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Abstract. By the motivation to discover patterns in massive structured
data in the form of graphs and trees, we study a special case of the k-
subtree enumeration problem, originally introduced by (Ferreira, Grossi,
and Rizzi, ESA’11, 275-286, 2011), where an input graph is a tree of n
nodes. Based on reverse search technique, we present the first constant
delay enumeration algorithm that lists all k-subtrees of an input tree in
O(1) worst-case time per subtree. This result improves on the straight-
forward application of Ferreira et al’s algorithm with O(k) amortized
time per subtree when an input is restricted to tree. Finally, we discuss
an application of our algorithm to a modification of the graph motif
problem for trees.

1 Introduction

By emergence of massive structured data in the form of trees and graphs, there
have been increasing demands on efficient methods that discovers many of inter-
esting patterns or regularity hidden in collections of structured data [1,2,13,14].
For instance, the proximity pattern mining problem [8,9] is a class of such pat-
tern discovery problems, where an algorithm is requested to find all collections of
items satisfying proximity constraints in a given discrete structure. For example,
the proximity string search problem [9] and the graph motif problem [5,8] are
popular examples of such proximity pattern discovery problems.

In this paper, we consider the k-subtree enumeration problem, which is origi-
nally introduced by Ferreira, Grossi, and Rizzi [6], where an instance consists of
an undirected graph G of n nodes and a positive integer k ≥ 1, and the task is to
find all k-subtrees, a connected and acyclic node subsets consisting of exactly k
nodes in G. Ferreira et al. [6] presented the first output-sensitive algorithm that
lists all k-subtrees in a graph G of size n in O(sk) total time and O(n) space,
in other words, in O(k) amortized time per subtree, where n is the number of
edges of an input graph and s is the number of solutions. However, it has been
an open question whether there exists a faster enumeration algorithm that solves
this problem.
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As a main result of this paper, we present the first constant delay enumeration
algorithm for the k-subtree enumeration problem in trees . More precisely, our
algorithm lists all k-subtrees of an input tree T of size n in constant worst-
case time per subtree using O(n) preprocessing and space. Our algorithm is
based on reverse search technique, proposed by Avis and Fukuda [3], as in the
algorithm by Ferreira et al. [6] for general input graphs. However, unlike their
algorithm [6], our algorithm achieves the best possible enumeration complexity.
Finally, we discuss an application of our algorithm to a modification of the graph
motif problem for trees.

1.1 Related Work

The k-subtree enumeration problem considered in this paper is closely related to
a well-known graph problem of enumerating all spanning trees in an undirected
graph G [11]. For this problem, Tarjan and Read [11] first presented an O(ns)
time and O(n) space algorithm in 1960’s, where n is the number of edges in G.
Recently, Shioura, Tamura, and Uno [10] presented O(n+s) time and O(n) space
algorithm. Unfortunately, it is not easy to extend the algorithms for spanning
tree enumeration to subtree enumeration.

One of our motivation comes from application to the graph motif problem
(GMP, for short). Given a bag of k labels, called a pattern, and an input graph
G, called a text, GMP asks to find a k node subgraph of G whose multi-set of
labels is identical to P . Lacroix et al. [8] introduced the problem with application
to biology and presented an FPT algorithm with k = O(1), and NP-hardness in
general. Then, Fellows et al. [5] showed that the problem is NP-hard even for
trees of degree 3, and presented an improved FPT algorithm. Sadakane et al. [9]
studied the string version of GMP, and presented linear-time algorithms.

Although there are increasing number of studies on GMP [5,8], there are
few attempts to apply efficient enumeration algorithms to this problem. Fer-
reira, Grossi, and Rizzi [6] mentioned above is one of such studies. Recent stud-
ies [2,13,14] in data mining applied efficient enumeration algorithms to discovery
of interesting substructures from massive structured data in the real world.

1.2 Organization of This Paper

In Sec. 2, we define basic definitions on the k-subtree problem. In Sec. 3, we first
introduces a family tree, and in Sec. 4, then, we present a constant delay algo-
rithm that solves the k-subtree enumeration problem. Sec. 5 gives an application
to the graph motif problem. Finally, in Sec. 6, we conclude.

2 Preliminaries

In this section, we give basic definitions and notation for trees and their subtrees.
For the definitions not found here, please consult textbooks, e.g., [4]. For a set
S, we denote by |S| the number of elements in S. In this paper, all graphs are
simple (without self-loops or parallel edges).
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Trees. A rooted tree is a directed connected acyclic graph T = (V (T ), E(T ),
root(T )), where V = V (T ) is a set of nodes , E = E(T ) ∈ V 2 is a set of directed
edges , and root(T ) ∈ V is a distinguished node, called the root of T . For each
directed edge (u, v) ∈ E, we call u the parent of v and v a child of u. We assume
that every node v except the root has the unique parent. The size of T is denoted
by |T | = |V (T )| = n. We say that nodes u and v are siblings each other if they
have the same parent. For each node v, we denote the unique parent of v by
pa(v), and the set of all children of a node u by Ch(v) = { w ∈ V | (v, w) ∈ E }.

We define the ancestor-descendant relation � as follows: For any pair of nodes
u and v ∈ V , if there is a sequence of nodes π = (v0 = u, v1, · · · , vk = v) (k ≥ 0),
where (vi−1, vi) ∈ E for every i = 1 . . . k, then we define u � v, and say that u
is an ancestor of v, or v is a descendant of u. If u � v but u �= v, then and u is
a proper ancestor of v, denoted by u ≺ v. , or v is a proper descendant of u. For
any node v, we denote by T (v) the set of all descendants of v in T .

DFS-Numbering. In this paper, we regard an input tree T of size n ≥ 0 as
an ordered tree as follows. We first assume an arbitrary fixed ordering among
siblings. Then, we number all nodes of T from 1 to n by the DFS-numbering ,
which is the preorder numbering in the depth-first search [4] on nodes in T . In
what follows, we identify the node and the associated node number, and thus,
write V = {1, · · · , n}. Thus, we can write u ≤ v (resp. or u < v) if the numbering
of u is smaller or equal to (resp. smaller than) that of v. As a basic property of
a DFS-numbering, we have the next lemma.

Lemma 1. For any u, v ∈ V , the DFS-numbering on T satisfies the following
properties (i), (ii), and (iii):

(i) If v is a proper descendant of u, i.e., u ≺ v, then u < v holds.
(ii) If v is a properly younger sibling of u, then u < v holds.
(iii) Suppose that x �� y and y �� x. For any nodes x′, y′ such that x′ � x and

y′ � y, x < y implies that x′ < y′.

The Family of k-Subtrees. Let 1 ≤ k ≤ n = |T |. A k-subtree in a tree T
is a connected and acyclic subgraph of T , as an undirected graph, consisting of
exactly k nodes. Since T is a tree, any connected subgraph is obviously acyclic,
and thus, it is completely specified by its node set. Therefore, if it is clearly
understood, we often identify a connected node set S such that |S| = k with the
k-subtree, where S is connected if its induced subgraph T (S) is connected. In
what follows, we denote by Sk = Sk(T ) the family of all k-subtrees of T .

For a k-subtree S in T , we denote by root(S) and L(S) the root and the set
of leaves of S, respectively. The border set is the set B(S) = Ch(S) \ S = { y ∈
Ch(x) |x ∈ S, y /∈ S } that consists of all nodes lying immediately outside of
S. L(S) and B(S) are anti-chain of nodes in T w.r.t. the ancestor-descendant
relation �. We define the interior and exterior of S, respectively, by Int(S) =
S \L(S) and Ext(S) = T (root(S)) \ (S ∪B(S)). We can easily see that interior,
leaves, border, and exterior are mutually disjoint subsets of T (root(S)). For a
subset A ⊆ S, we define the head and the tail of S by the elements min(A)
and max(A), respectively. We define the weight of a k-subtree S by the sum
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w(S) =
∑

v∈V (S) v, of the DFS numbers of the nodes in S, where w is bounded

from below by wmin = 1
2k(k + 1) ≥ 0.

Next, we introduce a class of subtrees in special form, called serial trees as
follows. Let S be any k-subtree. Then, S is serial if it is serial in their shape,
that is, whose nodes are consecutively numbered from its root r to the rightmost
leaf r + k − 1, and thus, denoted by sertree(v, k) = { r + i | i = 0, . . . , k − 1 }. S
is non-serial if it is not serial.

Lemma 2 (DFS-numbering lemma). For any k-subtree S in T , then

(a) If S is non-serial, then there is some min(S) < v < max(S) such that
v ∈ B(S).

(b) If S is non-serial, then B(S) �= ∅ and min(B(S)) < max(L(S)) hold.
(c) If S is serial and B(S) �= ∅, then max(L(S)) < min(B(S)) holds.

Proof. (a) If S is non-serial, then there is some v ∈ V (T )\S such that min(S) <
v < max(S). We can find some v′ ∈ B(S) such that min(S) < v′ < max(S)
and v′ is an ancestor of v. Furthermore, if we take the smallest such v, then
v′ = min(B(S)). (b) Since max(L(S)) = max(S) holds, the result follows from
Claim (a). (c) If S is serial, there is no border node between min(S) and max(S).
Since any border node is below root(S), it is properly larger than max(S).

Enumeration Algorithms. We introduce terminology for enumeration al-
gorithms according to Goldberg [7] and Uno [12]. An enumeration algorithm for
an enumeration problem Π is an algorithm A that receives an instance I and
outputs all solutions S in the answer set S(I) into a write-only output stream
O without duplicates. Let n = ||I||, m = |S(I)| be the input and the output size
on I. We say that A is of amortized constant time if the total running time of
A for computing all solutions on I is linear in m. For a polynomial p(·), A is
of constant delay using preprocessing p(n) if the delay, which is the maximum
computation time between two consecutive outputs, is bounded by a constant
c(n) after preprocessing in p(n) time. As a computation model, we adopt the
usual RAM [4]. Now, we state our problem below.

Problem 1 (k-subtree enumeration in a tree). Given an input tree T and an
integer k, enumerate all the k-subtrees of T .

This problem is a special case of the k-subtree problem, studied by Ferreira,
Grossi, and Rizzi [6], where an input graph is a tree. They showed an efficient
enumeration algorithm that lists all k-subtrees in O(k) amortized time per sub-
tree for a general class of undirected graphs. Therefore, our goal is to devise an
efficient algorithm that lists all k-subtrees in O(1) worst-case time per subtree.

3 The Parent-Child Relationship among k-Subtrees

3.1 Basic Idea: A Family Tree

Our algorithm is designed based on reverse search technique by Avis and Fukuda
[3]. In the reverse search technique, we define a tree-shaped search route on
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Fig. 1. A family tree for all of nineteen k-subtrees of an input tree T1 of size n = 11,
where k = 4. In this figure, each set of nodes surrounded by a dotted circle indicates
a k-subtree, and each arrow (resp. dashed arrow) indicates the parent-child relation
defined by the parent function P1 of type I (resp. P2 of type II). We observe that the
arrows among each set of subtrees in a large circle indicates a sub-family tree of type I,
and the dotted arrows among the set of the initial and sub-initial k-subtrees form the
unique sub-family tree of type II.

solutions, called a family tree. Let T = (V (T ), E(T ), root(T ) = 1) be an input
tree on V (T ) = {1, . . . , n} with DFS-numbering, and let k ≥ 1 be any positive
integer.

A family tree for the class Sk (T ) of all k-subtrees in T is a spanning tree
Fk(T ) = (Sk (T ),Pk, Ik(T )) over Sk (T ) as node set. Given a family tree Fk,
we can enumerate all solutions using backtracking starting from the root Ik.
In what follows, we omit the subscript k and T , and thus write F or F (T ) for
Fk(T ) if it is clear from context.

In the family tree, its root node is given by the unique serial tree I (T ) =
sertree(1, k), called the initial tree, whose node set ranges from 1 to k. The
collection of reverse edges is given by a function P : S (T ) \ {I} → S (T ), called
the parent function, that assigns the unique parent P (S) to each child k-subtree
S except the initial tree. Precise definitions of I and P will be given later.

Example 1. In Fig. 1, we show an example of a family tree for all of nineteen
k-subtrees of an input tree T1 of size n = 11, where k = 4.

A basic idea of our algorithm is to partition the search space S (T ) into almost
mutually disjoint subspaces S (T ) = (∪r∈V (T )S1(T, r)) ∪ S2(T ), where elements
in collections S1(T, r) and S2(T ) are called k-subtrees of type I and type II ,
respectively. Then, we can separately build family trees for each collections of
k-subtrees.

More precisely, as we will see later, for any node r of T , called a subroot ,
the collection S1(T, r) consists of all k-subtrees S whose root is r. We refer to
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such k-subtrees as r-rooted k-subtrees. For the collection S1(T, r), we can define
a sub-family tree, denoted by F1(T, r) = (S 1(T, r),P1, I1(T, r)), which will be
given by introducing the parent function P1 for non-serial subtrees in Sec. 3.3.
Interestingly, the initial tree I1(T, r) of this collection, called the sub-initial tree,
is naturally determined to be the serial k-subtree rooted at r by the property of
P1 to be shown in Lemma 5 of Sec. 3.3. On the other hand, the collection S2(T )
of type II consists of the sub-initial trees of all collections ∪r S1(T, r) of type I,
which actually are all serial k-subtrees in T . Then, the unique sub-family tree,
denote by F2(T ) = (S 2(T ),P2, I2(T )), for collection S 2(T ) will be given by the
parent function P2 for serial subtrees in Sec. 3.4.

3.2 Traversing k-Subtrees

We efficiently traverse between two k-subtrees, R and S ∈ Sk(T ). Suppose we
are to visit S from R. Then, we first delete a leaf � ∈ L(R) from R, and next,
add a border node β ∈ B(R) to R. Unfortunately, this construction is not always
sound, meaning that, sometimes, a certain combination of � and β violates the
connectivity condition on S. The next technical lemma precisely describes when
this degenerate case happens and how to avoid it.

Lemma 3 (connectivity). Let R be any k-subtree R of size k ≥ 2. Suppose
that � ∈ R and β �∈ R are any nodes of T that are properly below root(R). Then,
the set S = (R \ {�})∪ {β} is k-subtree iff � ∈ L(R), β ∈ B(R), and β �∈ Ch(�).

Then, the next technical lemma is useful in showing identity.

Lemma 4 (identity). Let R and S ⊆ V (T ) be two k-subtrees. If we take S =

(R \ {�})∪ {β} and R̂ = (S \ {β̂})∪{�̂} for some nodes � ∈ R, β �∈ R, �̂ �∈ S, and

β̂ ∈ S, then we have that R = R̂ holds iff � = �̂ and β = β̂ hold.

3.3 A Sub-family Tree for k-Subtrees of Type I

Firstly, for each subroot r ∈ V (T ), we describe how to build a sub-family tree
F1(T, r) for the subspace S1(T, r) of all r-rooted k-subtrees of type I. Sup-
pose that |T (r)| ≥ k. Then, the corresponding sub-family tree F1(T, r) =
(S 1(T, r),P1, I1) is given as follows. The node set is the collection S 1(T, r).
The sub-initial tree I1 = I1(T, r) is given as a serial tree containing r as its
root. Actually, such a serial tree is uniquely determined by the k-subtree I1
consisting of k nodes { r + i | i = 0, . . . , k − 1 }.

Next, we give the parent function P1 from S 1(T, r) \ {I1} to S1(T, r) as
follows.

Definition 1 (the parent of k-subtree of type I). Let S ∈ S 1(T, r) \ {I1}
be any non-serial k-subtree rooted at r ∈ V . Then, the parent of S is the k-
subtree P1(S) = (S \ {�}) ∪ {β} obtained from S by deleting a node � ∈ L(S)
and adding a node β ∈ B(S) satisfying the conditions that � = max(L(S)) and
β = min(B(S)). Then, we say that S is a type-I child of P1(S).
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Table 1. Change of the membership of nodes w.r.t. P1 and Child1 operations, where
I,L, B and E are regions of k-subtree S, called interior, leaves, border, and exterior,
respectively. In this figure, the leaf �∗ (resp. the border node β) in R corresponds to
the border node β (resp. the leaf �) in S.

(a) From child S to parent R via P1,
where �∗ is removed and β∗ is added.

node R S

pa(β∗) L I

β∗ B L

Ch(β∗) E B

node R S

pa(�∗) I L

�∗ L B

Ch(�∗) B E

(b) From parent R to child S via Child1,
where � is removed and β is added.

node R S

pa(�) I L

� L B

Ch(�) B E

node R S

pa(β) L I

β B L

Ch(β) E B

Lemma 5. If S ∈ S 1(T, r) \ {I1}, then P1(S) is uniquely determined, and a
well-defined k-subtree of T . Furthermore, w(P1(S)) < w(S) holds.

Proof. Since S is non-serial, β < � from Lemma 2. We have β �∈ Ch(�) because if
we assume that β ∈ Ch(�) then � < β from Lemma 1, and thus the contradiction
is derived. It immediately follows from (iii) of Lemma 3 that P1(S) is connected.
Since β < � again, we have w(P1(S)) = w(S)− � + β < w(S).

From Lemma 5, it is natural to have I1(T, r) as the sub-initial tree of S 1(T, r).
The next lemma describes what happens when we apply P1 to S.

Lemma 6 (update of lists). Let S be any non-serial k-subtree and R = P1(S).
Then, (1) S and R satisfy the conditions in Table 1 (a) before and after applica-
tion of P1. (2) The second maximum element in L(S) becomes max(L(R)). (3)
The second minimum element in B(S) becomes min(B(R)).

For example, in Fig. 1, we observe that subtree S6 is the parent of S7 of type I
since the maximum leaf is � = 8 and the minimum border node is β = 3, where
L(S7) = {2, 8} and B(S7) = {3, 4, 9, 10, 11, 12}.

3.4 A Sub-family Tree for k-Subtrees of Type II

To enumerate the whole S (T ), it is sufficient to compute the r-rooted k-serial tree
I1(T, r) for each possible subroot r in T , and then to enumerate S1(T, r) starting
from I1(T, r). We see, however, that this approach is difficult to implement in
constant delay because it is impossible to compute I1(T, r) from scratch in the
constant time. To overcome this difficulty, we want to directly build a sub-family
tree F2(T ) of a collection S2(T ) of all sub-initial trees for collections ∪r S 1(T, r).

The sub-family tree is given by F2(T ) = (S 2(T ),P2, I2), where S 2(T ) is the
collection, I2(T ) = sertree(1, k) is the initial tree that is the unique serial tree
with root 1, and P2 is the parent function from S 2(T, r)\{I2} to S2(T, r). Then,
we define function P2 as follows.

Definition 2 (the parent of k-subtree of type II). Let S be any serial
k-subtree other than I2. Then, the parent of S is the k-subtree P2(S) = (S \
{�})∪{β} obtained from S by deleting the node � = max(L(S)) and adding the
node β = pa(root(S)). Then, we say that S is a type-II child of P2(S).
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Lemma 7. If S ∈ S2(T ) \ {I2}, then P2(S) is uniquely determined, and a
well-defined k-subtree of T . Furthermore, w(P2(S)) < w(S) holds.

Proof. If S is not the initial tree, β is always defined. Since � is a leaf of S, (i) of
Lemma 3 shows that S′ = (S \ {β}) is connected. Since β is adjacent to root(S),
clearly, P2(S) = (S′ ∪ {�}) is also connected. Since β < v for any node v in S,
we have w(P2(S)) = w(S)− �+ β < w(S).

For example, in Fig. 1, we observe that subtree S8 is the parent of S9 of type II
since the max. leaf is � = 10 and the parent of the root is β = 1, where L(S9) =
{9, 10} and B(S9) = {11, 12}.

3.5 Putting Them together

Now, we define the master family tree F (T ) = (Sk (T ),Pk, Ik), for the class
Sk (T ) of all k-subtrees in an input tree T . Let the master initial tree Ik be the
initial tree I2, and let the master parent function P be the union of two parent
functions P1 and P2 defined in the previous subsections.

Theorem 1. The master family tree F (T ) forms a spanning tree over S (T ).
Proof. Suppose that starting from any S ∈ Sk (T ), we repeatedly apply the par-
ent function Pk to S. Then, we have a sequence of k-subtrees S0(= S), S1, . . . , Si,
. . ., where i ≥ 0. From Lemma 5 and Lemma 7, the corresponding properly de-
creasing sequence of w(S0) > w(S1) > · · · > w(Si) > · · · has at most finite
length since w(Si) ≥ 0. Since any subtree other than Ik has the unique parent,
the above sequence of k-subtrees eventually reaches the master subtree Ik in
finite time.

For example, in Fig. 1, we see that the family tree F (T1) is a spanning tree
on S (T1) rooted at Ik = S1. From Theorem 1 above, we can enumerate all k-
subtrees in Sk starting from S1 by depth-first search on Fk using backtracking.

4 The Constant Delay Enumeration Algorithm

In this section, we present an efficient backtracking algorithm that enumerates
all k-subtrees of an input tree T in O(1) delay using O(n) preprocessing. The
remaining task is to invert the reverse edges in P to compute the children from
a given parent. We describe this process according to the types of a child S.

4.1 Generation of Non-serial k-Subtrees

We first consider the case that a child S is non-serial (Type I). In our algorithm,
we keep these nodes as pointers to nodes in the implementation.

Definition 3. We define the candidate sets DelList(R) and AddList(R) for delet-
ing nodes � and adding nodes β, respectively, as follows: DelList(R) = {� ∈
L(R) | � < max(B(R))}, AddList(R) = {β ∈ B(R) | β > min(L(R))}.
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Definition 4 (child generation of type I). Given a k-subtree R in T , we
define the k-subtree Child1(R, �, β) = (R \ {�}) ∪ {β} for (i) any � ∈ DelList(R)
and (ii) any β ∈ AddList(R) such that (iii) β is not a child of �.

The next lemma describes what happens when we apply Child1 to R.

Lemma 8 (update of lists). Let R be any k-subtree and S = Child1(R, �, β)
be defined, where a leaf � ∈ DelList(R) is removed from and a border node β ∈
AddList(R) is added to R. Then, (1) R and S satisfy the conditions in Table 1 (b)
before and after application of Child1. (2) The leaf � becomes the minimum border
node in S. (3) The border node β becomes the maximum leaf in S.

Now, we show the correctness of Child1(·) as follows.
Theorem 2 (correctness of Child1). Let R and S be any k-subtree of T and
S be non-serial. Then, (1) R = P1(S), if and only if (2) S = Child1(R, �, β) for
(i) some � ∈ DelList(R) and (ii) some β ∈ AddList(R) such that (iii) β �∈ Ch(�).

Proof. Firstly, we can easily obtain a statement that Child1(R, �, β) is non-serial
from Lemma 2 and Lemma 3. (1) ⇒ (2): Suppose that R = P1(S). Then, R
is obtained from S by removing �∗ = max(L(S)) and β∗ = min(B(S)). From
Lemma 6, we see that max(L(R)) < �∗ and β∗ < min(B(R)). If we put β = �∗
and � = β∗, then we can show that β and � are a border node and a leaf in R,
respectively, that satisfy the pre-condition of Child1 in Def. 4. Therefore, we can
apply Child1(R, �, β), and then, we obtain the new child from R by removing � =
β∗ and adding β = �∗ fromR. From Lemma 4, the child is identical to the original
subtree S. (2) ⇒ (1): In this direction, we suppose that S = Child1(R, �, β) for
some � ∈ L(R) and β ∈ B(R) satisfying the conditions (i)–(iii). Then, S is
obtained from R by removing � from and adding β to R. From Lemma 8, �
becomes min(B(R)) and β becomes max(L(R)). Thus, if we put β∗ = � and
�∗ = β, then β∗ and �∗ satisfies the pre-condition of P1 in Def. 1. By applying
Child1(R, �, β), we obtain S from R by removing �∗ = β from and adding β∗ = �
to R. From Lemma 4, the child is identical to the original subtree S. Hence, the
result is proved.

4.2 Generation of Serial k-Subtrees

Next, we consider the special case to generate a serial subtree as a child k-subtree
S of a given parent k-subtree (Type II). A k-subtree R is a pre-serial subtree if
(i) root(R) has only one child v such that |T (v)| ≥ k, and (ii) v satisfies that
R(v) is a serial (k − 1)-subtree of T with root v.

Lemma 9. R is a pre-serial k-subtree of T if and only if root(R) has a sin-
gle child v and the equality max(L(R)) = root(R) + k − 1 = v + k − 2 holds.
Furthermore, we can check this condition in constant time.

Proof. The result follows from that a pre-serial k-subtree is obtained from a
serial (k − 1)-subtree by attaching the new root as the parent of its root.
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Algorithm 1. Constant delay enumeration for all k-subtrees in a tree

1: procedure EnumSubTreeMain(T, k)
2: Input: T : a rooted tree of size n, k: size of subtrees (1 ≤ k ≤ n);
3: Number the nodes of T by the DFS-numbering;
4: Compute the initial k-subtree Ik;
5: Update the related lists and pointers;
6: EnumSubTreeRec(Ik, T, k);
7: procedure EnumSubTreeRec(S,T, k)
8: Print S;
9: for each � ∈ DelList(S) do // See Sec. 4.1.
10: for each β ∈ AddList(S) such that β �∈ Ch(max(L(S))) do
11: S ← Child1(S, �, β) by updating the related lists and pointers;
12: EnumSubTreeRec(S,T, k);
13: S ← P1(S) by restoring the related lists and pointers;

14: if S is a k-pre-serial tree then // See Sec. 4.2.
15: S ← Child2(S) by updating the related lists and pointers;
16: EnumSubTreeRec(S,T, k);
17: S ← P2(S) by restoring the related lists and pointers;

Definition 5 (child generation of type II). For any pre-serial k-subtree R,
we define S = Child2(R) = (R\{root(R)})∪{β∗(R)}, where β∗(R) = min(B(R)).

Theorem 3 (correctness of Child2). Let R and S be any k-subtrees of T .
Then, the following (1) and (2) hold:

(1) If R is pre-serial, then (i) S = Child2(R) implies (ii) R = P2(S).
(2) If S is serial, then (ii) R = P2(S) implies (i) S = Child2(R).

Proof. From Lemma 2 and Lemma 9, if R is a pre-serial k-subtree, then we have
β∗(R) = max(R) + 1 and Child2(R) is serial. (1) Suppose that S = Child2(R)
with deleting r = root(R) and adding β∗(R). Since r is the root of root(S) and
β∗(R) is the largest node in S, application of P2 to S yields R. (2) Suppose that
R is obtained from S by P2 with adding the parent r′ of root(S) and deleting
β = max(S). Since S is serial, we have max(R) = max(S)− 1 = β − 1 and then
β∗(R) = max(R) + 1 = (β − 1) + 1 = β. Thus, we obtain S if we apply Child2(·)
to R by deleting root(R) and adding β∗(R). This completes the proof.

4.3 The Proposed Algorithm

In Algorithm 1, we present the main procedure EnumSubTreeMain and a sub-
procedure EnumSubTreeRec that enumerates all k-subtrees in an input tree T
of size n in constant delay. Starting from I (T ), EnumSubTreeRec recursively
computes all child k-subtrees from its parent by the children generation method
in this section.

To efficiently find deleting nodes � in DelList(R) and adding nodes β in
AddList(R) (resp. the parent of root(R)) by Child1 (resp. Child2) that satisfy
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the conditions (i)–(iii) of Def. 4 (resp. Def. 5), EnumSubTreeRec maintains
the lists of nodes L(R) and B(R) in the increasing order of DFS-numbering dur-
ing the computation. This is done by attaching two pointers prev∗ and next∗ to
each node v in T for implementing doubly-linked lists in addition to the standard
pointers in the leftmost child, the rightmost child and right sibling representa-
tion of trees [4]. The algorithm also has two pointers �̂ and β̂. The pointer �̂

always points to the maximum leaf of DelList(R) and the pointer β̂ points to the
minimum border node of AddList(R), according to Table 1 (b).

Lemma 10 (time complexity of update). Assuming the above representa-
tion, a data structure for the above lists and pointers can be implemented to run
in O(1) worst case time per update using O(n) time preprocessing on RAM.

Proof. Initialization of the data structure is done in O(n) time by once traversing
an input tree T . At each request for update, we dynamically redirect pointers
prev∗ and next∗ when a single node or a node list is deleted or added to R to

maintain the values of L(S), B(S), �̂, and β̂ according to Table 1 (b) of Lemma 8
in the case of Child1. We can use a similar procedure to maintain lists and
pointers in the case of Child2. Under this assumption, these operations can be
implemented in the claimed complexity.

We have the main theorem of this paper.

Theorem 4 (constant delay algorithm for k-subtree enumeration).
Given an input rooted tree T of size n, and a positive integer k ≥ 1, Algo-
rithm 1 solves the k-subtree enumeration problem in constant worst-case time
per subtree using O(n) preprocessing and space.

Proof. By the construction of EnumSubTreeRec in Algorithm 1, we observe
that each iteration of recursive call generates at least one solution. To achieve
constant delay enumeration, we need a bit care to represent subtrees and to
perform recursive call. From Lemma 10, each call performs constant number of
update operations when it expand the current subtree to descendants. Therefore
the remaining thing is to estimate the book-keeping on backtrack. This is done
as follows: When a recursive procedure call is made, we apply a constant number
of operations on candidate lists and record them on a stack as in Lemma 10, and
when the procedure comes back to the parent subtree, we apply the inverse of
the recorded operations on the lists in constant time as in Lemma 10 to reclaim
the running state in constant time. To improve the O(d) time output overhead
with backtrack from node v of depth d = O(n) to a shallow ancestor, we use
alternating output technique (see, e.g., Uno [12]) to reduce it to exactly O(1)
time per solution. Combining the above arguments, we proved the theorem.

This result improves on the straightforward application of Ferreira et al’s algo-
rithm [6] with O(k) amortized time per subtree when an input is restricted to
tree.



358 K. Wasa et al.

5 Application to the Graph Motif Problem for Trees

We consider the restricted version of graph motif problem where an input graph
is a tree. Let C be a set of colors. The graph motif problem is the problem of,
given a vertex colored graph G = (V,E) and a multi-set P of colors with total
frequency of colors k, to find a k-subtree S ⊆ V whose multi-set of colors C(S)
is identical to P . We denote by s the number of all k-subtrees in a tree T . From
Theorem 4, we have the following result.

Theorem 5. Given an input tree T of size n, a multi-set P of colors with size
m, and a positive integer k ≥ 1, the graph motif problem for tree is solvable in
O(s+ n+m) total time using O(n) space.

Proof. We use a histgram C : C → N for the frequencies of colors. Initially, the
algorithm sets the counter value to be C[c]← (−1) ·P [c] for each color in O(|C|)
time, and also setup Algorithm 1 in O(n) time. Then, the algorithm enumerates
all the k-subtrees of T by in O(1) delay. For each enumerated k-subtree S with
removed node � (or added node β, resp.), we increment (or decrement, resp.) the
counter value C[c] by one according to the color c of the node. We can detect
the matching of P at some S by testing if all counter values equal zero in O(1)
time with appropriate data structure. Hence, the result is proved.

We can easily show that s = nΘ(k). In the worst case, our algorithm is not faster
than a straightforward exhaustive search algorithm with O(mnk) total time in
asymptotic sense. However, in practice, our algorithm can be faster when the
number s is much smaller than nΘ(k) and k is relatively large.

6 Conclusion

In this paper, we studied the k-subtree enumeration problem in rooted trees.
As a main result, we presented an efficient algorithm. That solve this problem
in constant worst-case time per subtree. We also discussed application to graph
motif problem.
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