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Abstract For many years now theoretical cosmologists have been building on the

rich legacy of Georges Lemaı̂tre’s ideas and accomplishments in mathematically

modelling the structure and dynamics of the universe. His recognition and careful

demonstration of the viability and attractiveness of expanding models of the uni-

verse, along with his seminal idea of the “primeval atom,” which would later be

referred to as the Big Bang, are very well known. This has led directly, through other

important contributions by Friedmann, Robertson and Walker, to the standard

perfectly isotropic and spatially homogeneous (smooth) Friedmann-Lemaı̂tre-

Robertson-Walker (FLRW) models of our universe. These are certainly a key part

of Lemaı̂tre’s legacy. After reviewing those models, we discuss another very

important, but less well-known, contribution to fundamental cosmology, his general

spherically symmetric cosmological solutions with pressure and a cosmological

constant (vacuum energy, which is a leading candidate for dark energy). These

models are generalizations of the FLRW models and, in general, are inhomoge-

neous. In recent years they have stimulated a great deal of research in the quest for

further confirming the standard model, understanding the limitations of its perturbed

versions, or possibly replacing it with something more adequate. Their importance

for advancing our understanding and modelling of the universe, and the ways in

which they are presently being studied and deployed, is described and discussed.

Lemaı̂tre’s Legacy to Contemporary Cosmology

From the other contributions in this volume, we already know and appreciate

very well Georges Lemaı̂tre’s outstanding contributions to the foundations of

contemporary physical cosmology. This recognition and appreciation has grown
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remarkably over the past 25 years. The standard perfectly isotropic and spatially

homogeneous models of the universe have been often referred to as Friedmann-

Robertson-Walker (FRW) models, after three of the key people who contributed to

their development. Now, more commonly—especially among theoretical and math-

ematical cosmologists—they are called Friedmann-Lemaı̂tre-Robertson-Walker

(FLRW) models, in recognition of the key role Lemaı̂tre played in their conceptu-

alization and formulation.

Certainly, his key insight that the universe is expanding and cooling provided the

essential foundations for our contemporary understanding and modelling of the

universe. One very important and closely connected contribution is Lemaı̂tre’s

argument that it originated and expanded from an initial extremely dense quantum

of mass-energy, a “primeval atom” or “cosmic egg,” which predated the emergence

of space and time. This, of course, is Lemaı̂tre’s early version of the Big Bang

(Lemaı̂tre 1931a, 1950). What strongly recommended his suggestions to

Eddington, Einstein and others was his detailed demonstration that the Einstein

field equations easily accommodate such expanding cosmological solutions.

(Lemaı̂tre 1931b) This has led directly to the standard FLRW models, which

have been so successful, and have provided the basic theoretical description of

the universe. A particular FLRW model, one which is very close to spatially flat

with the mass-energy density consisting of about 27 % matter (including nearly

23 % dark matter) and 73 % dark energy (with a very small amount of residual

radiation energy density), has fit with great precision all the cosmologically rele-

vant data we have so far been able to obtain—including those from the cosmic

microwave background (CBR) probes, primordial-element-abundance (helium,

deuterium, tritium, lithium) determinations, and redshift-distance and mass-density

results. (Spergel 2003) In the next section, we shall briefly review these FLRW

models and the observational results that they fit so well.

The influence of Lemaı̂tre’s contributions does not stop here, however. He also

solved the Einstein field equations (EFE) for much more complicated cosmologies,

inhomogeneous generalizations of the FLRWmodels. In particular, in a remarkable

paper (Lemaı̂tre 1933) he gives a detailed solution to the EFE for a spherically

symmetric expanding inhomogeneous universe with both matter and vacuum

energy (a cosmological constant L) and with pressure. This paper has been consid-

ered so important that it was reprinted in 1997 in a more accessible journal. It

contains a number of cutting-edge results that anticipated much later findings.1 The

pressure-free models of this class of cosmologies are now referred to as Lemaı̂tre-

Tolman-Bondi (LTB) models, and have been the subject a great deal of recent

research. The full class of these general spherically symmetric models (including

1Among these are: the first recognition and arguments that the Schwarzschild singularity at

r ¼ 2 M (the location of the event horizon of a Schwarzschild black hole) is not an essential

singularity, hut rather a coordinate singularity; a clear definition of mass for perfect fluids in

general relativity; the first instance of a proven singularity theorem in cosmology, anticipating the

more detailed later formulations of Penrose and Hawking; and a discussion of the gravitational

processes by which “nebulae” might be formed. (Krasiński 1997a).
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those with perfect-fluid matter and radiation with pressure and pressure gradients)

are often referred to as Lemaı̂tre models. In section “Beyond the Standard FLRW

Model: Lemaı̂tre and LTB Models and Their Importance” we shall briefly discuss

LTB models and their critical importance for making progress in cosmology.

Essentially, they provide us with the simplest inhomogeneous cosmologies. Care-

fully studying them and their relationships with observations will enable us to either

confirm the present standard model or to modify it.

In section “Recent Research on LTB and Lemaı̂tre Cosmological Models”, we

shall elaborate further on LTB models, both those with and those without a

cosmological constant, briefly discuss some of the outstanding recent work on

them, mention their generalizations (i.e., those with nonzero pressure) and some

of the applications of those generalizations, and briefly discuss perturbations of

LTB models. We shall also briefly describe the types of observations that will be

important for testing them. Again, it is important to emphasize that, since FLRW

models are a special class within the more general class of LTB models, this work

may result in confirming the standard model. One of the central aims of this effort is

to determine whether or not there is significant dark energy (or a nonzero). As we

have already seen, present observations require dark energy for the standard

concordance FLRW model, but they do not require it for some LTB models

which also fit all the present data extremely well. (Clarkson and Regis 2011;

Regis and Clarkson 2012) However, there are further independent data (Hellaby

2006; Araújo and Stoeger 2009a, b; Araújo and Stoeger 2010) which may eventu-

ally be able to tell us whether the best-fit LTB model needs a cosmological constant

(dark energy) or not. Favorable consideration of L is also part of Lemaı̂tre’s legacy.

In a paper in P. A. Schilpp’s well-known volume, Albert Einstein: Philosopher-
Scientist, Lemaı̂tre explains its significance, and argues compellingly for its natural

suitability, both from mathematical and physical points of view. (Lemaı̂tre 1949) In

section “Conclusions”, we offer our concluding remarks.

The Standard FLRW Models and the Observations

Supporting Them

The standard FLRW models, which have been the theoretical foundation of con-

temporary cosmology, are special cases of the LTB models.2 They are as LTB

models, therefore, spherically symmetric, or isotropic. But they fall into the very

special class of perfectly smooth spatially homogeneous LTB models. Their mass-

energy density at any given time is constant, i. e., independent of spatial position.

2 There are some FLRW models, those for instance which describe the early radiation-dominated

era of the universe, which are not—strictly speaking—special cases of LTB models, because they

have non-zero pressure. Instead they are special cases of the more general Lemaı̂tre models, which

allow for nonzero pressure.
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Because they are spatially homogeneous, they are therefore isotropic about every

point in the universe. (Kolb and Turner 1990) An FLRW universe will look exactly

the same to every observer in it, no matter where he or she is located and no matter

in which direction he or she looks.

Everyone knows that the actual universe is not this way. It is lumpy on all small

and intermediate scales - there are stars and planets, clusters of stars, galaxies, and

clusters of galaxies. FLRW obviously does not describe the universe on these

scales! However, there is a great deal of evidence which suggests that on the very

largest scales (averaging over large volumes greater than, say, 800 million light

years in radius) the universe is almost smooth, almost-FLRW. And some of these

almost- or perturbed FLRWmodels, like the particular one we mentioned above, fit

these large- scale characteristics of the universe extremely well, and fit them on all

scales at very early times (before significant structure formed). Certainly, the near

smoothness of the CBR seems to be the strongest indicator of this. (Clarkson and

Maartens 2010) And so this almost-FLRW universe (“almost,” because it is

perturbed, to account for the small deviations, on average, from constant mass-

energy density on large scales due to galaxies and clusters of galaxies) has

maintained its status as the standard model. How can we describe FLRW models

in a little more detail? An FLRW universe is really a 3-dimensional perfectly

smooth sphere of mass-energy expanding and cooling with the passage of time (it

can also be contracting and heating up! See below.). The sphere of mass-energy is

not expanding within a static, larger space. Rather 3-D space itself is expanding and

dragging the mass-energy with it. The geometry of this space is very simple: it is

described by a single function of time, R(t), which is often referred to as the scale

factor. As time elapses R(t) increases or decreases - space expands or contracts.

Since space contains mass-energy usually modelled as a perfect fluid, which

responds adiabatically to the expansion or the contraction, the mass-energy in the

universe cools as it expands, and heats up as it contracts.

What determines how the FLRW universe expands or contracts? The simple

answer is gravity, as described by Einstein’s general relativistic field equations

(EFE), along with the initial conditions for the rate of expansion or contraction at

one given time, the density of mass-energy at that time, and the equation of state of

that mass-energy (the dependence of the pressure on the density). The mass-energy

generates the gravitational field which dictates how rapidly the expansion

decelerates, or accelerates, and that in turn effects a change in density, pressure

and temperature. Thus, an FLRW model is uniquely determined by just two

parameters, which must be determined by observations: the expansion rate at a

given time, that is the Hubble parameter H, which is essentially the time-derivative

of R(t), at some t ¼ t0, and the density of mass-energy at that time, together with an

equation of state. Usually in late universe cosmology the equation of state is set to

p ¼ 0 (dust). In a much earlier radiation-dominated epoch it is just p ¼ (1/3)r,
where r is the mass-energy density—in this case the radiation- energy density. It

turns out, as is intuitively clear, that the information given by the mass-energy

density at t0 is equivalent to that given by the deceleration parameter q0, which is
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essentially the second time-derivative of R(t). If the cosmological constant L is not

zero, or there is some other form of dark clergy, then it and its effective equation of

state are additional independent parameters which must be determined by observa-

tional data.

We cannot determine these cosmic parameters directly. But we can obtain the

redshifts of distant galaxies, their luminosity distances, galaxy number counts,

and—with some difficulty—the amount of luminous and dark matter in these

galaxies and clusters of galaxies. We can also study the cosmic microwave back-

ground radiation, and its small anisotropies on different angular scales. These

measurements within certain errors give us the rate of expansion now (Hubble

parameter), some indication of the mass-density of the universe now, and some

indirect measure of the value of the dark energy (for simplicity represented here

by L), presuming that the universe is almost-FLRW. We can also add the data on

primordial abundances of the lightest elements (hydrogen, helium, lithium) to this,

to strengthen and improve the fitting, particularly with regard to the density of

baryons in the universe. Although there are pieces which don’t quite fit, and we

don’t really understand the resulting magnitude of L, which according to these

indirect determinations amounts to 73 % of the present total mass-energy density of

the universe, the overall fit of the standard FLRW model to a variety of different

categories of precise cosmological data is truly remarkable. Georges Lemaı̂tre

would be deeply pleased.

There are three general categories of FLRW models. Closed FLRW models

expand for awhile, but eventually stop expanding and then contract under the

influence of the gravitational field generated by the mass-energy it contains. For

this to happen the model universe has to have enough mass-energy. Then there are

the open FLRW models. These do not contain enough mass- energy to reverse the

expansion into contraction, and they expand forever. If L ¼ 0, the expansion

constantly slows down (decelerates) but never reverses. L generates a repulsive
gravitational force (because of very high negative pressure), and, unless balanced or

dominated by the attractive gravitational force of normal mass-energy, will push

the universe to expand more and more rapidly forever. Finally, there are flat FLRW

models, which are just right in between the closed and open models. These models

also expand forever, but if L ¼ 0 an infinitesimal increase in mass-clergy density

will lead them to collapse eventually.

And so into which category does our concordance FLRW model fall? From all

indications, assuming an FLRW background model, our universe is very, very close

to flat and it is very difficult to say for sure which side of flat it is (open or closed).

But, if it is correct that the influence of L (dark energy) dominates its expansion,

then either way it will certainly continue to expand forever at an accelerating rate.

Before concluding this brief discussion on FLRW models, we should expand on

two other features. The first is that all of them contain a Big Bang, or initial

singularity, at a finite time in their past (in the standard or concordance model it

is 13.7 billion years ago). This is, in a manner of speaking, at the temporal

“beginning” of the model, when the density, temperature and curvature go infinite.

This, of course, is exactly what Lemaı̂tre expected, and predicted. It is important to
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note, however, that this singularity—the fact that these physical parameters go

infinite—almost certainly does not represent the reality of that very early stage of

the universe. Instead, it indicates a breakdown in the model at extremely high

temperatures. We now have strong evidence that, as we go back into the past, there

comes a point where we must graft onto the standard model one which is based on

quantum gravity. We have not yet been able to do that adequately. When we do,

then that addition will in some sense describe and explain the Planck era, the early

quantum-configuration-dominated phase from which our universe began to expand

and cool.

The second feature of the standard almost-FLRW model we need to explain

more fully is precisely its “almost” character. This means that it possesses

perturbations, or small fluctuations, to the exact concordance FLRW model the

cosmologically relevant observational data support. As we have already

emphasized, an exact FLRW model is perfectly homogeneous, and does not

allow for any lumpiness at all, on any scale. If our universe were exactly FLRW

we would not be here! Though the observations provide evidence that it is very

close to the standard exact FLRW model on the largest scales, it also contains a

great deal of structure on intermediate and small scales. So, using the concordance

FLRW solution as the “background” model, we then add small deviations or

perturbations to it, which describe the early development of lumpiness in our

universe. These obey linear growth equations—as long as they are small compared

with the background FLRW parameters such as matter-density. These perturbed

models turn out to work very well for the very early phases of our universe, and for

representing the early growth of large-scale structure of our universe. However,

they cannot adequately model what happens when the density contrast of condens-

ing structures gets to be comparable to or larger than the background density. At

that point we deal with the local—not global or cosmological—evolution of those

individual structures. To do so we use other methods, which are nonlinear.

In studying the early growth of the structure perturbations within the concor-

dance FLRW background, we find that, in order to account for the kinds and

patterns of structure we observe now, 13.7 billion years after the Big Bang, we

need more nonbaryonic (or dark) matter than the baryonic matter we and everything

we see is made of. Analyses of the CBR anisotropy data and the primordial

elemental abundance data help us to set the present percentages at: 4 % of the

total mass-energy density is baryonic matter, and 23 % of the total mass-energy

density is non-baryonic matter. This dark matter, as the name implies, only interacts

with baryonic matter and with itself very rarely, except through its gravitational

influence. That’s how we know it’s there. Thus, we cannot see it, or observe its

direct interactions with matter. We do not know yet what particles constitute this

non-baryonic dark matter—only that it must be relatively cold and very weakly

interacting.

We now move on to discuss Lemaı̂tre and LTB models, the broader classes of

cosmologies which Lemaı̂tre pioneered. These are, as we have already mentioned,

assuming much more importance and receiving much more attention in current

cosmological research.
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Beyond the Standard FLRW Model: Lemaı̂tre and LTB

Models and Their Importance

If we keep the restriction of spherical symmetry but remove the demand for spatial

homogeneity from the FLRW models, we end up with the Lemaı̂tre cosmological

models, which he introduced and studied so thoroughly in his outstanding 1933

paper (Lemaı̂tre 1933). In his treatment he included both the cosmological con-

stant, of which he was so fond, and perfect fluid matter and radiation, with

pressure. A year later Tolman (1934), referring to Lemaı̂tre’s paper, (Krasiński

1997a), authored his own study on the special, somewhat simpler dust (p ¼ 0)

cases of these Lemaı̂tre models. Much later Bondi (1947) revived interest in them

with his own detailed analysis. These Lemaı̂tre models with p ¼ 0 are therefore

now known, as we have already mentioned above, as Lemaı̂tre-Tolman-Bondi

(LTB) models.

As we have also briefly indicated, removing spatial homogeneity radically

changes the model. Since LTB models are spherically symmetric, they are isotro-

pic, but spherical symmetric and isotropic relative only to one location. There is

now only a single spatial center of symmetry, which is almost always taken to be

that of our position as observers. In these models the universe is not spherically
symmetric relative to any other spatial location! This means that our position in this

universe is privileged—that it is unlike any other location in our observable

universe. Thus, in LTB models the cosmological, or Copernican, principle no

longer holds. Confronting these models with observations, which is already being

done, (Clarkson and Maartens 2010) will enable us to demonstrate whether and to

what extent it does hold—that is, whether the universe is almost spatially homoge-

neous on the largest scales. And further, if the observable universe is close to an

LTB model, how far from its center of symmetry or simply from the center of a very

large under-dense region (a “void”) within it could we be and still record the

observational results we now have? Thus, at present the LTB models provide an

apt and relatively simple foil for the standard FLRW model. At the same time they

provide a spring-board for studying non-spherically symmetric perturbations to

LTB and using relevant observations (e. g. of the CMB) to confront them.

In LTBmodels the inhomogeneities on each 3-D spatial slice through space-time

are radial variations in matter-energy density and in other parameters and variables,

e. g. the spatial curvature. As one moves outward from our central spatial location

on a surface of constant time, we find that the density varies with radial coordinate

distance r from our position. But there is no dependence of the density on either of

the two angular coordinates, y and ’. This is very much like the spherically

symmetric concentric waves at any one moment after a rock is dropped into a

pond. The key variable in the LTB models is a radial distance R(t, r), often called

the “areal distance,” or an “area distance.” It is really no longer a “scale factor,” as it

is in FLRW models, because it varies with the radial coordinate r on 3-D constant-

time slices. The parameters which determine the model are M(r), which is the

gravitational mass contained within a comoving sphere of radius r (this can be
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related to the density), E(r), which is the curvature (“closed,” “open,” or flat—or

elliptic, hyperbolic or parabolic) on 3-D spatial slices, and tB(r), which is the “bang
time,” the time at which expansion starts in the model. This can be different at

different values of r! (Krasiński 1997b; Pelbański and Krasiński 2006)

As we already discussed in the section “The Standard FLRW Models and the

Observations Supporting Them”, there is a great deal of observational support for

the standard concordance FLRW model of the universe. However, there remain a

number of its key features which must be studied within a broader context, and

other crucial issues which must be resolved, before it is definitively confirmed as

the most adequate model of our universe. It is precisely through confronting LTB

models, both those with a cosmological constant and those without, with old and

new observational data and through completing the related theoretical work, that

many of these uncertainties and issues can be resolved. That is because the LTB

models are the simplest non-perturbative inhomogeneous models that we have.

Understanding the large-scale inhomogeneities they admit and their effect on

cosmological observations will go a long way towards improving our confidence

in our description of the universe.

The importance of LTB models can be best appreciated by summarizing some of

our uncertainties and reservations about the concordance almost-FLRW model.

First of all, as we have already emphasized, it must have a positive cosmological

constant L, which represents vacuum energy, or dark energy. We really do not

understand very much about vacuum energy, and even less about non-vacuum dark

energy, particularly its magnitude (very small, but still apparently dominant) and its

origin. We do not observe the cosmological constant or dark energy, but rather

deduce it from the anomalously faint apparent luminosities of Type Ia supernovae,

assuming an almost-FLRW universe. Studying these inhomogeneous LTB models

and confronting them with more precise, deeper and soon-to-be-available indepen-

dent data will help us determine whether or not our universe really possesses a

significant dark clergy, that is a non-zero L, or whether, instead, the apparent gentle
acceleration of the cosmic expansion is due to the influence of large-scale

inhomogeneities (for instance, we may be near the center of very large under-

dense region, or void)(Clarkson and Maartens 2010).

Secondly, very closely related to, but broader than, this dark-energy question, is

the issue of uniqueness. The concordance FLRWmodel is not the only model which

provides a best-fit to the presently available data. It has been shown by a number of

people that an inhomogeneous LTB model without a cosmological constant can fit

all presently available data, (Mustapha et al. 1997) including CBR measurements

(Clarkson and Regis 2011; Regis and Clarkson 2012). Thus, we must do further

theoretical and observational work to determine which of these very different

models really best describes the space-time structure and the dynamics of our

universe. Obviously, to do this we need more—and new categories of—data

which will distinguish among these competing models.

Thirdly, the application of almost-FLRW models is generally assumed from the

outset without complete justification. There is fairly good evidence that the uni-

verse is isotropic, and some but much less observational evidence that the universe
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may be spatially homogeneous on the largest scales. We cannot directly observe

spatial homogeneity, as we have no direct observational access to the cosmological

extent of any one constant time slice. This partial evidence for almost spatial

homogeneity has given us the “green light” to assume it, and use FLRW models

as the basis for our description of the universe. The fact that they fit the data

encourages us to continue using them. However, as we have just seen, we do not

yet have adequate justification for doing so! What we really need to do—to confirm

our use of FLRW models - is assume that the universe is represented by a less-

special, more general model, like an LTB model, with or without a L, and then

demonstrate from enough mutually independent types of data that our universe is

almost-FLRW on the largest scales. We cannot accomplish this simply by consid-

ering perturbations to FLRW. This is why use of LTB and Lemaı̂tre models is so

important, and has generated so much recent interest and investigation. As is now

obvious, the main issue here is the cosmological principle. Is the universe almost

spatially homogeneous on the largest scales, or not?

Fourthly, it is clear that the universe is not almost-FLRW on intermediate and

small scales. And we really do not know, even now, what the smallest scale is on

which the universe can be fit by the concordance (standard) almost-FLRW model.

Using the more general LTB models will help us do that. And fifthly, any careful

study of the growth of structure in our universe really needs to be supplemented and

checked by studying non-perturbative deviations from FLRW. These would all be

important questions for Lemaı̂tre, were he still working with us today.

Now we briefly turn to consider a sampling of the outstanding work that is being

done on LTB and Lemaı̂tre models and on their perturbations.

Recent Research on LTB and Lemaı̂tre Cosmological Models

The amount of significant research centering on or employing LTB and Lemaı̂tre

models has accelerated very noticeably over the past 25 years. This is certainly due

to the need to explore descriptions and models of our universe and its structures that

take us beyond considerations of FLRW and perturbed or almost-FLRWmodels. A

critical part of that research has been directed towards linking the free parameters of

those models to observations, so that it becomes clearer what types of independent

observational data is needed to constrain them, and what data would indicate that an

LTB model is an almost-FLRW model. At the end of the last section, we

summarized the principal reasons for this need to pursue our cosmological research

beyond almost-FLRW models. It is impossible in this chapter to summarize ade-

quately all the important work that has and is being done in this area. Here I shall

simply provide some examples of, and reference to, some of the more notable

contributions.

For discussion we can conveniently divide results and contributions on these

models into several categories: First, careful expositions and treatments of LTB and

Lemaı̂tre models and their characteristics and properties; second, their connection
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with cosmologically relevant observables; thirdly, their direct confrontation with

various types of cosmologically relevant observational data and comparison with

FLRW models, including more focused contributions exploring their use in

validating whether and to what extent the cosmological principle holds; fourthly,

explorations of perturbations to LTB models; and finally application of the

Lemaı̂tre models to the formation of structures within the universe. We shall briefly

discuss and reference work in each of these areas.

Apart from the foundational papers of Lemaı̂tre (1933) and Bondi (1947) the

best recent treatments of LTB and the more general Lemaı̂tre models (those perfect

fluid models with isotropic or even anisotropic pressure and pressure gradients—

Lemaı̂tre’s paper considers both) are found in Krasiński’s Inhomogeneous Cosmo-
logical Models, chapters “Georges Lemaı̂tre: The Priest Who Invented the Big

Bang and ‘The Wildest Speculation of All’: Lemaı̂tre and the Primeval-Atom

Universe” (Krasiński 1997b), and especially in Plebański and Krasiński’s An
Introduction to General Relativity and Cosmology, Chapter. “18” (Pelbański and

Krasiński 2006) and in Bolejko et al.’s Structures in the Universe by Exact Methods
(Bolejko et al. 2010). These treatments particularly the latter two, discuss all the

principal characteristics of these models, including their free parameters, horizons,

big-bang structure, shell-crossings, etc., and provide relatively up-to-date

references to important results. A very helpful paper by Wainwright and Andrews

(2009) gives a brilliant treatment of the dynamics of LTB models, including their

asymptotic behavior and of the spherically symmetric perturbations (both growing

and decaying modes) to FLRW and their relationship to LTB parameters.

One of the largest bodies of work on LTB models is that of exploring how LTB

models, and their anisotropic perturbations, can be determined by observational

data, taking their inspiration from the key paper by Kristian and Sachs in 1966

(Kristian and Sachs 1966). Some of this work has been pursued employing the usual

orthogonal 3 þ 1 coordinate formulation (O(3þ1)), in which space-time is foliated

into space-like hypersurfaces along the normal time-coordinate [this is better than

“O-3 þ 1”]. But significant other theoretical work has used “observational

coordinates” (OC), through which space-time is foliated into past light-cones

(PLC) along the observer’s world line, such that each instant of time labels a

PLC. The motivation for this formulation is the ease with which key observations,

e.g. redshifts and angular-diameter (observer-area) distances can be related to the

metric variables on our PLC, and the functional relation between red-shift and the

null radial coordinate obtained [eliminate space between “red-” and “shift”]. All the

data coming to us via electromagnetic radiation is arrayed on our PLC.

In both formalisms, the work that has been done demonstrates in detail how to

solve the LTB EFE field equations uniquely given idealized data, consisting of

galaxy redshifts, angular-diameter distances (to which luminosity distances can be

easily converted), and galaxy number counts (which in principle, but with diffi-

culty, will give the mass-energy density as a function of redshift). Some later papers

using one or the other framework add the maximum of the angular-diameter

distance and time-drift of galaxy redshifts as eventually feasible measurements

which can in principle provide independent information to constrain the value of
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the cosmological constant (Hellaby 2006; Araújo and Stoeger 2009b) and the

cosmic mass-energy density, (Araújo and Stoeger 2010) respectively.

Two key papers which have carried out this work in O(3+1) and give the flavor

of the approach are those of Mustapha, Hellaby and Ellis (Mustapha et al. 1997) and

Hellaby (2001). Hellaby in his important 2006 paper (Hellaby 2006) and later in his

2010 paper with Alfedeel (Alfedeel and Hellaby 2010) shows how in general LTB

and Lemaı̂tre models the cosmic mass is defined, even when the pressure is non-

zero, what the apparent horizon is and why it is important, and derives the simple

algebraic relationship connecting the value of the cosmological constant L with the

maximum of the angular-diameter distance and the gravitational mass a sphere of

that radius contains. It is this relationship which, in principle, enables L to be

determined from observational data. It is worth noting, in this context, that the

definition of mass in these models was one of the important results Lemaı̂tre

presented in his 1933 paper. (Lemaı̂tre 1933) In two other papers Lu and Hellaby

(2007) and, a year later, McClure and Hellaby (2008) demonstrate how to obtain a

LTB metric with L ¼ 0 from simulated data by numerical integration, and study

the stability of some of the key equations.

The foundational paper for the OC approach is the 1985 paper by Ellis et al.

(1985). There the motivation and relationships between the metric variables and the

observables are laid out carefully, and theorems proving the uniqueness of solutions

to the general EFE given an idealized data set consisting of galaxy redshifts,

angular-diameter (observer-area) distances, galaxy number counts, cosmological

proper motions, and integrated null-shear measurements are explained. The latter

two, of course, are zero in an exactly isotropic space-time. A non-zero L is not

included, nor the discussion of the supplementary independent observations needed

to determine its value. The present status of this approach and detailed accounts of

the results so far for LTB cosmologies are given in the two recent papers by Araújo

and Stoeger already cited (Araújo and Stoeger 2009b, 2010). Two other recent

papers, by Hellaby and Alfedeel (2009) and by Araújo and Stoeger (2011) compare

and contrast teh O(3+1) and the OC approaches to determining the LTB metric of

the universe from observations.

There has been a great deal of research directed towards confirming the cosmo-

logical principle to determine whether our universe is almost spatially homoge-

neous on cosmic scales. Typically, such work attempts to fit a universe with a large

local under-dense region (or void) to the cosmological data, including various kinds

of measurements of the CBR. In most cases, a full LBT and/or Lemaı̂tre model

analysis is not used, but instead either a low-density FLRW or LBT dust model

(a “void”) surrounding the observer matched to a higher density FLRW model at

high redshifts. All of this work has been referenced and critically reviewed in great

detail in Clarkson and Regis’s paper (Clarkson and Regis 2011). They have also

provided a Lemaı̂tre model framework and analysis for further investigation of this

important problem, along with guidelines for meeting some of the important

challenges in resolving it. Some of the other papers which have considered real

observational data within a LTB and Lemaı̂tre framework to see if such models fit

the observations are those of Tomita and Inoue (2009) Tomita (2010) Dunsby et al.
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(2010), and Clarkson and Maartens (2010). Despite the many technical difficulties

in carrying out this work and the controversy surrounding it, the preliminary results,

as we have already mentioned above, clearly show that there are inhomogeneous

models that can fit the presently available cosmological data, without a non-zero L
(Regis and Clarkson 2012; Clarkson and Regis 2011). Once other independent types

of cosmologically relevant data are available, e. g. the maximum of the angular-

diameter distance and its redshift, and better measurements of the cosmic

mass-energy density (possibly through redshift time-drift data), we will be able to

determine whether we do need a non-zero L and whether the concordance FLRW

model or some inhomogeneous model end up winning this competition. It is worth

mentioning in this context that Uzan et al. (2008) have used an LTB background to

suggest how the time-drift of galaxy redshifts can be used to test whether there is

almost spatial homogeneity on the largest scales.

Another important area of research on focuses on the behavior of LTB and

Lemaı̂tre perturbations. This work is crucial for understanding and modelling

formation and development of galaxies and clusters of galaxies in inhomogeneous

cosmologies. It turns out that this subject is extremely difficult. However, a good

start has been made by Zibin (2008) Clarkson, Clifton and February, (Clarkson

et al. 2009) Clarkson and Maartens (2010) and others. An excellent overview of this

subject, its progress and challenges is given in the Clarkson and Maartens paper.

Finally, a number of people, notably Krasiński, Hellaby and Bolejko,

have pioneered the exact use of LTB and Lemaı̂tre models to study the local

formation of structure voids, clusters of galaxies, etc. without resorting to linear

perturbation treatments. Though such applications suffer from certain obvious

limitations (e.g. their inability to deal with rotation), they also enjoy many

advantages. A very recent and important reference for this research is the book

by Bolejko et al. (2010). It is also worth noting that Bolejko and Stoeger (2010)

have recently shown that certain LTB and Lemaı̂tre models - those with spatial

curvature very much less than the Ricci curvature induced by the mass-energy

density—can undergo spontaneous temporary homogenization. This process may

be important in achieving the necessary homogeneity conditions for initiating

inflation in the very early universe.

Conclusions

In our discussion we have reviewed the central ground-breaking contributions of

Georges Lemaı̂tre to cosmology, emphasizing his outstanding but perhaps less

well-known theoretical work in solving and interpreting the solutions to the general

spherically symmetric Einstein field equations. These results have provided the

foundations for the study of inhomogeneous cosmological models—the more

restricted Lemaı̂tre-Tolman-Bondi (LTB) models, where the pressure is assumed

to be zero, the Lemaı̂tre models for more general perfect fluids, and non-spherically

symmetric perturbations to these exact solutions. It is apparent, from what we have
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seen here, that, beyond the well-appreciated and fundamental developments of

Lemaı̂tre’s work in Big Bang cosmology and particularly in the standard spatially

homogeneous FLRW models, there has been an explosion of important work

expanding on his contributions to the study of inhomogeneous models—both for

elucidating and confirming the large-scale structure of our universe, and for

modeling more carefully the formation of galaxies and clusters of galaxies.

In particular, we have discussed and summarized the recent and ongoing research

connecting cosmologically relevant observations to LTB models, in order to

increase and confirm our understanding of the principal features of our universe.

Since FLRW models are special cases of the more general LTB and Lemaı̂tre

models, this makes perfect sense. Such research is even more urgent, given our

ignorance and uncertainty about dark energy and the cosmological constant, which

seems to be absolutely necessary for an adequate almost-FLRW description of

space-time, our inability to directly confirm large-scale spatial inhomogeneity, our

need for further, more precise and deeper observational data, and the strong

indications we have that the standard concordance FLRW model is not a unique

best-fit to the data. As Clarkson and Maartens comment at the end of their outstand-

ing paper (Clarkson and Maartens 2010), “Only by developing a family of inhomo-

geneous spacetimes to the same level of sophistication as the standard concordance

model, and directly comparing them side by side, will we really be able to under-

stand whetherL is real, or actually a consequence of our homogeneity assumption.”

This basic open approach motivates all the work in this area—to confirm, increase,

and, if need be, modify our understanding and our description of the universe, and to

learn what their limitations are, in particular the length scales below which they are

inapplicable. Lemaı̂tre would be in thorough accord with this philosophy. That, too,

is part of his legacy to contemporary cosmology.
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Bruxelles A 47, 49 ff. (1927); Lemaı̂tre, A. G. (1931). The expanding universe. Monthly
Notices Royal Astronomical Society 91, 490–501.

Lemaı̂tre, A. G. (1933). The expanding universe, Annales de la Société Scientifique de Bruxelles A
53, 51–85, reprinted in English in General Relativity and Gravitation 29, 641–680 (1997).

Lemaı̂tre, C. G. (1950) The primeval atom: An essay on cosmogony, (trans: Betty, H. and Serge, A.
K). New York: D. Van Nostrand Company, p. 186.
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