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Abstract. We characterize graphs that have intersection representa-
tions using unit intervals with open or closed ends such that all ends of
the intervals are integral in terms of infinitely many minimal forbidden
induced subgraphs. Furthermore, we provide a quadratic-time algorithm
that decides if a given interval graph admits such an intersection repre-
sentation.
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1 Introduction

Interval graphs and subclasses like proper interval graphs and unit interval
graphs have well studied structural [2, 10] as well as algorithmic [3–5, 12, 13]
properties and occur in many applications [1, 9, 11, 14–18]. Interval graphs are
the intersection graphs of closed (real) intervals and unit interval graphs are the
intersection graphs of closed unit intervals.

As long as intervals of different lengths are allowed, it actually does not matter
in the definition of interval graphs whether the ends of the intervals are closed or
open. For unit interval graphs, this is no longer true. While Frankl and Maehara
[7] proved that unit interval graphs coincide with the intersection graphs of open
unit intervals, the intersection graphs of the unit intervals of different types form
a strict superclass of unit interval graphs.

In two previous papers we studied the classes of intersection graphs of closed
and open unit intervals [19] and of mixed unit intervals [6] where for mixed unit
intervals all four combinations for the two ends, namely open-open, closed-closed,
open-closed, and closed-open are allowed. Partial results in [6] naturally lead to
the problem of characterizing the graphs that have intersection representations
using mixed unit intervals where additionally all ends of the intervals are integers.

We refer to such graphs as integral mixed unit interval graphs.
Our contributions in the present paper are

– a characterization of twin-free integral mixed unit interval graphs in terms
of the complete list of minimal forbidden induced subgraphs, and
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– a quadratic-time algorithm that decides if a given interval graph is an integral
mixed unit interval graph, and if so, outputs a suitable representation.

The paper is organized as follows. In Section 2 we introduce some terminology
and notation, give exact definitions, and recall some previous results. In Section
3 we study the forbidden induced subgraphs. In Section 4 we derive structural
properties of the maximal cliques of integral mixed unit interval graphs. Section
5 is devoted to the representation algorithm and its analysis. Finally, in Section
6 we combine all results of the earlier sections and prove our main results.

2 Preliminaries

Let M be a family of sets. An M-representation of a graph G is a function
M : V (G) → M such that for every two distinct vertices u and v of G, we have
uv ∈ E(G) if and only if M(u) ∩ M(v) �= ∅. A graph is an M-graph if it has
a M-representation. Two vertices u and v in a graph G are twins, if they have
the same closed neighborhood, that is, they are adjacent and for every vertex
w in V (G) \ {u, v}, the vertices u and w are adjacent if and only if the vertices
v and w are adjacent. Note that if u and v are twins in a graph G, then G is
an M-graph if and only if G − u is an M-graph. Thus, it suffices to consider
twin-free graphs when discussing graphs admitting an M-representation.

For two real numbers x and y, the open interval (x, y) is {z ∈ R | x < z < y},
the closed interval [x, y] is {z ∈ R | x ≤ z ≤ y}, the open-closed interval (x, y] is
{z ∈ R | x < z ≤ y}, and the closed-open interval [x, y) is {z ∈ R | x ≤ z < y}.
Let

I−− = {(x, y) | x, y ∈ R, x < y}, U−− = {(x, x+ 1) | x ∈ R},
I++ = {[x, y] | x, y ∈ R, x ≤ y}, U++ = {[x, x+ 1] | x ∈ R},
I−+ = {(x, y] | x, y ∈ R, x < y}, U−+ = {(x, x+ 1] | x ∈ R},
I+− = {[x, y) | x, y ∈ R, x < y}, U+− = {[x, x+ 1) | x ∈ R},
I± = I++ ∪ I−−, U± = U++ ∪ U−−,
I = I± ∪ I−+ ∪ I+−, U = U± ∪ U−+ ∪ U+−.

We allow arithmetic operations on intervals, that is, for an interval I in I and
two real numbers x and y, we have xI + y = {xz + y | z ∈ I}.

For an interval I in I, let �(I) = inf(I) and r(I) = sup(I) denote the left and
right end of I, respectively.

A U-representation I of a graph G is integral if {�(I(u)) | u ∈ V (G)} ⊆ Z,
that is, all ends of the intervals are integers.

Interval graphs are I++-graphs and unit interval graphs are U++-graphs. A graph
G is a proper interval graph if it has a I++-representation I : V (G) → I++ for
which there are no two vertices u and v of G such that I(u) is a proper subset
of I(v). In this case I is a proper interval representation of G.

A fundamental result relating these three classes of interval graphs is due to
Roberts. Please refer to Figure 1 for an illustration of the Claw K1,3.
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Fig. 1. The Claw K1,3 and its four integral U-representations

Theorem 1 (Roberts [20]). A graph is a unit interval graph if and only if it
is a proper interval graph if and only if it is a K1,3-free interval graph.

As mentioned in the introduction, for the definition of interval graphs, the
type of the intervals does not make a difference, more precisely, if M,N ∈
{I, I++, I−−, I+−, I−+}, then G is a M-graph if and only if G is a N -graph
[6,19]. Since the Claw K1,3 has a U±-representation (cf. Figure 1), the situation
is different for unit interval graphs. The main two results from [6,19] are the fol-
lowing. Please refer to Section 3 and Figure 2 for the definition and illustration
of all graphs mentioned in these results.

Theorem 2 (Rautenbach and Szwarcfiter [19]). A twin-free graph is a
U±-graph if and only if it is a {R0, Q1, D3, D5}-free interval graph.

a
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Fig. 2. The Diamond

Theorem 3 (Dourado et al. [6]). For a diamond-free graph G, the following
statements are equivalent.

(1) G is a {Rk | k ∈ N0}-free interval graph.

(2) G has an integral U-intersection representation.

(3) G is a U-graph.

Mainly the last theorem motivated the characterization problem of the graphs
that have an integral U-representation.
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3 Forbidden Induced Subgraphs

Let G be the class of twin-free integral mixed unit interval graphs, that is, of
those twin-free graphs that have an integral U-representation.

Let G ∈ G and let I : V (G) → U be an integral U-representation of G. For a
vertex u of G, let c(u) denote the number of distinct maximal cliques of G that
contain u.

Since G is twin-free, the function I is necessarily injective. Hence, if H is
an induced subgraph of G, then the restriction of I to V (H) is an injective
integral U-representation of H , that is, even if H is not twin-free, there is an
integral U-representation of H that assigns different intervals to the vertices of
H . Therefore, the minimal forbidden induced subgraphs for G are exactly those
graphs that do not have an injective integral U-representation while every proper
induced subgraph has.

The integrality of the representation I immediately implies that every vertex
u of G belongs to at most three maximal cliques of G, that is,

(C1) c(u) ≤ 3 for every vertex u of G.

where c(u) = 3 implies that I(u) is necessarily a closed interval.

Lemma 1. The graphs R0, D1, D2, and D3 are minimal forbidden induced
subgraphs for G.
Proof. It follows from (C1) that R0, D1, and D2 are forbidden induced subgraphs
for G, because c(a) > 3 for each of these graphs. Suppose D3 is an induced
subgraph of some G ∈ G, labelled as in Figure 4. Since G has no twins, we may
assume, by symmetry, that there exists a vertex b′ adjacent to a and non-adjacent
to b. Now c(a) > 3, contradicting (C1). Thus, D3 is also a forbidden induced
subgraph for G. Finally, it is easy to verify that for each H ∈ {R0, D1, D2, D3}
and every v ∈ V (H), the graph H−v has an injective integral U-representation.
Lemma 2. The graphs S0, T0, K5, and D4 are minimal forbidden induced sub-
graphs for G.
Lemma 3. The graph D5 is a minimal forbidden induced subgraph for G.

a

b c d e
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a b c d

e f g

T0

Fig. 3. The graphs R0, S0, and T0
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Fig. 4. The graphs D1 to D7

Lemma 4. The graphs D6 and D7 are minimal forbidden induced subgraphs
for G.

We now describe three infinite sequences of forbidden induced subgraphs for G.
For k ∈ N, let the graph Qk arise from a path a0a1a2 . . . ak+1 by adding the

vertices b1, b2, . . . , bk+1, the edges aibi for 1 ≤ i ≤ k + 1, and the edges ai−1bi
for 2 ≤ i ≤ k + 1. See Figure 5 for an illustration.
For k ∈ N,

– let Q̃k arise from Qk by adding a vertex b0 and four edges a0b0, a0b1, a1b0,
and b0b1,

– let Rk arise from Qk by adding two vertices ak+2 and bk+2 and two edges
ak+1ak+2 and ak+1bk+2,

a0 a1 a2

b1 b2

Q1

a0 a1 a2 a3 a4

b1 b2 b3 b4

Q3

a0 a1 a2

b0 b1 b2

Q̃1

Fig. 5. The graphs Q1, Q3, and Q̃1
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a0 a1 a2 a3

b1 b2 b3

R1

a0 a1 a2 a3 a4

b1 b2 b3 b4 b5

S2

a0 a1 a2 a3

b0 b1 b2 b3 b4

T1

Fig. 6. The graphs R1, S2, and T1

– let Sk arise from Qk by adding three vertices ak+2, bk+2, and bk+3 and six
edges ak+1ak+2, ak+1bk+2, ak+1bk+3, ak+2bk+2, ak+2bk+3, and bk+2bk+3, and

– let Tk arise from Q̃k by adding three vertices ak+2, bk+2, and bk+3 and six
edges ak+1ak+2, ak+1bk+2, ak+1bk+3, ak+2bk+2, ak+2bk+3, and bk+2bk+3.

See Figures 5 and 6 for an illustration.
For k ∈ N, the two vertices ak+1 and bk+1 are called the special vertices of Qk

and Q̃k, respectively.

Lemma 5. The graphs Rk, Sk, and Tk for k ∈ N are minimal forbidden induced
subgraphs for G.

4 Properties of Maximal Cliques

Throughout this section, let G be a fixed connected twin-free interval graph. It
is well-known [8] that there is a linear ordering of the maximal cliques of G,
say C = (C1, . . . , Cq), such that every vertex of G belongs to maximal cliques
that are consecutive in that ordering, that is, for every vertex u of G, there are
indices �(u) and r(u) with

{i | 1 ≤ i ≤ q and u ∈ Ci} = {i | �(u) ≤ i ≤ r(u)}.

Note that this linear ordering is unique up to reversal and that the number c(u)
of distinct maximal cliques of G that contain u equals r(u) + 1− �(u). Hence a
vertex u of G is simplicial if and only if c(u) = 1 if and only if �(u) = r(u).

If C and D are distinct maximal cliques of G, then C \D and D \C are both
not empty, that is, for every j ∈ {1, . . . , q}, there are vertices u and v such that
r(u) = �(v) = j. This also implies that C1 and Cq contain simplicial vertices.

Note that, since G is twin-free, there are no two distinct vertices u and v with
�(u) = �(v) and r(u) = r(v).
The purpose of the present section is to derive the following structural properties
of the sequence C that are implied by forbidding certain induced subgraphs from
Section 3.
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(C1) c(u) ≤ 3 for every vertex u of G.
(C2) There are no two vertices u and v of G with c(u) = c(v) = 3 and r(v) −

r(u) = 1.

Lemma 6. Let G, C, and �(u), r(u), and c(u) for every vertex u of G be as
above.

(i) If G is {R0, D1, D2, D3, D4}-free, then (C1) holds.
(ii) If G is {D5, D6, D7}-free, then (C2) holds.

Proof. (i) For contradiction, we assume that c(u1) ≥ 4 for some vertex u1 of G.
Let i = �(u1). Note that r(u1) ≥ i + 3. Let the vertices u2, u3, u4, and u5 be
such that r(u2) = i, �(u3) = i + 3, r(u4) = i + 1, and �(u5) = i + 2. Since G is
R0-free, we may assume, by symmetry, that �(u4) ≤ i. Let the vertex u6 be such
that �(u6) = i+ 1.

First, we assume that r(u5) = i + 2. Since G is R0-free, this implies r(u6) ≥
i + 2. If r(u6) = i + 2, then G[{u1, . . . , u6}] is D1, and, if r(u6) ≥ i + 3, then
G[{u1, u3, . . . , u6}] is D3, which is a contradiction. Hence we may assume that
r(u5) ≥ i+ 3. Let the vertex u7 be such that r(u7) = i+ 2.

If r(u6) = i + 2, then G[{u1, . . . , u6}] is D2, which is a contradiction. If
r(u6) ≥ i+ 3, then G[{u1, u3, u5, u6, u7}] is D4, which is a contradiction. Hence
we may assume that r(u6) = i + 1 and, by symmetry, �(u7) = i + 2. Now
G[{u1, u2, u3, u6, u7}] is R0, which is a contradiction. This completes the proof
of (i).

(ii) For contradiction, we assume that the vertices u1 and u2 are such that
c(u1) = c(u2) = 3 and r(u2) = r(u1) + 1.

Let i = �(u1). Let the vertices u3, u4, u5, and u6 be such that r(u3) = i,
�(u4) = i + 3, r(u5) = i + 1, and �(u6) = i + 2. Now G[{u1, . . . , u6}] is one of
the graphs D5, D6, and D7, which is a contradiction. This completes the proof
of (ii).

5 The Representation Algorithm

Throughout this section, let G be a fixed connected twin-free interval graph that
is not a clique. Let C = (C1, . . . , Cq) and �(u), r(u), and c(u) for every vertex u
of G be as in the first paragraph of Section 4. Since G is not a clique, we have
q ≥ 2.

In this section, we describe and analyze the algorithm IntMixUniIntRep that,
given C as input, produces a function I : V (G) → U such that �(I(u)) ∈ Z

for every vertex u of G. We prove that I is an integral U-representation of G
provided that C satisfies certain structural properties and G does not contain
certain induced subgraphs. The algorithm works essentially in two phases:

– In a first phase, the algorithm determines a path P : v0 . . . vk+1 in G (cf.
ClosedVertices). To the vertices of this path it assigns the intervals I(vi) =
[i, i+ 1] for i ∈ {0, . . . , k + 1} (cf. line 2 of IntMixUniIntRep).
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– In a second phase, it processes the maximal cliques of G according to the
ordering given by C (cf. line 3 of IntMixUniIntRep). When it processes the
maximal clique Ci, then I(u) is defined for all vertices u of G with �(u) = i,
that is, it specifies the unit interval for those vertices that appear in Ci for
the first time and do not belong to P . (cf. line 4 of IntMixUniIntRep).

Recall that a vertex u is simplicial if and only if c(u) = 1.

Procedure ClosedVertices

1. let v0 be a simplicial vertex in C1

2. i := 0; j := 1
3. repeat
4. i := i+ 1
5. let vi be a vertex in Cj \ {v0, . . . , vi−1} with maximum r(v)
6. j := r(vi)
7. until j = q
8. k := i
9. let vk+1 be a simplicial vertex in Cq

If i ∈ {0, . . . , k − 1}, then r(vi) < q and the connectivity of G implies r(vi+1) >
r(vi). This implies that ClosedVertices necessarily terminates. Clearly, by the
choice of the vertices, P : v0v1 . . . vk+1 is a path in G.

Lemma 7. If C satisfies (C1) and (C2), then the vertices v0, . . . , vk+1 selected by
ClosedVertices satisfy the following properties.

(i) r(vi) = �(vi+1) for i ∈ {0, . . . , k}.
(ii) The vertices v0, . . . , vk+1 are uniquely determined.

(iii) Each maximal clique Cj of G contains one or two vertices from V (P ).
Furthermore,

• if Cj contains only one vertex from V (P ), say vi, then j ∈ {2, . . . , q−1},
�(vi) = j − 1, and r(vi) = j + 1, and

• if Cj contains two vertices from V (P ), then Cj ∩ V (P ) = {vi, vi+1} for
some i ∈ {0, . . . , k} and r(vi) = �(vi+1) = j.

(iv) c(u) ≤ 2 for every vertex u in V (G) \ V (P ).

(v) For every j ∈ {1, . . . , q}, there are at most two vertices u with �(u) =
j that do not belong V (P ), that is, |Cj \ (Cj−1 ∪ V (P ))| ≤ 2 for every
j ∈ {1, . . . , q}. Furthermore, if Cj \ (Cj−1 ∪ V (P )) contains two distinct
vertices u and v for some j ∈ {1, . . . , q}, then j ∈ {2, . . . , q − 1} and
{c(u), c(v)} = {1, 2}.
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Proof. (i) For i = 0 or i = k, the desired statement follows easily because v0 and
vk+1 are simplicial vertices with �(v0) = r(v0) = 1 and �(vk+1) = r(vk+1) = q.
Now let i ∈ {1, . . . , k−1}. By line 5 of ClosedVertices, we have r(vi) ≥ �(vi+1).
Therefore, for contradiction, we assume that r(vi) > �(vi+1). As noted above, we
have r(vi+1) > r(vi). By the choice of vi, this implies �(vi) < �(vi+1). By (C1) and
since G is twin-free, this implies that c(vi) = c(vi+1) = 3 and r(vi) = �(vi+1)+1,
which yields a contradiction to (C2).

(ii) Since G is twin-free, each of the cliques C1 and Cq contains exactly one
simplicial vertex, which implies that v0 and vk+1 are uniquely determined. If vi
has already been determined and r(vi) < q, then i ≤ k. Now part (i) and the
twin-freeness of G imply that vi+1 is uniquely determined.

(iii) This follows immediately from part (i) and the observation r(vi+1) > r(vi)
for i ∈ {0, . . . , k − 1}.

(iv) In view of (C1), we may assume, for contradiction, that c(u) = 3 for some
u ∈ V (G) \ V (P ). Let j = �(u).

If there is exactly one vertex vi from V (P ) with vi ∈ Cj , then part (iii) implies
�(vi) < j < r(vi). This implies c(vi) = 3 and r(u) = r(vi) + 1, which yields a
contradiction to (C2).

If there are two vertices from V (P ) in Cj , then part (iii) implies that Cj ∩
V (P ) = {vi, vi+1} for some i ∈ {0, . . . , k} such that j = �(vi+1). Since G is
twin-free, this implies c(vi+1) ≤ 2, which yields a contradiction to the choice of
vi+1.

(v) This follows from part (iv) and the twin-freeness of G.

Lemma 8. Let C satisfy (C1) and (C2) and let I be the function defined by
IntMixUniIntRep.

(i) For every two distinct vertices u and v of G, if {u, v} ∩ V (P ) �= ∅, then
uv ∈ E(G) if and only if I(u) ∩ I(v) �= ∅.

(ii) For every two distinct vertices u and v of G, if uv ∈ E(G), then
I(u) ∩ I(v) �= ∅.

Lemma 9. Let C satisfy (C1) and (C2). Just after an execution of line 16 of
IntMixUniIntRep that defines I(u), there is an induced subgraph H of G such
that

– �(v) < �(u) for every v ∈ V (H) \ {u, vi+1}, that is, I(v) is already defined
for every vertex v of H,

– u, vi, vi+1 ∈ V (H),
– H is

• either K4,
• or Qk for some k ∈ N such that u and vi+1 are the special vertices of H,
• or Q̃k for some k ∈ N such that u and vi+1 are the special vertices of H.

Proof. We prove the statement by induction on j where j and i are as in the
considered execution of line 16 of IntMixUniIntRep.
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Algorithm IntMixUniIntRep

1. run ClosedVertices to compute P : v0 . . . vk+1

2. for i := 0 to k + 1 do I(vi) := [i, i+ 1]
3. for j := 1 to q do
4. for each u ∈ V (G) \ V (P ) with �(u) = j do
5. if

∣
∣Cj ∩ V (P )

∣
∣ = 1 then

6. let Cj ∩ V (P ) = {vi} for some i ∈ {0, . . . , k + 1}
7. if u is simplicial
8. then I(u) := (i, i+ 1)
9. else I(u) := (i, i+ 1]

10. endif
11. if

∣
∣Cj ∩ V (P )

∣
∣ = 2 then

12. let Cj ∩ V (P ) = {vi, vi+1} for some i ∈ {0, . . . , k}
13. if u is simplicial then
14. if there is no v ∈ V (G) \ V (P ) with �(I(v)) = i
15. then I(u) := (i, i+ 1]
16. else I(u) := [i+ 1, i+ 2)
17. else I(u) := [i+ 1, i+ 2)
18. endif
19. endfor
20. endfor

In view of line 14 of IntMixUniIntRep, just before the considered execution of
line 16 of IntMixUniIntRep, there is a vertex v ∈ V (G)\V (P ) with �(I(v)) = i,
which implies that �(v) < �(u) and j, i ≥ 1. By Lemma 7, we have �(vi) ∈
{j−1, j−2}. By Lemma 8, the vertex v is adjacent to vi, that is, v and vi both lie
in a maximal clique ofG. If �(v) < �(vi), then, by Lemma 7, �(vi−1) = �(v)−1 and
�(vi) = �(v)+1 and in view of IntMixUniIntRepwe obtain I(v) = (i−1, i], which
is a contradiction. Hence �(v) ≥ �(vi). If v ∈ Cj , then H = G[{vi, vi+1, u, v}] is
K4. Hence, we may assume that r(v) < j = �(u).

If �(v) > �(vi), then, by Lemma 7, �(vi) = j − 2, �(v) = r(v) = j − 1, and
|Cj−1 ∩ V (P )| = 1. Now H = G[{vi−1, vi, vi+1, v, u}] is Q1 such that u and vi+1

are the special vertices of H . Hence we may assume that �(v) = �(vi).
If c(v) = 2, then, by Lemma 7, �(vi) = j − 2, �(v) = j − 2, r(v) = j − 1, and

|Cj−2 ∩ V (P )| = 2. Let the vertex w be such that �(w) = j − 1. If r(w) = j − 1,
then H = G[{vi−1, vi, vi+1, w, u}] is Q1 such that u and vi+1 are the special
vertices of H . If r(w) > j−1, then H = G[{vi, vi+1, w, u}] is K4. Hence, we may
assume that c(v) = 1.

Since �(I(v)) = i, we obtain that I(v) was defined by an earlier execution of
line 16 of IntMixUniIntRep. By induction, this implies that, just after I(v) was
defined, there was an induced subgraph H ′ of G with the desired properties.
Now H = G[{V (H ′) ∪ {u, vi+1}}] has the desired properties.

Lemma 10. Let C satisfy (C1) and (C2) and let I be the function defined by
IntMixUniIntRep.
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If G is {K5} ∪ {Ri | i ∈ N} ∪ {Si | i ∈ N0} ∪ {Ti | i ∈ N0}-free, then I is an
integral U-representation of G.

6 Harvest

In this section we prove our two main results.

Theorem 4. If G is a twin-free connected interval graph that is not a clique,
and C is as in the first paragraph of Section 4, then the following statements are
equivalent.

(1) G is {D1, . . . , D7}∪{K5}∪{Ri | i ∈ N0}∪{Si | i ∈ N0}∪{Ti | i ∈ N0}-free.
(2) C satisfies (C1) and (C2) and G is {K5} ∪ {Ri | i ∈ N} ∪ {Si | i ∈ N0} ∪ {Ti |

i ∈ N0}-free.
(3) G has an integral U-representation.
Proof. By Lemma 6, the first statement implies the second. By Lemma 10, the
second statement implies the third. Finally, by Lemmas 1, 2, 3, 4, and 5, the
third statement implies the first.

It is straighforward yet tedious to derive from Theorem 4 the complete list of all
minimal forbidden induced subgraphs of integral mixed unit interval graphs by
considering the forbidden induced subgraphs of interval graphs and all minimal
twin-free supergraphs of the graphs mentioned in (1) of Theorem 4. We leave
the details to the reader.

Furthermore, Theorem 4 directly implies Theorem 3: Let G be a diamond-free
graph satisfying (1) of Theorem 3. Note that we may assume that G is twin-free.
This easily implies that G is K4-free. Hence G satisfies (1) in Theorem 4, and
therefore G satisfies (2) in Theorem 3. In Theorem 3, the implication (2) ⇒ (3) is
trivial and the implication (3) ⇒ (1) follows by noting that all Rk are forbidden
induced subgraphs even for the class of U-graphs.
Theorem 5. There is a quadratic-time algorithm that, given an interval graph
G, decides if G has an integral U-representation, and if so, outputs such a rep-
resentation for G.

Proof. Let G be an interval graph. Since all twins of G can be detected in time
O(|V (G)|2), we may assume that G is twin-free. Note that a linear ordering
C = (C1, . . . , Cq) of the maximal cliques of G can be computed in linear time
(cf. [10]). If some Cj has more than four vertices, G does not have an integral
U-representation (cf. Lemma 2). Otherwise, we compute c(u), �(u), and r(u) for
u ∈ V (G) in linear time in an obvious way, and run IntMixUniIntRep to get
the function I. Note that, since |Cj | ≤ 4 for all j, IntMixUniIntRep has linear
running time. Now we test whether I is an intersection representation of G or
not by constructing the graph H = (V (G), {uv | I(u) ∩ I(v) �= ∅}) and checking
if G = H , that is, checking NG(v) = NH(v) for all v ∈ V (G). This can be
done in time O(|V (G)|2). If G = H , then I is an integral U-representation of G.
Otherwise, Lemma 10 and Theorem 4 imply that G has no such a representation.
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