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Abstract. In this paper, we study the online knapsack problem with
removal cost. The input is a sequence of items u1, u2, . . . , un, each of
which has a size and a value, where the value of each item is assumed
to be equal to the size. Given the ith item ui, we either put ui into the
knapsack or reject it with no cost. When ui is put into the knapsack,
some items in the knapsack are removed with removal cost if the sum
of the size of ui and the total size in the current knapsack exceeds the
capacity of the knapsack. Here the removal cost means a cancellation
charge or disposal fee. Our goal is to maximize the profit, i.e., the sum
of the values of items in the last knapsack minus the total removal cost
occurred.

In this paper, we consider two kinds of removal cost: unit and pro-
portional cost. For both models, we provide their competitive ratios.
Namely, we construct optimal online algorithms and prove that they are
best possible.

1 Introduction

The knapsack problem is one of the most classical problems in combinatorial
optimization and has a lot of applications in the real world [10]. The knapsack
problem is that: given a set of items with values and sizes, we are asked to
maximize the total value of selected items in the knapsack satisfying the capacity
constraint.

In this paper, we study the online version of the knapsack problem with
removal cost. Here, “online” means i) the information of the input (i.e., the
items) is given gradually, i.e., after a decision is made on the current item, the
next item is given; ii) the decisions we have made are irrevocable, i.e., once a
decision has been made, it cannot be changed. Given the ith item ui, we either
accept ui (i.e., put ui into the knapsack) or reject it with no cost. When ui is put
into the knapsack, some items in the knapsack are removed with removal cost
if the sum of the size of ui and the total size in the current knapsack exceeds
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1, i.e., the capacity of the knapsack. Here the removal cost means a cancellation
charge or disposal fee. Our goal is to maximize the profit, i.e., the sum of the
values of items in the last knapsack minus the total removal cost occurred.

1.1 Related Work

The online knapsack problem (under no removal condition) was first studied on
average case analysis by Marchetti-Spaccamela and Vercellis [12]. They proposed
a linear time approximation algorithm such that the expected difference between
the optimal profit and the one obtained by the algorithm is O(log3/2 n) under the
condition that the capacity of the knapsack grows proportionally to the number
of items n. Lueker [11] improved the expected difference to O(log n) under a
fairly general condition on the distribution.

Iwama and Taketomi [8] studied the online knapsack problem on worst case

analysis. They obtained a 1+
√
5

2 ≈ 1.618-competitive algorithm for the online
knapsack when (1) the removable condition (without removal cost) is allowed
and (2) the value of each item is equal to the size, and showed that this is
best possible by providing a lower bound 1.618 for the case. We remark that
the problem has unbounded competitive ratio, if at least one of the conditions
(1) and (2) is not satisfied [8, 9]. For other models such as minimum knapsack
problem and knapsack problem with limited cuts, refer to papers in [6, 7, 13].

The removal cost has introduced in the buyback problem [1–5]. In the problem,
we observe a sequence of bids and decide whether to accept each bid at the
moment it arrives, subject to constraints on accepted bids such as single item and
matroid constraints. Decisions to reject bids are irrevocable, whereas decisions to
accept bids may be canceled at a cost which is a fixed fraction of the bid value.
Babaioff et al. [3] showed that the buyback problem with matroid constraint

has
(
1 + 2f + 2

√
f(1 + f)

)
-competitive ratio, where f > 0 is a buyback factor.

Ashwinkumar [1] extended their results and show that the buyback problem

with the constraint of k matroid intersections has k(1 + f)(1 +
√
1− 1

k(1+f) )
2-

competitive ratio.

1.2 Our Results

In this paper, we study the worst case analysis of the online knapsack problem
with removal cost, when the value of each item is equal to the size. We considers
two kinds of models of removal cost: the proportional and the unit cost model.
In the proportional cost model, the removal cost of each item ui is proportional
to its value (and hence size), i.e., it is f · s(ui), where s(ui) denotes the size of
ui and f > 0 is a fixed constant, called buyback factor. Therefore, we can view
this model as the buyback problem with knapsack constraints. In the unit cost
model, the removal cost of each item is a fixed constant c > 0, where we assume
that every item has value at least c, since in many applications, the removal
cost (i.e., cancellation charge) is not higher than its value. We remark that the
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problem has unbounded competitive ratio if no such assumption is satisfied (see
Section 3).

We show that the proportional and unit cost models have competitive ratios
λ(f) and μ(c) in (1) and (2), respectively, where λ(f) and μ(c) are given in
Figure 1. Namely, we construct λ(f)- and μ(c)-competitive algorithms for the
models and prove that they are best possible.

λ(f) =

{
2 (1/2 ≥ f > 0),
1+f+

√
f2+2f+5

2 (f > 1/2).
(1)

μ(c) =

⎧⎪⎪⎨
⎪⎪⎩

max {η(k), ξ(k + 1)} (1 −
√

k+1
k+2 ≤ c ≤ 1−

√
k

k+1 , k = 1, 2, . . . ),

ξ(1) (1 − 1√
2
≤ c ≤ 1/2),

1/c (c ≥ 1/2),

(2)

where

η(k) =
k(c+ 1) +

√
k2(1− c)2 + 4k

2k(1− kc)
, ξ(k) =

1

2
+

1

2

√
1 +

4

kc
. (3)

The main ideas of our algorithms for both models are: i) we may reject items
(with no cost) many times, but in at most one round, we remove items which
from the knapsack. ii) some items are removed from the knapsack, only when the
total value in the resulting knapsack gets high enough to guarantee the optimal
competitive ratio.

The rest of the paper is organized as follows. In the next section, we consider
the proportional cost model, and in Section 3, we consider the unit cost model.
Due to the space limitation, some of the proofs are omitted.
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Fig. 1. The competitive ratios λ(f) and μ(c) for the proportional and unit cost models
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2 Proportional Cost Model

In this section, we consider the proportional cost model, where each item ui

has removal cost f · s(ui) for some positive constant f . We first show that λ(f)
is a lower bound of the competitive ratio of the problem, and then propose a
λ(f)-competitive algorithm, where λ(f) is given in (1).

2.1 Lower Bound

In this subsection, we show a lower bound of the competitive ratio λ(f) for the
problem.

Theorem 1. There exists no online algorithm with competitive ratio strictly less
than ρ = λ(f) for the knapsack problem with proportional removal cost, when
the value of each item is equal to the size.

Proof. According to the value of f , we separately consider the following two
cases.

Case 1: 1/2 ≥ f > 0. Let A denote an online algorithm chosen arbitrarily. For
a sufficiently small ε (> 0), our adversary requests the sequence of items whose
sizes are

1

2
+ ε,

1

2
+

ε

2
, . . . ,

1

2
+

ε

�1/f�+ 1
, (4)

until A rejects some item in (4). If A rejects the item with size 1
2 + ε, then the

adversary stops the input sequence. On the other hand, if it rejects the item
with size 1

2 + ε
k for some k > 1, then the adversary requests an item with size

1
2 − ε

k and stops the input sequence.
We first note that algorithm A must take the first item, since otherwise the

competitive ratio of A becomes infinite. After the first round, A always keeps
exactly one item in the knapsack, since all the items in (4) have size larger than 1

2
(i.e., a half of the knapsack capacity) and for any j < k we have (12 +

ε
j )+(12− ε

k )
is larger than 1. This implies that A removes the old item from the knapsack to
accept a new item. If A rejects 1

2 +
ε
k for some k > 1, the competitive ratio is at

least 1/
(
1
2 + ε

k

)
, which approaches 2 as ε → 0. Finally, if A rejects no item in

(4), then its profit is

1

2
+

ε

�1/f�+ 1
− f

�1/f�∑
k=1

(
1

2
+

ε

k

)
≤ 1

2
− f

�1/f�∑
i=1

1

2
≤ 0 (5)

while the optimal profit for the offline problem is 1
2 + ε, which completes the

proof for 1/2 ≥ f > 0.

Case 2: f > 1/2. Let A denote an online algorithm chosen arbitrarily, and let

x =
3+f−

√
f2+2f+5

2(1+f) . For a sufficiently small ε (> 0), our adversary requests the

following sequence of items

x, 1− x+ ε, 1− x, (6)



Online Knapsack Problem with Removal Cost 65

until A rejects some item in (6), and if A rejects the item then the adversary
immediately stops the input sequence.

Note that A must accept the first item x, since otherwise the competitive
ratio becomes infinite. If A rejects the second item, then the competitive ratio
is at least

1− x+ ε

x
≥ 1− x

x
= λ(f). (7)

If A takes the second item 1−x+ ε (and removes the first item),the competitive
ratio is at least 1

1−x+ε−f ·x , which approaches to λ(f) (= 1
1−x−f ·x) as ε → 0,

which completes the proof for f > 1/2. 	


2.2 Upper Bound

In this subsection, we propose a λ(f)-competitive algorithm. Note that the total
profit becomes small (even negative), if we remove items from the knapsack many
times. Intuitively, our algorithm accepts the item if the knapsack has room to put
it. If we can make the profit sufficiently high by accepting the item and removing
some items from the current knapsack, then our algorithm follows this, and after
this iteration, it rejects all the items. Otherwise, we simply rejects the item.

Let ρ = λ(f), and let ui be the item given in the ith round. Define by Bi−1

the set of items in the knapsack at the beginning of ith round, and by s(Bi−1)
the total size in Bi−1.

Algorithm 1.

1. if s(ui) + s(Bi−1) ≤ 1 then Bi ← Bi−1 ∪ {ui} and if s(Bi) ≥ 1/ρ
then STOP

2. else if ∃B′
i ⊆ Bi−1 s.t. 1

ρ + f · (s(Bi−1)− s(B′
i)) < s(B′

i) + s(ui) ≤ 1

then Bi ← B′
i ∪ {ui} and STOP

3. else Bi ← Bi−1

Here STOP denotes that the algorithm rejects the items after this round.

Lemma 2. If s(ui) + s(Bi−1) > 1 and some B′
i ⊆ Bi−1 satisfies ρ · s(Bi−1) <

s(B′
i) + s(ui) ≤ 1, then the second line is executed in the ith round.

Proof. Since s(ui) + s(Bi−1) > 1 and ρ · s(Bi−1) < s(B′
i) + s(ui), we obtain

1

ρ
+ f · (s(Bi−1)− s(B′

i)) <
s(ui) + s(Bi−1)

ρ
+ f · (s(Bi−1)− s(B′

i))

<
s(ui)

ρ
+

s(B′
i) + s(ui)

ρ2
+ f · s(B

′
i) + s(ui)

ρ
− fs(B′

i)

=
1 + fρ− fρ2

ρ2
s(B′

i) +
1 + fρ+ ρ

ρ2
s(ui). (8)
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As ρ2 ≥ 1 + fρ+ ρ by the definition of ρ, we have

1 + fρ− fρ2

ρ2
≤ 1 + fρ− fρ2

1 + fρ+ ρ
< 1 and

1 + fρ+ ρ

ρ2
≤ 1. (9)

	

Let OPT denote an optimal solution for the offline problem whose input sequence
is u1, . . . , ui.

Lemma 3. If s(Bi) < 1/ρ then we have |OPT \Bi| ≤ 1.

Proof. Bi contains all the items smaller than 1/2, since s(Bi) < 1/ρ ≤ 1/2. Any
item u ∈ OPT\Bi has size greater than 1−1/ρ ≥ 1/2. Therefore, |OPT\Bi| ≤ 1
holds by s(OPT) ≤ 1. 	

Theorem 4. The online algorithm given in this section is λ(f)-competitive.

Proof. Suppose that the second line is executed in round k. Then it holds that
1
ρ + f · (s(Bk−1) − s(B′

k)) < s(B′
k) + s(uk) = s(Bk) holds. Since s(Bi) = s(Bk)

holds for all i ≥ k, we have

s(OPT)

s(Bi)− f · (s(Bk−1)− s(B′
k))
≤ 1

s(Bk)− f · (s(Bk−1)− s(B′
k))

< ρ (= λ(f)).

(10)

We next assume that the second line has never been executed. If s(Bi) ≥ 1/ρ,
we have the competitive ratio s(OPT)/s(Bi) ≤ 1/s(Bi) ≤ ρ. On the other hand,
if s(Bi) < 1/ρ, |OPT \ Bi| = 0 or 1 holds by Lemma 3, If |OPT \ Bi| = 0,
we obtain the competitive ratio 1. Otherwise (i.e., OPT \ Bi = {uk} for some
k), Lemma 2 implies that ρ · s(Bk−1) ≥ s(B′

k) + s(uk) for B′
k = OPT ∩ Bk−1

Therefore we obtain

s(OPT)

s(Bi)
≤ s(B′

k) + s(uk) + s(Bi \Bk−1)

s(Bk−1) + s(Bi \Bk−1)

≤ max

{
s(B′

k) + s(uk)

s(Bk−1)
,
s(Bi \Bk−1)

s(Bi \Bk−1)

}
≤ ρ (= λ(f)). (11)

	

Before concluding this section, we remark that the condition in the second line
can be checked in O(|Bi−1|+ 2ρ

2

) time.

3 Unit Cost Model

In this section, we consider the unit cost model, where it costs us a fixed constant
c > 0 to remove each item from the knapsack. Recall that every item has size
at least c. In this section, we show that the knapsack problem with unit cost
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is μ(c)-competitive, where μ(c) is defined in (2). We note that μ(c) attains the
maximum 1 +

√
2 when c = 1− 1/

√
2.

Remark: If items are allowed to have size smaller than c, the problem becomes
unbounded competitive. To see this, for a positive number r, let ε denote a
positive number such that ε < 1/(�1/c� · r). For an online algorithm A chosen
arbitrarily, our adversary keeps requesting the items with size ε, until A accepts
�1/c� items or rejects r · �1/c� items. If A rejects r · �1/c� items (before accepting
�1/c� items), the adversary stops the input sequence; otherwise, it requests an
item with size 1 and stops the input sequence. In the former case, the competitive

ratio is at least r�1/c�ε
�1/c�ε = r. In the latter case, the competitive ratio becomes

1
�1/c�·ε > r if A rejects the last item (with size 1). Otherwise, A removes the

�1/c� items to take the last item. This implies that the profit is 1 − �1/c� · c ≤
0. Therefore, without the assumption, no online algorithm attains a bounded
competitive ratio.

3.1 The Case c ≥ 1/2

We first consider the case where c ≥ 1/2. In this case, it is not difficult to see
that the problem is 1/c (= μ(c))-competitive.

Theorem 5. If the unit removal cost c of the knapsack problem is at least 1/2,
then there exists no online algorithm with competitive ratio strictly less than 1/c
for the problem when the value of each item is equal to the size.

Proof. For an online algorithm A chosen arbitrarily, our adversary first requests
an item with size c. If A does not accept it, the adversary stop the input sequence.
Otherwise, it next request an item with size 1 and stop the input sequence. It
is clear that A must take the first item, since otherwise the competitive ratio
becomes infinite. If A rejects the second item, then we have the competitive ratio
1/c. Otherwise (i.e., A accepts the second item by removing the first item), the
competitive ratio is 1/(1− c) ≥ 1/c, since c ≥ 1/2. 	

Theorem 6. There exists a 1/c-competitive algorithm for the knapsack problem
with unit removal cost, when the value of each item is equal to the size.

Proof. Consider an online algorithm which takes the first item u1 and rejects the
remaining items. Since s(u1) ≥ c and the optimal value of the offline problem is
at most 1, the competitive ratio is at most 1/c. 	


3.2 The Case c < 1/2

In this section we consider the case in which c < 1/2.

3.2.1 Lower Bound

For 0 < c < 1/2, we show that μ(c) is a lower bound of the competitive ratio for
the problem by starting with several propositions needed later.
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Proposition 7. For any positive integer k, we have

1

2k + 4
< 1−

√
k + 1

k + 2
, 1−

√
k

k + 1
<

1

2k + 1
. (12)

Definition 8. We define xk and yk as follows:

xk =
k + 2− kc−√

k2(1 − c)2 + 4k

2
, yk =

kc+
√
k2c2 + 4kc

2
. (13)

Proposition 9. η(k) and ξ(k) in (3) satisfy the following equalities.

η(k) =
1

1− xk − kc
=

1− xk

kxk
=

k(c+ 1) +
√
k2(1− c)2 + 4k

2k(1− kc)
, (14)

ξ(k) =
1

yk − kc
=

yk
kc

=
1

2
+

1

2

√
1 +

4

kc
. (15)

We provide two kinds of adversaries.

Theorem 10. Assume that removal cost c satisfies 1−
√

k+1
k+2 ≤ c ≤ 1−

√
k

k+1

for a positive integer k. Then there exists no online algorithm with competitive
ratio strictly less than η(k) for the knapsack problem with unit removal cost,
when the value of each item is equal to the size.

Proof. Let xk =
k+2−kc−

√
k2(1−c)2+4k

2 . For an online algorithm A chosen arbi-
trarily, our adversary keeps requesting the items with size xk until A accepts
k items or rejects �1/xk� items. If A rejects �1/xk� items before accepting k
items, the adversary stops the input sequence (1). Otherwise (i.e., A accepts k
items), then the adversary next requests an item with size 1 − xk + ε where ε
is a sufficiently small positive number; if A rejects it, the adversary stops the
input sequence (2), and otherwise, the adversary next requests an item with size
1 − xk and stops the input sequence (3). Note that all the items have size at

least c, since 1−
√

k+1
k+2 ≤ c ≤ 1−

√
k

k+1 implies xk ≥ c and 1− xk ≥ c.

In the case of (1), we have the competitive ratio at least 1−xk

(k−1)xk
> 1−xk

kxk
=

η(k), where the last equality follows from Proposition 9. In the case of (2), the
competitive ratio is at least 1−xk+ε

kxk
> 1−xk

kxk
= η(k) by Proposition 9. Finally, in

the case of (3), the competitive ratio is at least 1
1−xk+ε−kc . Proposition 9 implies

that this approaches η(k) (= 1
1−xk−kc ) as (ε→ 0). 	


Theorem 11. Assume that removal cost c satisfies 1 −
√

k
k+1 ≤ c < 1

2k for a

positive integer k. Then there exists no online algorithm with competitive ratio
strictly less than ξ(k) for the knapsack problem with unit removal cost, when the
value of each item is equal to the size.

Proof. Let A denote an online algorithm chosen arbitrarily. Then our adversary
keeps requesting the items with size c until A accepts k items or rejects �1/c�
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items. If A rejects �1/c� items before accepting k items, the adversary stops the
input sequence (1). Otherwise (i.e., A accepts k items), the adversary requests

an item with size yk = kc+
√
k2c2+4kc
2 which is at least 1−c > c, since 1−

√
k

k+1 ≤
c < 1

2k ; if A rejects it, the adversary stops the input sequence (2), and otherwise,
the adversary requests an item with size 1− c and stops the input sequence (3).

In the case of (1), the competitive ratio is at least 1−c
(k−1)c ≥ 1

kc ≥ yk

kc =

ξ(k), where the last equality follows from Proposition 9. In the case of (2),
the competitive ratio is yk

kc = ξ(k) by Proposition 9. Finally, in the case of
(3), the competitive ratio is at least 1

yk−kc = ξ(k), which again follows from
Proposition 9. 	

By Theorems 10 and 11, it holds that μ(c) is a lower bound of the competitive
ratio for 0 < c < 1/2.

3.2.2 Upper Bound

In this subsection, we show μ(c) is also an upper bound for the competitive ratio
of the problem when 0 < c < 1/2. We start with several propositions needed
later.

Proposition 12. For a positive integer k, let c satisfy 0 < c ≤ 1−
√

k
k+1 . Then

we have

max {η(k), ξ(k + 1)} ≥ 2. (16)

Proposition 13. For a positive integer k, let c satisfy 1 −
√

k+1
k+2 ≤ c ≤ 1 −√

k
k+1 . Then we have

max

{
max

α∈{1,2,...,k}
η(α), ξ(k + 1)

}
= max {η(k), ξ(k + 1)} = μ(c). (17)

Proposition 14. For a positive integer k, let c satisfy 1 −
√

k+1
k+2 ≤ c ≤ 1 −√

k
k+1 . Then for any positive integer α ≤ k and real x ∈ (0, 1−αc), it holds that

min

{
1

1− x− αc
,
1− x

αx

}
≤ η(α) ≤ μ(c). (18)

Proof. Since 1
1−x−αc and 1−x

αx are respectively monotone increasing and decreas-
ing in x, the first inequality holds by Proposition 9. The second inequality is
obtained by Proposition 13. 	

Proposition 15. For a positive integer k, let c satisfy 1 −

√
k+1
k+2 ≤ c ≤ 1 −√

k
k+1 . Then for any real y ∈ ((k + 1)c, 1], we have

min

{
1

y − (k + 1)c
,

y

(k + 1)c

}
≤ ξ(k + 1) ≤ μ(c). (19)
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Proof. Since 1
y−(k+1)c and y

(k+1)c are respectively monotone decreasing and in-

creasing in y, the first inequality holds by Proposition 9. The second inequality
follows from the definition of μ(c). 	

We are now ready to prove that μ(c) is an upper bound for the competitive ratio.
According to the size of c, we make use of two algorithms described below.

Theorem 16. If 1− 1√
2
≤ c ≤ 1

2 , there exists an online algorithm with compet-

itive ratio μ(c) for the knapsack problem with unit removal cost, when the value
of each item is equal to the size.

Proof. We consider the following algorithm, where Bi−1 denotes the set of items
in the knapsack at the beginning of the ith round, and and s(Bi−1) denotes the
total size in Bi−1. Let ui be the item given in the ith round.

Algorithm 2.

1. if s(Bi−1) + s(ui) ≤ 1 then Bi ← Bi−1 ∪ {ui}
2. else if |Bi−1| = 1 and s(ui) ≥ c+

√
c2+4c
2 then Bi ← {ui} and STOP

3. else Bi ← Bi−1

Here STOP denotes that the algorithm rejects the items after this round.
Let OPT denote an optimal solution for the offline problem whose input

sequence is u1, . . . , ui. If the algorithm stops at the second line, the competitive

ratio is at most 1/
(

c+
√
c2+4c
2 − c

)
= c+

√
c2+4c
2c = μ(c), since s(OPT) ≤ 1.

Assume that the algorithm has never stopped at the second line and |Bi| = 1.
Then if s(Bi) ≥ 1/2, the competitive ratio is at most 1

1/2 = 2 ≤ μ(c). Otherwise,

the item in Bi has size smaller than 1/2, while the item uj with j < i and uj �∈ Bi

has size at least 1/2. This implies that |OPT| = 1 and the competitive ratio is

smaller than μ(c), since s(Bi) ≥ c and s(OPT) < c+
√
c2+4c
2 . If the algorithm has

never stopped at the second line and |Bi| > 1, the competitive ratio is at most
1
2c < μ(c), since c ≥ 1− 1/

√
2 > 1/6 implies c+

√
c2 + 4c > 1. 	


Theorem 17. If 1 −
√

k+1
k+2 ≤ c ≤ 1 −

√
k

k+1 , there exists an online algorithm

with competitive ratio μ(c) for the knapsack problem with unit removal cost, when
the value of each item is equal to the size.

Proof. We show that the following algorithm satisfies the desired property. In
the algorithm, let Bi−1 = {b1, b2, . . . , bm} be the set of items in the knapsack at
the beginning of the ith round, such that s(b1) ≥ s(b2) ≥ · · · ≥ s(bm). Let ui be
the item given in the ith round.
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Algorithm 3.

1. if s(Bi−1) + s(ui) ≤ 1 then Bi ← Bi−1 ∪ {ui}
2. else
3. B′

i−1 ← ∅
4. for j = 1 to m if s(B′

i−1)+s(bj) ≤ 1−s(ui) then B′
i−1 ← B′

i−1∪{bj}
5. if s(B′

i−1) + s(ui)− |Bi−1 \B′
i−1|c ≥ 1/μ(c)

then Bi ← B′
i−1 ∪ {ui} and STOP

6. else Bi ← Bi−1

Here STOP denotes that the algorithm rejects the items after this round.
Let OPT denote an optimal solution for the offline problem whose input se-

quence is u1, . . . , ui. If the algorithm stops at the fifth line in round l ≤ i, s(Bi) =
s(Bl) = s(B′

l−1)+s(ul) and the profit of the algorithm is s(B′
l−1)+s(ul)−|Bl−1\

B′
l−1|c. Therefore, the competitive ratio is at most 1

s(B′
l−1)+s(ul)−|Bl−1\B′

l−1|c ≤
μ(c), since s(OPT) ≤ 1. Otherwise, the algorithm has never removed old items
from the knapsack. If s(Bi) ≥ 1/2, then the competitive ratio is at most 1

1/2 =

2 ≤ μ(c). On the other hand, if s(Bi) < 1/2, then any item in Bi has size
at most 1/2. while any item in OPT \Bi has size larger than 1/2. This implies
|OPT\Bi| ≤ 1 by s(OPT) ≤ 1. If |OPT\Bi| = 0, then we have OPT = Bi, which
implies that the competitive ratio is 1. Thus we assume that |OPT \ Bi| = 1.
For the cardinality of Bi, we have |Bi| ≤ k + 1, since any b ∈ Bi satisfies

s(b) ≥ c ≥ 1−
√

k+1
k+2 ≥ 1

2k+4 , where the last inequality follows from Proposition

7. Since the algorithm has never removed items, |Bl| ≤ k+1 also holds for each
l with l ≤ i. Let

{ul} = OPT \Bi, α = |Bl−1 \B′
l−1|, x = 1− (s(ul) + s(B′

l−1)). (20)

Since Bl−1 \B′
l−1 �= ∅, we have

α > 0 and x <

√
k

k + 1
< 1− αc. (21)

Since s(Bi) = s(Bl−1) + s(Bi \ Bl−1) and s(OPT) ≤ s(ul) + s(Bl−1 ∩ OPT) +
s(Bi \Bl−1), the competitive ratio is at most

s(ul) + s(Bl−1 ∩OPT) + s(Bi \Bl−1)

s(Bl−1) + s(Bi \Bl−1)
≤ max

{
s(ul) + s(Bl−1 ∩OPT)

s(Bl−1)
, 1

}
.

We claim that
s(ul)+s(Bl−1∩OPT)

s(Bl−1)
≤ μ(c).

Let Bl = {b1, b2, . . . , bm} satisfy s(b1) ≥ s(b2) ≥ · · · ≥ s(bm). To see this
claim, we separately consider the following two cases:

Case 1. Consider the case in which there exists bj ∈ B′
l−1 such that bh �∈ B′

l−1

holds for some h > j. Let us take bj as the largest such item, i.e., bj ∈ B′
l−1 and

bg �∈ B′
l−1 for all g (< j).

In this case, we obtain the following inequalities:

s(ul) + s(Bl−1 ∩OPT)

s(Bl−1)
≤ s(bh) + 1− x

s(bh) + αx
≤ max

{
1,

1− x

αx

}
. (22)
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Here the numerator and denominator in the left hand side of (22) respectively
satisfy s(ul) + s(Bl−1 ∩OPT) ≤ 1 < s(bh)+ s(ul) + s(B′

l−1) = s(bh)+ 1− x and
s(Bl−1) = s(B′

l−1) + s(Bl−1 \B′
l−1) ≥ s(bh) + αx, since bh �∈ B′

l−1 and s(b) > x

holds for any b ∈ Bl−1 \B′
l−1. Finally, we show

1−x
αx ≤ μ(c), which completes the

claim.
Since the algorithm has not stopped at the fifth line and 1−x−αc > 0 by (21),

we have 1
1−x−αc = 1

s(B′
l−1)+s(ul)−αc > μ(c). Note that α ≤ |Bl−1 \ {bh}| ≤ k,

since |Bl−1| ≤ k + 1. Therefore, we obtain 1−x
αx ≤ μ(c) by Proposition 14.

Case 2. We next consider the case in which bj ∈ B′
l−1 implies bh ∈ B′

l−1 for all
h (> j), i.e., B′

l−1 consists of the |B′
l−1| smallest items of Bl−1. Then we have

s(b) > 1− s(ul) for any b ∈ Bl−1 \B′
l−1. This implies Bl−1 ∩OPT ⊆ B′

l−1, and
s(Bl−1 \B′

l−1) > αx holds by (20).
If α ≤ k, thus, the competitive ratio is at most

s(ul) + s(Bl−1 ∩OPT)

s(Bl−1)
≤ s(ul) + s(B′

l−1)

s(Bl−1 \B′
l−1)

≤ 1− x

αx
≤ μ(c), (23)

where the last inequality follows from a similar argument to Case 1. On the
other hand, if α = k + 1, let y = s(ul) + s(B′

l−1). Then we have

s(ul) + s(Bl−1 ∩OPT)

s(Bl−1)
≤ y

(k + 1)c
, (24)

where the inequality follows from the fact that s(ul)+ s(Bl−1 ∩OPT) ≤ s(ul)+
s(B′

l−1) = y and s(Bl−1) ≥ s(B′
l−1) ≥ (k + 1)c, since Bl−1 ∩ OPT ⊆ B′

l−1 and
any item has size at least c. Finally, since y > (k+1)c and the algorithm has not
stopped at the fifth line, it holds that 1

y−(k+1)c = 1
s(B′

l−1)+s(ul)−(k+1)c > μ(c).

This together with Proposition 15 implies y
(k+1)c ≤ μ(c). 	
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