikipedia.org/wiki/Wikipedia:Featured_article_criteria

136 Y. Suzuki

100 1 2 3 4 5 6 7 8 9

6

0

1

2

3

4

5

Repeated Count

Av
er

ag
e P

re
cis

ion
 (%

)

delete

del+page

del+sec
del+par

par

sec

page

Fig. 5. Average precision ratio vs. repeated count

quality values do not change. Therefore, repeats of calculating editor quality
values are not effective. This is because, in this experiment, we selected only
1, 000 articles. If we calculate all articles at the Wikipedia, averaging precision
should increase by repeating calculation of editor quality values.

5 Conclusion

Wikipedia is the most popular and highest quality encyclopedia to be created
by many editors. The information on Wikipedia keeps expanding, but its qual-
ity is not proportional to its quantity. In this paper, we propose a method to
identify high-quality articles mutually evaluating editors and text to improve the
accuracy of quality values of versions.

In our method, we introduce a combination of a peer-review based quality
value calculation method and a link analysis method, which is based on quality
values of editors and texts. Not all editors are honest, and many vandals attack
Wikipedia by deleting high-quality texts. Using our proposed method, quality
values of editors affect that of texts. Therefore, if vandals delete high-quality
texts, they do not affect the survival ratio of the texts, so the quality values of
versions which are attacked by vandals do not decrease. As a result, we can calcu-
late accurate quality values of parts, editors, and versions without the activities
of vandals.

Moreover, in this paper, we tackled two problems. One problem is that every
editors do not always read whole articles, then if there is low-quality text on
long articles, the text is treated as high-quality. To solve this problem, we used
section and paragraph as a unit instead of whole page. This means that if an
editor edits an article, the system treats that the editor gives positive ratings to

Assessing Quality Values of Wikipedia Articles 137

the section or the paragraph which the editor edits. This is because, we believe
that if editors edit articles, the editors should read whole sections or paragraphs,
and delete low-quality texts. Another problem is that if there is a low-quality
editor, the editor writes texts many times, and the texts are deleted frequently,
the editor is treated as high-quality. This is because, survival ratio based methods
do not use features of negative ratings. To solve this problem, we used features
of negative ratings. From experimental evaluation, we confirm that our proposed
system can calculate accurate quality values if we use paragraph as a unit for
positive ratings and we also use negative ratings.

Quality of information is becoming increasingly important in information re-
trieval research field. An information retrieval system retrieves the documents
that are relevant to the user’s query, but the system is not concerned about
whether the documents are high-quality or not. However, if the retrieved doc-
uments are low-quality, they should not be retrieved even if they are relevant.
Therefore, as Toms et al. [9] already mentioned, when we combine an information
retrieval systems with our proposed high-quality article retrieval system, we will
develop an information retrieval system more accurate than current information
retrieval systems.

Finally, we describe three open problems:

Vagueness of Quality Value: In this paper, we calculated quality values for
editors described at section 3.3. However, this editor quality value is not always
distinct because the frequency of editing is different for each editor. We suppose
that if an editor rarely edits articles, the editor may just happen to obtain a
high quality value, but vagueness of the editor quality value should be high.
Therefore, we should develop a method to calculate vagueness of editor quality
values that does not depend on editor quality value.

Use of Natural Language Processing Techniques: In our proposed method,
we do not analyze linguistic structures; we only count the number of letters in
texts. A strong point of our proposed system is that it can adapt to different
language versions of Wikipedia articles. However, a weak point is that it cannot
use important features that come from linguistic features. In our experiment, we
found that high-quality articles are always written in formal language. Moreover,
Sabel et al. [7] says that text analysis is useful for calculating quality values.
For example, if an editor changes “A is a B.” to “A is not a B.” the number of
letters changes by only three, but the meanings of these sentences are completely
different. Therefore, we should analyze texts using natural language analysis
techniques for calculating survival ratio of texts.

Scalability: We implemented our system on a single PC with two CPUs and a
16 GB memory. As a result, this system took about 20 minutes to analyze 1, 000
articles on the Japanese version of Wikipedia. Therefore, to analyze the whole
Wikipedia, we will need more and more calculation costs. If we use multiple clus-
ter PCs and map/reduce frameworks such as Hadoop, we will reduce calculation
time of article analysis. We will therefore work on developing systems that are
more scalable.

138 Y. Suzuki

Acknowledgment. This work was partly supported by Japan Society for the
Promotion of Science, Grants-in-Aid for Scientific Research (23700113).

References

1. Adler, B.T., Chatterjee, K., de Alfaro, L., Faella, M., Pye, I., Raman, V.: Assigning
Trust to Wikipedia Content. In: Proceedings of the International Symposium on
Wikis (WikiSym 2008). ACM (2008)

2. Adler, B., de Alfaro, L.: A content-driven reputation system for the Wikipedia.
In: Proceedings of the 16th International Conference on World Wide Web (WWW
2007), pp. 261–270 (2007)

3. Adler, B., Chatterjee, K., de Alfaro, L., Faella, M., Pye, I., Raman, V.: Measuting
Author Contributions to the Wikipedia. In: Proceedings of the 2008 International
Symposium on Wikis (WikiSym 2008) (2008)

4. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval: the concepts
and technology behind search. Addison-Wesley (2011)

5. Hu, M., Lim, E., Sun, A., Lauw, H.W., Vuong, B.: Measuring Article Quality in
Wikipedia: Models and Evaluation. In: Proceedings of ACM International Con-
ference on Information and Knowledge Management (CIKM 2007), pp. 243–252
(2007)

6. Kittur, A., Kraut, R.E.: Harnessing the wisdom of crowds in wikipedia: quality
through coordination. In: Proceedings of the 2008 ACM Conference on Computer
Supported Cooperative Work, CSCW 2008, pp. 37–46. ACM, New York (2008)

7. Sabel, M.: Structuring Wiki revision history. In: Proceedings of the 2007 Interna-
tional Symposium on Wikis (WikiSym 2007), pp. 125–130. ACM (2007)

8. Suzuki, Y., Yoshikawa, M.: Qualityrank: Assessing quality of wikipedia articles by
mutually evaluating editors and text. In: Proceedings of the 23rd ACM Conference
on Hypertext and Social Media (HT 2012). ACM Press (to appear, 2012)

9. Toms, E.G., Mackenzie, T., Jordan, C., Hall, S.: wikiSearch: enabling interactivity
in search. In: Proceedings of the 32nd Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (SIGIR 2009), p. 843
(2009)

10. Wilkinson, D.M., Huberman, B.A.: Cooperation and quality in wikipedia. In: Pro-
ceedings of the 2007 International Symposium on Wikis (WikiSym 2007), pp. 157–
164. ACM (2007)

Form-Based Instant Search and Query

Autocompletion on Relational Data

Hao Wu and Lizhu Zhou

Department of Computer Science and Technology
Tsinghua University, Beijing 100084, China

haowu06@mails.tsinghua.edu.cn, dcszlz@tsinghua.edu.cn

Abstract. Finding information in relational data is a key task of data
management in the age of information explosion. However, state-of-the-
art search paradigms in relational data, such as Structured Query Lan-
guage (SQL), keyword search, and query-by-example (QBE) have their
own limitations. In this paper we address the issue of enhancing the
power of QBE-like search interface, i.e. form-style interface, by incorpo-
rating instant search and query autocompletion, which are useful features
for traditional keyword search but have not been paid enough attention
specifically for form-style interfaces by database researchers. We devise
effective index and efficient algorithms that can support instant search
and query autocompletion using distinct attribute string values simulta-
neously. In addition, we also consider the issue of query autocompletion
for those attributes in which each distinct attribute string value has few
occurrences in the table, and devise the algorithm that provides complete
words as completion results instead. We conducted extensive experiments
on real-world datasets, and results show that our methods outperform
baseline methods in terms of both efficiency and scalability.

1 Introduction

Finding information in structured data, specifically relational data, is a key task
of data management in the age of information explosion. In early days, people
could only use Structured Query Language (SQL) to find information in a rela-
tional database. SQL provides to users sufficient abilities to express their query
intents, but it is hard to use and master even by experienced users. In recent
years, because of its ease of use, keyword search on relational data has attracted
more and more interests from database researchers. Although keyword search
is a easy way for users to find information they need, sometimes its limited
expression power cannot meet users’ search requirements. For example, if we
want to find all papers whose titles contain the word “database” with Com-
pleteSearch1 [1], which is a search engine on the Computer Science Bibliography
(DBLP)2 dataset, and pose the keyword “database” as the query to the system,

1 http://dblp.mpi-inf.mpg.de/dblp
2 http://www.informatik.uni-trier.de/~ley/db

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 139–151, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://dblp.mpi-inf.mpg.de/dblp
http://www.informatik.uni-trier.de/~ley/db

140 H. Wu and L. Zhou

then some of the top-ranked results are irrelevant because in each of them the
word is contained in conference name instead of paper’s title. Another example
is that, if we want to find all of Wei Wang’s publications, and simply input “wei
wang” as the query to CompelteSearch, none of the top 20 results are relevant
because the system interprets “wei” and “wang” as two names.

A trade-off between the ease of use and expression power is Query-By-Example
(QBE), in which users input their queries by filling in forms with keywords. By
specifying the query condition to different input boxes, the user can express her
query intent. However, since a form-style interface is more complicated than a
single input box that is used for keyword search, its usage is limited to those
“advanced search” systems in real applications, such as eBay Advanced Search3

and PubMed Advanced Search4, etc.
In this paper we investigate the problem of enhancing the ease of use of form-

style interface by introducing the instant search feature to it. With this feature
users can get results instantly right after each keystroke when they are filling
in the form. The feature of instant search has been proved to be useful in im-
proving the user experience of traditional keyword search, but it has never been
considered to be applied in form-style interfaces before. In addition, to further
improve the user experience, we investigate the problem of query autocompletion
for form-style interfaces, with which users can get lists of suggested attribute val-
ues or keywords that can help them extend their current queries to get the results
they need more quickly when they are typing in the form. The contributions of
this paper are summarized as follows.

• We designed a trie-based index and an efficient incremental algorithm that
support simultaneous instant search and query autocompletion for querying
relational tables. We also considered the techniques to improve the perfor-
mance of the algorithm by avoiding unnecessary computations.

• We addressed the problem of query autocompletion for textual attributes, in
which each distinct attribute value has very few occurrences in the data table,
using keywords as completion results. We proposed an efficient algorithm,
namely HistScan, that avoid brute-force scan operations by traversing the
trie structure in a best-first manner instead of depth-first manner with the
support of converting inverted lists and result lists into histograms.

• We conducted extensive experiments to evaluate our algorithms on real
datasets. Results showed that our algorithms can achieve interactive speed
for instant search and real time query autocompletion, and can greatly out-
perform baseline algorithms in terms of both efficiency and scalability.

Besides, we also built a real system that can provide a fully-functional form-style
instant search and autocompletion support on the DBLP dataset for computer
science researchers. The system is called Seaform5, which stands for Search-as-
you-type on forms. The system has been online since Oct. 2009, and a brief

3 http://shop.ebay.com/ebayadvsearch
4 http://www.ncbi.nlm.nih.gov/pubmed/advanced
5 http://dbease.cs.tsinghua.edu.cn/seaform/

http://shop.ebay.com/ebayadvsearch
http://www.ncbi.nlm.nih.gov/pubmed/advanced
http://dbease.cs.tsinghua.edu.cn/seaform/

Form-Based Instant Search and Query Autocompletion on Relational Data 141

introduction of it can be found in [16]. All of our experiments in this paper were
based on the real query log of this system.

The rest of the paper is organized as follows. In Section 2 we formally define
the problems we address. We propose our basic index structures and algorithms
in Section 3, and introduce the techniques of query autocompletion for textual
attributes in Section 4. Experimental results are presented in Section 5. We give
a review of related work in Section 6 and conclude this paper in Section 7.

2 Problem Formulation

In this paper, we use a single relational table as our underlying data. We denote
the set of tuples of the table we are going to search by T = {t1, t2, . . . , tM}. The
attribute set of the table is denoted by A = {a1, a2, . . . , aN}. The value of the
attribute an of the tuple tm is denoted by tm,n, where m ∈ [1,M] and n ∈ [1, N].
For example, Figure 1(a) illustrates a sample relational table.

xml database

xml database

xml search

xml security

xquery optimization

VLDB

SIGMOD

VLDB

VLDB

SIGMOD

albert

bob

albert

alice

charlie

1

2

3

4

5

Title Conf. AuthorID

(a) A sample dataset.

xmlTitle:

alAuthor:

albert

alice

xml database (albert)

xml search (albert)

xml security (alice)

(b) A form-style query.

Fig. 1. A sample relational table (left) and a typical form-style query (right). The
second figure also illustrates the result list of instant search in the right-side box, as
well as the result list of query autocompletion in the lower-left box.

A form-style keyword search interface consists of several input boxes (see
Figure 1(b)). Each of these input boxes corresponds to an attribute of the table.
When a user wants to search for something with this interface, she fills in the
input boxes with query keywords, and a form-style query is then posed to the
system. Without loss of generality, in this paper we only consider the case in
which each attribute has exactly one corresponding input box on the form, and
as a result we can avoid the distinguishing of attributes and input boxes in the
rest of the paper. Formally, a form-style query is defined by q = {fn|n ∈ [1, N]},
where fn, called the n-th field of the query, denotes the non-empty query string
in the input box that corresponds to the attribute an. For example, the query
{Title:“xml”,Author:“al”} has two fields: one is “xml” that belongs to the Title
input box, the other is “al” that belongs to the Author input box.

Each field in a form-style query denotes the search condition to the corre-
sponding attribute values of the tuples in the relational table. For instant key-
word search, keywords in form-style queries are usually prefix keywords, i.e. each
keyword is meant to be a prefix of a set of possible complete words appear

142 H. Wu and L. Zhou

in the data table. Formally, we use p � w to denote that a prefix keyword p
is a prefix of a complete word w. If each prefix keyword in a query q has a
matched complete word in the corresponding attribute in a tuple ti, we say that
q matches ti. In other words, q matches ti (denoted by q � ti) if and only if
∀fn ∈ q, ∀p ∈ qn, ∃w ∈ ti,n, s.t. p � w. With the help of above concepts, we can
formally define the problem of form-based instant search as follows.

Definition 1 (Form-Based Instant Search). Given a relational table T ,
form-based instant search answers the form-style query q with a set of tuples
R = {ti|ti ∈ T and q � ti} as the result.

To further improve the user experience, we can provide all possible distinct
attribute string values of the currently-editing input box as query completions
to the user when they are filling in the form. Assume that a user is inputting
her query q in the n-th input box and the result of form-based instant search is
R. We use Sn to denote the set of distinct string values of the attribute an, and
use Sn,qn to denote the set of those strings in Sn that are matched by qn. We
rank the strings in Sn,qn by their number of occurrences, a.k.a. frequencies, in R,
and provide top-ranked ones to the user as completions. To summary, the formal
definition of the problem of form-based query autocompletion is as follows.

Definition 2 (Form-Based Query Autocompletion). Given a form-style
query q and its result set R, the completion list for the n-th attribute is the top-k
ranked distinct string values in Sn,qn , in which the score of each string value
s ∈ Sn,qn is calculated by its number of occurrences (frequencies) in R.

In the following section, we will introduce the detail of our index structures
and algorithms that support form-based instant search and query autocomple-
tion simultaneously. However, for some kind of attribute such as Title, returning
distinct attribute string values to the user is useless for guiding her compose
a better query because the number of occurrences of a specific attribute string
value will be small. We call this kind of attribute the textual attribute (corre-
spondingly, we call the other attributes the categorical attribute). We discuss
the techniques of providing complete words as autocompletion results instead of
attribute string values to the user in Section 4.

3 Basic Index Structures and Algorithms

3.1 Form-Based Prefix Keyword Search

According to the definition, the main difference between form-based keyword
search and traditional keyword search is that a user’s query conditions can be
split into fields and specified to different attributes. As a result, each attribute
of the data table should have its own index. Specifically, to support prefix-
matching-based keyword search, which is the very basic requirement of instant
search, we index all of the words appear in each attribute into a trie structure.

Form-Based Instant Search and Query Autocompletion on Relational Data 143

Φ

x
s

m

l

e

a c

d

s

……

h y

o

p

…… ……

t

n

……

a

t

T1: xml database

T2: xml search

T3: xml security

(a) Trie structure.

1, 2

3

4

5

T1

T2

T3

T4

GID(s)LIDT1

T1

T2

T3

1

2

3

4

LID(s)GID

T45

Local-Global

Mappings:

Global-Local

Mappings:

(b) Mapping tables.

Fig. 2. The index structures of the Title attribute for our sample dataset

A trie is a special tree structure in which a path from the root to a leaf corre-
sponds to a word and all the words with common prefixes share the same path
from the root. For example, Figure 2(a) shows the trie structure of the Title
attribute of our sample dataset shown in Figure 1(a).

We can attach an inverted list of tuple ids to each leaf node of the trie to
support simple keyword search by prefixes (see Figure 2(b)). For each field in
the query, we first locate the trie node for each of the prefix keyword. We get the
id list of each prefix keyword by calculating the union of all the inverted lists of
the leaf nodes under the sub-trie of the previously located trie node. Finally, we
intersect the id lists of all the prefix keywords of all the query fields to get the
final id list of the result set, called result list for short.

However, the problem we should solve is not the simple prefix keyword search
only. We should also consider the problem of: 1) query autocompletion; and
2) making prefix keyword search achieve interactive speed. To this end, in the
following two sub-sections, we will introduce our adapted index and algorithms
that support simultaneous query autocompletion and our cache-based techniques
that can greatly improve the overall performance of our online processing by
making all the online calculations incremental.

3.2 Simultaneous Query Autocompletion

The data structures that is used to support this new method are several mapping
tables. First, for each attribute, we construct a so-called local-global mapping
table. The l-th row of the mapping table stores the ids of all the tuple in the
data table containing the l-th distinct string value (for each distinct string value
we assign an id to it, called local id, as well). Second, we also construct a global-
local mapping table, in which the g-th row contains the local ids of distinct string
values that is contained in the g-th tuple in the data table (accordingly, the id
of a tuple in the data table is called a global id). For example, Figure 2(b) shows
the two mapping tables for the Title attribute.

144 H. Wu and L. Zhou

To make the autocompletion more efficiently, we split the process of original
prefix keyword search into three steps, and computes the search results and
completion results simultaneously. Specifically, the first step of our new method
is to find matched attribute string values according to each of the query fields,
the second step is to find result set of tuples using these attribute string values,
and the final step is to verify the attribute string values of the currently-editing
attribute according to the result set to compose the completion list.

3.3 Incremental Online Processing

The key requirement of instant search and query autocompletion is efficiency.
As a result, it is reasonable to utilize the previously-computed results and use
the difference of the queries to compute new results. This is called incremental
online processing. Specifically, we cache the previous query and its results. When
a new query is submitted, we first check the cache to see whether the query can be
answered from the cached results. If the new query can be obtained by extending
the cached query with one or more letters, then we have a cache hit. We perform
the non-incremental search algorithm described previously if there is no cache
hit, or perform an incremental search based on the base query and base results if
there is a cache hit. We use global results to denote the result id list of tuples in
the data table, and use local results to denote the id list of distinct string values
of an attribute. The incremental algorithm can be described as follows.

Step 1. Identify the difference between the cached query and the new query. We
use an to denote the currently-editing attribute (i.e. input box), and use
p to denote the newly appended prefix keyword.

Step 2. Calculate the local ids of an based on the query string in an. This is
done by merging the id lists of all the leaf nodes on the sub-tree rooted
at the node corresponding to w in the trie, and then intersecting the
merged list with the local base results of an.

Step 3. Calculate the global results. This is done by first calculating the set of
global ids corresponding to the local results of an calculated in Step 2
using the local-global mappings in the index, and then intersecting it
with the cached global results.

Step 4. Calculate the local results of an. This step is called “synchronization”.
It is done by first calculating the set of local ids corresponding to the
global results using the global-local mapping table in the index, and
then intersecting it with the local base results of an.

Dual-List Trie Structures. In step 3 of the incremental algorithm, to obtain
the global results, we map the local ids calculated in step 2 to lists of global ids,
merge these lists, and then intersect the merged list with the global base results.
If there are many local ids, the merge operation could be very time consuming.
To address this problem, we can attach an inverted list of global ids to each of
the corresponding trie leaf nodes. In this way, given a prefix keyword, we can
identify the matched tuple in the data table without any mapping operation.

Form-Based Instant Search and Query Autocompletion on Relational Data 145

We call the adapted trie structures dual-list tries. With the help of dual-list tries,
the overall search time can be reduced compared with that of using original tries,
which are called single-list tries.

On-Demand Synchronization. In step 4 of the incremental algorithm we
use a brute-force method to keep the local result list of the currently-editing
attribute (an) up to date. However, if the user does not switch the input box
to another one, it is unnecessary to perform synchronization for this input box.
As a result, we do not perform synchronization for the query that has the same
currently-editing input box with the cached query. On the other hand, if the
user changes her focus to another input box, we must synchronize for (and only
for) the corresponding attribute at once. We call this mechanism the on-demand
synchronization. It requires one merge operation and one intersection operation.
In contrast, the brute-force synchronization requires one merge operation and
one intersection operation whenever the user types in a letter.

4 Autocompletion for Textual Attributes

As is discussed in Section 2, if a user is typing in her query in the input box of a
textual attribute (for example, in the Title input box), showing a list of distinct
attribute string values (i.e. complete title strings) to the user cannot help her
much to extend the query. This is because each attribute string value has very
few occurrences in the dataset. To address this issue, for textual attributes, we
provide a list of ranked keywords instead of attribute string values as query-
extending suggestions (a.k.a. query completions). Specifically, we calculate the
scores of each possible keywords according to the current search result set and
the current keyword prefix the user is inputting, and return top-k keywords as
completions. The score of a keyword to suggest is defined by the number of
tuples it appears (i.e. its frequency) in the result set of search. The rational of
using this definition is straightforward: if the user uses the top-ranked keyword
to extend her query, she will get the largest result set compared with using other
keywords. This kind of query autocompletion is called frequency-based keyword
suggestion for form-based instant search, and is defined as follows.

Definition 3 (Frequency-Based Keyword Suggestion). Given the search
result set R and the currently-input keyword prefix p in the input box of a textual
attribute An, we return the top-k frequent keywords appear in the attribute An in
the tuples of R. In addition, these keywords should also take p as their prefixes.

4.1 ScanCount: Exact Method as Baseline

The most straightforward method can be derived directly from the definition of
the problem. Conceptually, after we get the result set R, we scan each of the
tuples in R, and count the occurrences of each word in attribute An. Meanwhile,
we should also avoid those words that do not take p as their prefixes. The detail
of this baseline algorithm is omitted due to space limitation.

146 H. Wu and L. Zhou

4.2 HistScan: Histogram-Based Estimation

Although the ScanCount algorithm is straightforward to implement, its perfor-
mance highly depends on the size of the result set: if the result set is large,
the algorithm should scan through too many tuples, making the processing time
too long for short queries (since short queries usually lead to large result sets).
An alternative method is to scan all possible keywords instead of tuples in the
result set, calculate their frequencies, and then return top-k most frequent ones
as completions. Obviously, the performance of this method does not depend on
the size of the result set, making it specially fit for short queries.

The key of this keyword-scan method is the calculation of the frequency values
of keywords. With the help of the index we proposed in Section 3, we can get the
frequency of a keyword by intersecting its inverted tuple id list with the id list
of the result set (called the result list for short). However, this method requires
O(|I| · log(|R|)) or O(|R| · log(|I|)) time where I denotes the inverted list of the
keyword, making it unsatisfactory in terms of performance.

Our solution is to convert the id lists (the inverted list and the result list)
into histograms, and estimate the frequency value of the keyword using these
histograms in O(1) time. The histogram of an id list is defined as follows.

Definition 4 (Histogram of ID List). Given an id list L =
〈
l1, l2, . . . , l|L|

〉
,

its corresponding histogram H(L) is a B-length array 〈h1, h2, . . . , hB〉, where hb ∈
[1, B] is the number of ids in L that are in

(
M
B · (b − 1), MB · b

]
. Here B ∈ [1,M]

is a user-defined number, and M is the number of tuples in the dataset.

Using histograms, the frequency of a word w, whose inverted list is I, in the
result list R can be estimated by

freq(w|R) ≈
∑
b

(
h
(I)
b · h

(R)
b · B

M

)
=

∑
b

h
(I)
b · h

(R)
b = H(I) ·H(R) , (1)

i.e. it is the dot product of the two arrays. It can be proved that this estimated
frequency can get more accurate when we use a larger B (proof omitted due
to space limitation). However, a larger B value also leads to more computation
and more storage space for histogram maintain. As a result, adjusting B it is a
trade-off between accuracy and efficiency.

Now we can describe our new query autocompletion algorithm as follows.
During the offline process of index building, we calculate the histogram for each
of the words appear in attribute an. During the online process, we first calculate
the histogram of the result list, and then estimate the frequencies of all the
matched words using Equation (1). The matched words can be obtained by first
identifying the node on the trie of an in the index corresponding to the currently-
inputting keyword prefix in the query, and then traversing the sub-trie rooted
at this node to find all of the leaf nodes. Finally, we sort the matched words in
descending order of their estimated frequencies and return the top-k of them as
query autocompletion results. This algorithm is called HistScan.

Form-Based Instant Search and Query Autocompletion on Relational Data 147

4.3 HistBFS: Scan-Free Histogram-Based Estimation

Both of the previous two algorithms have poor performance since they cannot
avoid costly scan operations. In this sub-section we propose an algorithm that
can avoid the scan on either of the result list or the matched words by applying
a best-first traversal on the trie structure of the attribute an.

For each non-leaf node x on the trie, we estimate the maximum frequency
among all of the leaf nodes (complete words) in the sub-trie rooted at x using
the pre-calculated histogram for x and the histogram of R. We traverse the trie
by enumerating nodes in descending order of the estimated maximum frequency
values. Using this traversal strategy, we can avoid visiting unpromising sub-tries,
as well as the scan of all the words or result tuples. To estimate the maximum
frequency value for a node x without enumerating its corresponding leaf nodes,
the histogram of x should be set as the maximum-merging of the histograms of
its child nodes, which is defined as follows.

Definition 5 (Maximum-Merging of Histograms). Given a set of B-length

histograms H = {H(i)}, in which H(i) = 〈h(i)
1 , h

(i)
2 , . . . , h

(i)
B 〉, its maximum-

merging is a histogram H∗ = 〈h∗
1, h

∗
2, . . . , h

∗
B〉, where h∗

b = maxi h
(i)
b .

It can be proved that, if we set the histogram of x to be the maximum-merging
of all of its child nodes, the estimated frequency value is an upper bound of the
actual maximum frequency value among all the leaf nodes of x, no matter what
the result set R is. The detail of proof is omitted here.

The maximum-merging histograms for each node on the trie can be calculated
in a bottom-up manner after we build the trie structure. During online process-
ing, we use a priority-queue to maintain the traversal state. The detail of this
algorithm, called HistBFS, is illustrated in Figure 3.

Algorithm 1: HistBFS(p,R)

input : p The currently-inputting keyword prefix;
R The ID list of the result set.

output: C The list of keyword completions.

1 Locate the corresponding trie node x according to p;

2 Push 〈x, fx〉 into an empty priority-queue Q, where fx = H(x) ·H(R);
3 while Q �= ∅ and |C| < k do
4 Pop the top element 〈y, fy〉 in Q;
5 if y is a leaf node then Add the word corresponding to y to C;
6 else if y is a non-leaf node then
7 Let Z be the set of y’s child nodes;

8 foreach z ∈ Z do Push 〈z, fz〉 into Q, where fz = H(z) ·H(R);

9 return C;

Fig. 3. The HistBFS algorithm

148 H. Wu and L. Zhou

5 Experiments

In this section, we evaluate our proposed algorithms on a real-world dataset,
DBLP, which contains 1.3 million computer-science publications. The dataset
is delivered in XML format, as a result we converted it into a single relational
table, in which each tuple contains the following attributes of a published paper:
ID, Title, Journal Name, Authors, and Year. The whole table is approximately
400MB large. We implemented our algorithms in C++ and compiled our code
using gcc with -O3 flag. All the experiments were done on a Ubuntu computer
with Intel Xeon CPU 2.50GHz and 16GB of RAM.

5.1 Evaluation of Incremental Algorithms

We used a workload of 45,276 real queries collected from the query log of our
Seaform system to evaluate our proposed algorithms. Figure 4 shows the com-
parison of average processing time per query of four algorithms: (1) SL-BF,
which uses Single-List tries and Brute-Force synchronization, (2) SL-OD, which
uses Single-List tries and On-Demand synchronization, (3) DL-BF, which uses
Dual-List tries and Brute-Force synchronization, and (4) DL-OD, which uses
Dual-List tries and On-Demand synchronization.

 0

 20

 40

 60

 80

 100

 120

 140

A
vg

. q
ue

ry
 ti

m
e

(m
s.

) SL-BF
SL-OD
DL-BF
DL-OD

Fig. 4. Performances of the incremental algorithm

We can see that both the dual-list tries and on-demand synchronization can
improve the performance speed. If we use these two together, the DL-OD algo-
rithm can answer a query two times faster than using none of the optimizations,
at an average speed of 50 milliseconds per query. Figure 5 shows the scalability
of the DL-OD algorithm. The processing time and index size increase linearly as
the dataset increases. The index size gets slightly larger if we use dual-list tries
compared with using single-list tries (10% larger), while the algorithm becomes
about 2 times faster.

Form-Based Instant Search and Query Autocompletion on Relational Data 149

 0

 100

 200

 300

 400

 500

 2 4 6 8 10 12 14

In
de

x
si

ze
 (

M
B

)

of records (x 105)

Dual-list
Single-list

(a) Index size.

 0

 10

 20

 30

 40

 50

 2 4 6 8 10 12 14

A
vg

. t
im

e
(m

s.
)

of records (x 105)

(b) Average processing time.

Fig. 5. The scalability of the DL-OD algorithm

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000

A
vg

. t
im

e
(m

s.
)

Values of B

ScanCount

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000

A
vg

. t
im

e
(m

s.
)

Values of B

HistScan

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000

A
vg

. t
im

e
(m

s.
)

Values of B

HistBFS

Fig. 6. Performances of the three query autocompletion algorithms

5.2 Evaluation of Query Autocompletion

In the DBLP dataset, the Title attribute is a textual attribute. As a result,
we evaluated our three algorithms for query autocompletion specifically on this
attribute. The query workload we used is a subset of the 45,276 queries: we
only consider the queries whose Title fields are not empty. Figure 6 shows the
performance of the three algorithms we proposed. As we can see, when the
length of the histogram, B, varies, the performance of HistScan and HistBFS

gets worse. However, HistBFS still greatly outperforms the other two.
Figure 7 illustrates the comparison of the size of the histograms and the

accuracy. The precision values used in the accuracy computation is obtained by
comparing the results of HistBFS and ScanCount (here ScanCount is used for
ground-truth). We can see that, when B varies, the total size increases while the
accuracy also increases. This result tells us that we can trade-off between the
scalability and accuracy by choosing different B values.

150 H. Wu and L. Zhou

 1

 10

 100

 1000

 10000

 10 100 1000

H
is

to
gr

am
 s

iz
e

(M
B

)

Values of B

HistScan(BFS)

(a) Size of all the histograms.

 50

 55

 60

 65

 70

 75

 80

 10 100 1000

P
re

ci
si

on
 (

%
)

Values of B

HistScan(BFS)

(b) Precision of estimation.

Fig. 7. Scalability vs. accuracy

6 Related Work

Making the querying on relational data easier has attracted many interests
of database researchers recently [12]. Query-By-Example [17] is the earliest
paradigm that enables a user query a relational database without using SQLs.
In recent years, keyword search has been used as a novel search method in re-
lational databases [3]. With the support of autocompletion [7,14] and the ‘type-
ahead’ functionality [1,10,13], keyword search becomes more and more powerful
in searching the underlying data with relatively simple schemas. In addition, [6]
takes another way of making the querying of relational data easier by suggesting
complete SQL statements to users according to their keyword queries. These
works are all based on single-input-box interfaces.

Query autocompletion on relational databases has also been researched for
years. [2] provides users the ability to navigate a relational database in different
facets. [1] and [5] also provide query autocompletion over the DBLP dataset. In
addition, [11] and [15] enable users to navigate the underlying dataset by choos-
ing one of the frequently occurred terms. There are also recent works on keyword
search in form-style interfaces, in which [8] and [9] focus on form creation, and
[4] focuses on finding the most possible interfaces for keyword search. Obviously,
the goals of these works are different from ours.

7 Conclusions

In this paper we proposed new methods of instant search and query autocomple-
tion that can greatly improve the ease of use of traditional QBE search paradigm.
Experimental results show that our algorithms achieve scalability and accuracy,
and also have high performance.

Acknowledgement. This work is supported by the National Natural Science
Foundation of China (Grant No. 60833003).

Form-Based Instant Search and Query Autocompletion on Relational Data 151

References

1. Bast, H., Weber, I.: Type less, find more: fast autocompletion search with a succinct
index. In: SIGIR, pp. 364–371 (2006)

2. Basu Roy, S., Wang, H., Das, G., Nambiar, U., Mohania, M.: Minimum-effort driven
dynamic faceted search in structured databases. In: CIKM, pp. 13–22 (2008)

3. Chen, Y., Wang, W., Liu, Z., Lin, X.: Keyword search on structured and semi-
structured data. In: SIGMOD Conference, pp. 1005–1010 (2009)

4. Chu, E., Baid, A., Chai, X., Doan, A., Naughton, J.F.: Combining keyword search
and forms for ad hoc querying of databases. In: SIGMOD Conference, pp. 349–360
(2009)

5. Diederich, J., Balke, W.-T.: The Semantic GrowBag Algorithm: Automatically
Deriving Categorization Systems. In: Kovács, L., Fuhr, N., Meghini, C. (eds.)
ECDL 2007. LNCS, vol. 4675, pp. 1–13. Springer, Heidelberg (2007)

6. Fan, J., Li, G., Zhou, L.: Interactive sql query suggestion: Making databases user-
friendly. In: ICDE, pp. 351–362 (2011)

7. Grabski, K., Scheffer, T.: Sentence completion. In: SIGIR, pp. 433–439 (2004)
8. Jayapandian, M., Jagadish, H.V.: Automated creation of a forms-based database

query interface. PVLDB 1(1), 695–709 (2008)
9. Jayapandian, M., Jagadish, H.V.: Automating the design and construction of query

forms. IEEE Trans. Knowl. Data Eng. 21(10), 1389–1402 (2009)
10. Ji, S., Li, G., Li, C., Feng, J.: Efficient interactive fuzzy keyword search. In: WWW,

pp. 371–380 (2009)
11. Koutrika, G., Zadeh, Z.M., Garcia-Molina, H.: Data clouds: summarizing keyword

search results over structured data. In: EDBT, pp. 391–402 (2009)
12. Li, G., Fan, J., Wu, H., Wang, J., Feng, J.: Dbease: Making databases user-friendly

and easily accessible. In: CIDR, pp. 45–56 (2011)
13. Li, G., Ji, S., Li, C., Feng, J.: Efficient type-ahead search on relational data: A

TASTIER approach. In: SIGMOD Conference, pp. 695–706 (2009)
14. Nandi, A., Jagadish, H.V.: Assisted querying using instant-response interfaces. In:

SIGMOD Conference, pp. 1156–1158 (2007)
15. Tao, Y., Yu, J.X.: Finding frequent co-occurring terms in relational keyword search.

In: EDBT, pp. 839–850 (2009)
16. Wu, H., Li, G., Li, C., Zhou, L.: Seaform: Search-as-you-type in forms.

PVLDB 3(2), 1565–1568 (2010)
17. Zloof, M.M.: Query-by-example: the invocation and definition of tables and forms.

In: VLDB, pp. 1–24 (1975)

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 152–164, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Range Query Estimation
for Dirty Data Management System*

Yan Zhang, Long Yang, and Hongzhi Wang**

Department of Computer Science and Technology
Harbin Institute of Technology

zhangy@hit.edu.cn, {yanglonghit,whongzhi}@gmail.com

Abstract. In recent years, data quality issues have attracted wide attention. Data
quality is mainly caused by dirty data. Currently, many methods for dirty data
management have been proposed, and one of them is entity-based relational
database in which one tuple represents an entity. The traditional query
optimizations having the ability to estimate the cost of execution of a query plan
have not been suitable for the new entity-based model. Then new query
optimizations need to be developed. In this paper, we propose new query
selectivity estimation based on histogram, and focus on solving the
overestimation which traditional methods lead to. We prove our approaches are
unbiased. The experimental results on both real and synthetic data sets show
that our approaches can give good estimates with low error.

Keywords: query estimation, histogram, dirty data, data quality.

1 Introduction

Data quality has been addressed in different areas, such as statistics, management
science, and computer science [1]. Dirty data is the main reason to cause data quality.
Many surveys reveal dirty data exists in most database systems. The consequences of
dirty data may be severe. Having uncertain, duplicate or inconsistent dirty data leads
to ineffective marketing, operational inefficiencies, and poor business decisions. For
example, it is reported [2] that dirty data in retail databases alone costs US consumers
$2.5 billion a year. Therefore, several techniques have been developed to process dirty
data to reduce the harm of dirty data.

Existing work on processing dirty data can be divided into two broad categories.
The first category is data cleaning [3], which is to detect and remove errors and
inconsistencies from data to improve data quality. However, data cleaning cannot
clean the dirty data exhaustively and excessive data cleaning may lead to the loss of
information. Besides this, existing data cleaning techniques are generally time-
consuming. Therefore, some researchers propose algorithms in the other category, to

* This paper was partially supported by NGFR 973 grant 2012CB316200 and NSFC grant

61003046, 6111113089. Doctoral Fund of Ministry of Education of China (No.
20102302120054).

** Corresponding author.

 Range Query Estimation for Dirty Data Management System 153

perform queries on dirty data directly and obtain query results with clean degree from
the dirty data [4-6].

Several models for dirty data management without data cleaning have been
proposed [7-9]. But most of these models only consider the uncertainty in values of
the attributes and the quality degree of the data without the consideration of the
entities in real world and their relationships. In this paper, we focus on entity-based
relational database model in which one tuple represents an entity. This model can
better reflect the real world entities and their relationships.

In applications, the different representations of the same real-word entities often
lead to inconsistent data, uncertain data or duplicate data, especially when multiple
data sources need to be integrated [10-11]. In the entity-based relational database, for
the duplicate data referring to the same real-world entity, we combine these data, and
for inconsistent data (or uncertain data), we endow each of them a value (we call it as
quality degree) which reflects its quality. Example 1 shows this process.

Table 1. A Dirty Data Fragment

ID Name City Zipcode Phn Reprsnt
1 Wal-Mart Beijing 90015 80103389 Sham
2 Carrefour Harbin 20016 80374832 Morgan
3 Wal-Mart BJ 90015 010-80103389 Sham
4 Walmart Harbin 20040 70937485 Sham
5 Carrefour Beijing 90015 83950321 Morgan
6 Mal-Mart Beijing 90015 80103389 Sham

Example 1: Consider a fragment of the dirty data shown in Table 1. We can easily
identify that tuples 1, 3 and 6 refer to the same entity in the real world even though
their representations are different. By preforming entity resolution and combining
these three tuples, we can get one entity tuple. In this process, we don’t remove any
data, which implies that the value of one attribute in a tuple may be uncertain, and it
may contain multiple values. We endow possible each attribute value with a quality
degree in accordance with their proportion, as shown in Table 2. In tuples 1, 3 and 6,
the value “Wal-Mart” appears twice, so the quality degree is 2/3 ≈ 0.67. Similarly,
other quality degrees can be given. Then we get an entity tuple as shown in Table 2.

Table 2. An Entity Tuple

ID Name City Zipcode Phn Reprsnt

1
(Wal-Mart, 0.67),
(Mal-Mart, 0.33)

(Beijing, 0.67),
(BJ, 0.33)

(90015, 1.0)
(80103389, 0.67),
(010-80103389, 0.33)

(Sham, 1.0)

As Example1 shows, the entity-based relational database ingeniously processes the
dirty data by entity resolution [12-13] and quality degree. In the implementation of
this model, query optimization techniques are in demand. As the base of the query
optimization, the estimation technique computing the size of the results of an operator
is crucial. Even though over the past few decades, there has been a lot of work on
query estimation for traditional relational database management systems. Most

154 Y. Zhang, L. Yang, and H. Wang

approaches for query estimation are based on histogram [14], which records data
distributions. However, the traditional histograms are not suitable for entity-based
relational database, and often lead to overestimation, especially for range queries. One
reason is that query processing on the entity-based relational database need to
consider the effect of the quality degrees of values, but the traditional histograms are
only concerned about the attribute value without the consideration of the quality
degree. The other reason is that traditional approaches based on histogram often lead
to overestimation, especially for range queries. Because one attribute of a tuple may
contain multiple values in the entity-based relational database, if all values are
partitioned into different buckets, this tuple is counted for multiple times. Thus, the
overestimation occurs.

Therefore, the traditional query estimation approaches based on histogram cannot
be applied to our problem. Unfortunately, there is no work for the query estimation of
the entity-based relational database. New query estimation approaches are in demand.

Our Contributions: In this paper, we propose new range query estimation methods
suitable for entity-based relational database. As we know, this is the first paper
considering such problem. These algorithms are demonstrated in details and the
complexity of these algorithms is analyzed. We theoretically prove our algorithms are
unbiased. Last, we experimentally validate the effectiveness of our algorithms and
show that our methods are accurate.

The rest of this paper is organized as follows. Section 2 introduces entity-based
relational database model and some related conceptions. Section 3 presents our range
query estimation methods. We show our experimental results in Section 4. We
conclude our paper and discuss the future work in Section 5.

2 Preliminaries

2.1 Entity-Based Relational Database Model

We firstly define the Uncertain Attribute Value in Definition 1. An uncertain attribute
value not only contains possible values, but also contains the corresponding quality
degrees. Then we give the definition of Entity in Definition 2. Entity is the basic unit
of storage in the entity-based relational database system, containing a set of uncertain
attribute values.

 Definition 1 (Uncertain Attribute Value): An uncertain attribute value is a set of
pair = { , |v is possible value of the attribute and p is the quality degree of the
value v}.

 Definition 2 (Entity): An entity is a pair , , where is a set of uncertain
attribute values and is a set of keys that is to identify the entity uniformly (e.g.,
entity-ID).

Table 2 can help to understand these two definitions. Since we introduce the quality
degree dimension, we need to define a new conception to reflect whether a tuple
satisfies a query, and we call this conception Similarity.

 Range Query Estimation for Dirty Data Management System 155

 Definition 3 (Similarity): For an uncertain values in attribute and an atom
constraint in form of @ where @ is a predicate symbol (e.g. >, < …) and
is a constraint, the similarity between them is defined as follows: @ ∑ @, ∈ , (1) @ 1 @0 . (2)

For a selection query with a constraint (for the convenience, we use this
form to represent a selection query in this paper), we consider that one tuple
satisfies query with a similarity , which can be calculated by Equation (1) and (2).
We use an example to illustrate it.

With the support of the conceptions, some query operators are defined.

2.2 Operators

In this paper, we focus on the estimation of selection operation. Each query result
satisfies the query with a similarity, since results with a low similarity are generally
less interesting than higher similarity answers, we consider those results with a
similarity less than a threshold (this parameter can be provided by user or the
system sets a default value) as unsatisfied for a query. Therefore, the results of queries
should be those answers that have a similarity exceeding a threshold . So a query
given by can be defined as an operator as follows: ∑ , ∈ . (3)

The goal of this paper is to propose new query estimation techniques for the entity-
based relational database. In next section, we will give our approaches in details.

3 Range Query Estimation

 In this section, we describe our estimation methods in details. First，we give a
preliminary query estimation method in Section 3.1, and this method can well
estimate unbounded range query (e.g., or) result size, but for general
range queries (e.g.,), it often leads to underestimation. Then, a more
accurate range query estimation method is proposed in Section 3.2, and it can well
solve the underestimation problem which the former method encounters.

3.1 Preliminary Range Query Estimation Method

As discussed in Section 1, existing query estimation methods are not suitable for range
queries on entity-based relational database management system for two reasons that with
the quality degree, the existing methods often lead to the overestimation. To solve these
problems, we consider an unbounded range query Q by firstly, where is an
uncertain attribute value and is the similarity threshold. This query returns all tuples
satisfying , which means that satisfies the following relationship: ∑ , ∈ . (4)

156 Y. Zhang, L. Yang, and H. Wang

If all possible values of an uncertain value are sorted in database system, the
relationship (3) is equivalent to calculate the cumulative distribution function ,
where ∑ , and return the values satisfying .

Fig. 1 shows an example of the cumulative distribution functions (CDF) of several
tuples on attribute A, whose corresponding values are shown in Table 3. In the figure,
each stacked line represents one tuple. The meaning of every stacked line is like the
cumulative distribution function of every uncertain value. For example, the point P on
the stacked line represents that the value of attribute A of tuple 3 is smaller than 35
with similarity 0.6. Therefore, with such a figure containing all tuples, for a given
query Q (), the total number of tuples which satisfy query Q can be estimated
directly. It is the number of stacked lines crossing the line segment given by , 1.

Table 3. A Data Fragment

ID A B
……

1 ((10, 0.1), (35, 0.3), (65, 0.5), (80, 0.1)) …… ……
2 ((20, 0.3), (50, 0.5), (80, 0.2)) …… ……
3 ((15, 0.6), (60, 0.2), (70, 0.2)) …… ……

Fig. 1. Example for showing the histogram structure

Histogram Structure

 Based on the above discussion, we define a basic two-dimensional histogram. The range
of input values is partitioned into buckets where and are the lengths of
each dimension. A histogram bucket , covers the area given by , ,1 , 1 , where and are the widths of histogram bucket along
x and y axis. Each bucket has a value, which stores the height of this bucket that records
the number of tuples whose stacked lines intersect this bucket.

Obviously, the errors of the estimations using this histogram are associated to the
number of the stacked line inflection points in buckets and do not exceed them. If there
is no inflection points in bucket , the estimation for queries which are located in
must be accurate. Hence in order to make the estimation more accurate, we need to
ensure that the number of the inflection points in each bucket is small enough.

In our approach, the histogram is firstly partitioned into equal-width buckets, and
we set the number of the inflection points in each bucket should not exceed

0
0.2
0.4
0.6
0.8

1

0 25 50 75 100

sim
ila

rit
y tuple1

tuple2
tuple3

P

 Range Query Estimation for Dirty Data Management System 157

(/ , where is the total number of inflection points, which equals the number
of all possible attribute values). When a bucket contains more than inflection points,
this bucket is partitioned into equal-width buckets (generally, , and can be
considered as a constant) and we set each new bucket containing / inflection points.
In the next process, for the buckets which do not meet the requisition, they are
partitioned until that all buckets contain less than inflection points.

We now present the histogram construction algorithm. To facilitate the description of
algorithm, we firstly summarize the main notations that will be used in our paper in Table
4. With these notations, Algorithm 1 illustrates the detailed steps of histogram
construction. Note that, we assume all possible values of an uncertain value are
increasing in the database system. For each uncertain value, it is supposed that all
possible values are , … and the corresponding quality degrees are , … , the interval , can be divided into 1 intervals: , , , … , . In each interval, we need to record value in
correct histogram buckets. For example, in , , value should be recorded in
buckets , , 0 , which represents is 0, where ∈ , .
Similarly, value should also be recorded in buckets: , , , , ,… , , 1 . Meanwhile, the number of inflection points is stored in each
bucket, and when the size of some bucket exceeds , it is partitioned into equal-width
buckets and the histogram is adjusted. Algorithm 1 is the pseudo-code of this process,
where symbol represents the number of inflection points in bucket .

Table 4. Main Notations

Notation Meaning
 Similarity threshold , Initial granularity of partition and granularity of repartition
 Threshold of the number of inflection points in one bucket , Left boundary and right boundary of bucket along x axis , Width of buckets along y axis, where 1⁄
 Uncertain values of attribute A (0) , Possible values and quality degrees of an uncertain attribute value a , Minimum and maximum among all possible values of an attribute A , Similarity of where a is an uncertain value
 The number of tuples satisfying query

Algorithm 1
1 Initialize
2 for each uncertain value do
3 for each possible value of an uncertain value do
4 for all buckets meeting do
5 , ⁄ ++
6 ++
7 if then
8 partition and adjust this bucket
9 for all buckets meeting do
10 , 1⁄ ++

158 Y. Zhang, L. Yang, and H. Wang

Theorem 1: The time complexity of Algorithm 1 is and the space
complexity is .

Proof: This algorithm scans each tuple once and records each tuple in m appropriate
histogram buckets, where m is the length of the histogram in x dimension. In the worst
case, partition occurs per 1 / tuples, and partition times does not exceed / 1 (i.e., / 1 /). Each partition adds 1 buckets and adjusts
 buckets along y axis, so 1 / 1 1 . Thus the time

complexity is 1 / 1 and the space complexity is 1 . Thus the time complexity is and the space complexity
is , because can be considered as a constant.

Query Estimation Method

With the histogram structure, we can easily estimate query result size. Given a query
, query result size is estimated as the sum of the heights of the buckets where

 is located in and meet the similarity threshold. Algorithm 2 shows this algorithm
in details.

However, this algorithm is only applicable for the unbounded range queries in form
of . For anther unbounded range queries in the form of , we need to
perform an equivalent transformation to make Algorithm 2 suitable for such form. 1 . (4)

Such that Algorithm 2 can also be used to estimate queries in the form as ,
with a modification of the loop range in line 4, and the loop range should be modified
to 0, 1 ⁄ . Theorem 2 proves this estimation method is unbiased when
tends to infinity.

Algorithm 2
1 if then return 0
2 if then return
3 let 0 and find meeting
4 for from ⁄ to 1⁄ do
5 ,
6 return

Theorem 2: The estimation method in Algorithm 2 is unbiased when tends to
infinity.

Proof: To facilitate the proof, we assume 2, for other cases, the proof process is
similar. As proved in Theorem 1, partition times does not exceed 2 (i.e., /1), and each partition adds 1 (i.e., 1) buckets. Given a query , we make
the following assumptions. First, falls each bucket with equal probability. Second,

 times partitions occur. Last, buckets contain more than inflection points
where . With these assumptions, the total number of buckets along x axis is

. We have known the estimation error does not exceed the number of inflection
points in bucket which is located in. Hence the expectation of estimation error is:

 Range Query Estimation for Dirty Data Management System 159

 2 .
Therefore, when tends to infinity, the expectation of estimation error tends to 0,
and this approach is unbiased.

We have discussed the unbounded range queries. Consider the general range query
Q (), and that is . The unbounded range queries
can be considered as a special case of the general range query. To estimate the general
range query result size, with the application of the techniques in this section, a naïve
method is proposed. Firstly, the numbers of tuples that satisfy query Q1 () and
query Q2 () are estimated by Algorithm 2, and they are denoted by 1 and 2 respectively. We can use 2 1 as the estimation of query Q ().
Clearly, if we do not consider the threshold, this method is correct. However, it often
leads to underestimation with the consideration of the effect of the similarity
threshold on query result sizes, and it is related to the width of query range and the
threshold. We show the effect by experiments in Section 4. With the shortcoming of
this naïve method, we propose more accurate query range estimation method in next
section.

3.2 Accurate Range Query Estimation

 In this section, we present an accurate range query estimation algorithm, and it can
solve the underestimation problem discussed in Section 3.1. In order to adapt to
general range queries, we add another dimension to the histogram proposed in Section
3.1. The meanings of two original dimensions do not change (the x axis and y axis
respectively represent the end point of the query and the similarity), and the new
additional dimension (z axis) represents the beginning of the query. Therefore, given a
general range query (), we can estimate the size of query result set by
counting the number of stacked lines crossing the line segment l given by ,1 and , similar to Fig. 1. That is equivalent to executing a query
() on the plane, where .

We call such new histogram as improved histogram. In this histogram, every plane
on z axis is a basic histogram proposed in Section 3.1, corresponding to the constraint

 (clearly, it is not necessary to store the whole range). The width of a
bucket on z axis is controlled by an input parameter (in general, can be equal
to /). The detailed algorithms for constructing this improved
histogram and estimating the result size of a general range query are respectively
presented in Algorithm 3 and Algorithm 4. Compared with Algorithm 1, Algorithm 3
only adds another layer of loops on z axis, but this improved histogram structure can
give more accurate estimation than the basic histogram of Section 3.1. Theorem 3
gives the time and space complexity of the construction algorithm, and Theorem 4
proves this estimation algorithm using this improved histogram is also unbiased when

 tends to infinity.

160 Y. Zhang, L. Yang, and H. Wang

Algorithm 3
1 Initialize
2 for each uncertain value do
3 for each possible value of an uncertain value do
4 for from 0 to / do
5 for all buckets meeting do
6 , , , / ++
7 , ++
8 if , then
9 partition and adjust this bucket
10 for from 0 to / do
11 for all buckets meeting do
12 , , , / ++

Theorem 3: The time complexity of Algorithm 3 is and the space
complexity is with the assumption: /).

Proof: Compared with Algorithm 1, this algorithm only adds another dimension, and
the length of this dimension is . Therefore, similarly the analysis of the complexity
of Algorithm 1, the time complexity of Algorithm 3 is and the space
complexity is .

Theorem 4: The estimation method in Algorithm 4 is unbiased when tends to
infinity.

Proof: Compared with the basic histogram of Section 3.1, this improved histogram
with more detailed information can get a more accurate estimation for general queries.
Therefore, with the conclusion of Theorem 2, the estimation method using this
improved histogram is also unbiased when tends to infinity.

Algorithm 4
1 if then let
2 if then let
3 let 0; / and find , meeting
4 for from ⁄ to 1⁄ do
5 , ,
6 return

4 Experimental Evaluation

In this section, we study the performance of our proposed algorithms experimentally.
Our experiments are conducted on a 2.93 GHz Inter(R) Core(TM)2 Duo CPU with 2
GB main memory.

4.1 Data Sets

The data sets used for estimate query result size can be categorized into two main
parts of synthetic data sets and real-world data sets. Table 5 summarizes some
information about these data sets.

 Range Query Estimation for Dirty Data Management System 161

Synthetic Data Sets: We generate the synthetic data sets and each tuple has a Tuple
ID, along with an uncertain value. The number of the possible values of an uncertain
value is uniformly distributed between 1 and 5. The quality degree of each possible
value is randomly generated from 0.01 to 1 and these quality degrees sum up to 1 for
an uncertain value. To evaluate the robust of our approaches, we consider three
synthetic data sets with different distributions: uniform distribution, normal
distributions and zipfian distribution.

Real-World Data Sets: One of the most important applications of the histograms is
for those cases in which the distribution of the data is unknown or cannot be simply
modeled. Therefore, in order to validate our approaches over such kind of data, we
consider the real-world data sets: eCommerce data. We respectively collect book
information about Computers & Technology from eBay (http://www.ebay.com) and
Amazon (http://www.amazon.com). After the processes for original data, we get the
real data set with 10053 entities. In this data set, each tuple represents a book which
contains four uncertain values: title, author, press and price. We perform our
experiments by building the histograms on attribute price.

Table 5. Data sets used for the experimental results

Name Distribution Size Parameter
Uniform Uniform 1m 0, 1
Normal Normal 1m 500, 100

Zipf Zipfian 1m 1.0
Real eCommerce 10K -

4.2 Query Set and Error Metric

Without loss of generality, we ran every experiment on a variety of queries. All
queries are in form of : , ∈ , where is an attribute and is
its domain. We measure the error of estimation made by histograms on the above

query set by using the average of the relative error: ∑ ∈ , where is the

cardinality of the query set, and are the actual and the estimated size of the
query result set, respectively. represents the relative error of query . In
our experiments, we randomly generate 100 queries for each query set.

4.3 Experimental Results

Our experiments compare the two estimation algorithms proposed in Section 3. We
denote them by 1 (in Section 3.1) and 2 (in Section 3.2). Without explicit
explanation, the default value of the similarity threshold is 0.2 for all experiments; the
default size of the real and synthetic data sets are 10,000 and 200,000 tuples; the
default size of initial granularity of partition and granularity of repartition are 50
and 4; the default size of bucket width on similarity dimension is 0.1.

162 Y. Zhang, L. Yang, and H. Wang

4.3.1 Effect of Data Distribution
For query estimation algorithms based on histogram, data distribution is an important
factor affecting the accuracy of estimation. Fig. 2 shows the effect of data distribution
to our estimation algorithms. It can be seen that for each data distribution, both two
estimation algorithms can get a good estimation (relative errors are less than 40%)
and algorithm 2 is always more accurate than algorithm 1.

Fig. 2. Effect of data distribution

4.3.2 Effect of Data Set Size
 Fig. 3 shows the effect of data set size. In this experiment, we vary the data set size by
selecting the desired number of tuples from the synthetic data set T, and the data set
sizes are 100K, 200K, 400K, 600K, 800K and 1000K (for eCommerce data, data set
sizes are 1K, 2K, 4K, 6K, 8K and 10K). It is observed from Fig. 3 that the relative
error is not sensitive to the dataset size for both two algorithms.

Fig. 3. Effect of data size on 1 and 2

4.3.3 Effect of Threshold
 For the entity-based relational database, the threshold plays an important role in query
processing. Fig. 4 shows the impact of the threshold with different thresholds from 0.1
to 0.9. For algorithm 2, no matter how the data is distributed, the change is not very
significant. Therefore, algorithm 2 is relatively stable for different thresholds.
However, for algorithm 1, the relative error decreases at first and then increases
with the threshold. When the threshold is in 0.4, 0.6 , the relative errors is minimum.
Hence the accuracy of algorithm 1 is related to threshold as mentioned in
Section 3.1, and it can give accurate estimations when ∈ 0.4, 0.6 .

0%

20%

40%

60%

Uniform Normal Zipf Real

re
la

ti
ve

 e
rr

or

H1
H2

0%

25%

50%

75%

100%

0 20 40 60 80 100

re
la

ti
ve

 e
rr

or

data set size(10K)

Uniform Normal
Zipf Real

0%

25%

50%

75%

100%

0 20 40 60 80 100

re
la

ti
ve

er
ro

r

data set size(10K)

Uniform Normal
Zipf Real

 Range Query Estimation for Dirty Data Management System 163

Fig. 4. Effect of threshold on 1 and 2

4.3.4 Effect of Granularity of Partition
Another important factor of our estimation algorithms is the granularity of partition.
We show the effect of the initial granularity of partition in Fig. 5, and set at 10,
20, 40, 60, 80 and 100 respectively. We observe that there is a similar trend of the
relative error both algorithm 1 and 2 . As initial granularity of partition
increases, the relative error decreases. This phenomenon empirically verifies the
conclusion that our approaches are unbiased when tends to infinity.

Fig. 5. Effect of granularity of partition on 1 and 2

4.3.5 Effect of Width of Query Range
In Section 3.1, we mentioned that the accuracy of the estimation using the basic
histogram 1 is related to the width of query range and the threshold . Fig. 4 has
showed us the effect of the threshold. In this experiment, we show the effect of the
width of query range. Fig. 6 gives the experimental results. We can observe that with
an increasing width of query range, the relative error has a decreasing trend for both 1 and 2, especially for 1, and the estimations using histogram 2 are more
accurate. As a result, the wider query range is, the more accurate estimation is.

Fig. 6. Effect of width of query range on 1 and 2

0%

25%

50%

75%

100%

0 0.2 0.4 0.6 0.8 1

re
la

tiv
e

er
ro

r

threshold

Uniform Normal
Zipf Real

0%

25%

50%

75%

100%

0 0.2 0.4 0.6 0.8 1

re
la

tiv
e

er
ro

r

threshold

Uniform Normal
Zipf Real

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100

re
la

tiv
e

er
ro

r

granularity of partition

Uniform Normal
Zipf Real

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100

re
la

tiv
e

er
ro

r

granularity of partition

Uniform Normal
Zipf Real

0%

10%

20%

30%

40%

50%

0 200 400 600 800 1000

re
la

tiv
e

er
ro

r

width of query range

Uniform Normal
Zipf Real

0%

10%

20%

30%

40%

50%

0 200 400 600 800 1000

re
la

tiv
e

er
ro

r

width of query range

Uniform Normal
Zipf Real

164 Y. Zhang, L. Yang, and H. Wang

5 Conclusion and Future Work

Entity-based relational database is a practical method for dirty data management.
Intermediate result size estimation is crucial for the query optimization for entity-
based relational database. However, traditional estimation methods cannot be applied
to this problem directly. In this paper, we study this problem. To solve this problem,
we propose two histogram-based methods for different form of queries and
requirements. It is proven that they are unbiased. The experimental results validate the
effectiveness of our algorithms, and they can indeed give good estimations for range
queries. For future work, we plan to continue to study query optimization based on
the cost of estimation, especially the estimation of join result size.

References

1. Batini, C., Scannapieco, M.: Data quality: concepts, methodologies and techniques.
Springer (2006)

2. English, L.: Plain English on data quality: Information quality management: The next
frontier. DM Review Magazine (2000)

3. Rahm, E., Do, H.H.: Data cleaning: Problems and current approaches. IEEE Data Eng.
Bull. 23(4), 3–13 (2000)

4. Fuxman, A.D., Miller, R.J.: First-Order Query Rewriting for Inconsistent Databases. In:
Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 337–351. Springer,
Heidelberg (2005)

5. Fuxman, A., Fazli, E., Miller, R.J.: Conquer: Efficient management of inconsistent
databases. In: SIGMOD, pp. 155–166 (2005)

6. Andritsos, P., Fuxman, A., Miller, R.J.: Clean answers over dirty databases: A
probabilistic approach. In: ICDE, p. 30 (2006)

7. Boulos, J., Dalvi, N., Mandhani, B., Mathur, S., Re, C., Suciu, D.: MYSTIQ: a system for
finding more answers by using probabilities. In: SIGMOD, pp. 891–893 (2005)

8. Widom, J.: Trio: a system for integrated management of data, accuracy, and lineage. In:
CIDR, pp. 262–276 (2005)

9. Hassanzadeh, O., Miller, R.J.: Creating probabilistic databases from duplicated data. The
VLDB Journal, 1141–1166 (2009)

10. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS, pp. 233–246 (2002)
11. Dong, X.L., Halevy, A., Yu, C.: Data integration with uncertainty. The VLDB Journal,

469–500 (2009)
12. Benjelloun, O., Garcia-Molina, H., Menestrina, D., Whang, S.E., Su, Q., Widom, J.:

Swoosh: a generic approach to entity resolution. The VLDB Journal, 255–276 (2008)
13. Li, Y., Wang, H., Gao, H.: Efficient Entity Resolution Based on Sequence Rules. In: Shen,

G., Huang, X. (eds.) CSIE 2011. CCIS, vol. 152, pp. 381–388. Springer, Heidelberg
(2011)

14. Ioannidis, Y.E.: The history of histograms (abridged). In: VLDB, pp. 19–30 (2003)

Top-k Most Incremental Location Selection
with Capacity Constraint

Yu Sun1, Jin Huang2, Yueguo Chen3, Xiaoyong Du1,3, and Rui Zhang2

1 School of Information, Renmin University of China, Beijing, China
2 University of Melbourne, Melbourne, Australia

3 Key Laboratory of Data Engineering and Knowledge Engineering
(Renmin University of China), MOE, China

{yusun.aldrich,soone.enoos,chenyueguo}@gmail.com,
duyong@ruc.edu.cn, rui@csse.unimelb.edu.au

Abstract. Bichromatic reverse nearest neighbor (BRNN) based query uses the
number of reverse nearest customers to model the influence of a facility location.
The query has great potential for real life applications and receives considerable
attentions from spatial database studies. In real world, facilities are inevitably
constrained by designed capacities. When the needs of service increase, facilities
in those booming areas may suffer from overloading. In this paper, we study a
new kind of BRNN related query. It aims at finding most promising candidate lo-
cations to increase the overall service quality. To efficiently answer the query, we
propose an O(n log n) algorithm using pruning techniques and spatial indices. To
evaluate the efficiency of proposed algorithm, we conduct extensive experiments
on both real and synthetic datasets. The results show our algorithm has superior
performance over the basic solution.

Keywords: capacity constraint, location selection, BRNN, spatial database.

1 Introduction

A common problem many companies are facing is to establish new facilities in most
suitable places. Take online shopping as an example, to improve the shipping service
and minimize storage cost, online sales giants such as Amazon and 360Buy have built
numerous warehouses throughout the country. Since each warehouse is constrained by
its designed capacity (e.g. storage ability or the number of employees), it is desired
to choose good locations for new warehouses. The mobile service is another example
showing the important application of this problem.

The problem is based on bichromatic reverse nearest neighbor (BRNN) query [3].
Let W and R denote two sets of locations in the same space. Given a location w ∈
W , a BRNN query returns all locations r ∈ R whose nearest neighbor is w. Those
locations form the BRNN set of w, denoted by B(w,W). In our problem, we denote
the facility set as W and the customer set as R. In addition to the common BRNN
query, the capacity constraint of facilities is considered. We use L2 (Euclidean) distance
metric and assume that: (1) a customer is served by the nearest facility and (2) service
providers have the knowledge of customer distribution and can offer a serving order that

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 165–171, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

166 Y. Sun et al.

determines the sequence of locations being served. Let c(w) denote the corresponding
capacity of a facility and wt(r) denote the weight of a customer location r. A w is
responsible to serve its reverse nearest neighbors. And a r that has w as its nearest
facility is within w’s capacity only if w provides service to some customers reside in r.

We use a running example for illustration throughout the paper. For presenting con-
venience, we set all customer locations the same weight 1, although the proposed tech-
niques can be applied to any weights. We also adopt the serving order that makes w
serve its customers r in an increasing order of dist(r, w) for the same reason. Here we
use dist(r, w) to denote the distance between r and w. In Fig.1 and 2, circles, small and

3

1

2

3
W

W

W
1 2

3

4

5

6

1

1

2
3

4

5

2

Fig. 1. c(w1, w2, w3) = (5, 2, 4)

4

��
��
��
��

��
��
��
��

W

W

W

1

3

2

1

P

1

2

1

2

3

1

2
3

4

5 1
2

3

Fig. 2. c(p1) = 4

big rectangles denote customer locations, facilities and BRNN sets respectively, and the
number besides each r denotes the serving sequence. In Fig.1, w2 serves 3 locations.
Location 1 and 2 use up c(w2), thus 3 is out of its capacity. Here black circles denote
poorly served ones. After adding p1, as shown in Fig.2, three locations are well served
by p1. Since p1 shares the workload of w2, w2 has the ability to satisfy previous black
locations. The total weight of newly served parts is 3, so p1 has an increment of 3. Our
aim is finding top-k locations that have maximal increments from a candidate set P . We
make the following contributions:

– We formulate the problem of top-k most incremental location selection query.
– We propose pruning techniques and an O(n log n) algorithm to reduce the com-

plexity of query processing.
– We perform extensive experiments and the results confirm the effectiveness of the

pruning techniques and the efficiency of the algorithm.

The rest of the paper is organized as follows. Section 2 reviews previous studies on
related topics. Section 3 defines the problem and gives a baseline solution. Section 4
describes pruning techniques and the proposed algorithm. The empirical study is given
in Section 5, followed by the conclusion in Section 6.

2 Related Work

The concept of reverse nearest neighbor (RNN) query [3] has been raised more than ten
years. Korn et al.[3] first propose methods to solve RNN query. Paper [5] studies how to
discover influence sets based on RNN in frequently updated databases and proposes an

Top-k Most Incremental Location Selection with Capacity Constraint 167

efficient algorithm to solve BRNN query. Since we focus on location selection, without
proper modification, the proposed methods cannot be applied. Wong et al.[6] study the
problem called MaxBRNN. It aims at finding an optimal region that maximizes the size
of BRNN set. Zhou et al.[10] extend the problem to MaxBRkNN. Their problems are
different from ours. First, their studies attempt to retrieve the optimal region with high-
est influence, while ours focuses on selecting top-k ones from a candidate set. Second,
capacity constraint is not considered in their studies.

Paper [9] and [2] propose and solve the min-dist optimal location query, which min-
imizes the average distance from each customer location to its closest facility after
adding a new one. Some other papers [8,1] describe another BRNN related query, called
maximal influence query. The influence of a facility is defined as the total weight of
its BRNN members. Though these problems are similar to ours, they fail to consider
the capacity of each facility. The authors of [7] and [4] study the capacity constrained
assignment problem. Paper [7] proposes an algorithm that assigns each ri ∈ R to a
wj ∈ W without exceeding wj’s capacity. Additionally, paper [4] tries to minimize
the assignment cost of

∑
(ri,wj)∈R×W dist(ri, wj). However, they are more suitable

for profile-matching applications which provide service using existing facilities. Our
problem considers both existing and to-be built ones.

3 Preliminary

3.1 Definitions

First, we give the definition of ε-served location to indicate the percentage of customers
who are under service in a customer location.

Definition 1. An ε-served location is a location r that has ε · wt(r) customers under
service, noted as ε(r), 0 ≤ ε ≤ 1.

Given the serving order, w serves its BRNN set members one by one, until some r uses
up c(w) or all r are fully served. Hence the ε factor of r can be calculated. Most r are 1
or 0-served. Only those use up c(w), while still have unserved customers reside in are
partly served.

Definition 2. Given W and R, service quality noted as sq(W) equals to∑
r∈R ε(r)wt(r).

Service quality is the number of all customers who are under service. To increase
sq(W), new facilities should be built and locations are chosen from a candidate set.
The concept of candidate increment indicates the increment of service quality when a
new facility p is added. Let W ′ denote W ∪ {p} in the following of this paper.

Definition 3. Given a p, its increment denoted by inc(p) equals to sq(W ′)− sq(W).

The larger increment, the better a candidate location is. Thus we formulate the proposed
query as follows: given a constant k, 0 ≤ k ≤ |P |, it finds a set P ′ ⊆ P , so that |P ′| = k
and ∀pi ∈ P ′, pj ∈ P \ P ′, inc(pi) ≥ inc(pj). Answering the query means finding k
most promising candidates that maximize the increase of service quality.

168 Y. Sun et al.

3.2 Basic Solution

The query definition gives a basic solution. It takes R,W,P as input and returns P ′,
which also applies to other algorithms. It scans the candidate set, adds p to W , calculates
the new service quality, gets inc(p) then removes p and tries next candidate. Finally it
picks out those have top k increments as results.

4 Algorithm

4.1 Notation and Properties

The challenge of the query are two folds. One is that the influence set is not only re-
lated to customer locations, as addressed in [8,1], but also related to facilities. When a
new facility is added, it becomes the new nearest facility of some customers and their
old facilities are also affected. Here we give the exact definition the influence set of a
candidate location.

Definition 4. The influence set of a p denoted by I(p) is B(p,W ′)∪ {r ∈ B(w,W)|w
is old nearest facility of r ∈ B(p,W ′)}.
The other challenge is to efficiently deal with large amounts of input data. Hence we
introduce the concept of nearest facility circle [3] (NFC) of r, which is a circle denoted
by nfc(r, w) that centers at r and has a radius of dist(r, w). If p falls into nfc(r, w),
then p will become the new nearest facility of r, which is useful to efficiently get I(p).

4.2 Pruning Techniques

To calculate inc(p), it is unnecessary to assign every r to a facility again. As Fig.1 and
2 show, after adding p1, same customers are assigned to w1. We know that w1 �∈ I(p1).
So we have the following theorem (proof can be found in the full paper).

Theorem 1. Given a p, ∀w ∈ W \ I(p), we have B(w,W) = B(w,W ′).

Hence, it is possible that we set aside those unaffected locations and focus on a candi-
date’s influence set. This idea is supported by the following theorem.

Theorem 2. Given a p, inc(p) =
∑

r∈I(p) (εnew(r)− ε(r))wt(r), εnew(r) denotes
the new ε factor of r after p is added.

Maintaining the nn and rnn lists, we can easily calculate εnew(r) for every r ∈ I(p),
then get inc(p) according to theorem 2, which effectively bounds the search space.

4.3 Spatial Index

We apply several spatial indices to further lower the time complexity. Two time-
consuming parts are: (1) to find nearest facility for each r ∈ R and (2) to get the
influence set for each p ∈ P . For the first part, we introduce a spatial structure s1 that
supports NN query to index W . Whereas there is no direct tool to handle the second
part. We use NFC and a spatial index s2 that supports point enclosure query to achieve
our goal. The first part has assigned each r to a w, so we can build nfc(r, w) and insert
it into s2. When considering p, we form a p point enclosure query, search s2 and process
all NFCs returned by s2 to get I(p).

Top-k Most Incremental Location Selection with Capacity Constraint 169

Theorem 3. Given a structure s that indexes all nfc(r, w), r ∈ R, if we search s with
a p-enclosure query, then {nfc(r, w)|∀r ∈ B(p,W ′)} = {all NFCs returned by s}.

According to theorem 3 and definition 4, we can get the influence set of p efficiently.
The detailed steps of the proposed algorithm are given as follows. And a formal anal-
ysis shows the basic solution has a O(n3) time complexity. After applying pruning
techniques, it reduces to O(n2). When we introduce the spatial indices, the proposed
algorithm has a O(nlogn) complexity.

Algorithm 1. Index
1. index each w ∈ W with s1
2. for each r ∈ R do
3. w ← NN query result of r on s1, and assign r to w
4. calculate ε factor for all r ∈ R
5. build nfc(r, w) for each r ∈ R and insert it into s2
6. for each p ∈ P do
7. search s2 with a p point enclosure query
8. for each nfc(r, w) ∈ {all NFCs returned by s2} do
9. add r and r′ ∈ B(w,W ′) to I(p)

10. for each r ∈ I(p) do
11. calculate εnew(r)
12. inc(p) ← inc(p) + (εnew(r)− ε(r))wt(r)
13. sort p ∈ P according to inc(p), and get first k candidates as P ′

5 Empirical Study

5.1 Experimental Setup

We use C++ to implement all algorithms and conduct all experiments on a PC with an
Intel(R) Core 2 Duo 1.7 GHz processor, 2 GB memory and running Window XP plat-
form. We use both real-world and synthetic datasets. Two real-world datasets NE and
NA are downloaded from http://www.rtreeportal.org/spatial.html. NE contains 123,593
points in north east of USA. NA contains 24,493 locations in North America. When
using NE or NA, we uniformly sample from it to get R,W and P . To simulate real-life
scenarios, we generate R, W with Zipfian distribution and P with uniform distribution.
The serving sequence we adopt is an increasing order of the distances between cus-
tomer locations and facilities. The weight of each r in both real and synthetic datasets
is set to 1, whose results are similar to those set to any positive integer. The capacity of
w and p is generated with uniform distribution ranging [1,40]. Cardinalities are set to
|R| : |W | : |P | = 20 : 2 : 1 in all experiments. We adopt kd-tree as the spatial index
for the nearest neighbor query and R*-tree for the point enclosure query.

5.2 Comparisons

We compare the proposed algorithm with the basic solution. Since the basic solution
is not scalable for large data, we conduct this set of experiments with relative small
datasets. Fig.3 shows the proposed algorithm performs nearly 4 orders of magnitude

170 Y. Sun et al.

faster than the basic solution when |P | is 200. And the gap will be bigger with the
growth of |P |. Only adopting the pruning techniques, the basic solution runs 102 times
faster. Both real and synthetic datasets show similar results.

5.3 Scalability

Then we study the scalability of the proposed algorithm. Apart from two real-world
datasets, we synthesize R,W and P with cardinality of 200K, 20K and 10K respec-
tively. Each dataset is used from a quarter to the whole of it. To get the influence of
capacity, we sample 3 subsets from them and vary the range of distribution from [1,20]
to [1,60]. Both the execution time and index size are evaluate. Fig.4 and Fig.5 show
both the cpu time and index size linearly increase with the growth of input data. Fig.6
shows the influence of different capacities is minor. All datasets support the above ob-
servations. So we conclude that the proposed algorithm has good scalability.

 0.1

 1

 10

 100

 1000

 10000

50 100 150 200

C
P

U
 t

im
e

(s
)

Cardinality of P

basic
pruning

index

(a) NE

 0.1

 1

 10

 100

 1000

 10000

50 100 150 200

C
P

U
 t

im
e

(s
)

Cardinality of P

basic
pruning

index

(b) NA

 0.1

 1

 10

 100

 1000

 10000

50 100 150 200

C
P

U
 t

im
e

(s
)

Cardinality of P

basic
pruning

index

(c) SYN

Fig. 3. Execution time comparison on NE, NA and synthetic datasets

 0.1

 1

 10

 100

25 50 75 100

C
P

U
 t

im
e

(s
)

Data percentage

SYN NE NA

Fig. 4. Execution time

 1

 10

 100

25 50 75 100

In
d

ex
 s

iz
e

(M
B

)

Data percentage

SYN NE NA

Fig. 5. Index size

 1

 10

 100

20 30 40 50 60

C
P

U
 t

im
e

(s
)

Capacity

SYN NE NA

Fig. 6. Capacity influence

6 Conclusion

In this paper, we formulate the top-k most incremental location selection query. Through
analyzing the properties of the query, we propose pruning techniques and an O(n log n)
algorithm to answer the query. The results of experiments confirm the effectiveness of
the pruning techniques and the efficiency of the proposed algorithm.

Top-k Most Incremental Location Selection with Capacity Constraint 171

Acknowledgements. This work is supported by NSFC under the grant No. 61003085
and HGJ PROJECT 2010ZX01042-002-002-03.

References

1. Huang, J., Wen, Z.: Top-k most influential locations selection. In: CIKM 2011 (2011)
2. Jianzhong, Q., Rui, Z.: The min-dist location selection query. In: ICDE 2012 (2012)
3. Korn, F.: Influence sets based on reverse nearest neighbor queries. SIGMOD Rec. (2000)
4. Leong Hou, U.: Capacity constrained assignment in spatial databases. In: SIGMOD 2008

(2008)
5. Stanoi, I.: Discovery of influence sets in frequently updated databases. In: VLDB 2001

(2001)
6. Wong, R.C.-W., Özsu, M.T.: Efficient method for maximizing bichromatic reverse nearest

neighbor. Proc. VLDB Endow. (2009)
7. Wong, R.C.-W., Tao, Y.: On efficient spatial matching. In: VLDB 2007 (2007)
8. Xia, T., Zhang, D.: On computing top-t most influential spatial sites. In: VLDB 2005 (2005)
9. Zhang: Progressive computation of the min-dist optimal-location query. In: VLDB 2006

(2006)
10. Zhou, Z., Wu, W.: Maxfirst for maxbrknn. In: ICDE (2011)

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 172–184, 2012.
© Springer-Verlag Berlin Heidelberg 2012

An Approach of Text-Based and Image-Based
Multi-modal Search for Online Shopping∗

Renfei Li1, Daling Wang1,2, Yifei Zhang1,2, Shi Feng1,2, and Ge Yu1,2

1 School of Information Science and Engineering, Northeastern University
2 Key Laboratory of Medical Image Computing, Northeastern University,

Ministry of Education, Shenyang 110819, P.R. China
lirenfei@foxmail.com,

{wangdaling,zhangyifei,fengshi,yuge}@ise.neu.edu.cn

Abstract. Nowadays, more and more people prefer online shopping to physical
store shopping for its convenience, cheapness and timesaving. Customers visit
some commercial shopping websites, and select their favorite commodities by
accessing links or retrieving by search box. However, in our real life, most
online shopping websites provide a simple and single text retrieval method
only, to some extent it’s difficult for customers to submit query and retrieve
satisfactory results. In this paper, a multi-modal search approach combining
text-based and image-based search techniques is presented. Besides text search,
a two-stage image search approach is proposed, which utilizes basic features
consisting of color and textural features to filter mismatching images in first
stage, and further uses SIFT features for accurate search in second stage.
Moreover, a prototype system has been developed for multi-modal search on
online shopping websites. By submitting some words, phrases, images or their
combination, customers can search out what they want. The experiments
compared with traditional algorithms based on single visual feature validate that
our approach and multi-modal search prototype system are effective, and the
retrieval results can satisfy customers’ requirements well for online shopping.

Keywords: multi-modal search, online shopping, textual feature, visual feature.

1 Introduction

With the popularization and application of E-commerce extending, more and more
people go shopping online rather than shopping out. Searching for product
information and buying commodities online have become popular activities [1].
Empirical research shows that, nowadays, many individuals tend to start their
shopping process with an information search on the Internet before they go to the
store [2]. Many online shopping websites become popular consequently, such as
Taobao, 360buy, Amazon. It is convenient to buy commodities on Internet, and
customers can buy almost everything without going out, furthermore the commodities

∗ Project supported by the State Key Development Program for Basic Research of China (Grant

No. 2011CB302200-G), National Natural Science Foundation of China (Grant No. 60973019,
61100026), and the Fundamental Research Funds for the Central Universities(N100704001).

An Approach of Text-Based and Image-Based Multi-modal Search for Online Shopping 173

which customer have bought can even be delivered to them. Thus, E-shopping could
lift the time and space constraints of shopping process and bring more flexibility [3].

As a commodity has different prices in different online stores, customers need to
select an approving store for buying when they see a favorite commodity. Customers
even actively seek commodities they want to buy. Most search engines of online
shopping websites provide search based on text words currently. However, the search
can not meet customers’ requirement as: (1) Sometimes, text words are more difficult
to express customers’ requirements than images. For example, if a customer wants to
buy a “sark with latticework”, an image of the latticework is easier for expressing
clearly than text description about it. (2) Text search is based on tags of commodities,
but a commodity has different tags in different online stores. Thus search will return
many irrelevant results or loss many relevant results.

Obviously, search based on images is required. Nowadays some search engines have
provided image search, such as image Baidu, but it can’t retrieve the commodities on
shopping websites. We have noted that commodities of online shopping websites have a
character that there are about five images and a paragraph of text to describe a
commodity. The images can be divided into three kinds, i.e. “big image”, “middle
image”, and “small image”. Customers achieve a general impression of the commodity
through “big image”, and details from “small image”. Based on the character, in this
paper, we extract the visual features from these images without their background, and
apply the features to a two-stage image search proposed, which utilizes basic features
consisting of color and textural features to filter mismatching images in first stage, and
further uses SIFT features for accurate search in second stage. Moreover, we develop a
prototype system for multi-modal search including text-based and image-based search.
Using the prototype, by submitting words, phrases, images or their combination,
customers can retrieve what they want to buy. The experiments of comparing with
traditional algorithms based on single visual feature show that our approach and multi-
modal search prototype system are effective, and the retrieval results can satisfy
customers’ requirements well for online shopping.

The remainder of the paper is structured as follows. Section 2 introduces the
related work. Section 3 gives problem description. Section 4 presents how to offline
extract commodities’ features. Section 5 describes online multi-modal search process.
Section 6 shows our experiment results. Section 7 concludes our work and gives
directions for future studies.

2 Related Work

In this paper, our purpose is to provide a multi-modal search prototype system about
commodity for online shopping. In this field, researchers have done some pioneering
work. Davis [4] proposed a multi-modal shopping assistant which provides users with
a service capable of reducing the time spent on grocery shopping and the stress that
occurs during this activity. It helps consumers to find commodities quickly at
shopping mall in reality. Anil [5] proposed an algorithm to search commodities with
trademark. Some companies have developed some image retrieval systems like QBIC
of IBM [6, 7], Virage of company Virage [8], and MARS of Illinois University of
United States [9]. All of them are great prototype systems for image retrieval.

174 R. Li et al.

However, these studies above have some obvious shortcomings. Firstly, few of
them do research based on both visual features and textual features and apply them
into online shopping websites. Secondly, although some of the works take multi-
modal into consideration, they do not mention the impact of other factors such as
time. To overcome these shortcomings, we propose a multi-modal searching for
online shopping websites in this paper. In our work, we will utilize HSV [10], GLCM
[13], and SIFT [14] algorithm to extract color, textural, and SIFT features,
respectively. About these algorithms, researches have done related work.

Color histogram is one of the most commonly used methods of image retrieval
based on color feature, and HSV is an approximately-uniform color space: Hue,
Saturation, and Value [10]. One of the reasons inhibiting these spaces from being
widely used in image processing tasks is their noise-sensitivity due to the nonlinear
transformations involved [11].

Texture is a visual feature which is produced by spatial distribution of tonal variations
over relatively small areas [12], and a common technique in texture analysis is GLCM
[13], which describes the frequency of one gray tone appearing in a specified spatial
linear relationship with another gray tone, within the area under investigation [12].

SIFT descriptors are computed for normalized image patches with the code
provided by Lowe [14]. The resulting descriptor is of dimension 128, and it is
invariant to image rotation and scale and robust across a substantial range of affine
distortion, addition of noise, and change in illumination [14].

Locality-sensitive hashing (LSH) was introduced as an approximate high-
dimensional similarity search scheme with provably sublinear dependence on the data
size [15, 16]. Instead of using tree-like space partitioning, the key idea is to hash the
points using several hash functions so as to ensure that. For each function, the
probability of collision is much higher for objects which are close to each other than
for those which are far apart [17].

Based characteristics of HSV, GLCM, and SIFT algorithm above, in our work, we
extract visual features using them, and search related image with the merged features
roughly by LSH, then use SIFT features to search accurately.

3 Problem Description

For a shopping website, suppose C={c1, c2, …, cn} is a commodity data set (for short
commodity without ambiguity) consisting of texts and images of all n commodities.
For c∈C, c={T-Set, I-Set}, where T-Set means c’s text data such as tag, introduction,
and description, and I-Set means c’s image data such as big image, middle image, and
small image. Moreover, we give more detailed descriptions as follows.

Let TF={tf1, tf2, …, tfm} be c’s textual feature set, every tfi (i=1, 2, …, m)∈TF be
obtained from T-Set of c by natural language process techniques. Let VF={VFC, VFT,
VFS} be the c’s visual feature set and obtained from I-Set of c by image process
techniques. Where VFC={vfc1, vfc2, …, vfcnc}, VFT={vft1, vft2, …, vftnt}, and
VFS={vfs1, vfs2, …, vfsns} represent the color feature set, textural feature set, and SIFT
feature set, respectively, nc, nt, and ns are numbers of color features, textural features,
and SIFT features, respectively.

For the shopping website, we will extract TF and VF from T-Set and I-Set of every
commodity c∈C, and save TF, VFC, VFT, and VFS. On the other hand, for further

An Approach of Text-Based and Image-Based Multi-modal Search for Online Shopping 175

search, we generate basic feature set BF=f1(VFC, VFT) and refined SIFT feature set
RF=f2(VFS). Fig.1 gives an example of generating BF and RF.

big image

middle image

small image

…

…

f1 BF= f2 RF =

VFC=(vfc1, vfc2, …, vfcnc)

VFT=(vft1, vft2, …, vftnt)

VFS=(vfs1, vfs2, …, vfsns)

HSV

GLCM

SIFT

HSV

GLCM

SIFT

HSV

GLCM

SIFT

VFC=(vfc1, vfc2, …, vfcnc)

VFT=(vft1, vft2, …, vftnt)

VFS=(vfs1, vfs2, …, vfsns)

VFC=(vfc1, vfc2, …, vfcnc)

VFT=(vft1, vft2, …, vftnt)

VFS=(vfs1, vfs2, …, vfsns)

Fig. 1. Structure of VF Set and Generation of Basic Features and Refined Features

Moreover, for a customer’s query CQ, let CQ={T-CQ, I-CQ, ℜ}, where T-CQ, I-
CQ be text set and image set submitted by the customer for query, respectively, ℜ be
the relation of T-CQ and I-CQ, and ℜ={and, or}. ℜ can be obtained from customers’
feedback or other approaches.

For multi-modal search in shopping website, TF, VF={VFC, VFT, VFS}, BF=
f1(VFC, VFT) and RF=f2(VFS) need to be extracted and generated from T-CQ and I-
CQ using the same approach with T-Set and I-Set above. Then besides search based
textual feature set TF, we use two-stage strategy for image search.

Stage 1: For commodity set C, utilize BF=f1(VFC, VFT) to filter mismatching
images (presenting commodities), i.e. compare BF from I-CQ of customer’s query
CQ with one from I-Set of every commodity c∈C, and the result is C’⊆C.

Stage 2: Based on the results of Stage 1, use RF=f2(VFS) for image search
accurately, i.e. in the commodities set C’ after filtering in Stage 1, compare RF from
I-CQ of customer’s query CQ with one from I-Set of every commodity c∈C’.

In this paper, we build a multi-modal search prototype system with above
functions. It includes offline and online process.

The offline process includes: (1) Download data C={c1, c2, …, cn} from shopping
websites; (2) Extract TF, VFC, VFT, and VFS, from every c∈C; (3) Generate
BF=f1(VFC, VFT) and RF=f2(VFS); (4) Save BF into BF-Base and RF into RF-Base,
respectively; (5) Update these sets regularly according to new commodities.

The online process includes: (1) Accept customers’ query {T-CQ, I-CQ, ℜ} and
obtain TF about T-CQ, BF and RF about I-CQ; (2) Extract textual features from T-CQ
and visual features from I-CQ, and generate BF and RF; (3) Execute text search based

176 R. Li et al.

on TF for result TR (text results) and two-stage image search based on BF and RF for
result IR (image results); (4) Return R=TRℜIR to customers.

We will give a detailed description of above work in Section 4 and Section 5.

4 Offline Extraction of Features from Commodity Information

After downloading commodity data from online shopping websites, the commodity
data include two kinds of data, texts and images, i.e. T-Set and I-Set in Section 3. We
apply different algorithms to extract different features from different kinds of data.

To obtain textual features, we build two lexicons, Stop Lexicon and Shop Lexicon
to help us analyze the textual description of commodities more effectively.

To deal with images, we extract three kinds of features from the images, color
feature, textural feature, and SIFT feature, using HSV [10], GLCM [13], and SIFT [14]
algorithm, respectively. Due to the complexity of the SIFT, though this kind of features
is invariant to image scaling and rotation, and partially invariant to changes in
illumination and viewpoint [18], the high dimension and time-consuming problems
make it unsuitable for complete image search, so we utilize other two kinds of features
to filter first and then further utilize SIFT features to search smaller image set.

4.1 Construction of Stop Lexicon and Shop Lexicon for Text Partition

In our prototype system, we apply JE [19] to split T-Set into words. Because there are
many onomasticon in shopping websites such as “抓绒”(fleece), “马海毛”(mohair),
“清仓特价”(discount), JE can’t split them correctly. For solving the problem, we
build two lexicons, the Stop Lexicon and the Shop Lexicon.

(1) Shop Lexicon. For T-Set of a commodity, JE will split it to a string of words.
However, JE often get too fine-grained words, so we build the Shop Lexicon to help
JE to split appropriately. Our Shop Lexicon has 59 common words such as “豆豆鞋”,
“蝙蝠袖”, and 10 onomasticons such as “颜色分类”, ”组合形式”.

(2) Stop Lexicon. When we calculate the frequency to sort the result set, some
words are unnecessary to the ranking, so we build the Stop Lexicon to filter the result.
Our Stop Lexicon has 45 words, such as “打底衫”, “春装”, “2012”.

With two lexicons, we apply Lucene [19] to create index of text and implement text
search. Moreover, the two lexicons can be updated with new commodity data.

4.2 Generation of Basic Feature Set from Commodity Image

Empirically, in image search, if using single image features, the effectivity will be
poor, but using SIFT features will be much time-consuming. To solve the problem,
we propose a two-stage image search approach combining color, textural, and SIFT
features, which utilizes basic features consisting of color and textural features to filter
mismatching image in first stage, and further uses SIFT features for accurate search in
second stage. For this purpose, we offline extract these features from commodity
images, generate basic feature set BF and refined feature set RF.

An Approach of Text-Based and Image-Based Multi-modal Search for Online Shopping 177

We first use HSV algorithm to extract color features and GLCM algorithm to
extract textural features, and use f1 function to merge the two kinds of features for
generating basic feature set BF. On shopping websites, the relation between
commodity and images is one-to-many. Thus, we merge the color features and
textural features extracted from images belonging to the same commodity and
generate BF of the commodity.

It is notable that background of commodity image can make big noise to the image
search, so we preprocess it firstly. In preprocessing, background interference is
removed to get interest region, and merge the images features which describe one
commodity. We describe the algorithm as Algorithm 1.

Algorithm 1: Basic Feature Generation
Input: I-Set; // I-Set is image set belongs to one commodity;
Output: BF; // BF is Basic Features of the commodity;
 1) call Algorithm 2 for getting interest region I-Set’⊆I-Set of each image;
 2) for every image I∈I-Set’
 3) {extract color features of I using HSV algorithm and get VFC;
 4) extract textural features of I using GLCM algorithm and get VFT;
 5) generate BF=f1(VFC, VFT) and append BF into BF-Base;}

In the Algorithm, line 4) is for getting textural features using GLCM. In three kinds of
images of a commodity, because small images describe details of the commodity, we
extract textural features of small image as the commodity’s image textural features. It
is a vector of 5 dimensions. Because the value in this vector is very small, we amplify
the value of the vector 100 times for smoothing it with color features. In this paper,
we compare the area of interest region to judge which image is “small image”. Next,
line 5) is for getting basic feature set BF using f1 function. In detail, for a commodity
c, which has m images such as big images, middle images, and small images, we
extract m interest regions I1-Set’, I2-Set’, …, Im-Set’ from the m images, respectively.
For any Ii-Set’ (i=1, 2, …, m), its color feature and textural feature set are represented
as VFCi, VFTi, respectively. Here f1 function is shown as Formula (1).

−−−∪=

=

=)',...,',...,'(

),(

1
1

1

SetISetISetIareaargmaxVFT
m

VFC

VFTVFCfBF

mj
j

j

m

i
i (1)

From Formula (1), f1 includes average of color features of all Ii-Set’ (i=1, 2, …, m)
and the textural feature of maximal area in all Ii-Set’ (i=1, 2, …, m) (small image has
maximal area), BF is an union features finally. Here VFC is a 128 dimensions vector,
H component is divided into 16 levels and S component is divided into 8 levels.

In line 1) of Algorithm 1, Algorithm 2 is called to get interest region. Algorithm 2
is described as follows.

178 R. Li et al.

Algorithm 2: Interest Region Getting
Input: I-Set; // I-Set is image set belongs to one commodity;
Output: I-Set’⊆I-Set; // I-Set’ is interest region set of each images;
 1) for every image I∈I-Set
 2) {detect Canny operators CI of I;

 3) compute CI’ by
Bb

bCIIBCI
∈

=⊕=' ; //B is a structuring element;

 4) detect Contours CCI’of I;

 5) compute I’ by
Bb

bCCICCIBI
∈

=Θ= ''' and add I’ to I-Set’;}

In Algorithm 2, line 2) is for image edge extraction using Canny edge detection
operator, because the operator is sensitive, many edge inside of the interest region can
be detected. Hence, we need further computing. In line 3), ⊕ is dilation operation.
Line 4) is to get the contours of the CI’. In line 5), Θ is erosion operation to eliminate
the noise. At last, we get the produced image set I-Set’ which has interest areas only.

4.3 Generation of Refined Feature Set from Commodity Image

Generating refined feature set is for second stage image search. We apply SIFT
algorithm to extract SIFT feature set VFT from interest region of every commodity’s
images. According to SIFT algorithm, for an image, its VFT is a 128 dimensions
vector. So a commodity with m images, its RF=f2(VFT1, VFT2, …, VFTm) is a matrix
of m×128. Obviously, f2 function is constructing a matrix with m vectors. Algorithm 3
gives the process of generating RF.

Algorithm3: Generation of Refined Feature Set
Input: I-Set’; //I-Set’ is interest region set of all images;
Output: RF; //RF is refined feature set from I-Set’;
 1) for every image I∈I-Set’ extract SIFT feature set VFS;
 2) RF=f2(all VFS) and save RF into RF-Base; //from vector to matrix;

After first stage image search, result set become a smaller set than initial image set.
We can execute accurate search based on RF because of its invariant to image scaling
and rotation. Because the search is executed in smaller set, the time cost is acceptable.

5 Multi-modal Online Search for Shopping

Our multi-modal search prototype system is a middleware between shopping websites
and customers. In this prototype system, customer can submit phrases, sentences, or
images for searching. We use multi-modal search algorithm to implement the process.
Algorithm 4 gives the process of multi-modal search.

An Approach of Text-Based and Image-Based Multi-modal Search for Online Shopping 179

Algorithm 4: Multi-modal Online Search
Input: CQ={T-CQ, I-CQ, ℜ}; //T-CQ and I-CQ are texts and images submitted by

a customer, ℜ is the relation of T-CQ and I-CQ;
Output: R=TRℜIR; //TR and IR are returned results for text and image search;
 1) split T-CQ into TF'=(tf1, tf2, …, tfm) with Shop Lexicon;
 2) delete stop words from TF with Stop Lexicon;
 3) execute text search based on TF'=(tf1, tf2, …, tfm) for getting result TR;
 4) extract VFC, VFT, and VFS from I-CQ using HSV, GLCM, and SIFT method;
 5) generate BF using f1 function, i.e. BF=f1(VFC, VFT);
 6) call Algorithm 5 based on BF for getting filtered image set C’;
 7) generate RF using f2 function, i.e. RF=f2(VFS);
 8) call Algorithm 6 based on RF and C’ for getting exact result IR;
 9) if ℜ=“or” return R=TR∪IR;
 10) if ℜ=“and” return R=ISearch(TR)∩TSearch(IR, n);

In Algorithm 4, line 1)~line 3) is for text search, where Shop Lexicon and Stop
Lexicon have been introduced in Section 4.1. Next, line 4) is for extracting visual
features from the image submitted by customers, the approach is the same with line 3)
and line 4) in Algorithm 1, and line 1) in Algorithm 3. Line 5) is for generating basic
features BF from color features and textural features using function f1, and line 7) is
for generating refined features RF from SIFT features using function f2. Here f1 and f2
have been introduced in Section 4.2 and Section 4.3, respectively. Line 6) is for
executing first stage image search, and line 8) is for executing second stage image
search. In line 10), ISearch(TR) is for searching matching commodity images in TR,
and TSearch(IR, n) is for searching the commodities by text which contains the top n
of the word frequency from high to low of the TR. Algorithm 5 and Algorithm 6 show
the two-stage search processes.

Algorithm 5: First Stage Image Search
Input: BF={bf1, bf2, …}; // BF is basic features from customers’ query I-CQ;
Output: C’∈C; // C’is search result set with basic features
 1) for BF-Base of all commodities // BF-Base is generated in Algorithm 1;

2) {transform every bf∈BF-Base into a binary vector c-BH by

c-BH=Unary(c)(bf1)…Unary(c)(bfk); (2)

//Unary is a function to transform an integer into a binary vector;
 3) transform every bf∈BF into a binary vector q-BH also using Formula (2);
 // c-BH is from BF-Base and q-BH is from BF
 4) compute c-BH, q-BH by one of a bunch of hash function gi using Formula (3)

c-BH’=gi(σ, c-BH) q-BH’=gi(σ, q-BH) (3)

 5) compute the MD5 value Ii of c-BH’ and q-BH’ using Formula (4);}

Mc-BH’=MD(c-BH’) Mq-BH’=MD(q-BH’) (4)

 6) save all Mc-BH’ into c-bucket and get hashtableNum buckets;
 // Mc-BH’ is the key value of the hashmap
 7) save the hashmap and hashfamily which include all hash function gi;
 8) for i=1 to hashtableNum;
 9) find the same key c in ith-c-bucket with Mq-BH’ and add c to C’;

180 R. Li et al.

In Algorithm 5, line 1) to line 7) is to analyze all BF in BF-Base for generating a
hashmap and hashfamily and saving them. It will be executed only if the database has
been updated. In line 4), the hash function gi is to choose σ numbers of the vector
randomly. The smaller σ is, the greater the ability of approximate searching is, but the
false positive corresponding is bigger too. When σ equals to an appropriate size, the
result will be best. Line 8) to line 9) is to search the similar data in every hash table.

In the first stage of image search, BF is high dimensional, we can’t use traditional
index technology like R-tree because of dimension curse. Hence, we choose LSH
index technology to search based on BF. We put similar BF into one hash bucket by
hash functions, which can assure that if BF is more similar, the probability that they
are in the same bucket is more higher. Because of the uncertainty, BF are hashed in
hashtableNum hash tables using related series of hash functions. When we query a
commodity by BF, the hash value is calculated by related hash functions and the data
in corresponding hash bucket is the candidate set which is the result of first stage.

Moreover, Algorithm 6 gives second stage image search process.

Algorithm 6: Second Stage Image Search
Input: C’, RF; // C’ is search result set of first stage; RF is refined feature set
Output: IR; //IR is final image search result set
 1) find RF’⊆RF-Base; // RF’ is RF of C’
 2) find IR by comparing RF with every rf’∈RF’;

The process is simple. In line 1), RF’ is refined feature set of C’ and obtained from
RF-Base, i.e. refined SIFT features. Line 2) uses RF from I-CQ to search in RF’, and
final result IR is image set found by refined SIFT features.

6 Experiment Results

In order to test the algorithm we proposed in this paper, we download the data from
the hottest online website in China, Taobao (http://www.taobao.com/). We get about
9632 images in 309 stores, and searching data in the database. Some images are
shown as Fig.2, and the category distribution of the data is shown in Fig.3.

Fig. 2. Image Data from Taobao

An Approach of Text-Based and Image-Based Multi-modal Search for Online Shopping 181

Fig. 3. Category Distribution of Data from Taobao

6.1 The Parameters in Search and Effectivity Comparison

In line 4) of Algorithm 5, σ is the unknown numbers of the vector in hash function gi,
with different σ, the F-score is changing. As Fig.4 shows, the three charts present
precision, recall and F-score vary with σ respectively. We can see when the value of
σ is 70, F-score has the maximum. In this experiment, the data is 200 commodities,
and every value is the average of ten experiments.

In line 6) of Algorithm 5, hashtableNum is another parameter. As Fig.5 shows, the
three charts present precision, recall and F-score varies with hashtableNum. When
hashtableNum increases, F-score increases too. But when hashtableNum equals 10,
the F-score is almost invariant, thus we choose 10 to be the value of hashtableNum.

Fig. 4. The Variety of σ Impact

Fig. 5. The Variety of hashtableNum Impact

182 R. Li et al.

In line 11) and line 12) of Algorithm 4, n is a parameter and we use it as top-n
highest frequency. With the variety of n, F-score is changing. In Fig.6, the first figure
is result numbers with n, and second is F-score with n. As it shows, we can see, as the
value of n is equal to 4, the F-score has the maximum.

(a) (b)

Fig. 6. The Variety of n Impact Fig. 7. Different Kinds of Features

Fig.7(a) shows F-score decreasing with commodity number increasing. In Fig.7(a),
GF is our method, means image features merged by HSV, GLCM and SIFT. Contour
means using color features from interest area, HSV and GLCM represent using simple
features only. As the curve shows, if we use single simple features, the accuracy will
be very low, and even more, with the number of images increase, it decrease rapidly.
After we choose interest area, the accuracy increases observably. The best result is
GF, because we merge the SIFT features in it, the accuracy is high and stable.
Fig.7(b) shows the comparison of time between SIFT and GF (using Base and SIFT
features).

6.2 Multi-modal Retrieve Results

As Fig.8 shows, Fig.8(a), we search with text “水墨花朵花色的亚麻裙子”(skirt
made of flax with ink flower), and an image to query, the results are many but we
choose first 9 commodities to show. The textual description of the commodities has
not only “水墨花朵”(ink flower), but also “木棉花开”(blooming ceiba flower)
because of the sort of the frequency. The same as Fig.8(a), we search with a sentence
“拉夏贝尔今年新款连衣裙”(new style dress) in Fig.8(b), and get the results as
below. In both parts, the parameter ℜ is “and”. The results in Fig.8(c) and Fig.8(d) are
in the same condition except the parameter ℜ is “or”.

An Approach of Text-Based and Image-Based Multi-modal Search for Online Shopping 183

 (a) (b)

 (c) (d)

query from
customers

水墨花朵
花色的
亚麻裙子

and

query from
customers

水墨花朵
花色的
亚麻裙子

or

query from
customers

拉夏贝尔
今年新款
连衣裙

and

query from
customers

拉夏贝尔
今年新款
连衣裙

or

Fig. 8. Multi-modal Retrieved Results

7 Conclusions and Future Work

In this paper, we focus on searching commodities by both image and text from online
shopping websites. For text search, we use Lucene to construct index. For image
search, we propose two-stage search. The first stage is to filter obvious mismatching
images by color and textural features using algorithm LSH, and the second stage is to
match with SIFT features. For online search, customers may submit texts and (or)
images for obtaining exact or extensive commodities’ information they want to buy.

Although this paper puts forward many actual effective methods, there are still
some to be improved such as applying and improving more image process methods,
including more data modalities. All of them are our future research topics.

References

1. TNS Interactive. Global e-Commerce Report (2002),
http://www.tnsofres.com/ger2002/ (accessed July 5, 2004)

2. Michael, R., Michelle, M.: Consumer acquisition of product information and subsequent
purchase channel decisions. Volume Advances in Applied Microeconomics Issue, 231–255
(2002)

184 R. Li et al.

3. Couclelis, H.: Pizza over the Internet: E-commerce, the fragmentation of activity and the
tyranny of the region. Entrepreneurship & Regional Development 16, 41–54 (2004)

4. Davis, Z., Hu, M., et al.: A Personal Handheld Multi-Modal Shopping Assistant.
Networking and Service, 117–125 (2006)

5. Anil, K., Jain, A.: Shape-Based Retrieval: A Case Study With Trademark Image
Databases. Pattern Recognition (PR) 31(9), 1369–1390 (1998)

6. Liu, Y., Zhang, D., Lu, G., Ma, W.: A survey of content-based image retrieval with high-
level semantics. Pattern Recognition (PR) 40(1), 262–282 (2007)

7. Flickner, M., Sawhney, H., et al.: Query by Image and Video Content: The QBIC System.
IEEE Computer 28(9), 23–32 (1995)

8. Bach, J., Fuller, C., et al.: Virage Image Search Engine: An Open Framework for Image
Management. In: Storage and Retrieval for Image and Video Databases (SPIE), pp. 76–87
(1996)

9. Huang, T., Mehrotra, S., Ramchandran, K.: Multimedia Analysis and Retrieval System
(MARS) Project. Data Processing Clinic (1996)

10. Smith, J.: Integrated spatial and feature image systems: Retrieval, compression and
analysis, Ph.D. dissertation, Columbia Univ., NewYork (1997)

11. Song, K., Kittler, J., Petrou, M.: Defect detection in random color textures. Image and
Vision Computing, 667–684 (1996)

12. Baraldi, A., Parmiggiani, F.: An investigation of the textural characteristics associated with
gray level cooccurrence matrix statistical parameters. Geoscience and Remote Sensing
Society 33(2), 193–304 (2002)

13. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and Texture Analysis for Image
Segmentation. International Journal of Computer Vision (IJCV) 43(1), 7–27 (2001)

14. Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. International
Journal of Computer Vision (IJCV) 60(2), 91–110 (2004)

15. Indyk, P., Motwani, R.: Approximate Nearest Neighbors: Towards Removing the Curse of
Dimensionality. In: STOC, pp. 604–613 (1998)

16. Gionis, A., Indyk, P., Motwani, R.: Similarity Search in High Dimensions via Hashing. In:
VLDB, pp. 518–529 (1999)

17. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.: Locality-sensitive hashing scheme based
on p-stable distributions. In: SoCG, pp. 253–262 (2004)

18. Skrypnyk, L.D.: Scene Modelling, Recognition and Tracking with Invariant Image
Features. In: ISMAR, pp. 110–119 (2004)

19. Doug Cutting. Lucene, http://lucene.apache.org/

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 185–197, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Categorizing Search Results
Using WordNet and Wikipedia

Reza Taghizadeh Hemayati1, Weiyi Meng1, and Clement Yu2

1 Department of Computer Science, Binghamton University, Binghamton, NY 13902, USA
{hemayati,meng}@cs.binghamton.edu

2 Department of Computer Science University of Illinois at Chicago, Chicago, IL 60607, USA
cyu@uic.edu

Abstract. Terms used in search queries often have multiple meanings and
usages. Consequently, search results corresponding to different meanings or
usages may be retrieved, making identifying relevant results inconvenient and
time-consuming. In this paper, we study the problem of grouping the search
results based on the different meanings and usages of a query. We build on a
previous work that identifies and ranks possible categories of any user query
based on the meanings and common usages of the terms and phrases within the
query. We use these categories to group search results. In this paper, we study
different methods, including several new methods, to assign search result record
(SRRs) to the categories. Our SRR grouping framework supports a combination
of categorization, clustering and query rewriting techniques. Our experimental
results show that some of our grouping methods can achieve high accuracy.

Keywords: Search Result Clustering and Categorization, Search Engine.

1 Introduction

One common complaint about current search engines is that they return too many
irrelevant results for users’ queries. The reasons include (1) current search engines
retrieve results mainly based on query words match, capturing only the main
meanings or usages of query words, and (2) Internet users tend to submit very short
queries which often do not provide enough context to determine the users’ intentions.
One way to tackle this problem is to group the search results into multiple categories
such that all results in the same category correspond to the same meaning or usage of
the query. This makes it much easier for users to identify useful results. Most current
result clustering techniques are based on word-match similarity. Although a few
techniques have used semantic similarity [1, 2], they have various weaknesses. For
example, they do not explicitly and systematically consider usages of query terms,
which would lower the quality of search result clustering.

In this paper, we propose and evaluate several methods to assign search results to a
type of categories called definition categories (DCs). DCs are obtained based on both
the possible meanings and the usages of the terms and/or phrases in a query using the
techniques proposed in our previous paper [5].

186 R.T. Hemayati, W. Meng, and C. Yu

Unlike the work in [4] which considered only single-term queries, in this paper we
consider both single-term and multi-term queries. Furthermore, the categories used in
this paper are defined based on both the possible meanings and usages of the terms
and/or phrases in the query using WordNet and Wikipedia [5]. The categories are
ranked based on both the importance of the meanings/usages of each term/phrase in
the query and the relationships between them. Moreover, we also introduce a new
method which uses query rewriting technique to categorize SRRs.

This paper has the following contributions:

1. We introduce three new automatic real-time grouping methods. The first one is
based on a query-rewriting technique (QRW). This method selects some query
expansion terms (QET) and submits these QETs along with the original query to
search engine(s) to retrieve related results for each category (DC). The second
method (E3C) is extension to the CCC algorithm first introduced in [4]. E3C is
designed to improve assigning SRRs that have low similarities with a DC to the
right DC. The third method is a hybrid of the first two methods. It decides which
of the first two methods to use in different situations in order to achieve better
overall performance.

2. We perform extensive experiments to evaluate and compare the performance of
our proposed algorithms. The experimental results indicate that some of the
proposed algorithms have both good effectiveness and efficiency.

The rest of the paper is organized as follows. Section 2 reviews related work. Section
3 provides an overview of our approach. Section 4 presents the main steps of our
approach. Section 5 reports experimental results. Section 6 concludes the paper.

2 Related Work

The general problem of document clustering and categorization has been studied
extensively [8] and they will not be reviewed in this paper. Instead, we focus on
related works that deal with the clustering and categorization of the search result
records (SRRs) returned from search or metasearch engines.

Techniques for clustering web documents and SRRs have been reported in many
papers and systems such as [2, 15, 17, 18]. There are also commercial search engines
like yippy.com which clusters SRRS. However, these techniques perform clustering
based on the syntactic similarity but not semantic similarity.

Some researchers used web directories like Yahoo directory or ODP to
categorize/classify user queries. Mapping user queries to hierarchical sequences of
topic categories was studied in [3]. The method in [9] maps user queries to categories
using a user profile learned from the user’s search history and a general profile
derived from a concept hierarchy. The method in [16] classifies the search results into
deep hierarchies using category candidates retrieved by query.

Another related area is result diversification (e.g., [13, 1]), which aims to select
search results covering different meanings/usages and show them among the top-
ranked results. These methods do not specifically cluster or categorize search results.

 Categorizing Search Results Using WordNet and Wikipedia 187

Query disambiguation [10] is relevant to identifying different meanings of a query
for generating different categories. The issue of generating categories is not
considered in this paper as our methods are based on already available categories.

Techniques for clustering and categorizing web documents using WordNet or other
ontologies have also been extensively studied (e.g., [11, 14, 7, 15]) and some of them
(e.g., [11, 14]) also tried to categorize SRRs based on the meanings of the query term.

Our approach differs from the above techniques significantly. First, our SRR
grouping algorithm employs categorization, clustering and query rewriting techniques
in a unique way. Second, our method also copes with SRRs that do not match any
meaning/usage of the query term/phrase in WordNet or Wikipedia definitions. In
other words, we utilize definitions provided by WordNet and Wikipedia but are not
limited by them. Third, our approach also utilizes similarities that are computed using
syntactical, semantic and common usage information.

3 System Overview

Our overall search result grouping system consists of the following main components:

1. Alternative Query Generation. For each user query Q, this step generates a set of
alternative queries (AQs). All AQs contain the same set of query terms that appear in
Q but contain different phrases. This step identifies different possible phrases
comprised of the terms in Q as phrases are better at capturing the meanings of user
queries. We will refer both query terms and phrases as concepts.

2. Definition Category Generation. A definition category (DC) is a combination of
meanings or usages derived from the concepts of an AQ. This step generates all
possible DCs for each AQ and it consists of three tasks: (a) Usage generation:
Identify all possible meanings/usages for each concept in AQ using semantic
dictionaries (WordNet and Wikipedia). (b) Usage merging: Merge similar meanings
or usages for each concept into a single meaning/usage to reduce possible confusion
to users. (c) Definition category generation: Generate DCs by combining one
(possibly merged) meanings/usage from each concept in the AQ.

3. Definition Category Ranking. This step ranks the generated DCs. Each DC is
generated from a specific alternative query AQ*, from a specific meaning/usage of
each concept in AQ*, and from the combination of these specific meanings/usages. To
rank the DCs, each DC is weighted in three aspects: (a) the importance of its AQ
among all Aqs; (b) the importance of each DC among all DCs within each AQ; and
(c) the document frequncy of each DC on the Web.

4. Submitting Query and Processing Results. For each user query, the top k (k = 50
in this paper) distinct results (duplicates are removed) are retrieved and are used as
input to our SRR grouping algorithm (next component). Each result (SRR) usually
consists of three different items: title, URL and snippet. Only the title and snippet of
each SRR will be utilized to perform the grouping in our current approach. For each
SRR, we first remove the stop words and stem each remaining word. Next, the SRR is
converted as a vector of terms.

188 R.T. Hemayati, W. Meng, and C. Yu

The above components were introduced in our previous works [4, 5] and will not
be repeated in this paper. This paper focuses on the result grouping component as
briefly reviewed below.

5. SRR Grouping Algorithms. We evaluate four major grouping algorithms in this
paper (CCC, QRW, E3C and Hybrid). Our CCC and E3C algorithms consist of the
following three steps to group SRRs: (i) Preliminary Categorization, (ii) Further
Categorization, and (iii) Final Categorization. We explain these in more detail in section
4. The CCC algorithm here is similar to the CCC algorithm introduced in our previous
work [4]. In [4], only WordNet was utilized to categorize SRRs and only single-term
queries were considered. In this paper, we use both WordNet and Wikipedia to
categorize SRRs and both single-term and multi-term queries are considered. The main
difference between CCC and E3C is the similarity computation method used in the
second step. The new method is not only based on the similarity between SRRs and
DCs (categories) but also the similarities between un-categorized SRRs and already
categorized SRRs. We will explain this in more details in Section 4.

Query ReWriting (QRW) uses the query expansion terms QETs generated from
DCs along with the original query as new queries to retrieve SRRs related to each
DC. We will discuss this in more details in 4.3. Hybrid solution uses one of the QRW
or CCC [4] approaches based on the type of the DCs generated from the submitted
query. Our experiments (section 5) show that this approach improves performance.

4 SRR Grouping Algorithms

We present four algorithms to group SRRs (CCC, E3C, QRW, Hybrid) in this section.

4.1 Algorithm CCC

Algorithm CCC in this paper consists of three major steps:

Step1: Categorize SRRs by assigning each SRR to the most similar DC if the
similarity is greater than a threshold T1. Temporary categories are obtained based on
the current assignments and the remaining SRRs form another temporary category.

Step2: Further categorize the remaining SRRs by assigning each such SRR to the
most similar temporary category using another threshold T2.

Step3: Categorize/Cluster the set RS of remaining SRRs. Three alternative solutions
were introduced for this step in [4]: (i) Largest Frequency of Use (LF): Assign RS to
the cluster with the most common meaning; (ii) Largest Category: Assign RS to the
cluster (from Step 2) with the largest size; (iii) Clustering: cluster the results in RS.

The CCC algorithm in this paper differs from that in [4] in the following aspects:

1. DCs used in this paper are based on both WordNet and Wikipedia definitions;
however the one in [4] was just based on only WordNet definitions.

2. In this paper, we train thresholds in different steps of CCC to achieve the best
performance. In [4] the thresholds were manually selected.

 Categorizing Search Results Using WordNet and Wikipedia 189

3. In this paper, the LF method in [4] is replaced by an HWC method, which assigns
RS to the DC with the highest weight. LF is based on the largest frequency of use
of the query term’s synset in WordNet. HWC is based on the highest weighted
(ranked) DC (definition category) obtained using both WordNet and Wikipedia
(see [5] for details).

4.2 E3C (Extended CCC)

Algorithm E3C has the same three major steps as CCC except that the second step
(i.e., Further Categorization) in E3C is implemented differently. In CCC, sometimes
we couldn’t assign a related SRR to the correct DC since we couldn’t find high
similarity between that SRR and the DC due to the lack of sufficient common words.
To address this issue, we modify the second step in CCC. This is explained below.

Let’s assume that there are similarity scores among documents and also between
each document in a set of documents (SRRs) and a DC C1. It is possible that an SRR
R1 has zero or very low similarity with C1, but is still sufficiently similar to an SRR R2
which is very similar to C1 and has already been assigned to C1. In this case we may
assign R1 to C1 via R2.

We categorize SRRs based on their V(R, Ck) values (to be defined shortly) with
DCs. Specifically, for each SRR R, find the DC Ck that has the highest V(R, Ck) value
to R among all DCs. If the value of V(R, Ck) is very low, we postpone assigning R to a
later step. This is to prevent assigning an SRR to a DC with a very low similarity.
When more information becomes available later, we will try to assign this SRR again.

If the V(R, Ck) values between R and two DCs are very similar, it is easy to assign R
to a wrong cluster. In this case, we also postpone assigning R to a later step.

We continue this method until one of the following conditions becomes true:

• All SRRs have been categorized.
• We cannot assign at least one new SRR to any DC.
• A pre-set number of iterations have been reached. In this case we don’t

continue assigning un-assigned SRRs to DCs and go to Step 3 of CCC.

We introduce two approaches to calculate V(R, Ck) values. In the first approach, the
value of V(R, Ck) is calculated by

=

+=
n

i
kiikk CdPdRSimCRSimCRV

1

)|(),(),(),(

where

=

= m

j
ji

ki
ki

CdSim

CdSim
CdP

1

),(

),(
)|(and 1≤ k ≤ m and Sim(R,Ck) is the similarity

between R and the kth DC, Sim(R, di) is the similarity between R and di which is the
ith already categorized SRR in DC Ck, m is the number of DCs built for a submitted
query, P(di|Ck) is the probability of di

 belonging to Ck (the kth DC), Sim(di, Ck) is the
similarity between di, which is the ith already categorized SRR in DC Ck, and Ck.

We consider these values in this method. First, the similarity between R and Ck.
Second, the total similarities between R and the other SRRs in Ck (1≤ k ≤m). This will
be determined by calculating the similarity between R and each SRR di in Ck

190 R.T. Hemayati, W. Meng, and C. Yu

multiplied by the probability of di belonging to Ck. By using this probability, we are
more in favor of those assigned SRRs that have higher similarities to a DC over those
with lower similarities to the same DC.

The reason behind this approach is, if there are similarities between an SRR R and
SRRs already categorized in a DC Ck and the total value of these similarities and the
similarity between R and Ck is above a threshold (e) and is the highest among all DCs,
then there is a good chance that R belongs to Ck.

The second approach determines the value of V(R,Ck) by using:
 ()),(*)),|(*),((),(1 kkii

n
ik CRSimCdPdRSimMaxMaxCRV α==

where 0 ≤ α ≤ 1. In this method we determine V(R, Ck) by finding the maximum value
among the similarity between R and SRR di in Ck multiplied by the probability of di
belonging to Ck and the similarity between R and Ck. The logic behind this method is
if an SRR R1 has high similarity with an SRR R2 which has already been categorized
to a DC C1, and also this R2 has high similarity to DC C1, then there is a good chance
that this R1 (uncategorized yet) belongs to C1, compared to a situation that the same
SRR R1 has similarity to more SRRs (e.g., R3, R4) in another DC C2, but the similarity
between R1 and R3 (or R4) multiplied by the probability of their (R3 or R4) belonging
to C2 is lower compared to the first case when R1 is similar to R2 and R2 has been
categorized into C1.

4.3 Query ReWriting (QRW)

The last two algorithms send original queries and retrieve the first n SRRs (first 50
SRRs in this work). In those algorithms, usually high weighted DCs get relevant
SRRs and DCs with lower weights don’t receive any SRRs. In order to get
relevant SRRs for low-weighted DCs, we need to retrieve many SRRs (in many cases
thousands). To address this issue, we introduce the QRW method.

In this method, we first find a set of query expansion terms (QETs) for each DC
(category), and send them along with the original query to a search engine to retrieve
relevant SRRs for each DC. This will guarantee that there won’t be any DCs without
SRRs. Since our DCs are built based on Wikipedia and WordNet meanings/usages
definitions, there is a very low chance to not retrieve any relevant SRRs for any DC.
This method has the following steps: Send the original query to the DC generator,
retrieve DCs, find query expansion terms (QET) for each DC, and finally send each
DC’s QETs along with the original query as a new query to a search engine to retrieve
relevant SRRs for each DC. We now explain how to find the QETs for DCs (the first
two steps have been discussed in Section 3 and our previous paper [5]). In order to
find the best expansion terms for DCs we use two sources: Wikipedia and WordNet.

Due to space limitation, we cannot provide the details of our QET generation
algorithm in this paper. The basic idea is sketched below. Given a DC as input, this
method aims to obtain query expansion terms to represent the DC. QETs for a DC are
a set of terms/phrases that summarizes the DC. We first use Wikipedia and WordNet
to generate candidate QETs. Wikipedia provides some useful information for each
concept (like meanings/usages definitions, categories, disambiguation page and etc.),

 Categorizing Search Results Using WordNet and Wikipedia 191

which can be used to generate candidate QETs. WordNet provides information like
synonyms, hypernyms, and etc. that can also be used as candidate QETs. These
candidate QETs will be ranked for each DC based on their similarities and the top-
ranked candidate QETs is then chosen as the final QETs for the DC.

4.4 Hybrid Method

We observed that algorithm E3C outperforms the QRW method for certain types of
DCs while the opposite is true for other types of DC’s (more details will be given
shortly). We introduce a hybrid solution to take advantage of the strengths of both
types of approaches to enhance the performance of search result grouping. The
following are the main differences between E3C and QRW.

1. QRW focuses only on information retrieved from Wikipedia and WordNet, while
E3C uses information retrieved from WordNet, Wikipedia and SRRs.

2. For DCs that do not contain a single phrase or for DCs with weak relationships
between their concepts and meanings/usages, it is often difficult to determine a
single meaning/usage which can express the intention of the DC. As a result, it is
more difficult to find good QETs for these DCs. For this type of queries, E3C is
more applicable than QRW.

3. Using Wikipedia and WordNet to categorize results places more emphasis on
what meanings/usages are covered by a dictionary/encyclopedia for a concept. On
the other hand, using SRRs to categorize the results emphasizes more on what
contents are indexed by a search engine.

4. The importance of different meaning/usage recognized by a dictionary/
encyclopedia and SRRs can be different. A good balance between them can help
the system categorize and rank SRRs with better accuracy and users’ satisfaction.
We try to achieve this goal by exploring different grouping algorithms.

5. Although Wikipedia is a dynamic source, SRRs are more dynamic and up-to-date.
Just using Wikipedia to find possible meanings/usages may miss some usages
(like persons’ names). Using all sources (Wikipedia, WordNet and SRRs) makes
our system capable of addressing this concern.

6. In CCC/E3C, depending on the number of SRRs retrieved, we may have some
DCs with no SRRs assigned. In order to have at least some SRRs in each DC, we
may need to retrieve thousands of SRRs. QRW does not suffer from this problem.

We differentiate four types of DCs. Each type of DC determines how well we can
“guess” the real intention of a user by determining a meaning/usage for a user query.
Based on our experiments, the QRW algorithm performs better for DCs for which we
can find a meaning/usage, which can express the whole DC compared to other
algorithms (e.g., when there is a definition page for the DC in Wikipedia which can
be used as the DC’s representative). On the other hand, E3C performs better for DCs
for which we cannot find a single meaning/usage to represent those DCs (e.g., there is
no definition page in Wikipedia which can be used as the DC’s representative when
sending the corresponding AQ to Wikipedia). Based on which algorithm (E3C or
QRW) we use, different SRRs will be categorized and they will be categorized
differently. For E3C, SRRs from the original query will be assigned to the similar

192 R.T. Hemayati, W. Meng, and C. Yu

DCs, but for QRW, SRRs retrieved by queries formed by QETs along with the
original query for each DC will be assigned to the corresponding DC.

In the hybrid algorithm, we use a method to select one of the algorithms (E3C or
QRW) based on the type of DC generated from a query submitted by a user. We
define four types of DCs. We also define different cases for each type of DC. These
cases are used to determine the type of a DC by examining different definitions (if
exist) in each DC to see if there is a single meaning/usage which can be used on
behalf of other meanings/usages in a DC. Each query may consist of different
concepts and each concept may have different meanings/usages. Therefore each DC
may contain different meanings/usages. We try to examine each of these
meanings/usages to see if there is relationship between them so we can consider all
meanings/usages in a DC that are related to each other.

We classify DCs into the following four types:

Type 1: Single term Queries with single meaning.

Case 1: A DC generated from an AQ (alternative query explained in section 3 step
1) which is a single term query with a single meaning/usage.

Type 2: DCs with no ambiguity. This type of DCs has only one meaning/usage (the
DC contains only one meaning/usage) from both WordNet and Wikipedia after
merging similar meanings/usages [5].
We recognize a DC as Type 2 if one of the following cases is true:

Case 1: A DC generated from an AQ which is a single term query with multiple
meanings/usages from WordNet/Wikipedia. This means we can see multiple
definition pages (there are multiple meanings/usages for this concept) when we
submit this query to Wikipedia/WordNet. This type of AQs will generate multiple
DCs, but each DC refers to one meaning/usage directly from WordNet/Wikipedia.
All DCs generated from this AQ are Type 2 in this case.
Case 2: A DC generated from an AQ which is a valid phrase [5] with a single or
multiple meanings/usages from Wikipedia/WordNet. Each DC refers to one
meaning/usage directly from WordNet/Wikipedia. All DCs generated from this
AQ are Type 2 in this case.

Type 3: DCs with multiple definitions, but there is one definition which can be used to
represent all other definitions in a DC. This type of DCs has multiple
meanings/usages in WordNet or Wikipedia; however we can find one meaning
/usage that can be used to represent all other meanings/usages in a DC. For
example, if all meanings of a DC are synonyms, then one can be used to represent
the others. As another example, if one meaning is a hypernym of other meanings,
then this meaning can represent the others. We have identified 12 cases in which
one meaning/usage can represent all other meanings/usages. But due to space
limitation, they are not included here. These cases plus many examples for these
cases can be found in a technical report [6].

Type 4: DCs with ambiguity: There is no single meaning/usage which can be used to
represent all other meanings/usages in a DC. We recognize a DC as Type 4 if it is
not recognized one of the above three types.

 Categorizing Search Results Using WordNet and Wikipedia 193

The QRW method tends to generate longer queries for DCs in Type 4 compared to
DCs of Types 1, 2 and 3. The reason is that the system couldn’t recognize one single
meaning/usage for this type of DC. This type of DC has multiple meanings/usages.
Each meaning/usage in a DC generates a set of expansion terms (explained in section
4.3). This usually will result in long and inaccurate QETs (query expansion terms).
Furthermore, these QETs may retrieve irrelevant SRRs. Therefore, the Hybrid method
uses the E3C algorithm for Type 4 DCs and uses QRW algorithm for DCs of Types 1,
2 and 3.

5 Evaluation

5.1 Query Set and Performance Measures

Our query set contains 50 queries [6] with 25 from TREC (2003 and 2005) and 25
from AOL query logs. We sample 50 queries conditioned on: (a) the query set should
have queries with different lengths, (b) the query set should have a mixture of queries
with/without phrases, and (c) the query set should have queries with ambiguities. The
reason for using queries from different sources is to have queries with different
lengths and also have enough queries with ambiguities.

We evaluate four SRR grouping algorithms (CCC, E3C, QRW and Hybrid). For all
algorithms, we use the recall, precision and F1 measure as the performance measures.
For the SRR grouping algorithms, the recall and precision are defined in [4].

5.2 Performance of CCC and E3C in Different Steps

The CCC algorithm has three major steps to assign (categorize) SRRs to DCs. We
evaluate the performance of each step. For Step 3, different methods are introduced to
categorize unassigned SRRs. We also study the performance of each of these methods
here. We evaluate the following four different methods for Step 3: Clustering, Largest
Cluster (LC), Highest Weighted Cluster (HWC) and SIM (classification).

 Fig. 1. Performance of CCC Fig. 2. Performance of E3C

194 R.T. Hemayati, W. Meng, and C. Yu

Fig. 1 shows the performance of CCC in different steps. We can observe that the
precision of step 1 (p=0.99) is higher than the later steps. The reason is that we try to
only assign those SRRs that have very high similarities to DCs. This will decrease the
chance of assigning SRRs to wrong DCs. Among different methods for Step 3,
clustering method performs the best considering both precision (0.94) and recall
(0.89). This is mainly due to the fact that clustering method can group the SRRs
beyond the discovered DCs while the other methods force the SRRs that do not match
any DCs into incorrect categories. On the other hand, the recalls of earlier steps are
very low compared to the later ones. The recalls for step 1, step 2 and step 3 are 0.46,
0.63 and > 0.85 (depending on what method was chosen for step 3). This is due to the
fact that in the last step we try to categorize all SRRs and this will increase the recall
value compared to earlier steps.

The E3C algorithm has three major steps to assign SRRs to the DCs built for a
submitted query. We evaluate the performance of each step of the E3C algorithm here
(Fig. 2). Step 1 in E3C is similar to that in CCC. In step 2 of E3C, we introduced two
different approaches (Section 4.2). From Fig. 2, we can observe that the precision of
step 1 (0.98) is higher than the later step. The reason is the same as that for algorithm
CCC. In step 2, the second approach (i.e., when maximum value of V(R,Ck) was
chosen to assign an SRR to a DC) performs slightly better than the first approach
(p=0.94 vs. p=0.93). We observe that for most cases both approaches categorize SRRs
the same way. For cases that there were differences, the second approach tends to
perform better. The reason is that if an SRR is very similar to an already assigned
SRR to a DC, there is good chance that this SRR belongs to this DC, compared to a
situation that the same SRR has moderate similarity with more SRRs in another DC,
but the similarity with each of them is much lower compared to the one in another
DC. On the other hand, the recall of earlier step (step 1) is very low compared to the
later steps. The recalls for step 1, step 2-first approach (Sum) and step 2-second
approach (Max) are 0.46, 0.93 and 0.94, respectively. This is due to the fact that in the
second step we are less conservative and we give more chances to categorize SRRs to
similar DCs since we have more information for each DC in this step (i.e., the SRRs
assigned in Step 1 can be utilized). The performance in the third step stays almost the
same as the performance in the second step since we were able to categorize most of
the SRRs by the end of step 2 in E3C.

When comparing the performance of the second step in CCC and E3C, we can
observe that the precision of CCC in step 2 (0.98) is better than the ones in E3C. On
the other hand, the recall of the second step of CCC (0.63) is the lowest compared to
the ones in E3C. In E3C, we assign more SRRs to DCs since we don’t just assign
SRRs to DCs based on their similarities to DCs but also based on the similarities with
already assigned SRRs. The precision and recall of E3C in the second step for the first
and the second approaches are 0.93 and 0.94. The precision of CCC in the second step
is better than the ones in E3C because we only assign very similar SRRs to DCs.
When CCC were used there were still uncategorized SRRs at the end of step 2. When
E3C was used, we were able to categorize most of the SRRs at the end of step 2. In
E3C there were few cases that we assigned SRRs to wrong DCs due to the fact that
they either belong to DCs that are not generated by the DC generation algorithm in [5]

 Categorizing Search Results Using WordNet and Wikipedia 195

or we assign them to the wrong DCs due to the lack of common words. Furthermore,
in the second step of CCC we can have different thresholds. In the second step of
CCC, we can be conservative and keep the value close to the value in the first step (T1

≥ T2) by decreasing the threshold value very little. In this case we only assign very
similar SRRs to DCs. On the other hand, we can be more liberal by decreasing the
threshold value more significantly from its original value in the first step in order to
assign more SRRs to DCs. We observe that CCC performs better when more
conservative approach is chosen. For example the precision, recall and F1 of CCC
when clustering is chosen for more conservative approach are 0.94, 0.89 and 0.91,
respectively, while for more liberal approach (the threshold value is much lower
comparing to the conservative approach (T1>>T2>0)), these values are 0.94, 0.79 and
0.86, respectively. We consider an approach to be more conservative when T2 is
closer to T1, and more liberal when T2 is closer to zero.

5.3 Overall Performance of All Algorithms

We introduced four algorithms to group SRRs in this paper (CCC, E3C, QRW and
Hybrid). We study the performance of each of these algorithms here. Figure 3 shows
the overall performance of different algorithms discussed in this paper.

To study the performance of CCC in this section, we consider the performance of
the algorithm when clustering method is chosen in step 3, since it is the best among
all the options. Similarly in E3C we consider the Max method in the second step since
it performs better than the Sum method.

QRW performs better than CCC (F1 in QRW is 0.94 vs. F1 in CCC is 0.91).
Hybrid method, which is combination of E3C and QRW algorithms, performs the best
among different algorithms (precision is 0.96 and recall is 0.94). This is due to the
fact that the system predicts what method performs better based on the submitted
query. On the other hand, the Hybrid method needs more time to determine the types
of the queries (its complexity is linear).

E3C performs better than CCC especially when we consider the recall (the recall
for E3C is 0.94 vs. 0.89 for CCC, the precision for both algorithms are 0.94). This is
more due to the fact that we were able to categorize more SRRs correctly for higher
weighted categories. Based on our observation, E3C also is a faster algorithm (fewer
iterations), although its complexity stays the same. Hybrid still performs slightly
better than E3C (F1 is 0.95 for Hybrid vs. 0.94 for E3C).

The results show that all the four algorithms studied in this paper achieved
significantly higher accuracy than a Pure Clustering method (this method just clusters
all SRRs without considering DCs. The number of clusters is set to the number of
DCs that are generated for other grouping algorithms. K-means is used in our
implementation. After clustering, the clusters are compared to DCs and each cluster is
assigned to the most similar DC.) The recall of Pure Clustering is 0.75 compared to
the recalls of CCC, QRW, Hybrid and E3C which are 0.89, 0.93, 0.94 and 0.95,
respectively. The precision for all algorithms are greater or equal to 0.94.

196 R.T. Hemayati, W. Meng, and C. Yu

Fig. 3. Overall Performances

Each of the algorithms we have introduced in this paper has its own advantages
and disadvantages. CCC, E3C and Pure Clustering are able to cover important web
pages returned by a search engine since they all use the original query to retrieve
results from a search engine. On the other hand, QRW may miss some important
relevant results since we modified the original query and the modified query (QETs
along with original query) is used to retrieve results for each specific DC from a
search engine.

Furthermore, in CCC and E3C, we may not be able to find relevant SRRs for all
DCs when only some top-ranked SRRs are retrieved per query (e.g., 50 SRRs). On
average only 67% of the top 5 DCs can have assigned SRRs from the top 50 retrieved
results in our dataset. This is due to the fact that those DCs were less popular and
there were no relevant SRRs for those DCs among the top 50 results when the original
queries were submitted. In QRW, we can find relevant SRRs for all DCs.

6 Conclusion

In this paper we investigated the problem of how to group the search result records
(SRRs) from search engines. We previously have generated and ranked all possible
categories of any user queries according to their match with the expected intention of
the user. These categories can be used to categorize SRRs returned from search
engines in response to user queries. By grouping the SRRs based on the different
meanings/usages of the query term, it makes it easier for users to identify relevant
results from the retrieved results. In this paper we focused on grouping SRRs and
studied different grouping algorithms. Specifically, we proposed four algorithms that
combine categorization, clustering and query expansion techniques. Our novel
grouping algorithms use three different sources (Wikipedia, WordNet and SRRs) fully
automatically to categorize the SRRs in a unique way. The categories built by our
method are more meaningful and distinguishable than those by existing techniques
since we build our categories based on different meanings/usages of queries’ terms.
We cover all possible meanings and usages of any terms and phrases by using
WordNet and Wikipedia. We can also cluster uncategorized SRRs for those SRRs that

 Categorizing Search Results Using WordNet and Wikipedia 197

do not belong to any categories built based on Wikipedia and WordNet. Our
experimental results indicated that our SRR grouping algorithms are effective and
highly accurate.

References

1. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In: Proc.
2nd ACM Intl. Conf. on Web Search and Data Mining (2009)

2. Carpineto, C., Osinski, S., Romano, G., Weiss, D.: A survey of web clustering engines.
ACM Computing Surveys 41(3), Article No. 17 (2009)

3. He, M., Cutler, M., Wu, K.: Categorizing Queries by Topic Directory. In: WAIM
Conference, pp. 278–284 (2008)

4. Hemayati, R., Meng, W., Yu, C.: Semantic-Based Grouping of Search Engine Results
Using WordNet. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.)
APWeb/WAIM 2007. LNCS, vol. 4505, pp. 678–686. Springer, Heidelberg (2007)

5. Hemayati, R.T., Meng, W., Yu, C.: Identifying and Ranking Possible Semantic and
Common Usage Categories of Search Engine Queries. In: Chen, L., Triantafillou, P., Suel,
T. (eds.) WISE 2010. LNCS, vol. 6488, pp. 254–261. Springer, Heidelberg (2010)

6. Hemayati, R., Meng, W., Yu, C.: Categorizing Search Results. Technical report (2012),
http://cs.binghamton.edu/~rtaghiz1/

7. Hotho, A., Staab, S., Stumme, G.: WordNet Improves Text Document Clustering. In:
ACM SIGIR Semantic Web Workshop (2003)

8. Jain, A.K., Murty, M.N.: Data Clustering: A Review. ACM Computing Surveys (1999)
9. Liu, F., Yu, C., Meng, W.: Personalize Web Search by Mapping User Queries to

Categories. In: ACM CIKM Conference (2002)
10. Liu, S., Yu, C., Meng, W.: Word Sense Disambiguation in Queries. In: ACM CIKM

Conference, pp. 525–532 (2005)
11. de Luca, E., Nürnberger, A., von-Guericke, O: Ontology-Based Semantic Online

Classification of Documents: Supporting Users in Searching the Web. University of
Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany, AMR (2004)

12. Pitler, E., Church, K.: Using word-sense disambiguation methods to classify web queries
by intent. In: Conference on Empirical Methods in NLP, vol. 3 (2009)

13. Santos, R.L.T., Macdonald, C., Ounis, I.: Intentaware search result diversification. In:
SIGIR (2011)

14. de Simone, T., Kazakov, D.: Using WordNet Similarity and Antonymy Relations to Aid
Document Retrieval. In: Recent Advances in Natural Language Processing, RANLP
(2005)

15. Song, M.-H., Lim, S.Y., Kang, D.-J., Lee, S.-J.: Ontology-Based Automatic Classification
of Web Documents. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC 2006, Part II. LNCS
(LNAI), vol. 4114, pp. 690–700. Springer, Heidelberg (2006)

16. Xing, D., Xue, G., Yang, Q., Yu, Y.: Deep Classifier: Automatically Categorizing Search
Results into Large-scale Hierarchies. In: Int’l. Conf. on Web Search & Data Mining (2008)

17. Zamir, O., Etzioni, O.: Grouper: A Dynamic Clustering Interface to Web Search Results.
In: World Wide Web Conference (1999)

18. Zeng, H., He, Q., Chen, Z., Ma, W.: Learning To Cluster Web Search Results. In: ACM
SIGIR (2004)

Optimal Sequenced Route Query Algorithm

Using Visited POI Graph

Htoo Htoo1, Yutaka Ohsawa1, Noboru Sonehara2, and Masao Sakauchi2

1 Graduate School of Science and Engineering, Saitama University
2 National Institute of Informatics

Abstract. Trip planning methods including the optimal sequenced
route (OSR) query become a critical role to find the economical route for
a trip in location based services and car navigation systems. OSR finds
the shortest route, starting from an origin location and passing through a
number of locations or points of interest (POIs), following the prespecified
route sequence. This paper proposes a fast optimal sequenced route query
algorithm from the current position to the destination by unidirectional
and bidirectional searches adopting an A* algorithm. An OSR query on a
road network tends to expand an extremely large number of nodes, which
leads to an increase in processing time. To reduce the number of node ex-
pansions, we propose a visited POI graph (VPG) to register a single found
path that connects neighboring POIs. By using a VPG, duplicated node
expansions can be suppressed. We also perform experiments to show the
effectiveness of our method compared with a conventional approach, in
terms of the number of expanded nodes and processing time.

1 Introduction

The optimal sequenced route (OSR) query method has been proposed in recent
years. It has been used for several trip planning applications, such as location-
based services (LBS) and car navigation systems. The OSR finds the minimum-
length route, starting from an origin location and passing through a number of
locations or points of interest (POIs), following a prespecified route sequence.

Fig. 1 shows an example of an OSR query. You are currently at the “current
position,” and the final destination of your trip is home, which is labeled “des-
tination.” During the trip, you want to stop at a bank to withdraw money, and
next at a Chinese restaurant to have dinner, and then at a movie theater, and
finally return home. Although there may be many banks, restaurants, and movie
theaters in the area, the OSR query chooses one from each category according
to the specified sequence in order to minimize the total cost of the trip. The cost
can be measured by several criteria, including distance, total trip time, safety,
and the ease of the drive. However, in this paper we measure the cost according
to the total trip distance.

The thick line in Fig. 1 shows the result of the OSR query, which provides
the shortest distance route. In some applications, multiple result routes may be
presented, so that the user can select the route he prefers. This case is called the
“requested k shortest OSR (k-OSR)”.

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 198–209, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

OSR Query Algorithm Using VPG 199

Fig. 1. Optimal Sequenced Route

The OSR query was first proposed by Sharifzadeh et al.[10]. They proposed
several algorithms to find the k-OSR in both vector (based on the Euclidean
distance) and metric (based on the road-network distance) spaces. Among them,
the progressive neighbor expansion (PNE) is the only algorithm that can be
applied to road networks.

On a road network, the nearest neighbor (NN) object calculated by the Eu-
clidean distance is not always the NN calculated on a road network [9]. The com-
putation cost can drastically differ between these two distance measurements.
The Euclidean distance between two points can be easily calculated; however, for
the distance on a road network, we need to find the shortest path that connects
two points. To find the shortest path, Dijkstra’s algorithm [2] and the A* algo-
rithm [5] are usually used. However, these algorithms consume a large amount
of CPU power compared to the Euclidean distance-based search. In addition, a
Euclidean distance-based algorithm can use the simple spatial index structures,
such as, R-tree [4], to narrow the search space. In fact, the R-LORD algorithm
proposed by Sharifzadeh et al. [10] employed R-tree for this purpose. Moreover,
a spatial index based on the Euclidean distance is not effective for road network
distance-based queries[9].

In this paper, we propose efficient algorithms for an OSR query on road net-
works. In an usual trip planning, a final destination is normally provided. For
example, a home or an office can be a final destination of a trip. In this regard,
in our trip planning method, the starting (usually the current position) and the
destination positions of the trip are provided explicitly. When the destination is
specified explicitly, we can adopt an efficient A* algorithm and the bidirectional
search [6] for an OSR query.

The contributions of this paper are the following:

– To propose a visited POI graph (VPG), in order to reduce the number of
node expansions by inhibiting duplicated node expansions.

– To present an efficient unidirectional search algorithm for a k-OSR query
using the VPG. In addition, to present a bidirectional search algorithm to
start the search from the current and destination points, in order to achieve
a stable search time.

– To prove that the proposed method performs 100 times faster than the PNE
algorithm [11] by conducting extensive experiments.

200 H. Htoo et al.

2 Related Work

The OSR query was first proposed by Sharifzadeh et al.[10]. They proposed sev-
eral algorithms for an OSR query to operate on the Euclidean distance. Among
them, the light optimal route discoverer (LORD) first finds a greedy route which
is composed by the successive nearest neighbor search. The greedy route is found
by performing a consecutive NN search from the starting point to the last vis-
iting category. The search area is restricted by the length of this greedy route.
Then, the LORD finds the optimal route in the reverse order (from the last
category to the starting point), by narrowing the search area. The authors also
proposed a more efficient algorithm called the R-LORD (R-tree-based LORD).
However, these algorithms cannot be adapted directly to the road-network dis-
tance. Hence, for road network distance query, they proposed another algorithm
named progressive neighbor exploration (PNE).

During almost the same time, Li et al. proposed the trip planning query (TPQ)
[7].The TPQ is similar to an OSR query; however, the visiting order of the POI
is not specified in the TPQ. Because of this free visiting order, the complexity of
the TPQ is NP-hard, as in the traveling salesman problem. Therefore, Li et al.
proposed several types of approximation algorithms. However, these algorithms
cannot be directly applied to road networks, because of the heavy burden of the
NN search. For TPQ on a road network, Li et al. proposed the minimum distance
query (MDQ) algorithm. Basically, the MDQ expands nodes on the road network
successively, finding the NN POI in the same way as by Dijkstra’s algorithm. This
causes duplicated node expansion, and the calculation time increases, especially
when multiple trip-plan routes (k-TPQ) are requested.

Chen et al. [1] proposed another type of route query called the multi-rule
partial sequenced route (MRPSR) query. This query generalizes both the OSR
and the TPQ. For example, suppose we want to visit a bank, a restaurant,
and a movie theater in that visiting order. A user may want to visit a bank
before visiting both the restaurant and the movie theater because he needs to
withdraw some money. However, the order of visiting to the movie theater and
the restaurant can be exchanged. In this case, the visiting order is specified as a
semi-ordered set, which can be represented as a directed graph. They called this
graph an activity on vertex (AOV) network.

3 OSR Query Applying A* Algorithm

When we plan a trip, the starting position is obvious. In general, the current
position acquired by GPS can be taken as the starting position, or the user
specifies the starting position explicitly. In most situations, the final destination
is also decided. Then, a trip planning query can be invoked with the starting
(S) and the final destination (E) positions. In this case, we can adopt an A*
algorithm for the efficient search of the TPQ.We can also use bidirectional search
[8] for this purpose. Our algorithm proposed in this section uses both these
methodologies, because they can reduce the calculation cost, which is mainly

OSR Query Algorithm Using VPG 201

due to the considerable node expansion on the road network. We first describe
an OSR query using the single-source A* algorithm (unidirectional search). We
then develop it into a bidirectional search.

3.1 OSR Query by A* Algorithm

Let Ui be a category of the POI to be visited, and M be a sequence of Ui

to specify the visiting order. That is, M = {U1, U2, . . . , Um}, and here m is
the length of M (m = |M |). Our OSR query finds k optimal sequenced routes
from the starting point S to the destination E, visiting each POI belonging to
Ui(1 ≤ i ≤ m) one after another, according to the given sequence M . The partial
sequenced route (PSR) is the shortest route from the starting point S to one of
the POIs in Ui, by passing through the POIs one after another choosing from Uj

(1 ≤ j < i) on the way according to the given sequence. SR is the total routes
from S to E, visiting the POIs according to the given sequence M . To simplify
the algorithm explanation, we assume that the POI is on a road-network node.
However, this restriction can be easily resolved [9].

The A* algorithm has been applied to find the shortest route given S andE [5].
Here, we apply it to the k-OSR query. The A* algorithm evaluates the favorable
node n to be expanded next by the cost C = d(S, n)+h(n,E). Here, d(x, y) is the
distance from node x to y moving on the road network, and h(y, z) is a heuristic
function between y and z. Because we evaluate the cost of the OSR by the route
length, we use the Euclidean distance between y and z as the value of h(y, z).

Fig. 2 shows an example of a search using the A* algorithm. In this example,
the search starts from S, and then finds P 1

1 belonging to U1. From this POI, a
new search targeted at the U2’s POI starts. In parallel, the search starts from
S, finds P 1

2 belonging to U1, and then another new search starts from the POI.

S E

U1 U2 U3Visiting order

Fig. 2. Outline of POI search

As mentioned above, the A* algorithm decides the next-expanded node on the
road network (na) by an extracted record from the priority queue (PQ), which
gives the minimum cost d(S, na) + h(na, E). For each road segment connected
to na, the cost is calculated to compose a new record, as shown in Eq. (1), and
it is then inserted back into the PQ:

C = d(S, na) + d(na, nb) + h(nb, E)

202 H. Htoo et al.

Here, nb shows the opposite-side node to na of the road segment.

< C,Ui, L, nb, na, Pprev, org > (1)

In the record, C is the abovementioned cost, Ui is the next POI category to
be visited, and L is the distance on the road network from S to nb (i.e., L =
d(S, nb)). Pprev is the last-visited POI that belongs to Ui. na is necessary in the
record to restore the PSR by backtracking from nb to S. For the backtracking,
Eq.(1) is recorded in a hash table indexed by nb, after it is removed from the
PQ. The term org is the origin of the PSR, i.e., S or E. This term is not
always necessary for a unidirectional search where the origin of the search is
predetermined; that is, a unidirectional search can start from either S or E.
Both S and E can be the origins of a bidirectional search. Hence, both search
origins are required for the bidirectional search.

Repeating the node extraction from the PQ and the node expansion, the
search area is gradually enlarged. The search is terminated when the item nb of
the record extracted from the PQ is E. This terminating condition is the same
for the typical A* algorithm.

Every time a POI P i belonging to Ui is found, we start a new search targeting
Ui+1, and simultaneously, we need to continue the search for another POI that
belongs to the same Ui, ignoring P i. Fig. 3 explains this necessity. This figure
shows a situation where the POIs that belong to several categories of POI are
arranged in a line. The search starting from S first finds Pa in U1. Then, the
next search targeting a POI in U2 starts, and the search finds Pb. Next, a search
targeting U3 starts from Pb, and then finds Pf . Finally, the search reaches E
and is then terminated. By this search, the sequence S → Pa → Pb → Pf → E
has been found. However, there are other OSRs that have the same length. For
example, the other sequences S → Pa → Pc → Pf → E, and S → Pd → Pe →
Pf → E have the same length. If we invoke another search ignoring Pa and
continue to search the same category, then the search can subsequently find S,
and thus the sequence S → Pd → Pe → Pf → E can be found.

� ��� �� �� �� �	 �

��� ���� ����������������	�

Fig. 3. OSR query setting border category

In a typical shortest-path search, Dijkstra’s algorithm and the A* algorithm
use a close set (CS) to avoid multiple node expansions. Once a node is expanded,
it is registered to the CS, and the node will not be expanded again. On the other
hand, an OSR query requires multiple CSes. Each CS records an expanded node
from an individual source of searching (e.g., S or P i

j).This characteristic of an
OSR query causes multiple node expansions; that is, a node on a road network is
expanded several times. For example, the search paths targeting U1 started from

OSR Query Algorithm Using VPG 203

S to find the POIs P 1
1 and P 1

2 , belonging to U1, then new searches targeting
U2 start from both of them. These two searches are executed independently.
Therefore, a node that has been expanded by another search can be expanded
again, which causes a rapid increase in processing time. This also happens with
the PNE when it adopts an incremental k-NN on a road network. We will deal
with this problem using the bidirectional search in Section 4.

3.2 Bidirectional Search

The unidirectional search described above can be extended to a bidirectional
search in a straightforward manner. A bidirectional search starts from S and E
simultaneously under the control of one PQ. The record of Eq. (1) is put into
the same PQ, which is independent of the origin of search. The search starting
from S tries to find the POI according to the predetermined POI sequence M ,
and the search starting from E tries to find the POI in the reverse order of M ;
that is, E → Um → Um−1 → . . .→ U1 → S.

The search is terminated when the search paths from both origins meet at a
POI. Every time a search encounters the next POI to be visited, the arrival to the
POI from another origin is checked. Suppose the POI is P c belonging to UC , and
both PSRs from S to P c and from E to P c have been found; we can then obtain
a complete SR by combining these two PSRs at P c. When we need up to the
k-th-shortest OSRs, we can obtain them by repeating node expansions until the
k-th-shortest OSR is found. The abovementioned bidirectional search appears
simple when only one shortest OSR is requested. However, when multiple k-
OSRs are requested, there are some problems to be considered. In Section 4, we
explain the problems and propose a solution.

When one of the categories in M has POIs with a very dense distribution, sev-
eral independent searches will start from each POI belonging to the category. This
causes an enormous number of node expansions, because the node expansions take
place independent of each other such that the computation takes a long time. To
avoid this effect, Fujii et al. [3] proposed a method to set a midway category (MC),
named bidirectional search with midway category (BSWMC). The MC is selected
from the POI category that has the highest density. When a search reaches a POI
in the MC, no new search targeted at the next category starts. At this time, a PSR
from S or E to a POI belonging to the MC is found. There is no additional search
to find the next category starting from a POI in MC. Meanwhile, node expansions
from another origin are advanced until one of them reaches the POI from the other
side. At this time, a complete OSR is found.

The BSWMC method is suitable when we know the density of the POI in
each category. In general, however, we cannot know the POI density. Even if we
can conjecture the density, the POI is apt to be distributed with bias. Therefore,
we need to improve the efficiency without setting the MC.

204 H. Htoo et al.

4 Suppressing Duplicated Node Expansion

Both the abovementioned approaches start a new node expansion from a POI
belonging to Ui toward a POI belonging to Ui+1, every time a POI belonging to
Ui is found. In Fig. 4, a search for a POI belonging to U1 starts from S, and then
the search finds P 1

1 and P 1
2 in that order. New searches for a POI belonging to

U2 start from P 1
1 and P 1

2 . Then, the search that started from P 1
1 finds P 2

1 as the
second-visited POI, at which a further new search starts for a POI belonging to
U3. Later, the search starting from P 1

2 reaches P 2
1 , and then another new search

for a POI belonging to U3 starts. However, these two searches will consequently
find the same path (PSR) from P 2

1 to E, as is shown in Property 1. Therefore,
we need to suppress this redundant node expansion. A similar duplication also
happened in the PNE when it adopted the incremental network expansion (INE).

Property 1. k-PSRs starting from a POI belonging to Ui to E, obeying a pre-
specified visiting sequence are determined uniquely.

Proof. We deal with a time-invariant road network, and the constellation of
the POIs is fixed. If k-PSR from a POI position belonging to Ui to E will not
be changed at query time, then they are determined uniquely. Therefore, this
supports the property. ��

Despite Property 1, a unidirectional search always starts a new search when a
new POI is found. This causes duplicated node expansions, which find the same
PSR. By reducing these duplicated node expansions, an efficient k-OSR query
can be conducted.

P1 1

P2 1

P1 2

S
P1 3

E

Fig. 4. Search path arrival to the same POI from multiple search paths

Property 2. Consider searching an SR, the search started from S, finding POIs
in order, then reaches a POI (P i

j) belonging to Ui. Let the PSR from S to P i
j

be R, and the length be LR. To advance this search, a new search targeted at
the next category Ui+1 starts from P i

j . Consider another search path R′ whose
length is LR′ has reached P i

j . Then, we have the following relation between LR

and LR′ :
LR ≤ LR′

Proof. The priority queue (PQ) returns a node to be expanded according to the
expected path length in ascending order. When R is returned from the PQ prior
to R′, the following relation stands:

LR + h(P i
j , E) ≤ LR′ + h(P i

j , E) (2)

OSR Query Algorithm Using VPG 205

The heuristic distance value h(P i
j , E) is the same in both the left and right terms,

so we obtain the following relation:
LR ≤ LR′ (3)

Consequently, the equality in Eq.(3) is true when R and R′ have the same
length. ��

From these two properties, we can suppress duplicated node expansions. When
P 3
1 is the nearest POI belonging to U3 from P 2

1 , it is determined uniquely in-
dependent when the paths reached P 2

1 from S. Then, when the search already
started from P 2

1 , which is the head of the PSR S → P 1
2 → P 2

1 , to start a further
node expansion from the same POI that is the head of another path is not useful.

In Fig. 4, we explained that a late-arrival PSR to P 2
1 (e.g., S → P 1

1 → P 2
1)

cannot be the shortest path among SRs through P 2
1 , because the first-arrival

PSR to P 2
1 (e.g., S → P 1

2 → P 2
1) is shorter than the other late-arrival PSR.

Then, when we need to find only one shortest OSR, we do not need to consider
the late-arrival PSR at any POI. However, when we need to find k-OSR (k > 1),
late arrival PSRs could be a part of the SRs. In this case, we need to consider the
late-arrival PSR. Simultaneously, we need to consider suppressing the duplicated
node expansions, which gives the same result.

To cope with this problem, we use the visited POI graph (VPG) as shown in
Fig. 5. In the graph, nodes are visiting POIs (and two terminal points S and
E) and edges are paths connecting neighboring POIs. An edge in VPG can be
shared by plural OSR routes. For example, OSR routes R1 and R2 are sharing
the link P 2

2P
3
3 and P 3

3E. Therefore, if we calculate for a link once, we can avoid
the calculation for the same link again. This reduces the calculation cost of road
network distance considerably, especially, when m is large.

2
p 1

p 1
1

3
p 1

2p
1

2
2p

1
3p

2
3p

3p
3

R1

2R

Fig. 5. Visiting POI graph

Hereafter, we refer to the unidirectional search with the VPG as the USVPG,
and the bidirectional search with the VPG as the BSVPG. Algorithm 1 shows
the BSVPG algorithm. The USVPG algorithm is almost similar to the BSVPG
algorithm, although it is simpler. Line 1 initializes PQ with S and E. R is the
result set returning k-OSR. The size of R is bounded by k, i.e., the number of
requested SRs. Then R.i, the number of found SRs in R, does not exceed k.

206 H. Htoo et al.

Algorithm 1. Bi-directional Search with VPG

1: PQ ← {S, E}, R ← ∅, R.Lmax ← ∞, R.i ← 0
2: Initialize V PG.
3: loop
4: e ← deleteMin(PQ)
5: if e.C > R.Lmax then
6: return R
7: end if
8: if e.nb is in the next visiting POI category then
9: if e.nb is an element of V PG then
10: Add the link (e.Pprev → e.nb) to V PG.
11: if PSRs from the opposite origin have reached e.nb. then
12: R ←generateSR(e.nb,V PG,R)
13: end if
14: else
15: Add the link (e.Pprev → e.nb) to V PG.
16: for all road network node neighboring e do
17: compose Eq.(1) for Unext, enqueue it into PQ.
18: end for
19: end if
20: end if
21: for all road network node neighboring e.nb do
22: compose Eq.(1) for Ui, enqueue it into PQ.
23: end for
24: end loop
25: return R

R.Lmax is the maximum SR length found so far; it has the value ∞ while R.i is
less than k. When R.i reaches k, R.Lmax shows the R.i-th shortest SR length.
Line 2 initializes the VPG by inserting the two vertices S and E.

In Line 4, the entry that has the smallest cost is removed from the PQ. When
the entry is the next POI to be visited, the V PG is checked as to whether the
POI has already registered in it (Line 8). Then, a record (e.Pprev → e.nb) is
composed and inserted into the VPG (Line 8). Next, a check is performed as to
whether a PSR from another origin has already reached the POI (Line 8). In
this case, generated SR is called to make all SRs passing through the POI e.nb.
The resulting SRs are registered in R, and R.i and R.Lmax are altered by the
results (Line 12).

Algorithm 2. Generatesr(e,V PG,R)

1: Trace V PG from e to the origin composing all PSR, then insert the result into
PSR1.

2: Trace V PG from e to the reverse origin composing all PSR, then insert the result
into PSR2.

3: Make all SR passing through e by making direct product between PSR1 and PSR2,
then add them into R.

4: Renew R.Lmax and R.i by the current condition.
5: return R

OSR Query Algorithm Using VPG 207

Lines 15 to 18 are always executed when e.nb is the next visiting POI and the
PSR from the opposite side has not reached e.nb. The record (e.Pprev → e.nb) is
inserted into the VPG, and then the POI that belongs to the next visiting POI
category is searched (Line 17).

The steps below Line 21 are always executed because of the reason described
in Section 3.1. Then, when e is a POI, the search advances in two ways, one is
to search the POI that belongs the next visiting POI category (Line 17), and
the other is to search the POI that belongs to the same POI category (Line
22). When e is not a POI, usual node expansion is continued. This SR search
is repeated until the number of found SRs exceeds the requested number k, and
the cost of e becomes greater than R.Lmax (Line 23). After the latter condition
has been satisfied, no shorter SR than k-th shortest SR in R will be created.

5 Experimental Results

To evaluate the performance of the proposed methods, we conducted extensive
experiments. We used digital road-network data published by the Geospatial
Information Authority of Japan (GSI), in the area of Saitama city, Japan. The
road map consists of 25,586 road segments. We implemented the algorithms
using the C# language. The computer used was a Core 2 Quad 2.40GHz CPU
with 4GB RAM, and the operating system was Windows Vista.

We generated several sets of POIs in a pseudo-random sequence, with varying
distribution density (p), which means the existence probability of a POI on a
road segment (a road segment means a polyline between two intersections, or
between an intersection and a dead end). For example, there are approximately
25 POIs in the subject area in the case of p = 10−3, and approximately 256
POIs when p = 10−2.

Fig. 6 shows the results between the unidirectional search (USVPG) and
the bidirectional search (BSVPG). (a) compares their processing time among
the unidirectional searches that start from S (USVPG-S), E (USVPG-E), and
BSVPG. The density of the POI increases from the first POI (0.001) to the last
POI (0.01). In these cases, the USVPG-S is the fastest, the USVPG-E is the
slowest, and the BSVPG is moderate. When the density distributions of POIs
are not equal, the unidirectional search starting from the less-dense side always
outperforms the other.

Fig. 6(b) shows the result of another pattern. In this case, the middle category
has the highest density, and the third category has the second-highest density.
The BSVPG outperforms the others in this case. The experiments using the
other combinations show the same tendency. Consequently, when we estimate
the density of each visiting POI category, we can choose the fastest strategy by
starting the search from the less-dense side. In general, however, the estimation
is not easy. Even if we can know the statistical density of each POI category, the
density may vary depending on its location.

Fig. 7(a) and (b) compare the performance between BSVPG and PNE ac-
cording to the processing time. The experiments were conducted under three

208 H. Htoo et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 10 100

P
ro

ce
ss

in
g

tim
e

(s
)

k

USVPG-E
USVPG-S

BSVPG

(a) 0.001(U1) → 0.002(U2) → 0.01(U3)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 10 100

P
ro

ce
ss

in
g

tim
e

(s
)

k

USVPG-E
USVPG-S

BSVPG

(b) 0.001(U1) → 0.01(U2) → 0.002(U3)

Fig. 6. Comparison between USVPG and BSVPG

 0.01

 0.1

 1

 10

123 132 213 231 312 321

P
ro

ce
ss

in
g

tim
e(

s)

Pattern

PNE
BSVPG

(a) k=1

 0.01

 0.1

 1

 10

 100

123 132 213 231 312 321

P
ro

ce
ss

in
g

tim
e(

s)

Pattern

PNE
BSVPG

(b) k=10

Fig. 7. Comparison between PNE and BSVPG

POI categories in which p = 0.001, p = 0.002, and p = 0.01, with shuffling of
the order to be visited. In these figures, the pattern is shown by the three-digit
number that corresponds to the three different POI densities: ‘1’ corresponds
to 0.001, ‘2’ to 0.002, and ‘3’ to 0.01. (a) shows k = 1 and (b) shows k = 10.
As indicated by these results, the BSVPG always outperforms the PNE, and
the processing time becomes stable with increasing k, independent of the POI
density patterns.

6 Conclusion

In this paper, two fast algorithms called USVPG and BSVPG have been pro-
posed to search the k-OSR for the road-network distance. Both algorithms are
controlled by the A* algorithm. The BSVPG searches POIs from S and E simul-
taneously. This paper also proposes the VPG to reduce multiple node expansions,
which is unavoidable in trip planning. This fact holds for all the existing trip plan-
ning methods that work on road-network distance measurements, for example, the
OSR, TPQ, and MRPSR. Therefore, a strategy to reduce them can be the key to

OSR Query Algorithm Using VPG 209

the fast trip planning. The VPG can be applied not only to the OSR, but also for
several other types of trip planning that use road-network distance measurements.

Experimental results confirm that the presented algorithm can search the OSR
approximately 100 times faster than the PNE. The USVPG and BSVPG largely
contribute to the improvement in the VPG. The USVPG search, starting from the
less-dense POI side, can find the OSR faster than the BSVPG, while the USVPG
search starting from the other side will degrade. Therefore, in the case when the
POI density cannot be known in advance, the BSVPG can be a good selection.

In this paper, we proposed an efficient method based on INE, however, in-
cremental Euclidean restriction strategy [9] can also be applied for OSR search
based on road network distance. On this strategy, two kinds of efficient algo-
rithms are essential; one is an incremental OSR candidates generation method
in Euclidean distance, and the other one is the efficient road network distance
verification method for those candidates. Our future direction is to develop them.

Acknowledgments. This work was supported by Grants-in-Aid for Scientific
Reaserch (KAKENHI) 24500107 and 23300337.

References

1. Chen, H., Ku, W.S., Sun, M.T., Zimmermann, R.: The multi-rule partial sequenced
route query. In: ACM GIS 2008, pp. 65–74 (2008)

2. Dijkstra, E.W.: A note on two problems in connection with graphs. Numeriche
Mathematik 1, 269–271 (1959)

3. Fujii, K., Htoo, H., Ohsawa, Y.: Fast optimal sequenced route query method by
bi-directional search. Technical report, Technical Report of IEICE, ITS-2010-05
(2010) (in Japanese)

4. Guttman, A.: R-Trees: a dynamic index structure for spatial searching. In: Proc.
ACM SIGMOD Conference on Management of Data, pp. 47–57 (1984)

5. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Transactions of Systems Science and Cybernet-
ics SSC-4(2), 100–107 (1968)

6. Ikeda, T., Hsu, M.-Y., Imai, H., Shimoura, S.N.H., Hashimoto, T., Tenmoku, K.,
Mitoh, K.: A fast algorithm for finding better routes by AI search techniques. In:
1994 Vehicle Navigation & Information System Conference, pp. 291–296 (1994)

7. Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., Teng, S.-H.: On Trip Planning
Queries in Spatial Databases. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.)
SSTD 2005. LNCS, vol. 3633, pp. 273–290. Springer, Heidelberg (2005)

8. Ohsawa, Y., Fujino, K.: Simple trip planning algorithm on road networks with-
out pre-computation. IEICE Transactions on Information and Systems J93-D(3),
203–210 (2010) (in Japanese)

9. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network
databases. In: Proc. 29th VLDB, pp. 790–801 (2003)

10. Sharifzadeh, M., Kalahdouzan, M., Shahabi, C.: The optimal sequenced route
query. Technical report, Computer Science Department, University of Southern
California (2005)

11. Sharifzadeh, M., Kolahdouzan, M., Shahabi, C.: The optimal sequenced route
query. The VLDB Journal 17, 765–787 (2008)

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 210–215, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Packaging Approach for Massive Amounts
of Small Geospatial Files with HDFS

Jifeng Cui, Yong Zhang, Chao Li, and ChunXiao Xing

Department of Computer Science and Technology
Tsinghua University

Beijing 100084, China
cjfhly@163.com, {zhangyong05,xingcx}@tsinghua.edu.cn,

lichao00@tsinghua.org.cn

Abstract. The efficiency of dealing with massive small geospatial files deeply
affects the performance of Web Geography Information System (WebGIS). The
Hadoop Distributed File System (HDFS) is scalable to satisfy the requirement
of massive data files storage, but not efficient in dealing with small files. In
this paper, we proposed a method to pack a group of small files into one large
logical file, and set up Hilbert spatial index inside the block with their spatial
adjacency relation. The experimentation proved that this method reduces the
size of block indices and increases the speed to search and retrieve the massive
small spatial files.

Keywords: Hadoop Distributed File System(HDFS), massive small geospatial
files, Hilbert spatial index, packaging approach.

1 Introduction

Modern science and technology provide many advantages for obtaining geospatial
information, and the development of Internet of Things (IoT) requires massive
information management. For example, satellites collect petabytes of geospatial data
every day, while remote sensors and urban sensing activities are accumulating data at
a comparable faster pace[1]. The massive geospatial files needs the support of
corresponding storage technology and information retrieval technology to serve the
WebGIS application. The massive network storage system has attracted more
attention to solve this problem. Depending on cluster, grid and distributed file
system, data storage and information retrieval services with a uniform interface[2]are
provided to cooperate the different storage equipments and software together .

The Hadoop Distributed File System (HDFS) is a distributed file system designed
to be deployed on low-cost hardware[3] with high fault-tolerance. HDFS is widely
used in research for its open source and advanced architecture. It mainly settles the
massive storage problem and data consistency. However, for massive small spatial
files, HDFS does not perform well. In addition, lacking of consideration of the spatial
relations among file objects, the efficiencies of storage utilization and data retrieval
are low for spatial data, which cannot satisfy WebGIS.

 A Packaging Approach for Massive Amounts of Small Geospatial Files with HDFS 211

In this paper, according to the spatial adjacency between geospatial files, we proposed
a method to pack a group of small files into one large logical file, and set up block inner
index. The experimentation proved that this method reduces the size of block indices and
increases the speed to search and retrieve the massive small spatial files.

2 Related Work

In distributed file systems, metadata is used to describe the storage file’s content and
location, which plays an important role for data locating and filename searching.
Currently, distributed file systems place the metadata on the metadata server. The
typical structure of metadata servers is master/slave, and map-reduce is used as its
computing model to locate the file[4].

There are two types of file systems used in data intensive applications[7], general
parallel file system and distributed file system. A general parallel file system is
designed for High Performance Computing applications which run on large clusters
with the needs of high scalability and concurrent storage I/Os. Examples of general
parallel file systems include Sun’s LustreFS[11] and the open source Parallel Virtual
file system (PVFS) [10].

Distributed file system is widely used in Internet services. Google File System
(GFS) [12], Hadoop Distributed File System(HDFS) [8] and Amazon Simple Storage
Service (3S) [16]are typical paragons which support cloud computing environment.
Unfortunately, these three file systems can not satisfy users’ requirements on
processing massive numbers of small files. Whereas, in the cloud environment, lots of
enterprises would like to publish their files, most of which are consisted of small files.
Dissatisfactory performance of handling small files becomes a bottleneck of GFS,
HDFS and 3S, in progress towards cloud applications.

Researches on small file storage based on HDFS can be classified into two
categories: general solutions and special solutions to meet the demand of specific
applications. The former includes Hadoop Archives (HAR), SequenceFile and
MapFile[8]. A HAR is a file archiving facility that packs files into HDFS blocks,
which contains metadata. A SequenceFile provides a persistent data structure for
binary key-value pairs. It uses file names as the key and file contents as the value to
support compressing and decompressing at record level or block level. A MapFile is
a type of sorted SequenceFiles with an index to permit lookups by key. It consists of
an index file and a data file. The data file stores key-value pairs as records, which
are sorted in key order. As for special solutions, recent papers[13][14][15] are
proposed some attracting solutions we present below.

3 Solution for Data Disposal

We should first access the metadata server to locate the files before accessing files.
Since the massive number of small files makes the metadata table very large, the
metadata server’s performance may be the system’s bottleneck. Therefore, we take
two steps to relieve the bottleneck. This strategy manages the metadata based on the

212 J. Cui et al.

analysis of the geospatial information storage and applications, and develops an
engine on HDFS for accessing geospatial files. The engine can help us manage the
massive amount of small files effectively.

We present the metadata catalog strategy and design index structure.Firstly, we
pack a group of small files, which locates in the same area, into one large file, and
order the small files by the geography map splitting criteria. The order of each file
denotes the file’s location in this area. For example, we split the region 1 into 12*12
tiles, and give a number with row and column for every tile. Therefore, the order of
every file in the group has a unique code. We order them by the Hilbert coding rule.
With this method every small file has an order in the group. We store their sizes and
offsets in block into the index file, which is stored in the data node. The indices in
the blocks and the storage for these groups are shown in Fig 1.

 Fig. 1. Organization of i ndices for small
 files

Fig. 2. The space efficiency

After the packing step, we set up the order of the group with hashing method, so
that the file index will have two levels. The first level is the group index, and the
second is the files’ order in the group. We only store the group id and block-id in the
group index, in order to guarantee that the small files’ index file can be found when
needed.

In the experiment, we use the hashing algorithm to get the index file, and use the
HDFS to store the packed files and index files.

4 The Experimentation Results and Analysis

We set up a HDFS system and conduct experimentations. There are three DataNodes
and one NameNode in our HDFS: A IBM Server (2 Intel CPU 3. 20GHz, 2 GB
memory and 1 TB disk), acts as NameNode; DELL Servers (2 Intel CPU 2. 00GHz,
1 GB memory and 500GB disk), act as DataNodes. The hadoop file system’s version
is 0.20.2,there are 178560 files all together with the total size is 47. 5GB involved in
the experiments.

 A Packaging Approach for Massive Amounts of Small Geospatial Files with HDFS 213

In our HDFS, every file is stored in one or more blocks. If we did not pack the
small files into one logical file, the space of storage would be wasted. In addition, a
proper block size should be set to minimize the number of blocks so as to improve the
efficiency of metadata searching. We calculate the storage efficiency for different
number of files group. The files’ size is 1024K for every group, and the block size is
64M. The ratio of space utilizing is shown in the average value as fig 2.

As what we can assume from the graph, if the size of group does not reach the size
of block, the ratio is increasing with the number of files. When the size of group
exceeds it, the ratio of space utilization is only affected by the times of the group size
dividing the block size.

We put the files into a list of directories. Each directory is a group of files, which
are packed into one block. One group has 12 files or the times of 12 files because of
the quad-splitting of spatial index. The time of writing files in HDFS is shown
below. Y-axis is the time cost in minutes; x-axis is the number of files. The time
here also includes the packing time.

 Fig. 3. Time of writing small files Fig. 4. Time of reading small files

As shown in Fig 3, the small files packing method is effective for time saving,
especially for the groups with large numbers of small files in one block. We test the
time of creating index for every group of files. Result show that it only took about 443
seconds to pack files and create the file index for 17856 files. Obviously, the time is
comparatively short for such number of files comparing with the writing time.

We read files one by one and get the file content from the file list in memory. In
experiments, we read files’ group first, get the file’s offset from the index files, and
then obtain the file’s content from the group. With the different number of files in
each group, we use the same strategy as writing. The time of reading the files is
shown below. Y-axis is time cost in seconds; X-axis is the number of files.

As shown in the figure, the time of reading files from HDFS in groups is shorter
than that not in groups. Yet it is not obvious when the number of files exceeds 1000.
In addition, the group number has little influence for reading.

Packing the files with spatial adjacency into one logical file can improve the small
files accessing efficiency, but the number of small files for one logical file is limited,

214 J. Cui et al.

When the size of logical file is larger than a block size, the writing speed of small
files descends, and the reading speed for each small file slows down quickly. When
the size of logical file is three times of block size, the efficiency is almost the same
with the strategy without group. Therefore, we should select appropriate number of
small files and the size of logical file relative to block size. A certain space for some
small files’ different backup is required to be reserved as well, which will improve
data accessing.

5 Conclusions

In this paper, we introduce the metadata group strategy with HDFS, which uses a two-
steps index for geospatial small files metadata management. The experiment shows
that this strategy is effective for geospatial small files’ management in the following
aspects:

• The two level index model, which distributes the index of NameNode to
DataNode and decreases the IO pressure of the metadata server.

• The block index uses the spatial adjacency, which help the quick location of
files

• The appropriate parameter for the number of small files can be configured by
balancing the block size with logical file size，which can improve the data
writing and reading efficiency.

Acknowledgment. This research is sponsored by National Basic Research Program
of China (973 Program) No. 2011CB302302

References

1. Yanga, C., Goodchildb, M., Huanga, Q., Nebertc, D., Raskind, R., Xue, Y., Bambacusf,
M., Faye, D.: Spatial cloud computing: how can the geospatial sciences use and helpshape
cloud computing? International Journal of Digital Earth 4(4), 305–329 (2011)

2. Siddhisena, B., Warusawithana, L., Mendis, M.: Next generation multi-tenant
virtualization cloud computing platform. In: Advanced Communication Technology
(ICACT), pp. 405–410 (2011)

3. Armbrust, M., Fox, A., et al.: Above the Clouds: A Berkeley View of Cloud Computing,
Technical ReportNo. UCB/EECS-2009-28, University of California at Berkley (2009)

4. Dean, J., Ghemawat, S.: MapReduce: Simpli_ed Data Processing on Large Clusters. In:
OSDI (2004)

5. Dick, M.E.: Leveraging P2P overlays for Largescale and Highly Robust Content
Distribution and Search. In: VLDB 2009, p. 1059 (2009)

6. Yang, C.P., Raskin, R., Goodchild, M.F., Gahegan, M.: Geospatial Cyberinfrastructure:
Past, present and future. Computers, Environment and Urban Systems 34(4), 264–277
(2010)

 A Packaging Approach for Massive Amounts of Small Geospatial Files with HDFS 215

7. Amirian, P., Alesheikh, A., Bassiri, A.: Interoperable Exchange and Share of Urban Services
Data through Geospatial Services and XML Database, Complex. In: 2010 International
Conference on Complex, Intelligent and Software Intensive Systems, pp. 62–68 (2010)

8. Zhang, J., You, S., Gruenwald, L.: Indexing large-scale raster geospatial data using
massively parallel GPGPU computing. In: Proceedings of the 18th SIGSPATIAL
International Conference on Advances in Geographic Information Systems (GIS 2010),
pp. 450–453. ACM, New York (2010)

9. Hadoop archives,
http://hadoopapache.org/common/docs/current/
hadoop_archives.html

10. Lopes, P.A., Medeiros, P.D.: pCFS vs. PVFS: Comparing a Highly-Available Symmetrical
Parallel Cluster File System with an Asymmetrical Parallel File System. In: D’Ambra, P.,
Guarracino, M., Talia, D. (eds.) Euro-Par 2010, Part I. LNCS, vol. 6271, pp. 131–142.
Springer, Heidelberg (2010)

11. Von Laszewski, G.: Concurrency and Computation: Practice and Experience. Special
Issue: Grid Computing. High Performance and Distributed Application 22(11), 1433–1449
(2010)

12. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google File System. In: SOSP 2003, Bolton
Landing, NewYork, USA, pp. 29–43 (October 2003)

13. Liu, X., Han, J., Zhong, Y., Han, C., He, X.: Implementing WebGIS on Hadoop: A Case
Study of Improving Small File I/O Performance on HDFS. In: IEEE International
Conference on Cluster Computing and Workshops, CLUSTER 2009, pp. 1–8 (2009)

14. Dong, B., Qiu, J., Zheng, Q., Zhong, X., Li, J., Li, Y.: A Novel Approach to Improving the
Efficiency of Storing and Accessing Small Files on Hadoop: a Case Study by PowerPoint
Files. In: 2010 IEEE International Conference on Services Computing, pp. 65–72 (2010)

15. Jiang, L., Li, B., Song, M.: The Optimization of HDFS Based on Small Files. In:
Proceedings of IC-BNMT 2010, The 3rd IEEE International Conference on Broadband
Network& Multimedia Technology, pp. 912–915 (2010)

16. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshma, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly available key-
value store. In: Proceeding SOSP 2007 Proceedings of Twenty-First ACM SIGOPS
Symposium on Operating Systems Principles, vol. 41(6), ACM, New York (2007)

Adaptive Update Workload Reduction

for Moving Objects in Road Networks�

Miao Li, Yu Gu, Jia Xu, and Ge Yu

Northeastern University, ShenYang, LiaoNing 110819, China
limiao@research.neu.edu.cn, {guyu,xujia,yuge}@ise.neu.edu.cn

Abstract. Location-Based Service (LBS) in road networks has many
dazzling applications. Under the context of road networks, while many
approaches have been proposed to speed up the location-based queries,
to the best of our knowledge, none of them pays attention to the up-
dating protocol, which is a vital aspect directly impacting the system
performance. In this paper, we focus on designing adaptive updating
protocol to reduce the updating workload between moving objects and
the database server. We build an effective motion model, called Road-
Network Safe Range (RNSR) for each object. The RNSR enables large
space tolerance for the moving objects. Extensive experiments using real-
world dataset justify that our proposals apparently cut down the system
updating workload while still guarantee a certain query accuracy.

1 Introduction

Nowadays, more and more location-based services (LBSs) which rely on the
locations of the moving objects have facilitated our daily life. Compared with
the LBS problem in an ideal Euclidean space, LBS under the context of road
network is more practical with many dazzling applications, such as the traffic
management which is illustrated in the following example.

Example. By knowing the location and velocity of each vehicle, we can pre-
dict their potential locations after a period of time. Based on those predicted
locations, drivers on the road can be guided to avoid the traffic jam.

In this paper, we focus on the Predicted Range Queries. While a variety of
works have been proposed to speed up location-based queries [1] [2], the up-
dating protocol has not been sufficiently studied. In [3] and [4], Chen et al.
proposed adaptive updating protocol to reduce the updating workload on an
ideal Euclidean space. However, under the context of road network, the moving
trajectory of each object is constrained by the road shape, which can help us
better design the updating protocol. We summarize our contributions as follows:

First,we design a Location-based Updating Protocol for the road networks.
The protocol utilizes the trajectory similarities between neighboring objects to

� The National Natural Science Foundation of China (61003058); the Fundamental
Research Funds for the Central Universities(N100704001,N110404006).

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 216–221, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Adaptive Update Workload Reduction for Moving Objects in Road Networks 217

estimate the updating frequency of the system. Second, we propose a Velocity-
based Updating Protocol which employs the velocity information of each object
to estimate the system updating frequency. We perform extensive experiments
using real-world datasets to verify our two proposals.

2 Related Work

There are many papers which have given solutions for the safe region selection
and optimization [5] [6] [7]. However, all these methods are designed and imple-
mented for the ideal Euclidean space.

In literature [3], Chen et al. proposed an updating protocol which is constructed
on the basis of the safe region (called STSR). The STSR is built for every moving
object to approximate its location. Under the setting of STSRs, a larger STSR
introduces less active updates but more passive updates, and a smaller STSR
causes less passive updates but more active updates. Based on such intuition, a
cost model is built to estimate both of the system total updating cost and the
composition of active updates and passive updates. In [8], a updating protocol
was designed for solving the similarity pair queries for the application of discover-
ing alliances for online game players. Its updating protocol is also constructed on
the basis of safe regions. Although this approach is adaptive under different pa-
rameter settings, it did not consider the velocity information of each object which
may help to improve the cost model for better safe region adjustment.

Amongst all existing works, the work [3] by Chen et al is most relevant to ours,
since we both consider supporting the predicted range queries and minimizing
the updating workload.

3 Preliminaries

We assume there are n moving objects O{o1, o2, ..., on},being monitored in the
system. The time axis is sliced into snapshots at discrete times T {0, 1, ..., t, ...}.
Based on the motion properties of the moving objects, we introduce the Road-
Network Safe Range (RNSR) to describe the states of the moving objects.

Each moving object oi has a RNSR, which is denoted by R(oi) = {k(pathj),
LS, V LS, tr, te}. Here, k(pathj) is the slope of the pathj with oi on; LS is a line
segment on the road network; V LS indicates the both endpoints’ velocity of the
LS, tr is the reference time; and te is the expiration time (te > tr).

On the basis of [3], we extend the basic update protocol. Our updating pro-
tocol also considers the following types of update, namely the active update and
the passive update.

Active Update. If the object oi moves out of its R(oi) (in the same path), it
will incur the active update.

Passive Update. A passive update is issued when the database conducts a
query. At the query time t, when the predicted R(oi) partially intersects with
the query line segment, it cannot determine whether the moving object oi is

218 M. Li et al.

in the query line segment. Thus the server will send a probing message to the
object oi. As long as the server receives the message, and then oi gives its exact
location to the server and updates the predicted line segment.

4 Optimization Techniques

We consider that the moving objects on the same path have similar speed. Each
object should review whether its current location is still in its RNSR in each time
period. If the object oi does not stay in the R(oi), oi will send an update message
to the server in order to inform its location and reassign a new RNSR to oi.

Based on the above analysis, we can infer two different probabilities for the
active update.

Location-Based Active Update Probability Calculation. The probabil-
ity of inconsistency before the expiration time te for an object oi is denoted
as Pa(R(oi)). We define the moving objects intersecting with R(oi) as similar
records RNN (oi) to oi. However, the similar records RNN(oi) can not get the
active update probability of the object oi accurately. Therefore, we give the
covered records Rk(oi) from RNN (oi) to solve this problem as follows.

Definition 1: If the R(oi) completely covers its similar records RNN(oi) and its
current location, these records are called covered records Rk. The value of Rk is
denoted by | {Rk(oi) ∈ RNN (oi) | R(oi) ⊇ Rk(oi)} |.

We get the active update probability from the historical perspective as Pa(R(oi))

= 1− |{Rk(oi)∈RNN(oi)|R(oi)⊇Rk(oi)}|
|RNN(oi)| .

Velocity-Based Active Update Probability Calculation. We introduce
two parameters λ and ε. An initial R(oi) is initialized to a region centralized
at the object oi with a length of 2λ and ε denotes the speed increment. The
two endpoints’ velocities of a line segment is < v− ε, v+ ε >. Given the current
velocity of the object oi, we can calculate the active update probability following
formula, Pa(R(oi)) =

∏
k pk · (1 − ps). Here, ps is the probability that oi and

similar records have the same velocity range; pk is the probability that oi and
similar records have the different velocity ranges.

Passive Update Probability. According to the type of the active update, the
passive update probability is also divided into the following two cases: probability
based on location and probability based on velocity.

(1)Probability Based on Location
When the query line segment is sent to the database on the road network, the

passive update is issued. That is, the predicted line segment partially overlaps
the query line segment.We will estimate the number of the objects per meter.
If the RNSR completely covers the query line segment or does not cover the
query line segment, we do not need to update the RNSR.

Assume the update time of the R(oi) is tu, and the length of the object oi on
the road network is Len with Len(oi) = 2λ · (tu − tr). During this period, the

probability of a passive update is: Pp(R(oi)) = min{Len(oi)·K
(t−tr)·L , 1}×(1−Pa(R(oi)))

Adaptive Update Workload Reduction for Moving Objects in Road Networks 219

Here L is the whole length of the path which oi belongs to; K is the expected
number of queries happening at each timestamp.

(2) Probability Based on Velocity
Probability based on velocity is similar to the probability based on location.

The length of the object oi at the update time tu on the path is Len(oi) =∑te
t=tu

[2ε · (t− tr) + 2λ]. The probability of a passive update under this case is
the same to that of the probability based on location.

Cost Model. According to our analysis, the active update cost of the objects is
CostPa =

∑N
i=1 Pa(R(oi)), where N is the active update number of the objects.

And the passive update cost is CostPp =
∑N

i=1 Pp(R(oi))× 2, where 2 indicates:
the probing message is sent to the object and an update message is sent back
from the object. So the total cost is Costtotal = CostPa + CostPp .

5 Optimization of RSNR

In this section, we present two methods to assign a suitable RNSR for each
object and to calculate the updating probability and cost.

5.1 Optimization Based on Greedy Algorithm

As the solving process of Greedy algorithm is simple and fast, we uses this
method combined with a United Space for optimization to find the suitable
RNSR for each moving object. Now, we give the formal a definition of the
United Space.

Definition 2: United Space (US) is a line segment, which is composed by the
intersection of similar records on a path and this intersection must cover the
location of the object oi.

Define the minimum value of ui.LS as umin.LS using Greedy algorithm. If the
record ui has been chosen, we no longer consider it. Thus, we select the minimum
ui.LS as umin.LS every time and add it to RNSR.LS until there is no element
in the US or the workload can not be accepted by the system. Finally, we can
obtain the initial RNSR.

5.2 Optimization Based on TS

On the basis of Greedy algorithm, better RNSR can be found for each object
by TABU Search (TS) algorithm, which absorbs inferior solution to jump out
of local optimal state.

First, we use the Greedy Algorithm to determine the initial RNSR for each
object. Second, we discuss the algorithm based on TS. The aim of this part is
to extend the RNSR.LS by selecting records similar to object oi (details are
illustrated in Algorithm1). To judge whether the similar records have intersec-
tion with the United Space elements, we should calculate the workload of new
Costtotal R(oi) until its workload can not be accepted by the system (i.e. the
termination condition.).

220 M. Li et al.

Algorithm 1. Active Update based on TS

1. Search the United Space
2. Search the initial RNSR.LS
3. Dold=the initial RNSR.LS
4. for the current Ptotal(Dold) ≤ β∗ do
5. Include min{Dold + ui.LS} into RNSR.LS
6. if RNSR.LS is the initial RNSR.LS then
7. for the current Ptotal(Dold) ≤ β∗ do
8. Include min{Dold + ui.LS} into RNSR1.LS
9. if RNSR1.LS is the initial RNSR1.LS then
10. D = theinitialRNSR.LS
11. else
12. D = RNSR1.LS
13. else
14. D = RNSR.LS
15. for the current Ptotal(D) ≤ β∗ and UAL is not NULL do
16. Include min{Dold + ui.LS} in D
17. if find the new D then then
18. return the optimal RNSR.LS = D
19. else
20. for the current Ptotal(D) ≤ β∗ and UAL is not NULL do
21. Include min{Dold + ui.LS} in D1
22. if find the new D1 then
23. return the optimal RNSR.LS = D1
24. else
25. return the optimal RNSR.LS = D

6 Experimental Study

In this section, we evaluate the updating cost of our proposed algorithms. We
use the real dataset is provided by R− tree Portal1.

In this paper, our algorithms are implemented in C++ and run on a PC with
2.4GHz Inter(R) Core(TM)2 Duo CPU, 2G RAM and 160G disk.

Figure 1 illustrates that different settings of ε in V elocity−U lead to different
numbers of active update. As can be seen from the figure, the greater ε is, the
fewer the number of active update is. This is because as the ε becomes larger,
R(oi).LS is also increased, and thus the object oi does not need to update for
some time. And the number of active update has stabilized over time. In Figure
2, we can see that different λ can also result in different total costs.

Figure 3 indicates the system cost when the objects move in different intervals
of speed. We can see that all these three methods obey the variation tendency
that the faster speed can lead to a higher total cost. And, as the speed value
increases, the total cost of update will increase linearly. Also, it can be inferred
that the total cost of V elocity−U is smaller than the other two methods easily.
Figure 4 makes a comparison of Location−UG , Location−UT and V elocity−U
1 http://www.rtreeportal.org/index.php

Adaptive Update Workload Reduction for Moving Objects in Road Networks 221

 0

 5000

 10000

 15000

 20000

 25000

 30000

1 2 4 8 16 32 64

N
um

be
r

of
 a

ct
iv

e
up

da
te

Query predicted time(s)

esp=0.2
esp=0.5

esp=1

Fig. 1. Different ε

 30000

 35000

 40000

 45000

 50000

1 2 4 8 16 32 64

T
ot

al
 c

os
t o

f u
pd

at
e

Query predicted time(s)

lamuda=20
lamuda=50

lamuda=100

Fig. 2. Different λ

 25000

 30000

 35000

 40000

 45000

 50000

20 30 40 50 60 70 80

T
ot

al
 c

os
t o

f u
pd

at
e

Speed Limite(km/h)

Location-UG
Location-UT

Velocation-U

Fig. 3. Result

 30000

 35000

 40000

 45000

 50000

1 2 4 8 16 32 64

T
ot

al
 c

os
t o

f u
pd

at
e

Query predicted time(s)

Location-UG
Location-UT

Velocity-U

Fig. 4. Result

by using different query predicted time. We can observe that the total update
cost will be generally decreased with the longer query predicted time.

7 Conclusion

In this paper, we present an extended updating protocol for the moving object
databases under the context of the road networks. We useRNSR (Road-Network
Safe Range) for each object to quantify its movement characteristics. Based on
the updating protocol, two methods are designed for reducing the system work-
load. Extensive experiments are conducted to verify that both of our proposals
are more effective and feasible than the basic updating protocol.

References

1. Zhang, Z., Yang, Y., Tung, A.K.H., Papadias, D.: Continuous k-means monitoring
over moving objects. IEEE Trans. Knowl. Data Eng. 20(9), 1205–1216 (2008)

2. Hu, H., Xu, J., Lee, D.L.: A generic framework for monitoring continuous spatial
queries over moving objects. In: SIGMOD Conference, pp. 479–490 (2005)

3. Chen, S., Ooi, B.C., Zhang, Z.: An adaptive updating protocol for reducing moving
object databases workload. PVLDB 3(1), 735–746 (2010)

4. Zhang, Z., Cheng, R., Papadias, D., Tung, A.K.H.: Minimizing the communica-
tion cost for continuous skyline maintenance. In: SIGMOD Conference, pp. 495–508
(2009)

5. Amir, A., Efrat, A., Myllymaki, J., Palaniappan, L., Wampler, K.: Buddy tracking
- efficient proximity detection among mobile friends. Pervasive and Mobile Comput-
ing 3(5), 489–511 (2007)

6. Küpper, A., Treu, G.: Efficient proximity and separation detection among mobile
targets for supporting location-based community services. Mobile Computing and
Communications Review 10(3), 1–12 (2006)

7. Xu, Z., Jacobsen, H.-A.: Adaptive location constraint processing. In: SIGMOD Con-
ference, pp. 581–592 (2007)

8. Yiu, M.L., Leong Hou, U., Saltenis, S., Tzoumas, K.: Efficient proximity detection
among mobile users via self-tuning policies. PVLDB 3(1), 985–996 (2010)

An Adaptive Distributed Index

for Similarity Queries in Metric Spaces

Mingdong Zhu, Derong Shen, Yue Kou, Tiezheng Nie, and Ge Yu

College of Information Science & Engineering, Northeastern University, China
dr.zhumd@gmail.com, {shenderong,kouyue,nietiezheng,yuge}@ise.neu.edu.cn

Abstract. As the amount of data is growing rapidly, efficient and scal-
able index structures for managing large-scale data are attracting more
and more attention. To efficiently query and manage the data in
metric spaces, an adaptive distributed index, MT-Chord, is proposed.
MT-Chord integrates Chord based routing protocol and M-tree based
index structure to support efficient similarity query processing in met-
ric spaces. Each index node has multiple replicas for load-balance and a
cost model is presented to dynamically tune the number of replicas based
on the query and update pattern at the granularity of each index node.
MT-Chord is a truly scalable, efficient and adaptive distributed index
structure for query processing in metric spaces, which is verified by our
extensive experimental studies on three real-life datasets extracted from
different data sources.

Keywords: distributed index, metric space, similarity query.

1 Introduction

Driven by growing demand for efficiently querying and managing large-scale
data, the distributed storage systems have received considerable attention. And
a lot of systems are proposed, such as Google’s BigTable, Yahoo’s Pnuts and
Amazon’s Dynamo, they store data with key-value model and have scalability
and fault-tolerance. But they only support simple key-value queries instead of
similarity queries such as range queries and KNN queries. For example, it often
happens that a traveler wants to find the restaurants from which the distance
is less than 1 km or the two of the nearest restaurants. That’s to say, the user
needs to issue a range query with range = 1km or a KNN query with k = 2.
To support these queries in the large-scale dataset with high-dimensional or
unstructured data, an efficient distributed index structure is pressing needed.

As for querying high-dimensional or unstructured data, such as locations, im-
ages, micro-blogs, protein sequences, and so on, there are basically two kinds
of index structures: vector based index structures(spacial access methods) [1, 2]
and distance based index structures [3,4]. To obtain scalability these index struc-
tures are extended by integrating with p2p overlay, and many distributed index
structures are proposed. For example, [5] integrates R-tree and CAN overlay, [6]

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 222–227, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Adaptive Distributed Index for Similarity Queries in Metric Spaces 223

integrates quad-tree and Chord overlay, and [7] combines GHT and Chord over-
lay. Unfortunately, existing vector based distributed index structures cannot
efficiently query high-dimensional data [5]. What’s more, some complex unstruc-
tured data cannot be precisely represented by the vector model. Existing distance
based distributed index structures [7–10] have to select pivots in advance, and
if the distribution of data changes after updating, the index structure needs to
be totally rebuilt or the performance cannot be guaranteed. That’s to say, they
are static rather than dynamic.

Hence, a novel distributed index, MT-Chord, is proposed to support range
queries and KNN queries for large-scale complex data. MT-Chord integrates
Chord [11] based routing protocol and M-tree [3] based index structure by dis-
seminating the M-tree index nodes to Chord overly. The contributions of this
paper are summarized as follows. (1) A novel distributed index structure, MT-
Chord, is presented. (2) A cost model and an adaptive tuning algorithm are put
forward which can dynamically definite the optimal number of replicas for each
index node and tune it accordingly. (3) Results of extensive experimental studies
on real-life datasets demonstrate the efficiency and scalability of the proposed
index structure and algorithms.

The rest of this paper is organized as follows: Section 2 presents related works
and Section 3 shows the structure of our index structure. Section 4 proposes the
cost mode. Section 5 presents the experimental studies and we conclude in Sect. 6.

2 Related Work

To satisfy with similarity queries for large-scale data, various index structures
are proposed. For example, [6] integrates quadtree index with Chord overlay
to enable more powerful accesses to data in p2p networks. [5] integrates R-
tree and CAN overlay to process multi-dimensional data in a cloud system. [12]
combines B-tree and BATON overlay to provide a distributed index which has
high scalability but incurs low maintenance. They both choose a part of local
index nodes to build global index node by computing the cost model. In metric
spaces, [13] partitions the data space into clusters and selects a reference point for
each cluster, and every data object is assigned a one-dimensional key according
to the distance to its clusters reference object. [9] integrates the idea of [13] and
Chord overlay to distribute the storage space and parallelize the execution of
similarity search. [8] proposes a mapping mechanism that enables to actually
store the data in well-established structures such as the B-tree. [7] proposes
a distributed index, GHT* index, which can exploit parallelism in a dynamic
network of computers by putting a part of the index structure in every network
node.

3 MT-Chord Index Structure

MT-Chord index is a type of distributed M-tree index built on a shared-nothing
cluster which is organized by the Chord overlay. The key problem of MT-Chord

224 M. Zhu et al.

index lies in query processing and determining the optimal number of replicas
of each index node, which are detailed in Sect. 4. In this section the structure of
MT-Chord is presented.

Each index node has multiple replicas, and MT-Chord is built by mapping
each replica to a Chord node using consistent hashing. Figure 1 depicts some
mappings between index nodes and Chord nodes. As shown in Fig. 1, the data are
logically organized by M-tree index, while they are physically stored in the Chord
overlay. Every index node has at least three replicas. When a new index node
is created during object insertion, it is assigned a node ID (nid) and initially it
has three replicas whose replica ID (rid) are 0, 1 and 2 respectively. Each replica
is mapped to the corresponding Chord node by a hashing function taking nid
and rid as parameters. For example, in Fig. 1, the index node 4 has 4 replicas,
and these replicas are mapped to Chord node b, d, g and h through a hashing
function H(“(nid, rid)”). As for the hashing function, SHA-1 can be adopted,
because it has the capability to map two index nodes with similar ID numbers
to totally different Chord nodes [6].

Fig. 1. Some mappings between logical M-tree and physical Chord overlay

Considering query processing, let rni denote the number of replicas of the
index node i, where i is the node ID. These replicas are not only used to guarantee
the robustness of MT-Chord in case of node failure, but also used to balance the
query load. For example, if a client issues a query to a index node i, firstly the
client randomly chooses a value v ∈ [0, rni− 1], and then sends the query to the
Chord node corresponding to H(“(i, v)”), say, n. If n’s location is in the client’s
cache, the query will be directly sent, otherwise the location should be acquired
by using Chord routing protocol in advance. In the similar way, the query should
be sent from n to one or more child nodes chosen by computing the distance
between the query and the child nodes, recursively, until leaf nodes are reached
and the query is answered.

Intuitively, more replicas can increase query throughput by balancing query
load, however, at the same time, they increase the cost of update because more
data need to be updated. Hence, a balance should be found. Generally for a
relatively stable tree index, the index nodes close to root node are more likely
to be queried than be updated while for the index nodes close to the leaves
it’s just the opposite, which make the intent of adaptive replication feasible.

An Adaptive Distributed Index for Similarity Queries in Metric Spaces 225

To determine the optimal number of replicas for each index node, periodically
an algorithm of cost estimation is called as a basis for increasing or decreasing
replicas, which is detailed in Sect. 4.

4 Adaptive Index

Now we consider the cost of replication in the distributed environment. We do
this by estimating the number of messages which are relevant to replicas of index
nodes in the network. For our index structure, the number of messages is linearly
proportional to the number of distance computation, hence it can reflects both
network and computation cost.

In query processing, if the number of messages received by a Chord node
exceed its processing capacity, the excess messages will be discarded and be
reissued. So we can estimate the query cost as: costq = (qni

rni
−cap)·Hi , where qni

is the number of queries in a time unit through index node i, cap is the number
of messages which the Chord node can process before a timeout happens and
Hi is the hight of the index node i. When index nodes split or merge and index
structure updates, synchronization is needed to keep replicas consistent, and A
slightly mordified Paxos protocol is proposed to keep replicas consistent during
update. One synchronization needs csyn � 4·(4−1)+rni−3 = rni+9 .messages.
We can divide the cost of update into two parts: the cost of splitting and the
cost of merging. When an index node needs split, it needs two synchronizations
of replicas and one notification to its parent. Similarly, when an index node
needs merge, it needs two synchronizations of replicas and two notifications to its
parent. So the cost of update is: costu = [ps(2·csyn+n)+pm(2·csyn+2·n)]·un ,
where un is the number of updates in a time unit, ps and pm is the probability of
splitting and merging respectively, which can be estimated by using the random
walk theory [12]. Finally, the total cost of index node i can be summarized as:
costi = (qni

rni
− cap) ·Hi + [ps · (2 · csyn+ n) + pm · (2 · csyn+ 2 · n)] · un . And

when rni = opti =
√

qni

2·un·(ps+pm) , costi takes the minimum value.

After the optimal number of replicas is figured out, the current number of
replicas will be set to the value.

5 Experiment

Three real-life datasets are used in our experiences. YouKu dataset: 500,000 im-
ages are obtained from YouKu videos which involve different categories such as
film, music, education, and so on. MicroBlog dataset: 1,000,000 micro-blogs are
downloaded from Sina and Tencent which are short messages with at most 140
characters. DNA dataset: 8,130,000 protein sequences of length 64 are extracted
from the largest, the smallest, and the median chromosome of human MT-Chord
is compared with RT-CAN [5]. PeerSim is used to simulate a Chord overlay. All
experiments are conducted with JAVA 1.6.0 25 and Intel(R) Core(TM) i7 Quad
CPU 870 @2.93GHz and 8G RAM.

226 M. Zhu et al.

Performance of Queries. In this experiment, we evaluate the performance of
range queries. Figure 2 shows the throughput with the different computing nodes
for the three datasets. With increasing of the computing nodes, the throughput
grows linearly, which confirms the scalability of MT-Chord. And the perfor-
mance of MT-Chord is better than that of RT-CAN. In Fig. 3, different radii are
adopted, and as expected, with increasing of the query radius the performance
degrades.

5000

10000

15000

20000

25000

50 100 150 200 250

T
hr

ou
gh

pu
t

Number Of Chord Nodes

YouKu
MicroBlog

DNA
RT-CAN

Fig. 2. Performance of query

5000

10000

15000

20000

25000

50 100 150 200 250

T
hr

ou
gh

pu
t

Number Of Chord Nodes

range=0.01%
range=0.05%
range=0.10%

Fig. 3. Effect of range

Performance of Updates. In our algorithm, the process of update is similar
to the range query with radius set to 0 and the involved computation cost is con-
siderably smaller, so generally its performance is better than that of the range
query. As shown in Fig. 4, the performance of updates in MT-Chord keeps good
because of the adaptive tuning algorithm and is better than that in RT-CAN.

Effect of Dimensionality. The dimensionality of YouKu dataset varies from
20 to 100 to evaluate the performance of our index. As shown in Fig. 5 the
performance of our index is better than that of RT-CAN and is not as sensitive
to dimensionality as RT-CAN, although the performance is slightly degrade with
increasing the dimensionality.

21000

22500

24000

25500

27000

20 40 60 80 100

T
hr

ou
gh

pu
t

Percentage Of Updates

YouKu
MicroBlog

DNA
CT-CAN

Fig. 4. Performance of updates

5000

10000

15000

20000

25000

20 40 60 80 100

T
hr

ou
gh

pu
t

Dimention

MT-Chord
RT-CAN

Fig. 5. Effect of dimensionality

An Adaptive Distributed Index for Similarity Queries in Metric Spaces 227

6 Conclusion

MT-Chord is a distributed M-tree built on top of the Chord p2p overlay. As far as
we know, MT-Chord is the first distributed and adaptive index in metric spaces
which doesn’t have to choose pivots before constructing the index. MT-Chord in-
dex can dynamically tune the number of replicas at the granularity of the index
node. A cost model are proposed to estimate the cost. Extensive experiments are
conducted, which verify the efficiency and scalability of MT-Chord.

Acknowledgements. This research is supported by the State Key Program
of National Natural Science of China (61033007), the National Natural Science
Foundation of China (60973021), and the Fundamental Research Funds for the
Central Universities(N100704001).

References

1. Chen, G., Vo, H.T., Wu, S., Ooi, B.C., Özsu, M.T.: A Framework for Supporting
DBMS-like Indexes in the Cloud. In: Proc. of VLDB, pp. 702–713 (2011)

2. Cao, Y., Chen, C., Guo, F., Jiang, D., Lin, Y.: A Cloud Data Storage System for
Supporting Both OLTP and OLAP. In: Proc. of ICDE, pp. 291–302 (2011)

3. Ciaccia, P., Patella, M., Zezula, P.: M-Tree: An Efficient Access Method for Simi-
larity Search in Metric Spaces. In: Proc. of VLDB, pp. 426–435 (1997)

4. Chiueh, T.C.: Content-based Image Indexing. In: Proc. of VLDB, pp. 582–593
(1994)

5. Wang, J., Wu, S., Gao, H., Li, J., Ooi, B.C.: Indexing Multi-dimensional Data in
a Cloud System. In: Proc. of SIGMOD, pp. 591–602 (2010)

6. Tanin, E., Harwood, A., Samet, H.: Using a Distributed Quadtree Index in Peer-
to-Peer Networks. VLDB J. (VLDB) 16(2), 165–178 (2007)

7. Batko, M., Gennaro, C., Savino, P., Zezula, P.: Scalable Similarity Search in Metric
Spaces. In: Proc. of DELOS, pp. 213–224 (2004)

8. Novak, D., Batko, M.: Metric Index: An Efficient and Scalable Solution for Simi-
larity Search. In: Proc. of SISAP, pp. 65–73 (2009)

9. Novak, D., Zezula, P.: M-Chord: A Scalable Distributed Similarity Search Struc-
ture. In: Proc. of INFOSCALE, pp. 181–190 (2006)

10. Falchi, F., Gennaro, C., Zezula, P.: Nearest Neighbor Search in Metric Spaces
Through Content-Addressable Networks. Inf. Process. Manage. 43(3), 665–683
(2007)

11. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord:
A Scalable Peer-to-Peer Lookup Service for Internet Applications. In: Proc. of
SIGCOMM, pp. 149–160 (2001)

12. Wu, S., Jiang, D., Ooi, B.C., Wu, K.: Efficient B-tree Based Indexing for Cloud
Data Processing. In: Proc. of VLDB, pp. 1207–1218 (2010)

13. Jagadish, H.V., Ooi, B.C., Tan, K., Yu, C., Zhang, R.: iDistance: An Adaptive B+-
Tree Based Indexing Method for Nearest Neighbor Search. ACM Trans. Database
Syst. 30(2), 364–397 (2005)

Finding Relevant Tweets

Deepak P.1 and Sutanu Chakraborti2

1 IBM Research - India, Bangalore
2 Indian Institute of Technology, Madras

deepak.s.p@in.ibm.com, sutanuc@iitm.ac.in

Abstract. When a user of a microblogging site authors a microblog
post or browses through a microblog post, it provides cues as to what
topic she is interested in at that point in time. Example-based search
that retrieves similar tweets given one exemplary tweet, such as the one
just authored, can help provide the user with relevant content. We in-
vestigate various components of microblog posts, such as the associated
timestamp, author’s social network, and the content of the post, and
develop approaches that harness such factors in finding relevant tweets
given a query tweet. An empirical analysis of such techniques on real
world twitter-data is then presented to quantify the utility of the various
factors in assessing tweet relevance. We observe that content-wise simi-
lar tweets that also contain extra information not already present in the
query, are perceived as useful. We then develop a composite technique
that combines the various approaches by scoring tweets using a dynamic
query-specific linear combination of separate techniques. An empirical
evaluation establishes the effectiveness of the composite technique, and
that it outperforms each of its constituents.

1 Introduction

Twitter1 has now become a popular way of sharing breaking news, personal
updates and spontaneous ideas and has been observed to function as a social
sensor [1]. The home timeline of a twitter user is a stream of updates from
users that she has chosen to follow. A list [2] denotes a group of users, and the
stream associated with each list comprises tweets from users in the group. Home
timelines and streams could contain tweets of users outside their purview whose
tweets are re-tweeted (i.e., forwarded) by users that are being monitored by the
stream. Despite numerous third-party applications, accessing content outside
those generated or re-tweeted by users among lists or followees2 is limited to
keyword or hashtag3 based search apart from other obvious mechanisms like
visiting twitter user profiles to see tweets they have authored. All of these require
some effort on the part of the user.

When a user authors a tweet, it provides valuable information about the topic
that the user is currently interested in. We argue that tweets from the public

1 https://twitter.com/
2 If A follows B, we say that B is a followee of A.
3 http://en.wikipedia.org/wiki/Hashtag

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 228–240, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Finding Relevant Tweets 229

timeline, i.e., even those outside the home timeline, that pertain to the topic
of the authored tweet could provide information that pertain to the topic of
interest (as embodied by the exemplary tweet just authored) of the user. In this
paper, we address this problem of finding tweets relevant/related to a particular
tweet. Retrieving similar/related entities to a query entity is a classical retrieval
problem that has been widely addressed in several other domains such as general
relational data [3] and program code [4] among others.

To the best of our knowledge, finding related or relevant tweets has not yet
been looked into, in past research. Tweets are short messages limited to 140
characters with metadata such as timestamp, author handle and original author
in case of re-tweets. The 140 character restriction poses a major challenge to
traditional text search engines that are not robust to noise common in tweet
data such as deliberate omissions of relevant words and mispellings. Our specific
contributions are as follows:

– We propose various techniques to assess the relevance of a tweet wrt a query
tweet that harness aspects such as time of the query tweet, the social network
of the query tweet’s author, and content-based similarity.

– An extensive empirical study of such techniques on real-world twitter data
that reveals that content based techniques are most effective and that extra
information not already present in the query tweet is generally welcome to
the user.

– We then propose a composite approach for tweet relevance assessment that
leverages the goodness of the various proposed techniques and illustrate em-
pirically that the composite technique fares best.

2 Problem Definition

Given a tweet Q, a set of tweets T and k, we would like to identify an ordered
set of k tweets from T , TQ = [t1, t2, . . . , tk], such that the tweets in TQ are
similar/relevant to Q. T is a set of tweets from the public timeline and could
contain tweets outside the home timeline of the author of Q. In particular, we
would like to develop a scoring function, S(Q, t) that would be used to score every
tweet t ∈ T wrt Q, the score being directly related to estimated relevance of t
to Q. Informally, TQ contains the top-k tweets according to the S(., .) function
ordered in a non-increasing order of their scores. In the rest of the paper, we will
use D to denote a large corpus of tweets (that are not in T) that we will use to
compute corpus-based stats to denote generic twitter behavior such as word idfs
to be used in some of the techniques that we describe. We will use traditional IR
quality metrics in our evaluation and will elaborate on them in a later section.

3 Scoring Tweets

We will now outline various intuitive scoring functions for tweets; the scoring
functions that we develop exploit one of (1) time, (2) author and social network
or (3) content of the tweets in question.

230 Deepak P. and S. Chakraborti

Table 1. Scoring Functions Overview

Type Technique Scoring Function

Time TS STS(Q, ti) = −1× |timestamp(ti)− timestamp(Q)|

Social Network
SC SSC(Q, ti) =

|N (Author(Q))∩N (Author(ti))|
|N (Author(Q))∪N (Author(ti))|

GD SGD(Q, ti) = −1×GraphDist(Author(Q),Author(ti))

Content

TC STC(Q, ti) =
Σw(tf.idf(Q)[w]×tf.idf(ti)[w])√

Σw(tf.idf(Q)[w])2×
√

Σw(tf.idf(ti)[w])2

QS SQS(Q, ti) = Σw∈Q(f(ti, w)× idf(w))

ED SED(Q, ti) =
∏

w∈Q(1.0 +
∑

w′∈ti
sim(w,w′)× idf(w′))

WC SWC(Q, ti) =
∏

w∈Q(1.0 +
∑

w′∈ti
p(w′|w)× idf(w′))

RC SRC(Q, ti) =
∏

w∈Q(1.0 +
∑

w′∈ti
p′(w′|w)× idf(w′))

WS SWS(Q, ti) =
∏

w∈Q(1.0 +
∑

w′∈ti
lesk(w′, w)× idf(w′))

3.1 Time-Based Scoring (TS)

Taking cue from reverse chronoligical ordering, the standard presentation mode
in most feedreaders and twitter website, time-based scoring uses temporal prox-
imity as a proxy of relevance. This leads to an intuitive scoring function, STS in
Table 1; since the absolute time-difference is inversely related to relevance, the
−1 ensures that the scoring is directly related to the relevance.

3.2 Author Social Network Based Scoring

In most datasets that are dumps of just tweets, social network connections (e.g.,
follows, likes type relationships) are unknown. Thus, we outline a graph structure
between twitter users based on the tweets using the following notion of edge:

A↔ B ⇒ sentTweetT o(A,B) ∨ sentTweetT o(B,A) (1)

sentTweetT o(., .) denotes that the first user addressed (i.e., sent to or mentioned)
the second in a tweet. This, unlike the follows relationship, is undirected; we stick
with this formulation for tweet relevance assessment since existence of either way
of communication is intuitively indicative of being interested in similar topics.

Finding Relevant Tweets 231

Shared Connections (SC). The immediate neighborhood of a user in a social
network largely defines her interests, since those are whom she has directly in-
teracted with (according to our way of inducing links). The Jaccard similarity4

between the set of immediate neighbors between the author of the Q and the
candidate tweet ti can then be used as the scoring function SSC ; N (Author(t))
denotes the set of immediate neighbors of the author of the tweet t according to
Eq. 1. Among tweets that have no shared connections with the query, recency
based ordering is employed.

Graph Distance (GD). Jaccard similarity does not differentiate between
tweets whose authors do not have any shared connections with the author of
Q. However, tweets from users who are just a few hops away may be more rele-
vant than those who are further away; a scoring function that assesses relevance
of tweets as inversely related to the distance between authors would incorporate
such a notion. Such an intuitive scoring function SGD uses GraphDist(., .), the
minimum number of hops between authors, in its formulation.

3.3 Content-Based Scoring

The 140 character restriction in Twitter leads to deliberate infusion of various
kinds of noise such as missing vowels, unnatural abbreviations and omissions of
less informative words [5]. Omissions of words as well as usage of different word
variants both aggravate the sparsity problem [6], and hence we explore various
kinds of noise-robust processing and similarity measures (e.g., ontology-based
techniques etc.) that can uncover latent similarities in estimating relevance of
tweets. The dataset that we work with had URLs in only as little as 0.7% of the
tweets, and thus, we omit considering URLs and content of their web pages.

tf.idf Cosine (TC). tf.idf is a simple and common scoring function that is used
for text processing [7]. STC denotes scoring according to the cosine similarity of
tf.idf vectors between tweets; the IDF being computed over D (Ref. Section 2).

Query Centric Similarity (QS). Consider the query tweet Q = ”blasts in
mumbai !!! :O” and two candidate tweets t1 = ”mumbai blasts again, omg” and
t2 = ”mumbai blasts kill at least 10 people”. STC would score t1 higher due to it
having a larger fraction of query words. However, besides being relevant to Q,
t2 is seen to provide additional information, whereas t1 is mostly redundant wrt
the query tweet. Since the extra information contained in t2 may be actually
useful, we would like to score t2 at least as much as t1

5. A query centric simi-
larity measure that does not discount the score for additional information in a

4 http://en.wikipedia.org/wiki/Jaccard index
5 Such a consideration is not very relevant for scenarios for which tf.idf cosine simi-
larity is traditionally used, which is that of comparing reasonably long documents
such as newswire articles. This is because, very similar/duplicate/identical content
is statistically unlikely due to the length of the documents. However, since tweets
are short text snippets containing a few words, identical content is highly likely and
hence needs special consideration.

232 Deepak P. and S. Chakraborti

candidate tweet would remedy this problem and score both t1 and t2 identically.
Such a scoring function is given in SQS , where f(ti, w) denotes the frequency of
w in the tweet ti.

Edit Distance Based Similarity (ED). Twitter’s character restriction leads
to authors frequently resorting to vowel dropping and usage of uncanny abbre-
viations; parliament is often abbreviated to parlmnt or prlmnt whereas atlntc is
used to refer to atlantic. Such shortening of words is detrimental to similarity
measures that rely on occurences of the same word in two tweets to quantify
relevance. Levenstein distance [8] quantifies the distance between two tokens as
the number of character edits required to transform one string to the other [9].
Such similarities could potentially be robust to various kinds of noise; e.g., (atlntc
and atlantic have a low Levenstein distance of 2). We use sim(w1, w2) to denote
1 − edfrac(w1, w2) where edfrac(w1, w2) denotes the edit distance between w1

and w2 measured as a fraction of the shorter word. We design a scoring function
SED that aggregates the similarity between each word in the query with its edit
distance based similarity with each word in the candidate. The addition of 1.0
to the inner sum is a standard practice to ensure that one of the inner sums
evaluating to zero does not lead to an overall zero score.

Word Co-occurences (WC). Edit distance, while being robust to mispellings,
is unaware of semantic relatedness between words. For example, Christmas and
Yule6 would have a low score despite the semantic relatedness being evident
due to co-occurence in tweet data (an example tweet reads ’Yule would be the
perfect day to take a day off and do my Christmas baking’). In exploiting such
word co-occurences, we use conditional probabilities first outlined in [10]. The
conditional probability of occurence of a word w′ given a word w is:

p(w′|w) = |{d|d ∈ D ∧ w ∈ d ∧w′ ∈ d}|
|{d|d ∈ D ∧ w ∈ d}|

where D denotes the large corpus of tweets. Such similarities are then aggregated
in usual style to yield the scoring function SED.

Reply Correlations (RC). Replies to a user’s tweets may intuitively be
treated as relevant to a tweet. Since reply tweets are not tagged with the tweet
being replied to, we heuristically estimate replies to the author within two hours
of authoring a tweet as being replies to the tweet. An example tweet, reply pair
thus extracted reads as [I am actually really excited for Friday what gunna hap-
pen to the government, I just hope there is no election]. Given a set of such [t, r]
pairs, we outline a similar conditional probability formualtion that estimates the
probability of a word w′ occuring in a reply to a tweet containing w:

p′(w′|w) = |{[t, r]|[t, r] ∈ T R ∨ w ∈ t ∨ w′ ∈ r}|
|{[t, r]|[t, r] ∈ T R ∨ w ∈ t}|

6 http://en.wikipedia.org/wiki/Yule

Finding Relevant Tweets 233

Such word-correlations across question-answer pairs were used in [11] in building
translation models for question answer forums. p′(w′|w) values are then aggre-
gated to form the SRC scoring function.

WordNet Similarity (WS). Semantic relatedness between words may be as-
sessed using ontologies such as Wordnet7. Among the various similarity measures
proposed for quantifying pair-wise similarity between words in WordNet [12], we
found the Lesk measure [13] to be most effective in estimating tweet relevance;
lesk(., .) estimates the similarity of a pair of words as being proportional to the
extent of overlap of their dictionary definitions. SWS outlines a scoring function
that uses the lesk(., .) similarity measure between words.

4 Empirical Evaluation

Dataset and Experimental Setup: In the absence of twitter datasets with
relevance judgements (such as LETOR8 document datasets), we create our own
dataset from a large twitter corpus of 977252 tweets obtained from Fundacion
BarcelonaMedia9. Upon choosing 50 random tweets to represent queries, for each
query tweet, we collect 200 tweets from the immediate past, but restrict to those
that have a common non-stopwordwith the chosen query tweet. The common non-
stopword restriction is applied since choosing tweets using only the recency pa-
rameter would invariably lead to mostly irrelevant tweets, leaving us with very
few non-zero relevance judgements for the same labeling effort. We sought the
help of human annotators to judge the binary relevance (either as relevant or non-
relevant) of each of the 10k (i.e., 200 × 50) tweets to their respective query tweet.
This effort was sizeable and was spread over 2-3 humans, and altogether took
roughly 25 hours; this leads to an average of 9 seconds for labeling each tweet.
For each query Q, the T set is formed by the 200 selected tweets10. The corpus,
after removal of the 10000 potential candidates, and 50 queries, formsD, a dataset
of 967202 tweets. The inability to undertake large-scale labeling due to the human
effort involved constrains us to work with the set fo 50 queries.

Evaluation Measures: We use popular Information Retrieval evaluation mea-
sures [14] such as Mean Reciprocal Rank (MRR), Mean Average Precision (MAP),
Normalized Discounted Cumulative Gain (NDCG) and Precision (P) to evalu-
ate the effectiveness of the techniques. The NDCG, MAP and P measures are
computed on the top-k results; we choose k=10 consistently, unless otherwise
mentioned. We refer the interested reader to [14] for details of these measures,
owing to lack of space. Each of these measures are plotted with their 95% confi-
dence intervals in the charts we present. Since we work with a small set of queries,
we present analysis of statistical significance when appropriate; our evaluation
of statistical significance uses randomization tests [15] with p-value at < 0.05.

7 http://wordnet.princeton.edu/
8 http://research.microsoft.com/en-us/um/beijing/projects/letor//
9 http://caw2.barcelonamedia.org/node/7

10 Please contact the first author for a copy of the dataset.

234 Deepak P. and S. Chakraborti

Table 2. Time Dif-
ference and Precision

Time Precision
Difference in %

< 10 secs 30.00%
< 20 secs 31.11%
< 40 secs 26.97%
< 60 secs 23.45%
< 80 secs 13.74%
All 12.39%

Table 3. Social n/w
Distance and Precision

Distance Precision
b/w Authors in %

1 66.67%
2 25.13%
3 14.27%
4 13.88%
5 13.74%
All 12.39%

Table 4. Top-10 Pairs
According to WC

(w,w′) p(w′|w)

(spears,britney) 0.0542

(degrees,number token) 0.0493

(peanut,butter) 0.0481

(going,to) 0.0472

(minutes,number token) 0.0435

(searching,for) 0.0431

(happy,!) 0.0429

(check,out) 0.0423

(anyone,?) 0.0414

(suggestions,?) 0.0389

Fig. 1. Time and Author based
Techniques

Fig. 2. Content based Techniques

4.1 Time and Author Based Techniques

We plot the various metrics for Time and Author based techniques along with
an approach that randomly retrieves tweets from T . Since T comprises of tweets
that have at least one common word, Random measures how well such a lexi-
cal constraint works in assessing relevance. TS is seen to be 75% better than
Random whereas SC and GD provide up to 35% gains over TS. The performance
of TS is indicative of the temporal coherence of topics in tweets, twitter being
considered as a mode of real-time communication. Table 2 analyzes the correla-
tion between temporal closeness and relevance of tweets where high accuracies
of up to 30% are observed when only tweets within 20 seconds are considered.
For the social network based techniques, we found it interesting that twitter
users who have as many as 2-3 hops in between still exhibit some similarity in
the topics of discussion. An analysis of social network distance and precision in
Table 3 suggests that very high accuracies of up to 67% may be achieved when
only immediate neighbor’s tweets are considered.

Finding Relevant Tweets 235

4.2 Content Based Techniques

An evaluation of the various content-based techniques appear in Figure 2. RC
is seen to fare the worst at a mere 50% better than Random. This was found
to be due to the high conditional probabilities assigned to exclamation words
and wishes (e.g., lol, omg, congrats etc), replies to tweets being short and often
comprising such words. We found that 30% replies had a question mark. In
analyzing WS that fared marginally better than RC, we examined the top word
pairs according to lesk metric, and found [weekend, week], [north, south] etc to
be among them. Tweets that talk about north are unlikely to talk about south,
despite these being semantically similar words; thus, semantic word similarity
measures are found to have some apparent drawbacks in assessing tweet rele-
vance. In a similar analysis of ED that was found to be competetive with WS,
we find that there were as many as 9 spurious matches (e.g., [protest, promise],
[breaking, being], [against, again] and [chocolate, coconut]) among the top-20
pairs assessed as maximally similar wrt edit distance based similarity. Word
similarity assessments for WC were found to be much more accurate, leading to
an improved overall performance. The top-10 pairs according to the p(.|.) mea-
sure (used in WC) as listed in Table 4 are seen to model word similarity fairly
accurately, thus explaining the better performance of WC. TC, the traditional
document similarity metric, is seen to surprisingly perform slightly better than
WC; this indicates that the semantic similarities estimates of WC, ED etc are
offset by spurious matches produced by them. QS is seen to be the best per-
forming technique, indiciating that additional information embodied in words
that do not occur in the query are indeed perceived as relevant by the user.
This validates our hypothesis that twitter users are likely to be interested in
new information.

Statistical Significance (p < 0.05): TC’s precision was found to be statis-
tically significant over many techniques it outperforms, whereas QS provides
statistical significant results on all measures over all techniques except for WC
and TC. QS is found to be statistically significant over TS on MAP and NDCG,
while being significant over WC on all measures except MRR (Ref. Table 8).

5 A Composite Technique

Though content based techniques are seen to be most effective in assessing tweet
relevance, that the different techniques are designed differently could mean that
the techniques may have some orthogonality among them. TS is likely to per-
form well for extremely time-sensitive topics like an ongoing sporting contest,
whereas social network based scoring may perform better during times when the
common interest in a social network peaks (e.g., when the common interest is
related to politics, activity would peak when there is an election). Thus, a com-
posite technique that is able to identify scenarios where specific techniques (e.g.,
content-based, time-based etc.) are likely to be more effective and rely on them
highly for such cases, is likely to perform better than the separate methods.

236 Deepak P. and S. Chakraborti

Correlation Analysis: We now analyze whether there is indeed some orthog-
onality among the techniques using a simple correlation analysis. For each tech-
nique, we create a vector whose ith value denotes the precision (@10) obtained
for the ith query. The Pearson co-efficient11 among such precision vectors for the
top-5 techniques are tabulated in Table 5 with high values in boldface. The cor-
relation co-efficient ranges between −1.0 (inverse correlation, i.e., high precision
indexes of one technique corresponding to low precision in the other) and 1.0
(denoting direct correlation). However, since correlation co-efficients can only
uncover linear relations, inferences based on them need to be taken with a pinch
of salt. The techniques may be grouped into two groups of correlated techniques,
one with TS and SC, and the other comprising the content based techniques.
Any pair from across these groups have a low correlation of 0.5-0.6; though this
is higher than 0 indicating independence, that they are far enough from 1.0
provides some hope of orthogonality between them that may be exploited.

Table 5. Correlation Analysis

r TS SC WC TC QS

TS 1.0 0.85 0.64 0.59 0.52

SC 0.85 1.0 0.67 0.68 0.61

WC 0.64 0.67 1.0 0.80 0.68

TC 0.59 0.68 0.80 1.0 0.88

QS 0.52 0.61 0.68 0.88 1.0

Table 6. Distributions with Similar Entropy

A Weighting Score: For a scoring function, query combination [S(.),Q], we
first linearly normalize the score of S(Q, ti) to between 0 and 1 by scaling12. We
use SN (.) to denote this normalized version. If this were to represent the true
relevance distribution, it would have a low entropy with all the relevant tweets
scoring at 1.0 and others scoring at 0.0. In the absence of relevance judgements,
we could just prefer low-entropy distributions of SN (.) since entropy is inversely
related to the uniformity (randomness) of the scoring. Entropy, however, is un-
able to differentiate between distributions in Table 6. Among those, we would
intuitively prefer the right distribution since that has more objects scored close
to 1.0. We use these intuitions to define a weighting for a [S(.),Q]:

w(S,Q) = average(top-k({SN (Q, t)|t ∈ T }))− entropy({SN (Q, t)|t ∈ T })

where the top-k denotes the top-k values in the input set, and the average(.) and
entropy(.) denote the average and entropy of the distributions respectively. Both
these terms are in the range (0, 1) and the average of the top-k terms (being the
average of the highest k terms in a normalized distribution) is likely to be larger
than the entropy. This motivates the subtraction-based construction.

11 http://en.wikipedia.org/wiki/Pearson product-moment correlation

coefficient
12 For the content-based techniques that use the product formulation, we score tweets

using the log of the respective formula, prior to normalization.

http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

Finding Relevant Tweets 237

An Integrated Approach: The weighting score can be used to linearly com-
bine multiple scoring functions, {S1, . . . ,Sp}, as follows:

S{S1,...,Sp}(Q, t) =
p∑

i=1

{
0.0, if w(Si, T) ≤ 0.0

w(Si, T)× SN i(Q, t), otherwise

we use a cut-off of 0.0 thereby not allowing those (Q,Si) combinations that have
a weighting score evaluating to negative to influence the scoring.

Table 7. Composite Technique Evalu-
ation

Evaluation Best Among Sc % Impr.
Measure Components Recorded

MRR 0.633 (QS) 0.663 4.7%
MAP@10 0.575 (QS) 0.603 4.9%
NDCG@10 0.578 (QS) 0.606 4.8%
PREC@10 0.398 (QS) 0.406 2.0%

Table 8. Statistical Significance

Technique Statistically (p < 0.05)
Pair Significant Metrics

QS over WC map, ndcg, prec
QS over TC map, ndcg
SC over WC map, ndcg, prec
SC over TC map, ndcg
SC over QS map, ndcg

Evaluation: We combine the top-5 content based techniques WS, ED, WC,
TC and QS along with TS and SC in the above construction to form a combined
technique Sc. Table 7 illustrates that Sc beats the the best performing compo-
nent technique on each of the measures, albeit by small margins. This establishes
the utility of the weighting score formulation in leveraging the strengths of the
various techniques in building a technique that outperforms the components,
and establishes the combination as the preferred technique for retrieving sim-
ilar/relevant tweets. Table 8 shows that SC is statistically significant over TC
and QS on MAP and NDCG; it was found to be statistically significant on all
metrics against techniques not listed in the table.

Computational Cost: Each of our separate techniques are in O(|T |l2p) where l
denotes the number of tokens in a tweet, and p denotes the number of characters
in a token (for edit distance calculations that are linear); this is so since token-
pair similarities (e.g., lesk(., .) and p(.|.)) may easily be pre-computed (so are
IDF values). Normalization (for SN) and final scoring each take O(|T |) in series,
leading to an overall complexity of O(|T |l2p). It may be noted that l is often
15-20 at max since tweets are limited to 140 characters.

6 Related Work

The problem of finding similar microblog posts (e.g., tweets) is, to the best of
our knowledge, has not received much attention yet. We provide a brief overview
of literature under two separate heads.

238 Deepak P. and S. Chakraborti

Microblog Processing: Retrieval related tasks that have been attempted on mi-
croblog data include identifying re-tweetable tweets [16], non-query specific rank-
ing of tweets [17] to replace the reverse chronological ordering, diversity-conscious
retrieval of tweets related to a topic (e.g., oil spill) [18] and mechanisms for gath-
ering user input on tweet ranking [19]. Retrieving extrinsic content such as news
articles [20] and RSS feed entries [21] in correlation with tweet information has
also been of interest.

Non-content based approaches in Retrieving Entities: Information retrieval and
top-k processing [3] have become pervasive. Approaches that focus on user pro-
files or temporal information have been of interest in social media process-
ing [22][23]. While immediate followees have been found to be useful to rec-
ommend to a user to follow [24], [25] assesses familiarity based evidence to be
more useful than network proximity. Another aspect of similarity is that pertain-
ing to locations [26]; geo-tagging, however, is not yet very popular on twitter.
Incorporating temporal information in collaborative filtering has been of utility
in retrieving timestamped entities [27].

7 Conclusions and Future Work

We analyzed the problem of finding similar/relevant microblog posts, to a query
post. Similarity search in microblog posts, to the best of our knowledge, has
not received enough attention. Microblog posts in the popular microblogging
service, Twitter, are short text snippets with associated metadata such as the
timestamp and author handle. Towards retrieving relevant tweets, various intu-
itive techniques that separately exploit content and metadata such as timestamp
and author social network were developed. An evaluation on real-world data con-
firms that content-based techniques are most effective and that tweets containing
new information while being lexically similar with the query are perceived to be
very useful. Based on a correlation analysis of the techniques, we then formu-
lated a weighting score that heuristically estimates the effectiveness of specific
techniques for given queries and used that to build a composite scoring function
that assesses relevance using a query-specific linear combination of the different
schemes. An empirical evaluation illustrates the statistically significant superi-
ority of the composite technique over the component techniques, and establishes
it as the technique of preference for assessing tweet relevance.

Many recommendations are accompanies by an interpretable reason e.g.,
gmail13 explains why it marked email threads as interesting by including an
explanation indicating the reason. We would like to develop techniques to derive
interpretable explanations to accompany suggestions of relevant tweets. Further,
as and when geo-encoded tweet data are available, we intend to explore the
utility of geo-information in assessing tweet relevance.

13 http://www.gmail.com

Finding Relevant Tweets 239

References

1. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time
event detection by social sensors. In: WWW, pp. 851–860 (2010)

2. Wu, S., Hofman, J.M., Mason, W.A., Watts, D.J.: Who says what to whom on
twitter. In: WWW, pp. 705–714. ACM, New York (2011)

3. Deshpande, P.M., Deepak, P., Kummamuru, K.: Efficient online top-k retrieval
with arbitrary similarity measures. In: EDBT, pp. 356–367 (2008)

4. Krinke, J.: Identifying similar code with program dependence graphs. In: WCRE,
p. 301. IEEE Computer Society, Washington, DC (2001)

5. Subramaniam, L.V., Roy, S., Faruquie, T.A., Negi, S.: A survey of types of text
noise and techniques to handle noisy text. In: AND, pp. 115–122 (2009)

6. Allison, B., Guthrie, D., Guthrie, L.: Another Look at the Data Sparsity Problem.
In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2006. LNCS (LNAI), vol. 4188,
pp. 327–334. Springer, Heidelberg (2006)

7. Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering tech-
niques. In: KDD Workshop on Text Mining (2000)

8. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Technical Report 8 (1966)

9. Wang, W., Xiao, C., Lin, X., Zhang, C.: Efficient approximate entity extraction
with edit distance constraints. In: SIGMOD, pp. 759–770 (2009)

10. Sanderson, M., Croft, W.B.: Deriving concept hierarchies from text. In: SIGIR,
pp. 206–213 (1999)

11. Xue, X., Jeon, J., Croft, W.B.: Retrieval models for question and answer archives.
In: SIGIR, pp. 475–482 (2008)

12. Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet: Similarity - measuring the
relatedness of concepts. In: AAAI, pp. 1024–1025 (2004)

13. Banerjee, S., Pedersen, T.: An Adapted Lesk Algorithm for Word Sense Disam-
biguation Using WordNet. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276,
pp. 136–145. Springer, Heidelberg (2002)

14. Robertson, S., Zaragoza, H.: On rank-based effectiveness measures and optimiza-
tion. Inf. Retr. 10, 321–339 (2007)

15. Smucker, M.D., Allan, J., Carterette, B.: A comparison of statistical significance
tests for information retrieval evaluation. In: Proceedings of the Sixteenth ACM
Conference on Conference on Information and Knowledge Management, CIKM,
pp. 623–632 (2007)

16. Uysal, I., Croft, W.B.: User oriented tweet ranking: a filtering approach to mi-
croblogs. In: CIKM, pp. 2261–2264 (2011)

17. Duan, Y., Jiang, L., Qin, T., Zhou, M., Shum, H.Y.: An empirical study on learning
to rank of tweets. In: COLING, pp. 295–303 (2010)

18. De Choudhury, M., Counts, S., Czerwinski, M.: Identifying relevant social media
content: leveraging information diversity and user cognition. In: HT (2011)

19. Sarma, A.D., Sarma, A.D., Gollapudi, S., Panigrahy, R.: Ranking mechanisms in
twitter-like forums. In: WSDM, pp. 21–30 (2010)

20. Chen, J., Nairn, R., Nelson, L., Bernstein, M.S., Chi, E.H.: Short and tweet: ex-
periments on recommending content from information streams. In: CHI (2010)

21. Phelan, O., McCarthy, K., Smyth, B.: Using twitter to recommend real-time topical
news. In: RecSys, pp. 385–388. ACM, New York (2009)

22. Pennacchiotti, M., Gurumurthy, S.: Investigating topic models for social media
user recommendation. In: WWW (Companion Volume), pp. 101–102 (2011)

240 Deepak P. and S. Chakraborti

23. Diaz, F., Metzler, D., Amer-Yahia, S.: Relevance and ranking in online dating
systems. In: SIGIR, pp. 66–73. ACM, New York (2010)

24. Hannon, J., Bennett, M., Smyth, B.: Recommending twitter users to follow using
content and collaborative filtering approaches. In: RecSys, pp. 199–206 (2010)

25. Guy, I., Jacovi, M., Perer, A., Ronen, I., Uziel, E.: Same places, same things, same
people?: mining user similarity on social media. In: CSCW, pp. 41–50 (2010)

26. Lee, M.-J., Chung, C.-W.: A User Similarity Calculation Based on the Location
for Social Network Services. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA
2011, Part I. LNCS, vol. 6587, pp. 38–52. Springer, Heidelberg (2011)

27. Ding, Y., Li, X., Orlowska, M.E.: Recency-based collaborative filtering. In: Pro-
ceedings of the 17th Australasian Database Conference, ADC, vol. 49, pp. 99–107
(2006)

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 241–253, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Fgram-Tree: An Index Structure Based on Feature
Grams for String Approximate Search*

Xing Tong and Hongzhi Wang

Department of Computer Science and Technology
Harbin Institute of Technology

{hitxingt,whongzhi}@gmail.com

Abstract. String approximate search is widely used in many areas. Indexing is no
doubt a feasible way for efficient approximate string searching. However, the
existing index structures have a common weakness that they do not obey the
nature of the index which is a function by mapping different data to different
index items, similar data to similar index items, in order to query easily. In this
paper, we propose a new type of string indexing structure called Fgram-Tree,
which is based on feature grams to build itself and filter strings. It obeys the two
maps by placing similar strings into the same node, different strings into different
nodes that could greatly improve the efficiency of index. Our index is able to
support for different types of search. Compared to other index, it provides high
scalability and fast response time.

Keywords: Fgram-Tree, index structure, string approximate search.

1 Introduction

Approximate string handling in the application of computer systems plays an important
role and is widely used in the database, information retrieval and other areas. However,
approximate string matching also brings technical challenges. Firstly, it is not trivial to
measure the difference between two strings. Secondly, even though many string measured
functions have been proposed, it is costly to calculate these measured functions.

Based on the above discussion, for efficient string approximate search, a natural way
is to build the appropriate indexing structure for the strings. Currently, the most
extensive index structure for approximate string matching is inverted table structure
that will split the string into grams, and measure the string by edit distance metric
[3-10]. Even though gram-based method can process approximate string matching
efficiently in many cases, it has many weaknesses. First, it cannot effectively deal with
the data update. Second, it has to introduce many collection operations when we use the
inverted table to do the query, which increases the complexity of the query.

There are still a lot of non-inverted list indexing structures supporting approximate
string search. For example, [2] proposed edit distance tree structure that could hash

* This paper was partially supported by NGFR 973 grant 2012CB316200 and NSFC grant

61003046, 6111113089. Doctoral Fund of Ministry of Education of China (No.
20102302120054).

242 X. Tong and H. Wang

each string into a number, and insert it into a B+ tree structure, which can support the
data update well, but this structure emphasis on the ordering of the string too much and
cannot pay full attention to the similarity of strings, therefore a large number of similar
strings cannot be in the same leaf node, and the result is that the filter effect is not
obvious, getting many alternative leaf nodes.

In summary, existing methods have drawbacks. We attempt to address these
problems and design an index structure for efficient approximate string matching.
Inspired by hashing index and B+ tree, if similar strings are mapped into the same entry
in the index, during the search, they can be accessed by once probing. Thus, the design
of our index is to cluster the string set based on the similarity and build index with each
cluster as an item. Such that similar strings can be accessed in batch in the index.

We choose a tree structure as the skeleton of our index, since such structure supports
the data updating. Each node in the index corresponds to a set of similar strings. To
represent the nodes in the index, for each node, we extract some grams from the strings
in the corresponding string set, which are called feature grams. With feature grams,
when some new strings are added to the set, they are added to the nodes with similar
strings and distinguished from strings in other nodes. With this consideration, it is
crucial to select the feature grams. To choose the feature grams, we use a cluster
method to cluster the strings together and extract the feature grams from the center of
each cluster. Our index is able to support threshold-based search, top-k search.

The contributions of this paper include:

1 We present a new type of string indexing structure that supports a variety of types of
similarity string search efficiently.

2 An effectiveness and efficient index building algorithm with complexity is proposed.
3 Extensive experimental results on real datasets show that our indexing scheme

achieves comparable performance against other solution on search operations.

The rest of the paper is organized as follows. Section 2 discusses the necessary
background and gives some formal problem definitions. Section 3 presents the basic
principles of the Fgram-Tree. Section 4 presents details of the index building process
and algorithm complexity. Section 5 presents a comprehensive evaluation of the
proposed techniques and Section 6 concludes the paper.

2 Preliminaries

In this section we present some preliminary knowledge regarding string processing as
well as the basic problem definition.

In the literature of approximate string matching, edit distance is commonly used to
measure the similarity of two strings. We use edit distance to measure string similarity
in our query process operations.

Definition 1. (Edit Distance)
The edit distance between two strings and is the minimum number of single
character edit operations (insertion, deletion, and substitution) that are needed to
transform to . We denote the edit distance between and as , .

 Fgram-Tree: An Index Structure Based on Feature Grams

243

Figure 1 shows a simple database table including 5 distinct strings and its general index
structure. , is 1, since is transformed to with a substitute operation
from single character ‘y’ to ‘l’.

Next, we give the formal definitions of string approximate search with respect to edit
distance.

Definition 2. (Threshold-based Search)
Given a query string q, a string set D and threshold , find all strings in D with edit
distance no larger than .

In Figure 1, a threshold-based search query q =“Joe” with = 1 will return strings ,
 and , whose edit distances to q are no larger than 1.

Definition 3. (Top-k Search)
Given a query string q and a string set D, find k strings in D with edit distance no larger
than any other strings in D.

In Figure 1, a top-k search query q =“Janet” with k = 2 will return strings and ,
which are more similar to q than any other strings in D.

When we do the approximate search, the algorithm of counting edit distance between
two strings runs in | | time for strings of length | |, based on a standard dynamic
programming method. As a result, when we deal with large amount of strings, we use
various filtering techniques to prune the number of strings before counting edit
distance. We split a string into grams.

Definition 4. (Ngram Split)
Ngram split of a string is a set, that is composed by all the substrings with length N.

For example, the 2-gram split for “Joey” is {Jo, oe, ey}.

Some filters use the fact that if , , then the lengths | | and | | should
differ by at most , and the number of common n-grams of them should be at least Numc:

 | |, | | 1 1 (1)

Formula (1) is easy to understand. One single character edit operation could involve n
grams at most, so operations involve grams at most and a string contains | | 1 grams. As a result, the subtraction between two numbers is the least common
n-grams.

3 Fgram-Tree

This section introduces the index structure and discusses query process methods
including two kinds of approximate search queries.

3.1 Index Structure

We propose Fgram-Tree, a novel type of string indexing structure in a tree structure
with each node representing a set of similar strings. Fgram-Tree pays more attention to
the treatment of similar strings and supports threshold-based search, top-k search. We
propose the formal definition of Fgram-Tree.

244 X. Tong and H. Wang

Definition 5. (Fgram-Tree)
A Fgram-Tree is a tree structure where each leaf node is represented as a triple (bs,
cbs, ids) and each intermediate node is a tuple (bs, cbs), where bs is a set of ngram
splits of strings contained by all lower nodes and occurrences of each gram, cbs is the
center of bs to represent bs (More details about cbs will be described in Section 4), and
Ids is the set of the strings attached to the node.

We use an example to illustrate our index. General index structure is shown in Figure 1.
Similar strings , , are stored in LNode1, and strings , are stored in LNode2.
To reduce the storage overhead and the computing complexity, we store bs and cbs as
bitmaps. Corresponding to each gram there are one bit in bs and a frequency of that gram.
To facilitate the presentation, we do not use the bitmap form but the collection way in
Figure 1, and we will discuss the problem by the collection way in the rest of the paper.

Fig. 1. An example of string dataset and its general index structure

3.2 Query Process

In this section, we will discuss the algorithms for threshold-based search and top-k
search based on our index.

Before the introduction of query process supported by Fgram-Tree, we give two
filter conditions which are used in the query process and related to the similarity of
strings. The basic idea of query process is that they are used to prune excess nodes
impossible to contain similar strings with the query.

Condition 1: According to Formula (1), if the number of elements in intersection
between the query string q and bs of node c is smaller than Numc, node c must not
contain a string similar with the query. Obviously, if the number of common n-grams bs
sharing with q is smaller than Numc, any string belonging to node c must not share such
many grams with q, either.

INode
Bs: (jo,3)(oe,3)(ja,2)(an,2)(el,1)(ey,1)
 (ns,1)(so,1)(on,1)(ne,1)(et,1)
Cbs: jo,oe,ja,an

LNode1

Bs: (jo,3)(oe,3)(el,1)
 (ey,1)
Cbs: jo,oe
Ids: 0,1,4

LNode2
Bs: (ja,2)(an,2)(ns,1)(so,1)
 (on,1)(ne,1)(et,1)
Cbs: ja,an
Ids: 2,3

Id String
0
1
2
3
4

Joey
Joel
Janson
Janet
Joe

 Fgram-Tree: An Index Structure Based on Feature Grams

245

Condition 2: If there is no intersection between a query q and cbs of node c, c must not
contain a string meeting the query. We use center-based clustering method to construct our
index and cbs is just the center for each cluster, thus it must intersect with q otherwise q
does not belong to that cluster. We will discuss this condition specifically in Section 4.3.

Threshold-Based Search
Firstly, we discuss threshold-based search. We use these two conditions to prune nodes
to obtain the leaf nodes as few as possible. And then every string s in the obtained node
set is verified to check whether s satisfies the constraint in the query. We give pseudo
code of threshold-based search in Algorithm 1.

Algorithm 1. Threshold-basedSearch (string q, tree node N, thresholdθ)
1: if N is the leaf node then
2: for each s N∈ do

3: if Verify(q, s,θ) then
4: Add s in search result
5: else
6: for each child c N∈ do

7: if CommonGramBs(q, c,θ) && CommonGramCbs(q,c) then

8: Threshold-basedSearch(q,c,θ)

Algorithm 1 traverses the nodes meeting Condition 1 and Condition 2 in the index
recursively (Line 6-8) and verifies the strings in the visited the leaves (Line 1-4) by the
verification algorithm only in | | mentioned in [1]. The strings satisfying the
constraint are added to the final results. The function CommonGramBs() and
CommonGramCbs() correspond to Condition 1 and Condition 2 respectively.

Top-K Search
Next, we discuss top-k search method. To take advantage of the feature of our index that
similar strings are located in the same node in our index, we could firstly locate the leaf
node where the most similar string with query q is by setting threshold 0 and choose k most
similar strings in that node as the initialization result. Then we visit other nodes in the same
way and update the result if a string with smaller threshold than the largest one in the result
is found. Thus, we only need to access the index once. The top-k search algorithm is as
follows:

Algorithm 2. Top-kSearch (string q, tree node N, threshold θ , result heap H)
1: if N is the leaf node then
2: for each s N∈ do
3: Geteditdistance(q, s)
4: Insert s into H
5: if |H|>k then pop top entry
6: else
7: for each child c N∈ do

8: if CommonGramBs(q, c,θ) && CommonGramCbs(q, c) then

9: Top-kSearch(q,c,θ ,H)

246 X. Tong and H. Wang

In Algorithm 2, we locate the nodes which contain the most similar string with q with
the same pruning conditions as Algorithm 1(Line 7-9). We use a max-heap to keep the
current top-k similar strings and directly calculate the edit distance in
Geteditdistance()(Line 1-5). When a leaf node meets the conditions, for the strings in that
leaf, we calculate their edit distances with q and insert them into the heap. If the number of
elements in max-heap is more than k, we pop the strings with the largest distance.

4 Construction of Index Structure

According to our discussion in Section 3, in order to filter more nodes in the same level,
strings in the same node should be similar while those in different nodes should be not
similar. Therefore, we design a center-based clustering method with each tree node
equivalent to a cluster. Cbs in the index structure is just the center of our cluster. We
design a center-based algorithm for the construction of such index in this section. At
first, we introduce the framework of our clustering method in Section 4.1. Since center
initialization, node selection and center update are basic operations for the clustering,
we discuss them in Section 4.2, Section 4.3 and Section 4.4, respectively. At the end of
this section, we analyze the time complexity of the index construction.

4.1 Overall Method

We show of overall framework of our method in this section by using a recursive
approach to make a hierarchical clustering. In each level, firstly we initialize a suitable
center cbs for each cluster. Secondly, we iteratively choose a center for every string and
update the centers until the centers do not change. We show the overall index
construction in Algorithm 3.

Algorithm 3. RecurMakeNode (tree node N, int r,,int k)
1: if(the size of strings in N>r) then
2: InitNode(N)
3: while(true)
4: for each string s of N do
5: child node c=NodeChoice(s,N)
6: for each child node c of N do
7: SetCenter()
8: if each child c’cbs in N does not change then
9: break
10: else return
11: for each child node c of N do
12: RecurMakeNode (c,r,k)

 Fgram-Tree: An Index Structure Based on Feature Grams

247

The input of Algorithm 3 is a tree node N which contains all the strings waiting to be
clustered, the number k of clusters and the size r of strings in a child node. In order to
take full advantage of the memory page size, k and r are by memory limit. The output is
the index based on tree with root N. And if the size of strings in a child node c is greater
than r, the algorithm splits c (Line 2-9). Otherwise, it visits other nodes recursively. In
Line 2, the center is initialized with InitNode(). Line 3-9 is the iterative process. The
condition of ending iteration is that both the grams and their frequencies of all children
nodes’ cbs do not change (Line8-9). Line 4-5 chooses the suitable child node for s using
NodeChoice(). Line 6-7 updates cbs of every child node using the method SetCenter().

Next, we will discuss the details about InitNode(), NodeChoice() and SetCenter() in
Section 4.2, Section 4.3 and Section 4.4, respectively.

4.2 Center Initialization

In this section, we propose the method to initialize the center to accelerate the iteration
rather than randomly generate centers.

Center-based clustering method is to select a center on behalf of the characteristics of
each cluster. Clearly, two strings are similar if they have many common grams. Then
we can extract some grams from every strings in the cluster to form a gram collection as
the center, which share grams with each string. Moreover, we should extract the grams
that similar strings share, because these grams could make similar strings located in the
same cluster.

Based on above discussion, we pick some shared grams from bs as our center. And
according to the idea of vote, the frequency of these shared grams should be higher than
that of other grams. Thus, we choose some grams of high frequency to initialize our
cluster center cbs. We use the trie structure[5] to initialize the center by picking some
high frequencies grams from the trie in InitNode().

We develop an efficient three-step algorithm in Algorithm 4 to achieve the goal.
Assume there are k centers and initialize for (i=1,2…k).

In the first step, we construct a trie and select k grams in the leaf node belonging to
different strings with the highest frequency and add them into (i=1,2…k)
respectively (line 6-7).

Algorithm 4. InitNode (tree node N)
1: center of N’s every child (i=1,2…k)
2: ←φ(i=1,2…k)
3: Heap H←φ
4: TrieNode root←MakeTrie()
5: traverse the trie, H←k grams whose frequency is highest
6: for each do
7: ←H[i]
8: for each substring s of H[i] with length n do
9: if(a gram begins with s in trie) then
10: ←gram
11: for each gram of do
12: ←the standard grams of gram

248 X. Tong and H. Wang

In the second step, to each initgram, we find all of grams in the leaf node starting
with n common characters with the gram in initgram, espacially that n is the length of
grams in cbs and add these grams to initgram. (line 8-10)

In the last step, to each initgram, every gram in initgram is split into standard grams.
And we add them to the node center cbs. (line 11-12)

The main computation cost of Algorithm 4 is the construction of the trie with ,
since when the trie is constructed the cost of collecting high frequency grams(Line
7-12) is mainly trie traversal with time complexity .

4.3 Node Choice

In this section, we discuss the determination method of the clusters the strings
belonging to in the iteration.

The goal is that strings in the same node should be similar but not similar to strings in
other nodes. It means that strings in the same node should share more grams while less
grams with those in different nodes. Thus, the smaller the intersection size of any
centers is, the less common grams are in different nodes. Specifically, if we insert a
string s into one node, the intersection size may become large. As a result, when we
make node choice for a string, we should minimize the incremental intersection size
after it is inserted.

To illustrate this problem clearly, we discuss the change of the intersection between
two centers. Two , divide the gram set into four subsets , , , .

 , .

is the set of shared grams between and , while

and present their unique grams collections. is the set of all other grams not
belonging to , . Obviously, | | is the intersection size and our goal is minimizing it
after choosing a node for ngram split gs of a string. We give the choosing method as
follows.

If gs , gs , we choose where | | | |, | | .
For the classification, we have two possible ways. The first is that gs is assigned to

. Such that | | | | | |. The second is that gs is assigned to . Such that | | | | | |. Thus if | | | |, we choose and otherwise we choose

. Therefore, we choose the center which has the most common grams with gs
during the filtering of common grams with other centers. For the convenience of
discussion, we define | | as single covered degree sc-degree.

Based on the above discussion, we compute sc-degree for every center and select the
center whose sc-degree is the largest. In the first step, we maintain the intersection
between any two cbs represented by bitmap in a two-dimensional array to support the
operation filtering of common grams with other centers, therefore it runs in time
where k is the number of clusters. In the second step, we select the center with the
largest sc-degree. Obviously, the complexity of NodeChoice() is .

While querying a string q, CommonGramCbs() in Algorithm 1,2 is used to judge
whether there is a intersection between the ngram split gs of q and cbs. Because of our
node choice method, gs must have a intersection with cbs which greatly enhanced filter
function of the index.

 Fgram-Tree: An Index Structure Based on Feature Grams

249

4.4 Center Update

In this section, we introduce the update method of center cbs during the index
construction.

In each iteration if a gram is chosen as the center, it must be contained in the ngram
splits of two strings. Therefore, we should choose the grams from those with
frequencies no less than two. If we apply such update method, the number of grams in
the center will be very large which may cause a new problem that many grams would
lead to excessive iterations.

Grams in each center must be constituted by each ngram split of the string waiting
for clustering. According to the node choice method mentioned in Section 4.3, to a
string s, due to the center containing the overlapping part with ngram split of s, s will be
chosen by this center. Then we can say that this overlap controls string s. Assuming that
the number of elements in each overlapping set has taken to the minimum, then it is
obvious that the center size will be minimal.

Next, we formally explain this process by drafting some definitions and get the
conclusion in Theorem 1 that a large number of grams would not increase the iteration
times.

Definition 6. (Control Effect)
To a ngram split gs of s, if common(, cover) common(, cover)(j=1,2…k, j i)
where Common(A,B) is sc-degree between set A and B and cover is the subset of gs,
then cover determines which center s belongs to and every gram in cover has control
effect to gs.

Definition 6 illustrates a control effect existing in a string s that means we may only
compare a part of ngram split of s with the center to select the appropriate cluster rather
than to compare the whole ngram split collection. Every center should be composed by
covers and when each |cover| takes the min value, the center size will be minimal.
Then, we define min cover set as well as the min center.

Definition 7. (Min Cover Set)
Mcs is a min cover set , if its arbitrary subsets are not cover sets.

Definition 8. (Min Center)
Min center Mcenter= , … | | , is the min cover set of , ∈ ,
where S presents all of strings in one node.

Definition 8 shows the composition of the minimal center. Then we use above
definitions to prove a theorem that implies larger center size would not increase the
iteration times.

Theorem 1. When Mcenter converges, any center Lcenter with larger size satisfying
 must also converge.

Proof. Suppose that all the strings in one node is S, to each ngram split of string s in S,
we divide it into two sets min cover set (mcs) and remaining set (rs). According to
Definition 6, mcs could control any subset sub of rs, as a result, when Mcenter
converges, every (i=1,2…|S|) converges, then must converge. Obviously,

250 X. Tong and H. Wang

, … | | and the center ,… | | | | , therefore Lcenter converges.
Theorem 1 shows that due to the control effect, when Mcenter converges, Lcenter

must also converge. In another word, their iteration times are the same. And because
the size of Mcenter is smaller than Lcenter, the iteration times would not change with
the increasing of center size.

We use SetCenter() to update the center in Algorithm 3. And because our method is
based on operations of bitmap, the complexity of SetCenter() is 1 as well as
judging convergence.

4.5 Complexity Analysis

In this section, we analyze the time complexity of index construction.
Algorithm 3 visits each node recursively. In every recursion, it contains two phases,

initialization and iteration. The complexity of the initialization phase is the
establishment of the trie with , where N is the number of strings. In iteration
phase, because updating center and judging convergence run in constant time, the main
consuming is choosing node with cost , where k is the number of clusters.
Iteration phase has 2 levels of iterations with m and N times respectively, so the cost of
the second phase is where m is the iteration times when the center
converges. As a result, in every recursion Algorithm 3 runs in and in the
whole recursive process Algorithm 3 runs in . Because m would not
increase with the bit size already mentioned in Section 4.4 and m is far smaller than N in
reality as well as k is a constant by memory limit, then the time complexity of
Algorithm 3 is .

5 Experimental Evaluation

In this section we evaluate the performance of the index construction and the query
respect to threshold-based and top-k search on edit distance with a real dataset.

Our data are from DBLP(http://dblp.uni-trier.de/xml/). We extracted the author
element from the article list as the data set. The maximum length of strings is 56 and
average length is 22.

We chose Bed-Tree[2] for comparison. [2] proposed an edit distance tree structure
that hash each string into a number, and insert it into a B+ tree structure. As a result, it is
able to work in both of memory and external memory. And in our experiment,
Bed-Tree takes 2-gram, 4 string bucket, 200 strings in one node, and gram counting
order. We will measure the performance of queries for Bed-Tree and Fgram-Tree both
in memory and external memory.

We classified all the characters into two categories: 26 English letters and the other
non-English letters as one character, then a string could be split into 2-grams up to 729,
therefore we chose 729 bits for each bs and cbs. The page size is set to be 4kB. In order
to take full advantage of the page size, each leaf node stored up to 200 strings and each
internal node stored 20 bs as well as their cbs, i.e, r =200 and k=20 in Algorithm 3.

 Fgram-Tree: An Index Structure Based on Feature Grams

251

We compile all the programs in Windows7 using jdk 6.0 with java. The experiments
are run on a Intel(R) Core(TM)2 Duo CPU E7500 2.93GHz with 2 GB main memory
and 7200 RPM disk drive.

5.1 Experimental Results of Index Construction

In this section, we presents the variation of iteration times with the size of center firstly,
and then shows the time of building index.

In our algorithms, we selected grams whose frequency is no less than 2 as the center
of each node. Figure 2(a) shows the variation of iteration times with the size of center.
In this experiment, we use a data set with 10000 randomly selected strings. To each
center size, we repeated 10 times to cluster these strings, and took the average value of
10 times as the iteration times. As can be seen from Figure 2(a), when the size of center
is greater than 15, the iteration times is essentially the same, which validates Theorem
1. The center is slower to converge when the median is less than 10 because few bit size
cannot guarantee the control effect.

Figure 2(b) shows the variation of construction time with string size. We select the
number of strings ranging from 0.01 million to 2 million. According to our analysis, the
complexity of Algorithm 3 is that is consistent with the growth trend of the
curve in Figure 2(b).

Fig. 2. The time of building index

5.2 Experimental Results for Query Processing

During the inquiry experiment, we used one million strings from author property of
DBLP and randomly selected 100 strings as query objects, then got the average
querying time.

We had test queries in two settings, one is the index is located in disk while the other
is the index is in main memory. In the first type of experiments, we measured the
performance of queries when all data required for answering a query needed to be
retrieved from disk. In the second setting, the experiment represents the other extreme
in which all data required to answer a query is already in memory.

Figure 3 and Figure 4 present the experimental results of threshold-based search and
top-k search respectively. An observation from the figure is that the efficiency
increases with the value of the abscissa. When the threshold or k is relative small, the
efficiency of both methods is similar. But when they get large, the efficiency of
Bed-Tree gets slower than our method. It is because the pruning ability of Bed-Tree

252 X. Tong and H. Wang

with high level is weak, it will generate many strings from different leaves for edit
distance computation.

From the experimental results, Fgram-Tree consistently outperforms Bed-Tree both
for raw disk performance and for a fully memory. The most important reason is that
Bed-Tree does not locate similar strings in the same node. As a comparison, many
similar strings lie in different nodes in Bed-Tree and thus it has to generate more nodes
for edit distance computation than Fgram-Tree. Therefore, the Bed-Tree is costly.

Fig. 3. Querying time for threshold-based search

Fig. 4. Querying time for top-k search

5.3 Scalability

We varied the number of indexed strings on author property of DBLP to evaluate the
scalability of our techniques. The experimental results are shown in Figure 5 and Figure 6.
The results show that Fgram-Tree offers better scalability than Bed-Tree both in
threshold-based search and top-k search for raw disk or fully memory. Because we used
filter conditions CommonGramBs() and CommonGramCbs() simultaneously in our
query process algorithms, we could filter more nodes unsatisfied with the query even
though large amount of data. As a result, we got a better result.

Fig. 5. Threshold-based search scalability with edit distance threshold 3

 Fgram-Tree: An Index Structure Based on Feature Grams

253

Fig. 6. Top-k search scalability with top8

6 Conclusion

In this paper we propose a general tree-based index structure to support a broad class of
string approximate queries with respect to edit distance. We map similar strings in the
same index node and different strings in different nodes to accelerate the query
processing. To make the index support the query effectively, we design a center-based
clustering approach, which can locate similar strings into the same node with the time
complexity . The experimental results show our indexing scheme achieves
comparable performance against other solutions on threshold-based and top-k queries.

References

1. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word
recognition, pp. 159–165 (1990)

2. Zhang, Z., Hadjieleftheriou, M., Ooi, B.C., Srivastava, D.: Bed-tree:an all-purpose index
structure for string similarity search based on edit distance. In: SIGMOD (2010)

3. Hadjieleftheriou, M., Koudas, N., Srivastava, D.: Incremental maintenance of length
normalized indexes for approximate string matching. In: SIGMOD, pp. 429–440 (2009)

4. Yang, X., Wang, B., Li, C.: Cost-Based Variable-Length-Gram Selection for String
Collections to Support Approximate Queries Efficiently. In: SIGMOD (2008)

5. Li, C., Wang, B., Yang, X.: Improving performance of approximate queries on string
collections using variable-length grams. In: VLDB (2007)

6. Xiao, C., Wang, W., Lin, X.: (Ed-Join)–an efficient algorithm for similarity joins with edit
distance constraints. In: VLDB (2008)

7. Xiao, C., Wang, W., Lin, X.: (PPjoin)Efficient similarity joins for near duplicate detection.
In: Proceedings of the International World Wide Web Conference Committee (2008)

8. Hadjieleftheriou, M., Chandel, A., Koudas, N., Srivastava, D.: Fast indexes and algorithms
for set similarity selection queries. In: ICDE (2008)

9. Behm, A., Ji, S., Li, C., Lu, J.: Space-constrained gram-based indexing for efficient
approximate string search. In: ICDE (2009)

10. Arasu, A., Ganti, V., Kaushik, R.: Efficient exact set-similarity joins. In: VLDB,
pp. 918–929 (2006)

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 254–265, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Efficient Processing of Updates in Dynamic
Graph-Structured XML Data*

Lizhen Fu and Xiaofeng Meng

Information School, Renmin University of China, 100872 Beijing, China
fulizhen303@163.com, xfmeng@ruc.edu.cn

Abstract. When the ID/IDREF relationship is considered, an XML document
needs to be modeled as an ordered graph more naturally than an ordered tree.
Then it becomes more difficult to process the updates of XML document. This
paper studies the incremental maintenance of the document order and
reachability relationship in Graph-structured XML. We propose an extended
interval labeling scheme to label the document order and reachability
relationship in XML. We identify the main reason for the inefficiency of
updates of the labels. To accelerate the processing of updates, we design a novel
index, called XUI. Based on the index, we propose an efficient update method,
called UOGX. Our experimental evaluation illustrates the space efficiency and
update performance of the proposed labeling.

Keywords: Graph-Structured XML, Interval labeling, Incremental
Maintenance Algorithm.

1 Introduction

As XML is gaining unqualified success in being adopted as a universal data exchange
format, particularly in the World Wide Web, the problem of managing and querying
XML documents poses interesting challenges to database researchers. Previous works
always model the XML as a directed tree. However, in many applications, an XML
document needs to be modeled as a directed graph more naturally than a tree. For
example, the XML document of the relationship of chapters and authors adapts to
graph structure since one author may write more than one chapter and one chapter
may have more than one author. A fragment of an XML document about books is
shown in Fig.1. Obviously, the Graph-structured XML document can be represented
in tree structure by duplicating the element with more than one incoming paths. But it
will result in redundancy. If the information in Fig.1 is represented with a tree-
structured XML document, the element “author” will be duplicated. XML standard

* This research was partially supported by The National Science and Technology Major Project

of Key Electronic Devices, High-end General-purpose Chips and Fundamental Software
Products Foundation of China under Grant No. 2010ZX01042-002-003; the Natural Science
foundation of China under Grant No 61070055, 91024032, 91124001, 60833005; the
Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin
University under Grant No. 11XNL010, 10XNI018.

 Efficient Processing of Updates in Dynamic Graph-Structured XML Data 255

uses ID and IDREF types to avoid redundancy. ID represents a unique ID name for
the attribute that identifies the element within the context of the document. The
IDREF type allows the value of one attribute to be an element elsewhere in the
document provided that the value of the IDREF is the ID value of the referenced
element. Taking ID/IDREF into account, XML data should be modeled as a graph.
Unlike other graph data (e.g. graph data in biological networks, social networks, and
so on), there is an ordering, document order, defined on all the nodes in XML data. So
XML data should be modeled as an ordered directed graph in this paper.

To process the queries (e.g. XQuery[1]) in XML database efficiently, a common
method is that assign each node a label in advance and process queries using these
labels. For Graph-structured XML, when the XML is static, it is easy to extend some
existing labeling schemes to label them, like the approach in [2]. However, when the
XML becomes dynamical, in other words, XML data changes over time, ID/IDREF
relationships make the maintenance of labeling schemes of XML data more complex.
The difficulty of this problem is that we not only need maintain the document order
but also need maintain the reachability relationship. Although there have existed some
methods to process updates of labeling for tree-structured XML, they can’t be used to
process updates of labeling of Graph-structured XML. We will give the detailed
reasons in section 3.

book

title author chapter chapter

Rose Tom section section

a1

b1 c1

f1

d1 d2 d3 e1 e2 e3

<b id=” b1">
<d id=” d1” />
<d id=” d2" >
<f id=” f1"/>
</d>
<d id=” d3" f=” f1” c=” c1"/>

<c id=” c1” >
<e id=” e1" d=” d2” d=” d3"/>
<e id=” e2" d=” d2” d=” d3"/>
<e id=” e3" d=” d2” d=” d3"/>
</c>

(a) An XML document (b) a graph G

Fig. 1. An order directed graph Fig.2. An Example of Graph-structured XML

In response to these, this paper studies the incremental maintenance of labeling of
XML modeled as an ordered directed graph. We identify the main reason for the
inefficiency of updates of labeling. Then, we propose an efficient and general update
approach for dynamic XML. The main contributions of this paper include:

─ We model the graph-structured XML data as ordered directed graph and propose
an updatable extended interval labeling for XML data.

─ Illustrate inefficient cases in updates of the extended labeling and propose a simple
approach to deal with them.

─ To get more efficient, we design an effective indexing, called XUI. Based on this
indexing, we propose two novel algorithms for deletion and insertion of edges.

─ We conduct comprehensive experiments to demonstrate the benefits and
performances of our labeling scheme and updating algorithms.

The remainder of the paper is organized as follows: Section 2 presents summarizing
the preliminaries. In section 3, we analyze inefficient cases in updates and present two
naïve methods. Section4 introduces the novel indexing XUI. The efficient updating
algorithms are presented in Section 5. In Section 6, we present an experimental
evaluation of the proposed labeling and our update algorithms. Related work is
discussed in Section 7 and Section 8 concludes this paper.

256 L. Fu and X. Meng

2 Preliminaries

2.1 Graph-Structured XML Data

Before giving the definition of Graph-structured XML Data, we first introduce the
document order of XML. The document order is an order defined on all the element
nodes in the document corresponding to the order in which the first character of the
XML representation of each element occurs in the XML representation of the
document after expansion of general entities.

Definition 1(Graph-Structured XML Data): With IDREF/ID in an XML document
representing reference relationship, an XML document can be considered as an ordered
directed graph, denoted as G=(V, E, r). Each element node is mapped to a node in V. Nesting
relationships and reference relationships of elements are mapped to two kinds of edges in E,
nesting edge and reference edge. r is a partial order on V. For two nodes u and v in V, u
v iff the order of v is more than u’s in the document order.

From definition 1, we can see the reference edges can’t affect the document order of a
node in G. In this paper, we use T(G) to denote a spanning tree of G, composed of
all nodes in V and all nesting edges. A reachability relationship represents that
there is a path in G from v to u, in other words, v is an ancestor of u on G.

2.2 Extended Interval Labeling Scheme

In 1989, [2] proposed an interval-based labeling to label reachability relationships on
directed acyclic graph. However, it didn’t concern the document order between nodes.
Since 2000, several interval-based labeling schemes have been proposed for tree-
structured XML which use an interval to represent the order of nodes, like work [11]
In addition, there have been a lot of approaches to maintain this kind of labeling, such
as CDQS [8], Float-point [9], and so on.

Table 1. Labeling of G

Node a1 b1 c1 d1 d2 d3 e1 e2 e3 f1 C
Id [1,20] [2,11] [12,19] [3,4] [5,8] [9,10] [13,14] [15,16] [17,18] [6,7] [9,10][12,19]

ISet [1,20] [2,11]
[12,19]

[5,8]
[9,10]
[12,19]

[3,4] [5,8] [5,8]
[12,19]
[9,10]

[5,8]
[9,10]
[12,19]

[5,8]
[9,10]
[12,19]

[5,8]
[9,10]
[12,19]

[6,7] [5,8]
[9,10]

[12,19]

Based on previous works, we design an extended interval labeling scheme which
is updatable for XML. The basic idea of our labeling is to assign an special interval Id
[start, end] for each node n in G to identify the node and represent the order of nodes
and assign an interval set ISet to record nodes which can be reached by n in G. There
are two steps to construct it. First, assign each node in T(G) an interval as Id,
according to approach in [11]. Second, each strongly connected component (SCC)in
G is contracted to one node to convert G to a DAG D; in a reverse topology order,
compute an interval set like [2] for each node in D; all of ISet of nodes in the same
SCC are set as the interval set of SCC. Table 1 is the labels of nodes on G in Fig.2.

 Efficient Processing of Updates in Dynamic Graph-Structured XML Data 257

According to above construction steps, it is easy to understand the two following
Lemmas. Lemma2 is proved according to lemma1.Due to limitations on space, we
don’t give proofs.

Lemma1: Given a node n in G, any two intervals in n.ISet can’t intersect. Similarly, given C a
strongly connected component, any two intervals in .ISet or . can’t intersect.

Lemma2: Given two nodes u and v in G, u can reach v iff v.ID is contained by some interval in
u.ISet; u v iff v.ID.start <u.ID.start.

3 Analyses of Updates of Extended Interval Labeling

In XML, updates (updates of a node and an ID/IDREF attribution) can be transformed
into a sequence of insertions and deletions of edges. So insertions and deletions of
edges are the core operations of updates. In our paper, we only discuss insertions and
deletions of edges. We focus on how to maintain the reachability relationship and the
document order. Note that insertion and deletion of an element will cause insertion
and deletion of its subelements. So, the update of nesting edges can’t change
reachability relationships of left nodes. For simplify, we only consider the insertions
and deletions of edges causing by inserting or deleting a leaf node in XML. In fact, it
is easy to extend our method to process the case causing by inserting or deleting a
internal node. Firstly, consider the insertion of an edge (u, v). There are two cases: 1)
Insert a reference edge; 2) Insert a nesting edge. In the remainder of the paper, | , v | .

Case1. See Fig. 3(a). Consider the insertion of a reference edge (u, v), and suppose that a
can’t reach d before inserting. According to lemma2, a’s label must be updated after inserting.
Because the inserted edge is a reference which can’t affect the order of nodes, a.ID needn’t be
changed. Case1 is the bottleneck of insertions.

(a) Insertion in case1 (b) Insertion in case2 (c) deletion

Fig. 3. Illustration of insertion of an edge

Case2. Inserting a leaf element in XML will cause an insertion of a nesting edge in G. See Fig.
3(b). Insert a nesting edge (u, w), where v1and v2 are children of u, w is inserted between v1and
v2. In this case, nodes in A (u) and nodes (like v2) after w are affected. Luckily, Float-point [9]
can avoid relabeling problems in tree-structured XML when a new node is inserted. See
Fig.3.(b).

According to above analysis, we propose a naïve approach to process the insert of
an edge (u, v) as follow:

1. Insert a nesting edge: label (v)// label v as described in case2;
2. Insert a reference edge:

258 L. Fu and X. Meng

For each node w ∈
If w cannot reach v: . . , merge intersected intervals in w.ISet

Next, discuss a deletion of an edge (u, v) in G. If the deleted edge is a reference edge,
it can’t change the structure of T (G). So such deletion will not affect ID labels of
nodes. After deleting a nesting edge (in other words, deleting a leaf node), the order
and reachability of left nodes can’t be changed. According to lemma 2, their labels
needn’t be changed too. So, we focus on the deletion of a reference edge. Shown as
Fig 3(c), after deleting the edge (u,v), a1 in A(u) can’t reach d1in D(v), but a2 in A(u)
can still reach d2 in D(v). So, if a can still reach d, it is wrong to remove v.ISet from
a.ISet(a ∈) directly. a.ISet must be reconstructed. A naïve approach to process
the deletion of an edge (u, v) is as follow:

1. remove v.ISet from u.ISet
2. For each node w∈ // in a reversal topological order, including u
3. For each child d of w in G
4. . . , merge the intersected intervals in w.ISet
5. IF w.Iset does not change Then Return

4 XUI Index

Above naïve approaches need lots of times of merging two interval sets and once of
computing A which needs to visit the labels of all nodes once. A deletion results in
calculating the reversal topological of A (the time Complexity is O(|V|)). These largely
increase the time of processing the updates. To improve the update efficiency, we
specially design a new indexing, called XUI. In this section, we will introduce it in
detail.

Algorithm 1. Construction of XUI indexing
Input: A graph G
Output: XUI indexing
01: G is converted to a DAG D
02: For each node w in D //in a reversal topological order
03: For each child d of w in D
04: For each interval i in d.ISet
05: If i in XUI[w].RL Then
06: add d into XUI[w].RL[i].SOURCE
07: Else If i not contained by w.ID Then
08: add (i, d) to XUI[w].RL

In designing the index, we consider both update efficiency and lookup efficiency of
the index. Hash Index is a good choice. So we design XUI based on Hash Index. The
structure of XUI is shown in Fig.4. In hash table, the number of a node n in G is set as
a key and each node points to an interval list RL. In RL, each record consists of three
parts: START, END, and SOURCE, where START and END represent an interval, and
SOURCE is a nodes set composed by children of n. Let LS the interval set of RL. For
a node u in G, | ∈ . . }. For each record,
SOURCE stores u’s children whose label contains the interval related with the
SOURCE. Algorithm 3 illustrates the construction procedure of XUI.

 Efficient Processing of Updates in Dynamic Graph-Structured XML Data 259

5 Incremental Maintenance Algorithms for Labeling

Based on the analysis in Section 3, we propose a novel messaging-based method,
called UOGX, which makes full use of the indexing XUI to speed up the processing
of updates. The main idea of our method drives from a discovery: 1) after deleting an
edge (v1, v2), if some node on the paths from a to v1 can still reach ∈ 2 , then a
must be able to reach d; 2) after inserting (u1, u2), If the reachability relationship
between some node on paths from a ∈ 1 to u1 and ∈ 2 is not
changed, then the reachability relationship between a’ and d’ mustn’t be changed.
According to this discovery, we propose a bottom-up method to re-label nodes. We
first define the structure of message queue, followed by the introduction of algorithms
for insertion and deletion.

 Fig. 4. The structure of XUI Fig. 5. Message Queue

Data structure (Message Queue): Message Queue consists of a sequence of message subset
(MS) from the children of corresponding node n ∈ . A piece of message includes three parts:
interval (start and end), type of operation (type, insertion or deletion) and the source of
message (from). See Fig.5. To facilitating message processing, we merge messages in MS
according to their intervals and type in algorithms.

5.1 Insertions for Extended Interval Labeling

In this section, we will describe how to use message queue to process the insertion of
an edge in detail.

In algorithm 2, lines 01-02 deal with Case2 in section 3. Other lines deal with
Case1. If u and v are in the same SCC C1, then the label and index of C1 can’t be
affected. So nothing needs to do (Line 03). Otherwise, the labels of some nodes in A (u)
may be changed. Lines 04-25 process this case. We first process the node u in lines 06-
13. As we know, in ISet, each interval represents all nodes on a sub-tree of T (G). For
case1 (line07), if an interval i is not be contained by some interval of u.ISet, then the
corresponding nodes of i can’t be reached by u before inserting. So u.ISet must be
updated. In line 08, update u’s label and index item. In lines 09-11, send a piece of
message to u’s presents. If i is contained by u.ISet, then the corresponding nodes of i can
be reached by u before inserting. So we needn’t change u’s label and only need to
update the corresponding index item. According above discovery (2), the label of any
node in A (u) needn’t be changed. So, we needn’t send messages to their parents
(lines12-13). If . , we needn’t change u’ index item, as shown setion4. Then,
we process u’s ancestor nodes in D (lines 15-23) until the message queue is empty. For
each ancestor node, the process is the same as u’s. At last, we should remark that if u or v is
in some SCC C’ and C’ can reach v before deleting d, anything won’t be changed.
Otherwise, replace u or v with C’ and deal with it by algorithm 5.

260 L. Fu and X. Meng

Algorithm 2. Insert-edge
Input: a DAG D, an edge (u, v) to be inserted, a label set S ,XUI indexing
Output: a new label set S’
01: If the edge is a nesting edge Then
02: Label(v) and Return
03: If u and v are in the same SCC Then Return
04: Else Q = ; //Q is a message queue //if u is in a SCC C
 05: For each interval i in v.ISet // process the node u
06: Case1: ∈ . // all interval can’t intersect (Lemma1)
07: add i to u.ISet and add(i, v) to XUI[u].RL
08: For each parent w of u // send message to u’s parent nodes
09: If MS[w] not in Q Then Q.Enqueue (MS[w])// MS[w] is message subset of w
10: add(i, insertion,u) to MS[w]
11: Case2: , ∈ . and .
12: If . Then add (i, v) to XUI[u].RL.
13: Else add v to XUI[u].RL[i]
14: While Q not empty Do // process other nodes belonged to A(u)
15: Q.Dequeue (MS [v’]) and merge messages with the same interval
16: For each piece of message M in MS[v’]
17: Case1:M.interval ∈ ′.
18: add M.interval to v’.ISet and add(M.interval, M.from to XUI [v’].RL
19: For each parent w of v’
20: If MS[w] not in Q Then Q.enqueue (MS [w])
21: add(M.interva, insertion,, v’) to MS[w]
22: Case2: . , ∈ ′. and . ′.
23: If . , ∈ ′ . Then
24: add (. , M.from) to XUI[v’].RL
25: Else add M. from to XUI [v’].RL[.]

Complexity: In algorithm2, the dominating steps are lines 15-26. For each node v’ in
MQ, we performs XUI updates once and at most max times (the maximum |v.ISet|)
reachability tests in lines 18-25. We need less than Max*|E| times index updates and
reachability tests, where |E| is the total number of edges in D. Hence, in the worse
case, the overall time complexity is O (|E|).The main space cost is that of message
queue. Suppose m the maximum space cost of a piece of message in MS. The cost of
space is less than m*Max* |V|, where |V| is the total number of nodes in D. Hence, in
the worse case, the overall space complexity is O (|V|).

Example 1: D (Fig.6 (a)) is the corresponding directed acyclic graph of G (Fig.2(b)). Its XUI
indexing and labeling are shown in Fig.6 (b) and Table1. Consider an insertion of a reference
edge (c1, d1) in G. First, replace c1 with C. In processing C, because [3,4] in d2.ISet is not
contained by C.ISet，add [3,4] to C.ISet, update XUI[C] and send messages to b1and a1. The
results are shown in fig.6(c).Then, MS(b1) is out of MQ. Because [3, 4] is contained by b1.ID,
we needn’t update b1’s label and index, and send message to its parents (see Fig.6 (d)). Finally,
MS (b1) is out of MQ. Similarly, we needn’t do anything to deal with a1.

5.2 Deletions for Extended Interval Labeling

Using XUI indexing, it is easy to check the reachability relationship between two
nodes after deleting. In this section, we introduce how to use message queue and XUI
indexing to process the deletion of an edge from the bottom up.

 Efficient Processing of Updates in Dynamic Graph-Structured XML Data 261

Algorithm 3. Delete-edge
Input: a DAG D, an edge (u, v) to be deleted, a label set S ,XUI indexing
Output: a new label set S’
01: If (u, v) is a nesting edge Then // if u and v are in same SCC, then we need do nothing
02: delete v’s label and delete v’ item from XUI
03: Else //(u, v) is a reference edge;
04: For each interval i in v.ISet //Q Q is a message queue
05: If . Then
06: delete v from XUI[u].RL[i] and delete j from XUI[u]. RL //XUI[u]. RL[j]=
07: If ∈ . and XUI . Then
08: delete i from u.ISet
09: For each parent w of u
10: If MS[w] not in Q Then Q.Enqueue (MS[w])
11: add(i, delete,u) to MS[w]// MS[w] is message subset of w
12: If ∈ XUI . Then
13: add Maximum(k) to u.ISet
14: add(Maximum(k), insert,u) to MS[w]// for each parent w of u
15: While Q not empty do
16: M[v’] Q.Dequeue()
17: For each message M in MS[v’] //firstly, process insertion messages
18: Case1: M.type is insertion
19: add (M.interval, M.from) to XUI[v’]. RL
20: Case2: M.type is deletion
21: If . ’. Then
22: delete M.from from XUI[v’].RL[.]
23: delete i from XUI[v’]. RL //XUI[v’]. RL[i]=
24: If . ∈ . and . XUI . Then
25: delete . from v’.ISet
26: For each parent w of v’
27: If MS[w] not in Q Then Q.Enqueue (MS[w])
28: add(. , delete,v’) to MS[w]
29: If . ∈ XUI . Then
30: add Maximal(M) to v’.ISet
31: add(Maximal(M), insert,u) to MS[w] //for each parent w of v’

In algorithm 3, Lines 01-02 deal with the deletion of a nesting edge. Others process

reference edges. Lines 04-14 process u. In line 5, if i is contained by u.ID, then nodes
represented by i still can be reached by u. So u’s label needn’t be changed. According
to the property of XUI indexing, we needn’t change u’s index too. From discovery
(1), we know all u’s ancestors needn’t relabel too. So we needn’t send message to u’s
ancestors. Otherwise, update u’s index in line 06. In line 07, ∈ . and XUI . means that all u’s children can’t reach node n (n.ID=i), after deleting. So
u must be relabeled (line 8) and send messages to its parents (lines 9-11). ∈XUI . means that u can also reach n’ descendant. Hence, we relabel u and send
messages to u’ parents in lines13-14. XUI . means that some child of u is
still able to reach n, so we need do nothing, according to discovery (1). Then process
u’s ancestors until the message queue is empty (lines 15-31). To relabel node v’
correctly, we first process insertion messages in MS[v’]. If the type of a piece of
message is insertion, then we only need update v ’index. In a MS, if there is a piece of
insertion message, then there must be a piece of deletion message with the same

262 L. Fu and X. Meng

interval. Therefore, if it needs to relabel v’, we will do it in case2 (lines 20-31). Lines
20-31 are similar with lines05-14. In Lines30-31, the function Maximal (M) returns
all intervals of XUI . .which are contained by M. interval and not contained by
other interval in XUI . . Finally, we should remark that if u or v is in some SCC
C’ and C’ can still reach v after deleting d, anything won’t be changed. Otherwise,
replace u or v with C’ and deal with it by algorithm 3.

Complexity: In algorithm3, the dominating steps are lines 15-31. We perform lines16-
31 at most |E| times. In lines16-31, the dominating operations are once XUI lookup
and at most max times reachability tests, where the maximum of |v.ISet| is max.
Hence, we at most need max*|E| times reachability tests and |E| times XUI lookups.
The overall time complexity is O (|E|), in the worst case. The main space cost is that
of message queue. Suppose m the maximum space cost of a piece of message in MS.
Hence, the cost of space is at most m* d*max* |V|, where d is the maximum fan-out.
The overall space complexity is O (|V|) in the worse case.

Fig. 6. An illusion of insertion

 Table 2. Data set

 Fig.7. An illusion of deletion

Example 2: Consider deletion sequence (e1, d2), (e2, d2), (e3, d2) in the graph G
presented in Fig.2 (b). We use the labels depicted in table1 and the index shown in
Fig.6 (b). After deleting (e1, d2) and (e2, d2), all indexes aren’t changed (the result is
shown in Fig.7 (a)) and all labels aren’t changed, which concise with the fact that the
reachability relationships do not change after deletions. In processing (e3, d2), we
first replace e3 with C. After deleting (e3, d2), in XUI[C].RL [5, 8], SOURCE
related with [5,8] becomes empty, so the interval [5, 8] must be delete from C. ISet
and XUI[C].RL. Because there is an interval [6, 7] in XUI[C], insert [6, 7] to C. ISet
and send two pieces of messages to b1 and a1 (see Fig.7 (b)). Then MS [b1] is out of
queue and process b1. Because [6, 7] and [5, 8] are contained by b1.ID, nothing needs
to be done (see Fig.7(c)). Similarly, a1 is dealt with as same as b1. These meet the
fact that C can’t reach d2 and can also reach f1, and a1 and b1 can still reach d2 and
f1, after deleting the three edges.

 Efficient Processing of Updates in Dynamic Graph-Structured XML Data 263

6 Experimental Result

In this section, we present the results and analysis of part of our extensive
experiments on the algorithms in this paper. All experiments were carried out using a
IntelR CoreTM Duo CPU type E8300 with two cores at 2.83GHz. We implemented all
our algorithms with C++. The dataset we tested were the XMark benchmark [10] and
generating random graphs. XMark can be modeled as a graph with complicated
schema and circles. To check the effect of density, we generated 5 random graphs
with different density. Their parameters are shown in Table2.

(a) XMark (b) G2

 Fig. 8. Size of labeling and indexing Fig.9. Deletion performance

We are particularly interested in the following issues: the size of labeling and
indexing and updates performance. In following, we will discuss in detail.

6.1 Size of Labeling and Indexing

We performed an experiment with five different files in table2 and compared the
increase of the size of labeling and indexing with the increase of their density. The
results are depicted in Fig 8. From the results, we can see, firstly, the size of labeling
and indexing increases sharply with the increase of density, and in 1.5, the maximum
is reached. Then the size becomes to decrease with the increase of density. Because
the DAG size will decrease when the density becomes larger, lot of nodes can share
the same labels. In addition, we can get that the size of indexing is related closely
with the size of labeling. When the density is very small (for example, the structure of
graph is close to a tree structure), our labeling scheme is very good.

6.2 Performance of Updates

To check the performances of insertion and deletion, we randomly chose 100 edges in
graph. First, we deleted these edges from the graph, and then inserted them into graph.

In the experiment, we run our result in XMark data set and G2 because they have
more labels. The size of labeling of XMark is 54697 and the size of its indexing is
46878.The results are depicted in Fig.9 and Fig.10. As we known, insertions and
deletions of nesting edges are very simple, so we only present the results of reference
edges.

First, consider the deletion. In Fig.9, the basic deletion algorithm is called b_delete
and our optimal algorithm is called U_delete. From these results, we can know our

264 L. Fu and X. Meng

(a) XMark (b) G2

Fig. 10. Insertion performance

optimal approach is better than the basic approach. Specially, when the graph is
denser, the optimal approach is much faster than the basic one. The elapsed time of
U_delete is less than half of that of b_delete in Fig.9 (b). We can see XUI indexing is
useful to speed up the processing of deletions. From the two pictures, we can get that
the efficiency of deletions is related with the size of labels.

Then consider the insertion of an edge. See Fig.10. The optimal algorithm is called
U_insert and basic algorithm is called b_insert. Compared with deletion, the insertion
is very easy. The results verify the collusion. The elapsed time of deletions is several
hundred times of that of insertions with same edges. In some cases, the elapsed time
of U_insert is larger than the b_insert, because U_insert needs to update the index.
However，using XUI indexing, U_delete can improve the performance of deletions
and processing of deletion is the bottleneck of updates. So, it is worth to do that.

7 Related Work

We classify the related works into two categories, labeling schemes for graph data
and incremental maintenances of interval labeling scheme.

As we known, testing reachability relationships is a fundamental operator in queries
on directed graphs. So far, a lot of labeling schemes have been proposed for this
problem. 2-hop [5], optimal tree [2], optimal chain [4] are the well-known labeling
schemes. Recently, Jin et al. proposed a labeling schemes 3-hop [6] for sparse graphs
and dense graphs, and van Schaik et al. proposed a memory efficient labeling scheme
PWAH [7] for very large graphs. However, these approaches can’t be used to label
Graph-structured XML directly. There are two reasons: 1) Most of them are not
suitable to be extended for labeling the document order. 2) Most of them are difficult
to be maintained. In this paper, we choose a based-interval labeling to extend, because
interval labeling has made a great success in labeling ordered Tree–Structured XML.

On the other hand, there have been a lot of works to maintain interval labeling
scheme for Tree-structured XML, such as CDQS [8], Float-point [9], and so on. All
of them can be used to our approach to process the updates of nesting edges. To
simplify, we choose Float-point in this paper. Float-point uses real values for the”
start” and “end” of intervals, so we can insert many real values between any two
different real values.

To the best of our knowledge, there haven’t been studies on processing of update of
Graph-structured XML. In this paper, we focus on how to maintain the reachability
relationship and the document order in Graph –structured XML.

 Efficient Processing of Updates in Dynamic Graph-Structured XML Data 265

8 Conclusion and Future Work

In this paper, we model XML with ID/IDF as an ordered directed graph, and propose
an updatable extended interval labeling. After analyzing the inefficiency of processing
updates of this labeling, we give a basic solution. To improve the Performance of
updates, we design a novel indexing XUI. Finally, we present an efficient approach to
deal with the updates of extended interval labeling, based on the XUI indexing and
message-passing queue. The main idea of this method comes from our discovery as
described as section5.2. Through experiment and analysis on XMARK data sets and
five generated random graph. By the experiment results, we confirmed the
effectiveness and efficienty of our method.

In this paper, we deal with the problems on small data set, when the data becomes
larger, how to update the labeling is a new challenge. In addition, due to limitations
on space, we also give the algorithm for the case of the generation or destroy of a
strongly connected component. Hence, in the future, we will consider these problems.
and section5.2 without consideration of the generation or destroy of a strongly
connected component.

References

1. XQuery, http://www.w3.org/TR/xquery/
2. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive relationships

in large data and knowledge bases. In: SIGMOD Conference 1989, pp. 253–262. ACM
Press, New York (1989)

3. Wang, H., Li, J., Luo, J., Gao, H.: Hash-basesubgraph query processing method for graph-
structured XML documents. PVLDB 1(1), 478–489 (2008)

4. Jagadish, H.V.: A compression technique to materialize transitive closure. ACM Trans.
Database Syst. 15(4), 558–598 (1990)

5. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via
2-hop labels. In: Proceedings of the 13th Annual ACMSIAM Symposium on Discrete
algorithms, pp. 937–946. ACM Press, New York (2002)

6. Jin, R., Xiang, Y., Ruan, N., Fuhry, D.: 3-HOP: a high-compression indexing scheme for
reachability query. In: SIGMOD Conference 2009, pp. 813–826. ACM Press, New York
(2009)

7. van Schaik, S.J., de Moor, O.: A memory efficient reachability data structure through bit
vector compression. In: SIGMOD Conference 2011, pp. 913–924. ACM Press, New York
(2011)

8. Li, C., Ling, T.W., Hu, M.: Efficient updates in dynamic XML data: from binary string to
quaternary string. VLDB J 17(3), 573–601 (2008)

9. Amagasa, T., Yoshikawa, M., Uemura, S.: QRS: A Robust Numbering Scheme for XML
Documents. In: The 19th Int. Conf. on Data Engineering (ICDE 2003), pp. 705–707. IEEE
Press, New York (2003)

10. Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.: XMark: A
benchmark forXML data management. In: VLDB (2002)

11. Zhang, C., et al.: On Supporting Containment Queries in Relational Database Management
Systems. In: Proc. of ACM SIGMOD, pp. 425–436 (2001)

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 266–271, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Extracting Focused Time for Web Pages

Sheng Lin1, Peiquan Jin1, Xujian Zhao1, Jie Zhao2, and Lihua Yue1

1 School of Computer Science and Technology,
University of Science and Technology of China, 230027, Hefei, China

2 School of Business, Anhui University, 230029, Hefei, China
linsh@mail.ustc.edu.cn

Abstract. Time plays important roles in Web search, because most Web pages
contain temporal information and a lot of Web queries are time-related. In this
paper, we concentrate on the extraction of the focused time for Web pages,
which refers to the most appropriate time associated with Web pages. In partic-
ular, two critical issues are deeply studied. The first issue to extract implicit
temporal expressions from Web pages, and the second is to determine the fo-
cused time among those extracted temporal information. For the first issue, we
propose a new dynamic approach to resolve the implicit temporal expressions in
Web pages. For the second issue, we present a score model to determine the fo-
cused time for Web pages. We conduct experiments on real data sets to measure
the performance of our algorithms. The results show that our approach outper-
forms the competitor algorithms.

Keywords: Temporal Expressions Extraction, Web search, Focused Time.

1 Introduction

Temporal information plays an important role in many research areas such as infor-
mation extraction, topic detection, question answering, query log analysis, and Web
search. Temporal information usually appears in Web pages as temporal expressions,
which are typically divided into two types, namely explicit expressions, e.g., March 7,
2012, and implicit expressions, e.g., Today. The various forms of temporal expres-
sions impose some challenging issues to temporal information extraction within the
scope of Web search:

(a) How to determine the right temporal information for implicit expressions con-
tained in Web pages? Differing from the explicit expressions, which can be directly
found in a calendar, the implicit expressions need a transformation process and usual-
ly a referential time is required.

(b) How to determine the focused time for a Web page? A Web page may contain a
lot of temporal information, but which ones are the most appropriate times associated
with the Web page? This is very important to temporal-textual Web search engines
which support both terms-based and time-based queries.

For the first issue, the difficult part is to select the referential time which is used to
resolve implicit expressions. For example, to determine the exact time of the implicit

 Extracting Focused Time for Web Pages 267

expression “Yesterday” in a Web page, we must know the date of NOW under the
context. For the second issue, namely focused time determination, the difficult part is
to develop an effective scoring technique to measure the importance and relevance of
the extracted temporal information. For instance, suppose “April, 2011” and “17
April, 2011” are two extracted time words, “17 April, 2011” is contained in “April,
2011”. Therefore, even “April, 2011” rarely appears in the Web pages, it will still be
the focused time for the page in case that there are a great number of extracted time
words contained by “April, 2011”.

In this paper, the main contributions of the paper can be summarized as follows:

(a) We propose a new reference time dynamic-choosing approach to extract impli-
cit temporal expressions in Web pages (see Section 3).

(b) We present a score model to determine the focused time for Web pages. Our
score model takes into account both the frequency of temporal information in Web
pages and the containment relationship among temporal information (see Section 4).

2 Related Work

GUTime is part of the TARSQI (Temporal Awareness and Reasoning Systems for
Question Interpretation) toolkit (TTK) [1], which is the state-of-the-art tool for this
natural-language processing task, it has a good performance in the extraction of expli-
cit temporal expressions, but it does not perform very well in dealing with the implicit
temporal expressions, especially in the case of lack of the document publication time.
To improve the GUTime performance, we need to improve the reference choosing
mechanism of GUTime.

Most of the works on temporal expression normalization do not give an effective
reference time choosing method for implicit times in real texts. More specifically, the
pioneer work by Lascarides [2] investigated various contextual effects on different
temporal-reference relations. Then Hitzeman et al. [3] discussed the reference-
choosing taking into account the effects of tense, aspect, temporal adverbials and
rhetorical relations. Dorr and Gaasterland [4] presented the enhanced one in addition
considering the connecting words. But they are theoretical in nature and heavily
dependent on languages. Currently, the static choosing mechanisms [5, 6] for refer-
ence time are applied into some systems widely. Nevertheless, they are not adaptable
to universal implicit times. Zhao [7] proposed a novel reference time dynamic-
choosing mechanism which considers the global reference time and local reference
time respectively.

In general, we can use the frequency of the temporal expressions to determine
which the most relevant time is, but it does not take the relation among temporal ex-
pressions into consideration. There have been some studies on the extraction of the
focused locations, such as the algorithm proposed by Zhang [8] and Web-a-where [9].
Inspired by them, we proposed a score model which takes the relation between tem-
poral expressions into account to determine the focused time for a web page.

268 S. Lin et al.

3 Extracting Temporal Expressions

The explicit temporal expressions can be recognized by many time annotation tools,
such as GUTime, and they get high accuracy ratio in extraction. In this paper, we
employ the GUTime tool to extract explicit temporal expressions. The biggest differ-
ence of recognition between the explicit and implicit temporal expressions is that the
implicit temporal expressions need to determine a reference time, so choosing the
right reference is the key to the identification of the implicit temporal expression.

In this paper, we classify temporal expressions two classes. One is called Global
Time (GT) whose temporal semantics is independent of the local context, and takes
the report time or publication time as the referent. Another one, Local Time (LT),
makes reference to the narrative time in text above on account of depending on the
current context. Table 1 gives some examples of GT and LT in real texts.

Table 1. Common Global Temporal Expressions and Local Temporal Expressions

Class Sub-class Examples Class Sub-class Examples

GT
year last year

LT
year that year

month next month month October
day this Friday day the second day

In our approach, there is a reference time table which is used to hold full reference
time for the whole text, and we need to update and maintain it dynamically after each
normalizing process. The time table consists of two parts: Global Reference Time
(GRT) and Local Reference Time (LRT).

Fig. 1. Interaction between reference times and target times

In Fig. 1, we notice that different classes of time dynamically and automatically
choose references based on their respective classes rather than doing it using the fixed
value or the inconsiderate rule under the static mechanism.

4 Determining the Focused Time

In this section, we propose a novel and efficient algorithm to determine the most
relevant time of an article. We consider two aspects when calculating the score of a

Dispatching Global Time

········ ········

········ ········

GRT

LRTi LRTi+1 LRTi+2 LRTi+3 LRTi+4

ti ti+1 ti+2 ti+3 ti+4

Local Time Updating

 Extracting Focused Time for Web Pages 269

temporal expression, namely the term frequency of the temporal expression and the
relevance between temporal expressions. Here, we define the score of a temporal
expression as a sum of an explicit score and an implicit score. The explicit score is
related to the term frequency of a temporal expression, and accordingly the implicit
score is related to the contribution made by all its children expressions. Table 2 shows
the parent-child relationships among all the six time granularities we consider.

Table 2. The parent-child temporal relationships

time granularity parent time granularity

DAY MONTH

MONTH QUARTER

QUARTER HALF

HALF YEAR

YEAR DECADE

The explicit score ES(Ti) is defined as the term frequency of Ti in the article. As
compared to implicit temporal expressions, the explicit temporal expressions are more
accurate in the extraction. So we add a weighting factor d to the implicit temporal
expressions. The explicit score of Ti is defined as formula (1).

 ES(Ti) = TFETE(Ti) + d * TFITE(Ti) . (1)

Here, TFETE(Ti) refers to the term frequency of the explicit temporal expressions
which are recognized as Ti. TFITE(Ti) refers to the term frequency of the implicit tem-
poral expressions which are calculated as Ti. d is the weighting factor.

The implicit score IS(Ti) is related to all the scores of its children, we denoted as
C1, C2, … , Cn respectively, and we use the letter N to represent how many children
unit Ti contains. For example, if the granularity of Ti is MONTH, then the value of N
is 30 because a month contains about 30 days. Here, we use the factor α to represent
how much contribution the children of Ti make. So the implicit score IS(Ti) can be
defined as formula (2).

 IS T ∑ . (2)

5 Experiment

5.1 Dataset

Two real data sets are chosen in the experiments. The first small data set consists of
3,148 People’s Daily news articles published in January, 1998. This data set is used to
measure the performance of temporal expression extraction. The data collection con-
tains 21,176 manually annotated Basic Temporal Expressions.

The second large data set consists of 1,812,933 English news articles crawled from
the New York Times website. In this paper, we made an exhaustive statistics on the

270 S. Lin et al.

temporal information of the New York Times articles and use mean reciprocal rank-
ing (MRR) to measure the effectiveness of the focused time extraction algorithm.

5.2 Evaluation on Temporal Expressions Extraction

For evaluating our algorithm objectively, we compare the experiment data with other
two methods on the same testing corpus. The first compared method applies the pub-
lication time or report time (PT/RT) as the unique referent for normalization. The
nearest narrative time (NNT) by Lin [6] is taken as the second compared method.
Table 3 presents the results. It shows that our method exceeds the compared ones
evidently.

Table 3. Results of temporal expressions extraction

Method Average referent updating/article Accuracy

PT/RT 0 68.42%
NNT 7.8 76.19%
DRT 4.2 83.55%

5.3 Evaluation on Focused Time Determination

We extract all the news articles in our corpus. It contains a total of 6,455,985 tempor-
al expressions, and it includes 3,763,923 (58%) explicit temporal expressions and
2,692,062 (42%) implicit temporal expressions. More specifically, it mainly contains
3,157,156 DAY expressions (49%), 2,317,796 YEAR expressions (36%) and 959,747
MONTH expressions (15%).

Fig. 2. MRR values of our score algorithm

To evaluate the effectiveness of the focused time extraction algorithm, we random-
ly select 50 news articles, and each of them contains more than 10 temporal expres-
sions. The parameter d in our algorithm is set to 0.5, the parameter α ranges from 0.1

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
RR

α

Our Algorithm GUTime

 Extracting Focused Time for Web Pages 271

to 1.0, and the step is 0.1. For each value of α, using mean reciprocal ranking (MRR)
evaluation standard, we estimate the ranking result of temporal expressions in each
news article. Fig. 2 shows that the reference time dynamic-choosing mechanism
works well in GUTime, and it also tells us that our algorithm gets the best perfor-
mance when α is set to 0.6.

6 Conclusions

In this paper, we present an approach to determine the focused time for web pages. In
particular, we apply the reference time dynamic-choosing mechanism to the temporal
expressions extraction tool GUTime, which makes it more effective in recognizing. In
addition, we make an exhaustive statistics on the temporal information of the New
York Times articles. The reference time dynamic-choosing mechanism cannot be
integrated into GUTime duo to the restriction of application architecture of GUTime.
So rewriting the GUTime and making full use of the temporal information, particular-
ly the focused time, in web pages are our next research focuses in the future.

Acknowledgement. This work is supported by the National Science Foundation of
Anhui Province (NO. 1208085MG117), and the USTC Youth Innovation Foundation.

References

1. Verhagen, M., Pustejovsky, J.: Temporal Processing with the TARSQI Toolkit. In: Proceed-
ings of the 22nd International Conference on Computational Linguistics (Coling 2008),
pp. 189–192 (2008)

2. Lascarides, A., Asher, N., Oberlander, J.: Inferring Discourse Relations in Context. In: Pro-
ceedings of the 30th Meeting of the Association for Computational Linguistics, pp. 1–8
(1992)

3. Hitzeman, J., Moens, M., Grover, C.: Algorithms for Analyzing the Temporal Structure of
Discourse. In: Proceedings of the 7th European Meeting of the Association for Computa-
tional Linguistics, pp. 253–260 (1995)

4. Dorr, B., Gaasterland, T.: Constraints on the Generation of Tense, Aspect, and Connecting
Words from Temporal Expressions. Technical Report CS-TR-4391, UMIACS-TR-2002-71,
LAMPTR-091, University of Maryland, College Park, MD (2002)

5. Jang, S.B., Baldwin, J., Mani, I.: Automatic TIMEX2 Tagging of Korean News. ACM
Transactions on Asian Language Information Processing 3(1), 51–65 (2004)

6. Lin, J., Cao, D.F., Yuan, C.F.: Automatic TIMEX2 tagging of Chinese temporal informa-
tion. Journal of Tsinghua University 48(1), 117–120 (2008)

7. Zhao, X.J., Jin, P.Q., Yue, L.H.: Automatic temporal expression normalization with refer-
ence time dynamic-choosing. In: Coling 2010, pp. 1498–1506 (2010)

8. Zhang, Q., Jin, P., Lin, S., Yue, L.: Extracting Focused Locations for Web Pages. In: Wang,
L., Jiang, J., Lu, J., Hong, L., Liu, B. (eds.) WAIM 2011 Workshops. LNCS, vol. 7142,
pp. 76–89. Springer, Heidelberg (2012)

9. Amitay, E., Har’El, N., Sivan, R., Soffer, A.: Web-a-where: geotagging Web content. In:
Proc. of SIGIR, Sheffield, United Kingdom, pp. 273–280 (2004)

Top-Down SLCA Computation Based on Hash Search

Junfeng Zhou1, Guoxiang Lan1, Ziyang Chen1, Xian Tang2, and Jingfeng Guo1

1 School of Information Science and Engineering,
2 School of Economics and Management, Yanshan University, Qinhuangdao, China

{zhoujf,guoxianglan,zychen,txianz,jfguo}@ysu.edu.cn

Abstract. In this paper, we focus on efficient processing of a given XML key-
word query based on SLCA semantics. We assign to each node an ID that equals
to its visiting order when traversing the XML document in deep-first order, based
on which we construct two kinds of indexes. The first index is an inverted list L
of IDDewey labels for each keyword k, where each IDDewey label l ∈ L rep-
resents a node v that directly contains k, l consists of node IDs corresponding to
all nodes on the path from the document root to v. The second index is a hash
table, which records, for each pair of node v and keyword k, the number of oc-
currence of k in the subtree rooted at v. Based on the two indexes, we propose
an algorithm, namely TDHS, that takes the shortest inverted IDDewey label list
as the working list and computes all SLCA results in a top-down manner based
on hash search. Compared with existing methods, our method achieves the worst
case time complexity of O(m · |LID

1 |) for a given keyword query Q, where |LID
1 |

is the number of distinct node IDs in the shortest inverted IDDewey label list of
Q. Our experimental results verify the performance advantages of our method
according to various evaluation metrics.

1 Introduction

Keyword search over XML data has attracted a lot of research efforts [1–3, 5–13] in
the last decade, where a core problem is how to efficiently answer a given keyword
query. Typically, an XML document can be modeled as a node-labeled tree T , and for a
given keyword query Q, lowest common ancestor (LCA) is the basis of existing XML
keyword search semantics [5, 6, 10, 13], of which the most widely followed variant is
smallest LCA (SLCA) [8, 10]. Each SLCA node v of Q on T satisfies that v is an LCA
node of Q on T , and no other LCA node of Q can be v’s descendant node. The meaning
of SLCA semantics is straightforward, i.e., smaller trees contain more meaningfully
related nodes.

To facilitate SLCA computation on XML data, existing methods [2, 8–12] usually
assign to each node v a unique ID that is either node ID (underlined number in Fig.
1) that is compatible with the document order [12], or Dewey label [8, 10, 11], or its
variant, such as JDewey [2] and IDDewey [9] (Dewey labels consisting of node ID).
For simplicity, we do not differentiate a node, its ID and the corresponding IDDewey
unless there is ambiguity. For example, when we say node 3, it denotes node x2 in Fig.
1 with ID 3 and IDDewey label 1.2.3. Based on the adopted labeling scheme, inverted
lists are built for all keywords for fast SLCA computation.

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 272–283, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Top-Down SLCA Computation Based on Hash Search 273

Table 1 shows the comparison of these algorithms, from which we have the follow-
ing observations: (1) HS [9], LPSLCA [11] and FwdSLCA/BwdSLCA [12] are better
than Stack [10], IL [10], IMS [8] and JDewey [2] according to their time complexity;
(2) Among HS [9], LPSLCA [11] and FwdSLCA/BwdSLCA [12], LPSLCA (Fwd-
SLCA/BwdSLCA) needs to afford log |Lm|(log |LID

m |) cost to check whether a given
node directly or indirectly contains a keyword by probing other inverted lists. On the
contrary, the HS algorithm takes the shortest list L1 as the working list and sequentially
processes all IDDewey labels of L1. In each iteration, it picks from L1 an IDDewey
label l and checks whether nodes represented by IDs of l contain all keywords of the
given query in their subtree. By maintaining a hash mapping between each pair of node
and keyword, the checking of whether a node contains a certain keyword in its subtree
becomes a hash search, instead of probing other inverted list. Therefore, HS removes
the log |Lm|(log |LID

m |) factor from its time complexity. However, HS still suffers from
much redundant computations when the number of results is much less than the length
of the shortest inverted list, no matter the shortest inverted list is short or long, as shown
by the following example.

Table 1. Worst case time complexities of different algorithms on SLCA computation,
where |L1|(|Lm|) is the length of the shortest (longest) inverted list consisting of
Dewey/JDewey/IDDewey labels, |LID

1 |(|LID
m |) is the number of distinct node IDs in

the shortest (longest) inverted IDDewey label list.

Algorithm Time Complexity Labeling Scheme

Stack [10] O(d · m · (∑m
1 |Li|))

DeweyIL [10] O(d · m · |L1| · log |Lm|)
IMS [8] O(d · m · |L1| · log |Lm|)

LPSLCA [11] O(m · |L1| · log |Lm| + d · m · |L1| · log |Lm|
|L1|)

JDewey [2] O(d · m · |L1| · log |Lm|) JDewey

FwdSLCA [12] O(m · |LID
1 | · log |LID

m |) Node ID

HS [9] O(m · log d · |L1|)
IDDeweyTDHS O(m · |LID

1 |)

Example 1. Consider processing Q = {a, b} on D in Fig. 1. As |La| = 200 < |Lb| =
1000, the HS algorithm takes La as the working list. In each iteration, it sequentially
picks an IDDewey label l from La, and processes all node IDs of l to compute a can-
didate SLCA node by probing the hash table. For this query, HS needs to check, for
each label of a1 to a100, whether node 2 and node 3 contain keyword b in their sub-
trees by probing the hash table; similarly, HS needs to check, for each label of a101 to
a200, whether node 105 and node 106 contain keyword b in their subtrees. Even though
there are only two qualified SLCA nodes, i.e., x1 (node 2) and x3 (node 105), after
processing this query, HS probes the hash table 400 times, which is unnecessary and
time-consuming in practice.

The main reason for the redundancy problem of HS lies in that it processes each ID-
Dewey label individually, without noticing that some IDs are repeatedly appearing in
many different IDDewey labels in the same inverted IDDewey label list. For example,
consider query Q = {a, b} again. In La of Fig. 1, node a1 to a100 share three IDs,
i.e., 1,2 and 3, and node a101 to a200 share three IDs, i.e., 1, 105 and 106. Even though
it does not need to check whether node 1 contains b by using binary search on each

274 J. Zhou et al.

r

b2 b3

a101 a200...

x1 x3 x5

x4x2

a1 a100...

b1 b1000

1

2

3

4

...

1

2

3

5

1

105

106

107

...

1

105

106

206

1

2

104

1

105

207

1

208

1206

1

208

209

aL

bL

a200...a1 a100...

b3 b1000...b1 b2 b4

1

2

3

103

1

208

209

...

1

2 105 208

3

4 103

104 106

107 206

207 209 1206
...

a2
5

a102
108

b4
210

a2 a101 a102

1

105

106

108

(105, b)

1

 Key: (ID,Keyword)

Value: Count

(1, a)

200

(2, a)

100

(1, b)

1000

(2, b)

1

(3, a)

100

(105, a)

100

(208, b)

998

...

...

Hash Table H

Fig. 1. A sample XML document D, where only nodes that directly or inderectly contain a and b
are kept for explanation. La and Lb are the two inverted lists of IDDewey labels for Q = {a, b},
where all IDDewey labels in the two lists are shown in document order.

IDDewey label, it needs to repeatedly check the satisfiability of node 2, 3, 105 and 106
for 100 times, respectively.

To realize fine-grained optimization, we propose an efficient algorithm, namely
TDHS, that computes all candidate SLCA nodes in a top-down manner to accelerate
the SLCA computation. Intuitively, our method takes all nodes in the set of inverted
IDDewey label lists as leaf nodes of an XML tree T , and checks whether it contains
all keywords of the given query. The “top-down” processing strategy means that if T
contains all keywords, T must contain at least one SLCA node, we then remove the root
node of T and get a forest FT = {T1, T2, ..., Tn} of subtrees corresponding to the set
of child nodes of T ’s root node. Based on FT , we check whether each subtree contains
all keywords. If no subtree in FT contains all keywords, it means that T is a smallest
tree that contains all keywords, then we directly output T ’s root node as an SLCA node;
otherwise, for each subtree in FT that contains all keywords, we just need to recursively
compute its subtree set until no subtree in a subtree set contains all keywords.

To check whether there exists some subtrees of T that contain all keywords, our
method records in a hash table H , for each pair of node v and keyword k, the number
of occurrence of k in the subtree rooted at v, as shown in Fig. 1. During processing,
our method takes the shortest inverted IDDewey label list L1 (corresponding to k1) as
the working list, and checks whether a node represented by each distinct node ID is a
qualified SLCA node, rather than repeatedly processing an ID as HS does when it is
contained by many IDDewey labels. Specifically, Our method computes all common

Top-Down SLCA Computation Based on Hash Search 275

ancestor (CA) nodes in a top-down way. After processing a node v, it firstly gets the
number of occurrence of k1 in subtree Tv by one probe operation on the hash table,
then skips all IDDewey labels that contain v’s ID to get its next sibling node. Therefore,
our method avoids the redundant probe operations on the hash table, and achieves the
worst-case time complexity of O(m · |LID

1 |), where |LID
1 | is the number of distinct

node IDs in the shortest inverted IDDewey label list for a given keyword query.

Example 2. Continue Example 1. To process query Q = {a, b} on the XML document
in Fig. 1, our method takesLa as the working list and computes CA nodes in a top-down
way. It firstly checks whether node x1 is a CA node by probing the hash table one time,
then checks whether x1’s child node, i.e., x2, is a CA node by another probe operation
on H . Since x2 is not a CA node, we directly skip all IDDewey labels containing 3
(x2’s ID) by the third probe operation on H . As x2 does not have a sibling node, the
processing of x1 stops and we output x1 as an SLCA node. Similarly, we just need to
afford three probe operations on H to process x3 and x4, and output x3 as an SLCA
node. As a comparison, to process Q, our method just needs to probe H 6 times, while
HS needs 400 probe operations on H .

The rest of the paper is organized as follows. In Section 2, we introduce background
knowledge. We introduce our TDHS algorithm in Section 3. In Section 4, we present
the experimental results, and conclude our paper in Section 5.

2 Background Knowledge

2.1 Data Model

We model an XML document as a node-labeled tree, where nodes represent elements or
attributes, while edges represent direct nesting relationship between nodes in the tree. If
a keyword k appears in the node name or attribute name, or k appears in the text value
of v, we say v directly contains k. Fig. 1 is a sample XML document.

The positional relationships between two nodes include Document Order (≺d),
Equivalence (=), AD (ancestor-descendant, ≺a), PC (parent-child, ≺p), Ancestor-or-
self (�a) and Sibling relationship. u ≺d v means that u is located before v in document
order, u ≺a v means that u is an ancestor node of v, u ≺p v denotes that u is the parent
node of v. If u and v represent the same node, we have u = v, and both u �d v and
u �a v hold.

2.2 Query Semantics

For a given query Q = {k1, k2, ..., km} and an XML document D, inverted lists
are often built to record which nodes directly contain which keywords. We use Li to
denote the inverted list of ki, of which all nodes are sorted in document order. Let
S = {v1, v2, ..., vn} be a set of nodes, lca(S) = lca(v1, v2, ..., vn) denotes the lowest
common ancestor (LCA) of all nodes in S.

The LCAs of Q on D are defined as LCA(Q) = LCA(L1, L2, ..., Lm) = {v|v =
lca(v1, v2, ..., vm), vi ∈ Li(1 ≤ i ≤ m)}. E.g., the LCA nodes for Q = {a, b} on D in
Fig. 1 include r, x1 and x3.

276 J. Zhou et al.

Compared with LCA, SLCA [8, 10] defines a subset of LCA(Q), of which no
LCA in the subset is an ancestor of any other LCA, which can be formally defined
as SLCA(Q) = {v|v ∈ LCA(Q) and �v′ ∈ LCA(Q), such that v ≺a v′}. In Fig. 1,
although r is an LCA node, r is an ancestor of x1 and x3, thus the set of SLCAs for
Q = {a, b} on D in Fig. 1 are x1 and x3.

For SLCA computation, researchers have proposed many algorithms [2,8–12], which
have been discussed in Section 1.

3 The Algorithm for SLCA Computation

3.1 Data Organization

We assign to each node an ID that equals to its visiting order when traversing the XML
document in deep-first order, as shown by the italics numbers in Fig. 1, based on which
we construct two kinds of indexes.

The first index is an inverted list L of IDDewey labels for each keyword k, where
each IDDewey label l ∈ L represents a node v that directly contains k, l consists of node
IDs corresponding to all nodes on the path from the document root to v. E.g., La and
Lb in Fig. 1 are the two inverted IDDewey label lists of keyword a and b, respectively.

The second index is a hash table, which records, for each pair of node v and keyword
k, the number of occurrence of k in the subtree rooted at v, which is shown by the
“Count” value. H in Fig. 1 shows partial content of the hash table, from which we
know that there are 100 occurrence of keyword a in the subtree rooted at node 2 by
using “(2, a)” as a key to probe H , which can be denoted as 100 = H [(2, a)]; on the
contrary, using “(3, b)” as a key to probe H , we know that the subtree rooted at node 3
does not contain keyword b, which can be denoted as (3, b) �∈ H .

3.2 The TDHS Algorithm

For a given query Q = {k1, k2, ..., km}, we always assume that 0 < |L1| ≤ |L2| ≤
. . . ≤ |Lm|, the case where at least one IDDewey label list is empty can be easily
processed before line 1. We omit it for simplicity. As shown by Algorithm 1, our method
takes the shortest inverted IDDewey label list L1 as the working list, which is associated
with a “cursor” pointing to some IDDewey label of L1. Let l be the ith IDDewey
label of L1, idv the jth ID of l denoting node v, we have l = L1[i], idv = l[j] and
idv = L1[i][j]. In the following discussion, we use |l| to denote the number of IDs of l,
and |L1| the number of IDDewey labels of L1.

We use T to denote a subtree rooted at a certain node.T.root represents the IDDewey
label of the root node of T , T.start(T.end) denotes, in L1, the position of an IDDewey
label, which corresponds to the first (last) node in T that directly contains k1. As shown
by Algorithm 1, initially, we set node 1 as the root node of T (line 1), and all nodes
of L1 as leaf nodes of T (line 2 and 3). In line 4, we recursively process T by calling
procedure processSubTree(T).

In line 5 to 17, we recursively process subtree T and output T.root as an SLCA
node if no child node of T.root is a CA node. In line 5, we set flag with default value

Top-Down SLCA Computation Based on Hash Search 277

“TRUE” to denote that T.root is an SLCA node. In line 6 to 7, we make “cursor”
point to the first IDDewey label of L1, such that the length of L1[cursor] is greater
than that of T.root. In line 8 to 16, we repeatedly check whether each child node of
T.root is a CA node. In each iteration, we get the ID idv corresponding to a child node
v of T.root in line 9, then we check whether node v is a CA node in line 10. If function
isCA(idv) returns TRUE, it means that v is a CA node, which also means that T.root
is not an SLCA, thus we set flag with the “FALSE” value (line 11). In line 12, we get
the subtree T ′ rooted at v, and recursively process T ′ in line 13. If function isCA(idv)
returns FALSE in line 10, we firstly get the number of occurrence of k1 in the subtree
rooted at v in line 15, then skip all IDDewey labels containing idv in line 16. After
processing all child nodes of T.root, in line 17, if flag = TRUE, it means that no one
of T.root’s child nodes is a CA node, then we directly output T.root as a qualified
SLCA node.

In line 18 to 22, to get the subtree T ′ rooted at v, we firstly get the number of oc-
currence of k1 in T ′ by probing the hash table H using (idv, k1) (line 18), then set the
IDDewey of v as T.root.idv in line 19, where T.root is the IDDewey of v’s parent
node. In line 20, we set the value of T ′.start(T ′.end), which corresponds to the first
(last) node in T ′ that directly contains k1.

In line 23 to 25, we check whether a given node v is a CA node, which needs to
repeatedly check, in line 23 to 24, whether ki(i > 1) appears in the subtree rooted at v
by using (idv, ki) as the key to probe the hash table H at most m− 1 times.

Example 3. Consider processing query Q = {a, b} on the XML document in Fig. 1,
Algorithm 1 takes La as the working list. As node r is the document root node, our
method recursively finds child CA nodes of node r. The first CA node found by our
method is x1 by using (2, b) as the key to probe the hash table. After that, our method
checks whether x2 is a CA node, which can be done by another probe operation on the
hash table using (3, b) to find whether there are occurrence of b in the subtree rooted
at x2. Since (3, b) does not appear in the hash table in Fig. 1, x2 is not a CA node, our
method skips all IDDewey labels containing 3 to find x2’s next sibling node. Note that
the number of skipped nodes equals to the number of occurrence of keyword a in the
subtree rooted at x2, which is 100 and can be found by another probe operation on the
hash table using (3, a). As x2 does not have other sibling nodes, the skipping operation
moves the “cursor” to the IDDewey of a101, and the processing of x1 is stopped, then
x1 is outputted as an SLCA node. The following processing is similar, our method needs
to check the satisfiability of x3 and x4. For each one of them, we need to use one probe
operation to check whether it is a CA node, and another probe operation for x4 to skip
IDDewey labels containing 106. In summary, to process Q = {a, b}, our method needs
to check the satisfiability of x1, x2, x3 and x4 by probing the hash table four times, and
skipping useless IDDewey labels by probing the hash table two times. The total number
of probe operations invoked by our method is 6.

Now we analyze the complexity of TDHS. Assume that for a given query Q =
{k1, k2, ..., km}, the set of IDDewey label lists satisfy 0 < |L1| ≤ |L2| ≤ ... ≤ |Lm|.
During processing, our method takes the shortest inverted IDDewey label list L1 (cor-
responding to k1) as the working list, and checks whether a node represented by each
distinct node ID is a CA node, rather than repeatedly processing an ID as HS does when

278 J. Zhou et al.

it is contained by many IDDewey labels. Therefore, the total number of processed node
IDs equals to the number of distinct IDs in all IDDewey labels of L1, which is de-
noted by LID

1 . For each ID idv corresponding to node v, we need at most m− 1 probe
operations to check whether v is a CA node, and at most one probe operation to skip
IDDewey labels containing idv . That is, for each idv, our method needs at most m
probe operations on the hash table H . Therefore, the worst-case time complexity of our
method is O(m · |LID

1 |).

Algorithm 1. TDHS(Q) /*Q = {k1, k2, ..., km}, 0 < |L1| ≤ |L2| ≤ ... ≤ |Lm|*/

1 T.root ← 1
2 T.start ← 1
3 T.end ← |L1|
4 processSubTree(T)

Procedure processSubTree(T)

5 flag ← TRUE
6 if (|L1[T.start]| > |T.root|) then cursor = T.start
7 else cursor = T.start + 1
8 while (cursor ≤ T.end) do
9 idv ← L1[cursor][|T.root|+ 1]
10 if (isCA(idv)) then
11 flag ← FALSE
12 T ′ ← getSubTree(T, idv)
13 processSubTree(T ′)
14 else
15 count ← H[(idv , k1)]
16 cursor ← cursor + count
17 if (flag = TRUE) then output T.root as a qualified SLCA result

Function getSubTree(T, idv)

18 count ← H[(idv , k1)]
19 T ′.root ← T.root.idv

20 T ′.start ← cursor
21 T ′.end ← T ′.start + count − 1
22 return T ′

Function isCA(idv)

23 foreach (ki ∈ Q , i > 1)do
24 if ((idv, ki) �∈ H) then return FALSE
25 return TRUE

4 Experimental Evaluation

4.1 Experimental Setup

Our experiments were implemented on a PC with Intel(R) Core(TM) i5 M460 2.53GHz
CPU, 2 GB memory, and Windows 7 as the operating system. The algorithms used
for comparison include the IL [10], IMS [8], JDewey [2], LPSLCA [11], FwdSLCA
[12] and HS [9] algorithms. All algorithms were implemented using Microsoft VC++,
all results are the average time by executing each algorithm 1000 times on hot cache.
We did not make comparison with Stack [10] because Stack has been verified not as
efficient as other existing methods [8–12].

We used XMark (582MB) dataset for our experiment. We have selected 30 key-
words classified into three categories according to their occurrence frequencies (i.e.
|LIDDewey| line in Table 2): (1) low frequency (100-1000), (2) median frequency

Top-Down SLCA Computation Based on Hash Search 279

Table 2. Statistics of keywords used in our experiment
Keyword tissue baboon necklace arizona cabbage hooks shocks patients cognition villages

|LIDDewey | 384 725 200 451 366 461 596 382 495 829

Keyword male takano order school check education female province privacy gender
|LIDDewey | 18441 17129 16797 23561 36304 35257 19902 33520 31232 34065

Keyword bidder listitem keyword bold text time date emph incategory increase
|LIDDewey | 299018 304969 352121 368544 535268 313398 457232 350560 411575 304752

(10000-40000), (3) high frequency (300000-600000). Based on these keywords, we
generated 18 queries as shown in Table 3. Index sizes are listed in Table 4, where
Dewey/JDewey/IDDewey is for IL, IMS, JDewey and LPSLCA; Node ID is for Fwd-
SLCA, while IDDewey+Hash Table is for HS and TDHS.

Table 3. Queries on 582MB XMark dataset, |Lmin| denotes the length of the shortest
IDDewey label list for a query, NS is the number of qualified SLCA results, RS =
NS/|Lmin| denotes the result selectivity.

ID Keywords |Lmin| NS RS(%) Freq.

QX1 villages,hooks 461 9 1.95
LowQX2 baboon,patients,arizona 382 1 0.26

QX3 cabbage,tissue,shocks,baboon 366 9 2.46
QX4 shocks,necklace,cognition,cabbage,tissue 200 9 4.5

QX5 female,order 16700 570 3.41
MedQX6 privacy,check,male 18428 29 0.16

QX7 takano,province,school,gender 17129 107 0.62
QX8 school,gender,education,takano,province 17129 107 0.62

QX9 bold,increase 304706 34136 11.2
HighQX10 date,listitem,emph 304969 43777 14.35

QX11 incategory,text,bidder,date 299018 1 0.0003
QX12 bidder,date,keyword,incategory,text 299018 1 0.0003

QX13 incategory,cabbage 366 224 61.2
RandomQX14 province,bold,increase 33520 427 1.27

QX15 listitem,emph,arizona 451 1 0.22
QX16 bold,increase,hooks,takano 461 6 1.3
QX17 emph,arizona,villages,education 451 1 0.22
QX18 check,bidder,date,baboon 742 1 0.13

Table 4. Comparison of index sizes

Dataset Dewey/JDewey/IDDewey Node ID IDDewey+Hash Table

XMark(582MB) 2.3GB 817MB 3.0GB

4.2 Performance Comparison and Analysis

For a given query, we define the result selectivity as the size of the results over the
size of the shortest inverted list. The metrics for evaluating these algorithms include: (1)
running time, and (2) number of probe operations on the hash table, which is only used
for the HS and TDHS algorithms. The reason we use the second metric is that for all
compared algorithms, only HS and TDHS are based hash search, which do not need the
comparison operation between IDDewey labels. For other algorithms, we only compare
their running time.

Fig. 2 shows the running time of different algorithms for query QX1 to QX18. Ta-
ble 5 shows the number of probe operations of HS and our TDHS algorithms on the

280 J. Zhou et al.

10-3

10-2

10-1

100

QX1 QX2 QX3 QX4

R
un

ni
ng

 T
im

e
(m

s)

(A) Low Frequency

10-1

100

101

102

QX5 QX6 QX7 QX8

R
un

ni
ng

 T
im

e
(m

s)

(B) Med Frequency

IL
IMS

JDewey
LPSLCA

FwdSLCA
HS

TDHS

10-3

10-1

101

103

QX9 QX10 QX11 QX12

R
un

ni
ng

 T
im

e
(m

s)

(C) High Frequency

10-3

10-1

101

103

QX13 QX14 QX15 QX16 QX17 QX18

R
un

ni
ng

 T
im

e
(m

s)

(D) Random Frequency

Fig. 2. Comparison of running time for SLCA computation on XMark dataset (log-scaled)

hash table for these queries, which can be used to facilitate the understanding of the
performance difference between HS and TDHS. From Fig. 2 and Table 5, we have the
following observations.

(1) our method outperforms the HS algorithm for most of these queries. The reason lies
in that for each distinct ID in IDDewey labels of the shortest inverted IDDewey label list,
our method processes it without redundant probe operations on the hash table, which is
further verified by Table 5. E.g., for query QX2, QX4, QX6, QX11, QX12, QX15 QX16,
QX17 and QX18, the number of probe operations invoked by our method is much less
than that of the HS algorithm. For query QX11 and QX12, our method outperforms HS
by up to two orders of magnitude. The lower the selectivity, the more benefits can be
brought by our method.
(2) compared with LPSLCA and FwdSLCA, our method can work better than them for
many queries, such as QX2 to QX4, QX10 to QX12, and QX14 to QX18, this is because
when checking wether a node is a CA node, our method does not need to probe other
inverted lists based on binary search, instead, we simplify this operation with a simple
hash search, which can be done more efficiently. Even though, our method suffers from
inflexibility when compared with these two algorithms, such as QX5. The reason lies
in that our method takes the shortest inverted IDDewey list as the working list, and it
needs to verify the satisfiability of CA node for IDs of IDDewey labels in this list. As a
comparison, LPSLCA and FwdSLCA may skip more useless IDs by using IDs of other
lists to probe the shortest list.
(3) our method is much more efficient than IL, IMS and JDewey, because our method
only processes IDs of the shortest inverted list, while IL, IMS and JDewey need to make
repeatedly comparison between Dewey labels to check their positional relationships and
compute their LCA node, which is costly in practice.

Besides the above observations, for existing methods, we have the follow results: (1) IL
could perform better than IMS in some cases, such as QX1, QX3, QX4, QX11, QX13

Top-Down SLCA Computation Based on Hash Search 281

Table 5. Comparison of the number of probe operations on hash table, where N ID
Lmin

is
the number of IDs in all IDDewey label of the shortest inverted list, while NDistID

Lmin
is

the number of distinct IDs in all IDDewey labels of the shortest list.

Query QX1 QX2 QX3 QX4 QX5 QX6 QX7 QX8 QX9

NID
Lmin

3869 3306 3016 1704 116429 113081 100338 100338 1542891
HS 1899 764 3361 2383 61044 31937 153856 198913 1057672

NDistID
Lmin

2674 2309 2071 1198 68049 62162 53324 53324 683370
TDHS 942 12 772 450 35506 5005 34608 34726 482506

Query QX10 QX11 QX12 QX13 QX14 QX15 QX16 QX17 QX18

NID
Lmin

2353169 1196072 1196072 3016 173900 2255 3869 2255 6013
HS 2216869 299018 897054 1060 46858 451 3601 451 2659

NDistID
Lmin

574800 353220 353220 2071 105795 1355 2674 1355 4014
TDHS 310463 2 4 916 7500 2 862 2 350

and QX16, but the performance gain is usually much less than that of IMS on IL, such
as QX5, QX6, QX14 and especially QX12, because for these queries, the set of Dewey
label lists for each one has different keyword distributions, and IL is not as flexible
as IMS on utilizing various keyword distributions to accelerate the computation. (2)
JDewey is usually beaten by IL and IMS, especially for queries with Dewey label lists
having huge difference on their lengths, such as QX11, and QX13 to QX18, this is
because JDewey needs to process all lists of each level from the leaf to the root; and
for all lists of each level, after finding the set of common nodes, it needs to recursively
delete all ancestor nodes in all lists of higher levels, which is very expensive in practice.
(3) LPSLCA and FwdSLCA outperform HS for many queries, because HS suffers form
much redundant probe operations on hash table. Besides, all LPSLCA, FwdSLCA and
HS are much better than IL and IMS, the reason lies in that LPSLCA, FwdSLCA and
HS do not need to repeatedly check the positional relationships and compute LCA node
for two Dewey labels.

Besides the 18 queries in Table 3, we randomly generated 174406 queries with 2, 3,
4 and 5 keywords based on the 30 keywords of Table 2, which contains all possible
combinations of these keywords, that is, 174406 = C2

30 + C3
30 + C4

30 + C5
30. Based

on these random queries, we record their average running time based on different result
selectivities, which provides us a way to better understand different algorithms.

Fig. 3 shows the impacts of result selectivity on performance of these algorithms.
Again, from the four figures in Fig. 3 we know that the average performance of our
TDHS algorithm is better than other existing methods, the more keywords involved in
a given query, the more benefits can be got by our method. Compared with the HS
algorithm, our method performs much better when the result selectivity is low. Com-
pared with IL, IMS, LPSLCA and FwdSLCA, the performance gain increases when the
number of keywords involved in a query increases.

Note that in Fig. 3 (A) and (B), with the increase of the result selectivity, the average
time used by all methods for result selectivity in [40,100] is less than that in [30,40),
which can be explained by Fig. 4, where for queries with 2 and 3 keywords, the number
of results decreases with the change of result selectivity from [30,40) to [40,100], which
means that the performance of all algorithms is also affected by the number of results.

We shown the scalability from two aspects based on Fig. 3: (1) fixing the number
of keywords and varying the result selectivity, which is just explained in the previous

282 J. Zhou et al.

10-1

100

101

102

103

(0,1) [1,10) [10,20) [20,30) [30,40) [40,100]

R
un

ni
ng

 T
im

e
(m

s)

(A) Random queries with 2 keywords

10-1

100

101

102

103

(0,1) [1,10) [10,20) [20,30) [30,40) [40,100]

R
un

ni
ng

 T
im

e
(m

s)

(B) Random queries with 3 keywords

IL
IMS

JDewey

FwdSLCA
LPSLCA

HS

TDHS

10-1

100

101

102

(0,1) [1,10) [10,20) [20,30) [30,40) [40,100]

R
un

ni
ng

 T
im

e
(m

s)

(C) Random queries with 4 keywords

10-1

100

101

102

(0,1) [1,10) [10,20) [20,30) [30,40) [40,100]
R

un
ni

ng
 T

im
e

(m
s)

(D) Random queries with 5 keywords

Fig. 3. Comparison of running time with different result selectivity

paragraphs, (2) fixing the result selectivity and varying the number of keywords, which
can be got from the four sub-figures of Fig. 3 and is omitted by limited space. The general
trend can be stated as: the performance of IL, IMS, JDewey, LPSLCA and FwdSLCA will
be better with the increase of the number of keywords, this is because the performance
of IL, IMS, JDewey, LPSLCA and FwdSLCA can utilize the positional relationships
between keyword nodes to skip useless nodes, the more keywords involved, the more
possibility for these algorithms to make optimization. Compared with IL, IMS, JDewey,
LPSLCA and FwdSLCA, HS can work better with the increase of result selectivity and
the number of processed keywords in a given query. Compared with HS, our TDHS al-
gorithm can work better when the result selectivity is low.

100

102

104

105

2 3 4 5

of

 r
es

ul
ts

 o
n

av
er

ag
e

Number of keywords

(0,1)
[1,10)

[10,20)
[20,30)

[30,40)
[40,100]

Fig. 4. Average number of results for each se-
lectivity

100

101

102

103

116M 582M 1163M 1745M

R
un

ni
ng

 T
im

e
(m

s)

Document sizes

IL
IMS

JDewey
LPSLCA

FwdSLCA
HS

TDHS

Fig. 5. Running time of Q10 on different XML
documents

Further, we shown in Fig. 5 the scalability when executing Q10 on XMark dataset
from 116MB to 1745MB (15x). The query time of these algorithms grows sublinearly
with the increase of the data size. Also, the query time for TDHS is consistently about
30 times faster than IL, 9 times faster than IMS, 40 times faster than JDweey, 2.5 times
faster than LPSLCA, 2 times faster than FwdSLCA and 2.3 times faster than HS. For
other queries, we have similar results, which are omitted due to space limit.

Top-Down SLCA Computation Based on Hash Search 283

5 Conclusions

In this paper, we proposed an efficient algorithm, namely TDHS, that computes all
qualified SLCA nodes in a top-down way based on hash search. Our method records
in a hash table H , for each pair of node v and keyword k, the number of occurrence of
k in the subtree rooted at v. During processing, our method takes the shortest inverted
IDDewey label list L1 as the working list, and checks whether a node represented by
each distinct node ID idv is a qualified SLCA node, rather than repeatedly processing
idv as HS does when it is contained by many IDDewey labels. As a result, our method
avoids the redundant probe operations on the hash table, and achieves the worst-case
time complexity of O(m · |LID

1 |), where |LID
1 | is the number of distinct node IDs in

L1. Experimental results verify the performance advantages of our method according
to various evaluation metrics.

Acknowledgment. This research was partially supported by grants from the Natural
Science Foundation of China (No. 61073060, 61040023, 61103139), the Fundamen-
tal Research Funds of Hebei Province (No. 10963527D), and the Hebei Science and
Technology research and development program (No. 11213578).

References

1. Bao, Z., Ling, T.W., Chen, B., Lu, J.: Effective xml keyword search with relevance oriented
ranking. In: ICDE (2009)

2. Chen, L.J., Papakonstantinou, Y.: Supporting top-k keyword search in xml databases. In:
ICDE (2010)

3. Bao, Z., Ling, T.W., Chen, B., Lu, J.: Effective xml keyword search with relevance oriented
ranking. In: ICDE (2009)

4. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: Xrank: Ranked keyword search over
xml documents. In: SIGMOD Conference (2003)

5. Li, G., Feng, J., Wang, J., Zhou, L.: Effective keyword search for valuable lcas over xml
documents. In: CIKM (2007)

6. Li, Y., Yu, C., Jagadish, H.V.: Schema-free xquery. In: VLDB (2004)
7. Liu, Z., Chen, Y.: Identifying meaningful return information for xml keyword search. In:

SIGMOD Conference (2007)
8. Sun, C., Chan, C.Y., Goenka, A.K.: Multiway slca-based keyword search in xml data. In:

WWW (2007)
9. Wang, W., Wang, X., Zhou, A.: Hash-Search: An Efficient SLCA-Based Keyword Search

Algorithm on XML Documents. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA
2009. LNCS, vol. 5463, pp. 496–510. Springer, Heidelberg (2009)

10. Xu, Y., Papakonstantinou, Y.: Efficient keyword search for smallest lcas in xml databases.
In: SIGMOD Conference (2005)

11. Zhou, J., Bao, Z., Chen, Z., Lan, G., Lin, X., Ling, T.W.: Top-Down SLCA Computation
Based on List Partition. In: Lee, S.G., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J.
(eds.) DASFAA 2012, Part I. LNCS, vol. 7238, pp. 172–184. Springer, Heidelberg (2012)

12. Zhou, J., Bao, Z., Wang, W., Ling, T.W., Chen, Z., Lin, X., Guo, J.: Fast slca and elca com-
putation for xmlkeyword queries based on set intersection. In: ICDE (2012)

13. Zhou, R., Liu, C., Li, J.: Fast elca computation for keyword queries on xml data. In: EDBT
(2010)

Top-K Graph Pattern Matching:
A Twig Query Approach

Xianggang Zeng1, Jiefeng Cheng1, Jeffrey Xu Yu2, and Shengzhong Feng1

1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
{xg.zeng,jf.cheng,sz.feng}@siat.ac.cn

2 The Chinese University of Hong Kong, Hong Kong, China
yu@se.cuhk.edu.hk

Abstract. There exist many graph-based applications including bioinformatics,
social science, link analysis, citation analysis, and collaborative work. All need
to deal with a large data graph. Given a large data graph, in this paper, we study
finding top-k answers for a graph query, and in particular, we focus on top-k
cyclic graph queries where a graph query is cyclic and can be complex. The ca-
pability of supporting top-k cyclic graph queries over a data graph provides much
more flexibility for a user to search graphs. And the problem itself is challenging.
After investigating a direct yet infeasible solution, we propose a new twig query
approach. In our approach, we first identify a spanning tree of the cyclic graph
query, which is used to generate a list of ranked twig answers on-demand. Then
we identify the top-k answers for the graph query based on the twig answer list.
In order to find the best twig query in solving a given cyclic graph query, cost-
based optimization for twig query selection is studied. We conducted extensive
performance studies using a real dataset, and we report our findings in this paper.

1 Introduction

With the rapid growth of World-Wide-Web and new data archiving/analyzing tech-
niques, there exists a huge volume of data available in public, which is graph structured
in nature including bioinformatics, social science, link analysis, citation analysis, and
collaborative network. Graph pattern matching is long investigated in database study.
It traditionally stands for subgraph isomorphism problem [25,23], which determines
whether a small graph pattern is exactly contained in another graph, or graphs in a large
graph collection (as the data). Its main application is the so called frequent subgraph
mining, which has been extensively studied for the last decade [29,28,22,30].

In recent year, there are an increasing number of applications which need to deal with
large standalone graphs, such as link analysis, social networks and bioinformatics. it is
important to know patterns existed in a single large graph [31]. Graph pattern match-
ing also is no longer limited to subgraph isomorphism. Usually, the conditions on the
matched instances in the data graph generalize to the label requirements and the struc-
tural requirements, which are succinctly represented by a query graph [3,5,24,26,32].
The graph pattern matching of this type has many applications: It is used in the join
processing for managing large XML documents [26]. In life sciences, graph pattern
matching can be used for protein interaction networks comparison and protein structure

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 284–295, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Top-K Graph Pattern Matching: A Twig Query Approach 285

matching [24]. In software engineering, graph pattern matching is used for dependance-
related code search over the system dependence graph of the program [27]. Graph pat-
tern matching is also central to quering massive RDF repository using SPARQL [33].
Other applications include interactive graph visulization [19], computing service dis-
covery [7] and 3D object matching [8].

In this paper, we study top-k graph pattern matching problem which is to find the
top-k answers for a graph pattern query over a large data graph. Particularly, to be
distinguished from all existing work, our focus is on finding top-k answers of a cyclic
graph pattern query. A naive solution is to find all possible answers from the underneath
graph using an existing approach [5,26,32], and rank all the answers by the answer
weight in order, and report the first k answers with the smallest total weight. However,
there can be an enormous number of answers in the underneath graph. The cost of
exhaustively enumeration for all of them can be prohibitive. Another solution is to use
top-k join [16] to progressively compute the top-k answers rather than the complete set
of answers. However, the top-k join solution requires a large amount of memory or have
to use costly nested-loop join processing [1]. Other standard top-k processing such as
TA [9] can not be directly applied because it needs sorted object lists, where the object
to be searched are respectively sorted by each attribute in different sorted object lists.
Such conditions can be not easily met in our problem setting.

Finding top-k matches for a cyclic graph query is challenging. However, linear cost
algorithms in terms of time and space exist for finding top-k answers for twig queries,
as introduced in [12]. It is possible operate on a ranked list of twig answers, in order to
find top-k answers of a graph queries. Therefore, the overall processing can be efficient
and scalable because those ranked lists of twig answers can be obtained very efficiently.
Even if a large number of twig answers on the ranked list have to be enumerated before
finding the requested top-k answers of the graph query, the cost of such processing
increases marginally. Based on this motivation, in this paper, we propose a efficient
solution for top-k graph pattern matching.

Our Contributions: Our contributions are as follows: (1) We propose a new top-k
graph pattern matching problem and investigate a baseline solution based on the exist-
ing top-k processing technique (Section 2). (2) We propose a new twig query approach
which is efficient and scalable in terms of different value scales of k (Section 3); (3)
Since not each twig answer in a list corresponds to an answer of the graph query, differ-
ent twig lists can result different cost in solving a given cyclic graph query. We propose
cost-based optimization to select the best twig query ((Section 3.1); (4) We conducted
extensive performance studies using a real dataset, and we confirm the efficiency of our
proposed approach (Section 4).

We discuss related work in Section 5 and Section 6 concludes this paper.

2 Problem Statement

We discuss top-k graph matching for a given graph query over a large data graph. The
data graph is defined as a weighted node-labeled graph GD = (V,E,Σ, label,We).
Here, V is a set of nodes. E is a set of edges that can be directed or undirected. Σ is a
set of node labels, which are usually far less than all nodes in GD. label is a mapping

286 X. Zeng et al.

a1 a2 a3 a4 a5

c1 c2 c3

b1
d1 d4

d5

d7

d8d6d2
b2 b4b3

c4 c5

d3

Fig. 1. Graph GD

CB

A

(a) Q(k = 2)

c3b3

a3

1

1 1

(b) M
(1)
Q

c2b2

a2

2

2 2

(c) M
(2)
Q

Fig. 2. Query/Answers

A B Wp

a3 b3 2
a1 b2 2
a2 b2 2
a5 b4 2
a1 b1 3
a2 b1 3
a1 b3 3
a2 b3 3
a3 b4 4

(a)
R(A,B)

B C Wp

b3 c3 1
b2 c1 2
b2 c2 2
b4 c5 2
b1 c1 3
b1 c2 3
b3 c1 3
b3 c2 3
b4 c3 4
(b)
R(B,C)

A C Wp

a3 c3 1
a2 c2 2
a3 c5 2
a5 c3 2
a4 c3 3
a3 c4 3
(c)
R(A,C)

Fig. 3. The Sample Storage

function which assigns each node, vi ∈ V , a label X ∈ Σ, and label(vi) is hence
the label of node vi. Given a label X ∈ Σ, the extent of X , denoted as ext(X), is
the set of all nodes in GD that are X-labeled. The weight function We(u, v) assigns
a weight to every edge (u, v) ∈ E. The shortest distance from a node u to a node v,
denotedWp(u, v), is the minimum total weight along a path from u and v, in GD. And a
shortest path from u to v is a path from u to v with the minimum total weight Wp(u, v).
In the following, we use V (G) and E(G) to denote the set of nodes and the set of edges
in a graph G.

Fig. 1 shows a simple data graph, GD, in which all edges are weighted 1. There are
4 labels, Σ = {A,B,C,D}. In Fig. 1, we use the small letter x with a unique number
i to signify an X-labeled node xi ∈ ext(X).

A graph query Q = (V (Q), E(Q)) is an undirected and connected graph, where
V (Q) consists of labels in Σ, and E(Q) is a set of edges between two nodes in V (Q).
To simplify exposition, we assume unique labels in V (Q) in the following discussion,
and it is straightforward to extend our approach to the case of repeated labels. A graph
query Q is a tree query (or twig query) if it is cycle-free. Otherwise, it is a cyclic query
(or graph query). In the following of this paper, tree query and twig query (cyclic query
and graph query) are used interchangeably. Fig. 2(a) shows a graph query with 3 labels.
For this query, Fig. 2(b) and Fig. 2(c) illustrate two answers, 〈a2, b2, c2〉 and 〈a3, b3, c3〉,
that can be found in the data graph GD (Fig. 1).

To answer a graph query Q is called the graph pattern matching problem, or
GPM for short. An answer of Q, denoted MQ , over GD, is an n-ary node-tuples,
〈v1, v2, · · · , vn〉, where vi ∈ V (GD) and n = |V (Q)|. There exists a one-to-one map-
ping, λ: Q → MQ that satisfies two kinds of conditions specified by Q, namely, label
condition and structural condition. (1) The label conditions specified by Q are satisfied,
i.e., for every X ∈ V (Q), there is a node x ∈ MQ labeled by X in GD; and (2) the
structural conditions indicated by Q are satisfied, i.e., for every edge (X,Y) ∈ E(Q),
there is a connected path in GD between the two corresponding nodes x, y ∈MQ .1

GPM asks for all answers for a given query. However, the total number of answers
in a large graph can be enormous. To return a large number of answers to a user can be

1 In a directed graph GD , the directed path either from x to y or from y to x can satisfy an
undirected edge (X,Y) ∈ E(Q).

Top-K Graph Pattern Matching: A Twig Query Approach 287

overwhelming for the user to digest, and the computation overhead is also prohibitive.
Therefore, in this paper, we focus on efficiently finding top-k answers of a graph query.

Top-k Answers: The top-k answers for Q are determined by a score function. Numer-
ous score functions are discussed in the literature [21,14,2,15,20,12], which are usually
based on node scores and edge scores. The node score is used to reflect the node im-
portance of v ∈MQ , while the edge score is used to reflect the connection strengths of
(u, v), where u, v ∈MQ and (λ−1(u), λ−1(v)) ∈ E(Q).

For simplicity, we consider the edge score only with the following equation. How-
ever, our approach is extendable to include the node score.

score(MQ) = Σ(A,D)∈E(Q)Wp(u, v) (1)

where (A,D) = (λ−1(u),λ−1(v)) is a query edge in Q and u, v ∈ MQ , Therefore, for each
query edge of Q, there is a corresponding score component of MQ . Eq. 1 is the sum
of |E(Q)| several edge score components. Intuitively, the smaller distance between two
nodes in GD indicates a closer relationship between them. Therefore, an answer with a
smaller score of Eq. 1 is regarded to be better. In other words, an answer MQ tends to
be ranked higher if score(MQ) is smaller.

k-GPM Problem: Consider a graph query Q against a large graph GD . A k-GPM
problem finds the top-k answers of Q. Therefore, for k-GPM query Q, its answer is a
list: (M (1)

Q , M (2)
Q , · · · , M (k)

Q), such that any score(M
(i)
Q), 1 ≤ i ≤ k, is no greater

than that of any other answers of Q. In this paper, we study the problem of k-GPM for
a cyclic query Q.

Based on those path lengths in Fig. 2(b) and Fig. 2(c), the top-2 matches are M (1)
Q =

〈a3, b3, c3〉 and M
(2)
Q = 〈a2, b2, c2〉, where score(M (1)

Q) = 3 and score(M
(2)
Q) = 6.

2.1 A Direct Solution Based on Top-k Join

A storage Scheme. Like the existing work [12,13], we materialize the edge transitive
closure of a data graph GD , and store it in tables. The reasons why we proceeds our
discussion with such a storage scheme bare (a) it speeds the queries by exempting the
burden to search for the large number of required shortest paths at query time; (b)
although the transitive closure is very large in size, a compressing scheme such as 2-
hop covers [6,4] easily works on it for better space consumption; (c) it supports efficient
search of trees [12,13] or even graphs (as will discussed below) for large graphs.

In detail, a table R(A,D) stores information for all shortest paths from A-labeled nodes
to D-labeled nodes, which can be implemented as a database relations containing three
columns essentially: A, D and distance. Here, columns A and D are for A-labeled
nodes andD-labeled nodes, respectively. The columndistance is for the correspond-
ing distance Wp(a, d) where a and d are A-labeled and D-labeled nodes in the same
tuple. Below, we use R(A,D) to refer to this table. There can be |Σ|2 tables, each corre-
sponding to a different pair of labels in Σ. Later, we use t to signify a tuple in R(A,D),
while t.distance denotes Wp(a, d) for a, b ∈ t. A table supports two ways to access
it: the sequential access, which scans the table sequentially, and the random access,

288 X. Zeng et al.

which retrieve a tuple using given a and b. Fig. 3 shows R(A,B), R(B,C) and R(A,C) for
the data graph GD in Fig. 1.

A top-k Join Solution. The top-k join algorithms [16] can progressively compute top-
k joins of several tables without computing all joins of those tables. Particularly, we
briefly describe the adaption of a representative [16], called the hash ripple join, or
simply HRJN.

Suppose there are |E(Q)| = l edges in Q and each edge is identified by a number.
Let the i-th edge in E(Q) be (X,Y), and we use Ri to denote R(X,Y). A multi-way
join on R1, R2, · · · , and Rl can be used to compute answers of Q. Here, Ri and Rj

are joined together, if a common query node X appears as an end node in both the i-th
and the j-th edges of |E(Q)|. And the join is based on the equality condition on the
corresponding common X columns in table Ri and table Rj . The top-k join algorithm
[16] requires that R1, R2, · · · , Rl are sorted in the ascending order of all Wp(a, d) in
their distance columns. HRJN sequentially scans those tables on disk. The tuples
already scanned into memory are referred as seen tuples, while those not scanned yet
are unseen tuples. For each table Ri, a hash index is built for those seen tuples of Ri. In
detail, during the sequential scan, when an unseen tuple t from Ri is accessed, HRJN
probes all hash indexes to compute all valid join combinations of t between all seen
tuples of Rj , i �= j. In this way, HRJN progressively joins R1, R2, · · · , and Rl and
a buffer is used to maintain temporary top-k anwsers that have been found.The HRJN
can stop early when the the upper bound of those top-k answers in the buffer is even
smaller than the lower bound of all unseen answers.

3 The New Twig Query Approach

Finding top-k matches for a cyclic graph query is challenging. However, linear cost
algorithms in terms of time and space exist for finding top-k answers for twig queries,
as introduced in [12]. It is possible operate on a ranked list of twig answers, in order to
find top-k answers of a graph queries. Therefore, the overall processing can be efficient
and scalable because those ranked lists of twig answers can be obtained very efficiently.
Even if a large number of twig answers on the ranked list have to be enumerated before
finding the requested top-k answers of the graph query, the cost of such processing
increases marginally. We first briefly review the top-k twig query processing, then we
discuss our new twig query approach for k-GPM.

Gou et al. shows in [12] that a linear cost algorithm exists in terms of time and space
in order to efficiently find the top-k answers of a twig query T over GD , where GD is
stored using the aforementioned storage scheme with edge transitive closure. To process
a given twig query T , the bottom-up strategy starts with the smallest subtrees of T and
then considers larger subtrees till T is fully considered. The time and space requirement
is linear to all data inputs [12], namely O(

∑
(X,Y)∈E(T) |R(X,Y)|). Specifically, the time

cost is O(
∑

(X,Y)∈E(T) |R(X,Y)|) for the first (top-1) answer. After the first answer, only
a fixed amount of time Δ, which is independent of the data size, is required to output
the second (top-2) answer, the third (top-3) answer and so on. Interesting readers can
refer to [12] for more knowledge. It is important to note that this top-k twig pattern

Top-K Graph Pattern Matching: A Twig Query Approach 289

matching does not directly applied for a cyclic query Q, because we cannot decompose
the cyclic graph pattern in the same manner as that of the bottom-up strategy.

Our Approach. Given a k-GPM queryQ, the processing consists of two closely related
tasks:

Task-1: select a best twig query based on Q to construct the ranked list of these twig
query answers progressively;

Task-2: process the ranked list to find the top k answers for the k-GPM as soon as
possible.

The two tasks are executed simultaneously: In Task-1, the answers of the twig queries
are generated on demand, as long as they are requested by Task-2. While Task-2 com-
putes the answers of Q based on those twig query answers. When all answers of the
k-GPM are sucessfully found, it stops all processing.

In Task-1, those twig queries are obtained by considering the spanning trees of the
graph structure of Q. We call such twig queries the t-queries of Q. Thus, any one
spanning tree of Q can be a t-query of Q. A t-query returns the answers in the non-
descending order of their weights. Therefore, for each t-query, its ordered answers form
a ranked list. For easy representation, this ranked list of a t-query is called a t-list.
Similar to a sequential scan over a ranked list, a t-list is constructed and processed pro-
gressively: In a t-list, all twig answers seen that far are examined; the last answer is the
latest answer returned by the t-query, which is consumed by task-2 immediately when
it is generated. New answers of the t-queries are generated on demand and appended to
the t-list, as long as they are requested by Task-2.

Task-2 tries to extend each twig answer to an answer of Q. Consider a twig answer.
If it can be succesfully extended to an answer of Q, the set of nodes in the two answers
must be identical. Thus, the twig answer can be a partial answer of Q, where we only
need to find the additional edges among those nodes for Q. Those edges represents
connections among those nodes in the data graph, which are required to satisfy Q. To
this end, we consider all missing query edges, which are those edges appeared in Q,
but do not exist in the t-query. For each missing query edge, say (A,D), note that we
already have two corresponding nodes a and d in the twig answer. So we only need to
look up in R(A,D) to see if there is a record for the required shortest path between a and
d. If the record can be successfully found, the required shortest path between a and d
exists; so we add an edge between a and d to this partial answer, otherwise, this twig
answer cannot be extended to an answer of Q and is discarded immediately. Finally, if
the records for all missing query edges are found, we successfully obtain an answer of
Q with all required shortest paths.

Algorithm. Algorithm 1 begins with the computation for an optimal t-query T (Line 3).
Section 3.1 will address the details of find the best t-query with the minimum estimated
cost. At Line 4, the corresponding t-list of T is initialized. Therefore, a call of the
function S.next() will return the lastest available answer in S; this call also tells S to
generate the next answer for T (Line 6). All answers in the t-list are discarded immedi-
ately when it is examined as follows: we try to extend the latest answer of T (returned
by ST .next()), denotedM⊥

T , to an answer of Q. If M⊥
T can be successfully extended to

290 X. Zeng et al.

Algorithm 1. KGPM Twig
Input: A cyclic graph query Q.
Output: The answers for the k-GPM query of Q.
begin1

let B be a buffer for the temporary top-k answers of Q;2

select the optimal t-query T ;3

initialize the t-list S for T ;4

repeat5

M⊥
T ← S.next();6

if extendable(M⊥
T ,MQ) then7

update the top-k buffer B with MQ ;8

ω ← the largest score of all answers in B ;9

ω ← lbound(M⊥
T);10

until (ω ≤ ω and |B| ≥ k) ;11

return B;12

end13

a match of Q, a function extendable(M⊥
T ,MQ) returns true, where the result is passed

to MQ by reference. The top-k buffer B is updated with MQ (Line 8). ω is the largest
cost for a match in B and hence is also updated at Line 9. Line 10 derives a lower bound
ω that far for all unseen answers of Q with a bounding function lbound() based on
all latest answers of the t-queries. At last, we stop the whole processing once the stop
condition of Line 12 is satisfied, which suggests we all already have that answer for the
k-GPM in the buffer.

Stop Condition. Note that T returns answers ranked by Σ(A,D)∈E(T)Wp(u, v). Partic-
ularly, lbound(M⊥

T) directly returns the score of M⊥
T , namely

lbound(M⊥
T) = score(M⊥

T) (2)

The above equation is based on the fact that the score of any unseen answer of Q should
be at least greater than the score of the last answer of T . To understand it, notice that
for an answer, MQ , where score(MQ) ≤ score(M⊥

T), it contains an corresponding
answer of T , which must be ranked before M⊥

T , hence is identified before M⊥
T . There-

fore, all such MQ should be examined already. To see how the stop condition works,
note that lbound(M⊥

T) (or ω) is growing larger and larger as more and more twig an-
swers are identified; in the meanwhile, ω will not grow as the processing proceeds; it
finally equals to the score of the k-th answer of Q. Therefore, the stop condition ω ≤ ω
can be satisfied. Note that ω can be futhered tightened by considering the smallest score
components corresponding to those missing query edges, which can be easily collected
over the base tables offline.

Example 1. For the example cyclic query in Fig. 2(a), we use a t-query tree T1 (Fig. 4(a))
of Q to demonstrate the twig query approach. We construct ST1 shown in the table on
the left of Fig. 4(b). When the first twig answer, 〈a3, b3, c3〉, comes, whose score is 2,
we look up the weight of (a3, c3) in R(a,c) and it is 1. Thus the first answer of Q is ob-
tained and its overall score is 3. It is buffered and ω is set to be 3. And we can obtain the

Top-K Graph Pattern Matching: A Twig Query Approach 291

CB

A

(a) T-Query T1

MT1
(1)

MT1
(11)

MT1
(8)

MT1
(6)

a3, b3 , c3
a1, b3 , c3
a1, b2 , c1
a1, b2 , c2
a2, b3 , c3
a2, b2 , c1
a2, b2 , c2

2
4
4
4
4
4
4

a3, b3 , c1 4

· · ·

· · ·

a3, b3 , c3

top-k buffer
3 3

a3, b3 , c3
a2, b2 , c2

top-k buffer

6 5

a3, b3 , c3
a2, b2 , c2

top-k buffer

6 7

score

a3 , b3 , c3
a2, b2 , c2

top-k buffer

6 5

a1, b1 , c1 6

MT1
(2)

MT1
(3)

MT1
(5)

MT1
(7)

MT1
(4)

M T 1

(b) The top-k Processing with T1

Fig. 4. An Example

Q1 Q2

Q3 Q4

Fig. 5. Tested
Graph Queries

current ω also as 3, which is the sum of the twig answer score and the smallest possible
score for the query edge (A,C). Since the size of the buffer is below the required num-
ber, the stop condition is not satisfied. Then, we move to the second twig answer and
it turns out not extendable. Thus, we repeat the precessing and find another Q answer
upon the 7-th twig answer. The stop condition is satisfied upon the 11-th twig answer.

3.1 Cost-Based Optimization for T-Query Selection

Given a graph query, there can be many different t-queries for it. Each t-query can
give a different cost in solving the k-GPM. Therefore, it is important to select the op-
timal t-query given a graph query Q. We discuss a cost-based selection to find the
t-query with the smallest cost will be used. We mainly consider the time as the cost
to be optimized. Note that [12] already shows the time requirement of a twig query is
O(

∑
(X,Y)∈E(T) |R(X,Y)|) for the first (top-1) matches, and a fixed amount of time for

the second (top-2) match, the third (top-3) match and so on. Therefore, the cost to solve
a k-GPM with the t-query T can be estimated as below,

cost(T) = c ·
∑

(X,Y)∈E(T)

|R(X,Y)|+ (1− c) ·N (3)

where c is a constant coefficient to tune the weight of two kinds of cost. Now the central
issue for optimizing k-GPM is how to estimate the number of twig answers which are
consumed before the stop condition is satisfied, namely, N in the above equation.

In order to estimate the value of N , we assume that all answers of a graph query Q
are evenly distributed in ST . Moreover, we assume the first k answers of Q obtained
by processing ST are the k answers for the k-GPM. In this way, N can be simplified
as below:

N = k · selT
where selT is the average number of twig answers of T that are needed to obtain each
answer of Q. Let NQ and NT denote the total number of answers of Q and T respec-
tively. With obove assumption, there is selT = NT

NQ
. NQ and NT can be estimated based

292 X. Zeng et al.

on existing work on graph pattern matching. Particularly, we use the pattern match
estimation in [5].

4 Performance Evaluation

In this section, we evaluate the performance of our proposed approach experimentally.
Specifically, the baseline method is the adaption of the top-k join solution (Section 2.1),
represented by join, for k-GPM. For our twig query approach, we use the cost-based
optimization to select the best t-query in order to instantiate Algorithm 1 for the k-GPM.
And this method is denoted as twig*. In order to show the effectiveness of the t-query
selection, we also compare the performance of Algorithm 1 with a number of randomly
selected t-queries, denoted as random1, random2 and so on. All those algorithms are
implemented using C++. The value of c in Eq. 3 is set as 0.2. We show the elapsed
time and required memory for the four cyclic queries Q1, Q2, Q3, and Q4, according
to these k values: 10, 50, 100, 150 and 200. The structures of these queries are shown
in Fig. 5.

We experimented on the real dataset, DBLP2. We construct a “co-authorship graph”
based on the data. This graph contains 840,688 nodes (authors) and 3,078,263 edges. An
edge between two nodes indicates that the two corresponding authors have co-authored
one or more papers. As discussed in [18], co-authorship graphs capture many key fea-
tures of social networks. We treat this graph as a social network, and use the method
described in [18] to compute its edge weight. We assign node labels based on text clus-
tering algorithms. In detail, we use the paper titles as the text feature for all authors.
One author’s text feature can come from multiple titles from that author. We group all
authors into 100 clusters. For each author, we assign the cluster ID as its node label.

We conducted all experiments on a PC with a 3.4GHz processor, 180G hard disk and
2GB main memory running Windows XP.

Compare to the Baseline Method. This test is to compare the performance of our
twig query approach (twig*) with the baseline method, namely the top-k join solution
for top-k graph matching (join). Fig. 6 shows this test. In general, twig* outperforms
join noticeabley. For all queries and most k values, join needs much more time and
memory, than twig*. Moreover, the time and memory for join increase significantly as
k increases. But both the time and memory of twig* increase quite slower. For example,
in Fig. 6 (c) (Q3), when k increases from 10 to 200, the elapsed time of join increases
from 1, 005 milliseconds to 180, 142milliseconds. In contrast, the time of twig* is from
4, 013 to 4, 648milliseconds. join even cannot finish Q4 in 2 hours when k equals 100 or
a larger value (Fig. 6 (d)). Only when k is as small as 5 and 10, there are some cases that
join can outperform twig*. However, join become quite slow when k takes a relatively
larger value. It is because join has to perform a huge number of joins with those seen
tuples in memory when k is 10, 50 or above. Moreover, it has to keep many seen tuples
in memory so as k increase, the memory consumption of join also becomes larger and
larger as k increases. For example, in Fig. 6 (h), join needs 34 and 56 megabytes of
memory for Q4 when k = 10 and k = 50. twig* only needs 16 megabytes of memory
for all k values.

2 http://dblp.uni-trier.de/xml/

Top-K Graph Pattern Matching: A Twig Query Approach 293

0 100 200
0

2

4

6x 10
5

k

E
la

ps
ed

 T
im

e
(m

s)

twig*
join

(a) Q1

0 100 200
0

0.5

1

1.5

2x 10
6

k

E
la

ps
ed

 T
im

e
(m

s)

twig*
join

(b) Q2

0 100 200
0

0.5

1

1.5

2x 10
5

k

E
la

ps
ed

 T
im

e
(m

s)

twig*
join

(c) Q3

0 100 200
0

2

4

6x 10
6

k

E
la

ps
ed

 T
im

e
(m

s)

twig*
join

(d) Q4

0 100 200
15

20

25

k

M
em

or
y

(M
B

)

twig*
join

(e) Q1

0 100 200
20

30

40

50

k

M
em

or
y

(M
B

)

twig*
join

(f) Q2

0 100 200
14

16

18

20

k

M
em

or
y

(M
B

)

twig*
join

(g) Q3

0 100 200
0

20

40

60

k

M
em

or
y

(M
B

)

twig*
join

(h) Q4

Fig. 6. Compare with Top-k Join Solution

0 100 200
0

0.5

1

1.5

2x 10
5

k

E
la

ps
ed

 T
im

e
(m

s)

twig*
random1
random2
random3

(a) Q1

0 100 200
0

5

10x 10
5

k

E
la

ps
ed

 T
im

e
(m

s)

twig*
random1
random2
random3

(b) Q2

0 100 200
0

1

2

3x 10
5

k

E
la

ps
ed

 T
im

e
(m

s)

twig*
random1
random2
random3

(c) Q3

0 100 200
0

1

2

3

4x 10
4

k

E
la

ps
ed

 T
im

e
(m

s)

twig*
random1
random2
random3

(d) Q4

Fig. 7. Cost-based Optimization for T-query Selection

Performance of our Cost-based Optimization. Fig. 7 shows the elapsed time of twig*
as compared to a number of randomly selected t-queries. We can see that twig* is the
fastest t-query in solving k-GPM of all graph queries. Take Q4 as an example, twig*
spends 5,920 milliseconds to 6,369 milliseconds, while random1 needs 6,112 millisec-
onds to 6,589 milliseconds and random2 needs 9,481 milliseconds and 35,277 mil-
liseconds. The effectiveness of our cost-based optimization can be successfully
verified.

5 Related Work

Graph pattern matching is a long investigated topic for database applications [25,23].
Two lines of work can be identified in terms of the underlying graphs to be searched.
One is a large collection of small graphs of hundreds of nodes, where the frequent
subgraph mining is studied extensively in recent years, such as [29,28,22,30] to name a
few.

Our work belongs the other line, which deals graph searching over a large standalone
data graph [2,14,3,5,26,12,32,31]. We can further categorize the work in this line work
according to whether there are user-given query graph. [2,14,31] do not have a user-
given query graph. [2,14] belong to the so-called keyword search over graphs, which
can find the top-k connected trees in the graph such that all user-given keywords are
included in the trees. We omit the large number of other studies in this direction for we

294 X. Zeng et al.

are searching for cyclic graphs that match user-given graph queries. The recent work
[31] even studied frequent subgraphs within a large graph, where the answer structure
are also not fixed.

There are many work where the query graph [3,5,24,26,32,11,10] is used. Our prob-
lem is the same with them. However, these work does not consider finding top-k an-
swers of a graph query. They do not directly work on k-GPM either, because computing
all answers at first and then sort the results to obtain the k best ones can be very expen-
sive. Our solution is closely related to [12]. However, [12] is to find top-k answers for
twig queries. A large amount of work has been done for top-k query processing. Refer
to [17] for a survey. The top-k join algorithm [17] can be applied to our problem, which
we examined in this paper.

6 Conclusion and Future Work

In this paper, we propose a new top-k graph pattern matching problem, in which the
main difference to existing work is that the query is cyclic and can be complex. We
investigate a baseline solution using the existing top-k processing technique, which is
difficult to successfully solve this problem. We propose a new twig query approach
which is economic and scalable for this problem. To find the best twig query in solving
a given graph query, we also propose a cost-based optimization for twig query selection.
We conducted extensive performance studies using a real dataset, and we confirm the
efficiency of our proposed approach.

Acknowledgments. This work is supported by NSFC (Grant No. 61103049) and
Shenzhen Research Fund (Grant No. JC201005270342A).Xianggang Zeng is supported
by Shenzhen New Industry Development Fund (Grant No. CXB201005250021A).
Shengzhong Feng is supported by Special Funds of The Chinese Academy of Sciences
(Grant No. XDA06010500).

References

1. Agrawal, P., Widom, J.: Confidence-aware join algorithms. In: ICDE (2009)
2. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword searching and

browsing in databases using BANKS. In: ICDE (2002)
3. Chen, L., Gupta, A., Kurul, M.E.: Stack-based algorithms for pattern matching on DAGs. In:

VLDB (2005)
4. Cheng, J., Yu, J.X.: On-line exact shortest distance query processing. In: EDBT (2009)
5. Cheng, J., Yu, J.X., Yu, P.S., Wang, H.: Fast graph pattern matching. In: ICDE (2008)
6. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop

labels. In: Proc. of SODA 2002 (2002)
7. Corrales, J.C., Grigori, D., Bouzeghoub, M.: BPEL Processes Matchmaking for Service

Discovery. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 237–254.
Springer, Heidelberg (2006)

8. Demirci, M.F.: Graph-based shape indexing. In: Machine Vision and Applications (2010)
9. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: PODS

(2001)

Top-K Graph Pattern Matching: A Twig Query Approach 295

10. Fan, W., Li, J., Luo, J., Tan, Z., Wang, X., Wu, Y.: Incremental graph pattern matching. In:
SIGMOD (2011)

11. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., Wu, Y.: Graph pattern matching: From intractable
to polynomial time. In: VLDB (2010)

12. Gou, G., Chirkova, R.: Efficient algorithms for exact ranked twig-pattern matching over
graphs. In: SIGMOD (2008)

13. He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: ranked keyword searches on graphs. In:
SIGMOD (2007)

14. Hristidis, V., Papakonstantinou, Y.: Discover: keyword search in relational databases. In:
VLDB (2002)

15. Hwang, H., Hristidis, V., Papakonstantinou, Y.: ObjectRank: a system for authority-based
search on databases. In: SIGMOD (2006)

16. Ilyas, F., Aref, G., Elmagarmid, K.: Supporting top-k join queries in relational databases. The
VLDB Journal 13(3), 207–221 (2004)

17. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques in
relational database systems. ACM Comput. Surv. 40(4), 1–58 (2008)

18. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social
network. In: KDD (2003)

19. Koenig, P.-Y., Zaidi, F., Archambault, D.: Interactive searching and visualization of patterns
in attributed graphs. In: Graphics Interface Conference (2010)

20. Liu, F., Yu, C., Meng, W., Chowdhury, A.: Effective keyword search in relational databases.
In: SIGMOD (2006)

21. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order
to the web (1998) (submitted for publication)

22. Haichuan, S., Ying, Z., Xuemin, L., Xu, Y.J.: Taming verification hardness: an efficient algo-
rithm for testing subgraph isomorphism. In: VLDB (2008)

23. Shasha, D., Wang, J.T.L., Giugno, R.: Algorithmics and applications of tree and graph search-
ing. In: PODS (2002)

24. Tian, Y., Patel, J.: TALE: A tool for approximate large graph matching. In: ICDE (2008)
25. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1) (1976)
26. Wang, H., Li, J., Luo, J., Gao, H.: Hash-base subgraph query processing method for graph-

structured XML documents. In: VLDB (2008)
27. Wang, X., Lo, D., Cheng, J., Zhang, L., Mei, H., Yu, J.X.: Matching dependence-related

queries in the system dependence graph. In: ASE (2010)
28. Williams, D., Huan, J., Wang, W.: Graph database indexing using structured graph decom-

position. In: ICDE (2007)
29. Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure-based approach. In: SIGMOD

(2004)
30. Yuan, Y., Wang, G., Wang, H., Chen, L.: Efficient subgraph search over large uncertain

graphs. In: VLDB (2011)
31. Zhu, F., Qu, Q., Lo, D., Yan, X., Han, J., Yu, P.S.: Mining top-k large structural patterns in a

massive network. In: VLDB (2011)
32. Zou, L., Chen, L., Özsu, M.T.: Distance-join: Pattern match query in a large graph database.

In: VLDB (2009)
33. Zou, L., Mo, J., Chen, L., Özsu, M.T., Zhao, D.: gstore: Answering sparql queries via

subgraph matching. In: VLDB (2011)

Dynamic Graph Shortest Path Algorithm�

Xueli Liu and Hongzhi Wang

Harbin Institute of Technology
{xueli.hit,whongzhi}@gmail.com

Abstract. Shortest paths computation in graph is one of the most fun-
damental operation in many applications such as social network and
sensor network. When a large graph is updated with small changes, it
is really expensive to recompute the new shortest path via the tradi-
tional static algorithms. To address this problem, dynamic algorithm
that computes the shortest-path in response to updates is in demand. In
this paper, we focus on dynamic algorithms for shortest point-to-point
paths computation in directed graphs with positive edge weights. We de-
velop novel algorithms to handle the single-edge updating and the batch
edge updating. We prove that our algorithms can compute the shortest
paths for updated graph in time polynomial to the size of updated part
of the graph. We experimentally verify that these dynamic algorithms
significantly outperform their batch counterparts in response to small
changes, using real-life data and synthetic data.

1 Introduction

The shortest-path problem is a routine graph problem in a variety of real-word
applications, e.g,routing in a road network, routing/data harvesting in sensor
networks[1]. It is often defined in terms of all-pairs shortest path, single-source
shortest-path, and point-to-point shortest path. In practise,there is an industrial
demand for computing point-to-point shortest path(P2P) on dynamic large-scale
network such as road network whose edges are dynamic changed with the traffic
condition, sensor network whose sensor may not work effectively. Given a graph
G = (V,E), a source node s ∈ V , a terminal node t ∈ V , and a list of changes
ΔG, e.g, edge deletions, edge insertions and edge weight updating, the dynamic
shortest path algorithm is to compute the update shortest path from s to t in
G⊕δG. We call an algorithm which handle only the edge insertion as incremental
algorithm. The decremental algorithm solves the edge deletion.

As discussed in [2], the traditional computation complexity analysis for the
static algorithms is no longer suitable for the dynamic algorithms. It is clearly
that the cost of a dynamic algorithm only depends on the update size in the
computation. Using worst-case analysis analysis and a function with the size
of problem input to express it is not informative. Instead, one can define an

� This paper was partially supported by NGFR 973 grant 2012CB316200 and NSFC
grant 61003046, 6111113089. Doctoral Fund of Ministry of Education of China
(No.20102302120054).

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 296–307, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Dynamic Graph Shortest Path Algorithm 297

adaptive parameter |changed|, which captures the size of the changes in the
input and output, to analysis the dynamic algorithms. This parameter indicates
that the updating cost is inherent to the dynamic algorithm itself. An dynamic
algorithm is said to be bound if its computation cost depends only on the size of
|changed|, and not on the size of the entire input. i.e, it can be expressed by a
function of |changed|. This paper, we define the set of nodes whose input value
and output value change as |changed|. We use the parameter |AFF | to denote
the number of nodes in |changed| and ||AFF || to denote the number of edges
incident on some nodes in |changed|.
Contributions. In this paper we focus on dynamic point-to-point shortest-path
problem(P2P) for directed graphs with positive edge weights. We provide effec-
tive dynamic algorithms for unit update, i.e, a single-edge deletion or insertion,
and bath updates, i.e, a list of edge deletions and insertions mixed together. We
show that all the dynamic algorithms are bound. Using both real-life data and
synthetic data, we experimentally evaluate the efficiency and scalability of our
dynamic algorithms. We find that our dynamic algorithms perform significantly
better than their static counterparts, even in worst case. When data graphs are
changed up to 40%, our algorithms consistently outperform the static algorithm.

Organization. Section 2 states the basic definition and data structure. The
dynamic shortest-path problems for single-edge update and bath update are
studied in section 3,4, respectively. Section 5 represents experimental results.
This paper ends with conclusion in Section 6.

Related Work. There are some work concerning the dynamic shortest path
problem. IEven [3] and Rohnert [4] presented algorithms for maintaining shortest
paths on directed graphs with arbitrary real weights. Their algorithms required
O(n2) per edge insertion; Ramalingam and Reps [5], [2], Frigioni et al. [6], [7]
introduced a batch dynamic shortest path algorithms with arbitrary real weights,
they use the model that the running time of their algorithm is analyzed in terms
of the output change rather than the input size, but they only handle the single
edge update. As far as we know, there is no algorithm which the worst case is
always better than recomputing the new solution from scratch.

There are some works on special case to compute the shortest path problem.
[8] depicted an incremental shortest path algorithm for directed graphs with
positive integer weights less than C: the amortized running time of their algo-
rithm is O(Cnlogn) per edge insertion. [9] designed a fully dynamic algorithm
with mortized time O(n9/7log(nC)) for all pair shortest path problem on planar
graphs with integer weights. A fully dynamic algorithm for single-source shortest
paths in planar directed graphs in O(n4/5log13/5n) mortized time per operation
was presented in [10].

The existing method which related to ours is proposed in [5]. This paper
proposed a fully-dynamic algorithm called SWSF-FP which handled the batch
update at the same time. Our partial work batch update is closely to the SWSF-
FP, but we maintain it on a special shortest path tree to reduce the unnecessary
computation.

298 X. Liu and H. Wang

2 Problem Statement and Data Structure

2.1 Problem Statement

Let G = (V,E) be a directed graph with a non-negative length function len:
V × V → R+

⋃
{∞}, where V is the vertex set, E ⊆ V × V is the edge set.

Let s(t) ∈ V be an arbitrary but fixed source(destination), (v1, v2, ...vs) be a
shortest path from v1 to vs . With dist(v) we denote the length of a shortest
s− v − path in G for any v ∈ V . i.e, dist[v] is the shortest distance from s to t.

Given a shortest-path P from s to v, a batch update �G to G, the dynamic
shortest-path problem is to find the new shortest-path P

′
from s to t without

recomputing from the original graph.

2.2 Data Structure

To avoid of recomputing the P
′
from scratch, we introduce some auxiliary data

structures.
The basic idea of finding new shortest path in dynamic graph is to store

the single source shortest path graph(SP), then update the SP to obtain the
result. There is lots of unnecessary computation in the update process. To de-
crease the redundant cost, we propose a new structure which is called adaptive
shortest-path subgraph. Before we define the adaptive shortest-path subgraph,
we introduce the concept of SSP edge: An edge in the graph is said to be an SSP
edge iff it occurs on some shortest path from the source vertex s to the other
vertex v ∈ G. Thus, an edge (u, v) is an SSP edge iff dist[u] = len(u, v)+dist[v].
Adaptive shortest-path subgraph are defined as followed:

Definition 1. A subgraph T is said to be an adaptive shortest-paths subgraph
for a given graph G with source node s if

(1)for each v ∈ V (T), there is a path from s to v.
(2)every edge in T is a SSP edge.

We maintain a distance vector D containing d(v) for each node v in ASP (G).
After each update, D has to be updated accordingly. For every each vertex
v ∈ V (G), we use out[x] to denote the outgoing vertices of x, in[x] to denote the
ingoing vertices of x.

For each node v in ASP (G), we maintain a list pre[v] to denote the previous
node of v in the shortest-path from s to v. (Considering the shortest-path be-
tween two nodes is not unique, so pre[v] is a list.) Succ[v] represent the list of
successor node of v .

As pointed out in section 1, instead of analyzing the cost of the dynamic
algorithms in terms of the size of the entire input, we analyze them by the size
of |changed|. The notion of affected areas is introduced to characterize changed.

Affected Areas. Let G be the graph before the edge update, G
′
be the graph

after the edge update, ASP (G) be the adaptive shortest-path subgraph of G,
ASP (G

′
) be the new adaptive shortest-path subgraph of G

′
. The Affecte areas

of G by the edge update is the difference between ASP (G) and ASP (G
′
). We

Dynamic Graph Shortest Path Algorithm 299

use |AFF | to denote the number of vertices in Affected areas, ||AFF ||to denote
the number of edge incident to the vertices in Affected Area.

(a) (b) (c)

Fig. 1. ASP(G) and affected area

Example 1. Consider the weighted directed graphG shown in the left of Fig1.(a).
Without loss of generality, we set 0 as the source node and 4 the destination
node. The shortest-path from 0 to 4 is the indirect root 0 → 2 → 4. The right
graph of Figure 1 depicts the adaptive shortest-path graph ASP (G) of G and
the left figure1 with dotted line part is the shortest-graph SP (G) of G. Check
the ASP(G) against SP (G), we obtain that the size of SP (G) is smaller than
the size of SP (G).

Proposition 1. The size of ASP (G) is always less than or equal to the size of
SP (G).

All the auxiliary structure are summarized in table 1.

Table 1. Auxiliary Data Structure

d[v] The shortest distance from source s to v;
D Distance vector containing d[.] of all nodes in graph G;
SP (G) The shortest path graph for graph G;
ASP (G) The adaptive shortest path graph for graph G;
pre[v] The previous node list of v in ASP (G).
Succ[v] The successor node list of v in ASP (G).
in[v] The previous node list of v in graph G.
out[v] The successor node list of v in graph G.
|AFF | The number of affected nodes when update D[].
||AFF || The number of affected edge incident to the affected nodes when update D[].

The preconditions of the algorithm is in following:
(1) ASP(G), which store all the shortest-path form s to vertex v which d[v] ≤

d[t].
(2) A priority queue Q, a vertex v ∈ Q if v ∈ V (ASP (G)) and v[Succ] = ∅.

300 X. Liu and H. Wang

3 Unit Update

In this section, we provide a bound incremental algorithm for single-edge inser-
tions and a bound decremental algorithm for single-edge deletion. Furthermore,
we analysis the complexity and prove the correctness of our algorithms.

3.1 Single-Edge Insertion

The insertion of an edge from G may only reduce the shortest distance from the
source vertex s to the terminal vertex t. That is, the insertion operate may only
decrease the size of ASP (G). We denote those edges in graph G whose insertions
may change the shortest-path as si edges. An inserted edge (u, v) is a si edge if
u ∈ V (ASP (G)). one can verify the following:

Proposition 2. Given a graph G and a shortest-path from the source node s to
the terminal node t, only the insertions of si edge in G may reduce the shortest
distance from s to t.

Example 2. Recall the Example1, if we insert an edge (2, 1) with weight 3, which
is not a si, the shortest path is not changed and the adaptive shortest path graph
of the new graph G

′
ASP (G

′
) holds the line.

Based on Proposition 1, we provide algorithm InsertEdge shown to compute the
shortest-path from s to t when the edge e = (v

′
, v) is inserted into G.

Algorithm 1. Procedure InsertEdge

Input : Graph G, shortest-path P (s, t), edge e = (v
′
, v) with weight w to be

added to G.
Output: The updated shortest-path P ′(s, t).
Insert e into G;
HeapQ := ∅;
If e is not an si edge, return; mindist ← d[v

′
] + w;

If d[v] >mindistd[v] InsertHeap(v, d[v]) and d[v]← mindist;
while Q �= ∅ do

u =:DeleteMinHeap();
cut the nodes whose dist are larger than dist[v] and return if u==t;
if d[u] < d[t] then

for every vertex x ∈ out(u) do
if w(u, x) + d[u] < d[x] then

d[x] = w(u, x) + d[u]; AdjustHeap(x,d[x]);

According to the Prev[t], return P
′
;

In the first step, we insert the edge into the original graph G. Then we judge
wether the edge e is a si edge. If not, return P and the ASP (G) is not changed.
There are two situations when e ∈ si: (1) the insertion of e indeed reduces the

Dynamic Graph Shortest Path Algorithm 301

shortest distance from s to t. (2)the shortest path is remain P . In the first case,
when update the ASP (G), we need to cut the node and edge whose dist is larger
than dist[v]. In the other case, we need update the affected node the ASP (G).
A node v is an affected node when the update d[v] is less than original dist[v],
these nodes may only appear in the subtree of v

′
.

Correctness and Complexity. When the inserted edge(v
′
, v) affect the

ASP (G), two kinds of node may be affected. One is the subtree nodes of v,
the distance of this kind of nodes decrease, the other kinds is the nodes in sub-
tree nodes of v in G\ASP (G), this kind of nodes may be added into the ASP (G).
Our algorithm traverse the outgoing edge of v, then relax these edges and update
corresponding prev and Succ. This step we update the new distance of nodes in
ASP (G) until its distance is larger than new d[t], also add the nodes who is not
in the ASP (G) but update distance lower than d[t]. It ensures the correctness
of updating ASP (G).

Let L be the distance of P , L
′
be the distance of P

′
. The affected area of

InsertEdge is shown in Fig1.(b): let δ be the nodes in in smaller triangle, |δ| be
the number of δ and ||δ|| be the number of edges related to nodes in δ. This
triangle includes the subtree nodes of v. The update of this area node takes
O(δ log δ) time to update. Denote the number of diagonal marked area as m,
we need delete the node in this area from ASP(G). It takes O(m) time. The
entire complexity of this algorithm is O(m + δ log δ). If the insertion edge did
not change the shortest path, m = 0. Let |AFF | = m + δ, we can verify that
this algorithm is bound by the affected nodes.

3.2 Single-Edge Deletion

In contrast to edge insertions, the deletion of an edge may only increase the
shortest distance from s to t. i.e, the old shortest-path from s to t may be not
connected. We identify those edges in G whose deletions affect the shortest-
path, referred to as sd edges, as follows. An edge (u, v) in G is a sd edge for a
shortest-path P if u ∈ V (P), v ∈ V (P). It suffices to consider sd edge for edge
deletions:

Proposition 3. Given a graph G and a shortest-path from the source node s
to the destination node t, only the deletions of sd edge in G may increase the
shortest distance from s to t.

After delete the edge in the shortest-path P , we first check the prev list
from terminal vertex t. Going through the prev list, if the vertex s is reached,
the algorithm return Path P , the shortest-path is not change. We only need
to update the subtree rooted at v in ASP (G). If not, we have to find another
shortest-path from G. According to the Proposition 2, we only need to extend
the ASP (G) until we meet the vertex t. In the worst case, the path from s to t
is not connected after the deletion operation. In this case, the ASP (G) is equal
to SP (G), that is to say, we have to compute all the shortest-path from single
source s to the other vertex. In the process of updating ASP (G), firstly, we
should identify the affected area. The affected area consists of vertices whose d[]

302 X. Liu and H. Wang

Algorithm 2. Procedure DeleteEdge

Input : Graph G,the shortest-path P (s, t), and an edge e = (v
′
, v) in G is to

be deleted .
Output: The updated shortest-path P ′(s, t)
delete edge e from G;
Heap Q:= ∅;
if e ∈ sd then

Identify the affected area;
// update the ASP (G)
for every vertex u ∈ affctedarea do

d[u]=mind[x] + len(x, u)|xis not in AffectedArea and x ∈ in(u);
InsertHeap(u,d[u])If d[u] �= ∞;

while Q �= ∅ do
u =:DeleteMinHeap();
if d[u] < d[t] then

for every vertex x ∈ Succ[u] do
if d[x] < d[u] + len(x, u) then

d[x] = d[u] + len(x, u);Update ASP(G);
DecreaseHeap(x,d[x]);

if d[t] = ∞ then
Heap Q=all the leave nodes of the ASP (G);
extend the ASP (G) until reach t;

search pre[t] to find P
′
;

changes. We use a stack to find them. Suppose v is an affected node, we check
the nodes in Succ[v] and put them into the stack. Then we handle them one by
one. If the prev of node x in Succ[v] is empty after deleting v from prev[x], we
add x into the affected area.

Correctness and Complexity. According to the updated ASP(G), we can
obtain the update shortest-path P

′
. The process of the DeleteEdge algorithm

ensures every path in the ASP(G) is a shortest-path, so, P
′
is the shortest-path

from s to t. The size of the affected vertices is the number of vertices in the
smaller triangle and diagonal marked area in Fig1.(c)(edge deletion). We denote
the number as |AFF |. The number of associate edge as ||AFF ||. We adopt
Fibonacci heap to update the ASP(G), so the complexity of the algorithm is
O(|AFF |+ ||AFF ||log||AFF ||).

4 Batch Update

Given a series of edge operations +e1,−e2,−e3,+e4, ..,
′ +′ (′−′) represent the

insertion(deletion) operation. It is cost when we update the shortest-path one by
one because of the turbulence of the ASP(G).To avoid redundant computation
and improve the efficiency of the update, We introduce a batch update algorithm
for point-to-point shortest path problem.

Dynamic Graph Shortest Path Algorithm 303

The batch update algorithm is based on two principle. (1)remove redundant
edge operation as much as possible. (2)handle multiple edge operations simulta-
neously rather than one by one.

Algorithm 3. Algorithm BatchUpdate

Input : Graph G,the shortest-path P (s, t), and the batch update �G.

Output: The updated shortest-path P
′
(s, t)

update G; MinDelta(ASP(G),�G);

for every edge e = (v
′
, v) in �G do

new[v] = min{d[p] + len(p, v)|p ∈ in(v)};
if d[v]! = new[v] then

InsertHeap(v,min{new[v], dist[v]});
if the �G affect P then

d[t]=∞;

while Q!=∅ do
u =:FindAndDeleteMin(Q);
if d[u] < new[u] then

d[u]=∞;
for every vertex x ∈ Succ(u) do

new[x] = min{d[p] + len(p, x)|p ∈ in(x)};
key=min{d[x],new[x]};
if d[x]! = new[x]andkey < d[t] then

InsertHeap(x,key);

if d[u] > new[u] then
d[u] = new[u];
if u==t then

return;

for every vertex x ∈ out(u) do
new[x] = min{new[v], new[u] + len(u, x)};
key = min{d[x], new[x]};
if d[x]! = new[x]andkey < d[t] then

InsertHeap(x,key);

return P
′
;

In algorithm BatchUpdate, the procedure MinDelta minimize the size of �G
by reducing the nodes who don’t affect the ASP (G). i,e, the inserted edges which
are not si edges and the deleted edges which are not sa edges. When updating
ASP (G), we use new[v] to store the tempt distance of shortest path from s to
v. Let key=min{d[v],new[v]}, the key value sort the sequence of nodes to be
process. This order can set all the affected nodes on correct values.

Theorem 1. In the Batch update algorithm, every affected vertices at most pro-
cessed two times.

304 X. Liu and H. Wang

Proof. When all the �G are edge deletions, no vertices can have shorter dis-
tances. According to the algorithm, d[v] will be first assigned ∞ and then back
to its correct value. Therefore, the affected vertices are insert into heap and ex-
tracted from heap twice. Similarly, when all the input updates are edge insertion,
no vertices can have longer distances. d[v] is assigned his new[v] value and will
not be processed again.Consequently, the affected vertices are processed only
once.

Correctness and Complexity. When the iteration procedure abort, all the
ASP(G) are update correctly. Let AFF be the affected area nodes, |AFF | be the
number of AFF and ||AFF || be the affected edge associated vertices in AFF .
The complexity of our algorithm is O(|AFF |+ ||AFF ||log||AFF ||).

5 Experiments

In this section, we present an experimental study using both real-life and syn-
thetic data, we conduct three sets of experiments to evaluate (1) the effectiveness
of our algorithms compared to Dijikstra and DynamicDijikstr, (2)the efficiency
and scalability of batch updates algorithms, (3) the performance and advantage
of our algorithm compared to the scratch method and MFP [11] method.

Experimental Setting. We used two real-life datasets to evaluate the effec-
tiveness of our algorithms, and synthetic data to change graph characteristics,
for an in-depth analysis.

(1)Real-life data. Both of the real-life datasets come from websites. (a)The
first is taken from website 1, it describes the North American Road Network
with 174k nodes and 179k edges and San Joaquin County road network with 18K
nodes and 23k edges. Each road was represented by the nodeID and his location
information, each edge was associated a float number denoting the distance
of two nodes. We extract the North American Road network data snapshots
based on the road location,each has 18k nodes and 20k edges. (b)the second
datasets came from a crawled LiveJournal social network graph. With node
denotes person and edge denotes friendship relation. The size of this datasets is
5M with 75knodes and 508k edges. We extract snapshots based on the age of
people, each consisting of 20k nodes and 80k edges.

(2)synthetic data..We use a generator to produce directed weight graph with
two parameters, the number of nodes and the average degree. The parameter
density denotes the density of edge in the graph.

Implementation. We implemented the following in C++: (1)InsetEdge and
DeleteEdge (2)BatchUpdate (3)the Dijkstra algorithm.(4)DynamicDijkstra [11].
(5)MFP.

All experiments were executed on a machine with an Intel Pentium@2.93GHz
CPU and 2GB of memory running Windows XP.

1 http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm

http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm

Dynamic Graph Shortest Path Algorithm 305

Experimental Result

1.The Efficiency and Scalability of Single-Edge Update Algorithms
We use real-life and synthetic data to evaluate the efficiency of our algorithms.
If the source and terminal nodes were fixed, we select arbitrary an edge for 10
times to compute the average running time and the affected area.

Next we present our findings. Fig2.(a) shows the efficiency of our algorithms

20k 75k
1

10

100

1000

10000

T
he

 a
ffe

ct
ed

 s
iz

e
(lo

g1
0

)

real data size

 Dijikstra
 InsertEdge
 DynamicDijikstra
 DeleteEdge

(a)

1k 5k 10k 15k 20k
0

50

100

150

200

250

300

C
P

U
 ti

m
e

(s
)

nodes number

 Dijikstra
 InsertEdge
 DynamicDijikstra
 DeleteEdge

(b)

Fig. 2. The efficiency and scalability of single-edge update

using real-life data. The data size is 20k and 175K. Both of these two cases,
our algorithms perform better. This is because our unit algorithm save a lot of
time recomputing the shortest path graph. The affected size represents the same
character.

Figure2.(b) shows the scalability of our algorithms. We generate graph with
fixed average degree 500. The size of graph vary 1K nodes to 20k nodes, each
increases by 5k nodes. In contrast to the DynamicDijikstra algorithm, the Insert-
Edge algorithms always perform good. Its average of the running time changes
in a small range. In practise, when we insert an edge into a big graph, the prob-
ability of the edge changing exiting shortest path is very small. Even in the
shortest path changed case, the InsertEdge only need to compute a tiny subtree
which was introduced in Fig1.(b), while the DynamicDijikstra have to update
all the subtree in the entire shortest path graph. However, the procedure Dele-
teEdge sometimes defeated by DynamicDijikstra algorithm. The reason for that
is the worst case occurs or the updated d[t] far outweight the old d[t]. In the
worst case, the DynamicDijikstra algorithms just update the subtree of node of
the tailing deleted edge. But the DeleteEdge must extend the adaptive shortest
path graph. Let L be the old shortest distance from source vertex to termi-
nal vertex, L’ be the updated value. Consider the following situations: (1)L=L’,
that is, the distance of shortest path do not change. (2)L’=∞. i,e. there is no
path from the source vertex to the end vertex. We compare these two cases in
Fig3.(a). |L − L

′ | = 1 represents L’=∞ . In best case(L=L’), InsertEdge algo-
rithm has decisive advantage. While in the worst case, the DynamicDijikstra
performs better.

We also study the effects of the graph density. We fix the graph size as 2k with
average degree 100 and vary the average degree from 100 to 1000, separated by
200. It can be found in Fig3.(b) that dealing with dense graph need more time

306 X. Liu and H. Wang

0 1
0

200

400

600

T
he

 a
ffe

ct
ed

 s
iz

e

|L-L’|

 InsertEdge
 Dijikstra
 DynamicDijikstra
 DeleteEdge

(a)

200 400 600 800 1000

0

2

4

6

8

10

12

14

C
P

U
 ti

m
e

(s
)

average degree

 Dijikstra
 InsertEdge
 DynamicDijikstra
 DeleteEdge

(b)

Fig. 3. The affection of parameters

for Dijikstra algorithms, the dynamic algorithms is affected little. In fact,the
dense graph reduce the probability of worst case occurring.

2.The Efficiency and Scalability of Batch Update Algorithms
We compare batch update algorithm with MFP in both real-life dataset and
synthetic dataset. The change size set as 10% of the edge number. Every set-
ting is implemented 10 times to obtain the average value. In most cases, the
performance of BatchUpdate is superior to the MFP. The cause is the affected
nodes that BatchUpdate update less than MFP in general case. However, in
worst case, BatchUpdate needs some extra cost to extend the adaptive shortest
graph to a single source shortest graph. The result shows the average time. We
can see that algorithm BatchUpdate gains advantage over MFP and Dijikstra
algorithms. The scalability of BatchUpdate is depicted in Fig4.(b),we set the
size of graph as above described the scalability of unit update.The figure shows
that our algorithms scale well.

Finally, we change the size ofΔG to present the adaptability of our algorithms.
We increase the updating edge number by 10% percent of all edges number, from
10% to 50%.And the graph size is 2K nodes with average degree 100. The result
is shown in Fig2.(c), the BatchUpdate algorithm perform well until 40% edges
changed.

20k 75k
0

5

T
he

 a
ffe

ct
ed

 s
iz

e
(K

)

real data size

 Dijikstra
 BatchUpdate
 DynamicDijikstra

(a)

1K 5k 10k 15k 20k

0

50

100

150

200

250

300

C
P

U
 ti

m
e

(m
s)

node number

 Dijikstra
 BatchUpdate
 DynamicDijikstra

(b)

10 20 30 40 50
0

50

100

150

200

250

300

350

C
P

U
 ti

m
e

(s
)

percentage of edge changed

 Dijikstra
 MFP
 BatchUpdate

(c)

Fig. 4. The experimental study of batch update

Dynamic Graph Shortest Path Algorithm 307

6 Conclusion

This paper study the dynamic algorithms of Point-to-Point shortest path prob-
lem. We propose a new method using Adaptive shortest path graph to reduce the
size of update cost comparing to the single source shortest path problem.Using
this method, we present the unit update and batch update algorithms. We state
that all the algorithms are bound by the change of input and output size. Finally,
we experimentally demonstrate our algorithms perform better than recompute
the shortest path from static algorithm and the dynamic algorithm maintaining
the shortest path graph. Unfortunately, There is no dynamic algorithm always
performing better than recomputing from scratch. It is an open issue to deserve
study.

References

1. Bauer, R., Wagner, D.: Batch dynamic single-source shortest-path algorithms: An
experimental study. Experimental Algorithms 2, 1–20 (2009)

2. Ramalingam, G., Reps, T.: On the computational complexity of dynamic graph
problems. Theoretical Computer Science 158(1-2), 233–277 (1996)

3. Even, S., Gazit, H.: Updating distances in dynamic graphs. J. Algorithms (1985)
4. Rohnert, H.: A dynamization of the all-pairs least cost problem. In: Mehlhorn, K.

(ed.) STACS 1985. LNCS, vol. 182, pp. 279–286. Springer, Heidelberg (1984)
5. Ramalingam, G.: An incremental algorithm for a generalization of the shortest-

path problem. J. Algorithms (1991)
6. Franciosa, P.G., Frigioni, D., Giaccio, R., Sapienza, L.: Semi-Dynamic Shortest

Paths and Breadth-First Search in Digraphs. Search 2(20244) (1997)
7. Frigioni, D., Marchetti-spaccamela, A., Nanni, U.: Fully Dynamic Algorithms for

Maintaining Shortest Paths Trees 1. Journal of Algorithms (201), 251–281 (2000)
8. Ausiello, G., Italiano, G.F.: Incremental algorithms for minimal length paths. J.

Algorithms (1991)
9. Henzinger, M.R.: Faster Shortest-Path Algorithms for Planar Graphs 23, 3–23

(1997)
10. Fakcharoenphol, J., Rao, S.: Planar graphs, negative weight edges, shortest paths,

and near linear time. Foundations (2002)
11. Chan, E.P.F., Yang, Y.: Shortest Path Trees Computation in Dynamic Graphs.

Most, 1–45

A Framework for High-Quality Clustering

Uncertain Data Stream over Sliding Windows�

Keyan Cao1, Guoren Wang1,2, Donghong Han1, Yue Ma1, and Xianzhe Ma1

1 College of Information Science & Engineering, Northeastern University, China
2 Key Laboratory of Medical Image Computing (NEU), Ministry of Education

caokeyan@gmail.com

Abstract. In recent years, data mining over uncertain data stream has
attracted a lot of attentions along with the imprecise data widely gener-
ated. In many cases, the estimated error of the data stream is available.
The estimated error is very useful for the clustering process, since it can
be used to improve the quality of the cluster results. In this paper, we
try to resolve the problem of clustering uncertain data stream over slid-
ing windows. The tuple expected value and uncertainty are considered
meanwhile in the clustering process. We therefore propose the algorithm
based on Voronoi diagram to reduce the number of expected distance cal-
culation over sliding windows. Finally, our performance study with both
real and synthetic data sets demonstrates the efficiency and effectiveness
of our proposed method.

Keywords: Uncertain data stream, clustering, data mining.

1 Introduction

In recent years, a large amount of uncertain data stream, such as sensors data
stream is generated. Analyzing and mining such kinds of data stream have be-
coming a hot topic. Mining uncertain data stream is much more difficult than
mining tasks over deterministic data stream.

Clustering is one of the most important tasks in data mining field. Most of tra-
ditional clustering methods in an uncertain data set treat the distances between
tuples as the unique factor to cluster. However, when the data is uncertain with
error, not only consider the expected value, but also consider the uncertainty
of the data. The presence of uncertainty can significantly affect the results of
clustering. In the clustering process, the data with higher uncertainty may be
treated differently from those which have lower uncertainty [1] [2].

In this paper, we adopt the sliding window model and Voronoi diagram to
cluster uncertain data stream. Our main contributions are as follows:

(1) We provide a method to quantify tuple uncertainty in order to distinguish
the uncertainty of different estimated error.

� This research was supported by the National Natural Science Foundation of China
(Grant No. 61073063, 61173029, 60803026 and 61173030).

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 308–313, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Framework for High-Quality Clustering Uncertain Data Stream 309

(2) The cluster algorithm is proposed with Voronoi diagram over sliding win-
dow.

(3) We also implement a series of experiment evaluation, showing that our
method is effective and efficient.

This paper is organized as follows: In the next section, we propose a metric to
quantify uncertainty of tuple in Section 2. In section 3, we propose an algorithm
for clustering uncertain data stream with Voronoi diagram over sliding windows,
and elaborate the implementation details respectively. Section 4 we will discuss
the experimental results. Finally, we give a brief conclusion and point out the
future work in Section 5.

2 Uncertain Definition

In this section, the method which is introduced to quality of uncertainty is used
for distinguishing the quality of uncertain data. We assume it is available that
the estimated error of the data stream. Each point is composed of tuple value
and estimated error of each dimension. In fact, it’s an uncertainty deduction
procedure. We can see that the smaller the range of tuple, the less uncertainty
of it. If we can obtain certain data, its uncertainty will reduce to zero, then it
transforms to a deterministic situation. Above analysis indicates that estimated
error of a tuple is highly correlated with its uncertainty. We further define the
tuple uncertainty as the function.

Definition 1. (tuple uncertainty) tuple xiis two-dimensional data, the tuple un-
certainty of xi((x

1
i , ψ(x

1
i)), (x

2
i , ψ(x

2
i))), ψ(x

1
i) > 0, ψ(x2

i) > 0, is defined as

u(xi) =
ψ(x1

i) · ψ(x2
i)

ψ(x1
i) · ψ(x2

i) + 1
(1)

ψ(xd
i) (1 ≤ d ≤ 2) is the error value of the d-dimensional of xi.

Property 1. (low bound) u(xi) > 0, uncertainty of tuple xi is greater than zero.

Proof. because of ψ(x1
i) · ψ(x2

i) > 0, and ψ(x1
i) · ψ(x2

i) + 1 > 1, so

u(xi) =
ψ(x1

i) · ψ(x2
i)

ψ(x1
i) · ψ(x2

i) + 1
> 0

Property 2. (upper bound) u(xi) < 1, uncertainty of tuples xi is always less
than 1.

Proof. suppose

u(xi) =
ψ(x1

i) · ψ(x2
i)

ψ(x1
i) · ψ(x2

i) + 1
≥ 1

the inequality further implies that

1

ψ(x1
i) · ψ(x2

i) + 1
≤ 0

310 K. Cao et al.

obviously, this inequality does not hold, the assumption is not true. So the un-
certainty of tuple u(xi) is always less than 1.

Property 3. Tuple uncertainty is only a function of estimated error. It does not
depend on the actual values of tuple, but only on its estimated error for each
dimension.

By Definition 1, the uncertainty of tuple is available. Through uncertainty of
tuple, uncertainty of cluster can be obtained.

Definition 2. (cluster uncertainty) the cluster is formed of n tuples x1, x2, · · · , xn,
uxi represent the uncertainty of the xi, the uncertainty of cluster is define as

U =

∑n
i=1 uxi

n

3 Clustering Uncertain Data Stream

Based on the quantification of uncertainty, we propose the algorithm to cluster
uncertain data stream with Voronoi diagram over sliding windows. Although
in [1], Aggarwal and Yu proposed Error based Cluster Feature (ECF) to handle
uncertain data stream. However, the influence of uncertainty has not been con-
sidered in the procedure of uncertain stream clustering, which affects the quality
of cluster results. In this paper, we emphasize the influence that uncertainty to
cluster results.

3.1 Problem Definition

We assume that uncertain data stream consists of a set of two-dimensional un-
certain tuples x1, x2· · · , xi, · · · , xn, arriving at time stamp T1, T2, · · · , Ti, · · · ,
Tn, for any i < n, Ti < Tn. The tuple xi is expressed as ((x1

i , ψ(x
1
i)), (x

2
i , ψ(x

2
i))).

Estimated error of tuple for each dimension is ψ(xd
i) (1 ≤ d ≤ 2) respectively.

3.2 Framework

The micro-clustering model was first proposed in [3] for large data sets, in order
to cope with the uncertain stream model, a variety of micro-clusters are defined,
named Micro-Cluster Feature (MCF)(Definition 3).

Definition 3. (MCF): A Micro-Cluster feature(MCF) for a set of d-dimensional
(1 ≤ d ≤ 2)) points with time stamps T1, T2, · · · , Ti, · · · , Tn, for any i < n,
Ti < Tn, and error ψ(xd

i) is defined as the (2d+3) tuple (CF2x(C), CF1x(C),

n(C), U(C), t(C)) , CF2x(C) and CF1x(C) each correspond to a vector of d
entries. The definition of each of these entries is as follows:
• For each dimension, the sum of squares of the data values is maintained in

CF2x(C). The value of j-th entry is
∑n

i=1(xi)
2.

A Framework for High-Quality Clustering Uncertain Data Stream 311

• For each dimension, the sum of the data is maintained in CF1x(C). The
j-th entry of CF1x(C) is equal to

∑n
i=1 xi.

• The number of points in the cluster is maintained in n(C).
• The uncertainty of cluster is maintained in U(C).
• The time point of the most recent point is maintained in t(C).

We note that error based micro-clusters maintain the important additive property
which is critical to its use in the clustering process.

Property 4. (MCF additive): Let C1, C2 denote two sets of points. MCF (C1 ∪
C2) is available, according to MCF (C1) and MCF (C2).

The values of entries CF2x(C), CF1x(C), and n(C) are the sum of the corre-
sponding entries in MCF (C1) and MCF (C2). The single temporal component
t(C1UC2) is given by max t(C1), t(C2). The additive property is an important
one, when new data point arrived, MCF of the new cluster can be calculated
easily and rapidly.

In the practical application, people often more care about the most recent dis-
tribution of the data stream, sliding window model can be used to better present
the characteristics of current data stream. The algorithm we proposed is based
on sliding window, can phase out outdated data in a timely manner, present the
characteristics of current data stream really. In this section, we adopt the model
to update uncertain data stream over sliding window was proposed in [4].

3.3 Clustering Algorithm

For the m points arrived early, we establish micro-cluster for each point, and
build voronoi diagram. In Figure 1, when the next uncertain data xi arrives, cal-
culate the uncertainty of tuples, by Definition 1. At the same time, we determine
whether the range of data point is within a cluster in the voronoi diagram. If it
is true, calculate the distance dis from expected value of xi to centroid of the
cluster, when dis < δ(δ is the threshold) add uncertain data xi to the cluster,
update the MCF. Otherwise, we merge the two clusters, create a new cluster
for the current data. If the range of data xi is on the junction of n clusters,
we calculate the distance from expected value of data xi to centroid of the n
clusters respectively, and select some of them (dis < δ), assuming the data are
added to each cluster, calculate � U(C) of each cluster, pick up the cluster with
maximum value of to absorb the data point xi.

3.4 Update Voronoi Diagram

While a new data point is added to a cluster, the centroid of cluster may be
changed, in Figure 2, point c1 is centroid of the cluster, however, c′1 is the new
centroid of the cluster after it was merged a new point, we update the Voronoi
diagram, only need to recalculate perpendicular bisector from c′1 to centroid of
adjacent cluster, and no need to change other parts of Voronoi diagram. This
reduces the number of unnecessary calculations, to improve updated speed.

312 K. Cao et al.

a

b

Fig. 1. Uncertain data point in voronoi
diagram

c1

c2

c3

c4

c5

c1
'

Fig. 2. Update cluster

4 Experiment

In this section, we employed UMicro [5] as the competitive method. To evalu-
ate the clustering quality, efficiency of the H-QCUDS and UMicro algorithm,
both real and synthetic data sets are used in our experiments. Specifically, we
show the algorithm that we proposed can get high quality clustering result. The
method can achieve superior performances and it is scalable to fit for the stream
requirement.

4.1 Clustering Quality

We use uncertainty mean (UM) to measure the level of uncertainty in clustering
result. As [2], the UM is defined as the average uncertainty of overall online
micro clusters. In general, the smaller UM value is, the greater quality of the
clustering result.

Figures 3 shows the clustering quality comparison results. It is clear that, in
each case, the H-QCUDS provided superior quality to UMicro under UM crite-
rion. The high clustering quality of H-QCUDS benefit from that our algorithm
pay more attention to the uncertainty of the data tuples.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

U
nc

er
ta

in
ty

 M
ea

n

Progression of Data Stream(× 105)

UMicro
H-QCUDS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

U
nc

er
ta

in
ty

 M
ea

n

Progression of Data Stream(× 105)

UMicro
H-QCUDS

(a) SynDiscrete

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

U
nc

er
ta

in
ty

 M
ea

n

Progression of Data Stream (× 105)

UMicro
H-QCUDS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

U
nc

er
ta

in
ty

 M
ea

n

Progression of Data Stream (× 105)

UMicro
H-QCUDS

(b) Network stream intru-
sion

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

U
nc

er
ta

in
ty

 M
ea

n

Progression of Data Stream (× 105)

UMicro
H-QCUDS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

U
nc

er
ta

in
ty

 M
ea

n

Progression of Data Stream (× 105)

UMicro
H-QCUDS

(c) Forest cover

Fig. 3. Uncertainty of stream clustering

A Framework for High-Quality Clustering Uncertain Data Stream 313

4.2 Efficiency Test

In Figures 4, we illustrate the efficiency of the clustering method on the different
data sets. We can see that both the execution time of H-QCUDS and UMi-
cro grow linearly as the stream proceeds, and H-QCUDS is more efficient than
UMicro. It is clear that the H-QCUDS method is able to process thousands of
points per second in each case. From this perspective, our H-QCUDS method is
not only effective, but also a very efficient clustering method for uncertain data
stream.

 1

 2

 3

 4

 5

 1 2 3 4 5

N
um

be
r

of
 D

at
a

Po
in

t P
ro

ce
ss

ed
/S

ec
 (

×
10

3)

Progression of Data Stream (× 105)

UMicro
H-QCUDS

 1

 2

 3

 4

 5

 1 2 3 4 5

N
um

be
r

of
 D

at
a

Po
in

t P
ro

ce
ss

ed
/S

ec
 (

×
10

3)

Progression of Data Stream (× 105)

UMicro
H-QCUDS

(a) SynDiscrete

 1

 2

 3

 4

 5

 1 2 3 4 5

N
um

be
r

of
 D

at
a

Po
in

ts
 P

ro
ce

ss
ed

/S
ec

(×
 1

03)

Progression of Data Stream(× 105)

UMicro
H-QCUDS

 1

 2

 3

 4

 5

 1 2 3 4 5

N
um

be
r

of
 D

at
a

Po
in

ts
 P

ro
ce

ss
ed

/S
ec

(×
 1

03)

Progression of Data Stream(× 105)

UMicro
H-QCUDS

(b) Network stream intru-
sion

 1

 2

 3

 4

 5

 1 2 3 4 5

N
um

be
r

of
 D

at
a

Po
in

ts
 P

ro
ce

ss
ed

/S
ec

(×
 1

03)

Progression of Data Stream(× 105)

UMicro
H-QCUDS

 1

 2

 3

 4

 5

 1 2 3 4 5

N
um

be
r

of
 D

at
a

Po
in

ts
 P

ro
ce

ss
ed

/S
ec

(×
 1

03)

Progression of Data Stream(× 105)

UMicro
H-QCUDS

(c) Forest cover

Fig. 4. Efficiency of stream clustering

5 Conclusions

In this paper, we proposed H-QCUDS, an algorithm used to cluster uncertain
data stream with Voronoi diagram over the sliding window. A Micro-Clustering
Feature (MCF) is presented to tracking the uncertain data streams. In order
to improve clustering quality, H-QCUDS algorithm adopts a two phase stream
clustering selection process. The experimental results show that the clustering
quality of the H-QCUDS algorithm is higher than that of UMicro algorithm.
Next steps of our work are taking more complex uncertain data stream into
account, such as high-dimensional.

References

1. Aggarwal, C.C., Yu, P.S.: A survey of uncertain data algorithms and applications.
Knowledge and Data Engineering 21(5), 609–623 (2009)

2. Zhang, C., Gao, M., Zhou, A.: Tracking high quality clusters over uncertain data
streams. In: ICDE 2009, pp. 1641–1648 (2009)

3. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient data clustering
method for very large databases. In: SIGMOD 1996, vol. 25(2), pp. 103–114 (1996)

4. Chang, J.L., Cao, F., Zhou, A.Y.: Clustering evolving data streams over sliding
windows. Journal of Software 18(4), 905–918 (2007)

5. Aggarwal, C.C., Yu, P.S.: A framework for clustering uncertain data streams. In:
ICDE, pp. 150–159 (2008)

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 314–321, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Bayesian Network Structure Learning
from Attribute Uncertain Data

Wenting Song1,2, Jeffrey Xu Yu3, Hong Cheng3, Hongyan Liu4,
Jun He1,2,*, and Xiaoyong Du1,2

1 Key Labs of Data Engineering and Knowledge Engineering, Ministry of Education, China
 2 School of Information, Renmin University of China

{songwt,hejun,duyong}@ruc.edu.cn
3 The Chinese University of Hong Kong
{yu,hcheng}@se.cuhk.edu.hk

4 Department of Manage. Sci. & Eng., Tsinghua University
hyliu@tsinghua.edu.cn

Abstract. In recent years there has been a growing interest in Bayesian
Network learning from uncertain data. While many researchers focus on
Bayesian Network learning from data with tuple uncertainty, Bayesian Network
structure learning from data with attribute uncertainty gets little attention. In
this paper we make a clear definition of attribute uncertain data and Bayesian
Network Learning problem from such data. We propose a structure learning
method named DTAU based on information theory. The algorithm assumes that
the structure of a Bayesian network is a tree. It avoids enumerating all possible
worlds. The dependency tree is computed with polynomial time complexity.
We conduct experiments to demonstrate the effectiveness and efficiency of our
method. The experiments show the clustering results on uncertain dataset by
our dependency tree are acceptable.

Keywords: uncertainty, Bayesian Network structure, dependency.

1 Introduction

In the past, researchers in data mining and machine learning area usually assume data
is certain or precise, however that is not always the case. Data uncertainty arises in
many applications such as sensor network and user privacy protection. Uncertain data
can be divided into two categories by uncertainty source: artificial uncertain data and
inherent uncertain data. People sometimes add noise to data for some purpose such as
user privacy protection. As a result, the data become artificially uncertain. There are
also inherently uncertain data. For example the scientific measurement techniques and
tools are inherently imprecise and they are responsible for the generation of inherent
uncertain data. Many researchers focus on uncertain data management and mining in
database area and data mining area in recent years. In database area, there are three

* Corresponding author.

 Bayesian Network Structure Learning from Attribute Uncertain Data 315

models of uncertain data. The first one is tuple uncertainty model [1] [2]. Each tuple
in a probabilistic database is associated with a probability which represents the
likelihood the tuple exists in the relation. The second one is attribute uncertainty
model [3]. In attribute uncertainty model, each attribute in a tuple is subject to an
independent probability distribution. Correlated uncertainty model [5] is the third one.
Attributes are described by a joint probability distribution.

Many data mining algorithms have been proposed to analyze uncertain data, for
example, mining frequent patterns from uncertain transaction database [2], naïve
Bayesian classifiers for correlated uncertain data [7] [8], and clustering uncertain
objects [6]. However there are few works on data mining from attribute uncertain
data, and to the best of our knowledge no work has focused on how to learn Bayesian
Network (BN) structure from such data. Attribute independency is a common
assumption in database and data mining area, but it is not always reasonable, because
there are dependency relationships among attributes. Attribute uncertainty due to
measurement error or inherent uncertainty shouldn’t be the reason for independence
assumption. The structure learning from attribute uncertain data can reveal the
essential relationship between attributes.

In this paper, we propose the problem of BN structure learning from attribute
uncertain data and an algorithm named DTAU to solve the problem. Experiments
demonstrate the effectiveness of our proposed algorithm.

The rest of the paper is organized as follows. Section 2 discusses related work on
Bayesian Network structure learning for uncertain data. Section 3 gives relevant
definitions. Section 4 introduces our structure learning algorithm DTAU. Section 5 is
experimental study and Section 6 concludes the paper.

2 Related Work

Bayesian Network (BN) is a powerful tool to represent joint probability distribution over
a set of variables or attributes. A BN is made up of two components: a directed acyclic
graph (DAG), whose nodes represent variables and a set of conditional probability tables
(CPTs) which specifies the conditional distribution of each variable given its parent in
the DAG. Given a BN structure (DAG), there have been many algorithms for parameter
learning. However, sometimes the BN structures are unknown for lack of domain
knowledge. Thus the BN learning problem is of great importance. It has been proved
that BN structure learning problem is NP completed [9].

Many researchers have proposed approximation algorithms to solve the structure
learning from certain data problem. These methods are divided into two categories.
The methods in the first category are based on information theory which is used to
measure dependency relationships between nodes [10]. The methods [11] [12] in the
second category aim to maximize score function of the possible structure considering
that each node has no more than K parents. As this problem is NP-hard when K is
bigger than 1, heuristic rules based methods are usually used. For the attribute
uncertain data, we make use of the information theory to solve the problem and
assume the structure is a tree.

316 W. Song et al.

3 Problem Definition

In this section we describe some concepts about the problem of learning BN structure
from attribute uncertain data. The term observation is a concept in BN learning from
certain data problem.

Definition 1 (Attribute). An attribute Xi is a component or aspect of an object O. Xi
can take any value in D(Xi) which is the possible value domain of Xi. Di represents the
size of D(Xi). The attribute Xi is represented by a node (a random variable) in the BN
structure.

Definition 2 (uncertain example). An vector ue = {P1(X1), P2(X2), …, Pm(Xm)} is an
uncertain example if each P(Xi) is an probability distribution or probability density
function over D(Xi).

Definition 3 (Uncertain observation). Given an attribute Xi , an observation Pi(Xi) of
Xi (1≤i≤m) in an uncertain example ue is an uncertain observation.

Definition 4 (Attribute Uncertain training dataset). An uncertain training dataset D
is composed of uncertain examples, D = {ue1, ue2, …, uen}.

In this paper we focus on the problem of learning a BN structure from attribute
uncertain training dataset. We assume the structure of Bayesian Network is a tree.

In the following parts of the paper we study the problem of learning structure from
discrete attribute uncertain data. If they is continuous, we can discrete them.

4 Bayesian Network Structure Learning Algorithm DTAU

In this section, we start with a brief introduction of a naïve BN structure learning
algorithm based on the exponential possible worlds. Then we will explain why the
naïve method is unacceptable. At last we will show our approximation method which
takes polynomial time.

Definition 5 (Possible world). Given an uncertain dataset about m attributes, it
generates possible worlds, where each world is a certain dataset about the m attributes
which has the same size of examples with the uncertain one. Each possible world Wi
is associated with a probability Pr(Wi) that the world exists.

The naïve method is based on possible world over all attributes (PWAA). The idea
is converting the attribute uncertain dataset to some certain datasets. Given an
uncertain discrete dataset AUD with N examples and m attributes, first we compute
every possible world Wi of AUD. Each observations of example eij in possible world
Wi is a possible value in the domain of the corresponding attribute. Those possible
worlds form a set W and its size is Пm

i=1(Di)
N. Second, we treat each possible world

Wi as a certain training dataset, and then we learn a dependency tree under the
corresponding training data set. The tree with the highest score can be recognized as
the right one. The total number of trees (obviously containing the duplicates) is the
number of the possible worlds. The score of a tree Ti is ΣWj.tree=Ti Pr(Wj).

 Bayesian Network Structure Learning from Attribute Uncertain Data 317

The number of possible worlds is exponential, so the solution presented above
costs exponential time complexity to construct the dependency tree. We propose an
algorithm named DTAU (Dependency Tree learning from Attribute Uncertain data) to
construct a dependency tree without enumeration of possible worlds and reduce the
enormous computation. Our idea is to make use of the attribute uncertain dataset
directly.

For a traditional certain training dataset, a popular way to construct the dependency
tree with the closest probability approximation is called Chow-Liu tree [10]. The
kernel idea in [10] is how to compute the dependency between each two attributes.
The dependency between nodes Xi and Xj is measured by mutual entropy I(Xi, Xj). The
computation is defined by Equation 1. The value of mutual entropy I(Xi, Xj) is always
positive or zero. The value is more close to zero, then the dependency between the
two attribute is weaker. The zero value means they are independent. We propose the
DTAU algorithm to learn a dependency tree from attribute uncertain data. The DTAU
algorithm is consistent with Chow-Liu tree under certain training data. The key point
in the DTAU algorithm is how to compute the dependency between each two
attributes under attribute uncertain training data. Equation 2 shows an initial
approximation of I(Xi, Xj). The two equations are from [10].

,

(,)
(,) (,) log

() ()
i j

i i j j
i j i i j j

x x i i j j

P X x X x
I X X P X x X x

P X x P X x

= =
= = =

= = (1)

() , ()

(,)

(,) (,) l o g
()()

i j

i j

i j i j
js D X t D X i

N X s X t

nI X X N X s X t
N X tN X s

n n
∈ ∈

= =

≈ = =
== (2)

Equation 3, 4 and 5 shows how to approximate the frequency in equation 2 and we get
the final approximation of I(Xi, Xj) by equation 3, 4 and 5.

1

1

1

 (,) () ()

 () ()

 () ()

n

i j k i i k j j
k

n

i k i i
k

n

j k j j
k

N X s X t P X s P X t

N X s P X s

N X t P X t

=

=

=

= = = = =

= = =

= = =

(3)

(4)

(5)

From the equations above we can learn that if the probability Pki(Xi=s) is the highest
for attribute Xi and the probability Pkj(Xj = t) is the highest for attribute Xj, then the
occurrence probability for pair (s, t) may be the highest. The idea behind the equation
is that the independence assumption doesn’t have effect on the overall dependency
computation. In other words, if the two attributes are independent, the computation
result is zero. If they are not, the computation result is positive. The equation shows
the consistence with certain data. We prove the result and we don’t describe the
details of the proof for the limitation of space in this paper.

The DTAU algorithm is divided into three steps. The first step is to compute the
dependency between each two uncertain attributes and construct a weighted
undirected graph. Then we follow the tree construction method in the Chow-Liu tree
algorithm. The second step is to get a maximum spanning tree by a greedy algorithm

318 W. Song et al.

which is 2-ratio approximation of the optimal tree. The last step is to add the direction
by width first traverse. The pseudo-code is given below:

Algorithm DTAU

Input: an attribute uncertain dataset AUD with n examples and m variables

Output: a dependency tree T

Major steps:

Construct a weighted undirected completed graph G = (V,E),V

={X1,X2,...,Xm};

for i =1 to m

 for j =1 to i

Compute dependency I(Xi,Xj) by equation 1,2,3,4 and 5;

e(Xi,Xj) = I(Xi,Xj)

end for

end for

T = greedy_max_spanning_tree(G);

Select a random node Xk in T as beginning node;

Add direction for each edge by breadth-first traverse beginning with Xk;

The time complexity of DTAU algorithm is O(nm2), which is smaller than the naïve

solution. We can confirm that if the difference between I(Xi, Xj) and I(Xi, Xk) satisfies
a t-condition that the absolute value of the difference between I(Xi, Xk) and I(Xi, Xk) is
bigger than t, the dependency tree created by the DTAU method is the same with the
one in the possible world with the highest probability. Because if the t-condition is
satisfied, the partial orders for all mutual entropy are the same. The partial orders can
determine the structure. We prove this result and we don’t describe the details of the
proof or the computation of t for the limitation of space. Experiments show that our
method performs well even when the t-condition can’t be satisfied.

5 Experiments

As there hasn’t been any public attribute uncertain dataset, the attribute uncertain
datasets we use are generated from certain datasets artificially. We generate the
attribute uncertain datasets by adding noise to the UCI machine learning datasets
which are standard for traditional BN learning problems. We convert the Letter
recognition and Balance datasets to attribute uncertain datasets. The noise addition
strategy is described as follows. For each training example in the original certain
dataset, we assign a probability p which is not smaller than a bound α to the
corresponding attribute’s observation in the original certain training example, and
assign a low probability to other possible values for this attribute. Table 1 shows an
example of the original certain dataset, where D(Attribute 1) = {a, b, c} and
D(Attribute 2) = {d, e, f}. Table 2 shows an uncertain dataset obtained after noise
addition with α being 0.5. By this way we get attribute uncertain training datasets
denoted by AU-Letter-α, and AU-Balance-α respectively.

 Bayesian Network Structure Learning from Attribute Uncertain Data 319

 Table 1. An example of certain data Table 2. An example of noise addition

Attribute 1 Attribute 2 Attribute 1 Attribute 2

a d a: 0.8 b: 0.1 c: 0.1 d: 0.5 e: 0.25 f: 0.25

b e a: 0.2 b: 0.6 c: 0.2 d: 0.15 e: 0.7 f: 0.15

For each uncertain dataset we generate, the uncertain observations in an attribute
uncertain dataset are closer to the ones of the original certain dataset when α is closer
to 1. The experiment on AU-Letter-0.5 shows that the partial orders of the
dependency measure (information entropy) in attribute uncertain data is almost the
same with the one in the certain dataset. Figure 1 shows the tree we learn from AU-
Letter-0.5 and the Chow-Liu tree learned from the certain dataset.

Fig. 1. Dependency tree from the dataset Letter and the correspondingly certain dataset

The two trees share the black solid edges. Edge<X13, X12> belongs to the tree from
uncertain dataset and edge <X4, X14> belongs to the tree from certain dataset. We find
that only edge <X4, X14> and edge <X13, X12> are different. The difference between
I(X4, X14) and I(X12, X13) accounts for the bigger one of the two information entropy
less than 1.3%.

We design experiments on AU-Balance to demonstrate the effectiveness of the
dependency tree by clustering results. We use DTAU algorithm to learn a dependency
tree from AU-balance data. Then we generate a certain sample dataset i for the uncertain
training example uei in the dataset. Then we treat the sample dataset i as the training
dataset and the dependency tree as BN structure to learn the joint probability distribution
on all attributes in the uncertain dataset and then the uncertain example uei turns to be an
uncertain object. We cluster those uncertain objects by algorithm UK-means [4] and the
original certain objects by K-means and compare the two clustering results. We do
experiments on the AU-Balance dataset with different values of α.

Table 3. Clustering precision under different parameters

Dataset Cluster 0 Cluster 1 Cluster 2 precision
AU-Balance-0.6 6 161 103 43.2%
AU-Balance-0.8 21 115 98 37.44%

AU-Balance-0.9 5 119 156 44.8%
Balance certain 16 175 145 53.74%

320 W. Song et al.

We test three different values of parameter α, 0.6, 0.8 and 0.9. For each dataset, the
cluster result is compared with the true class labels. Table 3 shows the results under
different uncertain dataset. The numbers in column 2, column 3 and column 4
represent the size of correct examples in the corresponding cluster. The measure
precision shows the percentage of correct clustered examples. From this table we can
see that the precision for each of the three uncertain dataset is quite close to the
certain one, for the certain one is always the possible world with the highest
probability. The experiments show that the dependency tree generated by our method
is acceptable and α is an important factor to the cluster results.

6 Conclusion

In this paper we propose the Bayesian Network structure learning problem on
attribute uncertain dataset, and we propose algorithm DTAU by which we can learn a
dependency tree in polynomial time. We conducted experiments to demonstrate the
effectiveness of our proposed algorithm. The experiment results show the dependency
trees are acceptable and the proposed algorithm is effective. In the future, we will
further analyze the effect of parameters α.

Acknowledgement. This work was supported by the NSFC under Grant No.
70871068 and 71110107027 and the Major National Sci. and Tech. Project of China
under Grant No. 2010ZX01042-002-002-03.

References

1. Dalvi, N., Suciu, D.: Effcient query evaluation on probabilistic databases. The VLDB
Journal 16(4), 523–544 (2007)

2. Bernecker, T., Kriegel, H.P., Renz, M., Verhein, F., Zuefle, A.: Probabilistic frequent item
set mining in uncertain databases. In: 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 119–128. ACM Press, Paris (2009)

3. Singh, S., Mayfield, C., Shah, R., Prabhakar, S., Hambrusch, S., Neville, J., Cheng, R.:
Database support for probabilistic attributes and tuples. In: 24th IEEE ICDE International
Conference on Data Engineering, pp. 1053–1061. IEEE Press, Cancún (2008)

4. Lee, S.D., Kao, B., Cheng, R.: Reducing UK-means to K-means. In: 7th IEEE ICDM
Workshops International Conference on Data Mining Workshops, pp. 483–488. IEEE
Press, Omaha (2008)

5. Gullo, F., Ponti, G., Tagarelli, A., Greco, S.: A Hierarchical Algorithm for Clustering
Uncertain Data via an Information-Theoretic Approach. In: 8th IEEE ICDM International
Conference on Data Mining, pp. 1053–1061. IEEE Press, Pisa (2008)

6. Günnemann, S., Kremer, H., Seidl, T.: Subspace Clustering for Uncertain Data. In: SIAM
SDM SIAM Conference on Data Mining, pp. 385–396. SIAM Press, Ohio (2010)

7. He, J., Zhang, Y., Li, X., Wang, Y.: Naive Bayes classifier for positive unlabeled learning
with uncertainty. In: SIAM SDM SIAM Conference on Data Mining, pp. 361–372. SIAM
Press, Ohio (2010)

 Bayesian Network Structure Learning from Attribute Uncertain Data 321

8. Ren, J., Lee, S.D., Chen, X., Kao, B., Cheng, R., Cheung, D.: Naive bayes classification of
uncertain data. In: 9th IEEE ICDM International Conference on Data Mining, pp. 944–949.
IEEE Press, Miami (2009)

9. Dalvi, N., Suciu, D.: Learning Bayesian networks is NP-complete. Lecture Notes In
Statistics, pp. 121–130. Springer, New York (1996)

10. Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees.
IEEE Transactions on Information Theory Journal 14(3), 462–467 (1968)

11. Heckerman, D., et al.: A tutorial on learning with Bayesian networks. In: Learning in
Graphical Models, Michael I. Jordan, Massachusetts (1999)

12. Friedman, N., Nachman, I., Peér, D.: Learning Bayesian Network Structure from Massive
Datasets: The “Sparse Candidate” Algorithm. In: UAI 14th Conference on Uncertainty in
Artificial Intelligence, Madison, pp. 206–215 (1999)

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 322–333, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Bandwidth-Aware Medical Image Retrieval
in Mobile Cloud Computing Network∗

Yi Zhuang1, Nan Jiang2, Zhiang Wu3, Dickson Chiu4, Guochang Jiang 5, and Hua Hu6

1 College of Computer & Information Engineering, Zhejiang Gongshang University, P.R. China
2 Hangzhou First People’s Hospital, Hangzhou, P.R. China

3 Jiangsu Provincial Key Laboratory of E-Business,
Nanjing University of Finance and Economics, P.R. China

4 Dickson Computer Systems, HKSAR, P.R. China
5 The Second Institute of Oceanography, SOA, Hangzhou, P.R. China

6 School of Computer, Hangzhou Dianzi University, P.R. China
zhuang@zjgsu.edu.cn

Abstract. This paper proposes a bandwidth-aware content-based Medical Image
retrieval method in Mobile Cloud computing environment, called the MiMiC.
The whole query process of the MiMiC is composed of three steps. First when a
doctor submits a query image Iq, a parallel image set reduction process is first
conducted at a master node level. Then the candidate images are transferred to
the slave nodes for a refinement process to obtain the answer set. Finally, the
answer set is transferred to the query node. The proposed method including the
adaptive load balancing scheme is specifically designed for solving the
heterogeneity of the mobile cloud and an index-support image set reduction
algorithm for reducing the data transfer cost in cloud environment. Additionally,
we propose a bandwidth-conscious multi-resolution-based data transfer
technique to further improve the query performance. The experimental results
show that the performance of the algorithm is efficient and effective in
minimizing the response time by decreasing the network transfer cost while
increasing the parallelism of I/O and CPU.

Keywords: Medical image, multi-resolution, mobile cloud.

1 Introduction

Nowadays, with an explosive increase of medical multimedia data in hospital
information management systems(HIMS), many applications require an efficient access

∗ This paper is partially supported by the Program of National Natural Science Foundation of China

under Grant No. 61003047, No.71072172, No.61103229, No.60903053; the Program of Natural
Science Foundation of Zhejiang Province under Grant No. Z1100822, No. Y1110644, Y1110969,
No.Y1090165; the Science & Technology Planning Project of Wenzhou under Grant No.
G20100202.

 Bandwidth-Aware Medical Image Retrieval in Mobile Cloud Computing Network

323

method to support content-based multimedia retrieval at a large scale. As one of the
most important media types, management, query, and analysis of medical images plays
a critical role in modern HIMSs. Although a considerable amount of related work has
been carried out on medical image indexing and similarity query in high-dimensional
spaces [1][2], most of them focus on a centralized way (i.e., single- PC-based) which
cannot scale up well to large data volume. The query efficiencies of these centralized
methods are unsatisfactory because the response time is linearly increasing with the
size of the searched file. Therefore the design of high performance medical image
query methods becomes a critically important research topic.

Fig. 1. The architecture of a mobile cloud environment

A Cloud, especially mobile Cloud (MC) can be seen as a type of flexible computing
infrastructure consisting of many computing nodes, which can provide resizable
computing capacities to different users anywhere anytime. To fully harness the power
of the MC, efficient data management is needed to handle huge volumes of medical
image data and support a large number of concurrent end users (e.g., doctors).
Additionally, the MC environment provides us with a location-based query that enables
doctors to retrieve patient records and images conveniently. To achieve this, scalable,
high-throughput, location-based querying and indexing schemes are generally required.
However, as shown in Fig. 1, for MC-based medical image query, exploring parallelism
in the MC to speed up the queries is a new research topic, which has received little
attention so far. The challenges include three main aspects:

1) High computation cost in medical image retrieval: for a medical image, three
characteristics are represented: high pixel resolution, high-dimensional, and large-
scale. So the query cost of such medical images is very high.

2) The mobility of users in the MC: most of the users (i.e., doctors) in the MC are
moving. That means the spatial position of each user varies with the variance of time.
So how to perform an optimal data placement is also a challenging issue.

324 Y. Zhuang et al.

3) The instability and heterogeneity of the MC: the nodes in the MC are instable,
that means, some nodes may be down or connected intermittently to the network. The
bandwidth of any two nodes in the MC may be different according to the variance of
time. There is no guarantee that the total response time of each query can be equal.

To address the above challenges, we propose an efficient distributed similarity (MiMiC)
query processing technique in the mobile cloud environment. The MiMiC includes two
enabling techniques, namely, learning-based optimal data placement scheme and
bandwidth-conscious multi-resolution-based image data transfer. We have
implemented the MiMiC method and extensive experiments indicate that our method is
specifically suitable for the large high-dimensional data queries. Without loss of
generality, Euclidean Distance is used as the underlying distance function in our
research. The contributions of this paper are summarized as follows:

● We introduce a framework of a bandwidth-aware medical image retrieval in the
mobile cloud environment (MiMiC) to improve search efficiency, especially for large-
scale high-dimensional image repository.

● We present a learning-based adaptive data placement scheme to maximize the
query parallelism at the master node level, in which doctors’ moving trajectories with
different departments are sampled and analyzed to get optimal placement positions of
the medical image data with different department.

● We propose a bandwidth-conscious multi-resolution-based image data transfer
algorithm to progressively reduce the communication cost in MC environment and
speed up MiMiC processing.

● Extensive experimental studies are conducted to evaluate the efficiency,
scalability, and robustness of our proposed algorithm.

The rest of paper is organized as follows. Related works are reviewed in Section 2.
Preliminary work is given in Section 3. In Section 4, two enabling techniques, viz., the
adaptive learning-based data placement scheme and the bandwidth-conscious
multi-resolution-based data transfer scheme are introduced to facilitate a fast similar
search over mobile cloud. In Section 5, we propose a MiMiC query processing
algorithm. In Section 6, we perform comprehensive experiments to evaluate the
efficiency of our proposed method. We conclude the paper in Section 7.

2 Related Work

Medical images have often been used for retrieval systems and the medical domain is
often cited as one of the principal application domains for content-based access
technologies in terms of potential impact. The famous two retrieval systems are the
ASSERT system [1] on the classification of high resolution CTs of the lung and the IRMA
system [2] for the classification of images into anatomical areas, modalities and view
points. As both of them are based on a single PC environment, their processing
scalabilities are limited, especially for a large volume of the medical images.

Much effort has been invested in designing distributed storage systems to manage
large amounts of data, such as Google File System [3] (GFS), which serves Google’s
applications with large data volume. BigTable [3] is a distributed storage system for

 Bandwidth-Aware Medical Image Retrieval in Mobile Cloud Computing Network

325

managing structured data of very large scales. Yahoo proposed PNUTS [5], a hosted,
centrally controlled parallel and distributed database system for Yahoo’s applications.
These systems organize data into chunks, and then randomly disseminate chunks into
clusters to improve data access parallelism. Some central servers working as routers are
responsible for guiding queries to nodes that hold query results. Amazon’s Dynamo [4]
is a readily available key-value store based on geographical replication, and it can
provide eventual consistency. MapReduce [6] was proposed to process large datasets
disseminated among clusters.

Berchtold et al. [9] proposed a fast parallel similarity search in multimedia data-
bases by providing a near-optimal distribution of data items among the disks. Further-
more, Sahin et al. [10] presented a similarity search using disk array. Recently, Peer-
to-Peer(P2P)-based similarity search has been received attention increasingly. CAN
[11] is the first system supporting multi-dimensional data. These works behave poorly
when the data distribution is skewed. pSearch [13], a P2P system based on CAN, is
proposed for document retrieval in P2P networks by rotating the dimensions in
indexing. Another system also based on CAN proposed by Schmidt & Parashar [12] is
highly inefficient for exact search. Panos et al. [14] proposed the multi-dimensional
indexing schemes in the P2P network environment. Few work, however, have touched
on medical image query in MC environment due to the different query mechanism.

3 Preliminaries

3.1 Problem Formulation

The list of symbols used throughout the rest of this paper is first summarized in Table 1.

Table 1. Meaning of Symbols Used

Symbols Meaning
Ω a set of medical images
Ω(t) medical images from the t-th department and t∈[1, α]
Ii the i-th medical image and Ii∈Ω
D the number of dimensions
n the number of medical images in Ω
Iq a query image user submits
Θ(Iq,r) the query sphere with centre Iq and radius r
d(Ii,Ij) the distance between two medical images
Ω′(t) the candidate image set from the t-th department and t∈[1, α]
Ω′′(t) the answer image set from the t-th department and t∈[1, α]
α the number of the departments(or master nodes or slave nodes)

DEFINITION 1. A mobile cloud(MC) is a graph, which is composed of Node and Edge,
formally denoted as MC=(N,E,T), where N refers to the set of nodes, E refers to a set of
edges representing the network bandwidths for data transfer at time T, and T means the
time.

In the above definition, due to the instability and heterogeneity of the MC environment,
the bandwidth of any two nodes in MC may be different and variant with the change of
the time.

326 Y. Zhuang et al.

DEFINITION 2. The nodes in MC, formally denoted as N=Nq+Nm+Ns, can be logically
divided into three categories: the query node(Nq), master nodes(Nm), and slave
nodes(Ns), where Nm is composed of α master nodes(i

mN) and Ns is composed of α
slave nodes(j

SN), where i
mN is the i-th master node, j

SN denotes the j-th slave node, for
i=j∈[1,α].

As defined in Definition 2, in a MC, a doctor submits a query from the query node; the
master nodes are responsible for storing the medical images(Ω) of different
departments and their corresponding indexes; the slave nodes can receive the candidate
images (Ω′) obtained by image set filtering in the master nodes. Then the refinement
processes (distance computation) of the candidate images in every slave node are
conducted. Finally the answer set (Ω′′) is sent back to the query node.

In addition, for easy illustration, suppose that one department corresponds to a
master node and a slave node. So the number of master nodes(α) or the number of the
slave nodes(α) equals to that of departments(α), respectively.

3.2 iDistance

iDistance [8] is a distance-based high-dimensional index method for similarity search.
In this paper, we adopt it as an index to efficiently support medical image dataset
reduction.

1O

2O
qV

1C 2C

1 1c+CR∗ 2 2c+CR∗

1CR

2CR

1 c∗ 2 c∗

Fig. 2. Distance mapping to one-dimensional value

First, data space is partitioned into clusters and a reference image for each cluster is

selected. Each image is assigned a one-dimensional value according to the distance to its cluster’s

reference image. Having a large constant to separate individual clusters, the index key value for

a image ∈is key(Ii)=j*c+ d(Ii,Oj). Then, all images in cluster Care mapped to the interval

[*, (+1)*], as shown in Fig. 2. In this way, the problem of similarity search is transformed to

an interval search problem. For a range query Θ(I,), for each cluster that satisfies the

inequality (,)−≤, the images that are assigned to the cluster and their key values

belonging to the interval [*+(,)−, *+(,)+] are retrieved. For these images the

actual distance to the query image is evaluated and thereafter, if the inequality (,)≤holds,

is added to the result set.

 Bandwidth-Aware Medical Image Retrieval in Mobile Cloud Computing Network

327

4 Enabling Techniques

To facilitate efficient similar query processing in mobile cloud environment, in this section,
we introduce two enabling techniques: a dynamic learning-based data placement scheme
and a bandwidth-conscious multi-resolution-based transfer mechanism. Their purposes are
to minimize the transfer cost and maximize the query parallelism, respectively.

ε

(a). Initialization (b). After 1st stage (c). After 2nd stage

Fig. 3. Learning-based trajectory mining

4.1 Learning-Based Data Placement Scheme in Master Nodes

For many existing distributed database systems, the study of data placement is
critically important to the efficiency of distributed query processing. Different from
traditional distributed systems, the MC is a mobile, wireless, and heterogeneous
environment in which users do not stay at a fixed place. This may raise several
challenges to data placement in such a dynamic environment as explained below.

4.1.1 Motivations
The motivations of the learning-based data placement scheme are based on the
following key observations:
1) Fast data access is very important for the distributed query in the MC

environment. So the position of the data server that the doctors can access is
critically important. That is, to minimize the total communication cost, the total
distance between doctors and the server should be minimized.

2) For doctors in the same department, not all of them are always in a region (e.g.,
their department) all the time. That means several doctors may appear in other
regions of the hospital due to some other duties. The position axis of the centroid,
however, will not be dominated by a few doctors out of their department, but the
most. It motivates us to devise a two-stage approach to obtain an optimal centroid
position as illustrated in Fig. 3.

4.1.2 Mining Doctors’ Moving Trajectories
As mentioned above, the efficiency of fast data access is very important to the
location-based query in the MC. So the basic idea of this approach is to find an optimal

328 Y. Zhuang et al.

data placement in the MC by first mining doctors’ moving trajectories. First, a doctor
object can be modeled by a four-tuple:

di ::= < i, Dep, Loc, Tim > (1)

where
― i means the doctor’s ID.
― Dep refers to the department that the doctor di affiliated with.
― Loc is the axis location of di, formally denoted as: Loc::=<x, y>, where x and y

refer to the axis values respectively.
― T is the time.

The 1st Stage. In Fig. 3(a), suppose that there are nine doctors in a department. We first
calculate the centroid (C1) axis of all the nine doctors by Eq. (2).

1

1
1. . .

Dep

ii
C x d Loc x

Dep =
= ,

1

1
1. . .

Dep

ii
C y d Loc y

Dep =
= (2)

where |Dep| means the total number of doctors in the department Dep.
Given centroid C1, a virtual circle region (VCR) centered by C1 and radius ε (see the

dash blue circle in Fig. 3(b)) can be obtained, where ε is a threshold value. So the VCR
can be seen as the department region. The doctors inside the VCR are the candidate ones.

The 2nd Stage. For all candidate doctors in the same department, calculate the final
centroid (C2) axis of them by Eq.(3) (see the shadow circle region in Fig. 3(c)), where
C2 is a final center and r is a radius.

1

1
2. . .

Can

ii
C x d Loc x

Can =
= ,

1

1
2. . .

Can

ii
C y d Loc y

Can =
= (3)

(){ }1
argMax (2, .)

Can

ii
r Dis C d Loc

=
= (4)

where |Can| means the total number of the candidate doctors in the department Dep.

Algorithm 1. Optimal learning-based data placement algorithm
Input: Ω: the image set, all doctors;
Output: the optimal data placement;
1. for each department in a hospital do
2. for all doctors di in the same department do
3. calculate their initial centroid(C1) according to Eq. (2);
4. end for
5. for each doctor di in the same department do
6. calculate the distance between C1 and di
7. if the distance is less than a threshold value(ε) then
8. add di as a candidate element // represented by blue points in Fig. 3(b)
9. end if
10. for each candidate doctor di in the same department do
11. calculate their final centroid(C2) according to Eq. (3);
12. end for
13. the data server of the department can be placed at the position of C2.
14. end for

 Bandwidth-Aware Medical Image Retrieval in Mobile Cloud Computing Network

329

4.2 Multi-resolution-Based Adaptive Data Transfer Scheme

As mentioned before, since the pixel resolution of a medical image is usually very high
(e.g., 2040*2040), the data size of the image is large accordingly. It is not trivial to
transfer an image with big size to the destination nodes especially in a wireless network.

(a). Medical image with
large pixel resolution

(b). Medical image with
low pixel resolution

Data transfer
with large
bandwidth

Data transfer
with low

bandwidth

Fig. 4. Bandwidth-conscious adaptive data transfer scheme

As shown in Fig. 4, the basic idea of our proposed enabling technique is that for a same
medical image, the image with different pixel resolutions can be transferred according
to the variance of the network bandwidth. Specifically, for high network bandwidth, the
medical image with high-resolution for which doctors can get a high-quality image can
be transferred in a reasonable short period of time. On the contrary, in order to get a
short response time, the low resolution version of the same image is sent to the
destination node in a network with low bandwidth. Therefore, the objective of our
method is to get a tradeoff between the quality of a medical image and the transferring
time under different resolution and current network bandwidth.

The resolution of the i-th image is defined as IRES(i)∈[xLOW, xUPPER], where xLOW and
xUPPER mean the lower bound and upper bound resolution of the i-th image. Similarly,
the bandwidth of the j-th edge is defined as Ej∈[yLOW, yUPPER], where yLOW and yUPPER
are the lower bound and upper bound bandwidth of the j-th edge. So the optimal image
resolution under the current network bandwidth can be derived as follows:

UPPER LOW UPPER LOW UPPER LOW

LOW LOW LOW

(1)
() , ,jRES

i x x i y y i y y
i x if y yI E

− − − −
= + ∈ + + Δ Δ Δ

 (5)

where i∈[1,Δ] and Δ is a granularity value.

As UPPER LOW UPPER LOW

LOW LOW

(1)
,j

i y y i y y
y yE
 − − −

∈ + + Δ Δ
, so we have LOW

UPPER LOW

)
,

(j y

y y

E
i

 − Δ
∈ −

LOW

UPPER LOW

)
1

(j y

y y

E − Δ
+ −

.

Since i should be an integer value, so LOW

UPPER LOW

)
1

(j y

y y

E
i

− Δ
+

−
= , where • is the integer

value of ●.

330 Y. Zhuang et al.

Therefore, the pixel resolution of i-th image can be rewritten by Eq. (6).

UPPER LOWLOW
LOW

UPPER LOW

)
() 1

(j
RES

y yy
i x

y y

E
I

−− Δ
= + + ×

− Δ
 (6)

5 The MiMiC Algorithm

On the support of the above two enabling techniques, a MiMiC query can be efficiently
conducted in the mobile cloud environment. The whole query process can be composed
of three stages:

 (1). Query submission. In the first stage, when a user submits a query request
(namely query image Iq, radius r and the department information) from the query node
Nq, the query is sent to the master node level Nm,.

 (2). Global Image Data Filtering. In this stage, once the query request is received
by the corresponding master node j

mN , then the irrelevant images in the j
mN are filtered

quickly by using the iDistance [8] index, thereby the transfer cost from the master node
level to the slave one can be reduced significantly.

Specifically, in this master node j
mN , an input buffer called IB is created for caching

the images in Ω(j), where Ω(j) refers to the images in j
mN and j∈[1,α]. Meanwhile, an

output buffer OB which is used to store the candidate image set Ω′(j) is also created.
Once the data size of the candidate images in OB reaches the size of a package, the
candidate images are transferred to the slave node through the package-based data
transfer mode.

Algorithm 2. IFilter(Iq,r)
Input: Ω(j): the sub image set in the j-th master node,

Θ(Iq,r): the query sphere,
Output: the candidate image set Ω′(j)
1. Ω′(j)←Φ; /* initialization */
2. for the medical images(Ω(j)) in the j-th master node do
3. for k=1 to T do /* for each cluster in the j-th master node */

4. Ω′(j)←Ω′(j)∪iDistance(Iq,r,k);
5. Ω′(j) is cached in the output buffer OB;
6. end for
7. end for

In Algorithm 2, the routine iDistance(Iq,r,k) returns the candidate image set in the j-th
cluster (cf. [8]).

 (3). Data Refinement. In the final stage, the distances between the candidate images

and the query image Iq are computed in the corresponding slave node. If the distance is
less than or equal to r, then the candidate image is sent to the query node Nq in the
package-based manner. Specifically, in the j-th slave node j

SN , we need to set an input
buffer IB and the memory M for the candidate image set Ω′(j). Additionally, an output
buffer OB is set, which is used to store the answer images temporarily. If the data size
of the answer image set in OB equals to the package size, then the answer images are
sent to the query node Nq in the package-based transfer manner.

 Bandwidth-Aware Medical Image Retrieval in Mobile Cloud Computing Network

331

Algorithm 3. Refine(Ω′(j), Iq, r)
Input: the candidate images(Ω′(j)) from the j-th master node,

a query image Iq and a radius r
Output: the answer image set Ω′′(j) from the j-th slave node
1. Ω′′(j)←Φ;
2. for the candidate images(Ω′(j)) in the j-th slave node do
3. if d(Ii,Iq)≤r and Ii∈Ω′(j) then
4. Ω′′(j)←Ω′′(j)∪Ii;
5. end if
6. Ω′′(j) is cached in the output buffer OB;
7. end for

 Algorithm 4 shows the detailed steps of our proposed MiMiC algorithm.

Algorithm 4. MiMiCSearch(Iq, r, j)
Input: a query image: Iq, r, department ID: j
Output: the query result S
1. Ω′(j)←Ф, Ω′′(j)←Ф; /* initialization */
2. a query request with the department information is submitted to the corresponding master
 node j

mN ;
3. Ω′(j)←IFilter(Iq, r);
4. the candidate image set Ω′(j) is sent to the corresponding slave node;
5. Ω′′(j)←Refine(Ω′(j),Iq,r);
6. the answer image set Ω′′(j) is sent to the query node Nq;

6 Experimental Results

To verify the efficiency of the proposed MiMiC method, we conduct simulation
experiments to demonstrate the query performance. The retrieval system is run on
Android platform [16] and the backend system is simulated by the Amazon EC2 [17].
For the index part of the system, iDistance [8] is adopted to support quick filtering of
medical images deployed at the master node level. The medical image dataset we used
is download from Medical image archive [15], which includes 100,000 64-D color
histogram features, the value range of each dimension is between 0 and 1.

6.1 Effect of Adaptive Data Transfer Scheme

In the first experiment, we study the effect of the adaptive(i.e., multi-resolution- based)
image data transfer scheme on the performance of the MiMiC query processing.
Method 1 does not adopt the adaptive data transfer algorithm and method 2 uses it. Fig.
5 shows when r is fixed and the bandwidth is relatively stable, the total response time
using the method 2 is superior to that of method 1. Meanwhile, with the condition that
the bandwidth is stable and r is increasing gradually, the performance gap becomes
larger since the data size of the candidate images to be transferred is increasing so
rapidly that the images can not be sent to the destination nodes quickly.

332 Y. Zhuang et al.

6.2 Effect of Data Size

This experiment studies the effect of data size on the performance of the MiMiC query
processing.

0.2 0.4 0.6 0.8 1
0

4

8

12

16

20

Radius

 The ADT scheme adopted
 No ADT scheme

Response time(s)

 200 400 600 800 1000
0

2

4

6

8

10

Data size(∗1000)

Response time(S)

Fig. 5. Effect of adaptive data transfer

scheme

Fig. 6. Effect of data size

In Fig. 6, with the increase of data size, the response time keeps increasing. When the
data size is larger than 60,000, the increasing tendency becomes slowly. This is because
for the small or medium-scale queries based on MC, their network transfer costs are
always larger than the distance computation cost in the slave nodes. The total response
time can be mainly dominated by the transfer cost. Therefore it is more suitable and
effective for the large high-dimensional dataset.

6.3 Effect of Radius

This experiment tests the effect of radius on the query performance. Suppose that the
data size and the number of master(slave) nodes are fixed, when r increases from 0.2 to
1, it is clear that the query response time is gradually increasing. This is because with
the increase of r, the search region in the high-dimensional spaces becomes larger and
larger which leads to the fact that the number of candidate images is increasing
accordingly.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

2

4

6

8

10

Radius

Response time(S)

Fig. 7. Effect of radius

 Bandwidth-Aware Medical Image Retrieval in Mobile Cloud Computing Network

333

7 Conclusions

In this paper, we have presented a mobile-cloud-based similar(MiMiC) query
processing, which specifically caters for the different bandwidth of nodes in the mobile
cloud. Two enabling techniques, namely, learning-based adaptive data placement
scheme, and multi-resolution-based adaptive data transfer scheme are proposed to
reduce the communication cost. The experimental studies indicate that the proposed
MiMiC method is more suitable for the large-scale medical image retrieval in
minimizing the network communication cost and maximizing the parallelism in I/O and
CPU.

References

[1] http://rvl2.ecn.purdue.edu/~cbirdev/www/CBIRmain.html
[2] http://irma-project.org/
[3] Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google File System. In: 19th ACM

Symposium on Operating Systems Principles, Lake George, NY (October 2003)
[4] DeCandia, G., Hastorun, D., Jampani, M., et al.: Dynamo: Amazon’s Highly Available

Key- value Store. In: SOSP 2007 (2007)
[5] Cooper, B.F., Ramakrishnan, R., Srivastava, U., et al.: PNUTS: Yahoo!’s hosted data

serving platform. PVLDB 1(2), 1277–1288 (2008)
[6] Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In:

OSDI 2004: Sixth Symposium on Operating System Design and Implementation, San
Francisco, CA (December 2004)

[7] Böhm, C., Berchtold, S., Keim, D.: Searching in High-dimensional Spaces: Index
Structures for Improving the Performance of Multimedia Databases. ACM Computing
Surveys 33(3) (2001)

[8] Jagadish, H.V., Ooi, B.C., Tan, K.L., Yu, C., Zhang, R.: iDistance: An Adaptive B 

+
 -tree

Based Indexing Method for Nearest Neighbor Search. TODS 30(2), 364–397 (2005)
[9] Berchtold, S., Bohm, C., Braunmuller, B., Keim, D.A., et al.: Fast Parallel Similarity

Search in Multimedia Databases. In: SIGMOD, pp. 1–12
[10] Papadopoulos, A.N., Manolopoulos, Y.: Similarity query processing using disk arrays. In:

SIGMOD 1998, pp. 225–236 (1998)
[11] Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable

content-addressable network. In: SIGCOM, pp. 161–172 (2001)
[12] Schmidt, C., Parashar, M.: Flexible information discovery in decentralized distributed

systems. In: HPDC-12 (2003)
[13] Sahin, O.D., Gupta, A., Agrawal, D., El Abbadi, A.: A peer-to-peer framework for caching

range queries. In: ICDE (2004)
[14] Kalnis, P., Ng, W.S., Ooi, B.C., Tan, K.L.: Answering Similarity Queries in Peer-to-Peer

Networks. Information Systems (2006)
[15] Medical image databases (2002),

http://www.ece.ncsu.edu/imaging/Archives/ImageDataBase/
Medical/index.html

[16] The Android platform (2010),
http://code.google.com/intl/zh-CN/android/

[17] The Amazon EC2 (2009), http://aws.amazon.com/ec2/

Efficient Algorithms for Constrained Subspace

Skyline Query in Structured Peer-to-Peer
Systems

Khaled M. Banafaa and Ruixuan Li

School of Computer Science and Technology,
Huazhong University of Science and Technology,

Wuhan, Hubei 430074, P.R. China
kbanafaa@smail.hust.edu.cn, rxli@hust.edu.cn

Abstract. To avoid complex P2P architectures, some previous research
studies on skyline queries have converted multi-dimensional data into a
single index. Their indexing, however, does not solve constrained sub-
space queries efficiently. In this paper, we have devised algorithms and
techniques to solve constrained subspace skyline queries efficiently in a
structured peer-to-peer architecture using a single index. Dataspace is
horizontally partitioned; and peers are given Z-order addresses. Each
subspace query traverses peers using the subspace Z-order filling curve.
Such partitioning and traversal approaches allow parallelism for incom-
parable data as well as the use of some techniques to reduce the data
traveled in the network. The order of traversal also preserves progres-
siveness. Our experiments, applied on Chord [1], have shown a reduction
in the number of traversed peers and an efficient usage of bandwidth.

Keywords: Skyline query, peer-to-peer system, subspace skyline, con-
strained.

1 Introduction

Due to the huge available distributed data, advanced queries, such as skyline
queries, identify some interesting data objects for the users. Peer-to-peer (P2P)
networks have also become very popular for storing, sharing and querying data.
Due to some application requirements for multi-dimensional data, P2P had to
be adapted to host such kind of data. To cope with this requirements, complex
network overlay architectures have been suggested. To maintain simple P2P ar-
chitectures, researchers have looked for ways to convert multi-dimensional data
to a single dimensional index (1D) for different applications. Skyline operator
[2] has also attracted considerable attention in the database research community
recently. A user may be interested in purchasing a computer on the web. Agents
(peers) may have different specifications with different prices. As an example of
CPU performance versus price of computers is shown Fig. 1. Other attributes
will also affect the price (eg. HDD and RAM). A purchaser will definitely not be
interested in a computer while there is a same or a better one with a better or

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 334–345, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Efficient Algorithms for Constrained Subspace Skyline Query 335

Fig. 1. Skyline Fig. 2. Space partitioning

4

3

2

5

6

7
89

10

11

12

13

14

15

0 1

(1,0)

(1,1)

(0,2)

(0,3)

(1,2)

(1,3)
(2,0)(2,1)

(3,0)

(3,1)

(2,2)

(2,3)

(3,2)

(3,3)
(0,0) (0,1)

00
01

00
10

0100

0011

0101

0110

01111000

1001

10
10

1011

1100

1101

1110

1111

0000

Fig. 3. Chord: Z-order

the same price. Purchasers may, however, have different preferences or require-
ments. A purchaser may be interested in a high capacity HDD; another may be
interested in CPU performance. Answers to such preferences are called skyline
[2] and [3]. Black filled points are called skyline in Fig. 1.

A purchaser may have ranges or constraints on the attributes. Price ranges
and RAM sizes are some examples of constraints. Researches (eg. DSL [4], Sky-
Plan [5] and PaDSkyline [6]) have studied such constraints. These approaches,
however, requires the query node to contact all nodes for their minimum bound-
ing rectangles (MBRs) before building a plan. Other studies (e.g. SUBSKY [7]
and Skypeer [8]) considered subspace skylines. Those studies, however, do not
consider constraints due to their subspace pre-processing.

Our motivation is to efficiently process subspace queries [8] with constraints
[5]. In high dimensional databases, a user may be interested only in some at-
tributes with some constraints. Considering all attributes might return a huge
number of data. A purchaser may be interested in a price within a range ($500-
$800) and a minimum CPU performance (1.5GHz). They may not be interested
in other attributes (eg. HDD, memory, video cards, ... etc). Such queries have
been considered in centralized systems [3] using R-trees. Those methods are,
however, not applicable in distributed systems for their requirements of having
all data in one place.

In this paper, we aim at solving constrained subspace skyline queries in struc-
tured P2P systems using a single index. By partitioning the dataspace horizon-
tally, Z-address scheme is used to address partitions as well as peers. Depending
on query subspace and constraints, peers are traversed. Our contributions are:

• By Z-order addressing a horizontally partitioned data space on a simple,
stable overlay structure such as Chord [1], progressive algorithms for constrained
subspace query traversal are suggested. They increase the pruning ability.
• Incomparable partitions are exploited by parallelizing our algorithms.
• Experiments have shown that such approaches resulted in reduction in tra-

versed peers and bandwidth usage while preserving progressiveness.

336 K.M. Banafaa and R. Li

This paper is organized as follows. Related work is first discussed in Section 2.
The main part of our work (partitioning data space, traversal algorithms and
the used techniques) is discussed in Section 3. Section 4 discusses experiments
and findings of this work. We end up our paper by conclusion in Section 5.

2 Related Work

Skyline was first introduced to database by Börzsönyi in [2]. All points are com-
pared using a window in Block Nested Loop(BNL). BBS[9] is an optimal and
progressive algorithm for skyline queries. It is based on nearest neighbor search.
It used a heap to gets rid of duplicates. In [10], assuming integers, RZ-regions
and ZB-tree are used. The above algorithms are not efficient for distributed and
P2P systems for their centralized requirements.

In distributed systems, such as [11], data are distributed vertically. A round-
robin is used to get the traditional skyline on the presorted attributes. Constrained
queries are neither supported for fullspace nor for subspace. In DSL [4], data space
is partitioned horizontally. It does not, however, support subspace and constrained
subspace skyline. SkyFrame uses greedy and relaxed skyline search on a balanced
tree structure for peer-to-peer networks (Baton) [12]. Even though it supports
constrained skyline, it does not support subspace and constrained subspace queries.
In PaDSkyline [6], the querying peer collects MBRs from other peers. A plan is
made for incomparable peers to work in parallel. In SkyPlan [5], using weighted
edges, plans are also mapped. The maximum spanning trees are used to maximize
the pruning ability. In FDS [13], iterations and feedback are carried out between
the coordinator and the other nodes. The above studies [5], [6], and [13] require
the querying peer to contact all nodes. Some algorithms [14] have convertedmulti-
dimensional data into a single-data index and adapted it into P2P. However, they
support neither constrained queries nor subspace queries.

Subspaces have also been studied in both centralized and distributed systems.
Centralized algorithms [7], [15], [16], and [17] and use different approaches. Sky-
Cube [15], [16] precomputes all possible subspaces skylines exploiting various
sharing strategies using bottom-up and top-down methods. SUBSKY [7] builds
B+ tree by converting the multi-dimensional data into one-dimensional anchors.
Authors in[17] used materialization and proposed the maximal space index to
answer subspaces in a high dimensional data. Due to their pre-computation,
updating any point may result in rebuilding the solutions. They are centralized
and do not support constrained subspace queries.

Skypeer [8] and DCM [18] are meant for distributed systems. Skypeer uses ex-
tended skylines on a super-peer architecture. A querying peer submits its subspace
query to its super-peer. The super-peer, then, contacts the other super-peers for
subspace skyline. Skypeer is nonprogressive and does not support constrained sub-
space query. In DCM, the results of subspaces queries are cached in peers and in-
dexed using a distributed cache index (DCI) on Baton or Chord. Subspace queries
are then forwarded to cached skylines using the DCI. Even though it does not
consider constrained subspace skylines, this work is orthogonal to our work for
unconstrained subspaces.

Efficient Algorithms for Constrained Subspace Skyline Query 337

Even though work in [19] (we call Chordsky) supports constrained full-
dimension skyline in a Chord structure. ChordSky’s usage of sum for the the
monotonic functions makes it inefficient for subspace skyline queries. This is due
to the disturbance of the monotonic order when a subspace is considered. The
authors’ objectives, however, were having a simple stable structure like Chord
to answer constrained skyline queries.

We have the same objectives as ChordSky but for a more general skyline query
(i.e. constrained subspace skyline). Thus, we consider ChordSky as a baseline for
our work. We first use it with no modification (i.e. for constrained full-dimension
skyline). We, then, modified it to support subspace. Our work has shown to be
more efficient. Even though ChordSky is progressive for full-dimension queries,
it is not for subspace skyline. Our work is, however, progressive for both con-
strained full-space as well as constrained subspace skyline. A Z-order structure
[10] inspired our work. Our system uses the idea of Z-order on P2P architecture.
It uses a one-dimensional index. We have applied our work on Chord [1] but it
can also be applied on other architecture like Baton.

To the best of our knowledge, constrained subspace skyline has not been
considered in distributed and P2P systems. Our aim is to minimize the visited
peers and data transferred in the network while preserving progressiveness.

3 Constrained Subspace Skyline

In this section, we first give some formalization to constrained subspace skyline
in Section 3.1. Data space partitioning and traversal techniques and algorithms
are discussed in Section 3.2 and Section 3.3 respectively. Parallelism of our al-
gorithms and load balancing are explored in Section 3.4.

3.1 Preliminaries

Without loss of generality, we assume minimum values of attributes are preferred
(e.g. cheaper is preferred to expensive, near is preferred to far, etc). For maximum
values preferences, the inverse of the values can be used. Let S = {d1, d2, ..., dd}
be a d-dimensional space and PS be a set of points in S. A point p ∈ PS can
be represented as p = {p1, p2, ..., pd} where every pi is a value on dimension di.
Each non-empty subset S’ of S (S′ ⊆ S) is called a subspace. A point p ∈ PS
is said to dominate another point q ∈ PS on subspace S’ (denoted as p ≺S′ q)
if (1) on every dimension di ∈ S′, pi ≤ qi; and (2) on at least one dimension
dj ∈ S′, pj < qj . The skyline of a space S′ ⊆ S is a set PS′ ⊆ PS of so-called
skyline points which are not dominated by any other point of space S’. That is,
PS′ = {p ∈ PS| � ∃q ∈ PS : q ≺S′ p}.

Let C = {c1, c2, ..., ck} be a set of range constraints on a subspace S′ =
{d′1, d′2, ..., d′k} where k ≤ d. Each ci is expressed by [ci,min, ci,max], where ci,min

≤ ci,max, representing the min and max value of d′i. A constrained subspace
skyline of a space S′ ⊆ S refers to the set of points PS′

c = {p ∈ PSc| � ∃q ∈ PSc :
q ≺S′ p}, where PSc ⊆ PS and PSc = {p ∈ PS|∀di ∈ S′ : ci,min ≤ pi ≤ ci,max}.

338 K.M. Banafaa and R. Li

3.2 Partitioning and Assignment

We use a shared-nothing architecture (SN) where the data space is horizontally
partitioned; and each peer is assigned a partition. Such architecture has also
been used in other previous works like [19].

As in [14], the range of each attribute is assumed to be normalized into [0,1].
Each dimension i (i.e. 1 ≤ i ≤ d of the data space is divided into ki equal
partitions. Each partition is assigned an integer number within [0, ki − 1] in an
ascending order starting from 0. The whole space is, thus, divided into a grid
of

∏
ki cells. The lower left cell is Cell(0, 0, 0, 0) while the upper right cell is

Cell(k0 − 1, k1 − 1, k2 − 1, ..., kd − 1) as shown if Fig. 2.
A cells’ Z-addresses are obtained by interleaving their dimensions’ values.

Peers are also assigned a Z-order address using the same grid above. In Chord,
each peer is assigned the next Z-order address starting with ’0’ as in Fig. 3.

A data point obtains its value for each dimension using Equation 1. The Z-
address of a peer responsible of a point is found by interleaving these values.

IntV alue(di) = �p(di) ∗ k� (1)

3.3 Skyline Query Traversal

Fig. 2 and Fig. 3 demonstrate the previous running (computer) example of a
2-dimension data space where ki = 4.

Since dataspace has been partitioned and assigned to peers, query traversal
needs exploit such partitioning. Before explaining our traversal and prunability,
some definitions are introduced to show the domination relation between cells
and points using lower left point (LLP) and upper right point(URP):

Definition 1. A point p completely(partially) dominates a cell α if p dominates
α’s LLP(URP).

Definition 2. Cell Domination. A cell α completely or partially dominates an-
other cell β if α’s URP or α’s LLP dominates β’s LLP respectively.

Property 1. Monotonic Ordering. Cells ordered by non-descending Z-addresses
are monotonic such that cells are always placed before their (completely and
partially) dominated cells.

Constrained Fullspace Skyline Queries. For a constrained fullspace skyline
queries, the querying peer sends its query to the peer responsible of the mini-
mum constraints Cmin. By Property 1, a traversal is straight forward. Each peer
calculates its and previous peers’ constrained skyline and sends it to the next
unpruned peer. An unpruned peer is a peer within the constraints and is not
completely dominated by any discovered constrained skyline point. Chord nodes
can also prune empty nodes by maintaining an empty nodes list in each node.

Efficient Algorithms for Constrained Subspace Skyline Query 339

Algorithm 1-(Fullspace)

1: Input:
2: RS: Received Skyline
3: Output:
4: DS: Discovered Skyline
5: BEGIN
6: LS: Constrained Local

Skyline Points
7: DS = φ
8: for all P ∈ LS do
9: if � ∃Q ∈ RS : Q ≺ P then
10: DS = DS ∪ P ;
11: end if
12: end for
13: Send DS to querying

peer as final skyline points
14: RS = RS ∪ DS
15: Send RS to next

unpruned peer
16: END

Algorithm 2-(CSSA)

1: Input:
2: RFS: Rcvd Final Sky Pts
3: RGS: Rcvd Group Sky Pts
4: Output:
5: DS: Discovered Skyline
6: BEGIN
7: LS: Constrained Local Sky Pts
8: LS = findSkyline(LS ∪RGS)
9: DS = φ
10: for all P ∈ LS do
11: if � ∃Q ∈ RFS : Q ≺ P then
12: DS = DS ∪ P ;
13: end if
14: end for
15: if (Last-peer-of-subspace-group) then
16: Send DS to query peer as a final sky
17: RFS = RFS ∪ DS
18: Send RFS to first unpruned peer in SG
19: else
20: RGS = DS
21: Send RFS and RGS to next peer in SG
22: end if
23: END

Fig. 4. Constrained full space vs. constrained subspace skyline algorithms

Constrained Subspace Skyline Queries (CSSA). A more general skyline
query type of the above query is constrained subspace skyline queries . Some
issues are, therefore, reconsidered. First, the starting and ending peers need be
calculated. Second, some peers partially dominate each other with respect to the
query subspace. This disturbs progressiveness. A way to preserve progressiveness
as much as possible needs be used. Third, in each step, the next peers needs be
clear and deterministic. Last, peer’s pruning must be reconfigured for subspaces.

Starting and ending peers: To get their Z-addresses, the minimum and maxi-
mum values are placed in Equation 1 for the missing dimensions respectively.

Peers partial domination: Peers partially dominate each other with respect to
the queried subspace if they have the same subspace Z-address. Thus, grouping
those peers with the same subspace Z-address value creates subspace-groups.

Definition 3. A subspace-group (SG) is all peers with the same IntValues (Equa-
tion 1) in all dimensions of the subspace.

Peers in a subspace-group partially dominate each other. Thus the data trans-
ferred within the subspace-groupmay have false skyline points. Once all members
of the subspace-group are visited, the final skyline points of a subspace-group are
reported to the querying peer as a final skyline points. Thus progressiveness can

340 K.M. Banafaa and R. Li

be preserved between subspace-groups. From Lemma 1, the traversal between
subspace-groups is deterministic and progressive.

Lemma 1. Subspace Group Traversal. Traversing the subspace-groups in a non-
descending order of their subspace represented by peers’ subspace Z-address en-
sures traversing a subspace-group before their dominated subspace-groups.

Proof. Suppose a subspace-group β with a subspace address ω comes after
subspace-group α with a subspace address υ. Let β ≺ α. Therefore, ω has less
than or equal values to α’s values in all considered subspace dimensions. Thus
ω < υ which contradicts our assumption. This means β can not dominate α.

Subspace pruning: A subspace-group is pruned if it is dominated by any discov-
ered point with respect to the query’s subspace.

Algorithm 2 in Fig. 4 is used for computing constrained subspace skyline. The
traversal order depends on the bits of dimensions in favor. Using the subspace
bits in favor as a prefix, the list of peers can be sorted. Thus traversal order
takes the sorted peers order. For example, in Fig. 2 and Fig. 3, the traversal
order for fullspace skyline queries is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15} because all bits are considered. For the CPU performance attribute
subspace only or price subspace query traversals, the order would be {0, 1, 4,
5, 2, 3, 6, 7, 8, 9, 12, 13, 10, 11, 14, 15} and {0, 2, 8, 10, 1, 3, 9, 11, 4, 6, 12,
14, 5, 7, 13, 15} respectively. As seen in Fig. 2, peers {0,1,4,5} are in column
1. Their CPU performance attribute value (IntValue =0). while peers {2,3,6,7}
are in the second column with their CPU performance attribute value (IntValue
=1). Column 1 precedes column 2 because it partially dominates column 2.
The same is done for the other groups. Notice that for price attribute, rows are
taken as subspace groups. The peers within a subspace group can be ordered
in any order because they partially dominated each other. We, however, used
order of the fullspace within the subspace groups. Once a query is triggered,
the starting and ending nodes’ Z-addresses are calculated using Equation 1. The
query traverses nodes using the order determined by the subspace of the query
between the starting node and the ending node excluding pruned peers. Each
node can calculate its next peer to send the query and its results to.

3.4 Parallelization of Our Approach

In P2P systems, total parallelism can be achieved by having all peers involved
in the query work concurrently. But it results in an increase in transferred data
and it will disable prunability and progressiveness. We, however, exploit the
incomparable cells’ features in skyline. The transferred data reduction is also
explored. One-dimension neighbors are used to find the next incomparable peers.

Definition 4. One-dimension Neighbor. A one-dimension neighbor to a cell α
is any cell β that can be converted to α by subtracting 1 from only one dimension.

Property 2. All one-dimension neighbors of a cell are incomparable.

Efficient Algorithms for Constrained Subspace Skyline Query 341

Constrained Subspace Skyline Parallel Algorithms (CSSPA). Using
Property 2, a peer sends the query to all unpruned one-dimension neighbors.
This can be achieved by having the query traverses from a peer to all peers with
Z-values higher by one in one dimension and keeping the other values of the other
dimensions. An example of fullspace queries in Fig. 2, a node 0 sends the query to
its one-dimension neighbor (i.e 1 and 2). The same is done for subspaces queries.
The difference is that dimensions of the query’s subspace are only considered for
the one-dimension neighbors. For example, for the CPU performance attribute
subspace query, node 0 sends to node 2 only because it is the only one-dimension
neighbor to node 0. Node 1 is in the same subspace group of node 0. The one-
dimension neighbors here are subspace-groups. All peers within a group can
work concurrently for total concurrency. But as mentioned earlier, it resulted in
more data to transfer. A serial traversal can be used for nodes within a subspace
group. The first peer of each group is determined as explained above.

Constrained Subspace Skyline Parallel Algorithms with Data Reduc-
tion (CSSPA-DR). Parallelism of the previous section implies that queries
travel from lower values in each dimension to a higher value in that dimension.
The skyline points received from previous peer are used to prune points. Since
the parallel traversal comes from low values to higher values in a dimension,
that dimension can be excluded and only the subspace skyline of the rest of
queried subspace can be sent. Thus, the points sent (PSi) through dimension
Di are PSi = subspace-skyline-of(Query-dimensions - Di). Thus, some of the
points may only be sent. In our running example, if CPU performance attribute
is used, a maximum of one point is traveled between the subspace groups.

Load Balancing. Load imbalance can be introduced by query imbalance as
well as data in each cell [4]. To overcome this problem, we adopt the method in
[4]. We use probing and replication. Each peer randomly chooses m points in the
d-dimensional space. Each peer responsible for a point is probed for its query
load balance. By sampling replies, a peer whose load exceeds a threshold will
make a copy of its contents to a peer with minimum load. Then, queries arrived
to such peer are distributed among the replicas in a round-robin fashion.

4 Performance Evaluation

The work in [19], we called ChordSky, is used as a baseline. Our algorithms
(CSSA, CSSPA and CSSPA-DR) as well as the modified ChordSky were built
using Peersim 1.0.5 simulator on Intel Pentium 4 CPU 2.00GHz, 512M mem-
ory. A uniform data with cardinality of 1 million and network sizes of 100-4000
nodes. Different numbers of dimensions are used {2,3,4,5,6,7}. Subspace queries
are also randomly chosen with random dimensions. Extensive skyline queries are
randomly produced and results were reported as shown later. Our aim is at min-
imizing the visited peers and transmitted data while preserving progressiveness.

342 K.M. Banafaa and R. Li

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 q

ue
rie

s

Percentage of the Network

ChordSky
CSSA

CSSPA
CSSPA-DR

Fig. 5. Queries vs. traversed peers

 0

 10

 20

 30

 40

 50

 500 1000 1500 2000 2500 3000 3500 4000

%
 o

f t
ra

ve
rs

ed
 p

ee
rs

Network Size

ChordSky
CSSA

CSSPA
CSSPA-DR

Fig. 6. Percentage of traversed peers

 0

 2

 4

 6

 8

 10

 12

 14

 500 1000 1500 2000 2500 3000 3500 4000

%
 o

f d
at

a
tra

ns
fe

rr
ed

Network Size

ChordSky
CSSA

CSSPA
CSSPA-DR

Fig. 7. Transferred data

 0

 20

 40

 60

 80

 100

 500 1000 1500 2000 2500 3000 3500 4000

P
er

ce
nt

ag
e

of
 s

av
ed

 b
an

dw
id

th

Network Size

CSSA
CSSPA

CSSPA-DR

Fig. 8. Percentage of saved data

4.1 Accessed Nodes

Fig. 5 demonstrates the relationship between the percentage of queries and the
needed traversed peers to answer queries. For the baseline algorithms, the slope
is around 1.7 as opposed to our new algorithms whose slope are around 5.3. The
baseline algorithm’s traversed peers size increases by only 20% the answered
queries percentage increase while it is 60% for the new algorithms. Thus, the
new algorithms results in fewer number of traversed peers to answer the same
percentage of queries. For example, less than 20% of peers can answer upto
80% queris in the new algorithms while the modified ChordSky (i.e. baseline)
needs around 80% peers for same number of queries. In general, the reduction
of traversed peers by the new algorithms(i.e. CSSA, CSSPA, and CSSPA-DR)
as compared to ChordSky is between 40% to 50% of the network size to answer
between 20% to 90% of the queries. This big reduction is due to pruning ability
obtained by our partitioning and traversal algorithms. Comparing our new algo-
rithms (i.e. CSSA, CSSPA, and CSSPA-DR) with each other, they have similar
results to each other because they are using the same pruning method.

Fig. 6 shows traversed peers percentage average for different network sizes.
The average traversed peers keeps its around 50% percentage with variant net-
work sizes for ChordSky. For different sizes of the network, a slight decrease
in the traverse peers’ percentage is shown in our new approaches as the size
increases. It decreases slowly to reach around 7%. Our approach’s prunability
power, thus, increases as network size increases.

Efficient Algorithms for Constrained Subspace Skyline Query 343

 0

 0.5

 1

 1.5

 2

 2.5

 3

 500 1000 1500 2000 2500 3000 3500 4000

H
op

s
pe

r p
ee

r v
is

ite
d

Network Size

ChordSky
CSSA

CSSPA
CSSPA-DR

Fig. 9. Lookup hops per traversed peer

 0

 20

 40

 60

 80

 100

 500 1000 1500 2000 2500 3000 3500 4000

%
 o

f A
vg

 C
rit

ic
al

 p
at

h

Network size

ChordSky
CSSA

CSSPA
CSSPA-DR

Fig. 10. Avg. critical line

4.2 Bandwidth Consumption

Fig. 7 shows transferred data for the algorithms. The pruning power and the
reduction in the visited peers resulted in a reduction in transferred data points.
As the size of the network increases, the traveled data also increases. Due to
lack of peer prunability in ChordSky, more data are transferred. Our parallel
algorithms show less traveled data than our serial approach because it does not
exploit incomparable peers. Thus, it sends irrelevant data to incomparable peers.
As a result of the increase number of traversed peers, which due to the increase
in network size, a slight increase in the transferred data is noted.

Fig. 8 shows the huge saving for our approaches as compared to ChordSky.
Up to 80% of the transferred data in ChordSky is saved. In CSSPA-DR, more
than 90% is saved due the new data reduction techniques . As for CSSA and
CSSPA, upto 80% are saved. Because CSSPA shows better saving than CSSA.

4.3 Expenses

ChordSky’s unprunablity results in no cost. But the new algorithms’ pruning
ability may require a target lookup. A target in Chord may need up to O = log2n
hops, but it is not the case for our Z-order distribution. Queries are usually
traversed between neighboring due to the addressing scheme. Jumps could mean
pruning. Fig. 9 shows that the average number of hops is less than three hops
per traversed peer. The small cost in the figure encourages the usage of those
new algorithms. The cost of parallel algorithms is more than that of serial ones
since a one-dimension neighbor peer could be looked by different peers.

4.4 A Bird’s-eye View of the Algorithms’ Results

Fig. 11 summarizes our findings. The percentage of visited peers to the overall
network size is the highest when the baseline is used. Using the same new pruning
techniques in all new algorithms is reflected in the same traversed peers for
the new algorithms. The percentage of the transferred data to the overall data
is low for our algorithms. It is minimum when the data reduction technique
is used. ChordSky’s visited peers seems to be strongly directly related to the

344 K.M. Banafaa and R. Li

 0

 20

 40

 60

 80

 100

%
 o

f r
es

ul
ts

 to
 to

ta
l

Fig. 11. A bird’s eye view on adv. and disadv of each algorithm

network size. ChordSky’s serial traversal is reflected in the minimum lookup
cost. Parallelism increases cost because the peer is reached by different previous
peers. Its bandwidth usage, however, is the minimum. By assuming that n is the
number of traversed peers, both the baseline and the CSSA are completed only
after n steps. When parallelisms are used, only 40% of the n steps are needed.

5 Conclusion

This paper addresses the constrained subspace skyline queries that have not been
addressed in structured P2P systems. By converting the multi-dimensional data
into a single index using a Z-order filling space, simpler P2P structures are used
for a more general skyline queries (i.e. constrained subspace skyline queries). By
a horizontal partitioning of the dataspace and assigning them Z-addresses, serial
and parallel algorithms for such queries traversal are designed. They exploit in-
comparable partitions featured in skyline computations. Sending only necessary
points to each next unpruned one-dimension neighbor and exploiting feature of
this neighboring relation, a reduction in bandwidth usage is achieved. The ef-
ficiencies of the algorithms are shown in progressiveness and reduction in both
the bandwidth consumption and traversed peers. New efficient approaches for
such queries need to be found for unstructured P2P. Streams and partial order
attributes should also be considered in our future work.

Acknowledgments. This research is partially supported by National Natural
Science Foundation of China under grants 61173170 and 60873225, Innovation
Fund of Huazhong University of Science and Technology under grants 2011TS135
and 2010MS068, and CCF Opening Project of Chinese Information Processing.

References

1. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord:
A scalable peer-to-peer lookup service for internet applications. In: SIGCOMM,
pp. 149–160 (2001)

Efficient Algorithms for Constrained Subspace Skyline Query 345

2. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: 17th Interna-
tional Conference on Data Engineering, ICDE 2001, pp. 421–432. IEEE, Washing-
ton (2001)

3. Dellis, E., Vlachou, A., Vladimirskiy, I., Seeger, B., Theodoridis, Y.: Constrained
subspace skyline computation. In: CIKM, pp. 415–424 (2006)

4. Wu, P., Zhang, C., Feng, Y., Zhao, B.Y., Agrawal, D., El Abbadi, A.: Parallelizing
Skyline Queries for Scalable Distribution. In: Ioannidis, Y., Scholl, M.H., Schmidt,
J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C.
(eds.) EDBT 2006. LNCS, vol. 3896, pp. 112–130. Springer, Heidelberg (2006)

5. Rocha-Junior, J., Vlachou, A., Doulkeridis, C., Nørv̊ag, K.: Efficient execution
plans for distributed skyline query processing. In: Proceedings of the 14th Interna-
tional Conference on Extending Database Technology, pp. 271–282. ACM (2011)

6. Chen, L., Cui, B., Lu, H.: Constrained skyline query processing against distributed
data sites. IEEE Trans. Knowl. Data Eng. 23(2), 204–217 (2011)

7. Tao, Y., Xiao, X., Pei, J.: Subsky: Efficient computation of skylines in subspaces.
In: ICDE, vol. 65 (2006)

8. Vlachou, A.,Doulkeridis, C., Kotidis, Y., Vazirgiannis, M.: SKYPEER:Efficient sub-
space skyline computation over distributed data. In: ICDE,pp. 416–425. IEEE(2007)

9. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in
database systems. ACM Transactions on Database Systems 30(1), 41–82

10. Lee, K.C., Lee, W.C., Zheng, B., Li, H., Tian, Y.: Z-SKY: an efficient skyline
query processing framework based on Z-order. VLDB Journal: Very Large Data
Bases 19(3), 333–362 (2010)

11. Balke, W.-T., Güntzer, U., Zheng, J.X.: Efficient Distributed Skylining for
Web Information Systems. In: Bertino, E., Christodoulakis, S., Plexousakis, D.,
Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992,
pp. 256–273. Springer, Heidelberg (2004)

12. Wang, S., Vu, Q.H., Ooi, B.C., Tung, A.K.H., Xu, L.: Skyframe: a framework for
skyline query processing in peer-to-peer systems. VLDB J. 18(1), 345–362 (2009)

13. Zhu, L., Tao, Y., Zhou, S.: Distributed skyline retrieval with low bandwidth con-
sumption. IEEE Trans. Knowl. Data Eng. 21(3), 384–400 (2009)

14. Cui, B., Chen, L., Xu, L., Lu, H., Song, G., Xu, Q.: Efficient skyline computation in
structured peer-to-peer systems. IEEE Trans. Knowl. Data Eng. 21(7), 1059–1072
(2009)

15. Pei, J., Jin, W., Ester, M., Tao, Y.: Catching the best views of skyline: A semantic
approach based on decisive subspaces. In: Proceedings of the 31st International
Conference on Very large Data Bases, pp. 253–264. VLDB Endowment (2005)

16. Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J., Zhang, Q.: Efficient computation
of the skyline cube. In: Proceedings of the 31st International Conference on Very
Large Data Bases, pp. 241–252. VLDB Endowment (2005)

17. Jin, W., Tung, A., Ester, M., Han, J.: On efficient processing of subspace skyline
queries on high dimensional data. In: 19th International Conference on Scientific
and Statistical Database Management, SSBDM 2007, pp. 12–12. IEEE (2007)

18. Chen, L., Cui, B., Xu, L., Shen, H.T.: Distributed Cache Indexing for Efficient
Subspace Skyline Computation in P2P Networks. In: Kitagawa, H., Ishikawa, Y.,
Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5981, pp. 3–18. Springer,
Heidelberg (2010)

19. Zhu, L., Zhou, S., Guan, J.: Efficient skyline retrieval on peer-to-peer networks. In:
FGCN, pp. 309–314. IEEE (2007)

Processing All k-Nearest Neighbor Queries

in Hadoop

Takuya Yokoyama1, Yoshiharu Ishikawa2,1,3, and Yu Suzuki2

1 Graduate School of Information Science, Nagoya University, Japan
2 Information Technology Center, Nagoya University, Japan

3 National Institute of Informatics, Japan
{yokoyama,suzuki}@db.itc.nagoya-u.ac.jp, y-ishikawa@nagoya-u.jp

Abstract. A k-nearest neighbor (k-NN) query, which retrieves nearest
k points from a database is one of the fundamental query types in spatial
databases. An all k-nearest neighbor query (AkNN query), a variation
of a k-NN query, determines the k-nearest neighbors for each point in
the dataset in a query process. In this paper, we propose a method
for processing AkNN queries in Hadoop. We decompose the given space
into cells and execute a query using the MapReduce framework in a
distributed and parallel manner. Using the distribution statistics of the
target data points, our method can process given queries efficiently.

1 Introduction

An all k-nearest neighbor query (an AkNN query) is a variation of a k-nearest
neighbor query and determines the k-NNs for each point in the given dataset in
one query process. Although efficient algorithms for AkNN queries are available
for centralized databases [2,4,11], we need to consider to support distributed en-
vironments where the target data is managed in multiple servers in a distributed
way. Especially, MapReduce, which is a fundamental framework for processing
large-scaled data in distributed and parallel environments, is promising for en-
abling scalable data processing. In our work, we focus on the use of Hadoop [5]
since it is quite popular software for MapReduce-based data processing.

In this paper, we propose a method for efficiently processing AkNN queries
in Hadoop. The basic idea is to decompose the target space into smaller cells.
At the first phase, we scan the entire dataset and get the summary of the point
distribution. According to the information, we determine an appropriate cell
decomposition. Then we determine k-NN objects for each data points by con-
sidering the maximal range in which possible k-NN objects are located.

2 Related Work

In this work, we assume the use of the distributed and parallel computing frame-
work Hadoop [5,9]. MapReduce [3] is the foundation of Hadoop data processing.

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 346–351, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Processing All k-Nearest Neighbor Queries in Hadoop 347

Due to the page length limitation, we omit these details. If you are interested in
the framework, please refer to textbooks like [9].

An AkNN query is regarded as a kind of a self-join query. Join processing
in the MapReduce framework has been studied intensively recent years [1,6],
but generally speaking, MapReduce only supports equi-joins; development of
query processing methods for non-equi joins is one of the interesting topics on
the MapReduce technology [8]. For AkNN queries, there are proposals that use
R-trees and space-filling curves [2,4,11], but they are limited for the use in a
centralized environment. For processing AkNN queries in Hadoop in an efficient
manner, we need to develop a query processing method that effectively uses the
MapReduce framework.

3 Cell Decomposition and Merging

3.1 Basic Idea

We now describe the basics of our AkNN query processing method. We consider
two dimensional points with x and y axes. Basically, we decompose the target
space into 2n × 2n small cells. The constant n determines the granularity of the
decomposition. Since the k-nearest neighbor points for a data point is usually
located in the nearby area of the point, we can expect that most of the k-NN
objects are found in the nearby cells. A simple idea is to classify data points into
the corresponding cells and compute candidate k-NN points for each point. The
process can be parallelized easily and is suited to the MapReduce framework.

However, we may not be able to determine k-NN points at one step; we need to
perform an additional step for such a case. Data points in other nearby cells may
belong to the k-nearest neighbors. To illustrate this problem, consider Fig. 1,
where we are processing an AkNN query for k = 2. We can find 2-NN points
for A by only investigating the inside of cell 1 since the circle centered at A and
tightly covers 2-NN objects (we call such a circle a boundary circle) does not
overlap the boundary of cell 0. In contrast, the boundary circle for B overlaps
with cells 1, 2, and 3. In this case, there is a possibility that we can find 2-NN
objects in the three cells. Therefore, an additional investigation is necessary.

0 1

32

A

B

C

Fig. 1. Cell-based k-NN processing (k = 2)

The idea is simple but there is a problem; we may not be able to draw the
boundary circle for a point. Consider point C in Fig. 1. For this point, there is
only one (less than k) point in cell 1. Thus, we cannot draw the boundary circle.
We solve the problem in the following subsection.

348 T. Yokoyama, Y. Ishikawa, and Y. Suzuki

3.2 Merging Cells Using Data Distribution Information

We solve the problem described above by prohibiting the situation that there
are not enough points in each cell. We first check the number of points within
each cell. If we find a cell with less number of points, we merge the cell with
the neighboring cells to assure that the number of points in the merged cell is
greater than or equal to k. After that, we can draw the boundary circle.

The outline of the idea is illustrated in Fig. 2, where 4 × 4 decomposition is
performed. At the first step, we count the number of points in each cell. Then,
we merge the cells with less number of objects with the neighboring cells. In our
method, we employ the hierarchical space decomposition used in quadtrees [7].
When we perform merging, we merge four neighboring cells which correspond
to the same node at the parent level.

5 4

9 4

7 8

5 3
6

6
1 0 5 4

1 4 9 4

7 8 4 1

5 3 1 0

Counting Merging

Fig. 2. Cell merging using distribution information

The problem of this approach is that we need to perform an additional count-
ing phase before the nearest neighbor computation. However, it can simplify the
following steps. The distribution information is useful in other ways. If we can
know there is no points in a cell beforehand, we do not need to consider the cell
in the following processes. As shown in the experiments, the cost of the counting
is relatively small compared to the total cost.

4 Illustrative Example

The query process consists of four MapReduce steps:

1. MapReduce1: Data distribution information is obtained and cell merging is
performed.

2. MapReduce2: We collect input records for each cell and then compute can-
didate k-NN points for each point in the cell region.

3. MapReduce3: It updates k-NN points for each point. We use the idea de-
scribed in Section 3 that uses the notion of a boundary circle.

4. MapReduce4: Integrating multiple k-NN lists for each point and get the
resulting k-NN list.

Due to the page length limitation, we only show examples. Please refer to [10]
for the detail of the algorithms,

We give an example of MapReduce1 to 3 steps that finds AkNN points. Fig-
ure 3 shows the distribution of points and we focus on points A, B, and C. The
three points are the representative example patterns:

Processing All k-Nearest Neighbor Queries in Hadoop 349

– A (the bounding circle does not overlap with other cells): k-NN points are
determined at MapReduce2 step.

– B (the bounding circle overlaps with one cell): We can determine k-NN points
at MapReduce3 step by investigating additional cell 2.

– C (the bounding circle overlaps with multiple cells): We investigate additional
cells 1, 2, and 3 at MapReduce3 step. Then we integrate their results at
MapReduce4 step and determine the k-NN points.

A

B C

d

e

fg h i

id coord

A (60, 40)
B (40, 80)
C (90, 90)
d (75, 30)
e (75, 65)
f (65, 85)
g (40, 105)
h (80, 105)
i (105, 105)

Fig. 3. k-NN example (k = 2)

0

200

400

600

800

1,000

1,200

1,400

1,600

5 10 20 40

k Value

Cell Merging MapReduce2 MapReduce3 MapReduce4

Fig. 4. Execution time for different
k values (10M, n = 8)

Figure 5 illustrates the execution steps of the entire MapReduce steps. We
can see that the k-NN lists for points A, B, and C are incrementally updated and
finally fixed.

<A, 60, 40> <0, A, 60, 40>
<B, 40, 80> <0, B, 40, 80>
<C, 90, 90> <0, C, 90, 90>

<A, 60, 40, 0, [d:18.0, e:29.2]>
<B, 40, 80, 0, [f:25.5, e:38.1]>
<C, 90, 90, 0, [f:25.5, e:29.2]>

<0, A, 60, 40, [d:18.0, e:29.2], true>
<0, A, 60, 40>
<2, B, 40, 80, 0, [f:25.5, e:38.1]>
<0, B, 40, 80>
<1, C, 90, 90, 0, [f:25.5, e:29.2], false>
<2, C, 90, 90, 0, [f:25.5, e:29.2], false>
<3, C, 90, 90, 0, [f:25.5, e:29.2], false>
<0, C, 90, 90>

<A, 60, 40, 0, [d:18.0, e:29.2]>
<B, 40, 80, 2, [g:25.0, f:25.5]>
<C, 90, 90, 1, [f:25.5, e:29.2]>
<C, 90, 90, 2, [h:18.0, f:25.5]>
<C, 90, 90, 3, [i:21.2, f:25.5]>

<A, [d:18.0, e:29.2]>
<B, [g:25.0, f:25.5]>
<C, [f:25.5, e:29.2]>
<C, [h:18.0, f:25.5]>
<C, [i:21.2, f:25.5]>

<A, [d:18.0, e:29.2]>
<B, [g:25.0, f:25.5]>
<C, [h:18.0, i:21.2]>

Map2

Reduce2

Map3

Reduce3

Map4

Reduce4

Reduce3

Fig. 5. Processing AkNN query on example dataset

350 T. Yokoyama, Y. Ishikawa, and Y. Suzuki

5 Experiments

We have implemented the proposed method. In this section, we evaluate the
performance of the MapReduce program running in a Hadoop environment.

5.1 Datasets and Experimental Environment

The experiments are performed using two synthetic datasets: the datasets 1M and
10M consist of 1,000,000 and 10,000,000 points in the target space, respectively.
Their file sizes are 34MB and 350MB1.

We use three nodes of Linux 3.0.0-14-server (Ubuntu 11.10) with Intel Xeon
CPU (E5620 @ 2.40GHz). Since each CPU has 4 × 2 cores, we have 24 cores
in total. The system has 500GB storage and the servers are connected by 1G
bit Ethernet. We run Hadoop version 0.20.203.0 in the system. The number of
replicas is set to 1 since we do not care failures in this experiment. The number
of max number of Map tasks and Reduce tasks are set to 8.

5.2 Summary of Experiments

As an example, Fig. 4 shows an experimental result for Experiment 2, where
the granularity parameter is set to n = 8, the number of Reduce tasks is 24,
and the dataset is 10M. As the figure illustrates, the processing time increases
as the k value increases. Especially, the increases of the cost for MapReduce3
and MapReduce4 are large. The reason is that a large k value results in a large
size of each intermediate record, and it results in the increase of data processing
time. In addition to that, since the radius of a boundary circle becomes large, we
need to investigate more data points in MapReduce3 and MapReduce4 steps.

We summarize the experimental results. Please refer to [10] for the details.
Based on the experiments, we observed that the proposed AkNN query process-
ing method can reduce the processing time by parallel processing, especially for
a large dataset (Experiment 1). In addition, it was observed that the increase of
the k value results in the total processing cost (Experiment 2).

In our method, we incorporated a preparation step to obtain the overall
distribution of the points in the target space. As shown in the experimental re-
sults, this process, including the cell merging cost, is quite efficient compared to
other processes of the algorithm. The observation is more clear especially when
the dataset size is large. The preprocessing can simplify the algorithm because
the strategy based on a boundary circle becomes simpler. Thus, the benefit of the
first phase is larger than the cost of the process.

1 We have evaluated the performance using a real map dataset. However, since the
number of entries is small (no. of points = 53,145), we found that the overhead
dominates the total cost and there is no merit to use Hadoop. Therefore, we used
the synthetic dataset here to illustrate the scalability of the method.

Processing All k-Nearest Neighbor Queries in Hadoop 351

6 Conclusions

In this paper, we have proposed an AkNN query processing method in the
MapReduce framework. By using cell decomposition, the method adapts the dis-
tributed and parallel query framework of MapReduce. Since k-NN points may
be located outside of the target cell, we may need additional steps. We solved
the problem by considering a boundary circle for the target point. In addition, to
simplify the algorithm, we proposed to collect distribution statistics beforehand
and the statistics is used for cell merging. In the experiments, we have investi-
gated the behaviors of the algorithm for different parallelization parameters and
different k values.

The future work includes how to estimate the appropriate number of cell
decomposition granularity (n) by using statistics of the underlying data. In ad-
dition, the number of parallel processes is also an important tuning factor. As
shown in the experiments, too many parallel processes may result in the increase
of the total processing cost due to the overhead. If we can estimate these pa-
rameters accurately and adaptively, we would be able to achieve nearly optimal
processing for any environments.

Acknowledgments. This research is partly supported by the Grant-in-Aid for
Scientific Research (22300034) and DIAS (Data Integration & Analysis System)
Program, Japan.

References

1. Afrati, F.N., Ullman, J.D.: Optimizing joins in a map-reduce environment. In:
Proc. EDBT, pp. 99–110 (2010)

2. Chen, Y., Patel, J.M.: Efficient evaluation of all-nearest-neighbor queries. In: Proc.
ICDE 2007, pp. 1056–1065 (2007)

3. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: OSDI, pp. 137–150 (2004)

4. Emrich, T., Graf, F., Kriegel, H.-P., Schubert, M., Thoma, M.: Optimizing All-
Nearest-Neighbor Queries with Trigonometric Pruning. In: Gertz, M., Ludäscher,
B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 501–518. Springer, Heidelberg (2010)

5. The apache software foundation: Hadoop homepage, http://hadoop.apache.org/
6. Jiang, D., Tung, A.K.H., Chen, G.: MAP-JOIN-REDUCE: Toward scalable and

efficient data analysis on large clusters. IEEE TKDE 23(9), 1299–1311 (2011)
7. Samet, H.: The quadtree and related hierarchical data structures. ACM Computing

Surveys 16(2), 187–260 (1984)
8. Vernica, R., Carey, M.J., Li, C.: Efficient parallel set-similarity joins using MapRe-

duce. In: Proc. SIGMOD, pp. 495–506 (2010)
9. White, T.: Hadoop: The Definitive Guide. O’Reilly (2009)

10. Yokoyama, T., Ishikawa, Y., Suzuki, Y.: Processing all k-nearest neighbor queries
in hadoop (long version) (2012),
http://www.db.itc.nagoya-u.ac.jp/papers/2012-waim-long.pdf

11. Zhang, J., Mamoulis, N., Papadias, D., Tao, Y.: All-nearest-neighbors queries in
spatial databases. In: Proc. SSDBM, pp. 297–306 (2004)

http://hadoop.apache.org/
http://www.db.itc.nagoya-u.ac.jp/papers/2012-waim-long.pdf

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 352–362, 2012.
© Springer-Verlag Berlin Heidelberg 2012

RGH: An Efficient RSU-Aided Group-Based
Hierarchical Privacy Enhancement Protocol for VANETs

Tao Yang1,2,3, Lingbo Kong4, Liangwen Yu1,2,3, Jianbin Hu1,2,3,*, and Zhong Chen1,2,3

1
MoE Key Lab of High Confidence Software Technologies,

Peking University, 100871 Beijing, China
2

MoE Key Lab of Computer Networks and Information Security,
Peking University, 100871 Beijing, China

3
School of Electronics Engineering and Computer Science,

Peking University, 100871 Beijing, China
4 School of Software Engineering, Beijing Jiaotong University, 100044 Beijing, China

{ytao,yulw,hujb,chen}@infosec.pku.edu.cn

Abstract. VANETs are gaining significant prominence from both academia
and industry in recent years. In this paper, we introduce an Efficient RSU-aided
Group-based Hierarchical Privacy Enhancement Protocol for VANETs. The
protocol exploits the Road-Side-Unit (RSU) to form a temporary group based
on the vehicles around it. As the group leader, the RSU takes charge of the
verification of the member car through the Revocation List from the DoT
(Department of Transportation). The RSU also generates the session key and
determines the configuration for the group. The RSU handles the message from
the group member, and then sends it to other group members. RSUs have
hierarchical security because of the real environment secure threats. RSUs are
divided into High-level RSU (HRSU) and Low-level RSU (LRSU). HRSU
inserts a message-related trace entry into the trace log while LRSU attaches
trace Tag on the message. HRSU has to submit the trace log to the Department
of Audit (DoA) by secure way periodically. If required, DoA can trace out the
disputed message's real signer with the cooperation of the DoT. Comparison
with other existing classic schemes in the literature has been performed to show
the efficiency and applicability of our scheme.

Keywords: vehicular ad-hoc networks, privacy enhancement, message
authentication, traceability.

1 Introduction

VANETs (vehicular ad-hoc networks) are gaining significant prominence from both
academia and industry in recent years. VANETs consist of three fundamental
components namely RSU (Road-Side Unit), OBU (On-Board Unit), and an appropriate
network (such as Dedicated Short Range Communications, denotes DSRC, TCP/IP,
etc) to coordinate with the whole system. VANETs aim to enhance the safety and

* Corresponding author.

RGH: An Efficient RSU-Aided Group-Based Hierarchical Privacy Enhancement Protocol 353

efficiency of road traffic through the V2I (Vehicle to Infrastructure) and V2V (Vehicle
to Vehicle) communication. Due to its various applications and potential tremendous
benefits it would offer for future users, VANETs are receiving significant prominence
from academia and industry in recent years.

VANETs enable useful Intelligent Transportation System functionalities such as
cooperative driving and probe vehicle data that increase vehicular safety and reduce
traffic congestion. Served by VANETs, people can enjoy a safer and easier
environment on the road. However, it also faces serious security threats about privacy
preservation, because of its high privacy sensitivity of drivers, its huge scale of vehicle
number, its variable node velocity, and its openness. The main privacy concern is the
vehicle identity disclosure and tracing, which could be exploited by the criminals for
some evil motivation. To address the privacy issues, the privacy-preserving
communication scheme should be introduced in VANETs. Besides the basic vehicle
identity privacy-protecting objectives (such as anonymity, integrity, authentication,
non-repudiation, etc.), a good privacy preserving scheme for VANETs must have low
computational/communication complexity, low communication/storage load, as well as
an efficient accountable/traceable mechanism.

Outline: The rest of this paper is organized as follows. Section 2 introduces the
preliminaries such as system model and security objectives. Section 3 describes the
design rationale and details of our scheme. Then, the security and efficiency analysis
results are discussed in Section 4 and Section 5 respectively. We will present the
related work in Section 6. Finally, we will give conclusion in Section 7.

2 Preliminaries

2.1 System Model

We consider our VANETs system model as shown in Fig. 1.

Fig. 1. The system model

354 T. Yang et al.

1) DoT(Department of Transportation): The DoT is in charge of the registration of
all RSUs and OBUs each vehicle is equipped with. The DoT can help DoA trace the
real identity of a safety message sender by checking the trace table T1 in local. To the
end, the DoT is assumed powered with sufficient computation and storage capability,
and the DoT cannot be compromised and is fully trusted by all parties in the system.

2) DoA(Department of Audit): The DoT is in charge of the trace task for the real
message signer if the message has been disputed. DoA can finish a trace process by
match trace table T2 with the cooperation of DoT. T2 is accumulated by merging the
submitted trace log from RSUs periodically.

3) RSU(Road-Side Unit): The RSUs are subordinated by the DoT/DoA, which act
as the infrastructure of the VANETs and hold storage units for storing information
coming from the DoT/OBUs. RSUs connect to DoT /DoA by a wired network and
communicate with OBUs through DSRC. As a distributed unit is deployed on the
roadside, an RSU has a risk to be compromised. RSUs cannot generate signatures on
behalf of either the OBU or the DoT/DoA. RSUs have hierarchical security because of
the real environment secure threats. RSUs are divided into HRSU and LRSU, and are
deployed in 1-HRSU-n-LRSU mode. HRSU inserts a message-related trace entry into
the trace log while LRSU attaches trace Tag on the message. HRSU has to submit the
trace log to DoA by secure way periodically.

4) OBU(On-Board Unit):: Vehicles equipped with OBUs mainly communicate
with each other to share local traffic information and improve the driving experience.
If necessary, OBUs can also communicate with RSU to exchange some information. A
vehicle needs to be registered to the DoT with its public system parameters and
corresponding private key before it joins the VANETs. The use of secret information
such as private keys generates the need for a tamper-proof device (TPD) in each
vehicle. Similar to previous work we assume that access to TPD is restricted to
authorized parties.

2.2 Secure Objectives

We define the security requirements for our VANETs security scheme, and will show
the fulfillment of these requirements after presenting the design details.

1) Privacy: The privacy requirement states that private information such as vehicle
owner’s identity and location privacy is preserved against unlawful tracing and use
profiling.

2) Traceability: It is required that a misbehaving vehicle user who send out the
bogus message will be identified and be punished.

3) Other Requirements: A secure VANETs system should satisfy several
fundamental requirements, namely, authentication, non-repudiation and message
integrity, to protect the system against unauthorized-message injection, denial of
message disseminations and message alteration, respectively. Non-repudiation also
requires that violators or misbehaving users cannot deny the fact that they have
violated the law or misbehaved.

RGH: An Efficient RSU-Aided Group-Based Hierarchical Privacy Enhancement Protocol 355

3 RGH Protocol

Table 1. Notation Table

Notation Description Notation Description

RSUj jth RSU Gj RSUj’s group key

Vi ith Vehicle H(.) Hash function * *:{0,1} qH →

RIDi Vi’s true ID Sign(.) Signature function

PIDi Vi’s pseudo ID Enc(.) symmetric encryption function
s DoT’s master key a||b String concatenation of a and b
Ppub

 DoT’s public key T1 The trace table in DoT

,
j jRSU RSUK K− + RSUj’s secret and public key T2 The trace table in DoA

,i iK K− + Vi’s secret and public key T2j The trace table in RSUj

,DoA DoA− +
DoA’s secret and public key

3.1 System Initialization

In the system initialization, the DoT initializes the system parameters in offline
manner, and registers vehicles and RSUs.

1) Setup: Given the security parameter k, the bilinear parameters

1 2
ˆ, ,(, , ,)e P Qq G G are first chosen, where | |q k= . Then DoT randomly selects a

master secret *

R q
s Z∈ ,and computes the corresponding public key pubP sP= . In

addition, the DoT chooses a secure symmetric encryption algorithm Enc(), a
cryprographic hash function * *:{0,1} qH → , and a secure signature algorithm sign(). In

the end, DoT sets the public system parameters as

1 2
ˆ, , , , , ,)(, , , pube P P H HMAC Enc Signq G G .

2) DoA-KeyGen: DoT randomly select *

R qDoAK Z− ∈ for DoA, and computes the

corresponding public key DoA PDoA+ −= ⋅ . DoT sends the pair (,DoA DoA+ −)

to DoA by secure channel, and sends DoA+ to all the RSUs by secure channel.

3) RSU-KeyGen: DoT randomly select *

R qRSUK Z− ∈ for every RSU, and

computes the corresponding public key RSU RSUK K P+ −= ⋅ . DoT sends the pair

(,RSU RSUK K+ −) to the target RSU by secure channel.

4) OBU-KeyGen: Suppose every vehicle has a unique real identity, denote RID.

Vehicle Vi first randomly chooses *

R qiK Z− ∈ as its secret key and computes the

corresponding public key i iK K P+ −= ⋅ . Then Vi submits a four-tuple

(, , ,)i i i iK RID a b+ to DoT, where *(||), (),
R qi i i i i i i i

a H t P RID b t K a t Z−
∈= = − ⋅

356 T. Yang et al.

DoT verifies the tuple’s validity by judge (()() ||)i

i i i

a

i
a H b P K RID++= . If pass, DoT

assigns a PID for Vi, issues a anonymous certification binding iK + to Vi, and then

store the entry [, ,]i i iK RID PID+ in the trace table T1.

3.2 Group Construction

The group construction includes the following 3 procedures:

1) RSU-Hello: RSU broadcasts Hello-Message periodically to show its existence

for the near vehicle. Hello-Message is []RSUK + .

2) OBU-Join-Req: After received the Hello-Message from RSUj, Vi sends back a

Join-Message which is [||]iK T+ ’s encryption version by a session key between Vi

and RSUj. The OBU-Join-Req Algorithm is shown as following.

Table 2. OBU-Join-Req Algorithm

Algorithm 1: OBU-Join-Req Algorithm

1. Vi randomly selects a secret
*

R qr Z∈ ;

2. Vi computes a session key ()
RSUj

r Kφ += ;

3. Vi computes a hint rPψ = ;

4. Let [||]
i

M K T+= where T denotes Timestamp;

5. Let ' [, ()]M Enc Mφψ= , and send it to RSUj.

3) RSU-Confirm: After received the Join-Message from Vi, RSUj sends a

Confirm-Message include the group key Gj and other configuration back. The RSU-
Confirm Algorithm is shown as following.

Table 3. RSU-Confirm Algorithm

Algorithm 2: RSU-Confirm Algorithm

1. RSUj computes the session key ' RSUKφ ψ −= where hint ψ comes from the M’

in Algorithm 1;

2. RSUj uses 'φ to decrypt the ()Enc Mφ part and gets T and iK +
;

3. RSUj checks the validity of timestamp T;

4. If valid, RSUj checks the Revoke List from DoT for the validity of iK +
;

5. If valid, RSUj randomly select a group session key
*

j R qG Z∈ (if jG has

exist, skip this step);

6. Let
'

'' [(|| ||)]jM Enc G Tφ ω= where ω means the configuration description of

the group, and send it to Vi.

RGH: An Efficient RSU-Aided Group-Based Hierarchical Privacy Enhancement Protocol 357

3.3 Message Sending

The format of the safety messages sent by the OBU is defined in Table 2, which
consists of five fields: message ID, payload, timestamp, RSUj’s public key and
signature by the OBU. The message ID defines the message type, and the payload field
may include the information on the vehicle’s position, direction, speed, traffic events,
event time, and so on. A timestamp is used to prevent the message replay attack. The

next field is RSUjK + , the public key of RSU which is the group leader. The first four

fields are signed by the vehicle Vi, by which the “signature” field can be derived. Table
IV specifies the suggested length for each field.

Table 4. Message Format for OBU

Message ID Payload Timestamp RSUj’s Public Key Vi’s Signature
2 bytes 100 bytes 4 bytes 21 bytes 20 bytes

To endorse a message M, Vi generates a signature on the message, and then
encrypts and sends it to RSUj. The OBU-Message algorithm is shown in as Table 5.

Table 5. OBU-Message Algorithm

Algorithm 3: OBU-Message Algorithm
1. For a message content DATA, Vi computes

(|| || ||)
i

RSUjK
Sign ID DATA K Tσ −

+= ;

2. Let ([|| || || ||])RSUjM Enc ID DATA T Kφ σ+= , and send it to RSUj.

3.4 Message Transfering

After receiving a valid signature from the vehicles, RSUj anonymizes the message and
broadcasts the anonymous message to the group member. According to the secure
level of different RSUs, the RSU-Transfer algorithms are divided into the following
two different algorithm.

Table 6. RSU-Transfer Algorithm

Algorithm 4: HRSU-Transfer Algorithm

1. HRSUj uses the session key 'φ to decrypt

([|| || || ||])RSUjM Enc ID DATA T Kφ σ+= (ref Algorithm 3);

2. HRSUj checks the validity of timestamp T;

3. If valid, HRSUj checks σ ’s validity using iK +
got from Algorithm 2;

4. If valid, HRSUj inserts an entry (H(m), σ) into local trace table T2j (this table would

be submitted to DoA’s trace table T2 periodically through secure channel such as SSL);

5. HRSUj uses the group session key jG to HMAC the anonymous message

[|| ()]
jGM HMACM M= where [|| || ||]

RSUj
ID DATA T KM += ;

6. HRSUj broadcasts M to all the members of the group.

358 T. Yang et al.

1) HRSU-Trans: HRSUs have good secure conditions and are controlled strongly
by DoA. The transfer algorithm of HRSU is shown as Table 6.

2) LRSU-Trans: LRSUs have weaker secure conditions than HRSU, and the logs
in them are not secure enough. The transfer algorithm of LRSU is shown as Table 7.

Table 7. LRSU-Transfer Algorithm

Algorithm 5: LRSU-Transfer Algorithm

1. LRSUj uses the session key 'φ to decrypt

([|| || || ||])RSUjM Enc ID DATA T Kφ σ+= (ref Algorithm 3);

2. LRSUj checks the validity of timestamp T;

3. If valid, LRSUj checks σ ’s validity using iK +
got from Algorithm 2;

4. If valid, LRSUj computes Tag=SignDoA+(σ);

5. LRSUj uses the group session key jG to HMAC the anonymous message

[|| () ||]
j

G
M HMAC TagM M= where [|| || ||]

RSUj
ID DATA T KM

+= ;

6. LRSUj broadcasts M to all the members of the group.

3.5 Message Verification

After receiving the anonymous message M from the group leader RSUj, the group
member vehicles use group session key Gj to HMAC the M ’s
[|| || ||]RSUjID DATA T K + part and to check the validity of the message.

3.6 Trace

If a message is found to be fraudulent, a tracing operation is started to determine the
real identity of the signature originator. In detail, the trace process include the
following two conditions:

1) If [|| || || || (|| || ||) ||]
jRSUj G RSUjM ID DATA T K HMAC ID DATA T K Tag+ += , the

DoA first uses its private key DoA- to decrypt the Tag section of the message to

get signature σ . Then DoA uses σ to locate the corresponding
i

K + .

According to the DoA’s demand, the DoT check table T1 to retrieve the real

identity RID of the
i

K + and returns it to the DoA.

2) If [|| || || || (|| || ||)]
jRSUj G RSUjM ID DATA T K HMAC ID DATA T K+ += , the DoA

first finds the RSU by extracting the RSU’s public key from the message. Then

DoA checks table T2 to locate the corresponding
i

K + . The rest of the trace

process is the same as above.

RGH: An Efficient RSU-Aided Group-Based Hierarchical Privacy Enhancement Protocol 359

4 Security Analysis

4.1 Privacy

Privacy is achieved by the pseudo identity PID which conceals the real identity RID
such that peer vehicles and RSUs cannot identify the sender of a specific message
while are still able to authenticate the sender.

4.2 Traceability

Given the disputed signature, the lookup tables T1 in DoT and T2 in DoA enable the
eventual tracing misbehaving vehicles. The tracking procedure executed by
corporation between DoA and DoT guarantees the traceability.

4.3 Authentication, Non-Repudiation and Integrity

Authentication, non-repudiation, and integrity are guaranteed by digital signatures σ
which bound the message to a PID and consequently the corresponding identity. The
message integrity can be protected by utilizing HMAC both in HRSU-Transfer and
LRSU-Transfer Algorithm.

5 Performance Analysis

We carry out performance analysis in this section in terms of storage and
communication performance for our scheme, and the reference protocols are
HAB[1,2], GSB[3] and ECPP[4].

5.1 Storage

The storage requirements on DoT/DoA/RSU are not stringent since these entities are
resource-abundant in nature. We are mainly concerned with the storage cost in vehicles
OBU and list the contrast table as following (α means the RL’s entry number and β
means the anonymous certification number from each RSU which depends on the
density of RSUs.):

Table 8. OBU storage cost contrast

Scheme Cost (Bytes)
HAB 500*43800+21*α
GSB 126+43*α
ECPP 87*β
Our 42

From above table, the storage advantage of our scheme is obvious.

360 T. Yang et al.

5.2 Communication

This section compares the communication overheads of the protocols studied. We
assume that all protocols generate a timestamp to prevent replay attacks so we exclude
the length of the timestamp in this analysis.

In HAB, each message generates yields 181 bytes as the additional overhead due to
cryptographic operations. In GSB, each message generates 197 bytes as the additional
overhead. For ECPP protocols, the additional communication overhead is 42+147=189
bytes, where the first term represents the signature’s length, the second term represents
the length of the anonymous key and its corresponding certificate. For RGH, the
additional communication overhead is 2+21+20=43 bytes.

Fig. 2. The commucation overhead contrast

Fig. 2 shows the relationship between the overall communication overhead in 1
minute and the traffic load within a vehicle. Obviously, as the number of messages
increases, the transmission overhead increases linearly. Clearly, we can observe that
our protocol has much lower communication overhead than the other protocols.

6 Related Work

Security and privacy in VANETs raise many challenging research issues and there are
many literatures related to the security and privacy in VANETs. We only review the
most related and classic schemes focused on vehicle identity relative privacy-
preserving.

Raya et al . [1,2] investigated the privacy issue and proposed a landmark
pseudonym-based protocol (huge anonymous public keys based, denote HAB)
employing the public key infrastructure (PKI). A huge number of private keys (about
43,800) and their corresponding anonymous certificates are preload into each OBU by
authorized department. To sign each launched message, a vehicle randomly selects
one of its anonymous certificates and uses its corresponding private key. The other
vehicles use the public key of the sender enclosed with the anonymous certificate to

RGH: An Efficient RSU-Aided Group-Based Hierarchical Privacy Enhancement Protocol 361

authenticate the source of the message. These anonymous certificates are generated
by employing the pseudo-identity of the vehicles, instead of taking any real identity
information of the drivers. Each certificate has a short life time to meet the privacy
requirement. Although HAB protocol can effectively meet the conditional privacy
requirement, it is inefficient, heavy-cost, and may become a scalability bottleneck.
And more, the certificates database to be searched by the tracer in order to match a
compromised certificate to its owner’s identity is huge. To address the revoking issue,
the authors later proposed three credential revocation protocols tailored for VANETs,
namely RTPD, RC2RL, and DRP [7]. All the three protocols seem to work well under
conventional PKI. However, the authors also proposed to use frequently updated
anonymous public keys to fulfill users’ requirement on identity and location privacy.
However, if HAB is used in conjunction with RC2RL and DRP, the CRL will become
huge in size, rendering the revocation protocols highly inefficient.

Lin et al. proposed the GSB[3] protocol, based on the group signature[8]. With
GSB, each vehicle stores only a private key and a group public key. Messages are
signed using the group signature scheme without revealing any identity information to
the public. Thus privacy is preserved while DoA is able to track the identity of a
sender. However, the time for safety message verification grows linearly with the
number of revoked vehicles in the revocation list in the entire network. Hence, each
vehicle has to spend additional time on safety message verification. Furthermore, when
the number of revoked vehicles in the revocation list is larger than some threshold, it
requires every remaining vehicle to calculate a new private key and group public key
based on the exhaustive list of revoked vehicles whenever a vehicle is revoked. Lin et
al. do not explore solutions to effectively updated the system parameters for the
participating to vehicles in a timely, reliable and scalable fashion. This issue is not
explored and represents an important obstacle to the success of this scheme.

Lu et al. [4] introduced an efficient conditional privacy preservation protocol
(ECPP) based on generating on-the-fly short-lived anonymous keys for the
communication between vehicles and RSUs. ECPP used RSUs as the source of
certificates. In such an approach, RSUs (as opposed to OBUs) check the group
signature to verify if the sender has been revoked and record values to allow tracing.
OBUs then use a RSU provided certificate to achieve authenticity and short-term
linkability. However, ECPP is vulnerable to Sybil attacks and requires an unreasonable
amount of computation for RSUs (i.e., linear in the size of the revocation information
for every certificate request).

7 Conclusion

In this paper, a lightweight RSU-aided group-based Hierarchical privacy-protecting
protocol for VANETs has been proposed. The communication group is formed based on
RSU and can provide anonymous communication between the group member vehicles
and inter-group vehicles. For the better security, RSUs are divided into HRSU and
LRSU, and are deployed in 1-HRSU-n-LRSU mode. HRSU inserts a message-related
trace entry into the trace log while LRSU attaches trace Tag on the message. HRSU has
to submit the trace log to DoA by secure way periodically. Furthermore, the scheme can
preserve vehicle privacy, and simultaneously provide traceability. The protocol is
characterized as low-complexity, low-load, efficient and accountable. Analysis about the
security and the performance shows it can match the objectives well.

362 T. Yang et al.

Acknowledgments. This work was supported in part by the NSFC under grant No.
61170263 and No. 61003230.

References

1. Raya, M., Hubaux, J.: The security of vehicular ad hoc networks. In: Proceedings of the 3rd
ACM Workshop on Security of Ad Hoc and Sensor Networks, pp. 11–21. ACM,
Alexandria (2005)

2. Raya, M., Hubaux, J.: Securing vehicular ad hoc networks. Journal of Computer Security,
Special Issue on Security of Ad Hoc and Sensor Networks 15, 39–68 (2007)

3. Lin, X., Sun, X., Ho, P., Shen, X.: GSIS: A Secure and Privacy-Preserving Protocol for
Vehicular Communications. IEEE Transactions on Vehicular Technology 56, 3442–3456
(2007)

4. Lu, R., Lin, X., Zhu, H., Ho, P., Shen, X.: ECPP: Efficient Conditional Privacy Preservation
Protocol for Secure Vehicular Communications. In: Proceedings of the 27th IEEE
International Conference on Computer Communications, INFOCOM 2008, pp. 1229–1237.
IEEE (2008)

5. Wasef, A., Shen, X.: Efficient Group Signature Scheme Supporting Batch Verification for
Securing Vehicular Networks. In: Proceedings of IEEE International Conference on
Communications, ICC 2010, pp. 1–5. IEEE (2010)

6. Calandriello, G., Papadimitratos, P., Hubaux, J., Lioy, A.: Efficient and robust
pseudonymous authentication in VANET. In: Proceedings of the Fourth ACM International
Workshop on Vehicular Ad Hoc Network, VANET 2007, pp. 19–28. ACM, Montreal
(2007)

7. Raya, M., Papadimitratos, P., Aad, I., Jungels, D., Hubaux, J.P.: Eviction of Misbehaving and
Faulty Nodes in Vehicular Networks. IEEE Journal on Selected Areas in Communications 25,
1557–1568 (2007)

8. Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

Locating Encrypted Data Precisely without

Leaking Their Distribution

Liqing Huang1,2 and Yi Tang1,2,�

1 School of Mathematics and Information Science
Guangzhou University, Guangzhou 510006, China

2 Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong
Higher Education Institutes

Guangzhou University, Guangzhou 510006, China
ytang@gzhu.edu.cn

Abstract. Data encryption is a popular solution to ensure the privacy of
the data in outsourced databases. A typical strategy is to store sensitive
data encrypted and map those original values into bucket tags for query-
ing on encrypted data. To achieve computations over encrypted data,
the homomorphic encryption (HE) methods are proposed. However, per-
forming those computations needs locating data precisely. Existing test-
over-encrypted-data methods cannot prevent a curious service provider
doing in the same way and causing the leaks of original data distribu-
tion. In this paper, we propose a method, named Splitting-Duplicating,
to support encrypted data locating precisely by introducing an auxiliary
value tag. To protect the privacy of original data distribution, we limit
the frequencies of different tag values in a given range. We use an en-
tropy based metric to measure the degree of privacy protected. We have
conducted some experiments to validate our proposed method.

1 Introduction

Outsourcing data to a datacenter is a typical type of computing paradigm in the
cloud. To ensure the privacy of the sensitive data, storing those data encrypted
on remote servers becomes a common view. However, encryption also destroys
the natural structure of data and introduces many challenges in running database
applications.

One of the main challenges is how to execute queries over encrypted data. De-
veloping new ciphers for keyword searching on encrypted data seems a compre-
hensive solution for this issue. However, either the symmetric encryption scheme
[6] or the asymmetric encryption scheme [7] cannot prevent the curious service
provider locating the positions with the same method. The DAS (Database as a
Service) model [4] addresses a bucketization method. According to this model,
the data is encrypted by a traditional block cipher and the domain of each
sensitive attribute is divided into a set of buckets which is labeled by bucket

� Corresponding author.

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 363–374, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

364 L. Huang and Y. Tang

tags. Thus some values can be mapped into a single bucket and the tuples with
the same bucket tag may have different original values. This scheme obviously
introduces false answers when retrieving data from remote servers.

Another challenge is on the computations over encrypted data. Since ho-
momorphic encryption (HE) enables an equivalent relation exists between one
operation performed on the plaintext and another operation on the ciphertext,
it is considered as an effective solution to this issue. According to the relations
supported, the homomorphic encryption methods can be partially [2] or fully [3].
The introduced nonce in both methods makes it difficult to distinguish two HE-
encrypted values even if they are the same in plaintext. The HE methods require
locating the encrypted tuples precisely before performing any computation.

Locate encrypted tuples implies execute comparison operations over encrypted
data on server without decryption. As mentioned above, if the comparison re-
sults could be distinguished on server, the curious service provider could also
manipulate in the same way to obtain information about sensitive values. The
CryptDB scheme [8] defines layers of encryption for different types of database
queries. For executing a specific query, layers of encryption can be removed by
decrypting to an appropriate layer and the tuple locating is based on the cipher-
text comparing. This may lead many sensitive values be stored to the lowest level
of data confidentiality provided by the weakest encryption scheme, and leak sen-
sitive details such as the relations between sensitive values and the distribution
of values. Furthermore, the introduced nonce in this scheme makes the cipher-
text comparing become complicated even if a proxy at client side maintains the
relations between the plaintext and ciphertext.

It is necessary to introduce the HE methods in encrypting outsourced data.
In this paper, we aim at providing a simple method for locating HE-encrypted
data precisely. Compared with the matching methods of an encrypted string,
we introduce the notion of value tags and perform the comparisons based on
the value tags. A sensitive value being encrypted is mapped into an appropriate
value called value tag. It implies that two encrypted tuples with a same value
tag will have a same sensitive value.

The contributions of this paper can be enumerated as follows.

1. We introduce an auxiliary attribute for precisely locating HE-encrypted val-
ues. The original sensitive values are mapped into some artificial value tags.
To prevent value tags disclosing the sensitive data distribution, the same
sensitive values are actually mapped to a set of value tags.

2. We propose a method, named Splitting-Duplicating, to construct the value
tag mapping. The goal of this method is to keep the frequencies of each
tag varying in a limited range. The original value with higher frequency
will be mapped into some different tags via a Splitting process. For the one
with lower frequency, we propose a Duplicating process to create some noise
tuples to make the frequency of the associated tag fall in the given range.

3. We develop an entropy-based metric to measure the protected degree of data
distribution via our proposed Splitting-Duplicating method.

Locating Encrypted Data Precisely 365

The rest of this paper is structured as follows. In Section 2, we give our moti-
vation. In Section 3, we formulate the proposed Splitting-Duplicating method.
In Section 4, conduct some range query experiments to validate our proposed
method. And finally, the conclusion is drawn in Section 5.

2 Motivation

We assume the database is outsourced to a database service provider and the
provider is curious but honest.

Considering the relation, R = (A1, A2, ..., An), with n sensitive attributes. Its
corresponding encrypted relation on server can be described as Rs

1 = (As
1e, A

s
2e,

..., As
ne) where the attribute As

i e denotes the encrypted version of Ai. Since not
all the attribute value need to be modified during the database running, the
attributes can be simplified into two types, the modifiable attributes and the
non-modifiable ones.

Without loss of generality, assume the attribute An is modifiable and the
others are non-modifiable in relation R. Considering the encryption features in
traditional ciphers and the computation feature in HE methods, we redescribe
Rs

1 as Rs
2 = (enc other attr, As

nHE) where enc other attr denotes the encrypted
version of n − 1 tuple 〈A1, A2, ..., An−1〉, As

nHE denotes the HE-encrypted An

attribute.
However, the data in a database is not only for storage but also for queries

and computations. The introduced nonce in HE methods makes it difficult to
perform equality tests on server. To support the encrypted tuple locating, we
introduce value tag. A value tag is used to identify an attribute value. If two
value tags of an attribute are equal, the corresponding two attribute values
are also equal. Therefore, the encrypted relation stored on server can be Rs =
(enc other attr, As

nHE , A
s
1, A

s
2, ..., A

s
1−1, A

s
n) where As

i denotes the value tag of
attribute Ai.

Table 1. A table in original (left) and HE-encrypted (right)

#tuple name salary enc other attr salarys
HE names salary tag

1 Alice 22 1100010... 0110011... x1 z1
2 Bob 15 0101010... 1010110... x2 z2
3 Cindy 20 0011101... 1001010... x3 z3
4 Donald 20 0101011... 0010101... x4 z3
5 Eva 25 1010110... 1110001... x5 z4

Table 1 shows an example for a relation in original and on server. When
executing an SQL operation over the encrypted data, a translator at client will
translate the plain operation in R into the server-side operation in Rs.

For example, the SQL Update operation:

366 L. Huang and Y. Tang

Table 2. An HE-encrypted table after Splitting (right)

#tuple name salary enc other attr salarys
HE names salary tag

1 Alice 22 1100010... 0110011... x1 z1
2 Bob 15 0101010... 1010110... x2 z2
3 Cindy 20 0011101... 1001010... x3 z31
4 Donald 20 0101011... 0010101... x4 z32
5 Eva 25 1010110... 1110001... x5 z4

Table 3. An HE-encrypted table after Duplicating (right)

#tuple name salary enc other attr salarys
HE names salary tag

1 Alice 22 1100010... 0110011... x1 z1
2 Bob 15 0101010... 1010110... x2 z2
3 Cindy 20 0011101... 1001010... x3 z3
4 Donald 20 0101011... 0010101... x4 z3
5 Eva 25 1010110... 1110001... x5 z4
6 - - 1001010... 0111001... x6 z1
7 - - 1101110... 1101110... x7 z2
8 - - 0110100... 1101001... x8 z4

update R SET R.salary = R.salary + 2 where R.salary ≤ 20

can be translated into the following on server:
update Rs SET Rs.salarys

HE = Rs.salarys
HE + 2HE where Rs.salary tag =

z2 or z3
where 2HE is the HE-encrypted result of 2.

It is easy to distinguish the two Update operations. The server-side operation
can be viewed as the encrypted version of the client-side operation. The transla-
tion, besides changes the plain value modification into an encrypted one, changes
the where condition into an OR-Expression whose length is 2..

We also note that the distribution of salary tag is the same as the attribute
salary in plaintext. The link attack could immediately be proceeded to this
encrypted relation [1]. A simple strategy against the link attack is to destroy the
consistency between the two distributions.

In this paper, we consider to change the distribution of the artificial tag values.
We intend to limit the frequencies of value tags in a given range and make the
distribution as uniform as possible. Two approaches can be adopted to reach the
target.

1. Splitting. Adding new tag values to the table. For example (as in Table 2),
we can define the salary tag of item Cindy and item Donald as z31 and z32,
respectively. This method cuts a higher frequency into some lower pieces.

2. Duplicating. Adding new noisy items to the table. For example (as in Ta-
ble 3), we can simply duplicate the items of Alice, Bob, and Eve into the

Locating Encrypted Data Precisely 367

table and make all the frequencies of salary tag as the same. This method
increases the frequency of a value tag with lower original frequency.

3 The Splitting-Duplicating Method

3.1 The Value Tag Entropy

We follow the basic notations described previously. The tag construction for
traditional encrypted attributes are referred in [4], we only need to consider how
to construct the value tags for the HE-encrypted attributes. Without causing
confusion, we suppose the attribute A is the HE-encrypted attribute.

Definition 1. Given an attribute A with domain DA and a value v ∈ DA, a
value tag mapping is the mapping, V Tmap : DA → Integer, and the value tag
for v is the integer V Tmap(v), denoted by vt.

Some typical cryptology techniques, such as the block ciphers and the keyed
hash functions, can be used to define the mapping V Tmap.

Definition 2. An HE-related tuple is the tuple 〈v, vt, nvt, na〉 where v is the
original value, vt is the corresponding value tag stored on server, nvt is the
frequency of vt, and na is the additional frequency increment for vt.

The HE-related tuples are stored on clients for translating the SQL operations.
Initializing a set of HE-related tuples is straightforward. The following procedure
demonstrates the sketch for initializing the HE-related tuple set T with size N ,
where the HE-related tuple set is constructed as a RTLtup structure.

procedure Initializing(RLTtup T)
for i = 1 to N
va ← R.A
if {〈v, vt, nvt, na〉|〈v, vt, nvt, na〉 ∈ T ∧ v = va} �= φ
nvt ← nvt + 1

else
vt← V Tmap(va)
T = T ∪ {〈va, vt, 1, 0〉}

endif
endfor

endprocedure

Given the value tag set V T = {vt|〈v, vt, nvt, na〉 ∈ T } and n =
∑

vt nvt, the
following formula can be used to compute the entropy of V T :

H(V T) = −
∑
vt

nvt

n
· log nvt

n
(1)

We use the above formula to measure the degree of original data distribution
protected in a given value tag set. It is obviously that the H(V T) reaches its
maximize value log2 |V T | when the frequencies of each value tag are the same.

368 L. Huang and Y. Tang

Intuitively, if the frequencies of each value tag are nearly the same, an ad-
versary need more efforts to guess the whole value distribution of sensitive data
on the database server, even if he knows the probability distribution of sensitive
data and a few exact values of sensitive data. This intuition is consistent with
the notion of the value tag set entropy. It is noted that the information entropy
is a measure of unpredictability. The larger the entropy, the more privacy pro-
tected in a value tag set. It implies that the approximative frequencies of each
value tag may introduce more power against the link attacks.

3.2 Limiting the Frequencies of Value Tags

Let tlow, thigh be two threshold values where tlow < thigh. We try to limit the
frequencies of each value tag in a range (tlow, thigh].

Definition 3. The HE-related tuple set HFset = {〈v, vt, nvt, na〉|〈v, vt, nvt, na〉
∈ T ∧ nvt ≥ thigh} is called as the high frequency set.

Definition 4. The HE-related tuple set LFset = {〈v, vt, nvt, na〉|〈v, vt, nvt, na〉
∈ T ∧ nvt < tlow} is called as the low frequency set.

In general, when an HE-related tuple set is initialized, both HFset and LFset
are not empty. Our goal is to reconstruct the HE-related tuple set T with emptied
HFset and LFset. We will adopt two strategies, Spiltting and Duplicating, to
empty HFset and LFset, respectively.

We first give a method for decomposing n into a sequence: sn1, sn2, ...snk s.t.
∀i : sni ∈ (tlow, thigh] and

∑
i sni = n. We only consider two scenarios, the case

of (0, t] and the case of (t, 2t].
The decomposition in case (0, t] is trivial and we only need iteratively pick an

integer from (0, t]. For the case of (t, 2t], the procedure can be showed as follows.

procedure Decomposing(int n, t, int[] sn)
tn← n, i← 1
while tn > 2t
random select r ∈ (t, 2t]
tn← tn− r, sn[i]← r, i← i+ 1

endwhile
if tn ∈ (t, 2t]
sn[i]← tn

else if tn ≤ t
snmin = min{sn[1], sn[2], ..., sn[i− 1]}
if snmin + tn ∈ (t, 2t]
snmin ← snmin + tn

else
snmax = max{sn[1], sn[2], ..., sn[i− 1]}
random select r ∈ (t, snmax + tn− t]
snmax ← snmax + tn− r, sn[i]← r

endif

Locating Encrypted Data Precisely 369

endif
endprocedure

Theorem 1. The procedure of Decomposing can decompose the integer n (n ¿
2t) into a sequence of integers that are in (t, 2t].

Definition 5. For a tuple t = 〈v, vt, nvt, na〉 ∈ T , we say t is split into two
tuples t1 = 〈v, vt1, nvt1 , na1〉, t2〈v, vt2, nvt2 , na2〉 iff the original value v (whose
value tag is vt) are mapped into tags vt1 and vt2, and nvt1 �= 0, nvt2 �= 0.

We denote V Ts as the new value tag set after a tuple is split.

Theorem 2. If a tuple t ∈ T is split into two tuples t1, t2, we have H(V Ts) >
H(V T).

This theorem indicates that when a tuple is split into two parts, the entropy of
value tag set becomes larger.

3.3 The Splitting Procedure and Duplicating Procedure

The Splitting procedure and the Duplicating procedure are simple and directly.
We sketch them as following.

procedure Splitting(RLTtup T , int tlow, thigh)
while HFset(T) �= φ
select 〈v, vt, nvt, 0〉 ∈ HFset(T)
T ← T − {〈v, vt, nvt, 0〉}
decompose nvt into a sequence: k1, k2, ..., km
where ki ∈ (tlow , thigh] and

∑
i ki = n

for each ki
construct a value tag vti
pick ki tuples whose value tag is vt in Rs

replace these ki tuples’s value tag with vti, repectively
T ← T ∪ {〈v, vti, ki, 0〉}

endfor
endwhile

endprocedure

In the Splitting procedure, the HE-related tuple set T is scanned to check
whether or not theHFset(T) is empty. If the element 〈v, vt, nvt, 0〉 is inHFset(T),
we will decompose nvt into a sequence of integer {ki} such that ∀ki : ki ∈
(tlow, thigh] and

∑
i ki = n. It implies that we have split nvt tuples into a set of

tuple set whose size is ki, respectively. For the tuple set with size ki, we generate
a new value tag vti for those ki tuples and append the tuple 〈v, vti, ki, 0〉 into
value tag set T . The Splitting procedure empties the subset HFset(T).

370 L. Huang and Y. Tang

procedure Duplicating(RLTtup T , int tlow, thigh)
while LFset �= φ
select 〈v, vt, nvt, na〉 ∈ LFset
T ← T − {〈v, vt, nvt, na〉}
generate k

′
: tlow − nvt ≤ k

′
< thigh − nvt

for i = 1 to k
′

ev ← HE(v)
construct other Rs attribute values: enc others, v1, v2, ..., vn−1

store 〈enc others, ev, v1, v2, ..., vn−1, vt〉 on server
endfor
T ← T ∪ {〈v, vt, nvt + k

′
, na + k

′〉}
endwhile

endprocedure

In the Duplicating procedure, the iterative check targets at LFset(T). If the
element 〈v, vt, nvt, na〉 is in LFset(T), some random noise tuples with the same
value tag vt will be created and stored into the encrypted database on server.
This makes the frequency of vt in Rs increase to the range (tlow , thigh]. The
Duplicating procedure empties the subset LFset(T) but also introduces some
noise tuples.

4 Experiments and Discussion

4.1 Measuring SQL Operation Time Cost Based on OR-Expression

After performing Splitting-Duplicating over the encrypted data, the where con-
dition of a plain SQL operation will be translated into an OR-expression. The
number of operands in an OR-expression is called as the length of this OR-
expression. Different lengths of OR-expression may lead to different SQL oper-
ation response time. We run a set of experiments to confirm this intuition.

These experiments are on an HP mini-210 with Intel Atom N450 1.66GHz
and 1GB memory. We create 5 tables, each is with 20k integers, under Win-
dows XP sp3 and MS SQL2000. The integers is evenly distributed in intervals
[1, 1k], [1, 2k], [1, 5k], [1, 10k], and [1, 20k], respectively.

We perform the query, select ∗ from T where OR-expression, and regulate
the OR-expression in order to retrieve 20 tuples on each table. We randomly
generate the OR-expression, execute the query, and record the response time.
The average time in 1,000 tests is shown as in Fig. 1

Fig. 1 demonstrates that as the length of OR-expression increases, the query
retrieved the same number of tuples needs more response times. Based on this
observation, we use the length of OR-expression to evaluate the SQL operation
time cost for our proposed Splitting-Duplicating method.

Locating Encrypted Data Precisely 371

0 5 10 15 20
0

10

20

30

40

50

Length of OR−Expression

T
im

e(
m

s)

Fig. 1. Time Cost on OR-expression

0 500 1000
0

500

1000

1500

Fig. 2. The Original Data Distribution

0 500 1000

400

500

600

700

800

Value Tag

F
re

qu
en

cy

(a)Case(400,800]

0 500 1000 1500
0

200

400

600

800

Value Tag

F
re

qu
en

cy

(b)Case(0,800]

Fig. 3. The Value Tag Distributions after Splitting-Duplicating

4.2 Performing Splitting-Duplicating on Synthesized Dataset

The next experiments are on synthesized data. We assume the sensitive data are
on normal distribution and generate a test dataset data500k with 500,000 integers
in the interval [1, 999]. These 500k integers are viewed as the attribute values
needed to be HE-encrypted, and we adopt our proposed method to construct
corresponding value tags.

The original value distribution in data500k is demonstrated in Fig.2. Fig.
3 demonstrates two instances of value tag distribution after performing the
Splitting-Duplicating procedure. Fig. 3(a) is for the case of limiting the fre-
quencies in (400, 800] and (b) is for limiting in (0, 800]. The tag values in both
instances demonstrate completely different distribution comparing to the origi-
nal value distribution.

Fig. 4 demonstrates how the entropy changes with the parameter t of the two
scenarios, (t, 2t] and (0, t]. We find that as t increases, the value of entropy de-
creases in both cases. It implies that smaller ts will bring larger entropy because
of the larger state variable space. This means the smaller ts will provide more
degrees of the capability of privacy protected.

372 L. Huang and Y. Tang

0 200 400 600
9

10

11

12

13

14

t
E

nt
ro

py

(0,t]
(t,2t]

Fig. 4. The Entropy for the Scenario (0, t] and the Scenario (t, 2t]

4.3 Range Queries

Range query is a fundamental class of queries in database applications. For a
relation with a single attribute, the range query window can be formulated as
[x, x+ size], denoted by querywin(x, size), where size is the range size. In our
experiments, we set size from 0 to 100 with step size 1.

There are two kinds of possible user behaviors in range queries [5].

• Data-based query. Each value in attribute domain can be chosen to construct
query window in probability. The probability depends on the densely popu-
lated values, i.e, the frequencies of values in database.
• Value-based query. Each value in attribute domain is equally chosen to con-
struct query window. This query demonstrates the case where no user pref-
erence is known previously.

0 50 100
1

2

3

4

5

Range Size

Le
ng

th
 R

at
io

(a)Value−based

t=100
t=300
t=500

0 50 100
0

2

4

6

8

10

Range Size

Le
ng

th
 R

at
io

(b) Data−based

t=100
t=300
t=500

Fig. 5. Range Queries for the Scenario (0,t]

Thus, the range query windows, querywin(x, size), can be constructed by
different x selection methods. The data-based query window is constructed by
randomly choosing x from data500k while the value-based query window is con-
structed by randomly choosing x from [1, 999].

For each range size size, we respectively generate 1,000 random queries on
the two user behaviors, and apply these queries on the constructed value tag set.
We evaluate the experiment results on the following items.

Locating Encrypted Data Precisely 373

• The OR-expression length ratio. It reflects the average query response time
cost comparing to the original plain queries.
• The proportion of noise tuple cases. It is the average proportion of the query
responses included noise tuples in each query and reflects the possibility of
refilter the retrieved tuples.
• The number of noise tuples. It defines average number of noise tuples intro-
duces in queries and demonstrates the extra network payloads.

Fig.5, Fig.6, and Fig.7 demonstrate three sets of experiment results.
As shown in Fig.5(a), Fig.5(b), Fig.6(a), and Fig.7(a), we find that the OR-

expression length ratio values almost keep invariable when varying the query
window sizes in our conducted experiments. The larger the frequency limitation
parameter t, the smaller the OR-expression length ratio. The length ratios intro-
duced in two query behaviors for the Scenario (t, 2t] are almost the same, while
for the Scenario (0, t], the value-based queries can be responded more efficiently.

0 50 100
1

2

3

4

5

6

Range Size

Le
ng

th
 R

at
io

(a)

t=100
t=300
t=500

0 50 100
0

0.1

0.2

0.3

0.4

Range Size

N
oi

se
 T

up
le

 C
as

es

(b)

t=100
t=300
t=500

0 50 100
0

2

4

6

8

10
x 10

6

Range Size

N
oi

se
 T

up
le

s

(c)

t=100
t=300
t=500

Fig. 6. Data-based Range Queries for the Scenario (t, 2t]

0 50 100
1

2

3

4

5

6

Range Size

Le
ng

th
 R

at
io

(a)

t=100
t=300
t=500

0 50 100
0

0.1

0.2

0.3

0.4

Range Size

N
oi

se
 T

up
le

 C
as

es

(b)

t=100
t=300
t=500

0 50 100
0

5

10

15

Range Size

N
oi

se
 T

up
le

s

(c)
x103

t=100
t=300
t=500

Fig. 7. Value-based Range Queries for the Scenario (t, 2t]

There are not noisy tuples in query results because of no needing Duplicating
procedure in the scenario (0, t]. For the scenario (t, 2t], the two query behaviors
demonstrate similar characteristics in noise tuple appearance. As demonstrated
in Fig.6(b), Fig.7(b), the proportions of noise tuple cases are almost the same in
both behaviors, and the proportion values increase slightly when the query range
increases. Both two figures show that the larger frequency limitation parameter
t leads to larger proportions of noise tuple cases. For the average number of noise
tuples, as shown in Fig.6(c) and Fig.7(c), the value-based queries may receive
less noise tuples obviously.

374 L. Huang and Y. Tang

4.4 Trade-Off Between the Privacy and the Performance

According to the results of conducted experiments, we can define a trade-off
strategy between the privacy and the performance. On one hand, as shown in
Fig.4, the smaller the frequency limitation parameter t, the larger entropy the
system has. On the other hand, as shown in Fig.5, Fig.6, and Fig.7, the smaller
t will introduce more response cost. Therefore, given a degree of privacy pro-
tected, we can define an entropy-based method to find a proper parameter t
with minimum query response time cost.

5 Conclusion

We have proposed Splitting-Duplicating method to support locating HE-
encrypted data precisely by introducing an auxiliary value tag. To protect the
privacy of original data distribution, we limit the frequencies of different tag
values varying in a given range. We use an entropy based metric to measure the
degree of privacy protected. Some experiments have been conducted to validate
our proposed method.

References

1. Damiani, E., Vimercati, S., Jajodia, S., Paraboschi, S., Samarati, P.: Balancing
Confidentiality and Efficiency in Untrusted Relational DBMSs. In: Proceedings of
ACM CCS 2003, pp. 93–102 (2003)

2. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

3. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
STOC 2009, pp. 169–178 (2009)

4. Hacigumus, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over Encrypted Data
in the Database-Service-Provider Model. In: Proceedings of ACM SIGMOD 2002,
pp. 216–227 (2002)

5. Pagel, B., Six, H., Toben, H., Widmayer, P.: Towards an Analysis of Range Query
Performance in Spatial Data Structures. In: Proceedings of PODS 1993, pp. 214–221
(1993)

6. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of IEEE S&P 2000, pp. 44–55 (2000)

7. Yang, G., Tan, C.H., Huang, Q., Wong, D.S.: Probabilistic Public Key Encryp-
tion with Equality Test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985,
pp. 119–131. Springer, Heidelberg (2010)

8. Popa, R., Redfield, C., Zeldovich, N., Balakrishnan, H.: CryptDB: Protecting
Confidentiality with Encrypted Query Processing. In: Proceedings of SOSP 2011,
pp. 85–100 (2011)

LB-Logging: A Highly Efficient Recovery

Technique for Flash-Based Database

Zeping Lu, Xiaoying Qi, Wei Cao, and Xiaofeng Meng

Renmin University of China, Beijing, China
{zplu,87qixiaoying,caowei,xfmeng}@ruc.edu.cn

http://idke.ruc.edu.cn/

Abstract. Nowadays, due to users’ increasing requirements of fast and
reliable data management for mobile applications, major electronic de-
vice vendors use embedded DBMS on their mobile devices such as MP3
players, mobile phones, digital cameras and PDAs. However, in embed-
ded database, data logging is the bottleneck against fast response time.
There has been a lot of work on minimizing logging overhead to provide
the best online performance to database workloads. However, to the best
of our knowledge, there is still no recovery method taken into considera-
tion. In this paper, we propose a novel logging method called LB-logging
to support high efficiency in recovery of crashed databases. LB-logging
is based on list structures instead of sequential structures in traditional
databases. In addition, by making use of the history data versions which
are naturally located in flash memory due to the out-of-place update,
we take the full advantage of high I/O performance of flash memory to
accelerate our recovery algorithm. Experimental results on Oracle Berke-
ley DB show that our LB-Logging method significantly outperforms the
traditional recovery by 2X-15X, and other logging methods for SSD by
1.5X-6X.

1 Introduction

Flash memory is a new kind of data storage media. Different from Hard Drive
Disk (HDD), it has a lot of attractive characteristics such as fast access speed,
shock resistance, low power consumption, smaller size, lighter weight and less
noise. Flash memory is widely used in a large number of electronic devices. The
latest mobile phones, digital cameras, DV recorders, MP4 players, and other
electronic handheld devices use flash memory as the main data storage devices.
During the past years, the capacity of flash memory doubles every year, which
is faster than Moore’s law, and flash chip of 1TB has been reported available
in market [1]. As the capacity increases and price drops dramatically during the
past years, flash memory (instead of magnetic disk) has been considered as the
main storage media in the next generation of storage devices.

In database systems, transaction processing like instantaneous queries and
updates incurs frequent random IO. Additionally, in data warehousing, multiple
streams of queries, insertions and deletions, also need large number of random

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 375–386, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://idke.ruc.edu.cn/

376 Z. Lu et al.

IO operations. While, in current disk based database (or warehousing) systems,
the major bottleneck is the IO disk performance. As we know, random IO is the
drawback of hard disks. It is because that with the mechanical moving arms, a
hard disk can only produce very limited number of IO operations per second.
To overcome the shortcoming, flash memory would be the perfect alternative to
traditional magnetic disks.

The access characteristics of flash memory are different from those of magnetic
disks. Since traditional databases were designed to utilize disk features, thus we
can’t take full advantage of high I/O performance of flash memory if we transfer
traditional database system onto flash memory without any modification. The
rationale is the write granularity and erase-before-rewrite limit of NAND flash
memory. Particularly, in NAND flash memory the write granularity is a page.
And we cannot overwrite the same address unless we erase the whole block
containing that page.

Logging is an important component of DBMS [2, 3]. It aims at maintaining
the ACID property of transactions. However, erase-before-rewrite and page write
characteristics lead to lower performance for transaction processing when the
underlying hardware changes from traditional magnetic disks to flash memory.
As for logging and recovery, the situation becomes more serious because of the
out-of-place update model which leads to high cost with large quantity of minor
random writes during the course of recovery. Therefore, it is necessary to design
a new logging technique for flash-based DBMS [4, 5, 6].

In this paper we analyze the logging design problems in flash memory based
databases and propose a new solution called LB-Logging. It makes use of the
history versions of data which is naturally disposed in flash memory due to
out-of-place updates. Furthermore, LB-Logging uses list structures instead of
sequential structures in the traditional databases to store log records. We sum-
marize our contributions as follows.

– A novel logging method called LB-Logging is proposed for the first time to
overcome the limitation of traditional logging on flash-based databases.

– By making use of list structures instead of sequential structures to store log
records, LB-Logging utilizes the high performance of random reads of flash
memory to greatly shorten the recovery time.

– Additionally, to effectively reduce the log redundancy and improve the space
utilization of databases, LB-Logging records data addresses instead of data
values in logs.

– Results of empirical studies with implementations on a real database system
of the proposed LB-Logging algorithm demonstrate that LB-Logging reduces
the recovery time effectively.

The rest of this paper is organized as follows: In Section 2, we give the related
work and compare our approach with them. Section 3 discusses the character-
istics of flash memory and their impact on traditional disk-based databases.
Section 4 and section 5 introduces the basic concepts and the design of the LB-
Logging schema. Experimental results are given in Section 6 and we conclude in
Section 7.

LB-Logging: A Highly Efficient Recovery Technique 377

2 Related Work

It’s not been long since flash memory began to be used as data storage media for
computers. There is not much work to solve the problem of logging in flash-based
DBMS [7-10].

Some researchers tried to change the storage of data files and use logs to record
the updates instead of in-place-updates. IPL [11] is an influential work among
them. In IPL design principles, each block,the erase unit on flash memory, is
divided into two segments, data pages and log region [12, 13]. All the update
operations are transformed into logs in main memory buffer firstly. Later the logs
are flushed out to log sectors of the erase unit allocated for the corresponding
data pages. If data pages fetched from the same erase unit get updated often, the
erase unit may run out of free log sectors. It is when merging data pages and their
log sectors is triggered by the IPL storage manager. This storage model could
provide indirect recovery through the logs stored in database. But it requires a
lot of modifications of traditional DBMS, so it can not be easily added to an
existing DBMS.

FlashLogging [14] is trying to exploit multiple flash drives for synchronous
logging. As USB flash drive is a good match for the task of synchronous log-
ging because of its unique characteristics compared to other types of flash de-
vices. FlashLogging designed an unconventional array organization to effectively
manage these dispersed synchronous logging stored in different USB devices.
Similarly, Lee also tried to combine USB flash drives and magnetic disks as a
heterogeneous storage for better performance. However, as the price of SSD con-
tinues to decline, the advantage of USB device’s price is gradually disappearing.
FlashLogging is not a convenient model to build.

3 Motivation

In this section, we will present the problems caused in logging and recovery
when transferring traditional databases to flash memory without any modifica-
tion. And first we will describe the characteristics of flash memory to help us
understand the problems.

3.1 Flash Memory

The characteristics of flash memory are quite different from those of magnetic
hard disks. In flash memory, data is stored in an array of flash blocks. Each
block spans 32-64 pages, where a page is the smallest unit of read and write
operations. The read operations of flash memory are very fast compared to that
of magnetic disk drive. Moreover, unlike disks, random read operations are as
fast as sequential read operations as there is no mechanical head movement.
The major drawback of the flash memory is that it does not allow in-place
updates. Page write operations in a flash memory must be preceded by an erase
operation and within a block, pages need be to written sequentially. The typical
access latencies for read, write, and erase operations are 25 microseconds, 200
microseconds, and 1500 microseconds, respectively.

378 Z. Lu et al.

3.2 Problem Definition

Log-based recovery techniques are widely used in traditional databases. Differ-
ent protocols determine different designs of log storage format, buffer manage-
ment, checkpoint and recovery mechanisms. Take undo logs as an example. When
transaction T updates element X whose original value is v, undo log will gener-
ate a log record like 〈T,X,v〉 in the DRAM. And finally the log will be flushed
into disk.When transaction T rolls back, we have to re-write X to its original
value v.

Table 1. Undo Log on Flash-based Database

(a) The Origi-
nal Table

value flag

A v1 1

B vb 1

C vc 1

.

(b) After A
Updated

value flag

A v1 0

B vb 1

C vc 1

A v2 1

.

(c) After A
Rolled Back

value flag

A v1 0

B vb 1

C vc 1

A v2 0

A v1 1

.

Here, we replay this process on flash memory. The original table is as shown
in Tab. 1(a). When a transaction updates A from v1 to v2, it is necessary to
insert a new record of A, as shown in Tab. 1(b) in the last line. And if T has to
roll back sometimes later, we must re-write A’s original value v1 again because
of out-place update, as shown in Tab. 1(c). We can see that the last record is
the same as the first record. In other words, the last one is actually redundant
in this situation. We can infer that there may be large amounts of data’s history
versions. In fact, the recovery process doesn’t have to write the data which has
already existed. It is not only a waste of space, but also a waste of time.

As we discussed earlier, every write operation occupies at least one page (typ-
ically 2KB) regardless of the size of the data. But generally speaking, the size
of the rolled back element may be less than 2KB. It brings extra space wasted.
Apart from that, the additional writes may bring some unnecessary erase opera-
tions with time cost even greater. Therefore, to avoid rewrite operations, a new
design of logging and recovery method is needed for flash-based DBMS.

4 LB-Logging Approach

In this section, we present the basic concepts of LB-Logging approach for flash-
based databases that we propose to address the problems of the conventional
logging designs for disk-based databases. We will introduce LB-Logging’s log
structures, recovery process and check-point strategy to give a detailed explain-
ing of its principles and advantages.

LB-Logging: A Highly Efficient Recovery Technique 379

4.1 Logging Algorithm

From the previous analysis, it can be found that in flash memory, there is no
need to use explicit rollback operation to re-write the original data elements in
recovery as is done in disk-based databases. Taking into account that the history
versions of data exist, we can make full use of it for rollback and recovery. It
would speed up the process without executing write operations which are more
expensive. LB-Logging uses list structures to store log records. In this sense,
LB-logging is a redo logging. It maintains a chain across different log records for
the sequence of data operations logged in each transaction and a list of different
versions of each data element in one log record. So during the recovery process,
we can search all the log records of every operation in each transaction.

Table 2. Log File Structure of LB-logging

T Id Element Pre Element Address List

T1 X Begin P(X1) →P(X2) →P(X3)

T1 Y P(X) P(Y1) →P(Y2)

T2 A Begin P(A1)

T1 Z P(Y) P(Z1) →P(Z2) →NULL

T2 B P(A) NULL →P(B1)

T1 Commit P(Z) NULL

T2 Rollback P(B) NULL

.

Information stored in each log record includes transaction ID (T Id), mod-
ified data item name (Element), former element updated by this transaction
(Pre Element), and the list of all versions of current data item (Address List).
The list is arranged by the order of operation time. The log file structure is
shown in Table 3.

When a transaction starts, LB-Logging creates a log record, but wait until
the first database changed by the transaction, it will insert a log record for
the first updated element with Pre Element Field marked with Begin. As the
transaction updates the data subsequently, we insert new log records and the
list of addresses of data elements needed to be maintained. For insert and delete
operations, several identifiers are used to distinguish them in Address List. For
example, if an element’s history list ends with a NULL address, that means
this element is deleted from the database. Similarly, if the first address of an
element’s history version is NULL, that means this element is inserted by this
transaction. If the transaction is committed or rolled back, we will insert a
log record for commit or rollback operation. The Pre Element field stores the
former updated item and the Address List field is set to empty. Thus, using
this structure of log records, all the operations to the database can be recorded
completely.

380 Z. Lu et al.

We follow WAL rule to decide when to flush log records, which means as
long as the local database is modified, there must be associated log records. But
the opposite is not true. In other words, there may be cases that when system
crashes, changes are only logged in stable storage, but these changes may not
be propagated to the database. When we need to execute a recovery operation,
according to the database redo log files, the above mechanisms can ensure the
consistency and integrity of the database.

Algorithm 1. Recovery algorithm of LB-Logging

procedure redologfile(file logFile)
BOOL flag = true;
logRecord current;
current = getFirstLogRecord(logFile);
while flag do

if current != checkpointLogRecord then
if current == insertLogRecord then

delete data;
end if
if current == deleteLogRecord then

insert data;
end if
if current == updateLogRecord then

reupdate data;
end if

else
flag = false;

end if
end while
return 1;

end procedure

4.2 Recovery Process

In LB-Logging, what we mainly do in recovery is redo the database operations in
committed transactions according to the redo log files. Recovery manager finds
all the committed transaction log records from the list structure of log files, and
redo them one by one.

When a transaction which has not been submitted is rolled back, we just
need to delete the log records simply. Because the corresponding logs are still in
memory, and the data is not flushed out to the external storage media. However,
if the application has a lot of long transactions, there may be some log records
which haven’t been committed. These log records may take up a large proportion
of the memory space. Part of the logs may be forced to flush out of the memory.
This is acceptable. Because we can determine that the transaction’s changes
do not reach the flash memory database since the transaction has not been

LB-Logging: A Highly Efficient Recovery Technique 381

committed. So we just need to insert a roll back log to ensure that the operations
has no effect on the database.

If the system crashes, it needs to recover immediately. We have to read the
log file from secondary storage media to memory. Typically, if a system crashes
when writing logs. There are usually some uncommitted log records at the end
of the log file. We do not do anything about these operations. Since LB-logging
ensures that as long as there is no commit log records, the changes have not been
flushed to the database yet. For the transactions that have been submitted, we
need to read the log records and redo them one by one. The detailed procedure
is shown in Algorithm 1.

5 Discussion

In this section, we present some improvement of LB-Logging approach that we
propose to overcome the problems of basic LB-Logging approach to provide an
much better performance.

5.1 Checkpoint Policy

We can notice that log file is frequently updated. With the updated data being
propagated to storage, a large number of log records becomes useless. Under
normal cases, transaction rollback rate is usually not too high. Therefore, if
there are a large number of useless log records, the length of log file will be
unnecessarily increased, thus taking too much flash storage space. Aside from
that, we need to read logs during recovery, the long log file will harm the efficiency
of recovery. This inspires us to establish check points to avoid an overly long log
file that would affect the overall performance of the system.

We take a simple checkpoint policy for flash-based DBMS. We only transfer
the log records that are still valid. In other words, when set up one check point,
we will do as follows. Firstly, find a clean block. Then, check the validity of
each log record one by one. Finally, select the records which are still valid and
write them to the new free block. After all the log records of the old log block
are scanned, the original records on the log block are no longer useful to us.
Therefore, we can erase the old block. The actual amount of log records that
need to be transferred is quite small. So the transfer cost is acceptable. The
specific steps of this transfer operation are shown in Algorithm 2.

382 Z. Lu et al.

Algorithm 2. Checkpoint algorithm of LB-Logging

procedure transfer(file logFile)
bool flag = true;
block newBlock = new block();
logRecord current;
current = getFirstLogRecord(logFile);
while flag do

if current is still valid then
Copy current to newBlock;

end if
current = getNextLogRecord(logFile);
if newBlock is full then

Get another free block;
end if
if current==NULL then

flag = false;
end if

end while
Erase the old log file;

end procedure

The value of checkpoint interval requires to be examined. Long interval will
bring to large log file. And short checkpoint interval may shorten the lifetime
of flash memory and affect overall performance. So the checkpoint interval can
be variably set according to applications’ characteristics. Here we assume that
features of the application is very clear. And database administrator can choose
to do checkpoints off line or in non-peak time to minimize impact on the perfor-
mance of the database application.

5.2 Heterogeneous Storage

The main operations of log files include logging, recycling the invalid log records
and reading log records to recover the system. So the most frequent operations
for log files are small random write and erase operations. As we introduced
before, small sized write operations are the biggest limitation of flash memory
whose performance may be worse than those of magnetic disks. The other critical
technical constraints of flash memory is limited erase cycles. Thus too many
unnecessary erase operations will greatly shorten the service life of flash memory.
Therefore, log file is not suitable for flash memory.

Current databases generally support log files and data files to be stored sep-
arately. Here we use hybrid storage systems to store different types of database
objects. As shown in Fig. 1, data records are stored in flash disks, while log
records are stored in magnetic disk. In this design, we can restore the system
without increasing the complexity of the algorithm and save the space of flash
memory occupied by log records. Thus it improves the flash space utilization,

LB-Logging: A Highly Efficient Recovery Technique 383

Fig. 1. Heterogeneous Storage of LB-Logging

reduces the cost to build the database system, and enhances the overall perfor-
mance of database system.

6 Performance Evaluations

In this section, we present real system experimental evaluations of LB-Logging.
We first describe the experimental setup in section 6.1. Then we present experi-
mental results with different update transaction size and different update times
for each data in section 6.2 and section6.3, respectively.

6.1 Experimental Setup

We examine the performance of LB-logging compared with ARIES and HV-
Logging[15]. The latter one only makes use of the history versions of data with-
out linked structures. We implement both our approaches and the comparable
methods in a real database called Oracle Berkeley DB[16]. And our experiments
run on two platforms which are exactly identical except that one is equipped
with an HDD and the other with an SSD. We used two HP Compaq 6000 Pro
MT PC. Each machine is equipped with an Intel(R) Core(TM) 2 Quad Q8400
@ 2.66GHz 2.67GHz CPU, 4GB DRAM, running Windows 7 Professional. The
SSD we use is Intel SSDSA2MH080G1GC 80G, and the HDD we use is 250G
7200rpm ST3250310AS with 8MB cache.

Our experimental process is as follows. A transaction starts doing all the
required updates. Before the transaction’s commission, we roll back the transac-
tion. The performance is measured by recovery time which we carefully records.
However, when we try to record the elapsed time of recovery process, there are
some little differences between multiple runs for one workload. Here we use the
average value. Through the description of our algorithm above, we can find that
two key factors are important to the system. They are update transaction size
and average update times for each data. So we varied the two critical parameters
in our experiments to see how the performance changes.

384 Z. Lu et al.

6.2 Varying Update Transaction Size

In recovery process, the number of rolled back log records directly influences
the recovery time. Here, the number of updates of a single transaction is an
important parameter. In this section, we guarantee that all data individually
have 2 times update in average.

Fig. 2. Recovery time with different up-
date transaction size (small amount)

Fig. 3. Recovery time with different up-
date transaction size (big amount)

Fig. 2 and Fig. 3 show our experimental results. Fig. 2 describes the result
when the update transaction size is small. Fig. 3 shows the result when increasing
update transactions’ size. From the experimental result, we can find that the
advantage of SSD over HDD is obvious. Whether it is the traditional logging
method, or the improved logging method for flash memory, the recovery time
on SSD is much less than that on disk. We also observe that whether on SSD
or HDD, the recovery efficiency is much higher for LB-Logging. Compared with
HV-Logging, LB-Logging costs only 70% recovery time. With the increasing
amount of data, the advantage of LB-Logging is even more obvious. This could
fully reflect the superiority of our algorithm.

6.3 Varying Update Times for Each Data

In this section, we discuss how the variation of update times for each data reflects
the recovery performance. As previously described, in order to employ flash
memory’s high-speed random read advantage, LB-Logging uses a kind of linked
structure for log records. In the linked structure, the list length is a key factor. In
our design, the length of the list depends on how often each data gets updated.

Fig. 4 shows the experimental results. When the updates are less frequent, it
is difficult to reflect the superiority of our design. With the increasing times of
updates per data, LB-Logging’s advantage is highlighted increasingly. We find
that when the update frequency is increased to 8 times, disk-based recovery
time is about 15 times longer than that of LB-Logging. These results sufficiently
justify the LB-Logging’s superiority over other logging schemes.

LB-Logging: A Highly Efficient Recovery Technique 385

Fig. 4. Recovery time with different update times for each data

7 Conclusion

LB-Logging makes use of the data’s history versions which naturally exists in
flash-based database for logging and exploits a kind of list structure as the
replace of sequential structure to store log records to provide efficient recovery.
Through periodic checkpoints mechanism, LB-Logging reduces the length of the
log file by removing invalid log records and saves the space for flash memory.
Using hybrid storage system, LB-Logging stores the log records in both SSD and
HDD separately to improve the recovery performance on flash-based database. So
the proposed algorithm LB-Logging provides stronger reliability, faster recovery,
smaller space consumption for log files.

The results show that the recovery time of traditional logging algorithm is 15
times longer than LB-Logging in the best conditions. And the recovery time of
traditional logging algorithm on SSD is 7 times longer than LB-Logging. The
recovery time of optimized algorithm for flash memory is 5 times longer than
LB-Logging. This fully demonstrates the superiority of LB-Logging.

Acknowledgements. This research was partially supported by the grants from
the Natural Science Foundation of China (No, 60833005, 91024032, 91124001,
61070055,); the Research Funds of Renmin University of China (No: 11XNL010,
10XNI018); National Science and Technology Major Project (No: 2010ZX01042-
002-003).

References

1. Jim, G.: Tape is dead disk is tape flash is disk RAM locality is king. In: Pacific
Grove: Microsoft, Gong Show Presentation at Third Biennial Conference on Inno-
vative Data Systems Research, vol. 1 (2007)

386 Z. Lu et al.

2. Lee, S., Moon, B., Park, C.: Advances in flash memory SSD technology for enter-
prise database applications. In: SIGMOD 2009, pp. 863–870 (2009)

3. Kim, Y., Whang, Y., Song, I.: Page-differential logging: an efficient and DBMS-
independent approach for storing data into flash memory. In: SIGMOG 2010, pp.
363–374 (2010)

4. Haerder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM
Computing Surveys 15, 287–317 (1983)

5. Reuter, A.: Performance analysis of recovery techniques. ACM Transactions on
Database Systems 15, 526–559 (1984)

6. Hector, G., Jeffrey, D., Jennifer, W.: Database System Implementation. Prentice
Hall, USA (1999)

7. Lee, S., Moon, B., Park, C., Hwang, J., Kim, K.: Accelerating In-Page Logging
with Non-Volatile Memory. Data Engineering 33, 41–47 (2010)

8. Wang, R., Salzberg, B., Lomet, D.: Log-based recovery for middleware servers. In:
SIGMOD 2007, pp. 425–436 (2007)

9. Prabhakaran, V., Rodeheffer, T., Zhou, L.: Transactional flash. In: OSDI 2008, pp.
147–160 (2008)

10. On, S.T., Xu, J., Choi, B., Hu, H., He, B.: Flag Commit: Supporting Efficient
Transaction Recovery in Flash-based DBMSs. TKDE 99, 1–1 (2011)

11. Lee, S., Moon, B.: Design of flash-based DBMS: an in-page logging approach. In:
SIGMOD 2007, pp. 55–66 (2007)

12. Nath, S., Kansal, A.: FlashDB: dynamic self-tuning database for nand flash. In:
IPSN, pp. 410–419 (2007)

13. Elnozahy, E., Alvisi, L., Wang, Y., Johnson, D.: A survey of rollback-recovery pro-
tocols in message-passing systems. ACM Computer Survey 34(3), 375–408 (2002)

14. Chen, S.: FlashLogging: exploiting flash devices for synchronous logging perfor-
mance. In: SIGMOD 2009, pp. 73–86 (2009)

15. Lu, Z., Meng, X., Zhou, D.: HV-Recovery: A High Efficient Recovery Techniques
for Flash-Based Database. Chinese Journal of Computers 12, 2258–2266 (2010)

16. Oracle Berkeley DB, http://www.oracle.com/technetwork/database/
berkeleydb/overview/index.html

http://www.oracle.com/technetwork/database/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/berkeleydb/overview/index.html

An Under-Sampling Approach to Imbalanced

Automatic Keyphrase Extraction

Weijian Ni, Tong Liu, and Qingtian Zeng�

Shandong University of Science and Technology
Qingdao, Shandong Province, 266510 P.R. China

niweijian@gmail.com, liu tongtong@foxmail.com,
qtzeng@163.com

Abstract. The task of automatic keyphrase extraction is usually for-
malized as a supervised learning problem and various learning algo-
rithms have been utilized. However, most of the existing approaches
make the assumption that the samples are uniformly distributed be-
tween positive (keyphrase) and negative (non-keyphrase) classes which
may not be hold in real keyphrase extraction settings. In this paper,
we investigate the problem of supervised keyphrase extraction consid-
ering a more common case where the candidate phrases are highly im-
balanced distributed between classes. Motivated by the observation that
the saliency of a candidate phrase can be described from the perspec-
tives of both morphology and occurrence, a multi-view under-sampling
approach, named co-sampling, is proposed. In co-sampling, two classi-
fiers are learned separately using two disjoint sets of features and the
redundant candidate phrases reliably predicted by one classifier is re-
moved from the training set of the peer classifier. Through the iterative
and interactive under-sampling process, useless samples are continuously
identified and removed while the performance of the classifier is boosted.
Experimental results show that co-sampling outperforms several existing
under-sampling approaches on the keyphrase exaction dataset.

Keywords: Keyphrase Extraction, Imbalanced Classification, Under-
sampling, Multi-view Learning.

1 Introduction

Keyphrases in a document are often regarded as a high-level summary of the
document. It not only helps the readers quickly capture the main topics of a
document, but also plays an essential role in a variety of natural language pro-
cessing tasks such as digital library [1], document retrieval [2] and content-based
advertisement [3]. Since only a minority of documents have manually assigned
keyphrases, there is great need to extract keyphrases from documents automat-
ically. Recently, several automatic keyphrase extraction approaches have been
proposed, most of them leveraging supervised learning techniques [4] [5]. In these

� Corresponding author.

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 387–398, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

388 W. Ni, T. Liu, and Q. Zeng

approaches, the task of automatic keyphrase extraction is basically formalized
as a binary classification problem where a set of documents with manually la-
beled keyphrases are used as training set and a classifier is learned to distinguish
keyphrases from all the candidate phrases in a given document.

One of the general assumptions made by traditional supervised learning algo-
rithms is the balance between distributions of different classes. However, as we
have observed, the assumption may not be hold in the real settings of automatic
keyphrase extraction. The more common case is that the number of keyphrases
(positive samples) is much fewer than that of non-keyphrases (negative samples)
appearing in the same document. Taking a document of length n as an example,
the number of possible phrases of lengths between p to q (p ≤ q) would amount
to O((q− p+1) · n), while the number of keyphrases in a document is often less
than ten. It has since been proven that the effectiveness of most traditional learn-
ing algorithm would be compromised by the imbalanced class distribution [6],
we argue that the performance of automatic keyphrase extraction could be pro-
moted by exploring the characteristics of imbalanced class distribution explicitly.
However, to the best of our knowledge, the issue of class-imbalance in automatic
keyphrase extraction has not been well studied in the literature.

In this paper, we adopt under-sampling mechanism to deal with the imbal-
anced data in supervised automatic keyphrase extraction. Particularly, the use-
less samples in training set are removed and thus traditional supervised learning
approaches could be utilized more efficiently and effectively.

One of the reasons accounts for the successes of supervised keyphrase ex-
traction approaches is that the saliency of each candidate phrase could be de-
scribed using various features. In general, these features are calculated based
on either the morphology (e.g., phrase length, part-of-speech tag) or the occur-
rence (e.g., first occurrence, PageRank value) of candidates. In another word,
the dataset in supervised keyphrase extraction are comprised of two views. In-
spired by the advantageous of multi-view learning approaches, we propose a
novel under-sampling approach, named co-sampling, which aims to exploit the
multiple views in the task of keyphrase extraction to remove the useless samples.

The rest of the paper is organized as follows. After a brief overview of related
work in Section 2, we present the details of co-sampling algorithm in Section 3.
Section 4 reports experimental results on a keyphrase extraction dataset. Finally,
we conclude the paper and discuss the further work of co-sampling in Section 5.

2 Related Work

2.1 Keyphrase Extraction

Generally, automatic keyphrase extraction approaches can be categorized into
two types: supervised and unsupervised.

In most supervised approaches, the task of keyphrase extraction is formulated
as a classification problem. The accuracy of extracting results relies heavily on
the features describing the saliency of candidate phrases. TF×IDF and first oc-
currence of candidate phrase are the two features used in early work [4]. Besides,

An Under-Sampling Approach 389

the features such as part-of-speech tag pattern, length and frequency of candidate
phrase have shown their benefits to recognize keyphrases in a given document [8].
Recently, much work has been conducted on extracting keyphrases from partic-
ular types of documents including scientific literatures [9], social snippets [10],
web pages [11] and etc. One of the keys in the work is to calculate domain-
specific features that capture the special salient characteristics of keyphrase in
the particular type of documents. For example, section occurrences and acronym
status play a critical role in finding keyphrases in scientific publications [9].

The basic idea of most unsupervised approaches is to leverage graph-based
ranking techniques like PageRank [12] and HITS [13] to give a rank of all the
candidate phrases. In general, the ranking scores are computed via random walk
over co-occurrence graph of a given document. Recent extensions of unsupervised
approaches mainly focus on building multiple co-occurrence graphs to reflect the
characteristics of various keyphrase extraction settings. Wan et al. [14] built a
global affinity graph on documents within a cluster in order to make use of
mutual influences between documents. Liu et al. [15] took the semantic topics
of document into account and built co-occurrence graph with respect to each
topics.

2.2 Imbalanced Classification

Imbalanced class distribution is a common phenomenon in many real machine
learning applications. With imbalanced data, the classifiers can be easily over-
whelmed by the majority class and thus ignore the minority but valuable one.

A straightforward but effective way to handle the imbalanced data is to re-
balance the class distribution through sampling techniques, including removing
a subset of samples from the majority class and inserting additional artificial
samples in the minority class, which are referred to as under-sampling and over-
sampling, respectively. EasyEnsemble and BalanceCascade [16] are the two typ-
ical under-sampling approaches, which learn an ensemble of classifiers to select
and remove the useless majority samples. SMOTE is an example of over-sampling
approaches [17]. The algorithm randomly selects a point along the line joining
a minority sample and one of its k nearest neighbors as a synthetic sample and
adds it into the minority class. For the recent extensions of SMOTE, see [18], [19].

Cost-sensitive learning is another solutions to the problem of imbalanced clas-
sification. The basic idea is to define a cost matrix to quantify the penalties of
mis-classifying samples from one class to another. For most traditional learning
algorithms, the cost-sensitive versions have been proposed for imbalanced clas-
sification. For example, Yang et al. proposed three cost-sensitive boosting algo-
rithms named AdaC1, AdaC2 and AdaC3 [20], Zhou et al. studied empirically
the effect of sampling and threshold-moving strategy in training cost-sensitive
neural networks [21].

Different from most existing work focusing on either sampling technique or
cost-sensitive learning, there have been several proposed imbalance classification
approaches combining the above two types of mechanisms [22].

390 W. Ni, T. Liu, and Q. Zeng

3 Under-Sampling for Keyphrase Extraction

3.1 Problem Formulations and Algorithm Sketch

Let X ⊆ Rd denote the input feature space of all possible candidate phrases and
Y = {+1,−1} denote the output space. Because of the two-view characteristic of
keyphrase extraction, the input space X can be written as X = X1 ×X2, where
X1 and X2 correspond to the morphology and the occurrence view of candidate
phrases, respectively. That is, the feature vector of each candidate phrase x can
be denoted as x = (x1,x2).

Given a set of training samples S = P ∪ N where P = {((x1
i ,x

2
i),+1) | i =

1, · · · ,m} and N = {((x1
i ,x

2
i),−1) | i = 1, · · · , n} (in imbalanced classification

problems, m ! n), the goal of co-sampling is to boost the performances of the
classifiers through excluding redundant negative samples from training process.

As a co-training [7] style algorithm, co-sampling works in an iterative manner
as shown in Table 1. During the iterations, redundant negative samples are
removed from the training set of a classifier according to the predicted results
of the classifier learned on another view. Figure 1 gives an illustration of the
procedure of co-sampling. The iterative process stops when one of the following
criteria is met:

1. The number of iterations exceeds a predefined maximum number.
2. The confidences of the predictions of either classifier on any negative samples

is below a predefined threshold, i.e., no reliably predicted negative samples
can be found.

3. The redundancies of any reliably predicted negative samples is below a pre-
defined threshold, i.e., no redundant samples can be found.

At the end of co-sampling, the two classifiers f1 and f2 learned on the under-
sampled training sets are combined to give prediction for a new sample x =
(x1,x2). In particular, the final output is calculated as follows:

f(x) =

{
f1(x

1), |P (+1|f1(x1))− 0.5| > |P (+1|f2(x2))− 0.5|
f2(x

2), Otherwise

where P (+1|fi(xi)) is the posterior probability of x to be a positive sample
based on the prediction result fi(x

i) (i = 1, 2).
During the iterations, we employ an online learning algorithm, i.e., Percep-

tron with uneven margins [23], to learn the classifiers on each view for its easy
implementation, efficient training and theoretical soundness.

The key issue of co-sampling is to select the appropriate negative samples
to be removed. To address the problem, we adopt a two-stage method. The
first stage is to estimate the confidence of either classifier’s predictions on the
negative samples and take these reliably predicted ones as the candidates for
further removal. The second stage is to quantify the redundancy of each candi-
date samples and remove these most redundant ones. The above two stages will
be introduced in Section 3.2 and 3.3 detailedly, respectively.

An Under-Sampling Approach 391

Table 1. The co-sampling algorithm

Co-sampling

Input:
a set of positive samples represented by two views: P 1 and P 2

a set of negative samples represented by two views: N1 and N2

1:repeat
2: for i = 1 to 2
3: Learn classifier fi on P i ∪N i and get the predicted

results of fi, through performing 10-fold cross validation.
4: Estimate the confidences of predicted results of fi.
5: Select redundant samples N ′

i from these reliably predicted
negative samples of fi.

6: N3−i ← N3−i −N ′
i

7: end for
8:until some stopping criterion is met
9:f(x) = f1(x

1)⊕ f2(x
2)

Output: f(x)

f1(x1) f2(x2)

View I

Learning Learning

Sampling

......

......

View II

f1(x1) f2(x2)

Learning Learning
Merging

f (x)

Original Dataset

Fig. 1. Illustration of the procedure of co-sampling. The plus and minus signs denote
the positive and negative samples, respectively; the gray markers denote the samples
have been removed by the end of each iteration.

392 W. Ni, T. Liu, and Q. Zeng

3.2 Prediction Confidence Estimation

Intuitively, the sample with high posterior class probability P (y = −1|f(x)) can
be viewed as the reliably predicted negative sample. We thus leverage poste-
rior class probability to estimate the confidence of either classifier’s prediction
on each negative sample. As the perceptron algorithm outputs a linear predic-
tion function f(x) = 〈w,x〉 + b, we need to map the real valued outputs to
probabilities.

Following [24], the posterior class probability of each predicted negative sam-
ple is derived through fitting a sigmoid function:

P̄ (x) � P (y = −1|f(x)) = 1

1 + exp(A · f(x) +B)
(1)

To find the best parameters A and B, we generate a set of training samples
T = {(f(xi), ti) | ti = 1−yi

2 , i = 1, · · · , n} and minimize the Kullback-Leibler
divergence between P̄ and its empirical approximation derived from T , i.e.,

(A∗, B∗) = argmin
A,B

n∑
i=1

−ti log P̄ (xi)− (1 − ti) log (1− P̄ (xi))

This optimization can be solved by using a second order gradient descent algo-
rithm [24].

After the posterior class probabilities of each samples are calculated by (1),
the samples with P̄ (x) higher than a predefined threshold τ are selected as the
candidates for further removal.

3.3 Redundant Sample Identification

In co-sampling, we quantify the redundancy of each sample by using the cut
edge weight statistic [25]. Particularly, our approach is a two-stage process.

Firstly, a complete undirected weighted graph is built on a set of training
samples in which the vertex corresponds to a sample and the weight of the edge
reflects the similarity between two samples. In particular, the weight is calculated
as:

wij =
1

2
× (

1

rij
+

1

rji
)

where rij is the rank of vertex xj among all the vertices according to its distance
to xi, i.e., d(xi,xk) (k = 1, · · · , n). Note that only the relative ranks rather than
the specific values of distance are taken into consideration during the calculation
of edge weight, making the edge weight be less sensitive to the choice of distance
measure. In the paper, Euclidean distance is chosen as the distance measure for
simplicity.

Secondly, the cut edge weight statistic are defined and calculated based on
the graph. Intuitively, a sample is supposed to be less informative for training if
it appears to be easily distinguished from the samples of other classes. As each
sample is represented as a vertex in graph, this implies that a redundant sample

An Under-Sampling Approach 393

would be the one whose sum of the weights of the edges linking to the vertices of
the same class is significantly larger than that of the edges linking to the vertices
of different classes. The edges of the latter type are often referred to as cut edges.
In order to identify the redundant samples, we define a null hypothesis H0 as
that the classes of the vertices of the graph are drawn independently from the
probability distribution P (Y = k) (k = −1,+1). Usually, P (Y = k) is estimated
empirically as the proportion of the class k in the training set. Then, under H0,
the cut edge statistic of a sample (xi, yi) is defined as:

Ji =
n∑

j=1

wijIij

where n is the number of training samples and Iij is an independent and iden-
tically distributed random variables drawn from a Bernoulli distribution, i.e.,

Iij =

{
1, if yi �= yj

0, otherwise

Accordingly, P (Iij = 1) = 1− P (Y = yi).
According to the de Moivre-Laplace theorem, we can derive that the distri-

bution of the cut edge statistic Ji is approximately a normal distribution with
mean μi|H0

and variance σ2
i|H0

if n is large enough:

μi|H0
= (1− P (Y = yi))

n∑
i=1

wij

σ2
i|H0

= P (Y = yi)(1− P (Y = yi))

n∑
i=1

w2
ij

In another words,

J̄i �
Ji − μi|H0

σi|H0

∼ N (0, 1)

As for a negative sample, it would be supposed to be redundant if its value
of the cut edge statistic is significantly smaller than the expected under H0.
Consequently, the redundancy of a negative sample xi is quantified by using the
right unilateral p-value of J̄i, i.e.,

r(xi) =
1√
2π

∫ +∞

J̄i

e−
1
2 t

2

dt (2)

Finally, the candidate negative samples selected from Section 3.2 with r(x)
higher than a predefined threshold θ will be excluded from the next co-sampling
iterations of the peer classifier.

394 W. Ni, T. Liu, and Q. Zeng

3.4 Two Views for Keyphrase Extraction

In the section, we describe the partition of feature set to generate the two-view
representations of the task of supervised keyphrase extraction.

In general, each candidate phrase has views of morphology and occurrence.
For example, ending with a noun is a feature in the morphology view of candidate
phrases while appearing in title is a feature in the occurrence view. Basically,
the co-training style algorithms require that each view is sufficient for learning a
strong classifier and the views are conditionally independent to each other given
the classes. However, the conditions are so strong that it hardly holds in most
real applications. Therefore, we partition the features describing the saliency of
candidate phrases into two disjoint sets according to whether the feature carries
either morphology or occurrence information about the phrase, together with
practical concerns about the above sufficient and redundant conditions.

Particularly, the morphology view consists of the following features:

1. Length. That is, the number of words in a candidate phrase.
2. Part of speech tags. The type of features include a number of binary fea-

tures indicating whether the phrase starts with/ends with/contains a noun/
adjective/verb. Besides, the part-of-speech tag sequence of the candidate is
used as a feature.

3. TFIDF. TF, IDF and TF×IDF of every words in the candidate phrase are
calculated and the average/minimum/maximum of each set of values are
used as the features.

4. suffix sequence. The suffices like -ment and -ion of each word are extracted,
then the sequence of the suffixes of the candidate is used as a feature.

5. Acronym form. Whether the candidate is an acronym may be a good indica-
tor of keyphrase. In order to identify the acronyms, we employ the approach
proposed in [26].

The occurrence view consists of the following features:

1. First occurrence. The feature is calculated as the number of words between
the start of the document and the first appearance of the candidate, normal-
ized by the document length.

2. Occurrence among sections. The type of features include a number of
binary features indicating whether the candidates appear in a specific logical
section. As for scientific literatures, the sections include:Title,Abstract, Intro-
duction/Motivation, Related Work/Background, Approaches, Experiments/
Evaluation/Applications, Conclusion, References and etc.

3. PageRank values. As in [12], the PageRank values of every words in the
phrase are calculated and the average/minimum/maximum of the values are
used as features.

4 Experiments

4.1 Dataset

To avoid manually annotation of keyphrases which is often laborious and erro-
neous, we constructed an evaluation dataset using research articles with author

An Under-Sampling Approach 395

provided keyphrases. Specifically, we collected the full-text papers published in
the proceedings of two conferences, named ACM SIGIR and SIGKDD, from 2006
to 2010. After removing the papers without author provided keyphrases, there
are totally 3461 keyphrases appear in 997 papers in our evaluation dataset. For
each paper, tokenization, pos tagging, stemming and chunking were performed
using NLTK (Natural Language Toolkit)1. We observed that the keyphrases
make up only 0.31% of the total phrases in the dataset, which practically con-
firms that there exists the problem of extreme class-imbalance in the task of
supervised keyphrase extraction.

4.2 Baselines

Since co-sampling is a multi-view supervised keyphrase extraction approach,
several supervised approaches that make use of single view consisting of all the
features referred in Section 3.4 are used as the baselines.

The first baseline is the supervised keyphrase extraction approach that learns
the classifier using SVM on the original dataset without sampling. One of the
existing under-sampling approaches, named EasyEnsemble [16], are taken as
the second baseline. Besides, we also compare co-sampling with random under-
sampling approach. In the random under-sampling approaches, a balanced train-
ing set is generated by sampling a subset of negative samples randomly according
to a class-imbalance ratio defined as:

α =
|N ′|
|P |

where |N ′| and |P | are the size of sampled negative set and original positive set,
respectively. The class-imbalance ratio is set to 50, 20, 10, 5 and 1 experimentally.
SVM is employed to learn the classifiers on the sampled training set.

4.3 Evaluation Measures

The traditional metrics namely Precision, Recall and F1-score, are use to eval-
uate our approach and all the baselines.

4.4 Experimental Results

For co-sampling, the parameters τ and θ are tuned using an independent vali-
dation set randomly sampled from the total dataset and the result with highest
F1-score are reported. For the baseline EasyEnsemble, the parameter T (the
number of subsets to be sampled from negative set) is set to 4 as in [16]. For
all the baselines, the learner, i.e. SVM, is implemented using SVMlight2 toolkit.
As for the slack parameter C in SVM, the default values given by SVMlight are
used.

1 www.nltk.org
2 svmlight.joachims.org

396 W. Ni, T. Liu, and Q. Zeng

Table 2. Performances of co-sampling and baselines

Methods Precision Recall F1-score

Co-sampling 0.2797 0.4803 0.3535
EasyEnsemble 0.2644 0.3030 0.2824
Random(α = 1) 0.2101 0.2242 0.2169
Random(α = 5) 0.2270 0.2360 0.2314
Random(α = 10) 0.2081 0.2163 0.2121
Random(α = 20) 0.2510 0.1769 0.2076
Random(α = 50) 0.2514 0.1375 0.1778
SVM NIL 0.0000 NIL

Comparison of Keyphrase Extraction Accuracies. Table 2 shows the per-
formances of co-sampling and baselines which are averaged over 10 fold cross
validation. We can see that co-sampling outperforms all the baselines in terms
of Precision, Recall and F1-score. We conducted paired t -test over the results
of the 10 folds and found the improvements of co-sampling over all the base-
lines (except the improvement over EasyEnsemble in terms of Precision) are
significant at the 0.01 level. Moreover, the baseline employing SVM on the orig-
inal dataset without sampling is failed to give a nontrivial classifier because all
the candidate phrases are classified as non-kephrase, which gives an example of
class-imbalance problem on traditional learning algorithms.

Training Performance versus Number of Iterations. We investigated how
the performances of each classifiers learned on different views varies while the
training set is under-sampled continuously during the iteration process. Particu-
larly, we measured the training accuracy of each classifier by calculating F1-score
of the predicted results obtained through performing 10-fold cross validation as

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20 25 30 35 40 45 50 55 60

F1
-s

co
re

Number of Iterations

Morphology View

Occurrence View

Fig. 2. Training Performance versus Number of Iterations

An Under-Sampling Approach 397

in Table 1. Figure 2 gives the plots of training accuracies versus number of
iterations. We can see that the classifier learned on either the morphology or
the occurrence views can be boosted into a “stronger” classifier during the co-
sampling process. This gives an evidence that the two classifiers are capable of
mutually reinforcing through removing the reliably predicted redundant samples
for each other.

5 Conclusion and Future Work

In this paper, we have argued that it is more essential to formalize the task of su-
pervised keyphrase extraction as an imbalanced classification problem and have
proposed a novel under-sampling approach, named co-sampling, to tackle the
class-imbalance problem. Co-sampling is by nature a multi-view learning algo-
rithm in which the keyphrase extraction dataset is partitioned into the morphol-
ogy and the occurrence views. Experimental results on a keyphrase extraction
dataset verified the advantages of co-sampling.

In the future, we will evaluate co-sampling experimentally by using more im-
balanced multi-view datasets from various domains. Furthermore, it is necessary
to give an in-depth theoretical analysis of co-sampling as has been done for
co-training style algorithms.

Acknowledgments. This paper is supported partly by Chinese National Natu-
ral Science Foundation (61170079); Shandong Province Higher Educational Sci-
ence and Technology Program (J12LN45); Key Research Program of Statistics
Science of Shandong Province (KT11017); Research Project of “SDUST Spring
Bud” (2010AZZ179); Sci. & Tech. Development Fund of Shandong Province
(2010GSF10811); Sci. & Tech. Development Fund of Qingdao(10-3-3-32-nsh);
Excellent Young Scientist Foundation of Shandong Province (BS2010DX009 and
2010KYJQ101); China Postdoctoral Science Foundation (2011M501155).

References

1. Song, M., Song, I.Y., Allen, R.B., Obradovic, Z.: Keyphrase extraction-based query
expansion in digital libraries. In: Proceedings of the 6th ACM/IEEE-CS JCDL, pp.
202–209 (2006)

2. Lehtonen, M., Doucet, A.: Enhancing Keyword Search with a Keyphrase Index. In:
Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS, vol. 5631, pp. 65–70.
Springer, Heidelberg (2009)

3. Wu, X., Bolivar, A.: Keyword extraction for contextual advertisement. In: Pro-
ceedings of the 17th WWW, pp. 1195–1196 (2008)

4. Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., Nevill-Manning, C.G.: KEA:
Practical Automatic Keyphrase Extraction. In: Proceedings of the 4th ACDL, pp.
254–255 (1999)

5. Turney, P.D.: Learning Algorithms for Keyphrase Extraction. Information Re-
trieval 2, 303–336 (2000)

6. Weiss, G.M., Provost, F.: The Effect of Class Distribution on Classifier Learning:
An Empirical Study. Technical Report, Department of Computer Science, Rutgers
University (2001)

398 W. Ni, T. Liu, and Q. Zeng

7. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training.
In: Proceedings of the 11th COLT, pp. 92–100 (1998)

8. Turney, P.D.: Learning Algorithms for Keyphrase Extraction. Information Re-
trieval 2, 303–336 (2000)

9. Nguyen, T.D., Kan, M.-Y.: Keyphrase Extraction in Scientific Publications. In:
Goh, D.H.-L., Cao, T.H., Sølvberg, I.T., Rasmussen, E. (eds.) ICADL 2007. LNCS,
vol. 4822, pp. 317–326. Springer, Heidelberg (2007)

10. Li, Z., Zhou, D., Juan, Y., Han, J.: Keyword Extraction for Social Snippets. In:
Proceedings of the 19th WWW, pp. 1143–1144 (2010)

11. Yih, W., Goodman, J., Carvalho, V.R.: Finding Advertising Keywords on Web
Pages. In: Proceedings of the 15th WWW, pp. 213–222 (2006)

12. Mihalcea, R., Tarau, P.: TextRank: Bringing Order into Texts. In: Proceedings of
the 1st EMNLP, pp. 404–411 (2004)

13. Litvak, M., Last, M.: Graph-Based Keyword Extraction for Single-Document Sum-
marization. In: Proceedings of the Workshop on Multi-source Multilingual Infor-
mation Extraction and Summarization, pp. 17–24 (2008)

14. Wan, X., Xiao, J.: CollabRank: Towards a Collaborative Approach to Single-
Document Keyphrase Extraction. In: Proceedings of the 22nd COLING, pp. 969–
976 (2008)

15. Liu, Z., Huang, W., Zheng, Y., Sun, M.: Automatic Keyphrase Extraction via Topic
Decomposition. In: Proceedings of the 7th EMNLP, pp. 366–376 (2010)

16. Liu, X., Wu, J., Zhou, Z.: Exploratory Under-Sampling for Class-Imbalance Learn-
ing. IEEE Transactions on Systems, Man, and Cybernetics, Part B 39, 539–550
(2009)

17. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic
Minority Over-Sampling Technique. Journal of Artificial Intelligence Research 6,
321–357 (2002)

18. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: A New Over-Sampling
Method in Imbalanced Data Sets Learning. In: Huang, D.-S., Zhang, X.-P., Huang,
G.-B. (eds.) ICIC 2005, Part I. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg
(2005)

19. Fan,X.,Tang,K.,Weise,T.:Margin-BasedOver-SamplingMethod forLearning from
Imbalanced Datasets. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011,
Part II. LNCS, vol. 6635, pp. 309–320. Springer, Heidelberg (2011)

20. Sun, Y., Kamel, M.S., Wong, A.K.C., Wang, Y.: Cost-sensitive boosting for clas-
sification of imbalanced data. Pattern Recognition 40, 3358–3378 (2007)

21. Zhou, Z., Liu, X.: Training Cost-Sensitive Neural Networks with Methods Ad-
dressing the Class Imbalance Problem. IEEE Transactions on Knowledge and Data
Engineering 18, 63–77 (2006)

22. Nguyen, T., Zeno, G., Lars, S.: Cost-Sensitive Learning Methods for Imbalanced
Data. In: Proceedings of the 2010 IJCNN, pp. 1–8 (2010)

23. Li, Y., Zaragoza, H., Herbrich, R., Shawe-Taylor, J., Kandola, J.: The perceptron
algorithm with uneven margins. In: Proceedings of the 19th ICML, pp. 379–386
(2002)

24. Platt, J.: Probabilistic outputs for support vector machines and comparison
to regularized likelihood methods. In: Advances in Large Margin Classifiers,
pp. 61–74 (2000)

25. Muhlenbach, F., Lallich, S., Zighed, D.A.: Identifying and Handling Mislabelled
Instances. Journal of Intelligent Information Systems 22, 89–109 (2004)

26. Ni, W., Huang, Y.: Extracting and Organizing Acronyms based on Ranking. In:
Proceedings of the 7th WCICA, pp. 4542–4547 (2008)

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 399–404, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Tourist Itinerary Planning Approach
Based on Ant Colony Algorithm

Lei Yang, Richong Zhang, Hailong Sun, Xiaohui Guo, and Jinpeng Huai

Schoole of Computer Science and Engineering, Beihang University,
Beijing, 100191 China

{yanglei,zhangrc,sunhl,guoxh,huaijp}@act.buaa.edu.cn

Abstract. Many itinerary planning applications have been developed to assist
travelers making decisions. Existing approaches model this problem as finding
the shortest path of tourism resources and generate either inter-city or intra-city
visiting plans. Instead of following the conventional route, we propose an ap-
proach to automatically generate tourist itineraries by comprehensively consi-
dering transportations, lodgings and POIs between/inside each destination. In
addition, due to the NP-complete nature of the itinerary planning, we develop
an approach based on the ant colony optimization (ACO) algorithm to solve the
tourist planning problem. To show the versatility of the proposed approach, we
design an itinerary planning system which arranges all available tourism re-
sources collected from the web, such as POIs, hotels, and transportations. Our
experimental result confirms that the proposed algorithm generates high utility
itineraries with both effectiveness and efficiency.

Keywords: itinerary planning, ant colony algorithm, tourist guide.

1 Introduction

The online travel agency, or e-Tourism website, is more and more prevalent in the
web, such as expedia.com, priceline.com, hotels.com, booking.com, etc. By taking the
advantages of the increasing availability of such rich choices, users enjoy the conven-
ience and lower price than ever before. Meanwhile, with such rich information, it is
difficult for travelers to compare tourism resources and to determine itineraries in a
short time. Therefore, the itinerary planning system is necessary to help travelers
making tourism decisions.

Traditional recommender systems [1,3] have been applied to recommend eligible
POIs for tourists. However, these approaches could not generate sequences and routes
between POIs. Existing itinerary planning approaches [2,4,5,6] solely consider ar-
ranging tourism resources in a single destination. When travelers are going to make a
tourism decision for several destinations, such systems are unable to provide a multi-
city itinerary with transportation and lodgings between cities. Furthermore, many
travel websites, such as booking.com and so on, which are static or interactive sys-
tems, highly require users involving the decision process. This is a rather time con-
suming process to compare hotel/flight/POI options.

400 L. Yang et al.

Our itinerary planning system intelligently provides a multi-city itinerary for tour-
ists, including POIs, hotels, transportations, and the detailed visiting schedules for
these destinations. In addition, our system allows travelers specifying constraints, e.g.,
the starting and ending location/time, budgets, the selected attractions, etc. Moreover,
we decompose this multi-city itinerary planning problem into two sub-problems: in-
ter-city planning and intra-city planning. This process can degrade complexity, reduce
the solution space and satisfy different traveling purposes, business or tourism. To the
best of our knowledge, this is the first approach which provides a general solution to
build itinerary plans between and inside destinations.

To achieve these functionalities, in this paper, we propose an ACO-based itinerary
planning algorithms to efficiently discover high utility itineraries. The experimental
result confirms that ACO algorithm outperforms other trip planning algorithms [4, 5]
in terms of effectiveness and efficiency. Moreover, we implement an itinerary plan-
ning system, gTravel, based on our proposed algorithms. A case study on gTravel is
also provided to show the practicability of the proposed approach.

2 Itinerary Planning Model

In this section, we propose an automatic itinerary planning approach by using ACO
algorithm-based algorithm and utility functions (measure the quality of itineraries).
We first introduce the problem definition. The itinerary planning problem, in this
paper, is formally defined as: given a set of constraints, such as budget, a start-
ing/ending place/time, visiting cities, etc., system generates a personalized itinerary,
which includes POIs, hotels, transportations between cities and routes between POIs.

2.1 Algorithm

Our approach divides multi-city planning into inter-city planning which considers the
resource of transportations between cities and lodgings at each destination and intra-
city planning of POIs and visiting sequences. We also estimate visiting time and tran-
siting time for these POIs inside cities. Both inter-city and intra-city planning use
ACO approach to discover proper traveling plans for users, so we take intra-city algo-
rithm in this paper as an example to show how to develop itinerary algorithms.

The resources considered in our ACO algorithm include three types: POIs, hotels
and transportations. In ACO algorithm, the domain of each resource consists of solu-
tion components. Each components of resource is denoted by if being

planned after with its domain value of . A pheromone model is used to probabil-
istically generate solutions from a finite set of solution components and iteratively
update the pheromone values to search in regions which contain high quality solu-
tions. The pheromone model consists of pheromone trail parameters. The pheromone
trail value, denoted by , is associated with each component . A number of artifi-
cial ants search for good solutions to the considered optimization problem. The ants
construct solutions from a finite set of available solution components. At the begin-
ning, solutions are initialized with an empty set of components. Then, at each

 A Tourist Itinerary Planning Approach Based on Ant Colony Algorithm 401

construction step, the current partial solution is extended by adding a feasible solution
component . Each ant selects in a probabilistic way by the following equation:

 ∑ 0 (1)

where denotes the probability of ant k choosing the solution component ;
 stores the list of resources that ant k has passed which ensures that ant k does

not choose resources repeatedly; and is a function to compute the domain val-

ue .
In addition, and represent the importance of the pheromone value and the heu-

ristic information respectively. The higher the value of α is, the more importance of
other ants guidance is. We note that it tends to be greedy algorithm if set as a high
value.

The ants construct the solutions as follows. Each ant selects tourism resources in a
probabilistic way incrementally building a solution until it reaches the ending time.
The algorithm then evaluates the quality of the solutions that ants found by computing
the utility (using Equation 6 in the following part). After each round of the solution
finding process, the system would estimate whether the termination criterion is satis-
fied. If the algorithm doesn’t meet the termination condition, it continues to update
the pheromone values by using the following equation:

 1 ∆ (2)

where is the volatile coefficient. ∆ expresses the increment of . The value of ∆ depends on the quality of the generated solutions. Subsequent ants utilize the phe-
romone information as a guide towards more promising regions of the searching space.

2.2 Utility Function

We note that in the ACO algorithm, we should define utility functions to calculate the
utilities of generated solutions. There are many possible utility metrics and each of
them is perhaps subjective to a certain extent. In the following parts, as a concrete
example, we discuss how we define the utility metrics in this study.

We take the intra-city utility function as an example to show how to define utility
functions. We assume that the higher is the rank of the POIs, the better is the itinerary;
the shorter is the travel distances, the better is this itinerary, furthermore, the higher is
the fraction of the time spent for visiting POIs instead of transportation, the better is the
itinerary. Such, we propose the utility function for intra-city planning as follows:

 ∑ ∈ ∑ ,∈ (6)

 (7)

402 L. Yang et al.

where , ∑ ,∈ and normalize the rank of , distances be-
tween and , and the fraction of visiting time into a given scale respectively.

 denotes the rank of .
We note that the inter-city utility function can be also defined similar to the intra-

city utility function. When designing the inter-city utility functions, price, comfort
level and distances should be considered and a similar function can also be defined.

3 Experimental

3.1 Experimental Results

We evaluate our approach on popular travel destinations in China using real and syn-
thetic datasets extracted from DaoDao1, elong2, Flickr3. There are 26650 hotels, 9203
POIs and more than 3000 transportation choices. The goal of our experiments is to
evaluate our itinerary planning approach in terms of the performance of the algorithm
and the quality of generated itinerary by comparing with the greedy algorithm (Gree-
dy) [4] and the guided local search meta-heuristic algorithm (GLS) [5]. Table 1 lists
the means and variances of the utility and time of algorithms after running 100 times
of each algorithm by the time budget and the number of POIs setting as 12 hours and
40 POIs.

Table 1. The construct of means and variances

From the average value of utility and running time, we can see in this situation, our
algorithm outperforms GLS and Greedy algorithm in terms of effectiveness. In the way
of efficiency, our algorithm is better than GLS algorithm. Also, from the variance, we
can see that our algorithm is relatively stable. We have also conducted few experiments
to compare the performances between our model and other two commonly-used trip
planning approaches, the results also confirm the effectiveness and efficiency of our
approach. Due to the limitation of this paper, we do not show these results.

1 http://www.daodao.com
2 http://www.elong.com
3 http://www.flickr.com

Utility
Avg Std

Running Time
Avg Std

ANT200 6.6792 0.00642 0.2664 0.006
ANT100 6.3042 0.00994 0.13345 0.00151
ANT50 6.225 0.01852 0.0816 6.7425
GLS 6.2083 ---- 0.3173 ----
Greedy 5.1625 ---- 0.01 ----

 A Tourist Itinerary Planning Approach Based on Ant Colony Algorithm 403

3.2 Case Study

We have built an itinerary planning system, gTravel, based on our proposed approach.
In this section, we make use of an example to illustrate the practicability of gTravel: a
traveler is going to visit Beijing, Shanghai and Guangzhou from San Francisco at
2012/3/15 and return at 2012/3/23; and he/she wants to spend about 2 days in each
city; also, the budget of 20,000 Yuan and 2000 Yuan in each city are cost constraints.
gTravel helps this potential traveler organize his/her itinerary by our proposed model.
The detailed itinerary is listed in table 2.

Table 2. The itinerary that our system generated

Dest Start Time End Time Name

1 3/15 13:02 3/16 02:12 Flight CA8857
2 3/16 03:30 3/16 08:00 Marriott Executive Apartment
3 3/16 08:15 3/16 09:30 Shanghai macrocosm
4 3/16 09:4 3/16 11:00 City God Temple
5 3/16 11:15 3/16 11:30 Yu Garden
6 3/16 11:45 3/16 15:00 Bund Sightseeing Tunnel
7 3/16 15:15 3/16 17:00 World Architecture Expo
8 3/16 17:15 3/16 19:00 Jin Mao Tower
9 3/16 19:15 3/16 20:30 Oriental Pearl TV Tower
10 3/16 20:45 3/17 08:00 Marriott Executive Apartment
11 3/17 09:12 3/18 06:36 Train K511
12 3/18 07:30 3/18 10:30 Southern Airlines Pearl Hotel
13 3/18 11:30 3/18 14:30 Six Banyan Temple
14 3/18 14:45 3/18 17:30 Commercial Pedestrian Street
15 3/18 18:30 3/19 08:00 Southern Airlines Pearl Hotel
16 3/19 09:00 3/19 11:30 One thousand sites of ancient road
17 3/19 11:45 3/19 14:15 Museum of the Nanyue King
18 3/19 14:30 3/19 16:45 Sun Yatsen Memorial Hall
19 3/19 17:00 3/19 19:00 Southern Theatre
20 3/19 20:00 3/20 08:00 Southern Airlines Pearl Hotel
21 3/20 09:00 3/20 11:00 Shangxiajiu pedestrian street
22 3/20 14:55 3/20 19:55 Train K600
23 3/20 21:00 3/21 08:00 Swissotel Beijing
24 3/21 08:15 3/21 09:45 Forbidden City
25 3/21 10:15 3/21 11:45 Temple of Heaven
26 3/21 12:15 3/21 13:45 National Grand Theatre
27 3/21 14:30 3/21 15:30 Tiananmen square
28 3/21 16:00 3/21 17:30 Jingshan Park
29 3/21 18:30 3/21 20:00 Bird Nest
30 3/21 21:00 3/22 08:00 Swissotel Beijing
31 3/22 09:00 3/22 10:30 Chinese Ethnic Culture Park
32 3/22 11:00 3/22 12:30 Beijing Aquarium
33 3/22 13:15 3/23 00:45 Flight CA8888

404 L. Yang et al.

4 Conclusion

This work proposes an itinerary planning approach that incorporates ACO algorithm
to find one of the best combinations of tourism resources, such as transportations,
lodgings, and POIs. To the best of our knowledge, this is the first approach which is
built to plan itineraries between and inside cities and provide a general solution for
trip planning systems to generate itineraries. We have executed empirical studies on
real data collected from the Web and the experimental results show that our model
outperforms some existing itinerary planning approaches both in effectiveness and
efficiency. In addition, we conduct a case study illustrating the versatility of our
framework.

Acknowledgment. This work was supported partly by National Natural Science
Foundation of China (No. 61103031), partly by China 863 program (No.
2012AA011203), partly by the State Key Lab for Software Development Environ-
ment (No. SKLSDE-2010-ZX-03), and partly by the Fundamental Research Funds for
the Central Universities (No. YWF-12-RHRS-016).

References

[1] Xie, M., Lakshmanan, L.V.S., Wood, P.T.: Breaking out of the box of recommendations:
From items to packages. In: 4th ACM Conference on Recommender Systems, New York,
pp. 151–158 (2010)

[2] Vansteenwegen, P., Oudheusden, D.V.: The mobile tourist guide: An OR opportunity. J.
OR Insights 20, 21–27 (2007)

[3] Xie, M., Lakshmanan, L.V., Wood, P.T.: CompRec-Trip: a Composite Recommendation
System for Travel Planning. In: 27th International Conference on Data Engineering, pp.
1352–1355 (2011)

[4] Hagen, K.T., Kramer, R., Hermkes, M., Schumann, B., Mueller, P.: Semantic matching
and heuristic search for a dynamic tour guide. In: Frew, A.J. (ed.) COMP SCI. 2005.
LNCS, vol. 5, pp. 149–159. Springer, Austria (2005)

[5] Souffriau, W., Vansteenwegen, P., Vertommen, J., van den Berghe, G., van Oudheusden,
D.: A personalized tourist trip design algorithm for mobile tourist guides. J. Appl. Artif.
Intell. 22, 964–985 (2008)

[6] Roy, S.B., Amer-Yahia, S., Das, G., Yu, C.: Interactive Itinerary Planning. In: 27th Inter-
national Conference on Data Engineering, Arlington, pp. 15–26 (2011)

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 405–418, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Transparent Approach for Database Schema Evolution
Using View Mechanism

Jianxin Xue, Derong Shen, Tiezheng Nie, Yue Kou, and Ge Yu

College of Information Science and Engineering, Northeastern Unicersity, China
xuejianxin@research.neu.edu.cn,

{shenderong,nietiezheng,kouyue,yuge}@ise.neu.edu.cn

Abstract. Designing databases that evolve over time is still a major problem
today. The database schema is assumed to be stable enough to remain valid
even as the modeled environment changes. However, the database
administrators are faced with the necessity of changing something in the overall
configuration of the database schema. Even though some approaches proposed
are provided in current database systems, schema evolution remains an error-
prone and time-consuming undertaking. We propose an on-demand transparent
solution to overcome the schema evolution, which usually impacts existing
applications/queries that have been written against the schema. In order to
improve the performance of our approach, we optimize our approach with
mapping composition. To this end, we show that our approach has a better
potential than traditional schema evolution technique. Our approach, as
suggested by experimental evaluation, is much more efficient than the other
schema evolution techniques.

Keywords: schema evolution, schema mapping, backward compatibility,
schema composition.

1 Introduction

Database designers construct schemas with the goal of accurately reflecting the
environment modeled by the database system. The resulting schema is assumed to be
stable enough to remain valid even as the modeled environment changes. However, in
practice, data models are not nearly as stable as commonly assumed by the database
designers. As a result, modifying the database schema is a common, but often
troublesome, occurrence in database administration. These are significant industrial
concerns, both from the viewpoint of database system manufacturers and information
system users. Schema evolution, and its stronger companion, schema versioning, have
arisen in response to the need to retain data entered under schema definitions that
have been amended. A more formal definition of schema evolution is the ability for a
database schema to evolve without the loss of existing information [1].

Motivating Example. To better motivate the need for schema evolution support, we
illustrate a schema evolution example in an employee database, which is used as a

406 J. Xue et al.

running example in the rest of the paper. Fig. 1 outlines our example, which has three
schema versions, V1 through V3.

Due to a new government regulation, the company is now required to store more
personal information about employees. At the same time, it was required to separate
employees’ personal profiles from their business-related information to ensure the
privacy. For these reasons, the database layout was changed to the one in version V2,
where the information about the employees is enriched and divided into two tables:
Personal, storing the personal information about the employees, and Employees,
maintaining business-related information about the employees.

Fig. 1. Schema evolution in an employee database

The company chose to change its compensation policy: to achieve ‘fair’
compensation and to better motivate employees, the salaries are made dependent on
their individual performance, rather than on their job titles. To support this, the salary
attribute was moved to the table employees, and the table job was dropped. Another
modification was also introduced that the first name and last name are now stored in
two different columns to simplify the surname-based sorting of employees. These
changes were represented as the last schema version, V3.

Assume that a department works for a project, and view E_P is used to correlate
the employees with the projects they work for. On top of this view, we consider that
the report module contains an aggregate query that calculates the expenses of the
project per month by summing up the salaries of all employees working for it and
compare them with the budget of the project. Along with the evolution of the schema,
the view E_P becomes unavailable. How to effectively keep the application available
is our object.

Contribution. Our main contributions in this paper are summarized as follows.

1. A novel on-demand schema evolution approach based on virtual views (named
as on-demand approach) is proposed, which only deals with the schemas effected by
the schema evolution and preserves the new data instead of the version data.

2. Subsequently we construct view version with mapping inversion, which can
recover all the source information with complementary approach.

3. Next, an optimization algorithm is presented to improve application/queries
efficiency.

 A Transparent Approach for Database Schema Evolution Using View Mechanism 407

4. At last, we have performed comprehensive experiments to compare our
approach with traditional database schema evolution techniques, which show that our
approach achieves remarkable improvement in efficiency.

The remainder of this paper is organized as follows: Section 2 discusses related
works, Section 3 introduces preliminary definitions, Section 4 discusses in details the
design of our schema evolution method, Section 5 is dedicated to experimental
results. We conclude in Section 6 where we also state our future work.

2 Related Works

Schema evolution means modifying schemas within a database without loss of
existing data. With the acceleration of database schema modification frequency of
Internet and enterprise, database schema evolution becomes a hotspot in current
database research. However, current database schema evolution is mainly
implemented manually.

Schema evolution has been extensively addressed in the past and a variety of
techniques have been proposed to execute change in the least erratic way possible to
avoid disruption of the operation of the database. A bibliography on schema evolution
lists about 216 papers in the area [2]. The proposed solutions for schema evolution
can be categorized mainly by following one of these approaches: modification,
versioning and views.

Modification. The original schema and its corresponding data are replaced by a new
schema and new data. This approach does not exactly adhere to the schema evolution
definition, which makes the applications that use the original schemas inconsistent
with the new database schemas [3]. This renders the approach unsuitable in most real
cases, yet it remains the most popular with existing DBMS. In [4], the authors discuss
extensions to the conventional relation algebra to support both aspects of evolution of
a database’s contents and evolution of a database’s schema. In [5], authors present an
approach to schema evolution through changes to the ER schema of a database. In [6],
they describe an algorithm that is implemented in the O2 object database system for
automatically bringing the database to a consistent state after a schema update has
been performed.

Versioning. The old schema and it corresponding data are preserved and continued to
be used by existing applications, but a new version of the schemas is created, which
incorporates the desired changes [7]. There are two most used versioning methods.
The first is sequential revisions, which consists of making each new version a
modification of the most recent schema. This approach is adopted in Orion Database
System [8]. The second method is a complex one, which is called parallel revisions.
For instance, Encor Database System[9]. Generally, the versioning approach presents
performance problems.

View. A view is a derived table. It makes possible to change the schema without
stopping the database and destroying its coherence with existing applications.

408 J. Xue et al.

Bellahsene [10] proposes a method that uses view to simulate the schema changes and
the data migration is not needed, i.e., views are viewed as the target schema.
However, this method has scalability limitations. In fact, after several evolution steps,
the applications/queries may involve long chains of views and thus deliver poor
performance. Moreover, it is difficult to change current schema.

In [11], the authors deal with the adaption of the view definition in the presence of
changes in the underlying database schema. [12], [13] deal also with a specialized
aspect of the view adaptation problem. The work of [14] employs a directed graph for
representing the object dependencies in O-O database environments and finding the
impact of changes in database objects towards application objects.

As of today, in [15], the authors tend to extend the work of [16]. They first
consider a set of evolution changes occurring at the schema of a data warehouse and
provide an informal algorithm for adapting affected queries and views to such
changes. The most representative achievement is PRISM developed by Curino. One
contribution of the work on PRISM is a language of Schema Modification Operator.
Meanwhile, automatic query rewriting of queries specified against schema version N
into semantically equivalent queries against schema Version N+1, and vice versa
[17]. SMOS have a good semantic express for schema evolution, but still has some
limitations.

3 Preliminaries

A schema R is a finite sequence (R1,…,Rk) of relation symbols, where each Ri has a
fixed arity. An instance I over R is a sequence (Ri

1,…,Ri
k) , where each Ri

i is a finite
relation of the same arity as Ri. We shall often use Ri to denote both the relation
symbol and the relation RI

i that instantiates it. We assume that we have a countable
infinite set Const of constants and a countably infinite set Var of labeled nulls that is
disjoint from Const. A fact of an instance I is an expression Ri

i(v1,…,vm) where Ri is a
relation symbol of R and v1,…,vm are constants or labeled nulls such that
(v1,…,vm)∈Ri

i. The expression v1,…,vm is also sometimes referred to as a tuple of Ri.
An instance is often identified with its set of facts.

A schema mapping is a triple M=(S,T,), where S is the source schema, T is a
target schema, and is a set of constraints that describe the relationship between S
and T. M is semantically identified with the binary relation:

Inst(M)={(I,J)| I∈Si , J∈Ti,(I,J)|= }. (1)

Here, Si is the instance of source schema and Ti is the instance of target schema. We will
use the notation (I, J)|= to denote that the ordered pair (I, J) satisfies the constraints of
; furthermore, we will sometimes define schema mappings by simply defining the set
of ordered pairs (I, J) that constitute M (instead of giving a set of constraints that specify
M). If (I, J)∈M, we say that J is a solution of I (with respect to M).

In general, the constraints in are formulas in some logical formalism. In this
paper, we will focus on schema mappings specified by source-to-target tuple-
generating dependencies.

 A Transparent Approach for Database Schema Evolution Using View Mechanism 409

An atom is an expression of the form R(x1,…,xn). A source-to-target tuple-
generating dependency (s-t tgd) is a first-order sentence of the form as follow:

∀x(ϕ(x)→∃yψ(x,y)). (2)

where ϕ(x) is a conjunction of atoms over S, each variable in x occurs in at least one
atom in ϕ(x), and ψ(x,y) is a conjunction of atoms over T with variables in x and y.
For simplicity, we will often suppress writing the universal quantifiers ∀x in the
above formula. Another name for S-T tgds is global-and-local-as-view (GLAV)
constraints. They contain GAV and LAV constraints, which we now define, as
important special cases.

A GAV (global-as-view) constraint is an S-T tgd in which the right-hand side is a
single atom with no existentially quantified variables, that is, it is denoted by the
following equation:

∀x(ϕ(x)→P (x)). (3)

where P(x) is an atom over the target schema. A LAV (local-as-view) constraint is an
s-t tgd in which the left-hand side is a single atom, that is, it is denoted by the
following equation:

∀x(Q(x)→∃yψ(x,y)). (4)

where Q(x) is an atom over the source schema.

4 Schema Evolution Management

In this section we will discuss the details of our on-demand approach (supporting
backward compatibility) and the optimization of our approach. Here, the mappings
between source schema and target schema are expressed by the S-T tgds. A main
requirement for database schema evolution management is thus to propagate the
schema changes to the instance, i.e., to execute instance migration correctly and
efficiently. S-T tgds represent the semantics of conversion from source schema
instance to target schema instance. The S-T tgds can express both simple changes,
such as addition, modification or deletion of individual schema constructs, and
complex changes refer to multiple simple changes. The converted semantics of S-T
tgds can automatically execute instance migration from source schemas to target
schemas with the change of schemas.

4.1 Our On-Demand Approach

In our approach, the original schema and its corresponding data are not preserved. To
reuse the legacy applications/queries, we must support backward compatibility. Here,
virtual versions (view version) are proposed to support backward compatibility, which

410 J. Xue et al.

can avoid the costly adaptation of applications. In schema evolution progress, many
times the evolution operation only involves several tables. We create views not for all
the tables but only for the tables evolved.

Fig. 2. Generation of virtual version

The functionality that our approach aims to achieve is illustrated in Fig. 2, where
schema version S represents an initial (legacy) schema that goes through mapping M
forming target schema version T. The instances migrate automatically through
conversion (chase). In order to save memory space and improve performance, we
delete the instances of schema version S and create view S that has the same name
with the deleted schema to realize the backward compatibility. Applications deal with
views the same way they deal with base tables. Supporting different explicit view
versions for schemas realizes evolution transparency. The concept of view S can be
created through mapping M’, which is obviously the mapping inverse of M.

The most important thing is to calculate the inverse of mapping M. The ideal goal
for schema mapping inversion is to be able to recover the instances of source schema.
Concretely, if we apply the mapping M on some source instances and then the inverse
on the result of mapping M is used to obtain the original source instance. Here,
applying a schema mapping M to an instance means generating the instance by chase.
However, a schema mapping may drop some of the source information, and hence it
is not possible to recover the same amount of information.

Fig. 3. Example of data loss

 A Transparent Approach for Database Schema Evolution Using View Mechanism 411

The example of the scenario described in Fig. 3(a) illustrates the schema evolution
process with information loss. Consider the following two schema versions V2 and V3
in Fig. 1, where V2 consists of two relation symbols Employees and Job, and schema
V3 consists of one ternary relation symbol Employees that associates each employee
with salary and title. Given existing the schema mapping M23=(V2, V3, 23), where

23={(Employees(e,n,t)∧Job(t,s)→Employees(e,s,t)}.

The nature “inverse” that one would expect here is the following mapping:

32={(Employees(e,s,t) →∃nEmployees(e,n,t), Employees(e,s,t) → Job(t,s) }

Here, we verify whether mapping 23 can recover instances of source schema versions
V2. If we start with a source instance I for schema V2 where the source tuples contain
some constant values, and then apply the chase with mapping 23 and then the reverse
chase with 32. Another source instance I’, where the tuples have nulls in the name
position, is obtained. Consequently, the resulting source instance I’ cannot be
equivalent to the original instance I. To give a concrete example, consider the source
instance I over version V2 that is shown in Fig. 3.

Schema version V2 could not be created from V3 by mapping 32. In our approach
we also could not get the views the same as V2. In order to solve this problem, a
separate table is established for the lost data. In Fig. 3(b), the red rectangle represents
the loss data, which are stored in table V3. The special table is name V3, which works
only when computing mapping inverstion and evolution rollback. The special table
cannot be modified. The inversion of mapping 23 can be expressed as +

32.

Fig. 4. The verification of mapping inverstion

+
32={((Employees(e,s,t)∨V5(e,n)→ Employees(e,n,t)),

(Employees(e,s,t) → Job(t,s))}.

Mapping +
32 can completely recover the instances of source schema versions. The

structure of old schema versions can be correctly described by views that are created
by mapping +

32. We present the algorithm for calculating the views of old schema in
the following.

412 J. Xue et al.

Algorithm 1. Virtual View Create
Input: source schema S, mapping M between source schema and target schema
1: Let M+=φ, M-1=φ
2: If M is full
3: T=chaseM(Is)
4: M-1=INVERS(M)
5: Else
6: M+=SUPPLEMENT(M)
7: T=chaseM

+(Is)
8: M-1=INVERS(M)
9: VS=VIEW CREATE(M-1)

First, we determine whether there is information loss before schema evolving. If
the mapping is not full, i.e., there is information loss. We will create a special table
and modify the mapping M’. The operator of SUPPLEMENT() aims to modify the
mapping M without information loss. Here, data migrate is automatically executed
with chase algorithm. We compute inversion of full mapping M and generate the view
concept with the operator VIEW CREATE().

Example of Fig. 3 is used to illustrate our algorithm. The inverse of mapping M+

can be computed by operator INVERS().

+
32={∀e,n,t,s(Employees(e,s,t)∨V5(e,n)→ Employees(e,n,t),

∀e,n,t,s (Employees(e,s,t) → Job(t,s)}.

We get the mapping M-1, which can compute the views that describe the old schema.
The views concepts are computed through mapping M-1.

CREATE VIEW Employees V2
 AS

SELECT Employees.empno, V3.name, Employees.title
FROM Employees, V3
WHERE Employees.empno= V3.empno;

CREATE VIEW Job V2
 AS

SELECT Employees.title, Personal.salary
FROM Employees

4.2 Optimized Approach

In on-demand approach, we support backward compatibility to reuse the legacy
applications and queries by creating virtual version. But it has scalability limitations.
In fact, after several evolution steps, each application execution may involve long
chain of views and thus deliver poor performance. Fig. 5 shows the limit of our naïve
approach. Schema version S1,…,Sn represents each version in the progress of schema
evolution. Sn is the current schema version, then the other schema versions are
represented by views. The old schema versions connect with existing schema version

 A Transparent Approach for Database Schema Evolution Using View Mechanism 413

through long views chains, e.g., schema version S1 is mapped into schema version Sn
with views chain M1∪…∪ Mn. To avoid the costly implementation of
applications/queries, the chains of views should get shorter as much as possible. As
Fig. 5 shows, we hope that each view version would have been directly mapped into
schema version Sn, rather than through the intermediate steps. So the implementation
of applications/queries could not operate physic data through long views chains.
Mapping composition is a good choice.

Fig. 5. The composition of views mapping

We do not preserve the data of old schema version. The mappings created by
schema version matching are not accurate and cannot reflect the semantic of schema
evolution process. In this paper, we compute the views concepts directly from
existing schema version by mapping composition. The algorithm of view mapping
composition is given in the following.

Algorithm 2. View Composition
Input: current schema version Sc, old schema version So1and So2, mapping M1 between
Sc and So1 and mapping M2 between So1and So2
1: Let M’ =φ
2: If M1 is no the GAV s-t tuple tgds
3: M1 =Splitup(M1)
4: M’ = M2
5: While the atoms of the right side of M1 appear on the left side of M2
6: M’ =REPLACE(M1, M’)
7: M’ =SIMIPLIFY(M’)

Here, we illustrate the computed progress of our optimized method with an

concrete example of schema evolution. We also use employees database as our
example. Mapping 21 is the relation between version V2 and V1.

21 ={(Employees(e,h,t,d)∧Personal(e,s,b,n)→Employees(e,n,h,t,d)}.

The view mapping from V3 to V2 is 32.

414 J. Xue et al.

32={(Employees(e,h,t,d) → Employees(e,n,h,t,d), Employees(e,h,t,d) →Job(t,s),
Personal(e,s,b,f,l)∧V5(e,n) → Personal(e,s,b,n)}.

Intuitively, the composition algorithm will replace each relation symbol from
Employees and Personal in 21 by relation symbols from that use the GAV S-T tgds
of 32. In this case, the fact Personal(e,s,b,f,l) that occurs on the left-hand side of 32
can be replaced by a Employees fact, according to the first GAV s-t tgd of 32, we
arrive at an intermediate tgd shown in the following.

Employees(e,h,t,d,s’)∧Personal(e,s,b,n)→Employees(e,,n,h,t,d)

Observe that new variable S’ in Employees are used instead of S. This avoid an
otherwise unintended join with Personal, which also contains the variable S. We then
obtain the following GLAV s-t tgd from the version V3 to version V3. This tgds
specify the composition of 32 21.
32 21= {(Employees(e,h,t,d,s’)∧Personal(e,s,b,f,l) ∧V5(e,n)→Employees(e,,n,h,t,d)

We can get the view concept directly from schema V3 through view mapping
32 21.

5 Experimental Evaluation

In this section, we report the results of a set of experiments designed to evaluate our
proposed approach for schema evolution. Table 1 describes our experimental
environment. The data-set used in these experiments is obtained from the schema
evolution benchmark of [17] and consists of actual queries, schema and data derived
from Wikipedia. We also do some experiments on the actual database data-set.

Table 1.Experimental Setting

Machine RAM: 4Gb
CPU(2x)

Disks: 500G

OS Distribution Linux Ubuntu server 11
MySQL Version 5.022

Now approaches for schema evolution management mostly base on version

management. We get the data of wikipadia from 2009-11-3 to 2012-03-7. The size of
data grows from 31.2GB to 57.8GB. If we use versioning approach to manage the
schema evolution, we must spent 1056.7GB memory space to store all versions of
wikipadia from 2009-11-3 to 2012-03-7. However, our approach only needs to store
the existing version, i.e., 57.8GB.

We evaluate the effectiveness of our approach with the following two metrics: (1)
overall percentage of queries supported, and (2) the applications/queries running time.
To make comparison with the PRISM, we use the same data-set obtained from the
schema evolution of [17].

 A Transparent Approach for Database Schema Evolution Using View Mechanism 415

wikipadia

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Revision

T
h
e

s
i
z
e

o
f

v
e
r
s
i
o
n
(
G
B
)

wikipadia

Fig. 6. The increase of wikipadia

Support for Backward Compatibility. An important measure of performance of our
system is the percentage of queries supported by the old version. To this purpose we
select the 66 most common query templates designed to run against version 28 of the
Wikipedia schema and execute them against every subsequent schema version. The
overall percentage of queries supported is computed by the following formulas.

Fig. 7. Queries success rate

(5)

Fig.7 provides a graphical representation of the percent of queries supported for the
various schema evolution approaches. Our approach can fully automatically realize
the backward compatibility without rewriting queries. The original queries, failing
when columns or tables are modified, highlight the portion of the schema affected by
the evolution. The original query is run by the Modification. The black curve that
represents the original queries shows how the schema evolution invalidates at most
82%of the schema. For PRISM, in the last version, about 26% of the queries fail due
to the schema evolution. However, for our approach only 16% queries fail over the

416 J. Xue et al.

last version, which is very close to user rewritten query shown by green curve.
Obviously, our approach effectively cures a wide portion of the failing input queries.

Run-time Performance. Here we focus on the response time of queries that
represents one of the many factors determining the usability of our approach. We
make a statistic for the query rewrite times of PRISM, the average of the query
rewrite time for PRISM is 26.5s.

Since we cannot get the dataset of the PRIMS, we could not do the experiment to
compare PRISM with our approach. Here, we use the real database data-set
employees with 5 versions to compare the effectiveness of our approach with
traditional view approach[10]. The database consists of approximately 500,000 tuples
for about 1.3Gb of data. We selected 10 queried operated on the employees database,
the response times of them are shown in Fig. 8: (1) traditional represents the approach
with traditional view version; (2) on-demand is our on-demand approach; (3)
optimized is our optimized approach. The testing results demonstrate that the
response times of traditional approach and our naive approach grows with schema
evolving, while our optimized method is close to constant. It is obvious that our
optimized method has outperformed traditional approach and our naïve approach.

Fig. 8. Query execution time

6 Conclusion and Future Work

In this paper, we present a novel approach for schema evolution, which supports the
backward compatibility. Traditionally, database schema evolution management is
conducted by versioning, which generates high costs and requires much memory
space. Such a time and space consuming approach severely limits the usability and
convenience of the databases.

We exploit the virtual version approach which supports the applications/queries of
old schemas. Our optimization for the virtual version makes our approach low time-
consuming and high scalability. Both analysis and experiments verify the

 A Transparent Approach for Database Schema Evolution Using View Mechanism 417

plausibleness of our approach and show that it consumes much less time and scales
better that others schema evolution approach.

Despite recent progress we therefore see a need for substantially more research on
schema evolution. For example, distributed architectures with many schemas and
mappings need powerful mapping and evolution support, e.g., to propagate changes of
a data source schema to merged schemas. New challenges are also posed by dynamic
settings such a stream systems where the data to be analyzed may change its schema.

Acknowledgement. The National Natural Science Foundation of China (Grant No.
60973021, 61003060), and the Fundamental Research Funds for the Central
Universities (N100704001).

References

1. Roddick, J.F.: A Survey of Schema Versioning Issues for Database Systems. J.
Information and Software Technology 37(7), 383–393 (1995)

2. Roddick, J.F.: Schema Evolution in Database System–An Annotated Bibliography.
SIGMOD RECORD 21(4) (1992)

3. Banerjee, J., Kim, W.: Semantics and Implementation of Schema Evolution in Object-
Oriented Databases. SIGMOD RECORD 21, 311–322 (1987)

4. McKenzie, L.E., Snodgrass, R.T.: Schema Evolution and the Relational Algebra. J.
Information System 15, 195–197 (1990)

5. Liu, C.T., Chrysanthis, P.K., Chang, S.K.: Database schema evolution through the
specification and maintenance of the changes on entities and relationships. In:
Loucopoulos, P. (ed.) ER 1994. LNCS, vol. 881, pp. 13–16. Springer, Heidelberg (1994)

6. Ferrandina, F., Meyer, T., Zicari, R., Ferran, G.: Schema and database Evolution in the O2
Object Dabase System. In: VLDB 1995, pp. 170–181. ACM, New York (1995)

7. Kim, W., Chou, H.-T.: Versions of Schema for Object Oriented Databases. In: VLDB
1988, pp. 148–159. Morgan Kaufmann, San Francisco (1988)

8. Munch, B.P.: Versioning in a software Engineering Database–the Changes Oriented Way.
Division of Computer Systems and Telematics. Norwegian Institute of Technology (1995)

9. Andany, J., Leonard, M., Palisser, C.: Management of schema evolution in databases. In:
VLDB 1991, pp. 161–170. Morgan Kaufmann, San Francisco (1991)

10. Bellahsène, Z.: View mechanism for schema evolution. In: Morrison, R., Kennedy, J.
(eds.) BNCOD 1996. LNCS, vol. 1094, pp. 18–35. Springer, Heidelberg (1996)

11. Bellahsene, Z.: Schema evolution in data warehouses. J. Knowledge and Information
System, 283–304 (2002)

12. Nica, A., Lee, A.J., Rundensteiner, E.A.: The CVS Algorithm for View Synchronization in
Evolvable Large-Scale Information Systems. In: Schek, H.-J., Saltor, F., Ramos, I.,
Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 359–373. Springer, Heidelberg
(1998)

13. Rundensteiner, E.A., Lee, A.J., Nica, N.: On preserving views in evolving environments.
In: KRDB 1997, pp. 13.1–13.11 (1997)

14. Karahasanovic, A., Sjøberg, D.I.K.: Visualizing Impacts of Database schema changes-A
Controlled Experiment. In: HCC 2001, p. 358. IEEE, Washington, DC (2001)

418 J. Xue et al.

15. Favre, C., Bentayeb, F., Boussaid, O.: Evolution of Data Warehouses’ Optimization: A
Workload Perspective. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS,
vol. 4654, pp. 13–22. Springer, Heidelberg (2007)

16. Papastefanatos,G. Vassiliadis, P., Vassiliou, Y.: Adaptive Query Formulation to Handle
Database Evolution (Extended Version), In: CAiSE 2006, pp.5-9, Springer, Heidelberg
(2006)

17. Curino, C.A., Moon, H.J., Zaniolo, C.: Graceful database schema evolution: the prism
work-bench. In: Proc. VLDB Conf., pp. 761–772. ACM, USA (2008)

WYSIWYE�: An Algebra for Expressing Spatial

and Textual Rules for Information Extraction

Vijil Chenthamarakshan1, Ramakrishna Varadarajan2, Prasad M. Deshpande1,
Raghuram Krishnapuram1, and Knut Stolze3

1 IBM Research
ecvijil@us.ibm.com, {prasdesh,kraghura}@in.ibm.com

2 University of Wisconsin-Madison
ramkris@cs.wisc.edu

3 IBM Germany Research & Development
stolze@de.ibm.com

Abstract. The visual layout of a webpage can provide valuable clues
for certain types of Information Extraction (IE) tasks. In traditional rule
based IE frameworks, these layout cues are mapped to rules that operate
on the HTML source of the webpages. In contrast, we have developed a
framework in which the rules can be specified directly at the layout level.
This has many advantages, since the higher level of abstraction leads to
simpler extraction rules that are largely independent of the source code
of the page, and, therefore, more robust. It can also enable specifica-
tion of new types of rules that are not otherwise possible. To the best
of our knowledge, there is no general framework that allows declarative
specification of information extraction rules based on spatial layout. Our
framework is complementary to traditional text based rules framework
and allows a seamless combination of spatial layout based rules with
traditional text based rules. We describe the algebra that enables such
a system and its efficient implementation using standard relational and
text indexing features of a relational database. We demonstrate the sim-
plicity and efficiency of this system for a task involving the extraction of
software system requirements from software product pages.

1 Introduction

Information in web pages is laid out in a way that aids human perception using
specification languages that can be understood by a web browser, such as HTML,
CSS, and Javascript. The visual layout of elements in a page contain valuable
clues that can be used for extracting information from the page. Indeed, there
have been several efforts to use layout information for specific tasks such as web
page segmentation [1] and table extraction [2]. There are two ways to use layout
information:

1. Source Based Approach: Map the layout rule to equivalent rules based
on the source code (html) of the page. For example, alignment of elements
can be achieved in HTML by using a list () or a table row (<tr>) tag.

� What You See Is What You Extract.

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 419–433, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

420 V. Chenthamarakshan et al.

2. Layout Based Approach: Use the layout information (coordinates) of var-
ious elements obtained by rendering the page to extract relevant information.

Both these approaches achieve the same end result, but the implementations are
different as illustrated in the example below.

Example 1. Figure 1 shows the system requirements page for an IBM software
product. The IE task is to extract the set of operating systems supported by
the product (listed in a column in the table indicated by Q3). In the source
based approach, the rules need to identify the table, its rows and columns, the
row or column containing the word ‘Operating Systems’, and finally a list of
entities, all based on the tags that can be used to implement them. In the layout
based approach, the rule can be stated as: ‘From each System Requirements page,
extract a list of operating system names that appear strictly1 to the south of the
word ‘Operating Systems’ and are vertically aligned ’. The higher level layout
based rule is simpler, and is more robust to future changes in these web pages.

Fig. 1. System requirements page

Source based rules have several serious limitations, as listed below:

– An abstract visual pattern can be implemented in many different ways by
the web designer. For example, a tabular structure can be implemented us-
ing any of <table>, <div> and tags. Lerman et al [3] show that only

1 See section 3.3 for a definition of strictness.

WYSIWYE: An Algebra for Expressing Spatial and Textual Rules 421

a fraction of tables are implemented using the <table> tag. Source-based
rules that use layout cues need to cover all possible ways in which the layout
can be achieved. Our experience with large scale IE tasks suggest that rules
that depend on HTML tags and DOM trees work reasonably well on tem-
plate based machine–generated pages, but become too complex and brittle
to maintain when applied to manually authored web pages.

– Proximity of two entities in the HTML source code does not necessarily
imply visual proximity [4], and so it may not be possible to encode visual
proximity cues using simple source based rules.

– Specification languages are becoming more complex and difficult to analyze.
Visualization logic is often embedded in CSS and Javascript, making the
process of rule writing difficult.

– Rules based on HTML tags and DOM trees are often sensitive to even minor
modifications of the web page, and rule maintenance becomes messy.

Layout based approaches overcome these limitations since they are at a higher
level and independent of the page source code. Previous efforts at using lay-
out based approaches were targeted at specific tasks such as page segmentation,
wrapper extraction, table extraction, etc and are implemented using custom
code. Existing rule based information extraction frameworks do not provide a
mechanism to express rules based on the visual layout of a page. Our goal is
to address this gap by augmenting a rule based information extraction frame-
work to be able to express layout based rules. Rule based system can be either
declarative [5,6] or procedural [7]. It has been shown that expressing information
extraction (IE) tasks using an algebra, rather than procedural rules or custom
code, enables systematic optimizations making the extraction process very ef-
ficient [5,6]. Hence, we focus on an algebraic information extraction framework
described in [5] and extend its algebra with a visual operator algebra that can ex-
press rules based on spatial layout cues. One of the challenges is that not all rules
can be expressed using layout cues alone. For some rules, it may be necessary to
use traditional text–based matching such as regular expressions and dictionaries,
and combine them with spatial layout based rules. The framework thus needs to
support rules that use both traditional textual matching and high–level spatial
layout cues. In summary, our contributions are as follows:

– We have developed an algebraic framework for rule–based information ex-
traction that allows us to seamlessly combine traditional text–based rules
with high–level rules based on the spatial layout of the page by extending an
existing algebra for traditional text based information extraction [5], with
a visual operator algebra. We would like to reiterate that our focus is not
on developing spatial rules for a specific task, rather we want to develop an
algebra using which spatial rules for many different tasks can be expressed.

– We implement the system using a relational database and demonstrate how
the algebra enables optimizations by systematically mapping the algebra
expressions to SQL. Thus, the system can benefit from the indexing and
optimization features provided by relational databases.

422 V. Chenthamarakshan et al.

– We demonstrate the simplicity of the visual rules compared to source based
rules for the tasks we considered. We also conduct performance studies on a
dataset with about 20 million regions and describe our experience with the
optimizations using region and text indices.

2 Related Work

Information Extraction(IE): IE is a mature area of research that has re-
ceived widespread attention in the NLP, AI, web and database communities [8].
Both rule based and machine learning based approaches have been proposed and
widely used in real life settings. In this paper, we extend the operator algebra of
System T [5] to support rules based on spatial layout.

Frameworks for Information Extraction: The NLP community has devel-
oped several software architectures for sharing annotators, such as GATE [9] and
UIMA [10]. The motivation is to provide a reusable framework where annotators
developed by different providers can be integrated and executed in a workflow.

Visual Information Extraction: There is a lot of work on using visual in-
formation for specific tasks. We list some representative work below. The VIPS
algorithm described in [1] segments a DOM tree based on visual cues retrieved
from browser’s rendering. The VIPS algorithm complements our work as it can
act as a good preprocessing tool performing task-independent page structure
analysis before the actual visual extraction takes place - thereby improving ex-
traction accuracy. A top-down approach to segment a web page and detect its
content structure by dividing and merging blocks is given in [11]. [12] use visual
information to build up a “M-tree”, a concept similar to the DOM tree enhanced
with screen coordinates. [2] describe a completely domain-independent method
for IE from web tables, using visual information from Mozilla browser. All these
approaches are implemented as monolithic programs that are meant for specific
tasks. On the other hand, we are not targeting a specific task; rather our frame-
work can be used for different tasks by allowing declarative specification of both
textual and visual extraction rules.

Another body of work that is somewhat related is automatic and semi-
automatic wrapper induction for information extraction [13].

These methods learn the a template expression for extracting information
based on some training sets. The wrapper based methods work well on pages
that have been generated using a template, but do not work well on human
authored pages.

3 Visual Algebra

3.1 Overview of Algebraic Information Extraction

We start with a system proposed by Reiss et al [5] and extend it to support visual
extraction rules. First, we give a quick summary of their algebra. For complete
details, we request the reader to refer to the original paper.

WYSIWYE: An Algebra for Expressing Spatial and Textual Rules 423

Data Model. A document is considered to be a sequence of characters ignoring
its layout and other visual information. The fundamental concept in the algebra
is that of a span, an ordered pair 〈begin, end〉 that denotes a region or text within
a document identified by its “begin” and “end” positions. Each annotator finds
regions of the document that satisfy a set of rules, and marks each region with
an object called a span.

The algebra operates over a simple relational data model with three data
types: span, tuple, and relation. A tuple is an finite sequence of w spans
〈s1, ..., sw〉; where w is the width of the tuple. A relation is a multiset of tu-
ples, with the constraint that every tuple in the relation must be of the same
width. Each operator takes zero or more relations as input and produces a single
output relation.

Operator Algebra. The set of operators in the algebra can be categorized
broadly into relational operators, span extraction operators, and span aggrega-
tion operators as shown in Table 1. Relational operators include the standard
operators such as select, project, join, union, etc. The span extraction operators
identify segments of text that match some pattern and produce spans corre-
sponding to these matches. The two common span extraction operators are the
regular expression matcher εre and the dictionary matcher εd. The regular ex-
pression matcher takes a regular expression r, matches it to the input text and
outputs spans corresponding to these matches. The dictionary matcher takes a
dictionary dict, consisting of a set of words/phrases, matches these to the input
text and outputs spans corresponding to each occurence of a dictionary item in
the input text.

Table 1. Operator Algebra for Information Extraction

Operator class Operators Explanation

Relational σ, π,×,∪,∩, . . .
Span extraction εre, εd
Span aggregation Ωo, Ωc, β

s1 �d s2 s1 and s2 do not overlap, s1 precedes s2,
and there are at most d characters between them

Predicates s1 � s2 the spans overlap
s1 ⊂ s2 s1 is strictly contained within s2
s1 = s2 spans are identical

The span aggregation operators take in a set of input spans and produce a set
of output spans by performing certain aggregate operations over the input spans.
There are two main types of aggregation operators - consolidation and block.
The consolidation operators are used to resolve overlapping matches of the same
concept in the text. Consolidation can be done using different rules. Containment
consolidation (Ωc) is used to discard annotation spans that are wholly contained
within other spans. Overlap consolidation (Ωo) is used to produce new spans by

424 V. Chenthamarakshan et al.

Table 2. Visual Operators

Operator Explanation

Span
Generating

�(d) Return all the visual spans for the document d
Ancestors(vs) Return all ancestor visual spans of vs
Descendants(vs) Return all descendant visual spans of vs

Directional
Predicate

NorthOf(vs1, vs2) Span vs1 occurs above vs2 in the page layout
StrictNorthOf(vs1, vs2) Span vs1 occurs strictly above vs2 in the page

Containment
Predicate

Contains(vs1, vs2) vs1 is contained within vs2
Touches(vs1, vs2) vs1 touches vs2 on one of the four edges
Intersects(vs1, vs2) vs1 and vs2 intersect

Generalization,
Specialization

MaximalRegion(vs)/ Returns the largest/smallest visual span vsm
MinimalRegion(vs) that contains vs and the same text content as vs

Geometric

Area(vs) Returns the area corresponding to vs
Centroid(vs) Returns a visual span that has x and y

coordinates corresponding to the centroid
of vs and text span identical to vs

Grouping
(Horizontally/Vertically)Aligned Returns groups of horizontally/vertically aligned
(V S, consecutive, maxdist) visual spans from V S. If the consecutive flag is

set, the visual spans have to be consecutive with
no non-aligned span in between. The maxdist
limits the maximum distance possible between
two consecutive visual spans in a group

Aggregation
MinimalSuperRegion(VS) Returns the smallest visual span that contains all

the visual spans in set V S
MinimalBoundingRegion(VS) Returns a minimum bounding rectangle of all vi-

sual spans in set V S

merging overlapping spans. The block aggregation operator (β) identifies spans
of text enclosing a minimum number of input spans such that no two consecutive
spans are more than a specified distance apart. It is useful in combining a set
of consecutive input spans into bigger spans that represent aggregate concepts.
The algebra also includes some new selection predicates that apply only to spans
as shown in Table 1.

3.2 Extensions for Visual Information Extraction

We extend the algebra described in order to support information extraction
based on visual rules. In addition to the span, we add two new types in our model
– Region and V isualSpan. A Region represents a visual box in the layout of
the page and has the attributes: 〈xl, yl, xh, yh〉. (xl, yl) and (xh, yh) denote the
bounding box of the identified region in the visual layout of the document. We
assume that the regions are rectangles, which applies to most markup languages
such as HTML. A V isualSpan is a combination of a text based span and a
visual region with the following attributes: 〈s, r〉, where s is a text span having
attributes begin and end as before and r is the region corresponding to the span.

The operators are also modified to work with visual spans. The relational
operators are unchanged. The span extraction operators are modified to return
visual spans rather than spans. For example, the regular expression operator
εre matches the regular expression r to the input text and for each matching
text span s it returns its corresponding visual span. Similarly, the dictionary
matcher εd outputs visual spans corresponding to occurences of dictionary items
in the input text. The behavior of the span aggregation operators (Ωc and Ωo)

WYSIWYE: An Algebra for Expressing Spatial and Textual Rules 425

is also affected. Thus containment consolidation Ωc will discard visual spans
whose region and span are both contained in the region and span of some other
visual span. Overlap consolidation (Ωo) aggregates visual spans whose text spans
overlap. It produces a new visual span whose text span is the merge of the
overlapping text spans and bounding box is the region corresponding to the
closest HTML element that contains the merged text span.

There are two flavors to the block aggregation operator (β). The text block
operator (βs) is identical to the earlier β operator. It identifies spans of text
enclosing a minimum number of input spans such that no two consecutive spans
are more than a specified distance apart. The region block operator (βv) takes
as input a X distance x and Y distance y. It finds visual spans whose region
contains a minimum number of input visual spans that can be ordered such that
the X distance between two consecutive spans is less than x and the Y distance
is less than y. The text span of the output visual spans is the actual span of the
text corresponding to its region.

The predicates described in Table 1 can still be applied to the text span part
of the visual spans. To compare the region part of the visual spans, we need
many new predicates, which are described in the next section.

3.3 Visual Operators

We introduce many new operators in the algebra to enable writing of rules based
on visual regions. The operators can be classified as span generating, scalar
or grouping operators and a subset has been listed in Table 2. Many of these
operators are borrowed from spatial (GIS) databases. For example, the operators
Contains, Touches and Intersects are available in a GIS database like DB2 Spatial
Extender2. However, to our best knowledge this is the first application of using
these constructs for Information Extraction.

Span Generating Operators. These operators produce a set of visual spans
as output and include the #(d), Ancestors and Descendents operators.

Scalar Operators. The scalar operators take as input one or more values from
a single tuple and return a single value. Boolean scalar operators can be used in
predicates and are further classified as directional or containment operators. The
directional operators allow visual spans to be compared based on their positions
in the layout. Due to lack of space, we have listed only NorthOf , however we
have similar predicates for other directions. Other scalar operators include the
generalization/specialization operators and the geometric operators.

Grouping Operators. The grouping operators are used to group multiple
tuples based on some criteria and apply an aggregation function to each group,
similar to the GROUP BY functionality in SQL.

2 http://www-01.ibm.com/software/data/spatial/db2spatial/

http://www-01.ibm.com/software/data/spatial/db2spatial/

426 V. Chenthamarakshan et al.

3.4 Comparison with Source Based Approach

If visual algebra is not supported, we would have to impelement a given task
using only source based rules. The visual algebra is a superset of the existing
source based algebra. Expressing a visual rule using existing algebra as a source
based rule can be categorized into one of the following cases:

1. Identical Semantics: Some of the visual operators can be mapped directly
into source level rules keeping the semantics intact. For example, the operator
V erticallyAligned can be mapped to an expression based on constructs in
html that are used for alignment such as <tr>, or <p>, depending on
the exact task at hand.

2. Approximate Semantics: Mapping a visual rule to a source based rule
with identical semantics may lead to very complex rules since there are
many ways to achieve the same visual layout. It may be possible to get
approximately similar results by simplifing the rules if we know that the
layout for the pages in the dataset is achieved in one particular way. For
example, in a particular template, alignment may always be implemented
using rows of a table (the <tr> tag), so the source based rule can cover only
this case.

3. Alternate Semantics: In some cases, it is not possible to obtain even
similar semantics from the source based rules. For example, rules based on
Area, Centroid, Contains, Touches and Intersects cannot be mapped to
source based rules, since it is not possible to check these conditions without
actually rendering of the page. In such cases, we have to use alternate source
based rules for the same task.

4 System Architecture and Implementation

This section describes the architecture and our implementation of the visual
extraction system. There are two models typically used for information extrac-
tion – document level processing, in which rules are applied to one document at
a time and collection level processing, in which the rules are matched against
the entire document collection at once. The document at a time processing is
suitable in the scenario where the document collection is dynamic and new doc-
uments are added over time. The collection level processing is useful when the
document collection is static and the rules are dynamic, i.e. new rules are being
developed on the same collection over time. Previous work has demonstrated an
order of magnitude improvement in performance by collection level processing
compared to document level processing with the use of indices for evaluating reg-
ular expression rules [14]. The visual algebra can be implemented using either
a document level processing model or a collection level processing model. We
implemented a collection level processing approach using a relational database
with extensions for inverted indices on text for efficient query processing. Fig-
ure 2 depicts the overall system architecture. Collection level processing has two

WYSIWYE: An Algebra for Expressing Spatial and Textual Rules 427

Fig. 2. System Architecture

phases: (a) Preprocessing phase comprising computations that can be done of-
fline and (b) Query phase that includes the online computations done during
interactive query time.

Preprocessing Phase. In the preprocessing phase, web pages from which in-
formation is to be extracted are crawled and a local repository of the web pages is
created. Along with the HTML source of the web page, all components that are
required to render the page accurately, such as embedded images and stylesheets,
should also be downloaded and appropriately linked from the local copy of the
page. We use an open source Firefox extension called WebPageDump3 specifi-
cally designed for this purpose. Each page is then rendered in a browser and for
each node in the DOM tree, its visual region and text is extracted (using the
Chickenfoot Firefox extension4) and stored in a relational database (IBM DB2
UDB). We also use the indexing and text search capabilities of DB2 Net Search
Extender5 to speed up queries that can benefit from an inverted index.

Query Phase. During the interactive query phase, the user expresses the infor-
mation extraction task as operations in the visual algebra. The visual algebraic
operations are then translated to standard SQL queries and executed on the
database.

4.1 Implementing Visual Algebra Queries Using a Database

Schema. The visual regions computed in the pre-processing stage are stored in
table called Regions with the following schema:
< Pageid,Regionid, xl, yl, xh, yh, T extStart, T extEnd,
T ext,HtmlTag,MinimalRegion,MaximalRegion >.

3 http://www.dbai.tuwien.ac.at/user/pollak/webpagedump/
4 http://groups.csail.mit.edu/uid/chickenfoot/
5 http://www.ibm.com/software/data/db2/extenders/netsearch/

http://www.dbai.tuwien.ac.at/user/pollak/webpagedump/
http://groups.csail.mit.edu/uid/chickenfoot/
http://www.ibm.com/software/data/db2/extenders/netsearch/

428 V. Chenthamarakshan et al.

The Pageid uniquely identifies a page. The html DOM tree is a hierarchical
structure where the higher level nodes comprise lower level nodes. For example,
a <td> may be nested inside a <tr> tag, which is nested inside a <table>, and so
on. The Regionid uniquely identifies a region in a page annd is a path expression
that encodes the path to the corresponding node. This makes it easy to identify
the parents and descendants of a region. For example, a node 1.2 indicates a
node reached by following the second child of the first child of the root node.
The xl, yl, xh, yh denote the coordinates of the region. The Text field stores the
text content of the node with TextStart and TextEnd indicating the offsets of
the text within the document. The text content of higher level nodes is the union
of the text content of all its children. However, to avoid duplication, we associate
only the innermost node with the text content while storing in the Regions table.
The MinimalRegion and MaximalRegion fields are used to quickly identify a
descendant or ancestor that has the identical text content as this node.

Implementation of Operators. The visual algebra is implemented using a
combination of standard SQL and User Defined Functions (UDFs). Due to space
constraints, we mention the mapping of only some representative operators with-
out going into complete detail in Table 3. For simplicity, we have shown the SQL
for each operator separately. Applying these rules for a general algebra expres-
sion will produce a nested SQL statement that can be flattened out into a single
SQL using the regular transformation rules for SQL sub-queries. We also ex-
perimented with using a spatial database to implement our algebra, but found
that it was not very efficient. Spatial databases can handle complex geometries,
but are not optimized for the simple rectangular geometries that the visual re-
gions have. Conditions arising from simple rectangular geometries can be easily
mapped to simple conditions on the region coordinate columns in a regular re-
lational database.

Table 3. Mapping to SQL

Operator Mapping

� SELECT Pageid, Regionid FROM Regions

εre(exp)
SELECT Pageid, Regionid FROM Regions R

WHERE MatchesRegex(R.Text, exp)

εd(dict)
SELECT Pageid, Regionid FROM Regions R

WHERE MatchesDict(R.Text, dict)

Ancestors(v)
SELECT Pageid, Regionid FROM Regions R

WHERE IsPrefix(R.Regionid, v.RegionId)

StrictNorthOf(v1, v2)
...WHERE v1.yh ≤ v2.yl AND
v1.xl ≥ v2.xl AND v1.xh ≤ v2.xh

MinimalRegion(v)
SELECT Pageid, MinimalRegion FROM Regions R

WHERE R.Regionid = v.Regionid
HorizontallyAligned(R) ...FROM R GROUP BY R.xl

MinimalBoundingRegion(V) SELECT min(xl),min(yl),max(xh),max(yh)
FROM V

WYSIWYE: An Algebra for Expressing Spatial and Textual Rules 429

Visual Span Producing Operators: The εre and εd operators are imple-
mented using UDFs that implement regular expression and dictionary match-
ing respectively. Anscestors(v) and Descendants(v) are implemented using the
path expression in the region id of vs. Searching for all prefixes of the Regionid
returns the ancestors and searching for all extensions of Regionid returns the
descendants.

Span Aggregation Operators: The span aggregation operators (Ωo, Ωc and
βv) cannot be easily mapped to existing operators in SQL. We implement these
in Java, external to the database.

Other Visual Operators: The scalar visual operators include the directional
predicates, containment predicates, generalization/specialization operators and
geometric operators. The predicates map to expressions in the WHERE clause.
The generalization/specialization predicates are implemented using the pre-
computed values in the columns MinimalRegion and MaximalRegion. The
grouping operators map to GROUPBY clause in SQL and the aggregate func-
tions can be mapped to SQL aggregate functions in a straightforward way as
shown for HorizontallyAligned and MinimalBoundingRegion.

Use of Indices. Indices can be used to speed up the text and region predicates.
Instead of the MatchesRegex UDF, we can use the CONTAINS operation
provided by the text index. We also build indices on xl, xl, xh, yh columns to
speed up visual operators. Once the visual algebra query is mapped to a SQL
query, the optimizer performs the task of deciding what indices to use for the
query based on cost implications. Example of a mapping is shown in Table 4.

5 Experiments

The goal of the experiments is two fold - to demonstrate the simplicity of visual
queries and to study the effectiveness of mapping the visual algebra queries to
database queries. We describe the visual algebra queries for a representative set
of tasks, map them to SQL queries in a database system and study the effect of
indexing on the performance.

5.1 Experimental Setup

The document corpus for our experiments consists of software product informa-
tion pages from IBM web site 6. We crawled these pages resulting in a corpus of
44726 pages. Our goal was to extract the system requirements information for
these products from their web pages (see Figure 1). Extracting the system re-
quirements is a challenging task since the pages are manually created and don’t
have a standard format. This can be broken into sub-tasks that we use as rep-
resentative queries for our experiments. The queries are listed below. The visual
algebra expression and the equivalent SQL query over the spatial database are

6 http://www.ibm.com/software/products/us/en?pgel=lnav

http://www.ibm.com/software/products/us/en?pgel=lnav

430 V. Chenthamarakshan et al.

listed in Table 4. For ease of expression, the visual algebra queries are specified
using a SQL like syntax. The functions RegEx and Dict represent the operators
εr and εd respectively. For each of these sub-tasks, it is possible to write more
precise queries. However, our goal here is to show how visual queries can be used
for a variety of extraction tasks without focusing too much on the precision and
recall of these queries.

– Filter the navigational bar at the left edge before extracting the system re-
quirements.
Q1: Retrieve vertically aligned regions with more than n regions such that the
region bounding the group is contained within a virtual region A(xl, yl, xh, yh).
For our domain, we found that a virtual region of A(0, 90, 500,∞) works well.

– Identify whether a page is systems requirements page. We use the heuristic
that system requirement pages have the term “system requirements” men-
tioned near the top of the page.
Q2: Retrieve the region in the page containing the term ’system requirements’
contained in a region A. In this case, we use a virtual region, A(450, 0,∞, 500)

– To identify various operating systems that are supported, the following query
can be used.
Q3: Find all regions R, such that R contains one of the operating systems
mentioned in a dictionary T and are to the strict south or to the strict east
of a region containing the term “Operating Systems”.

– To find the actual system requirements for a particular operating system, the
following query can be used.
Q4: Find a region that contains the term “Windows” that occurs to the strict
south of a region containing the term “Operating Systems” and extract a
region to the strict right of such a region.

Due to lack of space, we show the visual algebra expression and the equivalent
SQL query (Section 4.1) for only query Q4 in Table 4. For ease of expression,
the visual algebra queries are specified using a SQL like syntax.

Table 4. Queries

Q Visual Query SQL Query

4 select R3.VisualSpan

from RegEx(‘operating system’,

D) as R1, RegEx(’windows’, D)

as R2, �(D) as R3

where StrictSouthOf(R2, R1)

and StrictEastOf(R3, R2)

SELECT R3.pageid, R3.regionid

FROM regions R1, regions R2, regions R3

WHERE r1.pageid = R2.pageid

AND R2.pageid = R3.pageid AND

contains(R1.text, ‘"Operating Systems"’) =

1

AND contains(R2.text, ‘"Windows"’) = 1

AND R2.yl ≥ R1.yh AND R2.xl ≥ R1.xl

AND R2.xh ≤ R1.xh

AND R3.xl ≥ R2.xh AND R3.yl ≥ R2.yl
AND R3.yh ≤ R2.yh

WYSIWYE: An Algebra for Expressing Spatial and Textual Rules 431

5.2 Accuracy of Spatial Rules

We measured the accuracy of our spatial rules using manually annotated data
from a subset of pages in our corpus. The test set for Q2 and Q4 consists of
116 manually tagged pages. The test set for Q1 and Q3 contains 3310 regions
from 10 pages with 525 positive examples for Q1 and 23 positive examples for
Q3. Please note that for Q1 and Q3 we need to manually tag each region in a
page. Since there are few hundred regions in a page, we manually tagged only
10 pages. The rules were developed by looking at different patterns that occur
in a random sample of the entire corpus. The results are reported in Figure 4.
Since our tasks were well suited for extraction using spatial rules, we were able
to obtain a high level of accuracy using relatively simple rules.

5.3 Performance

We measured the performance of these queries on the document collection. Since
the queries have selection predicates on the text column and the coordinates
(xl, yl, xh, yh), we build indices to speed them up. We also index the text column
using DB2 Net search extender. The running time for the queries are shown in
Figure 3. We compare various options of using no indices, using only text index
and using both text index and indices on the region coordinates. For Q1, the text
index does not make a difference since there is no text predicate. The region index
leads to big improvement in the time. Q2, Q3 and Q4 have both text and region
predicates and thus benefit from the text index as well as the region indices. The
benefit of the text index is found to be compartively larger. In all the cases, we
can see that using indices leads to a three to fifteen times improvement in the
query execution times.

Fig. 3. Effect of Indices

Query Q1 Q2 Q3 Q4

Recall 100 96 100 100

Precision 84 85 88 100

Fig. 4. Accuracy

6 Discussion

We have demonstrated an extension to the traditional rule based IE framework
that allows the user to specify layout based rules. This framework can be used

432 V. Chenthamarakshan et al.

for many information extraction tasks that require spatial analysis without hav-
ing to use custom code. The WYSIWYE algebra we propose allows the user
to seamlessly combine traditional text based rules with high level rules based
on spatial layout. The visual algebra can be systematically mapped to SQL
statements, thus enabling optimization by the database. We have evaluated our
system in terms of usability and performance for a task of extracting software
system requirements from software web pages. The rules expressed using the
visual algebra are much simpler than the corresponding source based rules and
more robust to changes in the source code. The performance results show that by
mapping the queries to SQL and using text and region indexes in the database,
we can get significant improvement in the time required to apply the rules.

Layout based rules are useful for certain types of pages, where the layout
information provides cues on the information to extract. A significant source of
variation in web pages (different source code, same visual layout) can be ad-
dressed by rule based information extraction systems based on a visual algebra,
leading to simpler rules. Visual rules are not always a replacement for the text
based rules, rather they are complementary. In our system, we can write rules
that combine both text based and layout based rules in one general framework.

References

1. Cai, D., Yu, S., Wen, J.R., Ma, W.Y.: Vips: a vision-based page segmentation
algorithm. Technical report, Microsoft Research (2003)

2. Gatterbauer, W., Bohunsky, P., Herzog, M., Krüpl, B., Pollak, B.: Towards domain-
independent information extraction from web tables. In: WWW 2007, Banff, Al-
berta, Canada, pp. 71–80. ACM (2007)

3. Lerman, K., Getoor, L., Minton, S., Knoblock, C.: Using the structure of web sites
for automatic segmentation of tables. In: SIGMOD 2004, pp. 119–130. ACM, New
York (2004)

4. Krüpl, B., Herzog, M., Gatterbauer, W.: Using visual cues for extraction of tabular
data from arbitrary html documents. In: WWW 2005, pp. 1000–1001 (2005)

5. Reiss, F., Raghavan, S., Krishnamurthy, R., Zhu, H., Vaithyanathan, S.: An alge-
braic approach to rule-based information extraction. In: ICDE 2008, pp. 933–942
(2008)

6. Shen, W., Doan, A., Naughton, J.F., Ramakrishnan, R.: Declarative information
extraction using datalog with embedded extraction predicates. In: VLDB 2007,
pp. 1033–1044. VLDB Endowment, Vienna (2007)

7. Appelt, D.E., Onyshkevych, B.: The common pattern specification language. In:
Proceedings of a Workshop on Held at Baltimore, Maryland, Morristown, NJ, USA,
pp. 23–30. Association for Computational Linguistics (1996)

8. Sarawagi, S.: Information extraction. FnT Databases 1(3) (2008)
9. Cunningham, H., Wilks, Y., Gaizauskas, R.J.: Gate - a general architecture for

text engineering (1996)
10. Ferrucci, D., Lally, A.: Uima: an architectural approach to unstructured informa-

tion processing in the corporate research environment. Nat. Lang. Eng. 10(3-4),
327–348 (2004)

11. Gu, X.-D., Chen, J., Ma, W.-Y., Chen, G.-L.: Visual Based Content Understanding
towards Web Adaptation. In: De Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002.
LNCS, vol. 2347, pp. 164–173. Springer, Heidelberg (2002)

WYSIWYE: An Algebra for Expressing Spatial and Textual Rules 433

12. Kovacevic, M., Diligenti, M., Gori, M., Milutinovic, V.: Recognition of common
areas in a web page using visual information: a possible application in a page
classification. In: ICDM 2002, p. 250. IEEE Computer Society, Washington, DC
(2002)

13. Arasu, A., Garcia-Molina, H.: Extracting structured data from web pages. In:
SIGMOD Conference, pp. 337–348 (2003)

14. Ramakrishnan, G., Balakrishnan, S., Joshi, S.: Entity annotation based on inverse
index operations. In: EMNLP 2006, pp. 492–500. Association for Computational
Linguistics, Sydney (2006)

A Scalable Algorithm for Detecting Community

Outliers in Social Networks

Tengfei Ji�, Jun Gao, and Dongqing Yang

School of Electronics Engineering and Computer Science
Peking University, Beijing, 100871 China
{tfji,gaojun,dqyang}@pku.edu.cn

Abstract. Outlier detection is an important problem that has been re-
searched and applied in a myriad of domains ranging from fraudulent
transactions to intrusion detection. Most existing methods have been
specially developed for detecting global and (or) local outliers by using
either content information or structure information. Unfortunately, these
conventional algorithms have been facing with unprecedented challenges
in social networks, where data and link information are tightly inte-
grated.

In this paper, a novel measurement named Community Outlying Fac-
tor is put forward for community outlier, besides its descriptive defini-
tion. A scalable community outliers detection algorithm (SCODA), which
fully considers both content and structure information of social networks,
is proposed. Furthermore, SCODA takes effective measures to minimize
the number of input parameters down to only one, the number of outliers.
Experimental results demonstrate that the time complexity of SCODA
is linear to the number of nodes, which means that our algorithm can
easily deal with very large data sets.

Keywords: community outlier, outlier detection, social networks.

1 Introduction

Outlier detection is a task that seeks to determine and report such data ob-
jects which are grossly different from or inconsistent with other members of
the sample [1,2]. The technique has the ability to potentially shed light on the
unexpected knowledge with underlying value. Therefore, outlier detection has
attracted much attention within diverse areas, ranging from fraudulent trans-
actions to intrusion detection [3,4]. Recently, the advent of social networks ex-
emplified by websites such as Facebook and MySpace has brought the following
unprecedented challenges to outlier detection.

– Content & Structure: A social network is defined as a graph where the
objects are represented by vertices, and the interactions between them are
denoted by edges. In the social network representation, in addition to content

� Corresponding author.

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 434–445, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Scalable Algorithm for Detecting Community Outliers 435

information associated with nodes, topological structure embedded in links
is also available. Therefore, the new detecting approaches that fully take
both content aspect and structure aspect into consideration are required.

– Tremendous Amounts of Information: Compared with average data
sets, social networks are significantly larger in size where graphs may involve
millions of nodes and billions of edges [7]. Typically, in the case of Facebook
with more than 108 nodes, the potential number of edges could be of the
order of 1011. The availability of massive amounts of data has given a new
impetus towards a robust study of outlier detection in social networks [8].
The issue of scalability should be at the top of the priority list because of
storage and efficiency constraints.

– Context of Community: Communities, in the social network sense, are
groups of entities that presumably share some common properties [6]. The
profile of community provides the background for the specific contextual
outlier detection. This kind of outlier may appear to be normal behavior
compared to the entire data set while can present abnormal expression ac-
cording to specific context. For instance, from a global point of view, normal
as 1.8 meter in height seems, but it is an obvious deviation to a boy of 10
years old. Conventional outlier detection algorithms that focused solely on
detecting global and(or) local outliers will fail to detect contextual outlier.

In this paper, community outliers are defined as those objects have a higher
density of external links, compared with its internal links. As mentioned above,
the community here is a group of entities that presumably share some common
properties [6].

The example in figure 1 is adopted to illustrate directly the feature of com-
munity outlier. According to income, individuals in figure 1 are partitioned into
three communities, namely low-income, middle-income and high-income com-
munity. The links between nodes disclose the friend relationship. In most cases,
as a well-known proverb says, “A man is known by the company he keeps”,
one is supposed to make friends with those who have the same income level.
Most of nodes in figure 1 correspond to prediction. However, node v13 is devi-
ating widely from others. It is located in low-income group with 1 low-income
friends, while its high-income friends and middle-income friends are 2 and 2,
respectively. Community outlier node v13 is usually regard as a rising star in the
social networks, for instance, a young and promising entrepreneur [9,10]. Obvi-
ously, different from global and local outliers, node v13 can hardly be detected
by algorithms based on either content information or structure information.

The contribution of our work can be summarized as follows:

– Besides descriptive concept, we put forward a novel measurable definition of
community outlier, namely Community Outlying Factor. To the best of our
knowledge, this is the first straightforward concept of a community outlier
which quantifies how outlying a community member is.

– We propose a scalable community outliers detection algorithm (SCODA),
which fully considers the content information and the structure informa-
tion of social networks. The communities that produced by the modified

436 T. Ji, J. Gao, and D. Yang

2k

3k

2k
6k

1k

1k

14k

13k

15k

17k

50k

62k

55k

2kkk

14k

155k

v13

v16

v14
v12

v15

v11

v21
v22

v23

v24

v32

v31

v33

v14vv

Fig. 1. An Example for community outlier

usmSqueezer algorithm(MSqueezer) according to the content information in
phase I will be utilized as a context in phase II of SCODA for detecting
community outliers with abnormal structure information.

– Our algorithm takes effective measures to minimize input parameters. Only
the number of needed outliers is required as an input parameter.

– The extensive experiments demonstrate that the time complexity of SCODA
is linear to the number of nodes. This property means that the algorithm
can easily deal with very large data sets.

The rest part of this work is organized as follows: Section 2 discusses the recent
related work; Section 3 gives the preliminaries about Squeezer algorithm; Section
4 proposes our scalable community outliers detection algorithm,SCODA; Section
5 gives experiments for our approach on both real and synthetic data sets, and
shows the achieved results. Section 6 makes a conclusion about the whole work.

2 Related Work

To focus on the theme, the majority algorithms that aim at detecting global or
local outliers by using either content or structure information will no more be
introduced in this paper. We are eager to discuss some state-of-art algorithms
that encompass both individual object and network information.

A Scalable Algorithm for Detecting Community Outliers 437

Some literatures[15,16] cluster data points according to the combination of
data and link information. However, instead of outlier detection, they are pro-
posed for community discovery, assuming that there are no outliers in social
networks.

A contextual outlier detection method in [9] couples content and relation-
ship information by modeling networked data as a mixture model composed
of multiple normal communities and a set of randomly generated outliers. The
probabilistic model characterizes both data and links simultaneously by defining
their joint distribution based on hidden Markov random fields (HMRF). Maxi-
mizing the data likelihood and the posterior of the model gives the solution to
the outlier inference problem. Unfortunately, the algorithm could not overcome
the weakness of statistical outlier detection techniques which are limited in the
sense that the data distribution and underlying parametric formulation are diffi-
cult to directly obtain in advance [11]. Moreover, most of the distribution models
are not suitable for multi-dimensional space. Another limitation with these ap-
proaches is that they typically do not scale well to large or even moderately large
datasets [14].

Some methods [17-19] solve the problem by first conducting graph partition
using link information, and then adopting distance-based approaches or density-
based approaches within each community. However, they suffer expensive com-
putational cost as they require the calculation of the distances [5] or the analysis
of the neighborhood density [12,13].

In summary, limitations of aforementioned approaches prompted us to look
for a scalable community outlier detection algorithm that considers both content
and structural information with low time cost and minimum input parameters.

3 Preliminaries

3.1 The usmSqueezer Algorithm

Dataset D is featured by m attributes and Ai is the i-th attribute. There is an as-
sumption that the first p continuous attributes before the rest (m-p) categorical
attributes. The domain of the i-th categorical attribute Ai denotes as Dom(Ai),
which has ri different values. The usmSqueezer algorithm [20] reads each tuple
t in sequence, either assigning t to an existing cluster, or creating t as a new
cluster, which is determined by the usmSimilarity between t and clusters. usm-
Similarity(C,t) is the sum of similarity measure between categorical attributes
and similarity measure between numerical attributes. More details can be found
in reference [20].

Summary = {ci | 1 ≤ i ≤ p}
⋃
{(Aij , sup(Aij)) | p+ 1 ≤ i ≤ m, 1 ≤ j ≤ r}

where sup() is a function to measure the frequency of categorical attribute ai,
and ci represents the mean of first p numeric attributes.

Intuitively, the cluster stores its own summary information. The information
contained in Summary is sufficient enough to compute the similarity between a
tuple and Cluster.

438 T. Ji, J. Gao, and D. Yang

4 SCODA Algorithm

Our SCODA algorithm involves two major phases. In the first phase, the modi-
fied usmSqueezer algorithm (MSqueezer for short) efficiently groups data objects
into communities by their content information. The second phase is community
outlier detection. SCODA identifies community outliers within communities gen-
erated in the first phase according to Community Outlying Degree Factor, which
is a novel measurable standard considering the structure information of social
networks.

4.1 Phase I: Content-Based Clustering

The first phase aims to efficiently obtain the partitions based on objects’ infor-
mation. The success of the usmSqueezer algorithm in rapidly producing high-
quality clustering results in high-dimensional datasets mixed type of attributes
motivates us to take advantage of it in our first phase. However, the number and
the size of clusters obtained from the usmSqueezer algorithm are suffering the
influence of the similarity threshold value, which is a static parameter prede-
fined by users. Since the partitions generated in the first phase are principal to
community outlier detection in the second phase, we design a similarity thresh-
old dynamic update mechanism with no personal interventions for usmSqueezer
algorithm. The modified usmSqueezer algorithm is named MSqueezer for short.

The definitions of usmSimilarity and Summary are still maintained just as in
section 3.

Definition 1 (SS and SS2). Given a Cluster C with |C| tuples, the Sum of
usmSimilarities (SS) and the Sum of squared usmSimilarities (SS2) for C are
respectively defined as

SS =
|C|∑
i=1

sumSmililarity(C, ti), ti ∈ C

SS2 =
|C|∑
i=1

sumSmililarity(C, ti)
2, ti ∈ C

Definition 2 (Mortified Cluster Structure: MCS). Given a Cluster C with
|C| tuples, the Mortified Cluster Structure(MCS) for C is defined as

MCS = {Cluster, Summary, |C|, SS, SS2}
The MCS is the main data structure stored by MSqueezer algorithm, which
could be used to compute usmSimilarity and Dynamic Similarity Threshold.

Definition 3 (Dynamic Similarity Threshold: δ). According to Chebyshevs
inequality:

Pr(| δ.lower − μ | ≥ kσ) ≤ 1

k2

Here the real number k is set to
√
2, we obtain the δ.lower for C μ −

√
2σ.

Alternatively, the δ.upper for C is set to be μ.

A Scalable Algorithm for Detecting Community Outliers 439

Where μ is the sample expected value and σ is sample standard deviation,
which can be easily determined from SS and SS2.

The multi-granularity threshold is adopted to determine whether to receive
tuple t as a new member or not, because 1) our purpose is to produce commu-
nities of proper size without personal interventions; 2) δ.lower is able to avoid
the phenomenon that clusters tend to decrease in size, if increasing δ.upper is
used as the only threshold; 3) This can partly reduce the sensitivity towards
data input order.

Our MSqueezer algorithm partitions n tuples into communities according to
objects’ information. Initially, the first tuple is read in and a MCS is constructed.
Then, the rest tuples are read iteratively.

For each tuple, MSqueezer computes its usmSimilarity with all existing clus-
ters. We examine the usmSimilarities in descending order, if the i-th largest
usmSimilarity(Ck, t) is larger than the δ.upper of cluster k, the tuple t will be
put into cluster k. If all δ.uppers are unsatisfied, tuple t will be put into the
cluster whose δ.lower is the first to be satisfied. The corresponding MCS is also
updated with the new tuple. If the above condition does not hold, a new cluster
must be created with this tuple. The algorithm continues until all the tuples
have been traversed.

Algorithm: MSqueezer Algorithm (High level definition)

Input: Dataset D;
Output: A group of communities

Step 1: Read in a tuple t in sequential order;
Step 2: If t is the first tuple, add t to new MCS, else goto step3;
Step 3: For each existing cluster C, compute usmSimilarity(C, t) and then sort
usmSimilarities in descending order;
Step 4: For each usmSimilarity, get the corresponding threshold δ.upper. If
usmSimilarity ≥ δ.upper, add tuple t into cluster C, update the MSC, δ.upper
and δ.lower of C and then goto step7, else goto step5;
Step 5: For each usmSimilarity, get the corresponding threshold δ.lower. If
usmSimilarity ≥ δ.lower, add tuple t into cluster C, update the MSC, δ.upper
and δ.lower of C and then goto step7, else goto step6;
Step 6: add t to new MCS ;
Step 7: Goto step1 until there is no unread tuple.

Time Complexity Analysis: The computational complexity of the MSqueezer
algorithm has two parts: 1) the complexity for executing original Squeezer al-
gorithm on the dataset; 2) the complexity for sorting and updating dynamic
similarity thresholds; . The time complexity of the original Squeezer algorithm
is O(k ∗m ∗ n), where n, m, k are the number of nodes, attributes and clusters,
respectively. As for part 2), sorting and updating dynamic similarity thresh-

440 T. Ji, J. Gao, and D. Yang

olds are O(k log k) (k ! n)and O(n), respectively. Therefore, the overall time
complexity for the MSqueezer algorithm is O(k ∗m ∗ n).

4.2 Phase II: Structure-Based Community Outlier Detecting

In this section, we develop a formal measurement of community outliers by taking
full account of the link information between communities, which are produced
in phase I. We will first establish some notations and definitions.

The network G =< V,E > consists of a set of nodes V and a set of links E.
The weights attached to links are stored in an adjacency matrix. For ∀vij ∈ V ,
we define its intra-community neighbor and inter-community neighbor as follows.

Definition 4 (Intra-Community Neighbor). ∀ node vij ∈ community Ci, if
node vij can communicate with node vip (vip ∈ community Ci, and p �= j), node
vip is called a intra-community neighbor of node vij , all the intra-community
neighbors of node vij constitute its intra-community neighbor set Intra-NS(vij),
including vip.

Definition 5 (Inter-Community Neighbor). ∀vij ∈ V , if node vij can com-
municate with node vqp (vqp ∈ community Cq, and q �= i), node vqp is called
a inter-community neighbor of node vij , all vij ’s inter-community neighbors in
community Cq constitute its inter-community neighbor set with respect to com-
munity Cq, which is denoted as Inter-NSCq(vij).

Example 1: In figure 1, v16 is a intra-community neighbor of v13, while v21 and
v24 constitute v16’s inter-community neighbor sets with respect to community
C2, namely Inter-NSC2(v13). In the same way, Inter-NSC3(v13) includes v31 and
v33.

Definition 6 (Link Density: LD). Let k be the number of communities in
the network. ∀vij ∈ V , the Link Density of (vij) to community Cq (1 ≤ q ≤ k)
is defined as

LDCq (vij) =
W

Cq
vij

|Cq|
(1)

where W
Cq
vij denotes the sum of edges’ weights. These edges are between vij and

its neighbors in community Cq. |Cq| is the number of nodes in community Cq.
Intuitively, an object is supposed to mainly communicate (make friends) with

the intra-community nodes that presumably share some common properties. In
contrast, a community outlier owns a high external link density, whereas links
within the community to which it belongs have a comparatively lower density.
In other words, the object’s community outlying degree is directly proportional
to its inter-link density with respect to Inter-NS, and inversely proportional to
intra-link density.

Definition 7 (Community Outlying Factor: COF). Let k be the number
of communities in the network. The community outlying factor of vij (vij ∈ Ci)
is defined as

A Scalable Algorithm for Detecting Community Outliers 441

COF (vij) =

k∑
q �=i,q=1

LDCq (vij) + ε

LDCi(vij) + ε
(2)

Note that the link density can be∞ if vij has no intra-community neighbor. For
simplicity, we handle this case by adding the same infinitesimal positive number
ε (e.g. 10−6)to both numerator and denominator.

Example 2: Continuing with Example 1, the community outlying factor of v13

can be computed using Definition 7 as: COF (v13) =

2

3
+

2

4
1

6

= 7

Algorithm: SCODA Algorithm (High level definition)
Input: Dataset D, the number of community outliers n;
Output: n community outliers
Step 1: Get a set of communities partitioned by MSqueezer (Phase I)
Step 2: Compute community outlying factor for each object;
Step 3: Select and output the objects with the first n-largest COF;

Obviously, the overall time complexity for the SCODA algorithmmainly depends
on that of MSqueezer algorithm, which is O(k*m*n) as we discussed in Phase I.
The above analysis demonstrates that the time complexity of SCODA algorithm
is approximately linearly dependent on the number of nodes, which makes this
algorithm more scalable.

5 Experiments

In this section, we illustrate the general behavior of the proposed SCODA algo-
rithm. We compare the accuracy performance of SCODA with several baseline
methods on synthetic datasets, and we examine the scalability of SCODA on
real datasets.

5.1 Data Description and Evaluation Measure

Real Data Sets: We perform scalability experiments on 3 real data sets. These
networks come from the same data set (DBLP, dblp.uni-trier.de/), but they vary
in the number of nodes and edges (up to more than 400K nodes). DBLP bibli-
ography is one of the best formatted and organized compute science community
datasets. In our representation, we consider a undirected co-authorship network.
The weighted graph W is constructed by extracting author-paper information:
each author is denoted as a node in W; journal and conference papers are repre-
sented as links that connect the authors together; the edge weight is the number
of joint publications by these two authors.

442 T. Ji, J. Gao, and D. Yang

Synthetic Data Sets: Since “community outlier” is a new concept, the proper
benchmark datasets are rare. Therefore, we attempt to convert a few classifi-
cation datasets where each object consists of attribute values and a class label
into datasets for community outlier detection. We generate synthetic data sets
through two steps. First, we select two real UCI machine learning data sets,
Adult and Yeast. The Adult dataset, which is based on census data, contains
45222 instances corresponding to 2 classes. The Yeast dataset is composed of
1484 instances with 8 attributes. Then we apply link generation procedure on
these two data sets. The distribution of links follows Zipf’s law, i.e. roughly 80%
of the links come from 20% of the nodes. The self-links and the nodes without
any links are removed from data sets. We denote the synthetic data sets based
on Yeast and Adult as SYN1 and SYN2, respectively.

More detail information about real and synthetic datasets is shown in Table 1.

Table 1. Summary of the Data Sets

We measured the performance of different algorithms using well-known metric
F1 measure, which is defined as follows.

F1 =
2×Recall× Precision

Recall+ Precision

where recall is ratio of the number of relevant records retrieved to the total
number of relevant records in the dataset; precision is ratio of the number of
relevant records retrieved to the total number of irrelevant and relevant records
retrieved.

5.2 The Accuracy of SCODA Algorithm

To evaluate the clustering performance, we compared SCODA algorithm against
three other algorithms. The first approach is a well-known single content-based
outlier detection method, which identifies global outlier by its k-nearest neigh-
bors’ distance. Therefore we denote it as the Content Approach (CA). The sec-
ond one (CODA) takes advantage of the probabilistic model, which characterizes
both data and links simultaneously by defining their joint distribution based on
hidden Markov random fields (HMRF). In fairness to all algorithms, we set
the same number of outliers (from 5 to 20) for each method. We compared
the F1 of the three algorithms on two simulated data sets. Table 2 illustrates
the comparison results.

A Scalable Algorithm for Detecting Community Outliers 443

Table 2. The Accuracy Comparison on the Synthetic Datasets

Table 2 obviously indicates that CA algorithm which completely ignores the
inherent structure information of datasets is far inferior to other algorithms.
The experiments once again prove that solely using one type of information
cannot accomplish accurate community outlier detection. The performance of
CODA and SCODA are satisfactory in the situations because of considering
both object and link information. The effectiveness of our proposed algorithm
SCODA surpasses the state-of-the-art CODA approach.

5.3 The Scalability of SCODA Algorithm

To evaluate the scalability of SCODA, the next series of tests report the com-
putation time as we vary the number of nodes. Figure 2 indicates the scalability
of SCODA Algorithm with increasing number of nodes.

Fig. 2. Scalability Test of algorithms with increasing number of nodes

Figure 2 demonstrates that our method returns results that agree with our
intuition, and there is a linear dependency of SCODAs processing time on the
number of nodes in networks. Moreover, we can see that for the largest network,
the computation time is less than one hundred seconds. This property means
that the algorithm can easily deal with large data sets.

444 T. Ji, J. Gao, and D. Yang

6 Conclusion

In this paper, we have investigated a novel outlier detection problem, namely
community outlier detection, which springs from the advent of social network.
Besides descriptive concept, we put forward a straightforward measurement
named Community Outlying Factor, which quantifies how outlying a commu-
nity member is. We propose a scalable community outliers detection algorithm
(SCODA), which fully considers both content and structure information of social
networks. Furthermore, we take effective measures to eliminate personal inter-
vention by requiring a single input parameter. The experimental results on both
real datasets and synthetic datasets clearly ascertain that SCODA algorithm is
capable of detecting community outlier accurately and effectively. The scalabil-
ity tests demonstrate SCODA algorithm is a scalable method that can efficiently
work for large datasets.

Acknowledgment. This work was supported by the National High Technol-
ogy Research and Development Program of China (Grant No. 2012AA011002),
National Science and Technology Major Program (Grant No. 2010ZX01042-
002-002-02, 2010ZX01042-001-003-05), National Science & Technology Pillar
Program (Grant No. 2009BA H44B03), Natural Science Foundation of China
61073018, the Cultivation Fund of the Key Scientific and Technical Innovation
Project, Ministry of Education of China (Grant No. 708001) and the Shenzhen-
Hong Kong Innovation Cooperation Project (No. JSE201007160004A).We would
like to thank anonymous reviewers for their helpful comments.

References

1. Toshniwal, D., Yadav, S.: Adaptive Outlier Detection in Streaming Time Se-
ries. In: Proceedings of International Conference on Asia Agriculture and Animal,
ICAAA 2011 (2011)

2. Grubbs, F.E.: Procedures for detecting outlying observations in samples. Techno-
metrics 11 (1969)

3. Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. In: Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data
(2001)

4. Orair, G., Teixeira, C., Wang, Y., Meira, W., Parthasarathy, S.: Distance-Based
Outlier Detection: Consolidation and Renewed Bearing. In: Proceedings of Inter-
national Conference on Very Large Data Bases, VLDB (2010)

5. Hodge, V.J., Austin, J.: A Survey of Outlier Detection Methodologies. Artificial
Intelligence Review 22 (2004)

6. Coscia, M., Giannotti, F., Pedreschi, D.: A Classification for Community Discovery
Methods in Complex Networks. Statistical Analysis and Data Mining 4 (2011)

7. Parthasarathy, S., Ruan, Y., Satuluri, V.: Community Discovery in Social Net-
works: Applications, Methods and Emerging Trends. Social Network Data Analyt-
ics, 79–113 (2011)

8. Aggarwal, C.C.: An Introduction to Social Network Data Analytics. Social Network
Data Analytics (2011)

A Scalable Algorithm for Detecting Community Outliers 445

9. Gao, J., Liang, F., Fan, W., Wang, C., Sun, Y., Han, J.: On Community Out-
liers and their Efficient Detection in Information Networks. In: Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (2010)

10. Aggarwal, C.C., Zhao, Y., Yu, P.S.: Outlier Detection in Graph Streams. In: Pro-
ceedings of the International Conference on Data Engineering, ICDE (2011)

11. Zhang, J.: Towards Outlier Detection for High-dementional Data Streams using
Projected Outlier Analysis Strategy. PhD thesis, Dalhousie University (2009)

12. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: Identifying density-based
local outliers. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data (2000)

13. Papadimitriou, S., Kitagawa, H., Gibbons, P., Faloutsos, C.: LOCI: Fast outlier
detection using the local correlation integral. In: Proceedings of the International
Conference on Data Engineering, ICDE (2003)

14. Orair, G.H., Teixeira, C.H.C., Meira Jr., W., Wang, Y., Parthasarathy, S.:
Distance-Based Outlier Detection: Consolidation and Renewed Bearing. In: Pro-
ceedings of the International Conference on Very Large Data Bases, VLDB (2010)

15. Moser, F., Ge, R., Ester, M.: Joint cluster analysis of attribute and relationship
data withouta-priori specification of the number of clusters. In: Proceedings of
the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD (2007)

16. Yang, T., Jin, R., Chi, Y., Zhu, S.: Combining link and content for community
detection: a discriminative approach. In: Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD (2009)

17. Li, X., Li, Z., Han, J., Lee, J.-G.: Temporal Outlier Detection in Vehicle Traffic
Data. In: Proceedings of the IEEE International Conference on Data Engineering,
ICDE (2009)

18. Chakrabarti, D.: AutoPart: Parameter-Free Graph Partitioning and Outlier De-
tection. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
PKDD 2004. LNCS (LNAI), vol. 3202, pp. 112–124. Springer, Heidelberg (2004)

19. Fortunato, S.: Community detection in graphs. Physics Reports 486 (2009)
20. He, Z., Xu, X., Deng, S.: Scalable Algorithms for Clustering Large Datasets with

Mixed Type Attributes. International Journal of Intelligent Systems 20 (2005)

An Efficient Index for Top-k Keyword Search

on Social Networks

Xudong Du

Department of Computer Science and Technology
Tsinghua University, Beijing 100084, China

andy2005cst@gmail.com

Abstract. Social networks (e.g., Facebook, Twitter) have attracted sig-
nificant attention recently. Many users have a search requirement to find
new or existing friendships with similar interests in social networks. A
well-known computing model is keyword search, which provides a user-
friendly interface to meet users search demands. However traditional key-
word search techniques only consider the textual proximity and ignore
the relationship closeness between different users. It is a big challenge
to integrate social relationship and textual proximity and it calls for
an effective method to support keyword search in social networks. To
address these challenges, we present a tree decomposition based hierar-
chical keyword index structure (TDK-Index) to solve the problem. Our
major contributions are: (1)TDK-Index which integrate keyword index
and relationship closeness index as a whole; (2)Two-phase TA algorithm
which narrows the threshold obviously compared to existing methods
and speed up top-k query by a factor of two; and (3)flexible solution
which adopts different application circumstances by parameter adjust-
ment. Our experiments provide evidences of the efficiency and scalability
of our solution.

1 Introduction

Social networks have attracted significant attention recently due to its fast user
growth and high user stickiness. Many users have a search requirement to find
new or existing friendships with similar interests in social networks. A well-known
computing model is keyword search, which provides a user-friendly interface to
meet users search demands. For example, Andy a Facebook user wants to invite
several people to join a football match with him. He may search “football” and
get some football fan candidates. There are tons of football fans, however Andy
actually prefer to candidates who has a closer relationship with him. Another
example, Yvonne a user of Linkedin is seeking for an IT job, and she wants to get
some references through her social connections. She may search “Silicon Valley”
or “Google” to find some people who are both highly related to the keywords
and more familiar with her. Traditional keyword search techniques only consider
the textual proximity and ignore the relationship closeness between users, So
our user may not satisfied with the results.

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 446–458, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Efficient Index for Top-k Keyword Search on Social Networks 447

Although techniques of traditional keyword search are well studied [14], it is
a big challenge to integrate social relationship and textual proximity to support
keyword search on social networks. On social networks, users are connected by
friendship or similar relationships. In this paper, relationship closeness of di-
rectly connected users can be identified by interactive activities such as replies,
visits and so on. Relationship closeness of indirectly connected users are associ-
ated with the friendship chains between them. The idea is very intuitive from
observation of real life. Two strangers in real life usually know each other by
some mutual friends and the closer their friendship with the mutual friends the
closer relationship they may have. Without an intergraded framework, we need
to carry out keyword search and relationship closeness calculation separately.
One possible solution is that we first carry out traditional keyword search to
generate some candidates and then calculate relationship closeness for them to
generate the final top-k. Or we may follow a breadth-first idea to calculate their
textual proximities until top-k vacancies are full filled. Neither of the two solu-
tions are efficient because candidates with high textual proximity may far away
from the query user and candidates close to the query user may not related to
the keywords at all.

In this paper, we map social networks to a graph structure and reduce the
problem to a top-k keyword search over graph and focus on ranking functions
constituted by textual proximity and relationship closeness. We make the fol-
lowing major contributions:

1. We propose TDK-Index which integrate keyword index and relationship
closeness index as a whole. The index structure efficiently solve the chal-
lenges mentioned above.

2. We develop Two-phase TA algorithm which narrows the threshold obviously
compared to existing methods and speed up top-k query by a factor of two.

3. Our solutions are flexible for parameter adjustment to adopt different appli-
cation circumstances.

The rest of the paper is organized as follows. We formulate the problem in Section
2 and present TDK-Index and Two-phase algorithm in Section 3 and Section 4.
Experiment results are reported in Section 5 and related works are discussed in
Section 6. Finally, we make conclusions in Section 7.

2 Problem Formulation

Given an undirected positive weight keyword embedded graph G(V,E,W, T),
where vertex v ∈ V edge G(V,E,W, T), and wij ∈ W present user, friendship
and distance between users. Keyword set ti ∈ T belongs to user vi. We define
the top-k problem as bellow.

Definition 1 (UCK Query(User Closeness aware top-k Keyword
query)). A UCK Query Q = (v, k, t1, t2, . . .) is asked by user v and consti-
tuted by keywords {t1, t2, . . .} to retrieve other users with highest top-k ranking

448 X. Du

score which is monotonic increasing with the user closeness and keywords score.
v is called the owner of Q. User closeness scores are measured by a function
monotonic decreasing with the shortest distance between users over the graph.

In this paper, we use the following ranking function as an example. User closeness
score for u is determined by reciprocal of its shortest distance from query owner
v. Two parts of the score are normalized and weighted by parameters.

scoreu(v, t1, t1, . . .) = α · 1/distanceu,v
1/distancev,max

+ β ·
∑
i

scoreti
maxScoreti

. (1)

3 TDK-Index Structure

The basic idea of TDK-Index is to integrate keyword and user closeness indexes
together and provide a standard sorted and random access interface for TA [5]
alike framework. Fig.1 gives a overview of the TDK-Index. The TDK-index is a
tree structure and each tree node are constituted by several vertexes of original
social graph. Offline calculated distance matrix and other useful information are
stored at each node to speed up shortest distance calculation of vertexes. And
we have two type of keyword indexes, a single global index located at the root
and multiple local indexes located at some selected nodes. Now, We will discuss
why and how to build the index structure in detail.

. . .

L o c a l i n d e x

D i s t a n c e m a t r i x

U s e r o f f s e t i n p a r e n t

G l o b a l i n d e x

D i s t a n c e m a t r i x D i s t a n c e m a t r i x

U s e r o f f s e t i n p a r e n t

Fig. 1. Overview of TDK-Index structure

To solve the top-k query problem in a TA [5] alike framework, we need to pro-
vide sorted and random access for keywords rank lists and user closeness rank
list. For keywords, sorted and random access are available by building keyword
inverted lists and forward lists. The challenges are how to provide efficient ran-
dom and sorted access to user closeness. One observation of sorted access to a
query owner’s closeness rank list is that we visit the nearest(the nearest one has
the highest user closeness score) unvisited candidate one by one, so we do not
need to prepare a completed rank list. Actually we can do it in a lazy manner
by maintaining a priority queue. When a sorted access is needed, we pop out the
nearest candidate, push its unvisited neighbors and update distance if needed.
For the random access, we adopt a similar technique as TEDI [11] to do tree
decomposition on social graph and transform shortest distance calculation from
graph to tree.

An Efficient Index for Top-k Keyword Search on Social Networks 449

3.1 Tree Decomposition Based Random Access of Relationship
Closeness

In graph theory, tree decomposition is a methodology of mapping a graph into
a tree to speed up problems on the original graph.

Definition 2 (Tree Decomposition1). Given graph G = (V,E), a tree de-
composition is a pair (X,T) where X = X1, . . . , Xn is a family of subsets of V ,
and T is a tree whose nodes are subsets Xi, satisfying the following properties:

1.
⋃

i Xi = V .
2. For every edge (u, v) ∈ E, it exists at least one Xi satisfying u ∈ Xi and

v ∈ Xi.
3. If Xi and Xj both contain vertex u, then all nodes Xk between Xi and Xj

contain u as well. That is all the nodes containing u form a connected subset
of T .

According to the definition, one graph may be mapped into multiple different
trees. A trivial mapping is a tree with only one node which contains all the
vertexes of original graph. However, we are interested in better trees whose nodes
contain fewer vertexes. The vertex cardinality of a node is called the node size
here. We try to generate some trees with the maximal node size smaller. Finding
a best tree decomposition with smallest maximal node size is NP-hard problem.
Inspired by TEDI [11], we adopt a similar technique to do tree decomposition on
our social network graph and transform the graph into a tree like structure. The
methodology deletes vertexes with smallest degree one by one until degree of the
vertexes left is larger than parameter d or an empty graph remains. Different
from TEDI [11], we also stop if there are less or equal than d + 1 vertexes
remaining. when a vertex is deleted, the vertex and its neighbors are united to
be a node. We push the node into a stack and new edges are added to make its
neighbors left to be clique. After the deleting process, tree structure is built by
vertexes left and nodes in the stack. We hang every node to a as low as possible
place satisfying the parent node should contain all the users in the child node
except the deleted user when the child node is generated in previous process.
Fig.2 shows the process of our running example with parameter d = 2. At the
beginning, vertex 1 is deleted because its degree is the smallest. We unite vertex
1 and its neighbors vertex 4 and 5 to be a node and push it into the stack. The
same operations are carried out when deleting vertex 2 and 3. Once a vertex
is deleted, we need to exam if its neighbors are clique. If not, we need to add
necessary edges. In our example, when vertex 3 is deleted, new edge between 5
and 6 is created. When only d+ 1 = 3 vertexes are left, we unit vertex 4, 5 and
6 into a node. Next, we will build the tree structure in a reversed order. Last
generated node will be insert into the tree first. When node A with vertex 4,
5 and 6 is inserted into an empty tree, it becomes the root. Next one is node
B, the lowest possible location is the child of A satisfying that node A contains

1 http://en.wikipedia.org/wiki/Tree decomposition

450 X. Du

all vertexes in node B except vertex 3 which is the deleted vertex when node
B is generated. After every nodes are inserted one by one, we construct a tree
composition of original graph. Follow the method, every node size is smaller
than or equal to d + 1 except the root, and the root size can be controlled by
adjust parameter d. The good feature is very helpful to reduce shortest distance
calculation complexities.

1
23

4

6 5

1 , 4 , 5

23
4

6 5

1 , 4 , 5

2 , 3 , 5 3
4

6 5

1 , 4 , 5

2 , 3 , 5

3 , 5 , 6

4

6 5

1 , 4 , 5

2 , 3 , 5

3 , 5 , 6

4 , 5 , 6

3 , 5 , 6

2 , 3 , 5

1 , 4 , 5

A

B C

D

(a) (b) (c)

(d) (e)

Fig. 2. Tree decomposition process of running example with parameter d = 2

Every vertex may exist in serval nodes, we call the highest node is the vertex’s
node or the vertex is the node’s owner. In our running example, vertex 3’s node
is B. With the structure, shortest distance of two vertexes in original graph
can be solved by a bottom up algorithm. The algorithm starts from the two
vertexes’ node to their common ancestor. The connection of two nodes of the
tree is constituted by the same vertexes they share and there are at most d shared
vertexes. The shortest path is formed by choosing the best shared vertex to step
up until the common ancestor and the steps is at most equal to the height of the
tree h. So, shortest path calculation complexity is O(d2·h). Proof of the algorithm
correctness can be found in TEDI [11] which realizes very efficient shortest hop
distance calculation on the structure. In our problem, shortest distance is not
hop counts but weights sum along the path.

With the tree decomposition based index, random access of relationship close-
ness measured by shortest distance is well solved. Combined with inverted lists,
forward lists and priority queue techniques, We have already make the top-k
problem applicable for a TA [5] alike framework.

3.2 Hierarchical Keyword Index

When doing TA [5] algorithm over multiple rank lists, candidates with high
score at one list may not able to rank into final top-k because they may rank
very low at other lists. In our problem, relationship closeness score is decreasing
with shortest distance. One observation is that many candidates far away from
the query owner may get very high textual proximity score, but fail to rank
into final top-k according to our ranking function. If we directly use previously

An Efficient Index for Top-k Keyword Search on Social Networks 451

discussed techniques to answer the top-k queries, lots of such useless candidates
will be visited. Actually, we can reduce the useless visits by filtering candidates
far from query owner. Our method is to create a hierarchical keyword index
structure instead of a single global index.

Theorem 1. Based on our tree decomposition method, the social graph has been
transformed into a tree structure and every directly connected vertexes of v is
guaranteed to be contained by the subtree whose root is v’s node.

Suppose Nv’s owner is v and there is a u which is a neighbor of v, then there
must be a node N ′ containing both u and v according to tree decomposition
definition property 2. There must be a connected path from N ′ and Nv and
every node along the path contains v according to property 3. If N ′ does not
belong to Nv’s subtree, there must be some other node N along the path with
a higher position than Nv. That is to say Nv can not be v’s node. The theorem
is proved.

Every vertex’s neighbors are contained by its node’s subtree, and if we build
some local keyword indexes on some selected nodes, we may do keyword search
on some smaller index which locates next to the query owner’s node to filter
candidates far away. It is not wise to build local index on every node, because
the results generated may not full fill top-k vacancies and the large space cost is
incurred. Besides a global keyword index, our TDK-Index build an local keyword
index every m un-indexed vertexes accumulated from leaf to root. And every
local index will cover all the keywords of the subtree. To reduce the storage
cost, only the offset positions of the global index are stored in local indexes. We
will use our running example to show our local index strategies. Given the tree
structure of Fig.2(e) and parameter m = 4, we start from leaf node D and 3
un-indexed vertexes here. We move up to node B and accumulated un-indexed
number reaches 4 equals to m, so we create a local index at node B containing
all the keywords of vertexes 2, 3, 5, 6. We continue the process until the root.
The same operations are carried out from the other leaf C and finally we need
to build local index on node B and A. Because A is the root already with global
index, we do not need to create an local index again. Fig.3 builds global and
local keyword indexes for our running example.

4 , 5 , 6

3 , 5 , 6

2 , 3 , 5

1 , 4 , 5

A

B C

D

K I D (U I D , s c o r e)

t 2 (4 , 1 . 0) (5 , 0 . 9) (3 , 0 . 8) (6 , 0 . 8) (2 , 0 . 4) (1 , 0 . 2)

t 1 (1 , 1 . 0) (6 , 0 . 5) (2 , 0 . 5) (4 , 0 . 4) (3 , 0 . 3)

.

K I D o f f s e t

t 2 1 , 2 , 3 , 4

t 1 1 , 2 , 4

.

G l o b a l I n d e x

L o c a l I n d e x

U I D (K I D , s c o r e)

1
2

3
4

5
6

(t 1 , 1 . 0) (t 2 , 0 . 2)

(t 1 , 0 . 5) (t 2 , 0 . 4)

(t 1 , 0 . 3) (t 2 , 0 . 8)

(t 1 , 0 . 4) (t 2 , 1 . 0)

(t 2 , 0 . 9)

(t 1 , 0 . 5) (t 2 , 0 . 8)

Fig. 3. Hierarchical index for running example

452 X. Du

To sum up, based on tree decomposition, TDK-Index map original social
network graph into tree structure and build both shortest path indexes and
keyword indexes on the integrated system. To filter candidates far away from
query owner, hierarchical local index structure is adopted. We will present Two-
phase TA algorithm to efficiently answer top-k queries based on TDK-Index and
discuss parameter optimizations in following section.

4 Two-Phase TA Algorithm for Top-k Query

For keyword search on social networks, many candidates far away from the query
owner may get very high textual proximity score, but fail to rank into final top-
k according to overall ranking function. Traditional TA [5] algorithm will visit
candidates at every rank list from top to down. However, candidates far away
from query owner actually should be skipped even if they have very high rank
at textual proximity lists. It calls efficient algorithms to reduce the visits to
candidates with low probability of top-k.

4.1 One Phase Solutions

Before discussion of Two-phase TA algorithm, Let’s first take a look at how
one phase TA [5] works. The algorithm make sorted access to rank lists from
top to down and calculate candidates overall score by necessary random access.
It terminates once enough results with score above threshold. We will use an
example UCK query Q = (2, 2, t1, t2) to show the process. The query owner user
2 is trying to find top-2 users(user 2 herself is excluded) with highest overall score.
For simplicity, ranking function Score(uc, t1, t2) = scoreuc + scoret1 + scoret2
is used here, where uc is user closeness. As shown in Fig.4, user 3, 1 and 4 are
visited in the first round by sorted access to uc, t1 and t1 rank lists separately.
To calculate overall score for user 3, random accesses to rank lists of t1 and
t1 are carried out. We calculate overall score for user 1 and 4 similarly. After
the first round, the top-2 score are 2.1 and 1.5 and the calculations cost us
3 sorted accesses and 6 random accesses. A threshold is set to estimate the
highest possible score of unseen candidates, and the algorithm can terminate
once there are 2 candidates’ score larger or equal than the threshold. Sum of
currently lowest sorted access score of every rank list is used as the threshold in
traditional TA [5]. As the threshold decreases to be 1.7 after the third round,
the algorithm terminates with final top-2 user 6 and 3. The whole process costs
us 9 sorted accesses and 16 random accesses.

A obvious shortcoming of traditional TA [5] is that it may visit a candidate
multiple times by random access and sorted access. In our example, there are 5
candidates with totally 14 occurrences in rank lists. However TA [5] visits them
25 times. BPA2 algorithm [1] keeps visited positions of every rank lists and
guarantees every candidate occurrence of rank lists is visited only once. And the
algorithm use the sum of highest possible unseen score of every rank list as the
threshold which is much tighter than TA [5]. We use the same query example

An Efficient Index for Top-k Keyword Search on Social Networks 453

U I D s c o r e

3
6

5
1

4

1 . 0
0 . 9

0 . 5
0 . 2

0 . 1

R a n k l i s t o f u c

U I D s c o r e

4
5

3
6

1

1 . 0
0 . 9

0 . 8
0 . 8

0 . 2

R a n k l i s t o f t 2

U I D s c o r e

1
6

4
3

1 . 0
0 . 5

0 . 4
0 . 3

R a n k l i s t o f t 1

(a)

t h r e s h o l d

s o r t e d

a c c e s s #

3 . 0
2 . 3

1 . 7

3
3

3

r a n d o m

a c c e s s #

6
5

5

(c a n d i d a t e , s c o r e)

(3 , 2 . 1) (4 , 1 . 5) . . .

(6 , 2 . 2) (3 , 2 . 1) . . .

(6 , 2 . 2) (3 , 2 . 1) . . .

T A a l g o r i t h m
(b)

Fig. 4. Traditional TA algorithm solution for example Query Q = (2, 2, t1, t2)

to show its calculation process in Fig.5. The same as TA [5], sorted and random
access to user 3, 1 and 4 are carried out in first round. After the second round,
the top 4 positions of t1 are all be visited by sorted access or random access, so
the highest possible unseen score is equal to 0.3. Similarly, the highest possible
unseen score for uc and t2 are 0.1 and 0.2 respectively. The overall threshold
reduces to 0.6 which is much narrower than TA [5] and the algorithm terminates
immediately with totally sorted access cost 5 and random access cost 9.

U I D s c o r e

3
6

5
1

4

1 . 0
0 . 9

0 . 5
0 . 2

0 . 1

R a n k l i s t o f u c

U I D s c o r e

4
5

3
6

1

1 . 0
0 . 9

0 . 8
0 . 8

0 . 2

R a n k l i s t o f t 2

U I D s c o r e

1
6

4
3

1 . 0
0 . 5

0 . 4
0 . 3

R a n k l i s t o f t 1

(a)

t h r e s h o l d

s o r t e d

a c c e s s #

3 . 0
0 . 6

3
2

r a n d o m

a c c e s s #

6
3

(c a n d i d a t e , s c o r e)

(3 , 2 . 1) (4 , 1 . 5) . . .

(6 , 2 . 2) (3 , 2 . 1) . . .

B P A 2 a l g o r i t h m

(b)

u c t 1

2 2 2

6 5 6
t 2

Fig. 5. BPA2 algorithm solution for example Query Q = (2, 2, t1, t2)

4.2 Two-Phase TA Algorithm

It is obviously that user 1 and 4 have very high textual proximity score for t1
and t2. Both TA [5] and BPA2 [1] pay visiting costs for them. Our Two-phase
TA algorithm will help to reduce the extra costs. Two-phase TA is constituted
by two phase. It generates local top-k candidates(with high probability of final
top-k) and tight the threshold in phase 1 and enrich and verify the final result in
phase 2. Algorithm.1 shows the pseudo code of Two-phase TA algorithm. First,
we need to determine a proper local index to run phase 1. Here we assume local
index of the nearest ancestor of the query owner is selected and we will discuss
local index selection later. In this paper, Very similar to BPA2 [1], we gener-
ate local top-k over the local rank lists. One difference is that we maintain 2
thresholds: one is called local threshold and the other is global threshold. They
are calculated by the sum of highest possible unseen score of every local rank
list and global rank list respectively. If local top-k with score higher than global
threshold, the algorithm terminates. If local top-k with score higher than local

454 X. Du

threshold, the algorithm enters phase 2. Phase 2 is carried out over global rank
lists and the process is similar to BPA2 [1].

Algorithm 1. Two-phase TA Algorithm

1: // Phase 1: sorted access local rank lists (L1, L2, . . .) to update global and local
threshold Tg,Tl. Best unvisited candidate of global and local for keyword i is Bi,g

and Bi,l. Heap Sg and Sl storage and rank candidates with score larger than Tg

and Tl.
2: while Size(Sg)+Size(Sl) < k and (!Empty(Q) or !IsScannedOver(L1, L2, . . .)) do
3: u=Top(Q), Pop(Q), Push(neighbors of u)), score=Score(u), Update(Bi,g),

Update(Bi,l), Update(Tg), Update(Tg)
4: if score>Tg then
5: Push(Sg,u)
6: else if score>Tl then
7: Push(Sl,u)
8: end if
9: for each in L1,L2,. . . do
10: u=SortedAccess(Li, Bi,l)
11: Update(Bi,g), Update(Bi,l)
12: end for
13: Update(Tg), Update(Tg)
14: early terminates if enough results with score above threshold.
15: for each sorted accessed candidate u do
16: score=Score(u), Update(Bi,g), Update(Bi,l), Update(Tg), Update(Tg)
17: . . . // The same as line 4-8
18: end for
19: end while
20: // Phase 2: the only differences from phase 1 are only Bi,g and Tg are maintained

and we scan global rank lists G1, G2,
21: while Size(Sl)>0 and TopScore(Sl)>Tg do
22: Add(Sg, Top(Sl)), Pop(Sl)
23: end while
24: while Size(Sg)< k and (!Empty(Q) or !IsScannedOver(G1, G2, . . .)) do
25: . . . // Similar to phase 1, we omit code here for simplicity.
26: end while

Fig.6 shows how the algorithm works for the same example query Q =
(2, 2, t1, t2). Local index B is the nearest index for query owner user 2, so we
run phase 1 over the local rank lists of keyword index B. User 3, 6 and 5 are
visited by sorted and random access in first round and local threshold is reduces
to 1.6 calculated by the sum of highest possible unseen score of local rank lists.
However global threshold is 2.5 and early termination is not satisfied. The algo-
rithm enters phase 2 running on the global keyword index A. After sorted access
to user 1 and 4, the algorithm terminates without further random accesses as
the threshold is reduced to be 1.8. Sorted access and random access costs are 10
in total which is much smaller compared to 14 of BPA2 [1] and 25 of TA [5].

An Efficient Index for Top-k Keyword Search on Social Networks 455

U I D s c o r e

3
6

5
1

4

1 . 0
0 . 9

0 . 5
0 . 2

0 . 1

R a n k l i s t o f u c

U I D s c o r e

5
3

6

0 . 9
0 . 8

0 . 8

R a n k l i s t o f t 2

U I D s c o r e

6
3

0 . 5
0 . 3

R a n k l i s t o f t 1

(a)

t h r e s h o l d

s o r t e d

a c c e s s #

1 . 6 3

r a n d o m

a c c e s s #

5

(c a n d i d a t e , s c o r e)

(6 , 2 . 2) (3 , 2 . 1) . . .

T w o - p h a s e T A − p h a s e 1

(b)

U I D s c o r e

3
6

5
1

4

1 . 0
0 . 9

0 . 5
0 . 2

0 . 1

R a n k l i s t o f u c

U I D s c o r e

4
5

3
6

1

1 . 0
0 . 9

0 . 8
0 . 8

0 . 2

R a n k l i s t o f t 2

U I D s c o r e

1
6

4
3

1 . 0
0 . 5

0 . 4
0 . 3

R a n k l i s t o f t 1

(c)

t h r e s h o l d

s o r t e d

a c c e s s #

1 . 8 2

r a n d o m

a c c e s s #

0

(c a n d i d a t e , s c o r e)

(6 , 2 . 2) (3 , 2 . 1) . . .

T w o - p h a s e T A − p h a s e 2

(d)

G l o b a l t h r e s h o l d = 2 . 5

Fig. 6. Two-phase TA algorithm solution for example Query Q = (2, 2, t1, t2)

4.3 Optimization and Parameters Selections

Along the path from the query owner’ node to the root, there may be several
nodes with local index. In previous section, we assume phase one of the Two-
phase TA algorithm is carried out on the nearest ancestor with local index.
Actually, we can do some optimizations to realize better performance under
different application circumstances. Intuitively, in top-k query, the larger k is,
the larger probability for candidate with far distance to be a final result. So, we
need to pick up a proper local index with consideration of the result number
needed. We use a parameter γ to help with selection of local index. In algorithm
phase one, we prepare local rank list for every keyword with length at least γ ·k.
That is to say we will keep on moving up along the path from the query owner’s
node until rank list with enough length is reached or root node is reached. And
rank lists for different keywords may come from different nodes along the path.
Experimental study will show the benefits of our strategies.

5 Experimental Study

The graph data is generated from random sample from DBLP dataset with
vertexes number range from 5 thousand to 20 thousand and keywords number
associated with a vertex follow a normal distribution with mean 100 and stan-
dard deviation 100. The keywords number of every test query follow a normal
distribution with mean 2 and standard deviation 1. All the experiments are done
on a computer with Four-core Intel(R) Xeon(R) CPU E5420 @ 2.50GHz and 16G
memory.

To evaluate our solution, some existing solutions are selected as baseline.
Without an integrated index structure, we may follow a breadth-first alike man-
ner to calculate scores from near to far until enough results are found. In Section

456 X. Du

4 we have discussed our Two-phase TA’s advantages compared to one phase algo-
rithms. One of the most efficient algorithm BPA2 [1] is used as another baseline.

0
5

1 0
1 5

2 0
2 5

3 0
3 5

5 k 1 0 k 2 0 k

B r e a d t h - f i r s t B P A 2 T w o - p h a s e T A

0
2

4
6

8
1 0

1 2
1 4

1 6
1 8

t o p - 5 t o p - 1 0 t o p - 1 5 t o p - 2 0

B r e a d t h - f i r s t B P A T w o - p h a s e T A

t i m e / m s t i m e / m s
(a) Experiments of Two-phase Algorithm and comparison with other algo-
rithms. Left is for 10K data set and varying top-k, right is for top-10 query
in different data sets.

0

5

10

15

20

25

30

5k 10k 15k 20k

Index size / MB

(b) Memory costs of TDK-Index.

0
5

1 0
1 5

2 0
2 5

3 0
3 5

4 0

0 . 2 0 . 5 1 2 5

B r e a d t h - f i r s t B P A 2 T w o - p h a s e T A

9
1 1

1 3
1 5

0 . 1 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0

T o p - 5 T o p - 1 0 T o p - 1 5 T o p - 2 0

t i m e / m s t i m e / m s

(c) Experiments of Parameter adjustments running on 20K data set. Left
one presents time costs associated with different ratios of α : β, right one
presents time costs associated with different parameter γ.

Fig. 7. Experiment results

As shown in Fig.7(a), Two-phase TA algorithm is always better than
breadth-first algorithm without TDK-Index and One phase BPA2 [1] algorithm
with TDK-Index. Fig.7(b) presents the efficient memory costs of our TDK-
Index(Global keyword index is not included here, as it is not changed by our
solution) and Parameter adjustments under different application circumstance
is presented in Fig.7(c).

6 Related Works

Recent years, search problems in social networks have attracted a significant
attentions [4,3,7,9,2]. Some researches of top-k query over social networks focus
on building ranking score model by shared tags [9]. Some papers design and

An Efficient Index for Top-k Keyword Search on Social Networks 457

evaluate new ranking functions to incorporate different properties of social net-
works [2,7]. Access control of keyword search over social networks is also attract
research studies [4,3].

Although the problem of top-k keyword search with consideration of rela-
tionship closeness measured by shortest distance is not solved well by existing
techniques, traditional keyword search and shortest distance calculation are well
studied separately. Inverted list [14] is a state-of-the-art technique and there
are many studies with a focus on inverted file compression [10,13] and man-
agement [8]. For shortest distance problems, there is a survey paper [6] cover-
ing different algorithms. Instead of online calculation, index based methods are
studied [12,11]. Our study in this paper is different and our solution efficiently
integrates top-k keyword search and shortest path index problems.

7 Conclusion

In this paper, we have proposed TDK-Index and Two-phase algorithm which
solve the big challenge of integrating social relationship and textual proximity
for keyword search over social networks. Experimental studies provide evidence
of efficiency of our solutions and the flexibility to adopt different application
circumstances.

References

1. Akbarinia, R., Pacitti, E., Valduriez, P.: Best position algorithms for top-k queries.
In: VLDB, pp. 495–506 (2007)

2. Bao, S., Xue, G.-R., Wu, X., Yu, Y., Fei, B., Su, Z.: Optimizing web search using
social annotations. In: WWW, pp. 501–510 (2007)

3. Bjørklund, T.A., Götz, M., Gehrke, J.: Search in social networks with access con-
trol. In: KEYS, p. 4 (2010)

4. Bjørklund, T.A., Götz, M., Gehrke, J., Grimsmo, N.: Workload-aware indexing for
keyword search in social networks. In: CIKM, pp. 535–544 (2011)

5. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
In: PODS. ACM (2001)

6. Goldberg, A.V.: Point-to-Point Shortest Path Algorithms with Preprocessing. In:
van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F.
(eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 88–102. Springer, Heidelberg (2007)

7. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information Retrieval in Folk-
sonomies: Search and Ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006.
LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006)

8. Margaritis, G., Anastasiadis, S.V.: Low-cost management of inverted files for online
full-text search. In: CIKM, pp. 455–464 (2009)

9. Schenkel, R., Crecelius, T., Kacimi, M., Michel, S., Neumann, T., Parreira, J.X.,
Weikum, G.: Efficient top-k querying over social-tagging networks. In: SIGIR,
pp. 523–530 (2008)

10. Scholer, F., Williams, H., Yiannis, J., Zobel, J.: Compression of inverted indexes
for fast query evaluation (2002)

458 X. Du

11. Wei, F.: Tedi: efficient shortest path query answering on graphs. In: SIGMOD
Conference, pp. 99–110 (2010)

12. Xiao, Y., Wu, W., Pei, J., Wang, W., He, Z.: Efficiently indexing shortest paths
by exploiting symmetry in graphs. In: EDBT, pp. 493–504 (2009)

13. Zhang, J., Long, X., Suel, T.: Performance of compressed inverted list caching in
search engines. In: WWW, pp. 387–396 (2008)

14. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput.
Surv. 38(2) (2006)

Engineering Pathway

for User Personal Knowledge Recommendation

Yunlu Zhang1,2, Guofu Zhou1,�, Jingxing Zhang1, Ming Xie1,
Wei Yu1, and Shijun Li1,2

1 State Key Laboratory of Software Engineering,
Wuhan University, 430072 Wuhan, China

2 School of Computer, Wuhan University, 430072 Wuhan, China
gfzhou@whu.edu.cn

Abstract. K-Gray Engineering Pathway (EP) is a Digital library web-
site that allows search and catalog of engineering education and computer
science education resources for higher education and k-12 educators and
students. In this paper, we propose a new EP that can give different
and personal search recommendation for users with different educational
background and accomplish this function automatically. For data, we
explore semantic relationships among knowledge, and then we classify
them and establish the knowledge relationships model. For users, we can
set up user profile by user log, then classify them and establish user
model. When a frequent user come to EP looking for something, we can
give information directly related and recommend knowledge not directly
related but can arouse their interest, based on these two models. The
experiments shows that we make EP a more excellent expert who know
users well enough to guide them, according to the statistic information
such as education background, and by improving the collaborative rec-
ommend results in EP, our users can make the best use of their time by
EP learning.

Keywords: search recommendation, user model, digital library, guide
user.

1 Introduction

Based on the users’ education background, EP can give them different search
results when the input the same the query by users’ active behavior, who know
their own education background and set the search area themselves, which make
EP search result with high correction, but also leads to potential information
loosing, for users have no idea of these knowledge exiting, for their limited ed-
ucational. User also can get all search results from the homepage, independent
of education background, but it made low correction and lots of time wasting
to find what they really needed. There are mainly 6 branches is our home-
pages for users who needs some information: (1)Advanced Search (including

� Corresponding author.

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 459–470, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

460 Y. Zhang et al.

K-12 search, Higher Education search, Geocentric search), (2) Browse Learning
Resources(including Subject/Disciplinary Content Areas, Special Topics, Grade
Levels, Learning Resource Types, ABET Outcomes (Students, Learning), Host
Collections, PR2OVE-IT Interventions), (3)K-12 Community, (4)Higher Edu-
cation Community, (5)Disciplinary Communities, (6)Broadening Participation.
And 2 branches for introduction about us: Premier Award and About us, and
2 branches used for interaction between user and us: (1)Submit Resource and
(2)My workspace. The homepage as shown in Figure 1.

Fig. 1. Snapshot of EP User Interface

What EP can do now are: (1)Based on the users’ education background, give
them different search results when they input the same the query (K-12, and
so on), this function is implemented by users’ active behavior, they know their
own education background, and set the search area by themselves. Pros: high
correction; Cons: needs users active input; lose some information that may help
them, they do not know the exiting of these knowledge, constrains by their lim-
ited educational level; (2)User can get all the search results in the homepage,
independent of their education background, In this function, user’s active behav-
ior is no need, and the pros and cons are as follows: Pros are mostly, no useful
information and knowledge will be missed, Cons are low correction and waste
lots of time to find what they really needed.

So in this paper, we proposed a new EP that can give different and personal
search recommendation for users with different educational level and accom-
plish this function automatically. For example, if the user is an undergraduate,
he/she want to search some information about Advanced Mathematics, we can
give his/her course ware, video and homework answers, or something can help
them prepare for the test. What if we give him/her something in graduate, such
as some papers and instructions about engineering application with advanced
mathematics? If the user is a college teacher, and he/she also want to search
some information about Advanced Mathematics, we can give him/her some-
thing the same as the former user, such as course ware and video, to help them

Engineering Pathway for User Personal Knowledge Recommendation 461

improve teaching, but we can also give him/her some research material, such
as papers with higher theoretical level –which is contrary to the former under-
graduate users. So what else we can do here, since we already have users’ log by
powerful EP.

For data, firstly, we research semantic relationships among knowledge, then we
classify or cluster them, finally we establish the knowledge relationships models.
For users, firstly, based on user log, we can set up user profile, then classify or
cluster the users type, finally we establish the users model, So, when a frequent
user come to EP looking for something, we can give information directly related
and recommend knowledge not directly related but can arouse their interest,
based on the users model and knowledge relationships models. Based on users
log mining, user model, data relationship analysis(semantic, classification, clus-
tering), we will make EP a more excellent expert who know users well enough
to guide them, according to the statistic information such as education back-
ground. And by improving the collaborative recommend results in EP, our users
can make the best use of their time by EP learning.

2 Related Work

In our previous works, we had done lots work on Digital Library[1,3]. How can
electronic course ware meet the diverse needs of curricula among a cross section
of universities? How do educators adapt traditional teaching roles to fit new
resources and delivery styles? What course ware access modes equally suit the
needs of author, teacher, and student? Can an infrastructure designed for static
course ware be adapted to dynamically changing information on the World Wide
Web? In [4], for the experience of Synthesis/NEEDS(the National Engineering
Education Delivery System) answered these questions while opening more is-
sues in distance independent education by striving to integrate multidisciplinary,
open-ended problem solving into the varied engineering curricula of its members.

The focus of this research [5] lies in ascertaining tacit knowledge to model
the information needs of the users of an engineering information system. It is
proposed that the combination of reading time and the semantics of documents
accessed by users reflect their tacit knowledge. By combining the computational
text analysis tool of Latent Semantic Analysis with analyzes of on-line user
transaction logs, we introduce the technique of Latent Interest Analysis (LIA)
to model information needs based on tacit knowledge through user’s queries
and prior documents downloaded; it was incorporated into our digital library to
recommend engineering education materials to users.

There are lots of new trends in recently information ages, The digital library
are improving with the change of information format as reported in the following
research work. For many new services 2.0 are appearing everyday,eg., Facebook,
Flickr, Jesus et.al[6] designs a system allows the reduction of the necessary time
to find collaborators and information about digital resources depending on the
user needs by using Google Wave to extend the concept of Library 2.0. Social
tagging or collaborative tagging is also a new trend in digital age. So,by linking

462 Y. Zhang et al.

social tags to a controlled vocabulary, Yi [7] did a study to investigate ways
of predicting relevant subject headings for resources from social tags assigned
to the resources based on different similarity measuring techniques. Another
trend is construction of semantic digital libraries. Jiang et al. [8] researched a
clustering method based on normalized compression distance for “affiliation,” its
an important type of meta data in publications areas, and also a question hard
to resolve when converts its meta data of digital resources into its semantic web
data.

There are also many recent researches focus on the relationship among the
retrieval system and users’ search behavior. Such as Catherine L. Smith and
Paul B. Kantor [9], through adapting a two-way street, they did a factorial ex-
periment by manipulated a standard search system to produce degraded results
and studied how people solve the problem of search failure.

Like our EP, Lin and Smucker[10] researched a content-similarity browsing
tool can compensate for poor retrieval results to help their users. The goal of
educational digital library applications is to provide both teachers and students
enriching and motivational educational resources [11, 12, 13] Jing and Qingjun
[14]and Ankem[15]provide teachers and students a virtual knowledge environ-
ment where students and teachers enjoy a high rate of participation. Alias et
al.[16] describe an implementation of digital libraries that integrates semantic
research. Mobile ad hoc networks are becoming an important part of the digital
library ecology[17,13,18].

3 Users’ Workspace

We have workspace for each register uses, when users using EP search find some-
thing interested in, they can add them to their own workspace, For example, user
Lucy login EP, and do some research for “data mining,” “information retrieval”
in the “Advance Search” from the Discipline “Computer Science” and From
grade “college Freshman” through “Continuing Education” as shown in Figure
2, and we can get lots of search result as shown in Figure 3, Lucy choice the one
with title “Using the Data Warehouse”, click the link under the title, and she
can get the detail information about this learning resource, as shown in Figure
4, then, if she interested in it ,she can save it to her work space, after saving the
interested learning resource to her workspace, you can edit it or remove it from
her workspace, as shown in Figure 5, the last one with title “Using the Data
Warehouse”, which her added it just now.

Based on so many users’ profiles in our data base, we can analyze the users’
interest and calculate the similarity between their interested resources and the
others, finally give them what resources they may interested in but they have
no idea of their exiting. For doing the database SQL query on three tables in
our database: smete user , collection, and collection member, we can find out
there are 102 users have more than 10 learning resources in their workspace, 33
users have more than 50 learning resources in their workspace, 20 users have
more than 100 learning resources in their workspace, 5 users have more than 500

Engineering Pathway for User Personal Knowledge Recommendation 463

Fig. 2. Search behavior of User Lucy Fig. 3. Search results for Lucy’s Search

Fig. 4. Detail information for “Using the
Data Warehouse”

Fig. 5. Success to Save the “Using the data
warehouse” to Lucy’s workspace

learning resources in their workspace, and the top 3 users have 4535,1738,1122
learning resources.

4 CURE Cluster Algorithm

There are three main algorithms we can use for large database clustering al-
gorithm setting: BIRCH[19], MST[20], and CURE[21], we take the CURE for
short text clustering. In our experiment, the short text clustering are the ti-
tles in user’s workspace.We still take Lucy’s profile as an example; there are 26
learning resources in her workspace, we using their titles as input, in our cluster
part of recommendation system, we can see the results from Figure 6. And we
can figure out that Lucy’s interest keywords maybe: “Design”, “BPC-A”, “Com-
puting”, “Education”, “Collection” and “John Wiley Sons”,according to these
Lucy’s potential interesting area, we can get her potential interesting learning
resources are as shown in Figure 7.

In our system, user can decide the number of cluster we want to get, or we
can decide the number of item in each cluster, or we do not decide everything,
but leave the algorithm to select the best number of cluster based on differ-
ent evaluations for the distances between clusters: such as Euclidian distance,

464 Y. Zhang et al.

Jaccard similarity, Dice similarity, and Manhattan distance. The interface of our
system as shown in Figure 8.

Fig. 6. Lucy’s interest clustering

Fig. 7. Lucy’s interesting keywords Fig. 8. Interface of recommendation system
by CURE

In the process of title clustering, we use cosine similarity to identify the
correlated title pairs. The features of the first title to be clustered is X =<
x1, x2, ..., xn >, and the features of the second title to be clustered is Y =<
y1, y2, ..., yn >.The cosine similarity of titles to be clustered X and Y is

Cxy =
∑

i ωixiyi√∑
i x

2
i

∑
i y

2
i

, where the ωi is the weight of the edge between these two

nodes in the term graph.
Given the dataset D and the number of clusters K , C =< C1, C2, ..., Ck >,

we can evaluate this cluster results by CH(Calinski − Harabasz) [28]index
method, by doing Trial and error k, we can get the best cluster number when
gets its maximum value. This index is computed as:

VCHk=
traceB/(k − 1)

traceW/(N − k)
∃traceB=

k∑
j=1

nj‖zj−z‖
∧

traceW =

k∑
j=1

nj∑
i=1

‖xi−zj‖

(1)

Engineering Pathway for User Personal Knowledge Recommendation 465

Algorithm 1. Title cluster based on CURE Algorithm

1: Input: S, k, α, γ � dataset, impact factory, number of representation, iteration
limit

2: Output: Best k
3: Initialize Tree T and heap Q
4: For every cluster u (each input point), in u.mean and u.rep store the mean of the

points in the cluster and a set of c representative points of the cluster
5: initially c = 1 � each cluster has one data point
6: u.closest = the cluster closest to u.
7: Trial and error(k)
8: While size(Q)> k
9: Remove the top element of Q(say u) and merge it with its closest cluster

u.closest(say v) and compute
10: Create new merged cluster w = < u, v >
11: Use T to find best match for w
12: Update T, new representative points for w.
13: Remove u and v from T and Q.
14: Also for all the clusters x in Q, update x.closest and relocate x
15: insert w into Q
16: repeat to 8
17: index(k)=‖interclass(k), intraclass(k)‖
18: k ≡Max(index(k))
19: return k and k clusters representation point

Algorithm 2. EP Recom algorithm

1: Get the Learning resource titles in user’s workspace
2: Calculate each element in word using TFIDF and get its weight
3: Change each element in tfidfVector to a CureCluster and add each CureCluster

into CureClusterList
4: Calculate the distance between two CureCluster and fill the distance into the clos-

estDistanceMatrix
5: Use the heap ordered by CureCluster.distance and
6: Use the MergeCureCluster to merge the two closest CureCluster until the CureClus-

ter’s number meets user’s need
7: Based on the represetation of each cluster, get the learning resource keywords user

may interested in
8: Go back to EP search get the learning resource user may interested in

The maximum hierarchy level is used to indicate the correct number of partitions
in the data. traceB is the trace of the between cluster scatter matrix B, and
traceW is the trace of the within cluster scatter matrix W . The meanings of
parameters for them are: nj is the number of points in cluster, ‖...‖means a
certain distance calculation method, z is the centroid of the entire data set. zj
is the centroid of the Cj data set, xi is the i-th item in Cj ,and the number is x
in each Cj is obviously nj .

466 Y. Zhang et al.

5 Experiment

In this section, we present the results of our experiment. The EPRecom dataset
originally contained 120,000 ratings from 3125 users on 6250 learning resources.
We gathered the top-20 recommendations for all users in the EPRecom dataset
by using 4 methods, ItemRank, Tangent, PPTM, UPKR with c=0.01,0.001, c
value is chosen experimentally. Since our method and Tangent require precom-
puted relevance scores, we run Tangent and PPTM based on the relevance scores
of ItemRank.

5.1 Popularity

The Figure 9 shows comparison of recommendation from three algorithms in
terms of popularity. In this figure, we present the difference between the distribu-
tion of rating and recommendation. From the results, our method outperformed
competitors in terms of popularity matching. As analyzed in Section III, existing
methods tend to recommend more items having high popularity. However, the
result of UPKR is quite similar to that of rating so the differences is small for
all degree of popularity. The comparison results for each individual are dropped
from this paper because they are similar to the overall comparison results. All
results for each individual are published on our website.

5.2 Diversity

We also measure the novelty of our method in terms of diversity in a way similar
to the one we used in the analysis. The Figure 14 is the distribution of top-10
recommendation using UPKR with c = 0.002. The figure is generated in same
way as we did in the investigation. Our method shows more diversified results
and the over concentrated items set is smaller than that of others. In addition,
the inner line indicating the coverage of UPKR is also located higher than that
of other methods.To compare the results more clearly, we measure the diversity
and coverage of each method (Figure 10)quantitatively. First, we measure EMD
distance for the distribution of each method from that of rating (Figure 12). Our
method always shows a smaller EMD distance,which indicates more diversified
results, than other methods regardless of the number of recommendations. Note
that,in this evaluation, EMD distance measures the distance between distribu-
tion of rating and recommendation. Thus, it’s independent from EMD distance
for PPTs. Furthermore,the coverage of our method is also higher than that of
other competitors (Figure 13). When we recommend 50 items for each user, the
coverage of UPKR is over 60% but that of ItemRank is near 45% and that of
Tangent is around 25%.All these evaluation results show that our method is
better than other methods in terms of diversity.

5.3 Accuracy

We evaluate the accuracy of our method and competitor. To compare the accu-
racy, we run 3-fold cross validation 30 times for each 942 users and aggregated

Engineering Pathway for User Personal Knowledge Recommendation 467

the result. For more detail, we divide rating history of a user into 3 folds. After
that, we use 2 folders to infer the taste of user,and measure the accuracy by
comparing the recommendation result with remaining 1 fold, which is a relevant
item set for test. We use recall to measure accuracy. It is because our method is
a top-k recommendation method thus traditional accuracy measures, which are
based on scores or the order of item, do not work. In this equation, the accuracy
increases when the method recommends more items which are in the relevant
item set for the test. We measure the accuracy change according to the change
of the number of recommendations, and compare the accuracy of UPKR and
Tangent to that of ItemRank (Figure 10). If the accuracy of a method is the
same as ItemRank,it will be 1 for all k. It turns out that Tangent suffers from a
performance degradation of around 15%-20%. On the other hand, our method
shows better results than ItemRank when c is 0.001.Excessive engagement of
PPT also results in a performance degradation of around 10 % but, still, it is
better than Tangent.

5.4 Qualitative Evaluation

We conduct a case study for user 585 to evaluate the recommendation results
also in a qualitative way. To the best of our knowledge, the user prefers films
having practical value and reputation. In terms of popularity, the user also study
many courses that gross satisfy rate is high. The satisfy rates of most courses
that learned are less than. The average gross was 80%. However, in the recom-
mendations of ItemRank, there are already 3 out of 10 courses that given less
than 75% satisfy rate. The average satisfy rate of ItemRank recommendation is
higher than that of the learned list. In the case of Tangent, it is more severe. Only
2 courses, Introduction to Computers and Descriptive Introduction to Physics,
given more than 75% satisfy rate. The average satisfy rate of UPKR is 81% which
is higher than the average the learned list. Furthermore, newly added items do
not seem to be suitable for the interest of the user. After this we can use our rec-
ommendation system as shown in the bottom of Figure 13 “Create user Profile”,
for these users, there are two methods for them who want to get recommended
learning resources with similar interests of they viewed before, the first one to tell

Fig. 9. c=0.001 Fig. 10. c=0.002

468 Y. Zhang et al.

Fig. 11. c=0.003 Fig. 12. c=0.004

our EP about more detail about themselves,such as major, education backgroud
and so on, so we can get recommendation ,based on the similarity among profiles
of users and profiles of learning resources, (see Figure 13). The other method
is to cluster the learning resources in user’s workspace,based on the profiles of
learning resources, we can infer a particular user’s profile.

Fig. 13. Success to Save the “Using the
data warehouse” to Lucy’s workspace

Fig. 14. Top-10 Visit Keywords

Then we do some demographics of the users during an extended time period
from January 1, 2011, to November 31, 2011 based on Google Analytic, there
are 52,572 visitors with absolute unique 42,951 visitors came from 166 coun-
tries/territories, as shown in Figure 6, they use 83 languages with 9,698 service
providers, 31 browsers, 19 operating systems, and 66 browser and OS combina-
tions, via 685 sources and mediums. All of the search are via 12,821 keywords,
and the top-10 keywords as shown in Figure 14.

6 Conclusion and Future Work

We proposed the implementation of user recommendations to support deliver of
materials from the Engineering Pathways (NSDL) website. a clustering mecha-

Engineering Pathway for User Personal Knowledge Recommendation 469

nism is used as the basis for generating recommendations for users of the Engi-
neering Pathway DL, and an experiment was conducted in order to assess the
validity or potential of the proposed approach. By describing an optimal Cure
clustering algorithms for short text are and summarizing web-log data from
users, we can personalize search results based on users’ profiles. Based on our
system, we can implement much more personal and much more precise learning
resource recommendation,in fact, the CURE algorithm could also be used for
discovering the outlier learning resource information,which in our case, the out-
line learning resources must not relevant with user’s major directly, but it may
be another new research area this user may interested in, or maybe a potential
information contributions to the user’s major, in this case it will help mining the
relationship among multiple and different majors and educational background
in our future work.

Acknowledgments. This work was supported by a grant from the National
Natural Science Foundation of China (No. 60970018).

References

1. Agogino, A.M.: Broadening Participation in Computing with the K-Gray Engi-
neering Pathway Digital Library. In: Proceedings of the 8th ACM/IEEE-CS Joint
Conference on Digital Libraries, JCDL 2008. ACM, New York (2008)

2. Agogino, A.M.: Engineering Pathway Education Digital Library. In: ABET Work-
shop, ASEE Meeting, June 24 (2007)

3. Dong, A., Agogino, A.M.: Design Principles for the Information Architecture of a
SMET Education Digital Library. In: Proceedings of the 8th ACM/IEEE-CS Joint
Conference on Digital Libraries, JCDL 2003. ACM, New York (2003)

4. Agogino, A.M.: Engineering Courseware Content and Delivery: The NEEDS In-
frastructure for Distance Independent Education

5. Agogino, A.M.: Modeling Information Needs in Engineering Databases Using Tacit
Knowledge

6. Jesus, S.-G., Enrique, H.-V., Olivas Jose, A., et al.: A google wave-based fuzzy
recommender system to disseminate information in University Digital Libraries
2.0. Information Sciences 181(9), 1503–1516 (2011)

7. Yi, K.: A semantic similarity approach to predicting Library of Congress subject
headings for social tags. Journal of the American Society for Information Science
and Technology 61(8), 1658–1672 (2010)

8. Jiang, Y., Zheng, H.-T., Wang, X.: Affiliation disambiguation for constructing se-
mantic digital libraries. Journal of the American Society for Information Science
and Technology 62(6), 1029–1041 (2011)

9. Smith, C.L., Kantor, P.B.: User Adaptation: Good Results from Poor Systems. In:
SIGIR 2008, Singapore, July 20-24 (2008)

10. Lin, J., Smucker, M.D.: How Do Users Find Things with PubMed? Towards Auto-
matic Utility Evaluation with User Simulations. In: SIGIR 2008, Singapore, July
20-24 (2008)

470 Y. Zhang et al.

11. Brusilovsky, P., Cassel, L., Delcambre, L., Fox, E., Furuta, R., Garcia, D.D.,
Shipman III, F.M., Bogen, P., Yudelson, M.: Enhancing Digital Libraries with
Social Navigation: The Case of Ensemble. In: Lalmas, M., Jose, J., Rauber, A.,
Sebastiani, F., Frommholz, I. (eds.) ECDL 2010. LNCS, vol. 6273, pp. 116–123.
Springer, Heidelberg (2010)

12. Fernandez-Villavicencio, N.G.: Helping students become literate in a digital,
networking-based society: a literature review and discussion. International Infor-
mation and Library Review 42(2), 124–136 (2010)

13. Hsu, K.-K., Tsai, D.-R.: Mobile Ad Hoc Network Applications in the Library. In:
Proceedings of the 2010 Sixth International Conference on Intelligent Information
Hiding and Multimedia Signal Processing (IIHMSP 2010), pp. 700–703 (2010)

14. Jing, H., Qingjun, G.: Prospect Application in the Library of SNS. In: 2011
Third Pacific-Asia Conference on Circuits Communications and System (PACCS),
Wuhan, China, July 17-18 (2011)

15. Ankem, K.: The Extent of Adoption of Internet Resource-Based Value-Added Pro-
cesses by Faculty in LIS Education. Canadian Journal of Information and Library
Science-Revue 34(2), 213–232 (2010)

16. Alias, N.A.R., Noah, S.A., Abdullah, Z., et al.: Application of semantic technology
in digital library. In: Proceedings of 2010 International Symposium on Information
Technology (ITSim 2010), pp. 1514–1518 (2010)

17. Datta, E., Agogino, A.M.: Mobile Learning and Digital Libraries: Designing for
Diversity. In: Proceedings of ASME Congress (2007) ISBN 0-7918-3812-9

18. Ryokai, K., Oehlberg, L., Agogino, A.M.: Green Hat: Exploring the Natural Envi-
ronment Through Experts Perspectives. In: ACMCHI 2011: Proceedings of the 29th
International Conference on Human Factors in Computing Systems, pp. 2149–2152
(2011)

19. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: a new data clustering algorithm
and its applications. Data Mining and Knowledge Discovery 1(2), 141–182 (1997)

20. Suk, M.S., Song, O.Y.: Curvilinear Feature-Extraction Using Minimum Spanning-
Trees. Computer Vision Graphics and Image Processing 26(3), 400–411 (1984)

21. Guha, S., Rastogi, R., Shim, K.: Cure: An efficient clustering algorithm for large
databases. Information Systems 26(1), 35–58 (2001)

Pick-Up Tree Based Route Recommendation

from Taxi Trajectories

Haoran Hu1, Zhiang Wu2,�, Bo Mao2, Yi Zhuang3, Jie Cao2, and Jingui Pan1

1 State Key Lab. for Novel Software Technology, Nanjing University, Nanjing, China
2 Jiangsu Provincial Key Laboratory of E-Business,

Nanjing University of Finance and Economics, Nanjing, China
3 College of Computer and Information Engineering,
Zhejiang Gongshang University, Hangzhou, China

zawuster@gmail.com

Abstract. Recommending suitable routes to taxi drivers for picking up
passengers is helpful to raise their incomes and reduce the gasoline con-
sumption. In this paper, a pick-up tree based route recommender system
is proposed to minimize the traveling distance without carrying pas-
sengers for a given taxis set. Firstly, we apply clustering approach to
the GPS trajectory data of a large number of taxis that indicates state
variance from “free” to “occupied”, and take the centroids as potential
pick-up points. Secondly, we propose a heuristic based on skyline com-
putation to construct a pick-up tree in which current position is its root
node that connects all centroids. Then, we present a probability model
to estimate gasoline consumption of every route. By adopting the esti-
mated gasoline consumption as the weight of every route, the weighted
Round-Robin recommendation method for the set of taxis is proposed.
Our experimental results on real-world taxi trajectories data set have
shown that the proposed recommendation method effectively reduce the
driving distance before carrying passengers, especially when the number
of cabs becomes large. Meanwhile, the time-cost of our method is also
lower than the existing methods.

Keywords: Taxi trajectories, pick-up tree, route recommendation, clus-
tering, skyline.

1 Introduction

The rapid growth of wireless sensors and development of Global Positioning
System (GPS) technologies [1] make it increasingly convenient to obtain the
time-stamped trajectory data of taxis. In practice, cab drivers wish to be recom-
mended a fastest route to pick up passengers. Such a large number of trajectories
provide us unprecedented opportunity to mine useful knowledge and to recom-
mend efficient routes for cab drivers. This recommender system not only helps
cab drivers to raise the income, but also decreases the gasoline consumption
which is good for environmental protection.

� Corresponding author.

H. Gao et al. (Eds.): WAIM 2012, LNCS 7418, pp. 471–483, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

472 H. Hu et al.

In the literature, a great deal of research has been devoted to mobile recom-
mendations. These studies mainly focus on the following subareas: the mobile
tourist recommender systems [2, 3, 4, 5], taxi driving fraud detection systems [6],
driving direction recommender systems [7, 8], and routes for carrying passengers
recommendation [9], which have greatly advanced the research to a higher level.

The scope of this paper belongs to the field of recommending routes for car-
rying passengers. The idea of this paper stems from the work in [9] which aims
to recommend a travel route for a cab driver in a way such that the potential
travel distance before carrying passengers is minimized. In their approach, for
the length of suggested driving route L, there are CL

K candidate routes where
K is the number of pick-up points. Then, routes which are not dominated by
any other route are recommended to cab drivers. The main task in [9] is to
search the best routes among these CL

K candidate routes. Although a satisfying
strategy called SkyRoute is proposed [9], it is still time-consuming as the increase
of L and K. In the meanwhile, a multitude of routes are recommended to cab
drivers in the equal possibilities without considering the number of passengers
and driving distance of the routes, as shown in the left side of the Fig. 1. If we
consider the scene that many taxis head for a narrow route with few passengers,
conflict for carrying customers or even the traffic jam in that route may happen.

Fig. 1. The illustration for our research motivation

To meet this dilemma, a data structure named pick-up tree is presented which
takes the current position as its root node and connects all pick-up points is
presented. The better routes are recommended in a high probability as shown in
thick line in right side of Fig. 1. Moreover, if we assume there are a set of cabs
around CP , by adopting our recommendation, most of cabs will cruise along
with the better routes and other relatively worse routes will also be covered by
less cabs. There remain two problems to solve when we follow this idea:

– An objective function measuring the global profit of the set of taxis by adopt-
ing recommendation should be presented. The probabilities for picking up
passengers at points should be estimated. Also, the expectation for measur-
ing the weight of routes should be given.

– Finding the optimal value of objective function among all routes is a combi-
natorial optimization problem which is NP hard. How to apply a heuristic
to this NP hard problem should be solved.

Pick-Up Tree Based Route Recommendation from Taxi Trajectories 473

In this paper, we focus on the recommendation and minimization of the gasoline
consumption which is close related to idle driving distance for a set of cabs
around a position, rather than one cab. Historical pick-up points are extracted
and clustered, and routes connecting the centroids are taken as recommendation
choise. We then propose a heuristic to construct a pick-up tree to cover all
centroids. The model for estimating oil consumption before carrying passengers
of every route is presented. By adopting the oil consumption as the weight of
every route, the recommendation method for the set of taxis is proposed.

2 Problem Definition

Let C be the set of K potential pick-up points C = {C1, C2, · · · , CK}. We then
assume there are W target taxis around a position CP , T = {T1, T2, · · · , TW }.
The probability that a taxi could carry passengers in the pick-up point Ci is
written P (Ci), and the set of mutually independence probability is written P =
{P (C1), P (C2), · · · , P (CK)}.

The route recommendation aims to generate W routes for every taxi, and
minimize the global gasoline consumption before picking up passengers for all
taxis. So, we have the objective function as follows:

Definition 1 (Global Gasoline Consumption Function). Given W rec-
ommended routes R = {R1,R2, · · · ,RW }, the global oil consumption function:

O1 : min
R∈Ω

W∑
r=1

C(CP,Rr) (1)

In the definition 1, CP is the current position of taxis, the set of all possible
routes is known as Ω, and we try to find a subset of Ω with size of W for
minimization. The problem is NP hard due to the exponential scale of Ω. The oil
consumption of a route is measured by the C(•) function which will be addressed
in Section 4. Note that the problem should not only minimize the global gasoline
consumption, but also attempt to cover all pick-up points.

3 CabRec Design

In this section, we propose a route recommendation method, named CabRec, for
cab drivers. To illustrate it, we first present a heuristic algorithm to generate a
pick-up tree. Then, we show how to compute the gasoline consumption for each
route. Finally,we describe the weighted Round-Robin recommendation process.

3.1 Pick-Up Tree Generation

The problem is to construct a tree which uses CP as the root and connects
all points in C. The straightforward way is to add an edge between any of two

474 H. Hu et al.

nodes, but the derived network will be too complex to process. In our solution,
edges between a point and its skyline points are added. The set of skyline points
consists of the points that are not dominated by any other point [10]. We should
begin with the definition of the point dominance.

Definition 2 (Point Dominance). Let CP ′ denote the current node, Ci and
Cj are two different pick-up points. These two pick-up points can be described by
two dimensions Ci = (P (Ci), D(Ci, CP ′)) and Cj = (P (Cj), D(Cj , CP ′)). We
say that point Ci dominates point Cj iff one of the cases happens: (1) P (Ci) =
P (Cj) and D(Ci, CP ′) < D(Cj , CP ′); (2) P (Ci) > P (Cj) and D(Ci, CP ′) =
D(Cj , CP ′); (3) P (Ci) > P (Cj) and D(Ci, CP ′) < D(Cj , CP ′).

The pseudocode of the pick-up tree generation algorithm is given as follows.
Lines 2 and 3 are about initialization. The FindSkyline function in line 2 finds
skyline points for the current position CP . Then, in line 5, we use a heuristic
metric with maximum ratio of pick-up probability to distance to select the next
expanding node. The algorithm stops when all points in C are added to the
pick-up tree.

Discussion. If we construct a rectangular coordinate system with CP ′ as
its origin, all remaining pick-up points in C can be depicted by Ci =
(P (Ci), D(Ci, CP ′)). That there is at least a skyline point for CP ′. So, in each
while loop, at least a point is added to the pick-up tree. The pick-up tree guar-
antees to include all points in C.

Algorithm 1. Pick-up Tree Generation Algorithm

1: procedure CreatePTree(CP,C)
2: V ← FindSkyline(CP,C)
3: Add edges between CP and its skyline points
4: while (C − V) �= NULL do

5: CP ′ ← argmaxi{ P (Ci)
D(Ci,CP ′) , i = 1, · · · , |V |}

6: V ← V+ FindSkyline(CP ′, C − V)
7: Add edges between CP ′ and its skyline points
8: end while
9: end procedure

It can be seen clearly that skyline computation encapsulated in the
FindSkyline function can be done in polynomial time. The straightforward
method is to compare each point with all the other points to check whether
it can be dominated by some points. If so, remove it, otherwise mark this point
as a skyline point. The time complexity of this method is O(2n2), but with the
increase of the number of pick-up points, the performance FindSkyline will be-
come the bottleneck. In this article, we use a sort-based skyline computation to
implement FindSkyline.

Obviously, FindSkyline is much more faster than the straightforward way,
because comparison is made just on the skyline points and all the points only

Pick-Up Tree Based Route Recommendation from Taxi Trajectories 475

need to visit once. Also, Theorem 1 is presented to guarantee the correctness of
the process of FindSkyline.

Theorem 1. After sorting on the data set D, the one with the maximum value
will be certainly the skyline point.

Proof: If the maximum point pmax is not a skyline point, it must be dominated
by at least one point represented by q. According to the definition 1, P (q) −
D(q, CP ′) > P (pmax) − D(pmax, CP ′) is surely satisfied. So, pmax is not the
maximum point and contradiction appears. Proof done.

Algorithm 2. Sort-based Skyline Computation Algorithm

1: procedure FindSkyline(CP ′,D)
2: Sort all points in D with P (Di)−D(Di, CP ′),get D′

3: Maintain a set S for skyline points
4: Move the first point into S from D′

5: while D′ �= NULL do
6: Let pmax denote the current maximum in D′

7: Compare pmax with all the points in S
8: If pmax is dominated by some points in S ,
9: Just remove pmax from D′

10: Else move pmax from D′ to S
11: end while
12: end procedure

3.2 Computational Issues

We assume the oil consumption increases proportionately with the driving dis-
tance before carrying passengers. Let kmax denote the length of the route Rr =
{C1, C2, · · · , Ckmax}. Two cases may happen when a taxi selects the route: (1)
the taxi carries a customer in one of the kmax nodes; (2) the taxi does not carry
any customer in that route.

1. Assume the taxi carries a passenger in Ck(k = 1, 2, · · · , kmax), the travel
distance without customers is as follows:

Fk =

k−1∏
i=1

(1− P (Ci))P (Ck)

k∑
i=1

Di (2)

In Eq. (2), Di is the distance between C(i−1) and Ci, and D1 is the dis-
tance between CP and C1. The most common way for computing Di is to
use Euclidean distance. However, the earth is roughly a great circle, and
the latitude and longitude are defined globally in respect to the earth sur-
face instead of a plane. In this article, we employ Vincenty’s formula [11]
with the assumption of spherical earth. Let C(i−1) = (φ(i−1), λ(i−1)) and

476 H. Hu et al.

Ci = (φi, λi) denote the two points, where φ and λ are the latitude and
longitude, respectively.

Di = r · arctan(
√

(cos φi sin�λ)2 + (cos φ(i−1) sinφi − sinφ(i−1) cos φi cos�λ)2

sinφ(i−1) sinφi + cos φ(i−1) cosφi cos�λ
)

(3)

In Eq. (3), r is the radius of the Earth and is set to 6372.795km, and
�λ = |λi − λi−1|. Eq. (4) measures the average oil consumption in the
case of carrying a customer in the route. The smaller F(CP,Rr) is, the
more valuable the route will be.

F(CP,Rr) =

kmax∑
k=1

Fk (4)

2. The event that a taxi does not carry a customer in a route may also happen.
We have the probability of occurrence as follows:

Pφ(Rr) =

kmax∏
i=1

(1 − P (Ci)) (5)

In Eq. (5), Pφ(Rr) decreases with the increase of the length of a route, and
the smaller it is, the more valuable the route is.

We then define a cost function to combine above-mentioned two cases:

C(CP,Rr) = αPφF(CP,Rr) (6)

In Eq. (6), an exponential function is employed to magnify Pφ. We set α > 1 to
make the cost monotone increasing with both Pφ and F(•).

3.3 Recommendation Method

Assume the pick-up tree has N(N ≤ K) leaf nodes, so there are N possible
routes R = {R1,R2, · · · ,RN}. In this subsection, we introduce the method for
recommending the N routes to W target taxis. We propose to use a standard
weight to measure the importance of a route. The cost for each route is obtained
by Eq. (6). We then define the weight of each route as follows:

ω(Rr) =
1

N − 1

∑N
i=1 C(CP,Ri)− C(CP,Rr)∑N

i=1 C(CP,Ri)
(7)

Obviously, weights for all routes are normalized,
∑N

i=1 ω(Ri) = 1. A Round-
Robin method is used to make recommendation for multiple cabs in [9], and k
optimal routes are used to generate the circle list. The Round-Robin approach
recommends routes in the circle list to the coming empty cabs in turn. If there

Pick-Up Tree Based Route Recommendation from Taxi Trajectories 477

Table 1. Description of the 10 centroids

No. C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

latitude 37.7901 .7773 .7752 .7472 .7990 .7971 .7641 .7869 .7705 .7800
longitude -122.4199 .3949 .4169 .4198 .4344 .4043 .4277 .4062 .4657 .4391

Size 3075 1357 1838 1763 2154 3818 3506 4964 1253 2245
Dist.(km) 1.136 2.195 2.243 5.319 2.383 0.466 3.759 0.816 5.711 3.151
P (Ci) 0.120 0.082 0.120 0.093 0.131 0.090 0.097 0.097 0.101 0.117

Note: (1) Only the fractional part of latitude and longitude are kept.
(2) Size is the number of pick-up points in this cluster.

Table 2. The cost and weight of recommended routes

No. Recommended routes Cost Weight
1 (CP,C0) 0.195 0.192
2 (CP,C4) 0.444 0.182
3 (CP,C7) 0.114 0.195
4 (CP,C5, C1) 0.354 0.185
5 (CP,C5, C2, C6) 1.006 0.158
6 (CP,C5, C2, C9, C8, C3) 2.731 0.088

are more than k empty cabs, recommendations are repeated from the first route
again after the kth empty cab.

In this paper, we firstly generate the circle list according to the weight of each
route. For W empty cabs, we add %ω(Rr) ·W & times into the circle list for route
Rr. Also, we randomly arrange routes in the circle list and employ the Round-
Robin method to generate a recommended route for each cab. We benefits the
proposed recommendation method from two aspects: (1) each route appears in
the circle list at least once, so none pick-up point is ignored; (2) the route with
low cost has more opportunities appearing in the circle list, so more cabs will
cruise to that route.

Discussion. In section 2, the green recommendation problem is formulated a
combinatorial optimization problem which is NP hard. So, our proposed CabRec
is a heuristic in essence. However, the cost estimation for a route and the
recommendation method are deterministic. In fact, we apply heuristic during
construction of the pick-up tree, and once the pick-up tree is generated, the rec-
ommendation list can be produced. This strategy is more efficient The proposed
CabRec does not always recommend the best route to cabs, but recommend
better routes with high probability.

4 Experimental Results

In this section, we demonstrate the effectiveness of the proposed CabRec. Specif-
ically, we will show: (1) An example of the pick-up tree and the cost and weight
of every route; (2) The superior performance of CabRec compared with LCP on
driving distance before carrying passengers and time-cost.

478 H. Hu et al.

4.1 Experiment Setup

Data Sets. For our experiments, we use a real-world data set containing GPS
location traces of approximately 500 taxis collected around 30 days in the San
Francisco Bay Area, USA. To distinguish from other works, state variance points
are deemed to be the potential pick-up points. The state of the pick-up point is
1(= occupied), and the state of its previous point is 0(= free). Then, we extract
the pick-up points of all cab drivers (536 cabs) on two time periods: 2PM-3PM
and 6PM-7PM. In total, 25973 points are obtained during 2PM-3PM, and 6203
points are obtained during 6PM-7PM. Simple K-means provided by WEKA1

is used for clustering where“Euclidean Distance” function,“10” seed and “500”
max iterations are set.

Methods. Two types of route recommendation methods are implemented for
performance comparison. The first one is the proposed CabRec, and another one
is LCP proposed in [9], coded by ourselves in Java. We use LCPx to denote the
LCP method of which the length of recommended route is x.

Fig. 2. An example of the pick-up tree

4.2 Results of Pick-Up Tree

In this subsection, we illustrate the output of the pick-up trees with different CP
and the number of clusters K. To facilitate the exhibition, we limit the range of
map with the latitude in the interval [37.80654, 37.70846] and the longitude in the

1 http://www.cs.waikato.ac.nz/ml/weka/

Pick-Up Tree Based Route Recommendation from Taxi Trajectories 479

interval [-122.49979, -122.3794]. We then extract all state variance points of 536
cabs during 2PM-3PM and obtain 25973 potential pick-up points. The current
position CP is located at the point (37.7941, -122.4080) which is the China Town
in the San Francisco Bay Area. All potential pick-up points are clustered into 10
clusters. The way to estimate P (Ci) of the ith centroid is as follows: finding the
adjacent points in the ith cluster for every taxi and computing average difference
of time all taxis denoted as tavg(Ci). So, we have P (Ci) = 1/tavg(Ci). Note that
two adjacent points implicate the taxi has carried passengers, since the point
in each cluster represents state variance from free to occupied. Table 1 lists the
information of the 10 centroids, and the derived pick-up tree is shown in Fig. 2.

In this example, there are 6 routes from CP to the leaf nodes. We set α = 1.5
to get the values of cost function by Eq. (6), and then obtain the standard
weights of every route by Eq. (7). Table 2 shows the cost and weight of these 6
recommended routes.

4.3 Performance Comparison

Here, we compare the proposed CabRec with LCP on the driving distance before
carrying passengers and time-cost. We design the procedure of our experiment
as follows:

(a) 2PM-3PM (b) 6PM-7PM

Fig. 3. A comparison on the average driving distance before carrying passengers

– Step 1: Pick-Up Points Generation by Clustering. The state variance
points of all taxis during the given time period are clustered into K clusters,
and the K centroids are returned as the pick-up points.

– Step 2: Route Recommendation.We employ CabRec and LCP for route
recommendation. CabRec utilizes the weighted Round-Robin method to gen-
erate recommended routes, while LCP takes all routes equal and uses the
simple Round-Robin method.

– Step 3: Simulation of Taxis to Pick Up Passengers. In this step, we
assume there are W target taxis around a given current position. Since the
time span of the experimental data set is about 30 days, the size of every
cluster divided by 30 days is the average number of passengers of each pick-
up point every day. After these W target taxis adopt recommended routes

480 H. Hu et al.

generated by both CabRec and LCP, once a taxi passes a pick-up point
having non-zero remaining passengers, the taxi is deemed to be occupied and
the number of remaining passenger of that pick-up point should subtract 1.

In the above-mentioned procedure, we are readily to compute the average driving
distance of W taxis before carrying passengers. Note that if the taxi does not
carry any passenger in the recommended route we extra add 10km to its driving
distance as penalty. We set K = 20 and range W in different scale according
to the number of state variance points of different time period. Fig. 3 show the
comparison results on two time periods. As can be seen, CabRec works much
more better than both LCP3 and LCP4, especially when W is large. The reason
lies in that since CabRec has estimated the cost of every route and taken it as
the weight, more cabs will cruise along with the high-weight routes with the
increase of W . In contrast, LCP takes every route as equal and many taxis head
for the routes with few passengers, which reduce the performance dramatically.

Fig. 4. The comparison on execution time

We also observe the execution time of CabRec and LCP. Fig. 4 shows the
execution time with the increase of the number of pick-up points (K centroids).
As can be seen, the execution time of LCP4 goes up sharply. Although the
time-cost of LCP3 is not very high, our CabRec performs even more fast than
LCP3.

To sum up, we have two conclusions from the experiments: (1) The proposed
CabRec can successfully decrease the average driving distance of the set of taxis
before carrying passengers. (2) The time-cost of our CabRec is also lower than
the existing methods.

5 Related Work

With the prevalent of the ubiquitous computing, it is more and more convenient
to obtain the information about location, time, trajectory, surrounding, etc.
Mobile recommender systems have attracted more attentions. Some research

Pick-Up Tree Based Route Recommendation from Taxi Trajectories 481

opportunities on mobile recommender systems were discussed in [12]. Quercia
et al. have designed a social events recommender system using mobile phone
location data [13]. Several kinds of mobile tourist recommender systems have
been presented in [2, 3, 4, 5].

In addition, great research efforts have been taken to use GPS trajectories
of cabs for analysis. Liu et al.focused on cabdriver operation patterns analy-
sis rather than recommendation based on the large scale cabdrivers’ behavior
in Shenzhen, China [14]. A mobility-based clustering analysis method is used
for identifying hot spots of moving vehicles [15]. Chang et al. have proposed
a context-aware prediction model for taxi demand hotspots [16]. Wu et al. in-
vestigated service site selection using GIS data [17]. Zheng and Xie et al. have
conducted many studies on knowledge discovery from GPS trajectory data in
Beijing, China. For instance, the computation method of user similarity based
on location history is proposed in [18], friends and locations recommendation
method is then studied in [19], and the knowledge extracted from GPS data is
also used to solve the congested traffic problems [20, 8]. Chen et al. studied a new
problem of searching the k Best Connected Trajectories (k -BCT) by locations
from a database, in which context the query is only a small set of locations [21].
Chen et al. also discovered the Most Popular Route(MPR) between two loca-
tions by observing the traveling behaviors of many previous users [22]. In this
article, we focus on green recommendation for cab drivers, and our experiments
utilize the cab traces data set in the San Francisco Bay Area, which is also used
by [9, 6].

6 Conclusion and Future Work

Upon taxi trajectories data, this paper proposes a system called CabRec for route
recommendation. In CabRec, the state variance points that imply the taxis have
carried passengers are clustered, and the centroids are taken as potential pick-up
points. Then, a heuristic is employed to construct the pick-up tree which takes
the current position as its root node and connect all centroids. A probability
model to estimate the weight of every route and the weighted Round-Robin
recommendation method for the set of taxis is proposed. Our experimental re-
sults on real-world taxi trajectories data set have shown the effectiveness and
efficiency of the CabRec.

There are a wealth of research directions that we are currently considering,
such as implementing a cab recommender system with dynamic visualization,
employing several large-scale data sets, and expanding other recommender ap-
plications in the area of intelligent transportation system, and more.

Acknowledgments. This research is supported by National Natural Science
Foundation of China (No.61103229, 71072172, and 61003074), Industry Projects
in the Jiangsu Science & Technology Pillar Program (No.BE2011198), Jiangsu
Provincial Colleges and Universities Outstanding Science & Technology Inno-
vation Team Fund(No.2001013), International Science & Technology Coopera-
tion Program of China (No.2011DFA12910), National Key Technologies R&D

482 H. Hu et al.

sub Program in 12th five-year-plan (No. SQ2011GX07E03990), Jiangsu Provin-
cial Key Laboratory of Network and Information Security(Southeast Univer-
sity) (No.BM2003201), Natural Science Foundation of Jiangsu Province of China
(BK2010373) and Postgraduate Cultivation and Innovation Foundation of
Jiangsu Province (CXZZ11 0045).

References

[1] Wang, S., Wu, C.: Application of context-aware and personalized recommenda-
tion to implement an adaptive ubiquitous learning system. Expert Systems with
Applications (2011)

[2] Abowd, G.D., Atkeson, C.G., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cyber-
guide: A mobile context-aware tour guide. Wireless Networks 3(5), 421–433 (1997)

[3] Staab, S., Werthner, H.: Intelligent systems for tourism. IEEE Intelligent Sys-
tems 17(6), 53–66 (2002)

[4] Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-based representative skyline. In: Pro-
ceedings of the 2009 IEEE International Conference on Data Engineering (ICDE
2009), pp. 892–903 (2009)

[5] Liu, Q., Ge, Y., Li, Z., Chen, E., Xiong, H.: Personalized travel package recom-
mendation. In: IEEE 11th International Conference on Data Mining (ICDM 2011),
pp. 407–416 (2011)

[6] Ge, Y., Xiong, H., Liu, C., Zhou, Z.: A taxi driving fraud detection system. In:
IEEE 11th International Conference on Data Mining(ICDM 2011), pp. 181–190
(2011)

[7] Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive:
Driving directions based on taxi trajectories. In: Proceedings of the 18th SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems,
pp. 99–108 (2010)

[8] Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical
world. In: Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 316–324 (2011)

[9] Ge, Y., Xiong, H., Tuzhilin, A., Xiao, K., Gruteser, M., Pazzani, M.: An energy-
efficient mobile recommender system. In: Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 899–908
(2010)

[10] Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J., Zhang, Q.: Efficient computation
of the skyline cube. In: Proceedings of the 31st International Conference on Very
Large Data Bases, pp. 241–252 (2005)

[11] Vincenty, T.: Direct and inverse solutions of geodesics on the ellipsoid with appli-
cation of nested equations. Survey Review 23(176), 88–93 (1975)

[12] van der Heijden, H., Kotsis, G., Kronsteiner, R.: Mobile recommendation sys-
tems for decision making. In: Proceedings of International Conference on Mobile
Business (ICMB 2005), pp. 137–143 (2005)

[13] Quercia, D., Lathia, N., Calabrese, F., Lorenzo, G.D., Crowcroft, J.: Recommend-
ing social events from mobile phone location data. In: IEEE 10th International
Conference on Data Mining (ICDM 2010) (2010)

[14] Liu, L., Andris, C., Ratti, C.: Uncovering cabdrivers’ behavior patterns from their
digital traces. Computers, Environment and Urban Systems 34(6), 541–548 (2010)

Pick-Up Tree Based Route Recommendation from Taxi Trajectories 483

[15] Liu, S., Liu, Y., Ni, L.M., Fan, J., Li, M.: Towards mobility-based clustering. In:
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 919–927 (2010)

[16] Chang, H., Tai, Y., Hsu, J.: Context-aware taxi demand hotspots prediction. In-
ternational Journal of Business Intelligence and Data Mining 5(1), 3–18 (2010)

[17] Wu, J., Chen, J., Ren, Y.: GIS enabled service site selection: Environmental anal-
ysis and beyond. Information Systems Frontier (13), 337–348 (2011)

[18] Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W., Ma, W.Y.: Mining user similar-
ity based on location history. In: Proceedings of the 16th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems (2008)

[19] Zheng, Y., Zhang, L., Ma, Z., Xie, X., Ma, W.: Recommending friends and
locations based on individual location history. ACM Transactions on the Web
(TWEB) 5(1), 5 (2011)

[20] Liu, W., Zheng, Y., Chawla, S., Yuan, J., Xing, X.: Discovering spatio-temporal
causal interactions in traffic data streams. In: Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 1010–1018 (2011)

[21] Chen, Z., Shen, H., Zhou, X., Zheng, Y., Xie, X.: Searching trajectories by loca-
tions: an efficiency study. In: Proceedings of the 2010 International Conference on
Management of Data (SIGMOD 2010), pp. 255–266 (2010)

[22] Chen, Z., Shen, H., Zhou, X.: Discovering popular routes from trajectories. In: Pro-
ceedings of the 2009 International Conference on Data Engineering (ICDE 2011),
pp. 900–911 (2011)

Author Index

Agrawal, Rakesh 20

Bajpai, Sunil 102
Banafaa, Khaled M. 334
Batra, Vishal S. 102
Bhide, Manish A. 102

Cao, Jie 471
Cao, Keyan 308
Cao, Wei 375
Chakraborti, Sutanu 228
Chen, Hong 22
Chen, Yueguo 165
Chen, Zhong 352
Chen, Ziyang 272
Cheng, Hong 314
Cheng, Jiefeng 284
Chenthamarakshan, Vijil 419
Chiu, Dickson 322
Cui, Jifeng 210

Deepak, P. 228
Deshpande, Prasad M. 419
Du, Xiaoyong 165, 314
Du, Xudong 446

Fan, Wenfei 1
Feng, Jianhua 58
Feng, Shengzhong 284
Feng, Shi 95, 172
Fu, Lizhen 254

Gao, Jun 434
Gollapudi, Sreenivas 20
Gu, Junzhong 114
Gu, Yu 216
Guo, Jingfeng 272
Guo, Longjiang 47
Guo, Xiaohui 399

Han, Donghong 308
Han, Jiawei 17
He, Jun 314
Hemayati, Reza Taghizadeh 185
Htoo, Htoo 198

Hu, Haoran 471
Hu, Hua 322
Hu, Jianbin 352
Huai, Jinpeng 399
Huang, Jin 165
Huang, Liqing 363

Ishikawa, Yoshiharu 346

Ji, Tengfei 434
Jiang, Guochang 322
Jiang, Nan 322
Jin, Peiquan 266

Kannan, Anitha 20
Kenthapadi, Krishnaram 20
Kong, Lingbo 352
Kou, Yue 222, 405
Krishnapuram, Raghuram 419

Lan, Guoxiang 272
Li, Chao 210
Li, Guilin 47
Li, Miao 216
Li, Renfei 172
Li, Ruixuan 334
Li, Shijun 459
Li, Yinglong 22
Liao, Minghong 47
Lin, Sheng 266
Lin, Xin 114
Liu, Hongyan 314
Liu, Mengchi 71
Liu, Tong 387
Liu, Xueli 296
Lu, Zeping 375

Ma, Xianzhe 308
Ma, Yue 308
Mao, Bo 471
Meng, Weiyi 185
Meng, Xiaofeng 254, 375
Mo, Shangfeng 22
Mohania, Mukesh K. 102

486 Author Index

Negi, Sumit 102
Ni, Weijian 387
Nie, Tiezheng 222, 405

Ohsawa, Yutaka 198

Pan, Jingui 471

Qi, Xiaoying 375
Qu, Jun-Feng 71

Sakauchi, Masao 198
Shen, Derong 222, 405
Sonehara, Noboru 198
Song, Kaisong 95
Song, Wenting 314
Stolze, Knut 419
Sun, Hailong 399
Sun, Yu 165
Suzuki, Yu 127, 346

Tan, Long 35
Tang, Xian 272
Tang, Yi 363
Tong, Xing 241

Varadarajan, Ramakrishna 419

Wang, Daling 95, 172
Wang, Dong 95
Wang, Guoren 308
Wang, Hongzhi 152, 241, 296
Wang, Peng 83
Wu, Hao 139
Wu, Zhiang 322, 471

Xie, Ming 459
Xing, ChunXiao 210

Xu, Jia 216
Xu, Jianliang 114
Xue, Jianxin 405

Yang, Dongqing 434
Yang, Lei 399
Yang, Long 152
Yang, Tao 352
Yokoyama, Takuya 346
Yu, Clement 185
Yu, Ge 95, 172, 216, 222, 405
Yu, Jeffrey Xu 284, 314
Yu, Liangwen 352
Yu, Wei 459
Yue, Lihua 266

Zeng, Qingtian 387
Zeng, Xianggang 284
Zhang, Jian 47
Zhang, Jingxing 459
Zhang, Nan 58
Zhang, Richong 399
Zhang, Rui 165
Zhang, Xiang 83
Zhang, Yan 152
Zhang, Yifei 172
Zhang, Yong 210
Zhang, Yunlu 459
Zhao, Cuifang 83
Zhao, Jie 266
Zhao, Xujian 266
Zhou, Fengbo 83
Zhou, Guofu 459
Zhou, Junfeng 272
Zhou, Lizhu 139
Zhu, Mingdong 222
Zhuang, Yi 322, 471

	Title
	Preface
	Table of Contents
	Keynotes
	Data Quality: Theory and Practice
	Data Quality: An Overview
	Central Issues of Data Quality
	Data Consistency
	Data Deduplication
	Data Accuracy
	Information Completeness
	Data Currency
	Interactions between Data Quality Issues

	Improving Data Quality
	Conclusion
	References

	Construction of Web-Based, Service-Oriented Information Networks: A Data Mining Perspective
	References

	Electronic Textbooks and Data Mining
	References

	Session 1: Wireless Sensor Networks
	Topology-Based Data Compression in Wireless Sensor Networks
	Introduction
	Related Work
	Preliminaries
	The TDC Scheme
	Overview of TDC Algorithm
	The Detailed TDC Algorithm
	Performance of the TDC Algorithm

	Simulation Results
	Conclusions and Future Work
	References

	A Residual Energy-Based Fairness Scheduling MAC Protocol for Wireless Sensor Networks
	Introduction
	Related Work
	Fair Scheduling in Wireless Packet Switch Network
	MAC Protocol in WSN

	Residual Energy-Based Fairness Scheduling MAC Protocol (REBFS MAC Protocol)
	Preliminary Conditions and Assumption
	REBFS-MAC Protocol Design

	Performance Evaluation
	Conclusion
	References

	Topology-Aided Geographic Routing Protocol for Wireless Sensor Networks
	Introduction
	Related Works
	The Grid-Based Topology Detection Protocol
	Connectivity Detection Protocol for Grids
	Topology Detection Protocol for the Network

	Topology-Aided Geographic Routing Protocol
	The Next Hop Selection Algorithm
	The Topology-Aided Geographic Routing Protocol

	Experiments
	Comparison of Selected Routing Path for Different Protocols
	Comparison of Selected Routing Path for Different Protocols

	Conclusion
	References

	Polaris: A Fingerprint-Based Localization System over Wireless Networks
	Introduction
	Polaris Overview
	Polaris Model
	Polaris Algorithm
	Indexing
	Search Algorithm
	Cluster-Based Representative Selection
	Incremental Representative Selection

	Experiment
	Related Work
	Conclusion
	References

	Session 2: Data Warehouse and Data Mining
	A High-Performance Algorithm for Frequent Itemset Mining
	Introduction
	Problem Definition
	Previous Solutions
	Contribution

	Pattern Growth Approach
	BFP-Growth Algorithm
	Building Counting Vectors
	Constructing Conditional Prefix-Trees
	Pseudo-code of BFP-Growth

	Time Analysis
	Less Traversal Cost
	Should the FP-Array Technique Be Incorporated?
	Plain Prefix-Trees

	Experiments
	Conclusion
	References

	Mining Link Patterns in Linked Data
	Introduction
	Preliminary Concepts
	Typed Object Graph
	Link Pattern

	Type Determination
	Mining Link Patterns
	Graph Clustering
	gSpan-Based Pattern Mining

	Experiments
	Experiment on Semantic Web Dog Food
	Experiment on Falcons Subset

	Related Works
	Conclusion and Future Works
	References

	Detecting Positive Opinion Leader Group from Forum
	Introduction
	Related Work
	Problem Description
	Detection of Links between Comments
	Sentiment Analysis for Positive and Negative Links
	Explicit and Implicit Links Detection

	Positive Opinion Leader Group Detection
	Experiments
	Conclusion
	References

	D’MART: A Tool for Building and Populating Data Warehouse Model from Existing Reports and Tables
	Introduction
	Related Work
	Indian Railways Scenario
	D'MART Approach
	Fact Identification
	Dimension Identification
	Push Down Analysis
	Redundancy Analysis

	Experimental Evaluation
	Conclusion
	References

	Session 3: Query Proceeding (1)
	Continuous Skyline Queries with Integrity Assurance in Outsourced Spatial Databases
	Introduction
	Preliminaries and Related Work
	Authentication for Continuous LSQs
	Valid Scope and Its Authentication
	Visible Region
	Incremental VO

	Experiments
	Experiment Setup

	Conclusions and Future Work
	References

	Assessing Quality Values of Wikipedia Articles Using Implicit Positive and Negative Ratings
	Introduction
	Related Work
	Proposed Method
	Modeling
	Key Idea
	Quality Value

	Experiments
	Data Sets
	Experimental Results and Discussions

	Conclusion
	References

	Form-Based Instant Search and Query Autocompletion on Relational Data
	Introduction
	Problem Formulation
	Basic Index Structures and Algorithms
	Form-Based Prefix Keyword Search
	Simultaneous Query Autocompletion
	Incremental Online Processing

	Autocompletion for Textual Attributes
	ScanCount: Exact Method as Baseline
	HistScan: Histogram-Based Estimation
	HistBFS: Scan-Free Histogram-Based Estimation

	Experiments
	Evaluation of Incremental Algorithms
	Evaluation of Query Autocompletion

	Related Work
	Conclusions
	References

	Session 4: Query Proceeding (2)
	Range Query Estimation for Dirty Data Management System
	Introduction
	Preliminaries
	Entity-Based Relational Database Model
	Operators

	Range Query Estimation
	Preliminary Range Query Estimation Method
	Accurate Range Query Estimation

	Experimental Evaluation
	Data Sets
	Query Set and Error Metric
	Experimental Results

	Conclusion and Future Work
	References

	Top-k Most Incremental Location Selection with Capacity Constraint
	Introduction
	Related Work
	Preliminary
	Definitions
	Basic Solution

	Algorithm
	Notation and Properties
	Pruning Techniques
	Spatial Index

	Empirical Study
	Experimental Setup
	Comparisons
	Scalability

	Conclusion
	References

	An Approach of Text-Based and Image-Based Multi-modal Search for Online Shopping
	Introduction
	Related Work
	Problem Description
	Offline Extraction of Features from Commodity Information
	Construction of Stop Lexicon and Shop Lexicon for Text Partition
	Generation of Basic Feature Set from Commodity Image
	Generation of Refined Feature Set from Commodity Image

	Multi-modal Online Search for Shopping
	Experiment Results
	The Parameters in Search and Effectivity Comparison
	Multi-modal Retrieve Results

	Conclusions and Future Work
	References

	Categorizing Search Results Using WordNet and Wikipedia
	Introduction
	Related Work
	System Overview
	SRR Grouping Algorithms
	Algorithm CCC
	E3C (Extended CCC)
	Query ReWriting (QRW)
	Hybrid Method

	Evaluation
	Query Set and Performance Measures
	Performance of CCC and E3C in Different Steps
	Overall Performance of All Algorithms

	Conclusion
	References

	Session 5: Spatial Database
	Optimal Sequenced Route Query Algorithm Using Visited POI Graph
	Introduction
	Related Work
	OSR Query Applying A* Algorithm
	OSR Query by A* Algorithm
	Bidirectional Search

	Suppressing Duplicated Node Expansion
	Experimental Results
	Conclusion
	References

	A Packaging Approach for Massive Amounts of Small Geospatial Files with HDFS
	Introduction
	Related Work
	Solution for Data Disposal
	The Experimentation Results and Analysis
	Conclusions
	References

	Adaptive Update Workload Reduction for Moving Objects in Road Networks
	Introduction
	Related Work
	Preliminaries
	Optimization Techniques
	Optimization of RSNR
	Optimization Based on Greedy Algorithm
	Optimization Based on TS

	Experimental Study
	Conclusion
	References

	Session 6: Similarity Search and Queries
	An Adaptive Distributed Index for Similarity Queries in Metric Spaces
	Introduction
	Related Work
	MT-Chord Index Structure
	Adaptive Index
	Experiment
	Conclusion
	References

	Finding Relevant Tweets
	Introduction
	Problem Definition
	Scoring Tweets
	Time-Based Scoring (TS)
	Author Social Network Based Scoring
	Content-Based Scoring

	Empirical Evaluation
	Time and Author Based Techniques
	Content Based Techniques

	A Composite Technique
	Related Work
	Conclusions and Future Work
	References

	Fgram-Tree: An Index Structure Based on Feature Grams for String Approximate Search
	Introduction
	Preliminaries
	Fgram-Tree
	Index Structure
	Query Process

	Construction of Index Structure
	Overall Method
	Center Initialization
	Node Choice
	Center Update
	Complexity Analysis

	Experimental Evaluation
	Experimental Results of Index Construction
	Experimental Results for Query Processing
	Scalability

	Conclusion
	References

	Session 7: XML and Web Data
	Efficient Processing of Updates in Dynamic Graph-Structured XML Data
	Introduction
	Preliminaries
	Graph-Structured XML Data
	Extended Interval Labeling Scheme

	Analyses of Updates of Extended Interval Labeling
	XUI Index
	Incremental Maintenance Algorithms for Labeling
	Insertions for Extended Interval Labeling
	Deletions for Extended Interval Labeling

	Experimental Result
	Size of Labeling and Indexing
	Performance of Updates

	Related Work
	Conclusion and Future Work
	References

	Extracting Focused Time for Web Pages
	Introduction
	Related Work
	Extracting Temporal Expressions
	Determining the Focused Time
	Experiment
	Dataset
	Evaluation on Temporal Expressions Extraction
	Evaluation on Focused Time Determination

	Conclusions
	References

	Top-Down SLCA Computation Based on Hash Search
	Introduction
	Background Knowledge
	Data Model
	Query Semantics

	The Algorithm for SLCA Computation
	Data Organization
	The TDHS Algorithm

	Experimental Evaluation
	Experimental Setup
	Performance Comparison and Analysis

	Conclusions
	References

	Session 8: Graph and Uncertain Data
	Top-K Graph Pattern Matching: A Twig Query Approach
	Introduction
	Problem Statement
	A Direct Solution Based on Top-k Join

	The New Twig Query Approach
	Cost-Based Optimization for T-Query Selection

	Performance Evaluation
	Related Work
	Conclusion and Future Work
	References

	Dynamic Graph Shortest Path Algorithm
	Introduction
	Problem Statement and Data Structure
	Problem Statement
	Data Structure

	Unit Update
	Single-Edge Insertion
	Single-Edge Deletion

	Batch Update
	Experiments
	Conclusion
	References

	A Framework for High-Quality Clustering Uncertain Data Stream over Sliding Windows
	Introduction
	Uncertain Definition
	Clustering Uncertain Data Stream
	Problem Definition
	Framework
	Clustering Algorithm
	Update Voronoi Diagram

	Experiment
	Clustering Quality
	Efficiency Test

	Conclusions
	References

	Bayesian Network Structure Learning from Attribute Uncertain Data
	Introduction
	Related Work
	Problem Definition
	Bayesian Network Structure Learning Algorithm DTAU
	Experiments
	Conclusion
	References

	Session 9: Distributed Computing
	Bandwidth-Aware Medical Image Retrieval in Mobile Cloud Computing Network
	Introduction
	Related Work
	Preliminaries
	Problem Formulation
	iDistance

	Enabling Techniques
	Learning-Based Data Placement Scheme in Master Nodes
	Multi-resolution-Based Adaptive Data Transfer Scheme

	The MiMiC Algorithm
	Experimental Results
	Effect of Adaptive Data Transfer Scheme
	Effect of Data Size
	Effect of Radius

	Conclusions
	References

	Efficient Algorithms for Constrained Subspace Skyline Query in Structured Peer-to-Peer Systems
	Introduction
	Related Work
	Constrained Subspace Skyline
	Preliminaries
	Partitioning and Assignment
	Skyline Query Traversal
	Parallelization of Our Approach

	Performance Evaluation
	Accessed Nodes
	Bandwidth Consumption
	Expenses
	A Bird's-eye View of the Algorithms' Results

	Conclusion
	References

	Processing All k-Nearest Neighbor Queries in Hadoop
	Introduction
	Related Work
	Cell Decomposition and Merging
	Basic Idea
	Merging Cells Using Data Distribution Information

	Illustrative Example
	Experiments
	Datasets and Experimental Environment
	Summary of Experiments

	Conclusions
	References

	Session 10: Data Security and Management
	RGH: An Efficient RSU-Aided Group-Based Hierarchical Privacy Enhancement Protocol for VANETs
	Introduction
	Preliminaries
	System Model
	Secure Objectives

	RGH Protocol
	System Initialization
	Group Construction
	Message Sending
	Message Transfering
	Message Verification
	Trace

	Security Analysis
	Privacy
	Traceability
	Authentication, Non-Repudiation and Integrity

	Performance Analysis
	Storage
	Communication

	Related Work
	Conclusion
	References

	Locating Encrypted Data Precisely without Leaking Their Distribution
	Introduction
	Motivation
	The Splitting-Duplicating Method
	The Value Tag Entropy
	Limiting the Frequencies of Value Tags
	The Splitting Procedure and Duplicating Procedure

	Experiments and Discussion
	Measuring SQL Operation Time Cost Based on OR-Expression
	Performing Splitting-Duplicating on Synthesized Dataset
	Range Queries
	Trade-Off Between the Privacy and the Performance

	Conclusion
	References

	LB-Logging: A Highly Efficient Recovery Technique for Flash-Based Database
	Introduction
	Related Work
	Motivation
	Flash Memory
	Problem Definition

	LB-Logging Approach
	Logging Algorithm
	Recovery Process

	Discussion
	Checkpoint Policy
	Heterogeneous Storage

	Performance Evaluations
	Experimental Setup
	Varying Update Transaction Size
	Varying Update Times for Each Data

	Conclusion
	References

	Session 11: I nformation Extraction and Integration
	An Under-Sampling Approach to Imbalanced Automatic Keyphrase Extraction
	Introduction
	Related Work
	Keyphrase Extraction
	Imbalanced Classification

	Under-Sampling for Keyphrase Extraction
	Problem Formulations and Algorithm Sketch
	Prediction Confidence Estimation
	Redundant Sample Identification
	Two Views for Keyphrase Extraction

	Experiments
	Dataset
	Baselines
	Evaluation Measures
	Experimental Results

	Conclusion and Future Work
	References

	A Tourist Itinerary Planning Approach Based on Ant Colony Algorithm
	Introduction
	Itinerary Planning Model
	Algorithm
	Utility Function

	Experimental
	Experimental Results
	Case Study

	Conclusion
	References

	A Transparent Approach for Database Schema Evolution Using View Mechanism
	Introduction
	Related Works
	Preliminaries
	Schema Evolution Management
	Our On-Demand Approach
	Optimized Approach

	Experimental Evaluation
	Conclusion and Future Work
	References

	WYSIWYE: An Algebra for Expressing Spatial and Textual Rules for Information Extraction
	Introduction
	Related Work
	Visual Algebra
	Overview of Algebraic Information Extraction
	Extensions for Visual Information Extraction
	Visual Operators
	Comparison with Source Based Approach

	System Architecture and Implementation
	Implementing Visual Algebra Queries Using a Database

	Experiments
	Experimental Setup
	Accuracy of Spatial Rules
	Performance

	Discussion
	References

	Session 12: Social Networks and Modern Web Services
	A Scalable Algorithm for Detecting Community Outliers in Social Networks
	Introduction
	Related Work
	Preliminaries
	The usmSqueezer Algorithm

	SCODA Algorithm
	Phase I: Content-Based Clustering
	Phase II: Structure-Based Community Outlier Detecting

	Experiments
	Data Description and Evaluation Measure
	The Accuracy of SCODA Algorithm
	The Scalability of SCODA Algorithm

	Conclusion
	References

	An Efficient Index for Top-k Keyword Search on Social Networks
	Introduction
	Problem Formulation
	TDK-Index Structure
	Tree Decomposition Based Random Access of Relationship Closeness
	Hierarchical Keyword Index

	Two-Phase TA Algorithm for Top-k Query
	One Phase Solutions
	Two-Phase TA Algorithm
	Optimization and Parameters Selections

	Experimental Study
	Related Works
	Conclusion
	References

	Engineering Pathway for User Personal Knowledge Recommendation
	Introduction
	Related Work
	Users' Workspace
	CURE Cluster Algorithm
	Experiment
	Popularity
	Diversity
	Accuracy
	Qualitative Evaluation

	Conclusion and Future Work
	References

	Pick-Up Tree Based Route Recommendation from Taxi Trajectories
	Introduction
	Problem Definition
	CabRec Design
	Pick-Up Tree Generation
	Computational Issues
	Recommendation Method

	Experimental Results
	Experiment Setup
	Results of Pick-Up Tree
	Performance Comparison

	Related Work
	Conclusion and Future Work
	References

	Author Index

