

Lecture Notes in Computer Science 7434
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Joachim Gudmundsson Julián Mestre
Taso Viglas (Eds.)

Computing
and Combinatorics

18th Annual International Conference
COCOON 2012
Sydney, Australia, August 20-22, 2012
Proceedings

13

Volume Editors

Joachim Gudmundsson
Julián Mestre
Taso Viglas

University of Sydney
School of IT, Building J12
Sydney, NSW 2006, Australia

E-mail: joachim.gudmundsson@sydney.edu.au
E-mail: julian.mestre@sydney.edu.au
E-mail: taso.viglas@sydney.edu.au

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-32240-2 e-ISBN 978-3-642-32241-9
DOI 10.1007/978-3-642-32241-9

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012942913

CR Subject Classification (1998): F.2, C.2, G.2, F.1, E.1, I.3.5

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The papers in this volume were selected for publication in the 18th Annual
International Computing and Combinatorics Conference, held during August
20–22, 2012, in Sydney, Australia. The Annual International Computing and
Combinatorics Conference is a forum for researchers working in the areas related
to theoretical aspects of computing.

Typical topics covered by this conference include (but are not restricted to): al-
gorithms, data structures, algorithmic game theory, online algorithms, automatas,
languages, logic, computability, complexity theory, computational learning theory,
knowledge discovery, cryptography, parallel and distributed computing, reliabil-
ity and security, database theory, computational biology, computational algebra,
computational geometry, graph drawing, information visualization, graph theory,
communication networks and optimization.

This year the conference received 121 submissions. Each paper received a min-
imum of three independent expert reviews by the Program Committee members
or reviewers. The reviews were thoroughly discussed by the Program Committee,
and 50 papers were selected for presentation during the conference.

In addition to these presentations, the program also included three invited
presentations by Kamal Jain, Joseph Mitchell, and János Pach.

We would like to express our gratitude for the authors of all papers submitted
to COCOON 2012, the Program Committee members and the reviewers, for their
contribution to making this conference possible.

Finally, we would like to acknowledge and thank the sponsors of this event,
Google and National ICT Australia, for their generous support for COCOON
2012.

June 2012 Joachim Gudmundsson
Julián Mestre

Taso Viglas

Organization

Program Committee

Eric Allender Rutgers University, USA
Giorgos Christodoulou University of Liverpool, UK
Giovanni Di Crescenzo Telcordia, USA
David Eppstein University of California, Irvine, USA
Rudolf Fleischer GUtech, Oman
Mordecai Golin Hong Kong UST, Hong Kong, SAR China
Joachim Gudmundsson University of Sydney, Australia
Anupam Gupta Carnegie Mellon University, USA
Thore Husfeldt IT University of Copenhagen and Lund University,

Denmark and Sweden
Kazuo Iwama Kyoto University, Japan
Julián Mestre University of Sydney, Australia
Peter Bro Miltersen Aarhus University, Denmark
Pat Morin Carleton University, Canada
Gonzalo Navarro University of Chile, Chile
Kunihiko Sadakane National Institute of Informatics, Tokyo, Japan
Saket Saurabh The Institute of Mathematical Sciences, Chennai,

India
Christian Sohler TU Dortmund, Germany
Xiaoming Sun Tsinghua University, China
Kavitha Telikepalli Indian Institute of Science, India
Anke Van Zuylen Max Planck Institute for Informatics, Germany
Anastasios Viglas University of Sydney, Australia
Dorothea Wagner University of Karlsruhe, Germany
Gerhard Woeginger TU Eindhoven, The Netherlands
Prudence Wong University of Liverpool, UK

Additional Reviewers

Aggarwal, Divesh
Asahiro, Yuichi
Badanidiyuru, Ashwinkumar
Barbay, Jérémy
Baum, Moritz
Bläsius, Thomas
Bogdanov, Andrej
Bollig, Beate
Bonsma, Paul

Bose, Prosenjit
Bu, Dongbo
Burcea, Mihai
Campos, Sérgio
Canzar, Stefan
Cheng, Yongxi
Chiu, Man Kwun
Chrobak, Marek
Cicalese, Ferdinando

VIII Organization

Collins, Andrew
Cormode, Graham
Crowston, Robert
Data, Deepesh
Dibbelt, Julian
Dujmovic, Vida
Dutta, Kunal
Ehsanfar, Ebrahim
Ferreira, Rui
Fortunato, Santo
Fotakis, Dimitris
Frati, Fabrizio
Gao, Xi Alice
Gaspers, Serge
Gemsa, Andreas
Giannakopoulos, Yiannis
Gille, Marc
Gorry, Thomas
Halldorsson, Magnus M.
Hellweg, Frank
Hernandez, Cecilia
Jager, Tibor
Jansson, Jesper
Jin, Jiongxin
Jones, Mark
Jordan, Tibor
Kane, Daniel M.
Kawarabayashi, Ken-Ichi
Keszegh, Balázs
Kida, Takuya
Kiyomi, Masashi
Klauck, Hartmut
Kloks, Ton
Kolay, Sudeshna
Kovacs, Annamaria
Kratsch, Stefan
Krivosija, Amer
Krug, Marcus
Kupferman, Orna
Lam, Chi Kit
Lambert, Nicolas S.
Lammersen, Christiane
Lan, Yu
Leung, Henry C.M.
Levin, Asaf

Li, Rongbin
Liedloff, Mathieu
Lin, Chuang-Chieh
M.S., Ramanujan
Ma, Bin
Madry, Aleksander
Maheshwari, Anil
Markakis, Evangelos
Martin, Russell
Mchedlidze, Tamara
Mertzios, George
Mikalački, Mirjana
Misra, Pranabendu
Miyata, Hiroyuki
Mnich, Matthias
Munteanu, Alexander
Mustafa, Nabil
Muthu, Rahul
Narayanan, Narayanan
Nasre, Meghana
Nekrich, Yakov
Niedermeier, Rolf
Nikiforov, Vladimir
Noellenburg, Martin
O’Donnell, Ryan
Ojiaku, Jude-Thaddeus
Oren, Sigal
Otachi, Yota
Pajor, Thomas
Papadopoulos, Charis
Papakonstantinou, Periklis
Pavan, Aduri
Piliouras, Georgios
Popa, Alexandru
Pérez-Lantero, Pablo
Rajagopalan, S. Raj
Raman, Venkatesh
Randall, Dana
Russo, Luis M.S.
Rutter, Ignaz
Sabharwal, Yogish
Sach, Benjamin
Saeidinvar, Reza
Saitoh, Toshiki
Schalekamp, Frans

Organization IX

Schmidt, Melanie
Schumm, Andrea
Schwiegelshohn, Chris
Shalom, Mordechai
Shi, Yaoyun
Skopalik, Alexander
Smid, Michiel
Sprugnoli, Renzo
Stamoulis, Georgios
Stewart, Iain
Suchy, Ondrej
Suzuki, Yasuhiro
Tamaki, Suguru
Tang, Bo
Tantau, Till
Tazari, Siamak
Telelis, Orestis
Trapnell, Cole
van Leeuwen, Erik Jan

van Stee, Rob
Varma, Nithin Mahendra
Ventre, Carmine
Vollmer, Heribert
Voloshin, Ariella
Wahlström, Magnus
Wan, Andrew
Wang, Yajun
Wiese, Andreas
Wolfler-Calvo, Roberto
Wuhrer, Stefanie
Wulff-Nilsen, Christian
Xia, Lirong
Xiao, Mingyu
Yamazaki, Koichi
Yon, Juyoung
Yu, Wei
Zhang, Shengyu

Table of Contents

A Linear Time Algorithm for Computing Minmax Regret 1-Median
on a Tree . 1

Binay Bhattacharya and Tsunehiko Kameda

A Simple D2-Sampling Based PTAS for k -Means and other Clustering
Problems . 13

Ragesh Jaiswal, Amit Kumar, and Sandeep Sen

Speed Scaling for Maximum Lateness . 25
Evripidis Bampis, Dimitrios Letsios, Ioannis Milis, and
Georgios Zois

Induced Subgraph Isomorphism: Are Some Patterns Substantially
Easier Than Others? . 37

Peter Floderus, Miros�law Kowaluk, Andrzej Lingas, and
Eva-Marta Lundell

Contiguous Minimum Single-Source-Multi-Sink Cuts in Weighted
Planar Graphs . 49

Ivona Bezáková and Zachary Langley

Online Knapsack Problem with Removal Cost . 61
Xin Han, Yasushi Kawase, and Kazuhisa Makino

An Improved Exact Algorithm for TSP in Degree-4 Graphs 74
Mingyu Xiao and Hiroshi Nagamochi

Dynamic Programming for H -minor-free Graphs
(Extended Abstract) . 86

Juanjo Rué, Ignasi Sau, and Dimitrios M. Thilikos

Restricted Max-Min Fair Allocations with Inclusion-Free Intervals 98
Monaldo Mastrolilli and Georgios Stamoulis

An Improved Algorithm for Packing T -Paths in Inner Eulerian
Networks . 109

Maxim A. Babenko, Kamil Salikhov, and Stepan Artamonov

Towards Optimal and Expressive Kernelization for d -Hitting Set 121
René van Bevern

XII Table of Contents

Maximum Number of Minimal Feedback Vertex Sets in Chordal Graphs
and Cographs . 133

Jean-François Couturier, Pinar Heggernes, Pim van ’t Hof, and
Yngve Villanger

A Local Algorithm for Finding Dense Bipartite-Like Subgraphs 145
Pan Peng

Algorithms for the Strong Chromatic Index of Halin Graphs,
Distance-Hereditary Graphs and Maximal Outerplanar Graphs 157

Ton Kloks, Sheung-Hung Poon, Chin-Ting Ung, and Yue-Li Wang

On the Minimum Degree Hypergraph Problem with Subset Size Two
and the Red-Blue Set Cover Problem with the Consecutive Ones
Property . 169

Biing-Feng Wang and Chih-Hsuan Li

Rainbow Colouring of Split and Threshold Graphs 181
L. Sunil Chandran and Deepak Rajendraprasad

Approximating the Rainbow – Better Lower and Upper Bounds 193
Alexandru Popa

Ramsey Numbers for Line Graphs and Perfect Graphs 204
Rémy Belmonte, Pinar Heggernes, Pim van ’t Hof, and Reza Saei

Geodesic Order Types . 216
Oswin Aichholzer, Matias Korman, Alexander Pilz, and
Birgit Vogtenhuber

Computing Partitions of Rectilinear Polygons with Minimum Stabbing
Number . 228

Stephane Durocher and Saeed Mehrabi

Monotone Paths in Planar Convex Subdivisions . 240
Adrian Dumitrescu, Günter Rote, and Csaba D. Tóth

The Cost of Bounded Curvature . 252
Hyo-Sil Kim and Otfried Cheong

Optimally Solving a Transportation Problem Using Voronoi
Diagrams . 264

Darius Geiß, Rolf Klein, and Rainer Penninger

Unexplored Steiner Ratios in Geometric Networks . 275
Paz Carmi and Lilach Chaitman-Yerushalmi

Geometric RAC Simultaneous Drawings of Graphs 287
Evmorfia Argyriou, Michael Bekos, Michael Kaufmann, and
Antonios Symvonis

Table of Contents XIII

Simultaneous Embeddings with Vertices Mapping to Pre-specified
Points . 299

Taylor Gordon

Multilevel Drawings of Clustered Graphs . 311
Fabrizio Frati

Outerplanar Graph Drawings with Few Slopes . 323
Kolja Knauer, Piotr Micek, and Bartosz Walczak

Fáry’s Theorem for 1-Planar Graphs . 335
Seok-Hee Hong, Peter Eades, Giuseppe Liotta, and
Sheung-Hung Poon

Constant Time Enumeration of Bounded-Size Subtrees in Trees and Its
Application . 347

Kunihiro Wasa, Yusaku Kaneta, Takeaki Uno, and Hiroki Arimura

External Memory Soft Heap, and Hard Heap, a Meldable Priority
Queue . 360

Alka Bhushan and Sajith Gopalan

Partially Specified Nearest Neighbor Search . 372
Tomas Hruz and Marcel Schöngens

Multi-pattern Matching with Bidirectional Indexes 384
Simon Gog, Kalle Karhu, Juha Kärkkäinen, Veli Mäkinen, and
Niko Välimäki

Succinct Representations of Binary Trees for Range Minimum
Queries . 396

Pooya Davoodi, Rajeev Raman, and Srinivasa Rao Satti

Lower Bounds against Weakly Uniform Circuits . 408
Ruiwen Chen and Valentine Kabanets

On TC0 Lower Bounds for the Permanent . 420
Jeff Kinne

Formula Complexity of Ternary Majorities . 433
Kenya Ueno

On the Kernelization Complexity of Problems on Graphs without Long
Odd Cycles . 445

Fahad Panolan and Ashutosh Rai

The Complexity of Unary Subset Sum . 458
Nutan Limaye, Meena Mahajan, and Karteek Sreenivasaiah

XIV Table of Contents

On the Advice Complexity of Tournaments . 470
Sebastian Ben Daniel

A Remark on One-Wayness versus Pseudorandomness 482
Periklis A. Papakonstantinou and Guang Yang

Integral Mixed Unit Interval Graphs . 495
Van Bang Le and Dieter Rautenbach

Complementary Vertices and Adjacency Testing in Polytopes 507
Benjamin A. Burton

Online Coloring of Bipartite Graphs with and without Advice 519
Maria Paola Bianchi, Hans-Joachim Böckenhauer,
Juraj Hromkovič, and Lucia Keller

Deep Coalescence Reconciliation with Unrooted Gene Trees:
Linear Time Algorithms . 531

Pawe�l Górecki and Oliver Eulenstein

On the 2-Central Path Problem . 543
Yongding Zhu and Jinhui Xu

Making Profit in a Prediction Market . 556
Jen-Hou Chou, Chi-Jen Lu, and Mu-En Wu

Computing Shapley Value in Supermodular Coalitional Games 568
David Liben-Nowell, Alexa Sharp, Tom Wexler, and Kevin Woods

Equilibria of GSP for Range Auction . 580
H.F. Ting and Xiangzhong Xiang

Stretch in Bottleneck Games . 592
Costas Busch and Rajgopal Kannan

Author Index . 605

A Linear Time Algorithm for Computing

Minmax Regret 1-Median on a Tree

Binay Bhattacharya� and Tsunehiko Kameda��

School of Computing Science, Simon Fraser University, Canada
{binay,tiko}@sfu.ca

Abstract. In a model of facility location problem, the uncertainty in the
weight of a vertex is represented by an interval of weights, and minimizing
the maximum “regret” is the goal. The most efficient previously known
algorithm for finding the minmax regret 1-median on trees with positive
vertex weights takes O(n log n) time. We improve it to O(n), solving the
open problem posed by Brodal et al. in [3].

1 Introduction

Deciding where to locate facilities to minimize the communication or transporta-
tion costs is known as the facility location problem. For a recent review of this
subject, the reader is referred to [9]. The cost function is formulated as the sum
of the distances from the nearest facility weighted by the weights of the vertices.
In the minmax regret version of this problem, there is uncertainty in the weights
of the vertices and/or edge lengths, and only their ranges are known [6,11]. Chen
and Lin (Theorem 1 in [6]) proved that in solving this problem, the edge lengths
can be set to their maximum values. Therefore, we assume that the (positive)
edge lengths are fixed and uncertainty is only in the vertex weights. A particular
realization (assignment of a weight to each vertex) is called a scenario. Intu-
itively, the minmax regret 1-median problem can be understood as a 2-person
game as follows. The first player picks a location x to place a facility. The oppo-
nent’s move is to pick a scenario s. The payoff to the second player is the cost of
x minus the cost of the median, both under s, and he wants to pick the scenario
s that maximizes his payoff. Our objective (as the first player) is to select x that
minimizes this payoff in the worst case (i.e., over all scenarios).

The problem of finding the minmax regret median on a graph, and a tree
in particular, has been attracting great research interest in recent years, and
many researchers have worked on this problem. Kouvelis et al. [11] formulated
the problem of finding the minmax regret 1-median on a tree and proposed an
O(n4) solution, where n is the number of vertices. Chen and Lin [6] improved
it to O(n3). Averbakh and Berman then found a simple O(n2) algorithm [1]
and improved it later to O(n log2 n) [2]. Yu et al. [13] proposed an O(n log n)

� Supported in part by the NSERC of Canada.
�� Supported in part by the NSERC of Canada.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 B. Bhattacharya and T. Kameda

implementation of the algorithm in [2]. More recently Brodal et al. also came
up with a simpler O(n logn) algorithm [3]. When the vertices can have negative
weights, Burkard et al. have an O(n2) algorithm [4]. In this paper, we present an
O(n) time algorithm for trees when the edge lengths are fixed, and each vertex
has a weight from an interval of positive values. This settles the open problem
posed in [3]. We achieve this by eliminating, in each round, a fraction of scenarios
that become irrelevant (“dominated”) in the future, as well as reducing the size
of the subtree in which the optimal location lies. Previous authors only reduced
the subtree in which the optimal location lies, paying no special attention to
the scenarios that are “dominated”. Our pruning algorithm was inspired by a
similar method used by Megiddo [12].

The rest of this paper is organized as follows. In the next section, we first
review definitions and some known facts, and then prove a lemma which restricts
the scenarios we need to consider. Section 3 describes methods for computing
the medians for the scenarios of interest, and for computing their costs. Section 4
is devoted to the detailed discussion of our main algorithm. Finally, Section 5
concludes the paper.

2 Preliminaries

2.1 Definitions

Let T = (V,E) be a tree with n vertices. We also use T to denote the set of
all points (vertices and points on edges) on T . Each vertex v ∈ V is associated
with an interval of positive1 weights W (v) = [wv, wv], where 0<wv ≤wv, and
each edge e ∈ E is associated with a positive length (or distance). For any two
points x, y ∈ T , d(x, y) denotes the shortest distance between x and y on T . If
x and/or y is on an edge, then the distance is a prorated fraction of its length.
Let S denote the Cartesian product of all W (v), v∈V :

S =
∏
v∈V

[wv, wv].

Under a scenario s∈S, we define the cost of a point x∈T by

F s(x) =
∑
v∈V

d(v, x)ws
v . (1)

A location x that minimizes (1) is a 1-median under s. Throughout this paper
we use 1-median and median synonymously. We call

Rs(x) = F s(x)− F s(m(s)) (2)

the regret of x under s, where m(s) denotes a median under s. A scenario s is
said to dominate another scenario s′ at x if Rs(x) ≥ Rs′(x) holds. We finally

1 We need this assumption in the proof of Lemma 11.

A Linear Time Algorithm for Computing Minmax Regret 1-Median 3

define the maximum regret Rmax(x) of x as the regret of the dominating scenario
at x.

Rmax(x) = max
s∈S

Rs(x). (3)

Note that Rmax(x) is the maximum payoff with respect to x that we mentioned
in the Introduction. We seek location x∗ ∈T , called the minmax regret median,
that minimizes Rmax(x). We sometimes refer to x∗ as the optimal location. Let
s= ŝ(x) maximize (2) for a given x∈T . We call ŝ(x) and m(ŝ(x)) a worst case
scenario and a worst case alternative for x, respectively.

2.2 Properties of Median and Minmax Regret Median in a Tree

Let v ∈ V be a vertex with degree d connected to vertices u1, u2, . . . , ud.
If we remove v and all edges incident to it from T , then d subtrees,
T (u1), T (u2), . . . , T (ud) result. Let W (T (ui)) denote the total weight of the ver-
tices in T (ui). Vertex v is said to be a weight centroid or w-centroid [10] if

W (T (ui)) ≤ W (T)/2, (4)

holds for all i = 1, 2, . . . , d, where W (T) denotes the total weight of the vertices
in T .

Lemma 1. [8]

(a) If the total vertex weights on both sides of an edge are the same, then any
point on that edge, including the end vertices, is a median.

(b) If there is no such edge, there is a unique median that is a vertex. ��

By Lemma 1, we shall assume that a median is always at a vertex. There are
at most two such vertices under a given scenario, and they are w-centroids.
However, the minmax regret median may not be at a vertex [11]. If there exists
a vertex that is a median under all the scenarios, then clearly it is the minmax
regret location. In such a case, the problem instance is said to be degenerate.

Theorem 1. In a general graph, we have Rmax (x
∗)=0 if and only if the problem

instance is degenerate.

Proof. The if part is obvious. SInce Rmax (x
∗)=0 implies that Rs(x∗)=F s(x∗)−

F s(m(s))=0 holds for any scenario s ∈ S, x∗ is a median under s. ��

Lemma 2. ([6], Theorem 1(a)) Given any point x∈T , there exists a worst-case

scenario ŝ(x) such that w
ŝ(x)
v = wv if d(x, v) < d(m(ŝ(x)), v) and w

ŝ(x)
v = wv

otherwise. ��

Let e = (u, u′) ∈ E, and let T (u) (resp. T (u′)) denote the maximal subtree of
T that does not contain e but contains u (resp. u′). Let s ∈ S be such that
ws

v =wv (v is max-weighted) for each vertex v ∈ T (u), and ws
v =wv (v is min-

weighted) for each v ∈ T (u′). Such a scenario s is called a bipartite scenario,
and u is the front of s, denoted by f(s). Let S∗ ⊂S be the set of all bipartite

4 B. Bhattacharya and T. Kameda

scenarios. Under a bipartite scenario, we call the component consisting of the
max-weighted vertices the max-weighted component and the other component
the min-weighted component. Note that scenario ŝ(x) in Lemma 2 is bipartite.
It is known that [1]

∀x ∈ T : Rmax(x) = max
s∈S∗

Rs(x). (5)

Let S̃ ⊂ S∗ be the set of scenarios under which a median is in the max-weighted
component. If we remove a point a ∈ T from T , a number of connected compo-
nents result. An a-branch [2] of T is any such component with point a restored
to it.

Lemma 3.
∀x ∈ T : Rmax(x) = max

s∈S̃
Rs(x). (6)

Proof. Let Rmax(x) = maxs∈S∗ Rs(x) = Rŝ(x)(x). Note that ŝ(x) is a function
of x. For x 	=m(ŝ(x)), this lemma follows directly from Lemma 2. So assume
that x = m(ŝ(x)), hence Rmax(x) = 0. Then this x is the optimal x∗, and we
have Rmax (x

∗) = 0, which implies (Theorem 1) that x=m(ŝ(x)) is a 1-median
for every scenario in S∗. Clearly, there is a scenario in S̃ whose max-weighted
component contains x=m(ŝ(x)). ��
Lemma 4. All scenarios in S̃ have a common median, if and only if the problem
instance is degenerate.

Proof. The if part follows from definition. Assume that all scenarios in S̃ have
a common median m, but there is a scenario s′ ∈ S \ S̃ under which m is not
a median, so that Rs′(m)>0 holds. We modify s′ according to Lemma 2 (with
x =m), obtaining a scenario s′′ ∈ S̃ that satisfies Rs′′(m) ≥ Rs′(m). This is a
contradiction, since Rs′′(m)=0. ��

3 Medians and Their Costs

3.1 Computing Medians m(s) for Every s ∈ S̃
By Lemma 3, we only consider the scenarios in S̃ in the rest of this paper.
Here we compute the medians of all scenarios in S̃ in linear time. We pick an
arbitrary vertex as the root r, and consider the rooted tree T . Let T (v) denote
the subtree of T at v, and let us call T c(v) =T \T (v) the complement of T (v).
For convenience, we define two arrays for subtree weights, W t[·] and W t[·], and
two arrays for complement weights, W c[·] and W c[·], as follows.2

W t[v] =
∑

u∈T (v)

wu, W t[v] =
∑

u∈T (v)

wu,

W c[v] =
∑

u∈T c(v)

wu, W c[v] =
∑

u∈T c(v)

wu.

2 “Subtree” and “complement” are relative to the root r of tree T chosen, but the
totality of information these arrays represent are independent of the choice of the
root, because they contain data on both T (v) and T \T (v).

A Linear Time Algorithm for Computing Minmax Regret 1-Median 5

We can compute W t[·] and W t[·] in O(n) time [5]. Once they have been com-
puted, to compute W c[v], for example, we simply use the relation W c[v] =
W t[r]−W t[v]. For two points a, b∈T , let π(a, b) denote the shortest path between
a and b.

Lemma 5. Let T (u) be the max-weighted component under s ∈ S̃ so that u=
f(s). Let m(s) be the median vertex that is farthest from u. Then, for each vertex
v on π(m(s), u), W t[v] is at least half of the total vertex weight under s.

Proof. Clearly, it suffices to prove the assertion for the case v=m(s). Since m(s)
is a median under s, by (4) we have

W t[u]−W t[m(s)] +W c[u] ≤ (W t[u] +W c[u])/2,

where the left hand side is the weight under s of T c(v). We thus obtain

W t[m(s)] ≥ (W t[u] +W c[u])/2.

��
Theorem 2. We can compute m(s) for every s ∈ S̃ in O(n) time.3

Proof. We perform a post-order depth first traversal, checking the condition (Eq.
(4)) of Lemma 1 on each vertex visited. During the traversal, we compute m(s)
for scenario s whose max-weighted component is T (u), where u is the vertex
being visited (u=f(s)).

If W c[u] > W t[u] then m(s) /∈ T (u) by Lemma 1, and s /∈ S̃. So assume
W c[u] ≤ W t[u], hence m(s) ∈ T (u). Let u1, u2, . . . , uk be the child vertices of u,
and for j=1, 2, . . . , k let sj be the scenario such that T (uj) is the max-weighted
component of sj , i.e., f(sj) = uj . Note that in general m(sj) may not be in
T (uj). If m(sj) /∈ T (uj) for all j, then we have m(s) = u. This is because by
increasing vertex weights in other subtrees T (ui) (i 	= j), m(sj) cannot move to
T (uj). Let us now assume that there is j with m(sj) ∈ T (uj), which implies

W c[uj] ≤ W t[uj] and sj ∈ S̃. Lemma 5 implies that m(s) lies in a subtree
with the largest W t[uj]. It also implies that m(s) is on π(m(sj), uj) or at u. To
identify one or two vertices m(s), starting from m(sj), we test each vertex on
this path until the condition of Lemma 1 is satisfied. Note that each vertex is
visited at most twice, once in the post-order traversal, and the second time if
it is on π(m(sj), u) for a certain j. When u is visited, its k children need to be
examined. Thus each vertex is examined also as a child vertex when its parent
is being visited. But this happens at most twice, and the total time required is
O(n).

We also need to compute m(s) for scenario s whose min-weighted component
is T (u), where u is the vertex being visited. In this case, we have f(s) = p(u),
where p(u) is the parent of u. We now consider the subtrees rooted at the child
vertices of p(u), except T (u). The only difference from what we discussed above
is that we now need to consider T c(p(u)) also as a subtree under p(u). But with a
minor change, we can use the method discussed above to compute the remaining
medians. ��
3 As commented after Lemma 1, there may be two median vertices under a scenario.

6 B. Bhattacharya and T. Kameda

3.2 Computing F s(m(s)) for Every s ∈ S̃
We first define the subtree costs (with subscript t) and complement costs (with
subscript c) relative to the root r as follows:

Ct[v] =
∑

u∈T (v)

d(u, v)wu, Ct[v] =
∑

u∈T (v)

d(u, v)wu,

Cc[v] =
∑

u∈T c(v)

d(u, v)wu, Cc[v] =
∑

u∈T c(v)

d(u, v)wu.

Arrays Ct[·], Ct[·], Cc[·], and Cc[·] can be computed in O(n) time [4].

Theorem 3. We can compute {F s(m(s)) |s ∈ S̃} in O(n) time.

+

+

+

f(s)

+

-

-r

-

+
-

m(s)

(a)

+ +
+

f(s)

-

r

-

q(s)

+

m(s)

(b)

Fig. 1. Vertex v with weight wv (resp. wv) is indicated by a + (resp. −): (a) m(s) and
f(s) are in the same subtree; (b) m(s) and f(s) are in different subtrees

Proof. We can compute m(s) for all s ∈ S̃ in O(n) time by Theorem 2. We now
compute costs F s(m(s)) for all s ∈ S̃ in two possible cases. Assume first that
m(s) and f(s) belong to the same subtree directly under the root r.

Case (a) [m(s)=f(s)]: It is easy to see that

F s(m(s)) = Ct[m(s)] + Cc[m(s)]. (7)

Case (b) [m(s) 	= f(s)]: Fig. 1(a) illustrates scenario s. Let us consider “contri-
butions” to F s(m(s)) from different parts of tree T .

1. From T (m(s)): Ct[m(s)].
2. From T (f(s))\T (m(s)): Cc[m(s)]− {Cc[f(s)] + d(f(s),m(s))W c[f(s)]}.
3. From T c(f(s)): Cc[f(s)] + d(f(s),m(s))W c[f(s)].

It is clear that, using arrays C∗[·], C∗[·], W c[·], and W c[·], where ∗ ∈ {t, c}, we
can compute the above three terms in constant time. If m(s) and f(s) don’t
belong to the same subtree directly under the root r, as in Fig. 1(b), we can
similarly compute F s(m(s)) in constant time. ��
It follows from Theorem 2 and Lemma 4 that

Lemma 6. We can decide in O(n) time if the given problem instance is degen-
erate. ��

A Linear Time Algorithm for Computing Minmax Regret 1-Median 7

4 Optimal Facility Location

4.1 Preparation

Lemma 7. ([2], Lemma 1) For any point x ∈ T , the optimal location is in the
x-branch in which the worst case alternative m(ŝ(x)) for x lies. ��

For the time being, we assume that a pivot vertex r that is not a leaf is given.
We address the issue of how to choose an appropriate r in Subsec. 4.3. Let T ∗

be the r-branch that contains the optimal location x∗, and let Sr be the set of
scenarios those max-weighted components are totally contained in T \T ∗∪{r}.

Lemma 8. [13] Let s ∈ Sr. Then F s(x) for x∈T ∗ has the following properties:

(a) It is a non-decreasing linear function of x on each edge in T ∗, as x moves
away from r.

(b) It is continuous at vertices in T ∗. ��

Lemma 9. Let s, s′ ∈ Sr, where s 	= s′. Then Rs(x) =Rs′(x) has at most one
solution for x within T ∗.

Proof. The “derivatives” of F s(x) and F s′(x) (hence of Rs(x) and Rs′(x)) with
respect to x (the positive direction of x is away from r) on edge e= (u, v) are
W s(u)− (W s −W s(u))=2W s(u)−W s and 2W s′(u)−W s′ , respectively, where
W s(u) is the total weight of the subtree4 of T rooted at u that does not contain
v, and W s is the total weight of the tree under s. Their difference is thus

2{W s′(u)−W s(u)}+ {W s −W s′}. (8)

The term {W s−W s′} clearly does not depend on edge e on which x lies. Moreover,
{W s′(u)−W s(u)} is also independent of edge e, hence u. Therefore, Rs(x) and
Rs′(x) intersect at most once, since x is bounded within T ∗. This claim is also
valid in the case where the difference in (8) is 0, in which case Rs(x) and Rs′(x)
do not intersect. ��

Lemma 10. Assume that W ∗[·], W ∗[·], C∗[·], and C∗[·] are known, where ∗∈
{t, c}. Given x and a set S⊂ S̃ of scenarios that do not contain x in their max-
weighted components, we can determine in O(|S|) time the scenario s∗∈S that
dominates all others in S at x, and the x-branch that contains m(s∗).

Proof. Similar to the analysis we used in the proof of Theorem 3, case (b). ��

4.2 Pruning Steps

We first test the degeneracy of the given instance in O(n) time (Lemma 6). If
it degenerate, then we have the optimal location x∗ right away. So, we assume
it is not degenerate. We start with the set S = S̃, and remove irrelevant and

4 It is not a subtree of T rooted at r.

8 B. Bhattacharya and T. Kameda

dominated scenarios from S through pruning rounds. We also keep track of the
subtree T ∗ that we know contains x∗. Here is an outline of a round of our pruning
algorithm.

Procedure Prune

1. Pick a “pivot” vertex r in the subtree that contains the optimal location x∗.
2. Determine the r-branch, T ∗, that contains x∗.
3. From S remove each scenario whose max-weighted component contains T ∗.
4. Let Sr be the set of scenarios whose max-weighted components are totally

contained in T\T ∗∪{r}. If |Sr|≥2, pair up scenarios in Sr, and let p be the
number of pairs. (If |Sr| is odd, one scenario is left unpaired.)

5. Determine and throw away �p/4 dominated scenarios from S. ��

If we repeatedly execute procedure Prune, we will end up with T ∗ that consists of
just one edge. Then we can easily find the optimal location on the edge in linear
time. Since the choice of pivot r in step 1 depends on how it is used in subsequent
steps, let us assume for the time being that r has been chosen somehow, and
steps 1 to 4 have been carried out. It follows from Theorem 1 that x∗ 	=m(ŝ(x∗))
holds in the non-degenerate case, and x∗ is in the min-weighted component under
ŝ(x∗). This justifies step 3.

Step 5 computes the intersections of the regret functions Rs(x) and Rs′(x) of
each pair (s, s′) of scenarios constructed in step 4. By Lemma 9, they intersect at
most once in T ∗. Let x1, x2, . . . , xp be the p intersections, and d1, d2, . . . , dp be
the corresponding distances from r. Let dm be the �p/2th smallest among them.
If all points at distance dm from r are outside T ∗, in each pair of scenarios with
intersection point xi, where 1≤ i≤m, one is dominated by the other everywhere
in T ∗ and can be discarded. If Rs(x) and Rs′(x) don’t intersect, then again one
of s and s′ is dominated by the other in T ∗ and can be discarded. So, assume
that there are points in T ∗ that are at distance dm from r. Let d∗ denote the
distance of the optimal location x∗. If d∗ ≥ dm (resp. d∗ <dm), then from each
scenario pair with intersection point xi such that 1≤ i≤m (resp. m< i ≤ p),
one of them can be discarded, because the other dominates it for x≥dm (resp.
x<dm).

We now show how to determine if d∗ ≥ dm for a given value dm(> 0).
Let y1, y2, . . . , yl be the points in T ∗ at distance dm from r. For example, see
y1, . . . , y5 in Fig. 2(a). Let T (yi) be the yi-branch that is “below” (farther away
from r) yi. Let Si denote the set of scenarios whose max-weighted components
are totally contained in T (yi). Define

R(yi) = max
s∈Si

{F s(yi)− F s(m(s))}, (9)

and let si realize R(yi). By Lemma 10, we can determine si in O(|Si|) time.
Among them let R(yk) (realized by sk ∈ Sk) be as large as any other. We now
compute Rmax(yk) and ŝ(yk) based on the scenarios in S (⊂ S̃), which is the
set of all scenarios that have not been thrown away so far. This can be done in
O(|S|)) time by Lemma 10.

A Linear Time Algorithm for Computing Minmax Regret 1-Median 9

y1 y2 y3 y4 y5

r

f(s)

m(s)

T*

(a)

f(s)

r

(b)

Fig. 2. (a) The edge lengths are not to scale; (b) Computing F s(r)

Lemma 11. For a given value dm of x, define {yi | i = 1, 2, . . . , l} and yk as
above.

(a) If ŝ(yk) ∈ Sk then the optimal location x∗ is in T (yk).
(b) If ŝ(yk) /∈ Sk then the optimal location x∗ cannot be in T (yi) for any i.

Proof. (a) Follows from Lemma 7, since ŝ(yk) ∈ S̃, hence m(ŝ(yk)) ∈ T (yk).
(b) The assertion is trivially true for i=k. Assume that the optimal location

(over S) was in T (yj) (j 	=k). Then by Lemmas 3 and 7, the scenario that realizes
Rmax(yj) must be in Sj , and hence Rmax(yj)=R(yj). By the definition of k, we
have

Rmax(yj) = R(yj) ≤ R(yk). (10)

On the other hand, we have

R(yk) < Rsk(yj), (11)

by Lemma 8. We have strict inequity here, because yj is farther away from
median m(sk) than yk, and there is at least one vertex (with positive weight)
between yk and yj . By definition, we also have

Rsk(yj) ≤ Rmax(yj). (12)

Eqs. (10), (11) and (12) yield Rmax(yj) < Rmax(yj), a contradiction. ��

As we narrow down on the location x∗, using Lemma 11, we can update the
part of tree T containing x∗, i.e., T ∗. However, the fronts of the scenarios that
we haven’t discarded may belong to T \T ∗. To keep track of those scenarios, we
maintain a tree T ′=(N,E′), called the auxiliary tree that contains T ∗ in it. See
Fig. 3, where the nodes5 in the interior of T ∗ are indicated by black circles. Note
that a vertex of T can be the front vertices of at most two scenarios in S (⊆ S̃)
at any time. If it is the front vertex of two (resp. one) scenarios, we give the
corresponding node in T ′ weight of 2 (resp. 1). We modify T ′ in each round as
follows:

5 We use the term ‘node’ to avoid confusion with a vertex of T .

10 B. Bhattacharya and T. Kameda

T*

Fig. 3. Auxiliary tree T ′

1. In case (a) of Lemma 11, T ∗ will be inside T (yk). We “shorten” the edge that
yk lies on, removing the part of the edge between point yk and the vertex
(call it vk) that is closest to yk and not in T (yk), and connect the shortened
edge to vk by placing yk at vk. The “shortening” is just for convenience in
representing T ′, and the “shortened” edge keeps the original length. Further,
we attach every node u outside of T (yk) directly to vk via an edge with length
d(u, vk). In Fig. 3, node vk is represented by a hollow circle on the boundary
of T ∗, indicating that it has a weight of 1.

2. In case (b) of Lemma 11, T ∗ is outside T (yi) for i=1, 2, . . . , l. For each i, we
“shorten” the edge that yi lies on, removing the part of the edge between yi
and the vertex (call it vi) that is closest to yi and in T (yi). The “shortened”
edge keeps the original length. We attach every node u in T (yi) directly to
vi via an edge with length d(u, vi). ��

If a scenario whose front is in T ′\T ∗ is discarded, we discard the corresponding
node u that now has 0 weight. If u is a leaf, we simply remove the leaf and the
edge incident to it. If u is a non-leaf node on the fringe of T ∗, then we remove
u, and attach all its child nodes (leaves) to the parent of u with appropriate
changes in the edge lengths.

4.3 Choosing Pivot Vertex r

By definition, T ∗ (hence Sr) depends on the choice of r in step 1 of procedure
Prune. We want to choose r judiciously, so that T ∗ is as small as we can make
it and Sr contains as many scenarios as possible, which in turn maximizes the
number �p/4 of scenarios removed in step 5. We use a w-centroid of T ′ as r.
We can find a w-centroid r of T ′ in O(k) time, where k= |N | [7]. By definition
(of a w-centroid), none of the r-branches minus r, T ∗\{r} in particular, contains
more than 1/2 of the total number of fronts, and therefore, T \T ∗∪{r} contains
at least 1/2 of the total number of fronts. This fact will be used in (14) below.

Now that we have r, we need to find T ∗ (step 2 of Prune) based on Lemma 7.
From Fig. 2(b), we get

F s(r) = Ct(r) − {Ct(f(s)) + d(r, f(s))W t(f(s))}
+ {Ct(f(s)) + d(r, f(s))W t(f(s))}. (13)

The second term above deletes the min-weight contribution from subtree T (f(s)),
and the third term replaces it with the max-weight contribution from T (f(s)).

A Linear Time Algorithm for Computing Minmax Regret 1-Median 11

This can be evaluated in constant time, since we know r, f(s) and d(r, f(s)). We
compute Rs(r) = F s(r)−F s(m(s)) for all scenarios s ∈ S whose max-weighted
components do not contain r and two others such that r is their front. We can
then identify the scenario ŝ(r) that maximizes Rs(r). The r-branch that contains
m(ŝ(r)) is identified as T ∗.

4.4 Time Complexity Analysis

Let T ′=(N,E′) be the auxiliary tree defined in Subsec. 4.2. Once a w-centroid in
T ′ is found, we classify the nodes in T ′ into two types, B and C. A node u of type
B represents the scenario s such that f(s)=u whose max weighted component
is totally contained in T \T ∗ ∪ {r}. A node u of type C represents two scenarios
s and s′ such that f(s) = f(s′) = u, where the max-weighted component of s
contains the path from u to T ∗, as well as T ∗, and the max-weighted component
of s′ contains u but not the path from u to T ∗.

In T \T ∗ ∪ {r}, let there be b and c nodes of types B and C, respectively. The
total weight of the nodes in T \T ∗ ∪ {r} is given by

b+ 2c ≥ |S|/2. (14)

The inequality follows from the discussion in Subsec. 4.3. Step 3 of Prune discards
c scenarios from S, and step 5 throws away an additional (b + c)/8. The total
number of scenarios discarded is thus

c+ (b + c)/8 = (7/8)c+ (b+ 2c)/8

≥ (7/8)c+ |S|/16. (15)

The inequality follows from (14). After a round, some nodes of type C may
become type B nodes. We attach those nodes directly to r, as in Fig. 3, where
each node represented by a hollow (resp. solid) circle is a node of type B (resp.
type C).6 Note that in the future, the w-centroid will never be in T \T ∗, since
this part loses some weight, whereas there is no weight loss from T ∗\{r}.

Let |S|=k and let τ(k) be the time needed to process the scenarios in S. Eq.
(15) means that procedure Prune removes at least |S|/16 fronts (i.e., scenarios),
reducing the size of S by at least 1/16 in each round. The recurrence relation is

τ(k) ≤ τ(15k/16) +O(k). (16)

This recurrence equation has the solution of the form τ(k)=O(k). We thus have

Theorem 4. The minmax regret 1-median of a tree can be found in O(n) time,
where n is the number of vertices in the given tree. ��
6 Subtree T ∗ in the figure is for the previous round. A new round will choose the pivot
r, which defines a new T ∗, and new sets of type B and C nodes.

12 B. Bhattacharya and T. Kameda

5 Conclusion

We have presented an O(n) time algorithm for computing the minmax regret 1-
median for trees with positive vertex weights. This improves upon the previously
known best complexity of O(n log n).

References

1. Averbakh, I., Berman, O.: Minmax regret median location on a network under
uncertainty. INFORMS Journal of Computing 12(2), 104–110 (2000)

2. Averbakh, I., Berman, O.: An improved algorithm for the minmax regret median
problem on a tree. Networks 41, 97–103 (2003)

3. Brodal, G.S., Georgiadis, L., Katriel, I.: An O(n log n) version of the Averbakh–
Berman algorithm for the robust median of a tree. Operations Research Letters 36,
14–18 (2008)

4. Burkard, R.E., Dollani, H.: Robust location problems with pos/neg-weights on a
tree. Tech. Rep. Diskrete Optimierung Bericht Nr. 148, Karl-Franzens-Universiät
Graz & Technische Universiät Graz (1999)

5. Burkard, R., Krarup, J.: A linear algorithm for the pos/neg-weighted 1-median
problem on a cactus. Computing 60, 193–215 (1998)

6. Chen, B., Lin, C.S.: Minmax-regret robust 1-median location on a tree. Net-
works 31, 93–103 (1998)

7. Goldman, A.: Optimal center location in simple networks. Transportation Sci-
ence 5, 212–221 (1971)

8. Hakimi, S.: Optimum locations of switching centers and the absolute centers and
medians of a graph. Operations Research 12, 450–459 (1964)

9. Hale, T.S., Moberg, C.R.: Location science research: A review. Annals of Opera-
tions Research 123, 21–35 (2003)

10. Kariv, O., Hakimi, S.: An algorithmic approach to network location problems, part
2: The p-median. SIAM J. Appl. Math. 37, 539–560 (1979)

11. Kouvelis, P., Vairaktarakis, G., Yu, G.: Robust 1-median location on a tree in
the presence of demand and transportation cost uncertainty. Tech. Rep. Working
Paper 93/94-3-4, Department of Management Science. The University of Texas,
Austin (1993)

12. Megiddo, N.: Linear-time algorithms for linear-programming in R3 and related
problems. SIAM J. Computing 12, 759–776 (1983)

13. Yu, H.I., Lin, T.C., Wang, B.F.: Improved algorithms for the minmax-regret 1-
center and 1-median problem. ACM Transactions on Algorithms 4(3), 1–1 (2008)

A Simple D2-Sampling Based PTAS for k-Means

and other Clustering Problems

Ragesh Jaiswal, Amit Kumar, and Sandeep Sen

Department of Computer Science and Engineering,
Indian Institute of Technology Delhi

{rjaiswal,amitk,ssen}@cse.iitd.ac.in

Abstract. Given a set of points P ⊂ Rd, the k-means clustering prob-
lem is to find a set of k centers C = {c1, ..., ck}, ci ∈ Rd, such that the
objective function

∑
x∈P d(x,C)2, where d(x,C) denotes the distance

between x and the closest center in C, is minimized. This is one of the
most prominent objective functions that have been studied with respect
to clustering.

D2-sampling [1] is a simple non-uniform sampling technique for choos-
ing points from a set of points. It works as follows: given a set of points
P ⊆ Rd, the first point is chosen uniformly at random from P . Subse-
quently, a point from P is chosen as the next sample with probability
proportional to the square of the distance of this point to the nearest
previously sampled points.

D2-sampling has been shown to have nice properties with respect to
the k-means clustering problem. Arthur and Vassilvitskii [1] show that
k points chosen as centers from P using D2-sampling gives an O(log k)
approximation in expectation. Ailon et. al. [2] and Aggarwal et. al. [3]
extended results of [1] to show that O(k) points chosen as centers using
D2-sampling give O(1) approximation to the k-means objective function
with high probability. In this paper, we further demonstrate the power
of D2-sampling by giving a simple randomized (1 + ε)-approximation
algorithm that uses the D2-sampling in its core.

1 Introduction

Clustering problems arise in diverse areas including machine learning, data min-
ing, image processing and web-search [4,5,6,7]. One of the most commonly used
clustering problems is the k-means problem. Here, we are given a set of points
P in a d-dimensional Euclidean space, and a parameter k. The goal is to find a
set C of k centers such that the objective function

Δ(P,C) =
∑
p∈P

d(p, C)2

is minimized, where d(p, C) denotes the distance from p to the closest center in
C. This naturally partitions P into k clusters, where each cluster corresponds to
the set of points of P which are closer to a particular center than other centers.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 13–24, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

14 R. Jaiswal, A. Kumar, and S. Sen

It is also easy to show that the center of any cluster must be the mean of the
points in it. In most applications, the parameter k is a small constant. However,
this problem turns out to be NP-hard even for k = 2 [8].

One very popular heuristic for solving the k-means problem is the Lloyd’s
algorithm [9]. The heuristic is as follows : start with an arbitrary set of k centers
as seeds. Based on these k centers, partition the set of points into k clusters,
where each point gets assigned to the closest center. Now, we update the set of
centers as the means of each of these clusters. This process is repeated till we
get convergence. Although, this heuristic often performs well in practice, it is
known that it can get stuck in local minima [10]. There has been lot of recent
research in understanding why this heuristic works fast in practice, and how it
can be modified such that we can guarantee that the solution produced by this
heuristic is always close to the optimal solution.

One such modification is to carefully choose the set of initial k centers. Ideally,
we would like to pick these centers such that we have a center close to each of
the optimal clusters. Since we do not know the optimal clustering, we would
like to make sure that these centers are not close to each other and yet, are
representatives of the set of points. A recently proposed idea [11,1] is to pick the
initial centers using D2-sampling which can be described as follows. The first
center is picked uniformly at random from the set of points P . Suppose we have
picked a set of k′ < k centers – call this set C′. Then a point p ∈ P is chosen
as the next center with probability proportional to d(p, C′)2. This process is
repeated till we have a set of k centers.

There has been lot of recent activity in understanding how good a set of centers
picked by D2-sampling are (even if we do not run the Lloyd’s algorithm on these
seed centers). Arthur and Vassilvitskii [1] showed that if we pick k centers with
D2-sampling, then the expected cost of the corresponding solution to the k-
means instance is within O(log k)-factor of the optimal value. Ackermann et.
al. [12] note that the analysis in [1] can be extended to other distance measures
such as μ-similar Bregman divergences and use the algorithm to give a coreset
construction. Ostrovsky et. al. [11] showed that if the set of points satisfied a
separation condition (named (k, ε2)-irreducible as defined in Section 2), then
these k centers give a constant factor approximation for the k-means problem.
Ailon et. al. [2] proved a bi-criteria approximation property – if we pick O(k log k)
centers by D2-sampling, then it is a constant approximation, where we compare
with the optimal solution that is allowed to pick k centers only. Aggarwal et.
al. [3] give an improved result and show that it is enough to pick O(k) centers
by D2-sampling to get a constant factor bi-criteria approximation algorithm.

In this paper, we give yet another illustration of the power of the D2-sampling
idea. We give a simple randomized (1 + ε)-approximation algorithm for the k-
means algorithm, where ε > 0 is an arbitrarily small constant. At the heart of our
algorithm is the idea of D2-sampling – given a set of already selected centers,
we pick a small set of points by D2-sampling with respect to these selected
centers. Then, we pick the next center as the centroid of a subset of these small
set of points. By repeating this process of picking k centers sufficiently many

A Simple D2-Sampling Based PTAS 15

times, we can guarantee that with high probability, we will get a set of k centers
whose objective value is close to the optimal value. Further, the running time

of our algorithm is O(nd · 2Õ(k2/ε))1– for constant value of k, this is a linear
time algorithm. It is important to note that PTAS with better running time are

known for this problem. Chen [13] give an O
(
nkd+ d2nσ · 2(k/ε)O(1)

)
algorithm

for any σ > 0 and Feldman et al. [14] give an O
(
nkd+ d · poly(k/ε) + 2Õ(k/ε)

)
algorithm. However, these results often are quite involved, and use the notion of
coresets. Our algorithm is simple, and only uses the concept of D2-sampling.

1.1 Other Related Work

There has been significant research on exactly solving the k-means algorithm
(see e.g., [15]), but all of these algorithms take Ω(nkd) time. Hence, recent
research on this problem has focused on obtaining fast (1 + ε)-approximation
algorithms for any ε > 0. Matousek [16] gave a PTAS with running time

O(nε−2k2d logk n). Badoiu et al. [17] gave an improved PTAS with running

time O(2(k/ε)
O(1)

dO(1)n logO(k) n). de la Vega et al. [18] gave a PTAS which
works well for points in high dimensions. The running time of this algorithm is
O(g(k, ε)n logk n) where g(k, ε) = exp[(k3/ε8)(ln(k/ε) lnk]. Har-Peled et al. [19]
proposed a PTAS whose running time is O(n + kk+2ε−(2d+1)k logk+1 n logk 1

ε).
Kumar et al. [20] gave the first linear time PTAS for fixed k – the running time of

their algorithm is O(2(k/ε)
O(1)

dn). Chen [13] used the a new coreset construction

to give a PTAS with improved running time of O(ndk+2(k/ε)
O(1)

d2nσ). Recently,

Feldman et al. [14] gave a PTAS with running time O(nkd+d·poly(k/ε)+2Õ(k/ε))
– this is the fastest known PTAS (for fixed k) for this problem.

There has also been work on obtaining fast constant factor approximation
algorithms for the k-means problem based on some properties of the input points
(see e.g. [11,21]).

1.2 Our Contributions

In this paper, we give a simple PTAS for the k-means problem based on the idea
of D2-sampling. Our work builds on and simplifies the result of Kumar et al. [20].
We briefly describe their algorithm first. It is well known that for the 1-mean
problem, if we sample a set of O(1/ε) points uniformly at random, then the mean
of this set of sampled points is close to the overall mean of the set of all points.
Their algorithm begins by sampling O(k/ε) points uniformly at random. With
reasonable probability, we would sample O(1/ε) points from the largest cluster,
and hence we could get a good approximation to the center corresponding to
this cluster (their algorithm tries all subsets of size O(1/ε) from the randomly
sampled points). However, the other clusters may be much smaller, and we may
not have sampled enough points from them. So, they need to prune a lot of

1 Õ notation hides a O(log k/ε) factor which simplifies the expression.

16 R. Jaiswal, A. Kumar, and S. Sen

points from the largest cluster so that in the next iteration a random sample of
O(k/ε) points will contain O(1/ε) points from the second largest cluster, and so
on. This requires a non-trivial idea termed as tightness condition by the authors.
In this paper, we show that the pruning is not necessary if instead of using
uniform random sampling, one uses D2-sampling.

We can informally describe our algorithm as follows. We maintain a set of
candidate centers C, which is initially empty. Given a set C, |C| < k, we add
a new center to C as follows. We sample a set S of O(k/ε3) points using D2-
sampling with respect to C. From this set of sampled points, we pick a subset
T and the new center is the mean of this set T . We add this to C and continue.

From the property of D2-sampling ([3,2]), with some constant, albeit small
probability p′, we pick up a point from a hitherto untouched cluster C′ of the
optimal clustering. Therefore by sampling about α/p′ points using D2-sampling,
we expect to hit approximately α points from C′. If α is large enough, (c.f.
Lemma 1), then the centroid of these α points gives a (1 + ε) approximation of
the cluster C′. Therefore, with reasonable probability, there will be a choice of a
subset T in each iteration such that the set of centers chosen are from C′. Since
we do not know T , our algorithm will try out all subsets of size |T | from the
sample S. Note that our algorithm is very simple, and can be easily parallelized.

Our algorithm has running time O(dn · 2Õ(k2/ε)) which is an improvement over

that of Kumar et al. [20] who gave a PTAS with running time O
(
nd · 2(k/ε)O(1)

)
.2

Because of the relative simplicity, our algorithm generalizes to measures like
Mahalanobis distance and μ-similar Bregman divergence. Note that these do not
satisfy triangle inequality and therefore not strict metrics. Ackermann et al. [12]
have generalized the framework of Kumar et al. [20] to Bregman divergences but
we feel that the D2-sampling based algorithms are simpler.

We formally define the problem and give some preliminary results in Section 2.
In Section 3, we describe our algorithm, and then analyze it subsequently. In
Section 4, we discuss PTAS for other distance measures.

2 Preliminaries

An instance of the k-means problem consists of a set P ⊆ Rd of n points in d-
dimensional space and a parameter k. For a set of points (called centers) C ⊆ Rd,
let Δ(P,C) denote

∑
p∈P d(p, C)2, i.e., the cost of the solution which picks C

as the set of centers. For a singleton C = {c}, we shall often abuse notation,
and use Δ(P, c) to denote Δ(P,C). Let Δk(P) denote the cost of the optimal
k-means solution for P .

Definition 1. Given a set of points P and a set of centers C, a point p ∈ P is
said to be sampled using D2-sampling with respect to C if the probability of it
being sampled, ρ(p), is given by

2 It can be used in conjunction with Chen [13] to obtain a superior running time but
at the cost of the simplicity of our approach.

A Simple D2-Sampling Based PTAS 17

ρ(p) =
d(p, C)2∑

x∈P d(x,C)2
=

Δ({p}, C)

Δ(P,C)
.

We will also need the following definition from [20].

Definition 2 (Irreducibility or separation condition). Given k and γ, a
set of points P is said to be (k, γ)-irreducible if Δk−1(P) ≥ (1 + γ) ·Δk(P).

We will often appeal to the following result [15] which shows that uniform random
sampling works well for 1-means3.

Lemma 1 (Inaba et al. [15]). Let S be a set of points obtained by indepen-
dently sampling M points with replacement uniformly at random from a point
set P . Then, for any δ > 0,

Δ(P, {m(S)}) ≤
(
1 +

1

δM

)
·Δ(P, {m(P)}),

holds with probability at least (1 − δ). Here m(X) =
(∑

x∈X x

|X|
)

denotes the

centroid of a point set X.

Finally, we will use the following property of the squared Euclidean metric. This
is a standard result from linear algebra [22].

Lemma 2. Let P ⊆ Rd be any point set and let c ∈ Rd be any point. Then we
have the following:∑

p∈P

d(p, c)2 =
∑
p∈P

d(p,m(P))2 + |P | · d(c,m(P))2,

where m(P) =
(∑

p∈P p

|P |
)
denotes the centroid of the point set.

Finally, we mention the simple approximate triangle inequality with respect to
the squared Euclidean distance measure.

Lemma 3 (Approximate triangle inequality). For any three points p, q, r ∈
Rd we have: d(p, q)2 ≤ 2 · (d(p, r)2 + d(r, q)2).

3 PTAS for k-Means

We first give a high level description of the algorithm. We will also assume
that the instance is (k, ε)-irreducible for a suitably small parameter ε. We shall
then get rid of this assumption later. The algorithm is described in Figure 1.
Essentially, the algorithm maintains a set C of centers, where |C| ≤ k. Initially
C is empty, and in each iteration of Step 2(b), it adds one center to C till its

3 It turns out that even minor perturbations from uniform distribution can be catas-
trophic and indeed in this paper we had to work around this.

18 R. Jaiswal, A. Kumar, and S. Sen

size reaches k. Given a set C, it samples a set S of N points from P using
D2-sampling with respect to C (in Step 2(b)). Then it picks a subset T of S
of size M = O(1/ε), and adds the centroid of T to C. The algorithm cycles
through all possible subsets of size M of S as choices for T , and for each such
choice, repeats the above steps to find the next center, and so on. To make the
presentation clearer, we pick a k-tuple of M -size subsets (s1, . . . , sk) in advance,
and when |C| = i, we pick T as the sthi subset of S. In Step 2(i), we cycle through
all such k-tuples (s1, . . . , sk). In the analysis, we just need to show that one such
k-tuple works with reasonable probability.

We develop some notation first. For the rest of the analysis, we will fix a tuple
(s1, . . . , sk) – this will be the “desired tuple”, i.e., the one for which we can show
that the set C gives a good solution. As our analysis proceeds, we will argue
what properties this tuple should have. Let C(i) be the set C at the end of the
ith iteration of Step 2(b). To begin with C(0) is empty. Let S(i) be the set S
sampled during the ith iteration of Step 2(b), and T (i) be the corresponding set
T (which is the sthi subset of S(i)).

Let O1, . . . , Ok be the optimal clusters, and ci denote the centroid of points
in Oi. Further, let mi denote |Oi|, and wlog assume that m1 ≥ . . . ≥ mk. Note
that Δ1(Oi) is same as Δ(Oi, {ci}). Let ri denote the average cost paid by a
point in Oi, i.e.,

ri =

∑
p∈Oi

d(p, ci)
2

mi
.

We will assume that the input set of points P are (k, ε)-irreducible. We shall
remove this assumption later. Now we show that any two optimal centers are far
enough.

Lemma 4. For any 1 ≤ i, j ≤ k, i 	= j, d(ci, cj)
2 ≥ ε · (ri + rj).

Proof. Suppose i < j, and hence mi ≥ mj . For the sake of contradiction assume
d(ci, cj)

2 < ε · (ri + rj). Then we have,

Δ(Oi ∪Oj , {ci}) = mi · ri +mj · rj +mj · d(ci, cj)2 (using Lemma 2)

≤ mi · ri +mj · rj +mj · ε · (ri + rj)

≤ (1 + ε) ·mi · ri + (1 + ε) ·mj · rj (since mi ≥ mj)

≤ (1 + ε) ·Δ(Oi ∪Oj , {ci, cj})

This implies that the centers {c1, ..., ck}\{cj} give a (1+ε)-approximation to the
k-means objective. This contradicts the fact that P is (k, ε)-irreducible. ��
We give an outline of the proof. Suppose in the first i − 1 iterations, we have
found centers which are close to the centers of some i− 1 clusters in the optimal
solution. Conditioned on this fact, we show that in the next iteration, we are
likely to sample enough number of points from one of the remaining clusters (c.f.
Corollary 1). Further, we show that the samples from this new cluster are close

A Simple D2-Sampling Based PTAS 19

Find-k-means(P)
Let N = (51200 · k/ε3), M = 100/ε, and R =

(
N
M

)
1. Repeat 2k times and output the set of centers C that give least cost

2. Repeat for all k-tuples (s1, ..., sk) ∈ [R]× [R]×× [R] and
pick the set of centers C that gives least cost
(a) C ← {}
(b) For i ← 1 to k

Sample a set S of N points with D2-sampling (w.r.t. centers C)
Let T be the sthi subset of S.a

C ← C ∪ {m(T)}. b

a For a set of size N we consider an arbitrary ordering of the subsets of size M of
this set.

b m(T) denote the centroid of the points in T .

Fig. 1. The k-means algorithm that gives (1 + ε)-approximation for any (k, ε)-

irreducible data set. Note that the inner loop is executed at most 2k ·
((

N
M

))k ∼
2k · 2Õ(k/ε) times.

to uniform distribution (c.f. Lemma 6). Since such a sample does not come from
exactly uniform distribution, we cannot apply Lemma 1 directly. In fact, dealing
with the slight non-uniformity turns out to be non-trivial (c.f. Lemmas 7 and 8).

We now show that the following invariant will hold for all iterations : let C(i−1)

consist of centers c′1, . . . , c′i−1 (added in this order). Then, with probability at
least 1

2i−1 , there exist distinct indices j1, . . . , ji−1 such that for all l = 1, . . . , i−1,

Δ(Ojl , c
′
l) ≤ (1 + ε/20) ·Δ(Ojl , cjl) (1)

Suppose this invariant holds for C(i−1) (the base case is easy since C(0) is empty).
We now show that this invariant holds for C(i) as well. In other words, we just
show that in the ith iteration, with probability at least 1/2, the algorithm finds
a center c′i such that

Δ(Oji , c
′
i) ≤ (1 + ε/20) ·Δ(Oji , cji),

where ji is an index distinct from {j1, . . . , ji−1}. This will basically show that
at the end of the last iteration, we will have k centers that give a (1 + ε)-
approximation with probability at least 2−k.

We now show that the invariant holds for C(i). We use the notation developed
above for C(i−1). Let I denote the set of indices {j1, . . . , ji−1}. Now let ji /∈ I
be the index for which Δ(Oji , C

(i−1)) is maximum. Intuitively, conditioned on
sampling from the set ∪j /∈IOj using D2-sampling, it is likely that enough points
from Oji will be sampled. The next lemma shows that there is good chance that
elements from the sets Oj for j /∈ I will be sampled.

Lemma 5. If 0 < ε ≤ 1/2, then
∑

l/∈I Δ(Ol,C
(i−1))

∑
k
l=1 Δ(Ol,C(i−1))

≥ ε/2.

20 R. Jaiswal, A. Kumar, and S. Sen

Proof. Suppose, for the sake of contradiction, the above statement does not hold.
Then,

Δ(P,C(i−1)) =
∑
l∈I

Δ(Ol, C
(i−1)) +

∑
l/∈I

Δ(Ol, C
(i−1))

<
∑
l∈I

Δ(Ol, C
(i−1)) +

ε/2

1− ε/2
·
∑
l∈I

Δ(Ol, C
(i−1)) (by our assumption)

=
1

1− ε/2
·
∑
l∈I

Δ(Ol, C
(i−1))

≤ 1 + ε/20

1− ε/2
·
∑
l∈I

Δ1(Ol) (using the invariant for C(i−1))

≤ (1 + ε) ·
∑
l∈I

Δ1(Ol) (since ε ≤ 1/2)

≤ (1 + ε) ·
∑
l∈[k]

Δ1(Ol)

But this contradicts the fact that P is (k, ε)-irreducible. ��

We get the following corollary easily.

Corollary 1. If 0 < ε ≤ 1/2, then
Δ(Oji

,C(i−1))
∑k

l=1 Δ(Ol,C(i−1))
≥ ε

2k .

The above Lemma and its Corollary say that with probability at least ε
2k , points

in the set Oji will be sampled. However the points within Oji are not sampled
uniformly. Some points in Oji might be sampled with higher probability than
other points. In the next lemma, we show that each point will be sampled with
certain minimum probability.

Lemma 6. For any l /∈ I and any point p ∈ Ol,
d(p,C(i−1))2

Δ(Ol,C(i−1))
≥ 1

ml
· ε
64 .

Proof. Fix a point p ∈ Ol. Let jt ∈ I be the index such that p is closest to c′t
among all centers in C(i−1). We have

Δ(Ol, C
(i−1)) ≤ ml · rl +ml · d(cl, c′t)2 (using Lemma 2)

≤ ml · rl + 2 ·ml ·
(
d(cl, cjt)

2 + d(cjt , c
′
t)

2
)

(using Lemma 3)

≤ ml · rl + 2 ·ml ·
(
d(cl, cjt)

2 +
εrt
20

)
, (2)

where the third inequality follows from the invariant condition for C(i−1). Also,
we know that

d(p, c′t)
2 ≥ d(cjt , cl)

2

8
− d(cjt , c

′
t)

2 (using Lemma 3)

≥ d(cjt , cl)
2

8
− ε

20
· rt (using the invariant for C(i−1))

≥ d(cjt , cl)
2

16
(Using Lemma 4) (3)

A Simple D2-Sampling Based PTAS 21

So, we get

d(p, C(i−1))2

Δ(Ol, C(i−1))
≥ d(cjt , cl)

2

16 ·ml ·
(
rl + 2

(
d(cjt , cl)

2 + εrt
20

)) (using (2) and (3))

≥ 1

16 ·ml
· 1

(1/ε) + 2 + 1/10
≥ ε

64 ·ml
(using Lemma 4)

��

Recall that S(i) is the sample of size N in this iteration. We would like to show
that that the invariant will hold in this iteration as well. We first prove a simple
corollary of Lemma 1.

Lemma 7. Let Q be a set of n points, and γ be a parameter, 0 < γ < 1. Define
a random variable X as follows : with probability γ, it picks an element of Q
uniformly at random, and with probability 1 − γ, it does not pick any element
(i.e., is null). Let X1, . . . , X� be � independent copies of X, where � = 400

γε .

Let T denote the (multi-set) of elements of Q picked by X1, . . . , X�. Then, with
probability at least 3/4, T contains a subset U of size 100

ε which satsifies

Δ(P,m(U)) ≤
(
1 +

ε

20

)
Δ1(P) (4)

Proof. Define a random variable I, which is a subset of the index set {1, . . . , �},
as follows I = {t : Xt picks an element of Q, i.e., it is not null}. Conditioned on
I = {t1, . . . , tr}, note that the random variables Xt1 , . . . , Xtr are independent
uniform samples from Q. Thus if |I| ≥ 100

ε , then Lemma 1 implies that with
probability at least 0.8, the desired event (4) happens. But the expected value
of |I| is 400

ε , and so, |I| ≥ 100
ε with high probability, and hence, the statement

in the lemma is true. ��

We are now ready to prove the main lemma.

Lemma 8. With probability at least 1/2, there exists a subset T (i) of S(i) of size
at most 100

ε such that

Δ(Oji ,m(T (i))) ≤ (1 +
ε

20
) ·Δ1(Oji).

Proof. Recall that S(i) contains N = 51200k
ε3 independent samples of P (using

D2-sampling). We are interested in S(i) ∩Oji . Let Y1, . . . , YN be N independent
random variables defined as follows : for any t, 1 ≤ t ≤ N , Yt picks an element
of P using D2-sampling with respect to C(i−1). If this element is not in Oji , it

just discards it (i.e., Yt is null). Let γ denote ε2

128k . Corollary 1 and Lemma 6
imply that Yt picks a particular element of Oji with probability at least γ

mji
. We

would now like to apply Lemma 7 (observe that N = 400
γε). We can do this by a

simple coupling argument as follows. For a particular element p ∈ Oji , suppose

Yt assigns probability
γ(p)
mji

to it. One way of sampling a random variable Xt as

22 R. Jaiswal, A. Kumar, and S. Sen

in Lemma 7 is as follows – first sample using Yt. If Yt is null then, Xt is also
null. Otherwise, suppose Yt picks an element p of Oji . Then, Xt is equal to p
with probability γ

γ(p) , null otherwise. It is easy to check that with probability γ,

Xt is a uniform sample from Oji , and null with probability 1− γ. Now, observe
that the set of elements of Oji sampled by Y1, . . . , YN is always a superset of
X1, . . . , XN . We can now use Lemma 7 to finish the proof. ��

Thus, we will take the index si in Step 2(i) as the index of the set T (i) as guar-
anteed by the Lemma above. Finally, by repeating the entire process 2k times,
we make sure that we get a (1 + ε)-approximate solution with high probability.

Note that the total running time of our algorithm is
(
nd · 2k · 2Õ(k/ε)

)
.

Removing the (k, ε)-irreducibility assumption : We now show how to re-
move this assumption. First note that we have shown the following result.

Theorem 1. Let 0 < ε ≤ 1/2. If a given point set is (k, ε
(1+ε/2)·k)-irreducible,

then there is a randomized algorithm that runs in time O(nd ·2Õ(k2/ε)) and gives
a (1+ ε

(1+ε/2)·k)-approximation to the k-means objective with probability at least

1/2.

Proof. The proof can be obtained by replacing ε by ε
(1+ε/2)·k in the above anal-

ysis.

Suppose the point set P is not (k, ε
(1+ε/2)·k)-irreducible. In that case it will be

sufficient to find fewer centers that (1 + ε)-approximate the k-means objective.
The next lemma shows this more formally.

Theorem 2. Let 0 < ε ≤ 1/2. There is a randomized algorithm that runs in

time O(nd · 2Õ(k2/ε)) and gives a (1 + ε)-approximation to the k-means objective
with probability at least 1/2.

Proof. Let P denote the set of points. Let 1 < i ≤ k be the largest index such
that P is (i, ε

(1+ε/2)·k)-irreducible. If no such i exists, then

Δ1(P) ≤
(
1 +

ε

(1 + ε/2) · k

)k

·Δk(P) ≤ (1 + ε) ·Δk(P),

and so picking the centroid of P will give a (1 + ε)-approximation.
Suppose such an i exists. In that case, we consider the i-means problem and

from the previous lemma we get that there is an algorithm that runs in time

O(nd · 2i · 2Õ(i2/ε)) and gives a (1 + ε
(1+ε/2)·k)-approximation to the i-means

objective. Now we have that

Δi ≤
(
1 +

ε

(1 + ε/2) · k

)k−i

·Δk ≤ (1 + ε) ·Δk.

Thus, we are done. ��

A Simple D2-Sampling Based PTAS 23

4 Other Distance Measures

In the previous sections, we looked at the k-means problem where the dissimilar-
ity or distance measure was the square of Euclidean distance. There are numerous
practical clustering problem instances where the dissimilarity measure is not a
function of the Euclidean distance. In many cases, the points are not generated
from a metric space. In these cases, it makes sense to talk about the general
k-median problem that can be defined as follows:

Definition 3 (k-median with respect to a dissimilarity measure). Given
a set of n objects P ⊆ X and a dissimilarity measure D : X × X → R≥0, find a
subset C of k objects (called medians) such that the following objective function
is minimized:

Δ(P,C) =
∑
p∈P

min
c∈C

D(p, c)

In this section, we will show that our algorithm and analysis can be easily gener-
alized and extended to dissimilarity measures that satisfy some simple properties.
We will look at some interesting examples. Due to lack of space, we just give
our main results for this section. The entire discussion could be found in the full
version of the paper.4

Theorem 3 (k-median w.r.t. Mahalanobis distance). Let 0 < ε ≤ 1/2.

There is a randomized algorithm that runs in time O(nd · 2Õ(k2/ε)) and with
probability at least 1/2, gives a (1 + ε)-approximation to the k-median objective
function w.r.t. Mahalanobis distances for any point set P ∈ Rd, |P | = n.

Theorem 4 (k-median w.r.t. μ-similar Bregman divergences). Let 0 <
μ ≤ 1 and 0 < ε ≤ 1/2. There is a randomized algorithm that runs in time

O

(
nd · 2Õ

(
k2

μ·ε
))

and with probability at least 1/2, gives a (1+ ε)-approximation

to the k-median objective function w.r.t. μ-similar Bregman divergence for any
point set P ∈ Rd, |P | = n.

References

1. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In:
ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035 (2007)

2. Ailon, N., Jaiswal, R., Monteleoni, C.: Streaming k-means approximation. In: Ad-
vances in Neural Information Processing Systems, vol. 22, pp. 10–18 (2009)

3. Aggarwal, A., Deshpande, A., Kannan, R.: Adaptive Sampling for k-Means Clus-
tering. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009. LNCS,
vol. 5687, pp. 15–28. Springer, Heidelberg (2009)

4. Broder, A., Glassman, S., Manasse, M., Zweig, G.: Syntactic clustering of the web
5. Faloutsos, C., Barber, R., Flickner, M., Hafner, J.: Efficient and effective querying

by image content. Journal of Intelligent Information Systems (1994)

4 Link for full version of the paper: http://arxiv.org/abs/1201.4206v1

http://arxiv.org/abs/1201.4206v1

24 R. Jaiswal, A. Kumar, and S. Sen

6. Deerwester, S., Dumais, S., Landauer, T., Furnas, G., Harshman, A.: Indexing by
latent semantic analysis. Journal of the American Society for Information Science
(1990)

7. Swain, M., Ballard, D.: Color indexing. International Journal of Computer Vision
(1991)

8. Dasgupta, S.: The hardness of k-means clustering. Technical Report CS2008-0916,
Department of Computer Science and Engineering. University of California San
Diego (2008)

9. Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Information
Theory 28(2), 129–137 (1982)

10. Arthur, D., Vassilvitskii, S.: How slow is the k-means method? In: Proc. 22nd
Annual Symposium on Computational Geometry, pp. 144–153 (2006)

11. Ostrovsky, R., Rabani, Y., Schulman, L.J., Swamy, C.: The effectiveness of lloyd-
type methods for the k-means problem. In: Proc. 47th IEEE FOCS, pp. 165–176
(2006)

12. Ackermann, M.R., Blömer, J.: Coresets and approximate clustering for bregman
divergences. In: ACM SIAM Symposium on Discrete Algorithms, pp. 1088–1097
(2009)

13. Chen, K.: On k-median clustering in high dimensions. In: SODA, pp. 1177–1185
(2006)

14. Feldman, D., Monemizadeh, M., Sohler, C.: A ptas for k-means clustering based
on weak coresets. In: Symposium on Computational Geometry, pp. 11–18 (2007)

15. Inaba, M., Katoh, N., Imai, H.: Applications of weighted voronoi diagrams and
randomization to variance based k-clustering. In: Proceedings of the Tenth Annual
Symposium on Computational Geometry, pp. 332–339 (1994)

16. Matousek, J.: On approximate geometric k-clustering. In: Discrete and Computa-
tional Geometry (2000)

17. Badoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In:
STOC, pp. 250–257 (2002)

18. de la Vega, W.F., Karpinski, M., Kenyon, C., Rabani, Y.: Approximation schemes
for clustering problems. In: ACM Symposium on Theory of Computing, pp. 50–58
(2003)

19. Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering. In:
ACM Symposium on Theory of Computing, pp. 291–300 (2004)

20. Kumar, A., Sabharwal, Y., Sen, S.: Linear-time approximation schemes for cluster-
ing problems in any dimensions. J. ACM 57(2) (2010)

21. Awasthi, P., Blum, A., Sheffet, O.: Stability yields a ptas for k-median and k-means
clustering. In: FOCS, pp. 309–318 (2010)

22. Har-Peled, S., Sadri, B.: How fast is the k-means method? In: ACM SIAM Sympo-
sium on Discrete Algorithms, pp. 877–885 (2005)

Speed Scaling for Maximum Lateness

Evripidis Bampis1,�, Dimitrios Letsios1,2,�,
Ioannis Milis3, and Georgios Zois1,3,��

1 LIP6, Université Pierre et Marie Curie, France
{Evripidis.Bampis,Georgios.Zois}@lip6.fr

2 IBISC, Université d’ Évry, France
dimitris.letsios@ibisc.univ-evry.fr

3 Dept. of Informatics, Athens University of Economics and Business, Greece
milis@aueb.gr

Abstract. We consider the power-aware problem of scheduling non-
preemptively a set of jobs on a single speed-scalable processor so as to
minimize the maximum lateness. We consider two variants of the prob-
lem: In the budget variant we aim in finding a schedule minimizing the
maximum lateness for a given budget of energy, while in the aggregated
variant our objective is to find a schedule minimizing a linear combi-
nation of maximum lateness and energy. We present polynomial time
algorithms for both variants of the problem without release dates and
we prove that both variants become strongly NP-hard in the presence
of arbitrary release dates. Moreover, we show that, for arbitrary release
dates, there is no O(1)-competitive online algorithm for the budget vari-
ant and we propose a 2-competitive one for the aggregated variant.

1 Introduction

We consider the problem of scheduling a set of jobs, each one associated with a
release date, a due date and an amount of work, to be executed non-preemptively
on a single speed-scalable processor in order to minimize the maximum lateness.
The lateness of a job is defined as the difference between its completion time and
its due date. In general, high processor’s speeds imply low maximum lateness at
the price of high energy consumption. Different approaches can be used in order
to find a tradeoff between these two conflicting objectives. The one considered in
the seminal paper of Yao et al. [13], consists of fixing the maximum lateness to
zero and minimizing the energy consumption. They proposed a polynomial time
algorithm for the preemptive single-processor case. Here, we study two variants of
our problem: In the budget variant, we aim in minimizing the maximum lateness
for a fixed budget of energy, while in the aggregated variant, our objective is to
minimize a linear combination of maximum lateness and energy.

� Research supported by the French Agency for Research under the DEFIS program
TODO, ANR-09-EMER-010, and by GDR du CNRS, RO.

�� Supported by the European Social Fund and Greek national resources (Program:
Heracleitus II).

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 25–36, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

26 E. Bampis et al.

Formally, we denote a set of n jobs by J = {1, 2, . . . , n}. Each job i is associ-
ated with a release date ri, a due date di and a work wi. Whenever the speed-
scalable processor runs at speed s, it consumes power P (s) = sα, where α > 2,
and it executes an amount of work w in w/s time units. Then, the consumed
energy is E = w · sα−1. For a given schedule the lateness of job i is defined as
Li = Ci−di, where Ci is the completion time of job i and the maximum lateness
is defined as Lmax = max1≤i≤n{Li}. For convenience, we adopt an equivalent
and more intuitive model where every job i is associated with a delivery time
qi = −dj + K ≥ 0, where K is a sufficiently large constant, instead of its due
date. The delivery time represents the time needed for job i to be delivered after
its completion assuming that the delivery of different jobs may take place simul-
taneously [7]. Now, the lateness of job i becomes Li = Ci + qi. Jobs that attain
the maximum lateness in a schedule are referred as critical jobs. Extending the
standard field notation of [9], the budget variant of our problem is denoted by
S1 | rj | Lmax(E), while the agregated variant is denoted by S1 | rj | Lmax+βE,
where β ≥ 0 and S1 stands for a single scalable processor.

Related Work and Our Results. As already mentioned, Yao et al. [13],
proposed a polynomial time algorithm for the preemptive single-processor energy
minimization problem and they also considered its online version.

Bunde [5] studied the budget variant of the non-preemptive makespan mini-
mization problem for the single-processor as well as the multiprocessor case with
jobs of unit work. He also proved the NP-hardness of the multiprocessor case
whenever the jobs have arbitrary works. Pruhs et al. [12] studied the budget vari-
ant of the non-preemptive multiprocessor makespan minimization problem in the
presence of precedence constraints, and proposed an approximation algorithm.
They also gave a PTAS for the case with no precedence constraints.

Albers et al. [3] studied online and offline versions of an aggregated variant of
the non-preemptive problem of minimizing the total flow time of unit work jobs
on a single-processor. The flow time of a job is defined as the difference between
its completion time and its release date. Note that Pruhs et al. [11] have studied
the offline version of the budget variant of this problem. Bansal et al. [4] proved
that there is no O(1)-competitive algorithm, for the budget variant, even if all
jobs have unit works. The interested reader may find recent reviews in [1,2,8].

Our results for the power-aware maximum lateness problem are organized as
follows. For the budget variant we propose, in Section 2, an optimal algorithm
for the non-preemptive single-processor case without release dates. We also prove
that the problem, in the presence of release dates, becomes strongly NP-hard
and it does not admit an O(1)-competitive algorithm. In Section 3, we move to
the aggregated variant, and we give an optimal algorithm for the single-processor
problem without release dates and a strongly NP-hardness proof for arbitrary
release dates. Moreover, we propose a 2-competitive algorithm for the online
case.

Speed Scaling for Maximum Lateness 27

2 Budget Variant

In this section we present a polynomial algorithm for the S1 | | Lmax(E) prob-
lem. Our algorithm is based on a number of structural properties of an optimal
schedule deduced by formulating our problem as a convex program and apply-
ing the KKT (Karush, Kuhn, Tucker) conditions. Next, we consider the same
problem with release dates, i.e., S1 | rj | Lmax(E), and we prove that it be-
comes strongly NP-hard. Moreover, we show that there is no O(1)-competitive
algorithm for its online version.

2.1 The Problem without Release Dates

A Convex Programming Formulation. A convex programming formulation
of our problem stems from two basic properties of an optimal schedule. First,
because of the convexity of the speed to power function, each job i runs at a
constant speed si. Second, jobs are scheduled according to the EDD (Earliest
Due Date First) rule, or equivalently in non-increasing order of their delivery
times; this can be easily shown by a standard exchange argument. Hence, we
propose the following formulation where all jobs are considered to be released at
time zero and numbered according to the EDD order:

minL

Ci + qi ≤ L 1 ≤ i ≤ n (1)
w1

s1
≤ C1 (2)

Ci−1 +
wi

si
≤ Ci 2 ≤ i ≤ n (3)

n∑
i=1

wis
α−1
i ≤ E (4)

L,Ci, si ≥ 0 1 ≤ i ≤ n (5)

Our objective is to minimize the maximum lateness, L, among all feasible sched-
ules. Constraints (1) ensure that the lateness of each job is at most L, constraints
(2) and (3) enforce the jobs to be scheduled according to the EDD rule in non-
overlapping time intervals, constraint (4) does not allow to exceed the given
energy budget E and constraints (5) ensure that the maximum lateness, the
completion times and the speeds of jobs are non-negative. Constraint (4), for
α > 2, is convex while all other constraints and the objective function are linear.

This convex program already implies a polynomial algorithm for our problem,
as convex programs can be solved to arbitrary precision by the Ellipsoid algo-
rithm [10]. Since the Ellipsoid algorithm is rather impractical, we will exploit
this convex program to derive a fast combinatorial algorithm.

28 E. Bampis et al.

Properties of an Optimal Schedule. In what follows we deduce a number
of structural properties of an optimal schedule by applying the KKT conditions
to the above convex program. Note that these properties can be also derived
through exchange arguments based on the convexity of the speed to power func-
tion. We associate to each set of constraints from (1) up to (4), dual variables
βi, γ1, γi, δ, respectively. W.l.o.g. the variables L,Ci and si are positive and, by
the complementary slackness conditions, the dual variables associated to the
constraints (5) are equal to zero.

Proposition 1. By the KKT conditions, the following hold for the primal and
dual variables of the above convex program:∑n

i=1 βi = 1 (6) βi(Ci + qi − L) = 0, 1 ≤ i ≤ n (10)

βi = γi − γi+1, 1 ≤ i ≤ n− 1 (7) γ1(
w1

s1
− C1) = 0 (11)

βn = γn (8) γi(Ci−1 +
wi

si
− Ci) = 0, 2 ≤ i ≤ n (12)

(α− 1)δ = γi

sαi
(9) δ

(∑n
i=1 wis

α−1
i − E

)
= 0 (13)

Proof. Stationarity conditions give that

∇L+
n∑

i=1

βi∇(Ci + qi − L) + γ1∇(
w1

s1
− C1)

+

n∑
i=2

γi∇(Ci−1 +
wi

si
− Ci) + δ∇(

n∑
i=1

wis
a−1
i − E) = 0 ⇒

(1−
n∑

i=1

βi)∇L +

n−1∑
i=1

(βi − γi + γi+1)∇Ci

+(βn − γn)∇Cn +

n∑
i=1

(−γiwis
−2
i + (a− 1)δwis

a−2
i)∇si = 0

which implies the equations (6)-(9). The equations (10)-(13), follow by the com-
plementary slackness conditions applied to constraints (1)-(4).

Proposition 1 leads to a number of structural properties of an optimal schedule,
which are summarized in the following lemma.

Lemma 1. For the maximum lateness problem with an energy budget E, there
is always an optimal schedule that satisfies all the following properties.
(i) Each job i runs at a constant speed si.
(ii) Jobs are scheduled according to the EDD rule.
(iii) There are no idle periods in the schedule.
(iv) The last job is critical, i.e., Ln = Lmax.
(v) Every non-critical job i has equal speed with the job i+ 1, i.e., si = si+1.

Speed Scaling for Maximum Lateness 29

(vi) Jobs are executed in non-increasing speeds, i.e., si ≥ si+1.
(vii) All the energy budget is consumed.

Proof. (i)-(ii) They have been already discussed above.
(iii) First, note that δ 	= 0. If δ = 0 then by (9), we get that γi = 0 for each

1 ≤ i ≤ n. This, combined with (7) and (8) yields that
∑n

i=1 βi = 0, which is
a contradiction because of (6). Since δ 	= 0, we get by (9) that γi 	= 0 for each
1 ≤ i ≤ n. Then, equations (11) and (12) give that there is no idle time in any
optimal schedule since C1 = w1

s1
and Ci = Ci−1 +

wi

si
, for 2 ≤ i ≤ n, respectively.

(iv) Since δ 	= 0, by (9), it follows that γn 	= 0 and finally, because of (8),
βn 	= 0. So, the last job to finish is always a critical job, by (10).

(v) Note that for every non-critical job i, it holds that Ci + qi < L and
(10) implies that βi = 0 for every such job. Hence, if a job i is non-critical
βi = 0 ⇒ γi = γi+1 ⇒ si = si+1, by (7) and (9), respectively.

(vi) By the dual feasibility conditions and the equations (7) and (9) we get,
respectively, that βi ≥ 0 ⇒ γi ≥ γi+1 ⇒ si ≥ si+1. Thus, the jobs are executed
with non-increasing speeds.

(vii) If the energy budget is not entirely consumed, then by (13), δ = 0, which
is a contradiction, since, as we have already proved, δ 	= 0.

We refer to any schedule satisfying the properties of Lemma 1 as a regular
schedule. By (i, j) we denote a sequence of consecutive jobs i, i + 1, . . . , j. Any
regular schedule can be partitioned into groups of jobs, of the form (i, j), where
the jobs i − 1 and j are critical and the jobs i, i + 1, . . . , j − 1 are not. By
Lemma 1(v), all jobs of such a group are executed at the same speed. We denote
this common speed by sj and the total amount of work of jobs in (i, j) by

w(i, j) =
∑j

k=i wk. Then, the next proposition follows easily from Lemma 1.

Proposition 2. Let i, j, be two consecutive critical jobs of a regular schedule.

The speed of each job in the group (i+ 1, j) equals to sj =
w(i+1,j)
qi−qj

.

Up to this point, we have shown that there exists a regular schedule which
is optimal. By the next lemma, these properties are also proved sufficient for
optimality as, in fact, there is a unique regular schedule.

Lemma 2. For a given budget of energy, there exists a unique regular schedule
for the S1 | | Lmax(E) problem.

An Optimal Combinatorial Algorithm. So far, we have derived a clear im-
age of the structure of the unique regular optimal schedule for the S1 | | Lmax(E)
problem. Next, we propose Algorithm BUD which constructs this schedule in
polynomial time. Note that a regular schedule is fully specified by the speeds of
the jobs. The rough idea of our algorithm is the following: First, it constructs a
preliminary schedule by finding groups of jobs running in non-increasing speeds
without taking care of the energy consumption. Second, the algorithm manages
the energy consumption w.r.t. the energy budget E and determines the final

30 E. Bampis et al.

speeds of all jobs. Let E′ be the energy consumption of the current schedule at
any point of the execution of the algorithm.

Algorithm BUD starts from job n which is always a critical job and considers
all jobs, but the first, in reverse order (note that Proposition 2 does not apply for
the first job). When a job i, 2 ≤ i ≤ n, is considered for the first time, its speed
si is set according to Proposition 2, assuming that jobs i− 1 and i are critical.
If si ≥ sj , for i+ 1 ≤ j ≤ n, then si is called eligible speed and it is assigned to
job i. If this speed is not eligible, i is a non-critical job and it is merged with the
(i+1)’s group. More specifically, if c is the last job of this group, then the speeds
of jobs i, i+1, . . . , c are calculated by applying Proposition 2, assuming that i−1
and c are critical while i, i+ 1, . . . , c− 1 are not. Next, the algorithm examines
whether the new value of si is eligible. If this is the case, then it considers the
job i− 1. Otherwise, a further merging, of the i’s group with the (c+1)’s group,
is performed, as before. That is, if c′ is the last job of the (c+1)’s group, all jobs
i, i + 1, . . . , c′ are assigned the same speed assuming that jobs i − 1 and c′ are
critical, while i, i+1, . . . , c′−1 are not. This speed, according to the Proposition

2, is equal to s(i, c′) = w(i,c′)
qi−1−qc′

. Note that the job c is no longer critical in this

case. This merging procedure is repeated until job i is assigned an eligible speed.
In a degenerate case, jobs i, i + 1, . . . , n are merged into one group. When the
algorithm has assigned an eligible speed to all jobs 2, 3, . . . , n, it sets s1 = s2
and its first part completes.

Next, Algorithm BUD takes into account the available budget of energy E.
If E − E′ ≥ 0, the current schedule’s energy consumption does not exceed the
budget of energy, and the surplus E −E′ is assigned to the first job. Otherwise,
the current schedule is regular, except that it consumes an amount of energy
greater than E. Then, the algorithm reduces the consumed energy until it be-
comes equal to E. In fact, it decreases the speed of the first group, by merging
groups with the first one if necessary. This merging procedure is different from
the one of the first part of the algorithm and it is as follows: let i be the crit-
ical job of maximal index with si = s1 in the current schedule. Observe that
si > si+1. The algorithm sets the speed of jobs 1, 2, . . . , i equal to si+1. This
causes a reduction to E′ and there are two cases to distinguish: either E′ ≤ E or
E′ > E. In the first case, the algorithm adds an amount of energy E−E′ to jobs
1, 2, . . . , i by increasing their speeds uniformly, i.e. so that they are all executed
with the same speed. In the second case, at least one further merging step has
to be performed. When the algorithm terminates, it is obvious that E′ = E.

Theorem 1. Algorithm BUD is optimal for the S1 | | Lmax(E) problem.

Proof. We shall prove that the algorithm satisfies the properties of Lemma 1,
i.e., it produces a regular schedule. For convenience, we distinguish two parts in
the algorithm: Part I, corresponding to lines 1-6 and Part II, corresponding to
lines 7-16, respectively.

Property (i)-(ii): The algorithm gives a single constant speed to each job and
keeps their initial EDD order.

Property (iii): In Part I, the speeds of jobs are assigned according to Propo-
sition 2. Specifically, the algorithm fixes two consecutive critical jobs i and j,

Speed Scaling for Maximum Lateness 31

Algorithm 1. BUD

1: Sort the jobs according to the EDD order.
2: for i = n to 2 do
3: Set si assuming that i and i− 1 are critical.
4: while si is not eligible do
5: Merge the i’s group with the next group.
6: Set s1 = s2
7: Let E′ be the current energy consumption.
8: if E > E′ then
9: Assign energy E − E′ to job 1.
10: else
11: while E < E′ do
12: Set the speed of the first group equal to the speed of the following group.
13: Update E′.
14: if E < E′ then
15: Merge the first group with the next one.
16: Assign E − E′ energy uniformly to the first group.

i < j, with, potentially, some non-critical jobs between them. Then the speed of
the non-critical jobs and the one of critical job j is defined such that there is no
idle between the jobs. In Part II, no idle period is added between any jobs.

Property (iv) - (v): When the speed of job n is initialized, this is done by
assuming that it is critical. Next, consider the current schedule just after the
completion of Part I. This schedule can be partitioned into sequences of jobs, a+
1, a+2, . . . , b, with a ≥ 1, such that the jobs of each sequence are executed with
the same speed which has been assigned by applying Proposition 2, assuming
that the jobs a and b are critical. In fact, jobs a and b attain equal lateness. In
order for such a sequence to be a group, we should also prove that all but the
last jobs are non-critical while the last job is critical.

Let a + 1, a + 2, . . . , b be a sequence of jobs. We claim that Li < Lb, for
a + 1 ≤ i ≤ b − 1. Assume, by contradiction, that there exists a job j, where
a+1 ≤ j ≤ b−1, such that Lj ≥ Lb, or equivalently, qj − qb ≥

∑b
i=j+1

wi

sb
. Since

the last job of a sequence attains equal lateness with the last job of the sequence
that follows, we have that La = Lb. This yields that qa − qb =

∑b
i=a+1

wi

sb
.

Therefore, qa − qj ≤
∑j

i=a+1
wi

sb
.

Obviously, for any job i, a+1 ≤ i ≤ b− 1, we must have a speed si >
wi

qi−1−qi
,

since otherwise, it wouldn’t have been merged with another group. That is,
qi−1 − qi > wi

si
. If we sum the last inequalities for a + 1 ≤ i ≤ j, we get that

qa − qj >
∑j

i=a+1
wi

sb
, a contradiction.

At this point, we have showed that when Part I completes, if a job i, 2 ≤ i ≤ n,
is critical, then it must be the right extremity of a sequence. Moreover, among
all jobs 2, 3, . . . , n, the last jobs of all sequences, including job n, attain equal
lateness and the remaining jobs attain smaller lateness. In addition, job 1 attains
equal lateness with the last job of the sequence that follows. Recall that, at this
point, we set s1 = s2. Job 1 would have equal lateness with the last job of the

32 E. Bampis et al.

sequence that follows for any s1 > 0 since the speed of the second group is set
by applying Proposition 2, assuming that 1 is critical. So, at the end of Part I,
job 1, job n and every last job of a sequence are critical. Therefore, after Part I
finishes, Properties (iv) and (v) hold.

In Part II, if no merging step is performed, then the processing time of job 1
is decreased by some t ≥ 0 and its lateness decreases by t, while the processing
times and speeds of the other jobs are not modified. So, the lateness of every
other job also decreases by t. Hence, the Properties (iv) and (v) hold.

If at least one merging step is performed, then the speed of the jobs in the
first group decreases and their processing time increases. Then, in the first group,
every non-critical job i has equal speed with the job i+1 that follows, while the
speeds of the jobs in other groups remain unchanged. Now, let ti be the total
increase in the processing time of job i, 1 ≤ i ≤ n. Note that this quantity is
positive only for jobs belonging to the first group of the current schedule. Then,
the lateness of any job i, 1 ≤ i ≤ n, increases by

∑i
j=1 tj ; if c1 is the critical job

of the first group, it remains critical after the merging step since its lateness and
the lateness of every other job that follows, increases by the same quantity, equal
to
∑c1

j=1 tj . Note, that if a further merging step is performed, we consider the
first two groups as one group. Moreover, the lateness of any job increases by no
more than the increase of the lateness of job n, and thus, in the final schedule,
job n remains critical and Property (iv) holds. Furthermore, each non-critical
job has equal speed with the job that follows and Property (v) holds as well.

Property (vi): At the end of Part I, the speeds of jobs are non-increasing since
otherwise, a merging step would be performed. Moreover, during Part II, no
speed of a job becomes less than the speed of a subsequent job.

Property (vii): Recall that E′ is the total energy consumed when Part I com-
pletes. If E′ is less than the energy budget, then the energy of the first job
increases until the schedule consumes exactly E units of energy, while if E′ is
greater than the energy budget E, then the energy consumption of the schedule
is gradually decreased until it becomes equal to E.

Let us now consider the complexity of the algorithm. Initially, jobs are sorted
according to the EDD rule in O(n logn) time. The first part of the algorithm
may take O(n2) time since each merging step takes O(n) time and there can be
O(n) merging steps. Also, the algorithm’s second part takes O(n2) time since
the speed of each job may change at most O(n) times. Therefore, the overall
complexity of the algorithm is O(n2). Using a more careful analysis, based on
the use of a stack data structure, it can be shown that the algorithm may be
implemented in O(n log n) time.

2.2 The Problem with Release Dates

We now consider the S1 | rj | Lmax(E) problem where the jobs have arbitrary
release dates and we show that it becomes strongly NP-hard.

The NP-hardness of S1 | rj | Lmax(E) is established through a reduction
from the 3-PARTITION problem which is known to be strongly NP-hard [6].
Our reduction is inspired by the NP-hardness proof for the classical 1 | rj | Lmax

Speed Scaling for Maximum Lateness 33

problem [6]. In the latter problem, we are given a set of jobs where each job i
has a release date ri, a due date di, a processing time pi and we seek a schedule
minimizing the maximum lateness. This problem can be viewed as a variant of
our problem where the speed of each job is part of the instance. Specifically, we
consider that each job i has an amount of work wi = pi and it is executed at a
constant speed si = 1. Based on this idea, we extend the existing NP-hardness
reduction by fixing an energy budget, so that all jobs have to be executed at the
same speed si = 1 in order to get a feasible schedule.

Theorem 2. S1 | rj | Lmax(E) problem is strongly NP-hard.

Let us now turn our attention to the online version of the S1 | rj | Lmax(E)
problem. Bansal et al. [4] gave an adversarial strategy for proving that there
is no O(1)-competitive algorithm for the problem of minimizing the total flow
of a set of unit work jobs on a single speed-scalable processor. Following the
same strategy it can be proved that the makespan minimization problem, for a
given budget of energy, i.e., S1 | rj , wj = 1| Cmax(E), does not admit an O(1)-
competitive algorithm. As the latter problem is a special case of our lateness
problem (with qi = 0, 1 ≤ i ≤ n), the next theorem follows.

Theorem 3. There is no O(1)-competitive algorithm for the online version of
the S1 | rj | Lmax(E) problem, even when jobs have unit works.

3 Aggregated Variant

In this section we deal with the aggregated variant of the maximum lateness
problem, where the objective is the minimization of a linear combination of
maximum lateness and energy, i.e., Lmax + βE, where β ≥ 0. In the case with
no release dates, we present an optimal combinatorial algorithm. When the jobs
are subject to release dates, we prove that the offline problem becomes strongly
NP-hard and we present a 2-competitive algorithm for its online version.

3.1 The Problem with No Release Dates

In order to derive an optimal algorithm for the S1 | | Lmax + βE problem, we
follow the same line as for the budget variant: by formulating the problem as
a convex program and applying the KKT conditions, the Properties (i)-(vi) of
Lemma 1 will also hold while Property (vii) is replaced by “(vii) The job executed

first runs at speed s1 = (1
(α−1)β)

1
α ”. Moreover, there is again a unique regular

schedule and both the optimal algorithm and its analysis for the aggregated
variant become simpler than those of the budget variant.

Description of the Algorithm. It can be shown that the regular schedule
σopt for the S1 | | Lmax+βE problem attains the same maximum lateness as the

schedule σc, that executes all jobs at the same a constant speed s = (1
(α−1)β)

1
α .

34 E. Bampis et al.

Algorithm 2. LAGER

1: Order jobs according to the EDD order.

2: Assign to each job the speed (1
(α−1)β

)
1
α .

3: Let k be the highest-index critical job in the current schedule.
4: while k < n do
5: for i = k to n do
6: Compute vi assuming that k and i are consecutive critical jobs.
7: Set the speed of jobs k, k + 1, . . . , n equal to vmax = maxk≤i≤n{vi}.
8: Let � be the highest-index critical job in the current schedule.
9: k = �

This observation implies that if i is the highest-index critical job in σc, then, by
Properties (v) and (vi), all jobs 1, 2, . . . , i are executed at this speed s in σopt.
Based on this fact, we proceed to the description of our algorithm.

In the first step, the algorithm assigns to every job i a speed si equal to
(1
(α−1)β)

1
α . In this way, we identify the value of the maximum lateness and the

set of jobs executed with speed (1
(α−1)β)

1
α in the optimal schedule. This can be

done by determining the highest-index critical job k in σc. All jobs 1, 2, . . . , k
are executed with speed (1

(α−1)β)
1
α in σopt. Moreover, all jobs with index greater

than k have lateness strictly less than the maximum lateness of the optimal
schedule. Therefore, we can decrease their speeds in order to reduce their energy
consumption without affecting the maximum lateness of the schedule. This is
done as follows: At the beginning, the algorithm has already assigned a speed to
jobs 1, 2, . . . , k. For each job i, k + 1 ≤ i ≤ n, the algorithm defines a candidate
speed of i, which we denote vi. This speed is such that job i becomes critical given
that k is critical and all jobs k + 1, k + 2, . . . , i are executed at the same speed.
By Proposition 2, vi =

1
qk−qi

∑i
j=k+1 wj . Then, among the candidate speeds, we

choose the maximum one vmax = maxi{vi} and let � be the job with the highest
index, with vl = vmax. We set the speed of jobs k + 1, k + 2, . . . , � equal to v�.
Then, we set k = � to be the highest index critical job in the current schedule
and we proceed to the next step. The algorithm terminates when job n becomes
critical. The optimality of the algorithm follows by induction on the number of
its steps and its complexity is O(n2), since each iteration of the while loop takes
time at most O(n).

3.2 The Problem with Release Dates

When jobs have arbitrary release dates, then the problem becomes strongly
NP-hard, as for the budget variant. The reduction is again inspired by the NP-
hardness proof for the classical 1 | rj | Lmax [6] and uses a lower bound on the
objective of any optimal schedule.

Speed Scaling for Maximum Lateness 35

The Online Case. Let us now present a 2-competitive online algorithm for
the S1 | rj | Lmax+ βE problem. The algorithm schedules the jobs in a number
of phases by repeatedly applying the optimal offline algorithm LAGER for the
S1 | | Lmax + βE problem. We denote by σ∗(J, t) the optimal schedule of a set
of jobs J with a common release date t.

Algorithm ALE. Let J0 be the set of jobs that arrive at time t0 = 0. In phase
0, jobs in J0 are scheduled according to σ∗(J0, 0). Let t1 be the time at which
the last job of J0 is finished, i.e., the end of phase 0, and J1 be the set of jobs
released during (t0, t1]. In phase 1, jobs in J1 are scheduled as in σ∗(J1, t1) and
so on. In general, if ti is the end of phase i − 1, we denote Ji to be the set of
jobs released during (ti−1, ti]. Jobs in Ji are scheduled by computing σ∗(Ji, ti).
Next, we analyze the competitive ratio of the algorithm.

Theorem 4. Algorithm ALE is 2-competitive for the online version of the S1
| rj | Lmax + βE problem.

Proof. Assume that Algorithm ALE produces a schedule in �+1 phases. Recall
that the jobs of the i-th phase, i.e., the jobs in Ji, are released during (ti−1, ti]
and scheduled as in σ∗(Ji, ti). Let Lmax,i + βEi be the cost of σ∗(Ji, ti), where
Lmax,i is the maximum lateness among the jobs in Ji and Ei be the energy
consumed by the jobs of Ji. The objective value of the algorithm’s schedule is

SOL = max
0≤i≤�

{Lmax,i}+ β
�∑

i=0

Ei (14)

Now, we consider the optimal schedule. To lower bound the objective value OPT
of an optimal schedule, we round down the release dates of the jobs; the release
dates of the jobs in phase i, are rounded down to ti−1. Let σ∗

d and OPTd be
the optimal schedule for the rounded instance and its cost, respectively. Clearly,
any feasible schedule for the initial instance is also feasible for the rounded one.
Thus, OPT ≥ OPTd.

To lower bound OPTd we consider a restricted speed-scaling scheduling prob-
lem, i.e., a problem where each job can only be executed by a subset of the
available processors. The instance of this problem consists of � + 1 available
speed-scalable processors M0,M1, . . . ,M� and the set of jobs J , with their re-
lease dates rounded down, as before. Jobs in J0 can only be assigned to the
processor M0 and every job in Ji can only be executed by one of the processors
M0 or Mi, 1 ≤ i ≤ �. Moreover, it is required that all jobs in Ji, 0 ≤ i ≤ �, are
executed by the same processor. Let σ∗

m, OPTm be the optimal schedule and its
cost, respectively, for this restricted problem. Obviously, OPTd ≥ OPTm since
σ∗
d is feasible for the restricted scheduling problem.
Let us now describe an optimal schedule σ∗

m. Through a simple exchange
argument, it can be shown that the jobs of Ji, 0 ≤ i ≤ �, in an optimal schedule,
are executed by the processor Mi. Moreover, jobs in Ji, for 1 ≤ i ≤ �, are
scheduled according to σ∗(Ji, ti−1), while for i = 0, according to σ∗(J0, t0).

36 E. Bampis et al.

Assume that the maximum lateness of the above schedule, is attained by a job of
the set Jk, 0 ≤ k ≤ �, in the processor Mk. So, let L

∗
max = L∗

max,k, where L
∗
max,

L∗
max,k is the maximum lateness of the schedules σ∗

m, σ∗(Ji, ti−1), respectively.
Let E∗

i be the energy consumption of schedule σ∗(Ji, ti−1). Then,

OPTm = L∗
max,k + β

�∑
i=0

E∗
i (15)

By considering the schedules σ∗(Ji, ti−1) and σ∗(Ji, ti), it can be easily shown
that L∗

max,i = Lmax,i− (ti− ti−1) and E∗
i = Ei. Then, by (14) and (15) it yields

that OPTm = SOL − (tk − tk−1). Note that tk − tk−1 is the total processing
time of the jobs in Jk−1, in the schedule produced by ALE, which is equal to the
processing time of the jobs in Jk−1 in σ∗

m. Recall also that the last job of each set
Ji attains Lmax,i. Thus, tk−tk−1 ≤ L∗

max,k−1 ≤ OPT . Therefore, SOL ≤ 2OPT
and Algorithm ALE is 2-competitive for the S1 | rj | Lmax + βE problem.

References

1. Albers, S.: Energy-efficient algorithms. Communications of ACM 53(5), 86–96
(2010)

2. Albers, S.: Algorithms for dynamic speed scaling. In: Symposium on Theoretical
Aspects of Computer Science, pp. 1–11 (2011)

3. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization.
ACM Transactions on Algorithms 3(4), 49 (2007)

4. Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. SIAM Jour-
nal on Computing 39(4), 1294–1308 (2009)

5. Bunde, D.P.: Power-aware scheduling for makespan and flow. Journal of Schedul-
ing 12(5), 489–500 (2009)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP -Completeness. W.H. Freeman and Company, New York (1979)

7. Hall, L.A.: Approximation algorithms for scheduling. In: Hochbaum, D.S. (ed.)
Approximation Algorithms for NP-hard problems, pp. 1–45. PWS, Boston (1997)

8. Irani, S., Pruhs, K.: Algorithmic problems in power management. SIGACT
News 36(2), 63–76 (2005)

9. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and
scheduling: algorithms and complexity. In: Handbooks in Operations Research and
Management Science, vol. 4, pp. 445–522, North Holland (1976)

10. Nemirovski, A., Nesterov, I., Nesterov, Y.: Interior Point Polynomial Algorithms
in Convex Programming. Society for Industrial and Applied Mathematics (1994)

11. Pruhs, K., Uthaisombut, P., Woeginger, G.J.: Getting the best response for your
erg. ACM Transactions on Algorithms 4 (2008)

12. Pruhs, K., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence
constraints. Theory of Computing Systems 43, 67–80 (2008)

13. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced cpu energy.
In: IEEE Symposium on Foundations of Computer Science, pp. 374–382 (1995)

Induced Subgraph Isomorphism: Are Some

Patterns Substantially Easier Than Others?

Peter Floderus1, Miros�law Kowaluk2,�, Andrzej Lingas3,��,
and Eva-Marta Lundell3

1 The Centre for Mathematical Sciences, Lund University, 22100 Lund, Sweden
Peter.Floderus@maths.lth.se

2 Institute of Informatics, Warsaw University, Warsaw, Poland
kowaluk@mimuw.edu.pl

3 Department of Computer Science, Lund University, 22100 Lund, Sweden
{Andrzej.Lingas,Eva-Marta.Lundell}@cs.lth.se

Abstract. The complexity of the subgraph isomorphism problem where
the pattern graph is of fixed size is well known to depend on the topol-
ogy of the pattern graph. For instance, the larger the maximum indepen-
dent set of the pattern graph is the more efficient algorithms are known.
The situation seems to be substantially different in the case of induced
subgraph isomorphism for pattern graphs of fixed size. We present two
results which provide evidence that no topology of an induced subgraph
of fixed size can be easier to detect or count than an independent set of
related size. We show that:

– Any fixed pattern graph that has a maximum independent set of
size k that is disjoint from other maximum independent sets is not
easier to detect as an induced subgraph than an independent set of
size k. It follows in particular that an induced path on k vertices
is not easier to detect than an independent set on 	k/2
 vertices,
and that an induced even cycle on k vertices is not easier to detect
than an independent set on k/2 vertices. In view of linear time upper
bounds on induced paths of length three and four, our lower bound is
tight. Similar corollaries hold for the detection of induced complete
bipartite graphs and induced complete split graphs.

– For an arbitrary pattern graph H on k vertices with no isolated
vertices, there is a simple subdivision of H , resulting from splitting
each edge into a path of length four and attaching a distinct path of
length three at each vertex of degree one, that is not easier to detect
or count than an independent set on k vertices, respectively.

Finally, we show that the so called diamond, paw and C4 are not easier to
detect as induced subgraphs than an independent set on three vertices.

� Research supported by the grant no. \ N206 566740 of the National Science Center.
�� Research supported in part by Swedish Research Council grant 621-2008-4649.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 37–48, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

38 P. Floderus et al.

1 Introduction

The induced subgraph isomorphism problem is to detect if a host graph has an
induced subgraph that is isomorphic to a pattern graph. Its counting variant asks
for the number of induced subgraphs of the host graph isomorphic to the pattern
graph. The well known independent set and clique problems are special cases
of the induced subgraph isomorphism problem which consequently is generally
NP-complete [8]. When the pattern graph is of fixed size, induced subgraph
isomorphism can be solved in polynomial time even by exhaustive search.

In the literature, there are only a few examples of pattern graphs of fixed
size k for which the induced subgraph isomorphism admits lower asymptotic
time upper bound in terms of the number of vertices of the host graph than
those known for the k-clique problem (for general host graphs). The oldest and
most striking example is P4, a path on four vertices, which can be detected
in O(n + m) time, where n, m stand for the number of vertices and edges in
the host graph [4]. The other is P3, the path on three vertices which can be
detected in O(n +m) time [17], the third example is the diamond, obtained by
removing a single edge from K4, which can be detected in O(n+m3/2) time [6]
(cf. [12]). The fourth example is a paw which is a triangle connected to the fourth
vertex by an edge, i.e., K3 + e. It can be detected in O(n2.376) time (In fact, by
considering the complement graph, the analogous bounds hold for the pattern
graphs consisting of two adjacent vertices and one or two isolated vertices, or
two incident edges and one isolated vertex, respectively.) In comparison, K3 and
K4 can be detected and counted in O(n2.376) time [11] and O(n3.334) time [6],
respectively. Interestingly, such a gap between the time upper bounds for P4 and
K4, for P3 and K3, and for the diamond and K4, respectively, is not possible in
the counting variant by [12,13].

In the extreme case, when the pattern graph is a set of k isolated vertices, the
induced subgraph isomorphism is equally hard as the k-clique problem if the time
complexity is a function of the number of vertices. (This is in sharp contrast with
the general subgraph isomorphism problem which for the aforementioned pattern
becomes trivial.) Therefore, we can naturally pose the following conjecture:
There exists a constant C such that the time complexity of the problems of de-
tecting (counting) the induced subgraphs isomorphic to a given k-vertex pattern
graph in an n-vertex host graph is lower bounded by that of detecting (counting)
the induced subgraphs of an n-vertex graph isomorphic to an independent set on
k/C vertices.
In the counting variant, one could strongly conjecture C = 1 while in the detec-
tion variant the smallest value of C that one could conjecture is 2 in view of the
result on P4 [4].

By time complexity in the conjecture and throughout the paper, we mean
the worst-case asymptotic time complexity in terms of the number n of vertices
in the host graph under the assumption that the size of pattern graph is fixed.
This allows for reductions of fixed independent set problems to induced fixed
subgraph problems which are linear with respect to the number of vertices but

Induced Subgraph Isomorphism 39

not necessarily preserve graph sparsity so their time complexity can be even
quadratic in the number of vertices.

Importantly, we assume arbitrary host graphs in the conjecture. Otherwise,
one can easily come up with examples of classes of host graphs for which the
topology of the pattern graph on k vertices affects the complexity of induced
subgraph isomorphism. E.g., counting independent sets of size k for k ≥ 5 in a
planar graph does not seem to be an easy task while counting occurrences of Kk

for k ≥ 5 in a planar graph is trivial.
A related conjecture would be to claim that the hardness of induced subgraph

isomorphism depends on the maximum sizes of an independent set and a clique
in the pattern graph.

In the context of our conjecture, let us recall that the problems of detecting
an independent set on k vertices and detecting a clique on k vertices in a host
graph on n vertices are known to be W[1]-hard in the theory of parametrized
complexity and believed to require nΩ(k) time [5].

Known Results Supporting the Conjecture. Already in 1985, Nes̆etr̆il and
Poljak showed in [14] that the detection and counting versions of the induced
subgraph isomorphism with fixed pattern graph on k vertices are easily reducible
to the corresponding versions of the k-clique problem (or, equivalently, the k-
independent set problem) in O(kn2) time, where n is the number of vertices of
the host graph.

More recently, Chen and Flum [1] adapted the reduction of log clique to log
chordless path due to Papadimitriou and Yannakakis [16] to show that detecting
an induced path of length 4k − 1 is not easier than (i.e., its time complexity
is lower bounded by that of) detecting an independent set on k vertices. They
also showed that an induced cycle on 4k, C4k, is not easier to detect than an
independent set on k vertices. A stronger result for C5 showing that it is not
easier to detect than K3 (equivalently, 3K1) is a folklore. Also, it is easy to
observe that the claw on four vertices, i.e., a graph consisting of three edges all
sharing the same vertex, is not easier to detect than K3.

In [12], Kloks, Kratsch and Müller showed that in the induced case if the
occurrences of some pattern graph on 4 vertices can be counted in T (n) time
then the occurrences of any other pattern graph on 4 vertices can be counted
in O(nω + T (n)) time, where ω is the exponent of fast matrix multiplication
known to be not greater than 2.376 [3]. Recently, Kowaluk et al. generalized
the aforementioned result in [13] by showing that the knowledge of the number
of occurrences of any pattern graph on k vertices as an induced subgraph is
sufficient to compute the number of occurrences of any other pattern graph
on k vertices both as induced and non-necessarily induced subgraph in time
O(nω(�(k−2)/2	,1,
(k−2)/2�)), where ω(p, q, r) is the exponent of fast arithmetic
matrix multiplication of an np × nq matrix by an nq × nr matrix [2,10].

The aforementioned generalization is interesting solely for fairly small k in
view of the following fact: the detection and counting versions of the induced
subgraph isomorphism problem for k-vertex pattern graphs can be solved in time
O(nω(
k/3�,�(k−1)/3	,�k/3) [6] (cf. [12,14]).

40 P. Floderus et al.

Table 1. Known upper time bounds for detecting induced subgraphs on 4 vertices in
an undirected, unweighted graph on n vertices and m edges. The complement pattern
graphs are given in parentheses.

subgraph time complexity reference

K4 (4K1) O(n3.334) (O(m1.682)) Eisenbrand-Grandoni [6]

K4 \ e (K2 + 2K1) O(m3/2) Eisenbrand-Grandoni [6]

C4 (2K2) O(n3.334) Eisenbrand-Grandoni [6]

K3 + e (P3 +K1) O(nω) Olariu [15]

K1,3 (K3 +K1) O(m(ω+1)/2) Kloks et al. [12]
O(n3.334) Eisenbrand-Grandoni [6]

P4 (P4) O(n+m) Corneil et al. [4]

Examples of Surprisingly Fast Algorithms for Fixed Size Induced Sub-
graph Isomorphism. The most striking result is clearly that on detection of
induced P4 in O(n+m) time [4].

The aforementioned O(n + m)-time algorithm for the detection of induced
P3 [17] and O(n + m3/2)-time algorithm for the detection of induced diamond
have been generalized to an O(n + m(k−1)/2)-time algorithm for the detection
of induced Kk with a single missing edge, denoted by Kk \ e, by Vassilevska in
[17]. Observe that P3 and the diamond can be denoted as K3 \ e and K4 \ e,
respectively. By considering the complement graph, we obtain also an analogous
time bound O(nk−1) for the detection of the pattern graph consisting of a pair
of adjacent vertices and k− 2 isolated vertices, denoted by K2 +(k− 2)K1. The
generalized upper bound O(nk−1) for Kk \ e and K2 + (k − 2)K1 is however
subsumed for k > 5 by that universal upper bound O(nω(
k/3�,�(k−1)/3	,�k/3) [6]
valid for all pattern graphs on k vertices.

Furthermore, in a recent manuscript [9], the authors claim an analogous O(n+
m(k−1)/2)-time bound for the problem of detection of induced path on k vertices,
Pk.

Our Contributions. We present two main results on the hardness (i.e., the
time complexity) of detecting and counting induced subgraphs of fixed size.

For detection, we provide a substantially more general and stronger result
than those on chordless induced path and cycle from [1].

We show that any fixed pattern graph with a maximum independent set of
size k that is disjoint from other maximum independent sets is not easier to
detect as an induced subgraph than an independent set of size k. It follows in
particular that an induced path on k vertices is not easier to detect than an
independent set on �k/2 vertices and that an induced even cycle on k vertices
is not easier to detect than an independent set on k/2 vertices. In view of the
aforementioned results on P3 and P4 our lower bound is tight. We can also
conclude that an induced complete bipartite graph Kp,q is not easier to detect
than an independent set on max{p, q} vertices. A similar corollary holds for
complete split graphs.

Induced Subgraph Isomorphism 41

Our second main result is concerned with both detection and counting. It
can be regarded as a generalization of the aforementioned results on chordless
induced path and cycle [1], basically showing that no pattern topology is easier
to detect or count.

For an arbitrary pattern graph H on k vertices with no isolated vertices, let
H ′ be the subdivision of H obtained from H by splitting each edge into a path of
length four and attaching a distinct path of length three at each vertex of degree
one. We show that H ′ is not easier to detect or count than an independent set
on k vertices, respectively.

Finally, we show that the diamond, paw and C4 are not easier to detect as
induced subgraphs than an independent set on three vertices. Our result on C4

resolves an open question from [7].

Organization. In the next section, we present our lower bound on detecting
induced subgraphs isomorphic to restricted pattern graphs in terms of the size
of independent set that is not easier to detect. In Section 3, we provide our lower
bound on detecting and counting induced subgraphs isomorphic to restricted
pattern graphs in terms of the size of independent set that is not easier to detect
or count, respectively. In Section 4, we present simple lower bounds implying
that the diamond, paw and C4 are not easier to detect as induced subgraphs
than a triangle. We conclude with final remarks.

2 Lower Bounds on Detecting Induced Subgraphs

Chen and Flum demonstrated the hardness of the induced path and induced
cycle problems in [1]. We can state precisely their results as follows.

Fact 1. Let G be an arbitrary graph on n vertices and m edges. In O(kn2+k2m)
time, one can construct a graph G′ on O(kn) vertices and O(kn2 + k2m) edges
such that G′ has an induced subgraph isomorphic to a path on 4k− 1 vertices iff
G has an independent set of cardinality k.

Similarly, one can construct a graph G′′ on O(kn) vertices and O(kn2 + k2m)
edges such that G′′ has an induced subgraph isomorphic to a cycle on 4k vertices
iff G has an independent set of cardinality k.

In this section, we provide a general equivalence which works in case of detection
for arbitrary pattern graphs with a maximum independent set disjoint from
other maximum independent sets. It supports our conjecture if such a maximum
independent set is relatively large. Our equivalence also subsumes that of Chen
and Flum in the particular case of paths and cycles.

Theorem 1. Let G be an arbitrary graph on n vertices and m edges, and let
H be a pattern graph on h vertices. Suppose that there is a maximum indepen-
dent set of size k that is disjoint from all other maximum independent sets in H.
In O(kn2+hkn+k2m) time, one can construct a graph G∗ on O(h+kn) vertices

42 P. Floderus et al.

and O(kn2+hkn+k2m) edges such that G∗ has an induced subgraph isomorphic
to H iff G has an independent set of cardinality k.

Proof. Let G = (V,E) and H = (VH , EH). Next, let S be a maximum indepen-
dent set that is disjoint from the other maximum independent sets in H.

G∗ consists of k = |S| cliques G∗(i) on V ×{i}, where i ∈ S, and the subgraph
H ′ of H induced by all vertices in VH outside S. (Note that H ∩ G∗ = H ′.)
Additionally, G∗ contains the following edges between the k cliques and H ′.
Two vertices (v, i), (u, j) from two different cliques G∗(i) and G∗(j) form an
edge if {v, u} ∈ E or v = u. Each vertex l of H ′ is connected by an edge with
each vertex of each clique G∗(i), where {l, i} ∈ EH and i ∈ S. There are no other
edges in G∗. See Fig. 1 for an example.

Fig. 1. An example of a pattern graph (A) with a maximum independent set disjoint
from others marked and the corresponding graph G∗ (B), where the large vertices
represent cliques and the dotted lines symbolize the edge connection between them

Suppose that G has an independent set {v1, v2, ..., vk} on k vertices. Then, we
map each vertex i ∈ S on the vertex (vi, i). Next, we map each vertex in VH \ S
on itself. The image of H under this mapping is easily seen to induce a subgraph
isomorphic to H in G∗.

Conversely, suppose that G∗ has an induced subgraph H∗ such that there is
an isomorphism between H and H∗.

Consider a maximum independent set U of H∗. Let U ′′ be the subset of U
outside of H ′ and let U ′ be the subset of U within H ′.

Since U ′′ is an independent set, then its vertices are in disjoint cliques G∗(i).
Let U ′′

S be the set of i for which there is a node of U ′′ in G∗(i).
Now consider H. Observe that VH \ S is the set of vertices of H ′. U ′ ⊂

VH \S and U ′′
S ⊂ S together form a maximum independent set of H. It properly

intersects S, which yields a contradiction, unless U ′′
S = S or U ′′

S = ∅. In the
former case, we are done.

It remains to consider the situation where for each maximum independent
set U of H∗, U ′′

S = ∅. This would however mean that H∗ has all its maximum
independent sets in the common subgraph H ′ of G∗ and H . Consequently, H

Induced Subgraph Isomorphism 43

would have at least one more maximum independent set (S is outside H ′) than
H∗. This would contradict the isomorphism between H∗ and H.

��

Note that a path on 4k − 1 vertices as well as a cycle on 4k vertices have an
independent set of cardinality 2k. Paths as well as even cycles have at most
two maximum independent sets, and they are always disjoint. Thus, Theorem 1
provides stronger lower bounds in terms of the size of independent set than Fact
1 in the particular case of induced paths and cycles.

Corollary 1. If H is a fixed pattern graph with a maximum independent set
of cardinality k which is disjoint from other maximum independent sets (e.g.,
a path on 2k + 1 or 2k vertices or a cycle on 2k vertices) then the asymptotic
complexity of the detection of an induced subgraph isomorphic to H in terms of
the number of vertices of the host graph is not less than that of an independent
set on k vertices.

It is folklore that the detection of K3 can be easily reduced to that of claw,
i.e. K1,3, by considering the complement graph expanded by an auxiliary vertex
connected to all vertices in the complement graph.

We obtain immediately the following much more general corollary from The-
orem 1 and Corollary 1.

Corollary 2. The time complexity of the detection of an induced subgraph iso-
morphic to the complete bipartite graph Kq,r is lower bounded by that of an
independent set on max{q, r} vertices.

By a complete split graph, we shall mean a graph that can be decomposed into
an independent set and a clique so it contains all possible edges between the
vertices in the two subgraphs. By considering also the complement graphs, we
obtain the next corollary from Theorem 1 and Corollary 1.

Corollary 3. The time complexity of the detection of an induced subgraph iso-
morphic to the complete split graph with the independent part on q vertices and
the clique part on r vertices is lower bounded by that of an independent set on
max{q, r} vertices.

3 Lower Bounds on Detecting and Counting Induced
Subgraphs

We can also generalize the equivalence of Fact 1 to work not only for paths
and cycles but for subdivisions of arbitrary pattern graphs without isolated
vertices too, importantly both in case of detection and counting. The subdivisions
replace each edge with a path with three additional inner vertices and attach
an additional path at each vertex of degree one. Our next result basically shows
that no pattern topology is easier to detect or count.

44 P. Floderus et al.

Theorem 2. Let G be an arbitrary graph on n vertices and m edges, and let H
be a pattern graph with h vertices and l edges and no isolated vertices. Next, let
Hd be the subdivision of H obtained by placing three auxiliary vertices on each
edge of H, and attaching at each leaf, i.e., vertex of degree 1, of H a distinct
additional path of length three. In O(hn2 + ln+ h2m) time, one can construct a
graph G(h) on O(hn) vertices and O(hn2+ ln+h2m) edges such that the induced
subgraphs of G(h) isomorphic to Hd are in one-to-one correspondence with the
independent sets in G of cardinality h.

Proof. We form a graph G(h) which basically consists of h copies of a clique
on V , linked according to G. The h copies are additionally linked via auxiliary
vertices in one-to-one correspondence with the edges of H. Furthermore, a path
on three additional vertices is attached to each clique copy that corresponds to
a leaf of H.

Let G = (V,E) and H = (VH , EH), and let L be the set of leaves in H. The
vertex set of the i-th clique copy is V × {i} for i ∈ VH . The set V (h) of vertices
of G(h) is the union of V × VH with the sets {aij , bij , cij}, where i and j, i < j,
are adjacent vertices of H, and the sets {ai, bi, ci}, where i is a leaf of H.

The set E(h) of edges of G(h) is the union of the following edge sets (see Fig.
2 for an illustration):

⋃
i∈VH

{{(u, i), (v, i)}|u, v ∈ V&u 	= v}⋃
{i,j}⊂VH

{{(u, i), (v, j)}|i 	= j&u, v ∈ V&(u = v ∨ {u, v} ∈ E)}

⋃
{i,j}⊂VH

{{(u, i), aij}|i < j&(aij defined)}

⋃
{i,j}⊂VH

{{aij , bij}|(aij defined)&(bij defined)}

⋃
{i,j}⊂VH

{{bij, cij}|(bij defined)&(cij defined)}

⋃
{i,j}⊂VH

{{cij , (v, j)}|i < j&(cij defined)}

⋃
i∈L

{{(u, i), ai}}
⋃
i∈L

{{ai, bi}}
⋃
i∈L

{{bi, ci}}

Claim. Suppose that an embedding φ of Hd in G(h) satisfies the following three
conditions:

– for l ∈ VH , φ(l) is a vertex in V × {l},
– for any two adjacent vertices i and j of H, where i < j, φ maps the three

vertices between i and j on the path onto the three vertices in {aij , bij , cij}
so to form a path {φ(i), aij}, {aij , bij}, {bij, cij}, {cij , φ(j)},

– for any leaf of Hd, the path leading to the associated leaf i of H is mapped
on {ci, bi}, {bi, ai}, {ai, φ(i)}.

Induced Subgraph Isomorphism 45

Then,
(a) φ(Hd) is a subgraph of G(h) isomorphic to Hd,
(b) φ(Hd) is an induced subgraph in G(h) iff

⋃
l∈VH

{φ1(l)} is an independent set
in G, where φ1(l) stands for the first coordinate of φ(l),
(c) each induced subgraph of G(h) isomorphic to Hd can be defined as the image
of such an embedding φ composed with an automorphism of Hd,
(d) if μ is another embedding of Hd in G(h) satisfying the aforementioned condi-
tions and both φ(Hd) and μ(Hd) are induced subgraphs of G(h) then

⋃
l∈VH

{φ1(l)}
and

⋃
l∈VH

{μ1(l)} are different independent sets.
The (a) part follows directly from the specification of φ. Also by the specification,
the image φ(Hd) is not an induced subgraph of G(h) iff for some i, j ∈ VHd

,
the vertices φ(i) and φ(j) are adjacent in G(h). Since each of them belongs to a
different copy of the clique on V, this can only happen if φ1(i) = φ1(j) or φ1(i)
is adjacent to φ1(j) in G. In the first case, the set {φ1(1), ..., φ1(h)} has size less
than h, in the second one, it is not an independent set.

To prove part (c), consider an induced subgraph F of G(h) isomorphic to Hd.
The following observations will be useful:
(1) No vertex of F whose degree is at least three can be of the form ai,j or bi,j , or
ci,j , or ai, or bi, or ci since then either it would form a triangle with two vertices
in the i-th or j-th copy of the clique on V or it would have degree at most two.
(2) All the vertices aij , bij , cij as well as all the vertices ai, bi, ci, where i is a
leaf of H, have to belong to F. It follows in particular that each leaf of Hd has
to be mapped on some ci in the isomorphism.

To see (2), denote by Vi the set V × {i} extended by the adjacent vertices
aij , when i < j, and the adjacent vertices cki, when i > k, and halves of the in
between vertices bij , as well as the vertices ai, bi, ci in case i ∈ L.

Note that V × {i} can accommodate at most two vertices of F because the
triangles do not occur in Hd. However, if V ×{i} contains two vertices of F then
the only additional vertices of F that can be accommodated by Vi are those
placed at bijs counted as halves, again because of the absence of triangles, as
well as bi and ci in case i is a leaf of H. If only one vertex of F is in V ×{i} then
Vi can accommodate additionally 1.5degH(i) vertices, plus three vertices in case
i is a leaf of H, by fully using the vertices in Vi \ V × {i}. The latter number of
accommodated vertices is larger than that when V ×{i} contains two vertices of

Fig. 2. Example of the vertices and edges of G(h), the large vertices V1, V2, . . . Vh

represents cliques of size n and the dotted lines symbolize the edge connection between
them

46 P. Floderus et al.

F but for the case where deg(i) = 1, when the numbers are equal. In fact, each
Vi has to accommodate the aforementioned maximum number in order to cover
all vertices of F. Therefore, in particular all the vertices ai, bi, ci for leaves i of
H have to be used by F. Hence, no bij can be used as a vertex of degree 1 which
implies that each V ×{i} contains exactly one vertex of F, and consequently all
the vertices aij , bij , cij have to be used by F. This proves (2).

Suppose first that H is different from a simple cycle.
Consider a maximal path P with inner vertices of degree at most 2 in F.

Suppose first that P has both endpoints of degree at least three. Let p1 be the
vertex on P within distance four from an endpoint p of P. By (1), p is in V ×{i}
for some i. If P does not continue from p through some aij , bij , cij or vice versa
then by (2) the degree of p in H has to be larger than the number of such paths
linked to V × {i}. This in turn means that there is l ∈ VH , where no all paths
of this form linked to V × {l} are used by F. We obtain a contradiction by (2).
We conclude that P continues to p1 in V × {j} by a path in one of the two
aforementioned forms. By iterating this argument for p1 etc., we infer that the
vertices of P corresponding to the vertices of H are in distinct V ×{l}, whereas
the vertices between are mapped on some triples aij , bij , cij .

If P has an endpoint of degree 1 then it has some vertex cl as an endpoint.
Hence, the vertices bl, al and some vertex p in V × {l} corresponding to a leaf
of H have to follow. Then, we can continue with p similarly as in the previous
case. In case the other endpoint is also of degree 1 then when P reaches a vertex
in some V ×{q} corresponding to another leaf of H, it has to have aq, bq and cq
as a suffix.

In case Hd is a simple cycle, we pick an arbitrary vertex of F in some V ×{l}
as the start and endpoint of a path P with inner vertices of degree 2 and proceed
analogously as in the previous cases. Then every fourth following vertex of F will
be also in some V × {l}. If these vertices are not images of the original vertices
of H , we need to compose an embedding φ satisfying the three conditions with
an automorphism (shift) of Hd.

This completes the proof of the (c) part of the claim.
Now (d) follows by (b) from the fact that an embedding φ satisfying the three

conditions is uniquely determined by the choice of the second coordinates of the
clique vertices. The claim yields the theorem. ��

Corollary 4. Let H be a fixed graph on h vertices, and let its subdivision Hd

be defined as in Theorem 2. The problems of detecting and counting induced
subgraphs isomorphic to Hd have asymptotic time complexity in terms of the
number of vertices of the host graph not less than those for the corresponding
problems for independent set on h vertices, respectively.

4 Simple Lower Bounds

We can expand the list of lower bounds on detection for pattern graphs on four
vertices in terms of K3 (for K1,3 cf. Corollary 2) by the following ones for the

Induced Subgraph Isomorphism 47

diamond K4 \ e, the paw K3 + e, and C4. Because of space considerations, the
proofs are brief.

Theorem 3. Let k ≥ 4. The time complexity of the detection of an induced
subgraph isomorphic to Kk \ e is lower bounded by that of an independent set on
k − 1 vertices (Kk−1 equivalently).

Proof. Augment an arbitrary host graph G with single copies of its vertices. For
a copy v′ of a vertex v, add edges between v′ and all neighbors of v in G. Let G′

denote the resulting graph, where the copy vertices form an independent set.
If G contains a Kk−1 induced by (u, ..., w) then G′ contains the subgraph

induced by (u, ..., w, u′) which is a Kk \ e. Conversely, if G′ contains an induced
Kk \ e then the latter either includes a Kk−1 of G or it is induced by a se-
quence (u′, v, ..., w, z′). In the latter case, G contains the subgraphs induced by
(u, v, ..., w) and (v, ..., w, z), both are Kk−1. ��

ByKk+e, we denote a graph consisting of a clique on k vertices and an additional
vertex connected by a single edge with the clique.

Theorem 4. Let k ≥ 3. The time complexity of the detection of an induced
subgraph isomorphic to Kk + e is lower bounded by that of an independent set
on k vertices (Kk equivalently).

Proof. Augment an arbitrary host graph G with single copies of its vertices
adjacent solely to their original counterparts to form a graph G′. Observe that
G contains a Kk iff G′ contains Kk + e. ��

Our lower bound for C4 seems most interesting as neitherK3 nor 3K1 are induced
subgraphs of C4. In the introduction to [7], Eschen et al. write “Whether there
is a C4-free graph recognition algorithm that beats matrix multiplication and/or
a reduction from triangle-free graph recognition remains open.”

Theorem 5. The time complexity of the detection of an induced subgraph iso-
morphic to C4 is lower bounded by that of an independent set on three vertices
(K3 equivalently).

Proof. Let G = (V,E). Insert an auxiliary vertex x{u,v} on each edge {u, v} ∈ E.
Add a set V ′ of single copies of vertices in V, and form a clique on V ′. For each
edge {u, v} ∈ E, besides the edges {u, x{u,v}}, {x{u,v}, v}, form the edges {u′, v}
and {u, v′}. Let G′ be the resulting graph.

Clearly, if G contains a triangle (u, v, w) then G′ contains the induced cycle
(u, x{u,v}, v, w′). Suppose conversely that G′ contains an induced C4. Since G

′ is
a clique on V ′, the induced C4 can have at most two vertices in V ′. It follows from
the definition of G′ that at least three other vertices outside V ′ are necessary to
form a cycle. Thus, exactly two vertices in V ′ are not possible. If there is one
vertex w′ ∈ V ′ in the induced C4, then the latter has the form (u, x{u,v}, v, w′)
which implies that (u, v, w) is a triangle in G. Finally, there is no way to close a
cycle on less than six vertices in G′ outside V ′. ��

48 P. Floderus et al.

Corollary 2, Theorems 3, 4, 5 and the graph complement yield the following.

Corollary 5. For any pattern graph H on four vertices different from P4, the
time complexity of the detection of an induced subgraph isomorphic to H is lower
bounded by that of an independent set on three vertices (K3 equivalently).

Acknowledgments. The authors are very grateful to unknown referees whose
comments helped to improve a preliminary version of the paper. Special thanks
go to the referee that rephrased our conjecture, simplified the proof of Theorem
1 and provided many other valuable comments.

References

1. Chen, Y., Flum, J.: On Parametrized Path and Chordless Path Problems. In: Proc.
IEEE Conference on Computational Complexity, pp. 250–263 (2007)

2. Coppersmith, D.: Rectangular matrix multiplication revisited. Journal of Complex-
ity 13, 42–49 (1997)

3. Coppersmith, D., Winograd, S.: Matrix Multiplication via Arithmetic Progressions.
J. of Symbolic Computation 9, 251–280 (1990)

4. Corneil, D.G., Perl, Y., Stewart, L.K.: A Linear Recognition Algorithm for
Cographs. SIAM J. Comput. 14(4), 926–934 (1985)

5. Downey, R.G., Fellows, M.R.: Parametrized Complexity. Springer, New York (1999)
6. Eisenbrand, F., Grandoni, F.: On the complexity of fixed parameter clique and

dominating set. Theoretical Computer Science 326, 57–67 (2004)
7. Eschen, E.M., Hoàng, C.T., Spinrad, J., Sritharan, R.: On graphs without a C4 or

a diamond. Discrete Applied Mathematics 159(7), 581–587 (2011)
8. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory

of NP-completeness. W.H. Freeman and Company, New York (2003)
9. Hoàng, C.T., Kaminski, M., Sawada, J., Sritharan, R.: Finding and listing induced

paths and cycles. Manuscript (2010)
10. Huang, X., Pan, V.Y.: Fast rectangular matrix multiplications and applications.

Journal of Complexity 14(2), 257–299 (1998)
11. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM Journal on

Computing 7(4), 413–423 (1978)
12. Kloks, T., Kratsch, D., Müller, H.: Finding and counting small induced subgraphs

efficiently. Information Processing Letters 74(3-4), 115–121 (2000)
13. Kowaluk, M., Lingas, A., Lundell, E.M.: Counting and detecting small subgraphs

via equations and matrix multiplication. In: Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1468–1476
(2011)

14. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Commenta-
tiones Mathematicae Universitatis Carolinae 26(2), 415–419 (1985)

15. Olariu, S.: Paw-Free Graphs. Information Processing Letters 28, 53–54 (1988)
16. Papadimitriu, C.H., Yannakakis, M.: On limited nondeterminism and the complex-

ity of the VC-dimension. Journal of Computer and System Sciences 53, 161–170
(1996)

17. Vassilevska, V.: Efficient Algorithms for Path Problems in Weighted Graphs. PhD
thesis, CMU, CMU-CS-08-147 (2008)

Contiguous Minimum Single-Source-Multi-Sink

Cuts in Weighted Planar Graphs

Ivona Bezáková and Zachary Langley

Rochester Institute of Technology, Rochester, NY, USA
{ib,zbl9222}@cs.rit.edu

Abstract. We present a fast algorithm for uniform sampling of contigu-
ous minimum cuts separating a source vertex from a set of sink vertices
in a weighted undirected planar graph with n vertices embedded in the
plane. The algorithm takes O(n) time per sample, after an initial O(n3)
preprocessing time during which the algorithm computes the number of
all such contiguous minimum cuts. Contiguous cuts (that is, cuts where
a naturally defined boundary around the cut set forms a simply con-
nected planar region) have applications in computer vision and medical
imaging [6,14].

1 Introduction

Graph cuts have become a popular tool in computer vision over the past decade,
see, e. g., [7,6,14]. The goal of image segmentation is to partition a given image
into meaningful segments, for example, to isolate an object in the foreground
from the background, or to find the boundary of an organ on an ultrasound
image.

The image is represented by a graph of pixels (the vertices), edges connect
neighboring pixels, and edge weights represent (dis)similarity between the end-
points. In the simplest scenario a user selects a point in the object (the source)
and a point in the background (the sink) and a minimum cut between the source
and the sink is used to isolate the object from the background.

However, thin objects such as blood vessels are often hard to isolate when us-
ing a cut between only two points, see, e. g., [14]. This is because the minimum
cut might be clustered around the selected point in the object – for example,
opting to sever the point from the rest of the blood vessel – instead of form-
ing a needle-like shape with numerous cut edges of small weight. To avoid this
problem, the user may select additional points (seeds) in the object and/or the
background, and keep selecting such points until the desired segmentation is
achieved – this is known as interactive image segmentation. However, with mul-
tiple seeds the cut might consist of several planar regions – for example, regions
around the seeds, severing the blood vessel multiple times – instead of a desired
single region. A natural solution to this problem is to enforce “contiguity” of the
cut; similar concepts are known as a “connectivity prior” [14] and a “topology
preserving cut” [6,15].

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 49–60, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

50 I. Bezáková and Z. Langley

A cut separating the source vertices S from the sink vertices T is a set of
vertices containing every vertex in S and no vertex from T – we refer to these
cuts as (S, T)-cuts. An (S, T)-cut is minimum if the sum of the weights of edges
connecting a vertex in the cut set to a vertex outside the cut set is the smallest
possible across all (S, T)-cuts. For planar graphs embedded in the plane, we con-
sider a cut to be contiguous if a region formed by connecting the neighborhoods
around each cut vertex along edges and through faces shared by these vertices
is simply connected, see Figure 1 and the formal definition in Section 2.

We present an O(n) algorithm that produces a uniformly random contiguous
minimum cut separating a single source vertex from a set of sink vertices in a
positively weighted undirected planar graph embedded in the plane. The algo-
rithm uses O(n3) preprocessing time during which it computes the number of
all contiguous minimum (s, T)-cuts for a source s and a set of sink vertices T .
Note that there could be exponentially many such cuts. Optimization problems
with multiple optimum solutions have been recognized as drawbacks in computer
vision, see, e. g., [10]. In such cases, random sampling can be used to gather var-
ious statistical data on the solutions, or the user can be given a choice between
several randomly generated solutions.

We note that heuristics and approximation algorithms have been proposed
for finding regions of various connectivity requirements [14,15]; however, to the
best of our knowledge, our work is the first polynomial-time provably correct
exact algorithm for such a problem.

The earliest works considering the problem of counting minimum cuts in a
graph date back to the 1980’s. Ball and Provan [1] showed that for a single
source and a single sink, the problem reduces to the problem of counting maxi-
mal antichains in a poset. In particular, this poset is the directed acyclic graph
obtained by finding an acyclic maximum flow, constructing the corresponding
residual graph, and contracting each strongly connected component into a single
vertex. This implies that the problem is #P -complete for general graphs [13].
Recently, building on [1], a polynomial-time algorithm was developed for the
single-source-single-sink variant for planar graphs [2], using, as the first step,
the same reduction to the maximal antichains. However, the reduction can not
be applied in the contiguous multi-sink case, as the contractions can “bypass”
vertices lying in the region defined by the contracted component.

We present a novel reduction that preserves the contiguity of the cuts by se-
lectively contracting certain edges within the strongly connected components,
as well as edges that connect vertices from different strongly connected com-
ponents. This yields a planar directed acyclic multi-graph in which we need to
count antichains satisfying a contiguity requirement – we call them contiguous
forward cuts. Additionally, we present a new contiguity variant of the cut-cycle
duality, where we represent contiguous forward cuts as special kinds of tours of
the dual graph – we refer to them as non-crossing. This notion is similar to the
so-called non-self-crossing cycle, but with the restriction that the tour forms a
star-like shape with respect to every face.

Contiguous Minimum Single-Source-Multi-Sink Cuts 51

Then we form an acyclic subgraph of the dual graph by “cutting” the pri-
mal graph along a tree connecting the source and sink vertices. We decompose
each tour into paths in this subgraph where every pair of consecutive paths is
joined by a single edge in the dual graph. Moreover, the paths can be sampled
independently and are guaranteed to not cross. This allows us to use dynamic
programming to obtain the final count of all non-crossing tours. While the proof
of correctness is quite involved, the final algorithm is reasonably simple, as sum-
marized in Algorithms 1 and 2.

For completeness, we mention recent works dealing with maximum flows and
minimum cuts in planar graphs. Borradaile and Klein [3] gave an O(n log n)
algorithm for the single-source-single-sink acyclic maximum flow. Borradaile,
Sankowski, and Wulff-Nilsen [5] produce a minimum single-source-single-sink
cut for any source-sink pair in time proportional to the size of the cut, after
an initial O(n polylog n) preprocessing time. Italiano, Nussbaum, Sankowski,
and Wulff-Nilsen [11] give algorithms for undirected planar graphs that break
the O(n log n) time barrier. Recently, Borradaile, Klein, Mozes, Nussbaum, and
Wulff-Nilsen [4] gave an O(n log3 n) algorithm for maximum flow from multiple
sources to multiple sinks. While all these algorithms are very ingenious, as far
as we know, none of them produce the respective cut counts (or samples).

Finally, we remark that we do not know of any polynomial-time algorithms
counting or sampling all minimum single-source multi-sink cuts in planar graphs
(i. e., not just contiguous cuts). Similarly, the problem is open for simple cuts
(i. e., cuts where the graph induced by the cut vertices is connected). In both
cases Ball and Provan’s reduction can be applied but it is unclear how to count
the corresponding sets of antichains. In the case of general cuts, an antichain
might correspond to a set of several tours, not just one. In the case of simple cuts,
an antichain corresponds to a cycle and our dynamic programming technique
does not guarantee to not repeat vertices across different path segments. The
case of contiguous cuts with multiple sources and multiple sinks is also open.

The paper is organized as follows. Section 2 contains preliminaries, Section
3 describes how to reduce the problem to the problem of counting contiguous
forward cuts in a planar directed acyclic multi-graph, Section 4 describes the rep-
resentation of contiguous forward cuts via non-crossing tours in the dual graph,
and Section 5 describes the main dynamic programming algorithm, followed by
the sampling procedure. The proofs are omitted due to space constraints.

2 Preliminaries

Let G = (V,E,w) be a weighted undirected connected planar graph with edge
weights w : E → R+. Let s ∈ V and T ⊆ V , s 	∈ T . Our objective is to count1

all minimum (s, T)-cuts of G where an (s, T)-cut is a set of vertices C ⊆ V
such that s ∈ C and T ∩ C = ∅. The value of the cut C is the sum of all

1 We first develop the counting algorithm – the sampling part will be discussed in
Section 5.

52 I. Bezáková and Z. Langley

edge weights of edges leading out of C – formally,
∑

(u,v)∈E:u∈C,v ∈C w(u, v). A

minimum (s, T)-cut has the smallest possible value of all (s, T)-cuts.
Given a directed graph H = (VH , EH), we say that a cut C ⊆ VH is a forward-

cut if there is no edge leading into C, i. e., there is no edge (u, v) such that u 	∈ C
and v ∈ C. A forward-cut C is a forward-(A, b)-cut where A ⊆ VH , b ∈ VH and
b 	∈ A, if A ⊆ C and b 	∈ C.

A flow network is a directed graph G = (V,E, c) where c : E → R+ defines
non-negative edge capacities. Let s, t ∈ V , s 	= t, be two vertices called the
source and the sink, respectively. A flow from s to t is a function f : E →
R+

0 satisfying the following properties: (1) capacity constraint: f(e) ≤ c(e) for
every e ∈ E, and (2) flow conservation:

∑
u: (u,v)∈E f(u, v) =

∑
u: (v,u)∈E f(v, u)

for every v ∈ V \ {s, t}. The value of the flow f is the sum of the values of
flow edges out of s minus the sum of the values of the flow edges into s, i. e.,∑

u: (s,u)∈E f(s, u)−
∑

u: (u,s)∈E f(u, s). A flow is said to be maximum if it has

the largest possible value among all flows from s to t (we also refer to such flows
as s-t flows). A flow is said to be acyclic if the set of edges with positive flow
value {e ∈ E | f(e) > 0} does not contain a directed cycle.

The residual graph of the flow f , denoted Gf = (V,Ef , wf), is a weighted
directed graph where Ef contains the following two types of edges: (1) for every
e = (u, v) ∈ E with f(e) < c(e), the set Ef contains a forward edge e = (u, v)
with weight wf (e) = c(e)− f(e), and (2) for every e = (u, v) ∈ E with f(e) > 0,
the set Ef contains a backward edge e′ = (v, u) with weight wf (e

′) = f(e).
The following theorem describes Ball and Provan’s reduction.

Theorem 1 ([1,2]). Let G = (V,E,w) be a connected positively weighted undi-
rected graph and let s, t ∈ V , s 	= t. Let G′ = (V,E′, c) be a flow network obtained
by including, for every edge (u, v) ∈ V , two directed edges (u, v) and (v, u) in
E′ with capacities c(u, v) = c(v, u) = w(u, v). Let f be an acyclic maximum s-t
flow in G′ and let G′

f be the corresponding residual graph. Let H = (VH , EH)
be the graph obtained from G′

f by contracting each strongly connected compo-
nent into a single vertex, omitting duplicate and self-loop edges, and ignoring
the edge weights. Hence, vertices of H are sets of vertices of G – let ŝ and t̂ be
the vertices in VH containing s and t respectively. Then, the set of minimum
(s, t)-cuts in G is in bijection with the set of forward-(t̂, ŝ)-cuts in H by map-
ping a forward-(t̂, ŝ)-cut CH ⊆ VH to the (s, t)-cut C = ∪x ∈CHx. Moreover, if G
is connected, then H, viewed as an undirected graph, is connected, and if G is
planar, then H is planar. The graph H can be obtained in time O(|V |3 + |E|2)
and time O(|V | log |V |) if G is planar.

Next we define contiguous cuts that give rise to a contiguous region in the plane
– a concept useful for many segmentation applications, see, e. g., [6,14] for a
discussion of several contiguity concepts. For a planar (directed or not) graph
G = (V,E) embedded in the plane and a set of vertices C ⊂ V , we define R(C),
a set of points in the plane, as follows. We start with the union of all faces that
contain a vertex from C on their boundary. Then, for every vertex not in C, we
remove an ε-neighborhood around this vertex. Finally, for every edge between

Contiguous Minimum Single-Source-Multi-Sink Cuts 53

(a): cut set C1 (b): cut set C2 (c): cut set C3 (d): cut set C4 (e)

Fig. 1. (a)-(d): Contiguous vs. noncontiguous cuts: four possible cut sets (of the 6× 7
grid graph). The highlighted vertices are in the respective cut sets C1, . . . , C4. The
shown boundaries bound the corresponding point sets R(C1), . . . , R(C4). Cut sets C1

and C2 are contiguous, cut sets C3 and C4 are not. (e): Contiguous cuts vs. non-self-
crossing cycles: not a contiguous cut, yet the cut set can be bounded by a non-self-
crossing cycle.

two vertices that are both not in C, we remove an ε-neighborhood around this
edge. (By ε-neighborhood we mean the set of points in the plane with distance
≤ ε from the vertex or edge. We choose ε so that the ε-neighborhood does not
intersect with non-adjacent edges or contain other vertices in the planar drawing
of G.) We say that C is contiguous if R(C) forms a simply connected region in
the plane, i. e., if the boundary of R(C) splits the plane into exactly two regions.
See Figure 1(a)-(d). Informally, in the grid graph the contiguity concept means
a “corner-connected” region without holes.

To put contiguous cuts in perspective with the standard cut-cycle duality, we
note that contiguous cuts are not dual with the so-called non-self-crossing cycles.
Consider Figure 1(e) where a non-self-crossing cycle separates the cut vertices
from the remaining vertices, yet the cut is not contiguous.

Finally, to simplify our language, for a directed planar graph embedded in
the plane, we refer to the two faces neighboring an edge e = (u, v) as the left
face of e (when traversing e from u to v, this face is on the left) and the right
face of e (the other face). We use the same terminology when describing regions
bounded by directed paths/cycles. By a clockwise traversal of the boundary of
a face (or a planar simply connected region) f we mean listing the edges on the
boundary of f in the clockwise order as seen from the viewpoint of somebody
standing inside f .

3 Reduction to Contiguous Forward Cuts

In this section we present an algorithm that reduces the problem of counting
all contiguous minimum (s, T)-cuts to the problem of counting all contiguous
forward-(T̂ , ŝ)-cuts in a planar directed acyclic (multi)graph. On the surface this
statement seems analogous to Theorem 1: we can create a super-sink connected
to every sink by an ∞-weighted edge and apply the original reduction. However,
this can result in contracting a cycle consisting of edges that are not minimum-
cut edges into a single vertex while “bypassing” the area inside the cycle. Hence,

54 I. Bezáková and Z. Langley

s

t1 t2

s

t1 t2

s

t1 t2

t̃1 t̃2

s̃

t̃1 t̃2

s̃

(a) (b) (c) (d) (e)

Fig. 2. Contiguous (s, T)-cuts in G vs. contiguous forward-(T̂ , ŝ)-cuts in H . Figure (a)
shows a source and two sinks, the highlighted edges are of weight 1, all other edges are
of weight ∞. Figures (b) and (c) depict two possible minimum (s, T)-cuts (of weight
8) – (b) is not contiguous and (c) is contiguous. Figures (d) and (e) show the graph
H and the forward cuts corresponding to the minimum cuts from figures (b) and (c).
Both forward cuts are contiguous, even though the cut in figure (b) is not contiguous.

t̂1 t̂2

ŝ
33

1
1 1 1

1
1

s

t1 t2

s

t1 t2

s

t1 t2

(a) (b) (c) (d)

Fig. 3. Applying Algorithm 1: Figure (a) shows the result for the graph from Figure
2(a). Figure (b) shows another possible input graph, the highlighted edges are of weights
1 or 3, the other edges are of weight ∞. Figures (c) and (d) depict the corresponding
graphs after applying Ball and Provan’s reduction (there are 4 minimum (s, {t1, t2})-
cuts and thus 4 corresponding forward cuts) and Algorithm 1 (there is only one forward
cut corresponding to the single contiguous minimum (s, {t1, t2})-cut).

noncontiguous cuts become contiguous forward cuts, as demonstrated in Figure
2. To avoid such problems, we designed a new reduction (Algorithm 1) that
selectively contracts and removes edges to preserve contiguity.

Theorem 2. Let G = (V,E,w) be a connected undirected planar graph embed-
ded in the plane, w > 0. Let s ∈ V and T ⊆ V , s 	∈ T . Algorithm 1 decides
whether there exists a contiguous minimum (s, T)-cut in G. If yes, it constructs
a directed acyclic (multi)graph H ′ = (V ′

H , E′
H) embedded in the plane, a vertex

ŝ ∈ V ′
H , and a set of vertices T̂ ⊆ V ′

H such that the set of all contiguous minimum

(s, T)-cuts in G is in bijection with the set of all contiguous forward-(T̂ , ŝ)-cuts
in H ′. The algorithm runs in time O(|V |3). Moreover, T̂ is the set of vertices of
indegree 0 in H ′ and ŝ is the only vertex of outdegree 0 in H ′.

What happens when we apply Algorithm 1 to the graph from Figure 2? We will
keep two edges from the middle vertex to ŝ, as shown in Figure 3(a), preventing
the “illegal” contiguous forward cut from Figure 2(d). A graph where Algorithm
1 needs to deal with self-loops is shown in Figure 3(b)-(d). Figure 4 sketches the
individual self-loop cases on which the proof of Theorem 2 is based.

Contiguous Minimum Single-Source-Multi-Sink Cuts 55

Algorithm 1. Reduction to contiguous forward cuts

1: Add an extra vertex, τ , to G, connect it with ∞-weight edges to the vertices in
T , and replace every edge by two directed edges of the same weight. Let Gf =
(Vτ , Ef , wf) be the residual graph of an acyclic s-τ maximum flow f of the new
graph. Let T̂ be the set of vertices of G that belong to the same strongly connected
component of Gf as τ .

2: Remove τ and its adjacent edges from Gf , and ignore the edge weights, obtaining
H ′

0 (embedded in the plane analogously to G).
3: Let e1, e2, . . . , e� ∈ Ef be the edges that belong to any strongly connected compo-

nent of H ′
0.

4: for i = 1, . . . , � do
5: if ei does not form a self-loop in H ′

i−1 then
6: Get H ′

i from H ′
i−1 by contracting the edge ei (if it has not been removed

earlier).
7: else
8: Let (a, a) be the self-loop formed by ei in H ′

i−1.
9: if s �∈ a then
10: The self-loop splits the plane into two regions: let R be the region that does

not contain s.
11: if all vertices in T̂ are in R then
12: Get H ′

i from H ′
i−1 by removing the self-loop (a, a). See Figure 4(a).

13: else
14: Get H ′

i from H ′
i−1 by contracting all vertices in R into a and remove all

(a, a) self-loops. See Figure 4(b)-(c).
15: else
16: if the two regions bounded by the self-loop each contain a vertex in T̂ then
17: Return “no contiguous minimum cuts”. See Figure 4(d).
18: else
19: Let R be the region that contains the vertices in T̂ .
20: Get H ′

i from H ′
i−1 by contracting all vertices outside R into a and remove

all (a, a) self-loops. See Figure 4(e).
21: For every t ∈ T̂ , contract all predecessors of t into t and omit self-loops.
22: Return H ′ := H ′

� and its planar embedding, T̂ , and the vertex ŝ containing s.

4 Non-crossing Tours

In this section we classify contiguous forward-(T̂ , ŝ)-cuts as certain types of tours
(i. e., cycles that are allowed to repeat vertices) in the dual planar graph. While
these tours may revisit faces (i. e., vertices in the dual graph), they cannot “self-
cross,” as defined below.

First, recall the standard definition of a directed planar dual. For a directed
planar (multi)graph H = (VH , EH) embedded in the plane, we define the dual
(multi)graph HD = (VD, ED) as follows: VD is the set of all faces of H and for
every edge e ∈ EH we include an edge from f1 to f2 in ED where f1 and f2 are
the left and the right face of e, respectively.

Next we define a “non-crossing” tour and the “inside” and the “outside”
regions defined by the tour.

56 I. Bezáková and Z. Langley

s′i−1

a
R

t′1

t′2

s′i−1

a
R

t′1

t′2
s′i−1

a
R

t′1

t′2

(a) (b) (c)

a = s′i−1
t′1 t′2 a = s′i−1

R

t′1
t′2

(d) (e)

Fig. 4. Demonstrating the cases in Algorithm 1, possible contiguous cuts are dashed

Definition 1. Let H ′ = (V ′
H , E′

H) be a connected planar directed acyclic (multi)
graph embedded in the plane and let H ′

D = (V ′
D, E′

D) be its dual graph. Let
d1, d2, . . . , d�, di ∈ E′

D for i ∈ {1, . . . , �}, be a tour in H ′
D. Let f1, . . . , f� be the

faces visited by the tour, i. e., the edge di goes from fi to fi+1 (where f�+1 = f1)
and let ei be the edge that gave rise to the edge di in the dual graph. We say
that the tour is non-crossing if the following holds for every face f visited by the
tour. Let fj1 , fj2 , . . . , fjp for 1 ≤ j1 ≤ j2 ≤ · · · ≤ jp ≤ � be all the faces on the
tour equal to f . Then, the edges ej1−1, ej1 , ej2−1, ej2 , . . . , ejp−1, ejp must appear
in this order when clockwise traversing the boundary of f (where e0 := e�). See
Figure 5.

The inside region defined by the tour consists of all the starting endpoints
of the edges ei, i ∈ {1, . . . , �}, and all their predecessors. The outside region
contains all the other vertices of H ′.

Notice that a non-crossing tour can be drawn in the plane in a “non-self-crossing
way”. Notice also that drawing a tour in a non-self-crossing way does not imply
that the tour is non-crossing, as demonstrated in Figure 5(c).

Lemma 1. Let H ′
D = (V ′

D, E′
D) be the dual of the graph H ′ from Theorem 2.

Then, the set of all contiguous forward-(T̂ , ŝ)-cuts of H ′ is bijection with the set
of all non-crossing tours in H ′

D such that the inside region defined by the tour

contains all vertices from T̂ and the outside region contains ŝ.

5 Counting and Sampling Contiguous Minimum
(s, T)-Cuts

In this section we prove the main theorem of the paper:

Theorem 3. Let G = (V,E,w) be a connected undirected planar graph with
edge weights w : E → R+, embedded in the plane. Let s ∈ V and T ⊂ V , s 	∈ T .
The number of contiguous minimum (s, T)-cuts of G can be computed in time

Contiguous Minimum Single-Source-Multi-Sink Cuts 57

e1
e2

e3

e6

e7e8
e9 f9

f7

f3

f

e1

e2
e3

e12
e13

f13

f

e4

e5

e10e11

f2
e1

e2
e3

e6

e7e8
e9 f9

f7

f3

f

f5

e5
e4

(a) (b) (c)

Fig. 5. Illustrating Definition 1 (a non-crossing tour): Face f (the curve-shaped shaped
region) is visited by the tour three times in figure (a): f = f3 = f7 = f9, four times
in figure (b): f = f2 = f5 = f11 = f13, and four times in figure (c): f = f3 = f5 =
f7 = f9. The edges ei appear on the boundary of f in this order: (a) e2, e3, e6, e7, e8, e9
– the clockwise order (with respect to the tour), i. e., the tour could be non-crossing
(depending on the other faces on the tour); (b) e1, e2, e4, e10, e5, e11, e12, e13, and (c)
e2, e3, e6, e5, e4, e7, e8, e9 – the tours (b) and (c) are definitely not non-crossing.

O(|V |3). A uniformly random contiguous minimum (s, T)-cut can be produced
in additional linear time.

By Lemma 1, we know that it suffices to count all non-crossing tours separating
ŝ from T̂ in the dual graph H ′

D. Even though counting cycles or tours in planar
graphs tends to be #P -complete [8,9,12], we show that the problem of counting
non-crossing tours in H ′

D can be solved in polynomial time. In particular, we
decompose the tour into paths (that cannot repeat vertices) and then we count
(or sample) each path type separately. The counting algorithm combines the
paths using dynamic programming.

Before we state the decomposition lemma, we define a “restricted dual” graph
that, unlike the dual graph H ′

D, will be guaranteed to be acyclic. The definition

will use a “tree” of edges in H ′ that connects T̂ to ŝ.

Observation 1 Let H ′ = (V ′
H , E′

H) be a planar directed acyclic (multi)graph,

let ŝ ∈ V ′
H be the only vertex of outdegree 0, and let T̂ ⊆ V ′

H , ŝ 	∈ T̂ , be the set
of vertices of indegree 0. There exists a set of edges A ⊆ E′

H such that for every

t̂ ∈ T̂ there is a unique directed path from t̂ to ŝ using only the edges from A,
and every edge in A is on the path from t̂ to ŝ for some t̂ ∈ T̂ . Moreover, A can
be constructed in time O(|T̂ ||V ′

H |).

Definition 2. Let H ′ (embedded in the plane), ŝ, T̂ , and A be as in Obser-
vation 1. We define the restricted dual (multi)graph H ′

d = (V ′
d , E

′
d) of H ′ as

follows: V ′
d is the set of all faces of H ′, and, for every edge e ∈ E′

H \ A, we
include an edge from f1 to f2, where f1 and f2 are the left and right faces of e,
respectively.

Lemma 2. The graph H ′
d = (V ′

d , E
′
d) from Definition 2 is acyclic.

58 I. Bezáková and Z. Langley

ŝ

t̂1
t̂2

t̂3

t̂4

t̂5 t̂6

vA

e

ŝ

t̂1
t̂2

t̂3

t̂4

t̂5 t̂6

A

e3

e1

e2

e4

ŝ

t̂1 t̂2

t̂3

t̂7

t̂8

t̂9

A

e1

t̂4

t̂5
t̂6

e2

v

(a) (b) (c)

Fig. 6. A-induced order and wedges: (a) The A-induced order of vertices in T̂ is
t̂1, . . . , t̂6. The wedge between t̂3 and t̂4 is highlighted – it is defined by the t̂3-v path
(its left path) and the t̂4-v path (its right path). The wedge is on the right of the edge
e; the wedge on the left of e is between t̂2 and t̂3. (b) The edges e1, e2, e3, e4 are listed in
the A-induced order. (c) Edge e1 is five wedges apart from e2, since the region defined
by the e1-v path, the e2-v path and the dotted curve contains 4 vertices from T̂ .

We need some additional terminology before stating the decomposition lemma.
Suppose we reverse the edges of A and perform a depth-first traversal from ŝ,

going through the neighbors of the current vertex in the counterclockwise order,
starting from the edge we used to get to the vertex. Let t̂1, t̂2, . . . , t̂k be the order
in which we visited the vertices in T̂ (we refer to this order as the A-induced
order of vertices in T̂). Let t̂k+1 := t̂1. For every i ∈ {1, . . . , k} we define a wedge
as follows. Let v be the first common successor of t̂i and t̂i+1 when restricted
only to edges in A. The path from t̂i to v, using only edges in A, forms the left
path of the wedge; similarly, the path from t̂i+1 to v, using only edges in A, forms
the right path. Every edge e ∈ A is in two wedges: the left and the right wedge of
e, for which e lies on the right and the left path, respectively. See Figure 6(a).

In addition to the A-induced order of vertices in T̂ , we also define the A-
induced order of pairwise independent edges in A as follows. Let e1, e2, . . . , eq ∈
A, where for every i 	= j, ei is not a successor of ej in A. Suppose that we perform
the same depth-first traversal of A as described in the previous paragraph. Then,
if we visit the edges e1, e2, . . . , eq in this order (or its cyclic rotation), we say
that the edges are ordered in the A-induced order of edges, see Figure 6(b).

We say that edge e1 ∈ A is j wedges apart from e2 ∈ A if there are j − 1
intermediate vertices from T̂ between e1 and e2. More precisely, let v be the first
common successor of e1, e2 when using only edges in A. Connect the starting
vertices of e1 and e2 by a curve in the plane so that the curve does not touch any
of the edges in A. Then, consider the region on the right of the e1-v path in A,
on the left of the e2-v path in A, and bounded by the curve; if it contains exactly
j − 1 vertices from T̂ , we say that e1 is j wedges apart from e2, see Figure 6(c).

The following lemma describes how to decompose a non-crossing tour that
separates ŝ from T̂ into paths in the restricted dual graph H ′

d (and edges in H ′
D

Contiguous Minimum Single-Source-Multi-Sink Cuts 59

Algorithm 2. Counting non-crossing tours in the dual graph H ′
D that contain

all vertices in T̂ in the inside region and ŝ in the outside region

1: for every e1, e2 ∈ A do
2: compute ξ[e1, e2], the number of paths in H ′

d from the right face of e1 to the left
face of e2 (in linear time, since H ′

d is acyclic)
3: let p be a path from one of the vertices in T̂ to ŝ, using only edges in A
4: for every e1 ∈ p do
5: for every e2 ∈ A such that e1 is exactly 1 wedge apart from e2 in A do
6: let a[e1, e2] = ξ[e1, e2]
7: for j = 2 to |T̂ | − 1 do
8: for every e2 ∈ A such that e1 is exactly j wedges apart from e2 in A do
9: let

a[e1, e2] :=
∑
e′∈p′

a[e1, e
′]ξ[e′, e2],

where p′ is the left path of e2’s left wedge
10: for every e ∈ p do
11: let a[e, e] :=

∑
e′∈p′ a[e, e

′]ξ[e′, e], where p′ is the left path of e’s left wedge
12: return

∑
e∈p a[e, e]

that connect the paths to form the tour). In essence, the tour is cut into path
segments by the tree A.

Lemma 3. Under the assumptions of Definition 2, let X be a tour in H ′
D, the

dual graph of H ′. The tour X is non-crossing and separates ŝ from T̂ if and only
if all of the following conditions hold: (1) there exist edges e1, e2, . . . , eq ∈ A
such that for every i, j ∈ {1, . . . , q}, i 	= j, ei is not a successor of ej in A,

(2) e1, . . . , eq is the A-induced order of these edges, (3) for every t̂ ∈ T̂ there
exists i such that ei is on the path from t̂ to ŝ in A, (4) there exists a path pi
in H ′

d from the right face of ei to the left face of ei+1 (let eq+1 := e1), and (5)
X = p1, d1, p2, d2, . . . , pq, dq, where di is the dual of the edge ei.

Lemma 3 yields a dynamic programming algorithm (Algorithm 2) for counting
all non-crossing tours separating ŝ from T̂ . By gradually increasing the wedge
distance, it counts walks (paths with repeated vertices) in the dual graph H ′

D

starting and ending in faces both bordering an edge in A. In particular, a[e1, e2] is
the number of walks starting with the right face of e1 and ending with the left face
of e2. For e1, e2 at distance 1, a[e1, e2] can be computed by a topological traversal
of H ′

d. For larger distances, the computation goes through an intermediate edge
e′ on the left wedge of e2, “responsible” for separating ŝ from the t̂i on this wedge
(see step 9). Correctness of Algorithm 2, along with Theorem 2 and Lemma 1
imply the counting claim of Theorem 3.

For the sampling part, we first choose e on the path p proportionally to
a[e, e]. Then we choose e′ proportionally to a[e, e′]ξ[e′, e], etc., getting the edges
e1, e2, . . . , eq from Lemma 3. Then we independently sample each path pi (see [2]
for the details of this step), obtaining a non-crossing tour and the corresponding
contiguous minimum (s, T)-cut.

60 I. Bezáková and Z. Langley

We conclude the paper with two remarks. First, the running time bound
O(n3) is tight. This can be seen by forming a graph with three paths of length
n/3 starting at the same vertex s and ending at t1, t2, t3, respectively (except
for s, the paths are disjoint). Second, the O(n3) preprocessing time might seem
prohibitively large for larger data sets. We note that in practice the graph H ′,
formed by contracting a typically very sizable set of edges, is likely going to be
significantly smaller than the original graph. Combining this with a faster net-
work flow algorithm [4], the overall running time becomes much more practical.

References

1. Ball, M.O., Provan, J.S.: Calculating bounds on reachability and connectnedness
in stochastic networks. Networks 13, 253–278 (1983)

2. Bezáková, I., Friedlander, A.J.: Counting and sampling minimum (s, t)-cuts in
weighted planar graphs in polynomial time. Theor. Comp. Sci. 417, 2–11 (2012)

3. Borradaile, G., Klein, P.N.: An O(n log n) algorithm for maximum st-flow in a
directed planar graph. J. ACM 56(2) (2009)

4. Borradaile, G., Klein, P.N., Mozes, S., Nussbaum, Y., Wulff-Nilsen, C.: Multiple-
source multiple-sink maximum flow in directed planar graphs in near-linear time.
In: Proceedings of the 52nd IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 170–179 (2011)

5. Borradaile, G., Sankowski, P., Wulff-Nilsen, C.: Min st-cut oracle for planar graphs
with near-linear preprocessing time. In: Proceedings of the 51st IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 601–610 (2010)

6. Boykov, Y., Veksler, O.: Graph cuts in vision and graphics: Theories and applica-
tions. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical
Models in Computer Vision. Springer (2006)

7. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

8. Creed, P.: Counting and sampling problems on Eulerian graphs. Ph.D. Dissertation,
University of Edinburgh (2010)

9. Ge, Q., Štefankovič, D.: The complexity of counting Eulerian tours in 4-regular
graphs. Algorithmica 63(3), 588–601 (2012)

10. Grady, L.: Minimal surfaces extend shortest path segmentation methods to 3D.
IEEE Trans. Pattern Anal. Mach. Intell. 32(2), 321–334 (2010)

11. Italiano, G.F., Nussbaum, Y., Sankowski, P., Wulff-Nilsen, C.: Improved algorithms
for min cut and max flow in undirected planar graphs. In: Proceedings of the 43rd
ACM Symposium on Theory of Computing (STOC), pp. 313–322 (2011)

12. Liskiewicz, M., Ogihara, M., Toda, S.: The complexity of counting self-avoiding
walks in subgraphs of two-dimensional grids and hypercubes. Theoretical Computer
Science 304(1-3), 129–156 (2003)

13. Provan, J.S., Ball, M.O.: The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM J. Comput. 12(4), 777–788 (1983)

14. Vicente, S., Kolmogorov, V., Rother, C.: Graph cut based image segmentation with
connectivity priors. In: Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, CVPR (2008)

15. Zeng, Y., Samaras, D., Chen, W., Peng, Q.: Topology cuts: A novel min-cut/max-
flow algorithm for topology preserving segmentation in n-d images. Computer Vi-
sion Image Understanding 112, 81–90 (2008)

Online Knapsack Problem with Removal Cost

Xin Han1,�, Yasushi Kawase2,��, and Kazuhisa Makino2,��

1 Dalian University of Technology
hanxin@dlut.edu.cn
2 University of Tokyo

{yasushi kawase,makino}@mist.i.u-tokyo.ac.jp

Abstract. In this paper, we study the online knapsack problem with
removal cost. The input is a sequence of items u1, u2, . . . , un, each of
which has a size and a value, where the value of each item is assumed
to be equal to the size. Given the ith item ui, we either put ui into the
knapsack or reject it with no cost. When ui is put into the knapsack,
some items in the knapsack are removed with removal cost if the sum
of the size of ui and the total size in the current knapsack exceeds the
capacity of the knapsack. Here the removal cost means a cancellation
charge or disposal fee. Our goal is to maximize the profit, i.e., the sum
of the values of items in the last knapsack minus the total removal cost
occurred.

In this paper, we consider two kinds of removal cost: unit and pro-
portional cost. For both models, we provide their competitive ratios.
Namely, we construct optimal online algorithms and prove that they are
best possible.

1 Introduction

The knapsack problem is one of the most classical problems in combinatorial
optimization and has a lot of applications in the real world [10]. The knapsack
problem is that: given a set of items with values and sizes, we are asked to
maximize the total value of selected items in the knapsack satisfying the capacity
constraint.

In this paper, we study the online version of the knapsack problem with
removal cost. Here, “online” means i) the information of the input (i.e., the
items) is given gradually, i.e., after a decision is made on the current item, the
next item is given; ii) the decisions we have made are irrevocable, i.e., once a
decision has been made, it cannot be changed. Given the ith item ui, we either
accept ui (i.e., put ui into the knapsack) or reject it with no cost. When ui is put
into the knapsack, some items in the knapsack are removed with removal cost
if the sum of the size of ui and the total size in the current knapsack exceeds

� Partially supported by NSFC(11101065).
�� Supported by a Grant-in-Aid for Scientific Research from the Ministry of Educa-

tion, Culture, Sports, Science and Technology of Japan and the Global COE “The
Research and Training Center for New Development in Mathematics.”

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 61–73, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

62 X. Han, Y. Kawase, and K. Makino

1, i.e., the capacity of the knapsack. Here the removal cost means a cancellation
charge or disposal fee. Our goal is to maximize the profit, i.e., the sum of the
values of items in the last knapsack minus the total removal cost occurred.

1.1 Related Work

The online knapsack problem (under no removal condition) was first studied on
average case analysis by Marchetti-Spaccamela and Vercellis [12]. They proposed
a linear time approximation algorithm such that the expected difference between
the optimal profit and the one obtained by the algorithm is O(log3/2 n) under the
condition that the capacity of the knapsack grows proportionally to the number
of items n. Lueker [11] improved the expected difference to O(log n) under a
fairly general condition on the distribution.

Iwama and Taketomi [8] studied the online knapsack problem on worst case

analysis. They obtained a 1+
√
5

2 ≈ 1.618-competitive algorithm for the online
knapsack when (1) the removable condition (without removal cost) is allowed
and (2) the value of each item is equal to the size, and showed that this is
best possible by providing a lower bound 1.618 for the case. We remark that
the problem has unbounded competitive ratio, if at least one of the conditions
(1) and (2) is not satisfied [8, 9]. For other models such as minimum knapsack
problem and knapsack problem with limited cuts, refer to papers in [6, 7, 13].

The removal cost has introduced in the buyback problem [1–5]. In the problem,
we observe a sequence of bids and decide whether to accept each bid at the
moment it arrives, subject to constraints on accepted bids such as single item and
matroid constraints. Decisions to reject bids are irrevocable, whereas decisions to
accept bids may be canceled at a cost which is a fixed fraction of the bid value.
Babaioff et al. [3] showed that the buyback problem with matroid constraint

has
(
1 + 2f + 2

√
f(1 + f)

)
-competitive ratio, where f > 0 is a buyback factor.

Ashwinkumar [1] extended their results and show that the buyback problem

with the constraint of k matroid intersections has k(1 + f)(1 +
√
1− 1

k(1+f))
2-

competitive ratio.

1.2 Our Results

In this paper, we study the worst case analysis of the online knapsack problem
with removal cost, when the value of each item is equal to the size. We considers
two kinds of models of removal cost: the proportional and the unit cost model.
In the proportional cost model, the removal cost of each item ui is proportional
to its value (and hence size), i.e., it is f · s(ui), where s(ui) denotes the size of
ui and f > 0 is a fixed constant, called buyback factor. Therefore, we can view
this model as the buyback problem with knapsack constraints. In the unit cost
model, the removal cost of each item is a fixed constant c > 0, where we assume
that every item has value at least c, since in many applications, the removal
cost (i.e., cancellation charge) is not higher than its value. We remark that the

Online Knapsack Problem with Removal Cost 63

problem has unbounded competitive ratio if no such assumption is satisfied (see
Section 3).

We show that the proportional and unit cost models have competitive ratios
λ(f) and μ(c) in (1) and (2), respectively, where λ(f) and μ(c) are given in
Figure 1. Namely, we construct λ(f)- and μ(c)-competitive algorithms for the
models and prove that they are best possible.

λ(f) =

{
2 (1/2 ≥ f > 0),
1+f+

√
f2+2f+5

2 (f > 1/2).
(1)

μ(c) =

⎧⎪⎪⎨⎪⎪⎩
max {η(k), ξ(k + 1)} (1 −

√
k+1
k+2 ≤ c ≤ 1−

√
k

k+1 , k = 1, 2, . . .),

ξ(1) (1 − 1√
2
≤ c ≤ 1/2),

1/c (c ≥ 1/2),

(2)

where

η(k) =
k(c+ 1) +

√
k2(1− c)2 + 4k

2k(1− kc)
, ξ(k) =

1

2
+

1

2

√
1 +

4

kc
. (3)

The main ideas of our algorithms for both models are: i) we may reject items
(with no cost) many times, but in at most one round, we remove items which
from the knapsack. ii) some items are removed from the knapsack, only when the
total value in the resulting knapsack gets high enough to guarantee the optimal
competitive ratio.

The rest of the paper is organized as follows. In the next section, we consider
the proportional cost model, and in Section 3, we consider the unit cost model.
Due to the space limitation, some of the proofs are omitted.

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 0 0.2 0.4 0.6 0.8 1 1.2

co
m

pe
tit

iv
e

ra
tio

f

λ(f)

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 1. The competitive ratios λ(f) and μ(c) for the proportional and unit cost models

64 X. Han, Y. Kawase, and K. Makino

2 Proportional Cost Model

In this section, we consider the proportional cost model, where each item ui

has removal cost f · s(ui) for some positive constant f . We first show that λ(f)
is a lower bound of the competitive ratio of the problem, and then propose a
λ(f)-competitive algorithm, where λ(f) is given in (1).

2.1 Lower Bound

In this subsection, we show a lower bound of the competitive ratio λ(f) for the
problem.

Theorem 1. There exists no online algorithm with competitive ratio strictly less
than ρ = λ(f) for the knapsack problem with proportional removal cost, when
the value of each item is equal to the size.

Proof. According to the value of f , we separately consider the following two
cases.

Case 1: 1/2 ≥ f > 0. Let A denote an online algorithm chosen arbitrarily. For
a sufficiently small ε (> 0), our adversary requests the sequence of items whose
sizes are

1

2
+ ε,

1

2
+

ε

2
, . . . ,

1

2
+

ε

�1/f+ 1
, (4)

until A rejects some item in (4). If A rejects the item with size 1
2 + ε, then the

adversary stops the input sequence. On the other hand, if it rejects the item
with size 1

2 + ε
k for some k > 1, then the adversary requests an item with size

1
2 − ε

k and stops the input sequence.
We first note that algorithm A must take the first item, since otherwise the

competitive ratio of A becomes infinite. After the first round, A always keeps
exactly one item in the knapsack, since all the items in (4) have size larger than 1

2
(i.e., a half of the knapsack capacity) and for any j < k we have (12 +

ε
j)+(12 −

ε
k)

is larger than 1. This implies that A removes the old item from the knapsack to
accept a new item. If A rejects 1

2 +
ε
k for some k > 1, the competitive ratio is at

least 1/
(
1
2 + ε

k

)
, which approaches 2 as ε → 0. Finally, if A rejects no item in

(4), then its profit is

1

2
+

ε

�1/f+ 1
− f

�1/f	∑
k=1

(
1

2
+

ε

k

)
≤ 1

2
− f

�1/f	∑
i=1

1

2
≤ 0 (5)

while the optimal profit for the offline problem is 1
2 + ε, which completes the

proof for 1/2 ≥ f > 0.

Case 2: f > 1/2. Let A denote an online algorithm chosen arbitrarily, and let

x =
3+f−

√
f2+2f+5

2(1+f) . For a sufficiently small ε (> 0), our adversary requests the

following sequence of items

x, 1− x+ ε, 1− x, (6)

Online Knapsack Problem with Removal Cost 65

until A rejects some item in (6), and if A rejects the item then the adversary
immediately stops the input sequence.

Note that A must accept the first item x, since otherwise the competitive
ratio becomes infinite. If A rejects the second item, then the competitive ratio
is at least

1− x+ ε

x
≥ 1− x

x
= λ(f). (7)

If A takes the second item 1−x+ ε (and removes the first item),the competitive
ratio is at least 1

1−x+ε−f ·x , which approaches to λ(f) (= 1
1−x−f ·x) as ε → 0,

which completes the proof for f > 1/2. ��

2.2 Upper Bound

In this subsection, we propose a λ(f)-competitive algorithm. Note that the total
profit becomes small (even negative), if we remove items from the knapsack many
times. Intuitively, our algorithm accepts the item if the knapsack has room to put
it. If we can make the profit sufficiently high by accepting the item and removing
some items from the current knapsack, then our algorithm follows this, and after
this iteration, it rejects all the items. Otherwise, we simply rejects the item.

Let ρ = λ(f), and let ui be the item given in the ith round. Define by Bi−1

the set of items in the knapsack at the beginning of ith round, and by s(Bi−1)
the total size in Bi−1.

Algorithm 1.

1. if s(ui) + s(Bi−1) ≤ 1 then Bi ← Bi−1 ∪ {ui} and if s(Bi) ≥ 1/ρ
then STOP

2. else if ∃B′
i ⊆ Bi−1 s.t. 1

ρ + f · (s(Bi−1)− s(B′
i)) < s(B′

i) + s(ui) ≤ 1

then Bi ← B′
i ∪ {ui} and STOP

3. else Bi ← Bi−1

Here STOP denotes that the algorithm rejects the items after this round.

Lemma 2. If s(ui) + s(Bi−1) > 1 and some B′
i ⊆ Bi−1 satisfies ρ · s(Bi−1) <

s(B′
i) + s(ui) ≤ 1, then the second line is executed in the ith round.

Proof. Since s(ui) + s(Bi−1) > 1 and ρ · s(Bi−1) < s(B′
i) + s(ui), we obtain

1

ρ
+ f · (s(Bi−1)− s(B′

i)) <
s(ui) + s(Bi−1)

ρ
+ f · (s(Bi−1)− s(B′

i))

<
s(ui)

ρ
+

s(B′
i) + s(ui)

ρ2
+ f · s(B

′
i) + s(ui)

ρ
− fs(B′

i)

=
1 + fρ− fρ2

ρ2
s(B′

i) +
1 + fρ+ ρ

ρ2
s(ui). (8)

66 X. Han, Y. Kawase, and K. Makino

As ρ2 ≥ 1 + fρ+ ρ by the definition of ρ, we have

1 + fρ− fρ2

ρ2
≤ 1 + fρ− fρ2

1 + fρ+ ρ
< 1 and

1 + fρ+ ρ

ρ2
≤ 1. (9)

��

Let OPT denote an optimal solution for the offline problem whose input sequence
is u1, . . . , ui.

Lemma 3. If s(Bi) < 1/ρ then we have |OPT \Bi| ≤ 1.

Proof. Bi contains all the items smaller than 1/2, since s(Bi) < 1/ρ ≤ 1/2. Any
item u ∈ OPT\Bi has size greater than 1−1/ρ ≥ 1/2. Therefore, |OPT\Bi| ≤ 1
holds by s(OPT) ≤ 1. ��

Theorem 4. The online algorithm given in this section is λ(f)-competitive.

Proof. Suppose that the second line is executed in round k. Then it holds that
1
ρ + f · (s(Bk−1) − s(B′

k)) < s(B′
k) + s(uk) = s(Bk) holds. Since s(Bi) = s(Bk)

holds for all i ≥ k, we have

s(OPT)

s(Bi)− f · (s(Bk−1)− s(B′
k))

≤ 1

s(Bk)− f · (s(Bk−1)− s(B′
k))

< ρ (= λ(f)).

(10)

We next assume that the second line has never been executed. If s(Bi) ≥ 1/ρ,
we have the competitive ratio s(OPT)/s(Bi) ≤ 1/s(Bi) ≤ ρ. On the other hand,
if s(Bi) < 1/ρ, |OPT \ Bi| = 0 or 1 holds by Lemma 3, If |OPT \ Bi| = 0,
we obtain the competitive ratio 1. Otherwise (i.e., OPT \ Bi = {uk} for some
k), Lemma 2 implies that ρ · s(Bk−1) ≥ s(B′

k) + s(uk) for B′
k = OPT ∩ Bk−1

Therefore we obtain

s(OPT)

s(Bi)
≤ s(B′

k) + s(uk) + s(Bi \Bk−1)

s(Bk−1) + s(Bi \Bk−1)

≤ max

{
s(B′

k) + s(uk)

s(Bk−1)
,
s(Bi \Bk−1)

s(Bi \Bk−1)

}
≤ ρ (= λ(f)). (11)

��

Before concluding this section, we remark that the condition in the second line
can be checked in O(|Bi−1|+ 2ρ

2

) time.

3 Unit Cost Model

In this section, we consider the unit cost model, where it costs us a fixed constant
c > 0 to remove each item from the knapsack. Recall that every item has size
at least c. In this section, we show that the knapsack problem with unit cost

Online Knapsack Problem with Removal Cost 67

is μ(c)-competitive, where μ(c) is defined in (2). We note that μ(c) attains the
maximum 1 +

√
2 when c = 1− 1/

√
2.

Remark: If items are allowed to have size smaller than c, the problem becomes
unbounded competitive. To see this, for a positive number r, let ε denote a
positive number such that ε < 1/(�1/c · r). For an online algorithm A chosen
arbitrarily, our adversary keeps requesting the items with size ε, until A accepts
�1/c items or rejects r · �1/c items. If A rejects r · �1/c items (before accepting
�1/c items), the adversary stops the input sequence; otherwise, it requests an
item with size 1 and stops the input sequence. In the former case, the competitive

ratio is at least r�1/c	ε
�1/c	ε = r. In the latter case, the competitive ratio becomes

1
�1/c	·ε > r if A rejects the last item (with size 1). Otherwise, A removes the

�1/c items to take the last item. This implies that the profit is 1 − �1/c · c ≤
0. Therefore, without the assumption, no online algorithm attains a bounded
competitive ratio.

3.1 The Case c ≥ 1/2

We first consider the case where c ≥ 1/2. In this case, it is not difficult to see
that the problem is 1/c (= μ(c))-competitive.

Theorem 5. If the unit removal cost c of the knapsack problem is at least 1/2,
then there exists no online algorithm with competitive ratio strictly less than 1/c
for the problem when the value of each item is equal to the size.

Proof. For an online algorithm A chosen arbitrarily, our adversary first requests
an item with size c. If A does not accept it, the adversary stop the input sequence.
Otherwise, it next request an item with size 1 and stop the input sequence. It
is clear that A must take the first item, since otherwise the competitive ratio
becomes infinite. If A rejects the second item, then we have the competitive ratio
1/c. Otherwise (i.e., A accepts the second item by removing the first item), the
competitive ratio is 1/(1− c) ≥ 1/c, since c ≥ 1/2. ��

Theorem 6. There exists a 1/c-competitive algorithm for the knapsack problem
with unit removal cost, when the value of each item is equal to the size.

Proof. Consider an online algorithm which takes the first item u1 and rejects the
remaining items. Since s(u1) ≥ c and the optimal value of the offline problem is
at most 1, the competitive ratio is at most 1/c. ��

3.2 The Case c < 1/2

In this section we consider the case in which c < 1/2.

3.2.1 Lower Bound

For 0 < c < 1/2, we show that μ(c) is a lower bound of the competitive ratio for
the problem by starting with several propositions needed later.

68 X. Han, Y. Kawase, and K. Makino

Proposition 7. For any positive integer k, we have

1

2k + 4
< 1−

√
k + 1

k + 2
, 1−

√
k

k + 1
<

1

2k + 1
. (12)

Definition 8. We define xk and yk as follows:

xk =
k + 2− kc−

√
k2(1 − c)2 + 4k

2
, yk =

kc+
√
k2c2 + 4kc

2
. (13)

Proposition 9. η(k) and ξ(k) in (3) satisfy the following equalities.

η(k) =
1

1− xk − kc
=

1− xk

kxk
=

k(c+ 1) +
√
k2(1− c)2 + 4k

2k(1− kc)
, (14)

ξ(k) =
1

yk − kc
=

yk
kc

=
1

2
+

1

2

√
1 +

4

kc
. (15)

We provide two kinds of adversaries.

Theorem 10. Assume that removal cost c satisfies 1−
√

k+1
k+2 ≤ c ≤ 1−

√
k

k+1

for a positive integer k. Then there exists no online algorithm with competitive
ratio strictly less than η(k) for the knapsack problem with unit removal cost,
when the value of each item is equal to the size.

Proof. Let xk =
k+2−kc−

√
k2(1−c)2+4k

2 . For an online algorithm A chosen arbi-
trarily, our adversary keeps requesting the items with size xk until A accepts
k items or rejects �1/xk items. If A rejects �1/xk items before accepting k
items, the adversary stops the input sequence (1). Otherwise (i.e., A accepts k
items), then the adversary next requests an item with size 1 − xk + ε where ε
is a sufficiently small positive number; if A rejects it, the adversary stops the
input sequence (2), and otherwise, the adversary next requests an item with size
1 − xk and stops the input sequence (3). Note that all the items have size at

least c, since 1−
√

k+1
k+2 ≤ c ≤ 1−

√
k

k+1 implies xk ≥ c and 1− xk ≥ c.

In the case of (1), we have the competitive ratio at least 1−xk

(k−1)xk
> 1−xk

kxk
=

η(k), where the last equality follows from Proposition 9. In the case of (2), the
competitive ratio is at least 1−xk+ε

kxk
> 1−xk

kxk
= η(k) by Proposition 9. Finally, in

the case of (3), the competitive ratio is at least 1
1−xk+ε−kc . Proposition 9 implies

that this approaches η(k) (= 1
1−xk−kc) as (ε → 0). ��

Theorem 11. Assume that removal cost c satisfies 1 −
√

k
k+1 ≤ c < 1

2k for a

positive integer k. Then there exists no online algorithm with competitive ratio
strictly less than ξ(k) for the knapsack problem with unit removal cost, when the
value of each item is equal to the size.

Proof. Let A denote an online algorithm chosen arbitrarily. Then our adversary
keeps requesting the items with size c until A accepts k items or rejects �1/c

Online Knapsack Problem with Removal Cost 69

items. If A rejects �1/c items before accepting k items, the adversary stops the
input sequence (1). Otherwise (i.e., A accepts k items), the adversary requests

an item with size yk = kc+
√
k2c2+4kc
2 which is at least 1−c > c, since 1−

√
k

k+1 ≤
c < 1

2k ; if A rejects it, the adversary stops the input sequence (2), and otherwise,
the adversary requests an item with size 1− c and stops the input sequence (3).

In the case of (1), the competitive ratio is at least 1−c
(k−1)c ≥ 1

kc ≥ yk

kc =

ξ(k), where the last equality follows from Proposition 9. In the case of (2),
the competitive ratio is yk

kc = ξ(k) by Proposition 9. Finally, in the case of
(3), the competitive ratio is at least 1

yk−kc = ξ(k), which again follows from
Proposition 9. ��
By Theorems 10 and 11, it holds that μ(c) is a lower bound of the competitive
ratio for 0 < c < 1/2.

3.2.2 Upper Bound

In this subsection, we show μ(c) is also an upper bound for the competitive ratio
of the problem when 0 < c < 1/2. We start with several propositions needed
later.

Proposition 12. For a positive integer k, let c satisfy 0 < c ≤ 1−
√

k
k+1 . Then

we have

max {η(k), ξ(k + 1)} ≥ 2. (16)

Proposition 13. For a positive integer k, let c satisfy 1 −
√

k+1
k+2 ≤ c ≤ 1 −√

k
k+1 . Then we have

max

{
max

α∈{1,2,...,k}
η(α), ξ(k + 1)

}
= max {η(k), ξ(k + 1)} = μ(c). (17)

Proposition 14. For a positive integer k, let c satisfy 1 −
√

k+1
k+2 ≤ c ≤ 1 −√

k
k+1 . Then for any positive integer α ≤ k and real x ∈ (0, 1−αc), it holds that

min

{
1

1− x− αc
,
1− x

αx

}
≤ η(α) ≤ μ(c). (18)

Proof. Since 1
1−x−αc and 1−x

αx are respectively monotone increasing and decreas-
ing in x, the first inequality holds by Proposition 9. The second inequality is
obtained by Proposition 13. ��

Proposition 15. For a positive integer k, let c satisfy 1 −
√

k+1
k+2 ≤ c ≤ 1 −√

k
k+1 . Then for any real y ∈ ((k + 1)c, 1], we have

min

{
1

y − (k + 1)c
,

y

(k + 1)c

}
≤ ξ(k + 1) ≤ μ(c). (19)

70 X. Han, Y. Kawase, and K. Makino

Proof. Since 1
y−(k+1)c and y

(k+1)c are respectively monotone decreasing and in-

creasing in y, the first inequality holds by Proposition 9. The second inequality
follows from the definition of μ(c). ��

We are now ready to prove that μ(c) is an upper bound for the competitive ratio.
According to the size of c, we make use of two algorithms described below.

Theorem 16. If 1− 1√
2
≤ c ≤ 1

2 , there exists an online algorithm with compet-

itive ratio μ(c) for the knapsack problem with unit removal cost, when the value
of each item is equal to the size.

Proof. We consider the following algorithm, where Bi−1 denotes the set of items
in the knapsack at the beginning of the ith round, and and s(Bi−1) denotes the
total size in Bi−1. Let ui be the item given in the ith round.

Algorithm 2.

1. if s(Bi−1) + s(ui) ≤ 1 then Bi ← Bi−1 ∪ {ui}
2. else if |Bi−1| = 1 and s(ui) ≥ c+

√
c2+4c
2 then Bi ← {ui} and STOP

3. else Bi ← Bi−1

Here STOP denotes that the algorithm rejects the items after this round.
Let OPT denote an optimal solution for the offline problem whose input

sequence is u1, . . . , ui. If the algorithm stops at the second line, the competitive

ratio is at most 1/
(

c+
√
c2+4c
2 − c

)
= c+

√
c2+4c
2c = μ(c), since s(OPT) ≤ 1.

Assume that the algorithm has never stopped at the second line and |Bi| = 1.
Then if s(Bi) ≥ 1/2, the competitive ratio is at most 1

1/2 = 2 ≤ μ(c). Otherwise,

the item in Bi has size smaller than 1/2, while the item uj with j < i and uj 	∈ Bi

has size at least 1/2. This implies that |OPT| = 1 and the competitive ratio is

smaller than μ(c), since s(Bi) ≥ c and s(OPT) < c+
√
c2+4c
2 . If the algorithm has

never stopped at the second line and |Bi| > 1, the competitive ratio is at most
1
2c < μ(c), since c ≥ 1− 1/

√
2 > 1/6 implies c+

√
c2 + 4c > 1. ��

Theorem 17. If 1 −
√

k+1
k+2 ≤ c ≤ 1 −

√
k

k+1 , there exists an online algorithm

with competitive ratio μ(c) for the knapsack problem with unit removal cost, when
the value of each item is equal to the size.

Proof. We show that the following algorithm satisfies the desired property. In
the algorithm, let Bi−1 = {b1, b2, . . . , bm} be the set of items in the knapsack at
the beginning of the ith round, such that s(b1) ≥ s(b2) ≥ · · · ≥ s(bm). Let ui be
the item given in the ith round.

Online Knapsack Problem with Removal Cost 71

Algorithm 3.

1. if s(Bi−1) + s(ui) ≤ 1 then Bi ← Bi−1 ∪ {ui}
2. else
3. B′

i−1 ← ∅
4. for j = 1 to m if s(B′

i−1)+s(bj) ≤ 1−s(ui) then B′
i−1 ← B′

i−1∪{bj}
5. if s(B′

i−1) + s(ui)− |Bi−1 \B′
i−1|c ≥ 1/μ(c)

then Bi ← B′
i−1 ∪ {ui} and STOP

6. else Bi ← Bi−1

Here STOP denotes that the algorithm rejects the items after this round.
Let OPT denote an optimal solution for the offline problem whose input se-

quence is u1, . . . , ui. If the algorithm stops at the fifth line in round l ≤ i, s(Bi) =
s(Bl) = s(B′

l−1)+s(ul) and the profit of the algorithm is s(B′
l−1)+s(ul)−|Bl−1\

B′
l−1|c. Therefore, the competitive ratio is at most 1

s(B′
l−1)+s(ul)−|Bl−1\B′

l−1|c ≤
μ(c), since s(OPT) ≤ 1. Otherwise, the algorithm has never removed old items
from the knapsack. If s(Bi) ≥ 1/2, then the competitive ratio is at most 1

1/2 =

2 ≤ μ(c). On the other hand, if s(Bi) < 1/2, then any item in Bi has size
at most 1/2. while any item in OPT \Bi has size larger than 1/2. This implies
|OPT\Bi| ≤ 1 by s(OPT) ≤ 1. If |OPT\Bi| = 0, then we have OPT = Bi, which
implies that the competitive ratio is 1. Thus we assume that |OPT \ Bi| = 1.
For the cardinality of Bi, we have |Bi| ≤ k + 1, since any b ∈ Bi satisfies

s(b) ≥ c ≥ 1−
√

k+1
k+2 ≥ 1

2k+4 , where the last inequality follows from Proposition

7. Since the algorithm has never removed items, |Bl| ≤ k+1 also holds for each
l with l ≤ i. Let

{ul} = OPT \Bi, α = |Bl−1 \B′
l−1|, x = 1− (s(ul) + s(B′

l−1)). (20)

Since Bl−1 \B′
l−1 	= ∅, we have

α > 0 and x <

√
k

k + 1
< 1− αc. (21)

Since s(Bi) = s(Bl−1) + s(Bi \ Bl−1) and s(OPT) ≤ s(ul) + s(Bl−1 ∩ OPT) +
s(Bi \Bl−1), the competitive ratio is at most

s(ul) + s(Bl−1 ∩OPT) + s(Bi \Bl−1)

s(Bl−1) + s(Bi \Bl−1)
≤ max

{
s(ul) + s(Bl−1 ∩OPT)

s(Bl−1)
, 1

}
.

We claim that
s(ul)+s(Bl−1∩OPT)

s(Bl−1)
≤ μ(c).

Let Bl = {b1, b2, . . . , bm} satisfy s(b1) ≥ s(b2) ≥ · · · ≥ s(bm). To see this
claim, we separately consider the following two cases:

Case 1. Consider the case in which there exists bj ∈ B′
l−1 such that bh 	∈ B′

l−1

holds for some h > j. Let us take bj as the largest such item, i.e., bj ∈ B′
l−1 and

bg 	∈ B′
l−1 for all g (< j).

In this case, we obtain the following inequalities:

s(ul) + s(Bl−1 ∩OPT)

s(Bl−1)
≤ s(bh) + 1− x

s(bh) + αx
≤ max

{
1,

1− x

αx

}
. (22)

72 X. Han, Y. Kawase, and K. Makino

Here the numerator and denominator in the left hand side of (22) respectively
satisfy s(ul) + s(Bl−1 ∩OPT) ≤ 1 < s(bh)+ s(ul) + s(B′

l−1) = s(bh)+ 1− x and
s(Bl−1) = s(B′

l−1) + s(Bl−1 \B′
l−1) ≥ s(bh) + αx, since bh 	∈ B′

l−1 and s(b) > x

holds for any b ∈ Bl−1 \B′
l−1. Finally, we show

1−x
αx ≤ μ(c), which completes the

claim.
Since the algorithm has not stopped at the fifth line and 1−x−αc > 0 by (21),

we have 1
1−x−αc = 1

s(B′
l−1)+s(ul)−αc > μ(c). Note that α ≤ |Bl−1 \ {bh}| ≤ k,

since |Bl−1| ≤ k + 1. Therefore, we obtain 1−x
αx ≤ μ(c) by Proposition 14.

Case 2. We next consider the case in which bj ∈ B′
l−1 implies bh ∈ B′

l−1 for all
h (> j), i.e., B′

l−1 consists of the |B′
l−1| smallest items of Bl−1. Then we have

s(b) > 1− s(ul) for any b ∈ Bl−1 \B
′
l−1. This implies Bl−1 ∩OPT ⊆ B′

l−1, and
s(Bl−1 \B′

l−1) > αx holds by (20).
If α ≤ k, thus, the competitive ratio is at most

s(ul) + s(Bl−1 ∩OPT)

s(Bl−1)
≤

s(ul) + s(B′
l−1)

s(Bl−1 \B′
l−1)

≤ 1− x

αx
≤ μ(c), (23)

where the last inequality follows from a similar argument to Case 1. On the
other hand, if α = k + 1, let y = s(ul) + s(B′

l−1). Then we have

s(ul) + s(Bl−1 ∩OPT)

s(Bl−1)
≤ y

(k + 1)c
, (24)

where the inequality follows from the fact that s(ul)+ s(Bl−1 ∩OPT) ≤ s(ul)+
s(B′

l−1) = y and s(Bl−1) ≥ s(B′
l−1) ≥ (k + 1)c, since Bl−1 ∩ OPT ⊆ B′

l−1 and
any item has size at least c. Finally, since y > (k+1)c and the algorithm has not
stopped at the fifth line, it holds that 1

y−(k+1)c = 1
s(B′

l−1)+s(ul)−(k+1)c > μ(c).

This together with Proposition 15 implies y
(k+1)c ≤ μ(c). ��

References

1. Ashwinkumar, B.V.: Buyback Problem - Approximate Matroid Intersection with
Cancellation Costs. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011.
LNCS, vol. 6755, pp. 379–390. Springer, Heidelberg (2011)

2. Ashwinkumar, B.V., Kleinberg, R.: Randomized Online Algorithms for the Buy-
back Problem. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 529–536.
Springer, Heidelberg (2009)

3. Babaioff, M., Hartline, J.D., Kleinberg, R.D.: Selling ad campaigns: Online algo-
rithms with cancellations. In: ACM Conference on Electronic Commerce, pp. 61–70
(2009)

4. Biyalogorsky, E., Carmon, Z., Fruchter, G.E., Gerstner, E.: Research note: Over-
selling with opportunistic cancellations. Marketing Science 18(4), 605–610 (1999)

5. Constantin, F., Feldman, J., Muthukrishnan, S., Pál, M.: An online mechanism for
ad slot reservations with cancellations. In: SODA, pp. 1265–1274 (2009)

6. Han, X., Makino, K.: Online Minimization Knapsack Problem. In: Bampis, E.,
Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 182–193. Springer, Heidelberg
(2010)

Online Knapsack Problem with Removal Cost 73

7. Han, X., Makino, K.: Online removable knapsack with limited cuts. Theoretical
Computer Science 411, 3956–3964 (2010)

8. Iwama, K., Taketomi, S.: Removable online knapsack problems. LNCS, pp. 293–305
(2002)

9. Iwama, K., Zhang, G.: Optimal Resource Augmentations for Online Knapsack. In:
Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and
APPROX 2007. LNCS, vol. 4627, pp. 180–188. Springer, Heidelberg (2007)

10. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer (2004)
11. Lueker, G.S.: Average-case analysis of off-line and on-line knapsack problems. Jour-

nal of Algorithms 29(2), 277–305 (1998)
12. Marchetti-Spaccamela, A., Vercellis, C.: Stochastic on-line knapsack problems.

Mathematical Programming 68, 73–104 (1995)
13. Noga, J., Sarbua, V.: An online partially fractional knapsack problem. In: ISPAN,

pp. 108–112 (2005)

An Improved Exact Algorithm for TSP

in Degree-4 Graphs�

Mingyu Xiao1 and Hiroshi Nagamochi2

1 School of Computer Science and Engineering,
University of Electronic Science and Technology of China, China

myxiao@gmail.com
2 Graduate School of Informatics, Kyoto University, Japan

nag@amp.i.kyoto-u.ac.jp

Abstract. The paper presents an O∗(1.716n)-time polynomial-space al-
gorithm for the traveling salesman problem in an n-vertex edge-weighted
graph with maximum degree 4, which improves the previous results of
the O∗(1.890n)-time polynomial-space algorithm by Eppstein and the
O∗(1.733n)-time exponential-space algorithm by Gebauer.

Keywords: Traveling Salesman Problem, Exact Exponential Algorithm,
Graph Algorithm.

1 Introduction

The famous traveling salesman problem (TSP) was first formulated as a mathe-
matical problem in 1930s and is one of the most intensively studied problems in
optimization. A large number of heuristics and exact methods for it are known.
A classical dynamic programming solution with running time O∗(2n) for it was
discovered in early 1960s, where n is the number of vertices in the graph. Despite
the great progress in the pass half a century on exact exponential algorithms and
their worst-case analysis for other basic NP-hard optimization problems, such
as the maximum independent set problem, the CNF satisfiability problem and
so on, it seems very hard to break the barrier of 2 in the basic of the expo-
nential part for TSP [8]. To make steps toward the long-standing open problem
of designing an O∗(1.99n) algorithm for TSP, researchers have interests in find-
ing fast solutions to the problem in special classes of graphs, especially degree
bounded graphs. Eppstein [5] presented a branch-and-search method to solve
TSP in O∗(1.260n) time for degree-3 graphs and in O∗(1.890n) time for degree-
4 graphs. Both of the algorithms run in polynomial space. Later, Iwama and
Nakashima [7] refined Eppstein’s algorithm for degree-3 graphs and improved
the result to O∗(1.251n). Gebauer [6] designed an O∗(1.733n)-time exponential-
space algorithm for TSP in degree-4 graphs. Bjorklund et al. [2] also showed
TSP in degree bounded graph can be solved in O∗((2 − ε)n) time, where ε > 0
depends on the degree bound only. There is a Monte Carlo algorithm to decide a

� Supported in part by Grant 60903007 of NSFC, China.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 74–85, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Improved Exact Algorithm for TSP in Degree-4 Graphs 75

graph is Hamiltonian or not in O∗(1.657n) time [1]. We also note that there are
sub-exponential algorithms for planar TSP and Euclidean TSP based on small
separators [3]. In this paper, we present a deterministic branch-and-search al-
gorithm for TSP in degree-4 graphs that runs in O∗(1.716n) time and improves
previous exact algorithms.

Similar to most previous branch-and-search algorithms for TSP, the basic idea
of our algorithm is to branch on an edge by either including it into the solution
or not. To effectively analyze our algorithm, we use the measure and conquer
method, in which we set a weight to each vertex in the graph to distinguish
them and then analyze how much total weight can be reduced in each branch.
In previous measure-and-conquer algorithms, we usually set the same weight to
vertices of the same degree in a graph. However this setting may not be useful
for branch-and-search algorithms for TSP. In our algorithm, we set two different
weights for vertices of the same degree. Our result is the first time to successfully
apply the measure and conquer method to TSP to get a nontrivial improvement.

The paper is organized as follows. Section 2 reviews basic properties of in-
feasible instances and a polynomially solvable case, and derives reduction rules.
Section 3 sets a weight function on vertices for analyzing the time bound of our
algorithm, and introduces a notion of “chains” which is used to simplify the case
analysis for weight decrease in branching operations. After Section 4 describes
a set of branching rules used in our algorithm, Section 5 analyzes some of the
branching rules (the analysis of the rest of branching rules are omitted due to
space limitation). Section 6 makes some concluding remarks.

2 Preliminaries

An instance I = (G,F) consists of a simple undirected graph G with an edge
cost and a subset F ⊆ E of edges, called forced. A Hamiltonian cycle of G is
called a tour if it passes though all the forced edges in F . We will consider a
generation of TSP, named the forced traveling salesman problem, which asks to
find a minimum cost tour of an instance (G,F).

For a graph H , let V (H) and E(H) denote the sets of vertices and edges in
H , respectively.

For a vertex subset X (or a subgraph X), let ∂f(X) (resp., ∂u(X)) denote
the set of forced (resp., unforced) edges between X and V (G) − X . For an
edge subset Y (or a subgraph Y), dY (v) denote the degree of a vertex v in the
graph (V (G), Y)) (or Y). For a subset E′ ⊆ E(G), a component in (V (G), E′)
containing at least one edge is called an E′-component. Let U = E(G)−F denote
the set of unforced edges. For any U -component H , it holds ∂u(H) = ∅. A vertex
is called forced if exactly one incident edge is forced, and is called unforced if no
forced edge is incident to it. A neighbor u of a vertex v adjacent via an unforced
edge uv is called a good neighbor.

76 M. Xiao and H. Nagamochi

2.1 Sufficient Conditions for Infeasibility

In general, whether (G,F) admits a tour or not is an NP-hard problem. We here
introduce some sufficient conditions for an instance to be infeasible (i.e., there
is no tour).

Lemma 1. An instance (G,F) is infeasible if one of the following holds:

(i) G is not biconnected;
(ii) dF (v) ≥ 3 for some vertex v ∈ V ;
(iii) (V (G), F) contains a cycle shorter than a Hamiltonian cycle;
(iv) (V (G), U) contains a U -component H such that |∂f(H)| is odd.

Let us call an instance pseudo-feasible if none of the conditions in Lemma 1
holds.

2.2 A Solvable Case

A special case when TSP with forced edges is polynomially solvable is identified
by Eppstein [5]. A U -component H is called an i-cycle U -component if H is a
cycle of length i with no chord of unforced edge (possibly a forced edge joins
two vertices in H).

Lemma 2. [5] If every U -component is a 4-cycle U -component, then a minimum
cost tour of the instance can be found in polynomial time.

2.3 Reductions

A reduction is an operation that transforms an instance into a smaller instance
without changing the optimality of the instance.

Lemma 3. Each of the following transformations preserves a minimum cost
tour of an instance.

(i) Remove any unforced edge incident to a vertex v with dF (v) = 2;
(ii) Add to F any unforced edge incident to a vertex v with dG(v) = 2;
(iii) Assume that (i) is no longer applicable. Let H be a U -component with a

bridge uv where H will be separated into H1 and H2 by removing uv. Then
remove uv from G if |∂f(H1)| is even, and add uv to F otherwise.

(iv) For three vertices vi of dG(vi) = 3, i = 1, 2, 3 in a 3-cycle v1v2v3 with
unforced edges v1v2 and v3v1 such that v2v3 or t1v1 is a forced edge (where
ti denotes the neighbor of vi not in the 3-cycle), remove vertices v2 and v3
and add two new unforced edges v1t2 and v1t3 such that the cost of v1t2
(resp., v1t3) is the sum of those of v1v3 and v2t2 (v1v2 and v3t3).

Proof. (i)-(iii) Immediate from the definition of tours.
(iv) Since dG(vi) = 3 for all i = 1, 2, 3 and v2v3 or t1v1 is in F , any tour

must pass either {v1v2, v2v3, v3t3} or {v1v3, v3v2, v2t3}. Therefore, the resulting
instance preserves the feasibility and the optimality of tours.

An Improved Exact Algorithm for TSP in Degree-4 Graphs 77

For an edge e in an instance I = (G,F), delete(e) denotes an operation of
removing e from the graph G followed by applications of reductions as much
as possible. If the resulting irreducible instance is not pseudo-feasible, then e is
called f-reducible, which means that every tour must pass through e. Similarly,
force(e) denotes an operation of adding e to F followed by applications of
reductions as much as possible. If the resulting irreducible instance is not pseudo-
feasible, then e is called d-reducible, which means that e is not contained any
tour. Note that we can test whether an instance has an f- or d- reducible edge
or not in polynomial time.

A pseudo-feasible instance is called irreducible if none of the reductions in
Lemma 3 is applicable and there is no f- or d-reducible edge. In any irreducible
instance, there is no vertex v with dG(v) ≤ 1, and every F -component is a path
P to which no unforced edge is incident except for the end points of P . Hence, we
regard each F -component as a single edge joining its end point unless confusion
arises. Then F -components form a matching in the resulting graph wherein the
degree of every vertex is at least 3..

3 Weight Setting

In what follows, we assume that the maximum degree in G is at most 4. For
simplicity, we call a forced (resp., unforced) degree-i vertex an fi-vertex (resp.,
ui-vertex). Let (G,F) be an irreducible instance, which has four kinds of vertices
u4-, f4-, u3- and f3-vertices.

We solve a given irreducible instance I = (G,F) by a search tree algorithm.
We first choose an unforced edge uv in = (G,F); branch on it; i.e., generate two
cases (called branches) by adding uv to F or by removing uv from G; and apply
reductions as much as possible to obtain two new smaller irreducible instances
I ′ and I ′′. Thus, we execute force(uv) and delete(uv) to obtain such new
instances, where both I ′ and I ′′ are pseudo-feasible (otherwise I would have a
d- or f-reducible edge). The performance of the algorithm depends on how to
choose an “effective” unforced edge uv so that the size of the new instances
decreases quickly. We discuss how to choose such unforced edges to branch on
in the next section.

To efficiently analyze our search tree algorithms, we adopt an amortized trans-
fer technique, called the measure and conquer method. We set a vertex weight
function ω : V → R+ in the graph and use the sum W =

∑
v∈V (G) ω(v) of

the weight of all vertices in the graph as the measure. Since we will require the
weight of each vertex is not greater than 1, the measure W is not greater than
the number n of vertices. A running time bound related to measureW will imply
a running time bound related to n.

For irreducible instances, we set weights of these vertices as follows. Since
we know that an instance with only 4-cycle U -components will be solved in
polynomial time, we set the weight of any vertices in a 4-cycle U -component

78 M. Xiao and H. Nagamochi

to be 0. In U -components which are not 4-cycle U -components, let w4 be the
weight of a u4-vertex v, w4′ be the weight of a f4-vertex, w3 be the weight of
a u3-vertex, and w3′ be the weight of an f3-vertex. We require that w4 = 1,
0.5 ≥ w3 ≥ 0.4, w3′ = 0.5w3,

w4′ + 0.5w3 ≤ 1, (1)

w4′ ≥ 1.5w3. (2)

Denote Δ4 = w4 −w4′ , Δ3 = w3 −w3′ , Δ4−3 = w4 −w3 and Δ′
4−3 = w4′ −w3′ .

Then (1) and (2) imply

Δ4 ≥ Δ3 = 0.5w3 and Δ4−3 ≥ Δ′
4−3 ≥ w3.

We only need to decide the value of w3 and w4′ , and then we can decide the
weight of all vertices.

A path P consisting of f3-vertices and unforced edges is called a chain. Note
that when the first edge in a chain is added to F (or deleted from the graph)
the other edges in the chain will be alternately deleted from the graph or added
to F by Lemma 3(i)-(ii).

Let uv be an unforced edge. When v is an f3-vertex, we consider a maximal
chain P starting from v, but not containing edge uv. We say that such a chain
starts from (uv, v). In an irreducible instance, P ends with an f3-vertex y such
that y = u or y is a good neighbor of a non-f3-vertex z. In the former case, u is an
f3-vertex, and P and uv form a cycle U -component. In the latter case, we say that
P reaches z, and denote z by γ(uv, v), and let Γ (uv, v) denote the set of vertex
z = γ(uv, v) and the f3-vertices in P . We observe that delete(uv) decreases the
weight of vertices in Γ (uv, v) by at least w3′ +kw3′ +0.5w3 = (1+k/2)w3, where
k is the number of f3-vertices in Γ (uv, v)−{v} and the weight of z decreases by
at least min{Δ4−3, Δ

′
4−3, Δ4, Δ3} = 0.5w3.

When v is not an f3-vertex, we define Γ (uv, v) = {v} for a u4- or f4-vertex v
and Γ (uv, v) = {v, v′, v′′} for a u3-vertex v with its good neighbors v′, v′′ (= u).
Note that a chain joins two vertices u and v means that these vertices are both
f3-vertices.

Lemma 4. Let e1 = u1v1 and e2 = u2v2 be two unforced edges in G such
that vi 	= uj , vj for {i, j} = {1, 2}, and v1 and v2 are not joined by a chain
in G − {e1, e2}. Then the weight of vertices in Γ (e1, v1) ∪ Γ (e2, v2) by at least
(2 + k/2)w3 by removing edges e1 and e2 and applying reduction rules, where k
is the number of f3-vertices in Γ (e1, v1) ∪ Γ (e2, v2)− {v1, v2}.

Proof. If vi is a degree-4 vertex, then the weight of Γ (ei, vi) = {vi} decreases by
min{Δ4−3, Δ

′
4−3} ≥ w3. If vi is a u3-vertex, then the weight of the three vertices

in Γ (ei, vi) decreases by w3 + 2min{Δ4, Δ3} = 2w3.
(i) Both v1 and v2 are non-f3-vertices: From the above observation, the weight

of vertices in Γ (e1, v1) ∪ Γ (e2, v2) decreases by 2w3, where k = 0.
(ii) Both v1 and v2 are f3-vertices: For each i = 1, 2, the weight of vertices in

Γ (ei, vi) decreases by at least (1+ki/2)w3, where ki is the number of f3-vertices

An Improved Exact Algorithm for TSP in Degree-4 Graphs 79

in Γ (ei, vi)− {vi}. Hence Γ (e1, v1) ∪ Γ (e2, v2) decreases by (1 + k1/2)w3 + (1 +
k2/2)w3 = (2 + k/2)w3 even if γ(e1, v1) = γ(e2, v2) (since the weight of a non-
f3-vertex γ(e1, v1) = γ(e2, v2) is at least w3 ≥ 2Δ3).

(iii) Exactly one of v1 and v2, say v2 is an f3-vertex: If γ(e2, v2) 	= v1, then
the weight of v1 and the vertices in Γ (e1, v1) ∪ Γ (e2, v2) decreases by at least
w3 + (1 + k/2)w3 = (2 + k/2)w3. If γ(e2, v2) = v1 holds and v1 is a degree-4
vertex, then the weight of v1 and the vertices in Γ (e1, v1) ∪ Γ (e2, v2) decreases
by at least min{w4′ , 1−w3′}+(0.5+k/2)w3 ≥ w4′ +(0.5+k/2)w3 ≥ (2+k/2)w3

(by (1) and (2)). If γ(e2, v2) = v1 holds and v1 is a u3-vertex, then v1 has at
least one good neighbor y ∈ Γ (e1, v1) which is not in the chain from (e2, v2),
and the weight of v1, y, v2 and vertices in Γ (e2, v2) − {v1, v2} decreases by at
least w3 +Δ3 + w3′ + kw3′ = (2 + k/2)w3.

4 Branching Rules

We are now ready to describe a set of branching rules in our algorithm for solving
TSP in graphs with maximum degree 4. Given an irreducible instance (G,F),
our algorithm first selects an f4-vertex v in (G,F), and branches on an unforced
edge e incident to v. Such a pair of vertex v and edge e is chosen as the one
satisfying one of the conditions in Case-1,2,3 and 4 in Fig. 1. When there is
no f4-vertex in (G,F), our algorithm selects an f3-vertex v in a U -component
H that is not a 4-cycle component, and branches on an unforced edge e in H
according to the one satisfying one of the conditions in Case-5 to -10 in Fig. 1
(recall that the instance is polynomially solvable when every U -component is a
4-cycle component). Also see Fig. 2 for illustrations for Cases-1 to 10.

For each Case-i, we execute the procedure in Case-i only when there is no
vertex v satisfying the condition of Case-j with j < i. For an f4-vertex (resp.,
f3-vertex) v in Fig. 1, we always let t1, t2 and t3 (resp., t1 and t2) denote the
good neighbors of v.

For each Case-i, we derive a recurrence that evaluates how much weight de-
creases in each of the two instances obtained by branching on an edge e.

5 Cases-1,2 and 3 of Branching at f4-vertices

This section analyzes Cases-1, 2, and 3 for branching at an f4-vertex. The analysis
for Cases-4 to -10 can be obtained in a similar manner (the detail is omitted due
to space limitation). We prove the following lemma.

Lemma 5. We can branch on edge e in Case-1,2,3 and 4 with a recurrence
which is not worse than one of the following:

C(w) ≤ C(w − (w4′ + 2.5w3)) + C(w − (w4′ + 1.5w3)); (3)

80 M. Xiao and H. Nagamochi

/* while there is an f4-vertex in an irreducible instance (G,F), choose an f4-
vertex v in Cases-1,2,3, and 4, where the three good neighbors of v are denoted
by t1, t2 and t3 */
Case-1. v has a u3-vertex as one (say t1) of its good neighbors of v: Branch
on edge e = vt1;

Case-2. v has an f4-vertex as one (say t1) of its good neighbors of v (where
t4, t5 (�= v) denote the other good neighbors of t1): (I) if t2, t3, t4 and t5 are
four distinct f3-vertices t2 (resp., t3) is a good neighbor of t4 (resp., t5) then
Branch on edge e = vt3; (II) else Branch on edge e = vt1;

Case-3. v has a u4-vertex as one (say t1) of its good neighbors of v: (I) if v
has an f3-vertex t2 as one of its good neighbors (where t2 is assumed to be
a good neighbor of t1 if one of f3-vertices t2 and t3 is a good neighbor of t1)
then Branch on edge e = vt2; (II) else Branch on edge e = vt1;

Case-4. all good neighbors t1, t2 and t3 of v are f3-vertices: Branch on edge
e = vt1;

/* when there is no f4-vertex in an irreducible instance (G,F), choose an f3-
vertex v in Cases-5,6,7,8,9 and 10, where the two good neighbors of v are
denoted by t1 and t2 */
Case-5. the two good neighbors t1 and t2 of v are both u3-vertices: Branch
on edge e = vt1;

Case-6. v is in a U -component that is not a 4-cycle component and the two
good neighbors t1 and t2 of v are both f3-vertices: Branch on edge e = vt1;

Case-7. v has a u4-vertex and an f3-vertex as its good neighbors t1 and t2 of
v, respectively: Branch on edge e = vt1;

Case-8. v has an f3-vertex and a u3-vertex as its good neighbors t1 and t2 of
v, respectively (where y1 (�= v) denotes the other good neighbor of t1): (I) if t1
and t2 have a common good neighbor y1 (�= v) then Branch on edge e = y1z
for a good neighbor z (�= t1, t2) of y1; (II) else Branch on edge e = vt1;

Case-9. v has a u4-vertex and a u3-vertex as its good neighbors t1 and t2 of
v, respectively: (I) if t1 is a good neighbor of t2 then Branch on edge e = t1x
for a good neighbor x (�= v, t2) of t1; (II) else Branch on edge e = vt1;

Case-10: all good neighbors t1 and t2 of v are u4-vertices: Branch on edge
e = vt1.

Fig. 1. Branching rules

C(w) ≤ C(w − (1 + w4′ + 1.5w3)) + C(w − (w4′ + 0.5w3)); (4)

C(w) ≤ C(w − (3− 2w3)) + C(w − (1 + w4′ − 1.5w3)); (5)

C(w) ≤ C(w − (w4′ + 3.5w3)) + C(w − (w4′ + 0.5w3)). (6)

In Cases-1,2,3 and 4, we let H denote the U -component containing v, and t1, t2
and t3 denote the good neighbor of v. Two good neighbors ti and tj of v are

An Improved Exact Algorithm for TSP in Degree-4 Graphs 81

: forced edges: unforced edges

v

t1 t2 t3

Case-1 Case-2(I)

v

t1 t2 t3

Case-2(II)

v

t1 t2 t3

Case-3(I)

v

t1 t2 t3

Case-3(II)

v

t1 t2 t3

Case-4

v

t1 t2

Case-5

v

t1 t2

Case-6

v

t1 t2

Case-7

v

t1 t2

Case-8(I)

v

t1 t2

Case-8(II)

v

t1 t2

Case-9(I)

v

t1 t2

Case-9(II)

v

t1 t2

Case-10

t4
t5

v

t1 t2 t3

t4 t5

e e e

eeee

e

e

e

e

e

e

e

y1
z

x

Fig. 2. Illustration for the branching rules in Case-1 to 10

not joined by a chain since otherwise edge vtk with k 	= i, j would be d- or
f-reducible. Hence ti and tj are not adjacent via an unforced edge if they are
f3-vertices.

Case-1. At least one of good neighbors of v, say t1 is a u3-vertex: We branch
on edge vt1.

In the branch of force(vt1), we also delete edges vt2 and vt3 from G. This
decreases the weight of v and t1 by at least w4′ +Δ3. Recall that t2 and t3 are
not joined by a chain if they are f3-vertices. By Lemma 4 the weight of vertices
in Γ (vt2, t2) ∪ Γ (vt3, t3) decreases by at least 2w3. If t1 	∈ Γ (vt2, t2) ∪ Γ (vt3, t3)
or Γ (vt2, t2) ∪ Γ (vt3, t3) − {t2, t3} contains an f3-vertex, then force(vt1) de-
creases the entire weight by at least w4′ + w3′ + 2w3 = w4′ + 2.5w3. Assume
that Γ (vt2, t2)∪Γ (vt3, t3)−{t2, t3} contains no f3-vertex and t1 is contained in
Γ (vt2, t2) ∪ Γ (vt3, t3). Then t1 ∈ Γ (vt2, t2) ∪ Γ (vt3, t3) implies that the weight
of t1 decreases by w3. If t2 or t3 (say t3) is not an f3-vertex, then its weight
decreases by min{Δ4−3, Δ

′
4−3, w3} = w3, and the weight of v, t1, t2 and t3

decreases by w4′ + w3 + w3′ + w3 = w4′ + 2.5w3 in total. Let ti with each
i = 2, 3 be an f3-vertex, where t1 = γ(vt2, t2) is assumed without loss of
generality since t1 ∈ Γ (vt2, t2) ∪ Γ (vt3, t3). Then t1 	∈ Γ (vt3, t3) holds, since

82 M. Xiao and H. Nagamochi

otherwise (t1 = γ(vt2, t2) = γ(vt3, t3)) H contains only vertices v, t1, t2 and t3
and |∂f(H)| = 3 would hold (recall that Γ (vt2, t2)∪Γ (vt3, t3)−{t2, t3} contains
no f3-vertex). Then the weight of v, t1, t2 and vertices in Γ (vt3, t3) decreases
by w4′ + w3 + w3′ + w3 = w4′ + 2.5w3 in total. Therefore force(vt1) always
decreases the entire weight by at least w4′ + 2.5w3.

In the other branch of delete(vt1), the weight of v, t1 and the two other good
neighbors of t1 decreases by Δ′

4−3 +w3 +Δ3 +Δ3 = w4′ + 1.5w3. Then we can
get recurrence

C(w) ≤ C(w − (w4′ + 2.5w3)) + C(w − (w4′ + 1.5w3)),

i.e., (3).

Case-2. One good neighbor t1 of v is a f4-vertex, and neither of the other two
t2 and t3 is a u3-vertex: Let t4 and t5 be the two other good neighbors of t1 than
v. We assume that neither of t4 and t5 is a u3-vertex, since otherwise Case-1
would be applicable to the f4-vertex t1. Recall that t2 and t3 are not joined by a
chain if they are f3-vertices. For the similar reason, t4 and t5 are not joined by
a chain either. Note that two pairs {t2, t4} and {t3, t5} of f3-vertices are joined
by chains P2 and P3, the U -component H containing vt1 has no other unforced
edges than {vt1, vt2, vt3, t1t4, t1t5} ∪ E(P2) ∪ E(P3).

(I) t2, t3, t4 and t5 are four distinct f3-vertices t2 (resp., t3) is a good neighbor
of t4 (resp., t5): That is, two pairs {t2, t4} and {t3, t5} of f3-vertices are joined by
chains P2 and P3 which contain no other f3-vertex. We branch on edge vt3. Now it
holds V (H) = {v, t1, t2, t3, t4, t5}. In the branch of force(vt3), all unforced edges
in H will be deleted or added to F , decreasing the entire weight by 2w4′+4w3′ =
2w4′ +2w3. In the other branch of delete(vt3), we delete vt3 and t1t5, and add
t3t5 to F , creating a 4-cycle component from H . Thus this also decreases the
entire weight by 2w4′ +2w3. We get a recurrence C(w) ≤ 2C(w− (2w4′ +2w3)),
which is covered by (3), since 2w4′ + 2w3 ≥ w4′ + 2.5w3 and 2w4′ + 2w3 ≥
w4′ + 1.5w3 in the corresponding two terms.

(II) (i) {t2, t3} ∩ {t4, t5} = ∅ holds, there are two pairs {t2, t4} and {t3, t5} of
f3-vertices which are joined by chains P2 and P3, and there is another f3-vertex
y 	= ti in P2 and P3: We branch on edge vt1. In this case, there must be at
least two such vertices y, say y1 and y2 (otherwise |∂f(H)| would be odd), and
in the branch of force(vt1), the weight of y1 and y2 decreases by 2w3′ . In total,
force(vt1) decreases the entire weight by 2w4′ + 4w3′ + 2w3′ = 2w4′ + 3w3. In
the other branch of delete(vt1), the weight of v and t1 decreases by 2w4′ −w3.
We get a recurrence

C(w) ≤ C(w − (2w4′ + 3w3)) + C(w − (2w4′ − w3)),

which is covered by (5) since 2w4′+3w3 ≥ 3−2w3 and 2w4′−w3 ≥ 1+w4′−1.5w3.
(ii) {t2, t3} ∩ {t4, t5} = ∅, and there is at most one pair of f3-vertices ta ∈

{t2, t3} and tb ∈ {t4, t5} which are joined by a chain: We branch on edge vt1.
In the branch of force(vt1), we also delete edges vt2, vt3, t1t4 and t1t5 from
G. For j, k 	= a, b, vertices tj and tk are not joined by a chain. Deleting these

An Improved Exact Algorithm for TSP in Degree-4 Graphs 83

edges decreases the weight of vertices in Γ (ej , tj) ∪ Γ (ek, tk) decreases by 2w3

by Lemma 4. Also the weight of v, t1 ta and tb decreases by at least w4′ +w4′ +
w3′ + w3′ . In total, force(vt1) decreases the entire weight by 2w4′ + 3w3. In
the other branch of delete(vt1), the weight of v and t1 decreases by 2w4′ −w3.
Hence we get recurrence

C(w) ≤ C(w − (2w4′ + 3w3)) + C(w − (2w4′ − w3)),

which is covered by (5).
(iii) |{t2, t3} ∩ {t4, t5}| = 1: Let t2 = t4, which is of degree 4 (otherwise vt1

would be d-reducible). We branch on edge vt1. In the branch of force(vt1), the
weight of v, t1, t2, t3 and t5 decreases by at least w4′ +w4′ +w4′ +w3′ +w3′ =
3w4′ + w3. In the branch of delete(vt1), the weight of v and t1 decreases by
2Δ′

4−3 = 2w4′ − w3. Hence we have

C(w) ≤ C(w − (3w4′ + w3)) + C(w − (2w4′ − w3)),

which is covered by (4) since 3w4′ + w3 ≥ 1 + w4′ + 1.5w3 and 2w4′ − w3 ≥
w4′ + 0.5w3.

(iv) {t2, t3} = {t4, t5}: We branch on edge vt1. As in (ii), each vertex in
{t2, t3} = {t4, t5} is of degree 4. In the branch of force(vt1), the weight of v, t1,
t2 and t3 decreases by at least w4′ +w4′ +w4′ +w4′ = 4w4′ (≥ 2w4′ +3w3). In the
branch of delete(vt1), the weight of v and t1 decreases by 2Δ′

4−3 = 2w4′ −w3.
Then we get a recurrence covered by (4).

Case-3. One good neighbor t1 of v is a u4-vertex, and neither of the other two
t2 and t3 is a u3- or f4-vertex: Each of t2 and t3 is a u4- or f3-vertex (otherwise
Case-1 or -2 is applicable at v).

(I) Both t2 and t3 are f3-vertices: Let yi, i = 2, 3, be the good neighbor of ti
other than v, where y2 	= t3 and y3 	= t2 since we have observed that no unforced
edge joins two f3-vertices t2 and t3. If t2 or t3 is a good neighbor of t1, then t2
is assumed to be a good neighbor of t1 (i.e., t1 = y2).

We branch on edge vt2. In the branch of force(vt2), we delete vt1, vt3 and
t2y2 from G. Note that no chain joins y2 and t3 since t2 and t3 are not joined by
a chain. If t1 	∈ Γ (t2y2, y2)∪Γ (vt3, t3), then the weight of vertices in Γ (vt3, t3)∪
Γ (t2y2, y2) decreases by at least 2w3 by Lemma 4 and the weight of vertices v, t1
and t2 decreases by w4′ +Δ4−3+w3′ = 1+w4′ −0.5w3, implying that the weight
in G decreases by 1 + w4′ + 1.5w3. Assume that t1 ∈ Γ (t2y2, y2) ∪ Γ (vt3, t3);
i.e., t1 ∈ {γ(t2y2, y2), y2} or t1 = γ(vt3, t3) holds. If t1 ∈ {γ(t2y2, y2), y2} and
t1 = γ(vt3, t3) holds, then the U -component H has a bridge at t1, and the
reduction in Lemma 3(iii) would be applicable. Hence if t1 = y2 or t1 = y3,
then exactly one of them occurs (i.e., t1 = y2 by the choice of the indices i =
2, 3). When t1 = y2, the weight of vertices {v, t1, t2} ∪ Γ (vt3, t3) decreases by
w4′ + 1 + w3′ + w3 = 1 + w4′ + 1.5w3. When t1 	∈ {y2, y3} and t1 = γ(t2y2, y2)
(resp. t1 = γ(vt3, t3)), an f3-vertex u (= t2, t3) is contained in Γ (t2y2, y2) (resp.
Γ (vt3, t3)), and the weight of vertices in {v, t1}∪Γ (t2y2, y2)∪Γ (vt3, t3) decreases
by w4′+(1−w3′)+w3+w3 = 1+w4′+1.5w3. Therefore force(vt2) decreases the

84 M. Xiao and H. Nagamochi

entire weight by at least 1+w4′ +1.5w3. In the other branch of delete(vt2), we
add t2y2 to F , decreasing the weight of vertices v, t2 and y2 by Δ′

4−3+w3′+Δ3 =
w4′ + 0.5w3. We get recurrence

C(w) ≤ C(w − (1 + w4′ + 1.5w3)) + C(w − (w4′ + 0.5w3)),

i.e., (4).
(S-I) We here analyze the branching on edge vt2 in a special case of (I) where

both y2 and y3 are u4-vertices (this will be used in an analysis for Case-10). We
show that force(vt2) decreases the weight by 2 + w4′ − 0.5w3. First consider
the case of t1 	= y2 (hence t1 	= y3 by the choice of y2). By noting that y2 =
y3 is possible, force(vt2) decreases the weight of v, t1, t2, t3 and {y2, y3} by
w4′ + Δ4−3 + w3′ + w3′ + min{Δ4−3 + Δ4, w4 − w3′} = 1 + w4′ + min{2 −
w4′ − w3, 1 − 0.5w3} = 1 + w4′ + 1 − 0.5w3 = 2 + w4′ − 0.5w3 (by Δ4 ≥ Δ3).
Next consider the other case of t1 = y2, where t1 	= y3 holds, as observed.
Let z1 and z2 be the other neighbors of t1 than v and t2. Then all unforced
edges incident to t1 will be deleted or added to F . If y3 	∈ {z1, z2} (resp., y3 ∈
{z1, z2}), then force(vt2) decreases the weight of vertices v, t1, t2 and t3 by
w4′ + w4 + w3′ + w3′ = 1 + w4′ + w3 and the weight of vertices y3, z1 and z2
(resp., z1 and z2) by Δ4+Δ3+Δ3 = 1−w4′ +w3 (resp., w4+Δ3 ≥ 1−w4′ +w3),
in total 2+2w3 ≥ 2+w4′ − 0.5w3 (by w3 ≥ 0.4). The other branch delete(vt2)
decreases the weight of v, t2 and y2 by Δ′

4−3 + w3′ +Δ4 = 1. Then we get

C(w) ≤ C(w − (2 + w4′ − 0.5w3)) + C(w − 1). (7)

(II) (i) Both t2 and t3 are u4-vertices: We branch on edge vt1. In the branch of
force(vt1), the weight of vertices v, t1, t2 and t3 decreases by w4′ +Δ4+Δ4−3+
Δ4−3 = 3 − 2w3. In the other branch of delete(vt1), the weight of vertices v
and t1 decreases by Δ′

4−3+Δ4−3 = 1−w4′ − 1.5w3. Then we can get recurrence

C(w) ≤ C(w − (3− 2w3)) + C(w − (1 + w4′ − 1.5w3)),

i.e., (5).
(ii) Exactly one of t2 and t3, say t2 is an f3-vertex: We branch on edge vt2. Let

y2 be the good neighbor of t2 other than v. The branch of delete(vt2) decreases
the entire weight by w4′ + 0.5w3, as in (ii). The other branch of force(vt2)
decreases the weight of vertices v, t1, t2 and t3 by w4′ + Δ4−3 + w3′ +Δ4−3 =
2 + w4′ − 1.5w3 and the weight of vertices in Γ (t2y2, y2) by w3. In total we
decrease the entire weight by 2 + w4′ − 0.5w3 ≥ 1 + w4′ + 1.5w3 (by 0.5 ≥ w3).
Then we get recurrence (4).

(S-II-ii) We also analyze the branching on edge vt2 in a special case of (II-ii)
where y2 is a u4-vertex (this will be used in analyzing Case-10). Then delete(vt2)
decreases the weight of v, t2 and y2 by Δ′

4−3 + w3′ + Δ4 = 1. First consider the
case of y2 	∈ {t1, t3}. Then force(vt2) decreases the weight of v, t2, t1, t3 and y2
by w4′ + w3′ + 3Δ4−3 = 3 + w4′ − 2.5w3. Next consider the case of y2 = ti
for i = 1, 3. Then the weight of two other good neighbors of ti will decrease, and
force(vt2) decreases the entire weight by w4′ + w3′ + Δ4−3 + w4 + 2Δ3 = 2 +
w4′ + 0.5w3 ≥ 3 + w4′ − 2.5w3 (by w3 ≥ 0.4). Therefore we get a recurrence
C(w) ≤ C(w− (3+w4′ −2.5w3))+C(w−1), which is not worse than (7) in (S-I).

An Improved Exact Algorithm for TSP in Degree-4 Graphs 85

This completes the analysis of Cases-1, 2 and 3 (the analysis for Cases-4 to -10
are omitted due to space limitation). A quasiconvex program is obtained from
28 recurrences in our analysis. By solving this quasiconvex program [4], we get a
bound O(1.7154w) on the running time by setting w4′ = 0.6753 and w3 = 0.4502
for our problem.

Theorem 1. TSP in an n-vertex graph G with maximum degree 4 can be solved
in O∗(1.7154n) time and polynomial space.

6 Concluding Remarks

In this paper, we have presented an improved exact algorithm for TSP in degree-4
graphs. The algorithm is analyzed by using the measure and conquer method and
the basic operation in the algorithm is to search a solution by either including an
edge into the solution or excluding it from the solution. However, to effectively
reduce our measure in the algorithm, we need to select a ‘good’ edge to branch
on. This kind of edges are easily identified with our branching rules but the
analysis of the running time may not be straightforward.

Note that our algorithm also includes an O∗(1.260n)-time algorithm for TSP
in degree-3 graphs. It is easy to verify this result when the input graph is a
degree-3 graph. In fact, when the input graph is restricted to degree-3 graphs,
the main steps of our algorithm are similar to that of Eppstein’s O∗(1.260n)-time
algorithm. But the analyses of the running time are different. So our algorithm
also provides another analysis of Eppstein’s algorithm.

References

1. Bjorklund, A.: Determinant sums for undirected Hamiltonicity. In: Proc. 51st An-
nual IEEE Symp. on Foundations of Computer Science, pp. 173–182 (2010)

2. Bjorklund, A., Husfeldt, T., Kasaki, P., Koivisto, M.: The Travelling Salesman
Problem in Bounded Degree Graphs. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I.
LNCS, vol. 5125, pp. 198–209. Springer, Heidelberg (2008)

3. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms on
planar graphs: Exploiting sphere cut decompositions. Algorithmica 58(3), 790–810
(2010)

4. Eppstein, D.: Quasiconvex analysis of multivariate recurrence equations for back-
tracking algorithms. ACM Trans. on Algorithms 2(4), 492–509 (2006)

5. Eppstein, D.: The traveling salesman problem for cubic graphs. J. Graph Algorithms
and Applications 11(1), 61–81 (2007)

6. Gebauer, H.: Finding and enumerating Hamilton cycles in 4-regular graphs. Theo-
retical Computer Science 412(35), 4579–4591 (2011)

7. Iwama, K., Nakashima, T.: An Improved Exact Algorithm for Cubic Graph TSP. In:
Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 108–117. Springer, Heidelberg
(2007)

8. Woeginger, G.J.: Exact Algorithms for NP-hard Problems: A Survey. In: Jünger, M.,
Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink!
LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

Dynamic Programming for H-minor-free

Graphs�

Juanjo Rué1, Ignasi Sau2, and Dimitrios M. Thilikos3

1 Instituto de Ciencias Matemáticas, Madrid, Spain
juanjo.rue@icmat.es

2 AlGCo project-team, CNRS, LIRMM, Montpellier, France
ignasi.sau@lirmm.fr

3 Department of Mathematics, National and Kapodistrian
University of Athens, Greece

sedthilk@math.uoa.gr

Abstract. We provide a framework for the design and analysis of dy-
namic programming algorithms for H-minor-free graphs with branch-
width at most k. Our technique applies to a wide family of problems
where standard (deterministic) dynamic programming runs in 2O(k·log k) ·
nO(1) steps, with n being the number of vertices of the input graph.
Extending the approach developed by the same authors for graphs em-
bedded in surfaces, we introduce a new type of branch decomposition
for H-minor-free graphs, called an H-minor-free cut decomposition, and
we show that they can be constructed in Oh(n

3) steps, where the hid-
den constant depends exclusively on H . We show that the separators
of such decompositions have connected packings whose behavior can be
described in terms of a combinatorial object called �-triangulation. Our
main result is that when applied on H-minor-free cut decompositions,
dynamic programming runs in 2Oh(k) · nO(1) steps. This broadens sub-
stantially the class of problems that can be solved deterministically in
single-exponential time for H-minor-free graphs.

Keywords: analysis of algorithms, parameterized algorithms, graphs
minors, branchwidth, dynamic programming, non-crossing partitions.

1 Introduction

The celebrated theorem of Courcelle [6] states that graph problems expressible in
MSOL can be solved in f(bw)·n steps, where bw is the branchwidth and n is the

� This research was done during a research visit of the first two authors at the De-
partment of Mathematics of the National and Kapodistrian University of Athens.
The authors wish to express their gratitude to the decisive support of “Pontios” dur-
ing that visit. The first author was partially supported by grants JAE-DOC (CSIC),
MTM2011-22851, and SEV-2011-0087, the second author was partially supported by
project AGAPE (ANR-09-BLAN-0159), and the third author was co-financed by the
European Union (European Social Fund - ESF) and Greek national funds through
the Operational Program “Education and Lifelong Learning” of the National Strate-
gic Reference Framework (NSRF) - Research Funding Program: “Thales. Investing
in knowledge society through the European Social Fund”.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 86–97, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://maps.google.com/maps?q=37.972635,23.753626&num=1&t=h&vpsrc=0&ie=UTF8&z=19&iwloc=A

Dynamic Programming for H-minor-free Graphs 87

number of vertices of the input graph. Using terminology from parameterized
complexity, this implies that a large number of graph problems admit fixed-
parameter tractable algorithms when parameterized by the branchwidth of their
input graph. As the bounds for f(bw) provided by Courcelle’s theorem are huge,
the design of specific dynamic programming algorithms for graph problems so
that f(bw) is a simple function, became an essential ingredient for many results
on graph algorithms (see [2, 4, 10, 11, 22]). In this paper, we provide a general
framework for the design and analysis of dynamic programming algorithms for
families of graphs excluding a graph H as a minor, where f(bw) = 2O(bw).
Our framework applies to a family of problems where no deterministic dynamic
programming algorithm with single-exponential parameterized dependence on
bw is known.

Motivation and Previous Work. Dynamic programming is usually applied
in a bottom-up fashion on a rooted branch decomposition of the input graph
G. Roughly, a branch decomposition of a graph is a way to decompose it into a
tree structure of edge bipartitions (the formal definition is in Section 2). Each
bipartition defines a separator S of the graph called the middle set, of cardinality
bounded by the branchwidth of the input graph. The decomposition is routed,
in the sense that one of the parts of each bipartition is the “lower part of the
middle set”, i.e., the so-far processed one. For each graph problem, dynamic pro-
gramming requires a suitable definition of tables encoding how potential (global)
solutions of the problem are restricted to a middle set and the corresponding
lower part. The size of these tables reflects the dependence on k = |S| in the
running time of the dynamic programming.

Designing the tables for each middle set S may vary considerably among dif-
ferent problems. For simple problems where the tables of dynamic programming
encode vertex subsets of the middle set, such asVertex Cover orDominating

Set, we may easily have a single-exponential dependence on k, as the number
of subsets of a set of size k is 2k. However, there are problems where the tables
of the dynamic programming encode vertex pairings, such as Longest Path,
Cycle Packing, or Hamiltonian Cycle, or (more generally) vertex packings,
such as Connected Vertex Cover, Connected Dominating Set, Feed-
back Vertex Set, or Steiner Tree. For the latter category of problems,
single-exponential bounds on their table size are not known to exist. This com-
plication arises from the fact that, for such problems, the tables should encode
at least 2Θ(k log k) many pairings/packings. Nevertheless, for such problems one
can do better for several classes of sparse graphs. This line of research was initi-
ated in [12] and occupied several researchers in parameterized algorithms design
(see also [5, 7, 9, 11, 16, 22]). The current technology of dynamic programming
in graphs of bounded decomposability implies single-exponential parametric de-
pendence for problems encodable by pairings in H-minor free graphs [11] and
for problems encodable by packings in graphs embedded in surfaces [22]. In this
paper we extend both approaches of [11] and [22] to problems encodable by
packings in H-minor free graphs.

88 J. Rué, I. Sau, and D.M. Thilikos

Our Results and Techniques. We present a general framework that provides
single-exponential dynamic programming algorithms for connected packing-en-
codable problems (the formal definition of this class of problems is in Section 2.1)
when the input graph excludes a graph H as a minor. The main idea in [22] was
to introduce a new type of branch decomposition for graphs on surfaces, called
a surface cut decomposition (which in turn, extended the concept of sphere cut
decompositions for planar graphs introduced in [12,24]). Namely, in [22], it was
proved that the number of partial solutions that can be arranged on a surface cut
decomposition can be upper-bounded by the number of non-crossing partitions
on surfaces with boundary, which have been recently enumerated in [21]. It
follows that partial solutions can be represented by a single-exponential number
of configurations. This proves that, when applied on surface cut decompositions,
dynamic programming for connected packing-encodable problems runs in 2O(k) ·
nO(1) steps.

We follow the same approach to extend this technique toH-minor-free graphs:
we define a new type of branch decomposition for graphs excluding an h-vertex
graph H as a minor; we call it an H-minor-free cut decomposition. In Section 3
we show how to compute an H-minor-free cut decomposition of width Oh(k)
in Oh(n

3) steps1. This algorithm uses the recent result of Kawarabayashi and
Wollan [15] to find in time O(n3) the tree-like decomposition of an H-minor-
free graph G, given by the seminal structure theorem of Robertson and Sey-
mour [20]. Roughly, this result says that each H-minor free graph admits a
bounded-adhesion tree decomposition whose bags are nearly embedded in some
surface of small genus. We also make use of the algorithm of [22] to find a surface
cut decomposition of the surface-embedded part of each bag, then enhance them
with the apices and vortices, and finally we glue them appropriately along the
clique-sums. But for being able to use the algorithm of [22], we need to prove
that there exists a tree-like decomposition of G whose bags have good topolog-
ical properties. This is done in Section 2.2, and requires a suitable extension of
the notion of a polyhedral decomposition introduced in [22].

In order to prove the upper bound on the size of the tables when using an
H-minor-free cut decomposition, the main difficulty is to deal with the vortices.
From a combinatorial point of view, our main contribution is to capture the
behavior of the vortices of an H-minor-free graph in terms of an object called
�-triangulation (cf. Section 2). Roughly speaking, in order to take into account
the number of simultaneous crossings of a set of connected subgraphs inside
a vortex, �-triangulations seem to be the appropriate combinatorial object to
look at (see Section 4 for more details). Finally, we prove our main result in
Section 5. That is, by combining all the ingredients mentioned above, we prove
that by using H-minor-free cut decompositions, the size of the tables for solving
connected packing-encodable problems is single-exponential in the branchwidth.
We would like to note that we did not make any effort to optimize the constants
depending on H , as they are already huge since we use the Structure Theorem of

1 Given a computable function f and an integer h, we use the notation Oh(f(k)) to
denote O(g(h) · f(k)) for some computable function g.

Dynamic Programming for H-minor-free Graphs 89

the Graph Minors series [15,20]. Due to space limitations, all proofs are omitted
in this extended abstract, while sketches of them can be found in [23].

Our results can also be used to derive subexponential parameterized algo-
rithms for connected packing-encodable bidimensional problems. That way, we
broaden the class of problems where the general framework introduced in [8] can
be applied. It is worth mentioning that our results directly imply that Steiner
Tree and Connected Dominating Set, among others, can be solved in
subexponential time in H-minor-free graphs, which has been recently (and in-
dependently) proved by Tazari [25].

Recent Results and Further Research. Recently, Cygan et al. [7] have pre-
sented a new framework for obtaining randomized single-exponential algorithms
parameterized by treewidth in general graphs. This framework is based on a
dynamic programming technique named Cut&Count, which seems applicable to
most connected packing-encodable problems, like Connected Vertex Cover,
Connected Dominating Set, Feedback Vertex Set, or Steiner Tree.
The randomization in the algorithms of [7] comes from the usage a probabilistic
result called the Isolation Lemma [18], whose derandomization is a challenging
open problem [3]. Therefore, the existence of deterministic single-exponential al-
gorithms parameterized by treewidth for connected packing-encodable problems
in general graphs remains wide open.

Our results for minor-free graphs can be seen as an intermediate step towards
an eventual positive answer to this question. It may also be the case that this
class of graphs establishes a frontier of the existence of deterministic single-
exponential parameterized algorithms for connected packing-encodable problems
although we do not think that this is the case. It would be also interesting to
reduce the big polynomial overheads in the algorithms of [7], given by the usage
of the Isolation Lemma. In addition, the approach presented in [7] does not seem
to be applicable to weighted problems, while our results are easily extendable to
weighted connected packing-encodable problems.

Finally, it is worth mentioning that another type of branch decomposition
for graphs on surfaces, called surface split decomposition, has been recently
introduced by Bonsma [5] to prove that Subgraph Isomorphism can be solved
in single-exponential time in graphs on surfaces. It remains open to find single-
exponential algorithms for Subgraph Isomorphism in H-minor-free graphs.

2 Preliminaries

In this section we provide some preliminaries required in the sequel. Due to lack
of space, we avoid the definitions of some basic graph theoretical concepts related
to topological graph theory and tree or branch decompositions. For more details
on the missing definitions, see [23].

�-Triangulations and Related Constructions. Let Dk be a disc with k ver-
tices on its border. We assume that these vertices are labeled counterclockwise
with labels 1, 2, . . . , k. By an �-triangulation of Dk we mean a maximal set of

90 J. Rué, I. Sau, and D.M. Thilikos

diagonals with no pairwise crossing-set of size � + 1. In other words, the graph
whose vertices are the diagonals of the �-triangulation and there is an edge be-
tween two diagonals if and only if they cross in an internal vertex, does not
contain K�+1 as a subgraph. This concept generalizes the classical notion of tri-
angulation of a disc. Denote by T�(k) the number of different �-triangulations of
Dk. In particular, T0(k + 2) is equal to the k-th Catalan number Ck = 1

k+1

(
2k
k

)
,

a result which is well-known since Euler’s time. The study of �-triangulations
for � > 1 is more involved than the study of triangulations. In [13, 19] the au-
thors show that the number of diagonals in an �-triangulation of Dk is always
�(k− 2�− 1). More recently a closed expression for T�(k) in terms of a determi-
nant of Catalan numbers has been obtained in [14]. This expression generalizes
the enumeration of the number of triangulations of a polygon with k vertices.
For the asymptotic of T�(k), observe that the recurrence Ck = 4k−2

k+1 Ck−1 makes
each entry of the determinant equal to Ck times a rational function of degree
at most 2� in �. Using also that Ck = 1√

π
k−3/24k(1 + o(1)) for k large enough,

it is easy to get bounds for T�(k). More concretely, T�(k) ≤k→∞ �!
π�/2 k

−3�/24�k

(see [23] for details).
We say that a set of diagonals in Dk is a partial �-triangulation if it a subset of

an �-triangulation. Let Π = {π1, π2, . . . , πr} be a partition of the set {1, 2, . . . , k}
(i.e.,

⋃r
i=1 πi = {1, 2, . . . , r}, and πi∩πj = ∅ if and only if i 	= j). We say that each

of the subsets πi, i ∈ {1, 2, . . . , r} is a block of the partition Π . We represent a
partition in the following way: we draw each block of Π as a polygon connecting
the corresponding vertices. This defines a graph G(Π) whose vertices are the
blocks of Π , and the edges are defined by the incidences of the blocks (i.e., an
edge is drawn between a block πi and a block πj if and only if the associated
polygons intersect in the graphical representation). We say that a packing (that
is, a collection of pairwise disjoint non-empty blocks) of the disc Dk is an �-
packing if and only if G(Π) does not contain K�+1 as a subgraph. In particular,
if � < �′, then an �-packing is also an �′-packing. The notion of �-packing of a
disc is a natural generalization of the notion of non-crossing partition, which
corresponds to the case � = 1, in the same way as �-triangulations generalize
triangulations of a disc. In the following lemma we find asymptotic estimates for
the number of �-packings of Dk, which we denote by P�(k).

Lemma 1. The number of �-packings of Dk satisfies P�(k) = 2O�(k).

Partitions of An Integer. Let q be a non-negative integer. A partition of q
is a non-increasing sequence of positive integers p1, p2, . . . , pr whose sum is q.
Let p(q) be the number of partitions of q. The Hardy-Ramanujan-Rademacher

estimate for p(q) states that p(q) = 1
4
√
3q
eπ
√

2q/3 (1 + o(1)) = 2O(
√
q) (see [1]).

2.1 Connected Packing-Encodable Problems

In this paper we follow the standard dynamic programming approach on branch
decompositions. The interested reader can find more details and considerations
about dynamic programming for different problems in [22] or in [23].

Dynamic Programming for H-minor-free Graphs 91

Before we proceed with the description of the family of problems that we
examine in this paper, we need some definitions. Let G be a graph and let S be
a set of vertices of G. We denote by G the collection of all subgraphs of G. Each
H ∈ G defines a packing PS(H) of S such that two vertices x, y ∈ S belong to
the same set of PS(H) if x, y belong to the same connected component of H . We
say that H1, H2 ∈ G are S-equivalent if PS(H1) = PS(H2), and we denote it by
H1 ≡S H2. Let GS the collection of all subgraphs of G modulo the equivalence
relation ≡S. We define the set of all connected packings of S with respect to G as
the collection ΨG(S) = {PS(H) | H ∈ GS}. Notice that each member of ΨG(S)
can indeed be seen as a packing of S, as its sets may not necessarily meet all
vertices of S.

In this paper we consider graph problems that can be solved by dynamic pro-
gramming algorithms on branch decompositions for which the size of struct(e)
is upper-bounded by 2O(|mid(e)|) · |ΨGe(mid(e))| · nO(1). We call these problems
connected packing-encodable. We stress that our definition of connected packing-
encodable problem assumes the existence of an algorithm with this property,
but there may exist other algorithms whose tables are much bigger. For these
problems, dynamic programming has a single-exponential dependence on branch-
width if and only if ΨGe(mid(e)) contains a single-exponential number of pack-
ings, i.e., |ΨGe(mid(e))| = 2O(|mid(e)|). See [22] for more details.

In general, the number of different connected packings that could be created
during the dynamic programming is not necessarily smaller than the number of
the non-connected ones. In fact, it typically depends on the k-th Bell number,
where k is the branchwidth of the input graph. This implies that, in general,
|ΨGe(mid(e))| = 2O(k log k) is the best upper bound that can be so far achieved
for connected packing-encodable problems, at least for deterministic algorithms.
The purpose of this paper is to show that, for such problems, this bound can be
reduced to a single-exponential one when their input graphs exclude a graph as a
minor. In Section 3, we define the concept of an H-minor-free cut decomposition,
which is a key tool for the main result of this paper, summarized as follows.

Theorem 1. Every connected packing-encodable problem whose input is an n-
vertex graph G that excludes an h-vertex graph H as a minor, and has branch-
width at most k, can be solved by a dynamic programming algorithm on an H-
minor-free cut decomposition of G with tables of size 2Oh(k) · nO(1).

In Section 3, we prove (Theorem 3) that, given an H-minor-free graph G, an
H-minor-free cut decomposition of G of width Oh(bw(G)) can be constructed
in Oh(n

3) steps. Therefore, we conclude the following result.

Theorem 2. Every connected packing-encodable problem whose input is an n-
vertex graph G that excludes an h-vertex graph H as a minor and has branch-
width at most k, can be solved in 2Oh(k) · nO(1) steps.

2.2 Polyhedral Decomposition of H-minor-free Graphs

Let Σ be a surface with boundary. An O-arc is a subset of Σ homeomorphic to
S1. A subset of Σ meeting the drawing only at vertices of G is called G-normal.

92 J. Rué, I. Sau, and D.M. Thilikos

If an O-arc is G-normal, then we call it a noose. We denote by VN the set of
vertices met by a noose N , i.e., V (N) = V (G)∩N . The length N of a noose is the
number of the vertices that it meets and is denoted by |N |, i.e., |N | = |V (N)|.
The facewidth of a Σ-embedded graph embedding (G, τ) is the smallest length
of a non-contractible (i.e., non null-homotopic) noose in Σ and is denoted by
fw(G). We call a Σ-embedded graph G polyhedral [17] if G is 3-connected and
fw(G) ≥ 3, or if G is a clique and 1 ≤ |V (G)| ≤ 3.

Definition 1. Let α, β, γ, δ be non-negative integers. A graph G is (α, β, γ, δ)-
nearly embeddable, if there is a surface Σ of Euler genus γ and a set of vertices
A ⊆ V (G) (called apices) of size at most α such that graph G \ A is the union
of subgraphs G = {G0, . . . , Gδ} (some of them may be the empty graph) with the
following properties:

1. There is a set R = {Δ1, . . . , Δδ} of pairwise disjoint open discs in Σ such
that G0 is a graph embedded in Σ in a way that G0 ∩

⋃
i=1,...,δ Δi = ∅ (G0

is called underlying graph of G),
2. the graphs G1, . . . , Gδ (called vortices) are pairwise disjoint and for 1 ≤

i ≤ δ, V (G0) ∩ V (Gi) ⊆ bor(Δi) (we call the vertices in V (G0) ∩ V (Gi) ⊆
bor(Δi) base vertices of the vortex Gi),

3. for 1 ≤ i ≤ δ, let Ui = {ui
1, . . . , u

i
mi

} be the base vertices of Gi appearing
in an order obtained by counterclockwise traversing bor(Δi). Then Gi has
a path decomposition Bi = (Bi

j)1≤j≤mi , of width equal to β such that for

1 ≤ j ≤ mi, we have ui
j ∈ Bi

j. We also denote B = {B1, . . . ,Bδ} and for

each vij, we call Bi
j the cloud of vij .

If G is an (α, β, γ, δ)-nearly embeddable graph for some E = (A,Σ,G,R,B),
we say that E is its embedding pattern. If in Definition 1 the embedding of the
graph G0 to be polyhedral, then we say that G is polyhedrally (α, β, γ, δ)-nearly
embeddable, and we say that the corresponding pattern is polyhedral. The graph
G is (polyhedrally) c-nearly embeddable graph if it is (polyhedrally) (α, β, γ, δ)-
nearly embeddable for some α, β, γ, δ ≤ c. We prove the following.

Proposition 1. There exists an algorithm that, given an h-vertex graph H and
an n-vertex graph G that excludes H as a minor, outputs, in Oh(n

3) steps, a
tree decomposition D = (X = {Xt | t ∈ V (T)}, T) of G of adhesion Oh(1) and

such that every t ∈ V (T), X
t
is a polyhedrally Oh(1)-nearly embeddable graph.

Moreover, the same algorithm outputs the corresponding embedding pattern Et

of X
t
for each t ∈ V (T).

Given an h-vertex graph H and an H-minor free graph G, we call a tree de-
composition D as the one in Proposition 1, a ch-nearly polyhedral decomposition
(where ch is a constant depending only on h). If in Proposition 1 G is a graph
embedded in a surface, then a ch-nearly polyhedral decomposition is what has
been defined in [22] as a polyhedral decomposition, where the adhesion is at
most 2 (now in each embedding pattern Et = (At, Σt,Gt,Rt,Bt), we have that
Gt
0 contains only the underlying graph, while Rt = ∅ and Bt = ∅).

Dynamic Programming for H-minor-free Graphs 93

3 H-minor-free Cut Decompositions

In this section we define and show how to construct a special type of branch
decompositions for families of graphs excluding a graph H as a minor; we call
them H-minor-free cut decompositions. Their construction relies on surface cut
decompositions, recently introduced in [22].

Let Σ be a surface without boundary, and let N be a finite set of O-arcs in
Σ pairwise intersecting at zero-dimensional subsets of Σ (i.e., points). Then the
closure of each connected component of Σ \∪∪∪∪∪∪∪∪∪N is called a pseudo-surface, where
∪∪∪∪∪∪∪∪∪N =

⋃
N∈N N . For a point p ∈ Σ, let N (p) be the number of O-arcs in N

containing p, and let P (N) = {p ∈ Σ : N (p) ≥ 2}; note that by assumption
P (N) is a finite set of points of Σ. Then we define θ(N) =

∑
p∈P (N)(N (p)− 1).

Note that if the O-arcs are pairwise disjoint, then each pseudo-surface is a
surface with boundary. Notice that in Definition 1 we can permit Σ to be a
pseudo-surface with boundary instead of a surface without boundary. This ex-
tension of the definition is necessary for defining the concept of an H-minor-free
cut decomposition below.

Definition 2. Given an h-vertex graph H, an n-vertex H-minor-free graph G,
an H-minor-free cut decomposition of G is a branch decomposition (T, μ) of G
such that there exists an Oh(1)-nearly polyhedral decomposition D = (X = {Xt |
t ∈ V (T ′)}, T ′) of G such that for each edge e ∈ E(T), either |mid(e)| = Oh(1)
or there exists a bag Xt ∈ X such that
• mid(e) ⊆ V (Xt);

• given that Et = (At, Σt,Gt,Rt,Bt) is the embedding pattern of X
t
and Gt =

{Gt
0, G

t
1, . . . , G

t
δ}, there exists a set N of nooses of Gt

0 in Σt such the vertices of
mid(e)∩V (Gt

0) are all met by the nooses in N in a way that (1) |N | = Oh(1), (2)
the nooses in N pairwise intersect only at subsets of mid(e), (3) θ(N) = Oh(1),
(4) Σt \ ∪∪∪∪∪∪∪∪∪N contains exactly two connected components, such that the graph
G[V (Ge) ∩ V (Xt)] is Oh(1)-nearly embedded in the closure of one of them.

If in the above definition we consider that G is embedded in some surface of
genus γ and we restrict each Gt to contain only the underlying graph (i.e.,
there are no vortices, Rt = ∅, and Bt = ∅), we have the definition of surface cut
decompositions introduced in [22]. Finally, if we further restrict Σ to be a sphere
and set At = ∅, we have the notion of sphere cut decompositions introduced
in [12, 24].

Theorem 3. There exists an algorithm that, given an h-vertex graph H and an
n-vertex graph G that excludes H as a minor and has branchwidth at most k,
outputs in Oh(n

3) steps an H-minor-free cut decomposition of G of width Oh(k).

It is worth noting here that the algorithm that computes a surface cut decom-
position for a surface-embeddedgraph in [22] runs in time 2O(k) · n3, because we
wanted to optimize the dependence on the genus of the width of the obtained
branch decomposition, while keeping the running time single-exponential in k.

94 J. Rué, I. Sau, and D.M. Thilikos

4 Combinatorial Behavior of the Vortices

In this section we focus on the combinatorial behavior of the vortices in a graph
excluding a graph H as a minor. The main objective is to prove that, in an
H-minor-free cut decomposition, the number of ways that connected subgraphs
can behave inside a vortex can be upper-bounded by the number of Oh(1)-
packings (defined in Section 2) of size linear in the branchwidth of the input
graph. By Theorem 3, from now on we assume that we have an H-minor-free cut
decomposition (T, μ) of G, as well as a tree decomposition D = (X = {Xt | t ∈
V (T)}, T) of G of adhesion Oh(1), such that each D-closure X

t
is a polyhedrally

(α, β, γ, δ)-nearly embedded graph, with α, β, γ, δ = Oh(1).
In order to have a clearer picture of the behavior of the vortices, we define

according to [11] the graph Rd,s, where V (Rd,s) = V1 ∪ · · · ∪ Vs with |Vi| = d
for 1 ≤ i ≤ s and E(Rd,s) = {{xj , xk} | xj , xk ∈ Vi, 1 ≤ j 	= k ≤ d, 1 ≤ i ≤
s} ∪ {{xj, yj} | xj ∈ Vi−1 and yj ∈ Vi, 1 ≤ j ≤ d, 1 ≤ i ≤ s}.

We call such a graphRd,s a normalized vortex. In the graphRd,s we distinguish
a subset U ⊆ V (Rd,s) containing exactly one vertex from each Vi. The pair
(Rd,s, U) is called an (d, s)-vortex pattern. We say that an (d, s)-vortex pattern
has depth d. Note that each base vertex belongs to a clique of size d. The d edges
between two consecutive cliques are called a section of the vortex. Normalized
vortices and vortex patterns are useful because any vortex is a minor of a vortex
pattern, as stated in the following lemma.

Lemma 2 (Dorn, Fomin, and Thilikos [11]). Any vortex of a d-nearly em-
beddable graph with base set J is a minor of a (d, s)-vortex pattern (Rd,s, U),
where the minor operations map bijectively the vertices of U to the vertices in J
in a way that the order of the vortex and the cyclic ordering of U induced by the
indices of its elements is respected.

By Lemma 2, from now on we will only deal with vortex patterns. We say that
connected subgraph B of G meets a vortex F , if B contains some of the base
vertices of F . If U is the set of base vertices of F , the number of times that
B meets F is exactly |V (B) ∩ U |. For the analysis, we need to consider the
possibility that a subgraph in a connected packing P ∈ ΨG(S) meets more than
one vortex. This possibility is ruled out in the following lemma.

Lemma 3. We can assume that each subgraph in a connected packing P ∈
ΨG(S) meets at most one vortex.

Loosely speaking, the proof of Lemma 3 is based on the fact that if a subgraph
B in a connected packing P ∈ ΨG(S) meets two vortices of depth at most β,
these two vortices can be virtually merged along a path of B into a new vortex
of depth at most 2β. As a subgraph may a priori meet an arbitrary number
of the vortices, for our analysis we need to consider all possibilities of merging
any subset of the δ vortices, which are at most p(δ) many (see “partitions of
an integer” in Section 2). Therefore, potentially some of this merged vortices
may have depth up to δ · β = Oh(1). Also, in order to find an upper bound for

Dynamic Programming for H-minor-free Graphs 95

the number of connected packings, we will need to incur an additional factor
p(δ). The following lemma, whose proof uses Lemma 3 above, will allow us to
simulate the behavior of the vortices with simpler objects of appropriate size,
independent of the integer s (recall that we deal with (β, s)-vortex patterns.

Lemma 4. For each vortex F , we can assume that the total number of times
that the subgraphs in a connected packing P ∈ ΨG(S) meet F is Oh(k).

Let F be a given (d, s)-vortex pattern with set of base vertices U = {u1, . . . ,
us}, ordered cyclically. A configuration in F is a set of vertex-disjoint subgraphs
F={F1, . . . , F�} of F . We say that two subgraphs Fi, Fj ∈ F cross if there exist
ui1 , ui2 ∈ V (Fi) ∩ U and uj1 , uj2 ∈ V (Fj) ∩ U such that i1 < j1 < i2 < j2. The
crossing graph Fc of a configuration F has one vertex for each subgraph in F ,
and an edge between two vertices if and only if their corresponding subgraphs
cross. A configuration F is said to be an �-configuration if the maximum size of
a clique in Fc is �. In the following lemma we prove that in a vortex of given
depth, the existing configurations can cross only in a bounded way. This fact
will enable us to upper-bound the number of configurations in a vortex of depth
d in terms of the number of d-packings in the circle.

Lemma 5. A vortex pattern of depth at most β does not contain any
β′-configuration with β′ > β.

5 Upper-Bounding the Size of the Tables

In this section we show that by using H-minor-free cut decompositions in order
to solve connected packing-encodable problems in H-minor-free graphs, one can
guarantee single-exponential upper bounds on the size of the tables of dynamic
programming algorithms. Theorem 1 follows directly by the definition of a con-
nected packing-encodable problem and the following lemma, which we will prove
in this section.

Lemma 6. Let G be a graph excluding an h-vertex graph H as a minor, and let
(T, μ) be an H-minor-free cut decomposition of G of width at most k. Then for
every e ∈ E(T), |ΨGe(mid(e))| = 2Oh(k).

Let (T, μ) be an H-minor-free cut decomposition of a graph G. For edges e ∈
E(T) such that mid(e) = Oh(1), we trivially have that |ΨGe(mid(e))| = 2Oh(1),
and therefore the statement of Lemma 6 is satisfied. Therefore, we only need
to deal with edges e ∈ E(T) such that mid(e) is contained in a graph which is
polyhedrally Oh(1)-nearly embedded in a surface Σ.

In order to prove Lemma 6, we will need the lemmata of Section 4 about the
combinatorial behavior of the vortices. We will also need the following key result
from [22], which bounds the size of the tables for graphs embedded in surfaces
with boundary.

Lemma 7. Let G be a graph containing a set A of vertices such that G \ A is
embedded in a surface Σ with boundary. Let also S be the set of vertices of G that

96 J. Rué, I. Sau, and D.M. Thilikos

lie on the boundary of Σ and A′ ⊆ A. Then, if |S| ≤ k and |A|, γ(Σ), ν(Σ) ≤ γ,
then |ΨG(S ∪A′)| = γO(γ) · kO(γ) · γO(k).

Note that, in the statement of Lemma 7, if |A|, γ(Σ), ν(Σ) = Oh(1), then it
holds that |ΨG(S ∪A′)| = 2Oh(k). The following lemma gives an upper bound on
the number of non-crossing packings on a surface with apices and vortices. Intu-
itively, our approach consists in considering each vortex as a new virtual noose
of length Oh(k) in an H-minor-free cut decomposition, where each vertex of such
noose corresponds to an eventual meeting of a subgraph of the connected pack-
ing with the corresponding vortex. We then consider all non-crossing packings
taking into account the original and the virtual nooses, and finally we merge the
subgraphs incident to a virtual noose according to the possible Oh(1)-packings
corresponding to that vortex. This approach is made more precise in Lemma 8
below, which implies Lemma 6, and therefore also Theorem 1 and Theorem 2.
The proof of Lemma 8 makes use of Lemmata 2, 4, 5, and 7.

Lemma 8. Let G be a graph polyhedrally (α, β, γ, δ)-nearly embedded in a sur-
face Σ with boundary, with a set of apices A. Let also S be the set of vertices
of G that lie on the boundary of Σ. If |S| ≤ k and α, β, γ, δ, ν(Σ) ≤ η, then
|ΨG(S ∪ A)| = 2Oη(k).

References

1. Andrews, G.: The Theory of Partitions. Cambridge University Press (1984)
2. Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with

bounded decomposability – a survey. BIT 25(1), 2–23 (1985)
3. Arvind, V., Mukhopadhyay, P.: Derandomizing the Isolation Lemma and Lower

Bounds for Circuit Size. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R.
(eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 276–289. Springer,
Heidelberg (2008)

4. Bodlaender, H.L.: Dynamic Programming on Graphs with Bounded Treewidth.
In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–118.
Springer, Heidelberg (1988)

5. Bonsma, P.: Surface split decompositions and subgraph isomorphism in graphs on
surfaces. CoRR, abs/1109.4554 (2011), to appear in the Proc. of STACS 2012

6. Courcelle, B.: The Monadic Second-Order Logic of Graphs: Definable Sets of Finite
Graphs. In: van Leeuwen, J. (ed.) WG 1988. LNCS, vol. 344, pp. 30–53. Springer,
Heidelberg (1989)

7. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time. In: Proc. of the 52nd Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 150–159 (2011)

8. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential Pa-
rameterized Algorithms on Graphs of Bounded Genus and H-Minor-Free Graphs.
Journal of the ACM 52(6), 866–893 (2005)

9. Dorn, F., Fomin, F.V., Thilikos, D.M.: Fast Subexponential Algorithm for Non-
local Problems on Graphs of Bounded Genus. In: Arge, L., Freivalds, R. (eds.)
SWAT 2006. LNCS, vol. 4059, pp. 172–183. Springer, Heidelberg (2006)

Dynamic Programming for H-minor-free Graphs 97

10. Dorn, F., Fomin, F.V., Thilikos, D.M.: Subexponential Parameterized Algorithms.
In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 15–27. Springer, Heidelberg (2007)

11. Dorn, F., Fomin, F.V., Thilikos, D.M.: Catalan Structures and Dynamic Program-
ming in H-minor-free Graphs. In: Proc. of the 19th Annual ACM-SIAM Sympo-
sium on Discrete algorithms (SODA), pp. 631–640 (2008)

12. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms
on planar graphs: Exploiting sphere cut decompositions. Algorithmica 58(3), 790–
810 (2010)

13. Dress, A., Koolen, J.H., Moulton, V.: On line arrangements in the hyperbolic plane.
European Journal of Combinatorics 23(5), 549–557 (2002)

14. Jonsson, J.: Generalized triangulations and diagonal-free subsets of stack polyomi-
noes. Journal of Combinatorial Theory, Series A 112(1), 117–142 (2005)

15. Kawarabayashi, K.-I., Wollan, P.: A simpler algorithm and shorter proof for the
graph minor decomposition. In: Proc. of the 43rd ACM Symposium on Theory of
Computing (STOC), pp. 451–458 (2011)

16. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly Superexponential Parameterized
Problems. In: Proc. of the 22nd annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 760–776 (2011)

17. Mohar, B., Thomassen, C.: Graphs on surfaces. John Hopkins University Press
(2001)

18. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inver-
sion. Combinatorica 7(1), 105–113 (1987)

19. Nakamigawa, T.: A generalization of diagonal flips in a convex polygon. Theoretical
Computer Science 235(2), 271–282 (2000)

20. Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a Non-planar Graph.
Journal of Combinatorial Theory, Series B 77, 1–27 (1999)

21. Rué, J., Sau, I., Thilikos, D.M.: Asymptotic enumeration of non-crossing partitions
on surfaces. In: CoRR, abs/1104.2477 a preliminary version appeared in the Proc.
of ICALP (2011), Last version, http://www.lirmm.fr/~sau/Pubs/RST11NCP.pdf

22. Rué, J., Sau, I., Thilikos, D.M.: Dynamic programming for graphs on surfaces.
CoRR, abs/1104.2486 (2011), to appear in ACM Transactions on Algorithms
(TALG), last version available at,
http://www.lirmm.fr/~sau/Pubs/RST12TALG.pdf

23. Rué, J., Sau, I., Thilikos, D.M.: Dynamic Programming for H-minor-free Graphs
(2012), http://www.lirmm.fr/~sau/Pubs/RSTminor12.pdf

24. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2),
217–241 (1994)

25. Tazari, S.: Faster approximation schemes and parameterized algorithms on (odd-)
H-minor-free graphs. Theoretical Computer Science 417, 95–107 (2012)

http://www.lirmm.fr/~sau/Pubs/RST11NCP.pdf
http://www.lirmm.fr/~sau/Pubs/RST12TALG.pdf
http://www.lirmm.fr/~sau/Pubs/RSTminor12.pdf

Restricted Max-Min Fair Allocations

with Inclusion-Free Intervals�

Monaldo Mastrolilli and Georgios Stamoulis

IDSIA, Lugano, Switzerland
{monaldo,georgios}@idsia.ch

Abstract. We consider the restricted assignment version of the problem
of fairly allocating a set of m indivisible items to n agents (also known
as the Santa Claus problem). We study the variant where every item has
some non-negative value and it can be assigned to an interval of players
(i.e. to a set of consecutive players). Moreover, intervals are inclusion free.
The goal is to distribute the items to the players and fair allocations
in this context are those maximizing the minimum utility received by
any agent. When every item can be assigned to any player a PTAS
is known [Woe97]. We present a 1/2-approximation algorithm for the
addressed more general variant with inclusion-free intervals.

1 Introduction

Max-min fair allocation is a resource allocation problem. In this setting we are
asked to allocate a set of m indivisible resources denoted by I to a set of n
customers denoted by K. Each customer i ∈ [n] has an additive utility function
fi : 2R → R that is defined for every subset of the resources. For simplicity,
we may define fi(j) = wij ∈ Q where i ∈ [n] and j ∈ [m]. This represents the
evaluation of resource j from customer i and allocating resource j to customer i
increases the utility of i by wij . The term additive means that fi(I

′) =
∑

j∈I′ wij

for I ′ ⊆ I. We are asked to find a partition of the resources I1 ∪ I2 ∪ · · · ∪ In = I
and allocate each bundle of resources to the corresponding customer such that
the minimum utility received by any player is as high as possible. In other words
the objective function is maxmini fi(Ii).

Recently, the problem was studied also under the name Santa Claus in the
literature ([BS06]). We are interested in the following variant of the Santa Claus
problem:

Definition 1 (Restricted Santa Claus with Inclusion-free Intervals).
Santa Claus has a set I of m presents to distribute to a set K of n kids. Each
present has a value wj ∈ Z+. Each kid wants a subset of the presents and the
happiness of a kid increases by wj if the kid is interested in item j, and that kid

� Supported by the Swiss National Science Foundation Project N.200020-122110/1
”Approximation Algorithms for Machine Scheduling Through Theory and Experi-
ments III” and by Hasler Foundation Grant 11099.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 98–108, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Restricted Max-Min Fair Allocations 99

gets j. We assume that for each present j a set of consecutive kids (an interval)
is interested on that present. Moreover, no interval is a proper subset of another
interval i.e. if we have an interval [l, r] then there does not exist another interval
[l′, r′] with l′ > l and r′ < r (but we allow to have a common endpoint).

More precisely, we have a bipartite graph B = (I,K,E) with bipartition I and
K, edge set E, w(i, j) = wj , ∀(i, j) ∈ E(B) and, moreover, an ordering of the
vertices of K such that the neighborhood of every vertex in I is an interval in
K. The goal is to distribute the presents to the kids such that the least happy kid
is as happy as possible.

We assume from now on that our instance respects this ordering and is given
in that way i.e. there is an ordering of the kids such that for every present
j ∈ I its neighborhood N(j) ⊆ K is an interval (respecting the properties
of the above definition). The addressed problem generalizes the one studied in
[Woe97], where the graph is complete bipartite, i.e. every present can be assigned
to every kid. Moreover, it incudes all instances (as the previous one) in which all
the corresponding intervals of kids have the same length. Observe that this case
of the Santa Claus problem is strongly NP-complete: it includes as a special
case the case where the assignment graph is complete bipartite (a bi-clique), see
[Woe97]. This case is known to be strongly NP-complete by a reduction from
3-partition, see [GJ79].

This model arises naturally and has applications, for example, when resources
can be assigned and used in some time intervals and the goal is a fair allocation
of the resources over time, i.e. an allocation that maximizes the minimum accu-
mulated resource we collect at each time step (for example in energy production
settings where the energy produced at some specific day is available for a fixed
amount of time only). Moreover, it is a common scenario for a resource to re-
quest a contiguous segment in which it can be allocated. Such scenarios have
been considered, for example, in [Sga96] in on-line scheduling settings.

1.1 Related Work

For the general Santa Claus problem no “good” approximation algorithm is
known. In [BD05], an additive ratio of maxij wij was given which can be ar-
bitrarily bad. By defining a stronger LP formulation, the Configuration LP, it
was shown in [BS06] that we can get value at least opt/n. Subsequently, in
[AS07], [AS10] it was shown that it is possible to round a fractional solution of
this LP in such a way that the objective function value that we get is not worse
than opt√

n(log3 n)
, where opt is the optimal objective function value. Recently it was

shown, using the same LP, an almost tight approximation factor of Ω(
√

log logn
n logn)

[SS10].
Subsequently, the interest has shifted towards the restricted case in which ev-

ery item has the same value among all players that want it, i.e. wij ∈ {wj , 0}, ∀j ∈
[m]. For this case a Ω(log log logn

log logn) factor approximation algorithm is known

[BS06] and a simple 1/2 inapproximability result [BD05]. In [Fei08] it was proved

100 M. Mastrolilli and G. Stamoulis

that the value of the optimal solution of the configuration LP defined in [BS06]
can be estimated to be at most a constant times better than the optimal value
of the problem. In [AFS08] an 1

5 integrality gap was shown for the same LP
which later improved to 1

4 . This is an estimation ratio but they failed to provide
a polynomial time 1

4 approximation algorithm. Instead, they provided a local
search heuristic with the same guarantee but, unfortunately, the procedure is
not known to converge in polynomial time. Very recently it was shown that it
can be done in nO(log n) time (in contrast with the O(2n) original running time),
see [PS12]. In [HSS11] the authors managed to make constructive Feige’s orig-
inal non constructive argument based on Lovász Local Lemma [AS00] so they
demonstrated the first constant factor approximation of the restricted Santa
Claus problem solving, to some extent, an important question. Notice that the
result returns an α-approximation algorithm for some constant α. An explicit
value of α is not provided. But still there is a gap between the 1

2 inapproxima-
bility result and the constant α approximability result in [HSS11] and finding
an explicit constant factor approximation algorithm for the (restricted) Santa
Claus problem is considered a major open problem.

For the restricted Santa Claus problem, several special cases of the problem
have been studied. To this direction in [KP07] it was considered the case where
wij ∈ {0, 1,∞} and was established a tradeoff between running time and approx-
imation guarantee. This special case is believed to be as hard as the general, but
no formal proof of this is known. In [BCG09] the authors considered the case
in which each item has bounded degree D (can be assigned to at most D kids).
They proved that when D ≤ 3 then the problem is as hard as in the general case.
For the case of D ≤ 2 they provided a 1/2 inapproximability result and a 1/4
approximation algorithm for the asymmetric case (in which the evaluation of
this item by the two competing players is different). The authors also provided
a simpler LP formulation for the general problem and devised a polylogarithmic
approximation algorithm that runs in quasipolynomial time. The same result
has been obtained in [CCK09] in which it was also shown a 1/2 approximation
for the D ≤ 2 case, thus matching the bound proved in [BCG09] for this case.

In [Woe97], the author consider a special case of the problem considered in
this paper, namely, the case where the graph is complete bipartite, i.e. every
present can be assigned to every kid. It was shown that this version admits a
PTAS based on dynamic programming techniques.

1.2 The Approach

Our algorithm works as follows. We first guess the value t of the optimal solution.
For each t we present a polynomial time algorithm that either returns that no
solution of value t exists or return a solution of value at least t/2 (this means,
a solution such that each kid is satisfied to an extent of at least t/2). In order
to find the maximum such t we simply perform a binary search in the range
[0,W], W =

∑
j w(j). This results in a 1/2-approximate solution. We first need

a definition.

Restricted Max-Min Fair Allocations 101

Definition 2 (t-assignment). For any value of t a (fractional) t-assignment
is a (fractional) assignment such that every kid is happy to the extent of at least
t, i.e. the total value of the presents (fractionally) given to any child is at least t.

For each specific value of t we perform the following steps (that structure our
input):

Clipping: Firstly, we clip the value of every present with value greater that
t down to t so that every present has value in the range of (0, t]. This is
done without any loss because the notion of a t-assignment is preserved i.e.
if a t assignment exists before this step, then a t-assignment exists after this
clipping step.

Scaling step: Then, we scale the values of the presents such that any present
has value in (0, 1]. This is done as follows: we simply divide their values by t.
Every present now has value in the interval (0, 1]. We observe that this step
is again performed without any loss: a t-assignment becomes 1-assignment.

Rounding step: Next we proceed to the rounding step. This step consists on
partitioning the set of the presents into two sets: the large (or big) presents
(with value ≥ 1/2) and the small presents (with value < 1/2). After this
partition, we round all the large presents to 1 and leave the values of all
small presents unchanged. This step is done with some loss. Note that if a
kid gets a (rounded) large present then after restoring the original value we
know that he/she gets value at least 1/2.

Our goal is to integrally assign the large presents and fractionally the small
presents, in polynomial time. With this aim, we propose a Linear Programming
(LP) formulation for identifying the set of kids that can be satisfied with large
presents in such way that the remaining kids can be satisfied with a fractional
assignment of small items (i.e. the remaining small presents are enough to satisfy
the rest of the kids fractionally). Interestingly enough the constraint matrix
defined by the LP formulation is totally unimodular, which allows us to integrally
allocate the big presents and fractionally the small ones to the rest of the kids
in polynomial time. Then we apply a result from [BD05] to obtain an integral
allocation of the small presents to the rest of the kids so that every kid gets
presents of value at least 1/2:

Theorem 1. There is an algorithm which returns in polynomial time in the
input size an assignment (allocation) of presents to kids such that each kid is at
least half as happy as it would be in the optimal assignment. In other words, there
is a 1/2-approximation algorithm for the Santa Claus problem with inclusion free
intervals.

2 Satisfying All the Kids

As explained in Section 1, we transform our instance such that every present is
either large (i.e. its value is 1) or small (its value is < 1/2). Our goal is to identify

102 M. Mastrolilli and G. Stamoulis

which kids will be satisfied with large presents such that there are enough small
items left for the remaining children to be satisfied fractionally. With this aim,
we use the following well-known condition which is a sufficient and necessary
condition for a bipartite graph to have a perfect matching:

Lemma 1 (Hall’s condition, [HV50]). Given a bipartite graph G with bi-
partition V and U , we say that G has a perfect matching (on V) if and only
if ∀S ⊆ V |S| ≤ |N(S)| where N(S) is the neighborhood of the set S i.e. the
following set: N(S) = {u ∈ U : (v, u) ∈ E(G) for some v ∈ S }.

We say that a present j can be assigned to a kid i if there is an edge in our graph
between j and i. For the kids that get large presents the above condition trans-
lates as follows: let Klarge be the kids that we decided to assign large presents
and |Nlarge(Klarge)| is the number of large presents in their neighborhood. Then,
we must have that

∀S ⊆ Klarge, |S| ≤ |Nlarge(S)|. (1)

Basically, this condition says that for a subset S of children we cannot assign
more large items to S than the number we have in their neighborhood.

For the remaining children (those that get small items), if we define Ksmall

in similar way, the following condition is necessary and sufficient for getting a
fractional 1-assignment:

∀S ⊆ Ksmall, |S| ≤ w(Nsmall(S)) =
∑

j∈Nsmall(S)

w(j) (2)

where w(j) is the value of present j (after the rounding).
In general a t-assignment exists if and only if

∀S ⊆ Ksmall, |S| ≤ 1

t
· w(Nsmall(S))

=
1

t
·

∑
j∈Nsmall(S)

w(j)

where w(j) is the value of the (small) present j.

Remark: Observe that this fractional version of Hall’s condition is in fact equiv-
alent to the integral Hall’s condition: assuming, without any loss, that t and w(j)
are (positive) integers, replace every (small) present j of value w(j) with w(j)
copies of value 1. Replace each child i with t new copies of it and connect each
such copy to every copy of the presents that i was initially connected with. Ob-
serve that we have

∑
i t = t|K| many new kids. It is easy to verify that the

fractional version of Hall’s condition is true in the initial graph if and only if the
integral version of Hall’s condition is true in the new graph.

Restricted Max-Min Fair Allocations 103

2.1 A Linear Program to Assign Large Presents Integrally and
Small Presents Fractionally

Basically, as we explained, we need to decide which kids will be satisfied integrally
by large presents and which will be satisfied (fractionally) by small presents (i.e.
to identify a set Klarge ⊆ K such that we have enough large presents for this
set and enough small presents to satisfy the kids in K \Klarge fractionally). The
idea is to “translate” conditions (1) and (2) as linear constraints. Towards this
goal, we define the following set of (binary) variables:

Li =

{
1 if kid i gets a large present

0 otherwise.

Let �lr denote the number of the large presents that can be assigned to kids in
the interval [l, r] for l ≤ r. To satisfy Hall’s condition on large presents we need,
for any interval of kids [l, r] to assign no more than �lr large presents to that
interval. This translates to the following constraints:

r∑
i=l

Li ≤ �lr, ∀ l ≤ r (3)

We need to do the same for the small presents i.e. for any possible subset of kids
that we decided to make them happy with small presents, the available amount
of small presents that can be assigned to them should be enough to satisfy them
all (fractionally):

r∑
i=l

(1− Li) ≤
∑

j∈Nsmall([l,r])

w(j) = w(Nsmall([l, r])), ∀ l ≤ r (4)

Since we have polynomially many possible intervals (namely O(n2)), this means
we have polynomially many constraints of the above type. We will show that the
constraint matrix, as defined above, is a special matrix:

Definition 3 ([Sch03], [Sch98]). An integer square matrix A is called uni-
modular matrix if its determinant is either +1 or -1. Equivalently, a square
matrix is unimodular if it is invertible over the integers. A matrix M is a totally
unimodular matrix if every square non-singular submatrix of M is unimodular.

Totally unimodular matrices have some very interesting and well known prop-
erties:

Lemma 2 ([Sch03], [Sch98]). If A ∈ {−1, 0, 1}m×n is a totally unimodu-
lar matrix and β ∈ Zm is an integral vector, then linear programs of form
min cTx s.t. Ax ≤ β have integral optima, for any c ∈ Zn.

Of a particular interest in our case is a special case of totally unimodular matri-
ces, called interval matrices:

104 M. Mastrolilli and G. Stamoulis

Definition 4 ([Sch03]). A matrix A is called an interval matrix if it is a
binary matrix (i.e. all entries are either 0 or 1) and, moreover, in every row all
the ones (if any) are appearing consecutively. We also say that such a matrix
has the consecutive ones property.

It is well known fact that interval matrices are totally unimodular (see the above
references).

We observe that the matrix defined by inequalities (3) and (4) is an interval
matrix, thus the polyhedron defining the solution space of this linear program is
integral (see Lemma 2). This means that if the the LP (after relaxing the binary
variables to be Li ∈ [0, 1]) defined by all the constraints (3) and (4) is feasible,
the solution returned will have integral coordinates i.e. Li ∈ {0, 1} ∀i and in the
next sub-section e will show how to assign presents to kids in such a way that
every kid gets value at least 1/2. Moreover, if no feasible solution exists that
respects constraints (3) and (4) then no solution for the Santa claus problem
exists with value 1 and we continue with our binary search procedure.

2.2 Allocating the Presents

What we need to show first is that the decision of which kids will be satisfied
by large presents is done such that it does not violate (the integral version of)
Hall’s condition (in the following, by N(S) for S ⊆ K, we mean Nlarge(S)):

Lemma 3. Let Λ = {i ∈ K : Li = 1}. Then the (integral) Hall’s condition is
satisfied for Λ i.e. ∀S ⊆ Λ : |S| ≤ |N(S)|.

Proof. Let S ⊆ Λ. Assume that α is the first kid in the set S and β the last
kid in it. Since we obtained the values for the Li’s by solving the Integer Linear
Program (defined by constraints (3) and (4)), we know these values satisfy the
constraint

∑
i∈[α,β] Li ≤ �αβ . Now, we need to distinguish between two cases

regarding the structure of S:

S is an interval: In this case S = [α, β] and Hall’s condition is satisfied because
of constraint (1).

S is not an interval: Then, is this case, S can be represented as a union of
(disjoint) intervals: S = S1 ∪ S2 ∪ · · · ∪ Sγ where all the Si’s, i ∈ [γ], are
all intervals. By the previous case we know that Hall’s condition is satisfied
for any interval Si, i.e. |Si| ≤ |N(Si)|. First, we will show that for any two
consecutive subintervals Si and Si+1 where 1 ≤ i ≤ γ − 1 Hall’s condition
is satisfied as well, i.e. |S′| = |Si| + |Si+1| ≤ |N(S′)|. Without any loss of
generality, assume that these two subintervals are the first two: S1 and S2.
Let H be the “hole” (set of kids) between S1 and S2. Let S

′ = S1∪S2. Then
N(S′) = N(S1)∪N(S2) and |N(S′)| = |N(S1)|+ |N(S2)|− |N(S1)∩N(S2)|.
Let Φ = N(H) \ (N(S1) ∩N(S2)).
Assume first that Φ = ∅. This means that there does not exist a present
that sees an interval entirely inside H . Then we have that |N(S1 ∪ S2 ∪
H)| = |N(S1 ∪ S2)|. Now let α be the first kid in S′ and β the last one.

Restricted Max-Min Fair Allocations 105

S1 S2H

Cannot happen!

N(H) \ (N(S1) ∩ N(S2)) �= ∅

(5)

(4)

(3)

(2)

(1)

Fig. 1. Second case. We know that the blue interval (number 2) exists. So, any other
interval that intersects it cannot be proper subinterval or proper super-interval of it
(i.e the interval number 5 cannot exist). But they can share one common endpoint, as
in intervals 1,3 and 4.

From the previous we have that the two subintervals S1, S2 cover that entire
neighborhood of the interval [α, β] = S1 ∪ S2 ∪H and so |N(S′)| = |N(S1 ∪
S2)| = |N([α, β])| which by definition equals to �αβ . But also we know that
|S′| ≤ �αβ . This is because S′ ⊂ Λ = {k : Lk = 1} so by the LP constraint∑

k∈[α,β] Lk ≤ �αβ and moreover S′ ⊂ [α, β] (because of the presence of the

hole H). So, we conclude that |S′| ≤ �α,β = |N(S′)|.
If Φ 	= ∅ then this means that there exists a present that sees an interval
entirely insideH . Because of the assumption that all intervals are sorted such
that they are inclusion free intervals, this means that there cannot exist a
present that can be assigned in kids both S1 and S2 i.e. no present’s interval
extends from S1 to S2, or else, it would violate the requirements of the
ordering of our instance (inclusion free but can share a common endpoint),
since there is a present with interval entirely inside H . So, we conclude that
|N(S1)∩N(S2)| = 0 and so |N(S′)| = |N(S1)|+ |N(S2)|−|N(S1)∩N(S2)| =
|N(S1)|+ |N(S2)| ≥ |S1|+ |S2| = |S|′ (because S1 and S2 are intervals). So,
we conclude that |S′| = |S1|+ |S2| ≤ |N(S1)|+ |N(S2)| = |N(S′)| and Hall’s
condition is satisfied.

Now, like before, assume that S = S1 ∪ S2 ∪ · · · ∪ Sγ . Let Hi be the “hole”
between the subintervals Si and Si+1. So we have a collections of holes H =
{H1, H2, . . . , Hγ−1}. Define, like before, Φi = N(Hi) \N((Si ∪ Si+1) ∩Hi).
A present belongs to the set Φi if the interval of kids that can be assigned is
entirely inside Hi or inside Hi ∪Si or Hi ∪Si+1 but cannot be assigned to a
kid in Si and in Si+1 (see Figure 1). Now, compute the largest index j such
that Φi = ∅ ∀i ≤ j. This means that |N(S1∪H1∪S2∪H2∪· · ·∪Hj−1∪Sj)|

106 M. Mastrolilli and G. Stamoulis

= |N(S1 ∪ S2 ∪ · · · ∪ Sj)| = |N([α1, βj])|, where αi (βi) is the first (last) kid
in the interval Si. But |N([α1, βj])| = �α1βj = |N(S1 ∪ S2 ∪ · · · ∪ Sj)|. And,
as before, from the constraint of the LP we have that |S1 ∪ · · · ∪Sj | ≤ �α1βj .
So |S1 ∪ S2 ∪ · · · ∪ Sj | = |S1|+ · · · |Sj | ≤ |N(S1 ∪ S2 ∪ · · · ∪ Sj)|.
Define C1 = S1 ∪ S2 ∪ · · · ∪ Sj. From the computation of the index j we
know that Φj+1 	= ∅. Again compute the largest index j′ > j such that
Φj′+1 	= ∅ and define in similar way C2 and so on. So, we have defined the
set C = {C1, C2, . . . , Cp}, for some p computed in the way just described. For
every Cq ∈ C we know that |Cq| ≤ |N(Cq)|. Between any pair of Cl and Cl+1,
1 ≤ l ≤ p− 1 there is a hole with index lets say x such that Φx 	= ∅. With an
argument identical as before (when we had two subintervals to consider) we
have that |N(Cl) ∩N(Cl+1)| = 0 (since there is no “crossing interval”) and
so |N(C1 ∪ C2 ∪ · · · ∪ Cp)| = |N(C1|+ · · · |N(Cp)| ≥ |C1|+ · · · |Cp| = |S|.

��

We need to show the same for the small items i.e. that (the fractional version
of) Hall’s condition on small presents and the rest of the kids is satisfied:

Lemma 4. Let Λ̄ = {i /∈ Λ} = {i ∈ K : Li = 0}. For any possible subset S of
Λ̄ we have that |S| ≤ wsmall(N(S)).

Proof. The proof of this is identical as the proof of the previous lemma and we
omit it.

��

Corollary 1. The decision of which kids will be assigned large presents is such
that Hall’s condition is preserved for both the large and the non large items and
can be done in polynomial time.

Now that we have decided which kids will take large items, we need a way of
actually assigning large items to those kids. This can be easily done by the
following simple argument: let Blarge(Klarge, Ilarge, E) be the bipartite subgraph
induced by the large presents and all the “large” kids (i.e. all the kids i for
which Li = 1). In this subgraph find a perfect matching (perfect on the side
of the kids). This means that every kid i with Li = 1 receives a large present.
Lemma 3 guarantees that Hall’s condition is satisfied in the graph Blarge and so
such a perfect matching always exists.

Since every large present has value ≥ 1/2, when we restore the original value
of this present, we see that each kid i ∈ Klarge is satisfied to an extent of at least
1/2. Next we will show how we can obtain the same guarantee for the rest of
the kids as well (kids that get satisfied by only small presents).

2.3 Assigning Small Presents to the Rest of the Kids

So now we are left with all the kids i for which Li = 0 and we need to satisfy
them as much as possible with the remaining small presents. In other words,
we are left with the following instance B′ = ({i ∈ K : Li = 0}, Ismall, E

′), i.e.

Restricted Max-Min Fair Allocations 107

with the subgraph induced by the “small” kids (for which Li = 0) and the small
presents. The only guarantee we have so far is that (fractional) Hall’s condition
is true in B′ (Lemma 4), so this means that we can fractionally satisfy every kid
to an extent of at least 1.

To satisfy these kids integrally, we use an observation made in [BD05]. There,
using ideas from [ST93] (see also [LST87]), it was shown how to obtain a feasible
integral solution of value at least opt−wmax, where wmax = maxj∈I w(j). Since
in our case we have wmax < 1/2 (only small items) and opt = 1 (Hall’s condition
is true and we are seeking a 1-assignment) we immediately get that every kid is
satisfied to an extent of at least 1/2.

Finally, for convenience, we summarize our algorithm:

Algorithm 1. A 1
2 -approximation Algorithm for Max-Min Fair Allocation with

Inclusion free Intervals

Input: An instance of (restricted) max-min fair allocation B = (I,K, E) as described
in Definition 1.
Output: A feasible 1

2
-approximate allocation.

1. Guess the value t of the optimal solution.
2. For a particular t, structure the input according to the described Clipping, Scaling

and Rounding steps.
3. Define and solve the ILP defined by the constraints (3) and (4).
4. if the ILP is feasible then

(a) Consider the induced subgraph Blarge(Klarge, Ilarge, E) where Klarge = {i ∈
K : Li = 1}.

(b) Find a perfect matching on the side of Klarge.
(c) Consider the rest of the graph (induced by the small presents and the set of

kids Ksmall = {i ∈ K : Li = 0}). Let Bs this graph.
(d) Apply the algorithm in [BD05] on Bs to obtain a opt − wmax ≥ 1

2
integral

allocation.

Corollary 2. If a (fractional) t-assignment exists for some t i.e. if the ILP
defined by all inequalities described in (3) and (4) is feasible for some particular
value of t, then we can compute an (integral) t/2-assignment in polynomial time.

Future Work: We note that the problem studied in this article is not known
to be APX-hard, and so a PTAS is not ruled out. We leave this as a research
direction for the future.

Acknowledgments. We would like to thank Arash Rafiey for many usefull
discussions.

108 M. Mastrolilli and G. Stamoulis

References

[AFS08] Asadpour, A., Feige, U., Saberi, A.: Santa Claus Meets Hypergraph Match-
ings. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX
and RANDOM 2008. LNCS, vol. 5171, pp. 10–20. Springer, Heidelberg
(2008)

[AS00] Alon, N., Spencer, J.H.: The probabilistic method, 2nd edn. Wiley-
Interscience, New York (2000)

[AS07] Asadpour, A., Saberi, A.: An approximation algorithm for max-min fair
allocation of indivisible goods. In: STOC, pp. 114–121. ACM (2007)

[AS10] Asadpour, A., Saberi, A.: An approximation algorithm for max-min fair
allocation of indivisible goods. SIAM J. Comput. 39(7), 2970–2989 (2010)

[BCG09] Bateni, M.H., Charikar, M., Guruswami, V.: Maxmin allocation via degree
lower-bounded arborescences. In: STOC. ACM (2009)

[BD05] Bezáková, I., Dani, V.: Allocating indivisible goods. SIGecom Ex-
changes 5(3), 11–18 (2005)

[BS06] Bansal, N., Sviridenko, M.: The santa claus problem. In: STOC, pp. 31–40.
ACM (2006)

[CCK09] Chakrabarty, D., Chuzhoy, J., Khanna, S.: On allocating goods to maximize
fairness. In: FOCS, pp. 107–116 (2009)

[Fei08] Feige, U.: On allocations that maximize fairness. In: SODA, pp. 287–293.
ACM-SIAM (2008)

[GJ79] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman (1979)

[HSS11] Haeupler, B., Saha, B., Srinivasan, A.: New constructive aspects of the lovász
local lemma. J. ACM 58(6), 28 (2011)

[HV50] Halmos, P.R., Vaughan, H.E.: The marriage problem. American Journal of
Mathematics, 214–215 (1950)

[KP07] Khot, S., Ponnuswami, A.K.: Approximation Algorithms for the Max-Min
Allocation Problem. In: Charikar, M., Jansen, K., Reingold, O., Rolim,
J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp.
204–217. Springer, Heidelberg (2007)

[LST87] Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for
scheduling unrelated parallel machines. In: FOCS, pp. 217–224. IEEE (1987)

[PS12] Polacek, L., Svensson, O.: Quasi-polynomial local search for restricted max-
min fair allocation. In: ICALP 2012 (2012)

[Sch98] Schrijver, A.: Theory of Linear and Integer Programming. John Wiley &
Sons (1998)

[Sch03] Schrijver, A.: Combinatorial optimization: polyhedra and efficiency. Springer
(2003)

[Sga96] Sgall, J.: Randomized on-line scheduling of parallel jobs. J. Algorithms 21(1),
149–175 (1996)

[SS10] Saha, B., Srinivasan, A.: A new approximation technique for resource-
allocation problems. In: ICS, pp. 342–357. Tsinghua University Press (2010)

[ST93] Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized
assignment problem. Math. Program. 62, 461–474 (1993)

[Woe97] Woeginger, G.: A polynomial-time approximation scheme for maximizing
the minimum machine completion time. Operation Research Letters 20(4),
149–154 (1997)

An Improved Algorithm for Packing T -Paths
in Inner Eulerian Networks

Maxim A. Babenko�, Kamil Salikhov, and Stepan Artamonov

Moscow State University Yandex LLC
{maxim.babenko,salikhov.kamil}@gmail.com,

swatmad@list.ru

Abstract. A digraph G = (V, E) with a distinguished set T ⊆ V of
terminals is called inner Eulerian if for each v ∈ V − T the numbers
of arcs entering and leaving v are equal. By a T -path we mean a simple
directed path connecting distinct terminals with all intermediate nodes
in V −T . This paper concerns the problem of finding a maximum T -path
packing, i.e. a maximum collection of arc-disjoint T -paths.

A min-max relation for this problem was established by Lomonosov.
The capacitated version was studied by Ibaraki, Karzanov, and Nag-
amochi, who came up with a strongly-polynomial algorithm of complex-
ity O(φ(V, E) · log T +V 2E) (hereinafter φ(n, m) denotes the complexity
of a max-flow computation in a network with n nodes and m arcs).

For unit capacities, the latter algorithm takes O(φ(V, E) · log T +V E)
time, which is unsatisfactory since a max-flow can be found in o(V E)
time. For this case, we present an improved method that runs in
O(φ(V, E) · log T + E log V) time. Thus plugging in the max-flow al-
gorithm of Dinic, we reduce the overall complexity from O(V E) to
O(min(V 2/3E, E3/2) · log T).

1 Preliminaries

1.1 Introduction

Computing a maximum integer flow, i.e. a maximum packing of paths connecting
a given pair of terminals subject to edge capacities, is widely regarded as a
central problem in combinatorial optimization. This problem has myriads of
applications, both theoretical and practical.

Given a graph G = (V, E) (either directed or undirected) and arbitrary integer
capacities e : E → Z+, one of the best strongly-polynomial max-flow algorithm
[12] runs in O(V E log(V 2/E)) time. (Hereinafter, in notation involving func-
tions of numerical arguments or time bounds, we indicate sets for their cardinal-
ities.) More efficient methods are known for the special case of unit capacities.
The oldest one belongs to Dinic [3] and runs in O(min(E3/2, V 2/3E)) time (as
shown independently by Karzanov [17] and Even and Tarjan [5]). Better results

� Supported by RFBR grants 10-01-93109 and 12-01-00864.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 109–120, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

110 M.A. Babenko, K. Salikhov, and S. Artamonov

were recently discovered conerning max-flows in undirected unit-capacitated net-
works. Karger proposed an M∗(V 3/2E2/3)-time randomized algorithm [14,15],
Goldberg and Rao gave an O(V 3/2E1/2)-time deterministic algorithm [11], and
finally Karger and Levine presented a deterministic O(V 7/6E2/3)-time algorithm
and a randomized M∗(V 20/9)-time algorithm [16] (here M∗(·) denotes expected
time with omitted polylogarithmic factors).

Multiflows are similar to usual flows but involve a set of terminals T that can
be arbitrarily large. Most versions of the maximum integer multiflow problem are
NP-hard. Still if the network is undirected and paths in a multiflow are allowed to
connect arbitrary pairs of (distinct) terminals then the problem is tractable [24].
(This case is sometimes referred to as a free multiflow.) For directed networks
one must additionally require capacities at all inner (non-terminal) nodes to be
balanced. Considering this version of the problem, Lomonosov derived a simple
min-max formula.

Ibaraki, Karzanov, and Nagamochi [13] applied a “divide and conquer”
approach (originally introduced by Karzanov [19]) and devised a strongly-
polynomial O(φ(V, E) · log T + V 2E)-time algorithm for T -path packing prob-
lem in a capacitated digraph (V, E). The latter algorithm incorporates an ar-
bitrary max-flow routine that runs in φ(n, m) time for a network with n nodes
and m arcs. Since φ(V, E) = O(V E log(V 2/E)) (as, e.g., in the algorithm of
Goldberg and Tarjan [12]), the term O(V 2E) becomes a bottleneck. This is-
sue was partially resolved in [1], where the total complexity was decreased to
O((φ(V, E) + V E) · log T + V E log(V 2/E)).

The present paper concerns unit-capacitated networks. For this case, the al-
gorithm from [13] takes O(φ(V, E) · log T +V E) time and since φ(V, E) = o(V E)
the second term remains a bottleneck.

We introduce a novel discrepancy scaling technique and prove the following:

Theorem 1. A maximum integer multiflow in an inner Eulerian digraph G =
(V, E) with terminals T ⊆ V can be found in O(φ(V, E) · log T + E log V) time.

Our approach also extends to integer capacities as follows:

Theorem 2. A maximum integer multiflow in an inner Eulerian digraph G =
(V, E) with terminals T ⊆ V and integer capacities not exceeding C can be found
in O(φ(V, E) · log T + E log V log T + E log(V 2/E) log(V C)) time.

The latter improves the bound O(φ(V, E) log T + V E) from [1] provided that
φ(n, m) = o(mn) (e.g. if the weakly-polynomial algorithm of Goldberg and
Rao [11] is applied). In sense of capacity scaling, this improvement is ultimate
since for all currently known scaling max-flow algorithms the first term is dom-
inant.

1.2 Basic Notation and Facts

We shall use some standard definitions and notation. For a graph G, its set of
nodes and edges (or arcs) are denoted by V (G) and E(G), respectively. A similar
notation is used for paths and cycles.

An Improved Algorithm for Packing T -Paths 111

Let G be a digraph and X be a subset of nodes. Then G[X] denotes the
subgraph of G induced by X . Also δin

G (X) (respectively δout
G (X)) denotes the

set of arcs entering X (respectively leaving X) and δG(X) := δin
G (X) ∪ δout

G (X).
When G is clear from the context, it is omitted. Also for X = {v} we write just
δin(v) and δout(v).

For an arbitrary real-valued function h : U → R and U ′ ⊆ U we write h(U ′)
to denote

∑
u∈U ′ h(u).

A digraph G = (V, E) with a distinguished subset T ⊆ V is said to be inner
Eulerian if for each v ∈ V −T the in-degree and out-degree of v are equal. Nodes
in T and in V − T are called terminals and inner nodes, respectively. A simple
path in G is called a T -path if its endpoints are distinct terminals and the other
nodes are inner.

By a network we mean a triple N = (G, T, c) consisting of a digraph G =
(V, E), a set of terminals T , and a non-negative function c : E → Z+ of arc
capacities. The notion of inner Eulerianess is extended to N in a natural way,
namely c(δin(v)) = c(δout(v)) should hold for all v ∈ V − T . In case of unit
capacities we omit c from notation and deal with the pair N = (G, T).

A collection P consisting of T -paths Pi endowed with real weights αi ∈ R+

such that ∑
(αi : e ∈ E(Pi)) ≤ c(e) for all e ∈ E (1)

is called a free multiflow or a T -path packing (the adjective “free” is used to
emphasize that any pair of distinct terminals is allowed to be connected, i.e.,
the commodity graph in the corresponding multiflow problem is complete). The
value of P is the sum

val(P) := α1 + ... + αk

and P is called maximum if val(P) is maximum.
If all numbers αi are integers then P is called integer. Integer multiflows can

be viewed as multisets of T -paths. If c(e) = 1 for all e ∈ E then T -paths forming
an integer multiflow are arc-disjoint. This case will be our primary focus.

The maximum integer multiflow problem in inner Eulerian networks admits a
min-max relation, which is due to Lomonosov. (See also [18, Sec. 4], [8] and [25,
p. 1289].) For t ∈ T , call X ⊂ V a t-cut if X ∩ T = {t}. Denote by λout(t) the
minimum of c(δout(X)) over all t-cuts X .

Theorem 3 (Lomonosov (unpublished, 1978), Frank [8]). For N =
(G, T, c) as above, there exists a maximum integer directed multiflow P in N
with

val(P) =
∑
t∈T

λout(t).

For t ∈ T , let Xt be a t-cut with c(δout(Xt)) minimum. Note that inner Euleri-
anness of N implies

c(δout(X)) − c(δin(X)) = c(δout(t)) − c(δin(t)) for each t-cut X. (2)

112 M.A. Babenko, K. Salikhov, and S. Artamonov

Thus the minima of c(δout(Xt)) and c(δin(Xt)) are obtained simultaneously. Also
note that ∑

t∈T

(
c(δout(t)) − c(δin(t))

)
= 0

and hence ∑
t∈T

c(δout(Xt)) =
∑
t∈T

c(δin(Xt)).

Therefore every optimal P saturates the cuts δout(Xt) and δin(Xt) for t ∈ T .
We shall also rely on analogous facts concerning undirected networks. A net-

work N = (G, T, c) consisting of an undirected graph G = (V, E), a set of
terminals T ⊆ V , and integer capacities c : E → Z+ is called inner Eulerian if
c(δ(t)) is even for all t ∈ V − T . The notions of T -paths, t-cuts (t ∈ T), and
free multiflows in N are defined similar to the directed case. For t ∈ T , let λ(t)
be the capacity of a minimum t-cut Xt. Lovász and Cherkassky, independently,
established the following min-max relation:

Theorem 4 (Lovász [22], Cherkassky [2]). For N = (G, T, c) as above,
there exists a maximum integer undirected multiflow P in N with

val(P) =
1
2

∑
t∈T

λ(t).

As above, every optimal multiflow P saturates cuts δ(Xt) for t ∈ T .

2 Algorithm

2.1 Outline

Modern efficient methods for computing maximum free multiflows rely on “di-
vide and conquer” approach, which was originally applied in [19] to find, in
O(φ(V, E) · log T) time, a half-integer maximum multiflow in a undirected graph
G = (V, E) with integer edge capacities. Subsequently, this method was im-
proved and extended in [13] so as to find an integer maximum free multiflow in
an inner Eulerian undirected network in the same time O(φ(V, E) · log T), and
in an inner Eulerian directed network in O(φ(V, E) · log T + V 2E) time.

Consider a directed unit-capacitated network N = (G, T) with |T | ≥ 4. The
problem for N is recursively reduced to problems in two networks N ′ = (G′, T ′)
and N ′′ = (G′′, T ′′) such that |T ′| , |T ′′| ≤ �|T | /2 + 1. First, fix an arbitrar-
ily partition {S′, S′′} of T into parts of almost equal sizes. Second, compute
an S′-cut X ′ (i.e. a subset X ′ ⊂ V (G) with X ′ ∩ T = S′) of minimum ca-
pacity c(δout(X ′)) by running a max-flow routine and considering nodes S′ as
sources and nodes S′′ as sinks. Form graph G′ by contracting X ′ in G into a
new composite node (denoted by t′). We identify arcs in graphs resulting from
contractions with their pre-images in original graphs. Define the set of terminals
in G′ as T ′ := {t′} ∪ S′′. Similarly N ′′ = (G′′, T ′′) is constructed by contracting
X ′′ := V (G) − X ′ in G into a new node t′′ and setting T ′′ := {t′′} ∪ S′.

An Improved Algorithm for Packing T -Paths 113

Remark 1. The complexity of this separation procedure is clearly dominated by
the min-cut computation. Note that in view of (2) (which holds for S′-cuts as
well) the requested minimum cut can be found by computing a max-flow in the
unit-capacitated underlying undirected graph (obtained from G by dropping arc
directions). This enables to use faster max-flows algorithms designed to handle
undirected graphs (e.g. [16]).

Next, the algorithm proceeds to N ′ and N ′′ recursively and computes op-
timal solutions P ′ and P ′′ to N ′ and N ′′, respectively. Finally, the ag-
gregation procedure combines P ′ and P ′′ into a maximum integer multi-
flow P in N as follows. We shall assume that P ′ and P ′′ are given ex-
plicitly, i.e. as collections of arc-disjoint T ′- and T ′′-paths, respectively. De-
fine P ′

0 := {P ∈ P ′ | t′ is not an endpoint of P} and, symmetrically, P ′′
0 :=

{P ∈ P ′′ | t′′ is not an endpoint of P}. By the maximality of P ′ and P ′′ and the
minimality of X ′, paths in P ′ − P ′

0 saturate the cut δG′(t′) and, symmetrically,
paths in P ′′ − P ′′

0 saturate the cut δG′′(t′′). This enables to recombine these
paths into a collection P1 of T -paths (connecting terminals in S′ with terminals
in S′′). The final packing P in N is defined as P := P ′

0 ∪P ′′
0 ∪P1. For the proof

of maximality of P and a more detailed exposition, see [13]. The aggregation
procedure runs in O(V + E) time, which, compared to the separation phase, is
negligible.

For |T | = 3, the above method is inapplicable (since it yields |T ′| = |T ′′| = 3)
so this basic case is handled separately, as explained below in Subsection 2.3.

Let T (n, m, k) denote the complexity of the algorithm in a network N with n
nodes, m arcs, and k terminals. Then for k ≥ 4

T (n, m, k) = T (n′, m′, k′) + T (n′′, m′′, k′′) + φ(n, m) + O(m + n), (3)

where (n′, m′, k′) and (n′′, m′′, k′′) denote analogous size parameters for networks
N ′ and N ′′, respectively, and φ(n, m) is the complexity of a max-flow routine
in a network with n nodes and m arcs. (As indicated earlier, the latter routine
can be assumed to deal with an undirected unit-capacitated graph.) Also, as we
shall show in Subsection 2.3, for k ≤ 3

T (n, m, k) = O(φ(n, m) + m logn). (4)

Assuming that φ(n, m) is “reasonable” one can solve (3) and (4) as follows (see
[13] for a detailed proof):

T (n, m, k) = O(φ(n, m) log k + m log n).

It remains to show how to solve the problem for a directed unit-capacitated
network N = (G, T) with |T | ≤ 3 terminals in O(φ(V, E) + E log V) time. For
this we shall need some terminology and basic facts concerning skew-symmetric
graphs (which were earlier introduced as a convenient tool for solving flow and
matching problems; see [10,1] for a survey).

114 M.A. Babenko, K. Salikhov, and S. Artamonov

2.2 Skew-Symmetric Graphs

A skew-symmetric graph is a digraph G = (V, E) endowed with two bijec-
tions σV , σE such that: σV is an involution on the nodes (i.e., σV (v) �= v and
σV (σV (v)) = v for each v ∈ V), σE is an involution on the arcs, and for each arc
e from u to v, σE(e) is an arc from σV (v) to σV (u). For brevity, we combine the
mappings σV , σE into one mapping σ on V ∪E and call σ the symmetry (rather
than skew-symmetry) of G. For a node (arc) x, its symmetric node (arc) σ(x) is
also called the mate of x, and we will often use notation with primes for mates,
denoting σ(x) by x′. Obviously δin(v)′ = δout(v′) and degin(v) = degout(v′) for
each v ∈ V .

We admit parallel arcs, but not loops in G. Observe that if G contains an arc
e from a node v to its mate v′, then e′ is also an arc from v to v′ (so the number
of arcs of G from v to v′ is even and these parallel arcs are partitioned into pairs
of mates).

The symmetry σ is extended in a natural way to paths, circuits, subsets etc.
Namely, two paths are symmetric to each other if the elements of one of them
are symmetric to those of the other and go in the reverse order: for a path
P = (v0, e1, v1, . . . , ek, vk), the symmetric path P ′ is (v′k, e′k, v′k−1, . . . , e

′
1, v

′
0).

2.3 Case |T | ≤ 3

Consider a directed unit-capacitated network N = (G = (V, E), T) with |T | ≤ 3.
Adding an isolated terminal (if needed) one may assume that |T | = 3. The best
known algorithm that finds a maximum free multiflow in N runs in O(φ(V, E)+
V E) time [13] . We shall improve this to O(φ(V, E) + E log V) as follows.

Stage 1: Define T = {t1, t2, t3} and let G be the underlying undirected graph
of G. Apply the algorithm for inner Eulerian undirected graphs from [13, Sec.2.1]
to find a maximum integer free multiflow P in N = (G, T) (endowed with unit
capacities). This takes O(φ(V, E)) time.

Remark 2. The latter algorithm involves computing two max-flows, say g1 and
g2, where only g1 is undirected. Namely, g1 is a max-flow in G from t1 to {t2, t3},
and g2 is a max-flow from t2 to t3 in the residual network w.r.t. g1. Hence
the undirected max-flow algorithm of Karger [16] may seem inapplicable here.
Fortunately, Karger’s algorithm also works if a small number of edges is directed
(which is the case for the residual network since g1 is acyclic and hence uses few
edges, see [16]).

Stage 2: For reasons that will soon become clear, we need P to saturate all
edges of G. Let E0 be the set of edges in G that are not used by paths in P.

Lemma 1. degG0
(v) is even for all v ∈ V .

Proof. This is clear for v ∈ V − T since degG(v) is even, paths in P are edge-
disjoint, and every path in P uses an even number of edges incident to v. Consider

An Improved Algorithm for Packing T -Paths 115

t1

t2

t3

a

(a) Graph G

t1

t2

t3

a

t′1

t′2

t′3

a′

(b) Graph Ĝ

Fig. 1. Graph G with terminals {t1, t2, t3} and the corresponding graph Ĝ (directions
of auxiliarly arcs are not shown)

v ∈ T . Since P is maximum, by Theorem 4 there exist ti-cuts Xi such that P
saturates δG(Xi) (i = 1, 2, 3). Hence in G0[Xi] at most one node, namely ti, can
have odd degree. In every undirected graph the number of nodes of odd degree
is even, therefore degG0

(v) is also even, as claimed. ��
By Lemma 1 the algorithm can decompose E0 into a collection of undirected
circuits and attach these circuits to arbitrary paths in P. This takes O(V + E)
time and ensures that P covers all edges of G, as desired.
Stage 3: Construct an auxiliary skew-symmetric graph as follows. First take a
disjoint symmetric copy V ′ := {v′ | v ∈ V } of V . For each arc (u, v) ∈ E add two
symmetric regular arcs (u, v) and (v′, u′). Adjust the endpoints of regular arcs
to ensure that each regular arc incident to t (t ∈ T) leaves t and, symmetrically,
each regular arc incident to t′ enters t′. To this aim, replace every arc (x, t),
x ∈ V ∪V ′, by (x, t′) and, symmetrically, replace every arc (t′, x), x ∈ V ∪V ′, by
(t, x). Finally, for each v ∈ V − T add four auxiliary arcs: two (symmetric) arcs
(v, v′) and two (also symmetric) arcs (v′, v). Denote the resulting skew-symmetric
graph by Ĝ. An example is depicted on Fig. 1.

Remark 3. The need for adding two auxiliary arcs (v, v′) instead of just one is
dictated by the definition of skew-symmetric graphs and is thus purely technical.

Stage 4: Multiflow P in G gives rise to a certain weighted collection P̂ of directed
paths in Ĝ. Consider a path P ∈ P from, say, ti to tj (i �= j):

P = (ti = v0, e1, v1, . . . , el, vl = tj),

where vi ∈ V (G) (i = 0, . . . , l), ei ∈ E(G), ei connects nodes vi−1 and vi

(i = 1, . . . , l).
Since edge capacities are 1 and P is integer, P has weight 1. We transform P

into a directed path P̂ (also of weight 1) in Ĝ by taking appropriate regular arcs
(corresponding to edges ei) and inserting auxiliary arcs where needed. More
formally, for each edge ei = {vi−1, vi}, Ĝ contains a unique regular arc ai =

116 M.A. Babenko, K. Salikhov, and S. Artamonov

(x, y), where x = vi−1 or x = v′i−1 and y = vi or y = v′i. Consider the sequence
(a1, . . . , al) and turn it into a directed path P̂ by inserting auxiliary arcs (x, x′),
x ∈ V ∪ V ′, between ai−1 and ai if ai−1 ends at x and ai starts at x′. Then P̂
consists of paths P̂ and their symmetric mates P̂ ′.

Note the following:

(5) (i) P̂ is symmetric, i.e. P̂ ∈ P̂ implies P̂ ′ ∈ P̂;
(ii) Each regular arc belongs to at most one path in P̂;
(iii) Each path P ∈ P̂ connects a node ti with a node t′j , where i �= j.

A collection P̂ of directed paths in Ĝ obeying (5) will be referred to as a integer
skew-symmetric multiflow. Suppose the following property holds for P̂ :

(6) Paths in P̂ do not contain auxiliary arcs.

Then such P̂ induces an integer multiflow P in G obeying val(P) = 1
2 val(P̂).

Indeed, consider pairs of symmetric paths {P̂ , P̂ ′} forming P̂ and let us show that
each such pair corresponds to a T -path in G and these T -paths are arc-disjoint.
Let us say that arcs e′, e′′ form a transit pair if e′, e′′ have a common endpoint v,
one of e′, e′′ enters x, and the other leaves v. Consider P̂ as a sequence of arcs
τ̂ = (ê1, . . . , êl). For each i = 1, . . . , l−1, arcs êi, êi+1 in Ĝ form a transit pair and
thus their pre-images ei, ei+1 in G also form a transit pair (as it follows from the
construction of Ĝ). Therefore either the sequence of pre-images τ = (e1, . . . , el)
or the reverse one τ−1 = (el, . . . , e1) gives rise to a directed T -path in G. These
paths are arc-disjoint by (5)(ii).

Stage 5: At this final stage we rearrange paths in P̂ while maintaining (5)
and preserving val(P̂) to get rid of auxiliary arcs. A similar subtask was earlier
addressed in [1]. The latter algorithm scans nodes v ∈ V − T one by one and
removes auxiliary arcs between v and v′. Handling each node involves computing
certain flow decompositions and takes O(V +E) time (assuming unit capacities),
which gives O(V E) in total. We choose a different way of dealing with auxiliary
arcs. Instead of processing inner nodes one at a time we apply certain global
transformations aimed to decrease the total flow on auxiliary arcs.

For 1 ≤ i, j ≤ 3, i �= j, combine all ti–t′j paths in P̂ and form an integer
ti–t′j flow fij (see Fig. 2). For a function h on E(Ĝ), define h′(e) := h(e′). The
symmetry of P̂ implies f ′

ij = fji for all 1 ≤ i, j ≤ 3, i �= j. This property will be
maintained throughout the iterations.

For each v ∈ V − T , define

α(v) := f1,2[v, v′], β(v) := f1,3[v, v′], γ(v) := f2,3[v, v′],

where fij [v, v′] is the flow between v and v′, i.e. the sum of fij-values on auxiliary
arcs (v, v′) minus the sum of fij-values on auxiliary arcs (v′, v).

Lemma 2. α(v) + β(v) + γ(v) = 0 for all v ∈ V − T .

An Improved Algorithm for Packing T -Paths 117

t′1 t′2 t′3

t1 t2 t3

f12

f13

f23

Fig. 2. Network Ĝ and flows f12, f13, and f23. Symmetric flows f21, f31, and f32 are
shown by dashed lines.

Proof. Consider a node v ∈ V − T . Since G is inner balanced, degin
G(v) =

degout
G (v). From the construction of Ĝ it follows that v has equal numbers of

incoming and outcoming regular arcs. Define g :=
∑

(fij : 1 ≤ i, j ≤ 3, i �= j).
Recall that P saturates all edges of G. Hence g saturates all regular arcs of
Ĝ and thus the total flow on incoming regular arcs equals the total flow on
outcoming regular arcs. Therefore g[v, v′] = 0 and thus α(v) + β(v) + γ(v) = 0.

��
Define the discrepancy at v by Δ(v) := |α(v)| + |β(v)| + |γ(v)| and the total
discrepancy by Δ :=

∑
(Δ(v) : v ∈ V − T). Note that 2Δ is exactly the sum

of flows fij , 1 ≤ i, j ≤ 3, i �= j, on all auxiliary arcs (factor 2 comes from the
symmetry) and thus (6) is equivalent to Δ = 0.

The algorithm executes a series of scaling phases. Each phase decreases Δ by
at least a factor of 11

12 . Since Δ is integer and initially Δ ≤ E/2 = O(V 2) (recall
that G has unit capacities and each unit of discrepancy corresponds to an inner
node of a T -path in P) it follows that O(log V) scaling phases are sufficient to
achieve Δ = 0. Flows fij are finally decomposed into an integer skew-symmetric
multiflow P̂ obeying (6).

A phase works as follows. Call a node v ∈ V − T active if |α(v)| ≥ |β(v)| ≥
|γ(v)|. By permuting terminals t1, t2, and t3 (and thus values α, β, and γ) one
can assume w.l.o.g. that ∑

(Δ(v) : v is active) ≥ 1
6
Δ. (7)

To decrease Δ, define h := f12 + f13 and cancel flows on oppositely directed
auxiliary arcs. Note that h is an integer t1–{t′2, t′3} flow in Ĝ and is thus de-
composable into a sum of a t1–t′2 flow h12 and a t1–t′3 flow h13. Computing h
and decomposing it into h12 and h13 takes O(V +E) time. The algorithm resets
(f12, f21, f13, f31) := (h12, h

′
12, h13, h

′
13) and then proceeds to the next phase.

To estimate the decrease of Δ on each phase consider an arbitrary node v ∈
V −T and let α′(v), β′(v), and γ′(v) (= γ(v)) be the corresponding values for the
updated triple flows fij . Clearly |α′(v)|+|β′(v)|+|γ′(v)| ≤ |α(v)|+|β(v)|+|γ(v)|.
The update also maintains the property given in Lemma 2.

118 M.A. Babenko, K. Salikhov, and S. Artamonov

Now suppose that v is active. Note that α(v) + β(v) = α′(v) + β′(v). Also
α(v) and β(v) are of different signs (since α(v), β(v), and γ(v) add up to zero,
and α(v) has the largest magnitude) while α′(v) and β′(v) are of the same sign
(since h12 and h13 come from a decomposition of h and thus use auxiliary arcs
of the same direction). Therefore(|α(v)| + |β(v)| + |γ(v)|)− (|α′(v)| + |β′(v)| + |γ′(v)|) =

|α(v) − β(v)| + |α′(v) + β′(v)| =
|α(v) − β(v)| + |α(v) + β(v)| =
2 |β(v)| .

Since |β(v)| ≥ 1
2 |α(v)| ≥ 1

4Δ(v) (which follows from α(v) + β(v) + γ(v) = 0 and
|α(v)| ≥ |β(v)| ≥ |γ(v)|) the total discrepancy decreases by at least

∑(
1
2
Δ(v) : v is active

)
≥ 1

12
Δ.

This concludes the proof of Theorem 1. ��

3 General Capacities

The above approach also extends to the case when arc capacities are integers in
range [0, C] and leads to a weakly-polynomial o(V E)-time algorithm, as claimed
in Theorem 2. The detailed proof is rather technical so we shall only give a brief
sketch here.

During the course of the algorithm we maintain each multiflow P as a col-
lection {(A1, B1, f1), . . . , (Aq , Bq, fq)}, where for i = 1, . . . , q, Ai ∩ Bi = ∅,
Ai, Bi,⊂ T , and fi is an acyclic integer Ai–Bi flow. Flows fi are kept in a
compact form, i.e. as lists {(e, fi(e)) | fi(e) �= 0}. As in [13], such a representa-
tion of P additionally obeys q = O(log T) and occupies O(E log T) space. To
merge a pair of such representations on each recursion level we solve O(log T)
flow decomposition problems (each taking linear time due to acyclicity), extract
flows corresponding to P ′ −P ′

0 and P ′′ −P ′′
0 , merge these flows, and finally de-

cycle the result (which takes O(m log n) time [26]). Totally all aggregations take
O(E log V log T) time. Separations require, as earlier, O(φ(V, E) · log T) time.

It remains to deal with leaf subproblems (those corresponding to |T | ≤ 3). Fix
a leaf subproblem with n nodes and m arcs. Computing a maximum multiflow
P in the underlying undirected network N takes O(φ(n, m)) time; the resulting
P is then turned into a collection of three integer flows f ij , 1 ≤ i < j ≤ 3, in
O(m log(n2/m)) time with the help of the fast flow decomposition routine [1].
Residual edge capacities (those corresponding to slacks in (1)) are Eulerian (cf.
Lemma 1). Similar to the unit-capacitated case one can compute (in linear time)
a weighted collection of additional cycles (not necessarily simple) that exhaust
the residual capacities and attach these cycles to an arbitrary component of P .
Each f ij is turned into a pair of symmetric integer ti–t′j and tj–t′i flows fij and

An Improved Algorithm for Packing T -Paths 119

fji in Ĝ. The latter does not require explicit path-packing representations of f ij

and can be done in linear time. The algorithm from Subsection 2.3 is applied to
get rid of flows on auxiliary arcs; this requires O(log(n val(P))) = O(log(nC))
scaling phases. The resulting flows are finally decycled in O(m log n) time [26].

From the above estimates it follows that for a network N = (G = (V, E), T, c)
the new algorithm takes O(φ(V, E)·log T +E log V log T +E log(V 2/E) log(V C))
time. This concludes the proof of Theorem 2. ��

Acknowledgements. The authors are thankful to anonymous referees for help-
ful comments and suggestions.

References

1. Babenko, M.A., Karzanov, A.V.: Free multiflows in bidirected and skew-symmetric
graphs. Discrete Applied Mathematics 155, 1715–1730 (2007)

2. Cherkassky, B.V.: A solution of a problem on multicommodity flows in a network.
Ekonomika i Matematicheskie Metody 13(1), 143–151 (1977) (in Russian)

3. Dinic, E.A.: Algorithm for solution of a problem of maximum flow in networks with
power estimation. Dokl. Akad. Nauk. SSSR 194, 754–757 (in Russian) (translated
in Soviet Math. Dokl. 111, 277–279)

4. Edmonds, J., Johnson, E.L.: Matching: a well-solved class of integer linear pro-
grams. In: Guy, R., Hanani, H., Sauer, N., Schönhein, J. (eds.) Combinatorial
Structures and Their Applications, pp. 89–92. Gordon and Breach, NY (1970)

5. Even, S., Tarjan, R.E.: Network Flow and Testing Graph Connectivity. SIAM Jour-
nal on Computing 4, 507–518 (1975)

6. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton Univ. Press, Princeton
(1962)

7. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theoretical Computer Sci. 10, 111–121 (1980)

8. Frank, A.: On connectivity properties of Eulerian digraphs. Ann. Discrete Math. 41,
179–194 (1989)

9. Goldberg, A.V., Karzanov, A.V.: Path problems in skew-symmetric graphs. Com-
binatorica 16, 129–174 (1996)

10. Goldberg, A.V., Karzanov, A.V.: Maximum skew-symmetric flows and matchings.
Mathematical Programming 100(3), 537–568 (2004)

11. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. In: Proc. 38th
IEEE Symposium Foundations of Computer Science (1997); adn Journal of the
ACM 45, 783–797 (1998)

12. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow problem. J.
ACM 35, 921–940 (1988)

13. Ibaraki, T., Karzanov, A.V., Nagamochi, H.: A fast algorithm for finding a maxi-
mum free multiflow in an inner Eulerian network and some generalizations. Com-
binatorica 18(1), 61–83 (1998)

14. Karger, D.R.: Random sampling in cut, flow, and network design problems. Math-
ematics of Operations Research (1998)

15. Karger, D.R.: Better random sampling algorithms for flows in undirected graphs.
In: Proc. 9th Annual ACM+SIAM Symposium on Discrete Algorithms, pp. 490–
499 (1998)

120 M.A. Babenko, K. Salikhov, and S. Artamonov

16. Karger, D.R., Levine, M.S.: Finding Maximum flows in undirected graphs seems
easier than bipartite matching. In: Proc. 30th Annual ACM Symposium on Theory
of Computing, pp. 69–78 (1997)

17. Karzanov, A.V.: O nakhozhdenii maksimalnogo potoka v setyakh spetsialnogo vida
i nekotorykh prilozheniyakh. In: Matematicheskie Voprosy Upravleniya Proizvod-
stvom, vol. 5. University Press (1973) (in Russian)

18. Karzanov, A.V.: Combinatorial methods to solve cut-dependent problems on mul-
tiflows. In: Combinatorial Methods for Flow Problems, Inst. for System Studies,
Moscow, vol. (3), pp. 6–69 (1979) (in Russian)

19. Karzanov, A.V.: Fast algorithms for solving two known problems on undirected
multicommodity flows. In: Combinatorial Methods for Flow Problems, Inst. for
System Studies, Moscow, vol. (3), pp. 96–103 (1979) (in Russian)

20. Kupershtokh, V.L.: A generalization of Ford-Fulkerson theorem to multiterminal
networks. Kibernetika 7(3), 87–93 (1971) (in Russian) (Translated in Cybernetics
7(3) 494-502)

21. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Holt, Reinhart,
and Winston, NY (1976)

22. Lovász, L.: On some connectivity properties of Eulerian graphs. Acta Math. Akad.
Sci. Hung. 28, 129–138 (1976)

23. Lovász, L.: Matroid matching and some applications. J. Combinatorial Theory,
Ser. B 28, 208–236 (1980)

24. Mader, W.: Über die Maximalzahl kantendisjunkter A-Wege. Archiv der Mathe-
matik (Basel) 30, 325–336 (1978)

25. Schrijver, A.: Combinatorial Optimization. Springer (2003)
26. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.

Sci. 26(3), 362–391 (1983)
27. Tutte, W.T.: Antisymmetrical digraphs. Canadian J. Math. 19, 1101–1117 (1967)

Towards Optimal and Expressive Kernelization

for d-Hitting Set

René van Bevern�

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
rene.vanbevern@tu-berlin.de

Abstract. A sunflower in a hypergraph is a set of hyperedges pairwise
intersecting in exactly the same vertex set. Sunflowers are a useful tool in
polynomial-time data reduction for problems formalizable as d-Hitting

Set, the problem of covering all hyperedges (of cardinality at most d)
of a hypergraph by at most k vertices. Additionally, in fault diagnosis,
sunflowers yield concise explanations for “highly defective structures”.
We provide a linear-time algorithm that, by finding sunflowers, trans-
forms an instance of d-Hitting Set into an equivalent instance com-
prising at most O(kd) hyperedges and vertices. In terms of parameter-
ized complexity, we show a problem kernel with asymptotically optimal
size (unless coNP ⊆ NP/poly). We show that the number of vertices
can be reduced to O(kd−1) with additional processing in O(k1.5d) time—
nontrivially combining the sunflower technique with problem kernels due
to Abu-Khzam and Moser.

1 Introduction

Many practically relevant problems like the examples given below boil down to
solving the following NP-hard problem:

d-Hitting Set

Input: A hypergraph H = (V,E) with hyperedges of cardinality at most d
and a natural number k.

Question: Is there a hitting set S ⊆ V with |S| ≤ k and ∀e ∈ E : e ∩ S 	= ∅?
Examples for NP-hard problems encodeable into d-Hitting Set arise in the
following fields.

1. Fault diagnosis: The task is to detect faulty components of a malfunctioning
system. To this end, those sets of components are mapped to hyperedges of
a hypergraph that are assumed to contain at least one broken component [1,
14, 21]. By the principle of Occam’s Razor, a small hitting set is then a likely
explanation of the malfunction.

2. Data clustering: all optimization problems in the complexity classes
MIN F+Π1 and MAX NP, including (s-Plex) Cluster Vertex Dele-

tion [5, 13] and all problems of establishing by means of vertex deletion a

� Supported by the DFG, project DAPA, NI 369/12. The main part of the work was
done under DFG project AREG, NI 369/9.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 121–132, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

122 R. van Bevern

x1 v1 w1 f1(x)

x2 v2 w2 f2(x)

w3 f3(x)

x3 v3 w4 f4(x)

x4 v4 w5 f5(x)

(a) A boolean circuit with circle nodes
representing gates and square nodes rep-
resenting input and output nodes.

w3v3

v4

w4

w5

w2v2

v1

w1

S1

S2 S3

S4

S5

(b) Sets containing at least one faulty gate,
found by the analysis of the circuit.

Fig. 1. Illustrations for Example 1

graph property characterized by forbidden induced subgraphs with at most
d vertices, can be formalized as d-Hitting Set [15].

All problems have in common that a large number of “conflicts” (the possibly
O(|V |d) hyperedges in a d-Hitting Set instance) is caused by a small number
of components (the hitting set S), whose removal or repair could fix a broken
system or establish a useful property. However, often, not only a solution to a
problem is sought, but also a concise explanation of why a solution should be of
the given form. In this work, we contribute to this by combining concise explana-
tions with data reduction, wherein our data reduction preserves the possibility of
finding optimal solutions and gives a performance guarantee. This kind of data
reduction or, more specifically, problem kernels, are a powerful tool in attacking
NP-hard problems like d-Hitting Set [6, 11]. Our main ingredient and contri-
bution are efficient algorithms to find sunflowers, a structure first observed by
Erdős and Rado [9]:

Definition 1. In a hypergraph (V,E), a sunflower is a set of petals P ⊆ E
such that every pair of sets in P intersects in exactly the same set C ⊆ V , called
the core (possibly, C = ∅). The size of the sunflower is |P |.

A sunflower with k + 1 petals in a d-Hitting Set instance yields a concise ex-
planation of why one of the elements in its core should be removed or repaired:
For every sunflower P with at least k + 1 petals, every hitting set of size at
most k contains one of P ’s core-elements, since it cannot contain an element of
each of the k + 1 petals. Analyzing the petals of this sunflower could guide the
‘causal analysis’ of a problem. We illustrate this using an example.

Example 1. Figure 1(a) shows a boolean circuit. It gets as input a 4-bit
string x = x1 . . . x4 and outputs a 5-bit string f(x) = f1(x) . . . f5(x). The
nodes drawn as circles represent boolean gates, which output some bit depending
on their two input bits. They might, for example, represent the logical opera-
tions “∧” or “∨”.

Towards Optimal and Expressive Kernelization for d-Hitting Set 123

Assume that all output bits of f(x) are observed to be the opposite of what
would have been expected by the designer of the circuit. We want to identify
broken gates. For each wrong output bit fi(x), we obtain a set Si of gates for
which we know that at least one is broken, because fi(x) is wrong. That is, Si

contains precisely those gates that have a directed path to fi(x) in the graph
shown in Figure 1(a). We obtain the sets illustrated in Figure 1(b):

S1 = {v1, v2, w1}, S2 = {v2, v3, w2}, S3 = {v3, v4, w3},
S4 = {v3, v4, w4}, S5 = {v3, v4, w5}.

The sets S1 and S5 are disjoint. Therefore, the wrong output is not explainable
by only one broken gate. Therefore, we now assume that there are two broken
gates and search for a hitting set of size k = 2 in the hypergraph with the ver-
tices v1, . . . , v4, w1, . . . , w5 and hyperedges S1, . . . , S5. The set {S3, S4, S5} is a
sunflower of size k + 1 = 3 with core {v3, v4}. Therefore, the functionality of
gate v3 and v4 must be checked. If, in contrast to our expectation, both gates v3
and v4 turn out to be working correctly, the usefulness of the sunflower becomes
even more apparent: it is immediately clear not only that at least three gates
are broken, but it is also clear which gates have to be checked for malfunctions
next: w3, w4, and w5. ��

In addition to fault diagnosis, sunflowers also yield a good tool for data reduction
preserving optimal solutions, so that we can remove hyperedges and vertices from
the input hypergraph, until it is small enough to be analyzed as a whole. This
can be seen as follows. For every sunflower P with at least k + 1 petals, every
hitting set of size at most k contains one of P ’s core-elements. Therefore, we
can repeatedly discard a petal of a sunflower of size k+ 2 from the hypergraph,
yielding a decision-equivalent d-Hitting Set instance whose largest sunflower
has k+1 petals [15]. This, by the sunflower lemma of Erdős and Rado [9], implies
that the resulting hypergraph has O(kd) hyperedges [10, Theorem 9.8], therefore
showing that this form of data reduction yields a problem kernel [6, 11].

Previous Work. Downey and Fellows [8] showed that Hitting Set is W[2]-
complete with respect to the parameter k when the cardinality of the hyperedges
is unbounded. Hence, unless FPT = W[2], it has no problem kernel. Various
problem kernels for d-Hitting Set have been developed [2, 10, 15, 16, 18, 19].
However, the problem kernels aiming for efficiency faced some problems: Nie-
dermeier and Rossmanith [18] showed a problem kernel for 3-Hitting Set of
size O(k3). They implicitly claimed that a polynomial-size problem kernel for
d-Hitting Set is computable in linear time, not giving a proof for the running
time. Nishimura et al. [19] claimed that a problem kernel with O(kd−1) vertices
is computable in O(k(|V | + |E|) + kd) time, which, however, does not always
yield correct problem kernels [2]. The problem kernels of Flum and Grohe [10]
and Kratsch [15] exploit the sunflower lemma by Erdős and Rado [9] and there-
fore yield concise explanations of why certain vertices should be part of optimal
solutions. However, their running times are only analyzed to be polynomial in

124 R. van Bevern

the input size. Abu-Khzam [2] showed a problem kernel with O(kd−1) vertices
for d-Hitting Set, thus proving the previously claimed result of Nishimura
et al. [19] on the number of vertices in the problem kernel. The problem kernel
of Abu-Khzam [2] may still comprise Ω(k2d−2) hyperedges.1 Dell and van Melke-
beek [7] showed that the existence of a problem kernel with O(kd−ε) hyperedges
for any ε would imply coNP ⊆ NP/poly and a collapse of the polynomial-time hi-
erarchy to the third level. Therefore, a problem kernel with O(kd−ε) hyperedges
is presumed not to exist.

Our Results. We show that a problem kernel for d-Hitting Set with O(kd) hy-
peredges and vertices is computable in linear time. Thereby, we prove the pre-
viously claimed result by Niedermeier and Rossmanith [18] and complement
recent results in improving the efficiency of kernelization algorithms [4, 12, 20].
In contrast to many other problem kernels [2, 16, 18, 19], our algorithm outputs
sunflowers to guide fault diagnosis. Additionally, using ideas from Abu-Khzam [2]
and Moser [16], we show that the number of vertices can be further reduced to
O(kd−1) with an additional amount of O(k1.5d) time. Summarizing, by merging
these techniques, we can compute in O(|V |+ |E|+ k1.5d) time a problem kernel
comprising O(kd) hyperedges and O(kd−1) vertices.

Preliminaries. A hypergraph H = (V,E) consists of a set of vertices V and
a set of (hyper)edges E, where each hyperedge in E is a subset of V . In a
d-uniform hypergraph every edge has cardinality exactly d. A 2-uniform hyper-
graph is a graph. A hypergraph G = (V ′, E′) is a subgraph of its supergraph H
if V ′ ⊆ V and E′ ⊆ E. A set S ⊆ V intersecting every set in E is a hitting
set. A parameterized problem is a subset L ⊆ Σ∗ × N [8, 10, 17]. A problem
kernel for a parameterized problem L is a polynomial-time algorithm that, given
an instance (I, k), computes an instance (I ′, k′) such that |I ′| + k′ ≤ f(k) and
(I ′, k′) ∈ L ⇐⇒ (I, k) ∈ L. Herein, the function f is called the size of the
problem kernel and depends only on k.

2 A Linear-Time Problem Kernel for d-Hitting Set

This section shows a linear-time problem kernel for d-Hitting Set comprising
O(kd) edges. That is, we show that a hypergraph H can be transformed in linear
time to a hypergraph G such that G has O(kd) edges and allows for a hitting set
of size k if and only H does. In Section 3, we show how to shrink the number of
vertices to O(kd−1).

1 Although not directly given in the work of Abu-Khzam [2] itself, this can be seen
as follows: the kernel comprises vertices of each hyperedge in a set W of pairwise
“weakly related” hyperedges and an independent set I . In the worst case, |W | =
kd−1 and |I | = dkd−1 and each hyperedge in W has d subsets of size d − 1. Then,
each subset can constitute a hyperedge with each vertex in I and the kernel has
Ω(k2d−2) hyperedges.

Towards Optimal and Expressive Kernelization for d-Hitting Set 125

Algorithm 1. Linear-Time Kernelization for d-Hitting Set

Input: Hypergraph H = (V,E), natural number k.
Output: Hypergraph G = (V ′, E′) with |E′| ∈ O(kd).

1 E′ ← ∅;
2 foreach e ∈ E do // Initialization for each edge
3 foreach C ⊆ e do // Initialization for all possible cores of sunflowers
4 petals[C] ← 0; // No petals found for sunflower with core C yet
5 foreach v ∈ e do // No vertex in a petal of a sunflower with core C yet
6 used[C][v] ← false

7 foreach e ∈ E do delete all e′ � e from E;
8 foreach e ∈ E do
9 if ∀C ⊆ e : petals[C] ≤ k then

10 E′ ← E′ ∪ {e};
11 foreach C ⊆ e do // Consider all possible cores for the petal e
12 if ∀v ∈ e \ C : used[C][v] = false then
13 petals[C] ← petals[C] + 1;
14 foreach v ∈ e \ C do used[C][v] ← true;

15 V ′ :=
⋃

e∈E′ e;
16 return (V ′, E′);

Theorem 1. d-Hitting Set admits a linear-time computable problem kernel
comprising O(kd) hyperedges and vertices.

Until now, problem kernels based on the sunflower lemma by Erdős and Rado [9]
proceed in the following fashion [10, 15]: repeatedly (i) find a sunflower of size k+
1 in the input graph and (ii) delete redundant petals until no more sunflowers
of size k+1 exist. This approach has the drawback of finding only one sunflower
at a time and restarting the process from the beginning.

In contrast, to prove Theorem 1, we construct a subgraph G = (V ′, E′) of a
given hypergraph H = (V,E) not by edge deletion; instead, we follow a bottom-
up approach that allows us to “grow” many sunflowers in G simultaneously,
stopping “growing sunflowers” if they become too large. Algorithm 1 repeatedly
(after some initialization work in lines 1–7) in line 10 copies a hyperedge e fromH
to the initially empty G unless we find in line 9 that e contains the core C of
a sunflower of size k + 1 in G. To check this, the number of petals found for a
core C is maintained in a data structure petals[C]. If we find that an edge e is
suitable as petal of a sunflower with core C in line 12, then we mark the vertices
in e \ C as “used” for the core C in line 14. This information is maintained by
setting “used[C][v] ← true”. In this way, vertices in e\C are not considered again
for finding petals for the core C in line 12, therefore ensuring that additionally
found petals intersect e only in C.

We now prove the correctness and running time of Algorithm 1, which will,
together with the result that the output graph contains no large sunflowers,
provide a proof of Theorem 1. Note that, by storing in petals[C] a list of found

126 R. van Bevern

petals, they can serve as concise explanations of why a small hitting set contains
vertices of C.

Lemma 1. The hypergraph G returned by Algorithm 1 on input H admits a
hitting set of size k if and only if H does.

Proof. We first show that, if H admits a hitting set of size k, then so does G.
For every hitting set S for H = (V,E), the set S′ := S ∩ V ′ is a hitting set
for G = (V ′, E′) with |S′| ≤ |S|: the set S contains an element of every edge
in E and, since E′ ⊆ E and V ′ =

⋃
e∈E′ e, the set S′ contains an element of

every edge in E′. It remains to show that if G admits a hitting set of size k, then
so does H . Assume that S is a hitting set of size k for G. Obviously, all edges
that H and G have in common are hit in H by S. It remains to show that every
edge e in H that is not in G is also hit.

First, consider the case where e was not deleted in line 7. Then, adding e to G
in line 10 of Algorithm 1 has been skipped, because the condition in line 9 is false.
That is, petals[C] ≥ k + 1 for some C ⊆ e. Consequently, for this particular C,
a sunflower P with k+1 petals and core C exists in G, since we only increment
petals[C] in line 13 if we find e to be suitable as additional petal for a sunflower
with core C in line 12. Note that C 	= ∅, because otherwise k+1 pairwise disjoint
edges would exist in G, contradicting our assumption that S is a hitting set of
size k for G. Since |S| ≤ k, we have S ∩ C 	= ∅ as discussed in the introduction.
Therefore, since C ⊆ e and C ⊆ V , the edge e is hit by S also in H .

Second, in the case where e was removed in line 7, e is also hit by S, because
either G contains a sub-edge e′ � e or e′ is hit since its addition to G was skipped
in application of the previous case. We conclude that S is a hitting set of size k
also for H . ��
Lemma 2. Given a hypergraph H = (V,E) and a natural number k, Algo-
rithm 1 can be implemented to run in O(d|V |+ 2dd · |E|) time.

Proof. We first describe the data structure that is used to maintain petals[C]
and used[C][v], then its initialization in lines 1–6, then the implementation of
lines 8–15, and finally that of line 7.

We assume that every vertex is represented as an integer in {1, . . . , |V |} and
that every edge is represented as a sorted array. We can initially sort all edges
of H in O(|E|d log d) total time. Then, the set subtraction operation needed in
line 12 can be executed in O(d) time such that the resulting set is again sorted.
Moreover, we can generate all subsets of a sorted set such that the resulting
subsets are sorted. Hence, we can assume to always deal with sorted edges and
thus obtain a canonical representation of an edge as a length-d character string
over the alphabet V . This enables us to maintain petals[C] and used[C][v] in a
trie: a trie is a tree-like data structure, in which, when each of its inner nodes
is implemented as an array, a value associated with a character string X can
be looked up and stored in O(|X |) time [3, Section 5.3]. Hence, we can look up
and store values associated with a set C in O(d) time. We use such a trie to
associate with some sets C ⊆ V , |C| ≤ d, an integer petals[C], and a pointer to
a vector used[C][] of length |V |.

Towards Optimal and Expressive Kernelization for d-Hitting Set 127

For initial creation of the trie in lines 1–6, we do not initialize every cell of the
array that implements an inner node of the trie, as this would take O(|V |) time
for each non-empty node. However, we have to initialize all cells that will be
accessed: otherwise, it will be unknown if a cell contains a pointer to a another
node or random data. We achieve this as follows: in lines 1–6, we obtain a length-
2d|E| list L of all possible sets C ⊆ e for all e ∈ E. We will only associate values
with sets in L, and therefore initialize the inner nodes of the trie to only hold
values associated with sets in L. This works in O(d|V | + 2dd · |E|) time, since
the representation of sets in L as length-d strings over the alphabet V enables
us to sort L in O(d(|V | + |L|)) = O(d|V | + 2dd · |E|) time using Radix Sort [3,
Section 8.3]. We build the trie by iterating over L once: in each iteration, we
check in O(d) time in which positions the character string for a set C differs
from the character string of its predecessor set in L. This tells us which array
entries of the inner nodes of the trie have to be newly initialized, and which
nodes in the trie on the path to the leaf corresponding to C have been previ-
ously initialized and may not be overwritten. Hence, we can implement lines 1–6
to run in O(d|V | + 2dd|E|) time, observing that line 5 can be implemented to
run in O(d)-time, as only one look-up to used[C][] is needed to obtain an array,
in which then O(d) necessary values are initialized.

The for-loop in line 8 iterates |E| times. Its body works in O(2dd) time: ob-
viously, this time bound holds for lines 9 and 10; it remains to show that the
body of the for-loop in line 11 works in O(d) time. This is easy to see if one
considers that, in lines 12 and 14, one only has to do one look-up to used[C][]
to find an array that holds the values for the at most d vertices v′ ∈ e. Also
line 15 works in linear time by first initializing all entries of an array vertices[]
of size |V | to “false”. Then, for each edge e ∈ E′ and each vertex v ∈ e, set
“vertices[v] ← true” in O(d) time. Afterward, let V ′ be the set of vertices v for
which vertices[v] = true. This takes O(|V |+ d|E|) time.

It remains to discuss the running time of line 7. Similarly as in lines 8–14, we
iterate over all edges e ∈ E, and for all proper subsets e′ ⊂ e add a pointer to the
position of e in E to the list supersets[e′] (associated with e′ using a trie). It then
remains to remove the edges in supersets[e′] from E for each edge e ∈ E. ��

We now show that there is an upper bound on the size of the sunflowers in the
graph output by Algorithm 1. This enables us to upper-bound the size of the
output graph similarly to how the sunflower lemma of Erdős and Rado [9] is
used in the d-Hitting Set kernel of Flum and Grohe [10, Theorem 9.8].

Lemma 3. Given a hypergraph H = (V,E) and a natural number k, Algo-
rithm 1 outputs a hypergraph G whose largest sunflower has d(k + 1) petals.

Proof. Let P be a sunflower with core C in G. If C ∈ P , then |P | = 1 because
of line 7 of Algorithm 1. If C /∈ P , the following two observations yield |P | ≤
d(k + 1):

(i) Every petal e ∈ P present in G is copied from H in line 10 of Algorithm 1.
Consequently, every petal e ∈ P contains a vertex v satisfying used[C][v] = true:

128 R. van Bevern

if this condition would be violated in line 12, then line 14 applies “used[C][v] ←
true” to all vertices v ∈ e \ C.

(ii) Whenever petals[C] is incremented by one in line 13, then, in line 14,
“used[C][v] ← true” is applied to the at most d vertices v ∈ e. Thus, since
always petals[C] ≤ k + 1, at most d(k + 1) vertices v satisfy used[C][v] = true.
Moreover, since, by line 14, no v ∈ C satisfies used[C][v] = true and the petals
in P pairwise intersect only in C, it follows that at most d(k + 1) petals in P
contain vertices satisfying used[C][v] = true. ��

The last ingredient in the proof of Theorem 1 is the sunflower lemma by Erdős
and Rado [9]. In a similar way as Flum and Grohe [10, Lemma 9.7], we can show
the following refined version, which we need for Section 3. Note that, for b = 1,
this is exactly the sunflower lemma [10].

Lemma 4. Let H = (V,E) be an �-uniform hypergraph, b, c ∈ N, and b ≤ � such
that every pair of edges in H intersects in at most � − b vertices. If H contains
more than �!c�+1−b edges, then H contains a sunflower with more than c petals.

We finally have all ingredients to show that d-Hitting Set admits a linear-time
computable O(kd)-size problem kernel, thus proving Theorem 1.

Proof (Theorem 1). Lemma 1 and Lemma 2 show that Algorithm 1 executes
linear-time data reduction such that the input and output graph are equivalent
with respect to d-Hitting Set. It remains to show that the graph G output by
Algorithm 1 comprises at most d! · dd+1 · (k + 1)d ∈ O(kd) edges. This then also
implies that G has O(kd) vertices, as the vertex set of G is constructed as the
union of its edges in line 15 of Algorithm 1.

To bound the number of edges, consider for 1 ≤ � ≤ d the �-uniform hyper-
graph G� = (V�, E�) comprising only the edges of size � of G. If G had more
than d! · dd+1 · (k + 1)d edges, then, for some � ≤ d, G� would have more than
d! · dd · (k + 1)d edges. This, however, leads to a contradiction with Lemma 3:
Lemma 4 with b = 1 and c = d(k+1) states that if G� had more than �!·d�·(k+1)�

edges, then G� would contain a sunflower with more than d(k + 1) petals. This
sunflower would also exist in the supergraph G of G�. ��

3 Reducing the Number of Vertices to O(kd−1)

This section combines the problem kernel in Section 2 with techniques from Abu-
Khzam [2] and Moser [16, Section 7.3], yielding a problem kernel for d-Hitting

Set comprising O(kd) edges and O(kd−1) vertices in O(|V |+|E|+k1.5d) time. To
this end, we first briefly sketch the running-time bottleneck of the kernelization
idea of Abu-Khzam [2], which is also a bottleneck in the algorithm of Moser [16].

The problem kernels of Abu-Khzam [2] and Moser [16, Section 7.3]. Given a
hypergraph H = (V,E) and a natural number k, Abu-Khzam [2] first computes
a maximal weakly related set W , where data reduction ensures |W | ≤ kd−1:

Towards Optimal and Expressive Kernelization for d-Hitting Set 129

Definition 2 ([2]). A set W ⊆ E is weakly related if every pair of edges in W
intersects in at most d− 2 vertices.

Whether a given edge e can be added to a set W of weakly related edges can
be checked in O(d|W |) time. After adding e, data reduction on W is executed
in O(2d|W | log |W |) time. Hence, since always |W | ≤ kd−1, Abu-Khzam [2] can
compute W in O(2dkd−1 log k · |E|) time.

Since |W | ≤ kd−1, it remains to bound the size of the set I of vertices not
contained in edges of W . The set I is an independent set, that is, I contains no
pair of vertices occurring in the same edge [2]. A bipartite graph B = (I �S,E′)
is constructed, where S := {e ⊆ V | ∃v ∈ I : ∃w ∈ W : e ⊆ w, {v} ∪ e ∈ E} and
E′ := {{v, e} | v ∈ I, e ∈ S, {v} ∪ e ∈ E}. Whereas Abu-Khzam [2] shrinks the
size of I using so-called crown reductions, Moser [16, Lemma 7.16] shows that
it is sufficient to compute a maximum matching in B and to remove unmatched
vertices in I from G together with the edges containing them. The bound of the
number of vertices in the problem kernel is thus O(kd−1), since |W | ≤ kd−1, and
therefore |I| ≤ |S| ≤ dkd−1.

Our improvements. Given a hypergraphH = (V,E) and a natural number k, we
can first compute our problem kernel in O(|V |+ |E|) time, leaving O(kd) edges
in H . Afterward applying the problem kernel of Abu-Khzam [2] would reduce
the number of vertices to O(kd−1). However, the computation of the maximal
weakly related set on our reduced instance already takes O(2dkd−1 log k · |E|) =
O(k2d−1 log k) additional time, as discussed above. We improve the running time
of this step in order to show:

Theorem 2. d-Hitting Set admits a problem kernel comprising O(kd) hyper-
edges and O(kd−1) vertices computable in O(|V |+ |E|+ k1.5d) time.

To prove Theorem 2, we compute a maximal weakly related set W in linear time
and show that our problem kernel already ensures |W | ∈ O(kd−1). Further data
reduction on W is therefore unnecessary. This makes finding a maximum match-
ing the new bottleneck of the kernelization described by Moser [16, Section 7.3].

Lemma 5. Given a hypergraph H = (V,E), a maximal weakly related set is
computable in O(d|V |+ d2 · |E|) time.

To prove Lemma 5, we employ Algorithm 2.

Proof. First, observe that the set W returned in line 12 of Algorithm 2 is indeed
weakly related: let w1 	= w2 ∈ E intersect in more than d−2 vertices and assume
that w1 is added to W in line 8. Let C := w1∩w2. Obviously, |C| = d−1. Hence,
when w1 is added to W , then we apply “intersection[C] ← true” in line 10.
Therefore, when e = w2 is considered in line 6, the condition in line 7 does not
hold, which implies that w2 is not added to W in line 8. In the same way it
follows that every edge is added to W that does not intersect any edge of W in
more than d− 2 vertices. Therefore, W is maximal.

130 R. van Bevern

Algorithm 2. Linear-time computation of a maximal weakly related set

Input: Hypergraph H = (V,E), natural number k.
Output: Maximal weakly related set W .

1 W ← ∅;
2 foreach e ∈ E do // Initialization for each edge
3 foreach C ⊆ e, |C| = d− 1 do
4 intersection[C] ← false; // No edges in W contain C yet.
5 intersection[e \C] ← false; // The vertex in e \C is not in W yet. We use

// this later to compute an independent set.

6 foreach e ∈ E do
7 if ∀C ⊆ e, |C| = d− 1: intersection[C] = false then
8 W ← W ∪ {e};
9 foreach C ⊆ e, |C| = d− 1 do

10 intersection[C] ← true;
11 intersection[e \ C] ← true;

12 return W ;

We first sort all edges of H in O(|E|d log d) time. Using the trie data struc-
ture and initialization method as used in Lemma 2, we can do each look-up of
a value intersection[C] in O(d) time if C is the result of a set subtraction oper-
ation of two sorted sets. We initialize the trie to associate values with at most
2d·|E| sets. Hence, as discussed in Lemma 2, the initialization in lines 1–5 can be
done in O(d|V |+ d2 · |E|) time. Finally, for every edge, the body of the for-loop
in line 6 can be executed in O(d2) time doing O(d)-time look-ups for each of the
2d · |E| sets. ��

We can now prove Theorem 2 by showing how to compute a problem kernel with
O(kd−1) vertices in O(|V |+ |E|+ k1.5d) time.

Proof (of Theorem 2). We may assume that the hypergraph H = (V,E) in an
instance of d-Hitting Set satisfies |V | + |E| ∈ O(kd) and contains sunflow-
ers with at most d(k + 1) petals, since otherwise using Algorithm 1, we can
transform H accordingly in linear time, as stated by Lemma 3 and Theorem 1.
To reduce the number of vertices in H to O(kd−1), we follow the approach of
Moser [16, Lemma 7.16] as discussed in the beginning of this section.

First, compute a maximal weakly related set W in H in O(|V | + |E|) =
O(kd) time using Algorithm 2. We show that |W | ∈ O(kd−1). Because every pair
of edges in W intersects in at most d− 2 vertices, by Lemma 3 and Lemma 4 for
b = 2 and c = d(k+1), we know that the hypergraph (V,W�) for � ≥ 2, whereW�

is the set of cardinality-� edges in W , has at most O(kd−1) edges. Moreover, W1

contains at most O(k) edges, as they form a sunflower with empty core. There-
fore, |W | ∈ O(kd−1). Next, we construct a bipartite graph B = (I�S,E′), where
(i) I is the set of vertices in V not contained in any edge in W , forming an

independent set [2, 16],

Towards Optimal and Expressive Kernelization for d-Hitting Set 131

(ii) S := {e ⊆ V | ∃v ∈ I : ∃w ∈ W : e ⊆ w, {v} ∪ e ∈ E}, and
(iii) E′ := {{v, e} | v ∈ I, e ∈ S, {v} ∪ e ∈ E}.
This can be done in O(|E|) = O(kd) time as follows: for each e ∈ E with |e| = d
and each v ∈ e, add {v, e \ {v}} to E′ if and only if intersection[e \ {v}] = true
and intersection[{v}] = false. In this case, it follows that e is separable into
(i) a subset e \ {v} of an edge of W , since intersection[e \ {v}] = true, and
(ii) the vertex v that is not contained in any edge in W and, hence, contained

in I, since intersection[{v}] = false.
Thus, e clearly satisfies the definition of E′. Finally, for each edge {v, C} added
to E′, add v to I and C to S. Herein, checking that an element is not added
to I or S multiple times can be done in O(d) time per element: to this end, we
use a trie data structure similarly as “petals[]” in Lemma 2 or “intersection[]”
in Algorithm 2. Similarly to Lemma 2, the trie can be initialized in linear time,
since we know the elements to be added to I and S in advance.

It remains to shrink I to O(kd−1) vertices by computing a maximum matching
in B and deleting from H the unmatched vertices in I and the edges containing
them. However, note that by construction of B, for each edge in H , we add at
most one edge and two vertices to B. Therefore, B has O(kd) edges and vertices.
Hence, a maximum matching on B can be computed in O(

√
|I �H | · |E′|) =

O(k1.5d) time using the algorithm of Hopcroft and Karp [22, Theorem 16.4]. ��

4 Conclusion

We have improved the running times of the O(kd−1)-vertex problem kernels for
d-Hitting Set by Abu-Khzam [2] and Moser [16]. To this end, we showed, as
claimed earlier by Niedermeier and Rossmanith [18], that a polynomial-size prob-
lem kernel for d-Hitting Set can be computed in linear time—more specifically,
a problem kernel comprising O(kd) hyperedges and vertices. In contrast to these
problem kernels, our algorithm maintains expressiveness by finding, in forms of
sunflowers, concise explanations of potential problem solutions. However, the
constant hidden in our O(kd−1)-bound on the number of vertices is d!dd+2 and
therefore higher than the constant 2d − 1 obtained by Abu-Khzam [2]. This is
due to the fact that our upper bound on the size of the weakly related set W
comes from the sunflower lemma in Lemma 3, whereas Abu-Khzam [2] executes
more effective data reduction on W . Regarding these constants, first experi-
ments with an implementation of our algorithm show that the data reduction
is indeed effective. It is interesting whether a problem kernel with O(kd−1) ver-
tices and O(kd) edges for d-Hitting Set can be computed in linear time. This
would merge the best known results for problem kernels for d-Hitting Set.
However, all known O(kd−1)-vertex problem kernels for d-Hitting Set, that
is, the problem kernels by Abu-Khzam [2] and Moser [16, Section 7.3], involve
the computation of maximum matchings. This seems to be a difficult to avoid
bottleneck.

Acknowledgment. The author is very thankful to Rolf Niedermeier for many
valuable comments.

132 R. van Bevern

References

[1] Abtreu, R., Zoeteweij, P., van Gemund, A.J.C.: A dynamic modeling approach to
software multiple-fault localization. In: Proc. 19th DX, pp. 7–14. Blue Mountains,
NSW, Australia (2008)

[2] Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. J. Comput. Syst.
Sci. 76(7), 524–531 (2010)

[3] Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data Structures and Algorithms.
Addison-Wesley (1983)

[4] van Bevern, R., Hartung, S., Kammer, F., Niedermeier, R., Weller, M.: Linear-
Time Computation of a Linear Problem Kernel for Dominating Set on Planar
Graphs. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp.
194–206. Springer, Heidelberg (2012)

[5] van Bevern, R., Moser, H., Niedermeier, R.: Approximation and tidying—a prob-
lem kernel for s-plex cluster vertex deletion. Algorithmica 62(3), 930–950 (2012)

[6] Bodlaender, H.L.: Kernelization: New Upper and Lower Bound Techniques. In:
Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer,
Heidelberg (2009)

[7] Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. In: Proc. 42nd STOC 2010, pp. 251–260.
ACM (2010)

[8] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
[9] Erdős, P., Rado, R.: Intersection theorems for systems of sets. J. London Math.

Soc. 35, 85–90 (1960)
[10] Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
[11] Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.

SIGACT News 38(1), 31–45 (2007)
[12] Hagerup, T.: Linear-Time Kernelization for Planar Dominating Set. In: Marx,

D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 181–193. Springer,
Heidelberg (2012)

[13] Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algo-
rithms for cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2010)

[14] de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artif. Intell. 32(1), 97–130
(1987)

[15] Kratsch, S.: Polynomial kernelizations for MIN F+ Π1 and MAX NP. Algorith-
mica 63(1), 532–550 (2012), ISSN 0178-4617

[16] Moser, H.: Finding Optimal Solutions for Covering and Matching Problems. PhD
thesis. Institut für Informatik, Friedrich-Schiller-Universität Jena (2010)

[17] Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford University
Press, USA (2006)

[18] Niedermeier, R., Rossmanith, P.: An efficient fixed-parameter algorithm for 3-
hitting set. J. Discrete Algorithms 1(1), 89–102 (2003)

[19] Nishimura, N., Ragde, P., Thilikos, D.M.: Smaller Kernels for Hitting Set Problems
of Constant Arity. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004.
LNCS, vol. 3162, pp. 121–126. Springer, Heidelberg (2004)

[20] Protti, F., Dantas da Silva, M., Szwarcfiter, J.: Applying modular decomposition to
parameterized cluster editing problems. Theory Comput. Syst. 44, 91–104 (2009)

[21] Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

[22] Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. A.
Springer (2003)

Maximum Number of Minimal Feedback Vertex

Sets in Chordal Graphs and Cographs�

Jean-François Couturier1, Pinar Heggernes2,
Pim van ’t Hof2, and Yngve Villanger2

1 LITA, Université Paul Verlaine - Metz, 57045 Metz Cedex 01, France
couturier@univ-metz.fr

2 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
{pinar.heggernes,pim.vanthof,yngve.villanger}@ii.uib.no

Abstract. A feedback vertex set in a graph is a set of vertices whose
removal leaves the remaining graph acyclic. Given the vast number of
published results concerning feedback vertex sets, it is surprising that the
related combinatorics appears to be so poorly understood. The maximum
number of minimal feedback vertex sets in a graph on n vertices is known
to be at most 1.864n. However, no examples of graphs having 1.593n or
more minimal feedback vertex sets are known, which leaves a considerable
gap between these upper and lower bounds on general graphs. In this
paper, we close the gap completely for chordal graphs and cographs, two
famous perfect graph classes that are not related to each other. We prove
that for both of these graph classes, the maximum number of minimal
feedback vertex sets is 10

n
5 ≈ 1.585n, and there is a matching lower

bound.

1 Introduction

The study of maximum number of vertex subsets satisfying a given property in a
graph has always attracted interest and found applications in combinatorics and
computer science. Especially during the last decades there has been a tremen-
dous increase of interest in exponential time algorithms, whose running times
often rely on the maximum number of certain objects in graphs [12]. A classical
example is the highly cited and widely used result of Moon and Moser [19], who
showed that the maximum number of maximal cliques and maximal indepen-
dent sets, respectively, in any graph on n vertices is 3

n
3 ≈ 1.442n. More recently,

maximum numbers of minimal dominating sets, minimal feedback vertex sets,
minimal subset feedback vertex sets, minimal separators, and potential maximal
cliques in general graphs, and minimal feedback vertex sets in tournaments have
been studied [9,10,11,13,14].

A feedback vertex set (fvs) in a graph is a set of vertices whose removal from
the graph results in an acyclic graph. Computing a fvs of minimum cardinality
or minimum weight is one of the most well-studied NP-hard problems in graph

� This work is supported by the Research Council of Norway.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 133–144, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

134 J.-F. Couturier et al.

algorithms, and a large number of papers have been published on the topic, espe-
cially during recent years. In 2002, Schwikowski and Speckenmeyer [22] showed
that all minimal fvs of a given graph can be enumerated with polynomial delay.
In 2008, Fomin et al. [9] showed that the maximum number of minimal fvs in
a graph on n vertices is at most 1.864n. This immediately implies an algorithm
with running time O(1.864n) for listing all minimal fvs of a graph, and for com-
puting a fvs of minimum weight. It also shows the impact of good upper bounds
on the maximum number of important objects in graphs. Although for some
objects, e.g., maximal independent sets [19], the known upper bound on their
maximum number matches the known lower bound, this is unfortunately not the
case for all objects, and in particular for minimal fvs. In fact, we do not have
examples of graphs that have 1.593n or more minimal fvs [9], and hence there
is a considerable gap between the upper and lower bounds on the maximum
number of minimal fvs in graphs.

Motivated by the results of Fomin et al. [9] and the mentioned gap, we turn our
attention to graph classes with the objective of narrowing the gap on graphs with
particular structure. In this paper we close the gap completely on chordal graphs
and cographs. In particular, we show that the maximum number of minimal fvs in
these graph classes is at most 10

n
5 ≈ 1.585n, and that this also matches the lower

bound. Our results are obtained by purely combinatorial arguments, whereas the
upper bound in [9] and most of the other cited upper bounds are obtained by
algorithmic tools. One of the computational implications of our results is that all
minimal fvs in chordal graphs and cographs can be listed in time O(1.585n), using
the algorithm of Schwikowski and Speckenmeyer [22]. Furthermore, our result
on chordal graphs implies that all minimal fvs in circular arc graphs can also be
listed in time O(1.585n). Another implication is that the search for better lower
bounds on the maximum number of minimal fvs in general graphs can discard
all chordal graphs and cographs.

Although a lot of attention has been given to graph classes when it comes
to tractability of optimization problems, they have been left largely unexplored
when it comes to counting, enumerating, and determining the maximum num-
ber of objects, apart from a few recent results [7,16,20,21]. Chordal graphs and
cographs are famous and well-studied subclasses of perfect graphs with many
applications in real-life problems, like sparse matrix computations, perfect phy-
logeny, VLSI, and computer vision [2,15,23]. Many problems that are NP-hard
in general can be solved in polynomial time on these graph classes, and this
is also the case for the problem of computing a fvs of minimum weight [6,23].
Hence our motivation and results are not related to efficient computation of a
fvs of minimum weight or cardinality in these graph classes (the same applies
to several of the results in [7,16,20,21]). However, these results might have com-
putational implications for other, seemingly unrelated, optimization problems
on the studied graph classes. For example, using Moon and Moser’s [19] upper
bound on the maximum number of maximal independent sets, Lawler [17] gave
an algorithm for graph coloring, which was the fastest for over two decades. A

Minimal Feedback Vertex Sets in Chordal Graphs and Cographs 135

faster algorithm for graph coloring was obtained by Eppstein [8] by improving
the upper bound for maximal independent sets of small size.

2 Preliminaries

We work with simple undirected graphs. We denote such a graph by G = (V,E),
where V is the set of vertices and E is the set of edges of G. We adhere to the
convention that n = |V |. The set of neighbors of a set of vertices S ⊂ V is the
set NG(S) = {u /∈ S | v ∈ S, uv ∈ E}. A vertex is universal if it is adjacent to
every other vertex. The subgraph of G induced by a set S ⊂ V is denoted by
G[S]. A graph is connected if there is a path between every pair of its vertices.
A maximal connected subgraph is called a connected component. A set S ⊆ V
is called an independent set if uv /∈ E for every pair of vertices u, v ∈ S, and S
is called a clique if uv ∈ E for every pair of vertices u, v ∈ S. An independent
set or a clique is maximal if no proper superset of it is an independent set or a
clique, respectively. A complete graph on n vertices is denoted by Kn.

Graph Classes. A chord of a cycle (or path) is an edge between two non-
consecutive vertices of the cycle (or path). A graph is chordal if every cycle of
length at least 4 has a chord. A chordal graph has at most n maximal cliques.
A clique tree of a graph G is a tree T , whose set of nodes is the set of maximal
cliques of G, that satisfies the following: for every vertex v of G, the nodes of T
that correspond to maximal cliques of G containing v induce a connected subtree
of T . A graph has a clique tree if and only if it is chordal [4]. Chordal graphs
can be recognized and a clique tree can be constructed in linear time [1].

The disjoint union operation on graphs takes as input a collection of graphs
and outputs the collection as one graph, without adding any edges. The complete
join operation on graphs takes as input a collection of graphs and adds edges be-
tween every pair of vertices that belong to two different graphs in the collection.
A graph is a cograph if it can be generated from single-vertex graphs with the use
of disjoint union and complete join operations. Cographs are exactly the graphs
that do not contain chordless paths of length at least 4 as induced subgraphs,
and they can be recognized in linear time [5]. Chordal graphs and cographs are
subclasses of perfect graphs, but they are not related to each other. They form
two of the most well-studied graph classes.

A circular arc graph is the intersection graph of a set of arcs on a circle.
Circular arc graphs have at most n maximal cliques, and they have a clique
cycle representation, analogous to clique trees. Circular arc graphs do not form
a subclass of perfect graphs or a superclass of chordal graphs or cographs. They
can be recognized in linear time [18]. All three mentioned graph classes are
closed under taking induced subgraphs. More details about these graph classes
and perfect graphs, and references omitted due to page restrictions, can be found
in the books by Brandstädt et al. [2] and Golumbic [15].

Minimal Feedback Vertex Sets and Our Lower Bound. A set S ⊆ V is
called a feedback vertex set (fvs) if G[V \ S] is a forest. A fvs S is minimal if no

136 J.-F. Couturier et al.

proper subset of S is a fvs. In that case, G[V \ S] is a maximal induced forest of
G. Hence there is a bijection between the minimal fvs and the maximal induced
forests of a graph, and the number of minimal fvs is equal to the number of
maximal induced forests. For a disconnected graph, the total number of minimal
fvs is the product of the numbers of minimal fvs of its connected components.
We will use these facts extensively in our arguments.

In particular, we obtain a lower bound on the number of minimal fvs of chordal
graphs and cographs as follows: for any positive integer k, let Gk be a graph
on n = 5k vertices that is the disjoint union of k copies of K5. Gk is both
a chordal graph and a cograph. Observe that each edge in K5 is a maximal
induced forest of K5, and K5 has no other maximal induced forests. Hence K5

has 10 maximal induced forests, or minimal fvs. Consequently, for every k, Gk

has 10k = 10
n
5 ≈ 1.585n minimal fvs. This provides an infinite family of graphs

that constitute our lower bound example. In the next two sections, we will give
matching upper bounds for chordal graphs and cographs.

3 A Tight Bound for Chordal Graphs

In this section, we provide the upper bound on the number of minimal fvs in
chordal graphs that matches the lower bound given in Section 2. For our argu-
ments, it is more convenient to work with maximal induced forests instead of
minimal feedback vertex sets.

We will in fact prove a slightly stronger statement than previously announced,
answering the following question: Given a chordal graph G = (V,E) and a set
of vertices F ⊆ V , what is the maximum number of maximal induced forests in
G that contain all vertices of F? Clearly, if G[F] is not a forest the answer is 0,
and if F is empty the answer is exactly the maximum number of minimal fvs
of G.

Theorem 1. Let G = (V,E) be a chordal graph and let F ⊆ V be such that G[F]

is a forest. Then G has at most 10
n−|F |

5 maximal induced forests containing F .

Proof. We assume that G is connected. If we can prove the bound on connected
chordal graphs, then the bound trivially applies to disconnected chordal graphs,
as explained in Section 2. Let T be a clique tree of G and let k be the number
of nodes in T . We prove the statement of the theorem by induction on k. Recall
that n = |V |. Let n′ = n− |F | and let V ′ = V \ F .

The base case is when k = 1, and thus G is a complete graph on n ≥ 1
vertices. As G is complete, every maximal induced forest contains exactly two
vertices if n ≥ 2, and a single vertex if n ≤ 1. For n = 1, there is a unique

maximal induced forest, and since 1 ≤ 100 ≤ 10
1−|F |

5 , the claim holds in this
case. For n ≥ 2, since any maximal induced forest has 2 vertices, F can contain
0, 1, or 2 vertices of G. Let i = 2−|F | be the number of vertices we need to pick
from G[V ′] to obtain a maximal induced forest containing F . It is not hard to

verify that
(
n′
i

)
≤ 10

n′
5 for every n′ ≥ 0 and i ≤ 2, and hence there are at most

Minimal Feedback Vertex Sets in Chordal Graphs and Cographs 137

10
n−|F |

5 maximal induced forests in G that contain F . This completes the base
case.

Now let k ≥ 2, and assume that the statement of the theorem is true for all
chordal graphs whose clique trees have at most k − 1 nodes.

Consider a clique tree T of our graph G, which has k ≥ 2 nodes. Let X� be
a clique corresponding to a leaf of T , and let Xp be the clique corresponding to
the parent of X� in T . Let L = X� \ Xp and let C = X� ∩ Xp. Observe that
C = NG(L), and X� = L ∪ C. Hence, the vertices of L appear only in X� and
in no other clique of G. In particular, removing L from G results in a chordal
graph that has one less maximal clique, and hence has a clique tree with one
less node. Also, by construction, |L| ≥ 1 and |C| ≥ 1.

Since C is a clique, each maximal induced forest A in G is covered by exactly
one of the following three cases:

– |A ∩ C| = 2. In this case, A ∩ L = ∅, since selecting any vertex of L creates
a cycle of length 3.

– |A ∩ C| = 1. In this case, due to the maximality of A and by the same
argument as in the previous case, |A ∩ L| = 1.

– |A ∩ C| = 0. In this case, by the same arguments as above, if |L| ≥ 2 then
|A ∩ L| = 2, and if |L| = 1 then |A ∩ L| = 1.

Recall the set F mentioned in the lemma, and let AG be the set of all maximal
induced forests in G containing F . Let F ′ = F \X� = F \ (L ∪ C). In order to
obtain an upper bound on |AG|, we will first count all maximal induced forests
of G containing F ′. This number is clearly at least as large as the number of
maximal induced forests of G containing F . We will argue later how we can
take care of possible over-counting that may occur as a result of weakening the
provided restriction from F to F ′.

As a direct consequence of the three cases mentioned above, we obtain the
following upper bound for the number of maximal induced forests ofG containing
F ′, and hence also for |AG|:

|AG| ≤
(
|C|
2

)
|AG2 |+ |L||C||AG1 |+max

{
1,

(
|L|
2

)}
|AG0 |, (1)

where AG0 is the set of maximal induced forests in G0 = G[V \X�] containing F
′,

AG1 is the set of maximal induced forests in G1 = G[V \ (X� \ {u})] containing
F ′ ∪ {u}, where u is some vertex in C, and AG2 is the set of maximal induced
forests of G2 = G[V \ (X� \ {u, v})] containing F ′ ∪ {u, v}, where u, v is some
pair of vertices in C.

Since none of the graphs G0, G1, G2 contain vertices of L, each of them
has a clique tree with ≤ k − 1 nodes, as argued above. By our induction as-

sumption it follows that |AG0 | ≤ 10
n−|X�|−|F ′|

5 , |AG1 | ≤ 10
n+1−|X�|−(|F ′|+1)

5 , and

|AG2 | ≤ 10
n+2−|X�|−(|F ′|+2)

5 . In other words, each of the three sets contains at

most 10
n−|X�|−|F ′|

5 maximal induced forests.
The formula

(|C|
2

)
+ |L||C|+

(|L|
2

)
gives the number of ways we can select two

vertices from C, or one vertex from L and one from C, or two from L. This

138 J.-F. Couturier et al.

number is equal to the number of ways we can select two vertices from L ∪ C,
i.e.,

(|C|
2

)
+ |L||C|+

(|L|
2

)
=
(|L∪C|

2

)
=
(|X�|

2

)
. Formula (1) therefore implies:

|AG| ≤ 10
n−|X�|−|F ′|

5

(
|X�|
2

)
. (2)

We now use Formula (2) in order to find an upper bound for the number of
maximal induced forests of G containing F instead of F ′. Consider the set F∩X�.
As G[F] is a forest and X� is a clique, we know that i = |F ∩ X�| ∈ {0, 1, 2}.
This means that i vertices of X� are preselected to be in a forest, which must

also contain the vertices of F ′. As
(|X�|
2−i

)
≤ 10

|X�|−i

5 and |F ′| + i = |F |, we can
use Formula (2) to get:

|AG| ≤ 10
n−|X�|−|F ′|

5

(
|X�|
2− i

)
≤ 10

n−|X�|−|F |+i+|X�|−i

5 ≤ 10
n−|F|

5 .

This concludes the proof of Theorem 1. ��

Corollary 1. Every chordal graph on n vertices has at most 10
n
5 minimal feed-

back vertex sets.

Although our main aim was to prove the statement of Corollary 1, note that
the stronger statement of Theorem 1 makes it more useful than Corollary 1.
Suppose we want to bound the number of minimal fvs in other graph classes or
in general graphs using a branching algorithm or a combinatorial argument. If
at some stage of the algorithm we end up with subgraphs of the input graph
that are chordal, in which some vertices have been preselected to belong to the
solution, then Theorem 1 can be applied directly to these subproblems, allowing
their solutions to be combined into a solution for the whole graph.

4 A Tight Bound for Cographs

We will now prove an upper bound of 10
n
5 , matching the lower bound given in

Section 2, also on the number of minimal fvs in cographs. As in the previous
section, we will work with maximal induced forests. Even though the upper
bound for cographs is the same as the upper bound for chordal graphs, the two
proofs are different. In particular, the proof for cographs requires in addition the
use of an upper bound on the number of maximal independent sets.

We start by defining a function f , which will ease the notation in the rest of
this section:

f(α, β, i, j) = αi + αj + iβj + jβi

We need a property of f described in the next lemma whose proof is omitted in
this extended abstract.

Lemma 1. For α = 10
1
5 , β = 3

1
3 , i ≥ i′ ≥ 1, and j ≥ j′ ≥ 1, such that (i′, j′) ∈

{(1, 10), (2, 8), (3, 7), (4, 5), (5, 4), (7, 3), (8, 2), (10, 1)}, the following holds:

f(α, β, i, j) ≤ αi+j .

Minimal Feedback Vertex Sets in Chordal Graphs and Cographs 139

(1,1) (1,1) (1,2) (1,1) (1,2) (1,2) (3,3)

(1,1) (1,2) (1,4) (1,2)

(3,3) (3,3) (3,3) (3,6) (4,2)

(1,4) (1,2) (1,2) (3,3)

(5,2)

(5,5) (6,4) (6,4) (6,4) (8,3) (8,4) (9,4) (10,5)

(1,2) (1,2)(1,4) (3,3) (4,2)(1,1) (1,2) (3,3) (6,4)(3,3)

(3,3) (3,3)

Fig. 1. All cographs on at most five vertices [24]. Each graph is labeled with a pair of
numbers: the first number is the number of maximal induced forests, and the second
number is the number of maximal independent sets in the graph.

We are now ready to prove our result on cographs.

Theorem 2. Every cograph on n vertices has at most 10
n
5 maximal induced

forests.

Proof. We will prove the theorem by induction on the number of vertices of a
cograph. The base case concerns cographs on at most 5 vertices. All cographs
on at most 5 vertices [24] are listed in Figure 1. Examining this figure, one can
verify that none of these graphs has more than 10

n
5 maximal induced forests.

Assume now that the statement of the theorem is true for all cographs on
at most n − 1 vertices, and let G = (V,E) be a cograph on n ≥ 6 vertices. By
the definition of cographs, G is either disconnected or the complete join of two
cographs. As explained in Section 2, if G is disconnected, then it suffices to prove
the upper bound on each connected component. Hence we can assume that G is
connected. Let G0 = (V0, E0) and G1 = (V1, E1) be the two cographs such that
G is the complete join of G0 and G1. Let ni = |Vi| for i ∈ {0, 1}. Observe that
n = n0 + n1, that n0 ≥ 1 and n1 ≥ 1, and that every vertex in V0 is adjacent to
every vertex in V1.

Let A ⊆ V be such that G[A] is a maximal induced forest ofG. For i, j ∈ {0, 1}
and i 	= j, we can observe that

– if |A ∩ Vi| ≥ 2, then |A ∩ Vj | ≤ 1, since otherwise the forest would contain a
cycle of length 4,

– if |A ∩ Vi| = 1, then A ∩ Vj is a maximal independent set, since otherwise
the forest would contain a cycle of length 3, and

– if A ∩ Vi = ∅, then A ⊆ Vj and G[A] is a maximal induced forest in Gj .

Let In be the maximum number of maximal independent sets in a graph on n
vertices. The three observations above show that a maximal induced forest in G

140 J.-F. Couturier et al.

is either a maximal induced forest in Gi, or a single vertex in Vi and a maximal
independent set in Gj , for i, j ∈ {0, 1} with i 	= j. This gives us the following
formula, where AG is the set of all maximal induced forests in G:

|AG| ≤ |AG0 |+ |AG1 |+ n1In0 + n0In1 . (3)

Moon and Moser [19] have shown that In ≤ 3
n
3 . Inserting this in (3) and using

our induction assumption, we obtain the following:

|AG| ≤ 10
n0
5 + 10

n1
5 + n13

n0
3 + n03

n1
3 . (4)

Now, our aim is to apply Lemma 1 on Formula (4) for values of n0 and n1

that satisfy the premises of that lemma, which will immediately imply that
|AG| ≤ 10

n
5 for large enough values of n. However, before we can do that, for

the soundness of our induction, we need to show that for all smaller values of

n0 and n1, it holds that |AG| ≤ 10
n0+n1

5 = 10
n
5 . We use Table 1 to help us keep

track of the possible cases. For all values of n0 and n1 such that n0+n1 ≤ 5, we
know by the induction base case that |AG| ≤ 10

n
5 . Each combination of pairs

of such values is marked with “≤ 5” in Table 1. We now examine all pairs of
values of n0 and n1 with n0 + n1 > 5, and n0 ≤ i and n1 ≤ j for some pair
(i, j) ∈ B = {(1, 10), (2, 8), (3, 7), (4, 5), (5, 4), (7, 3), (8, 2), (10, 1)}. Once we have
shown that |AG| ≤ 10

n
5 for all such values, we can apply Lemma 1 for all larger

values. Pairs of small n0, n1 values for which Lemma 1 can be applied are marked
with “OK” in Table 1. Clearly we can also apply the lemma on all larger values
of n0 and n1.

We will now analyze, in the correct induction order, the values of n0 and n1

in the area between those entries that are marked “≤ 5” and those that are
marked “OK” in Table 1. Let us start with n0 = 1 and n1 = 5. The single vertex
of G0 is either included in a maximal induced forest F of G, in which case F
must be a maximal independent set in G1, or it is not, in which case F is a
maximal induced forest in G1. Hence the number of maximal induced forests in
G is at most the number of maximal induced forests in G1 plus the number of
maximal independent sets in G1, i.e., |AG| ≤ |AG1 |+In1 . Using Figure 1, we can
verify that the number of maximal induced forests plus the number of maximal
independent sets is at most 15 for any cograph on 5 vertices. Since 15 < 10

6
5 ,

the statement of the theorem holds for this case. This case is marked with “C1”
in Table 1.

Now consider the case where n0 = 2 and n1 = 4. Observe first that if a vertex
of G0 is universal, then it can be moved to G1, and G is still a complete join of
the modified graphs G0 and G1. By this operation n0 becomes 1, n1 becomes
5, and we are back in Case C1. Therefore, assume now that the two vertices
of G0 are not adjacent. Let F be a maximal induced forest in G. If F contains
0 vertices from G0, then F is a maximal induced forest in G1. If F contains
exactly 1 vertex from G0, then F is a maximal independent set in G1. Finally, if
F contains both vertices of G0, then F contains exactly 1 vertex from G1. This
yields the formula |AG| ≤ |AG1 |+ 2In1 + n1. For any cograph G1 on 4 vertices
in which the number of maximal induced forests plus 2 times the number of

Minimal Feedback Vertex Sets in Chordal Graphs and Cographs 141

Table 1. This table aids in the analysis of |AG| for a cograph G on n0 + n1 vertices

�����n0

n1
1 2 3 4 5 6 7 8 9 10

1 ≤ 5 ≤ 5 ≤ 5 ≤ 5 C1 R1 R2 R3 R4 OK

2 ≤ 5 ≤ 5 ≤ 5 C2 C4 C6 C7 OK OK OK

3 ≤ 5 ≤ 5 C3 C5 C8 C9 OK OK OK OK

4 ≤ 5 C2 C5 C10 OK OK OK OK OK OK

5 C1 C4 C8 OK OK OK OK OK OK OK

6 R1 C6 C9 OK OK OK OK OK OK OK

7 R2 C7 OK OK OK OK OK OK OK OK

8 R3 OK OK OK OK OK OK OK OK OK

9 R4 OK OK OK OK OK OK OK OK OK

10 OK OK OK OK OK OK OK OK OK OK

maximal independent sets is at most 11 we are fine, as 11 + 4 < 10
6
5 . The only

graph violating this condition is K4 (see Figure 1). When G1 is K4, we notice
that a maximal independent set of size 1 in G1 will not be maximal induced forest
when joined with only one vertex of G0. Thus the term 2In1 can be ignored,
and we get |AG| ≤ |AG1 | + n1 ≤ 6 + 4 ≤ 10. This case is marked with “C2” in
Table 1.

The next case is when n0 = 3 and n1 = 3. Universal vertices can again be
moved between G0 and G1, and due to symmetry this argument holds in both
directions. We see in Figure 1 that cographs on 3 vertices without a univer-
sal vertex have at most one maximal induced forest and at most two maximal
independent sets. Thus we get that |AG| ≤ |AG0 | + |AG1 | + n1In0 + n0In1 ≤
1 + 1 + 3 · 2 + 3 · 2 = 14 < 10

6
5 . This case is marked with “C3” in Table 1.

Consider next a more general argument for the cases where n0 = 1 and n1 =
n− 1 ≥ 6. For the same reason as in Case C1, we have that |AG| ≤ |AG1 |+ In1 .

Using the induction assumption, |AG1 | ≤ 10
n1−1

5 ≤ 10
n−1
5 , we can obtain the

desired upper bound in this case by proving that 10
n−1
5 + 3

n−1
3 ≤ 10

n
5 . We can

rewrite this as (3
1
3 /10

1
5)n−1 ≤ 10

1
5 − 1, which is true for every n ≥ 7. However,

this can be used for each such n only after our proof has covered all (n0, n1) pairs
such that n0 +n1 ≤ n− 1. Thus at this point, it can only be used to cover (1, 6)
and (6, 1). Accordingly, we mark cells (1, 6) and (6, 1) with “R1” in Table 1.

The next case is when n0 = 2 and n1 = 5. As n0 = 2, we have the formula
|AG| ≤ |AG1 |+ 2In1 + n1 as we saw in Case C2. When G1 is the disjoint union

of a triangle and an edge, we get that |AG| ≤ 3 + 2 · 6 + 5 = 20 < 10
7
5 . By

considering the numbers for the remaining graphs on 5 vertices in Figure 1, we
get |AG| ≤ 10+ 2 · 5+ 5 = 25 < 10

7
5 . This case is marked with “C4” in Table 1.

The next case is when n0 = 3 and n1 = 4. Note that G0 does not contain
universal vertices, as otherwise these can be moved to G1 and we get case (2, 5),
which is already covered. Examining Figure 1, G0 has at most one maximal in-
duced forest and at most two maximal independent sets. We will use the formula
|AG| ≤ |AG0 | + |AG1 | + n1In0 + n0In1 . If G1 is K4, then no maximal induced

142 J.-F. Couturier et al.

forest in G consists of only one vertex from G0 and a maximal independent
set of G1, so the term n0In1 can be ignored in this case. Consequently, we get

|AG| ≤ |AG0 | + |AG1 | + n1In0 ≤ 1 + 6 + 4 · 2 = 15 < 10
7
5 . For any remaining

cograph on 4 vertices, the maximum number of maximal induced forests is 4,
and the maximum number of maximal independent sets is 4, and we get that
|AG| ≤ |AG0 |+ |AG1 |+n1In0 +n0In1 ≤ 1+4+4 ·2+3 ·4 = 25 < 10

7
5 . In Table

1 this case is marked with “C5”.
Recalling Case R1, by the arguments so far, the cells of Table 1 marked with

“R2” have also been covered.
At this point, we have verified that the statement of the theorem holds for

all cographs on at most 7 vertices. The two cases where n0 = 2 and n1 ∈ {6, 7}
are considered next. As the numbers of maximal induced forests and maximal
independent sets are integers, using the induction assumption, we get the formula
for n0 = 2 that we saw in Case C2, i.e., |AG| ≤ |AG1 | + 2In1 + n1 ≤ �10

n1
5 �+

2 · �3
n1
3 � + n1. We want to argue that this is at most 10

n1+2
5 . For n1 = 6, we

have �10 6
5 � + 2 · �3 6

3 � + 6 ≤ 15 + 2 · 9 + 6 ≤ 39 < 10
8
5 . For n1 = 7, we have

�10 7
5 �+ 2 · �3 7

3 �+ 7 ≤ 25 + 2 · 12 + 7 ≤ 56 < 10
9
5 . These cases are marked with

“C6” and “C7” in Table 1.
We continue now with the case where n0 = 3 and n1 ∈ {5, 6}. Like for the

case n0 = 2, we can notice that any universal vertex in G0 can be moved to G1,
yielding a situation covered by either Case C6 or C7. Hence we assume that G0

does not contain a universal vertex. For n1 = 5, we use the upper bounds for
graphs on 5 vertices given in Figure 1 to get |AG| ≤ |AG0 | + |AG1 | + n1In0 +

n0In1 ≤ 1+10+5·2+3·6 = 39 < 10
8
5 . This case is marked with “C8” in Table 1.

For n1 = 6, the argument is quite similar: |AG| ≤ |AG0 |+|AG1 |+n1In0+n0In1 ≤
1 + 10

6
5 + 6 · 2 + 3 · 3 6

3 < 55 < 10
9
5 . This case is marked with “C9” in Table 1.

The only remaining case is when n0 = 4 and n1 = 4. If either G0 or G1 has a
universal vertex, then we can move one vertex and reach a case that is already
covered. Examining Figure 1, G0 has at most 4 maximal induced forests and
at most 4 maximal independent sets, and G1 is either a cycle of length 4 or
has at most 3 maximal induced forests and 4 maximal independent sets. If G1

is a cycle of length 4, we get that |AG| ≤ |AG0 | + |AG1 | + n1In0 + n0In1 ≤
4 + 4 + 4 · 4 + 4 · 2 = 32 < 10

8
5 . For the remaining case, we get that |AG| ≤

|AG0 |+ |AG1 |+ n1In0 + n0In1 ≤ 4 + 3 + 4 · 4 + 4 · 4 = 39 < 10
8
5 . This last case

is marked with “C10” in Table 1.
By the arguments so far, the cells of Table 1 marked with “R3” and “R4”

have also been covered. We can now safely apply Lemma 1 on all other n0, n1

values, and the statement of the theorem follows. ��

5 Circular Arc Graphs and Concluding Remarks

Fomin et al. [9] give an example of an infinite family of graphs having 105
n
10 ≈

1.593n minimal fvs, providing the best known lower bound for general graphs.
Interestingly, their example is a disjoint union of copies of a particular circular

Minimal Feedback Vertex Sets in Chordal Graphs and Cographs 143

arc graph. This circular arch graph has 10 vertices and 105 minimal fvs [9].
An infinite family of graphs having 105

n
10 minimal fvs is obtained by taking n

10
copies of this graph. Note, however, that disjoint unions of circular arc graphs
are not necessarily circular arc graphs. In particular, this obtained family does
not belong to the class of circular arc graphs. As a consequence, two interesting
questions emerge. What is the upper bound for disjoint unions of circular arc
graphs; can it be that it matches the lower bound? What is the maximum number
of minimal fvs in circular arc graphs?

By our upper bound on chordal graphs, we immediately obtain that the max-
imum number of minimal fvs of a circular arc graph is O(1.585n), as follows. Let
us call the intersection between two consecutive maximal cliques in a clique cycle
of a circular arc graph a breaker. There are at most n breakers, and the removal
of each breaker results in a chordal graph. It is not difficult to see that for every
maximal induced forest F , there is a breaker that does not contain any vertex
of F . Consequently, by the results of Section 3, we obtain that the maximum
number of minimal fvs in a circular arc graph is at most n · 10n

5 = O(1.585n).
A combinatorial upper bound without the use of O-notation remains an open
question.

We have shown that the maximum number of fvs in chordal graphs and
cographs is at most 1.585n, and that this bound is tight. As a consequence
of our results and the result of Schwikowski and Speckenmeyer [22], all minimal
fvs, or equivalently all maximal induced forests, of a chordal graph, cograph, or
circular arc graph can be listed in time O(1.585n).

As a final question, we ask whether the exact number of minimal fvs of a
given graph can be computed in polynomial time for these three graph classes.
For cographs, arguments along the lines of the results by Bui-Xuan et al. [3]
are likely to work for a polynomial-time algorithm, since cographs have bounded
clique-width. We would not be surprised if also for chordal graphs the counting
problem could be solved in polynomial time.

Acknowledgement. The authors are indebted to Dieter Kratsch for useful
discussions on the topic.

References

1. Blair, J.R.S., Peyton, B.W.: An Introduction to Chordal Graphs and Clique Trees.
In: Graph Theory and Sparse Matrix Computations. IMA Vol. in Math. Appl.,
vol. 56, pp. 1–27. Springer

2. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. Monographs on
Discrete Mathematics and Applications (1999)

3. Bui-Xuan, B.M., Telle, J.A., Vatshelle, M.: Feedback Vertex Set on Graphs of low
Cliquewidth. In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.) IWOCA 2009. LNCS,
vol. 5874, pp. 113–124. Springer, Heidelberg (2009)

4. Buneman, P.: A characterization of rigid circuit graphs. Disc. Math. 9, 205–212
(1974)

144 J.-F. Couturier et al.

5. Corneil, D.G., Perl, Y., Stewart, L.: A linear recognition algorithm for cographs.
SIAM J. Computing 14, 926–934 (1985)

6. Corneil, D.G., Fonlupt, J.: The complexity of generalized clique covering. Disc.
Appl. Math. 22, 109–118 (1988/1989)

7. Couturier, J.-F., Heggernes, P., van ’t Hof, P., Kratsch, D.: Minimal Dominating
Sets in Graph Classes: Combinatorial Bounds and Enumeration. In: Bieliková,
M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012.
LNCS, vol. 7147, pp. 202–213. Springer, Heidelberg (2012)

8. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. J.
Graph Algor. Appl. 7(2), 131–140 (2003)

9. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback
vertex set problem: Exact and enumeration algorithms. Algorithmica 52(2), 293–
307 (2008)

10. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds
via measure and conquer: Bounding minimal dominating sets and applications.
ACM Trans. Algorithms 5(1) (2008)

11. Fomin, F.V., Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enumer-
ating Minimal Subset Feedback Vertex Sets. In: Dehne, F., Iacono, J., Sack, J.-R.
(eds.) WADS 2011. LNCS, vol. 6844, pp. 399–410. Springer, Heidelberg (2011)

12. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Texts in The-
oretical Computer Science (2010)

13. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations.
In: Proceedings STACS 2010, pp. 383–394 (2010)

14. Gaspers, S., Mnich, M.: On Feedback Vertex Sets in Tournaments. In: de Berg, M.,
Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 267–277. Springer, Heidelberg
(2010)

15. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of
Disc. Math. 57 (2004)

16. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: Enumeration of Minimal Dom-
inating Sets and Variants. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011.
LNCS, vol. 6914, pp. 298–309. Springer, Heidelberg (2011)

17. Lawler, E.L.: A note on the complexity of the chromatic number problem. In-
form. Proc. Lett. 5, 66–67 (1976)

18. McConnell, R.: Linear-time recognition of circular-arc graphs. Algorithmica 37,
93–147 (2003)

19. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)
20. Okamoto, Y., Uehara, R., Uno, T.: Counting the Number of Matchings in Chordal

and Chordal Bipartite Graph Classes. In: Paul, C., Habib, M. (eds.) WG 2009.
LNCS, vol. 5911, pp. 296–307. Springer, Heidelberg (2010)

21. Okamoto, Y., Uno, T., Uehara, R.: Counting the number of independent sets in
chordal graphs. J. Disc. Alg. 6, 229–242 (2008)

22. Schwikowski, B., Speckenmeyer, E.: On enumerating all minimal solutions of feed-
back problems. Disc. Appl. Math. 117, 253–265 (2002)

23. Spinrad, J.P.: Efficient graph representations. AMS, Fields Institute Monograph
Series 19 (2003)

24. Weisstein, E.W.: Cograph. MathWorld,
http://mathworld.wolfram.com/Cograph.html

http://mathworld.wolfram.com/Cograph.html

A Local Algorithm for Finding Dense

Bipartite-Like Subgraphs�

Pan Peng1,2

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences

2 School of Information Science and Engineering,
Graduate University of China Academy of Sciences, P.R. China

pengpan@ios.ac.cn

Abstract. We give a local algorithm to extract dense bipartite-like sub-
graphs which characterize cyber-communities in the Web [13]. We use the
bipartiteness ratio of a set as the quality measure that was introduced by
Trevisan [20]. Our algorithm, denoted as FindDenseBipartite(v, s, θ),
takes as input a starting vertex v, a volume target s and a bipartite-
ness ratio parameter θ and outputs an induced subgraph of G. It is
guaranteed to have the following approximation performance: for any
subgraph S with bipartiteness ratio θ, there exists a subset Sθ ⊆ S
such that vol(Sθ) ≥ vol(S)/9 and that if the starting vertex v ∈ Sθ and
s ≥ vol(S), the algorithm FindDenseBipartite(v, s, θ) outputs a sub-
graph (X,Y) with bipartiteness ratio O(

√
θ). The running time of the

algorithm is O(s2(Δ + log s)), where Δ is the maximum degree of G,
independent of the size of G.

1 Introduction

A local algorithm for massive graphs is one that explores only portion of the given
graph and finds a solution with good approximation guarantee. Given a graph
G as an oracle, from which the algorithm can request the degree of a vertex or
the adjacency list of a vertex, and a numerical property P of subgraphs (such as
diameter, conductance), a local algorithm is supposed to have the following form:
it takes as input a starting vertex v (or a small set of vertices), only traverses
the vertices that near v and outputs a subgraph S such that P (S) is close to
P (S∗), where S∗ is the subgraph containing v that has the optimal value for P .
However, in the design of local algorithms, an approximation guarantee result as
above is too strong, if possible, to obtain and it is usually relaxed as follows: if S
is a subgraph, then there exists a large subset S′ ⊆ S such that for any starting
vertex v ∈ S′, the algorithm will output a subgraph for which the P value is close
to P (S). This algorithmic paradigm was introduced by Spielman and Teng, who
gave a local algorithm for finding subgraph with small conductance [18]. Building

� The author is partially supported by the Grand Project “Network Algorithms and
Digital Information” of the Institute of Software, Chinese Academy of Sciences.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 145–156, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

146 P. Peng

on their work, other local clustering algorithms with better approximation ratio
and running time have been proposed by Anderson, Chung and Lang [3] and
Anderson and Yepes [4]. Local algorithm for finding dense subgraphs have been
studied by Anderson [2]. These algorithms have important applications in graph
sparsificasion, solving linear equations [17], Laplacian algorithmic paradigm [19]
and have also been used to handle real networks data (e.g., [14, 15]). However,
to our knowledge, only a few number of problems are shown to have such local
algorithms.

In this paper, we add one more problem to this list, and give a local algorithm
for extracting dense bipartite-like subgraphs. Such a subgraph serves as a good
channel for us to understand the link structures of the Web graph (that is, the
nodes are the Web pages and a directed edge (i, j) represents a hyperlink from
i to j). We are interested in extracting useful information from this huge graph,
one of particular interest are the cyber-communities, which gives insights into
the intellectual evolution of the Web and facilitates adverting at a more precise
level [13]. As found by Kumar et al [13], the cyber-communities are characterized
by dense bipartite subgraphs.

To measure the property of a group of Web pages being cyber-community like,
that is, whether the group is close to a dense bipartite subgraph or not, we will
adopt a concept bipartiteness ratio introduced by Trevisan [20]. Given a graph
G = (V,E), a subgraph S and one of its partitions S = (L,R), the bipartiteness
ratio β(SL,R) of S under partition (L,R) is defined to be

β(SL,R) =
2e(L,L) + 2e(R,R) + e(S, V \S̄)

vol(S)
.

The bipartiteness ratio β(S) of the subgraph S is the minimum value of β(SL,R)
over all its possible partitions (L,R). Intuitively speaking, if β(S) is small, then
there must exist a partition (L,R) such that the number of edges from S to the
outside as well as the number of edges that lie entirely in L orR is relatively small
compared with all the edges involved with S. Thus, (L,R) can be seen close to
a dense bipartite subgraph and S can be seen as a good Web community. Using
the bipartiteness ratio as the measure of a set being dense and bipartite-like
has the advantage that it unifies both properties in a natural way and admits
theoretical analysis, which is difficult for many other measures.

We give a local algorithm for finding a subgraph with small bipartiteness ratio
around a starting vertex v. In particular, we show that for any subgraph S with
bipartiteness ratio θ and volume at most s, there exists a subset Sθ ⊆ S of large
volume such that for any v ∈ Sθ, our algorithm finds a subgraph of bipartiteness
ratio O(

√
θ) and runs in time O(s2(log s+Δ)), where Δ is the maximum degree

of the graph.
Our algorithm is composed of two parts. In the first part, the algorithm simu-

lates the power method for the largest eigenvalue by a truncated process, which
has already been used in previous local algorithms (eg.,[18, 2]). Such a process
iteratively multiply a vector by some matrix of the graph (for example, the nor-
malized Laplacian matrix in this paper), and during each iterative step, it only

A Local Algorithm for Finding Dense Bipartite-Like Subgraphs 147

keeps a small fraction of non-zero elements of the vector by truncating elements
of relatively small values. We will see that this process allows our algorithm to
be “local” in that it will only traverse a small portion of the graph.

In the second part, the algorithm will sweep over all the vectors produced in
the truncated process. Such a sweep operation is implied in a spectral algorithm
for the bipartiteness ratio and is similar to the sweep operation that are widely
used to find small conductance from the second smallest eigenvalue of the nor-
malized Laplacian L. The approximation guarantee of our algorithm is derived
from this part and relies on the relation between the bipartiteness ratio and the
largest eigenvalue of L given by Trevisan [20].

Other Related Works: Previous work on extracting dense bipartite subgraphs
from the Web graph have used different measures and mainly focused on giving
heuristic methods (e.g., [13, 1, 7, 6]). All of them did not give theoretical analysis
on the performance of the corresponding algorithms on general graphs.

The definition of bipartiteness ratio is closely related to the notion of con-
ductance and dense subgraphs. The conductance of a vertex subset S is defined

as e(S,V \S)
min{vol(S),vol(V \S)} . A set of small conductance can be thought of a good

community as the connections crossing the set are relatively smaller than the
total number of edges involved with the set. In particular, Kannan, Vempala and
Veta gave a bicriteria measure of the quality of clustering based on the concept
of conductance and analyzed a corresponding spectral algorithm [12]. For the lit-

erature on dense subgraphs, Kannan and Vinay defined d(S, T) = e(S,T)√
|S||T | as the

measure of the density of a subgraph induced on S ∪ T in a directed graph and
gave a spectral algorithm for finding subgraphs with large density [11]. Other
density measures are also extensively studied. For example, Goldberg [8] intro-

duced the average degree as the density measure of a set S, that is, d(S) = e(S,S)
|S| .

Though both conductance and the density provide us good measures to study
the communities of the networks, they do not give us any information on the
bipartiteness of these subgraphs, which is the main motivation of the paper.

As mentioned above, the measure we are using here was introduced by Tre-
visan, who found its deep connections with the Max Cut problem, the Cheeger
inequality and the Geomans-Williamson Relaxation [20]. Soto [16] and Kale and
Seshadhri [10] gave further analysis on the quantity that is related to the bi-
partiteness ratio. Both of their work are motivated by designing approximation
algorithms for Max Cut.

In section 2, we give the basic definitions of the problem and some processes
that will be used in our algorithm. Then we give our local algorithm and main
theorem in Section 3. In section 4, we give the proof of our main theorem.

2 Preliminaries

Let G = (V,E) be an undirected weighted graph. Let A denote the adjacency
matrix of the graph such that Au,v is the weight of edge (u, v). We let dv denote
the (weighted) degree of vertex v. Let D denote the diagonal degree matrix of

148 P. Peng

G such that Du,u = du and Du,v = 0 for u 	= v. Let L = I − D−1/2AD−1/2

be the normalized Laplacian (or just Laplacian) of the graph. It is well known
that L is a positive semi-definite (PSD, for short) matrix; that is, L is a real
symmetric matrix and all its eigenvalues are non-negative. Let Δ denote the
maximum degree of G. We define the volume vol(S) of a subset S to be the sum
of degrees of the vertices in S, that is, vol(S) =

∑
v∈S dv. For any two vertex

sets L and R, let e(L,R) denote the number of edges between L and R. We
define 1v to be the indicator vector of vertex v. In the following, we will let S
denote subgraphs induced on the vertex set S and also let S = (L,R) denote the
subgraphs induces on the S = L∪R. For a vector x, we let ‖x‖ denote its Euclid
norm and let supp(x) denote the support of it (the set of vertices on which x is
non-zero).

Definition 1. For any subgraph S and a partition (L,R) of S, that is, L∪R = S
and L ∩ R = ∅, we define the bipartiteness ratio β(SL,R) of S under partition
(L,R) by

β(SL,R) =
2e(L,L) + 2e(R,R) + e(S, V \S)

vol(S)
.

We define the bipartiteness ratio β(S) of the subgraph S to be the minimum value
of β(SL,R) over all its possible partitions (L,R), that is

β(S) = min
(L,R) partion of S

β(SL,R);

and define the bipartiteness ratio of the graph β(G) to be the minimum value of
β(S) over all induced subgraphs in G, that is

β(G) = min
S

β(S).

When it is clear, we will use β(L,R) to denote β(SL,R). Our algorithm for
finding subgraphs with small bipartiteness ratio is based on the power method
for the largest eigenvector of a matrix. This method is also the base of many
other local algorithms. We start from a vector x and iteratively multiply the
Laplacian L. We will then make use of these vectors to find the subgraphs with
good properties. To guarantee that our algorithm is local, instead of doing the
dense matrix vector multiplication, in each step, we will only keep track of the
set of vertices u whose value is larger then a certain threshold. We will use the
following truncated process as defined in [2].

Definition 2. 1. Given a vector x and a nonnegative real number ε, the trun-
cated vector is

[x]ε(u) =

{
x(u) if |x(u)| ≥ ε‖x‖
0 otherwise

2. Given a vector x = x0 and a set of real numbers εt ∈ [0, 1] for t ≤ T ,
the truncated process with staring vector x0 and parameters {εt} is defined
to be the process that generates a sequence of vectors x0, · · · , xT such that
xt+1 = [xtL]εt+1 .

A Local Algorithm for Finding Dense Bipartite-Like Subgraphs 149

Note that for a given vector x, since the absolute value of [x]ε is at least ε‖x‖
whenever it is nonzero, and ‖x‖2 ≥ ‖[x]ε‖2, we have that the number of nonzero
entries in [x]ε is at most 1/ε2. That is, |supp([x]ε)| ≤ 1/ε2.

After we get a set of vectors x0, · · · , xT of the truncated process, we will
perform the following sweep process to produce subgraphs for each xt.

Definition 3. Given a vector x ∈ RV such that |supp(x)| = s, the sweep process
over vector x is defined to be the following process:

1. Order the vertices so that |x(v1)|√
dv1

≥ |x(v2)|√
dv2

≥ · · · ≥ |x(vs)|√
dvs

.

2. For each i ≤ s, define Li = {vj : x(vj) > 0 and j ≤ i} and Ri = {vj :
x(vj) ≤ 0 and j ≤ i} and compute the bipartiteness ratio of the subgraph
Si = (Li, Ri).

3. Output the subgraph Sm = (Lm, Rm) that achieves the minimum bipartite-
ness ratio among all the s subgraphs. Let β(x) = β(Lm, Rm).

3 Description of the Algorithm and the Main Theorem

Now we describe our algorithm as follows.

FindDenseBipartite(v, s, θ)
Input: A vertex v, a target volume s and a target bipartiteness ratio θ < 1/4.
Output: A subgraph (X,Y).

1. Let x0 = 1v√
dv
, T = log2−4θ(8s), and εt = (2− 4θ)t/2/

√
8s.

2. Compute x1, · · · , xT of the truncated process with starting vector x0 and
parameters ε1, · · · , εT .

3. For each time t ≤ T , sweep over xt and find the subgraph (Xt, Yt) such that
β(Xt, Yt) = β(xt). Output the subgraph with the smallest bipartiteness
ratio among all such pairs.

Our main theorem about the algorithm is the following.

Theorem 1. If S = (L,U) is a subgraph with bipartiteness ratio β(SL,U) ≤ θ,
then there exists a subset Sθ ⊆ S such that

1. vol(Sθ) ≥ vol(S)/9,
2. for any v ∈ Sθ, and s ≥ vol(S), the algorithm FindDenseBipartite(v, s, θ)

outputs a subset (X,Y) satisfying that β(X,Y) ≤ 2
√
2θ.

Remark: we can make the bound condition on the bipartiteness ratio θ < 1/4
be θ < 1 − δ, for any constant δ smaller than 1, just with a different (constant
fraction) bound on vol(Sθ).

The proof of Theorem 1 is given in Section 4. Roughly speaking, we will first
give the spectral algorithm of Trevisan [20] for the bipartiteness ratio of graphG.
We give an alternative proof of the approximation performance of this algorithm
and show that under certain conditions, a vector can be used to find subgraphs

150 P. Peng

with small bipartiteness ratio. Then we will show that there exists a large subset
of “good” starting vertices so that the truncated process from a scaled indicator
vector of such a vertex will produce a vector that satisfies the conditions of the
former spectral algorithm, and thus finish the proof.

In the remaining of this section, we bound the running time of our algorithm.

Theorem 2. The running time of FindDenseBipartite(v, s, θ) is O(s2(Δ +
log s)).

Proof. We note that in each step t of the truncated process, the number of
vertices in the support supp(xt) of xt is at most 1/ε2t . The running time of com-
puting xtL is bounded by the volume of the degrees of the vertices in supp(xt),
which is at most O(Δ/ε2t) = O(Δs2(2− 4θ)−t).

The running time of the whole truncated process is thus
∑T

t=0 O(Δs2(2 −
4θ)−t) = O(Δs2).

Finally, the computation of the sweep process might require sorting the vec-
tors in xt, which could take time O(|supp(xt)| log |supp(xt)|) = O(s2 log s(2 −
4θ)−t). Thus, the running time of the whole sweep process is

∑T
t=0 O(s2 log s(2−

4θ)−t) = O(s2 log s).
Thus, the running time of FindDenseBipartite is bounded by O(s2(Δ +

log s)).

4 Analysis of the Local Algorithm

4.1 A Spectral Algorithm for Finding Subgraphs with Small
Bipartiteness Ratio

In this section, we show that under certain conditions on a vector x, the sweep
over x will produce a good subgraph with low bipartiteness ratio, which is proved
by Trevisan [20], and further analyzed by Soto [16] and Kale and Seshadhri [10].
The result is given in the following Lemma 1. Here, we give a self-contained
proof that is somewhat different from the previous proofs. In fact, former proofs
of the lemma all proceed by designing and analyzing a probabilistic algorithm.
Instead, we prove the lemma by directly analyzing the deterministic version of
the algorithm, which provides us more insight on the combinatorial property of
the bipartiteness ratio and may be of independent interest.

Lemma 1. For any graph G and θ < 1/4, if there exists a vector x ∈ RV such
that xLxT ≥ (2 − 4θ)‖x‖2, then the sweep over x produces a subgraph (X,Y)
with bipartiteness ratio β(X,Y) ≤ 2

√
2θ.

Proof. Let z = xD−1/2. Let u ∼ v denote that (u, v) ∈ E and let S̄ denote V \S.
By the condition of the lemma, we have that x(2I − L)xT ≤ 4θ‖x‖2 and thus
that

A Local Algorithm for Finding Dense Bipartite-Like Subgraphs 151

4θ ≥ x(I +D−1/2AD−1/2)xT

‖x‖2

=
z(D +A)zT

〈z, zD〉

=

∑
u∼v(z(u) + z(v))2∑

v∈V z2(v)dv

=

∑
u∼v(z(u) + z(v))2

∑
u∼v(|z(u)|+ |z(v)|)2∑

v∈V z2(v)dv
∑

u∼v(|z(u)|+ |z(v)|)2

≥ (
∑

u∼v |z(u) + z(v)|(|z(u)|+ |z(v)|))2
2(
∑

v∈V z2(v)dv)2
, (1)

where the last inequality follows from the Cauchy-Schwarz inequality.

Assume the support of x has size s. We perform a sweep over x so that |x(v1)|√
dv1

≥
|x(v2)|√

dv2

≥ · · · ≥ |x(vs)|√
dvs

. Equivalently, we have |z(v1)| ≥ |z(v2)| ≥ · · · ≥ |z(vs)|.
Let Li = {vj : j ≤ i, z(vj) > 0}, Ri = {vj : j ≤ i, z(vj) ≤ 0} and Si =

Li∪Ri. Recall that β(x) = mini β(Li, Ri). Then we have for any i, β(x)vol(Si) ≤
2e(Li, Li) + 2e(Ri, Ri) + e(Si, S̄i).

Now we consider the square root of the numerator of (1) to obtain∑
u∼v

|z(u) + z(v)|(|z(u)|+ |z(v)|)

≥
∑

u∼v,z(u)z(v)<0

|z2(u)− z2(v)|+
∑

u∼v,z(u)z(v)≥0

(z(u) + z(v))2

≥
∑

i<j,vi∼vj ,
z(vi)z(vj)<0

(z2(vi)− z2(vj)) +
∑

i<j,vi∼vj ,
z(vi)z(vj)≥0

(z2(vi) + z2(vj)) (2)

=

s∑
i=1

(z2(vi)− z2(vi+1))(2e(Li, Li) + 2e(Ri, Ri) + e(Si, S̄i)) (3)

≥ β(x)
s∑

i=1

(z2(vi)− z2(vi+1))vol(Si)

= β(x)

s∑
i=1

z2(vi)dvi ,

where we define z(vn+1) to be 0 if s = n. The main difficulty lies in the third
equation, which can be obtained by comparing the coefficient of z2(vk) on both
sides for every k ≤ n and we defer the proof of it at the end. Now from the

above calculations, we have that 4θ ≥ β(x)2(
∑

v∈V z2(v)dv)
2

2(
∑

v∈V z2(v)dv)2
= β(x)2

2 , and the

lemma follows if we set (X,Y) = (Lm, Rm) for which the bipartiteness ratio
achieves β(x).

152 P. Peng

Now we show that formula (2) is equivalent to formula (3). Let coef1(k) and
coef2(k) be the coefficient of z2(vk) in (2) and (3), respectively. We only need to
show that for each k ≤ n, coef1(k) = coef2(k). Assume that z(vk) ≤ 0. The case
when z(vk) > 0 is similar.

Lk−1

Rk−1

Rk

vk

z(vk) ≤ 0
S̄k

S̄k−1

−
+

+

Fig. 1. The case when z(vk) ≤ 0. The sign on an edge denotes whether it contributes
1 or −1 to the coefficient coef1(k) of z

2(vk) in (2).

By definition and our assumption that z(vk) ≤ 0, we know that Lk−1 = Lk

and Rk = Rk−1∪{vk} (see Figure 1). It is easy to see that only edges incident to
vertex vk can contribute to coef1(k). More specifically, for each edge u ∼ vk, if
u ∈ Rk−1 ∪ S̄k, it contributes 1 to coef1(k) and if u ∈ Lk−1, it contributes −1 to
coef1(k). Totally, we have coef1(k) = e({vk}, Rk−1)+e({vk}, S̄k)−e({vk}, Lk−1).

On the other hand, from (3), we can get that

coef2(k) = (2e(Lk, Lk) + 2e(Rk, Rk) + e(Sk, S̄k))

−(2e(Lk−1, Lk−1) + 2e(Rk−1, Rk−1) + e(Sk−1, S̄k−1))

= 2e({vk}, Rk−1) + e(Sk−1, S̄k) + e({vk}, S̄k)

−e(Sk−1, {vk})− e(Sk−1, S̄k)

= 2e({vk}, Rk−1) + e({vk}, S̄k)− e(Sk−1, {vk})
= e({vk}, Rk−1) + e({vk}, S̄k)− e({vk}, Lk−1)

= coef1(k).

This completes the proof.

4.2 The Abundance of Good Starting Vertices

We now show that for any given subgraph S = (L,R) with small bipartiteness
ratio θ, there exists a large subset Sθ ⊆ S of “good” vertices, such that for any
v ∈ Sθ, the truncated process with starting vector 1v/

√
dv produces a vector

x ∈ RV that satisfies the condition of Lemma 1.
We will consider the normalized Laplacian LS of the subgraph S. Here, we

extend the dimension of LS to |V | by adding the corresponding zero entries. Note
that LS is a submatrix of L = LG restricted on the vertex set S. In particular,
L−LS is still positive semidefinite. So xLxT ≥ xLSx

T holds for all x ∈ RV . Let

A Local Algorithm for Finding Dense Bipartite-Like Subgraphs 153

l = |S| and 2 = λ1 ≥ λ2 ≥ · · · ≥ λl = λl+1 = · · · = λn = 0 be the eigenvalues
of LS and let μ1, μ2, · · · , μl, μl+1, · · · , μn be the corresponding orthonormal left
eigenvectors. By the definition of LS , we can assume that for all i such that
i ≤ l, the support of μi’s are contained in S, and for all i such that l < i ≤ n,
the support of μi’s are contained in V − S. It is easy to see that for i ≤ l,
the vectors obtained by restricting μi’s on S form an orthonormal basis of RS .
Any vector x ∈ RV can be expressed in terms of the eigenvectors of LS so that
x =

∑n
k=1 αkμk. For an integer m such that 1 ≤ m ≤ n, define the m-norm

‖x‖m of x to be the length of the projection of x onto the subspace spanned

by the first m eigenvectors; that is, ‖x‖m =
√∑

k≤m α2
k. It is well known that

‖x‖m is a norm [5]. (Also note that ‖x‖ = ‖x‖n.) For any nonnegative number
ε < 1, let hε = max{k : λk ≥ 2− ε}. Note that hε ≤ l. So, ‖x‖hε ≤ ‖x‖l.

To show there are many “good” vertices, we show in the following lemma that
there is a large subset Sθ of vertices whose hε-norm is large, for any ε ≥ θ. We
will see in Section 4 that the algorithm starting from a vertex in Sθ is guaranteed
to produce a vector satisfying the condition of Lemma 1 in T = O(log s) steps.
In the following, when the value ε is clear, we will abbreviate hε as h.

Lemma 2. Let ε = 4θ. If S = (L,R) is a subgraph with bipartiteness ratio
β(L,R) ≤ θ, then there exists a subset Sθ ⊆ S satisfying that

1. vol(Sθ) ≥ vol(S)/9, and
2. for any v ∈ Sθ, ‖1v/

√
dv‖h ≥ 1/

√
8vol(S).

Proof. Define a vector ψ as follows: ψ(v) =
√
dv/vol(S) if v ∈ L, ψ(v) =

−
√
dv/vol(S) if v ∈ R and ψ(v) = 0 otherwise. Then, we have

ψ(2I − L)ψT = ψ(I +D−1/2AD−1/2)ψT =
∑
u∼v

(ψ(u)/
√
du + ψ(v)/

√
dv)

2

=
4e(L,L) + 4e(R,R) + e(S, V \S)

vol(S)2

≤ 2θ/vol(S)

Now let ψ =
∑n

k=1 αiμi, then ‖ψ‖2 = 1/vol(S) =
∑n

k=1 α
2
i , and

ψ(2I − L)ψT =
2

vol(S)
−

n∑
k=1

λkα
2
k ≥ 2

vol(S)
− 2

∑
i≤h

α2
k − (2− ε)

∑
k>h

α2
k

=
2

vol(S)
− 2‖ψ‖2h − (2 − ε)(

1

vol(S)
− ‖ψ‖2h).

From the above bounds, we can get ‖ψ‖2h ≥ ε−2θ
εvol(S) =

1
2vol(S) .

We now define T = {v ∈ S : ‖1v/
√
dv‖2 < 1

8vol(S)}. Assume that vol(T) ≥
8vol(S)/9, we will derive a contradiction.

Define a vector η as follows: η(v) =
√
dv/vol(T) if v ∈ L ∩ T , η(v) =

−
√
dv/vol(T) if v ∈ R ∩ T and η(v) = 0 otherwise. Then, we have

‖η‖2h = ‖
∑
v∈T

dv
vol(T)

· 1v√
dv

‖2h ≤
∑
v∈T

dv
vol(T)

· ‖ 1v√
dv

‖2h <
1

8vol(S)
,

154 P. Peng

where the second inequality follows by the Jensen’s inequality.
To get a lower bound of ‖η‖h, we first get an upper bound of ‖η − ψ‖h.

‖ψ − η‖2h ≤ ‖ψ − η‖2 =
∑
v∈T

(

√
dv

vol(T)
−

√
dv

vol(S)
)2 +

∑
v∈S\T

(

√
dv

vol(S)
)2 =

1

vol(T)
− 1

vol(S)

≤ 1

8vol(S)
,

where the last inequality follows from our assumption on vol(T). By the triangle
inequality, we have

‖η‖h ≥ ‖ψ‖h − ‖ψ − η‖h ≥
√

1

2vol(S)
−
√

1

8vol(S)
=

√
1

8vol(S)
,

which contradicts the upper bound we obtained for ‖η‖h. Therefore, we must
have vol(T) ≤ 8vol(S)/9. Let Sθ = S\T . We have vol(Sθ) ≥ vol(S)/9 and for
any v ∈ Sθ, ‖1v/

√
dv‖2h ≥ 1

8vol(S) .

This complete the proof of the lemma.

4.3 Proof of Theorem 1

Proof. For any S = (L,R) with bipartiteness ratio β(L,R) ≤ θ < 1/4, we will
consider its extended Laplacian matrix LS and the corresponding h-norm of
vectors determined by LS , where h is as defined in Subsection 4.2. Let Sθ be the
subset as described in Lemma 2. We show that for any s and a vertex v ∈ Sθ, the
algorithm FindDenseBipartite(v, s, θ) produces a subgraph (X,Y) such that
β(X,Y) ≤ 2

√
2θ, where we have assumed that s ≥ vol(S).

Let x1, · · · , xT be the vectors produced by the pruned process with starting
vector 1v/

√
dv and parameters ε1, · · · , εT . If there exists a vector xt such that

xtLxT
t ≥ (2− 4θ)‖xt‖2, then by Lemma 1, we are done. Now assume that there

is no such vector, that is, for all t ≤ T , xtLxT
t < (2− 4θ)‖xt‖2. We will derive a

contradiction.
First, note that by the definition of Laplacian matrix L, we have that for any

k ≥ 0, Lk − Lk+1 is PSD. This follows from the fact that Lk − Lk+1 = Lk ·
D−1/2AD−1/2, that D−1/2AD−1/2 is a PSD matrix, and that the multiplication
of two commutable PSD matrices is also PSD [9]. Therefore, by our assumption,
for any t ≤ T , we have

‖xt‖2 ≤ ‖xt−1L‖2 = xt−1L2xT
t−1 ≤ xt−1LxT

t−1 ≤ (2− 4θ)‖xt−1‖2

≤ (2− 4θ)t‖x0‖2

≤ (2− 4θ)t. (4)

Now we show that ‖xt‖h increase exponentially with t such that

‖xt‖h ≥ 1√
8vol(S)

(2 − 4θ)t. (5)

A Local Algorithm for Finding Dense Bipartite-Like Subgraphs 155

By ‖xt‖ ≥ ‖xt‖h, this contradicts equation (4) when t = log2−4θ(8vol(S)) ≤ T ,
and this completes the proof.

We will prove equation (5) by induction. When t = 0, it is true by the choice
of v. Now let rt = xt−1L− xt = xt−1L− [xt−1L]εt be the vector that is removed
from the pruned process for any t and let r′t be the vector that is equal to rt on
S, and zero elsewhere. Now recall that μi’s are the eigenvectors of LS , that for
all i ≤ l = |S|, the support of μi is contained in S and the vectors obtained by
restricting μi’s on S form an orthonormal basis of RS . We have,

‖rt‖h ≤ ‖rt‖l =
√∑

i≤l

|〈rt, μi〉|2 =

√∑
i≤l

|〈r′t, μi〉|2 = ‖r′t‖

≤ εt‖xt−1L‖
√
|S|

≤ εt
√
vol(S)(2− 4θ)t/2,

where the last inequality follows from inequality (4) and that |S| ≤ vol(S).
Also note that for any x =

∑n
k=1 αkμk, we have

‖xL‖h = ‖xLS‖h =

√∑
k≤h

λ2
kα

2
k ≥ (2 − 4θ)

√∑
k≤h

α2
k = (2− 4θ)‖x‖h,

where the first equation follows from the fact that ‖xL‖h =
√∑

i≤h |〈xL, μi〉|2;
and that 〈xL, μi〉 = 〈x(L − LS) + xLS , μi〉 = 〈xLS , μi〉, since the support of μi

is contained in S and the corresponding elements in the matrix L − LS are all
zero.

Now assume that the induction hypothesis holds for t− 1, that is, ‖xt−1‖h ≥
1√

8vol(S)
(2− 4θ)t−1. Then

‖xt‖h = ‖xt−1L − rt‖h
≥ ‖xt−1L‖h − ‖rt‖h
≥ (2− 4θ)‖xt−1‖h − εt

√
vol(S)(2 − 4θ)t/2

≥ (2− 4θ)
1√

8vol(S)
(2− 4θ)t−1 − εt

√
vol(S)(2− 4θ)t/2

≥ 1√
8vol(S)

(2 − 4θ)t,

where the last inequality follows because εt = (2 − 4θ)t/2/
√
8s and that s ≥

vol(S). This completes the proof.

References

[1] Abello, J., Resende, M., Sudarsky, S.: Massive Quasi-Clique Detection. In: Rajs-
baum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidelberg
(2002)

156 P. Peng

[2] Andersen, R.: A local algorithm for finding dense subgraphs. ACM Trans. Algo-
rithms 6, 60:1–60:12 (2010)

[3] Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vec-
tors. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science, pp. 475–486. IEEE Computer Society, Washington, DC (2006)

[4] Andersen, R., Peres, Y.: Finding sparse cuts locally using evolving sets. In: Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, pp. 235–244. ACM, New York (2009)

[5] Bhatia, R.: Matrix Analysis. Springer, New York (1997)
[6] Dourisboure, Y., Geraci, F., Pellegrini, M.: Extraction and classification of

dense implicit communities in the web graph. ACM Transactions on the Web
(TWEB) 3(2), 7 (2009)

[7] Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive
graphs. In: Proceedings of the 31st International Conference on Very Large Data
Bases, pp. 721–732. VLDB Endowment (2005)

[8] Goldberg, A.V.: Finding a maximum density subgraph. Tech. rep., Berkeley, CA,
USA (1984)

[9] Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press (1985)
[10] Kale, S., Seshadhri, C.: Combinatorial approximation algorithms for maxcut using

random walks. In: 2nd Symposium on Innovations in Computer Science, ICS 2011
(2011)

[11] Kannan, R., Vinay, V.: Analyzing the structure of large graphs. Unpublished
manuscript (1999),
http://research.microsoft.com/en-us/um/people/

kannan/Papers/webgraph.pdf
[12] Kannan, R., Vempala, S., Vetta, A.: On clusterings: Good, bad and spectral. J.

ACM 51(3), 497–515 (2004)
[13] Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the web for

emerging cyber-communities. In: Proceedings of the Eighth International Confer-
ence on World Wide Web, WWW 1999, pp. 1481–1493. Elsevier North-Holland,
Inc., New York (1999)

[14] Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in
large networks: Natural cluster sizes and the absence of large well-defined clusters.
Internet Mathematics 6(1), 29–123 (2009)

[15] Liao, C.S., Lu, K., Baym, M., Singh, R., Berger, B.: IsoRankN: spectral methods
for global alignment of multiple protein networks. Bioinformatics 25(12), 253–258
(2009)

[16] Soto, J.: Improved analysis of a max cut algorithm based on spectral partitioning.
CoRR abs/0910.0504 (2009)

[17] Spielman, D.A.: Algorithms, graph theory, and linear equations. In: Proceedings
of the International Congress of Mathematicians 2010, pp. 2698–2722 (2010)

[18] Spielman, D.A., Teng, S.H.: Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In: Proceedings of the Thirty-
Sixth Annual ACM Symposium on Theory of Computing, STOC 2004, pp. 81–90.
ACM, New York (2004)

[19] Teng, S.H.: The Laplacian Paradigm: Emerging Algorithms for Massive Graphs.
In: Kratochv́ıl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108,
pp. 2–14. Springer, Heidelberg (2010)

[20] Trevisan, L.: Max cut and the smallest eigenvalue. In: Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 263–272.
ACM, New York (2009)

http://research.microsoft.com/en-us/um/people/kannan/Papers/webgraph.pdf
http://research.microsoft.com/en-us/um/people/kannan/Papers/webgraph.pdf

Algorithms for the Strong Chromatic Index

of Halin Graphs, Distance-Hereditary Graphs
and Maximal Outerplanar Graphs

Ton Kloks1, Sheung-Hung Poon1, Chin-Ting Ung1, and Yue-Li Wang2

1 Department of Computer Science
National Tsing Hua University, Hsinchu, Taiwan

{kloks,spoon}@cs.nthu.edu.tw
2 Department of Information Management

National Taiwan University of Science and Technology, Taipei, Taiwan
ylwang@cs.ntust.edu.tw

Abstract. We show that there exist linear-time algorithms that com-
pute the strong chromatic index of Halin graphs, of maximal outerplanar
graphs and of distance-hereditary graphs.

Keywords: Strong chromatic index, Halin graphs, Distance-hereditary
graphs, Outerplanar graphs.

1 Introduction

Definition 1. Let G = (V,E) be a graph. A strong edge coloring of G is a
proper edge coloring such that no edge is adjacent to two edges of the same
color.

Equivalently, a strong edge coloring of G is a vertex coloring of L(G)2, the square
of the linegraph of G. The strong chromatic index of G is the minimal integer
k such that G has a strong edge coloring with k colors. We denote the strong
chromatic index of G by sχ′(G).

Recently it was shown that the strong chromatic index is bounded by

(2− ε)Δ2

for some ε > 0, where Δ is the maximal degree of the graph [18].1 Earlier,
Andersen showed that the strong chromatic index of a cubic graph is at most
ten [1].

Let G be the class of chordal graphs, or the class of cocomparability graphs, or
the class of weakly chordal graphs. If G ∈ G then also L(G)2 ∈ G and it follows
that the strong chromatic index can be computed in polynomial time for these
classes [3,4,5]. Also for graphs of bounded treewidth there exists a polynomial
time algorithm that computes the strong chromatic index [20].2

1 In their paper Molloy and Reed state that ε ≥ 0.002 when Δ is sufficiently large.
2 This algorithm checks in O(n(s + 1)t) time whether a partial k-tree has a strong
edge coloring that uses at most s colors. Here, the exponent t = 24(k+1)+1.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 157–168, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

158 T. Kloks et al.

Definition 2. Let T be a tree without vertices of degree two. Consider a plane
embedding of T and connect the leaves of T by a cycle that crosses no edges of
T . A graph that is constructed in this way is called a Halin graph.

Halin graphs have treewidth at most three. Furthermore, if G is a Halin graph
of bounded degree, then also L(G)2 has bounded treewidth and thus the strong
chromatic index of G can be computed in linear time. Recently, Lih and Liu
proved that a cubic Halin graph other than one of the two ‘necklaces’ Ne2 (the
complement of C6) and Ne4, has strong chromatic index at most 7. The two
exceptions have strong chromatic index 9 and 8, respectively [17]. If T is the
underlying tree of the Halin graph, and if G 	= Ne2 and G is not a wheel Wn

with n 	= 0 mod 3, then Hsin-Hao Lai et al show that the strong chromatic index
is bounded by sχ′(T) + 3 [15]. (See [21,22] for earlier results.)

If G is a Halin graph then L(G)2 has bounded rankwidth. In [10] it is shown
that there exists a polynomial algorithm that computes the chromatic number of
graphs with bounded rankwidth, thus the strong chromatic index of Halin graphs
can be computed in polynomial time. In passing, let us mention the following
result. A class of graphs G is χ-bounded if there exists a function f such that
χ(G) ≤ f(ω(G)) for G ∈ G. Here χ(G) is the chromatic number of G and ω(G)
is the clique number of G. Recently, Dvořák and Král showed that for every k,
the class of graphs with rankwidth at most k is χ-bounded [8]. Obviously, the
graphs L(G)2, for G in the class of Halin graphs, have a uniform χ-bound.

In Section 2 we show that there exists a linear-time algorithm that computes
the strong chromatic index of Halin graphs. In Section 3 we show that there exists
a linear-time algorithm that computes the strong chromatic index of distance-
hereditary graphs. In Section 4 we show that there exists a linear-time algorithm
that computes the strong chromatic index of maximal outerplanar graphs.

2 The Strong Chromatic Index of Halin Graphs

The following lemma is easy to check.

Lemma 1 ([15]). Let Cn be the cycle with n vertices and let Wn be the wheel
with n vertices in the cycle. Then

sχ′(Cn) =

⎧⎪⎨⎪⎩
3 if n = 0 mod 3

5 if n = 5

4 otherwise

sχ′(Wn) =

⎧⎪⎨⎪⎩
n+ 3 if n = 0 mod 3

n+ 5 if n = 5

n+ 4 otherwise.

A double wheel is a Halin graph in which the tree T has exactly two vertices
that are not leaves.

Lemma 2 ([15]). Let W be a double wheel where x and y are the vertices of T
that are not leaves. Then sχ′(T) = d(x) + d(y)− 1 where d(x) and d(y) are the
degrees of x and y. Furthermore,

Algorithms for the Strong Chromatic Index of Halin Graphs 159

sχ′(W) =

⎧⎪⎨⎪⎩
sχ′(T) + 4 = 9 if d(x) = d(y) = 3, ie if W = C̄6

sχ′(T) + 2 = d(y) + 4 if d(y) > d(x) = 3

sχ′(T) + 1 = d(x) + d(y) if d(y) ≥ d(x) > 3.

Let G be a Halin graph with tree T and cycle C. Then obviously,

sχ′(G) ≤ sχ′(T) + sχ′(C). (1)

The linegraph of a tree is a claw-free blockgraph. Since a sun Sr with r > 3 has a
claw, L(T) has no induced sun Sr with r > 3. It follows that L(T)2 is a chordal
graph [16] (see also [3]; in that paper Cameron proves that L(G)2 is chordal for
any chordal graph G). Notice that

sχ′(T) = χ(L(T)2) = ω(L(T)2) ≤ 2Δ(G)− 1 ⇒ sχ′(G) ≤ 2Δ(G) + 4. (2)

2.1 Cubic Halin Graphs

In this subsection we outline a simple linear-time algorithm for the cubic Halin
graphs.

Theorem 1. There exists a linear-time algorithm that computes the strong chro-
matic index of cubic Halin graphs.

Proof. Let G be a cubic Halin graph with plane tree T and cycle C. Let k be
a natural number. We describe a linear-time algorithm that checks if G has a
strong edge coloring with at most k colors. By (2) we may assume that k is at
most 10. Thus the correctness of this algorithm proves the theorem.

Root the tree T at an arbitrary leaf r of T . Consider a vertex x in T . There
is a unique path P in T from r to x in T . Define the subtree Tx at x as the
maximal connected subtree of T that does not contain an edge of P . If x = r
then Tx = T .

Let H(x) be the subgraph of G induced by the vertices of Tx. Notice that, if
x 	= r then the edges of H(x) that are not in T form a path Q(x) of edges in C.

For x 	= r define the boundary B(x) of H(x) as the union of the following sets
of edges.

(a) The unique edge of P that is incident with x.

(b) The two edges of C that connect the path Q(x) of C with the rest of C.

(c) Consider the endpoints of the edges mentioned in (a) and (b) that are in Tx.
Add the remaining two edges that are incident with each of these endpoints
to B(x).

Thus the boundary B(x) consists of at most 9 edges. The following claim is easy
to check. It proves the correctness of the algorithm described below. Let e be an

160 T. Kloks et al.

edge of H(x). Let f be an edge of G that is not an edge of H(x). If e and f are
at distance at most 1 in G then e or f is in B(x).3

Consider all possible colorings of the edges in B(x). Since B(x) contains at
most 9 edges and since there are at most k different colors for each edge, there
are at most

k9 ≤ 109

different colorings of the edges in B(x).
The algorithm now fills a table which gives a boolean value for each coloring of

the boundary B(x). This boolean value is TRUE if and only if the coloring of the
edges in B(x) extends to a strong edge coloring of H(x) with at most k colors.
These boolean values are computed as follows. Below, we prove the correctness
by induction on the size of the subtree at x.

First consider the case where the subtree at x consists of the single vertex x.
Then x 	= r and x is a leaf of T . In this case B(x) consists of three edges, namely
the three edges that are incident with x. These are two edges of C and one edge
of T . If the colors of these three edges in B are different then the boolean value is
set to TRUE. Otherwise it is set to FALSE. Obviously, this is a correct assignment.

Next consider the case where x is an internal vertex of T . Then x has two
children in the subtree at x. Let y and z be the two children and consider the
two subtrees rooted at y and z.

The algorithm that computes the tables for each vertex x processes the sub-
trees in the order of increasing number of vertices. (Thus the roots of the subtrees
are visited in postorder). We now assume that the tables at y and z are computed
correctly and show how the table for x is computed correctly and in constant
time. That is, we prove that the algorithm described below computes the table
at x such that it contains a coloring of B(x) with a value TRUE if and only if
there exists an extension of this coloring to the edges of H(x) and B(x) such
that any two different edges e and f at distance at most one in G, each one in
H(x) or in B(x), have different colors.

Consider a coloring of the edges in the boundary B(x). The boolean value in
the table of x for this coloring is computed as follows. Notice that

(i) B(y) ∩B(z) consists of one edge and this edge is not in B(x), and
(ii) B(x)∩B(y) consists of at most four edges, namely the edge (x, y) and the

three edges of B(y) that are incident with one vertex of C∩H(y). Likewise,
B(x) ∩B(z) consists of at most four edges.

The algorithm enumerates the possible colorings of the edge in B(y) ∩ B(z).
Colorings of B(x), B(y) and B(z) are consistent if the intersections have the
same color and the pairs of edges in

B(x) ∪B(y) ∪B(z)

3 Two edges e = {a, b} and f = {u, v} in G are at distance at most one if {a, b} ∩
{u, v} �= ∅ or when all four endpoints are distinct and at least one of {a, b} is
adjacent to at least one of {u, v}. We assume that it can be checked in constant time
if two edges e and f are at distance at most one. This can be achieved by using a
suitable data structure.

Algorithms for the Strong Chromatic Index of Halin Graphs 161

that are at distance at most one in G have different colors. A coloring of B(x) is
assigned the value TRUE if there exist colorings of B(y) and B(z) such that the
three colorings are consistent and B(y) and B(z) are assigned the value TRUE

in the tables at y and at z respectively. Notice that the table at x is built in
constant time.

Consider a coloring of B(x) that is assigned the value TRUE. Consider colorings
of the edges of B(y) and B(z) that are consistent with B(x) and that are assigned
the value TRUE in the tables at y and z. By induction, there exist extensions of
the colorings of B(y) and B(z) to the edges of H(y) and H(z). The union of
these extensions provides a k-coloring of the edges in H(x).

Consider two edges e and f in B(x)∪B(y)∪B(z). If their distance is at most
one then they have different colors since the coloring of B(x) ∪ B(y) ∪ B(z) is
consistent. Let e and f be a pair of edges in H(x). If they are both in H(y)
or both in H(z) then they have different colors. Assume that e is in H(y) and
assume that f is not in H(y). If e and f are at distance at most one, then e or f
is in B(y). If they are both in B(y), then they have different colors, due to the
consistency. Otherwise, by the induction hypothesis, they have different colors.
This proves the claim on the correctness.

Finally, consider the table for the vertex x which is the unique neighbor of r
in T . By the induction hypothesis, and the fact that every edge in G is either in
B(x) or in H(x), G has a strong edge coloring with at most k colors if and only
if the table at x contains a coloring of B(x) with three different colors for which
the boolean is set to TRUE.

This proves the theorem. ��

Remark 1. The involved constants in this algorithm are improved considerably
by the recent results of Ko-Wei Lih, Ping-Ying Tsai, et al.

2.2 Halin Graphs of General Degree

In this section we show that the strong chromatic index of general Halin graphs
can be computed in linear time. The result is somewhat surprising, since there is
little hope for obtaining linear-time algorithms for graphs of bounded rankwidth
in general. One reason is that there is no known linear-time algorithm to compute
a decomposition tree. But even when a decomposition tree is a part of the input it
remains unclear whether there is a linear-time algorithm for the strong chromatic
index for graphs of bounded rankwidth [8,9,10].

Theorem 2. There exists a linear-time algorithm that computes the strong chro-
matic index of Halin graphs.

Proof. The algorithm is similar to the algorithm for the cubic case. Let G be
a Halin graph, let T be the underlying plane tree, and let C be the cycle that
connects the leaves of T . Since L(T)2 is chordal the chromatic number of L(T)2

is equal to the clique number of L(T)2, which is

sχ′(T) = max { d(u) + d(v) − 1 | {u, v} ∈ E(T) },

162 T. Kloks et al.

where d(u) is the degree of u in the tree T . By Formula (1) and Lemma 1 the
strong chromatic index of G is one of the six possible values4

sχ′(T), sχ′(T) + 1, . . . , sχ′(T) + 5.

Root the tree at some leaf r and consider a subtree Tx at a node x of T . Let
H(x) be the subgraph of G induced by the vertices of Tx. Let y and z be the
two boundary vertices of H(x) in C.

We distinguish the following six types of edges corresponding to H(x).

1. The set of edges in Tx that are adjacent to x.
2. The edge that connects x to its parent in T .
3. The edge that connects y to its neighbor in C that is not in Tx.
4. The set of edges in H(x) that have endpoint y.
5. The edge that connects z to its neighbor in C that is not in Tx.
6. The set of edges in H(x) that have endpoint z.

When x is adjacent to y then we make a separate type for the edge {x, y} and
similar in the case where x is adjacent to z.

Notice that the set of edges of every type has bounded cardinality, except the
first type.

Consider a 0/1-matrix M with rows indexed by the six to eight types of edges
and columns indexed by the colors. A matrix entry Mij is 1 if there is an edge
of the row-type i that is colored with the color j and otherwise this entry is 0.
Since M has at most 8 rows, the rank over GF [2] of M is at most 8.

Two colorings are equivalent if there is a permutation of the colors that maps
one coloring to the other one. Let S ⊆ {1, . . . , 8} and let W (S) be the set of
colors that are used by edges of type i for all i ∈ S. A class of equivalent colorings
is fixed by the set of cardinalities

{ |W (S)| | S ⊆ {1, . . . , 8} }.

We claim that the number of equivalence classes is bounded by an absolute
constant. The number of ones in the first row of M , corresponding to the first
type, is the degree of x in H(x). Every other row of M has at most 3 ones. This
proves the claim.

Consider the union of two subtrees, say at x and x′. The algorithm considers
all equivalence classes of colorings of the union, and checks, by table look-up,
whether it decomposes into valid colorings of H(x) and H(x′). An easy way to
do this is as follows. First double the number of types, by distinguishing the
edges of H(x) and H(x′). Then enumerate all equivalence classes of colorings.
Each equivalence class is fixed by a sequence of 216 numbers, as above. By table
look-up, check if an equivalence class restricts to a valid coloring for each of H(x)
and H(x′). Since this takes constant time, the algorithm runs in linear time.

This proves the theorem. ��
4 Actually, according to the recent results of Hsin-Hao Lai et al, the strong chromatic
index of G is at most sχ′(T)+ 3 except when G is a wheel or the complement of C6

[15].

Algorithms for the Strong Chromatic Index of Halin Graphs 163

3 Distance-Hereditary Graphs

Definition 3 ([13]). A graph G is distance hereditary if any two nonadjacent
vertices in a component of any induced subgraph H are at the same distance in
H as they are in the graph G.

In other words, any two chordless paths between two nonadjacent vertices is of
the same length. Distance-hereditary graphs are exactly the graphs that have
rankwidth one [6]. In this section we prove that there is a linear-time algo-
rithm that computes the strong chromatic index of distance-hereditary graphs.
Distance-hereditary graphs are perfect. They are the graphs without induced
gem, house, hole or domino.

Cameron et al prove that, for k ≥ 4, if G has no induced cycles on at least k
vertices then also L(G)2 has no such induced cycles [5]. It follows that, if G is
distance hereditary then L(G)2 is perfect. Therefore, to compute the chromatic
number of L(G)2 it suffices to compute the clique number.

� �

� �

�

����
�

�

�

�

�

�
�

�
�

�
�

� �

� �

� �

�

�

�

�

�

���
�
�
��

�
�
��

����
� �

�

Fig. 1. A graph is distance hereditary if it has no induced house hole, domino or gem

A pendant vertex in a graph is a vertex of degree one. A twin is a pair of
vertices x and y with the same open or the same closed neighborhood. When x
and y are adjacent then the twin is called a true twin and otherwise it is called
a false twin. A P4 is a path with four vertices.

Theorem 3 ([2]). A connected graph G is distance hereditary if and only if G
is obtained from an edge by a sequence of the following operations.

(a) Creation of a pendant vertex.
(b) Creation of a twin.

Lemma 3. Let G be a graph and consider the graph G′ obtained from G by
creating a false twin x′ of a vertex x in G. Then L(G′)2 is obtained from L(G)2

by a series of true twin operations.

Proof. Let a1, . . . , as be the neighbors of x in G. By definition of L(G)2, each
edge {x′, ai} is a true twin of the edge {x, ai} in L(G′)2. ��

Definition 4. A graph G is a cograph if G has no induced P4.

A cograph is obtained from a graph consisting of one vertex by a series of twin
operations. Chordal cographs are the graphs without induced P4 and C4. These
are often called ‘trivially perfect.’

164 T. Kloks et al.

Lemma 4. If G is a cograph then L(G)2 is trivially perfect.

Proof. A cograph with at least two vertices is either the join or the union of two
cographs G1 and G2. Assume that G is the join of two cographs G1 and G2.
The set of edges with one endpoint in G1 and the other in G2 form a clique in
L(G)2. Furthermore, every edge in this set is adjacent in L(G)2 to every edge
that is contained in Gi for i ∈ {1, 2}. In other words, every component of L(G)2

has a universal vertex, i.e., a vertex adjacent to all other vertices. The graphs
that satisfy this property are exactly the graphs in which every component is the
comparability graph of a tree and these are exactly the graphs without induced
P4 and C4 [23]. ��

Notice that Lemma 4 provides a linear-time algorithm for computing the strong
chromatic index of cographs. A decomposition tree can be obtained in linear
time [7]. Assume that G is the join of two cographs G1 and G2. Then every
edge with both ends in G1 is adjacent in L(G)2 to every edge with both ends in
G2. Let X be the set of edges with one endpoint in G1 and the other endpoint
in G2. By dynamic programming on the cotree, compute the clique numbers of
L(G1)

2 and L(G2)
2. Add |X | to the sum of both. If G is the union of G1 and

G2 then the strong chromatic index of G is the maximum of the clique numbers
of L(G1)

2 and L(G2)
2. This proves the following theorem.

Theorem 4. There exists a linear-time algorithm that computes the strong chro-
matic index of cographs.

Our linear-time algorithm for computing the clique number in L(G)2 for graphs
G that are distance hereditary is based on the following lemma.

Lemma 5. If G is distance hereditary then every neighborhood of a vertex in
L(G)2 induces a trivially perfect graph.

Proof. We prove the theorem by induction on the elimination ordering of G by
pendant vertices and elements of twins.

First, assume that G′ is obtained from G by creating a false twin x′ of a
vertex x in G. By Lemma 3 L(G′)2 is obtained from L(G)2 by a series of true
twin operations. In that case the claim follows easily via induction.

Secondly, consider the operation which adds a pendant vertex x′, made adja-
cent to a vertex x in G. Let a1, . . . , as be the neighbors of x in G. The adjacencies
of the edge {x, x′} in L(G′)2 are of the following types.

(a) All edges {x, ai}, i ∈ {1, . . . , s}. Call this set of edges X .
(b) The edges {ai, aj} ∈ E(G), for i, j ∈ {1, . . . , s}.
(c) Edges {ai, u}, for i ∈ {1, . . . , s} and u ∈ NG(ai) \NG[x].

Call two vertices in NG(x) equivalent if they have the same neighbors in G −
NG[x]. Since there is no house, hole, domino or gem every equivalence class is
joined to or disjoint from every other equivalence class. Let H be the graph with
vertex set the set of equivalence classes and edge set the pairs of equivalence

Algorithms for the Strong Chromatic Index of Halin Graphs 165

classes that are joined. Since G has no gem, the graph H has no induced P4 and
so it is a cograph. Furthermore, by Lemma 4, L(H)2 is trivially perfect.

Consider the components of G−NG[x]. For any two components C1 and C2

their neighborhoods NG(C1) and NG(C2) are either disjoint or ordered by inclu-
sion. First consider the components that have a maximal neighborhood in NG(x)
and remove all other components. Consider the equivalence classes defined by
these components. The graph on these equivalence classes is a cograph and the
square of the linegraph is a chordal cograph. Next, consider such an equivalence
class Q with at least two vertices. Remove the components C of G − NG[x]
with N(C) = Q and consider the maximal neighborhoods that are properly con-
tained in Q. As above, partition the vertices of Q into secondary equivalence
classes. These are the equivalence classes with respect to the maximal neighbor-
hoods that are properly contained in Q. If there are no more components with
their neighborhood contained in Q then define the secondary equivalence classes
as sets of single vertices. As above, for each equivalence class Q, the secondary
equivalence classes form a cographHQ. Also, L(HQ)

2 is trivially perfect. Contin-
uation of this process defines a chordal cotree on the subgraph of L(G)2 induced
by the edges of types (b) and (c). Notice that the set X of edges is universal in
the neighborhood of {x, x′} in L(G)2.

Finally, consider the case where G′ is obtained from G by creating a true twin
x′ of a vertex x in G. Subdivide this operation into two steps. First create a false
twin. Let G∗ be the graph obtained in this manner. We proved above that every
neighborhood in L(G∗)2 is trivially perfect. Secondly, adding the edge {x, x′} to
G∗ is similar to the operation of adding a pendant vertex. The set X of edges as
described above, now consists of pairs of true twins in L(G)2. The other types
of adjacencies of {x, x′}, as described in (b) and (c), are the same as above.

This proves the lemma. ��
Theorem 5. There exists a linear-time algorithm that computes the strong chro-
matic index of distance-hereditary graphs.

Proof. Let G be distance hereditary. Consider a rank decomposition of G of
rankwidth one. This is a pair (T, f) where T is a rooted binary tree and where
f is a bijection from the vertices in G to the leaves of T . Consider a subtree Te

of T rooted at some edge e of T . Define Ge as the subgraph of G induced by
the vertices that are mapped to leaves in Te. Let Se be the set of vertices of Ge

that have neighbors in G−V (Ge). The set Se is called the twinset of Ge [6]. All
vertices of Se have the same neighbors in G− V (Ge).

Consider an edge e of T and let e1 and e2 be the two children of e in T . The
graph Ge is obtained from Ge1 and Ge2 by a join or by a union of the twinsets
Se1 and Se2 . The twinset Se of Ge is either one of Se1 and Se2 or it is the union
of the two [6].

Let e be an edge in T with children e1 and e2. Let S1 and S2 be the twinsets
of Ge1 and of Ge2 and assume that there is a join between S1 and S2. Let X be
the set of edges between S1 and S2. For i ∈ {1, 2}, choose a set of edges Ωi in Si

which form a maximal clique in L(Si)
2 and which maximizes the number of edges

in Ωi plus the number of edges in Gei −Si with end-vertices in V (Ωi). Let ωi be

166 T. Kloks et al.

the number of edges in Ωi and letNi be the number of edges with one endpoint in
V (Ωi). The algorithm keeps track of the maximal value of |X |+ω1+ω2+N1+N2.
It is easy to see that this algorithm can be implemented to run in linear time. ��

4 Maximal Outerplanar Graphs

A maximal outerplanar graph G is a ternary tree T (i.e., every vertex in T has
degree at most three) of triangles, where two triangles that are adjacent in the
tree share an edge (see, eg [14]). When G is maximal outerplanar then G is a
planar 2-tree and so L(G)2 is chordal [3].

Definition 5. An extended triangle in a maximal outerplanar graph consists of
a triangle plus all the edges that are incident with some vertex of the triangle.

The sets of edges of extended triangles form the maximal cliques of L(G)2. Let
φ be the maximal number of edges in an extended triangle. In the following
theorem we prove that there exists a strong edges coloring that uses φ colors.

Theorem 6. There exists a linear-time algorithm that computes the strong chro-
matic index of maximal outerplanar graphs.

Proof. The algorithm colors the edges in a greedy manner as follows. First we
mark one leaf node of T as the root. Then we traverse T in a breadth-first man-
ner. When we reach a node v, we color the uncolored edges of its corresponding
extended triangle τ so that the colors used for uncolored edges are different from
the colors of those colored edges in τ . As the number of edges of τ is at most φ,
φ colors are sufficient to do color the edges of τ . We proceed to color the edges
in other extended triangles for other nodes in T via the breadth-first order. At
the end of the traversal, we finish the coloring of all edges in G using only φ
colors.

For the correctness of the algorithm observe that ω(L(G)2) = φ and that
L(G)2 is perfect. The algorithm above produces a strong edge coloring which
uses φ colors. ��

5 Concluding Remarks

For Halin graphs we tried to prove that there is an optimal strong edge-coloring
such that the edges in the cycle can be colored with colors from a fixed set of
constant size. If true, then this would probably improve the time bound for the
strong chromatic index problem on Halin graphs.

Moser and Sikdar proved that the maximum induced matching problem on
planar graphs is fixed-parameter tractable [19]. As far as we know the param-
eterized complexity of the strong chromatic index problem on planar graphs is
open. Computing a maximum induced matching in planar graphs, or in bipartite
graphs is NP-complete [4].

An example of a distance-hereditary graph G for which L(G)2 is not chordal
is depicted in Figure 2.

Algorithms for the Strong Chromatic Index of Halin Graphs 167

� �

� �

� �

� �

�
� �

�

�
�

�
�

Fig. 2. A distance-hereditary graph G for which L(G)2 is not chordal

Acknowledgements. Ton Kloks, Sheung-Hung Poon and Chin-Ting Ung thank
the National Science Council of Taiwan for their support. Ton Kloks is supported
under grant NSC 99–2218–E–007–016. Sheung-Hung Poon and Chin-Ting Ung
are supported under grants NSC 99–2218–E–007–016,NSC 100–2218–E–007–007
and NSC 100–2628–E–007–020–MY3.

References

1. Andersen, L.: The Strong Chromatic Index of a Cubic Graph Is at Most 10. Discrete
Math. 108, 231–252 (1992)

2. Bandelt, H., Mulder, H.: Distance-hereditary Graphs. J. Comb. Theory B 41, 182–
208 (1986)

3. Cameron, K.: Induced Matchings. Discrete Appl. Math. 24, 97–102 (1989)
4. Cameron, K.: Induced Matchings in Intersection Graphs. Discrete Math. 278, 1–9

(2004)
5. Cameron, K., Sritharan, R., Tang, Y.: Finding a Maximum Induced Matching in

Weakly Chordal Graphs. Discrete Math. 266, 133–142 (2003)
6. Chang, M., Hsieh, S., Chen, G.: Dynamic Programming on Distance-hereditary

Graphs. In: Leong, H.-V., Jain, S., Imai, H. (eds.) ISAAC 1997. LNCS, vol. 1350,
pp. 344–353. Springer, Heidelberg (1997)

7. Corneil, D., Perl, Y., Stewart, L.: A Linear Recognition Algorithm for Cographs.
SIAM J. Comput. 14, 926–934 (1985)

8. Dvořák, Z., Král, D.: Classes of Graphs with Small Rank Decompositions Are
χ-bounded. Manuscript on ArXiv: 1107.2161.v1 (2011).

9. Fomin, F., Golovach, P.A., Lokshtanov, D., Saurabh, S.: On the Price of Generality.
In: Proceedings of the 20th Annual-SIAM Symposium on Discrete Algorithms, pp.
825–834 (2009)

10. Ganian, R., Hliněný, P.: Better Polynomial Algorithms on Graphs of Bounded
Rank-Width. In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.) IWOCA 2009. LNCS,
vol. 5874, pp. 266–277. Springer, Heidelberg (2009)

11. Halin, R.: Studies on Minimally n-connected Graphs. In: Welsh, D. (ed.) Combi-
natorial Mathematics and its Applications, pp. 129–136. Academic Press, London
(1971)

12. Hayward, R., Spinrad, J., Sritharan, R.: Improved Algorithms for Weakly Chordal
Graphs. ACM Trans. Alg. 3, 1549–6325 (2007)

13. Howorka, E.: A Characterization of Distance-hereditary Graphs. Q. J. Math. 28,
417–420 (1977)

14. Kloks, T.: Treewidth – Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994)

168 T. Kloks et al.

15. Lai, H., Lih, K., Tsai, P.: The Strong Chromatic Index of Halin Graphs. Discrete
Math. 312, 1536–1541 (2012)

16. Laskar, R., Shier, D.: On Powers and Centers of Chordal Graphs. Discrete Appl.
Math. 6, 139–147 (1983)

17. Lih, K., Liu, D.: On the Strong Chromatic Index of Cubic Halin Graphs. Appl.
Math. Lett. 25, 898–901 (2012)

18. Molloy, M., Reed, B.: A Bound on the Strong Chromatic Index of a Graph. J.
Comb. Theory B. 69, 103–109 (1997)

19. Moser, M., Sikdar, S.: The Parameterized Complexity of the Induced Matching
Problem in Planar Graphs. Discrete Appl. Math. 157, 715–727 (2009)

20. Salavatipour, M.: A Polynomial Algorithm for Strong Edge Coloring of Partial
k-trees. Discrete Appl. Math. 143, 285–291 (2004)

21. Shiu, W., Lam, P., Tam, W.: On Strong Chromatic Index of Halin Graphs. J.
Comb. Math. Comb. Comput. 57, 211–222 (2006)

22. Shiu, W., Tam, W.: The Strong Chromatic Index of Complete Cubic Halin Graphs.
Appl. Math. Lett. 22, 754–758 (2009)

23. Wolk, E.: A Note on “The Comparability Graph of a Tree”. In: Proceedings of the
American Mathematical Society, vol. 16, pp. 17–20 (1965)

On the Minimum Degree Hypergraph Problem

with Subset Size Two and the Red-Blue Set
Cover Problem with the Consecutive Ones

Property

Biing-Feng Wang and Chih-Hsuan Li

Department of Computer Science, National Tsing Hua University
Hsinchu, Taiwan 30013, Republic of China

{bfwang,chsuan}@cs.nthu.edu.tw

Abstract. Let S be a set and let Cb (blue collection) and Cr (red col-
lection) be two collections of subsets of S. The MDH problem is to find
a subset S′ ⊆ S such that S′ ∩B �= ∅ for all B ∈ Cb and |S′ ∩R| ≤ k for
all R ∈ Cr, where k is a given non-negative integer. The RBSC problem
is to find a subset S′ ⊆ S with S′∩B �= ∅ for all B ∈ Cb which minimizes
|{R|R ∈ Cr, S

′ ∪ R �= ∅}|. In this paper, improved algorithms are pro-
posed for the MDH problem with k = 1 and all sets in Cb having size two
and the RBSC problem with Cb ∪ Cr having the consecutive ones prop-
erty. For the first problem, we give an optimal O(|S|+|Cb|+

∑
R∈Cr

|R|)-
time algorithm, improving the previousO(|S|+|Cb|+

∑
R∈Cr

|R|2) bound
by Dom et al.Our improvement is obtained by presenting a new represen-
tation of a dense directed graph, which may be of independent interest.
For the second problem, we give an O(|Cb|+ |Cr| lg |S|+ |S| lg |S|)-time
algorithm, improving the previous O(|Cb||S| + |Cr||S| + |S|2) bound by
Chang et al.

Keywords: set cover, minimum degree hypergraphs, 2-satisfiability,
algorithms.

1 Introduction

Given a set S and a collection C of subsets of S, the well-known set cover prob-
lem is to find a minimum-size sub-collection C′ ⊆ C that covers S [3,6]. Due
to practical considerations, numerous generalizations of the set cover problem
have been defined and studied [3,4,7,8,12,14]. The minimum degree hypergraph
(MDH) problem and the red-blue set cover (RBSC) problem are two examples.
Let S be a set and let Cb (blue collection) and Cr (red collection) be two col-
lections of subsets of S. The MDH problem is to find a subset S′ ⊆ S such
that S′ ∩ B 	= ∅ for all B ∈ Cb and |S′ ∩ R| ≤ k for all R ∈ Cr, where k is a
given non-negative integer. The RBSC problem is to find a subset S′ ⊆ S with
S′ ∩ B 	= ∅ for all B ∈ Cb which minimizes |R|R ∈ Cr, S

′ ∩R 	= ∅|. Feder et al.
[8] introduced the MDH problem and gave a polynomial-time approximation al-
gorithm that has an approximation ratio of O(lg |S|). Motivated by applications

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 169–180, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

170 B.-F. Wang and C.-H. Li

in cellular networks, Kuhn et al. [9] studied a special case of the MDH problem,
in which Cr = Cb, and showed that it has similar approximation properties as
the classical set cover problem. The RBSC problem was introduced by Carr et
al. [4]. They provided practical applications such as data mining and several
positive and negative results concerning the polynomial-time approximability of
the RBSC problem.

Since the set cover problem and the above two generalizations are NP-complete
[7], one may only hope to find efficient algorithms for special cases of practical
interest. A famous case is the set cover problem with the consecutive ones prop-
erty(C1P), which means that the elements of S can be arranged in a linear order
such that each set in C contains consecutive elements of S. This special case
admits a polynomial-time solution, a fact which is utilized in many practical
applications [11,12,14,16]. Recently, Dom et al. [7] studied the MDH and the
RSBC problems with the C1P. Their study is motivated by geometric applica-
tions which may have the C1P or be “close” to the C1P [9,11,12]. They proved
several NP-completeness results in case that at most one of Cb and Cr has the
C1P. And, they gave efficient algorithms for the MDH and the RBSC problems
with Cb ∪ Cr having the C1P. In addition, they gave an efficient algorithm for
the MDH problem with k = 1 and all sets in Cb having size two.

In this paper, improved algorithms are proposed for the MDH problem with
k = 1 and all sets in Cb having size two and the RBSC problem with Cb ∪ Cr

having the C1P. For the first problem, Dom et al.’s algorithm requires O(|S| +
|Cb| +

∑
R∈Cr

|R|2) time. Their algorithm reduces the problem to an instance
of the 2-SAT problem and then solves the instance by using Aspvall et al.’s 2-
SAT algorithm [1]. We present an optimal algorithm whose running time and
space are linear to the input size |S|+ |Cb|+

∑
R∈Cr

|R|. Our algorithm uses the
same schema as Dom’s algorithm. Aspvall et al.’s 2-SAT algorithm relies upon
identifying the strongly connected components of a directed graph corresponding
to the given Boolean formula. Our improvement is obtained by presenting a new
representation of a directed graph. The new representation, called cluster-edge
representation, may be of independent interest. It provides a more efficient way
to perform depth-first search (and breadth-first search) on a directed graph with
sub-graphs that are almost completely-connected. For the RBSC problem with
Cb ∪ Cr having the C1P, Dom et al.’s algorithm requires O(|Cb||Cr||S|2) time.
Later, Chang et al. [5] improved this result to O(|Cb||S|+ |Cr||S|+ |S|2). In this
paper, we present an improved O(|Cb|+ |Cr| lg |S|+ |S| lg |S|)-time algorithm.

2 The MDH Problem with k = 1 and Subset Size Two

Assume that k = 1 and all sets in Cb having size two. Section 2.1 reviews Dom et
al.’s algorithm for the MDH problem. Section 2.2 presents a new representation
of a directed graph and shows how to perform depth-first search efficiently on a
graph in the new representation. By using the new representation, Section 2.3
reduces the running time of Dom et al.’s algorithm to O(|Cb|+ |S|+

∑
R∈Cr

|R|).

On the MDH Problem with Subset Size Two and the RBSC Problem 171

2.1 Dom et al.’s Algorithm

Let S = {s1, s2, . . . , sn}. Dom et al.’s algorithm reduces the problem to an
instance F of the 2-SAT problem as follows.

(1) F contains a variable xi for each element si ∈ S;
(2) F contains a clause (xi ∨ xj) for each {si, sj} ∈ Cb, indicating that at least

one of si and sj must be selected; and
(3) F contains d(d− 1)/2 clauses (¬xia ∨¬xib) for each {si1 , si2 , . . . , sid} ∈ Cr,

where 1 ≤ a < b ≤ d, indicating that at most one element in {si1 , si2 , . . . , sid}
can be selected.

Clearly, there is a one-to-one correspondence between the satisfying assignments
of F and the feasible solutions to the MDH problem. Using Aspvall et al.’s
linear-time 2-SAT algorithm [1], a satisfying assignment of F is found as follows.

Step 1. Construct a directed graph GF as follows: for each variable xi, add two
vertices xi and xi ; and for each clause (u ∨ v) in F , add two edges (u, v)
and (v, u). We call xi and xi complements of each other. (For example, if
{s1, s2, s5, s9} ∈ Cr, then F contains (¬x1 ∨¬x2), (¬x1 ∨¬x5), (¬x1 ∨¬x9),
(¬x2 ∨ ¬x5), (¬x2 ∨ ¬x9), and (¬x5 ∨ ¬x9). Figure 1 depicts the edges
corresponding to these clauses.)

Step 2. Find strongly connected components of GF . Then, arrange the strongly
connected components in reverse topological order; that is, in an order such
that if a component C1 is before a component C2, then no edge leads from
a vertex in C1 to a vertex in C2. Every strong component C has a dual
component C consisting of the complements of the vertices in C.

Step 3. Process the strongly connected components C of GF in reverse topo-
logical order as follows: If C is marked, do nothing. Otherwise if C equals
C, then stop: F is unsatisfiable. Otherwise, mark C TRUE and FALSE.

After Step 3, the set of vertices in all TRUE components corresponds to a sat-
isfying assignment of F . Let V (GF) and E(GF) be the vertex set and edge
set of GF . Topological sorting and finding strongly components can be done
in O(|V (GF)| + |E(GF)|) time [6,15]. Given a component C, its dual compo-
nent can be determined in O(1) time by simply finding the component contain-
ing the complement of any vertex in C. Thus, Step 3 takes O(|S|) time. The
construction of GF in Step 1 is the bottleneck. The size of V (GF) is O(|S|).
The number of clauses in GF is O(|Cb| +

∑
R∈Cr

|R|2) and thus the size of

E(GF) is O(|Cb|+
∑

R∈Cr
|R|2). Consequently, Dom et al.’s algorithm requires

O(|S|+ |Cb|+
∑

R∈Cr
|R|2) time.

2.2 Cluster-Edge Representation and Depth-First Search

Consider a directed graph G = (V,E). Let X and Y be two subsets of V .
Let δ be the set of vertex pairs (x, y) ∈ X × Y such that (x, y) /∈ E. We
represent the edges from the vertices in X to the vertices in Y by a cluster-edge

172 B.-F. Wang and C.-H. Li

Fig. 1. Edges induced by a set {s1, s2, s5, s9} ∈ Cr

(X,Y, δ). For example, the edges in Figure 1 are represented by ({x1, x2, x5, x9},
{x1, x2, x5, x9}, {(x1, x1), (x2, x2), (x5, x5), (x9, x9)}). A cluster-edge (X,Y, δ) is
an almost fully-connected cluster-edge if |δ| = O(|X |+|Y |). For ease of discussion,
we use a cluster-edge only when it is almost fully-connected. A cluster-edge
representation of a directed graph G is a pair (V,Ec), where V is the vertex set
and Ec is a set of almost fully-connected cluster-edges such that the edge set of
G equals the set of edges represented by all the cluster-edges in Ec. The size of
a cluster-edge representation (V,Ec) is O(|V |+

∑
(X,Y,δ)∈Ec

(|X |+ |Y |+ |δ|)) =
O(|V |+

∑
(X,Y,δ)∈Ec

(|X |+ |Y |)).
A cluster-edge representation provides a more space-efficient way to represent

dense graphs. Depth-first search is a technique which has been widely used for
finding solutions to problems in combinatorial theory and artificial intelligence.
Let G be a directed graph given in a cluster-edge representation (V,Ec). In the
following, we show that depth-first search on G can be done in time linear in the
size of (V,Ec).

First, we describe the data structures used to store the graph G. Let Ec =
{(X1, Y1, δ1), (X2, Y2, δ2), . . . , (Xt, Yt, δt)}. In a depth-first search, we color the
vertices to indicate their states. Each vertex is initially white, is grey when it is
discovered in the search, and is black when it is finished, that is, when all vertices
to which it has edges connected have been discovered completely. Consider a
fixed cluster-edge (Xi, Yi, δi). If the color of a vertex y ∈ Yi is checked by a
vertex along an edge represented by (Xi, Yi, δi), we say that y is checked via the
cluster-edge (Xi, Yi, δi). Our intent is to make each y ∈ Yi be checked via the
cluster-edge (Xi, Yi, δi) exactly once.

The data structures we use for (Xi, Yi, δi) are described as follows. We label
the vertices in Yi by 1, 2, . . . , |Yi| and denote the vertex with label l by yil . For
convenience, we add two pseudo vertices yi0 and yi|Yi|+1 into Yi. We maintain
a doubly linked list Li, which initially stores all the vertices of Yi in order of
increasing labels, and we maintain an array Checkedi, where Checkedi[l] = 0
for each yil ∈ Yi at the beginning. In the course of depth-first search, once a
vertex yil ∈ Yi is checked via the cluster-edge (Xi, Yi, δi), we set Checkedi[l] = 1
and delete yil from Li. For each x ∈ Xi, let δi(x) be the set of vertices y with

On the MDH Problem with Subset Size Two and the RBSC Problem 173

(x, y) ∈ δi. Note that yi0, y
i
|Yi|+1 ∈ δi(x) for each x ∈ Xi. Define a subroutine as

follows.

EXTRACTUNCHECKED(x, i): remove and return a vertex y /∈ δi(x) in Li for a
given vertex x ∈ Xi. If all vertices in Li are contained in δi(x), return ∅.

To implement EXTRACTUNCHECKED efficiently, more data structures are needed
for the cluster-edge (Xi, Yi, δi). For each vertex x ∈ Xi, we maintain a double
linked list Di(x) and a pointer pi(x). Initially, Di(x) stores all the vertices of
δi(x) in order of increasing labels and pi(x) points to the first node of Di(x),
which stores yi0. We use pi(x).prev and pi(x).next to denote the predecessor
and successor of the node pointed by pi(x). Let pi(x).label be the label of the
vertex stored in the node pointed by pi(x). In the course of depth-first search,
the following invariant is maintained.

Invariant (I). All vertices preceding yil in the current list Li belong to δi(x),
where l = pi(x).label.

We proceed to discuss how to find a vertex y /∈ δi(x) in the current list Li for
a given vertex x ∈ Xi. Let l1 = pi(x).label and l2 = pi(x).next.label. First,
consider the case that Checkedi[l1] = Checkedi[l2] = 0, that is, both yil1 and

yil2 occur in the current list Li. According to Invariant (I), we do not need to

examine all vertices preceding yil1 in Li. Let l be the label of the vertex currently

next to yil1 in Li. Since Li and Di(x) both store vertices in order of increasing

labels, we can check whether yil ∈ δi(x) by simply comparing l with l2. If l 	= l2,
yil is a vertex in Li that is not contained in δi(x). Otherwise, in the current
list Li, there are no vertices between yil1 and yil2 , and thus we move pi(x) to

pi(x).next and continue to examine the vertices succeeding yil2 . According to
(I), all vertices in Li are contained in δi(x) once pi(x).label = |Yi|+ 1.

In the above discussion, we assume that Checkedi[l1] = Checkedi[l2] = 0.
In case Checkedi[l1] = 1, we do the following: repeatedly move pi(x) one step
to the left and then delete from Di(x) the node pointed by pi(x).next, until
Checkedi[l1] = 0. In case Checkedi[l2] = 1, we do the following: repeatedly
delete from Di](x) the node pointed by pi(x).next, until Checkedi[l2] = 0. An
implementation of EXTRACTUNCHECKED is as follows.

Procedure EXTRACTUNCHECKED(x, i)
begin
1. yil ← FINDUNCHECKED(x, i) /* find a vertex y /∈ δi(x) in Li

2. if yil 	= ∅ then delete yil from Li and set Checkedi[l] = 1
3. return (yil)
end

Procedure FINDUNCHECKED(x, i)
begin
1. while pi(x).label 	= |Yi|+ 1 do
2. begin

174 B.-F. Wang and C.-H. Li

3. while Checkedi[pi(x).label] = 1 do
4. move pi(x) to pi(x).prev and

then delete the node pi(x).next from Di(x)
5. while Checkedi[pi(x).next.label] = 1 do
6. delete the node pi(x).next from Di(x)
7. l1 ← pi(x).label; l2 ← pi(x).next.label
8. l ← label of the vertex currently next to yil1 in Li

9. if l 	= l2 then return (yil) /* a vertex y /∈ δi(x) in Li is found
10. pi(x) ← pi(x).next /* l = l2, continue to examine vertices succeeding yil2
11. end
12. return (∅) /* all vertices in Li are contained in δi(x)
end

Similar to the adjacent-list representation, we maintain an array Adj of |V | lists,
one for each vertex in V . Consider a fixed x ∈ V . For each (Xi, Yi, δi) with
x ∈ Xi, there is a node of Adj[x] that stores i, indicating that x ∈ Xi and x is
connected to each y ∈ Yi \ δi(x).

The following procedure performs depth-first search on the graph G.

Procedure DFS(G)
begin
1. for each x ∈ V do color[x] ← WHITE

2. for each x ∈ V do
3. if color[x] = WHITE then DFS-VISIT(x)
end

Procedure DFS-VISIT(x)
begin
1. color[x] ← GREY

2. for each cluster-edge (Xi, Yi, δi) in Adj(x) do
3. repeat
4. y ← EXTRACTUNCHECKED(x, i)
5. if y 	= ∅ then
6. if color(y) = WHITE then DFS-VISIT(y)
7. until y = ∅
8. color[x] ← BLACK

end

The time complexity of DFS is analyzed as follows. Consider the procedure
FINDUNCHECKED. Let c(x, i) be the number of calls to FINDUNCHECKED(x, i)
for a fixed vertex x ∈ Xi. Observe that Line 10 of FINDUNCHECKED moves
pi(x) one step closer to the tail of Di(x) at each time. In addition, each it-
eration of the two while-loops in Lines 3 and 5 removes the node pointed by
pi(x).next from Di(x). By combining these two observations, it is easy to con-
clude that FINDUNCHECKED spends a total of O(|δi(x)| + c(x, i)) time on the
vertex x. In case FINDUNCHECKED(x, i) returns ∅, the vertex x stops calling
EXTRACTUNCHECKED(x, i). Thus, c(x, i)−1 equals the number of vertices in |Yi|

On the MDH Problem with Subset Size Two and the RBSC Problem 175

that are checked by x via the cluster-edge (Xi, Yi, δi). And therefore, the overall
running time of EXTRACTUNCHECKED spent on a fixed cluster-edge (Xi, Yi, δi) is
O(
∑

x∈Xi
(|δi(x)|+ c(x, i)) = O(|Xi|+ |Yi|+ |δi|) = O(|Xi|+ |Yi|). Consequently,

the time complexity of DFS is O(|V | +
∑

(X,Y,δ)∈Ec
(|X | + |Y |)). We have the

following.

Theorem 1. Depth-first search on a graph in a cluster-edge representation
(V,Ec) can be done in time linear to the size of (V,Ec).

Note that Theorem 1 holds even when not all cluster-edges in Ec are almost
fully-connected, since our analysis of DFS does not rely on the almost fully-
connected assumption. When DFS-VISIT(x) discovers a WHITE vertex y (in Line
6), we call x the predecessor of y. In many applications, depth-first search needs
to output for each vertex x its predecessor and two timestamps: the first records
when x is grayed, and the second records when the search blackens x. It is easy
to modify DFS-VISIT to output the predecessor and timestamps of each vertex.

The strongly connected components of a directed graph G can be computed
in reverse topological order by using two depth-first searches [6,15]: the first on
G and the second on the transpose, GT , of G. Let (V,Ec) be a cluster-edge
representation of G. Then, (V,ET

c) is a cluster-edge representation of GT , where
ET

c = {(Y,X, δT)|(X,Y, δ) ∈ Ec, δ
T = {(y, x)|(x, y) ∈ δ}}. Consequently, we

obtain the following immediately from Theorem 1.

Corollary 1. The strongly connected components of a directed graph in a
cluster-edge representation can be output in reverse topological order in linear
time.

2.3 A Linear Time Algorithm for the MDH Problem with k = 1
and Subset Size Two

Let F and GF be defined as in Section 2.1. A set Ec of almost fully-connected
cluster-edges that represents the edges of GF is constructed as follows: for each
{si, sj} ∈ Cb, we add two cluster-edges ({xi}, {xj}, ∅) and ({xj}, {xi}, ∅) to rep-
resent the edges induced by the clause (xi∨xj); and for each {si1 , si2 , . . . , sid} ∈
Cr, we add a cluster-edge ({xia |1 ≤ a ≤ d}, {xib |1 ≤ b ≤ d}, {(xia , xia)|1 ≤ a ≤
d}) to represent the edges induced by the d(d−1)/2 clauses (¬xia ∨¬xib), where
1 ≤ a < b ≤ d. The size of (V,Ec) is O(|S|+ |Cb|+

∑
R∈Cr

|R|).
Consider the algorithm in Section 2.1. By using (V,Ec) to represent the graph

GF , Steps 1 and 2 require O(|S|+ |Cb|+
∑

R∈Cr
|R|) time. Step 3 takes O(|S|)

time. Therefore, we have the following.

Theorem 2. The MDH problem with k = 1 and all sets in Cb having size two
can be solved optimally in linear time and space.

We remark that the set Ec we constructed for GF satisfies the following prop-
erty: for each cluster-edge (X,Y, δ) ∈ Ec, |δ(x)| = 1 for all x ∈ X . Given
a cluster-edge set Ec with this wonderful property, it is easy to implement

176 B.-F. Wang and C.-H. Li

FINDUNCHECKED(x, i) in O(1) time by simply examining the first two vertices
in Li. Our implementation in Section 2.2 can be applied to any cluster-edge
representation, which may be of independent interest.

3 The RBSC Problem with the C1P

A collection C of S is said to have the consecutive ones property (C1P) if there
exists a linear order ≺ on S such that for every set A ∈ C and si ≺ sk ≺ sj ,
it holds that if si, sj ∈ A, then sk ∈ A. It is well-known that if a collection C
has the C1P, the above linear order ≺ can be found in time linear to O(|S| +∑

A∈C |A|)[2].
Assume that Cb∪Cr has the C1P. This section presents an improved algorithm

for the RBSC problem. Without loss of generality, assume that the elements of
S are already sorted in a linear order that makes Cb ∪ Cr possess the C1P. In
addition, assume that each set {si, si+1, ...sj} ∈ Cb ∪ Cr is given by an interval
[i, j]. Section 3.1 reviews Chang et al.’s algorithm in [5]. Section 3.2 presents an
improved algorithm.

3.1 Chang et al.’s Algorithm

Chang et al.’s algorithm solves the problem by a reduction to the single-source
shortest path problem. An interval [i, j] ∈ Cb ∪ Cr is hit by an element sk if
i ≤ k ≤ j. A subset X of S is a feasible solution if each interval in Cb is hit by at
least one element in X . Define the cost of a subset X of S, denoted by W (X),
to be the number of intervals in Cr that are hit by the elements in X . Then, our
problem is to find a feasible solution X that minimizes the cost W (X).

For ease of description, we assume that there are two dummy elements s0
and sn+1 in S. We say that an interval [i, j] ∈ Cb is fully contained between two
elements sp and sq if 0 ≤ p < i ≤ j < q ≤ n + 1. For any two indices p and q,
0 ≤ p < q ≤ n + 1, the ordered pair (p, q) is called a feasible pair if no interval
in Cb is fully contained between sp and sq.

Define a directed acyclic graph H as follows:

(1) the vertex set is V = {v0, v1, . . . , vn+1};
(2) the edge set is E = {(vp, vq)|0 ≤ p < q ≤ n+1, (p, q) is a feasible pair}; and
(3) each edge (vp, vq) ∈ E has a length w(p, q) = |[i, j]|[i, j] ∈ Cr, p < i ≤ q ≤ j|,

which is the number of intervals in Cr hit by sq but not by sp.

According to the definition ofH , it is easy to see that a subset (si1 , si2 , si3 , . . . , sik)
of S is a feasible solution of cost c if and only if P = (v0, vi1 , vi2 , vi3 , . . . , vik , vn+1)
is a path in H of length c, where 1 ≤ i1 < i2 < . . . < ik ≤ n. Therefore, a solution
to the RBSC problem can be found by computing the shortest path from v0 to
vn+1 in H .

Chang et al. had an efficient algorithm that constructs H in O(|Cb||S| +
|Cr||S|+ |S|2) time. A shortest path from v0 to vn+1 can be easily computed in
O(|S|2) time by using Dijkstra’s shortest-path algorithm [6]. Therefore, we have
the following.

On the MDH Problem with Subset Size Two and the RBSC Problem 177

Theorem 3. [5] The RBSC problem with Cb∪Cr having the C1P can be solved
in O(|Cb||S|+ |Cr||S|+ |S|2) time using O(|S|2) space.

3.2 An Improved Algorithm

Essentially, our algorithm is a modified version of Chang et al.’s. It also solves the
problem by finding a shortest path from v0 to vn+1 in H . If the construction of
H is necessary, since O(|V |+ |E|) = O(|S|2), Chang et al.’s algorithm is optimal
in both space and time when |Cb| and |Cr| are not larger than |S|. Our idea is
to do the finding of a shortest path from v0 to vn+1 without the construction of
H . For each q, 1 ≤ q ≤ n+1, let l(q) be the smallest nonnegative integer p such
that (p, q) is a feasible pair, and let d(q) be the length of a shortest path from
v0 to vq. Then, since H is a directed acyclic graph, a recursive formula of d(q)
can be given as follows: When q = 0, d(q) = 0; and, if q ≥ 1, we have

(R1) d(q) = minl(q)≤p≤q−1{d(p) + w(p, q)}.

According to (R1), we need an efficient way to compute minl(q)≤p≤q−1{d(p) +
w(p, q)} for each q, 1 ≤ q ≤ n+ 1.

Lemma 1. We can compute l(q) in O(|Cb|) time for each q, 1 ≤ q ≤ n+ 1.

Proof. An interval [i, j] ∈ Cb is fully contained between two elements sp and sq
if and only if i > p and j < q. Thus, each interval [i, j] ∈ Cb sets a constraint
l(q) ≥ i for all q ≥ j + 1. And therefore, we can compute each l(q) as follows.
An auxiliary array A is used. Initially, we set A[q] = 0 for each q, 1 ≤ q ≤ n+1.
First, for each interval [i, j] ∈ Cb, if A[j + 1] < i, we set A[j + 1] = i, indicating
that l(q) ≥ i for all q ≥ j + 1. Then, we compute l[1], l[2], . . . , l[n + 1] as the
prefix maximums of the numbers in A, where l[q] = max{A[1], A[2], . . . , A[q]}.
Clearly, the above computation takes O(|Cb|) time. Thus, the lemma holds. ��

LetΔ(p, q) = {R| R ∈ Cr, R is hit by sq but not by sp}. By definition, |Δ(p, q)|
= w(p, q). Let Δ+(p, q) = Δ(p, q)\Δ(p, q− 1), which is the set of intervals in Cr

that are contained in Δ(p, q) but not in Δ(p, q− 1), and let Δ−(p, q) = Δ(p, q−
1)\Δ(p, q), which is the set of intervals in Cr that are contained in Δ(p, q−1) but
not in Δ(p, q). By definition, we haveΔ(p, q) = (Δ(p, q−1)∪Δ+(p, q))\Δ−(p, q).
Moreover, since Δ+(p, q) is disjoint with Δ(p, q − 1) and Δ−(p, q) is a subset of
Δ(p, q − 1), we have |Δ(p, q)| = |Δ(p, q − 1)| + |Δ+(p, q)| − |Δ−(p, q)|. Equiv-
alently, we have w(p, q) = w(p, q − 1) + |Δ+(p, q)| − |Δ−(p, q)|, which shows
that w(p, q) can be obtained by using the values of w(p, q − 1), |Δ+(p, q)|, and
|Δ−(p, q)|.

An interval in Cr is contained in Δ+(p, q) if and only if it is hit by sq but not
by sp and sq−1. Thus, it is easy to obtain the following.

Lemma 2. An interval [i, j] ∈ Cr is contained in Δ+(p, q) if and only if p < i
and i = q.

Lemma 3. An interval [i, j] ∈ Cr is contained in Δ−(p, q) if and only if p < i
and j = q − 1.

178 B.-F. Wang and C.-H. Li

Proof. Consider an interval [i, j] ∈ Cr. It is contained in Δ(p, q − 1) if and only
if p < i and j ≥ q − 1. Moreover, it is hit by sq−1 but not by sq if and only
if j = q − 1. By combining these two statements, we conclude that an interval
[i, j] ∈ Cr is contained in Δ−(p, q) if and only if p < i and j = q − 1. Thus, the
lemma holds. ��

For example, if [4, 7] ∈ Cr, then [4, 7] is contained in Δ+(p, 4) for any p < 4 by
Lemma 2, and is contained in Δ−(p, 8) for any p < 4 by Lemma 3.

Let x(p, q) = d(p) + w(p, q), where 0 ≤ p < q ≤ n + 1. For each q, 0 ≤ q ≤
n + 1, define Xq to be the sequence (x(0, q), x(1, q), ..., x(q − 1, q)). According
to recurrence (R1), we have d(q) = minl(q)≤p≤q−1{Xq[p]}, where Xq[p] denotes
x(p, q). For each q, 0 ≤ q ≤ n+ 1, let B(q) be the set of intervals in Cr starting
at q and E(q) be the set of intervals in Cr ending at q. Clearly, all sets E(q)
and B(q) can be computed in O(|Cr |) time. The following lemma shows how to
obtain Xq from Xq−1 by using E(q − 1) and B(q).

Lemma 4. For each q, 1 ≤ q ≤ n+ 1, we have

(1) x(q − 1, q) = d(q − 1) + |B(q)|, and
(2) (x(0, q), x(1, q), . . . , x(q − 2, q)) can be obtained from Xq−1 = (x(0, q −

1), x(1, q − 1), . . . , x(q − 2, q − 1)) as follows: add |B(q)| to x(p, q − 1) for
each p ≤ q − 2; and for each interval [i, q − 1] ∈ E(q − 1), decrease all
x(p, q − 1) with p < i by one.

Due to the page limit, the proof of Lemma 4 is omitted. Our algorithm for the
RBSC problem with the C1P is as follows.

Algorithm 1. THE-RBSC-PROBLEM

begin
1. compute l(q) for 1 ≤ q ≤ n+ 1 and

compute |B(q)| and E(q) for 0 ≤ q ≤ n+ 1
2. X0 ← an empty sequence
3. for q ← 1 to n+ 1 do
4. begin
5. update Xq−1 into Xq

6. d(q) ← minl(q)≤p≤q−1{Xq[p]}
7. end
8. return (d(n+ 1))
end

According to Lemma 4, the update of Xq−1 into Xq in Line 5 of Algorithm 1 is
done by performing the following procedure.

Procedure UPDATE(X, q)
Input: X = Xq−1

Output: Xq

begin
1. if |B(q)| > 0 then

On the MDH Problem with Subset Size Two and the RBSC Problem 179

2. add |B(q)| to X [p] for all p ≤ q − 2
3. for each interval [i, q − 1] ∈ E(q − 1) do
4. subtract 1 from X [p] for all p < i
5. X [q] ← d(q − 1) + |B(q)| /* append d(q − 1) + |B(q)| to the tail of X
6. return (X)
end

To implement the above procedure and the computation of minl(q)≤p≤q−1{Xq[p]}
in Line 6 of Algorithm 1 efficiently, we need an efficient data structure that
initially represents an empty sequenceX and supports a sequence of the following
operations:

APPEND(X, y): append a number y to the tail of X ;
RANGEMIN(X, a, b): report the minimum of X [a], X [a+ 1], . . . , X [b], where

0 ≤ a ≤ b ≤ |X | − 1 and X [i] denotes the (i+ 1)th element in X ; and
PREFIXADD(X, j, y): add a value y to each of X [0], X [1], . . . , X [j].

With such a data structure, Lines 2, 4, and 5 of UPDATE are implemented, re-
spectively, by performing PREFIXADD(X, q−2, |B(q)|), PREFIXADD(X, i−1,−1),
and APPEND(X, d(q − 1) + |B(q)|). In addition, the computation of d(q) =
minl(q)≤p≤q−1{Xq[p]} in Line 6 of Algorithm 1 is implemented by performing
RANGEMIN(X, l(q), q − 1). Using a segment tree [13], it is easy to support each
APPEND, RANGEMIN, and PREFIXADD operation in O(lg n) time.

The time complexity of Algorithm 1 is analyzed as follows. Lines 1 and 2 take
O(|S| + |Cr| + |Cb|) time. Line 5 is done by a call to UPDATE, which needs at
most |E(q − 1)|+ 1 PREFIXADD and one APPEND operations. Line 6 is done by
performing a RANGEMIN operation. Therefore, each iteration of the for-loop in
Lines 3-7 takes O((|E(q − 1)|+ 3) lgn) time. Consequently, time complexity of
Algorithm 1 is O(|S|+ |Cr|+ |Cb|+

∑
(|E(q−1)|+3) lgn) = O(|Cb|+ |Cr| lg |S|+

|S| lg |S|). We have the following.

Theorem 4. The RBSC problem with Cb ∪ Cr having the C1P can be solved
in O(|Cb|+ |Cr| lg |S|+ |S| lg |S|) time using O(|S|) space.

4 Concluding Remarks

For the MDH problem with Cr ∪Cb having the C1P, Dom et al. had an O(|S|3)-
time algorithm. An improved linear time algorithm is given in [10]. One direction
for further study on the set cover problem and its generalizations is to investigate
more special cases that are of practical interest and can be solved in polynomial
time. Another direction is to investigate problems that can be solved more effi-
ciently (in space or time) by using the cluster-edge representation.

References

1. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth
of certain quantified boolean formulas. Information Processing Letters 8(3), 121–
123 (1979)

180 B.-F. Wang and C.-H. Li

2. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms. Journal of Computer and
System Sciences 13(3), 335–379 (1976)

3. Caprara, A., Toth, P., Fischetti, M.: Algorithms for the set covering problem.
Annals of Operations Research 98, 353–371 (2000)

4. Carr, R.D., Doddi, S., Konjevod, G., Marathe, M.: On the red-blue set cover prob-
lem. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 345–353 (2000)

5. Chang, M.S., Chung, H.H., Lin, C.C.: An improved algorithm for the redvblue
hitting set problem with the consecutive ones property. Information Processing
Letters 110(20), 845–848 (2010)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. McGraw-Will (2001)

7. Dom, M., Guo, J., Niedermeier, R., Wernicke, S.: Red-blue covering problems and
the consecutive ones property. Journal of Discrete Algorithms 6(3), 393–407 (2008)

8. Feder, T., Motwani, R., Zhu, A.: k-connected spanning subgraphs of low degree.
Tech. Rep. TR06-041. Electronic Colloquium on Computational Complexity (2006)

9. Kuhn, F., von Rickenbach, P., Wattenhofer, R., Welzl, E., Zollinger, A.: Interference
in Cellular Networks: The Minimum Membership Set Cover Problem. In: Wang, L.
(ed.) COCOON 2005. LNCS, vol. 3595, pp. 188–198. Springer, Heidelberg (2005)

10. Li, C.H., Ye, J.H., Wang, B.F.: A linear-time algorithm for the minimum de-
gree hypergraph problem with the consecutive ones property (2012) (unpublished
manuscript)

11. Mecke, S., Schöbel, A., Wagner, D.: Station location - complexity and approxima-
tion. In: 5th Workshop on Algorithmic Methods and Models for Optimization of
Railways (2006)

12. Mecke, S., Wagner, D.: Solving Geometric Covering Problems by Data Reduction.
In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 760–771. Springer,
Heidelberg (2004)

13. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction.
Springer-Verlag New York, Inc. (1985)

14. Ruf, N., Schobel, A.: Set covering with almost consecutive ones property. Discrete
Optimization 1(2), 215–228 (2004)

15. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting 1(2), 146–160 (1972)

16. Veinott, A.F., Wagner, H.M.: Optimal capacity scheduling. Operations Re-
search 10(4), 518–532 (1962)

Rainbow Colouring of Split and Threshold

Graphs

L. Sunil Chandran and Deepak Rajendraprasad

Department of Computer Science and Automation,
Indian Institute of Science, Bangalore -560012, India

{sunil,deepakr}@csa.iisc.ernet.in

Abstract. A rainbow colouring of a connected graph is a colouring of
the edges of the graph, such that every pair of vertices is connected by
at least one path in which no two edges are coloured the same. Such a
colouring using minimum possible number of colours is called an opti-
mal rainbow colouring, and the minimum number of colours required is
called the rainbow connection number of the graph. A Chordal Graph is
a graph in which every cycle of length more than 3 has a chord. A Split
Graph is a chordal graph whose vertices can be partitioned into a clique
and an independent set. A threshold graph is a split graph in which the
neighbourhoods of the independent set vertices form a linear order under
set inclusion. In this article, we show the following:

1. The problem of deciding whether a graph can be rainbow coloured
using 3 colours remains NP-complete even when restricted to the
class of split graphs. However, any split graph can be rainbow coloured
in linear time using at most one more colour than the optimum.

2. For every integer k ≥ 3, the problem of deciding whether a graph
can be rainbow coloured using k colours remains NP-complete even
when restricted to the class of chordal graphs.

3. For every positive integer k, threshold graphs with rainbow connec-
tion number k can be characterised based on their degree sequence
alone. Further, we can optimally rainbow colour a threshold graph
in linear time.

Keywords: rainbow connectivity, rainbow colouring, threshold graphs,
split graphs, chordal graphs, degree sequence, approximation,
complexity.

1 Introduction

Connectivity is one of the basic concepts of graph theory. It plays a fundamental
role both in theoretical studies and in applications. When a network (trans-
port, communication, social, etc) is modelled as a graph, connectivity gives a
way of quantifying its robustness. This may be the reason why connectivity is
possibly the problem that has been studied on the largest variety of computa-
tional models [26]. Due to the diverse application requirements and manifold

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 181–192, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

182 L.S. Chandran and D. Rajendraprasad

theoretical interests, many variants of the connectivity problem have been stud-
ied. One typical case is when there are different possible types of connections
(edges) between nodes and additional restrictions on connectivity based on the
types of edges that can used in a path. In this case we can model the network
as an edge-coloured graph. One natural restriction to impose on connectivity
is that any two nodes should be connected by a path in which no edge of the
same type (colour) occurs more than once. This is precisely the property called
rainbow connectivity. Such a restriction for the paths can arise, for instance, in
routing packets in a cellular network with transceivers that can operate in mul-
tiple frequency bands or in routing secret messages between security agencies
using different handshaking passwords in different links [20] [5]. The problem
was formalised in graph theoretic terms by Chartrand et al. [9] in 2008.

An edge colouring of a graph is a function from its edge set to the set of natural
numbers. A path in an edge coloured graph with no two edges sharing the same
colour is called a rainbow path. An edge coloured graph is said to be rainbow
connected if every pair of vertices is connected by at least one rainbow path. Such
a colouring is called a rainbow colouring of the graph. A rainbow colouring using
minimum possible number of colours is called optimal. The minimum number
of colours required to rainbow colour a connected graph is called its rainbow
connection number, denoted by rc(G). For example, the rainbow connection
number of a complete graph is 1, that of a path is its length, that of an even
cycle is its diameter, that of an odd cycle of length at least 5 is one more than
its diameter, and that of a tree is its number of edges. Note that disconnected
graphs cannot be rainbow coloured and hence the rainbow connection number
for them is left undefined. Any connected graph can be rainbow coloured by
giving distinct colours to the edges of a spanning tree of the graph. Hence the
rainbow connection number of any connected graph is less than its number of
vertices.

While formalising the concept of rainbow colouring, Chartrand et al. also
determined the precise values of rainbow connection number for some special
graphs [9]. Subsequently, there have been various investigations towards finding
good upper bounds for rainbow connection number in terms of other graph
parameters [4] [23] [17] [6] [2] and for many special graph classes [21] [6] [2] [3].
Behaviour of rainbow connection number in random graphs is also well studied
[4] [13] [25] [11]. A basic introduction to the topic can be found in Chapter 11 of
the book Chromatic Graph Theory by Chartrand and Zhang [8] and a survey of
most of the recent results in the area can be found in the article by Li and Sun
[20] and also in their forthcoming book Rainbow Connection of Graphs [19].

On the computational side, the problem has received relatively less atten-
tion. It was shown by Chakraborty et al. that computing the rainbow connec-
tion number of an arbitrary graph is NP-Hard [5]. In particular, it was shown
that the problem of deciding whether a graph can be rainbow coloured using
2 colours is NP-complete. Later, Ananth et al. [1] complemented the result
of Chakraborty et al., and now we know that for every integer k ≥ 2, it is
NP-complete to decide whether a given graph can be rainbow coloured using k

Rainbow Colouring of Split and Threshold Graphs 183

colours. Chakraborty et al., in the same article, also showed that deciding whether
a given edge coloured graph is rainbow connected is NP-complete. It was then
shown by Li and Li that this problem remains NP-complete even when restricted
to the class of bipartite graphs [18].

On the positive side, Basavaraju et al. have demonstrated an O(nm)-time
(r + 3)-factor approximation algorithm for rainbow colouring any graph with
radius r [2]. Constant factor approximation algorithms for rainbow colouring
Cartesian, strong and lexicographic products of non-trivial graphs are reported in
[3]. Constant factor approximation algorithms for bridgeless chordal graphs, and
additive approximation algorithms for interval, AT-free, threshold and circular
arc graphs without pendant vertices will follow from the proofs of their upper
bounds [6]. To the best of our knowledge, no efficient optimal rainbow colouring
algorithm has been reported for any non-trivial subclass of graphs.

1.1 Our Results

In this article we consider the problem of rainbow colouring split graphs and
a particular subclass of split graphs called threshold graphs (Definition 3). We
show the following results.

1. The problem of deciding whether a graph can be rainbow coloured using 3
colours remains NP-complete even when restricted to the class of split graphs
(Corollary 1). Any split graph can be rainbow coloured in linear time using
at most one more colour than the optimum (Algorithm 1).

This is similar to the problem of finding the chromatic index of a graph. Though
every graph with maximum degree Δ can be properly edge-coloured in O(nm)
time using Δ+ 1 colours using a constructive proof of Vizing’s Theorem [22], it
is NP-hard to decide whether the graph can be coloured using Δ colours [14].

No two pendant edges (Definition 2) can share the same colour in any rainbow
colouring of a graph (Observation 2). The +1-approximation algorithm above is
obtained by carefully reusing the same colours on most of the remaining edges
of the graph. The hardness result is obtained by demonstrating a reduction from
the problem of 3-colourability of 3-uniform hypergraphs. In fact, the technique
in the reduction can be extended to show the following result for chordal graphs.

2. For every integer k ≥ 3, the problem of deciding whether a graph can be
rainbow coloured using k colours remains NP-complete even when restricted
to the class of chordal graphs (Theorem 4).

Though a similar hardness result is known for deciding the rainbow connection
number of general graphs, the above strengthening to chordal graphs is interest-
ing since, unlike for general graphs, a constant factor approximation algorithm
is already known for rainbow colouring chordal graphs. Chandran et al. [6] have
shown that any bridgeless chordal graph can be rainbow coloured using at most
3r colours, where r is the radius of the graph. The proof given there is construc-
tive and can be easily extended to a polynomial-time algorithm which will colour

184 L.S. Chandran and D. Rajendraprasad

any chordal graph G with b bridges and radius r using at most 3r + b colours.
Since max{r, b} is easily seen to be a lower bound for rc(G), this immediately
gives us a 4-factor approximation algorithm.

3. For every positive integer k, threshold graphs with rainbow connection num-
ber exactly k can be characterised based on their degree sequence (Definition
2) alone (Corollary 3). Further, we can optimally rainbow colour a threshold
graph in linear time (Algorithm 4).

In particular we show that if d1 ≥ · · · ≥ dn is the degree sequence of an n-vertex
threshold graph G, then

rc(G) =

⎧⎪⎨⎪⎩
1, dn = n− 1

2, dn < n− 1 and
∑n

i=k 2
−di ≤ 1

max{3, p}, otherwise

(1)

where k = min{i : 1 ≤ i ≤ n, di ≤ i− 1} and p = |{i : 1 ≤ i ≤ n, di = 1}|.
Both the characterisation and the algorithm are obtained by connecting the

problem of rainbow colouring a threshold graph to that of generating a prefix-free
binary code.

1.2 Preliminaries

All graphs considered in this article are finite, simple and undirected. For a graph
G, we use V (G) and E(G) to denote its vertex set and edge set respectively.
Unless mentioned otherwise, n and m will respectively denote the number of
vertices and edges of the graph in consideration. The shorthand [n] denotes the
set {1, . . . , n}. The cardinality of a set S is denoted by |S|.

Definition 1. Let G be a connected graph. The length of a path is its number
of edges. The distance between two vertices u and v in G, denoted by d(u, v) is
the length of a shortest path between them in G. The eccentricity of a vertex v is
ecc(v) := maxx∈V (G) d(v, x). The diameter of G is diam(G) := maxx∈V (G) ecc(x)
and radius of G is radius(G) := minx∈V (G) ecc(x).

Definition 2. The neighbourhood N(v) of a vertex v is the set of vertices ad-
jacent to v but not including v. The degree of a vertex v is dv := |N(v)|. The
degree sequence of a graph is the non-increasing sequence of its vertex degrees. A
vertex is called pendant if its degree is 1. An edge incident on a pendant vertex
is called a pendant edge.

Definition 3. A graph G is called chordal, if there is no induced cycle of length
greater than 3. A graph G is a split graph, if V (G) can be partitioned into a
clique and an independent set. A graph G is a threshold graph, if there exists
a weight function w : V (G) → R and a real constant t such that two vertices
u, v ∈ V (G) are adjacent if and only if w(u) + w(v) ≥ t.

Rainbow Colouring of Split and Threshold Graphs 185

Before getting into the main results, we note two elementary and well known
observations on rainbow colouring whose proofs we omit.

Observation 1. For every connected graph G, we have rc(G) ≥ diam(G).

Observation 2. If u and v are two pendant vertices in a connected graph G,
then their incident edges get different colours in any rainbow colouring of G. In
particular, if G has p pendant vertices, then rc(G) ≥ p.

Two of the proofs are not included in this short version. They are available in
the full version uploaded to arXiv [7].

2 Split Graphs: Hardness and Approximation Algorithm

We first show that determining the rainbow connection number of a split graph
is NP-hard, by demonstrating a reduction to it from the 3-colouring problem on
3-uniform hypergraphs.

Definition 4. A hypergraph H is a tuple (V,E), where V is a finite set and
E ⊆ 2V . Elements of V and E are called vertices and (hyper-)edges respectively.
The hypergraph H is called r-uniform if |e| = r for every e ∈ E. An r-uniform
hypergraph is called complete if E = {e ⊂ V : |e| = r}.

Definition 5. Given a hypergraph H(V,E) and a colouring CH : V → N, an
edge is called k-coloured if the edge contains vertices of k different colours. An
edge is called monochromatic if it is 1-coloured. The colouring CH is called
proper if no edge in E is monochromatic under CH . The minimum number
of colours required to properly colour H is called its chromatic number and is
denoted by χ(H).

It follows from Theorem 1.1 in [15] that it is NP-hard to decide whether an
n-vertex 3-uniform hypergraph can be properly coloured using 3 colours. A re-
duction from this problem to a problem of computing the rainbow connection
number of a split graph is illustrated in the proofs of Theorem 3 and Theorem 4.

Theorem 3. The first problem below (P1) is polynomial-time reducible to the
second (P2).

P1. Given a 3-uniform hypergraph H ′, decide whether χ(H ′) ≤ 3.
P2. Given a split graph G, decide whether rc(G) ≤ 3.

Proof of Theorem 3 is given in the full version of the paper [7].
Since Problem P1 is known to be NP-hard, so is Problem P2. Further, it is

easy to see that the problem P2 is in NP. Hence the following corollary.

Corollary 1. Deciding whether rc(G) ≤ 3 remains NP-complete even when G
is restricted to be in the class of split graphs.

186 L.S. Chandran and D. Rajendraprasad

The reduction used in the proof of Theorem 3 can be extended to show that
for every k ≥ 3, it is NP-complete to decide whether a chordal graph can be
rainbow coloured using k colours.

Theorem 4. For any integer k ≥ 3, the first problem below (P1) is polynomial-
time reducible to the second (P2).

P1. Given a 3-uniform hypergraph H ′, decide whether χ(H ′) ≤ 3.
P2. Given a chordal graph G, decide whether rc(G) ≤ k.

In particular, for every integer k ≥ 3, the problem of deciding whether rc(G) ≤ k
remains NP-complete even when G is restricted to be in the class of chordal
graphs.

Proof of Theorem 4 is also given in the full version of the paper [7].
In the wake of Corollary 1, it is unlikely that there exists a polynomial-time

algorithm to optimally rainbow colour split graphs in general. In Section 3,
we show that the problem is efficiently solvable when restricted to threshold
graphs, which are a subclass of split graphs. Before that, we describe a linear-
time (approximation) algorithm which rainbow colours any split graph using at
most one colour more than the optimum (Theorem 5). First we note that it is
easy to find a maximum clique in a split graph, as follows.

The vertices of a graph can be sorted according to their degrees in O(n) time
using a counting sort [24]. IfG([n], E) is a split graph with the vertices labelled so
that d1 ≥ · · · ≥ dn, where di is degree of vertex i, then {i ∈ V (G) : di ≥ i−1} is a
maximum clique in G and {i ∈ V (G) : di ≤ i−1} is a maximum independent set
in G [12]. Hence we can assume, if needed, that a maximum clique or a maximum
independent set or an ordering of the vertices according to their degrees is given
as input to our algorithms.

Algorithm 1. ColourSplitGraph

Input: G([n], E), a connected split graph with a maximum clique C.
Output: A rainbow colouring CG : E(G) → {0, . . . ,max{p, 2}}, where p is the number

of pendant vertices in V (G) \ C.
1: I ← V (G) \ C // I is an independent set in G
2: P ← {i ∈ I : di = 1}, p ← |P | // P is the set of pendant vertices in I
3: CG(e) ← 0, for all edges e with both end points in C.
4: CG(ei) ← i for each pendant edge e1, . . . , ep
5: for i ∈ I \ P do
6: Let {e1, . . . , edi} be the edges incident on i
7: CG(e1) ← 1
8: CG(e) ← 2 for every other edge e incident on i
9: end for // Now every vertex in I \ P has a 1-coloured and a 2-coloured edge to C
10: return CG

Rainbow Colouring of Split and Threshold Graphs 187

Theorem 5. For every connected split graph G, Algorithm 1 (ColourSplit-

Graph) rainbow colours G using at most rc(G) + 1 colours. Further, the time-
complexity of Algorithm 1 is O(m).

Proof. If G is a clique, then C = V (G) and Algorithm 1 colours every edge of G
with colour 0. This is an optimal rainbow colouring for G. Hence we can assume
that G is not a clique in the following discussions. So d := diam(G) ≥ 2. It is
easy to check, by considering all pairs of non-adjacent vertices, that Algorithm
1 indeed produces a rainbow colouring of G. For example, between two vertices

v, v′ ∈ I \ P , we get a rainbow path v
1

—— C
0

—— C
2

—— v′. It is also evident
that the algorithm uses at most k := max{p + 1, 3} colours. By Observation 1
and Observation 2, rc(G) ≥ max{p, d} ≥ max{p, 2} = k − 1. Hence the rainbow
colouring produced by Algorithm 1 uses at most rc(G) + 1 colours.

Further, the algorithm visits each edge exactly once and hence the time-
complexity is O(m).

The following bounds follow directly from Observation 1, Observation 2, and
Theorem 5.

Corollary 2. For every connected split graph G with p pendant vertices and
diameter d,

max{p, d} ≤ rc(G) ≤ max{p+ 1, 3}.

3 Threshold Graphs: Characterisation and Exact
Algorithm

Threshold graphs form a subclass of split graphs (Observation 6b). The neigh-
bourhoods of vertices in a maximum independent set of a threshold graph form
a linear order under set inclusion (Observation 6c). We exploit this structure to
give a full characterisation of rainbow connection number of threshold graphs
based on degree sequences (Corollary 3). We use this characterisation to de-
sign a linear-time algorithm to optimally rainbow colour any threshold graph
(Algorithm 4).

The following observations are easy to make from the definition of a threshold
graph (Definition 3).

Observation 6. Let G([n], E) be a threshold graph with a weight function w :
V (G) → R. Let the vertices be labelled so that w(1) ≥ · · · ≥ w(n). Then

(a) d1 ≥ · · · ≥ dn, where di is the degree of vertex i.
(b) I = {i ∈ V (G) : di ≤ i − 1} is a maximum independent set G and V (G) \ I

is a clique in G. In particular, every threshold graph is a split graph.
(c) N(i) = {1, . . . , di}, for every i ∈ I. Thus the neighbourhoods of vertices in

I form a linear order under set inclusion. Further, if G is connected, then
every vertex in G is adjacent to 1.

188 L.S. Chandran and D. Rajendraprasad

Definition 6. A binary codeword is a finite string over the alphabet {0, 1}
(bits). The length of a codeword b, denoted by length(b), is the number of bits
in the string b. We denote the i-th bit of b by b(i). A codeword b1 is said to be
a prefix of a codeword b2 if length(b1) ≤ length(b2) and b1(i) = b2(i) for all
i ∈ {1, . . . , length(b1)}. A binary code is a set of binary codewords. A binary
code B is called prefix-free if no codeword in B is a prefix of another codeword
in B.

The Kraft’s Inequality [16] gives a necessary and sufficient condition for the
existence of a prefix-free code for a given set of codeword lengths.

Theorem 7 (Kraft 1949 [16]). For every prefix-free binary code
B = {b1, . . . , bn},

n∑
i=1

2−li ≤ 1

where li = length(bi), and conversely, for any sequence of lengths l1, . . . , ln satis-
fying the above inequality, there exists a prefix-free binary code B = {b1, . . . , bn},
with length(bi) = li, i = 1, . . . , n.

Observation 8. Given any sequence of lengths l1 ≤ · · · ≤ ln satisfying the
Kraft Inequality, we can construct a prefix-free binary code B = {b1, . . . , bn},
with length(bi) = li, i = 1, . . . , n in time O

(∑n
i=1 li

)
. Further, we can ensure

that every bit in b1 is 0.

Proof. A binary tree is a rooted tree in which every node has at most two child
nodes. A node with only one child node is said to be unsaturated. The level of a
node is its distance from the root. We assume that every edge from a parent to
its first (second) child, if it exists, is labelled 0 (1). We can represent a prefix-free
binary code by a binary tree such that (i) every codeword bi corresponds to a
leaf ti of the binary tree at level length(bi) and (ii) the labels on the unique
path from the root to a leaf will be the codeword associated with that leaf
[10]. We construct a prefix-free binary code with the given length sequence by
constructing the corresponding binary tree as explained below.

Create the root, and for every new node created, create its first child till we hit
a node t1 at depth l1 for the first time. Declare t1 as a leaf. Once we have created
a leaf ti, i < n, we proceed to create the next leaf as follows. Backtrack from ti
along the tree created so far towards the root till we hit the first unsaturated
node. Create its second child. If the second child is at level li+1, then declare it
as the leaf ti+1. Else, recursively create first child till we create a node at level
li+1 and declare it as leaf ti+1. Terminate this process once we create the leaf tn.

The process will continue till we create all the n leaves. Otherwise, it has to
be the case that every internal node in the tree got saturated by the time we
created some leaf ti, i < n. If we have a binary tree T with every internal node
saturated, it is easy to see by an inductive argument that

∑
t∈L 2−dt = 1, where

L is the set of leaves of T and dt denotes the level of leaf t. Hence
∑n

j=1 2
−lj >

Rainbow Colouring of Split and Threshold Graphs 189

Algorithm 2. ColourThresholdGraph-Case1

Input: G([n], E), a connected threshold graph, with d1 ≥ · · · ≥ dn and
∑n

i=k 2
−di ≤ 1,

where di is the degree of vertex i and k = min{i : 1 ≤ i ≤ n, di ≤ i− 1}.
Output: A rainbow colouring CG : E(G) → {0, 1} of G.
1: I = {k, . . . , n} // I is a maximal independent set in G
2: Let B = {bk, . . . , bn} be a prefix-free code with length(bi) = di (constructed as

mentioned in Observation 8)
3: for i ∈ I do
4: CG({i, j}) = bi(j), ∀j ∈ {1, . . . , di}
5: end for
6: for i ∈ V (G) \ I do // i < k
7: CG({i, j}) = bk(j), ∀j ∈ {1, . . . , i− 1} // Note that length(bk) = dk = k − 1
8: end for
9: return CG

∑i
j=1 2

−lj = 1, contradicting the hypothesis that the lengths l1, . . . , ln satisfy
the Kraft Inequality.

It follows from the construction that every bit of b1 is 0. Since every edge
in the tree constructed corresponds to a bit in at least one of the codewords
returned, the total number of edges in the tree constructed is at most

∑n
i=1 li.

Since each edge of the tree is traversed at most twice, the construction will be
completed in time O

(∑n
i=1 li

)
.

Now we give a necessary and sufficient condition for 2-rainbow-colourability of
a threshold graph.

Theorem 9. For every connected threshold graph G([n], E) with d1 ≥ · · · ≥ dn,
rc(G) ≤ 2 if and only if

n∑
i=k

2−di ≤ 1, (2)

where di is the degree of vertex i and k = min{i : 1 ≤ i ≤ n, di ≤ i−1}. Further,
if G satisfies Inequality (2), then Algorithm 2 (ColourThresholdGraph-

Case1) gives an optimal rainbow colouring of G in O(m) time.

Proof. Note that I := {k, . . . , n} is a maximal independent set in G (Observation
6b) and that the summation on the left hand side of Inequality (2) is over all
the vertices in I. Hence C := {1, . . . , k − 1} is a clique in G.

First we show that if rc(G) ≤ 2, then the inequality is satisfied. Let CG :
E(G) → {0, 1} be a rainbow colouring of G. We can associate a codeword with
each vertex i ∈ I by reading the colours assigned by CG to edges {i, c}, c =
1, . . . , di. Since every pair i, j ∈ I, di ≤ dj are non-adjacent, they need a 2-
length rainbow path between them through a common neighbour c ∈ {1, . . . , di}
(Observation 6c). This ensures that the codewords corresponding to i and j are
complementary in at least one bit position. Hence the binary code formed by
codewords corresponding to all the vertices in I form a prefix-free code. Hence
the inequality is satisfied (by Theorem 7).

190 L.S. Chandran and D. Rajendraprasad

Algorithm 3. ColourThresholdGraph-Case2

Input: G([n], E), a connected threshold graph, with d1 ≥ · · · ≥ dn, where di is the
degree of vertex i.

Output: A rainbow colouring CG : E(G) → {0, . . . ,max{p, 3} − 1} of G, where p is
the number of pendant vertices in G.

1: P ← {i ∈ V (G) : di = 1}, p ← |P | // P is the set of pendant vertices in G
2: CG({pi, 1}) ← i− 1 for each pendant vertex p1, . . . , pp
3: if p = n− 1 then
4: return CG // G is a star
5: end if
6: CG({1, 2}) = 0
7: for i = 3 to i = n− p do
8: CG({i, 1}) = 1
9: CG({i, 2}) = 2 // Every v ∈ {3, . . . , n− p} is adjacent to vertices 1 and 2.
10: end for
11: CG(e) = 0 for each edge e of G not coloured so far.
12: return CG

Conversely, if the inequality is satisfied, then Algorithm 2 gives a colouring
CG of E(G) using at most 2 colours. We show that CG is indeed a rainbow
colouring of G. Consider any two non-adjacent vertices i, j ∈ V (G), i < j. Since
they are non-adjacent, either both of them are in I or otherwise j is in I and
i is from the clique C such that i > dj (Since N(j) = {1, . . . , dj}). In the
former case, length(bi) ≥ length(bj) and there exists a v ∈ {1, . . . , dj ≤ di}
such that bj(v) 	= bi(v) since bj is not a prefix of bi (They both belong to
a prefix-free code B). Hence i–v–j is a rainbow path. Similarly in the latter
case, length(bk) ≥ length(bj) and there exists a v ∈ {1, . . . , dj < i} such that
bj(v) 	= bk(v) since bj is not a prefix of bk. Hence CG({v, j}) 	= CG({v, i}) and
i–v–j is a rainbow path. Hence CG is a rainbow colouring of G.

If G is not a clique, then rc(G) ≥ 2 (Observation 1), and hence the above
rainbow colouring is optimal. If G is a clique then k = n and |B| = |I| = 1. So
the single codeword bn constructed as mentioned in Observation 8 has all the
bits 0. So every edge of G is coloured using the single colour 0, which is optimal
for G.

Since
∑n

i=1 li =
∑n

i=1 di = 2m, the prefix-free code B can be constructed in
O(m) time (Observation 8). Moreover, Algorithm 2 visits each edge only once.
Hence the total time complexity is O(m).

Now we consider the case of threshold graphs which violate Inequality (2).

Theorem 10. For every connected threshold graph G which does not satisfy
Inequality (2),

rc(G) = max{p, 3},
where p is the number of pendant vertices in G.

Further, Algorithm 3 (ColourThresholdGraph-Case2) gives an optimal
rainbow colouring of G in O(m) time

Rainbow Colouring of Split and Threshold Graphs 191

Proof. It is easy to check, by considering all pairs of non-adjacent vertices, that
Algorithm 3 indeed produces a rainbow colouring of G. It is also evident that it
uses at most max{p, 3} colours. By Observation 2 and Theorem 9 , it follows hat
rc(G) ≥ max{p, 3}. Hence rc(G) = max{p, 3} and hence the rainbow colouring
produced by Algorithm 3 is optimal. Further, since Algorithm 3 visits each edge
only once, its time complexity is O(m).

Algorithm 4. ColourThresholdGraph

Input: G([n], E), a connected threshold graph with d1 ≥ · · · ≥ dn, where di is the
degree of vertex i.

Output: An optimal rainbow colouring CG : E(G) → {0, . . . , rc(G)− 1} of G.
1: k = min{i : 1 ≤ i ≤ n, di ≤ i− 1}
2: if

∑n
i=k 2

−di ≤ 1 then
3: CG = ColourThresholdGraph-Case1(G)
4: else
5: CG = ColourThresholdGraph-Case2(G)
6: end if
7: return CG

Combining Theorem 9 and Theorem 10, we get a complete characterisation
for threshold graphs whose rainbow connection number is k, based on its degree
sequence alone. Further we can find the optimally rainbow colour every threshold
graph in linear-time.

Corollary 3. Let G([n], E), be a connected threshold graph with d1 ≥ · · · ≥ dn,
where di is the degree of vertex i. Then,

rc(G) =

⎧⎪⎨⎪⎩
1, if G is a clique

2, if G is not a clique and
∑n

i=k 2
−di ≤ 1

max{3, p}, otherwise,

(3)

where k = min{i : 1 ≤ i ≤ n, di ≤ i− 1} and p = |{i : 1 ≤ i ≤ n, di = 1}|.
Further, Algorithm 4 (ColourThresholdGraph) gives an optimal rainbow

colouring of G in O(m) time.

References

1. Ananth, P., Nasre, M., Sarpatwar, K.K.: Rainbow Connectivity: Hardness and
Tractability. In: IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2011), vol. 13, pp. 241–251 (2011)

2. Basavaraju, M., Chandran, L.S., Rajendraprasad, D., Ramaswamy, A.: Rainbow
connection number and radius. Preprint arXiv:1011.0620v1 (math.CO) (2010)

3. Basavaraju, M., Chandran, L.S., Rajendraprasad, D., Ramaswamy, A.: Rain-
bow connection number of graph power and graph products. Preprint
arXiv:1104.4190v2 (math.CO) (2011)

192 L.S. Chandran and D. Rajendraprasad

4. Caro, Y., Lev, A., Roditty, Y., Tuza, Z., Yuster, R.: On rainbow connection. Elec-
tron. J. Combin. 15(1), Research paper 57, 13 (2008)

5. Chakraborty, S., Fischer, E., Matsliah, A., Yuster, R.: Hardness and algorithms for
rainbow connection. J. Comb. Optim. 21(3), 330–347 (2011)

6. Chandran, L.S., Das, A., Rajendraprasad, D., Varma, N.M.: Rainbow connection
number and connected dominating sets. Journal of Graph Theory (2011)

7. Chandran, L.S., Rajendraprasad, D.: Rainbow colouring of split and threshold
graphs. Preprint arXiv:1205.1670v1 (cs.DM) (2012)

8. Chartrand, G., Zhang, P.: Chromatic Graph Theory. Chapman & Hall (2008)
9. Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: Rainbow connection in

graphs. Math. Bohem. 133(1), 85–98 (2008)
10. Cover, T.M., Thomas, J.A.: Data Compression, pp. 103–158. John Wiley & Sons,

Inc. (2005)
11. Frieze, A., Tsourakakis, C.: Rainbow connectivity of g(n, p) at the connectivity

threshold. Preprint arXiv:1201.4603 (2012)
12. Hammer, P.L., Simeone, B.: The splittance of a graph. Combinatorica 1(3), 275–

284 (1981)
13. He, J., Liang, H.: On rainbow k-connectivity of random graphs. Preprint

arXiv:1012.1942v1 (math.CO) (2010)
14. Holyer, I.: The NP-completeness of edge-coloring. SIAM Journal on Comput-

ing 10(4), 718–720 (1981)
15. Khot, S.: Hardness results for coloring 3-colorable 3-uniform hypergraphs. In: Pro-

ceedings of The 43rd Annual IEEE Symposium on Foundations of Computer Sci-
ence, pp. 23–32. IEEE (2002)

16. Kraft, L.: A device for quanitizing, grouping and coding amplitude modulated
pulses. Master’s thesis. Electrical Engineering Department, Massachusetts Institute
of Technology (1949)

17. Krivelevich, M., Yuster, R.: The rainbow connection of a graph is (at most) recip-
rocal to its minimum degree. J. Graph Theory 63(3), 185–191 (2010)

18. Li, S., Li, X.: Note on the complexity of determining the rainbow connectedness
for bipartite graphs. Preprint arXiv:1109.5534 (2011)

19. Li, X., Sun, Y.: Rainbow Connections of Graphs. Springerbriefs in Mathematics.
Springer (2012)

20. Li, X., Sun, Y.: Rainbow connections of graphs – a survey. Preprint
arXiv:1101.5747v2 (math.CO) (2011)

21. Li, X., Sun, Y.: Upper bounds for the rainbow connection numbers of line graphs.
Graphs and Combinatorics, 1–13 (2011), doi:10.1007/s00373-011-1034-1

22. Misra, J., Gries, D.: A constructive proof of vizing’s theorem. Information Process-
ing Letters 41(3), 131–133 (1992)

23. Schiermeyer, I.: Rainbow Connection in Graphs with Minimum Degree Three. In:
Fiala, J., Kratochv́ıl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp.
432–437. Springer, Heidelberg (2009)

24. Seward, H.H.: Information sorting in the application of electronic digital comput-
ers to business operations. Master’s thesis, Digital Computer Laboratory, Mas-
sachusetts Institute of Technology (1954)

25. Shang, Y.: A sharp threshold for rainbow connection of random bipartite graphs.
Int. J. Appl. Math. 24(1), 149–153 (2011)

26. Wigderson, A.: The complexity of graph connectivity. In: Mathematical Founda-
tions of Computer Science, pp. 112–132 (1992)

Approximating the Rainbow – Better

Lower and Upper Bounds

Alexandru Popa

Department of Communications & Networking,
Aalto University School of Electrical Engineering, Aalto, Finland

alexandru.popa@aalto.fi

Abstract. In this paper we study the minimum rainbow subgraph prob-
lem, motivated by applications in bioinformatics. The input of the prob-
lem consists of an undirected graph where each edge is coloured with
one of the p possible colors. The goal is to find a subgraph of minimum
order (i.e. minimum number of vertices) which has precisely one edge
from each color class.

In this paper we show a max(
√
2p,minq(q+

Δ

epq
2/Δn

))-approximation

algorithm using LP rounding, where Δ is the maximum degree in the
input graph. In particular, this is a max(

√
2n,

√
2Δ lnΔ)-approximation

algorithm. On the other hand we prove that there exists a constant c such
that the minimum rainbow subgraph problem does not have a c lnΔ-
approximation, unless NP ⊆ TIME(nO(log log n)).

1 Introduction

Motivation. An important problem in computational biology is the pure par-
simony haplotyping problem (PPH), introduced by Gusfield in 2003 [8]. The
problem input consists in a set G of p genotypes (i.e. vectors with entries in
{0, 1, 2}) corresponding to individuals in a population. A genotype g is explained
by two haplotypes (i.e. vectors with entries in {0, 1}) h1 and h2 if for each entry
i, either g[i] = h1[i] = h2[i] or g[i] = 2 and h1[i] 	= h2[i]. For example, the
genotype g = 012 is explained by the haplotypes h1 = 010 and h2 = 011 as
h1[1] = h2[1] = g[1] = 0, h1[2] = h2[2] = g[2] = 1, h1[3] 	= h2[3] and g[3] = 2.
The goal is to find a set of haplotypes of minimum cardinality which explains the
set G of genotypes. The positions where g[i] = 2 are named ambiguous positions.
If the number of ambiguous positions is at most k, then the problem is termed
PPH(k).

Camacho et al. [4] show that the PPH(k) problem for k ≤ O(log p) can be
reduced in polynomial time to the minimum rainbow subgraph (MRS) problem
which we describe next. The input consists of an undirected graph G where each
edge is coloured with one of the p possible colors. A rainbow subgraph F ⊆ G
contains precisely one edge from each color class. The goal of the problem is to
find a rainbow subgraph of G which has a minimum number of vertices.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 193–203, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

194 A. Popa

Previous Work

Pure Parsimony Haplotyping. The pure parsimony haplotyping problem was
introduced by Gusfield [8]. Hubbell shows that the PPH problem isNP-hard [12].
Lancia et al. [16] show that the PPH(k) problem is APX-hard for k ≥ 3 and
present a 2k−1-approximation algorithm. In the same paper [16] they also show
a
√
p-approximation for the PPH problem. PPH(k) is fixed parameter tractable

and is solvable in polynomial time for k ≤ 2 [17]. In [11] the PPH problem is
called the optimal haplotype inference. Huang et al. [11] present an approximation
algorithm based on semidefinite programming which, with high probability, stops
after O(log p) iterations and is a O(log p)-approximation. The PPH problem is
extensively studied in literature and several heuristics and approaches based on
integer programming were proposed (see [5] for a survey).

Minimum Rainbow Subgraph. Rainbow subgraphs are fundamental in combia-
torics and have been extensively studied (e.g. [6,18,1,9,19]). In general, combi-
natorists study the existence of a rainbow subgraph under various conditions.
However, from the algorithmic perspective, the problem did not receive much
attention until recently. Camacho et al. [4] give an approximation algorithm with
a ratio of 5

6Δ. This was later improved to 1
2 +(12 + ε)Δ for arbitrary small ε [14].

Katrenič and Schiermeyer [14] also prove that the MRS problem isAPX-hard on
graphs with maximum degree 2 (notice that the APX-hardness of MRS in the
general case follows from the APX-hardness of PPH(k)) and present an exact
algorithm with time complexity O(2(p+2p logΔ)nO(1)). Koch et al [15] show that
a natural greedy algorithm achieves a ratio of Δ

2 + lnΔ+1
2 (if the average degree

of the minimum rainbow subgraph is d, then the greedy algorithm achieves a
ratio of d

2 +
ln d+1

2). Notice that the best approximation ratio is still O(n) in the
worst case.

Other Related Problems. If we do not consider the colouring of the edges, the
MRS problem is known as the k − f(k) dense subgraph problem introduced by
Asahiro et al. [2]. The k − f(k) dense subgraph problem is NP-hard as it is a
special case of the maximum clique problem when f(k) = k(k − 1)/2.

The MRS problem is a special case of the minimum k-coloured subgraph
problem (MkCSP) introduced by Hajiaghayi et al. [10]. MkCSP is defined as
follows: given an undirected graph G, a colour function that assigns to each edge
one or more of p given colours, and an integer k ≤ p, find a minimum set of
vertices of G inducing edges of at least k colours. As shown in [10], this problem
has a surprising connection to the (k, f(k)) dense subgraph problem and it is a
generalization of the PPH problem. An important case of MkCSP occurs when
k = p.

Our Results. In this paper we decrease the gap between the approximation
lower and upper bounds of the minimum rainbow subgraph problem. First, we
show a max(

√
2p,minq(q+

Δ

epq2/Δn
))-approximation algorithm. In particular, this

is a max(
√
2n,

√
2Δ lnΔ)-approximation algorithm.

Approximating the Rainbow – Better Lower and Upper Bounds 195

The algorithm is based on randomized linear programming (LP) rounding.
The first step of the algorithm is to solve the LP relaxation of an integer program
for the MRS problem. Then, we add each vertex in the solution with a probability
proportional to the corresponding variable of the LP (multiplied by a certain
factor). We show that the subgraph constructed in this way contains “most” of
the p colors. Thus, we can apply the following naive algorithm for the remaining
colors w: pick an arbitrary edge colored with w and add both its endpoints in
the subgraph.

On the inapproximability side we show that the MRS is hard to approxi-
mate within a factor of c lnΔ, for some c > 0, unless NP ⊆ TIME(nO(log logn)).
The hardness result is obtained via a gap-preserving reduction from the set
cover problem. Given a set cover instance with n elements we create an instance
of the MRS problem such that OPTMRS = n(OPTSC + 1), where OPTMRS

and OPTSC are the values of the optimal solutions of the MRS problem and,
respectively, the set cover. Feige shows [7] that it is not possible, assuming
NP � TIME(nO(log logn)), to decide in polynomial time if a set cover instance
has a solution using k sets or the number of sets in the optimal solution is greater
than lnn. Combining Feige’s result with our reduction, we obtain the claimed
hardness result.

The rest of the paper is organized as follows. In Section 2 we give preliminary
definitions. In Section 3 we present the approximation algorithm and in Section 4
we show the hardness result. Section 5 is reserved for conclusions and open
problems.

2 Preliminaries

In this section we introduce notation and give preliminary definitions. We start
with the definition of the minimum rainbow subgraph problem.

Problem 1 (Minimum rainbow subgraph). The input of the problem consists of
an undirected graph G = (V,E), and a function col : E → {1, 2, . . . , p}. A
rainbow subgraph of G is a graph G′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E such
that for any i ∈ {1, 2, . . . , p} there is exactly one edge e ∈ E′ with col(e) = i.
The goal is to find a rainbow subgraph of minimum order (i.e. |V ′| is minimized).

In the rest of the paper we use the following notation. Let {1, 2, . . . , n} be the
vertex set of the input graph, m be the number of edges in G and Δ be the
maximum degree in G. We say that a color w is covered by a subgraph G′ =
(V ′, E′) of G if there exists an edge e ∈ E′ such that col(e) = w. For a color
w, we denote by fw the number of edges in G coloured with w. We use ln for
the natural logarithm. All the other logarithms are in base 2, unless otherwise
mentioned.

Next, we give the definition of a c-approximation algorithm.

Definition 1. An algorithm A is a c-approximation algorithm for an optimiza-
tion problem P if on any instance x we have:

196 A. Popa

– A(x) ≤ c · OPT (x), if P is a minimization problem.

– A(x) ≥ OPT (x)
c , if P is a maximization problem.

where A(x) is the cost of the solution returned by the algorithm on instance x
and OPT (x) is the cost of the optimal solution.

To prove the hardness result for the MRS problem we use a gap-preserving
reduction from the set cover problem defined below.

Definition 2 (Set-Cover). The input consists of a collection of sets S =
{S1, S2, . . . , Sm} over a universe of elements U = {1, 2, . . . , n}. A set cover
S ′ ⊆ S has the property that for each element i ∈ U there exists a set Sk ∈ S ′

such that i ∈ Sk. The goal is to find a set cover of minimum cardinality.

Feige [7] proved that it cannot be decided in polynomial time, assuming
NP � TIME(nO(log logn)), if a set cover with k sets (where k is a large con-
stant) exists or the smallest set cover has cardinality greater than k lnn. This is
stated in the following theorem (rephrased from [7]).

Theorem 1. There exists a constant k such that it cannot be decided in poly-
nomial time if a set cover instance has a cover with k subsets or the smallest
set cover has roughly d subsets where (1 − 1/k)d ≈ 1/n. As k grows, d tends to
k lnn.

To design approximation algorithms it is necessary to have a lower bound of the
optimal solution (to be able to analyse the approximation guarantee). For the
MRS problem, a trivial lower bound is the minimum order of a graph with p
edges and maximum degree Δ:

2p

Δ
(1)

Also notice that the naive algorithm which returns 2p vertices is a
√
2p-

approximation algorithm (as each graph with p edges must have at least
√
2p

vertices). Thus, if p ≤ n then we have a
√
2n-approximation algorithm.

However, this lower bounds do not suffice for our purposes. To achieve our
approximation ratio we express the MRS problem as an integer program. Integer
programs are NP-hard to solve [13], but we can use their linear programming
relaxations as lower bounds for the optimal solution. Linear programs can be
solved in polynomial time using the ellipsoid method [3].

Camacho et al. [4] show that the PPH(k) problem for k ≤ O(log p) can be
reduced in polynomial time to the minimum rainbow subgraph (MRS). We men-
tion that it is not known how to construct a polynomial time reduction from
the MRS to the PPH(k) problem. Thus, a f(Δ)-approximation algorithm for
the MRS implies a f(p)-approximation for the PPH(k), but not vice-versa. Con-
versely, only the hardness of approximation results for PPH(k) can be applied
to MRS.

Approximating the Rainbow – Better Lower and Upper Bounds 197

3 Approximation Algorithm

In this section we present a max(
√
2p,minq(q + Δ

epq2/Δn
))-approximation algo-

rithm for the minimum rainbow subgraph problem. Our approximation algo-
rithm is based on randomized LP rounding. The integer programming formula-
tion of the MRS problem is presented in Figure 1.

The integer program has a variable vi corresponding to each vertex i ∈ V
and a variable xe corresponding to each edge e ∈ E. A solution of the integer
program has the property that: vi = 1 if and only if the vertex i is part of
the solution (i.e. i is a vertex of the rainbow subgraph) and vi = 0, otherwise.
Similarly, xe = 1 if the edge e is part of the solution and xe = 0, otherwise.

The first set of constraints ensures that the rainbow subgraph contains each
one of the p colors. If an edge e ∈ E is part of the subgraph, then, clearly, both
its endpoints have to be as well in the subgraph. This requirement is expressed
by the second set of constraints.

minimize
n∑

i=1

vi

subject to ∑
e∈E: col(e)=i

xe ≥ 1 1 ≤ i ≤ p (2)

vi ≥ xe ∀e ∈ E incident to i (3)

xe ∈ {0, 1} ∀ e ∈ E

vi ∈ {0, 1} ∀ 1 ≤ i ≤ n

Fig. 1. An integer programming formulation for the minimum rainbow subgraph prob-
lem

The LP relaxation (Figure 2) is obtained by allowing the variables vi and xe

to have any positive value. Notice that the optimal solution of the LP is less
than or equal to the optimal solution of the IP.

Now we describe the approximation algorithm. First, we solve the linear pro-
gram from Figure 2. Then, we add each vertex i into the solution with probability
q · vi (q is a parameter that is specified later). Finally, for each color w which is
not covered at the previous step, we choose an arbitrary edge colored with w and
add both its endpoints to the solution. We mention that a more clever algorithm
can be applied in practice to cover the remaining colors, but this suffices for our
analysis. Algorithm 1 presents formally the approximation algorithm.

In the following theorem we state the approximation guarantee of Algorithm 1.

Theorem 2. Algorithm 1 is a randomized polynomial time q+ Δ

epq2/Δn
- approx-

imation for the minimum rainbow subgraph problem.

198 A. Popa

minimize
n∑

i=1

vi

subject to ∑
e∈E: col(e)=i

xe ≥ 1 1 ≤ i ≤ p (4)

vi ≥ xe ∀e ∈ E incident to i (5)

xe ≥ 0 ∀ e ∈ E

vi ≥ 0 ∀ 1 ≤ i ≤ n

Fig. 2. The LP relaxation of the integer program from Figure 1

Input: Graph G = (V,E) coloured with p colors

1. V ′ ← ∅
2. Solve the LP from Figure 2
3. For i = 1 to n add vertex i to V ′ with probability q · vi
4. For each uncovered color w:

(a) Select arbitrarily an edge (i, j) coloured with w
(b) V ′ ← V ′ ∪ {i, j}

5. Let E′ ← (V ′ × V ′) ∩E. If there are more edges coloured with the same
color in E′, keep only one of them.

Output: G′ = (V ′, E′)

Algorithm 1. A q + Δ

epq2/Δn
-approximation for the MRS problem

Proof. Clearly, Algorithm 1 runs in polynomial time as all the steps can be
performed in polynomial time. The expected number of vertices in the solution
is:

E(|V ′|) = E(# vertices added at step 3) + E(# vertices added at step 4)

= E(# vertices added at step 3) + 2 · E(# uncovered colors)

=
n∑

i=1

P (i is covered at step 3) + 2 ·E(# uncovered colors)

=

n∑
i=1

q · vi + 2 ·E(# uncovered colors)

= q · OPT + 2 ·E(# uncovered colors)

We bound the number of colors which are not covered by the subgraph after
step 3.

Approximating the Rainbow – Better Lower and Upper Bounds 199

E(# uncovered colors) =

p∑
w=1

P (w is not covered)

=

p∑
w=1

∏
e:col(e)=w

P (e is not covered)

=

p∑
w=1

∏
e:col(e)=w

(1− P (e is covered))

=

p∑
w=1

∏
(i,j):col((i,j))=w

(1− P (i is covered)P (j is covered))

=

p∑
w=1

∏
(i,j):col((i,j))=w

(1− q2vivj)

From the second set of constraints of the LP we know that vi ≥ xe and vj ≥ xe.
Thus:

1− q2vivj ≤ 1− q2x2
e

The value of : ∏
e:col(e)=w

(1− q2x2
e)

is maximized when all the variables xe are equal. If all the variables xe are equal,
then, from the first set of constraints we have that:

xe =
1

fw

where fw is the number of edges that have color w. Thus:

E(# uncovered colors) ≤
p∑

w=1

∏
e:col(e)=w

(1− q2

f2
w

) (6)

=

p∑
w=1

(1− q2

f2
w

)
fw

(7)

We know that:

ex ≥ (1 +
x

n
)n

where e is the base of the natural logarithm. Therefore:

(1 − q2

f2
w

)

fw

= (1− q2

f2
w

)

f2
w/fw

≤ e−q2/fw =
1

eq2/fw

200 A. Popa

We substitute the above inequality in (7):

E(# uncovered colors) ≤
p∑

w=1

1

eq2/fw
(8)

The expected number of uncovered colors is maximized when all fw are equal
and since the number of edges is at most Δn, we have:

E(# uncovered colors) ≤ p

epq2/Δn
(9)

The expected order of a subgraph returned by Algorithm 1 is:

E(|V ′|) ≤ q ·OPT +
2p

epq2/Δn
(10)

We now use the trivial lower bound (1) in order to bound the expected number
of vertices in V ′:

2p

epq2/Δn
· 1

OPT
≤ 2p

epq2/Δn
· Δ
2p

We have that:

2p

epq2/Δn
≤ Δ

epq2/Δn
· OPT

E(|V ′|) ≤ q · OPT +
Δ

epq2/Δn
OPT (11)

Algorithm 1 returns a q + Δ

epq2/Δn
-approximation and the theorem follows. ��

Notice that if p ≤ n, then we can use the naive algorithm to obtain a
√
2n-

approximation algorithm. Otherwise, we apply Algorithm 1 and get Corollary 1.

Corollary 1. Algorithm 2 is a max(
√
2n, q+ Δ

eq2/Δ
)-approximation for the MRS

problem.

Input: A graph G = (V,E) coloured with p colors

1. If p ≤ n, then apply the naive algorithm.
2. If p > n, then apply Algorithm 1.

Algorithm 2. A max(
√
2n, q + Δ

eq2/Δ
)-approximation algorithm for the MRS

problem

We fix q =
√

Δ lnΔ
2 and obtain the following corollary.

Corollary 2. Algorithm 1 is amax(
√
2n,

√
2Δ lnΔ)-approximation for the MRS

problem.

Approximating the Rainbow – Better Lower and Upper Bounds 201

4 Hardness of Approximation

In this section we show that the minimum rainbow subgraph problem does not
have a c lnΔ-approximation algorithm, for some constant c > 0, unless NP has
nO(log logn)-time deterministic algorithms. This hardness result is stated in the
following theorem.

Theorem 3. There exists a constant c > 0 such that the minimum rainbow
subgraph problem does not have a c lnΔ-approximation algorithm, unless
NP ⊂ TIME(nO(log logn)).

Proof. We prove our result via a reduction from the set-cover problem. Given
a set cover instance S with n elements {1, . . . , n} and m sets S1, . . . , Sm we
construct an instance G = (V,E) of the minimum rainbow subgraph as follows:

– The vertex set V has one vertex ai corresponding to each element of i the
set cover universe and n vertices bj1 . . . , b

j
n for each set Sj.

– For each element i ∈ Sj , we add the edges (ai, b
j
1), . . . , (ai, b

j
n). The edges

(ai, b
j
k), ∀1 ≤ j ≤ m have color cki .

Let OPTMRS be the minimum order of a rainbow subgraph on the input instance
G and let OPTSC be the number of sets in the minimum set cover instance S.
We show that:

OPTMRS = n · (OPTSC + 1)

First we prove that given a set cover with q sets, we can find a rainbow subgraph
of order n(q+1). The rainbow subgraph contains all the qn vertices correspond-
ing to sets in the cover and all the n vertices corresponding to the elements. We
show now that all the colors are covered in this subgraph. Assume by contra-
diction that there is a color cki which is not covered. Thus, all the vertices bjk
corresponding to the sets Sj for which i ∈ Sj are not part of the subgraph (this
contradicts the definition of a set cover).

We now prove the converse implication. Given a rainbow subgraph of order
n(q + 1), we show how to recover a set cover with q sets. First, observe that
all the ai vertices have to be part of the solution (as the graph G is bipartite
and for each ai, the color cki does not touch any other vertex az). Now, let
Bi = {b1i , . . . , bmi }. There has to be a set Bw which has q or less vertices in the
rainbow subgraph (otherwise the subgraph has order greater than n(q+1)). All
these vertices correspond to sets in a set cover as for all vertices ai the color cwi
has to be covered. Thus, there is a vertex bjw in the rainbow subgraph such that
(ai, b

j
w) ∈ E and element i is covered by Sj .

Following Therorem 1 we obtain that there exists a c such that the minimum
rainbow subgraph does not have a c lnn-approximation, unless
NP ⊆ TIME(nO(log logn)). Notice that n here is the number of elements in the
set cover instance. However, Theorem 1 holds even if the number of sets m is
polynomial in n. Since the maximum degree Δ in our construction is max(m,n),
the theorem follows. ��

202 A. Popa

5 Conclusions and Open Problems

In this paper, we present a max(
√
2p,minq(q + Δ

epq2/Δn
)) - approximation

algorithm for the MRS problem. In particular, this is a max(
√
2n,

√
2Δ lnΔ)

- approximation algorithm. On the other hand we show that the minimum rain-
bow subgraph problem is hard to approximate within a factor of a c lnn, for
some constant c, unless NP ⊆ TIME(nO(log logn)).

We mention that our approximation algorithm has a better ratio when the
number of colors p is large. Thus, we believe that an interesting research direction
is to improve the approximation ratio of the MRS for small values of p.

Acknowledgements. The author would like to thank the anonymous reviewers
for their helpful comments.

References

1. Alon, N., Jiang, T., Miller, Z., Pritikin, D.: Properly colored subgraphs and rain-
bow subgraphs in edge-colorings with local constraints. Random Structures & Al-
gorithms 23(4), 409–433 (2003)

2. Asahiro, Y., Hassin, R., Iwama, K.: Complexity of finding dense subgraphs. Dis-
crete Applied Mathematics 121(1-3), 15–26 (2002)

3. Bland, R.G., Goldfarb, D., Todd, M.J.: The ellipsoid method: A survey. Operations
Research 29(6), 1039–1091 (1981)

4. Camacho, S.M., Schiermeyer, I., Tuza, Z.: Approximation algorithms for the mini-
mum rainbow subgraph problem. Discrete Mathematics 310(20), 2666–2670 (2010)

5. Catanzaro, D., Labb, M.: The pure parsimony haplotyping problem: overview and
computational advances. International Transactions in Operational Research 16(5),
561–584 (2009)

6. Erdős, P., Tuza, Z.: Rainbow subgraphs in edge-colorings of complete graphs.
In: Kennedy, J.W., Gimbel, J., Quintas, L.V. (eds.) Quo Vadis, Graph Theory?
A Source Book for Challenges and Directions. Annals of Discrete Mathematics,
vol. 55, pp. 81–88. Elsevier (1993)

7. Feige, U.: A threshold of ln n for approximating set cover. Journal of the
ACM 45(4), 634–652 (1998)

8. Gusfield, D.: Haplotype Inference by Pure Parsimony. In: Baeza-Yates, R., Chávez,
E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer,
Heidelberg (2003)

9. Hahn, G., Thomassen, C.: Path and cycle sub-Ramsey numbers and an edge-
colouring conjecture. Discrete Mathematics

10. Hajiaghayi, M.T., Jain, K., Lau, L.C., Mandoiu, I.I., Russell, A., Vazirani, V.V.:
Minimum multicolored subgraph problem in multiplex pcr primer set selection and
population haplotyping. In: International Conference on Computational Science,
vol. (2), pp. 758–766 (2006)

11. Huang, Y.-T., Chao, K.-M., Chen, T.: An approximation algorithm for haplotype
inference by maximum parsimony. In: SAC 2005, pp. 146–150 (2005)

12. Hubbell, E.: Unpublished manuscript (2002)
13. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-

puter Computations, pp. 85–103 (1972)

Approximating the Rainbow – Better Lower and Upper Bounds 203

14. Katrenič, J., Schiermeyer, I.: Improved approximation bounds for the minimum
rainbow subgraph problem. Inf. Process. Lett. 111(3), 110–114 (2011)

15. Koch, M., Camacho, S.M., Schiermeyer, I.: Algorithmic approaches for the mini-
mum rainbow subgraph problem. Electronic Notes in Discrete Mathematics 38(0),
765–770 (2011)

16. Lancia, G., Pinotti, M.C., Rizzi, R.: Haplotyping populations by pure parsimony:
Complexity of exact and approximation algorithms. INFORMS Journal on Com-
puting 16(4), 348–359 (2004)

17. Lancia, G., Rizzi, R.: A polynomial case of the parsimony haplotyping problem.
Oper. Res. Lett. 34(3), 289–295 (2006)

18. Rődl, V., Tuza, Z.: Rainbow subgraphs in properly edge-colored graphs. Random
Structures & Algorithms 3(2), 175–182 (1992)

19. Simonovits, M., Sós, V.T.: On restricted colourings of Kn. Combinatorica 4(1),
101–110 (1984)

Ramsey Numbers for Line Graphs

and Perfect Graphs�

Rémy Belmonte, Pinar Heggernes, Pim van ’t Hof, and Reza Saei

Department of Informatics, University of Bergen, Norway
{remy.belmonte,pinar.heggernes,pim.vanthof,reza.saeidinvar}@ii.uib.no

Abstract. For any graph class G and any two positive integers i and j,
the Ramsey number RG(i, j) is the smallest integer such that every graph
in G on at least RG(i, j) vertices has a clique of size i or an independent set
of size j. For the class of all graphs Ramsey numbers are notoriously hard
to determine, and the exact values are known only for very small integers
i and j. For planar graphs all Ramsey numbers can be determined by an
exact formula, whereas for claw-free graphs there exist Ramsey numbers
that are as difficult to determine as for arbitrary graphs. No further
graph classes seem to have been studied for this purpose. Here, we give
exact formulas for determining all Ramsey numbers for various classes
of graphs. Our main result is an exact formula for all Ramsey numbers
for line graphs, which form a large subclass of claw-free graphs and are
not perfect. We obtain this by proving a general result of independent
interest: an upper bound on the number of edges any graph can have if
it has bounded degree and bounded matching size. As complementary
results, we determine all Ramsey numbers for perfect graphs and for
several subclasses of perfect graphs.

1 Introduction

Ramsey Theory is a large and important subfield of combinatorics that studies
how large a system must be in order to ensure that it contains some particular
structure. Since the start of the field in 1930 [11], there has been a tremendous
interest in Ramsey Theory, leading to many results as well as several surveys
and books (see e.g., [7] and [10]). The fundamental theorem of Ramsey Theory,
in its graph theoretic version, states that for every pair of positive integers i and
j, there exists a finite integer R(i, j) such that every graph on at least R(i, j)
vertices contains either a clique of size i or an independent set of size j [11].

It is already somewhat surprising that such values R(i, j) exist, as discussed
by Diestel [5]. Even more surprising is how difficult it is to determine these
values exactly. Despite the vast amount of results that have been produced on
Ramsey Theory during the past 80 years, we still do not know the exact value
of R(4, 6) or R(3, 10) [10]. This is most adequately addressed by the following
quote, attributed to Paul Erdős [12]. “Imagine an alien force, vastly more pow-
erful than us, landing on Earth and demanding the value of R(5, 5) or they will

� This work is supported by the Research Council of Norway.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 204–215, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Ramsey Numbers for Line Graphs and Perfect Graphs 205

destroy our planet. In that case, we should marshal all our computers and all our
mathematicians and attempt to find the value. But suppose, instead, that they
ask for R(6, 6). In that case, we should attempt to destroy the aliens.” During
the last two decades, with the use of computers, lower and upper bounds have
been established for more and more Ramsey numbers. However, the exact values
are known only for very small integers.

Confronted with such difficulty, it is natural to restrict the set of considered
graphs. Such a restriction is also motivated from a computational perspective,
since cliques and independent sets are well studied and highly useful structures
in computer science. Many applications and algorithms are tested on randomly
generated graphs belonging to a particular graph class, and Ramsey numbers
for these graph classes might be useful for generating more meaningful test sets.
In this paper, we study Ramsey numbers for graph classes. In particular, given
a graph class G, for every pair of positive integers i and j, what is the smallest
integer RG(i, j) such that every graph in G on at least RG(i, j) vertices contains
either a clique of size i or an independent set of size j? To the best of our
knowledge, this has been studied previously only when G is the class of planar
graphs and when G is the class of claw-free graphs. For planar graphs, the exact
values for all i, j were provided independently by Walker [15] and by Steinberg
and Tovey [13]. For claw-free graphs, there exist Ramsey numbers that are as
difficult to determine as for arbitrary graphs [9]. Hence it is highly unlikely that
an exact formula for all Ramsey numbers for claw-free graphs will ever be found.

The study of graph classes has flourished during the past few decades, both
within graph theory and within theoretical computer science, where perfect
graphs and claw-free graphs represent some of the most well-studied graph classes
(see e.g., [1,2,3,6]). Our main contribution here is an exact formula for the Ram-
sey numbers for line graphs, which are not perfect and form an important sub-
class of claw-free graphs. In addition, we provide exact formulas for the Ramsey
numbers for the class of perfect graphs and several of its subclasses. We also
observe that determining all Ramsey numbers is as difficult for AT-free graphs
and for P5-free graphs as it is for arbitrary graphs. Hence our results narrow the
gap between known graph classes whose Ramsey numbers can be determined by
exact formulas, and known graph classes whose Ramsey numbers are as hard to
determine as in the general case.

To obtain our results on line graphs, we prove a result of independent interest
on the number of edges of a graph that has bounded degree and bounded max-
imum matching size. A result regarding the number of vertices of such a graph
was given by Cockayne and Lorimer [4].

2 Definitions and Notation

All graphs considered here are undirected, finite and simple. For a graph G,
we use V (G) and E(G) to denote the set of vertices and set of edges of G,
respectively, and we let n = |V (G)|. For a vertex v in G, the set NG(v) = {w ∈
V | vw ∈ E(G)}, consisting of all the neighbors of v in G, is the neighborhood

206 R. Belmonte et al.

of v. The set NG[v] = NG(v) ∪ {v} is the closed neighborhood of v. We omit
subscripts when there is no ambiguity. The degree of a vertex v is d(v) = |N(v)|.
The maximum degree of a vertex in G is denoted Δ(G) = maxv∈V (G) d(v). A
vertex u and an edge e are called incident if u is an endpoint of e. Two edges
incident with a common vertex are also called incident. The edge neighborhood
of a vertex u is the set of edges incident with u. If uv /∈ E(G) then uv is called a
non-edge of G. The complement of a graph G, denoted G, is the graph that has
vertex set V (G), whose edge set is equal to the set of non-edges of G. A vertex
is isolated if its degree is 0, and universal if its degree is n− 1.

A graph is connected if there is a path between every pair of vertices. A
maximal connected subgraph of a graph is called a connected component. For
any set S ⊆ V (G), we write G[S] to denote the subgraph of G induced by S.
We write G − v to denote G[V (G) \ {v}]. A subset S ⊆ V (G) is a clique of
G if all vertices in S are pairwise adjacent in G, and S is an independent set
of G if no two vertices of S are adjacent in G. A complete graph on � vertices
is denoted K� and an edgeless graph on � vertices K�. P� and C� denote the
graphs that are isomorphic to a chordless path and a cycle, respectively, on �
vertices. The disjoint union of graphs G1 = (V1, E1), . . . , Gk = (Vk, Ek) is the
graph (V1 ∪ . . .∪ Vk, E1 ∪ . . .∪Ek), assuming that Vi ∩ Vj = ∅ and Ei ∩Ej = ∅,
for 1 ≤ i 	= j ≤ k.

A matching M of a graph G is a set of edges of G such that no two edges
in M are incident. The size of a matching M , denoted |M |, is the number of
edges in M . A vertex u is said to be saturated by a matching M if there exists
an edge e ∈ M such that e is incident with u; otherwise u is unsaturated by M .
An M -alternating path is a path whose edges belong alternatively to M and not
to M . An M -augmenting path is an M -alternating path whose end-vertices are
both M -unsaturated.

A proper vertex coloring of G is an assignment of colors to the vertices of G
such that pairs of vertices that are adjacent receive different colors. A proper
edge coloring of G is an assignment of colors to the edges of G such that pairs
of edges that are incident receive different colors.

For any two positive integers i and j, the Ramsey number R(i, j) is the smallest
integer such that every graph on at least R(i, j) vertices contains a clique of size
i or an independent set of size j. For a graph class G, we define RG(i, j) to be the
smallest number such that every graph in G on at least RG(i, j) vertices contains
a clique of size i or an independent set of size j. Clearly, RG(i, j) ≤ R(i, j) for
any graph class G.

For every fixed graph H , the class of H-free graphs is the class of graphs that
do not contain an induced subgraph isomorphic to H . A claw is another name for
K1,3, i.e., the graph formed by a vertex adjacent to three pairwise non-adjacent
vertices. For every graph G, the line graph of G, denoted L(G), is the graph with
vertex set E(G), where there is an edge between two vertices e, e′ ∈ E(G) if and
only if the edges e and e′ are incident in G. G is called the preimage graph of
L(G). A graph is a line graph if it is the line graph of some graph. Line graphs
form a subclass of claw-free graphs. An asteroidal triple (AT) is a set of three

Ramsey Numbers for Line Graphs and Perfect Graphs 207

pairwise non-adjacent vertices such that between every two of these vertices,
there is a path that does not contain a neighbor of the third. A graph is AT-free
if it does not contain an AT.

Let ω(G) and χ(G) denote the the size of a largest clique in G and the small-
est number of colors in a proper vertex coloring of G, respectively. A graph is
perfect if ω(G′) = χ(G′) for every induced subgraph G′ of G. Perfect graphs
are characterized as graphs that do not contain a chordless cycle of odd length
at least 5 or the complement of such a cycle as an induced subgraph, as con-
jectured by Berge more than 40 years ago and recently proved by Chudnovsky
et al. [2]. Perfect graphs contain many well studied graph classes, like chordal
graphs, interval graphs, permutation graphs, split graphs, and cographs. A graph
is chordal if it does not contain a chordless cycle of length greater than 3 as an
induced subgraph. An interval graph is the intersection graph of intervals on the
real line. Interval graphs are chordal. A proper interval graph is an interval graph
where the intervals of the real line have unit length. Proper interval graphs are
claw-free. A permutation graph is the intersection graph of straight lines between
two parallels. A cocomparability graph is the intersection graph of curves from
a line to a parallel line. Interval graphs and permutation graphs are unrelated
to each other but they are both cocomparability graphs. A cograph is a graph
that can be generated from single-vertex graphs by repeated application of the
complete join and disjoint union operations. Cographs are permutation. A split
graph is a graph whose vertices can be partitioned into a clique and an inde-
pendent set. Split graphs are chordal. A threshold graph is a graph that can be
constructed from a one-vertex graph by repeated applications of the following
two operations: addition of a single isolated vertex and addition of a single uni-
versal vertex. The class of threshold graphs form a subclass of both split graphs
and cographs. A graph is bipartite if its vertex set can be partitioned into two
independent sets. The complement of a bipartite graph is a co-bipartite graph.

More information on the graph classes mentioned in this paper, including
a wealth of information on applications of these classes, can be found in the
excellent monographs by Brandstädt et al. [1] and by Golumbic [6].

3 Ramsey Numbers for Line Graphs

In this section we give an exact formula for all Ramsey numbers for line graphs.
Throughout this section, let L denote the class of line graphs.

Observation 1. For every integer j ≥ 0, RL(1, j) = 1 and RL(2, j) = j.

The case i = 3 is the first non-trivial case for the class of line graphs. The proof
of the theorem below is omitted in this extended abstract.

Theorem 1. For every integer j ≥ 1,

RL(3, j) =

{
5(j−1)−1

2 + 1 if j is even,
5(j−1)

2 + 1 if j is odd.

208 R. Belmonte et al.

Theorem 2, together with Observation 1 and Theorem 1, provides the exact
values of all Ramsey numbers for line graphs.

Theorem 2 (Main theorem). For every pair of integers i ≥ 4 and j ≥ 1,

RL(i, j) =
{
i(j − 1)− (t+ r) + 2 i = 2k
i(j − 1)− r + 2 i = 2k + 1,

where j = tk + r, t ≥ 0 and 1 ≤ r ≤ k.

Note that for every i ≥ 2 and j ≥ 1, the values of t, k and r are uniquely defined.
For convenience, we define the following function β:

β(i, j) =

{
i(j − 1)− (t+ r) + 1 i = 2k
i(j − 1)− r + 1 i = 2k + 1,

where j = tk + r, t ≥ 0 and 1 ≤ r ≤ k. Hence Theorem 2 can alternatively be
stated as follows: RL(i, j) = β(i, j) + 1 for all i ≥ 4 and j ≥ 1.

We will prove Theorem 2 by considering the number of edges in the preimage
graph of a line graph. It is well-known that every connected line graph, except
K3, has a unique preimage graph (see e.g., [8]). Consequently, for every integer
i 	= 3, if a line graph contains a clique of size i, then its preimage graph has a
vertex of degree i. Similarly, for every integer i ≥ 0, if a line graph contains an
independent set of size j, then its preimage graph H has a matching of size j.
Based on these observations, instead of proving Theorem 2 directly, we prove
Theorems 3 and 4 below, that will immediately imply Theorem 2.

Cockayne and Lorimer [4] determined the maximum number of vertices a
graph can have if both its maximum degree and its maximum matching size
are bounded. In the next theorem, we show how many edges such a graph can
have. We find Theorem 3 to be of combinatorial and computational interest,
independent of the rest of our results.

Theorem 3. Let i ≥ 4 and j ≥ 1 be two integers, and let H be an arbitrary
graph such that Δ(H) ≤ i − 1 and H has a maximum matching of size at most
j − 1. Then H has at most β(i, j) edges.

Proof. We prove the theorem by induction on j.

Base Case: We consider the case j = 1. Since k ≥ 2 then t = 0 and r = 1,
and therefore β(i, j) = β(i, 1) = 0. Any graph with a maximum matching of size
j−1 = 0 does not contain any edge. Hence, the number of edges of H is at most
β(i, j) in this case.

Induction Hypothesis: For every i ≥ 4 and 1 ≤ � < j, any graph H with
Δ(H) ≤ i − 1 and a maximum matching of size at most � − 1 contains at most
β(i, l) edges.

Now we prove that for each i ≥ 4 and j ≥ 2, every graph H with Δ(H) ≤ i − 1
and a maximum matching of size at most j − 1 contains at most β(i, j) edges. Let
H be such a graph andM a maximummatching ofH . Notice that inH every edge

Ramsey Numbers for Line Graphs and Perfect Graphs 209

should have a vertex in common with an edge in M , since otherwiseM would not
be maximum. Hence we can partition the edges of H into three classes:

M : Edges of the maximum matching M ,
T : Edges that are not in M but both of their endpoints are endpoints of edges
in M ,
R: Edges of E(H)\(M ∪ T).

We define V (M) to be the set of endpoints of edges of M . In R, we distinguish
three types of edges:

Type I: Edges ux such that there exist an edge vx with uv ∈ M and x 	∈ V (M).
We call ux and vx a pair of edges of type I.
Type II: Edges ux such that there exist an edge vx with u, v ∈ V (M), x 	∈ V (M)
and uv 	∈ M . We call ux and vx a pair of edges of type type II.
Type III: Edges ux such that u ∈ V (M), x 	∈ V (M) and d(x) = 1.

If an edge of R is of type I and also of type II, then we consider it as an edge
of type I. For each vertex v ∈ V (M), we write dT (v) and dR(v) to denote the
number of edges of T and R, respectively, that are incident to v.

We claim that each edge in M has common endpoints with only one pair of
edges of type I. Assume on the contrary that there exists and edge uv in M that
has common endpoints with at least two pairs of edges of type I. Let ux, vx and
uy, vy be two of these pairs. Now we can remove the edge uv from M and add
ux and vy to it to find a matching in H that is larger than M , which contradicts
the fact thatM is maximum. We also claim that when an edge ofM has common
endpoints with a pair of edges of type I, then none of its endpoints can have any
edge of other types of R in its edge neighborhood. Assume for contradiction that
this happens, and let uv be an edge in M such that ux and vx are a pair of edges
of type I, and uy is an edge in R of type II or type III. In this case, removing
uv from M and adding uy and vx to it yields once again a matching larger than
M , which is a contradiction. Finally, for each edge uv in M , either u or v can be
incident to edges of type II or type III. Otherwise, removing uv from M and
adding two edges of R to M , one from the edge neighborhood of u and the other
one from the edge neighborhood of v, we can obtain a matching inH that is larger
than M , again yielding a contradiction.

We will now determine an upper bound on the maximum number of edges H
can have. We have three cases, depending on which type of edges exist in H .

Case 1: H has at least one edge of R of type III.
Let ux ∈ R be an edge of type III with u ∈ V (M). We remove u and x from

H and call the remaining graph H ′. Every matching M ′ of H ′ has at most j− 2
edges, since otherwise M ′ ∪ {ux} would be a matching of size j in H . Hence,
every matching in H ′ has at most j− 2 edges and every vertex in H ′ has degree
at most i−1. Let j′ = j−1 = t′k+ r′. Observe that t′+ r′ ≥ t+ r−1, because if
2 ≤ r ≤ k then r′ = r− 1 and t′ = t, and if r = 1 then r′ = k ≥ r and t′ = t− 1.
Moreover, note that j′ < j, which means we can apply the induction hypothesis
and get:

210 R. Belmonte et al.

|E(H ′)| ≤
{
i(j′ − 1)− (t′ + r′) + 1 i = 2k
i(j′ − 1)− r′ + 1 i = 2k + 1

where j′ = t′k + r′, t′ ≥ 0 and 1 ≤ r′ ≤ k. For i = 2k, the value i(j′ − 1)− (t′ +
r′) + 1 is equal to i(j − 2)− (t′ + r′) + 1, which is at most i(j − 2)− (t+ r) + 2.
For i = 2k + 1, the value i(j′ − 1) − r′ + 1 is equal to i(j − 2) − r′ + 1, which
is equal to i(j − 2)− r + 2 for r ≥ 2, and is at most i(j − 2) − r + 1 for r = 1.
Therefore, for i = 2k + 1 we have i(j′ − 1) − r′ + 1 ≤ i(j − 2) − r + 2. Finally,
recall that H contains at most . dH(u) edges more than H ′ and Δ(H) ≤ i − 1.
Therefore, we have:

|E(H)| ≤ |E(H ′)|+ i− 1

≤
{
i(j − 2)− (t+ r) + 2 + i− 1 i = 2k
i(j − 2)− r + 2 + i− 1 i = 2k + 1

≤ β(i, j).

As a consequence, from here on we assume that H does not contain any edge of
R of type III.

Case 2: There is a vertex u ∈ V (M) such that dR(u) ≥ 3.
Let us call v the vertex such that uv ∈ M , and let H ′ denote the graph

obtained by removing u from H . We prove that every matching in H ′ has at
most j − 2 edges and then we get the upper bound by the same argument we
had in case 1. For contradiction, suppose there is a matching M ′ in H ′ that has
j− 1 edges. We define the following three induced subgraphs of H : X,Y and Z.

– X is the subgraph of H induced by the endpoints of the edges in M ∩M ′;
– Y is the subgraph of H induced by the endpoints of the edges of all M ′-

alternating paths in H starting at some edge of R incident to u and not
using edges of T \M ′;

– Z is the subgraph of H induced by the vertices of V (M) \ (V (X) ∪ V (Y)).

Note that u belongs to V (Y) and v can belong either to Y or to Z. If v ∈ V (Y),
then uv ∈ E(Y). If v ∈ V (Z), then uv belongs to none of X , Y or Z.

Claim 1. Every vertex in Y \ {u} is M ′-saturated by an edge both endpoints of
which belong to Y .

Proof of Claim 1. Assume for contradiction that there exists a vertex y ∈ V (Y)
such that y is not M ′-saturated. Then there exists an M ′-alternating path P
starting at some edge uw ∈ R and ending at y. This path starts and ends with
M ′-unsaturated vertices (u and y), and therefore P is an M ′-augmenting path.
This means that there is a matching in H with at least j edges, which is a
contradiction. Now we need to prove that the edge e of M ′ that saturates y
belongs to E(Y). If e ∈ E(P), then e ∈ E(Y) by definition of Y . Otherwise,
since e ∈ M ′ and the edge of P that is incident to y is not in M ′, we can add
e to P to obtain a largerM ′-alternating path. Hence e ∈ E(Y) also in this case. %

Ramsey Numbers for Line Graphs and Perfect Graphs 211

Claim 2. For every edge yz ∈ M \ {uv}, if y ∈ Y then yz ∈ E(Y) \M ′.

Proof of Claim 2. Since y ∈ Y , there exists an M ′-alternating path P =
uww′ · · ·xy from u to y. We first show that xy ∈ M ′.

Assume for contradiction that xy /∈ M ′. Then, by the definition of Y , xy does
not belong to T . Therefore we have xy ∈ R \ M ′. Hence we know that there
is a vertex x′ ∈ V (M) ∩ V (P), x′ is the vertex on P preceding x, such that
xx′ ∈ R ∩M ′. Such an edge xx′ always exists, since x ∈ V (H) \ V (M), x is on
the path P from u to y, and no edge in H has both endpoints in V (H) \ V (M).
Note that x′ 	= u, since the edge xx′ ∈ M ′, and no edge of M ′ is incident with u.

For any two vertices a and b of V (P), let Pab denote the subpath of P going
from a to b. Consider the path Pux and recall that it starts with uww′. Let ss′

denote the edge of E(Pux) ∩ R ∩ M ′ closest to x and such that s′ ∈ V (M),
s ∈ V (H) \ V (M) and s′ is closer to x than s. Such an edge always exists, since
we can have s = w and s′ = w′. Now, consider the subpath Psx and let ll′ denote
the edge of E(Psx)∩R closest to s′ and such that l′ ∈ V (M), l ∈ V (H) \V (M),
l 	= s and l′ is closer to s′ than l. Note that we cannot have s′ = l′ = x′, since
ss′ and xx′ both belong to M ′. If l′ = s′ 	= x′, then ll′ /∈ M ′ and there is an
edge ll′′ ∈ R ∩M ′ ∩ V (Pux), which contradicts the choice of ss′. Therefore we
have l′ 	= s′ and ll′ ∈ M ′, since ll′ /∈ M ′ would yield the existence of the edge
ll′′ ∈ R ∩M ′ ∩E(Pux). Notice that Ps′l′ contains no edge of R by construction.
Moreover, by the definition of Y , Ps′l′ also does not contain any edge of T \M ′.
Therefore Ps′l′ is an M -alternating path. Moreover, note that ss′, ll′ ∈ M ′, and
hence Ps′l′ starts and ends with edges of M . Thus Psl is an M -augmenting path,
contradicting the assumption that M is a maximum matching in H . This means
that xy ∈ M ′, and consequently yz /∈ M ′.

To conclude, we need to show that yz ∈ E(Y). This is easily seen from the
fact that if z ∈ V (P), then we have yz ∈ E(Y) by definition of Y . If z /∈ V (P),
then we can extend P to an M ′-alternating path P ′ = Pz, since xy ∈ M ′ and
yz /∈ M ′. Thus z ∈ V (Y) and yz ∈ E(Y). %

Claim 3. {M ∩ E(X),M ∩ E(Y), M ∩ E(Z)} is a partition of the edges in
M \ {uv}.

Proof of Claim 3. Note first that Claim 2 implies that every edge of M \{uv} be-
longs to E(X)∪E(Y)∪E(Z), since uv is the only edge ofM whose endpoints may
belong to different sets. Moreover, we know that E(X)∩E(Z) = E(Y)∩E(Z) =
∅, since E(Z) contains precisely those edges of M that belong to neither E(X)
nor E(Y). Finally, it also follows from Claim 2 that E(X) ∩E(Y) = ∅. %

If v is not saturated byM ′, then adding uv toM ′ yields a matching of size j inH .
Therefore v is saturated by M ′, and it can be either in Y or in Z. Also we should
notice that v does not have any edge neighbor in R, because otherwise this edge
neighbor, uv itself, and an edge neighbor of u in R make an M -augmenting path
in H . This would yield a bigger matching than M , contradicting the maximality
of M . Therefore, the edge of M ′ that saturates v is in T .

212 R. Belmonte et al.

First assume v ∈ Y . We claim that the number of edges of M ′ that saturate
vertices of Z is at most the number of edges of M in Z. Suppose this is not the
case. We know from Claim 1 that all of the vertices of V (X) and V (Y) \ {u}
are already M ′-saturated by edges both endpoints of which belong to V (X) and
V (Y) respectively, and from Claim 3 that Z is disjoint from X and Y . Also the
vertex u is M ′ unsaturated since it is not in H ′ and M ′ is a matching in H ′.
Therefore there is no edge xz ∈ M ′ with x ∈ X ∪ Y and z ∈ Z. Thus every
edge of M ′ that saturates a vertex of Z does not saturate vertices of V (M) in
V (X)∪ V (Y). Note in particular that the argument holds for v since v ∈ V (Y).
Recall that each edge of M is in X , Y or Z as a result of Claim 3. Therefore,
we can remove the edges of M ∩ Z from M , and add those edges of M ′ that
saturate vertices of Z, to obtain a matching strictly larger than M in H , giving
a contradiction. Consequently, the number of edges of M ′ that saturate vertices
of Z is at most the number of edges of M in Z. Now, removing the edges of M ′

which saturate the vertices of Z from M ′, and adding the edges of M ∩ E(Z)
instead, yields a new matching in H ′, say M ′′, with |M ′′| ≥ |M ′|. We prove that
this new matching M ′′ has at least j edges.

All endpoints of edges of M \ {uv} and v are M ′′-saturated, which are 2j − 3
vertices. Recall that every vertex inside Y is saturated by M ′ and therefore also
by M ′′. Let l denote the number of edges of M ′′ that are in X and Z. Then
these edges saturate 2l vertices of those 2j−3 vertices. Let d denote the number
of edges of R ∩M ′′. Then these edges saturate d of those 2j − 3 vertices. Now
we have 2j− 3− 2l− d vertices left to be saturated by edges of M ′′ ∩ T ∩E(Y),
in particular vertex v, since v is saturated by an edge in M ′′ ∩ T . Hence at least
j− 3

2 − l− d
2 edges of T belong to M ′′, which means that |M ′′| ≥ j− 3

2 +
d
2 . Recall

that u has at least three edges of R of type II in its edge neighborhood. Each
of these edges is the first edge of an M ′-alternating path inside Y , and each of
these paths has at least two edges, and hence for each edge of R incident with u,
there is an edge of R in M ′, and therefore also in M ′′. Hence d ≥ 3. Therefore,
in this case the number of edges of M ′′ is at least j, which gives a contradiction.

Now assume v ∈ Z. In this case, the number of edges of M ′ that saturate
vertices of Z is at most one more than the number of edges of M in Z. Suppose
this is not the case. Then we can remove the edges of M ∩ E(Z) from M and
replace them by edges of M ′ that saturate vertices of Z, except the one that
saturates v. For the same reason as in the previous case, this yields a matching
strictly larger than M in H ; a contradiction. Then in this case, the number of
edges of M ′ that saturate vertices of Z is at most the number of edges of M
in Z plus one. Now, removing the edges of M ′ which saturate vertices of Z,
and adding the edges of M ∩ E(Z) and uv instead, yields a new matching in
H , say M ′′, with |M ′′| ≥ |M ′|. We prove that this new matching M ′′ has at
least j edges. All vertices of V (M) are M ′′-saturated, which are 2j − 2 vertices.
Let l denote the number of edges of M ′′ that are in X and Z plus one for uv,
then these edges saturate 2l vertices of those 2j− 2 vertices. Define d like in the
previous case. Then we have 2j − 2 − 2l − d remaining vertices to be saturated
by edges of M ′′ ∩ T ∩ E(Y), as before. Hence at least j − 1 − l − d

2 edges of T

Ramsey Numbers for Line Graphs and Perfect Graphs 213

belong to M ′′, which means that |M ′′| ≥ j − 1 + d
2 . Since we already saw that

d ≥ 3, the number of edges of M ′′ is at least j, which again gives a contradiction.

Case 3: For each vertex v ∈ V (M), dR(v) ≤ 2.
The analysis of this case is based on the number of vertices in V (H) \ V (M).

When |V (H) \ V (M)| = 1, we can directly determine the number of edges in
H . When |V (H) \ V (M)| ≥ 2, to show the upper bound we need to count also
non-edges of H which have both endpoints in V (M). The full proof of this case
must be omitted in this extended abstract. There are no remaining cases. ��

Since the number of edges in a graph is equal to the number of vertices in its
line graph, Theorem 3 implies that for every i ≥ 4 and j ≥ 1, any line graph on
at least β(i, j) + 1 vertices contains either Ki or Kj as an induced subgraph.

The following theorem, whose proof is omitted in this extended abstract,
shows that the upper bound of Theorem 3 is actually tight, completing the
proof of Theorem 2.

Theorem 4. For every pair of integers i ≥ 4 and j ≥ 1, there exists a graph H
such that Δ(H) ≤ i− 1, H has a maximum matching of size at most j − 1, and
H has β(i, j) edges.

4 Ramsey Numbers for Perfect Graph Classes

In this section, we give exact values for the Ramsey numbers of perfect graphs
and several of their subclasses.

A graph class G is χ-bounded if there exists a non-decreasing function f :
N → N such that for every G ∈ G, we have χ(G′) ≤ f(ω(G′)) for every induced
subgraphG′ of G. Such a function f is called a χ-bounding function for G, and we
say that G is χ-bounded if there exists a χ-bounding function for G. Both Walker
[15] and Steinberg and Tovey [13] observed the close relationship between the
chromatic number and Ramsey number of a graph when they studied Ramsey
numbers for planar graphs. Their key observation can be applied to any χ-
bounded graph class as follows.

Lemma 1. Let G be a χ-bounded graph class with χ-bounding function f . Then
RG(i, j) ≤ f(i− 1)(j − 1) + 1 for all i, j ≥ 1.

Proof. Let G be a graph in G with f(i − 1)(j − 1) + 1 vertices. Suppose that
G contains no Ki. Since G has no Ki, we have ω(G) ≤ i − 1. By the definition
of a χ-bounding function, χ(G) ≤ f(ω(G)) ≤ f(i − 1). Let φ be any proper
vertex coloring of G. Since φ uses at most f(i− 1) colors and G has f(i− 1)(j−
1) + 1 vertices, there must be a color class that contains at least j vertices.
Consequently, G contains an independent set of size j. ��

Theorem 5. Let G be a graph class that is perfect and that contains disjoint
unions of complete graphs. Then RG(i, j) = (i − 1)(j − 1) + 1.

214 R. Belmonte et al.

Proof. Observe that the identity function is a χ-bounding function for the class
of perfect graphs. Hence from Lemma 1 we have RG(i, j) ≤ (i − 1)(j − 1) + 1
when G is the class of perfect graphs or any of its subclasses. The matching lower
bound is obtained by the disjoint union of j − 1 copies of Ki−1. ��

As a consequence of the above theorem, RG(i, j) = (i−1)(j−1)+1 in particular
when G is the class of perfect graphs, chordal graphs, interval graphs, proper
interval graphs, permutation graphs, cocomparability graphs, or cographs.

We now give the formulas for the Ramsey numbers for some perfect graph
classes that do not contain disjoint unions of complete graphs, and hence have
lower Ramsey numbers. The proofs of Theorems 7 and 8 are omitted in this
extended abstract.

Theorem 6. Let G be the class of split graphs. Then RG(i, j) = i + j − 1.

Proof. Let G be a split graph, where the vertices are partitioned into a clique
of size i− 1 and an independent set of size j − 1. Then |V (G)| = i+ j − 2, and
the addition of a vertex to either set creates either a larger clique or a larger
independent set. Hence RG(i, j) ≤ i+ j−1. For the lower bound, consider a split
graph G, where the vertices are partitioned into a clique C and an independent
set I, such that |C| = i − 1, |I| = j − 1, C is a maximal clique in G, and for
every vertex v in C, v has at least one neighbor in I. This graph G has i+ j− 2
vertices, no clique of size i and no independent set of size j. ��

Theorem 7. Let G be the class of threshold graphs. Then RG(i, j) = i+ j − 2.

Theorem 8. For every integer i ≥ 3, RG(i, j) = 2j − 1 when G is the class of
bipartite graphs, forests, or paths.

Corollary 1. Let G be the class of co-bipartite graphs. For every integer j ≥ 3,
RG(i, j) = 2i− 1.

5 Conclusions and other Graph Classes

A question that emerges from our results is the following. For which superclasses
of line graphs or perfect graphs can we hope to find exact formulas for their
Ramsey numbers? Line graphs form a subclass of claw-free graphs, and they are
not perfect. Matthews [9] showed that when G is the class of claw-free graphs,
RG(i, 3) = R(i, 3) for every positive integer i, which implies that determining
Ramsey numbers for claw-free graphs can be as difficult as it is for arbitrary
graphs. We show that his argument can be applied to other graphs classes as
well.

Theorem 9. Let j be a positive integer and let G(j) be the class of Kj-free
graphs. Then RG(j)(i, j) = R(i, j) for every positive integer i.

Ramsey Numbers for Line Graphs and Perfect Graphs 215

Proof. By definition, RG(j)(i, j) ≤ R(i, j) for all positive integers i, j. For all
positive integers i and j, there is a graph G on R(i, j) − 1 vertices that con-
tains neither Ki nor Kj as an induced subgraph. Since G is Kj-free, we have
RG(j)(i, j) ≥ |V (G)|+ 1 = R(i, j). ��

Note that for any two classes of graphs G and G′, if G ⊆ G′ then RG(j)(i, j) ≤
RG′(j)(i, j) for all positive integers i, j. Consequently, for any class G′ that con-
tains the class of Kj-free graphs, we also have RG′(i, j) = R(i, j) for every
positive integers i, j. In particular, the case j = 3 implies that finding a general
formula for all Ramsey numbers for the classes of claw-free, AT-free and P�-free
(� ≥ 5) graphs is as hard as finding a formula for general graphs. Is it possible
to find a formula for RG(i, j) when G is one of these graph classes and j ≥ 4?

Further positive results could be achieved for graph classes that are not perfect
and that are not superclasses of claw-free, AT-free or P5-free graphs. We raise
the question of computing the exact values of Ramsey numbers for such classes
of graphs, e.g., circle graphs, unit disk graphs, and quasi-line graphs.

References

1. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey. SIAM (1999)
2. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect

graph theorem. Ann. Math. 164, 51–229 (2006)
3. Chudnovsky, M., Seymour, P.: The structure of claw-free graphs. In: Surveys in

Combinatorics 2005. London Math. Soc. Lecture Note Ser., p. 327 (2005)
4. Cockayne, E.J., Lorimer, P.J.: On Ramsey graph numbers for stars and stripes.

Canad. Math. Bull. 18, 31–34 (1975)
5. Diestel, R.: Graph Theory, Electronic edition. Springer (2005)
6. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of

Disc. Math. 57 (2004)
7. Graham, R.L., Rothschild, B.L., Spencer, J.H.: Ramsey Theory, 2nd edn. Wiley

(1990)
8. Harary, F.: Graph Theory. Addison-Wesley (1969)
9. Matthews, M.M.: Longest paths and cycles in K1,3-free graphs. Journal of Graph

Theory 9, 269–277 (1985)
10. Radziszowski, S.P.: Small Ramsey numbers. Electronic Journal of Combinatorics,

Dynamic Surveys (2011)
11. Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. Series 2,

vol. 30, pp. 264–286 (1930)
12. Spencer, J.H.: Ten Lectures on the Probabilistic Method. SIAM (1994)
13. Steinberg, R., Tovey, C.A.: Planar Ramsey numbers. J. Combinatorial Theory

Series B 59, 288–296 (1993)
14. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Diskret. Analiz. 3,

25–30 (1964) (in Russian)
15. Walker, K.: The analog of Ramsey numbers for planar graphs. Bull. London Math.

Soc. 1, 187–190 (1969)

Geodesic Order Types�

Oswin Aichholzer1, Matias Korman2, Alexander Pilz1, and Birgit Vogtenhuber1

1 Institute for Software Technology, Graz University of Technology, Austria
{oaich,apilz,bvogt}@ist.tugraz.at

2 Universitat Politècnica de Catalunya (UPC), Barcelona
matias.korman@upc.edu

Abstract. The geodesic between two points a and b in the interior of a
simple polygon P is the shortest polygonal path inside P that connects
a to b. It is thus the natural generalization of straight line segments on
unconstrained point sets to polygonal environments. In this paper we
use this extension to generalize the concept of the order type of a set of
points in the Euclidean plane to geodesic order types. In particular, we
show that, for any set S of points and an ordered subset B ⊆ S of at
least four points, one can always construct a polygon P such that the
points of B define the geodesic hull of S w.r.t. P , in the specified order.
Moreover, we show that an abstract order type derived from the dual of
the Pappus arrangement can be realized as a geodesic order type.

1 Introduction

Order types are one of the most fundamental combinatorial descriptions of sets of
points in the plane. For each triple of points the order type encodes its orientation
and thus reflects most of the combinatorial properties of the given set. We are
interested in how much the order type of a point set changes when the points lie
inside a simple polygon, and the orientation of point triples is given with respect
to the geodesic paths connecting them. As depicted in Fig. 1, this orientation
can change depending on the polygon. In this paper we develop a generalization
of point set order types to the concept of geodesic order types.

In set theory, order types impose an equivalence relation between sets of points
in the Euclidean plane. Two sets have the same order type if there is a bijection
between them that is order preserving [11, pp. 50–51]. Goodman and Pollack [6]
extend this concept to finite, multidimensional sets. They define that two d-
dimensional point sets S1 and S2 have the same point set order type when there
exists a bijection σ between the sets such that each (d + 1)-tuple in S1 has the
same orientation (i.e., the side of the hyperplane defined by p1 . . . pd on which the
point pd+1 lies) as its corresponding tuple in S2. It is also common to consider
� Research supported by the ESF EUROCORES programme EuroGIGA - ComPoSe,

Austrian Science Fund (FWF): I 648-N18 and grant EUI-EURC-2011-4306. M. K.
received support of the Secretary for Universities and Research of the Ministry of
Economy and Knowledge of the Government of Catalonia and the European Union.
A.P. is recipient of a DOC-fellowship of the Austrian Academy of Sciences at the
Institute for Software Technology, Graz University of Technology, Austria.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 216–227, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Geodesic Order Types 217

two point sets to be of the same order type if all orientations are inverted in
the second set. In the plane, this means that for two sets of the same order
type, the ordered point triple u, v and w has the same orientation (clockwise or
counterclockwise) as σ(u), σ(v), σ(w). The infinitely many different point sets
of a given cardinality can therefore be partitioned into a finite collection of order
types. The orientations of all triples of the point set determine for any two given
line segments whether they cross. Therefore, the order type defines most of the
combinatorial properties of a point set.1 For example, its convex hull, planarity
of a given geometric graph (e.g., a triangulation), its rectilinear crossing number,
etc. only depend on the order type. One might wonder whether every (consistent)
assignment of orientations to triples of an abstract set allows a realization as a
point set in the Euclidean plane. This is in general not true, not even if the
assignment fulfills axiomatic requirements. See Knuth’s monograph [12] for a
detailed and self-contained discussion of this topic.

p

1

2

3

p

1

3

2

Fig. 1. The radial order of shortest paths
to points around a point p can be different
in unconstrained and geodesic settings

Generalizing classic geometric re-
sults to geodesic environments is
a well-studied topic. For exam-
ple, Toussaint [16] generalized the
concept of convex hulls of point
sets to geodesic environments. Other
topics like Voronoi Diagrams [2],
Ham-sandwich Cuts [3], Linear Pro-
gramming [4], etc. have also been cov-
ered. However, to the best of our
knowledge, the concept of geodesic
order types has not been studied in
the literature. Hence, it constitutes a
natural and general extension to the
above results.

The classic order type is often used
to identify extremal settings for combinatorial problems on point sets. For exam-
ple, finding sets which minimize the number of crossings in a complete geometric
graph, or maximize the number of elements of a certain class of graphs (spanning
trees, matchings, etc.) are typical applications. In a similar spirit, the geodesic
order type might be used to investigate extremal properties in geodesic environ-
ments. Examples might be problems on pseudo-triangulations (the side chains of
a pseudo-triangle are geodesics), guarding problems inside polygonal boundaries
(there, shortest paths are geodesics), and related problems; see, e.g., [15] for a
recent survey on pseudo-triangulations.

1 It is common to regard the properties defined by orientations of triples as the com-
binatorial ones. There are further settings on point sets that can be seen as being
combinatorial as well, e.g., asking whether the fourth point of a quadruple lies in-
side the circle defined by the first three ones (see [12]). Also, the circular sequence
of a point set is a richer way of describing the combinatorics of point sets, totally
implying the order type [9].

218 O. Aichholzer et al.

1.1 Preliminaries

A closed polygonal path P is called a simple polygon if no point of the plane
belongs to more than two edges of P , and the only points that belong to exactly
two edges are the vertices of P . A closed polygonal path Q is a weakly simple
polygon if every pair of points on its boundary separates Q into two polygonal
chains that have no proper crossings, and if the angles of a complete traversal
of the boundary of Q sum up to 2π [16]. Observe that a simple polygon is a
weakly simple polygon, but the reverse is not true. Unless stated otherwise, all
polygons are considered to be simple herein. We will follow the convention of
including both, the interior and the boundary of a polygon, when referring to it.
The boundary of polygon P will be denoted by ∂P .

The geodesic π(s, t, P) between two points s, t ∈ P in a simple polygon P is
defined as the shortest path that connects s to t, among all the paths that stay
within P . If P is clear from the context, we simply write π(s, t). It is well known
from earlier work that there always exists a unique geodesic between any two
points [13], even if P is weakly simple. Moreover, this geodesic is either a straight
line segment or a polygonal chain whose vertices (other than its endpoints) are
reflex vertices of P . Thus, we sometimes denote the geodesic as the sequence of
these reflex vertices traversed in the geodesic (i.e., π(s, t) = 〈s = v0, v1, . . . , vk =
t〉). When the geodesic π(s, t) is a segment, we say that s sees t (and vice versa).

u

v

Fig. 2. Seven points inside a polygon P and
their geodesic hull (marked in gray). Ob-
serve that the boundary of the geodesic hull
consists of the concatenation of the short-
est paths connecting the extreme vertices
of S, in circular order. Further note that a
vertex of the geodesic hull that stems from
P can be a convex and a reflex vertex of
the geodesic hull at the same time (like ver-
tex u) or only a reflex vertex (like v).

For any fixed polygon P , a region
C ⊆ P is geodesically convex (also
called relative convex) if for any two
points p, q ∈ C, we have π(p, q, P) ⊆
C. The geodesic hull (relative convex
hull) CHP (U) of a set U is defined
as the smallest (in terms of inclusion)
geodesically convex region C that con-
tains U . We will denote by CH(U)
the standard Euclidean convex hull.
Whenever a point p ∈ U is in the
boundary of CHP (U), we say that p is
an extreme point of U (with respect to
P). The set of all such extreme points
is called the extreme set of U , and is
denoted by EP (U).

Although these definitions are valid
for any subset U of P , in this paper
we will only use them for a finite set of points S = {p1, . . . , pn}. Further note
that the geodesic hull is a weakly simple polygon (see Fig. 2). From now on we
assume that the points in the union of S with the set V of vertices of P are in
strong general position. That is, there are no three collinear points, and, for any
four distinct points p1, p2, p3, p4 ∈ S ∪ V , the line passing through p1 and p2 is
not parallel to the line passing through p3 and p4.

Geodesic Order Types 219

1.2 Orientations and Geodesics

The concept of clockwise order of a triple of points (p, q, r) naturally extends to
geodesic environments. Let π(p, q) = 〈p = v0, . . . , vk = q〉 and π(p, r) = 〈p =
u0, . . . , uk′ = r〉 be the geodesics connecting p with q and r, respectively. Also, let
i > 0 be the smallest index such that vi �= ui. We say that (p, q, r) are in geodesic
clockwise order if (vi−1, vi, ui) are in (Euclidean) clockwise order. It is easy to
see that, due to the strong general-position assumption, any triple is oriented
either clockwise or counterclockwise in the geodesic environment. We adopt the
common phrasing, and say that r is to the right of q (with respect to p) whenever
(p, q, r) are in geodesic clockwise order (or that r is to the left, otherwise). By
definition, if (p, q, r) are in geodesic clockwise order, then for any a < i ≤ b, c, the
triple (va, vb, uc) must also be in geodesic clockwise order. Hence, this definition
also accounts for the intuitive perception of “left” and “right” when traversing
the geodesics.

Note that “left” and “right” differ between the geodesic and the unconstrained
setting, since we can use reflex vertices of the surrounding polygon to “reorder”
unconstrained point triples. An illustration is shown in Fig. 3; in this example,
the polygonal chain crosses two edges of the triangle and the supporting line of
the third one. In general, this operation is not local, and might alter the order
type of other triples (more details of this operation will be given in Section 3).

The orientation predicate can also be defined in terms of the geodesic hull
CHP ({p, q, r}). When traversing this hull counterclockwise, the points appear in
that order if and only if their geodesic orientation is counterclockwise.

a

b

c
a

b

c

Fig. 3. Reordering a triangle using a polygonal chain. The triple (a, b, c) is in (Eu-
clidean) counterclockwise order. However, upon introducing the polygon (right figure)
the same triple is now in (geodesic) clockwise order.

1.3 Contribution

The triple orientation in geodesic environments extends the one in Euclidean
environments. Since the latter defines the order type of a point set, we obtain a
generalization of point set order types to geodesic order types. It is easy to see
that the order type of a fixed point set S can change with different enclosing
polygons. In particular, some points that appear in the (Euclidean) convex hull

220 O. Aichholzer et al.

may not be present in the geodesic hull and, vice versa, some non-extreme points
of S may appear on the geodesic hull.

In this paper, we study the ways in which the set of extreme points of a given
set S can change with the shape of the polygon. We show that any subset B of
four or more points of S can become the extreme set of S (i.e., there exists a
polygon P such that EP (S) = B). Moreover, we can make them appear in any
predefined order along the boundary of the geodesic hull. We also characterize
when this property is fulfilled for sets of size 3. Finally, we show in Section 3
that the abstract order types that can be realized as geodesic order types are a
proper superset of the abstract order types realizable as Euclidean order types.
Specifically, we show that the non-realizable abstract order type derived from
Pappus’ Theorem via duality can be realized as a point set inside a polygon.
This can also be seen as the class of inverse problems to the classic questions for
geodesic environments, where the polygon is usually part of the input.

2 Geodesic Hull versus Convex Hull

In this section, we study how much the geodesic hull of a given point set can
alter from the Euclidean convex hull. We partition S into two sets of blue and
red points (B and R, respectively). A set B is said to be separable from R if
there exists a polygon with at most |B| convex vertices (i.e., a pseudo-|B|-gon)
that contains all points of R and no point of B in its interior. From now on, we
assume that the set S is fixed. Thus we omit writing “from R” and simply refer
to B as a separable point set. The following theorem draws a nice connection
between the separability of point sets and their geodesic hull.

c1 c3
c4

c5

c6c7

s1

s3 s4

s6

s2

s5

s7
c1 c2

c3
c4

c5

c6c7

s1

s3 s4

s6

s2

s5

s7
c2

Fig. 4. Illustration of the proof of Theorem 1: with a one-to-one correspondence be-
tween the convex vertices c1, . . . , c7 of P and the points s1, . . . , s7 of B, we can obtain
a weakly simple polygon P ′ such that EP ′(S) = {s1, . . . , s7} (left), which then can be
transformed to a polygon (right)

Theorem 1. For any separable point set B and any permutation σ of B, there
exists a polygon P such that EP (S) = B and the clockwise ordering of B on the
boundary of CHP (S) is exactly σ.

Geodesic Order Types 221

Proof. Let k = |B| and P be a separating polygon of B. If P has strictly less
than k convex vertices, we introduce more by replacing any edge e by two edges,
adding a convex vertex arbitrary close to the center point of e. Thus, we assume
that P has k convex vertices c1, . . . , ck.

Let s1, . . . , sk be an arbitrary ordering of the vertices of B. For all i ≤ k, we
connect point si ∈ B to ci by a polygonal chain. Observe that we can always
do this in a way that no two chains cross. Now let P ′ be the union of P and
the polygonal chains, see Fig. 4 (left). The union of geodesics connecting si with
si+1 (and sk with s1) exactly corresponds to the boundary of P ′. Moreover,
all points of R are in the interior of P ′. Notice that P ′ is not a polygon, but a
weakly simple polygon. As illustrated in Fig. 4 (right), we obtain a polygon from
P ′ by transforming polygonal paths into narrow passages of width at most ε (for
a sufficiently small ε, and such that no blue point sees any other blue point). 	

We now study the separability of a point set as a function of its size. Surprisingly,
the separability of the set B does not strongly depend on the set R.

Theorem 2. Any set B with cardinality |B| ≥ 5 is separable with a polygon with
at most 2|B| − 2 vertices.

In order to prove the above theorem, we first consider some simpler cases and
then show how to deal with larger point sets. The proofs for the following state-
ments are by construction of according polygons and can be found in the full
version of this paper.

Lemma 1. Any set B of five points is separable.

The main idea of the proof is sketched in Fig. 5.

a b

c

d

m

e

l

l′

Fig. 5. A set of five points is always separable. A narrow, bent spike can be built
around the empty convex quadrilateral of the set. A second spike is chosen parallel to
the first one and in opposite direction. Sufficiently far away, the spike end points span
a quadrilateral around the whole set.

Corollary 1. Any subset B of four points in convex position is separable.

Lemma 2. For any set B separable by a polygon P and a point q �∈ S, the set
B ∪ {q} is separable by a polygon P ′ having at most two more vertices than P .

222 O. Aichholzer et al.

The class of polygons constructed in the proof of Lemma 1 will never have more
than 8 vertices. Moreover, by Lemma 2, each additional point of B will add
at most 2 additional vertices to the separating polygon. In particular, we will
always have a separating polygon P whose number of edges is at most 2|B| − 2,
which completes the proof of Theorem 2.

By definition, any point set of size 1 or 2 cannot be separated (since we cannot
construct a simple polygon with one or two convex vertices). Hence, it remains
to consider the cases in which |B| ∈ {3, 4}. To this end, we say that a set R
ε-densely covers B (for any ε > 0) if any wedge emanating from p ∈ B and
not containing any point of R has an opening angle of at most ε. Observe that,
if R ε-densely covers B, no point of B can appear on the boundary of CH(S).
Moreover, if ε ≤ π/3, any convex region that contains three or more blue points
must contain a red point. Showing that for any set R that ε-densely covers B
(for some sufficiently small ε), B cannot be separated from R, we obtain the
following result (the proof is deferred to the full version of this paper).

Theorem 3. For any set B of three points or four points in non-convex position,
there exists a set R such that B is not separable from R.

Fig. 6. Two pseudo-triangles containing
many red points such that the four blue
points are not separable. However, they are
the extreme vertices w.r.t. some polygon.

The example in Fig. 6 shows a point
set where the four blue points lie on
the geodesic hull but are not separa-
ble. This implies, in contrast to sets
of larger cardinality, that for |B| =
4, the concepts of separability and
geodesic hull are not equivalent. Thus,
we switch back to the geodesic set-
ting and consider the remaining cases
|B| ∈ {3, 4}.
Lemma 3. For any set S, any set B ⊂ S of four points, and any permutation σ
of B, there exists a polygon P such that EP (S) = B and the clockwise ordering
of B on the boundary of CHP (S) is exactly σ.

Proof. If the points of B are in convex position, then the statement follows
directly from Corollary 1 and Theorem 1. Thus, assume that B is not in convex
position. Consider a line l1 spanned by two of the extreme points of B, and a
line l2 that is parallel to l1 and passes through the third extreme point of B
(see Fig. 7). We construct two pseudo-triangles P1 and P2, each with four edges,
with the following properties: (1) P1 has a convex and a reflex vertex on l1,
such that the reflex vertex is between the convex vertex and both blue points
on l1. (2) Accordingly, P2 has a convex and a reflex vertex on l2, such that the
reflex vertex is between the convex vertex and the blue vertex on l2. (3) Both,
P1 and P2, have a vertex between l1 and l2, and the edges connecting the convex
point on l1 (l2) to these vertices are parallel. (4) The non-extreme point of B
lies between P1 and P2. (5) All red points lie inside P1 or P2. Note that these
properties can always be fulfilled, as the convex points of the pseudo-triangles

Geodesic Order Types 223

l1

l2

P1

P2

Fig. 7. Construction for a polygon P with EP (S) = B based on two pseudo-triangles
that contain all red points (depicted with dots) and none of the blue points (drawn as
crosses)

can be far away, and thus the reflex angles can be made arbitrarily small and
the area covered by the pseudo-triangles can be arbitrarily “thick”.

As indicated in Fig. 7, we can merge the two pseudo-triangles to form a
polygon by adding a narrow passage from a convex vertex of P1 to a convex
vertex of P2. To obtain our final polygon P with EP (S) = B in the desired
order, we proceed like in the proof of Theorem 1, connecting the blue points to
the four convex vertices of P1 and P2 that were not used for the passage between
P1 and P2. 	

If we combine this result with Theorems 1 and 2 we obtain the following state-
ment.

Theorem 4. For any set S, any set B ⊂ S of at least four points, and any
permutation σ of B, there exists a polygon P such that EP (S) = B and the
clockwise ordering of B on EP (S) is exactly σ.

We conclude this section by studying what happens when the set B has cardi-
nality three.

Theorem 5. Let B ⊂ S be a set with |B| = 3 such that B is the geodesic hull
of S for some polygon P . Then B is separable.

Proof. Recall that the geodesic hull of S is a weakly simple polygon which has
all points of B on its boundary, and contains all points of S \ B in its interior.
Moreover, a vertex v of the geodesic hull can only be convex if (1) v ∈ B, or
(2) v is part of some weakly simple polygonal chain and thus coincides with a
reflex vertex of the geodesic hull. Thus, as |B| = 3, the geodesic hull must consist
of a pseudo-triangle Δ, possibly with polygonal chains attached to the convex
vertices of Δ, where each blue vertex corresponds to one convex vertex of Δ (see
Fig. 8). By slightly shrinking Δ, we obtain a pseudo-triangle Δ′ still having all
points of S \ B in its interior that leaves all points of B outside. Thus Δ′ is a
separating polygon for B. 	

224 O. Aichholzer et al.

Table 1. Overview of results and relationship between pushable and separable

|B| Pushable Separable
≤ 2 never (Def.) ⇔ never (Def.)

3 not always ⇔ (Thm. 1 and 4) not always (Thm. 3)
4 always (Thm. 3) ⇐ (Thm. 1) convex position: always (Cor. 1)

non-convex: not always (Thm. 3)
≥ 5 always (Thm. 4) ⇔ always (Thm. 2)

Fig. 8. A set B ⊂ S with |B| =
3, and a polygon P (dark shaded)
with EP (S) = B (depicted ×). The
geodesic hull is drawn light shaded.

Together with Theorem 3 the above result im-
plies that there exist point sets S with |B| = 3
such that B can not be used to define the
geodesic hull of S. This is in contrast to the
fact that for any set with |B| ≥ 4 this is al-
ways possible. Table 1 gives an overview of
the obtained results and also shows the rela-
tion between a set being ’pushable’ (meaning
that there is a polygon such that B is on the
geodesic hull) and ’separable’ for different car-
dinalities of B.

3 Realizing the Pappus Arrangement

By duality, every set of points in the d-dimensional Euclidean space corresponds
to an arrangement of hyperplanes in the same space (see e.g. [5] for details on
this mapping). This dual is incidence and order preserving. When traversing a
line u∗ in the plane, the order in which the lines v∗ and w∗ are crossed gives
the orientation of the corresponding point triple u, v, w in the primal setting
[8]. Hence, the crossings in the line arrangement determine the order type of the
corresponding point set. An arrangement of pseudo-lines is a set of simple curves
such that each pair has exactly one point in common, and at this point the pair
crosses. The crossings in the pseudo-line arrangement define an abstract order
type. Obviously, if we can stretch the curves to straight lines without changing
the order of all crossings, we obtain a realization of the order type defined by
the crossings. This has been used in the exhaustive enumeration of point set
order types [1]. However, for sets of size 9 or more, it is known that there exist
non-realizable abstract order types (i.e., pseudo-line arrangements that are non-
stretchable). The example for 9 pseudo-lines is based on the well-known Pappus’
Theorem [10,14].

Using the axiomatic system of [12, p. 4], one can show that all geodesic order
types are in fact a subset of abstract order types, i.e., of those that are defined
by pseudo-line arrangements (details are given in the full paper).

Geodesic Order Types 225

123
4

5

6

7

8

9

9

8

7

6

54321

123
4

5

6

7

9

8

��� ��� ��� ��� ���
��� ��� ��� ��� ���

��� ��� ���
��� ��� ���
��� ��� ���

���

Fig. 9. A non-stretchable pseudo-line arrangement derived from Pappus’ Theorem,
adapted from [7, Fig. 5.3.2] (left). The transformed arrangement, having all lines cross-
ing line 1 first (middle). All ascending counterclockwise point triples derived from the
arrangement (right).

3.1 The Arrangement

The non-stretchable arrangement whose abstract order type we realize in the
geodesic setting is an adaption from the one shown in [7, p. 107], see Fig. 9 (left).
It is well-known that this pseudo-line arrangement cannot be stretched and thus
the corresponding abstract order type cannot be realized by a point set. From the
correspondence between a straight line in the Euclidean plane to a great circle in
the sphere model of the projective plane, it is easy to see that an arrangement is
stretchable in the real plane if and only if it is stretchable in the projective plane.
We can therefore apply projective transformations to the arrangement without
affecting its realizability. In this way we transform the arrangement of [7] to
the standard labeling, see Fig. 9 (middle) for the resulting drawing. Roughly
speaking, the crossings of a pseudo-line that happen before the crossing with l1
are “moved” to the other side. Namely, these are the crossing of l9 with l8 and
the crossings of l5 with l9, l8, l7, and l6, in the given order. We do so in order
to make all pseudo-lines cross pseudo-line l1 before any other. In the primal,
this corresponds to p1 being on the convex hull boundary and points p2, . . . , p9

being sorted clockwise around it. Note that this kind of projective transformation
actually preserves the order type. Fig. 9 (right) shows all triples with ascending
indices that have counterclockwise orientation (which easily allows obtaining the
orientation of all triples). For example, the entry “278” indicates that pseudo-line
l2 crosses l8 before l7, inducing counterclockwise orientation of the point triple
p2p7p8 in the primal.

3.2 The Realization

Consider the point set S = {p1, . . . , p9} shown in Fig. 10 (left). The only triples
whose orientations do not match those indicated by Fig. 9 are the permuta-
tions of p2, p7 and p9. Equivalently, one can say that the triangle defined by the
three points is the only one that has the wrong orientation among all triangular
subgraphs of the complete graph of S. This triangle is shown with thick (blue)
edges.

226 O. Aichholzer et al.

1
2

3

4

5

6

7

8
9

1

3

4

5

6

7

8
9

7

9

2
2

Fig. 10. A point set that “almost” realizes the unrealizable arrangement (left). The
point triple spanning the thick blue triangle Δp2p7p9 is the one for which the orientation
is wrong. A geodesic realization of the arrangement (right). The shortest paths between
the points are geodesics in the interior of the polygon (gray). The region of interest is
shown in detail in the middle. The polygon closes with a convex vertex far on the right
side, as indicated.

We already discussed how reflex vertices of a surrounding polygon can change
the orientation of a triple. The problem with this tool is that the polygonal chain
is likely to reorder other triangles as well. In the point set shown in Fig. 10 (left),
this tool can, however, be applied. We create a polygon P that contains S. The
result of the construction is shown in Fig. 10 (right). We cross four edges during
this operation. Note that the geodesics π(p1, p9, P) and π(p1, p8, P) are now no
longer line segments, still the order defined by their end vertices has not changed.
The triple p2, p7, p9, however, is now oriented counterclockwise, as demanded by
the abstract order type. By checking all the point triples, the reader can verify
that this geodesic order type indeed realizes the abstract order type of the Pappus
arrangement.

Theorem 6. There exists a point set S and a polygon whose geodesic order type
realizes an abstract order type that is not realizable as a point set in the plane.

We note that our construction is minimal; that is, there cannot exist a point set
of nine points and a polygon of fewer vertices (than the one given in Fig. 10,
right) that realize the Pappus arrangement.

4 Conclusion

In this paper, we made a first step into generalizing the concept of point set order
types to geodesic order types. For a selection of four or more points out of a set
S, we showed how to construct a polygon such that exactly these vertices are on
the geodesic hull of S, in any order desired. To the contrary, this is not always
possible for three points. We further showed an example of an abstract order
type that is not realizable in the Euclidean plane, but is realizable in geodesic
environments.

Several interesting questions rise from our investigations. Which bounds on
the number of vertices in the polygon that forces the desired geodesic hull can

Geodesic Order Types 227

we derive? What is the complexity of minimizing the number of vertices? Even
though we showed the realizability of the abstract order type derived from Pap-
pus’ Theorem, we have no general tools to realize order types inside polygons.
Can every abstract order type (which is non-realizable in the Euclidean plane)
be realized as a geodesic order type? And which of them can be realized in a
given polygon?

References

1. Aichholzer, O., Krasser, H.: Abstract order type extension and new results on the
rectilinear crossing number. Comput. Geom. 36(1), 2–15 (2007)

2. Aronov, B.: On the geodesic voronoi diagram of point sites in a simple polygon.
In: SCG 1987: Proceedings of the Third Annual Symposium on Computational
Geometry, pp. 39–49. ACM, New York (1987)

3. Bose, P., Demaine, E.D., Hurtado, F., Iacono, J., Langerman, S., Morin, P.:
Geodesic ham-sandwich cuts. In: SCG 2004: Proceedings of the Twentieth Annual
Symposium on Computational Geometry, pp. 1–9. ACM, New York (2004)

4. Demaine, E.D., Erickson, J., Hurtado, F., Iacono, J., Langerman, S., Meijer, H.,
Overmars, M.H., Whitesides, S.: Separating point sets in polygonal environments.
Int. J. Comput. Geometry Appl. 15(4), 403–420 (2005)

5. Edelsbrunner, H.: Algorithms in combinatorial geometry. Springer-Verlag New
York, Inc., New York (1987)

6. Goodman, J.E., Pollack, R.: Multidimensional sorting. SIAM Journal on Comput-
ing 12(3), 484–507 (1983)

7. Goodman, J.E.: Pseudoline arrangements. In: Goodman, J.E., O’Rourke, J. (eds.)
Handbook of Discrete and Computational Geometry, pp. 83–109. CRC Press, Inc.,
Boca Raton (1997)

8. Goodman, J.E., Pollack, R.: A theorem of ordered duality. Geometriae Dedi-
cata 12(1), 63–74 (1982)

9. Goodman, J., Pollack, R.: On the combinatorial classification of nondegenerate
configurations in the plane. J. Combin. Theory Ser. A 29, 220–235 (1980)

10. Grünbaum, B.: Arrangements and spreads. In: Regional Conference series in math-
ematics, Published for the Conference Board of the Mathematical Sciences by the
American Mathematical Society (1972)

11. Hausdorff, F.: Set theory. AMS Chelsea Publishing Series. American Mathematical
Society (1957)

12. Knuth, D.E.: Axioms and Hulls. LNCS, vol. 606. Springer, Heidelberg (1992)
13. Mitchell, J.S.B.: Shortest paths among obstacles in the plane. Int. J. Comput.

Geometry Appl. 6(3), 309–332 (1996)
14. Richter, J.: Kombinatorische Realisierbarkeitskriterien für orientierte Matroide.

Mitteilungen Math. Seminar Gießen, Selbstverlag des Mathematischen Seminars
(1989) (in German)

15. Rote, G., Santos, F., Streinu, I.: Pseudo-triangulations — a survey. In: Goodman,
E., Pach, J., Pollack, R. (eds.) Surveys on Discrete and Computational Geometry —
Twenty Years Later, Contemporary Mathematics, vol. 453, pp. 343–411. American
Mathematical Society, Providence (2008)

16. Toussaint, G.T.: Computing geodesic properties inside a simple polygon. Revue
D’Intelligence Artificielle 3(2), 9–42 (1989)

Computing Partitions of Rectilinear Polygons

with Minimum Stabbing Number�

Stephane Durocher and Saeed Mehrabi

Department of Computer Science, University of Manitoba, Winnipeg, Canada
{durocher,mehrabi}@cs.umanitoba.ca

Abstract. The stabbing number of a partition of a rectilinear polygon
P into rectangles is the maximum number of rectangles stabbed by any
axis-parallel line segment contained in P . We consider the problem of
finding a rectangular partition with minimum stabbing number for a
given rectilinear polygon P . First, we impose a conforming constraint
on partitions: every vertex of every rectangle in the partition must lie
on the polygon’s boundary. We show that finding a conforming rectan-
gular partition of minimum stabbing number is NP-hard for rectilinear
polygons with holes. We present a rounding method based on a linear
programming relaxation resulting in a polynomial-time 2-approximation
algorithm. We give an O(n log n)-time algorithm to solve the problem
exactly when P is a histogram (some edge in P can see every point in
P) with n vertices. Next we relax the conforming constraint and show
how to extend the first linear program to achieve a polynomial-time
2-approximation algorithm for the general problem, improving the ap-
proximation factor achieved by Abam, Aronov, de Berg, and Khosravi
(ACM SoCG 2011).

1 Introduction

A polygon P is rectilinear if all of its edges are axis-parallel. A rectangular
partition of a rectilinear polygon P is a decomposition of P into rectangles whose
interiors are disjoint. Rectilinear polygon decomposition has several applications,
including VLSI layout design [10] and image processing [6].

Let P be a rectilinear polygon and let R be a rectangular partition of P .
Given a line segment � inside P , we say that � stabs a rectangle of R if � passes
through the interior of the rectangle. The (rectilinear) stabbing number of R
is the maximum number of rectangles of R stabbed by any axis-parallel line
segment inside P . Moreover, the vertical (resp., horizontal) stabbing number
of R is defined as the maximum number of rectangles stabbed by any vertical
(resp., horizontal) line segment inside P . We say an edge of a rectangle in a
rectangular partition of P is fully anchored if both of its endpoints are on the
boundary of P . Consequently, a rectangular partition of P is called conforming,

� Work supported in part by the Natural Sciences and Engineering Research Council
of Canada (NSERC).

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 228–239, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Partitioning of Rectilinear Polygons with Minimum Stabbing Number 229

if all edges of its rectangles are fully anchored. A conforming rectangular (cr)
partition of P is optimal if its stabbing number is minimum over of all such
partitions of P .

De Berg and van Kreveld [3] prove that every n-vertex rectilinear polygon
has a rectangular partition with stabbing number O(log n). They show that
this bound is asymptotically tight, as the stabbing number of any rectangular
partition of a staircase polygon with n vertices is Ω(log n). De Berg and van
Kreveld [3] and Hershberger and Suri [7] give polynomial-time algorithms that
compute partitions with stabbing number O(log n). Recently, Abam et al. [1]
consider the problem of computing an optimal rectangular partition of a simple
rectilinear polygon P , that is, a rectangular partition whose stabbing number
is minimum over all such partitions of P . By finding an optimal partition for
histogram polygons in polynomial time (see Section Section 3), they obtain an
O(n7 logn log logn)-time 3-approximation algorithm for this problem. As Abam
et al. note, however, the computational complexity of the general problem is
unknown.

De Berg et al. [2] studied a related problem in which the objective is to
partition a given set of n points in Rd into sets of cardinality between n/2r
and 2n/r for a given r, where each set is represented by its bounding box, such
that the stabbing number, defined as the maximum number of bounding boxes
intersected by any axis-parallel hyperplane, is minimized. They show the problem
is NP-hard in R2. They also give an exact O(n4dr+3/2 log2 n)-time algorithm in
Rd as well as an O(n3/2 log2 n)-time 2-approximation algorithm in R2 when r is
constant. Fekete et al. [5] prove that the problem of finding a perfect matching
with minimum stabbing number for a given point set is NP-hard, where the
(rectilinear) stabbing number of a matching is the maximum number of edges of
the matching intersected by any (axis-parallel) line. They also show that, for a
given point set, the problems of finding a spanning tree or a triangulation with
minimum stabbing number are NP-hard.

This paper examines the problem of finding an optimal rectangular partition
of a given rectilinear polygon, both in the unrestricted version of the prob-
lem (partitions need not be conforming) considered by Abam et al. [1] and in
the case of conforming rectangular (cr) partitions. For cr partitions, we give
an O(n logn)-time algorithm for computing an optimal partition when the in-
put polygon is a histogram with n vertices in Section 3, a polynomial-time 2-
approximation algorithm for arbitrary rectilinear polygons (possibly with holes)
in Section 4, and we show NP-hardness for finding an optimal partition on rec-
tilinear polygons with holes in Section 5. To the authors’ knowledge, this is
the first complexity result related to determining the minimum stabbing num-
ber of a rectangular partition of a rectilinear polygon, partially answering an
open problem posed by Abam et al. [1]. For general (not necessarily conforming)
rectangular partitions we give a polynomial-time 2-approximation algorithm in
Section 6 that improves on the 3-approximation algorithm of Abam et al. [1].
Complete proofs for the results of Sections 5 and 6 are omitted due to space
constraints.

230 S. Durocher and S. Mehrabi

2 Preliminaries

Let P be a simple rectilinear polygon and let R be a cr partition of P . We refer
to any maximal line segment whose interior lies in the interior of P and on the
boundary of some rectangle in R as a partition edge. That is, the partition edges
of R correspond to the “cuts” that divide P into rectangles. A vertex u of P
is a reflex vertex if the angle at u interior to P is 3π/2. We denote the set of
reflex vertices of P by VR(P). For each reflex vertex u ∈ VR(P), we denote the
maximal horizontal (resp., vertical) line segment contained in the interior of P
with one endpoint at u by Hu (resp., Vu) and refer to it as the horizontal line
segment (resp., vertical line segment) of u. Observe that for every reflex vertex u
of P , at least one of Hu and Vu must be present in R. The following observation
allows us to consider only a discrete subset of the set of all possible rectangular
partitions of P to find an optimal partition:

Observation 1. Any rectilinear polygon P has an optimal rectangular partition
in which every partition edge has at least one reflex vertex of P as an endpoint.

Consequently, every partition edge is either Hu or Vu for some u ∈ VR(P).
Given an integer k ≥ 1, a k-Sum Linear Program (KLP)1 [11] consists of an

m× n matrix A, an m-vector b, and an n-vector X = (x1, x2, . . . , xn) for which
the objective is to

minimize max
S⊆N :|S|=k

∑
j∈S

cjxj (1)

subject to AX ≥ b

X ≥ 0,

where N = {1, 2, . . . , n}. Observe that when k = n, the KLP is equivalent to a
classical linear program (LP).

3 Finding an Optimal CR Partition of a Histogram

In this section, we present an algorithm for computing an optimal cr partition
of a histogram. A histogram (polygon) H is a simple rectilinear polygon that has
one edge e that can see every point in P . Equivalently, as defined by Katz and
Morgenstern [8], a simple orthogonal polygon P is a vertical (resp., horizontal)
histogram if it is monotone with respect to some horizontal (resp., vertical) edge
e that spans P ; we call e the base of H .

Abam et al. [1] give a polynomial-time algorithm for computing an optimal
rectangular partition of a histogram. A rectangular partition of a histogram is
not necessarily a cr partition. Figure 1(a) shows a histogram whose optimal
rectangular partition has stabbing number 2. However, any cr partition of this
histogram has stabbing number at least 3; see Figure 1(b). Without loss of
generality, suppose each histogram is a vertical histogram.

1 Throughout the paper, we use KLP to abbreviate either k-Sum Linear Program or
k-Sum Linear Programming. Similarly, we use LP to denote either Linear Program
or Linear Programming.

Partitioning of Rectilinear Polygons with Minimum Stabbing Number 231

(a) (b)

Fig. 1. A vertical histogram H . (a) An optimal rectangular partition ofH with stabbing
number 2. (b) Any cr partition of H has stabbing number at least 3.

Let H be a histogram with n vertices and let H− denote the set of horizontal
edges of H . Recall that every cr partition of H must include at least one of the
edges Hu or Vu for every reflex vertex u in H . The algorithm begins with an
initial partition of H , consisting exclusively of horizontal partition edges, that
will be modified to produce an optimal cr partition of H by greedily replacing
horizontal edges with vertical edges. The initial partition of H is obtained by
adding the edge Hu for each reflex vertex u.

Observation 2. For any cr partition of any vertical histogram H and any
reflex vertex u in H, the vertical partition edge Vu may be included at u if and
only if no horizontal partition edge is included directly below u (otherwise it
would intersect Vu).

Observation 2 suggests a hierarchical tree structure that determines a partial
order in which each horizontal partition edge can be removed and replaced by
a vertical partition edge, provided it does not intersect any horizontal partition
edge below it. Thus, we construct a forest (initially a single tree denoted T0)
associated with the partition; the algorithm proceeds to update the forest and,
in doing so, modifies the associated partition as horizontal partition edges are
replaced by vertical ones. Define a tree node for each edge in H− ∪ S, where
S = {Hu | u ∈ VR(H)}. Add an edge between two vertices u and v if some
vertical line segment intersects both edges associated with u and v, but no other
edge of H− ∪S. When the polygon H is a histogram, the resulting graph, T0, is
a tree. See the example in Figure 2(a). We now describe how to construct T0 in
O(n log n) time. Note that the set S need not be known before construction.

Each edge in H− is adjacent to two vertical edges on the boundary of H ,
which we call its left and right neighbours, respectively. Sort the edges of H−

lexicographically, first by y-coordinates and then by x-coordinates. The algo-
rithm sweeps a horizontal line � across H from bottom to top. Initially, � co-
incides with the base of H ; root the tree T0 at a node u that corresponds to
the base of H . The construction refers to a separate balanced search tree that
archives the set of vertical edges of H on or below the sweepline, indexed by
x-coordinates. Initially, only the leftmost and rightmost vertical edges of H are
in the search tree, i.e., the base’s neighbours. The construction of the tree T0

proceeds recursively on u as follows.

232 S. Durocher and S. Mehrabi

(a)

(b) (c)p′

p

q′q

Fig. 2. (a) A histogram H and the tree T0 that corresponds to the initial partition of
H . (b) The edge associated with node p is removed from the partition and is replaced
by two vertical edges anchored at the reflex vertices q and q′. The red vertices denote
the roots of the three new resulting trees. (c) The algorithm terminates after one more
iteration, giving an optimal cr partition of H (with stabbing number 5) along with
the corresponding forest.

Suppose the next edges of H− encountered by the sweepline � are e1, . . . , ek,
each of which has equal y-coordinate. Add the respective left and right neigh-
bours of e1, . . . , ek to the search tree. Let l1 and r1 denote the x-coordinates
of the respective left and right endpoints of edge e1. Add a node representing
e1 to T0 as a child of u. Check whether the left neighbour of e1 (indexed by
l1) lies below �. If not, then find the predecessor of l1 in the search tree and
let y denote its x-coordinate. Let u′ denote the line segment on line � with re-
spective endpoints at the x-coordinates y and l1. Add a node representing u′ to
T0 as a child of u. Recursively construct the subtree of u′. Apply an analogous
procedure to the right neighbour of e1 (indexed by r1). Repeat for each edge
ei ∈ {e2, . . . , ek}. Upon completion, the tree T0 is constructed storing a repre-
sentation of the initial horizontal partition (see Figure 2(a)). Finally, each tree
node stores its height and links to its children in order of x-coordinates; the tree
can be updated accordingly after construction. The running time for construct-
ing T0 is bounded by sorting O(n) edges and a sequence of O(n) searches and
insertion on the search tree, resulting in O(n log n) time to construct T0.

We now describe a greedy algorithm to construct an optimal cr partition of
H using T0. Observe that the horizontal stabbing number of the initial partition
is initially one, whereas its vertical stabbing number corresponds to the height of
T0. The algorithm stores the forest’s trees in a priority queue indexed by height.
While the vertical stabbing number of H remains greater than its horizontal

Partitioning of Rectilinear Polygons with Minimum Stabbing Number 233

stabbing number, split the tree of maximum height, say T . To do this, remove
the horizontal partition edge stored in a tree node p, where p is a child of the
root of T on a longest root-to-leaf path in T . The choice of T and p is not
necessarily unique; it suffices to select any tallest tree T and any longest path in
T . Observe that p has at least one and possibly two reflex vertices as endpoints,
denoted a and b. Remove the horizontal partition edge associated with p and
add a vertical partition edge (Va or Vb) for each neighbour of p that lies above
p on the boundary of H . The tree T is then divided into up to three new trees:
a) the subtrees of the root of T to the left of p, b) the subtree rooted at p, and
c) the subtrees of the root of T to the right of p. The root of each new tree
corresponds to the base edge of H . See Figure 2(b). The following observation
is straightforward:

Observation 3. The horizontal stabbing number of the partition associated with
the forest corresponds to the number of trees in the forest, whereas its vertical
stabbing number corresponds to the height of the tallest tree in the forest.

Once the height of the tallest tree becomes less than or equal to the number
of trees in the forest, we return either the current partition or the previous
partition, whichever has lower stabbing number. The number of steps is O(n),
where each step requires O(log n) time to determine the tree with maximum
height using the priority queue.

The algorithm’s correctness follows from Observations 2 and 3, and the fact
that reducing the vertical stabbing number requires reducing the height of the
tallest tree, which is exactly how the algorithm proceeds, decreasing the height
of a tallest tree by one on each step. Therefore, we have the following theorem:

Theorem 1. Given a histogram H, an optimal cr partition of H can be found
in O(n logn) time, where n is the number of vertices of H.

4 An Approximation Algorithm for Rectilinear Polygons

In this section, we present an LP relaxation for the problem of finding an optimal
cr partition of a rectilinear polygon, possibly with holes. We show that a simple
rounding of the LP relaxation leads to a 2-approximation algorithm for this
problem. Our algorithm works even when the input polygon has holes.

Let P be a rectilinear polygon. We define two binary variables uh and uv for
every reflex vertex u ∈ VR(P) that correspond to Hu and Vu, respectively. Each
variable’s value (1 = present, 0 = absent) determines whether its associated
partition edge is included in the partition. If two reflex vertices align, then they

share a common variable. For each reflex vertex u in VR(P), let �−u and �
|
u be

respective maximal horizontal and vertical line segments that pass through fε(u)
and are completely contained in P , where fε(u) denotes an ε translation of the
point u along the bisector of the interior angle determined by the boundary of P

234 S. Durocher and S. Mehrabi

locally at u, for some ε less than the minimum distance between any two vertices

of P . This perturbation ensures that �−u and �
|
u lie in the interior of P , as in the

definition of stabbing number. See Figure 3. Let S−
u (resp., S

|
u) be the set of

reflex vertices in VR(P), like v, such that Vv (resp., Hv) intersects �
−
u (resp., �

|
u).

For each reflex vertex u ∈ VR(P), let

uΣ− = 1 +
∑
p∈S−

u

pv, and uΣ| = 1 +
∑
p∈S

|
u

ph.

Thus, uΣ− and uΣ| denote the number of rectangles stabbed by �−u and �
|
u,

respectively, and their maximum values among all reflex vertices u in P corre-
spond to one less than the respective horizontal and vertical stabbing numbers
of P . Consequently, the stabbing number of the partition of P determined by
the binary variables is

1 + max
u∈VR(P)

{max{uΣ− , uΣ|}}. (2)

u

fε(u) �−u

v
w

�|u

ε

Fig. 3. The maximal line segments
�−u and �

|
u that pass through the

point fε(u) are shown in red and
blue, respectively. In this example,
uΣ− = 1+uv + vv +wv and uΣ| =
1 + uh.

A partition divides the polygon into convex
regions (more specifically, rectangles) if and
only if at least one partition edge is rooted at
every reflex vertex. Thus, a cr partition of P
corresponds to an assignment of truth values
to the set of binary variables such that (i) no
two edges of the partition cross, and (ii) for
every reflex vertex u, at least one of Vu and
Hu is present in the partition.

Therefore, the problem of finding an opti-
mal cr partition can be formulated as a k-sum
integer linear program as follows:

minimize (2) (3)

subject to uh + uv ≥ 1, ∀u ∈ VR(P),

vh + uv ≤ 1, if Hv intersects Vu,

uh, uv ∈ {0, 1}, ∀u ∈ VR(P).

To obtain an integer linear program, we introduce an additional variable y. The
following integer linear program is equivalent to the above KLP (see Section 2):

minimize y (4)

subject to y − uΣ− ≥ 0 ∀u ∈ VR(P),

y − uΣ| ≥ 0 ∀u ∈ VR(P),

uh + uv ≥ 1, ∀u ∈ VR(P),

− vh − uv ≥ −1, if Hv intersects Vu,

uh, uv ∈ {0, 1}, ∀u ∈ VR(P). (5)

Partitioning of Rectilinear Polygons with Minimum Stabbing Number 235

Since the number of sums in (2) is O(n2), the size of the integer linear program
above is polynomial in n. Next, we relax the above program by replacing (5)
with uh, uv ∈ [0, 1], ∀u ∈ VR(P) and obtain the following LP:

minimize y (6)

subject to y − uΣ− ≥ 0 ∀u ∈ VR(P),

y − uΣ| ≥ 0 ∀u ∈ VR(P),

uh + uv ≥ 1, ∀u ∈ VR(P),

− vh − uv ≥ −1, if Hv intersects Vu,

uh, uv ≥ 0, ∀u ∈ VR(P).

We observe that the constraints uh, uv ≤ 1 are redundant since we can reduce
any uh > 1 (resp., uv > 1) to uh=1 (resp., uv=1) without increasing the value
of the objective function for any feasible solution. Let s∗ be a solution to the
above LP. We round s∗ to a feasible solution for our problem as follows. For each
vertex u ∈ VR(P), let

uh =

{
0, if s∗(uh) ≤ 1/2,

1, if s∗(uh) > 1/2,
and uv =

{
0, if s∗(uv) < 1/2,

1, if s∗(uv) ≥ 1/2.
(7)

We first show that, for every reflex vertex u, at least one of Vu and Hu is present
in the partition.

Lemma 1. For each vertex u ∈ VR(P), at least one of uh and uv is equal to 1
after rounding a solution to (6).

Proof. We give a proof by contradiction. Suppose that after rounding a solution
to (6), uh = uv = 0 for some u ∈ VR(P). Since uh = 0 by (7) we have s∗(uh) ≤
1/2 and, similarly, since uv = 0 we have s∗(uv) < 1/2. Therefore, s∗(uh) +
s∗(uv) < 1, which contradicts the constraint uh + uv ≥ 1 of (6). �

The next lemma proves that no two edges of the partition obtained by the LP
cross each other.

Lemma 2. If Hv intersects Vu, for two vertices u, v ∈ VR(P), then at most one
of the variables vh and uv is 1 after rounding a solution to the LP.

Proof. We give a proof by contradiction. Suppose that for two vertices u, v ∈
VR(P): (i) Hv intersects Vu, and, (ii) both vh and uv are 1 after rounding. Since
after rounding vh=1 by (7) we have s∗(vh) > 1/2. Similarly, since after rounding
uv=1 we have s∗(uv) ≥ 1/2. Therefore, s∗(vh) + s∗(uv) > 1, which contradicts
the constraint vh + uv ≤ 1 (or equivalently −vh − uv ≥ −1) of the LP. �

By combining Lemmas 1 and 2, we get the following result:

Corollary 1. The partition determined by a feasible solution to the LP after
rounding is a cr partition.

236 S. Durocher and S. Mehrabi

(a) (b)

Fig. 4. A simple rectilinear polygon P for which (a) the optimal partition has stabbing
number 4 while (b) assigning Vu (or Hu) to every reflex vertex u of P results in a
partition with stabbing number at least 10

By (7), the value of each variable after rounding is at most twice the value
of the corresponding variable in the LP solution. Moreover, it is easy to see
that the number of constraints in (6) is polynomial in VR(P), allowing a 2-
approximate solution to be found in polynomial time. Therefore, we have the
following theorem:

Theorem 2. There exists a polynomial-time algorithm that constructs a cr par-
tition of any given rectilinear polygon P with stabbing number at most twice that
of any cr partition of P .

Remark. A preliminary attempt at obtaining a 2-approximation might be to
assign to each reflex vertex u its vertical partition edge, Vu (or, equivalently,
assigning the horizontal partition edge Hu to each u). Unfortunately, this is not
the case: Figure 4 shows a rectilinear polygon for which the optimal cr partition
has stabbing number 4. However, the partition obtained by assigning Vu (or Hu)
consistently to every vertex u ∈ VR(P) has stabbing number at least 10. In fact,
the polygon in this example can be extended to show that this heuristic does
not provide any constant-factor approximation.

5 Hardness for Rectilinear Polygons with Holes

In this section we present an overview of a reduction showing that the following
problem is NP-hard; the complete details of the reduction are omitted due to
space constraints.

Optimal CR partition

Input: A rectilinear polygon P possibly with holes
Output: An optimal cr partition of P

We show thatOptimal CR Partition isNP-hard by a reduction from Planar

Variable Restricted 3SAT (Planar VR3SAT). The Planar VR3SAT

problem is a constrained version of 3SAT in which each variable can appear

Partitioning of Rectilinear Polygons with Minimum Stabbing Number 237

Fig. 5. An example of a variable gadget X
linked by three respective corridors to its
occurrences (x, x and x) in clauses. Each
pair of dashed triangular and rectangular
holes form a negation gadget that negates
the truth value of x in the associated clause
linked by the adjacent corridor. Each stair-
case consists of c steps. Full details of the
variable gadget appear in the complete ver-
sion of this paper.

x̄

x̄

x

v

reverse staircase

normal staircase

walls

u

in at most three clauses and the corresponding variable-clause graph must be
planar. Efrat et al. [4] show that Planar VR3SAT is NP-hard.

Let I = {C1, C2, . . . , Ck} be an instance of Planar VR3SAT with k clauses
and n variables, X1, X2, . . . , Xn. We construct a polygon P with holes such
that P has a cr partition with stabbing number at most 5c if and only if I
is satisfiable, where c is a constant that does not depend2 on I. Given I, we
first construct the variable-clause graph of I in the non-crossing comb-shape
form of Knuth and Raghunathan [9]. Without loss of generality, we assume that
the variable vertices lie on a vertical line and the clause vertices are connected
from left or right of that line. Then, we replace each variable vertex Xi with a
polygonal variable gadget to which three connecting corridors are attached from
its left. The corridors are then connected to the clause gadgets whose associated
clauses contain that variable. Figure 5 shows an example of a variable gadget;
note the vertex v. Due to the structure of the variable gadget, any cr partition
must contain exactly one of the edges Vv or Hv; including Vv (resp., Hv) in the
partition corresponds to a truth assignment of true (resp., false) for the variable
x. Moreover, choosing Vv or Hv imposes constraints on how the rest of the
variable gadget and its associated clause gadgets can be partitioned. Due to space
constraints, we omit detailed descriptions of variable gadgets and clause gadgets.
The overall construction implies the following lemma whose proof appears in the
complete version of this paper:

Lemma 3. P has a cr partition with stabbing number at most 5c, for some
constant c, if and only if I is satisfiable.

By Lemma 3, we obtain the following theorem:

Theorem 3. Optimal CR Partition is NP-hard.

2 The definition of the precise value of c refers to specific details of the reduction that
have been omitted due to space constraints. Note, however, that the value of c can
be specified in polynomial time.

238 S. Durocher and S. Mehrabi

6 Generalizing the Approximation Algorithm

In this section we relax the conforming constraint and consider the problem
originally examined by Abam et al. [1], of finding an optimal rectangular par-
tition that is not necessarily conforming. That is, partition edges need not be
fully anchored; equivalently, vertices of partition rectangles may lie in the poly-
gon’s interior. We extend the LP relaxation presented in Section 4 to achieve a
2-approximation algorithm for this generalized problem for rectilinear polygons.
In addition to improving the 3-approximation algorithm of Abam et al. [1], we
present a simple algorithmic solution that also works when the input rectilin-
ear polygon has holes. We present a brief overview of the LP relaxation in this
section; the details of the algorithm are omitted due to space constraints.

The idea is to consider the arrangement of line segments induced by the
intersection of vertical line segments (e.g., Vu for some reflex vertex u) with
horizontal line segments (e.g., Hv for some reflex vertex v) inside the polygon
P . We refer to these shorter line segments as fragments and associate a binary
variable with each fragment (as opposed to associating a binary variable with
each potential partition edge as in Section 4). By Observation 1 it suffices to
consider rectangular partitions for which each partition edge is anchored at some
reflex vertex. Thus, a rectangular partition corresponds to an assignment of
binary values that observes the following constraints:

1. Every reflex vertex is adjacent to at least one fragment included in the
partition.

2. A fragment may be included in a partition if and only if each of its endpoint
meets either a) the polygon boundary, b) the continuation of a partition edge
along an adjacent fragment, or c) two fragments that form a perpendicular
partition edge.

3. At most three of four fragments with a common endpoint can be included
in a partition.

A partition’s stabbing number is represented as before by the maximum sum

of binary variables crossed by any line segment �−u or �
|
u, where u is a reflex

vertex in P . The constraints 1–3 can be expressed as a linear program; details
are omitted due to space restrictions. Rounding a solution to the linear program
as in Section 4 gives the following theorem:

Theorem 4. There exists a polynomial-time algorithm that constructs a rectan-
gular partition of any given rectilinear polygon P with stabbing number at most
twice that of any rectangular partition of P .

7 Conclusion

This paper considers the problem of finding an optimal partition of a rectilin-
ear polygon P (i.e., a partition with minimum stabbing number over all such
partitions of P) for two different types of partitions.

Partitioning of Rectilinear Polygons with Minimum Stabbing Number 239

For the first type, cr partitions (in which no partition edge can end in the
interior of another edge of the partition) we first described an O(n log n)-time
algorithm when P is a histogram polygon with n vertices. Next we presented
a LP relaxation of the problem to achieve a polynomial-time 2-approximation
algorithm for any given rectilinear polygon with n vertices (possibly with holes).
We also proved that the problem is NP-hard for rectilinear polygons with holes.
The complexity of the problem for simple rectilinear polygons (without holes)
remains open.

For the second type, in which endpoints of partition edges may lie in the inte-
rior of P , we gave a polynomial-time 2-approximation algorithm for rectilinear
polygons. Our algorithm, based on the extension of our LP relaxation for cr

partitions, not only improves the 3-approximation algorithm of Abam et al. [1],
but also provides a simple solution that works when polygons have holes. The
complexity of the general problem remains open for both simple rectilinear poly-
gons and rectilinear polygons with holes, providing another interesting direction
for future research.

References

1. Abam, M.A., Aronov, B., de Berg, M., Khosravi, A.: Approximation algorithms
for computing partitions with minimum stabbing number of rectilinear and simple
polygons. In: Proc. ACM SoCG, pp. 407–416 (2011)

2. de Berg, M., Khosravi, A., Verdonschot, S., van der Weele, V.: On Rectilinear
Partitions with Minimum Stabbing Number. In: Dehne, F., Iacono, J., Sack, J.-R.
(eds.) WADS 2011. LNCS, vol. 6844, pp. 302–313. Springer, Heidelberg (2011)

3. de Berg, M., van Kreveld, M.: Rectilinear decompositions with low stabbing num-
ber. Inf. Proc. Let. 52(4), 215–221 (1994)

4. Efrat, A., Erten, C., Kobourov, S.: Fixed-location circular arc drawing of planar
graphs. J. Graph Alg. & Applications 11(1), 165–193 (2007)

5. Fekete, S., Lübbecke, M., Meijer, H.: Minimizing the stabbing number of matchings,
trees, and triangulations. Disc. Comp. Geom. 40, 595–621 (2008)

6. Gourley, K., Green, D.: A polygon-to-rectangle conversion algorithm. IEEE Comp.
Graphics & App. 3(1), 31–36 (1983)

7. Hershberger, J., Suri, S.: A pedestrian approach to ray shooting: shoot a ray, take
a walk. J. Alg. 18(3), 403–431 (1995)

8. Katz, M.J., Morgenstern, G.: Guarding orthogonal art galleries with sliding cam-
eras. Inter. J. Comp. Geom. & App. 21(2), 241–250 (2011)

9. Knuth, D., Raghunathan, A.: The problem of compatible representatives. SIAM J.
Disc. Math. 5(3), 422–427 (1992)

10. Lopez, M., Mehta, D.: Efficient decomposition of polygons into L-shapes with ap-
plication to VLSI layouts. ACM Trans. Design Automation Elec. Sys. 1(3), 371–395
(1996)

11. Punnen, A.: K-sum linear programming. J. Oper. Res. Soc. 43(4), 359–363 (1992)

Monotone Paths in Planar Convex Subdivisions�

Adrian Dumitrescu1, Günter Rote2, and Csaba D. Tóth3

1 Department of Computer Science, University of Wisconsin–Milwaukee, USA
2 Institut für Informatik, Freie Universität Berlin, Germany

3 Department of Mathematics, University of Calgary, Canada
dumitres@uwm.edu, rote@inf.fu-berlin.de, cdtoth@ucalgary.ca

Abstract. Consider a connected subdivision of the plane into n convex
faces where every vertex is incident to at most Δ edges. Then, start-
ing from every vertex there is a path with at least Ω(logΔ n) edges
that is monotone in some direction. This bound is the best possible.
Consider now a connected subdivision of the plane into n convex faces
where exactly k faces are unbounded. Then, there is a path with at least
Ω(log(n/k)/ log log(n/k)) edges that is monotone in some direction. This
bound is also the best possible.

In 3-space, we show that for every n ≥ 4, there exists a polytope
P with n vertices, bounded vertex degrees, and triangular faces such
that every monotone path on the 1-skeleton of P has at most O(log2 n)
edges. We also construct a polytope Q with n vertices, and triangular
faces, (with unbounded degree however), such that every monotone path
on the 1-skeleton of Q has at most O(log n) edges.

1 Introduction

A geometric graph G = (V,E) in Euclidean d-space is a set V of distinct points
(vertices) in Euclidean d-space Rd, and a set E of line segments (edges) between
vertices such that no vertex lies in the relative interior of any edge. For our
investigation, it is convenient to define an extended geometric graph G = (V,E),
where E may also contain rays, each emitted by a vertex, and lines (disjoint
from vertices). A directed path p in an extended geometric graph G is monotone
(resp., weakly monotone) if there exists a unit vector u such that the inner
product e · u is positive (resp., non-negative) for every directed edge e of p. In
R2, in particular, the direction of a unit vector u = (cos θ, sin θ) is determined
by the angle θ ∈ (−π, π]. A directed path p is x-monotone (resp., y-monotone)
if it is monotone in direction 0 (resp., π

2). The size (or length) of a path is the
number of edges in the path, or equivalently, one plus the number of vertices

� Preliminary results were reported by the authors in [3,6]. Dumitrescu was supported
in part by the NSF grant DMS-1001667; Rote was supported in part by the Cen-
tre Interfacultaire Bernoulli in Lausanne and by the National Science Foundation;
Tóth was supported in part by the NSERC grant RGPIN 35586. Research by Tóth
was conducted at the Fields Institute in Toronto and at the Centre Interfacultaire
Bernoulli in Lausanne.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 240–251, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Monotone Paths in Planar Convex Subdivisions 241

on the path. Notice that any path (monotone or not) in an extended geometric
graph contains at most two rays.

We are looking for long monotone paths in the 1-skeletons of polytopes and
convex subdivisions of the plane. The 1-skeleton G(P) of a polytope P in Rd is
the (extended) geometric graph formed by the vertices and edges of P . A convex
subdivision (for short, subdivision) of Rd is a set Π of (bounded or unbounded)
convex polytopes (called faces) that tile Rd. The 1-skeleton of a subdivision Π of
the plane R2 is the extended geometric graph G(Π) whose vertices are the points
incident to 3 or more edges, and whose edges are the line segments, rays, and
lines lying on the common boundary of two faces. To exclude some trivial cases,
we always consider convex subdivisions whose 1-skeleton is connected, referred
to as connected subdivisions for short. Our results are the following.

Theorem 1. Let Π be a connected subdivision of the plane into n convex cells
in which every vertex is incident to at most Δ edges. Then, for every vertex
v, there is a weakly monotone path with at least c logΔ n edges starting from v,
where c > 0 is an absolute constant. Apart from the constant c, this bound is the
best possible.

Theorem 2. Let Π be a connected subdivision of the plane into n convex cells,
k of which are unbounded with n > k ≥ 3. Then G(Π) contains a monotone path
with at least c log n

k / log log
n
k edges, where c > 0 is an absolute constant. Apart

from the constant c, this bound is the best possible.

We also consider long monotone paths in the 1-skeleton of a convex polytope in
3-space. We make two constructions, one with bounded vertex degrees and one
with arbitrary vertex degrees.

Theorem 3. For every n ≥ 4, there is a polytope P in R3 with n vertices,
bounded vertex degrees, and triangular faces such that every monotone path in
G(P) has O(log2 n) edges.

Theorem 4. For every n ≥ 4, there is a polytope Q in R3 with n vertices and
triangular faces such that every monotone path in G(Q) has O(log n) edges.

We do not know whether the bounds in Theorems 3 and 4 are asymptotically
tight. Since the diameter of a bounded degree graph on n vertices is Ω(log n),
every monotone path connecting a diametral pair of vertices of a polytope with
n vertices of bounded degree has Ω(logn) edges. If the maximum vertex degree
of the polytope is not bounded, then a lower bound of Ω(logn/ log log n) follows
from a result of Chazelle et al. [2] (see below), applied to the dual graph of a plane
projection, using reciprocal diagrams and the Maxwell-Cremona correspondence.

Related Work. It is well known that the classical simplex algorithm in linear
programming produces a monotone path on the 1-skeleton of a d-dimensional
polytope of feasible solutions; it is called a parametric simplex path. According
to the old monotone Hirsch conjecture [10], for any vector u, the 1-skeleton
of every d-dimensional polytope with n facets contains a u-monotone path of

242 A. Dumitrescu, G. Rote, and C.D. Tóth

at most n − d edges from any vertex to a u-maximal vertex. For the weakly
monotone version, counterexamples have already been found by Todd [8] in the
1980s. Recent counterexamples for this conjecture found by Santos [7] show that
the monotone variant is also false. It is not known whether the Hirsch conjecture
can be relaxed so that it holds when the length n − d is replaced by a suitable
polynomial in d and n.

Balogh et al. [1] showed that there is a convex subdivision Πn generated by n
lines in the plane with O(n2) faces such that G(Πn) contains a monotone path

of length Ω(n2−c/
√
logn), where c > 0 is a constant.

A monotone face sequence in a convex subdivision Π is a sequence of faces
such that there is a direction u such that any two consecutive faces, f1 and f2,
are adjacent and a vector of direction u crosses their common boundary from
f1 to f2. Chazelle et al. [2] showed that in a subdivision of the plane into n
convex faces in which every face is adjacent to at most d other faces, there is a
monotone face sequence of length Ω(logd n+ logn/ log logn), and this bound is
tight. Moreover, a monotone face sequence of this length can even be achieved
by faces stabbed by a line. The latter result was generalized to d dimensions
by Tóth [9]: for every subdivision of Rd into n convex faces, there is a line that

stabs Ω((log n/ log logn)
1

d−1) faces, and this bound is the best possible.

Outline. We start with the proof of Theorem 1 in Sec. 2. We study convex sub-
divisions of simple polygons in Sec. 3. The tools developed there are instrumental
in the proof of Theorem 2 in Sec. 4. The polytopes P and Q in Theorem 3 and 4
are presented in the full version of the paper.

2 Proof of Theorem 1

Lower bound. The lower bound in Theorem 1 follows from the following lemma
in a straightforward way (by counting, or inductively).

Lemma 1. Let v be a vertex in a connected convex planar subdivision Π. Then
G(Π) contains a spanning tree rooted at v such that all paths starting at v are
weakly monotone.

Proof. For a generic direction u, we define the rightmost path R(u) starting at
v as follows; see Fig. 1(left): start at v and always follow the rightmost outgoing
edge that is weakly monotone in direction u until we arrive at an unbounded
ray.

Now we start rotating u clockwise. At some direction u′, R(u′) will be dif-
ferent from R(u). At that point, R(u) is still weakly monotone in direction u′.
Now, any vertex w (and any edge) in the region between R(u) and R(u′) can be
reached by a weakly monotone path in direction u′. Indeed, simply start at w
and go monotonically in the direction −u′ until reaching R(u) or R(u′). From
there, follow R(u) or R(u′) to v. In this way, we can form a spanning tree of all
vertices between R(u) and R(u′) with the desired properties.

Continuing the rotation in this way, we eventually reach all vertices and all
infinite rays. ��

Monotone Paths in Planar Convex Subdivisions 243

R(�u)

R(�u′)

R(�u′′)

�u′′

�u′
�u

v

v0

Fig. 1. Left: The rightmost path R(u) starting from vertex v in direction u. Right: A
convex subdivision where only the five vertices marked with empty dots can be reached
from v0 along (strictly) monotone paths.

The subdivision in Fig. 1(right) shows that the lemma does not hold with
(strictly) monotone paths. However, if there are no angles of 180◦, the state-
ment extends to strictly monotone paths.

Let v be a vertex in a connected convex planar subdivision Π . By Lemma 1,
G(Π) contains a spanning tree rooted a v such that all paths starting at v
are weakly monotone. The maximum degree in G(Π) is at most Δ. Hence the
spanning tree contains a path of size Ω(logΔ n) from v to some vertex of G(Π).

Upper Bound. If the maximum degree Δ is n, Theorem 1 gives only a trivial
statement. Dividing the plane into n convex sectors by n rays starting from the
origin shows that, indeed, there is no non-constant lower bound on the length
of monotone paths in this case. This construction can be generalized: for every
3 ≤ Δ ≤ n, there is a convex subdivision Π such that G(Π) is a tree with
maximum degree Δ and diameter O(logΔ n).

3 Monotone Paths in Simple Polygons

Monotone Polygons. We start by introducing some notation for simple poly-
gons in R2. A polygonal domain (for short, polygon) P is a closed set in the
plane bounded by a piecewise linear simple curve. A polygon P is monotone if
its boundary is the union of two paths, which are both monotone with respect
to a vector u. In particular, P is y-monotone if it is bounded by two y-monotone
paths. A convex subdivision of a polygon P is a set Π = Π(P) of pairwise dis-
joint open convex sets (called faces) such that the union of their closures is P .
The faces in Π together with the complement P̄ = R2\P (the outer face) form a
(nonconvex) subdivision of the plane Π ∪{P̄}. We also define a geometric graph
G(Π) = G(Π(P)), where the vertices are the union of all vertices of P and the
set of points incident to 3 or more faces in Π ∪ {P̄}; and the edges are the line
segments lying on the common boundaries of two faces in Π ∪ {P̄}.

244 A. Dumitrescu, G. Rote, and C.D. Tóth

A simple but crucial observation is that for every vertex v of G(Π) lying in
the interior of P and every direction u, there is an edge vw such that u ·−→vw ≥ 0,
otherwise the face incident to v in direction u would not be convex. This implies
the following.

Observation 1. Let P be a simple polygon with a convex subdivision Π =
Π(P), let v be a vertex of G(Π) lying in the interior of P , and u be a unit
vector. Then

(i) there is a weakly u-monotone directed path in G(Π) from v to some vertex
on the boundary of P ;

(ii) if u is not orthogonal to any edge of G(Π), then this path is u-monotone.

Recall that a y-monotone polygon is bounded from the left and from the right
by two y-monotone directed paths. The common start (resp., end) point of the
two boundary paths is called the bottom (resp., top) vertex of P .

Observation 2. Let Π = Π(P) be a convex subdivision of a y-monotone poly-
gon P with no horizontal edges. For every vertex v of G(Π), there is a y-
monotone path from the bottom vertex of P to the top vertex of P which is
incident to v.

Criterion for y-monotone Polygons. To prove the lower bound in Theorem 2,
we constructively build a monotone path of the required length for any given
convex partition. In our recursive construction, we successively subdivide a y-
monotone polygon P into smaller polygons along certain y-monotone paths in
G = G(Π). Lemma 2 below provides a criterion for producing y-monotone pieces.
A vertex v in a geometric graph G is called y-maximal (resp., y-minimal) if
all edges of G incident to v lie in a closed halfplane below (resp., above) the
horizontal line passing through v. A vertex v is y-extremal if it is y-maximal or
y-minimal. It is clear that the boundary of a y-monotone polygon has exactly
two y-extremal vertices, namely its top vertex and its bottom vertex.

H ⊂ G(Π)

v1
v2

P

Fig. 2. The graph G(Π) of a convex partition Π of a simple polygon P . A subgraph
H in bold contains all edges of P . The y-maximal (resp., y-minimal) vertices of H are
marked with empty squares (resp., empty circles). Vertices v1 and v2 are y-extremal in
H , but not convex vertices of P (here they are not even vertices of P).

Monotone Paths in Planar Convex Subdivisions 245

Lemma 2. Let P be a simple polygon with a convex subdivision Π such that
no edge in G = G(Π) is horizontal. Let H be a subgraph of G that contains all
edges and vertices of P . Then all bounded faces of H are y-monotone polygons
if and only if all y-extremal vertices of H are convex vertices of P .

Proof. Assume that all bounded faces of H are y-monotone polygons. Suppose
that H has a y-extremal vertex v. We may assume without loss of generality
that all edges of H incident to v are in the halfplane above v. Let fv be the
face of H incident to v that lies directly below v. Face fv has a reflex interior
angle at v, and v is neither the top nor the bottom vertex of fv. Hence fv is not
y-monotone, and so it has to be an unbounded face of H . Since H contains all
boundary edges of P , the face fv is the unbounded face of G, as well. It follows
that v is a convex vertex of P .

Assume that all y-extremal vertices of H are convex vertices of P . Consider
a bounded face f of H . Let p1 and p2 be edge-disjoint directed paths on the
boundary of f from a bottom (lowest) vertex of f to a top (highest) bottom
vertex of f (ties are broken arbitrarily), such that f lies on the right side of p1
and on the left side of p2. Suppose for contradiction that f is not y-monotone.
We may assume without loss of generality that p2 is not y-monotone, as in Fig. 2
(where f is the shaded face). The first (resp., last) edge of p2 has a positive inner
product with (0, 1) by construction. There are two consecutive edges e1 and e2 in
p2 such that e1 · (0, 1) > 0 > e2 · (0, 1), since otherwise p2 would be y-monotone.
Let v be the common vertex of these two edges. Since f is on the left side of
both e1 and e2, these two edges are consecutive in the counterclockwise rotation
order of the edges of H incident to v. Hence, H has no edge incident to v in
the halfplane above v, and so v is y-extremal (y-maximal) in H . However, v is
a reflex vertex of face f , hence it cannot be a convex vertex of P (specifically,
v it is either interior to P , or a reflex vertex of P). This contradicts our initial
assumption and completes the proof. ��

Subdividing a Polygon into Monotone Pieces. Our upper bound relies
on the following two lemmas. In Lemma 3, we partition the bounded faces of
a convex subdivision of the plane into monotone polygons. In Lemma 4, we
subdivide a y-monotone polygon P into smaller y-monotone polygons which are
not incident to both the top and the bottom vertex of P .

Lemma 3. Let Π be a subdivision of the plane into n convex faces, k ≥ 3 of
which are unbounded. Then there is a subset Π ′ ⊂ Π of at least (n− k)/(k− 2)
faces such that Π ′ is the convex subdivision of a monotone polygon.

Proof. We proceed by induction on the number of 2-connected components of G.
In the base case, G is 2-connected. Suppose that no edge of G is horizontal. Let
P be the simple polygon formed by the union of the closures of all bounded faces
in Π . Let V0 be the set of y-extremal reflex vertices of P . If V0 is empty, then P is
a y-monotone polygon, and the n−k bounded faces form a convex subdivision of
P . If V0 is nonempty, then we construct a y-monotone path γ(v) for each v ∈ V0,
in an arbitrary order, as follows. If v ∈ V0 is y-maximal (resp., y-minimal), then

246 A. Dumitrescu, G. Rote, and C.D. Tóth

construct γ(v) starting from v by successively appending edges in direction π/2
(resp., −π/2) until the path reaches another vertex on the boundary of P or
a previously constructed path γ(v′), v′ ∈ V0. The paths γ(v) subdivide P into
|V0|+ 1 simple polygons, each of which is y-monotone by Lemma 2.

It remains to show that |V0| ≤ k− 3 after an appropriate rigid motion. Notice
that every y-extremal reflex vertex of P is a y-extremal vertex of some unbounded
face. An unbounded face cannot have both a top and a bottom vertex. Two of the
unbounded faces, namely those containing rays in directions (1, 0) and (−1, 0),
have neither a top nor a bottom vertex. This already implies |V0| ≤ k − 2. Let
−→e 0 be a ray edge of G emitted by an extremal vertex of the convex hull of P .
Assume, by applying a reflection if necessary, that the unbounded face on the
left of −→e 0 is not a halfplane. Rotate the subdivision such that no edge in G is
horizontal and edge −→e 0 has the smallest positive slope. Now the unbounded face
above −→e 0 has a bottom vertex on the convex hull of P , which is not a reflex
vertex of P . Therefore, we have |V0| ≤ k − 3.

Assume now that G has several 2-connected components. We distinguish two
cases. Case 1: G is disconnected, and it is the disjoint union of G1 and G2, which
are incident to k1 and k2 unbounded faces, respectively. Then there is at most
one face (a parallel strip) incident to both G1 and G2. Hence k1 + k2 ≤ k + 1,
and so (k1 − 2) + (k2 − 2) < k − 2. Induction completes the proof. Case 2:
G is connected but has a cut vertex v. Then G decomposes into subgraphs
G1, . . . , G�, for some 	 ≥ 2, whose only common vertex is v. Denote by ki the
number of unbounded faces in Π incident to some edges of Gi for i = 1, . . . , 	.
Any two consecutive subgraphs around v are incident to a common unbounded
face. Hence k =

∑�
i=1 ki − 	, and so

∑�
i=1(ki − 2) ≤ k − 2. Induction completes

the proof. ��

Lemma 4. Let P be a y-monotone polygon with bottom vertex s, top vertex t,
and a convex subdivision Π. Let m be the maximum size of a monotone path
in G = G(Π). Then at most two faces in Π are incident to both s and t; the
remaining faces can be partitioned into at most m+ 1 sets, each of which is the
convex subdivision of a y-monotone polygon whose top or bottom vertex is not
in {s, t}.

Proof. If a face f ∈ Π is incident to both s and t, then by convexity the closure of
f contains the line segment st. Thus, at most two faces in Π are incident to both
s and t. We first partition the remaining faces into two subsets, lying on opposite
sides of a monotone path α such that the faces in each subset are incident to at
most one of s and t. Then we further partition each of the two subsets to form
y-monotone polygons. Let H−

st and H+
st denote the closed halfplanes on the left

and right of st, respectively. We distinguish two cases.

Case 1: No Face in Π Is Incident to Both s and t. We define two points,
v1 and v2, in the relative interior of the segment st. Let f1 ∈ Π be a face incident
to s whose closure contains a maximal portion of st, and let the segment sv1
be the intersection of the closure of f1 with st. Refer to Fig. 3(left, middle). We
may assume, by applying a reflection with respect to the y-axis if necessary, that

Monotone Paths in Planar Convex Subdivisions 247

t

s

P

f1

α
v1

t

s

P

f1

α

f2

v2

v1

s

P

f1

α

f2

v2

v1

t

Fig. 3. A y-monotone polygon P with a bottom vertex s, a top vertex t, and a convex
subdivision. Left: faces f1 and f2 are the same, but neither is incident to t. Middle:
faces f1 and f2 are not is incident to t. Right: faces f1 and f2 are both incident to t.

the interior of f1 intersects H−
st . Since f1 is not incident to t, there is an edge

in G that contains v1 and enters the interior of H−
st. If there is some edge in G

that contains v1 and enters the interior of H+
st or if v1 is on the boundary of

polygon P , then let v2 = v1. Otherwise, all edges of G incident to v1 lie in H−
st ,

hence two consecutive edges are contained in st. Then v1 is incident to a unique
face f2 ∈ Π on the right of st. Since f2 is not incident to both s and t, it has a
vertex along st which is different from both s and t; let v2 be an arbitrary such
vertex. In summary: the segment v1v2 ⊂ st is covered by edges of G; an edge of
G contains v1 and enters the interior of H−

st; and v2 is either on the boundary
of P or an edge of G contains v2 and enters the interior of H+

st.
Let u be a unit vector orthogonal to st. Slightly rotate u, if necessary, such

that u is not parallel or orthogonal to any edge of G and u · −−→v1v2 > 0 if v1 	= v2.
By Observation 1, there is a −u-monotone path from v1 to the boundary of
P , and a u-monotone path from v2 to the boundary of P . The union of these
two paths and the segment v1v2 forms a u-monotone path, denoted α, between
two boundary points of P and passing through v1 and v2. Direct α such that
its starting point is in H−

st . Since the endpoints of α are on the boundary of P ,
every face in Π is either on left or on right side of α. By construction, every face
incident to s is on the right of α, and every face incident to t is on the left of α.

By our assumption, α has at most m edges. Construct a path γ(v) for every
y-extremal interior vertex v of α, in an arbitrary order, as follows. If v is a y-
maximal (resp., y-minimal) vertex in α, then construct y-monotone path γ(v)
starting from v by successively appending edges in direction π

2 (resp., −π
2) until

the path reaches a vertex on α, the boundary of P or a previously constructed
path γ(v′), v′ 	= v. These paths γ(v) together with α subdivide P into at most
(m− 1)+2 = m+1 simple polygons, each of which is y-monotone by Lemma 2.

Case 2: Some Face in Π Is Incident to Both s and t. Let f1 ∈ Π be a face
incident to both s and t. Refer to Fig. 3(right). We may assume, by applying a
reflection with respect to the y-axis if necessary, that the interior of f1 intersects
H−

st . Let u be a unit vector orthogonal to st. Slightly rotate u, if necessary, such

that u is not parallel or orthogonal to any edge of G and u · −→st > 0. Let v1 be

248 A. Dumitrescu, G. Rote, and C.D. Tóth

the u-minimal vertex of f1. We need to be more careful when defining v2. If st is
an edge of P , then let v2 = s. If there is a face f2 (possibly f2 = f1) incident to
both s and t whose interior intersects H+

st, then let v2 be the u-maximal vertex
of f2. Otherwise, if st is an edge of the face f1 and G has vertices in the relative
interior of st, then let v2 be an arbitrary such vertex. Otherwise, st is on the
boundary of P , and then let v2 = s.

Similarly to Case 1, construct a −u-monotone path from v1 to the boundary
of P , and a u-monotone path from v2 to the boundary of P . A u-monotone
path α is formed by the union of these two paths, a path from v1 to s along
the boundary of f1, and a path from s to v2 along the boundary of f1 or f2.
Direct α such that its starting point is in H−

st . Since the endpoints of α are on
the boundary of P , every face in Π is either on the left or on the right side of
α. By construction, every face incident to s other than f1 and f2 (if it exists) is
on the right of α, and every face incident to t is on the left of α.

By our assumption, α has at most m edges. Construct a path γ(v) for every
y-extremal interior vertex of α that precedes v1 or follows v2 as in Case 1. If v1
is an interior vertex of α, then let γ(v1) be the y-monotone path from v1 to t
along the boundary of f1. Similarly, if v2 is an interior vertex of α, then let γ(v2)
be the y-monotone path from v2 to t along the boundary of f1 or f2. Note that
some of the interior vertices of α between v1 and v2 may be on the boundary of
P . If exactly k interior vertices of α are on the boundary of P , then α subdivides
P into at most k + 2 simple polygons. The paths γ (which are not defined for
vertices on the boundary of P) further subdivide these polygons into at most
(m− 1)+2 = m+1 simple polygons, each of which is y-monotone by Lemma 2.

By construction, one of these polygons is formed by the faces in Π incident to
both s and t. Thus, the faces not incident to both s and t are partitioned into at
most m sets, each of which is the convex subdivision of a y-monotone polygon
whose top or bottom vertex is not in {s, t}. ��

In Lemma 4, we have partitioned almost all faces of Π into subsets, where
each subset forms a y-monotone polygon. In the proof of the lower bound in
Theorem 2, we will only recurse on one of these polygons.

Corollary 1. Let P be a y-monotone polygon with bottom vertex s and top
vertex t. Let Π be a subdivision of P into n convex faces. Let m be the maximum
size of a monotone path in G = G(Π). If n ≥ 3, then there is a subset Π ′ ⊂ Π of
at least n/(m+ 3) faces such that Π ′ is the convex subdivision of a y-monotone
sub-polygon of P whose top or bottom vertex is not in {s, t}.

4 Proof of Theorem 2

Lower Bound Proof. Let 3 ≤ k ≤ n and Π be a subdivision of the plane
into n convex faces, where k faces are unbounded. By Lemma 3 there exists a
subset Π0 ⊂ Π of n0 ≥ (n− k)/(k − 2) faces that form a convex subdivision of
a monotone polygon P0. We may assume, by applying a rotation if necessary,
that no edge of G(Π) is horizontal and P0 is y-monotone. We can assume that

Monotone Paths in Planar Convex Subdivisions 249

n0 ≥ 4. It is enough to show that G(Π0) contains a monotone path of size at
least c0 logn0/ log logn0, where c0 > 0 is an absolute constant.

Let m denote the maximum size of a monotone path in G(Π0). We use
Corollary 1 to construct a nested sequence Π0 ⊃ Π1 ⊃ . . . ⊃ Πt such that
|Πi| = ni ≥ n0/(m+ 3)i and Πi is a convex subdivision of a y-monotone poly-
gon Pi for i = 1, 2, . . . , t. Moreover, the bottom or top vertex of Pi is different
from that of Pi−1 for i = 1, 2 . . . , t. If |Πi| > 2, then Πi+1 can be constructed
from Πi by Corollary 1. We may therefore assume that nt ∈ {1, 2}.

Let βt be an arbitrary y-monotone path in G(Πt) between the top and bottom
vertex of Pt. For i = t, t− 1, . . . , 1, the path βi can be extended to a y-monotone
path βi−1 between the top and bottom vertex of G(Πi−1) by Observation 1.
Note that βi−1 is strictly longer than βi, since at least one of two endpoints of
βi is not the top or bottom vertex of Pi−1. Therefore, β0 is a y-monotone path
with at least t+ 1 edges, and t ≤ m− 1 by the definition of m. We have

2 ≥ nt ≥
n0

(m+ 3)t
≥ n0

(m+ 3)m−1
.

hence n0 ≤ 2(m+3)m−1 = 21+(m−1) log(m+3). This givesm ≥ c0 logn0/ log logn0,
for some absolute constant c0 > 0, as required.

Upper Bound Construction. For every pair of integers k, n ∈ R, where
3 ≤ k < n, we subdivide the plane into a set Π of Ω(n) convex cells, ex-
actly k of which are unbounded, such that every monotone path in G(Π) has
O(log n

k / log log
n
k) edges. We first construct the unbounded faces. If k = 3, then

let Q1 be a triangle, and subdivide the exterior of Q1 into 3 convex faces by 3
rays emitted from the vertices of Q1. If k ≥ 4, then subdivide the plane into
k unbounded faces by a star graph with �k/2� leaves, q1, . . . , q
k/2�, and 2 or 3
rays emitted from each leaf. Then replace each vertex qi, 1 ≤ i ≤ �k/2� by a
small triangle Qi. Now it is enough to subdivide each triangle Qi into at least
n0 = 5n/k bounded faces such that every monotone path restricted to Qi has
O(log n0/ log logn0) edges. Since a monotone path can visit at most two triangles
Qi, it has O(log n0/ log log n0) edges.

Let m = �logn0/ log logn0. The basic building block of our construction is a
plane geometric graph R shown in Fig. 4(left). The outer face of R is a rhombus
symmetric with respect to both the x- and the y-axes. Two opposite corners
of the rhombus are connected by an x-monotone zig-zag path ξ of 2m edges.
The edges of ξ have alternately negative and positive slopes, and so the 2m− 1
interior vertices are alternately y-minimal and y-maximal. Denote by Z the y-
minimal interior vertices of ξ, so |Z| = m. The y-minimal interior vertices of ξ
are joined to the bottom vertex s of the rhombus, and the y-maximal ones to
the top vertex t. The vertices s and t are sufficiently far below and respectively
far above ξ such that all bounded faces of R are convex. The graph R contains a
monotone path of size 2m in directions close to horizontal, but every monotone
path has at most 3 edges in directions close to vertical. After an appropriate
affine transformation, every monotone path has at most 3 edges in all directions
except for those in a prescribed interval of length π

2m in [0, 2π).

250 A. Dumitrescu, G. Rote, and C.D. Tóth

⇒

R

⇒ tv

s

t

s

t

s s

v

v tv

Fig. 4. Left: The subgraph R with m = 4. The vertices in Z are marked with empty
circles. In one phase of our construction, the vertices in Z are replaced by long and
skinny triangles. Right: A vertex v ∈ Z is replaced by a skinny triangle that contains
an affine copy of R, and the space between the triangle and R is triangulated.

We construct a convex subdivision Π of Q in m phases. For i = 1, . . . ,m,
we maintain a convex subdivision Πi, a set Zi of special vertices in G(Πi), and
a special edge incident to each vertex in Zi. For constructing Π1, consider an
affine copy of R, such that any monotone path has at most 3 edges except for
directions in the interval (π

2m ,
2π
2m). This graph, together with four axis-parallel

rays from the four corners of the rhombus to the bounding box induce the convex
subdivision Π1 of the plane. Note that G(Π1) = R. For each v ∈ Z1, let the
special edge of v be vs, the edge joining v to the bottom vertex of R.

In phase i = 2, . . . ,m, we construct Πi from Πi−1 as follows. Replace each
vertex v ∈ Zi−1 by a long skinny triangle tv along the special edge incident to v
as in Fig. 4(right). In the interior of tv, place a small affine copy of R near the
midpoint of tv, such that any monotone path has at most 3 edges in R except

for directions in the interval
(

(2i−1)π
2m , 2iπ2m

)
. Denote by rv the outer boundary of

this copy of R. Triangulate the space between rv and tv arbitrarily by using O(1)
edges; the edges of the triangulation are almost parallel to the special edge sv
if tv is sufficiently skinny and rv is sufficiently small. Let Zi be the union of the
vertex sets Z from all affine copies of R created in phase i, and let the special
edge of each vertex in Zi be the edge connecting that vertex to the vertex s of
the corresponding copy of R.

We show that Π = Πm has Ω(n0) faces, and the longest monotone path in
G = G(Π) has size O(m) = O(log n0/ log logn0). Initially, we have |Z1| = m
special vertices. Since |Zi| = m|Zi−1| for i = 2, . . . ,m, it follows that |Zm| = mm.
Note that for each special vertex in Zm, there is an incident quadrilateral face
in a copy of R which is not incident to any other vertex in Zm. Hence Π has at
least |Zm| = mm = Ω(n0) faces.

For any v ∈ Zi, i = 1, 2 . . . ,m, our recursive construction did not modify
the edges of the triangle tv and the rhombus rv (only the interior edges of a
copy of R inside rv are modified in subsequent phases). Let Ti and Ri denote
the set of triangles tv and rhombi rv, respectively, for all v ∈ Zi. Note that a
monotone path enters and exits the interior of a triangle or a rhombus in G
at most once. Let γ be a path in G(Π) that is monotone in some direction θ.

Monotone Paths in Planar Convex Subdivisions 251

Assume that θ ∈
[
(j−1)π

m , jπm

)
, for some j ∈ {1, 2, . . . ,m}. For i < j, the path γ

enters at most one triangle of Ti. For j = i, it can visit m triangles of Ti, that
all lie in a common triangle t ∈ Ti−1. However, the edges between a triangle tv
and the rhombus rv ⊂ tv are almost parallel to the special edge incident to v
in G(Πi−1), and all special edges within a copy of R are incident to a common
vertex. It follows that γ can reach the rhombus rv ⊂ tv in at most three triangles
tv ∈ Ti: in at most two triangles tv ∈ Ti that contain an endpoint of γ, and in at
most one triangle tv that γ traverses. For i > j, the path γ enters at most three
triangles of Ti, at most one inside each rhombus in Ri−1.

It follows that γ traverses O(m) edges in at most one zig-zag path created in
phase j, and it traverses O(1) edges created in any of the other m − 1 phases.
Consequently, every monotone path in G(Π) has at most O(m) edges, as re-
quired. ��

Open Problems. The proofs of Lemmas 1, 2, and 3 crucially depend on the pla-
narity of the subdivisions. Extending Theorems 1 and 2 for convex subdivisions
of Rd, d ≥ 3, remain as open problems.

We have shown (Theorem 2) that in any connected subdivision with n faces,
k ≥ 3 of which are unbounded, there is a monotone path with Ω(log n

k / log log
n
k)

edges. Fig. 1(right) shows that this lower bound does not hold for (strictly)
monotone paths starting from an arbitrary vertex. Deciding whether there exists
a weakly monotone path of length Ω(log n

k / log log
n
k) starting from every vertex

of a convex subdivision with k unbounded faces remains an open problem.

Acknowledgment. The authors thank János Pach for insistently asking the
question to which Theorem 1 gives the answer.

References

1. Balogh, J., Regev, O., Smyth, C., Steiger, W., Szegedy, M.: Long monotone paths
in line arrangements. Discrete & Comput. Geom. 32, 167–176 (2004)

2. Chazelle, B., Edelsbrunner, H., Guibas, L.J.: The complexity of cutting complexes.
Discrete & Comput. Geom. 4, 139–181 (1989)

3. Dumitrescu, A., Tóth, C.D.: Monotone paths in planar convex subdivisions. In:
Abstracts of the 21st Fall Workshop on Comput. Geom., NY (2011)

4. McMullen, P.: The maximum numbers of faces of a convex polytope. Mathe-
matika 17, 179–184 (1971)

5. Radoičić, R., Tóth, G.: Monotone paths in line arrangements. Comput. Geom. 24,
129–134 (2003)

6. Rote, G.: Long monotone paths in convex subdivisions In: Abstracts of the 27th
European Workshop on Comput. Geom., Morschach, pp. 183–184 (2011)

7. Santos, F.: A counterexample to the Hirsch conjecture. Annals of Mathematics 176,
383–412 (2012)

8. Todd, M.J.: The monotonic bounded Hirsch conjecture is false for dimension at
least 4. Math. Oper. Res. 5(4), 599–601 (1980)

9. Tóth, C.D.: Stabbing numbers of convex subdivisions. Period. Math. Hung. 57(2),
217–225 (2008)

10. Ziegler, G.M.: Lectures on Polytopes. GTM, vol. 152, pp. 83–93. Springer (1994)

The Cost of Bounded Curvature�

Hyo-Sil Kim1 and Otfried Cheong2

1 Department of Computer Science & Engineering, POSTECH, Pohang, Korea
hyosil.kim@gmail.com

2 Department of Computer Science, KAIST, Daejeon, Korea
otfried@kaist.edu

Abstract. We study the motion-planning problem for a car-like robot
whose turning radius is bounded from below by one and which is al-
lowed to move in the forward direction only (Dubins car). For two robot
configurations σ, σ′, let �(σ, σ′) be the length of a shortest bounded-
curvature path from σ to σ′ without obstacles. For d ≥ 0, let �(d) be
the supremum of �(σ, σ′), over all pairs (σ, σ′) that are at Euclidean dis-
tance d. We study the function dub(d) = �(d) − d, which expresses the
difference between the bounded-curvature path length and the Euclidean
distance of its endpoints. We show that dub(d) decreases monotonically
from dub(0) = 7π/3 to dub(d∗) = 2π, and is constant for d ≥ d∗. Here
d∗ ≈ 1.5874. We describe pairs of configurations that exhibit the worst-
case of dub(d) for every distance d.

1 Introduction

Motion planning or path planning involves computing a feasible path, possibly
optimal for some criterion such as time or length, of a robot moving among
obstacles; see the book by Lavalle [5]. A robot generally comes with physical
limitations, such as bounds on its velocity, acceleration or curvature. Such dif-
ferential constraints restrict the geometry of the paths the robot can follow. In
this setting, the goal of motion planning is to find a feasible (or optimal) path
satisfying both global (obstacles) and local (differential) constraints if such a
path exists.

In this paper, we study the bounded-curvature motion planning problem which
models a car-like robot. More precisely, the robot is considered a rigid body that
moves in the plane. A configuration of the robot is specified by both its location,
a point in R2 (typically, the midpoint of the rear axle), and its orientation, or
direction of travel. The robot is constrained to move in the forward direction,
and its turning radius is bounded from below by a positive constant, which can
be assumed to be equal to one by scaling the space. In this context, the robot
follows a bounded-curvature path, that is, a differentiable curve whose curvature
is constrained to be at most one almost everywhere.

� This research is supported in part by Mid-career Researcher Program through NRF
grant (No. R01-2008-000-11607-0) funded by the MEST and in part by SRC-GAIA
through NRF grant (No. 2011-0030044) funded by the Government of Korea.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 252–263, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Cost of Bounded Curvature 253

Planning the motion of a car-like robot has received considerable attention in
the literature. In this paper, we consider the cost of this restriction: How much
longer is the shortest path made by such a robot compared to the Euclidean
distance travelled?

Formally, consider two configurations σ and σ′. Let 	(σ, σ′) denote the length
of a shortest curvature-constrained path from σ to σ′ without obstacles, and let
d(σ, σ′) denote the Euclidean distance between σ and σ′. We define

dub(d) = sup{	(σ, σ′)− d | σ, σ′ configurations with d(σ, σ′) = d}. (1)

Note that the supremum here is not a maximum, as the path length is not a
continuous function of the orientations at the two endpoints. Our goal is to
understand the function dub : R '→ R in detail. While this is a natural and
fundamental question related to motion planning with bounded curvature, it is
also a relevant question that has repeatedly appeared in the literature, with only
partial answers so far.

At least two interesting problems have been studied where not configurations
but only locations for the robot are given. The first problem considers a sequence
of points in the plane, and asks for the shortest curvature-constrained path that
visits the points in this sequence. In the second problem, the Dubins traveling
salesman problem, the input is a set of points in the plane, and asks to find
a shortest curvature-constrained path visiting all points. Both problems have
been studied by researchers in the robotics community, giving heuristics and
experimental results [7,8]. From a theoretical perspective, Lee et al. [6] gave a
linear-time, constant-factor approximation algorithm for the first problem. No
general approximation algorithms are known for the Dubins traveling salesman
problem (the approximation factor of the known algorithms depends on the
smallest distance between points).

All this work depends on some knowledge of the function dub. Lee et al. [6], for
instance, prove that the approximation ratio of their algorithms is max(A, π/2+
B/π), where A = 1 + sup{dub(d)/d | d ≥ 2} and B = sup{dub(d) + d | d ≤ 2}.
They claim without proof that dub(d) ≤ 2π for d ≥ 2 and derive from this that
A = 1+π and B ≤ 5π/2+3, leading to an approximation ratio of about 5.03. We
give the first proof of A = 1+ π, and improve the second bound to B = 2 + 2π,
improving the approximation ratio of their algorithm to 2 + 2/π + π/2 ≈ 4.21.

√
2 1.5874 . . .

2π

d

7π
3

5π
2 −

√
2

dub(d)

Fig. 1. The graph of dub(d)

Savla et al. [9] prove that dub(d) ≤
κπ, where κ ∈ [2.657, 2.658], and
conjecture based on numerical exper-
iments that the true bound is 7π/3.
We show that this is indeed true.

Results. We show that d '→ dub(d) is
a decreasing function with two break-
points, at

√
2 and at d∗ ≈ 1.5874

(see Fig. 1). More precisely, we have
dub(0) = 7π/3 and the two breakpoint

254 H.-S. Kim and O. Cheong

values are dub(
√
2) = 5π/2 −

√
2, and dub(d∗) = 2π. The function dub(d) is

constant and equal to 2π for d ≥ d∗.
For 0 ≤ d <

√
2 and for d ≥ d∗, the supremum in (1) is in fact a maximum,

and we give configurations σ, σ′ at distance d such that 	(σ, σ′) = dub(d) + d.
Perhaps surprisingly, for

√
2 ≤ d < d∗, there are no such configurations—the

supremum is not a maximum.
Because of the limited space, we omit most of the proofs. The reader can find

a full version of this paper on the arXiv [3].

2 Preliminaries

Notations. For two points P and Q, we denote by PQ the line segment with
endpoints P and Q, and by

....
PQ an arc of unit radius with endpoints P and Q.

(If the length of PQ is less than two then there are four such arcs, so unless it is
clear from the context, we will specify the supporting circle and the orientation
of the arc.) We denote the length of the segment PQ as |PQ| or simply as |PQ|,
and the length of the arc

....
PQ as |

....
PQ|.

Without loss of generality, we assume that the starting configuration is (0, 0, α)
and the final configuration is (d, 0, β). Here, α and β express the orientation of
the robot as an angle with the positive x-axis, and d ≥ 0 is the Euclidean distance
of the two configurations.

The open unit (radius) disks tangent to the starting and final configurations
are denoted LS, RS , LF , RF , where the letters L or R depend on whether the
disk is located on the left or right side of the direction vector. Let 	S , rS , 	F , rF
denote the centers of LS , RS , LF , RF , respectively; their coordinates are 	S =
(− sinα, cosα), rS = (sinα, − cosα), 	F = (d − sinβ, cos β) and rF = (d +
sinβ,− cosβ). Let the distance between two centers be denoted by: dL = |	S	F |,
dR = |rSrF |, dLR = |	SrF |, and dRL = |rS	F |.

Dubins Paths. Dubins [1] showed that for two given configurations in the
plane, shortest bounded-curvature paths consist of arcs of unit radius circles
(C-segments) and straight line segments (S-segments); moreover, such shortest
paths are of type CCC or CSC , or a substring thereof. These types of paths are
referred to as Dubins paths.

For given d ≥ 0, α, β ∈ [0, 2π], there are up to six types of Dubins paths. The
two path types LSL and RSR use outer tangents—these path types exist for any
choice of d, α, β. The two path types LSR and RSL use inner tangents, and exist
only when the corresponding disks are disjoint. In particular, LSR exists if and
only if dLR ≥ 2, and RSL exists if and only if dRL ≥ 2. The remaining two path
types LRL and RLR exist whenever there is a disk tangent to the two disks, and
so LRL exists if and only if dL ≤ 4, and RLR exists if and only if dR ≤ 4.

Dubins showed that in LRL- and RLR-paths the middle circular arc has length
larger than π. This implies that of the two unit radius disks tangent to LS

and LF , only one is a candidate for the middle arc of an LRL-path, and similar
for RLR-paths.

The Cost of Bounded Curvature 255

For d ≥ 0 and 0 ≤ α, β ≤ 2π, we define lsl(d, α, β) to be the length of the
LSL-path from (0, 0, α) to (d, 0, β). We define rsr, lsr,rsl, lrl,rlr similarly,
defining the length to be ∞ if no path of that type exists. The length of the
shortest bounded-curvature path from S to F is then

	(d, α, β) = min
{
lsl(d, α, β),rsr(d, α, β), lsr(d, α, β),rsl(d, α, β),

lrl(d, α, β),rlr(d, α, β)
}
,

and our goal is to bound dub(d) = sup0≤α,β≤2π 	(d, α, β) − d. (Note that the
supremum here is not always a maximum as the function 	 is not continuous.)

We will often suppress the argument d for these functions when the distance d
is fixed and understood.

Monotonicity of the Dubins Cost Function. Let � = [0, 2π]2 denote the
range of (α, β). Consider two distances d1 < d2 and (α, β) ∈ �, and assume
that we have a bounded-curvature path from (0, 0, α) to (d1, 0, β) of length 	 ≤
dub(d1)+ d1. If this path has a horizontal tangent where the path is oriented to
the right (in the direction of the positive x-axis), then we can insert a horizontal
segment of length d2 − d1 at this point, and obtain a path from (0, 0, α) to
(d2, 0, β) of length 	+ (d2 − d1) ≤ dub(d1) + d2. See, for instance, Fig. 2(a).

RS1

LF

α
β

α

d1

RS2

d2

d2 − d1

(a)

RSRF

S F

(b)

Fig. 2. (a) �(d2, α, β) ≤ rsl(d1, α, β) + (d2 − d1), (b) an RLR-path that does not have
a right horizontal tangent

If this was possible for all (α, β) ∈ �, then it would imply that dub(d2) ≤
dub(d1), and it would follow that the Dubins cost function is monotone. Unfortu-
nately, not all Dubins paths have horizontal tangents with the correct orientation
(see Fig. 2(b) for an example), and so proving the monotonicity of the Dubins
cost function will require much more work. However, we can prove that this
holds for any CSC -path by showing that any of these path types must have a
horizontal tangent:

256 H.-S. Kim and O. Cheong

Lemma 1. Let d1 < d2, and (α, β) ∈ �. If there is a path of length 	 of type
RSR, LSL, LSR, or RSL from (0, 0, α) to (d1, 0, β), then there is a path of
length 	+ (d2 − d1) from (0, 0, α) to (d2, 0, β).

Symmetries and a New Parameterization. For a fixed d ≥ 0, determining
dub(d) essentially amounts to finding (α, β) ∈ � maximizing 	(d, α, β) (“essen-
tially” since the maximum may not actually be assumed).

We observe that the function 	(d, α, β) has two symmetries; a point sym-
metry in (π, π) and a reflection around the line β = 2π − α (see Kim [4], or
Goaoc et al. [2], or our full version [3]).

It follows that sup(α,β)∈� 	(d, α, β) = sup(α,β)∈Δ 	(d, α, β), where Δ is the
triangle with corners (0, 0), (π, π), and (0, 2π), or in other words the region
Δ : 0 ≤ α ≤ π, α ≤ β ≤ 2π − α. In the following we will thus be able to restrict
our considerations to the triangle Δ (see Fig. 3(a)).

We now introduce a new parameterization of the (α, β)-plane, which will
sometimes be more convenient to work with: σ = (β + α)/2 and δ = (β − α)/2.
In other words, we have α = σ − δ and β = σ + δ.

In the (σ, δ)-representation, the triangle Δ is the region 0 ≤ σ ≤ π and
0 ≤ δ ≤ σ, or the bottom right half of the square Γ = [0, π]2 (see Fig. 3(b)).

α

β

2π

2π

0

Δ (π, π)

σ-axisδ-axis

β
=
2π −

α
β
=
αΓ

(a) (α, β)-representation

π

0

Δ

σ

δ

π

δ
=
σ

Γ

(b) (σ, δ)-representation

Fig. 3. Δ in two different representations

The following lemma can be shown by easy calculations:

Lemma 2. The center distances in terms of σ and δ are:

d2
L
= |	S	F |2 = d2 − 4d sin δ cosσ + 4 sin2 δ (2)

d2R = |rSrF |2 = d2 + 4d sin δ cosσ + 4 sin2 δ (3)

d2
LR

= |	SrF |2 = d2 + 4d cos δ sinσ + 4 cos2 δ (4)

d2
RL

= |rS	F |2 = d2 − 4d cos δ sinσ + 4 cos2 δ (5)

The Case d = 0. We first argue that dub(0) = 7π/3. The case d = 0 is much
easier since there is only one degree of freedom: Without loss of generality we

The Cost of Bounded Curvature 257

can assume α = 0. It is easy to verify that for any β there is a CCC -path
of length at most 7π/3. For β = π, no Dubins path has length shorter than
7π/3, and so dub(0) = 7π/3. In the rest of this paper we can therefore mostly
assume d > 0, and avoid some degeneracies.

The Three Cases. We subdivide the pairs of orientations (α, β) ∈ Γ (and
hence in the triangle Δ) into three cases. We define:

A = {(α, β) ∈ Γ | dLR(α, β) < 2 and dRL(α, β) < 2},
B = {(α, β) ∈ Γ | dLR(α, β) < 2 and dRL(α, β) ≥ 2},
C = {(α, β) ∈ Γ | dLR(α, β) ≥ 2}.

For clarity, let us define the parts of A, B and C that lie inside the triangle Δ:

AΔ = A ∩Δ, BΔ = B ∩Δ, and CΔ = C ∩Δ.

Note that (α, β) ∈ A if and only if LS ∩ RF 	= ∅ and RS ∩ LF 	= ∅. Since
|	SrS | = 2 and |	F rF | = 2, the triangle-inequality implies dL < 4 and dR < 4, so
both LRL- and RLR-paths exist. We will concentrate entirely on these two path
types in case A and prove that other path types cannot be shorter. Note that
case A does not occur for d ≥ 2, as we have 8 > d2LR+d

2
RL = 2d2+8 cos2 δ ≥ 2d2.

Similarly, we have (α, β) ∈ B if and only if LS ∩ RF 	= ∅ and RS ∩ LF = ∅.
As in case A, LRL-paths must exist, and dRL ≥ 2 implies that RSL-paths exist
as well. We will concentrate on RSL- and LRL-paths in case B and prove that
other path types cannot be shorter.

Finally, (α, β) ∈ C if and only if LS ∩ RF = ∅. This implies that LSR-paths
exist. We will study LSR- and RSR-paths in case C.

We can now refine our Dubins-function dub(d) by defining the following three
functions:

dubX(d) = sup(α,β)∈XΔ 	(d, α, β)− d for X ∈ {A,B,C}

and we have dub(d) = max{ dubA(d), dubB(d), dubC(d) }.
Case C and a Lower Bound. Kim proved in his master thesis [4] that for
(α, β) ∈ CΔ, we have 	(d, α, β) ≤ 2π+d (a more polished proof can also be found
in our full version [3]). We show that this bound is optimal. Since dub(d) ≥
dubC(d), this establishes a lower bound for the Dubins cost function.

Lemma 3. For any d > 0 we have dubC(d) = 2π.

It remains to study cases A and B. For lack of space, we sketch the arguments
for case A only in this extended abstract.

3 Regions of the Square Γ for 0 < d < 2

We will now describe the regions A, B, and C of the square Γ geometrically. For
our purposes it will be sufficient to do this when 0 < d < 2, so we assume this
throughout this section.

258 H.-S. Kim and O. Cheong

We define the angle α∗ = arcsin d
2 , and observe that for (α, β) = (α∗, 2π−α∗)

as well as for (α, β) = (π − α∗, π + α∗) we have RS = RF . Let us also define
σ∗ = arcsin d

4 .

Lemma 4. For 0 < d < 2,

• There is a curve (σ, δLR(σ))0≤σ≤π in Γ that connects the two points (0, α∗)
and (π, α∗), lies strictly between δ = α∗ and δ = π/2 except for its endpoints,
and such that dLR = 2 on the curve, dLR < 2 between the curve and the line
δ = π/2, and dLR > 2 below the curve;

• There is a curve (σ, δRL(σ))0≤σ≤σ∗ in Γ that connects the two points (0, α∗)
and (σ∗, 0), lies strictly below δ = α∗ except for its left endpoint, and such
that dRL = 2 on the curve, dRL < 2 between the curve and the line δ = α∗,
and dRL > 2 below the curve;

• For α∗ ≤ δ ≤ π/2, we have dRL ≤ 2 with equality only for the two points
(0, α∗) and (π, α∗);

• For σ∗ < σ < π − σ∗, 0 ≤ δ ≤ α∗, we have dRL < 2.

We now exploit from Lemma 2 that dRL(σ, δ) = dLR(σ, π − δ) and dRL(σ, δ) =
dRL(π − σ, δ) to obtain our desired subdivision. See Fig. 4.

π

π0 σ

δ

α∗

π − α∗

σ∗ π − σ∗

C1

A

B

C2C3

δlr(σ)

π
2

δrl(σ)

(a) Subdivision of Γ

π

0 α
α∗

2π − α∗

CΔ
1

AΔ

BΔ

CΔ
2

π
2

β

π
π − α∗

3π
2

2π

βRL

βLR

(b) Subdivision of Δ

Fig. 4. The subdivision of Γ and Δ, shown for d = 1

• C1 is the region δ ≤ δLR(σ). Inside this region we have dLR ≥ 2.
• C2 is the region π − σ∗ ≤ σ ≤ π, π − δRL(σ) ≤ δ ≤ π. Here we have dLR ≥ 2
and dRL ≥ 2.

• C3 is the region 0 ≤ σ ≤ σ∗, π − δRL(σ) ≤ δ ≤ π. Here we have dLR ≥ 2 and
dRL ≥ 2.

• A is the region δLR(σ) < δ < π − δLR(σ). In this region we have dLR < 2 and
dRL < 2.

The Cost of Bounded Curvature 259

• Finally, B is the remaining region, where π− δLR(σ) ≤ δ, but excluding C2∪
C3. In this region we have dLR < 2 and dRL ≥ 2 .

It is clear from the description in Lemma 4 that the five regions A, B, C1, C2,
and C3 are σ-monotone, meaning that a line parallel to the δ-axis intersects each
region in a single interval.

4 Explicit Expressions for the Length of CCC -Paths

In this section we develop explicit formulas for the length of LRL- and RLR-
paths.

LS LF

μL

dL
	S 	F

SL
0

SL
1

SL
2 F L

2

F L
1

F L
0

ML

NL

Fig. 5. Locations of S and F

We start by a change of perspective, and
consider all configurations where dL is fixed.
We choose a coordinate system where the line
	S	F is horizontal, and 	S lies to the left of 	F ,
see Fig 5. We have drawn the two unit-radius
disksML and NL tangent to LS and LF . The
points of tangency are SL

2 and F L
2 for ML,

and SL
1 and F L

1 for NL. Dubins [1] showed
that the length of the middle circular arc of
a CCC -path is larger than π, and so it lies
on ML.

So any LRL-path first follows a leftwards
arc on LS , then switches toML at SL

2 , follows
the rightwards arc onML until it reaches F L

2 ,
and finally follows a leftwards arc on LF . We
note that the middle arc on ML does not
depend on the specific endpoints S and F ,
it is determined entirely by SL

2 and F L
2 , and therefore by dL. Let μL denote

half the length of the middle circular arc
....

SL
2F

L
2 . We have π/2 < μL ≤ π, and

4 sin(π−μL) = dL, so that we have μL = π− arcsin dL

4 . The same considerations
apply to RLR-paths. We define μR as half the length of the middle circular arc
of the RLR-path, and obtain μR = π − arcsin dR

4 . Note that

∠SL

1	SS
L

2 = ∠F L

2 	FF
L

1 = 2μL − π, (6)

∠SR

1 rSS
R

2 = ∠FR

2 rFF
R

1 = 2μR − π. (7)

Lemma 5. We have

• S lies on the counter-clockwise arc
....
SL
1S

L
2 of LS if and only if dRL < 2;

• F lies on the clockwise arc
....

F R
2 F

R
1 of RF if and only if dRL < 2;

• S lies on the clockwise arc
....
SR
1S

R
2 of RS if and only if dLR < 2;

• F lies on the counter-clockwise arc
....

F L
2F

L
1 of LF if and only if dLR < 2.

Moreover, if dRL ≥ 2 and in addition 0 ≤ α ≤ π/2, then S lies on the counter-

clockwise arc
....
SL
0S

L
1 of LS.

260 H.-S. Kim and O. Cheong

Lemma 5 allows us to develop explicit formulas for lrl(σ, δ) – the length of
LRL-paths, and rlr(σ, δ) – the length of RLR-paths.

Lemma 6. For any σ, δ, we have lrl(σ, δ)≡4μL+2δ (mod 2π) and rlr(σ, δ)≡
4μR − 2δ (mod 2π). Especially, for (σ, δ) ∈ A, we have

lrl(σ, δ) = 4μL + 2δ − 2π rlr(σ, δ) = 4μR − 2δ.

Proof. An LRL-path consists of an initial left-turning arc of length γ1 on LS , a
right-turning arc of length 2μL on the middle disk, and a final left-turning arc of
length γ2 on LF . This means that the total change in orientation is γ1−2μL+γ2.
On the other hand, since the initial orientation is α and the final orientation is β,
this must be equal, up to multiples of 2π, to β − α = 2δ. It follows that

lrl = γ1 + γ2 + 2μL = γ1 − 2μL + γ2 + 4μL ≡ 2δ + 4μL.

For RLR-paths, we can similarly observe that −γ1 + 2μR − γ2 ≡ 2δ (mod 2π)
(here, γ1 and γ2 are the right-turning arcs) and obtain

rlr = γ1 + γ2 + 2μR = 4μR − (−γ1 + 2μR − γ2) ≡ 4μR − 2δ.

Let us now assume that (σ, δ) ∈ A. We have 2α∗ < 2δ < 2π− 2α∗. On the other

hand, γ1 + γ2 − 2μL ≥ −2μL ≥ −2π. By Lemma 5, S ∈
....
SL
1S

L
2 and F ∈

....
F L
2 F

L
1 ,

and so we can extend the LRL-path to a complete clockwise loop. The loop
uses additional left-turns ζ1 on LS and ζ2 on LF , and an additional right turn of
length 2μL onNL. Let the length of the arc ζ1 be δ1 and that of ζ2 be δ2. The total
turning angle of a clockwise loop is −2π, and thus γ1+γ2+δ1+δ2−4μL = −2π.
Since 2μL ≤ 2π this implies that γ1+γ2−2μL ≤ 0. From −2π ≤ γ1+γ2−2μL ≤ 0
and 0 ≤ 2α∗ < 2δ < 2π − 2α∗ ≤ 2π, we conclude that γ1 + γ2 − 2μL ≡ 2δ
(mod 2π) implies γ1+γ2− 2μL = 2δ− 2π. This shows that lrl = 4μL+2δ− 2π.

For RLR-paths, we could argue analogously, or we can simply observe that

rlr(σ, δ) = lrl(π − σ, π − δ) = 4μR(σ, δ) − 2δ. ��

5 CCC -Paths for d < 2 and Case A

When d < 2, both LRL- and RLR-paths exist for any (σ, δ) ∈ Γ . In this section
we analyze the length of these two CCC -paths for 0 < d < 2.

We define three functions l, r, and c on Γ :

l(σ, δ) = 4μL(σ, δ) + 2δ − 2π (8)

r(σ, δ) = 4μR(σ, δ) − 2δ (9)

c(σ, δ) = min{l(σ, δ),r(σ, δ)}. (10)

While these functions are defined and continuous everywhere on Γ , we have
shown in Lemma 6 only that lrl(σ, δ) = l(σ, δ) for (σ, δ) ∈ A ∪ B, and
rlr(σ, δ) = r(σ, δ) for (σ, δ) ∈ A. It follows that c(σ, δ) is the length of the
shortest CCC -path for (σ, δ) ∈ A.

The Cost of Bounded Curvature 261

Ξ

π

π0

σ

δ

α∗

π − α∗

Λ

π
2

π
2

l(σ, δ) < r(σ, δ)

r(σ, δ) < l(σ, δ)

Fig. 6. The curve Λ where l = r

Recall that α∗ = arcsin d
2 . We define

the following rectangle Ξ ⊂ Γ :

Ξ : 0 ≤ σ ≤ π and α∗ ≤ δ ≤ π − α∗.

Note that A ⊂ Ξ (see Fig. 4(a)). In the
interior of Ξ, we have sin δ > d/2, which
implies cos δ2 < 1 − d2/4. So for α∗ <
δ ≤ π/2, we have dRL < 2 by (5), and for
π/2 ≤ δ < π−α∗, we have dLR < 2 by (4).
By the triangle inequality it follows that
dL < 4 and dR < 4.

The following lemma is proven using
the derivatives of the functions l and r.

Lemma 7. For (σ, δ) ∈ Ξ, the function

• σ '→ l(σ, δ) is decreasing, while σ '→ r(σ, δ) is increasing,
• δ '→ l(σ, δ) is increasing, while δ '→ r(σ, δ) is decreasing.

Since c(σ, δ) is continuous, it assumes its maximum on Ξ. The following is one
of our key lemmas:

Lemma 8. The function c(σ, δ) has no local extremum in the interior of Ξ
except at (π/2, π/2).

Proof. By Lemma 7, neither l nor r has a local extremum in the interior of Ξ,
so any local extremum of c(σ, δ) must be a point in the set Λ of points (σ, δ)
with l(σ, δ) = r(σ, δ). By Lemma 7, Λ is a δ-monotone curve. Since l(σ, δ) =
r(π − σ, π − δ), the curve Λ passes through the point (π/2, π/2). By Lemma 7,
this implies that l(σ, δ) < r(σ, δ) for the quadrant π/2 ≤ σ ≤ π, α∗ ≤ δ ≤ π/2,
and that r(σ, δ) < l(σ, δ) for the quadrant 0 ≤ σ ≤ π/2, π/2 ≤ δ ≤ π − α∗

except at the point (π/2, π/2). By point symmetry, we can restrict our attention
to the range π/2 < σ < π, π/2 < δ < π − α∗.

Assume for a contradiction that (σ, δ) ∈ Λ is a local extremum of l, restricted
to Λ. This implies that the gradient ∇l(σ, δ) and the normal of Λ in (σ, δ) are
linearly dependent, by the method of Lagrange Multipliers. The normal of Λ
is the gradient of l(σ, δ) − r(σ, δ), so ∇l(σ, δ) and ∇r(σ, δ) must be linearly
dependent.

Let DL = dL

√
1− (dL/4)2 and DR = dR

√
1− (dR/4)2. For the two vectors to

be linearly dependent, we would have to have

DL

∂l

∂δ
(σ, δ) +DR

∂r

∂δ
(σ, δ) = 0,

which means 2DL − 2DR − 8 cos δ sin δ = 0. In the range under consideration,
−8 cos δ sin δ > 0. We will show that DL > DR, a contradiction. We have

16(D2
L −D2

R) = d2L(16− d2L)− d2R(16− d2R) = (d2L − d2R)(16− (d2L + d2R))

= −8d cosσ sin δ(16− (2d2 + 8 sin2 δ)).

Since cosσ < 0 and d < 2, the expression is positive. ��

262 H.-S. Kim and O. Cheong

The proof of Lemma 8 implies that the maximum of the function c must happen
either on the vertical side σ = π, π/2 < δ ≤ π − α∗, or on the horizontal side
δ = π − α∗, π/2 < σ ≤ π. Let (σA, δA) be the point where the maximum of c is
realized. The point (σA, δA) is unique if we require σA + δA > π, and there is a
symmetric point (π − σA, π − δA). Let us define the function a(d) for 0 ≤ d < 2

a(d) = lrl(σA, δA) = rlr(σA, δA). (11)

There is an important breakpoint at d =
√
2:

Lemma 9. The maximum a(d) occurs with σA = π when 0 ≤ d ≤
√
2, and with

δA = π − α∗ when
√
2 ≤ d < 2.

Proof. Using (2) and (3), we have dL(π, π − α∗) = 2d and dR(π, π − α∗) = 0,
which implies by (8) and (9), l(π, π−α∗) = 4π−6α∗ and r(π, π−α∗) = 2π+2α∗.

Since α∗ = arcsin(d/2), we have r(π, π − α∗) < l(π, π − α∗) for d <
√
2,

equality for d =
√
2, and r(π, π − α∗) > l(π, π − α∗) for d >

√
2. In the first

case, Lemma 7 implies that the maximum must occur on the vertical side at
σ = π, in the last case it must occur on the horizontal side at δ = π − α∗. For
d =

√
2 the maximum occurs at the corner (σA, δA) = (π, π − α∗). ��

Again using the method of Lagrange Multipliers, we show that on the interval
0 ≤ d ≤

√
2, dubA(d) is determined by the function a(d).

Lemma 10. On the interval 0 ≤ d ≤
√
2,

• the function d '→ a(d) is monotonically increasing from 7π/3 to 5π/2,
• the function d '→ a(d)− d is monotonically decreasing from 7π/3 to 5π/2−√

2,
• max(σ,δ)∈Ξ c(d, σ, δ) = a(d).

We now have all the tools to discuss case A. In case A, which occurs only for
d < 2, we have dLR < 2 and dRL < 2. We will now justify that it suffices to study
CCC -paths in this case, as no other path type can be shorter. Since LSR- and
RSL-paths do not exist, it is enough to show the following lemma:

Lemma 11. For (σ, δ) ∈ A, we have lrl(σ, δ) ≤ lsl(σ, δ) and rlr(σ, δ) ≤
rsr(σ, δ).

Proof. Let γ1 and γ2 be the length of the left-turning arcs of an LRL-path. By
Lemma 5, the endpoints S and F lie on the counterclockwise arcs

....
SL
1S

L
2 of LS

and
....

F L
2 F

L
1 of LF . Consider now Fig. 5. The LSL-path turns left on LS until SL

0 ,
goes along the tangent to F L

0 , then turns left on LF until it reaches F . Since
∠SL

2	SS
L
0 = μL and |SL

0F
L
0 | = dL, we have

lsl− lrl = dL + 2(2π − μL)− 2μL = dL + 4(π − μL) ≥ 0

since μL ≤ π. The analogous argument shows that rlr ≤ rsr. ��

Lemma 12. For 0 < d <
√
2, dubA(d) = a(d)−d. In other words, the maximum

is realized by the unique point (σA, δA) on the segment σ = π, π/2 ≤ δ ≤ π − α∗

where l(d, σA, δA) = r(d, σA, δA).

The Cost of Bounded Curvature 263

Proof. By Lemma 10, we have max(σ,δ)∈Ξ c(d, σ, δ) = a(d), and the maximum
is assumed at the point (σA, δA) ∈ AΔ. By Lemma 11, we have 	(d, σ, δ) =
c(d, σ, δ) for (σ, δ) ∈ AΔ. Since (σA, δA) ∈ AΔ ⊂ Ξ, this means that dubA(d) =
sup(σ,δ)∈AΔ 	(d, σ, δ) − d = c(d, σA, δA)− d = a(d)− d. ��

6 RSL-Paths for d < 2 and Case B

Case B is the situation where dLR(α, β) < 2 and dRL(α, β) ≥ 2. The methods
are similar to those of the previous section, and make use of the closed formulas
for the derivatives of the length functions for CSC -paths derived by Goaoc et
al. [2]. The full proofs can be found on the arXiv [3].

7 The Dubins Cost Function

We now put all the pieces together and summarize our results.

Theorem 1. The function dub(d) has two breakpoints at
√
2 and d∗ ≈ 1.5874.

For d <
√
2, dub(d) = dubA(d) ≤ dubA(0) =

7π
3 . For

√
2 ≤ d < d∗, dub(d) =

dubB(d) ≤ dubB(
√
2) = 5π

2 −
√
2. For d ≥ d∗, we have dub(d) = 2π.

References

1. Dubins, L.E.: On curves of minimal length with a constraint on average curvature,
and prescribed initial and terminal positions and tangents. American Journal of
Mathematics 79(3), 497–516 (1957)

2. Goaoc, X., Kim, H.-S., Lazard, S.: Bounded-curvature shortest paths through a
sequence of points. Technical Report inria-00539957, INRIA (2010),
http://hal.inria.fr/inria-00539957/en

3. Kim, H.-S., Cheong, O.: The cost of bounded curvature (2011),
http://arxiv.org/abs/1106.6214

4. Kim, J.-H.: The upper bound of bounded curvature path. Master’s thesis, KAIST
(2008)

5. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)
6. Lee, J.-H., Cheong, O., Kwon, W.-C., Shin, S.-Y., Chwa, K.-Y.: Approximation of

Curvature-Constrained Shortest Paths through a Sequence of Points. In: Paterson,
M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 314–325. Springer, Heidelberg (2000)

7. Ma, X., Castañón, D.A.: Receding horizon planning for Dubins traveling salesman
problems. In: 45th IEEE Conference on Decision and Control, pp. 5453–5458 (De-
cember 2006)

8. Le Ny, J., Feron, E., Frazzoli, E.: The curvature-constrained traveling salesman
problem for high point densities. In: Proceedings of the 46th IEEE Conference on
Decision and Control, pp. 5985–5990 (2007)

9. Savla, K., Frazzoli, E., Bullo, F.: Traveling salesperson problems for the Dubins
vehicle. IEEE Transactions on Automatic Control 53, 1378–1391 (2008)

http://hal.inria.fr/inria-00539957/en
http://arxiv.org/abs/1106.6214

Optimally Solving a Transportation Problem

Using Voronoi Diagrams

Darius Geiß�, Rolf Klein�, and Rainer Penninger�

University of Bonn, Institute of Computer Science I,
Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany

wdarius@gmx.de, rolf.klein@uni-bonn.de, penninge@cs.uni-bonn.de

Abstract. In this paper we consider the following variant of the well-
known Monge-Kantorovich transportation problem. Let S be a set of n
point sites in Rd. A bounded set C ⊂ Rd is to be distributed among
the sites p ∈ S such that (i), each p receives a subset Cp of prescribed
volume and (ii), the average distance of all points z of C from their
respective sites p is minimized. In our model, volume is quantified by a
measure μ, and the distance between a site p and a point z is given by
a function dp(z). Under quite liberal technical assumptions on C and on
the functions dp(·) we show that a solution of minimum total cost can
be obtained by intersecting with C the Voronoi diagram of the sites in
S, based on the functions dp(·) equipped with suitable additive weights.
Moreover, this optimum partition is unique, up to subsets of C of measure
zero. Unlike the deep analytic methods of classical transportation theory,
our proof is based on direct geometric arguments.

Keywords: Monge-Kantorovich transportation problem, earth mover’s
distance, Voronoi diagram with additive weights, Wasserstein metric.

1 Introduction

In 1781, Gaspard Monge [7] raised the following problem. Given two sets C
and S of equal mass in Rd, transport each mass unit of C to a mass unit of
S at minimal cost. More precisely, given two measures μ and ν, find a map f
satisfying μ(f−1(·)) = ν(·) that minimizes∫

d(z, f(z)) dμ(z),

where d(z, z′) describes the cost of moving z to z′.
Because of its obvious relevance to economics, and perhaps due to its math-

ematical challenge, this problem has received a lot of attention. Even with the
Euclidean distance as cost function d it is not at all clear in which cases an
optimal map f exists. Progress by Appell [1] was honored with a prize by the

� This work was supported by the European Science Foundation (ESF) in the EURO-
CORES collaborative research project EuroGIGA/VORONOI.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 264–274, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Optimally Solving a Transportation Problem 265

Academy of Paris in 1887. Kantorovich [6] achieved a breakthrough by solving a
relaxed version of Monge’s original problem. In 1975, he received a Nobel prize in
Economics; see Gangbo and McCann [4] for mathematical and historical details.

While usually known as the Monge-Kantorovich transportation problem, the
minimum cost of a transportation is sometimes called Wasserstein metric or,
in computer science, earth mover’s distance between the two measures μ and ν.
It can be used to measure similarity in image retrieval; see Rubner et al. [9].
If both measures μ and ν have finite support, Monge’s problem becomes the
minimum weight matching problem for complete bipartite graphs, where edge
weights represent transportation cost; see Rote [8], Vaidya [11] and Sharathku-
mar et al. [10].

We are interested in the case where only measure ν has finite support. More
precisely, we assume that a set S of n point sites pi is given, and numbers λi > 0
whose sum equals 1. A body C of volume 1 must be split into subsets Ci of
volume λi in such a way that the total cost of transporting, for each i, all points
of Ci to their site pi becomes a minimum. In this setting, volume is measured
by some (continuous) measure μ, and transport cost d(z, z′) by some measure of
distance.

Gangbo and McCann [4] report on the cases where either d(z, z′) = h(z − z′)
with a strictly convex function h, or d(z, z′) = l(|z − z′|) with a non-negative,
strictly concave function l of the Euclidean norm. As a consequence of deep
results on the general Monge-Kantorovich problem, they prove a surprising fact.
The minimum cost partition of C is given by the additively weighted Voronoi
diagram of the sites pi, based on cost function d and additive weights wi. In this
structure, the Voronoi region of pi contains all points z satisfying

d(pi, z)− wi < d(pj , z)− wj for all j 	= i.

Villani [12] has more recently observed that this fact holds even for more general
cost functions, that need not be invariant under translations, and in the case
where both distributions are continuous.

Figure 1 depicts how to obtain this structure in dimension d = 2. For each
point site p ∈ S we construct in R3 the cone {(z, d(p, z) − wp) | z ∈ R2}.
The lower envelope of the cones, projected onto the XY –plane, results in the
Voronoi diagram. Independently, Aurenhammer et al. [2] have studied the case
where d(z, z′) = |z−z′|2. Here, a power diagram (compare [3]) gives an optimum
splitting of C. In addition to structural results, they provide algorithms for
computing the weights wi. Regarding the case where the transportion cost from
point z to site pi is given by individual cost functions dpi(z), it is still unknown
how to compute the weights wi.

In this paper we consider the situation where the cost d(pi, z) of transport-
ing point z to site pi is given by individual distance functions dpi(z). We require
that the weighted Voronoi diagram based on the functions dpi(·) is well-behaved,
in the following sense. Voronoi regions may be disconnected, but together with
the Voronoi diagram they form a finite cell decomposition of Rd. Bisectors are

266 D. Geiß, R. Klein, and R. Penninger

−wp

−wq

p
q

Fig. 1. An additively weighted Voronoi diagram as the lower envelope of cones

(d−1)–dimensional, and increasing weight wi causes the bisectors of pi to sweep
d–space in a continuous way. These requirements are fulfilled for the Euclidean
metric and, at least in dimension 2, if each site is assigned a strictly convex
distance function.

We show that these assumptions are strong enough to obtain the result of [4,2]:
The weighted Voronoi diagram based on the functions dpi(·) optimally solves
the transportation problem, if weights are suitably chosen. Whereas [4] derives
this fact from a more general measure-theoretic theorem, our proof uses direct
geometric arguments. Furthermore, in comparison to [2], we allow more freedom
regarding the choice of the distance functions dpi(·). The purpose of this paper
is not to prove new results, but to give a new, intuitive proof for a general set
of transport cost functions, that does not use deep methods of transportation
theory but relies on basic geometric arguments.

After stating some definitions in Section 2 we generalize arguments from [2] to
prove, in Section 3, that C can be split into parts of arbitrary given volumes by
a weighted Voronoi diagram, for a suitable choice of weights. If C is connected,
these weights are uniquely determined, up to addition of a constant. Then, in
Section 4, a flow augmentation argument shows that such a partition is optimal,
and unique.

2 Definitions

Let μ be a measure defined for all Lebesgue-measurable subsets of Rd. We assume
that μ vanishes exactly on the sets of Lebesgue measure zero.

Let S denote a set of n point sites in Rd. For each p ∈ S we are given a
continuous function

dp : Rd −→ R≥0

that assigns, to each point z of Rd, a nonnegative value dp(z) as the “distance”
from site p to z.

Optimally Solving a Transportation Problem 267

For p 	= q ∈ S and γ ∈ R we define

Bγ(p, q) := {z ∈ Rd | dp(z)− dq(z) = γ}

and
Rγ(p, q) := {z ∈ Rd | dp(z)− dq(z) < γ}.

The sets Rγ(p, q) are open and increase with γ. Now let us assume that for each
site p ∈ S an additive weight wp is given, and let

w = (w1, w2, . . . , wn)

denote the vector of all weights, according to some ordering p1, p2, . . . of S. Then,
Bwi−wj (pi, pj) is called the additively weighted bisector of pi and pj , and

VRw(pi, S) :=
⋂
j =i

Rwi−wj (pi, pj)

is the additively weighted Voronoi region of pi with respect to S. It consists of all
points z for which dpi(z)−wi is smaller than all values dpj (z)−wj , by definition.
As usual,

Vw(S) := Rd \
⋃
i

VRw(pi, S)

is called the additively weighted Voronoi diagram of S; compare [3]. Clearly,
VRw(pi, S) and Vw(S) do not change if the same constant is added to all weights
in w. Therefore, we may assume that min{wi|1 ≤ i ≤ n} = 0 holds whenever this
is convenient. Increasing a single value wi will increase the size of pi’s Voronoi
region.

Example. Let d = 2 and dp(z) = |p− z| the Euclidean distance. Given weights
wp, wq, the bisector Bwp−wq (p, q) is a line if wp = wq, and a hyperbola otherwise.
Figure 2 (i) shows how Bγ(p, q) sweeps across the plane as γ grows from −∞
to ∞. It forms the boundary of the set Rγ(p, q) which increases with γ. Each
bounded set C in the plane will be reached at some point. From then on the vol-
ume of C∩Rγ(p, q) is continuously growing until all of C is contained in Rγ(p, q).
The increase in volume will be strict if each point z of C is an interior point,
i. e., if C is open, and C is connected. Given n points pj with additive weights
wj , raising the value of a single weight wi will cause all sets Rwi−wj (pi, pj) to
grow until C is fully contained in the Voronoi region Vw(pi, S) of pi.

In (ii) an additively weighted Voronoi diagram Vw(S) based on the Euclidean
distance is shown. It partitions the plane into 5 two-dimensional cells (Voronoi
regions), and consists of 9 cells of dimension 1 (Voronoi edges without endpoints)
and of 5 cells of dimension 0 (Voronoi vertices). Each cell is homeomorphic to
an open sphere of appropriate dimension.

The next definition generalizes the above properties to the setting used in this
paper.

268 D. Geiß, R. Klein, and R. Penninger

m Mγ

C

p q

(i) (ii)

5040

20

0

0

Rγ(p, q)

Bγ(p, q)

Rγ(q, p)

Fig. 2. (i) Rγ(p, q) for increasing values of γ. (ii) An additively weighted Voronoi
diagram.

Definition 1. A system of continuous distance functions dp(·), where p ∈ S, is
called admissible if the following properties are fulfilled.

(A) For all p 	= q ∈ S, and for each bounded open set C ⊂ Rd, there exist
values mp,q and Mp,q such that γ '−→ μ (C ∩Rγ(p, q)) is continuously increasing
from 0 to μ(C) as γ grows from mp,q to Mp,q, where C∩Rγ(p, q) = ∅ if γ ≤ mp,q

and C ⊂ Rγ(p, q) if Mp,q ≤ γ.
(B) For every nonempty subset T ⊆ S of S the Voronoi regions VRw(pi, T),

pi ∈ T, and the Voronoi diagram Vw(T) form a finite cell decomposition of Rd.

From (A) we have mq,p = −Mp,q and Mq,p = −mp,q for all p 	= q ∈ S; compare
Figure 2, (i). Property (B) ensures that Voronoi diagrams have reasonable struc-
tural properties. While Voronoi regions are not required to be connected, they
may be split into only finitely many cells of dimension d each. Their boundaries
consist of finitely many bisector pieces of dimension d−1, that are again bounded
by lower dimensional cells consisting of points equidistant to three or more sites.
The closures of all Voronoi regions together cover the whole space Rd.

This definition rules out phenomena known for degenerate placement of sites
in, e. g., the L1 norm, where bisectors of points in d-space may be of dimension
d. More information about cell decompositions can be found in Hatcher [5].

3 Partitions of Prescribed Size

Let dpi(·), 1 ≤ i ≤ n, where n ≥ 2, be an admissible system as in Definition 1,
and let C denote a bounded and open subset of Rd. Suppose we are given n real
numbers λi > 0 such that λ1 + λ2 + . . .+ λn = 1 holds. The following theorem
shows that we can use an addititively weighted Voronoi diagram based on the
functions dp to partition C into subsets of size λi · μ(C).

Optimally Solving a Transportation Problem 269

Theorem 1. There exists a weight vector w = (w1, w2, . . . , wn) such that

μ(C ∩ VRw(pi, S)) = λi · μ(C)

holds for 1 ≤ i ≤ n. Moreover, if C is pathwise connected then w is unique up
to addition of a constant to all wi.

Proof. W. l. o. g. let μ(C) = 1. The function

Φ(w) :=

n∑
i=1

|μ(C ∩ VRw(pi, S))− λi|

measures how close w comes to fulfilling the theorem. Since each function γ '−→
μ(C ∩Rγ(pi, pj)) is continuous by Definition 1, (A), and because of

|μ(C ∩ VRw(pi, S))− μ(C ∩ VRw′(pi, S))| ≤∑
j =i

|μ(C ∩Rwi−wj (pi, pj))− μ(C ∩Rw′
i−w′

j
(pi, pj))|

we conclude that function Φ is continuous, too.

Existence. Let D := max{Mp,q | p 	= q} with Mp,q as in Definition 1, (A). Note
that mp,q = −Mq,p and mp,q < Mp,q together impliy that D > 0 is positive. On
the compact set [0, D]n function Φ attains its minimum value at some argument
w. If Φ(w) = 0 we are done. Suppose that Φ(w) > 0. Since the volumes of the
Voronoi regions inside C add up to 1, there must be some sites pj whose Voronoi
regions have an intersection with C of volume > λj , while the volume of other
region’s intersections with C is too small (i.e. < λj).

Suppose there exists a set E of sites whose Voronoi regions, weighted with
w, have empty intersections with C. Let pi ∈ E. Thanks to property (A) of
Definition 1, we can increase weight wi until the Voronoi region of pi has a non-
empty intersection with C, of size less than λi and small enough so that no other
region’s intersection with C becomes empty. This procedure can be iterated for
the other sites in E. Let w′ denote the resulting weight vector. In the above
process no point of S has changed from too small a Voronoi region into a region
already too large. That is, 0 = μ(C ∩VRw(pi, S)) < μ(C ∩VRw′(pi, S)) < λi is
fulfilled for all pi ∈ E, and μ(C ∩ VRw′(pi, S)) ≤ μ(C ∩ VRw(pi, S)) holds for
all pi ∈ S \ E. Hence, Φ(w′) ≤ Φ(w) holds, by the (piecewise) linearity of Φ. By
construction, all Voronoi regions weighted with w′ now intersect C in a set of
positive measure.

If Φ(w′) > 0 we do the following: We choose some value δ > 0 and raise the
weights of all sites whose Voronoi regions currently have too small an intersection
with C by δ, increasing the size of at least one of those regions. Choosing δ small
enough we ensure that the size of any region increased this way will stay too
small, and the size of any region previously too large will also remain too large.
Moreover, the size of the intersection of any Voronoi region with C will remain
positive.

270 D. Geiß, R. Klein, and R. Penninger

We repeat this process, each time choosing a new value δ, until Φ(w′) de-
creases. If the increase of weights does not result in a decrease of Φ(w′), the size
μ(C ∩ VRw′(pj , S)) of the region of at least one point pj decreases from λj to
some value < λj . Thus, if Φ(w

′) has not decreased after n − 2 iterations, all
regions have non-empty intersections with C that are either too small or too
large. As we increase once more simultaneously the weights of all regions that
are too small, their gain in size is caused only by losses of regions too large. For
the resulting weight vector w′′ this implies Φ(w′′) < Φ(w′) ≤ Φ(w). (If 0 = Φ(w′)
we have Φ(w′) < Φ(w) and continue with w′ instead of w′′.)

Let w′′′ result from w′′ by subtracting the minimum weight w′′
j from all w′′

i .
Since all Voronoi regions based on w′′′ have intersections of positive size with C,
property (A) of Definition 1 implies that

mpi,pj < w′′′
i − w′′′

j < Mpi,pj ≤ D

holds for all i 	= j. Now because the minimum weight w′′′
j is 0, the maximum

weight w′′′
i must be smaller than D. Together, this implies w′′′ ∈ [0, D]n and

Φ(w′′′) = Φ(w′′) < Φ(w)—a contradiction!

Uniqueness. Suppose there are two weight vectors w,w′ such that w′ − w 	=
(c, c, . . . , c) for any constant c, but Φ(w) = Φ(w′) = 0. We may assume that
there are entries w′

j > wj ; if not, we reverse the rôles of w′ and w. Let T ⊂ S be
the set of sites pi for which the difference w′

i − wi is maximal. By assumption,
T is neither empty nor equal to S.

For the Voronoi diagram Vw(S), remember that for each site u ∈ S every
connected component of the Voronoi region VRw(u, S) is an open d - dimensional
set, which we call a cell of the Voronoi region of u.

Let As and At be a cell of the Voronoi region of s and t, respectively, where
s ∈ S \T and t ∈ T are points of S. Furthermore, As and At are two cells whose
intersection with C has positive measure. Let π be a path in C connecting As

and At, and π(r) : [0, 1] −→ C be a continuous parametrization of π. For any
site u ∈ S the function

Fu : r −→ inf
q∈VRw(u,S)

d(π(r), q)

is also continuous (where d(x, y) denotes the Euclidean distance in Rd between
points x and y), as well as the two lower envelopes

F ∗
T (r) = min{Ft(r) | t ∈ T }

and
F ∗
S\T (r) = min{Fs(r) | s ∈ S \ T }.

Since Fu(r) denotes the smallest Euclidean distance from π(r) to any point
in VRw(u, S), clearly min{F ∗

T (r), F
∗
S\T (r)} = 0 holds for all r ∈ [0, 1]. If the

converse were true for some r ∈ [0, 1], then we could choose ε > 0 small enough
such that every point contained in the open Euclidean ball Bε(π(r)) of radius ε

Optimally Solving a Transportation Problem 271

centered at π(r) would not belong to the Voronoi region of any point in S, but to
the Voronoi diagram Vw(S). The fact that C is an open set and π(r) ∈ C implies
that Bε(π(r)) ∩ C has positive measure. This is a contradiction to Definition 1,
(B), which implies that Vw(S) has measure 0.

Let Δ(r) = F ∗
S\T (r) − F ∗

T (r). π(0) ∈ As and π(1) ∈ At implies Δ(0) < 0

and Δ(1) > 0, respectively. By the intermediate value theorem there exists
τ ∈ (0, 1) where Δ(τ) = 0. Let p = π(τ). Note that F ∗

T (τ) = F ∗
S\T (τ) holds

because at least one of the two values is 0, as mentioned above. We conclude
that p cannot belong to the Voronoi region VRw(u, S) of any point u ∈ S: since
VRw(u, S) is an open set, p ∈ VRw(u, S) would imply that p is contained in
Bε(p) ⊂ VRw(u, S), if ε > 0 is suitably chosen. But this contradicts the fact
F ∗
T (τ) = F ∗

S\T (τ) = 0. From the same argument it follows that p must lie on

the boundary of the Voronoi region of any site u ∈ S where Fu(τ) = 0, and
that p lies on the weighted bisector Bwu−wv (u, v) of any two sites u, v ∈ S if
Fu(r) = Fv(r) = 0. Let s′ ∈ S \ T and t′ ∈ T be two such sites. For convenience
we assume w. l. o. g. that s′ = s and t′ = t, and that p lies on the boundary of
As and of At.

Let M be the set of sites u ∈ S where du(p) − wu is minimal. Because M
contains t, the set T ′ := T ∩M is non-empty. By definition of point set T ′

dv(p)− w′
v < du(p)− w′

u

holds for any two sites v ∈ T ′ and u ∈ S \ T ′. Therefore, p is contained in the
open set ⋂

v∈T ′,u∈S\T ′
Rw′

v−w′
u
(v, u)

and there exists some value ε > 0 such that Bε(p) is disjoint from VRw′(u, S),
∀u ∈ S \ T ′, and where Bε(p) ⊆ C holds. Since p lies on the boundary of As,
Bε(p) contains an interior point q ∈ As. Now we choose δ > 0 small enough
so that Bδ(q) is a subset of As ∩ Bε(p). The definition of point set T implies
that VRw(t, S) ⊆ VRw′(t, S) holds for any point t ∈ T . By construction, every
point of Bδ(q) ⊆ As ∩ C belongs in Vw′(S) to the Voronoi region of some point
t′ ∈ T ′ ⊆ T (or to the Voronoi diagram Vw′(S), whose measure is 0). We conclude
that for some point t′ ∈ T ′, it holds that

μ(C ∩VRw(t
′, S)) < μ(C ∩ VRw′(t′, S))

—a contradiction to Φ(w) = 0 = Φ(w′).

It is easy to see why connectedness of C is a condition necessary for the unique-
ness of w. Namely, assume that each connected component of C is completely
contained in a separate Voronoi region. Now if the weights of the points in S are
modified by some small amount then the resulting Voronoi diagram could still
be the same inside C.

272 D. Geiß, R. Klein, and R. Penninger

4 Optimality

Again, let dp(·), p ∈ S = {p1, p2, . . . , pn}, be an admissible system as in Defini-
tion 1, and let C denote a bounded and open subset of Rd. Moreover, let real
numbers λi > 0 be given such that λ1 + λ2 + . . .+ λn = 1 holds.

By the existence part of Theorem 1, there exists a weight vector w =
(w1, w2, . . . , wn) satisfying

μ(C ∩ VRw(pi, S)) = λi · μ(C) for i = 1, . . . , n.

Now we prove that this subdivision of C minimizes the transportation cost,
i. e., the average distance from each point to its site. It is convenient to de-
scribe partitions of C by maps f : C −→ S where, for each p ∈ S, f−1(p)
denotes the region assigned to p. Let FΛ denote the set of those maps f satisfy-
ing μ(f−1(pi)) = λi · μ(C) for i = 1, . . . , n.

Theorem 2. The partition of C into regions Ci := C ∩ VRw(pi, S) minimizes

cost(f) :=
∑
p∈S

∫
f−1(p)

dp(z) dμ(z)

over all maps f ∈ FΛ. Any other partition of minimal cost differs at most by
sets of measure zero from (Ci)i.

Proof. Let fw be defined by fw(Ci) = {pi} for all i. Suppose there is a map
f ∈ FΛ satisfying cost(f) < cost(fw). Let us consider the complete directed
graph K whose vertices are the sites of S. The weight of edge (pi, pj) from pi to
pj equals

δi,j := μ(Ci ∩ f−1(pj)),

the volume of that part of Ci which is assigned to site pj by f ; we include the
case i = j. Since f ∈ FΛ, the weights of all incoming edges at pi add up to
λi · μ(C). This equals μ(Ci), the sum of the weights of all outgoing edges.

Since f and fw differ in cost, some edge (pi, pj) between different sites must
carry a positive weight. Consequently, there must be an outgoing edge connecting
pj to some site pk 	= pj whose weight is positive, and so on. Since graph K is
finite we obtain, after renumbering vertices, a directed cycle (p1, p2, . . . , pm, p1)
all of whose edge weights δ1,2, δ2,3, . . . , δm,1 are positive.

Let δ > 0 denote the minimum of these weights. We modify map f such that
it reassigns a subset Di ⊆ Ci of volume δ to pi instead of pi+1, for each pi in the
cycle. That is, δi,i becomes δi,i + δ, and δi,i+1 turns into δi,i+1 − δ. This reduces
the weight of (at least) one edge of the cycle to zero.

Let f1 denote the modified map. By construction, f1 ∈ FΛ. With f0 := f we
obtain

cost(f1)− cost(f0) =

m∑
i=1

∫
Di

(dpi(z)− dpi+1(z)) dμ(z) (1)

Optimally Solving a Transportation Problem 273

<

m∑
i=1

(wi − wi+1) ·
∫
Di

1 dμ(z) (2)

=

m∑
i=1

(wi − wi+1) · δ = 0. (3)

Line (2) follows from the fact that z ∈ Di ⊆ Ci ⊆ VRw(pi, S) implies dpi(z) −
wi < dpi+1(z) − wi+1. Line (3) holds because wm+1 = w1 causes the sum to
telescope to zero.

After k ≤
(
n
2

)
repetitions of the above process, all edge weights δi,j , where i 	=

j, of graph K are equal to 0. That is, we obtain a sequence of maps f0, f1, . . . , fk
in FΛ of strictly decreasing cost, where fk maps, for each i, all of Ci to pi, except
possibly a set of measure 0. This yields the contradiction cost(fw) = cost(fk) <
cost(f1) < cost(f0) < cost(fw).

If we had an alternate optimal partition f that differs from fw by sets of
positive measure, we could apply the same argument to construct a map of even
smaller cost, which has just shown to be impossible.

5 Conclusion and Future Work

We have given a direct geometric proof for the fact that additively weighted
Voronoi diagrams can optimally solve some cases of the Monge-Kantorovich
transportation problem, where one measure has finite support. Surprisingly, the
existence of an optimal solution - the main mathematical challenge in the general
case - is an easy consequence of our proof. In remains to be seen to which extent
our assumptions on the distance functions dpi can be further generalized.

References

1. Appell, P.: Mémoire sur les déblais et les remblais des systèmes continues ou discon-
tinus. Mémoires présentes par divers Savants à l’Academie des Sciences de l’Institut
de France 29, 1–208 (1887)

2. Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-type theorems and least-
squares clustering. Algorithmica 20, 61–76 (1998)

3. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.R., Urrutia, G. (eds.)
Handbook on Computational Geometry, pp. 201–290. Elsevier (1999)

4. Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta
Math. 177, 113–161 (1996)

5. Hatcher, A.: Algebraic Topology. Cambridge University Press (2001)
6. Kantorovich, L.: On a problem of Monge. Uspekhi Math. Nauk. 3, 225–226 (1948)

(in Russian)
7. Monge, G.: Mémoire sur la théorie des déblais et de remblais. Histoire de l’Académie

Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique
pour la même année 29, 666–704 (1781)

8. Rote, G.: Two applications of point matching. In: Abstracts of the 25th European
Workshop on Computational Geometry (EuroCG 2009), pp. 187–189.

274 D. Geiß, R. Klein, and R. Penninger

9. Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications
to image databases. In: Proceedings International Conference on Computer Vision
(ICCV 1998), pp. 59–66 (1998)

10. Sharathkumar, R., Agarwal, P.K.: Algorithms for the transportation problem in
geometric settings. In: Proceedings of the Twenty-Third Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2012), pp. 306–317 (2012)

11. Vaidya, P.M.: Geometry helps in matching. SIAM J. Comput. 18, 1201–1225 (1989)
12. Villani, C.: Optimal Transport, Old and New. Grundlehren der mathematischen

Wissenschaften, vol. 338. Springer (2009)

Unexplored Steiner Ratios in Geometric

Networks�

Paz Carmi and Lilach Chaitman-Yerushalmi

Department of Computer Science,
Ben-Gurion University of the Negev, Israel

Abstract. In this paper we extend the context of Steiner ratio and ex-
amine the influence of Steiner points on the weight of a graph in two gen-
eralizations of the Euclidean minimum weight connected graph (MST).
The studied generalizations are with respect to the weight function and
the connectivity condition.

First, we consider the Steiner ratio of Euclidean minimum weight con-
nected graph under the budget allocation model. The budget allocation
model is a geometric version of a new model for weighted graphs intro-
duced by Ben-Moshe et al. in [4].

It is known that adding auxiliary points, called Steiner points, to the
initial point set may result in a lighter Euclidean minimum spanning
tree. We show that this behavior changes under the budget allocation
model. Apparently, Steiner points are not helpful in weight reduction
of the geometric minimum spanning trees under the budget allocation
model (BMST), as opposed to the traditional model.

An interesting relation between the BMST and the Euclidean square
root metric reveals a somewhat surprising result: Steiner points are also
redundant in weight reduction of the minimum spanning tree in the
Euclidean square root metric.

Finally, we consider the Steiner ratio of geometric t-spanners. We show
that the influence of Steiner points on reducing the weight of Euclidean
spanner networks goes much further than what is known for trees.

1 Introduction

In our context, Steiner points are auxiliary points added to the original point set.
Fermat was the first to consider the influence of Steiner points on the weight of
Euclidean networks. Back in the 17th century he proposed the problem of finding
a point that minimizes its distances from three given points in the plane [10].
Today, Steiner points are known mostly within the context of the Steiner tree
problem [9,10]. This problem is a generalization of the problem proposed by
Fermat. The three input points are replaced with any finite set of points in the

� Research is partially supported by Lynn and William Frankel Center for Computer
Science and by grant 2240-2100.6/2009 from the German Israeli Foundation for sci-
entific research and development (GIF) and by grant 680/11 from the Israel Science
Foundation (ISF).

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 275–286, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

276 P. Carmi and L. Chaitman-Yerushalmi

plane and the objective is finding the1 minimum weight network connecting all
points in the given point set, where the weight is the sum of the weights of
all edges. However, as opposed to the minimum spanning tree (MST) problem,
in the Steiner tree problem Steiner points may be added to the input set. The
optimum solution for the problem is referred to as the Steiner minimum tree
(SMT).

Steiner points are known to be effective in reducing the weight of the Euclidean
MST for an input point set. Meaning, the Euclidean SMT may be lighter than
the Euclidean MST. Throughout this paper, unless otherwise is mentioned, the
distances between points in the input point set are defined by the Euclidean
metric. Given a point set P , we denote by MST (P) the minimum spanning
tree of P and by SMT (P) the Steiner minimum tree of P . The minimum ratio
between the weight of the Euclidean SMT and the Euclidean MST among all
possible input sets of points in the plane is called Steiner ratio and denoted
by ρ. Formally, ρ = infP {SMT (P)/MST (P)}. Gilbert and Pollak conjectured
in [9] that ρ =

√
3/2 ≈ 0.866, however they have only proved ρ ≤

√
3/2. A lower

bound of r0 ≈ 0.824 was shown by Chung and Graham in [5].
In this paper we extend the context of Steiner ratio and examine the influ-

ence of Steiner points on the weight of geometric networks other than minimum
spanning trees. We observe two geometric networks which are, in a sense, gener-
alizations of Euclidean spanning trees. The first network is the budget spanning
tree, which generalizes the traditional spanning trees with respect to the weight
function. The second generalization is with respect to the connectivity condition.
We strengthen the connectivity requirement to demand that every two points
in the input set are connected with a path of length that approximates their
Euclidean distance within a factor t. The resulting spanning graph is known in
the literature as a t-spanner for P .

In order to present the budget spanning tree we should first introduce the
budget allocation model. So far, researchers have considered the binary version
of a network (graph), i.e., a link has a binary value that indicates whether the
link exists in the network. In real life, when a budget is given to establish a
network via links, the attributes of the connection varies with respect to its
priority, and therefore, not all links are created equally. For example, consider
a railway system that connects different cities. Naturally, we would like to have
significantly faster trains on railway tracks between two large cities than on rails
between two villages. Thus, considering all links in the same manner may miss
the true nature of the network.

In this paper we address a geometric version of the model suggested by Ben-
Moshe et al. in [4] for weighted graphs, to which we refer as the budget allocation
model. The authors were motivated by communication networks modeled by
communication graphs. They suggested a ’quality of service’ model. The quality
of service (QoS) of a link refers to different parameters such as delay time,

1 Throughout the paper we may refer to the minimum geometric network (e.g., the
MST) even though it is not unique; however, this does not affect the correctness of
the proofs.

Unexplored Steiner Ratios in Geometric Networks 277

jitter, and packet error and depends on two main factors: the length of the link
and its infrastructure. Hence, each edge in the graph is associated with a value
between zero and one derived from its infrastructure to which we refer as a
budget. The weight of an edge in this model, called budgeted weight, depends not
only on its length, but also on the budget assigned to it. This budgeted weight
represents the quality of service. More precisely, there is an inverse ratio between
the quality of service and the budgeted weight, the higher the budget invested in a
communication link, the lower its delay time. For the sake of simplicity, whenever
the budget allocation model is addressed, we use the term weight when referring
to the budgeted weight.

In this paper, we slightly modify and extend the model introduced in [4]
and address different problems. The authors in [4] considered general weighted
graphs, however, their motivation was communication networks which have a
geometric nature. We address a geometric version of the model. We define a
budget allocation for pairs in a given set of points in the plane or from another
perspective, for the edges of the complete Euclidean graph. The geometric version
of the budget allocation model may also be considered in the context of a railway
system, mentioned earlier. The budget of a railway line between two stations
indicates the resources grade. The budget weight of a railway line represents the
quality of the ride which is derived from both the resources attributes and the
length of the ride. The optimization problem that we address is allocating a fixed
budget onto pairs of points from the input set where our objective is to create a
minimum weight spanning tree and also examine the addition of Steiner points.

We refer to a minimum weight spanning tree induced by an optimal budget
allocation as a budget minimum spanning tree (BMST). We consider the influ-
ence of Steiner points on the weight of a BMST measured by the parameter
known as Steiner ratio. The Steiner ratio for budgeted trees ρb is defined as the
smallest ratio between the weight of a BMST with and without permitting the
use of Steiner points. Apparently, Steiner points lose their power in the budget
allocation model, that is, their addition cannot reduce the weight of the BMST,
and therefore the Steiner ratio ρb equals one.

An interesting relation between the BMST and the Euclidean square root
metric (i.e., the metric that defines the distance between any two points p and
q to be

√
|pq|) is revealed when considering the BMST problem. This relation

implies a somewhat surprising conclusion: Steiner points are also redundant in
the context of minimum spanning trees in the Euclidean square root metric.

The second geometric network that we consider in the context of its Steiner
ratio is the Euclidean t-spanner. An Euclidean t-spanner for a set P of n points
in the plane is a graph that spans P and whose edge set satisfies the following
property: for every two points p, q ∈ P , there exists a path connecting them of
a length that approximates the Euclidean distance between them with a factor
t. In other words, the shortest path connecting them is of a length of at most
t|pq| (see [11] for a more extensive survey on the subject).

278 P. Carmi and L. Chaitman-Yerushalmi

The contribution of Steiner points to 2-dimensional Euclidean spanners has
been a subject of research within the context of planarity and the size of the
spanner, i.e., the number of edges. Arikati et al. [3] showed that by allowing
linear number of Steiner points one can obtain a plane (

√
2 + ε)-spanner (the

stretch factor is defined only in terms of point-pairs of the input point set), where
the construction of Arikati et al. requires O(n/ε4) Steiner points. Abam et al.
have proved in [1] that while any set P of n points in the plane admits a C-fault
tolerant (1+ε)-spanner of size O(n log n), if adding Steiner points is allowed, the
size of the spanner reduces to O(n). The influence of Steiner points on the weight
of 1-dimensional Euclidean spanners has been considered by Elkin and Solomon
in [8]. They have shown that Steiner points do not help in asymptotic weight
reduction of 1-dimensional Euclidean t-spanners with hop-diameter o(logn).

We examine the influence of Steiner points on the weight of 2-dimensional
Euclidean t-spanners. We define for every constant t the Steiner ratio ρt to be
the smallest ratio between the weight of a minimum t-spanner with and without
permitting the use of Steiner points. It turns out that the influence of Steiner
points on reducing the weight of geometric spanner networks goes much further
than what is known for trees. We show that for every constant t, ρt is smaller
than the conjectured value of ρ. Moreover, we show that there is no lower bound
on inft{ρt}. Namely, for every ε > 0 there exists t > 1 that satisfies ρt < ε.

In the following sections we extend the context of Steiner ratio for two gen-
eralizations of the Euclidean MST.

2 Steiner Ratio for Budgeted Trees

In this section we extend the notion of Steiner ratio for a generalization of
Euclidean trees, called budgeted trees. This generalization is with respect to the
weight function.

In subsection 2.1 the budget allocation model is presented, and budget min-
imum spanning trees are introduced in subsection 2.2. Apparently, a minimum
spanning tree of a given set of points in the plane is also a budget minimum
spanning tree (only with different weight function over the edges) as proved in
subsection 2.2. However, when allowing the addition of Steiner points to the
spanning tree, the budget minimum spanning tree behaves differently than the
traditional minimum spanning tree. In subsection 2.3, we show that the Steiner
ratio for budgeted trees increases much above the Steiner ratio for trees. Actu-
ally, it reaches the maximum possible ratio 1.

2.1 Budget Allocation

Given a finite set of points in the plane P and a budget B, let k(P)= (P,EP)
denote the complete Euclidean graph over P . A valid budget allocation for P is
a function B : EP → [0, 1], such that

∑
{p,q}∈EP

B(p, q)=B.

Let |pq| denote the Euclidean distance between two points p, q ∈ P . Al-
locating a positive value to a pair of points {p, q} implies that the resulting

Unexplored Steiner Ratios in Geometric Networks 279

budgeted weight of {p, q} is wB(p, q) =
|pq|

B(p,q) , while allocating of a zero value

implies wB(p, q) = 0. The weighted distance between a pair of points p, q ∈ P
is defined as δB(p, q) =min{

∑
e∈R wB(e) : R is a simple path from p to q}. The

graph induced by B(·) is defined as G = (P,E), where E = {{p, q} ∈ EP :
wB(p, q) > 0 }. Throughout the paper, when addressing the weight function of
an induced graph we refer to the budgeted weight function wB(·). We denote by
wB(G)=

∑
e∈E wB(e) the budgeted weight of the induced graph.

Given a graph G=(P,E) and a budget B, a valid budget allocation for G is
a positive real function B : E → (0, 1], such that

∑
{p,q}∈E B(p, q) = B. This

definition differs from the one in [4], which permits an assignment of a zero
value to an edge. This modification simplifies the formalization in this paper,
since each edge in the induced graph receives a positive budget allocation.

2.2 Budget Minimum Spanning Trees

In this subsection, we consider the budget minimum spanning tree problem (or
the BMST problem for short). The objective is finding a budget allocation B(·)
that induces the minimum weight spanning graph G of a given point set P ,
which is referred to as the budget minimum spanning tree (BMST) of P . Note
that the MST problem can be considered as the BMST problem restricted to
binary budget allocation and a budget of size |P | − 1.

In this section we require B=1. Note that this demand is not restrictive, since
any allocation of a budget of size 1 can be scaled to any budget B. Given a point
set P , let BM(P)(·) denote the optimal solution for the BMST problem, i.e.,
for any budget allocation B′(·),

∑
{p,q}∈EP

wBM(P)(p, q) ≤
∑

{p,q}∈EP
wB′(p, q),

and let WB(P) denote the value of the optimal solution, meaning, WB(P) =
wBM(P)(P). Given a graph G=(V,E), let BM(G)(·) denote a budget allocation
that minimizes its weight and let WB(G)=wBM(G)(G).

Observation 1. Let P be a finite set of points in the plane. The BMST of P
is a MST of P (only with different weight function over the edges).

According to Observation 1, BM(MST (P))(·) can be extended to BM(P)(·)
by assigning BM(P)(p, q) = 0 for every (p, q) ∈ Ep, which is not an edge in
MST (P). In the following lemmas we determine BM(G)(·) and WB(G) for
general graphs. Lemma 1 is similar in principle to Lemma 2 in [4].

Lemma 1. Given a graph G= (P,E) and e1 ∈ E, let b1 =BM(G)(e1), G
′ =

(P,E\{e1}) and W ′=WB(G′), then b1=

√
|e1|√

W ′+
√

|e1|
and WB(G)= |e1|

b1
+ W ′

1−b1
.

Lemma 2. Given a graph G=(P,E), WB(G)=(
∑

e∈E

√
|e|)2.

Proof. We prove the above by induction on |E|.
Base case: Let G=(P, {e}), then BM(G)(e)=1 and WB(G)= |e|=(

√
|e|)2.

Induction hypothesis: The claim holds for every G=(P,E) with |E| < n.
Inductive step: Let G = (P,E) be a graph with |E| = n. Let e1 be an edge

280 P. Carmi and L. Chaitman-Yerushalmi

in E and let G′ = (P,E\{e1}). By the induction hypothesis, W ′ =WB(G′) =
(
∑

e∈E\{e1}
√
|e|)2. According to Lemma 1,

WB(G) = |e1|/
√

|e1|√
W ′ +

√
|e1|

+W ′/(1−
√

|e1|√
W ′ +

√
|e1|

)

= (
√
W ′ +

√
|e1|)

√
|e1|+ (

√
W ′ +

√
|e1|)

√
W ′ = (

√
W ′ +

√
|e1|)2

= (

√
(

∑
e∈E\{e1}

√
|e|)2 +

√
|e1|)2 = (

∑
e∈E

√
|e|)2.

The above observation and lemmas imply the following theorem.

Theorem 1. Let P ⊂ R2 be a finite set of points, then WB(P)=(
∑

e∈MST (P)

√
|e|)2.

2.3 The Steiner Ratio of Budgeted Trees

We examine the benefit of Steiner points to weight reduction of budget min-
imum spanning trees. Explicitly, for a given set of points in the plane P , let
WS(P) = min{wB(G) : G = (P ∪ S,E) is an induced graph of a budget allo-
cation B(·) for P ∪ S for a finite set of points S ⊆ R2 }. We are interested in
the Steiner ratio in the terms of the new model, which is denoted and defined
as ρb=infP {WS(P)/WB(P)}. The following theorem states that in the budget
allocation model not only the Steiner ratio increases above the upper bound
on ρ, but it reaches 1, meaning, Steiner points have no contribution to weight
reduction of budget minimum spanning trees.

Theorem 2. The Steiner ratio of budgeted trees equals 1, i.e., ρb = 1.

Proof. Let P be a set of points in the plane, we show that for every S ⊂ R2,
WB(P) ≤ WB(P ∪S) and conclude ρb=1. Assume towards contradiction that a
set of Steiner points S exists, such thatWB(P) > WB(P ∪S) (otherwise, we are
done). Let OP ={S ⊂ R2 :WB(P) > WB(P ∪S)} and let S ∈ OP be the set of
minimum cardinality in OP that satisfies: ∀S′ ∈ OP ,WB(P ∪S) ≤ WB(P ∪S′).
We denote by B be the set of all the optimal solutions to the BMST problem
for the point set P ∪ S and by dB(s) the degree of the point s in the induced
tree of a budget allocation B(·). Let B∗(·) be a budget allocation that satisfies
∀B ∈ B, mins∈S dB∗(s) ≤ mins∈S dB(s). Let T =(P ∪ S,E) be the tree induced
by B∗(·) and let s ∈ S be a point with minimum degree in T among points in
S. We build a tree T ′=(P ∪ S\{s}, E′), such that

(
∑

e′∈E′

√
|e′|)2 ≤ (

∑
e∈E

√
|e|)2. (1)

By Theorem 1 we conclude WB(P ∪ S\{s}) ≤ WB(P ∪ S) in contradiction to
the minimality of |S|. In the rest of the proof we omit B∗ from the notation
dB∗(s).

Observation 2. The degree of s in T satisfies 2 ≤ d(s) ≤ 5.

Unexplored Steiner Ratios in Geometric Networks 281

Let q1, q2, ..., qd(s) be the neighbors of s labeled in clockwise order and let αi=
∠(qi−1sqi), for 1 ≤ i ≤ d(s), where α1 = ∠(qd(s)sq1). We denote ei = {s, qi},
Es = {ei : 1 ≤ i ≤ d(s)} and e′i,j =(qi, qj) (see Fig. 1). We assume w.l.o.g. that
e1 is the shortest edge in Es and has a length 1 (due to scaling).

Throughout the proof we denote h(x, y, α)= 4
√
x2 + y2 − 2xy cos(α)−

√
x and

use the following observation regarding the behavior of this function.

Observation 3. The function h(x, y, α) is maximized in the domain (0<x1≤
x≤x2) ∧ (0<y1≤y≤y2) ∧ (π3 <α1≤α≤α2<π) when x=x1, y=y2 and α=α2.

Next we define a tree T ′=(P ∪S\{s}, E′) that satisfies inequality 1. We consider
each possible degree of s:

– Degree 2: We define E′=E ∪ {(e′1,2)}\Es. Thus,√
|e′1,2| ≤

√
|e1|+ |e2| ≤

√
|e1|+

√
|e2| and inequality (1) follows.

– Degree 3: We define E′ = E ∪ {e′1,2, e′1,3}\Es (see Fig. 1). For inequality

(1) to hold we need to show that
√

|e′1,2| +
√

|e′1,3| ≤
√

|e1| +
√

|e2| +
√

|e3|.
Rearranging the equation gives√

|e′1,2| −
√

|e2|+
√

|e′1,3| −
√

|e3| ≤
√

|e1| = 1. (2)

By the law of cosines |e′1,2|=
√
|e2|2 + 1− 2|e2| cos(α2) and

|e′1,3|=
√
|e3|2 + 1− 2|e3| cos(α1). Thus, inequality (2) is equivalent to the

following: h(|e2|, 1, α2) + h(|e3|, 1, α1) ≤ 1. Recall that π/3 < αi ≤ π and
|ei| ≥ 1 (for 1 ≤ i ≤ 3). According to Observation 3, h(ei, 1, αi) is maximized
and receives the value

√
2 − 1 in the above domain when ei=1 and α=π.

Hence, h(|e2|, 1, α2) + h(|e3|, 1, α1) ≤ 2(
√
2− 1) < 1.

The cases of degree 4 and degree 5 were omitted due to space limitation.

q1

q2q3

α2α1
s

e1

e3 e2

e′1,2e′1,3

Fig. 1. The tree T ′ depicted in dashed lines as defined for degree 3 of s

Consider the Euclidean square root metric, i.e. the metric that defines the
distance between every p, q ∈ R2 to be

√
|pq|. Given a set P of points in

the plane, observe that the MST of P in the Euclidean square root metric is
the MST of P in the Euclidean metric. The proof of Theorem 2 together with
the aforementioned observation implies the following theorem.

Theorem 3. The Steiner ratio of trees in the Euclidean square root metric
equals 1.

282 P. Carmi and L. Chaitman-Yerushalmi

3 Steiner Ratio for t-Spanners

Given a finite set of points in the plane P , an Euclidean t-spanner for P is a
graph G over P that satisfies the following property. Every two points p, q ∈ P
are connected by a path of length that approximates the Euclidean distance
between them within a factor t. That is, the shortest path connecting them
is of length at most t|pq| (see [11] for more extensive survey on the subject).
Minimum t-spanners are, in a sense, minimum weight connected graphs (MST)
with strengthened connectivity requirement.

Although the contribution of Steiner points to weight reduction of trees have
been well studied, no similar results have been shown for t-spanners. We examine
the ratios between the weights of minimum t-spanners with and without Steiner
points and reveal that they go much further than the Steiner ratio for trees.

Analogously to trees, we define a Steiner t-spanner as a t-spanner whose point
set may contain additional points that are not members of the initial point set
and a minimum Steiner t-spanner as a Steiner t-spanner with minimum weight.
Steiner t-spanners may be considered in two main settings. In the first setting,
the Steiner points are referred as members of the original point set and the
stretch factor is determined by distances between any pair of points including
Steiner points. In the second setting, the stretch factor is determined only with
respect to the points in the input point set. Obviously, any graph that admits
a Steiner t-spanner for a point set P according to the first setting also admits
a Steiner t-spanner for P according to the second setting. We consider the first
setting and therefore our results apply for both settings.

Throughout this section we use the following notations. Given a graph G,
we denote by δG(p, q) the length of the shortest path between p and q in G.
Given set of points P ⊂ R2, let Gm(P, t) denote the minimum weight t-spanner
for P , let Gs(P, t) denote the minimum weight Steiner t-spanner for P , and let
Wm(p, t) and Ws(p, t) denote their weights, respectively. The Steiner ratio for
t-spanners is defined as ρt = infP {Ws(P, t)/Wm(P, t)}. In the next subsections
we show lower and upper bounds on the ratio ρt.

3.1 Lower Bound

Das et al. have introduced in [6] the leapfrog property and the leapfrog theorem
for a set of points P in the 3-dimensional Euclidean space and used them to prove
that the weight of the greedy t-spanner [2] for a point set P is O(1)·w(MST (P)).
In [7], those results were generalized to the k-dimensional space. More detailed
modified proof is given in [11]. We use those results to bound ρt from below.

Theorem 4 (Theorem 15.1.11, [11]). Let S be a set of n points in Rd, let
t > 1 be a real number, and let G=(S,E) be the greedy t-spanner. The weight
of G is ct · w(MST (S)), where ct is a function of t.

The following lemma introduces a lower bound on ρt.

Lemma 3. For every constant t, ρt ≥ ρ
ct
.

Unexplored Steiner Ratios in Geometric Networks 283

Proof. Given a set of points P ⊂ R2 and a constant t > 1, let Gs(P, t)=(Vs, Es),
thenWs(P, t) ≥(a) w(MST (Vs)) ≥(b) ρ ·w(MST (P)) ≥(c) Wm(P, t) ·ρ/ct, where
inequality (a) is implied by the fact that the MST is the lightest connected graph
over P , (b) is derived from the definition of ρ, and (c) follows from Theorem 4.

As previously mentioned, ρ ≥ r0 ≈ 0.824 and thus we conclude the following.

Corollary 1. For every constant t, ρt ≥ r0
ct
.

3.2 Upper Bound

In this subsection we show upper bounds on the value of ρt. We prove that for
small constant values of t, namely when t → 1, ρt is remarkably smaller than
the conjectured value of ρ,

√
3/2. Actually, for every ε > 0, there exists a value

t (which depends on ε) for which ρt < ε. Moreover, we show that for every
constant t > 1, ρt <

√
3/2.

In the following lemmas, we prove an upper bound b on ρt by suggesting a

set of points P and a Steiner t-spanner ST =(P ∪ S,Es), such that w(ST)
Gm(P,t) ≤ b,

and concluding ρt ≤ w(ST)
Gm(P,t) ≤ b.

Lemma 4. For every ε > 0 there exists a constant value t (which depends on
ε), such that ρt ≤ ε.

Proof. Consider a set of points P = {p0, p1, ..., pn}, where p0 is the center of a
disk D with radius r=n3 and p1, ..., pn lie on a narrow fraction of D’s boundary,
such that |pipi+1|=1, for 1 ≤ i < n. Given ε > 0, we show that t=(r+1− ε1)/r
for 0 < ε1 < 1 (to be defined later), satisfies the inequality ρt ≤ ε.

Note that for sufficiently large r,
∑j−1

k=i |pkpk+1|
|pipj | ≤ t for every 0 < i, j ≤ n,

however |p0pi+1|+|pi+1pi|
|p0pi| = r+1

r > t and therefore Gm(P, t) = (P,E), where E =

{{p0, pi} : 1 ≤ i ≤ n} ∪ {{pi, pi+1} : 1 ≤ i < n} and Wm(P, t) = r · n + n − 1.
We suggest the following Steiner t-spanner ST =(P ∪{s}, Es). Let r0 be a point
lying on the boundary of D with equal distances from pn/2 and pn/2+1. We
locate s on the segment {p0, r0}, such that |p0s|+ |sp1|=(r+1)− ε1 and define
Es = {{s, pi} : 1 ≤ i ≤ n}. For every 1 < i ≤ n, |spi| ≤ |sp1|, which implies
|p0s|+|spi|

|p0pi| ≤ r+1−ε1
r = t. One can verify that ST is indeed a t-spanner for P ∪ S.

Let x = |p1s| and z = |r0s|, then: (A) x + (r − z) = r + 1 − ε1. Note that

∠(r0p0p1) = n−1
2r and therefore ∠(p0r0p1) = π/2−(n−1)

4r > π/2 − 1/n2. For suffi-
ciently large n there exists 0 < ε1 < 1 for which:
(B) x=

√
z2 + (n− 1)2/4− ε1.

Solving the system of equations (A) and (B) yields z = (n−1)2

8 − 1
2 and x=

(n−1)2

8 + 1
2 − ε1. Since, w(ST) ≤ n · x+ (r − z) + n− 1 we have

w(ST)

Gm(P, t)
<

x · n+ (r − z) + n− 1

r · n+ n− 1

=
n((n− 1)2/8 + 1/2− ε1 + 1) + n3 − (n− 1)2/8 + 1/2− 1

n(n3 + 1)− 1
≤ c

n

284 P. Carmi and L. Chaitman-Yerushalmi

for some constant c. For sufficiently large n we have c
n < ε. Hence, by setting

n to be the maximum between the value that satisfies c
n < ε and the value that

satisfies equation (A) we receive ρt ≤ w(ST)
Gm(P,t) < ε.

Next, we show that for every constant t > 1, ρt <
√
3/2. We begin by showing

a tighter bound for 1 < t < 2.

Claim 1. For every constant 1 < t < 2 and ε > 0, ρt ≤ (t+ ε)/(t+ 2).

Remark 1. By the above claim, for t→ 1 we have ρt ≤ 1/3 + ε for every ε > 0.

Proof. Consider the following set of points P of size n= (2ε2+ε(−2t2+t−4)+2(t−1)t)
(ε(ε−t2−2)) .

Let p1, p2, ..., pn be the order of the points in P from left to right and let l1 and
l2 be two lines parallel to the x-axis. For 0 < i ≤ n, the points {pi : i is even}
are located on l2 and {pi : i is odd} are located on l1, such that for every
0 ≤ i ≤ n− 1, |pi, pi+1|=1 and for every 0 ≤ i ≤ n− 2, |pi, pi+2|=(2− ε)/t (see
Fig. 2). One can verify that Gm(P, t) = (P,E), where E= {{pi, pi+1} : 0 ≤ i ≤
n− 1}∪ {{pi, pi+2} : 0 ≤ i ≤ n− 2}. Thus, Wm(P, t)=(n− 1)+ (n− 2)(2− ε)/t.

We define a Steiner t-spanner ST =(P ∪ S,Es), where S is a set of 2(n− 1)
points, two on each edge of {{pi, pi+1} : 0 ≤ i ≤ n−1} in distance ε1= tε/(2t−2+
ε) from each endpoint, and Es is defined as follows. Let q1, q2, ..., q2(n−1) be the
points P ∪S ordered from left to right, then Es={{qi, qi+1} : 0 ≤ i ≤ 2(n−1)} ∪
{{qi−1, qi+1} : 0 < i < 2(n−1)∧qi ∈ P} (see Fig. 2). Due to triangles similarity,
the length of the edges from the second type is ε1(2− ε)/t. One can verify that
ST is indeed a t-spanner for P ∪ S.

Thus, we have w(ST)=(n− 1) + (n− 2)ε(2− ε)/(2t− 2 + ε) and therefore,

ρt ≤
w(ST)

Wm(P, t)
=

(n− 1) + (n− 2)ε(2− ε)/(2t− 2 + ε)

(n− 1) + (n− 2)(2− ε)/t
=

t+ ε

t+ 2
.

(2 − ε)/t

1 1

Gm(P, t) ST

ε1 ε1(2 − ε)/t

Fig. 2. Left: the graph Gm(P, t). Right: the graph ST (including the point set S) as
defined in the proof of Claim 1.

Lemma 5. For every constant t, ρt <
√
3/2.

Proof. For a constant 1 < t < 2 the lemma follows from Claim 1. The proof for
2 ≤ t ≤ 6.3 was omitted due to space limitation. The main ideas of the proof
together with a proof for for t > 6.3 are given next.

For a constant 2 ≤ t ≤ 4 we define a set P of 7 points with respect to the
vertices of a regular hexagon. We locate the points in P inside the hexagon in
distance x(t) from its vertices as depicted in Fig. 3(a) together with the graph

Unexplored Steiner Ratios in Geometric Networks 285

Gm(P, t) and the Steiner t-spanner that we suggest for P . The value x(t) ensures
w(ST)

Wm(P,t) <
√
3
2 , hence ρt <

√
3
2 .

For a constant 4 < t ≤ 6.3 we define a set P of 13 points as follows. Two points
are located on a boundary of a circle within a distance x(t) from each other and
5 points are equally spaced on the greater portion of the boundary between those
two points. The remaining 6 points are located outside the circle with respect
to every two adjacent points on the boundary, except for the two at distance
x(t) from each other, as a third vertex of an isosceles triangle (see Fig. 3(b)).
The graph Gm(P, t) and the Steiner t-spanner that we suggest are depicted in

Fig. 3(b). The value x(t) ensures w(ST)
Wm(P,t) <

√
3
2 , which implies ρt <

√
3
2 .

For t > 6.3 we define P = {p1, ..., p2n+1} as follows. The points p1 and p2n+1

are located on a boundary of a circle within a distance x (which depends on
t) from each other and n − 1 other points are equally spaced, with distances√
3, on the greater portion of the boundary between p1 and p2n+1. Additional n

points are located outside the circle with respect to every pair {p, q} of adjacent
points on the perimeter, except for the pair {p1, p2n+1}, as a third vertex of the
isosceles triangle with a base {p, q} and a side length 1 < y <

√
3(see Fig. 3(c)).

We define y=
√
2
√

t2(2−√
3)−2t+2+t(1+

√
3)−2

2t and x= (
√
3−y)(2−2y)

(
√
3−2y)

n.

Claim 2. For sufficiently large n, Gm(P, t)=(P,E), where E contains the cord
{p1, p2n+1} and all the equal sides of all the isosceles triangles (see Fig. 3(c)).

We omit the proof of the above claim due to space limitations. The intuition
for its correctness is the following. The lightest t-spanner that does not include
the long edge {p1, p2n+1} is the graph obtained by replacing one side of length y
with the triangle base of length

√
3 (rather than adding some cord edges) in the

required number of triangles. This spanner has the same weight as the spanner
presented in the claim for sufficiently large n.

By Claim 2,Wm(P, t)=2yn+x. We define a Steiner t-spanner ST =(P∪S,Es),
where S is the set of n Torricelli points of each three vertices of a triangle, i.e.,
inside each triangle (prq we locate a Steiner point s, such that ∠psr=∠rsq=
∠qsp = 2π/3, and Es is a set of 3n edges connecting each Torricelli point to
the three corresponding triangle vertices. By the law of cosines the length of

2π
3

2π
3

2π
3

2π
3

x(t)

(a) (b)

p1p2m+1

x
√

3

y
1

(c)

(
√

4y2 − 3 − 1)/2

x(t)

Fig. 3. The graphs Gm(P, t) and ST are depicted in black and gray respectively, as
defined in the proof of Lemma 5 for 2 ≤ t ≤ 4 (a), 4 < t ≤ 6.3 (b) and t > 6.3 (c)

286 P. Carmi and L. Chaitman-Yerushalmi

three edges inside each triangle are 1, 1 and (
√

4y2 − 3 − 1)/2. Since for every
q, r ∈ P ∪ S, δST (q, r)/|qr| ≤ 2n

x = t, ST is indeed a t-spanner for p ∪ S.
Thus, we have w(ST)=(2 + (

√
4y2 − 3− 1)/2)n and therefore,

ρt ≤
(2 +

√
y2 + y + 1)n

2yn+ x
=

(2 +
√

y2 + y + 1)

2y + (
√
3− y)(2− 2y)/(

√
3− 2y)

<(∗) √3/2

The inequality (∗) holds for every t > 6.3.

References

1. Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J.: Region-fault tolerant
geometric spanners. Discrete Comput. Geom. 41(4), 556–582 (2009)

2. Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)

3. Arikati, S.R., Chen, D.Z., Chew, L.P., Das, G., Smid, M.H.M., Zaroliagis, C.D.:
Planar Spanners and Approximate Shortest Path Queries Among Obstacles in
the Plane. In: Dı́az, J. (ed.) ESA 1996. LNCS, vol. 1136, pp. 514–528. Springer,
Heidelberg (1996)

4. Benmoshe, B., Omri, E., Elkin, M.: Optimizing budget allocation in graphs. In:
23RD Canadian Conference on Computational Geometry, pp. 33–38 (2011)

5. Chung, F.R.K., Graham, R.L.: A new bound for euclidean steiner minimal trees.
Ann. N.Y. Acad. Sci (1985)

6. Das, G., Heffernan, P.J., Narasimhan, G.: Optimally sparse spanners in 3-
dimensional euclidean space. In: Symposium on Computational Geometry, pp. 53–
62 (1993)

7. Das, G., Narasimhan, G., Salowe, J.S.: A new way to weigh malnourished euclidean
graphs. In: SODA, pp. 215–222 (1995)

8. Elkin, M., Solomon, S.: Narrow-shallow-low-light trees with and without steiner
points. SIAM J. Discret. Math. 25(1), 181–210 (2011)

9. Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. App. Math. 16(1), 1–29
(1968)

10. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Elsevier Sci-
ence (1992)

11. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press (2007)

Geometric RAC Simultaneous Drawings of Graphs�

Evmorfia Argyriou1, Michael Bekos2, Michael Kaufmann2, and Antonios Symvonis1

1 School of Applied Mathematical & Physical Sciences,
National Technical University of Athens, Greece
{fargyriou,symvonis}@math.ntua.gr

2 Institute for Informatics, University of Tübingen, Germany
{bekos,mk}@informatik.uni-tuebingen.de

Abstract. In this paper, we study the geometric RAC simultaneous drawing prob-
lem: Given two planar graphs that share a common vertex set but have disjoint
edge sets, a geometric RAC simultaneous drawing is a straight-line drawing in
which (i) each graph is drawn planar, (ii) there are no edge overlaps, and, (iii) cross-
ings between edges of the two graphs occur at right-angles. We first prove that two
planar graphs admitting a geometric simultaneous drawing may not admit a geo-
metric RAC simultaneous drawing. We further show that a cycle and a matching
always admit a geometric RAC simultaneous drawing, which can be constructed
in linear time.

We also study a closely related problem according to which we are given a
planar embedded graph G and the main goal is to determine a geometric drawing
of G and its dual G∗ (without the face-vertex corresponding to the external face)
such that: (i) G and G∗ are drawn planar, (ii) each vertex of the dual is drawn
inside its corresponding face of G and, (iii) the primal-dual edge crossings form
right-angles. We prove that it is always possible to construct such a drawing if the
input graph is an outerplanar embedded graph.

1 Introduction

A geometric right-angle crossing drawing (or geometric RAC drawing, for short) of a
graph is a straight-line drawing in which every pair of crossing edges intersects at right-
angle. A graph which admits a geometric RAC drawing is called right-angle crossing
graph (or RAC graph, for short). Motivated by cognitive experiments of Huang et al.
[17], which indicate that the negative impact of an edge crossing on the human under-
standing of a graph drawing is eliminated in the case where the crossing angle is greater
than seventy degrees, RAC graphs were recently introduced in [10] as a response to the
problem of drawing graphs with optimal crossing resolution.

� The work of E.N. Argyriou has been co-financed by the European Union (European Social
Fund - ESF) and Greek national funds through the Operational Program “Education and Life-
long Learning” of the National Strategic Reference Framework (NSRF) - Research Funding
Program: Heracleitus II. Investing in knowledge society through the European Social Fund.
The work of M.A. Bekos is implemented within the framework of the Action “Supporting
Postdoctoral Researchers” of the Operational Program “Education and Lifelong Learning”
(Action’s Beneficiary: General Secretariat for Research and Technology), and is co-financed
by the European Social Fund (ESF) and the Greek State.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 287–298, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

288 E. Argyriou et al.

1 2

4 3

5 6

78

(a)

1 2

4 3

5 6

78

(b)

1 2
8

3

5

6

7

4

(c)

Fig. 1. (a) A graph with 8 vertices and 22 edges which does not admit a RAC drawing [11]. (b) A
decomposition of the graph of Fig.1a into a planar graph (solid edges; a planar drawing is given
in Fig.1c) and a matching (dashed edges), which implies that a planar graph and a matching do
not always admit a GRacSim drawing; their union is not RAC.

Simultaneous graph drawing deals with the problem of drawing two (or more) planar
graphs on the same set of vertices on the plane, such that each graph is drawn planar1

(i.e., only edges of different graphs are allowed to cross). The geometric version restricts
the problem to straight-line drawings. Besides its independent theoretical interest, this
problem arises in several application areas, such as software engineering, databases and
social networks, where a visual analysis of evolving graphs, defined on the same set of
vertices, is useful.

Both problems mentioned above are active research topics in the graph drawing
literature and positive and negative results are known for certain variations (refer to
Section 2). In this paper, we study the geometric RAC simultaneous drawing problem
(or GRacSim drawing problem, for short), i.e., a combination of both problems. For-
mally, the GRacSim drawing problem can be stated as follows: Let G1 = (V,E1) and
G2 = (V,E2) be two planar graphs that share a common vertex set but have disjoint
edge sets, i.e., E1 ⊆ V × V , E2 ⊆ V × V and E1 ∩E2 = ∅. The main task is to place
the vertices on the plane so that, when the edges are drawn as straight-lines, (i) each
graph is drawn planar, (ii) there are no edge overlaps and (iii) crossings between edges
in E1 and E2 occur at right-angles. Let G = (V,E1 ∪ E2) be the graph induced by
the union of G1 and G2. Observe that G should be a RAC graph, which implies that
|E1 ∪ E2| ≤ 4|V | − 10 [10]. We refer to this relationship as the RAC-size constraint.

Note that, in the ordinary geometric simultaneous drawing problem the input graphs
are allowed to share edges, i.e., E1 ∩ E2 is non-empty in general. For instance, it is
known that there exists a planar graph and a matching that do not admit a geometric
simultaneous drawing [7]. However, this does not immediately imply that a planar graph
and a matching do not admit a GRacSim drawing either (since the graphs utilized in
the proof of the corresponding theorem in [7] share a common edge). Fig.1 depicts an
alternative and simpler technique to prove such negative results forGRacSim drawings,
which is based on the fact that not all graphs that obey the RAC-size constraint are
eventually RAC graphs. On the other hand, as we will shortly see, two planar graphs
admitting a geometric simultaneous drawing may not admit a GRacSim drawing.

1 In the graph drawing literature, the problem is known as “simultaneous graph drawing with
mapping”. For simplicity, we use the term “simultaneous graph drawing”.

Geometric RAC Simultaneous Drawings of Graphs 289

The GRacSim drawing problem is of interest since it combines two current research
topics in graph drawing. Our motivation to study this problem rests on the work of
Didimo et al. [10] who proved that the crossing graph of a geometric RAC drawing is
bipartite2. Thus, the edges of a geometric RAC drawing of a graph G = (V,E) can be
partitioned into two sets E1 and E2, such that no two edges of the same set cross. So,
the problem we study is, in a sense, equivalent to the problem of finding a geometric
RAC drawing of an input graph (if one exists), given its crossing graph.

A closely related problem to the GRacSim drawing problem, refered to as geometric
Graph-Dual RAC simultaneous drawing problem (or GDual-GRacSim for short), is the
following: Given a planar embedded graphG, determine a geometric drawing ofG and
its dualG∗ (without the face-vertex corresponding to the external face) such that: (i) G
and G∗ are drawn planar, (ii) each vertex of the dual is drawn inside its corresponding
face of G and, (iii) the primal-dual edge crossings form right-angles.

This paper is structured as follows: In Section 2, we review relevant previous re-
search. In Section 3, we demonstrate that two planar graphs admitting a geometric si-
multaneous drawing may not admit a GRacSim drawing. In Section 4, we prove that a
cycle and a matching always admit a GRacSim drawing, which can be constructed in
linear time. In Section 5, we study the GDual-GRacSim drawing problem. We show
that given a planar embedded graph, a GDual-GRacSim drawing of the planar graph
and its dual does not always exist. If the input graph is an outerplanar embedded graph,
we present an algorithm that constructs a GDual-GRacSim drawing of the outerplanar
graph and its dual. We conclude in Section 6 with open problems.

2 Related Work

Didimo et al. [10] were the first to study the geometric RAC drawing problem and
proved that any graph with n ≥ 3 vertices that admits a geometric RAC drawing has
at most 4n− 10 edges. Arikushi et al. [4] presented bounds on the number of edges of
polyline RAC drawings with at most one or two bends per edge. Angelini et al. [1] pre-
sented acyclic planar digraphs that do not admit upward geometric RAC drawings and
proved that the corresponding decision problem is NP-hard. Argyriou et al. [3] proved
that it is NP-hard to decide whether a given graph admits a geometric RAC drawing
(i.e., the upwardness requirement is relaxed). Di Giacomo et al. [8] presented tradeoffs
on the maximum number of bends per edge, the required area and the crossing angle
resolution. Didimo et al. [9] characterized classes of complete bipartite graphs that ad-
mit geometric RAC drawings. Van Kreveld [18] showed that the quality of a planar
drawing of a planar graph (measured in terms of area required, edge-length and angular
resolution) can be improved if one allows right-angle crossings. Eades and Liotta [11]
proved that a maximally dense RAC graph (i.e., |E| = 4|V | − 10) is also 1-planar, i.e.,
it admits a drawing in which every edge is crossed at most once.

Regarding the geometric simultaneous graph drawing problem, Brass et al. [5] pre-
sented algorithms for drawing simultaneously (a) two paths, (b) two cycles and, (c) two
caterpillars. Estrella-Balderrama et al. [14] proved that the problem of determining

2 This can be interpreted as follows: “If two edges of a geometric RAC drawing cross a third
one, then these two edges must be parallel.”

290 E. Argyriou et al.

whether two planar graphs admit a geometric simultaneous drawing is NP-hard. Erten
and Kobourov [13] showed that a planar graph and a path cannot always be drawn si-
multaneously. Geyer, Kaufmann and Vrt’o [16], showed that a geometric simultaneous
drawing of two trees does not always exist. Angelini et al. [2] proved the same result
for a path and a tree. Cabello et al. [7] showed that a geometric simultaneous drawing
of a matching and (a) a wheel, (b) an outerpath or, (c) a tree always exists. For a quick
overview of known results refer to Table 1 of [15].

Brightwell and Scheinermann [6] proved that the GDual-GRacSim drawing prob-
lem always admits a solution if the input graph is a triconnected planar graph. To the
best of our knowledge, this is the only result which incorporates the requirement that
the primal-dual edge crossings form right-angles. Erten and Kobourov [12], presented
an O(n) time algorithm that results into a simultaneous drawing but, unfortunately, not
a RAC drawing of a triconnected planar graph and its dual on an O(n2) grid, where n
is the number of vertices of G and G∗.

Before we proceed with the description of our results, we introduce some necessary
notation. Let G = (V,E) be a simple, undirected graph drawn on the plane. We denote
by Γ (G) the drawing of G. By x(v) and y(v), we denote the x- and y-coordinate of
v ∈ V in Γ (G). We refer to the vertex (edge) set of G as V (G) (E(G)). Given two
graphs G and G′, we denote by G ∪G′ the graph induced by the union of G and G′.

3 A Wheel and a Cycle: A Negative Result

In this section, we show that there exists a pair of planar graphs that admits a geometric
simultaneous drawing, their union meets the RAC size constraint and they do not admit
a GRacSim drawing (i.e, the class of graphs that admit GRacSim drawings is a subset
of the class of graphs for which a simultaneous drawing is possible). We achieve this by
showing that there exists a wheel and a cycle which do not admit a GRacSim drawing.
Cabello et al. [7] have shown that a geometric simultaneous drawing of a wheel and a
cycle always exists.

Our proof utilizes the augmented triangle antiprism graph [3,10], depicted in Fig.2a.
The augmented triangle antiprism graph contains two triangles T and T ′ (refer to the
dashed and bold drawn triangles in Fig.2a) and a “central” vertex v0 incident to the
vertices of T and T ′. If we delete the central vertex, the remaining graph corresponds to
the skeleton of a triangle antiprism and it is commonly referred to as triangle antiprism
graph. Didimo et al. [10] used the augmented triangle antiprism graph as an example
of a maximally dense RAC graph (i.e., |E| = 4|V | − 10).

Lemma 1. The geometric RAC drawings of the augmented triangle antiprism graph
define exactly eight combinatorial embeddings.

Sketch of proof. Due to space constraints we omit the detailed proof of this lemma.
We simply note that (i) va and v′a, (ii) vb and v′b, and, (iii) vc and v′c share the same
neighbors. So, the eight combinatorial embeddings are implied by the drawing of Fig. 2a
by mutually exchanging the positions of (i) va and v′a, (ii) vb and v′b, and, (iii) vc and
v′c. For an example refer to Fig. 2b. ��

Geometric RAC Simultaneous Drawings of Graphs 291

v0
v′a

v′c
va

vc

vb

v′b TT ′

(a)

v0vb v′a

vc
va v′b

v′c

(b)

CW

(c)

Fig. 2. (a)-(b) Two different RAC drawings of the augmented triangle antiprism graph with dif-
ferent combinatorial embeddings. (c) The union of wheel W (solid and dashed black edges) and
cycle C (gray edges) is the augmented triangle antiprism graph.

Theorem 1. There exists a wheel and a cycle which do not admit a GRacSim drawing.

Proof. We denote the wheel by W and the cycle by C. The counterexample is depicted
in Fig.2c. The center of W is marked by a box, the spokes of W are drawn as dashed
line-segments, while the rim of W is drawn in bold. Cycle C is drawn in gray. The graph
induced by the union of W and C (which in a GRacSim drawing of W and C should
be drawn with right-angle crossings) is the augmented triangle antiprism graph, which,
by Lemma 1, has exactly eight RAC combinatorial embeddings. However, in none of
them wheel W is drawn planar. This completes the proof. ��

4 A Cycle and a Matching: A Positive Result

In this section, we first prove that a path and a matching always admit a GRacSim draw-
ing and then we show that a cycle and a matching always admit a GRacSim drawing as
well. Note that the union of a path and a matching is not necessarily a planar graph. Ca-
bello et al. [7] provide an example of a path and a matching, which form a subdivision
of K3,3. We denote the path by P and the matching by M. Let v1 → v2 → . . . → vn
be the edges of P (see Fig.3). In order to keep the description of our algorithm simple,
we will initially assume that n is even and |E(M)| = n/2. Later on this section, we
will describe how to cope with the cases where n is odd or |E(M)| < n/2. Recall that
by the definition of the GRacSim drawing problem, P and M do not share any edge,
i.e., E(P) ∩ E(M) = ∅.

The basic idea of our algorithm is to identify in the graph induced by the union of
P and M a set of cycles C1, C2, . . . , Ck, k ≤ n/4, such that: (i) |E(C1)| + |E(C2)| +
. . . + |E(Ck)| = n, (ii) M ⊆ C1 ∪ C2 ∪ . . . ∪ Ck, and, (iii) the edges of cycle Ci,
i = 1, 2, . . . , k alternate between edges of P and M. Note that properties (i) and (ii)
imply that the cycle collection will contain half of P’s edges and all of M’s edges. In
our drawing, these edges will not cross with each other. The remaining edges of P will
introduce only right-angle crossings with the edges of M.

Let Podd be a subgraph of P which contains each second edge of P , starting from
its first edge, i.e., E(Podd) = {(vi, vi+1); 1 ≤ i < n, i is odd}. In Fig.3, the edges

292 E. Argyriou et al.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

Fig. 3. An example of a path P and a matching M. The path appears at the bottom of the figure.
The edges of M are drawn bold, with two bends each. The edges of path P form two matchings,
i.e., Podd and P−Podd. The edges of Podd are drawn solid, while the edges of P−Podd dotted.

of Podd are drawn solid. Clearly, Podd is a matching. Since we have assumed that n
is even, Podd contains exactly n/2 edges. Hence, |E(Podd)| = |E(M)|. In addition,
Podd covers all vertices of P , and, E(Podd) ∩ E(M) = ∅. The later equation trivially
follows from our initial hypothesis, which states that E(P)∩E(M) = ∅. We conclude
that Podd ∪ M is a 2-regular graph. Thus, each connected component of Podd ∪ M
corresponds to a cycle of even length, which alternates between edges of Podd and M.
This is the cycle collection mentioned above (see Fig.4).

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

6

5

v1

v2

v3

v4

v5

v6

v8

v9

v10

v11

v12

v13

v14

12 13 14

C2

C1
v7

Fig. 4. Podd ∪ M (of Fig.3) consists of cycles C1 and C2. The edges of Podd are drawn solid,
while the edges of M are drawn bold.

Initially, we fix the x-coordinate of each vertex of P by setting x(vi) = i, 1 ≤
i ≤ n. This ensures that P is x-monotone and hence planar. Later on, we will slightly
change the x-coordinate of some vertices of P (without affecting P’s monotonicity).
Note that the algorithm can be adjusted so that the x and y coordinates of each vertex
are computed at the same time. We have chosen to compute them separately in order
to simplify the presentation. The y-coordinate of each vertex of P is established by
considering the cycles of Podd ∪M.

We draw each of these cycles in turn. More precisely, assume that zero or more
cycles have been completely drawn and let C be the cycle in the cycle collection which
contains the leftmost vertex, say vi, of P that has not been drawn yet (initially, vi is
identified by v1). Then, vertex vi should be an odd-indexed vertex and thus (vi, vi+1)
belongs to C. Orient cycle C so that vertex vi is the first vertex of cycle C and vi+1 is the
last (see Fig.4). Based on this orientation, we will draw the edges of C in a snake-like
fashion, starting from vertex vi and reaching vertex vi+1 last. The first edge to be drawn

Geometric RAC Simultaneous Drawings of Graphs 293

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

6

5

v1

v2

v3

v4

v5

v6

v7 v8

v9

v10

v11

v12

v13

v14

12 13 14

(a) A drawing obtained by incorporating the edges of P −
Podd into the drawing of Fig.4.

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

6

5

v1

v2

v3

v4

v5

v6

v7 v8

v9

v10

v11

v12

v13

v14

12 13 14

(b) A drawing obtained by moving the even-indexed vertices
of P in the drawing of Fig.5a one unit to the right.

1 2 3 4 5 6 7

1

2

3

4

6

5

v1

v2

v3

v4

v5

v6

v7 v8

v9

v10

v11

v12

v13

v14

(c) A compact GRacSim
drawing

Fig. 5. In all drawings, the edges of Podd are drawn solid, while the edges of P − Podd dotted.
The edges of M are drawn bold.

is incident to vertex vi and belongs to M. We draw it as a horizontal line-segment at the
bottommost available layer in the produced drawing (initially, L1 : y = 1). Since cycle
C alternates between edges of Podd and M, the next edge to be drawn belongs to Podd

followed by an edge of M. If we can draw both of them in the current layer without
introducing edge overlaps, we do so. Otherwise, we employ an additional layer. We
continue in the same manner, until edge (vi, vi+1) is reached in the traversal of cycle C.
This edge connects two consecutive vertices of P that are the leftmost in the drawing
of C. Therefore, edge (vi, vi+1) can be added in the drawing of C without introducing
any crossings. Thus, cycle C is drawn planar.

So far, we have drawn all edges of M and half of the edges of P (i.e., Podd) and
we have obtained a planar drawing in which all edges of M are drawn as horizontal,
non-overlapping line segments. In the worst case, this drawing occupies n/2 layers.

We proceed to incorporate the remaining edges of P , i.e, the ones that belong to
P − Podd, into the drawing (refer to the dotted drawn edges of Fig.5a). Since x(vi) =
i, i = 1, 2, . . . , n, the edges of P do not cross with each other and therefore P is
drawn planar. In contrast, an edge of P − Podd may cross multiple edges of M, and,
these crossings do not form right-angles (see Fig.5a). In order to fix these crossings,
we suggest to move each even-indexed vertex of P one unit to the right (keeping its y-
coordinate unchanged), except for the last vertex of P . Then, the endpoints of the edges
of P − Podd have exactly the same x-coordinate and cross at right-angles the edges of

294 E. Argyriou et al.

M which are drawn as horizontal line-segments. The path remains x-monotone (but
not strictly anymore) and hence planar. In addition, it is not possible to introduce vertex
overlaps, since in the produced drawing each edge of M has at least two units length
(recall thatE(P)∩E(M) = ∅). Since the vertices of the drawing do not occupy even x-
coordinates, the width of the drawing can be reduced from n to n/2+1 (see Fig.5b). We
can further reduce the width of the produced drawing by merging consecutive columns
that do not interfere in y-direction into a common column (see Fig.5c). However, this
post-processing does not result into a drawing of asymptotically smaller area.

In order to complete the description of our algorithm, it remains to consider the
cases where n is odd or |E(M)| < n/2. Both cases can be treated similarly. If n is
odd or |E(M)| < n/2, there exist vertices of P which are not covered by matching
M. As long as there exist such vertices, we can momentarily remove them from the
path by contracting each subpath consisting of degree-2 vertices into a single edge.
By this procedure, we obtain a new path P ′, so that M covers all vertices of P ′. If
we draw P ′ and M simultaneously, then it is easy to incorporate the removed vertices
in the produced drawing, since they do not participate in M. The following theorem
summarizes our result.

Theorem 2. A path and a matching always admit a GRacSim drawing on an (n/2 +
1)× n/2 integer grid. Moreover, the drawing can be computed in linear time.

Proof. Finding the cycles of Podd∪M can be done inO(n) time, where n is the number
of vertices of P ; we identify the leftmost vertex of each cycle and then we traverse it.
Having computed the cycle collection of Podd ∪M, the coordinates of the vertices are
computed in O(n) total time by a traversal of the cycle. ��
We extend the algorithm that produces a GRacSim drawing of a path and a matching
to also cover the case of a cycle C and a matching M. Obviously, if we remove an edge
from the input cycle, the remaining graph is a path P . Then, we apply the developed
algorithm and obtain a GRacSim drawing of P and M, in which the first vertex of P
is drawn at the bottommost layer (hence its incident edge in M is not crossed), and, the
last vertex of P is drawn rightmost. With these two properties, we can add the removed
edge, between the first and the last vertex of P without introducing new crossings. To
achieve this, we move the first vertex of P at most n/2 + 2 units downwards (keeping
its x-coordinate unchanged) and the last vertex of P at most n/2 + 1 units rightwards
(keeping its y-coordinate unchanged). Then, the insertion in the drawing of the edge
that closes the cycle does not introduce any crossings, as desired.

Theorem 3. A cycle and a matching always admit a GRacSim drawing on an (n +
2)× (n+ 2) integer grid. Moreover, the drawing can be computed in linear time.

Theorem 4. Let G be a simple connected graph that can be decomposed into a match-
ing and either a path or a cycle. Then, G is a RAC graph.

Proof. The argument trivially holds in the case where the input path (or cycle) is hamil-
tonian. If it is not hamiltonian, vertices that are not covered by the path (or cycle) are
only incident to edges of the matching. Thus, they can be momentarily removed, com-
pute a drawing of the remaining graph and easily insert them into the resulting drawing,
since they are of degree 1. ��

Geometric RAC Simultaneous Drawings of Graphs 295

5 A Planar Graph and Its Dual: An Interesting Variation

In this section, we examine the GDual-GRacSim drawing problem. This problem can
be considered as a variation of the GRacSim drawing problem, where the first graph
(i.e., the planar graph) determines the second one (i.e., the dual) and places restrictions
on its layout. As already stated in Section 2, Brightwell and Scheinermann [6] proved
that the GDual-GRacSim problem always admits a solution if the input graph is a
triconnected planar graph. For the general case of planar graphs, we demonstrate by
an example that it is not always possible to compute such a drawing, and thus, we
concentrate our study in the more interesting case of outerplanar graphs.

Initially, we consider the case where the planar drawing Γ (G) of graph G is speci-
fied as part of the input and it is required that it remains unchanged in the output. We
demonstrate by an example that it is not always feasible to incorporate G∗ into Γ (G)
and obtain a GDual-GRacSim drawing of G and G∗. The example is illustrated in
Fig.6a. In the following, we prove that if the input graph is a planar embedded graph,
then the GDual-GRacSim drawing problem does not always admit a solution, as well.

Theorem 5. Given a planar embedded graph G, a GDual-GRacSim drawing of G
and its dual G∗ does not always exist.

Proof. We prove a slightly stronger result by investigating all possible planar embed-
dings of a particular G for which we prove that a GDual-GRacSim drawing of G and
its dual G∗ does not exist. Graph G used to establish the theorem is depicted in Fig.6b,
where the vertices drawn as boxes belong to G∗. Observe that the subgraph drawn with
dashed edges is triconnected planar. Thus, it has a unique planar embedding (up to a
reflection). If we replace this subgraph by an edge, the remaining primal graph is also
triconnected. Hence, the graph of our example is a subdivision of a triconnected graph,
which implies that it has two planar combinatorial embeddings obtained by reflections
of the triconnected planar subgraph, at u and v, i.e., either u′ is to the “left” of v′, or to
its “right”. Now, observe that the dual graph should have two vertices within the gray-
colored faces of Fig.6b (refer to the vertices drawn as boxes). Each of these two vertices
is incident to two vertices of the dual that lie within the triangular faces of the dashed

(a)

G
u

v

u′ v′
w x

(b)

Fig. 6. (a) The input planar drawing of the primal graph G is sketched with black colored vertices
and bold edges and should remain unchanged in the output. The vertices of the dual G∗ are
colored gray. Then, the dual’s dashed drawn edge will inevitably introduce a non right-angle
crossing. (b) An example of a planar embedded graph G for which the GDual-GRacSim does
not admit a solution. The problematic faces are drawn in gray.

296 E. Argyriou et al.

drawn subgraph of G, incident to the two gray-colored faces. Observe that in any RAC
drawing of G and G∗ both quadrilaterals uu′vw and uv′vx must be convex, which is
impossible. ��

Theorem 6. Given an outerplane embedding of an outerplanar graph G, it is always
possible to determine a GDual-GRacSim drawing of G and its dual G∗.

Proof. The proof is given by a recursive geometric construction which computes a
GDual-GRacSim drawing of G and its dual G∗. Consider an arbitrary edge (u, v)
of the outerplanar graph that does not belong to its external face and let f and g be the
faces to its left and the right side, respectively, as we move along (u, v) from vertex u to
vertex v. Then, (f, g) is an edge of the dual graph G∗. Since the dual of an outerplanar
graph is a tree, the removal of edge (f, g) results in two trees Tf and Tg that can be con-
sidered to be rooted at vertices f and g of G∗, respectively. For the recursive step of our
algorithm, we assume that we have already produced a GDual-GRacSim drawing for
Tf and its corresponding subgraph of G that satisfies the following invariant properties:

I-P1: Edge (u, v) is drawn on the external face of the GDual-GSimRAC drawing con-
structed so far. Let u and v be drawn at points pu and pv, respectively. Denote by
	u,v the line defined by pu and pv.

I-P2: Let the face-vertex f be drawn at point pf . The perpendicular from point pf to
line 	u,v intersects the line segment pupv. Let p be the point of intersection.

I-P3: There exists two parallel semi-lines 	u and 	v passing from pu and pv, respec-
tively, that define a semi-strip to the right of segment pupv that does not intersect
the drawing constructed so far. Denote this empty semi-strip by Ru,v.

We proceed to describe how to recursively produce a drawing for tree Tg and its cor-
responding subgraph of G so that the overall drawing is a GDual-GRacSim drawing
for G and G∗. Refer to Fig.7a. Let pg be a point in semi-strip Ru,v that also belongs to
the perpendicular line to line-segment pupv that passes from point p. Thus, the segment
corresponding to the edge (f, g) of the dual crosses at right-angle the segment corre-
sponding to the edge (u, v) of G, as required. If g is a leaf (i.e., all edges of g except
(u, v) are edges of the external face), we can draw the remaining edges of face g as a
polyline of appropriate number of points that goes around pg and connects pu and pv.

Consider now the more interesting case where g is not a leaf in G∗. In this case, we
draw two circles, say Cg and C′

g, centered at pg such that both lie entirely within semi-
strip Ru,v and do not touch neither 	u nor 	v. Assume that circle C′

g is the external of
the two circles. From pu draw the tangent to circle Cg and let a be the point it touches Cg
and a′ be the point to the right of a where the tangent intersects circle C′

g (see Fig.7a).
Similarly, we define points b and b′ based on the tangent from pv to Cg.

Let k ≥ 4 be the number of vertices defining face g. The case where k = 3 will be
examined later. Draw k − 4 points on the (a′, b′) arc, which is furthest from segment
pupv. These points, say {pi | 1 ≤ i ≤ k − 4}, together with points pu, pv, a′ and
b′ form face g. Observe that from point pg, we can draw perpendicular lines towards
each edge of the face. Indeed, line segments pga and pgb are perpendicular to pua′ and
pvb

′, respectively. The remaining edges of the face are chords of circle C′
g and thus, we

can always draw perpendicular lines to their midpoints from the center pg of the circle.

Geometric RAC Simultaneous Drawings of Graphs 297

pf

pg
Cg

C′
g

pu

pv

e′

e

	u

	v

a

b

a′

b′

p

Ru,v

�u,v

p′

(a)

pl

u

v

�u

�v

Ru,v
e

(b)

Fig. 7. (a) The recursion step of our algorithm, (b) The initial step of our algorithm

Now, from each of the newly inserted points of face g draw a semi-line that is parallel to
semi-line 	u and lies entirely in the semi-strip Ru,v. We observe all invariant properties
stated above hold for each child of face g in the subtree Tg of the dual of G. Thus, our
algorithm can be applied recursively. In the case where k = 3, we use the intersection
of the two tangents, say p′, as the third point of the triangular face. We have to be careful
so that p′ lies inside the semi-strip. However, we can always select a point pg close to
segment pupv and an appropriately small radius for circle Cg , so that p′ is inside Ru,v .

Now that we have described the recursive step, it remains to define how the recursion
begins (see Fig.7b). We start from any face of G that is a leaf at its dual tree, say face
l. We draw the face as regular polygon, with face-vertex l mapped at its center, say pl.
Let e = (u, v) be the only edge of the face that is internal to the outerplane embedding
of G. W.l.o.g. assume that e is drawn vertically. Then, draw the horizontal semi-lines
	u and 	v from the endpoints of e in order to define semi-strip Ru,v. From this point on,
the algorithm can recursively draw the remaining faces of G and G∗.

Note that the produced GDual-GRacSim drawing of G and its dual proves that
producing such drawings is possible. The drawing is not particularly appealing since
the height of the strips quickly becomes very small. However, it is a starting point
towards algorithms that produce better layouts. Also note that the algorithm performs
a linear number of “point computations” since for each face-vertex of the dual tree the
performed computations are proportional to the degree of the face-vertex. However, the
coordinates of some points may be non-rational numbers. ��

6 Conclusion – Open Problems

In this paper, we introduced and examined geometric RAC simultaneous drawings. Our
study raises several open problems. Among them are the following: (1) What other
non-trivial classes of graphs, besides a matching and either a path or a cycle, admit a
GRacSim drawing? (2) We showed that if two graphs admit a geometric simultaneous
drawing, it is not necessary that they admit a GRacSim drawing. Finding a class of
graphs (instead of a particular graph) with this property would strengthen this result.
(3) A quite similar problem to theGRacSim drawing problem is the problem of drawing

298 E. Argyriou et al.

two (or more) graphs on the same vertex set on the plane, such that each graph is drawn
RAC (i.e., only edges of different graphs may introduce non-right angle crossings).
Note that the class of graphs that admit such drawings contains the class of graphs for
which a simultaneous drawing is possible. (4) Obtain more appealingGDual-GRacSim
drawings for an outerplanar graph and its dual. Study the required drawing area.

References
1. Angelini, P., Cittadini, L., Di Battista, G., Didimo, W., Frati, F., Kaufmann, M., Symvonis,

A.: On the perspectives opened by right angle crossing drawings. JGAA 15(1), 53–78 (2011)
2. Angelini, P., Geyer, M., Kaufmann, M., Neuwirth, D.: On a Tree and a Path with No Ge-

ometric Simultaneous Embedding. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS,
vol. 6502, pp. 38–49. Springer, Heidelberg (2011)

3. Argyriou, E.N., Bekos, M.A., Symvonis, A.: The Straight-Line RAC Drawing Problem Is
NP-Hard. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M.,
Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 74–85. Springer, Heidelberg (2011)

4. Arikushi, K., Fulek, R., Keszegh, B., Morić, F., Tóth, C.D.: Graphs that Admit Right An-
gle Crossing Drawings. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 135–146.
Springer, Heidelberg (2010)

5. Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G.,
Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Computational Ge-
ometry: Theory and Applications 36(2), 117–130 (2007)

6. Brightwell, G., Scheinerman, E.R.: Representations of planar graphs. SIAM Journal Discrete
Mathematics 6(2), 214–229 (1993)

7. Cabello, S., van Kreveld, M.J., Liotta, G., Meijer, H., Speckmann, B., Verbeek, K.: Geometric
simultaneous embeddings of a graph and a matching. JGAA 15(1), 79–96 (2011)

8. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H.: Area, Curve Complexity, and Crossing
Resolution of Non-planar Graph Drawings. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009.
LNCS, vol. 5849, pp. 15–20. Springer, Heidelberg (2010)

9. Didimo, W., Eades, P., Liotta, G.: A characterization of complete bipartite graphs. Informa-
tion Processing Letters 110(16), 687–691 (2010)

10. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor. Comp.
Sci. 412(39), 5156–5166 (2011)

11. Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. In: 27th European Work-
shop on Computational Geometry (2011)

12. Erten, C., Kobourov, S.G.: Simultaneous embedding of a planar graph and its dual on the
grid. Theory Computing 38(3), 313–327 (2005)

13. Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends.
JGAA 9(3), 347–364 (2005)

14. Estrella-Balderrama, A., Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Si-
multaneous Geometric Graph Embeddings. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.)
GD 2007. LNCS, vol. 4875, pp. 280–290. Springer, Heidelberg (2008)

15. Frati, F., Kaufmann, M., Kobourov, S.G.: Constrained simultaneous and near-simultaneous
embeddings. JGAA 13(3), 447–465 (2009)

16. Geyer, M., Kaufmann, M., Vrto, I.: Two trees which are self-intersecting when drawn simul-
taneously. Discrete Mathematics 309(7), 1909–1916 (2009)

17. Huang, W., Hong, S.H., Eades, P.: Effects of crossing angles. In: IEEE Pacific Visualization
Symp., pp. 41–46. IEEE (2008)

18. van Kreveld, M.: The Quality Ratio of RAC Drawings and Planar Drawings of Planar Graphs.
In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 371–376. Springer,
Heidelberg (2011)

Simultaneous Embeddings with Vertices

Mapping to Pre-specified Points

Taylor Gordon

University of Waterloo

Abstract. We discuss the problem of embedding graphs in the plane
with restrictions on the vertex mapping. In particular, we introduce a
technique for drawing planar graphs with a fixed vertex mapping that
bounds the number of times edges bend. An immediate consequence
of this technique is that any planar graph can be drawn with a fixed
vertex mapping so that edges map to piecewise linear curves with at
most 3n + O(1) bends each. By considering uniformly random planar
graphs, we show that 2n+O(1) bends per edge is sufficient on average.

To further utilize our technique, we consider simultaneous embeddings
of k uniformly random planar graphs with vertices mapping to a fixed,
common point set. We explain how to achieve such a drawing so that

edges map to piecewise linear curves with O(n1− 1
k) bends each, which

holds with overwhelming probability. This result improves upon the pre-
viously best known result of O(n) bends per edge for the case where
k ≥ 2. Moreover, we give a lower bound on the number of bends that
matches our upper bound, proving our results are optimal.

1 Introduction

Of fundamental importance to graph drawing is the problem of drawing graphs
in the plane with restrictions on how vertices and edges are embedded. Indeed,
discussions on planar embeddings, where vertices map to points and edges map
to continuous non-crossing curves, were commensurate with the introduction of
graph theory [5].

Bridges and Prussian cities aside, investigation into the properties of planar
embeddings has been motivated by applications such as information visualization
and VLSI circuit design (see [1], [9], [14]). These applications provide metrics for
which certain embeddings become aesthetically or functionally preferable. For
example, a situation might prefer that edges be drawn as straight lines.

A classic result of Fáry [11] showed that all planar graphs permit embeddings
in the plane where each edge maps to a straight line segment (a result indepen-
dently proven by Wagner [19] and Stein [17]). If we further restrict the vertices
to map to points on an (n− 2)× (n− 2) grid, then a planar embedding can still
be achieved with edges mapping to straight line segments [16].

On the other hand, if the vertex mapping is completely fixed, a straight-line
embedding does not always exist. In fact, it was shown by Pach and Wenger
[15] that if we require edges to be drawn as polygonal curves (piecewise linear

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 299–310, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

300 T. Gordon

curves) then there does not always exist an embedding with o(n2) total bends.
Their results went further to show that this lower bound holds asymptotically
almost surely for a uniformly random planar graph on n vertices; that is, the
lower bound holds with probability 1 as n tends to infinity.

Kaufmann and Wiese [13] considered the case where the range of the vertex
mapping is restricted to a fixed point set P of size n. They showed that any
planar graph can be embedded so that each vertex maps to a unique point in P
and each edge maps to a polygonal curve with at most 2 bends. This result is
optimal in that there exists point sets (points on a line, for example) for which
not all planar graphs can be drawn with edges bending at most once.

The problem of drawing graphs to minimize bends has also been discussed in
regards to simultaneous embeddings. A simultaneous embedding is a drawing in
the plane of k graphs G1, G2, . . . , Gk, each over a common vertex set V , such
that no two edges of one graph cross. The concept of a simultaneous embedding
with this terminology was introduced in [6]. A related result of particular interest
was discussed in [10] by Erten and Kobourov. They considered the special case
of constructing a simultaneous embedding for when k = 2. Their results showed
that 2 bends per edge suffice to construct a simultaneous embedding of two
planar graphs.

One aim of our paper is to consolidate the above results on embedding graphs
with restrictions on the vertex mapping into a single drawing technique. Lemma 3
establishes such a technique that optimally minimizes the number of bends (up to
constant factors). Moreover, for the case where the vertex mapping is completely
fixed, we give a result matching the constant factor of 3 on the number of bends
per edge that was given in [2]. An advantage of our technique, however, is that
it lends itself well to probabilistic analysis. Given a fixed vertex mapping, our
technique gives at most 2n bends per edge on expectation for a uniformly random
planar graph, by which we mean a graph sampled uniformly at random from the
set of all planar graphs over the vertex set V = {1, 2, . . . , n}.

Another aim of our paper is to generalize our results to simultaneous em-
beddings. Our goal is to simultaneously embed planar graphs G1, G2, . . . , Gk,
each over a common vertex set V , so that each vertex uniquely maps to one of
n = |V | pre-specified points. Using Lemma 3, we give a construction for which

each edge bends O(n1− 1
k) times with overwhelming probability if we assume that

the k graphs are sampled uniformly at random; that is, each edge bends O(n1− 1
k)

times with probability at least 1− n−c for any fixed constant c.
We go further to show that our result on simultaneous embeddings is optimal

using information theory. That is, we use an encoding argument to prove a lower
bound that matches our upper bound.

The drawing technique relies fundamentally on results related to book em-
beddings, which we introduce in Section 2. We describe the drawing technique
in Section 3. Section 4 applies the drawing technique to the case of embedding
a uniformly random planar graph with a fixed vertex mapping. The application
of the drawing technique to simultaneous embeddings is described in Section 5.
The proofs of the lower bounds are in Section 6.

Simultaneous Embeddings with Vertices Mapping to Pre-specified Points 301

2 Book Embeddings

A well-known result regarding book embeddings is that all Hamiltonian planar
graphs have book thickness 2 (see [3]). A trivial consequence of this result is that
a Hamiltonian planar graph can be embedded in the plane so that all vertices
lie on a common line and all edges lie strictly above or below this line, except
at their ends. Observe that in such an embedding, each edge can be drawn as a
polygonal curve with at most 1 bend (see Fig. 1a for an example).

(a) Hamiltonian supergraph (b) Original graph

Fig. 1. The induced planar embedding of a graph from a book embedding

Any planar graph can be augmented to become 4-connected by subdividing
each edge at most once and by adding additional edges. A classic theorem of
Tutte [18] showed that all 4-connected planar graphs are Hamiltonian. It follows
that we can always construct a Hamiltonian supergraph G′ of a subdivision
of a planar graph G by subdividing each original edge at most once1. From the
Hamiltonian graph G′, we can construct a book embedding (as in Fig. 1a), which
induces an embedding of the original graph G (as in Fig. 1b). Observation 1
summarizes this embedding. Note that this embedding and its construction has
been frequently described in graph drawing literature (as early as [1]).

Observation 1. A planar graph G can be embedded in the plane so that

1. all vertices lie on a common line,
2. each edge bends at most once above the line, at most once below the line, and

at most once on the line.

3 Overview of the Drawing Technique

Let G = (V,E) be a planar graph, and suppose that γ : V → R2 is a fixed vertex
mapping. We define δ to be any vector in R2 such that δ · γ(u) = δ · γ(v), for
u, v ∈ V , only if u = v (here · is the standard dot product over R2). That is, the

1 G′ can also be constructed in linear time by combining results from [4] and [8].

302 T. Gordon

vertices in V map under γ to points at unique distances along the direction of
the vector δ. Such a direction can trivially be seen to always exist.

Suppose that G is embedded as per Observation 1. For convenience, we will
refer to this embedding as the book embedding of G and the line on which the
vertices lie as the spine. We can assume without loss of generality that δ is
aligned with the spine. Let v1, v2, . . . , vn be the vertices in V as they occur
along the direction of δ in the book embedding. We relate the mapping γ to this
embedding of G using order-theoretic concepts.

Definition 2. Let ≺ be a partial order over V such that va ≺ vb if and only if
a ≤ b and δ · γ(va) ≤ δ · γ(vb). Similarly, let * be a partial order over V such
that va * vb if and only if a ≤ b and δ · γ(va) ≥ δ · γ(vb).

Thus, a chain with respect to ≺ is a set of vertices that occur along δ in the
same order in both the book embedding of G and under the mapping γ. On the
other hand, the vertices in a chain with respect to * occur in the reversed order
in the book embedding of G from their order under γ. Using this notation, we
can state the effect of our drawing technique as follows.

Lemma 3. Suppose that V is partitioned into V1, V2, . . . , Vr so that va ∈ Vi and
vb ∈ Vj satisfy δ ·γ(va) < δ ·γ(vb) if i < j. Then, if Vi forms a chain with respect
to ≺ when i is odd and a chain with respect to * when i is even, we can embed G
in the plane with the vertex mapping γ using at most 3r +O(1) bends per edge.

Proof. Without loss of generality, we can assume δ is directed horizontally. Thus,
we can assume that

1. v1, v2, . . . , vn are the vertices in G in the order they are mapped from left to
right in the book embedding,

2. V1, V2, . . . , Vr map under γ to the point sets P1, P2. . . . , Pr, respectively, such
that all points in Pi occur left of all points in Pi+1, for i = 1, 2, . . . , r − 1,

3. for odd i, the vertices in Vi map to points in Pi with the same relative
left-to-right order as they occur along the spine of the book embedding,

4. for even i, the vertices in Vi map to points in Pi with the reverse relative
left-to-right order as they occur along the spine of the book embedding.

Thus, we can think of the vertex sets V1, V2, . . . , Vr as mapping to disjoint in-
tervals Δ1, Δ2, . . . , Δr along the x-axis, each (strictly) containing the points
P1, P2, . . . , Pr respectively. See Fig. 2 for an example of such a configuration. We
will return to this idea to show how to partially embed the edges in G inside
each interval, but before doing so, we first introduce some terminology.

All points in the book embedding of G that intersect with the spine either
correspond to a vertex in G or a point at which an edge crosses the spine. Let
Γ1, Γ2, . . . , Γh correspond to these points in the order they occur along the spine
from left to right. If Γi corresponds to a vertex v, then we define vertex(Γi) = v.
Furthermore, we define top(Γi) to be the set of edges incident to v that were
embedded on the top page and bottom(Γi) to be those embedded on the bottom

Simultaneous Embeddings with Vertices Mapping to Pre-specified Points 303

v1 v2 v3 v4 v5 v6

V1 = {v2, v5}, V2 = {v1, v4, v6}, V3 = {v3}
P1 = {p2, p5}, P2 = {p1, p4, p6}, P3 = {p3}

p2

p5

p6

p4

p1

p3

Δ1 Δ2 Δ3

Fig. 2. An example configuration for a graph on 6 vertices

page. If Γi corresponded to a point at which edges crossed the spine, then Γi

unambiguously refers to this edge.
We now describe how to draw the edges in G inside each of the intervals

Δ1, Δ2,Δr. We first consider an interval Δi, for which i is odd, with corre-
sponding vertex set Vi and point set Pi. For t = 1, 2, . . . , h, we will draw a set
of vertical lines corresponding to Γt as follows (an example of the construction
is shown in Fig. 4).

1. If vertex(Γt) = v ∈ Vi, then we draw a vertical line above the point γ(v)
for each edge in top(Γt) and a vertical line below the point γ(v) for each
edge in bottom(Γt). We then join the ends of these vertical lines to γ(v) as
is shown in Fig. 3.

2. If vertex(Γt) = v ∈ Vj , where j > i, then we draw a vertical line somewhere
in the interval Δi for each edge in top(Γt).

3. If vertex(Γt) = v ∈ Vj , where j < i, then we draw a vertical line somewhere
in the interval Δi for each edge in bottom(Γt).

4. If Γt did not correspond to a vertex, we draw a vertical line for its unique
edge.

5. All lines drawn for Γt occur left of all lines drawn for Γt+1.

Note that the final condition enforces that the vertical lines are separated into
intervals, the first corresponding to edges from Γ1, the second to edges from Γ2,
and so forth. It is clear that the first four conditions can easily be achieved. The
last condition follows by the restriction on the left-to-right order of the points in
Pi. Indeed, the vertices in Vi are mapped to points in Pi that occur from left to
right in the same order as the points on the spine of the book embedding that
defined Γ1, Γ2, . . . , Γh.

For an interval Δi, for which i is even, the procedure is symmetric. The
only difference is that the last condition is reversed so that the lines are drawn
corresponding to those from Γh first, then those from Γh−1, and so forth. It

304 T. Gordon

v = vertex(Γi)

top(Γi)

bottom(Γi)

Fig. 3. A demonstration of how we join the edges in top(Γi) and bottom(Γi) to the
vertex vertex(Γi)

follows by the symmetric definition of Vi, for even i, why this construction can
be achieved.

Thus, we can repeat the above process for each Δ-interval Δ1, Δ2, . . . , Δr.
After this procedure, each Δ-interval will have a set of lines extending upwards
and a set of lines extending downwards (some of which may correspond to the
same edge). When i is odd, we say that the lines extending upward in Δi are
entering Δi and those extending downward are leaving. When i is even, the
definitions are reversed. We make a few observations about the configuration of
these lines.

1. When i is odd, the lines in Δi define subintervals along the x-axis that
correspond to Γ1, Γ2, . . . , Γh from left to right.

2. When i is even, the lines in Δi define subintervals along the x-axis that
correspond to Γh, Γh−1, . . . , Γ1 from left to right.

3. For contiguous intervals Δi and Δi+1, the lines leaving Δi for a particular
Γt correspond to the same set of edges as the lines entering Δi+1 for Γt.

The last observation follows by construction. Clearly it holds for any Γt that cor-
responded to an edge crossing the spine. Suppose instead that v = vertex(Γt).
If the lines leaving Δi corresponded to the edges in top(Γt), then v /∈ Vj for all
j ≤ i, implying that the lines enteringΔi+1 for Γt also correspond to top(Γt). On
the other hand, if the lines leaving Δi corresponded to the edges in bottom(Γt),
then v ∈ Vj , for some j ≤ i, implying that the lines entering Δi+1 for Γt also
correspond to bottom(Γt).

We proceed to show how to join the vertical lines from contiguous Δ-intervals.
Let B be an axis-aligned box containing all points in P (where P is the image
of V under γ). For even i, suppose we were to rotate all vertical lines in the
interval Δi clockwise by a small angle ε so that the lines remain parallel and
only leave the interval Δi outside of the box B. Eventually, the lines drawn for
each Γt in the interval Δi would intersect with the vertical lines drawn for Γt

in the interval Δi−1. We can then terminate the lines drawn for Δi−1 and Δi

Simultaneous Embeddings with Vertices Mapping to Pre-specified Points 305

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Fig. 4. An example of the vertical lines drawn for an interval Δi

at these intersection points, hence joining the lines drawn for Γt in Δi−1 and
Δi. Similarly, if we consider the intersection between the lines extending from
Δi with the vertical lines extending upward from Δi+1 (assuming Δi+1 exists),
we can again terminate these lines at the points the lines from a common Γt

intersect. See Fig. 5 for an example of this procedure.

Δi−1 Δi

Fig. 5. An example of how we join the lines for an interval Δi−1 with an interval Δi.
Note that the lines need not be drawn identically spaced in both intervals.

By the previous observation, this procedure therefore joins the lines leaving
Δi−1 to those entering Δi and joins the lines leaving Δi to those entering Δi+1.
Moreover, since the lines in each odd-indexed Δ-interval are left unrotated, we
can repeat this procedure for each even-indexed Δ-interval. That is, for each
Γt with vertex(Γt) = v, the edges in top(Γt) are drawn from γ(v) to a set
of vertical lines entering Δ1 in the same left-to-right order as these edges were
drawn incident to v on the top page of the book embedding. Similarly, the edges

306 T. Gordon

in bottom(Γt) are drawn from γ(v) to a set of lines leaving Δr in the same
left-to-right order as these edges were drawn incident to v on the bottom page.
Furthermore, a line is drawn entering Δ1 and leaving Δr for each edge that had
crossed the spine in the book embedding.

To complete the desired embedding, we consider the vertical lines entering
Δ1 and the lines leaving Δr. The vertical lines entering Δ1 correspond to the
ends of the edges drawn on the top page of the book embedding (either where
they are incident to a vertex or where they cross the spine). To join the two
vertical lines corresponding to the same edge, we can use the embedding of the
top page of the book embedding. The procedure is as follows. First, truncate
the vertical lines at some common y-coordinate. Then, draw the top page of the
book embedding above the vertical lines, excluding the region within some small
distance ε from the spine (truncating the edges before they meet their incident
vertices). We can then trivially connect the ends of the vertical lines to the ends
of the truncated edges from the top page since they occur from left to right in
the same order. See Fig 6 for a depiction of this procedure.

Fig. 6. An example of how we join the vertical lines entering Δ1 by using the top page
of the book embedding

To join the edges leaving Δr with each other, we consider two cases. If r is
odd, then the lines leave downwards, and we can connect them using the bottom
page in the same manner as we did with the lines entering Δ1. If r is even, then
the lines leave upwards and we can again join them by using the bottom page
by simply rotating it to face the opposite direction.

We now bound the number of times an edge bends in the embedding. Recall
that for each of the Γ1, Γ2, . . . , Γh we drew a set of piecewise linear curves through
the intervals Δ1, Δ2, . . . , Δr. Each of these curves bent at most once for each
of the intervals and O(1) times where they connected to a vertex or joined
another curve where they entered Δ1 or left Δr. By using the embedding from
Observation 1, it follows that each edge in G is associated with at most three of
Γ1, Γ2, . . . , Γh. Thus, it follows that each edge bends at most 3r+O(1) times. ��

Simultaneous Embeddings with Vertices Mapping to Pre-specified Points 307

4 Drawing a Planar Graph with a Fixed Vertex Mapping

In Section 3, we established a technique for drawing a graph G = (V,E) with a
fixed vertex mapping γ, where the number of bends is proportional to the size
of a partition V1, V2, . . . , Vr of V satisfying the conditions of Lemma 3. In this
section, we discuss how to construct such a vertex partition for an arbitrary fixed
vertex mapping.

Recall the definition of ≺ and * from Definition 2. Clearly, any singleton
set forms a chain with respect to both ≺ and *. Thus, by Lemma 3, we can
use the partition V1 = {v1}, V2 = {v2}, . . . , Vn = {vn} to embed G with any
vertex mapping using 3n + O(1) bends per edge. This bound’s constant factor
matches the best known result of Badent et al. described in [2]. Using average-
case analysis, we can improve the bound.

A uniformly random planar graph on n vertices is a graph sampled uniformly
at random from the set of all planar graphs over the vertex set V = {1, 2, . . . , n}.
We consider two isomorphic graphs to be different if their vertex labelings differ.
Suppose that we constructed a book embedding of such a graph as per Obser-
vation 1. If we do so in a manner that is independent from the labeling of the
vertices, then we can assume that the vertices occur along the spine of the book
embedding in a uniformly random order. To enforce independence, one could
simply relabel the vertices uniformly at random before constructing the book
embedding, reverting to the original labeling afterwards. Hence, we can make
the following observation.

Observation 4. A uniformly random planar graph G can be embedded in the
plane so that

1. all vertices lie on a common line in a uniformly random order,
2. each edge bends at most once above the line, at most once below the line, and

at most once on the line.

By Observation 4, our analysis on random planar graphs reduces to an analysis
of random permutations. The proof of the next theorem delineates this point.

Theorem 5. A uniformly random planar graph G = (V,E) can be embedded in
the plane with a fixed vertex mapping using at most 2n+O(1) bends per edge on
expectation.

Proof. Let γ be a fixed vertex mapping, and let δ be a direction for which
δ · γ(u) = δ · γ(v), for u, v ∈ V , only if u = v. Let p1, p2, . . . , pn be the points in
the image of V under γ in the order they occur along δ. Define v1 = γ−1(p1), v2 =
γ−1(p2), . . . , vn = γ−1(pn).

Embed G as per Observation 4 so that the spine is aligned with the direction
δ. For i = 1, . . . , n, define α(vi) to be the index along δ at which vi occurs in this
embedding. Thus, by Definition 2, vi ≺ vj if i ≤ j and α(vi) ≤ α(vj). Similarly,
vi * vj if i ≤ j and α(vi) ≥ α(vj).

By our choice of embedding, α(v1), α(v2), . . . , α(vn) is a uniformly random
permutation of 1, 2, . . . , n. Construct a partition of V as follows. Let t1 be the

308 T. Gordon

largest index such that α(v1), α(v2), . . . , α(vt1) is increasing. Then, let t2 be
the largest index such that α(vt1+1), α(vt1+2), . . . , α(vt2) is decreasing. Repeat
this process for t = 3, . . . , r, maximizing increasing sequences when i is odd
and decreasing sequences when i is even. The partition V1 = {v1, v2, . . . , vt1},
V2 = {vt1+1, vt1+2, . . . , vt2}, . . . , Vr = {vtr−1+1, vtr−1+2, . . . , vtr} satisfies the
conditions of Lemma 3 by construction. We can therefore construct the desired
embedding of G so long as r is at most 2

3n+O(1).
Thus, to complete the proof we consider how large r is on average. LetX be the

set of integers 1 < i < n for which α(vi−1), α(vi+1) < α(vi) or α(vi−1), α(vi+1) >
α(vi). Clearly r ≤ |X |+2. Let X2, X3, . . . , Xn−1 be indicator variables such that
Xi = 1 if i ∈ X and Xi = 0 otherwise. By linearity of expectation, it follows
that

E|X | =
n∑

i=1

EXi

and since EXi = P[Xi = 1] = 2/3, it follows that r ≤ 2/3(n+ 1). ��

5 Simultaneous Embeddings with a Fixed Vertex Range

In this section, we consider the problem of embedding k uniformly random planar
graphsG1, G1, . . . , Gk over a common vertex set V , where the range of the vertex
mapping γ is restricted to a fixed point set P of size n = |V |. As in the proof of
Theorem 5, our analysis relies on properties of uniformly random permutations.

Lemma 6 ([7]). Let π1, π2, . . . , πk be uniformly random permutations over the
set S = {1, 2, . . . , n}. Then, there exists a partition T1, T2, . . . , Tr of S, where the
elements in each part form an increasing subsequence in each of π1, π2, . . . , πk,

such that r is O(n1− 1
k+1) with overwhelming probability.

This bound was established by Brightwell in [7]. The following result follows by
combining this bound with Lemma 3.

Theorem 7. If G1, G2, . . . , Gk are uniformly random planar graphs, then we
can embed each graph in the plane with a common vertex mapping γ : V → P
so that all edges have O(n1− 1

k) bends each with overwhelming probability.

Proof. Let δ be a direction for which δ · p = δ · q, for p, q ∈ P , only if p = q. Let
p1, p2, . . . , pn be the points in P in the order they occur along δ. Embed G1 as per
Observation 4 so that its spine is aligned with δ. Let v1, v2, . . . , vn be the vertices
in V in the order they occur along δ in this embedding. Embedding G2, . . . , Gk in
the same manner gives the corresponding vertex orders π2, π3, . . . , πn, where πi
is a uniformly random permutation of v1, v2, . . . , vn. By Lemma 6, it follows that
V can be partitioned into V1, V2, . . . , Vr such that the vertices in Vi occur along
δ in the same order in the embeddings of each of G1, G2, . . . , Gk. Furthermore,
r is O(n1− 1

k) with overwhelming probability.
Let {u1, . . . , ut1} = V1, {ut1+1, . . . , ut2} = V2, . . . , {utr−1+1, . . . , un} = Vr such

that ui occurs before ui+1 along δ in the embedding ofG1, for all i, if ui, ui+1 ∈ Vj

Simultaneous Embeddings with Vertices Mapping to Pre-specified Points 309

for some j. Consider the vertex mapping γ, defined such that γ(u1) = p1, γ(u2) =
p2, γ(un) = pn. By construction, each Vi forms a chain with respect to ≺ from
Definition 2. Since Lemma 3 requires a partition that alternates between chains
with respect to ≺ and *, we can introduce empty sets into our partition after
each Vi, at most doubling its size. This extensions suffices since the empty set
forms a chain with respect to both ≺ and *. Moreover, since r is O(n1− 1

k), so
is this extension, and thus the claim follows by Lemma 3. ��

6 Lower Bounds on the Number of Bends

In this section we prove that Theorem 7 is optimal by using an encoding argu-
ment. The technique relies on the following lemma.

Lemma 8. If the planar graph G can be drawn in the plane with β total bends
under a fixed vertex mapping that maps V to a convex point set, then G can be

encoded using n lg
(

β+n
n

)
+O(n) bits.

The proof of Lemma 8 is lengthy and is thus deferred to the full version of
this paper [12]. The following theorem follows from Lemma 8 and information
theoretic bounds on encodings of planar graphs.

Theorem 9. Let G1, G2, . . . , Gk be uniformly random planar graphs over the
vertex set V , and let P be a convex point set of size |V | = n. Then, in all
simultaneous embeddings of G1, G2, . . . , Gk that map V to P , at least one of
G1, G2, . . . , Gk has Ω(21−

1
k) total bends with overwhelming probability.

Proof. Suppose that G1, G2, . . . , Gk can be drawn on P with β total bends for
some vertex mapping γ. Since there are n! possible vertex mappings, γ can be
encoded using lgn! bits. Thus, G1, G2, . . . , Gk can be encoded using

kn lg

(
β + n

n

)
+O(kn) + lgn!

bits by Lemma 8. Since there are more than n! planar graphs on n vertices, it
follows that at least lgn! −Δ bits are required to encode a uniformly random
planar graph with probability at least 1− 2−Δ. It follows that

kn lg

(
β + n

n

)
+O(kn) + lg n! ≥ k lg n!−Δ

with probability at least 1− 2−Δ. Thus, there exists a constant c for which

kn lg

(
(β + n)2c+

Δ
knn

1
k

n

)
≥ kn lgn

with probability at least 1− 2−Δ by Stirling’s approximation. Dividing a factor
of kn and exponentiating both sides shows that the inequality

310 T. Gordon

(β + n)2c+
Δ
knn

1
k

n
≥ n

or equivalently,

β ≥ n2− 1
n

2c+
Δ
kn

− n

holds with probability at least 1− 2−Δ. ��

References
1. Aggarwal, A., Klawe, M., Shor, P.: Multilayer grid embeddings for VLSI. Algorith-

mica 6(1), 129–151 (1991)
2. Badent, M., Di Giacomo, E., Liotta, G.: Drawing colored graphs on colored points.

In: Algorithms and Data Structures, pp. 102–113 (2007)
3. Bernhart, F., Kainen, P.: The book thickness of a graph. Journal of Combinatorial

Theory, Series B 27(3), 320–331 (1979)
4. Biedl, T., Kant, G., Kaufmann, M.: On triangulating planar graphs under the

four-connectivity constraint. Algorithmica 19(4), 427–446 (1997)
5. Biggs, N., Lloyd, E., Wilson, R.: Graph Theory, 1736–1936. Clarendon Press (1986)
6. Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov,

S.G., Lubiw, A., Mitchell, J.S.B.: On Simultaneous Planar Graph Embeddings. In:
Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 243–255.
Springer, Heidelberg (2003)

7. Brightwell, G.: Random k-dimensional orders: Width and number of linear exten-
sions. Order 9(4), 333–342 (1992)

8. Chiba, N., Nishizeki, T.: The Hamiltonian cycle problem is linear-time solvable for
4-connected planar graphs. J. Algorithms 10(2), 187–211 (1989)

9. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall PTR, Upper Saddle River (1998)

10. Erten, C., Kobourov, S.G.: Simultaneous Embedding of Planar Graphs with Few
Bends. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 195–205. Springer, Hei-
delberg (2005)

11. Fáry, I.: On straight-line representation of planar graphs. Acta Sci. Math.
(Szeged) 11, 229–233 (1948)

12. Gordon, T.: Simultaneous embeddings with vertices mapping to pre-specified
points. Arxiv preprint (2012)

13. Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for
planar graphs. J. Graph Algorithms Appl. 6(1), 115–129 (2002)

14. Mead, C., Conway, L.: Introduction to VLSI Systems. Addison-Wesley Longman
Publishing Co., Inc., Boston (1979)

15. Pach, J., Wenger, R.: Embedding Planar Graphs at Fixed Vertex Locations. In:
Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 263–274. Springer, Heidel-
berg (1999)

16. Schnyder, W.: Embedding planar graphs on the grid. In: SODA 1990: Proceedings
of the First Annual ACM-SIAM Symposium on Discrete Algorithms, Society for
Industrial and Applied Mathematics, Philadelphia, pp. 138–148 (1990)

17. Stein, S.K.: Convex maps. In: Proceedings of the American Mathematical Society,
pp. 464–466 (1951)

18. Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. 13, 743–768 (1963)
19. Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresbericht. German. Math.-

Verein. 46, 26–32 (1936)

Multilevel Drawings of Clustered Graphs

Fabrizio Frati

School of Information Technologies – The University of Sydney
brillo@it.usyd.edu.au

Abstract. The cluster adjacency graph of a flat clustered graph C(G,T) is the
graph A whose vertices are the clusters in T and whose edges connect clusters
containing vertices that are adjacent in G. A multilevel drawing of a clustered
graph C consists of a straight-line c-planar drawing of C in which the clusters
are drawn as convex regions and of a straight-line planar drawing of A such that
each vertex a ∈ A is drawn in the cluster corresponding to a and such that no
edge (a1, a2) ∈ A intersects any cluster different from a1 and a2. In this paper,
we show that every c-planar flat clustered graph admits a multilevel drawing.

1 Introduction

A clustered graph is a pair C(G, T), where G is a graph, called underlying graph,
and T is a rooted tree, called inclusion tree, whose leaves are the vertices of G. Each
internal node ν of T corresponds to the subset of vertices of G, called cluster, that are
the leaves of the subtree of T rooted at ν. Throughout the paper, we assume that each
path from the root of T to any leaf has the same number of edges, which is denoted by
h(T). We call level of a cluster μ the minimum number of edges in a path in T from
μ to a leaf. Given a clustered graph C(G, T), the cluster adjacency graph at level i is
the graph Ai whose vertices are the clusters at level i and having an edge between two
clusters μ and ν if any vertex in μ and any vertex in ν are connected by an edge ofG. A
clustered graph is flat if the height of T is at most two, i.e., no cluster different from the
root contains other clusters. In a flat clustered graph C(G, T), we say that the cluster
of a vertex v of G is its parent in T and we denote it by μ(v), we call clusters only the
children of the root, and we call adjacency graph A the adjacency graph at level one.

Clustered graphs find applications in several areas of computer science and hence
they have been widely studied from a theoretical point of view. Several methods have
been developed to compute a good clustering for a given graph G, that is, for con-
structing a (usually flat) clustered graph that has G as underlying graph and that has
high edge density inside each cluster and few edges connecting vertices belonging to
different clusters. See [13] for a survey on graph clustering. From a graph drawing
perspective, the clustering is given as part of the problem’s input, and the goal is to
visualize the clustered graph in a readable way.

Clustered planarity (c-planarity for short) is a concept, introduced in [9], that gen-
eralizes planarity to clustered graphs and that has been recognized as the standard for
readability of clustered graph drawings. A drawing of a clustered graph represents each
cluster as a closed region of the plane containing all the vertices of the cluster; a draw-
ing is c-planar if it contains no edge crossings (i.e., the drawing of the underlying graph

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 311–322, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

312 F. Frati

is planar), no edge-region crossings (i.e., no edge intersects the border of a cluster more
than once), and no region-region crossings (i.e., each two regions representing clusters
are disjoint). A graph is c-planar if it admits a c-planar drawing. Designing an algorithm
to test whether a clustered graph is c-planar (or prove that no efficient algorithm exists)
is one of the most studied graph drawing problems. See [3,10] for two recent papers
on this topic. Assuming that a clustered graph C is c-planar, algorithms and bounds
are known for constructing c-planar drawings of C [2,6,7,12]. A particular attention
has been devoted to straight-line convex drawings, that are c-planar drawings requiring
edges to be straight-line segments and clusters to be convex regions. Every c-planar
graph admits a straight-line convex drawing [5], even if the shape of each cluster is
fixed in advance [1]. Straight-line convex drawings might require exponential area [8].

A multilevel drawing of a clustered graph C(G, T) is a three-dimensional represen-
tation of C consisting of a straight-line convex drawing of C in the plane z = 0, of
a planar drawing of the adjacency graph Ai at level i on the plane z = i, and of a
straight-line planar drawing of T such that clusters at level i appear on the plane z = i.
Multilevel drawings were introduced in [4], where it is shown how to obtain such rep-
resentations by first computing a straight-line convex drawing of C in the plane z = 0,
and by then vertically translating each cluster μ at level i to the plane z = i. The in-
clusion tree is visualized by choosing a point inside each cluster μ at level i and by
connecting such a point to the points chosen for all the clusters at level i− 1 (if i > 1)
or to all the vertices that belong to μ (if i = 1). The adjacency among two clusters μ
and ν at level i is represented by choosing any edge that connects a vertex in μ and a
vertex in ν and by translating it to the plane z = i. The c-planarity of the drawing of
C implies the planarity of the drawing of T and the planarity of the drawing of Ai. See
Fig. 1(a) for an example of multilevel drawing.

In this paper we consider multilevel drawings in which the adjacency graph at level
i is represented by a straight-line planar drawing. That is, for each i ≥ 1, a cluster μ
at level i is a point in the plane z = i lying inside the region obtained by vertically
translating cluster μ from the plane z = 0 to the plane z = i. We require the drawing
of graph Ai to be straight-line and planar, and we require each edge (a, b) of Ai not
to intersect the region obtained by vertically translating the cluster ρ from the plane
z = 0 to the plane z = i, for each cluster ρ not containing a nor b. See Fig. 1(b) for
an example of such a drawing. Observe that in our setting each cluster is represented in

(a) (b)

Fig. 1. (a) A multilevel drawing, as in [4]. (b) A multilevel drawing, as in this paper.

Multilevel Drawings of Clustered Graphs 313

μ

ρ τ

ν

Fig. 2. A convex straight-line drawing Γ of a flat clustered graph such that, in every straight-line
drawing of the cluster adjacency graph A, an edge of A intersects the border of a cluster twice

the drawing of Ai by a point in the plane z = i, while in the setting studied in [4], each
cluster is represented in the drawing of Ai by a convex region in the plane z = i. We
now formally define the multilevel drawings considered in this paper.

Definition 1. A multilevel drawing of a clustered graph C(G, T) consists of a convex
straight-line drawing Γ of C and, for each 1 ≤ i ≤ h(T), of a straight-line planar
drawing Γ (Ai) of Ai, such that: (1) the point ai(μ) representing a cluster μ in Γ (Ai)
is inside the region representing μ in Γ , for each 1 ≤ i ≤ h(T); and (2) each edge
(ai(μ), ai(ν)) in Γ (Ai) does not intersect the border of any cluster ρ different from μ
and ν.

Our main result is the following:

Theorem 1. Every c-planar flat clustered graph admits a multilevel drawing.

Not every convex straight-line drawing of a flat clustered graph allows for representing
the adjacency graphA as required in Definition 1. Figure 2 shows a convex straight-line
drawing such that, in any straight-line drawing of A, either the edge (a(μ), a(ρ)) or the
edge (a(μ), a(τ)) of A intersects the border of cluster ν, where a(α) denotes the vertex
representing cluster α in A.

2 The Main Theorem

In this section we state our main theorem, which directly implies Theorem 1. First, it
suffices to restrict the attention to maximal c-planar flat clustered graphs, that is, to c-
planar flat clustered graphs C(G, T) such that G is a maximal planar graph. Indeed, if
C is not maximal, then it can be augmented to a maximal clustered graph C′ by adding
dummy edges without loosing c-planarity [11]. Then, a multilevel drawing of C′ can be
constructed and the inserted dummy edges can be deleted thus obtaining a multilevel
drawing ofC. In the following, all the considered clustered graphs are flat and maximal,
even when not explicitly stated. We will assume that each clustered graph C(G, T) is
associated with a c-planar embedding that determines the faces ofG. Moreover, we will
denote a clustered graph also by C(G, T,A), where A is the cluster adjacency graph
of C(G, T). The outer face of C(G, T,A) is the clustered graph Co(Go, To, Ao) such
that Go is the cycle delimiting the outer face of G, To is T restricted to the clusters that
contain vertices of Go, and Ao is the cluster adjacency graph of Co(Go, To).

314 F. Frati

u R(u)

v

z

a(u)

a(v)

a(z)

R(u, v)

R(z, u)

R(v, z)

μ(u)

μ(v)

μ(z)R(v)

R(z)

Fig. 3. Extension regions for a face f = (u, v, z), if μ(u), μ(v), and μ(z) are distinct. The darker
regions inside R(u, v), R(v, z), R(z, u), and R(u)∪R(v)∪R(z) are S(u, v), S(v, z), S(z, u),
and S(u, v, z), respectively.

We introduce some geometric concepts. We denote by CH(p,R) the convex hull of
a convex region R and a point p, and by R1 ∪ R2 the union of two convex regions R1

and R2. Given a triangle (u, v, z), we define a side region S(u, v) as a convex region
that intersects uv in exactly one point and whose every other point is internal to (u, v, z)
and a central region S(u, v, z) as a convex region entirely internal to (u, v, z). Side and
central regions are used to define extension regions. In the inductive algorithm we will
present in the next section, extension regions are associated to a multilevel drawing
Γ ′ of a subgraph C′(G′, T ′, A′) of the clustered graph C(G, T,A) to be drawn; in
the drawing Γ of C(G, T,A) constructed by the algorithm, the edges of A not in A′

are entirely contained inside the extension regions associated with Γ ′. The geometric
properties of the extension regions detailed in the next definition ensure that the edges
of A not in A′ do not cross edges of A′ or clusters of T ′.

Definition 2. Consider a multilevel drawing Γ of a flat clustered graph C(G, T,A).
Let f = (u, v, z) be a face of G, where vertices u, v, and z appear in this clockwise
order around f . The extension regions for f are defined as follows (see Fig. 3).

– If μ(u), μ(v), and μ(z) are all distinct, then let S(u, v, z) be a central region and
S(u, v), S(v, z), and S(z, u) be side regions inside (u, v, z) such that:
• CH(u, S(u, v, z)),CH(u, S(u, v)), andCH(u, S(z, u)) do not intersect each

other and do not intersect any region representing a cluster, except for μ(u);
• CH(v, S(u, v, z)), CH(v, S(u, v)), andCH(v, S(v, z)) do not intersect each

other and do not intersect any region representing a cluster, except for μ(v);
• CH(z, S(u, v, z)), CH(z, S(v, z)), andCH(z, S(z, u)) do not intersect each

other and do not intersect any region representing a cluster, except for μ(z);
• for every point p ∈ S(u, v, z), segments pa(u), pa(v), and pa(z) are in this

clockwise order around p.
Then, the extension regions for f are:
1. R(u, v) = CH(a(u), S(u, v)) ∪CH(a(v), S(u, v));
2. R(v, z) = CH(a(v), S(v, z)) ∪ CH(a(z), S(v, z));
3. R(z, u) = CH(a(z), S(z, u)) ∪ CH(a(u), S(z, u));
4. R(u) = CH(a(u), S(u, v, z));

Multilevel Drawings of Clustered Graphs 315

5. R(v) = CH(a(v), S(u, v, z)); and
6. R(z) = CH(a(z), S(u, v, z)).

– If μ(u) = μ(v) 	= μ(z), then let S(v, z) and S(z, u) be side regions inside (u, v, z)
such that:
• CH(v, S(v, z)) and CH(u, S(z, u)) do not intersect each other and do not

intersect any region representing a cluster, except for μ(u);
• CH(z, S(v, z)) and CH(z, S(z, u)) do not intersect each other and do not

intersect any region representing a cluster, except for μ(z).
Then, the extension regions for f are:

1. R(v, z) = CH(a(u), S(v, z)) ∪ CH(a(z), S(v, z)); and
2. R(z, u) = CH(a(u), S(z, u)) ∪CH(a(z), S(z, u)).

– If μ(u) = μ(v) = μ(z), then f has no extension regions.

The next definition deals with the relationship between extensible regions, edges of A,
and clusters in T in a multilevel drawing of a clustered graph C(G, T,A). The kind of
drawings defined in the following are used throughout the remainder of the paper.

Definition 3. A multilevel drawing of a flat clustered graphC(G, T,A) is called exten-
sible if, for each face f of G, extension regions for f can be drawn so that (see Fig. 4):
(1) for each face f of G, no extension region for f intersects an edge of A, except on
its border; (2) for each two faces f1 and f2 of G, where f1 	= f2, no extension region
for f1 intersects an extension region for f2, except on its border; (3) for each face f of
G, no two distinct extension regions for f intersect, except on their borders, unless they
both comprise a central region S(u, v, z); (4) each extension region R(u, v) for a face
f of G does not intersect any cluster other than μ(u) and μ(v); and (5) each extension
region R(u) for a face f of G does not intersect any cluster other than μ(u).

The algorithm presented in the next section constructs an extensible drawing of a clus-
tered graph for an arbitrary extensible drawing of the outer face. Thus, we define the
concept of completing a drawing of the outer face.

Definition 4. An extensible drawing Γ of a flat clustered graph C(G, T,A) completes
an extensible drawing Γo of the outer face Co(Go, To, Ao) of C if Γ coincides with Γo

when restricted to the vertices and edges ofGo, to the clusters in To, and to the vertices
and edges of Ao, if all the vertices and edges of A/Ao lie in the extension regions of Γo,
and if all the extension regions of Γ lie inside the extension regions of Γo.

We are now ready to state our main theorem.

Theorem 2. Let C be a flat clustered graph. Then, for every extensible drawing Γo of
the outer face Co of C, there exists an extensible drawing Γ of C that completes Γo.

Observe that Theorem 2 implies Theorem 1, since an extensible drawing is a multilevel
drawing. In the following two sections, we will prove a statement which is even stronger
than the one in Theorem 2, namely that for every extensible drawingΓo of the outer face
Co ofC, there exists an extensible drawingΓ ofC that completesΓo, even if we assume
that each cluster has to be represented by an arbitrary convex shape and if each vertex of

316 F. Frati

Fig. 4. An extensible drawing of a flat clustered graph C(G,T, A). Vertices of G are black dots
and edges of G are thick lines. The borders of the clusters are dashed lines. Vertices of A are
white disks and edges of A are thin lines. The extension regions are gray.

A has to be mapped to the same point to which one of the vertices of the corresponding
cluster is mapped to. However, both such conditions are not necessary for our inductive
proof to work, hence we omitted them from the statement and we invite the reader to
observe how the drawings we construct in the next two sections actually satisfy such
conditions.

3 Base Cases

Our proof of Theorem 2 is by induction on the number of vertices. In this section we
present the three base cases of such an induction. In Section 4 we will present the
inductive cases. Denote by u, v, and z the vertices ofGo, where we assume w.l.o.g. that
u, v, and z appear in this clockwise order along the outer face of G.

Base Case 1: G has no internal vertices. In this case, C = Co and the given exten-
sible drawing Γo of Co is an extensible drawing Γ of C that completes Γo.

Base Case 2: G is K4 and the only internal vertex x of G is such that μ(x) does not
contain any vertex of Go. Refer to Fig. 5. Select any point p inside S(u, v, z) (if μ(u),
μ(v), and μ(z) are all different), or inside S(v, z) (if μ(u) = μ(v) 	= μ(z)). The cases
in which μ(u) = μ(z) 	= μ(v) or μ(v) = μ(z) 	= μ(u) can be treated analogously to
the case in which μ(u) = μ(v) 	= μ(z). Draw x at point p and draw a(x) at point p.
Connect x with u, v, and z, and connect a(x) with a(u), a(v), and a(z) (a(u) = a(v)
if μ(u) = μ(v)).

Next, we draw suitable extension regions. Denote by f1 = (u, v, x), f2 = (v, z, x),
and f3 = (z, u, x) the three internal faces of G.

First, suppose that μ(u), μ(v), and μ(z) are all different. The extension regions
R(u, v), R(v, z), and R(z, u), for f1, f2, and f3, respectively, have the same draw-
ing as in Γo. Suppose that a(v) is to the left of the half-line starting at x and passing

Multilevel Drawings of Clustered Graphs 317

u

v

z

a(u)

a(v)

a(z)

μ(v)

μ(z)

μ(u)
u

v

z

a(u) a(z)

μ(z)

μ(u)

(a) (b)

Fig. 5. Base Case 2, if (a) μ(u), μ(v), and μ(z) are all different, or if (b) μ(u) = μ(v) �= μ(z)

through v. The case in which a(v) is to the right of the half-line starting at x and pass-
ing through v is analogous. Then, side region S(v, x) for f1 is drawn as a small region
inside S(u, v, z) touching (v, x) in a point p very close to x and side region S(v, x) for
f2 is drawn as a small region inside S(u, v, z) touching (v, x) in a point q very close
to x such that q is farther from x than p. Observe that this implies that the extension
regions R(v, x) for f1 and R(v, x) for f2 do not intersect. Extension regions R(x, u)
for f1,R(x, u) for f3,R(z, x) for f2, andR(z, x) for f3 are drawn analogously. Central
region S(u, v, x) is also drawn as a small region inside S(u, v, z); consider a point p
such that p lies in the interior of S(u, v, z), p lies inside f1, and segments pa(u), pa(v),
and pa(x) do not intersect any of the extension regions R(v, x) and R(x, u) for f1.
Observe that such a point always exists provided that side regions S(v, x) and S(x, u)
for f1 are small enough and sufficiently close to x. Then, S(u, v, x) is any small convex
region surrounding p. Such a construction implies that extension regions R(u), R(v),
and R(x) do not intersect extension regions R(v, x) and R(x, u) for f1. Extension re-
gions R(v), R(z), and R(x) for f2 and R(z), R(u), and R(x) for f3 are constructed
analogously.

Second, suppose that μ(u) = μ(v) 	= μ(z). Extension region R(v, z) for f2 has the
same drawing as in Γo. The construction of all other extension regions is the same as
in the case in which μ(u), μ(v), and μ(z) are all different, with the only difference that
the side and central regions that define the extension regions for f1, f2, and f3 all lie
inside the side region S(z, u) (rather than inside the central region S(u, v, z), which in
this case does not exist) that defines the extension regionR(z, u) in the given extensible
drawing Γo of Co.

Observe that μ(u) = μ(v) = μ(z) can not happen, provided that μ(x) does not
contain any vertex of Go and that the embedding of C is c-planar.

It remains to draw cluster μ(x). Such a cluster is drawn as an arbitrary small region
surrounding x. Denote by Γ the resulting drawing.

Lemma 1. Γ is an extensible drawing of C completing Γo.

318 F. Frati

Base Case 3: G contains more than one internal vertex, does not contain any sepa-
rating triangle, and does not contain any internal vertex u that is adjacent to a vertex v
with μ(u) = μ(v).

Note that if u, v, and z and their incident edges are removed from G, the resulting
graph G′ is biconnected. Indeed, such a graph is connected because G is
maximal and Go is a cycle of three vertices. If G′ is an edge (a, b), then, by the
maximality of G, each of a and b is connected to the same two vertices of Go, say
u and v. Hence, either (u, v, a) or (u, v, b) is a separating triangle. If G′ is not bicon-
nected and has more than two vertices, then it contains a cut-vertex c. By the maxi-
mality of G, there exist two vertices of Go, say u and v, that are both connected to
c. Then, (u, v, c) is a separating triangle. It follows that G′ is biconnected. Denote by
C′ = (uz, u1, u2, . . . , uU , uv, v1, v2, . . . , vV , vz, z1, z2, . . . , zZ) the cycle delimiting
the outer face of G′, where vertices uz, u1, u2, . . . , uU , uv, vertices uv, v1, v2, . . . , vV ,
vz, and vertices vz, z1, z2, . . . , zZ , uz are neighbors of u, v, and z, respectively.

First, we draw C′. Suppose that μ(u), μ(v), and μ(z) are distinct. Consider any point
p in S(u, v, z). Consider the wedge Wu with an angle smaller than 180◦ and delimited
by the half-lines lu and la(u) centered at p and passing through u and a(u), respectively.
Suppose, w.l.o.g. up to a reflection of the drawing, that the clockwise rotation around
p bringing lu to coincide with la(u) is smaller than 180◦. Let l+ε (resp. l−ε) be the half-
line starting at p obtained by clockwise rotating la(u) by ε degrees (resp. by counter-
clockwise rotating lu by ε degrees), for some arbitrarily small ε > 0. Choose points
puv on l+ε and puz on l−ε arbitrarily close to p in such a way that segment puvpuz
crosses both segment pu and segment pa(u). Draw C′ as a strictly-convex polygon
such that uv is in puv , uz is in puz , vz is in p, the slopes of the edges of C′ incident
to ui, for each 1 ≤ i ≤ U (resp. to vi, for each 1 ≤ i ≤ V , resp. to zi, for each
1 ≤ i ≤ Z), are arbitrarily close to the one of segment puvpuz (resp. puvp, resp. puzp).
Next, suppose that μ(u) = μ(v) 	= μ(z) (the cases in which μ(u) = μ(z) 	= μ(v)
and μ(v) = μ(z) 	= μ(u) can be treated analogously). Consider any point p in S(z, u).
Consider any arbitrarily small segment pupv parallel to edge (u, v) and containing p.
Draw C′ as a strictly-convex polygon arbitrarily close to pupv such that the slope of
every edge in C′ is arbitrarily close to the one of pupv, such that uz is mapped to pu,
and such that vz is mapped to pv. Denote by ΓC′ the resulting drawing.

Second, we draw the vertices of G′ not in C′. Since ΓC′ is strictly-convex, a drawing
ΓG′ ofG′ having ΓC′ as outer face always exists (see, e.g., [14]). Let ΓG be the straight-
line drawing of G obtained by combining ΓG′ and Γo.

Third, we draw the vertices of A different from a(u), a(v), and a(z). Observe that,
for any vertex x of G′, there exists no vertex y in G such that μ(x) = μ(y), by assump-
tion and since every vertex of G′ is an internal vertex of G. For each vertex x of G′,
draw a(x) at the same point where x is drawn in ΓG.

Fourth, we draw extension regions for the faces of G. Refer to Fig. 6. For each face
f = (x, y, t) of G such that {x, y, t}∩ {u, v, z} = ∅, side region S(x, y) (resp. S(y, t),
resp. S(t, x)) for f is drawn as an arbitrarily small region inside f touching (x, y) (resp.
(y, t), resp. (t, x)); central region S(x, y, t) is drawn as follows: Consider a point p such
that p lies inside f and segments px, py, and pt do not intersect any of the extension
regionsR(x, y), R(y, t), andR(t, x) for f ; such a point always exists provided that side

Multilevel Drawings of Clustered Graphs 319

u

v

z

a(u)

a(v)

a(z)

μ(v)

μ(z)

μ(u)

Fig. 6. Base Case 3, if μ(u), μ(v), and μ(z) are all different

regions S(x, y), S(y, t), and S(t, x) are small enough; then, S(x, y, t) is any arbitrary
small convex region surrounding p. Next, we draw extension regions for the faces inci-
dent to u, v, and z. Consider any vertex x in C′ adjacent to exactly one of u, v, and z, say
to u. Let y and y′ be the neighbors of x in C′, where y, x, and y′ appear in this clockwise
order in C′. Draw side regions S(x, y) and S(y′, x) for faces (x, y, u) and (x, u, y′)
as arbitrarily small regions inside S(u, v, z) (inside S(z, u) if μ(u) = μ(v)), inside
(x, y, u) and (x, u, y′), respectively, and touching (x, y) and (y′, x), respectively. Sup-
pose that a(u) is to the left of the half-line starting at x and passing through u, the case
in which it is to the right being analogous. Then, side region S(u, x) for face (x, y, u)
is drawn as a small region inside S(u, v, z) (inside S(z, u) if μ(u) = μ(v)), inside
(x, y, u), and touching (u, x) in a point p very close to x. Side region S(u, x) for face
(x, u, y′) is drawn as a small region inside S(u, v, z) (inside S(z, u) if μ(u) = μ(v)),
inside (x, u, y′), and touching (u, x) in a point q very close to x such that q is farther
from x than p. Observe that this implies that extension regionsR(u, x) for (x, y, u) and
R(u, x) for (x, u, y′) do not intersect. Extension regions R(y, u) for (x, y, u), R(y, u)
for the other face of G incident to edge (y, u), R(u, y′) for (x, u, y′), and R(u, y′)
for the other face of G incident to edge (u, y′) are drawn analogously. Central region
S(x, y, u) for (x, y, u) is drawn as follows: Consider a point p that lies inside S(u, v, z)
(inside S(z, u) if μ(u) = μ(v)), inside (x, y, u), and such that segments pa(u), pa(x),
and pa(y) do not intersect any of the extension regions R(x, y), R(y, u), and R(u, x)
for (x, y, u). Such a point always exists provided that side regions S(x, y), S(y, u), and
S(u, x) for (x, y, u) are small enough. Then, S(u, v, x) is any arbitrarily small convex
region surrounding p. Finally, we draw extension regions for the faces incident to two
vertices out of u, v, and z as follows. Consider face (u, v, x). Extension regionsR(x, u)
and R(x, v) have been already drawn. Observe that, if μ(u) = μ(v), no other region
has to be drawn. Otherwise, extension region R(u, v) has the same drawing as in Γo.
Central region S(u, v, x) is drawn as as follows: Consider a point p such that p lies

320 F. Frati

inside S(u, v, z), inside (u, v, x), and such that segments pa(u), pa(v), and px do not
intersect any of the extension regions R(u, v), R(v, x), and R(x, u) for (u, v, x); such
a point always exists provided that side regions S(v, x) and S(x, u) are small enough;
then, S(u, v, x) is any arbitrary small convex region surrounding p. The extension re-
gions for the face incident to u and z and the extension regions for the face incident to
v and z are drawn analogously.

Fifth, for each vertex x of G, we draw cluster μ(x) as an arbitrarily small convex
region surrounding x. Denote by Γ the resulting drawing.

Lemma 2. Γ is an extensible drawing of C completing Γo.

4 Inductive Cases

In this section we present the inductive cases for the proof of Theorem 2.
Inductive Case 1: G contains a separating triangle. Suppose that G contains a sepa-
rating triangle (u′, v′, z′). Denote by C′

o(G
′
o, T

′
o, A

′
o) the clustered graph such that G′

o

is cycle (u′, v′, z′), T ′
o is the subtree of T whose clusters contain at least one vertex

of G′
o, and A′

o is the adjacency graph of C′
o(G

′
o, T

′
o). Let C1(G1, T 1, A1) be the max-

imal flat clustered graph defined as follows. G1 is the subgraph of G induced by all
the vertices external to (u′, v′, z′), by u′, by v′, and by z′; T 1 is the subtree of T whose
clusters contain at least one vertex ofG1; andA1 is the adjacency graph ofC1(G1, T 1).
Observe that Co and C1

o are the same graph. Further, let C2(G2, T 2) be the clustered
graph defined as follows. G2 is the subgraph of G induced by all the vertices internal to
(u′, v′, z′), by u′, by v′, and by z′. T 2 is the subtree of T whose clusters contain at least
one vertex of G2. A2 is the adjacency graph of C2(G2, T 2). Observe that C′

o and C2
o

are the same graph. Since (u′, v′, z′) is a separating 3-cycle, the number of vertices of
each of C1 and C2 is strictly less than the number of vertices of C. Hence, the induc-
tive hypothesis applies and, for an arbitrary extensible drawing Γo of C1

o , there exists
an extensible drawing Γ 1 of C1 completing Γo. Cycle (u′, v′, z′) is a face f of G1. By
definition of extensible drawing, the drawing Γ 2

o of C2
o in Γ 1 is an extensible drawing.

Hence, the inductive hypothesis applies again and an extensible drawing Γ 2 of C2 can
be constructed completing Γ 2

o . Plugging Γ 2 into Γ 1 provides a drawing Γ of C.

Lemma 3. Γ is an extensible drawing of C completing Γo.

Inductive Case 2: G contains an internal vertex u′ that is adjacent to a vertex v′ such
that μ(u′) = μ(v′).

Refer to Fig. 7. Suppose that no separating triangle exists containing edge (u′, v′),
as otherwise Inductive Case 1 would apply. Since G is maximal, u′ and v′ have exactly
two common neighbors z1 and z2, delimiting faces f1 and f2 with u′ and v′. Contract
edge (u′, v′) to a vertex w, that is, replace vertices u′ and v′ with a single vertex w that
is connected to all the vertices u′ and v′ are connected to. Vertex w belongs to cluster
μ(u′). The resulting clustered graph C′(G′, T ′, A′) is easily shown to be maximal, c-
planar, and flat. In particular, the absence of separating triangles in G guarantees that
G′ is simple and maximal. Observe that Co and C′

o are the same graph. Hence, the
inductive hypothesis applies and, for an arbitrary extensible drawing Γo of Co, there

Multilevel Drawings of Clustered Graphs 321

wz1 z2

x1
x2

u
z1 z2v

x1
x2

(a) (b)

Fig. 7. (a) An extensible drawing Γ ′ of C′. (b) The extensible drawing Γ of C obtained from Γ ′.

exists an extensible drawing Γ ′ of C′ completing Γo. Then, consider a small disk D
centered at w and consider any line l fromw to an interior point of the segment between
z1 and z2. Renamew to u′ and insert v′ on l, insideD, so that the order of the neighbors
of u′ in G is the required one. Connect u′ and v′ to their neighbors. It remains to show
how to construct extension regions for the faces of G. The extension regions for each
face not incident to v′ are drawn as in Γ ′. Denote by x1 the common neighbor of v′

and z1 different from u′ and by x2 the common neighbor of v′ and z2 different from
u′. Extension regions R(u′, z1) and R(z1, v′) for face (v′, u′, z1) of G and extension
region R(z1, v′) for face (v′, z1, x1) of G are drawn as subsets of the extension region
R(w, z1) for the face (w, z1, x1) of G′. Extension regions R(v′, z2) and R(z2, u′) for
face (v′, u′, z2) of G and extension regionR(v′, z2) for face (v′, z2, x2) of G are drawn
as subsets of the extension region R(w, z2) for the face (w, z2, x2) of G′. For each
neighbor x of v′ different from z1, z2, and u′, extension regions R(v′, x) for the two
faces incident to edge (v′, x) inG are drawn as a subset of the extension regionR(w, x)
for one of the two faces incident to edge (w, x) in G′. All of the previously described
extension regions for the faces of G can in fact be drawn inside the corresponding
extension regions for the faces ofG′ provided that v′ is close enough to u′, so that edge
(v′, x) cuts one of the two side regions S(w, x) touching edge (w, x). All the other
extension regions for the faces incident to v′ are drawn as the corresponding extension
regions for the corresponding faces incident tow. All the extension regions for the faces
not incident to u′ and v′ are drawn as in Γ ′.

Lemma 4. Γ is an extensible drawing of C completing Γo.

It remains to prove that, if no inductive case applies, then we are in a base case.
Suppose that none of the inductive cases applies. If G does not contain internal ver-

tices, then we are in Base Case 1. IfG contains exactly one internal vertex, such a vertex
can not be adjacent to any vertex of the outer face of G, as otherwise Inductive Case 2
would apply, hence we are in Base Case 2. If G contains more than one internal vertex,
then observe that, since Inductive Case 1 and Inductive Case 2 do not apply, we are in
Base Case 3. This concludes the proof of Theorem 2.

322 F. Frati

5 Conclusions

In this paper we have proved that every flat c-planar clustered graph admits a multilevel
drawing. The algorithm we described constructs drawings requiring exponential area
if a finite resolution rule is assumed to hold. However, this drawback is unavoidable,
since there exist (flat) clustered graphs requiring exponential area in any straight-line
drawing in which clusters are represented by convex regions [8]. It is an obvious open
problem to extend our results to general c-planar clustered graphs. We suspect that our
drawing techniques, together with some techniques to decompose non-flat clustered
graphs into smaller non-flat clustered graphs presented in [1], might lead to a solution
of the problem. However, we defer such an intuition to future research.

Acknowledgments. Thanks to Peter Eades for posing the problem studied in this paper
and for useful discussions about it.

References

1. Angelini, P., Frati, F., Kaufmann, M.: Straight-line rectangular drawings of clustered graphs.
Discrete & Computational Geometry 45(1), 88–140 (2011)

2. Di Battista, G., Drovandi, G., Frati, F.: How to draw a clustered tree. J. Discrete Algo-
rithms 7(4), 479–499 (2009)

3. Di Battista, G., Frati, F.: Efficient c-planarity testing for embedded flat clustered graphs with
small faces. J. Graph Alg. Appl. 13(3), 349–378 (2009)

4. Eades, P., Feng, Q.: Multilevel Visualization of Clustered Graphs. In: DiBattista, G. (ed.) GD
1997. LNCS, vol. 1353, pp. 101–112. Springer, Heidelberg (1997)

5. Eades, P., Feng, Q., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for hierarchical
graphs and clustered graphs. Algorithmica 44(1), 1–32 (2006)

6. Eades, P., Feng, Q., Nagamochi, H.: Drawing clustered graphs on an orthogonal grid. J.
Graph Alg. Appl. 3(4), 3–29 (1999)

7. Feng, Q.: Algorithms for drawing clustered graphs. Ph. D. thesis. The University of Newcas-
tle, Australia (1997)

8. Feng, Q., Cohen, R.F., Eades, P.: How to Draw a Planar Clustered Graph. In: Li, M., Du,
D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 21–30. Springer, Heidelberg (1995)

9. Feng, Q., Cohen, R.F., Eades, P.: Planarity for Clustered Graphs. In: Spirakis, P.G. (ed.) ESA
1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)

10. Jelı́nková, E., Kára, J., Kratochvı́l, J., Pergel, M., Suchý, O., Vyskocil, T.: Clustered pla-
narity: Small clusters in cycles and Eulerian graphs. J. Graph Alg. Appl. 13(3), 379–422
(2009)

11. Jünger, M., Leipert, S., Percan, M.: Triangulating clustered graphs. Technical report. Zen-
trum für Angewandte Informatik Köln (2002)

12. Nagamochi, H., Kuroya, K.: Drawing c-planar biconnected clustered graphs. Discr. Appl.
Math. 155(9), 1155–1174 (2007)

13. Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)
14. Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. 13(52), 743–768 (1963)

Outerplanar Graph Drawings with Few Slopes

Kolja Knauer1,�, Piotr Micek2,��, and Bartosz Walczak2,��

1 Institut für Mathematik, Technische Universität Berlin
knauer@math.tu-berlin.de

2 Theoretical Computer Science Department,
Faculty of Mathematics and Computer Science, Jagiellonian University

{micek,walczak}@tcs.uj.edu.pl

Abstract. We consider straight-line outerplanar drawings of outerpla-
nar graphs in which the segments representing edges are parallel to a
small number of directions. We prove that Δ − 1 directions suffice for
every outerplanar graph with maximum degree Δ � 4. This improves the
previous bound of O(Δ5), which was shown for planar partial 3-trees, a
superclass of outerplanar graphs. The bound is tight: for every Δ � 4
there is an outerplanar graph of maximum degree Δ which requires at
least Δ− 1 distinct edge slopes for an outerplanar straight-line drawing.

1 Introduction

A straight-line drawing of a graphG is a mapping of the vertices ofG into distinct
points in the plane and of the edges of G into straight-line segments connecting
the points representing their end-vertices and passing through no other points
representing vertices. If it leads to no confusion, in notation and terminology, we
make no distinction between a vertex and the corresponding point, and between
an edge and the corresponding segment. The slope of an edge in a straight-line
drawing is the family of all straight lines parallel to the segment representing
this edge. The slope number of a graph G, introduced by Wade and Chu [1], is
the smallest number s such that there is a straight-line drawing of G using s
slopes.

Since at most two edges at each vertex can use the same slope, �Δ
2 is a lower

bound for the slope number of a graph with maximum degree Δ. In general,
graphs with maximum degree Δ � 5 may have arbitrarily large slope number,
see [2,3]. If the maximum degree of a graph is at most 3 then the slope number is
at most 4 as shown by Mukkamala and Szegedy [4], improving a result of Keszegh
et al. [5]. The question whether the slope number of graphs with maximum degree
4 is bounded by a constant remains open.

The situation is different for planar straight-line drawings, that is, straight-
line drawings in which no two distinct edges intersect in a point other than a

� Supported by DFG grant FE-340/8-1 as part of ESF EuroGIGA project GraDR.
�� Supported by MNiSW grant 884/N-ESF-EuroGIGA/10/2011/0 as part of ESF

EuroGIGA project GraDR.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 323–334, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

324 K. Knauer, P. Micek, and B. Walczak

common endpoint. It is well known that every planar graph admits a planar
straight-line drawing [6,7,8]. The planar slope number of a planar graph G is the
smallest number s such that there is a planar straight-line drawing of G using
s slopes. Keszegh et al. [9] show that the planar slope number is bounded by
a function of maximum degree. Their bound is exponential and their proof is
non-constructive. Jeĺınek et al. [10] give an upper bound for the planar slope
number of planar graphs of treewidth at most 3, which is O(Δ5).

In the present paper we consider drawings of outerplanar graphs. As outerpla-
nar graphs have treewidth at most 2, they admit planar drawings with O(Δ5)
slopes. A straight-line drawing of a graph G is outerplanar if it is planar and
all vertices of G lie on the outer face. The outerplanar slope number of an out-
erplanar graph G is the smallest number s such that there is an outerplanar
straight-line drawing of G using s slopes. Dujmović et al. [11] consider the out-
erplanar slope number as a function of the number of vertices. We provide a
tight bound for the outerplanar slope number in terms of the maximum degree.

Main Theorem. The outerplanar slope number of every outerplanar graph with
maximum degree Δ � 4 is at most Δ− 1.

It is easy to see, that the tightness of this bound is witnessed by a cycle with at
least 2Δ− 3 vertices, where to each vertex we attach Δ− 2 leaves.

Note that the tight bounds for the outerplanar slope number with respect to
the maximum degree Δ are: 1 for Δ = 1 and 3 for Δ ∈ {2, 3}. The latter bound
from above is implied by our theorem.

The proof of our theorem is constructive and yields a linear-time algorithm
to produce drawings of the claimed kind.

2 Basic Definitions

Suppose we are given an outerplanar drawing of a connected graph G with
maximum degree Δ � 4. This drawing determines the cyclic ordering of edges
around every vertex. We produce an outerplanar straight-line drawing of G with
few edge slopes which preserves this ordering at every vertex. Our construction
is inductive: it composes the entire drawing of G from drawings of subgraphs of
G that we call bubbles.

We distinguish the outer face of G (the one that is unbounded in the given
drawing of G and contains all vertices on the boundary) from the inner faces.
The edges on the boundary of the former are outer edges, while all remaining
ones are inner edges. A snip is a simple closed counterclockwise-oriented curve
γ which

– passes through some pair of vertices u and v of G (possibly being the same
vertex) and through no other vertex of G,

– on the way from v to u goes entirely through the outer face of G crossing
no edges on the way,

– on the way from u to v (considered only if u 	= v) goes through inner faces
of G possibly crossing some inner edges of G, each at most once.

Outerplanar Graph Drawings with Few Slopes 325

Every snip γ defines a bubble H in G as the subgraph of G induced on the vertices
lying on or inside γ. Note that H is a connected subgraph of G as γ crosses no
outer edges. The oriented simple path P from u to v in H going counterclockwise
along the boundary of the outer face of H is called the root-path of H . If u = v
then the root-path consists of that single vertex only. The roots of H are the
vertices u and v together with all vertices of H incident to the edges crossed by
γ. Note that vertices of H not being roots cannot have edges to G−H . Note also
that the root-path and the roots of H do not depend on the particular snip γ
used to define H . The order of roots along the root-path gives the root-sequence
of H . A bubble with k roots is called a k-bubble. A special role in our proof is
played by 1- and 2-bubbles.

Bubbles admit a natural decomposition, which is the base of our recursive
drawing.

Lemma 1. Let H be a bubble with root-path v1 . . . vk. Every component of H−
{v1, . . . , vk} is adjacent to either one vertex among v1, . . . , vk or two consecutive
vertices from v1, . . . , vk. Moreover, there is at most one component adjacent to
vi and vi+1 for 1 � i < k.

Proof. Let C be a connected component of H − {v1, . . . , vk}. As H itself is
connected, C must be adjacent to a vertex from v1, . . . , vk. In order to get a
contradiction suppose that C is connected to two non-consecutive vertices vi
and vj . Let P be a simple vi, vj-path having all internal vertices in C. Let
P ′ = vi . . . vj be the subpath of the root-path of H connecting vi and vj . Since
v1 . . . vk is the root-path of H , all edges connecting the internal vertices of P ′

to G −H are inner edges. Hence, also the edges of P ′ lie on inner faces which
are not faces of H . The symmetric difference of all these inner faces considered
as sets of edges is a simple cycle containing P ′ as a subpath. Let P ′′ denote
the other vi, vj-subpath of that cycle. It is internally disjoint from P and P ′.
Moreover, P ′′ and P together enclose P ′ and thus the internal vertices of P ′ do
not lie on the outer face—contradiction.

Now, to prove the second statement, suppose that for some i two components
C and C′ of H − {v1, . . . , vk} are adjacent to both vi and vi+1. We find two
internally disjoint vi, vi+1-paths P and P ′ through C and C′, respectively. As in
the above paragraph we use that vivi+1 is contained in an inner face, which is not
a face of H . The third path P ′′ is obtained from that face by deleting the edge
vi, vi+1. It follows that P, P ′, P ′′ form a subdivision of K2,3, which contradicts
outerplanarity of G. ��

Lemma 1 allows us to assign each component of H − {v1, . . . , vk} to a vertex
of P or an edge of P so that every edge is assigned at most one component.
For a component C assigned to a vertex vi, the graph induced on C ∪ {vi} is
called a v-bubble. If P consists of a single vertex with no component assigned to
it, we consider that vertex alone to be a v-bubble. For a component C assigned
to an edge vivi+1, the graph induced on C ∪ {vi, vi+1} is called an e-bubble.
If no component is assigned to an edge of P then we consider that edge alone
an e-bubble. All v-bubbles of vi in H are naturally ordered by their clockwise

326 K. Knauer, P. Micek, and B. Walczak

H1

H2

H3 H4

H5

H6

H7 H8

H9

u

v

w

P

Fig. 1. A 3-bubble H with root-path P (drawn thick), root-sequence u, v, w (connected
to the remaining graph by dotted edges), and splitting sequence into v- and e-bubbles
(H1, . . . , H9). For example, (H2,H3,H4) is a 2-bubble.

arrangement around vi in the drawing. All this leads to a decomposition of
the bubble H into a sequence (H1, . . . , Hb) of v- and e-bubbles such that the
naturally ordered v-bubbles of v1 precede the e-bubble of v1v2, which precedes
the naturally ordered v-bubbles of v2, and so on. We call this sequence the
splitting sequence of H and write H = (H1, . . . , Hb). Since no single-vertex v-
bubbles occur in the splitting sequence unless H is itself a single-vertex v-bubble
the splitting sequence ofH is unique. Note that v- and e-bubbles are special kinds
of 1- and 2-bubbles, respectively. Every 1-bubble is a bouquet of v-bubbles. The
splitting sequence of a 2-bubble may consist of several v- and e-bubbles. For an
illustration see Fig. 1.

The general structure of the induction in our proof is covered by the following
lemma (see Fig. 2):

Lemma 2.

2.1. Let H be a v-bubble rooted at v. Let v1, . . . , vk be the neighbors of v in H
in clockwise order. Then H − v is a k-bubble with root-sequence v1, . . . , vk.

2.2. Let H be a v-bubble rooted at v0. Let v0 . . . vn be an induced path going from
v0 counterclockwise along the outer face of H and such that v1, . . . , vn−1 are
not cut-vertices in H. Then H − {v0, . . . , vn} has a unique component H ′

adjacent to both v0 and vn. Moreover, let X be the subgraph of H induced
on v0, . . . , vn and the vertices of H ′. Let v10 , . . . , v

k0
0 , v1 be the neighbors of

v0 in X in clockwise order. For 1 � i � n− 1 let vi−1, v
1
i , . . . , v

ki

i , vi+1 be
the neighbors of vi in X in clockwise order. Let vn−1, v

1
n, . . . , v

kn
n be the

neighbors of vn in X in clockwise order. Then H ′ is a bubble with root-

Outerplanar Graph Drawings with Few Slopes 327

Fig. 2. Three ways of obtaining smaller bubbles from v- and e-bubbles. The new root-
path is drawn thick.

sequence v10 , . . . , v
k0
0 , v11 , . . . , v

k1
1 , . . . , v1n, . . . , v

kn
n , where vki

i and v1i+1 may
coincide for 0 � i � n− 1.

2.3. Let H be an e-bubble with roots u, v. Let u1, . . . , uk, v be the neighbors of
u in H in clockwise order and u, v1, . . . , v� be the neighbors of v in H in
clockwise order. Then H − {u, v} is a bubble with root-sequence u1, . . . , uk,
v1, . . . , v�, where uk and v1 may coincide.

Proof. Omitted. ��

3 Bounding Regions

Depending on the maximum degree Δ of G define the set S of Δ − 1 slopes to
consist of the horizontal slope and the slopes of vectors f1, . . . , fΔ−2 where

fi = (− 1
2 + i−1

Δ−3 , 1) for i = 1, . . . , Δ− 2.

An important property of S is that it cuts the horizontal segment L from (− 1
2 , 1)

to (12 , 1) into Δ− 3 segments of equal length 1
Δ−3 . We construct an outerplanar

straight-line drawing of G using only slopes from S and preserving the given
cyclic ordering of edges at each vertex of G.

The essential tool in proving that our construction does not make bubbles
overlap are bounding regions. Their role is to bound the space of the plane
occupied by bubbles. The bounding region for a bubble is parametrized by 	 and
r which depend on the degrees of the roots in the bubble. Let v be a point in
the plane. For a vector x let R(v;x) = {v + αx : α � 0}. We define LB(v;)
to be the set consisting of v and all points p with py � vy. If 	 > 0 then we
furthermore require that

– p lies on R(v; f1) or to the right of it if 	 = 1,
– px > vx if Δ = 4 and 	 = 2,

328 K. Knauer, P. Micek, and B. Walczak

� = 0

� = 1 2 3 4 5

v

Fig. 3. Boundaries of LB(v; �) for Δ = 6. Vectors fi at v are indicated by thick arrows.
Vectors 1

2
f1 at v + fi are indicated by thin arrows. Note that f3 lies on the boundary

of LB(v; 4).

– p lies to the right of R(v; f� +
1

Δ−4 f1) if Δ � 5 and 2 � 	 � Δ− 2,
– p lies to the right of R(v; fΔ−2) if 	 = Δ− 1.

See Fig. 3 for an illustration. Similarly, RB(v; r) consists of v and all points p
with py � vy. If r < Δ− 1 we furthermore require that

– p lies to the left of R(v; f1) if r = 0,
– px < vx if Δ = 4 and r = 1,
– p lies to the left of R(v; fr +

1
Δ−4 fΔ−2) if Δ � 5 and 1 � r � Δ− 3,

– p lies on R(v; fΔ−2) or to the left of it if r = Δ− 2.

Now, for points u, v in the plane such that uy = vy and ux � vx we define
bounding regions as follows:

B(uv; 	, r) = LB(u;) ∩RB(v; r) for 0 � 	, r � Δ− 1,

B̄(uv; 	, r;h) = B(uv; 	, r) ∩ {p : py < uy + h} for 0 � 	, r � Δ− 1 and h > 0.

We denote B(vv; 	, r) simply by B(v; 	, r) and B̄(vv; 	, r;h) simply by B̄(v; 	, r;h).
Note that the bottom border of a bounding region is always included, the left
border (if exists) is included if 	 = 1, the right border (if exists) is included
if r = Δ − 2, and the top border (if exists) is never included. If 	 > r then
B(v; 	, r) = {v}.

We use B(v; 	, r) and B̄(v; 	, r;h) to bound drawings of 1-bubbles H with
root v such that r − 	 + 1 = dH(v). Note that every 1-bubble drawn inside
B(v; 	, r) can be scaled to fit inside B̄(v; 	, r;h) for any h > 0 without changing
slopes. We use B(uv; 	, r) and B̄(uv; 	, r;h) with u 	= v to bound drawings of
2-bubbles H whose root-path starts at u and ends at v, such that 	 = Δ−dH(u)
and r = dH(v) − 1. Here H cannot be scaled if the positions of both u and
v are fixed, so the precise value of h matters. However, every 2-bubble drawn
inside B(uv; 	, r) can be scaled to fit inside B̄(uw; 	, r;h) for any h > 0 without
changing slopes, where w is some point of the horizontal line containing uv.

Outerplanar Graph Drawings with Few Slopes 329

Lemma 3. Bounding regions have the following geometric properties (∗ denotes
any relevant value).

3.1. If u′v′ ⊆ uv, 	′ � 	, and r′ � r then B(u′v′; 	′, r′) ⊆ B(uv; 	, r).

3.2. If i < 	 then a vector at u in direction fi points outside B(uv; 	, ∗) to the
left of it. If i > r then a vector at v in direction fi points outside B(uv; ∗, r)
to the right of it.

3.3. If u, v, w are consecutive points on a horizontal line and 	− 1 � r+1 then
B(uv; ∗, r) ∩ B(vw; 	, ∗) = {v}.

Moreover, the following holds for Δ � 5.

3.4. For l < r, h > 0, u′ = u + hf�, and v′ = v + hfr we have B̄(u′v′; 1, Δ −
2; h

Δ−4) ⊆ B̄(uv; 	, r; Δ−3
Δ−4h).

3.5. If u, v, w are consecutive points on a horizontal line, 	′ � 	, r′ � Δ − 3,
and r � 1 then B̄(uv; 	′, r′; (Δ−3

Δ−4)
2|vw|) ⊆ B(uw; 	, r).

3.6. If u, v, w, x are consecutive points on a horizontal line, |uv| = |wx| � |vw|,
	 � 2, and r � Δ− 3 then B̄(uv; ∗, r; Δ−3

Δ−4 |uv|) ∩ B̄(wx; 	, ∗; Δ−3
Δ−4 |wx|) = ∅.

Proof. Statement 3.1 clearly follows from the definition. Statement 3.2 is implied
by the definition and for Δ � 5 by the fact that

f� +
1

Δ−4 f1 = f�−1 +
1

Δ−4 fΔ−3 for 	 = 2, . . . , Δ− 2,

fr +
1

Δ−4 fΔ−2 = fr+1 +
1

Δ−4 f2 for r = 1, . . . , Δ− 3.

Statement 3.2 directly yields 3.3: the vector at v in direction fr+1 points outside
both B(uv; ∗, r) and B(vw; 	, ∗). To see 3.4 note that the point u′ + α

Δ−4 f1,

which is the top-left corner of B̄(u′v′; 1, Δ− 2; h
Δ−4), equals u+ h(f� +

1
Δ−4 f1).

Hence it lies at the top-left corner of B(uv; 	, r). Similarly, the top-right corner
of B̄(u′v′; 1, Δ− 2; h

Δ−4) lies at the top-right corner of B(uv; 	, r). To prove 3.5
it suffices to consider the case r = 1 and r′ = Δ − 3. The top-right corner of
B̄(uv; 	′, r′; (Δ−3

Δ−4)
2|vw|) is

v + Δ−3
Δ−4 |vw|(fΔ−3 +

1
Δ−4 fΔ−2) = v + |vw|(fΔ−2 +

1
Δ−4 f1 +

Δ−3
Δ−4 · 1

Δ−4 fΔ−2)

= w + Δ−3
Δ−4 |vw|(f1 +

1
Δ−4 fΔ−2).

Therefore, it lies on the right side of B(uw; 	, 1) and the conclusion of 3.5 follows.
Finally, for the proof of 3.6 it suffices to consider the case 	 = 2, r = Δ− 3, and
|uv| = |vw| = |wx| = λ. The top-right corner of B̄(uv; ∗, Δ− 3; Δ−3

Δ−4λ) and the

top-left corner of B̄(wx; 2, ∗; Δ−3
Δ−4λ) are respectively

v + λ(fΔ−3 +
1

Δ−4 fΔ−2) = v + λ(fΔ−2 +
1

Δ−4 f2),

w + λ(f2 + 1
Δ−4 f1) = w + λ(f1 + 1

Δ−4 fΔ−3).

They coincide if Δ = 5, otherwise the former lies to the left of the latter. ��

330 K. Knauer, P. Micek, and B. Walczak

4 The Drawing

We present the construction of a drawing first for Δ � 5 and then for Δ = 4.
Both constructions follow the same idea but differ in technical details.

Lemma 4. Suppose Δ � 5.

4.1. Let H be a 1-bubble with root v. Suppose that the position of v is fixed. Let
	 and r be such that 0 � 	, r � Δ− 1 and r− 	+1 = dH(v) � Δ− 1. Then
there is a straight-line drawing of H inside B(v; 	, r).

4.2. Let H be a 2-bubble with first root u and last root v. Suppose that the
positions of u and v are fixed on a horizontal line so that u lies to the left
of v. Let 	 = Δ − dH(u) and r = dH(v) − 1. Then there is a straight-line
drawing of H inside B̄(uv; 	, r; Δ−3

Δ−4 |uv|) such that the root-path of H is
drawn as the segment uv.

4.3. Let H be a k-bubble with roots v1, . . . , vk in this order along the root-path.
If k = 1 then suppose dH(v1) � Δ−2, otherwise suppose dH(v1), dH(vk) �
Δ− 1. Suppose that for some λ > 0 the positions of v1, . . . , vk are fixed in
this order on a horizontal line so that |v1v2| = . . . = |vk−1vk| = λ. Then
there is a straight-line drawing of H inside B̄(v1vk; 1, Δ − 2; Δ−3

Δ−4λ) such
that the root-path of H is drawn as the segment v1vk.

The drawings claimed above use only slopes from S and preserve the order of
edges around each vertex w of H under the assumption that if there are edges
connecting w to G − H then they are drawn in the correct order outside the
considered bounding region.

Proof. The proof constructs the required drawing by induction on the size of H .
The construction we are going to describe clearly preserves the order of edges
at every vertex of H and uses only slopes from S, and we do not explicitly state
this observation anywhere further in the proof.

Let H be a k-bubble with splitting sequence (H1, . . . , Hb). Assuming that the
lemma holds for any bubble with fewer vertices than H has, we prove that H
satisfies 4.1 if k = 1, 4.2 if k = 2, and 4.3 for any k.

First we prove 4.1 and 4.2 for the case that b � 2 and one of H1, Hb is a v-
bubble. By symmetry we consider only the case ofH1 being a v-bubble. Let u and
v denote respectively the first and the last root of H . Define Y = (H2, . . . , Hb),
r1 = 	+ dH1(u) − 1, and 	Y = Δ − dY (u). By the induction hypothesis we can
draw H1 inside B(v1; 	, r1) and Y inside B̄(uv; 	Y , r;

Δ−3
Δ−4 |uv|) (in case k = 1 we

drop the restriction on the height of the latter bounding region). We scale the
drawing of H1 to make it so small that it lies entirely below all vertices of Y not
contained in the root-path and (for k = 2) below the horizontal line bounding
from above the requested bounding region of H . Since r1 + 1 = 	Y and by 3.2,
our scaled drawing of H1 lies to the left of the leftmost edge at the root u of
Y . Thus the drawings of H1 and Y do not overlap. By 3.1 they both fit within
B̄(uv; 	, r; Δ−3

Δ−4 |uv|).

Outerplanar Graph Drawings with Few Slopes 331

Now we consider the case of H being a v-bubble rooted at v and such that
dH(v) � Δ− 1. We are to prove that 4.1 holds for H . If v is the only vertex of
H , the conclusion is trivial. Thus we assume that H has at least two vertices,
that is, 	 � r.

Suppose 1 � 	, r � Δ − 2. Define H ′ = H − v. By 2.1 the graph H ′ is an
(r− 	+1)-bubble with root-sequence formed by the neighbors v�, . . . , vr of v in
H listed in the clockwise order around v. Put the vertices v�, . . . , vr at points
v + f�, . . . , v + fr, respectively. This way v�, . . . , vr lie on a common horizontal
line L and partition L into segments of length 1

Δ−3 . Now, if 	 = r then by the
induction hypothesis the 1-bubble H ′ can be drawn inside B(vr; 0, dH′(vr)− 1)
as well as inside B(vr ;Δ − dH′(vr), Δ − 1). Choose the former drawing if 	 =
r = Δ− 2, the latter if 	 = r = 1, or any of the two otherwise. After appropriate
scaling the chosen drawing fits within B(v; r, r). If 	 < r then apply the induction
hypothesis to draw H ′ inside B̄(v�vr; 1, Δ−2; 1

Δ−4). It follows from 3.4 that this
bounding region is included in B(v; 	, r).

It remains to consider the following cases for v-bubble H : 	 = 0 or r = Δ− 1.
They cannot hold simultaneously as dH(v) � Δ − 1. By symmetry it is enough
to consider only one of them. Thus we assume 1 � 	 � r = Δ− 1.

If v has only one neighbor in H , say w, then 	 = r = Δ − 1 and clearly
H ′ = H − v is a 1-bubble rooted at w. Put w horizontally to the right of v.
Draw H ′ inside B(w;Δ − dH′ (w), Δ − 1) by the induction hypothesis, scaling
the drawing appropriately to fit it within B(v;Δ− 1, Δ− 1).

Now suppose that v has at least two neighbors in H and therefore 	 < r =
Δ− 1. Let P = w0 . . . wn be the simple path of length n � 1 starting at w0 = v
and going counterclockwise along the outer face of H so that

– the edge w0w1 preceeds the root-angle in the clockwise order around w0 = v,
– the vertices w1, . . . , wn−1 have degree Δ and are not cut-vertices in H ,
– the vertex wn has degree at most Δ− 1 or is a cut-vertex in H .

Note that if n = 1 then the second condition is satisfied vacuously. Since the de-
grees of w1, . . . , wn−1 are at least 3 and by outerplanarity, P is an induced path.
Thus by 2.2 the graph H−P has exactly one component H ′ adjacent to both w0

and wn. All other components of H − P are adjacent to wn. Together with wn

they form a (possibly trivial) 1-bubble Y rooted at wn. Let X denote the sub-
graph ofH induced on w0, . . . , wn and the vertices ofH ′. Define rX = dX(wn)−1
and 	Y = Δ − dY (wn). Let w

�
0, . . . , w

Δ−2
0 be the neighbors of w0 in X ordered

clockwise. Let w1
i , . . . , w

Δ−2
i be the neighbors of wi in X ordered clockwise, for

1 � i � n− 1. Let w1
n, . . . , w

rX
n be the neighbors of wn in X ordered clockwise.

Note that wΔ−2
i and w1

i+1 may coincide, for 0 � i � n−1. It follows from 2.2 that

H ′ is a bubble with root-sequence w�
0, . . . , w

Δ−2
0 , w1

1 , . . . , w
Δ−2
1 , . . . , w1

n, . . . , w
rX
n .

For i = 0, . . . , n− 1 define

λi =

{
1 if wΔ−2

i = w1
i+1,

Δ−2
Δ−3 if wΔ−2

i 	= w1
i+1.

Put the vertices w1, . . . , wn in this order from left to right on the horizontal line
going through w0 in such a way that |wiwi+1| = λi. Put each vertex wj

i at point

332 K. Knauer, P. Micek, and B. Walczak

wi + fj . Note that if wΔ−2
i and w1

i+1 are the same vertex then they end up at

the same point. All wj
i lie on a common horizontal line L at distance 1 to the

segment w0wn and partition L into segments of length 1
Δ−3 . Define

BX = B̄(w0wn; 	, rX ; Δ−3
Δ−4),

BY = B̄(wn; 	Y , Δ− 1; 1).

Draw H ′ inside B̄(w�
0w

rX
n ; 1, Δ − 2; 1

Δ−4) using the induction hypothesis. Note
that if H ′ is a 1-bubble then n = 1 and the root of H ′ has at least two edges
outside H ′ (namely, the ones going to w0 and w1), and therefore the first case of
the induction hypothesis yields its drawing inside the claimed bounding region.
By 3.4 this bounding region is contained in BX . Draw Y inside BY using the
induction hypothesis and scaling. This way it lies entirely below the line L. By
3.2 the drawing of Y lies to the right of the edge wnw

rX
n and thus does not overlap

with the drawing of X . Clearly, BX and BY are contained in B(w0; 	,Δ − 1).
This completes the proof for the case of H being a 1-bubble.

Now, suppose k = 2. We are to show that 4.2 holds for H . Suppose first that
H is a single e-bubble with roots u and v. If H consists of the edge uv only
then the conclusion follows trivially. Thus assume that H is not the single edge
uv. This implies that dH(u), dH(v) � 2 and therefore 	 � Δ − 2 and r � 1.
Let u�, . . . , uΔ−2, v denote the neighbors of u in H ordered clockwise, and let
u, v1, . . . , vr be the neighbors of v in H ordered clockwise. Let H ′ = H −{u, v}.
By 2.3 the graph H ′ is a bubble with all wi

0 and wi
1 being the roots. Define

h =

{
|uv| if uΔ−2 = v1,
Δ−3
Δ−2 |uv| if uΔ−2 	= v1.

Put each vertex ui at point u+hfi and each vertex vi at point v+hfi. Note that
if uΔ−2 and v1 are the same vertex then they end up at the same point. All ui

and vi lie on a common horizontal line and partition it into segments of length
h

Δ−3 . DrawH ′ inside B̄(u�vr; 1, Δ−2; h
Δ−4) using the induction hypothesis. This

bounding region is contained in B̄(uv; 	, r; Δ−3
Δ−4h) by 3.4. Since h � |uv|, we have

B̄(uv; 	, r; Δ−3
Δ−4h) ⊆ B̄(uv; 	, r; Δ−3

Δ−4 |uv|).
Now, consider the case that H is a 2-bubble but not an e-bubble. Let w0 . . . wn

be the root-path of H . Thus w0 = u, wn = v, and n � 2. Suppose that none of
the edges w0w1, . . . , wn−1wn is a bridge inH . This implies that dH(u), dH(v) � 2
and therefore 	 � Δ − 2 and r � 1. We split H into the e-bubble H1 and the
rest Y = (H2, . . . , Hb) being a 2-bubble with roots w1 and wn. Define r1 =
dH1(w1) − 1 and 	Y = Δ − dY (w1). The assumption that w0w1, . . . , wn−1wn

are not bridges yields r1 � 1 and 	Y � Δ− 2. Let w�
0, . . . , w

Δ−2
0 , w1 denote the

neighbors of w0 in H1 ordered clockwise. Similarly, let w0, w
1
1 , . . . , w

r1
1 be the

neighbors of w1 in H1 ordered clockwise. Define

α =

{
1 if wΔ−2

0 = w1
1,

Δ−3
Δ−2 if wΔ−2

0 	= w1
1.

Outerplanar Graph Drawings with Few Slopes 333

Fix the position of w1 on the segment w0wn so that α|w0w1| = Δ−3
Δ−4 |w1wn| = h.

Put each vertex wi
0 at point w0+hfi and each vertex wi

1 at point w1 +hfi. Note
that if wΔ−2

0 and w1
1 are the same vertex then they end up at the same point.

All wi
0 and wi

1 lie on a common horizontal line L at distance h to the segment
w0wn and partition L into segments of length h

Δ−3 . Define

B1 = B̄(w0w1; 	, r1;
Δ−3
Δ−4h),

BY = B̄(w1wn; 	Y , r;h).

Let H ′
1 = H1 − {w0, w1}. By 2.3 the graph H ′

1 is a bubble with all wi
0 and

wi
1 being the roots. Draw H ′

1 inside B̄(w�
0w

r1
1 ; 1, Δ− 2; h

Δ−4) using the induction
hypothesis. By 3.4 this bounding region is contained in B1. Moreover, r1 � Δ−3
as w1w2 is not a bridge. This together with 3.5, the choice of w1, and the fact that
h � |w0wn| imply that B1 ⊆ B̄(w0wn; 	, r;

Δ−3
Δ−4 |w0wn|). To complete the drawing

of H , apply the induction hypothesis to draw Y inside BY . This way it lies
entirely below L and therefore does not overlap with the drawing ofH ′

1. By 3.2 it
also lies to the right of the edge w1w

r1
1 . Clearly, BY ⊆ B̄(w0wn; 	, r;

Δ−3
Δ−4 |w0wn|).

If H is a 2-bubble with root-path w0 . . . wn and some edge wiwi+1 is a bridge
inH , thenH splits into three bubbles:X with root-path w0 . . . wi, Y = {wiwi+1}
being a trivial e-bubble, and Z with root-path wi+1 . . . wn. Define

rX =

{
	+ dX(w0)− 1 if i = 0,

dX(wi)− 1 if i � 1,

	Z =

{
r − dZ(wn) + 1 if i+ 1 = n,

Δ− dZ(wi+1) if i+ 1 � n− 1.

We are free to choose the positions of wi (unless i = 0) and wi+1 (unless
i + 1 = n) on the segment w0wn. So we take care that X and Z are small
enough, that is, that after applying the induction hypothesis to draw X inside
B̄(w0wi; 	, rX ; |wiwi+1|) and Z inside B̄(wi+1wn; 	Z , r; |wiwi+1|), these bounding
regions do not intersect and are both contained in B̄(w0wn; 	, r;

Δ−3
Δ−4 |w0wn|).

It remains to prove 4.3 for H . If k = 1 then the claim follows directly from 4.1
and 3.1 by scaling. Thus assume k � 2. There is a splitting of H into 2-bubbles
X1, . . . , Xk−1 so that the splitting sequences of X1, . . . , Xk−1 together form the
splitting sequence (H1, . . . , Hb) of H . Therefore,

– the roots of Xi are vi, vi+1 for i = 1, . . . , k − 1,
– Xi−1 ∩Xi = {vi} for i = 2, . . . , k − 1.

Apply 4.2 to draw each Xi inside B̄(vivi+1;Δ − dXi(vi), dXi (vi+1) − 1; Δ−3
Δ−4λ).

Consecutive bounding regions do not overlap by 3.3, while non-consecutive ones
are disjoint by 3.6. By 3.1 they are all contained in B̄(v1vk; 1, Δ− 2; Δ−3

Δ−4λ). ��
Lemma 5. Suppose Δ = 4.

5.1. Let H be a 1-bubble with root v. Suppose that the position of v is fixed. Let
	 and r be such that 0 � 	, r � 3 and r − 	+ 1 = dH(v) � 3. Then there is
a straight-line drawing of H inside B(v; 	, r).

334 K. Knauer, P. Micek, and B. Walczak

5.2. Let H be a 2-bubble with first root u and last root v. Suppose that the
positions of u and v are fixed on a horizontal line so that u lies to the left
of v. Let 	 = 4 − dH(u) and r = dH(v) − 1. Then there is a straight-line
drawing of H inside B(uv; 	, r) such that the root-path of H is drawn as
the segment uv.

The drawings claimed above use only slopes from S and preserve the order of
edges around each vertex w of H under the assumption that if there are edges
connecting w to G − H then they are drawn in the correct order outside the
considered bounding region.

Proof. Omitted. ��

Now, to prove the Main Theorem, pick any vertex v of G of degree less than
Δ (such a vertex always exists in an outerplanar graph), fix its position in the
plane, and apply 4.1 or 5.1 to the graph G considered as a 1-bubble with root v.

Acknowledgments. We thank Vı́t Jeĺınek and Dömötör Pálvölgyi for intro-
ducing us to the problem at the meeting in Prague in summer 2011.

References

1. Wade, G.A., Chu, J.H.: Drawability of complete graphs using a minimal slope set.
The Computer Journal 37(2), 139–142 (1994)

2. Barát, J., Matoušek, J., Wood, D.R.: Bounded-degree graphs have arbitrarily large
geometric thickness. Electron. J. Combin. 13(1), #R3, 14 (2006)

3. Pach, J., Pálvölgyi, D.: Bounded-degree graphs can have arbitrarily large slope
numbers. Electron. J. Combin. 13(1), #N1, 4 (2006)

4. Mukkamala, P., Szegedy, M.: Geometric representation of cubic graphs with four
directions. Comput. Geom. 42(9), 842–851 (2009)

5. Keszegh, B., Pach, J., Pálvölgyi, D., Tóth, G.: Drawing Cubic Graphs with at Most
Five Slopes. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp.
114–125. Springer, Heidelberg (2007)

6. Fáry, I.: On straight line representation of planar graphs. Acta Univ. Szeged. Sect.
Sci. Math. 11, 229–233 (1948)

7. Koebe, P.: Kontaktprobleme der konformen Abbildung. Berichte Verhande. Sächs.
Akad. Wiss. Leipzig, Math.-Phys. Klasse 88, 141–164 (1936)

8. Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresber. Deutsch. Math.
Verein. 46, 26–32 (1936)

9. Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing Planar Graphs of Bounded Degree
with Few Slopes. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502,
pp. 293–304. Springer, Heidelberg (2011)

10. Jeĺınek, V., Jeĺınková, E., Kratochv́ıl, J., Lidický, B., Tesař, M., Vyskočil, T.: The
Planar Slope Number of Planar Partial 3-Trees of Bounded Degree. In: Eppstein,
D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 304–315. Springer, Hei-
delberg (2010)

11. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs
with few slopes and segments. Comput. Geom. 38(3), 194–212 (2007)

Fáry’s Theorem for 1-Planar Graphs

Seok-Hee Hong1, Peter Eades1, Giuseppe Liotta2, and Sheung-Hung Poon3

1 University of Sydney, Australia
{seokhee.hong,peter.eades}@sydney.edu.au

2 University of Perugia, Italy
liotta@diei.unipg.it

3 National Tsing Hua University, Taiwan
spoon@cs.nthu.edu.tw

Abstract. A plane graph is a graph embedded in a plane without edge cross-
ings. Fáry’s theorem states that every plane graph can be drawn as a straight-line
drawing, preserving the embedding of the plane graph. In this paper, we extend
Fáry’s theorem to a class of non-planar graphs. More specifically, we study the
problem of drawing 1-plane graphs with straight-line edges. A 1-plane graph is a
graph embedded in a plane with at most one crossing per edge. We give a charac-
terisation of those 1-plane graphs that admit a straight-line drawing. The proof of
the characterisation consists of a linear time testing algorithm and a drawing algo-
rithm. Further, we show that there are 1-plane graphs for which every straight-line
drawing has exponential area. To the best of our knowledge, this is the first result
to extend Fáry’s theorem to non-planar graphs.

1 Introduction

Since the 1930s, a number of researchers have investigated planar graphs. A beautiful
and classical result, known as Fáry’s Theorem, asserts that every plane graph, that is,
every planar topological embedding of a planar graph has a planar straight-line draw-
ing [8].

Since then, many straight-line drawing algorithms for plane graphs have followed
[6,13]. In the 1960s, the first algorithm for constructing a planar straight-line drawing
was given by Tutte [17]. In 1980s, efficient algorithms for constructing planar straight-
line drawing were given by Read [15] and Chiba et al. [2]. In 1990s, de Fraysseix et
al. [5] showed that a quadratic area planar straight-line grid drawing could be efficiently
obtained. Indeed, planar straight-line drawing is one of the most popular drawing con-
ventions in Graph Drawing [6,13].

More recently, researchers have investigated topological graphs that are “almost”
planar, in some sense. An interesting example is 1-plane graphs, that is, topological
graphs with at most one crossing per edge. Some mathematical results for 1-plane
graphs are known [1,4,14,16]; in particular, Pach and Toth [14] proved that a 1-plane
graph with n vertices has at most 4n − 8 edges, which is a tight upper bound. Ko-
rzhik and Mohar [11] proved that testing whether a graph has a 1-plane embedding is
NP-complete.

In this paper, we study straight-line representations of 1-plane graphs, and give a
characterisation of those 1-plane graphs that admit a straight-line drawing; our results

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 335–346, 2012.
© Springer-Verlag Berlin Heidelberg 2012

336 S.-H. Hong et al.

extend Fáry’s Theorem. Fundamentally, there are two 1-plane graphs that cannot be
drawn with straight-line edges. One is a 1-plane graph consisting of a path of length 3,
called the bulgari graph (see Fig. 1(a)). The other is a 1-plane graph consisting of two
paths of length two, called the gucci graph (see Fig. 1(b)).

Fig. 1. (a) The bulgari graph; (b) the gucci graph; (c) the bad K4 graph

The following theorem summarises the main results of this paper.

Theorem 1. A 1-plane graphG admits a straight-line 1-planar drawing if and only ifG
contains neither the bulgari graph nor the gucci graph 1. Furthermore, there is a linear
time testing algorithm to test such conditions, and a linear time drawing algorithm to
construct such a drawing if it exists.

We would like to emphasize that our result is concerned with topological embeddings
of 1-plane graphs. To illustrate this, note that the underlying graph of bulgari graph is
a path of length three and has a straight-line planar drawing. However, the topological
embedding of the path of length three, shown in Figure 1(a), has no straight-line 1-
planar drawing.

To our best knowledge, Theorem 1 is the first result to extend Fáry’s theorem to non-
planar graphs. Furthermore, in contrast to many known mathematical results [4,14,16]
and hardness results [11] on 1-planar graphs, our results are constructive and algorith-
mic. The proof of Theorem 1 occupies the remainder of this paper. We also give an
exponential lower bound for the area of a straight-line 1-planar grid drawing.

Section 3 shows that the absence of the bulgari and gucci graphs is necessary for
a straight-line drawing. Sufficiency is established by presenting an algorithm with an
augmentation step, in Section 4 and a drawing step, in Section 5. The exponential lower
bound on area is given in Section 6.

2 Preliminaries

A topological graphG = (V,E) is a representation of a simple graph in the plane where
each vertex is a point and each edge is a Jordan curve between the points representing

1 Note added in proof: The first part of Theorem 1 was independently proved by Thomassen
(Rectilinear Drawings of Graphs, Journal of Graph Theory, 12 (3), 335-341, 1988).

Fáry’s Theorem for 1-Planar Graphs 337

its endpoints. A geometric graph is a topological graph whose edges are represented by
straight-line segments.

Two edges cross if they have a point in common, other than their endpoints. The point
in common is a crossing. To avoid some pathological cases, some constraints apply: (i)
An edge does not contain a vertex other than its endpoints; (ii) No edge crosses itself;
(iii) Edges must not meet tangentially; (iv) No three edges share a crossing.

A 1-planar graph is a graph that can be drawn in a plane with at most one crossing
per edge. A 1-plane graph is a topological graph with at most one crossing per edge.

Suppose that G is a topological graph. The graph that is obtained by replacing every
crossing point of G with a vertex is the planarisation of G and is denoted by G∗.
The vertices of G∗ arising from crossings in G are called crossing vertices. From the
computational point of view, a 1-plane graph can be represented as a plane embedding
of G∗. The algorithms in this paper assume that the input is given in this way, and
that constant time adjacency testing can be done (for example, using the data structures
in [3]).

The neighborhoodN(u) of a vertex u in a planar graph is the circular list of vertices
adjacent to u, in clockwise order. If G is a topological graph and γ is a crossing vertex
of G∗, then the neighborhood N(γ) of γ consists of a 4-tuple (a, b, c, d) where the
edges (a, c) and (b, d) in G cross at γ.

3 Necessity

We first prove the necessity of Theorem 1.

Theorem 2. Neither the bulgari graph nor the gucci graph admit a straight-line 1-
planar drawing. Further, there is a linear time algorithm to test whether a 1-plane
graph G contains a bulgari or gucci subgraph.

Sketch of Proof: Consider the planarisation of the bulgari graph: there is one cycle of
length three, and one of the vertices of this 3-cycle is a crossing γ. In any straight-line
drawing of the bulgari graph, this 3-cycle forms a triangle, and the interior angle of this
triangle at γ must be less than π. However, this interior angle is formed by three of the
four angles formed by the edges that cross at γ. This is clearly impossible. A similar
argument applies to the gucci graph, using the fact that the four angles in a straight-line
quadrilateral add to 2π.

Testing whether a 1-plane graph G contains a bulgari subgraph can be done in linear
time by checking the neighborhood of each crossing. Testing for a gucci subgraph is
a little more complex. Suppose that edge (a, c) crosses edge (b, d). We consider the
subgraph Hab of G∗ consisting of all pairs of crossing edges that have endpoints a and
b; see Fig. 4(c). One can check for gucci subgraphs in Hab by traversing the clockwise
order of edges around a and b; this can be done in time proportional to the sum of the
degrees of a and b. Executing this check over all such subgraphs Hab tests for gucci
subgraphs in linear time. �

We next prove the sufficiency by presenting a drawing algorithm. The overall algorithm
consists of two steps: an augmentation step in Section 4 and a drawing step in Section 5.

338 S.-H. Hong et al.

4 Sufficiency: The Augmentation Algorithm

This Section shows that we can augment a 1-plane graph G by adding edges without
crossings, while preserving the straight-line drawability of G.

4.1 Red-Maximal 1-Plane Graphs and Red Augmentation

The edges of a 1-plane graph G that have no crossing are called red edges. A red
augmentation G′ = (V,E′) of G = (V,E) is a 1-plane graph with E ⊆ E′ such that
no edge in E′ − E has a crossing. A 1-plane graph is red-maximal if there is no non-
incident pair of vertices a, b that share a face. That is, the addition of any edge makes a
crossing. The red-maximal 1-plane graphs have nice properties (see Lemmas 2 and 3),
which are helpful for the drawing algorithm in Section 5.

We show how to construct a red-maximal red augmentation of a 1-plane graph, pre-
serving the absence of bulgari and gucci subgraphs.

Theorem 3. Suppose that G is a 1-plane graph with no bulgari or gucci subgraph.
Then there is a red-maximal red augmentation G+ of G with no bulgari or gucci sub-
graph. Furthermore, G+ can be computed in linear time.

The proof of Theorem 3 consists of an algorithm that adds edges one at a time. The first
step, described in Section 4.2, considers pairs of nonadjacent vertices that are endpoints
of two edges that cross. The second step, described in Section 4.3, triangulates any
remaining faces. The algorithm can be implemented in linear time using appropriate
data structures.

4.2 The First Step: Adding Edges around Crossings

The aim of this Section is to present an algorithm that takes a 1-plane graph G with
no bulgari or gucci subgraphs, and adds edges until each crossing is surrounded by a
4-cycle. More precisely, we prove the following Lemma.

Lemma 1. Suppose that G = (V,E) is a 1-plane graph, with no bulgari or gucci
subgraph. Then there is a red augmentationG′ ofG such thatG′ has no bulgari or gucci
subgraph, and for each crossing γ, the neighborhood N(γ) of γ in the planarisation
G′∗ of G′ induces a complete subgraph of size 4 in G′.

The proof of Lemma 1 has two parts. For the first part, we need to define some notation.
Suppose thatG is a 1-plane graph, and γ is a crossing between edges (a, c) and (b, d) in
G. The edge (a, γ) of G∗ may occur immediately before (b, γ) in the clockwise order
of edges around γ, as in Fig. 2(a); in this case we say that γ is clockwise with respect to
the (ordered) pair (a, b). In Fig. 3(a), the crossing γ is anticlockwise with respect to the
pair (a, b).

Further, there may be two ways to add the edge (a, b), as in Fig. 3. One way intro-
duces a bulgari subgraph, the other does not. It is easy to distinguish between these: if
γ is anticlockwise with respect to (a, b), then a bulgari subgraph is created if and only
if the 3-cycle (a, b, γ) is clockwise, and vice versa. In other words, the augmentation

Fáry’s Theorem for 1-Planar Graphs 339

Fig. 2. (a) A crossing; (b) Adding the edge (a, b), following the path (a, γ, b); (c) A 1-plane graph
G containing crossing vertices γ and γ′

Fig. 3. (a) The crossing γ is anticlockwise with respect to (a, b), and the 3-cycle (a, b, γ) is
anticlockwise. (b) The crossing γ is anticlockwise with respect to (a, b), and the 3-cycle (a, b, γ)
is clockwise.

avoids a bulgari subgraph if and only if the 3-cycle (a, b, γ) has the same orientation as
the crossing γ with respect to (a, b).

We next show that it is always possible to route (a, b) such that the 3-cycle (a, b, γ)
has the same orientation as the crossing γ with respect to (a, b), that is, such that the
neighborhood of γ does not contain a bulgari subgraph.

Assume without loss of generality that γ is clockwise with respect to (a, b), as in
Fig. 2(a). We define a curve r(a, γ, b) that is arbitrarily close to the edges (a, γ) and
(γ, b), as in Fig. 2(b). Note that r(a, γ, b) begins at a such that it is immediately before
the edge (a, γ) in the clockwise order of edges around a. At the other end, it is imme-
diately after b in the clockwise order of edges around b. Since G is 1-planar, the curve
r(a, γ, b) does not cross any edge of G (the edges (a, c) and (b, d) cross at γ and so
have no other crossing). We route the edge (a, b) on the curve r(a, γ, b); we denote the
resulting graph by G+γ (a, b). The following property of G+γ (a, b) is immediate.

Proposition 1. Suppose that G is a 1-plane graph with no gucci and no bulgari sub-
graph, and γ is a crossing inG between the edges (a, c) and (b, d). ThenG+γ (a, b) is a

340 S.-H. Hong et al.

1-plane graph with no gucci subgraph, and the induced subgraph of the neighborhood
N(γ) of γ does not contain a bulgari subgraph.

Note that Proposition 1 is not enough to prove Lemma 1. There may be another crossing
vertex γ′ that has a and b as neighbors. The problem is that G +γ (a, b) may contain
a bulgari subgraph in the neighborhood of γ′, as in Fig. 2(c). Let Γab denote the set of
crossings that have both a and b as a neighbor. Next we show how to choose γ ∈ Γab

such that G+γ (a, b) does not contain any bulgari subgraph.

Proposition 2. For every pair a, b of nonadjacent vertices in G such that Γab is
nonempty, there is a crossing vertex γ ∈ Γab such that G +γ (a, b) has no bulgari
subgraph.

Sketch of Proof: Let Hab be the subgraph of G∗ consisting of all pairs of crossing
edges that have endpoints a and b, as in Fig. 4(c). Note that each crossing in Γab is either
clockwise or anticlockwise with respect to (a, b). Using the fact that G has no gucci
subgraph, one can traverse the circular order around a to find a unique pair γj , γj+1

of crossings such that γj is anticlockwise and γj+1 is clockwise. We can deduce that
routing (a, b) on the curve r(a, γj+1, b) (or, equivalently, on the curve r(a, γj , b)) does
not introduce a bulgari subgraph. The traversal of edges around a can be executed in
time proportional to the degree of a. Performing this operation over all such subgraphs
Hab takes linear time. �

Fig. 4. (a) γ is clockwise with respect to the (a, b); (b) γ is anticlockwise with respect to the (a, b);
(c) Hab

One can repeatedly add edges using the methods defined in the proof of Propositions 1
and 2 to give an augmentation such that each crossing is surrounded by a 4-cycle. No
new crossings are introduced, and thus no gucci subgraphs are introduced. Further,
by Proposition 2, no bulgari subgraphs are introduced. This completes the proof of
Lemma 1.

4.3 The Second Step: Triangulating Remaining Faces

Suppose that a and b are two nonadjacent vertices in the 1-plane graph G′ after the first
step is applied, as in Lemma 1. Further suppose that a and b share a face f . We can add

Fáry’s Theorem for 1-Planar Graphs 341

the edge (a, b) inside f , without crossing any edge. The graph remains 1-plane. Since a
and b were non-adjacent in G′, we can deduce from Lemma 1 that Γab is empty. Hence
no bulgari or gucci subgraph is introduced by adding the edge (a, b). Repeatedly adding
edges in this fashion, we can ensure that every face with no crossings is a triangle.

This completes the proof of Theorem 3.

5 Sufficiency: The Drawing Algorithm

In this Section, we present a linear time algorithm for drawing 1-plane graphs with
straight-line edges. The input of the drawing algorithm is a red-maximal augmentation
G+ with no bulgari or gucci subgraph.

5.1 Properties of Red-Maximal 1-Plane Graphs

The first result lists some simple properties of red-maximal 1-plane graphs. Informally,
the Lemma states that the structure of a red-maximal 1-plane graph is relatively simple;
this helps with the drawing algorithm.

Lemma 2. Let G+ be a red-maximal 1-plane graph that does not contain a bulgari or
gucci subgraph, and let G∗ be the planarisation of G+.

(a) Every face of G∗ is a simple cycle.
(b) If γ is a crossing in G+ then N(γ) induces a 4-clique.
(c) If f is an internal face of G∗ with no crossing vertex, then f is a 3-cycle.
(d) If f is an internal face of G∗ with a crossing vertex, then f is either a 3-cycle, a

4-cycle or a 5-cycle.
(e) If f is the outer face of G∗, then f has no crossing vertices.
(f) If f is the outer face of G∗, then f is either a 3-cycle or a 4-cycle. If f is a 4-cycle,

then it induces a 4-clique with a crossing.
(g) If γ is a crossing between edges (a, c) and (b, d), then there is a path P of red edges

from a to b such that the cycle C in G∗ formed by the edges (a, γ) and (γ, b), and
P contains no vertices strictly inside C.

(h) If γ is a crossing in G+, then there is a simple cycle C of red edges such that
(i) The vertices of N(γ) appear on C in the same order as their clockwise order

around γ, and
(ii) γ is inside C.

Connectivity plays an important role in our drawing algorithm. It is straightforward to
observe that a red-maximal 1-plane graph is one-connected. Using Lemma 2, we can
prove a stronger result.

Lemma 3. Let G+ be a red-maximal 1-plane graph that does not contain a bulgari or
gucci subgraph, and let Gr be the subgraph of red edges of G+. Then both G+ and Gr

are biconnected.

342 S.-H. Hong et al.

5.2 Decomposition of Biconnected Graphs into Triconnected Components

From Lemma 3, the red-maximal 1-plane graph G+ output by the augmentation pro-
cess is biconnected; it is a simple exercise to show that there are red-maximal 1-plane
graphs that are not triconnected. Thus we use the SPQR tree [7], which represents a de-
composition of biconnected graphs into triconnected components, to draw G+. In this
paper, we use a slight modification of the SPQR tree without Q-nodes, called the SPR
tree. We first define basic terminology.

Each node ν in the SPR tree is associated with a graph called the skeleton of ν,
denoted by σ(ν). There are three types of nodes ν in the SPR tree: (i) S-node: σ(ν) is a
simple cycle with at least 3 vertices; (ii) P-node: σ(ν) consists of two vertices connected
by at least 3 edges; (iii) R-node: σ(ν) is a simple triconnected graph.

We treat the SPR tree as a rooted tree by choosing a node ν∗ as its root. Let ρ be the
parent of ν. The graph σ(ρ) has exactly one virtual edge e in common with σ(ν). We
denote the graph formed from σ(ν) by deleting its parent virtual edge as σ−(ν). When
G is a plane graph, σ(ν) and σ−(ν) are plane graphs with embedding induced from G.

5.3 Algorithm for Constructing a Straight-Line 1-Planar Drawing

We now present the main theorem of this Section.

Theorem 4. Let G+ be a red-maximal 1-plane graph with no bulgari or gucci sub-
graph. Then there is a linear time algorithm to construct a straight-line 1-planar draw-
ing of G+.

Proof. We present a divide-and-conquer algorithm using the SPR tree. The overall ap-
proach is similar to that used for star-shaped drawings [9]. However, our algorithm is
much simpler due to the nice properties described in Lemma 2. We first describe the
basic process, then give details.

We use the SPR tree of the red subgraph Gr of G+. We choose the root to be the
node ν∗ whose skeleton contains the vertices on the outer face. We recursively compute
a straight-line drawing of G+ in a top-down manner, using the SPR tree rooted at ν∗.

Roughly speaking, we recursively process each node ν in the SPR tree as follows.
First we construct a drawing Dν of σ(ν) in a given convex polygon Pν . Then we re-
insert crossing edges in the corresponding face of Dν with straight-line edges. Finally,
for each child μ of ν, we define a convex polygon Pμ and replace the virtual edges in
Dν with a drawing of σ(μ). This process continues until we reach the leaf nodes.

We use the convex drawing algorithm of Chiba et al. [2] as a subroutine. This al-
gorithm takes a convex polygon Pν and the plane graph σ(ν) as input, and produces
a straight-line convex drawing Dν of σ(ν), that is, each face of Dν is a convex poly-
gon. Since each face of Dν is a convex polygon, we can re-insert the crossing edges as
straight-lines, without introducing any new crossings.

In fact, we process each node ν differently, based on its type. For R-nodes and root
S-node, we construct a convex drawingDν of σ(ν), then insert the crossing edges, then
define a drawing area Pμ for each child node μ of ν. For P-nodes and non-root S-nodes,
the main task is to define a drawing area for each child node μ and a convex polygon
Pμ for σ(μ).

Fáry’s Theorem for 1-Planar Graphs 343

Lemma 2 shows that the skeleton σ(ν) has a relatively simple structure. Thus, we
can define the convex polygon Pν for ν as follows: (i) R-node ν: either a triangle or a
rhombus (see Figure 5); (ii) S-node ν: either a triangle or a trapezoid.

Next we describe details of the drawing algorithm for each type of node ν.
(i) R-node ν: We first construct a convex drawing Dν of σ(ν) for the root node (or
σ(ν)− for non-root node) with outer boundary Pν , noting that σ(ν) (resp., σ(ν)−) is a
triconnected (resp., internally-triconnected) plane graph. If ν = ν∗ is the root, then we
choose Pν∗ to be a triangle, since the outer face of σ(ν∗) is a 3-cycle. Otherwise, we
define a convex polygon Pν with one of the following three shapes:

– left triangle (see Figure 5(a)) or right triangle (see Figure 5(b)): We use this shape
when the edge e = (s, t), which corresponds to the separation pair (s, t), exists as
a real edge. In this case, we define Pν using the outer face of σ(ν) including e.

– rhombus shape (see Figure 5(c)): We use this shape, when e = (s, t) is a virtual
edge introduced in the decomposition. In this case, we define P−

ν using the outer
face of σ(ν)− without e.

Fig. 5. Shape of Pν : (a) left triangle; (b) right triangle; (c) rhombus; (d) left trapezoid

Next we re-insert the crossing edges in the corresponding face in Dν as straight-line
segments. Since the faces of Dν are convex polygons, the drawing remains 1-planar.
After inserting crossing edges, we proceed to define a drawing region and a convex
polygon Pμ for drawing σ(μ) of each child node μ recursively.
(ii) S-node ν: If ν = ν∗ is the root, from Lemma 2, the outer face of σ(ν∗) is a 3-cycle
or a 4-cycle. Thus we draw σ(ν∗) as a triangle or a rectangle. Next we re-insert the
crossing edges, if σ(ν∗) is a 4-cycle. Then we define a drawing region for each child
node μ recursively.

If ν is a non-root node, then we first draw σ(ν)− as a path. Then, the main task is to
define a drawing area and a convex polygon Pμ for drawing σ(μ) of each child node μi

recursively.
(iii) P-node ν: Here the main task is to define a drawing area and a convex polygon Pμ

for drawing σ(μ) of each child node μi recursively. For R-node child μ, we define Pμ

as either a triangle or a rhombus. For S-node child μ, we define Pμ as either a triangle
or a trapezoid.

344 S.-H. Hong et al.

Suppose that vertices s and t form the separation pair for ν, and that the virtual
edges between s and t are u1, u2, . . . , um, in left-right order as in Fig. 6(a). Denote the
corresponding children of ν as μ1, μ2, . . . , μm.

First, consider the case where there is a real edge between s and t; suppose that e
occurs between uk and uk+1 in left-right order. The polygons Pμi must be drawn in a
specific order. We first draw σ(μ1) in the polygon Pμ1 , and re-insert crossing edges to
form the drawing Dμ1 . Then, we can define a drawing area for σ(μ2) with a convex
polygon Pμ2 ; we choose Pμ2 so that it does not overlap with any edge already drawn
in Dμ1 . Then we re-insert crossing edges in the drawing Dμ2 . We repeat this process
until we process σ(μk). Similarly, we can process μk+1, μk+2, ..., μm symmetrically
beginning with μm and working toward μk+1.

More specifically, based the ordering, we define a left triangle (or a left trapezoid)
for μ1, μ2, ..., μk, and a right triangle (or a right trapezoid) for μk+1, μk+2, ..., μm to
avoid edge crossings. Figure 6 shows an example.

Fig. 6. Defining drawing areas for the children of a P-node

Now consider the case where there is no real edge between s and t. If there is a
crossing edges between the two consecutive child nodes μk and μk+1 of a P-node, then
we add the real edge e in the ordering between between uk and uk+1, and treat the case
as described above.

We now briefly discuss the correctness and time complexity of the algorithm. It is
clear that the resulting drawing D+ is a straight-line drawing of G+ that retains the
same topological embedding as G+. Since the convex drawing algorithm draws σ(ν)
of R-nodes ν with straight-line edges such that each face is drawn as convex polygon,
we can re-insert the crossing edges in the corresponding face with straight-lines, without
introducing any further crossings.

Since we define a drawing area and a convex polygon Pμ for the boundary of σ(μ),
for each child node μ of ν, after the crossing edge re-insertion step, we can draw each
σ(μ) without introducing any new crossings. Note that there are no crossing edges
between σ(μi) and σ(μj), where μi and μj are children of ν, since otherwise they are
connected by the corresponding 4-cycle of the crossing edges, due to Lemma 2.

When we replace each virtual edge, which corresponds to a child μ of ν, in the
convex drawing Dν of σ(ν), we can define a convex polygon Pμ for the boundary of
σ(μ) thin enough not to create any new crossings.

Fáry’s Theorem for 1-Planar Graphs 345

It is clear that the overall algorithm runs in linear time, since the SPR tree can be
constructed in linear time [7], and the convex drawing algorithm by Chiba et al. [2]
runs in linear time. This completes the proof of Theorem 4. ��

6 Lower Bound on Area

In this Section we present a 1-plane graph, illustrated in Fig. 7, for which any straight-
line 1-planar drawing has exponential area.

Theorem 5. For all k > 1, there is a 1-plane graph Gk with 2k vertices and 2k − 2
edges such that any straight-line 1-planar drawing in which of Gk every vertex has
integer coordinates has area at least 2k−1.

Sketch of Proof: One can show that in any straight-line drawing of the graph Gk

illustrated in Fig. 7, the area of the triangle (γj , aj+1, bj+1) is at least twice the area of
the triangle (γj+1, aj+2, bj+2), for 1 ≤ j ≤ k − 2. �

Fig. 7. A 1-plane graph Gk for which every straight-line 1-plane grid drawing has exponential
area. The case k = 6 is illustrated.

7 Final Remarks

The algorithm presented in this paper takes a 1-plane graph G as input and produces
a straight-line 1-planar drawing of G if such a drawing exists. The drawings produced
have exponential area; we show that this is unavoidable. The algorithm extends Fáry’s
Theorem; indeed, if a plane graph is input, then our algorithm produces a straight-
line planar drawing. As such, it opens the way for the investigation of a straight-line
drawings for a number of other classes of graphs that are “almost” planar. For example,
a quasi-plane graph is a topological embedding of a graph in which no three edges
mutually cross. Is there an algorithm for computing a straight-line drawing of a quasi-
plane graph?

346 S.-H. Hong et al.

References

1. Borodin, O.V., Kostochka, A.V., Raspaud, A., Sopena, E.: Acyclic colouring of 1-planar
graphs. Discrete Applied Mathematics 114(1-3), 29–41 (2001)

2. Chiba, N., Yamanouchi, T., Nishizeki, T.: Linear time algorithms for convex drawings of
planar graphs. In: Progress in Graph Theory, pp. 153–173. Academic Press (1984)

3. Chrobak, M., Eppstein, D.: Planar Orientations with Low Out-degree and Compaction of
Adjacency Matrices. Theor. Comput. Sci. 86(2), 243–266 (1991)

4. Fabrici, I., Madaras, T.: The structure of 1-planar graphs. Discrete Mathematics 307(7-8),
854–865 (2007)

5. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinator-
ica 10(1), 41–51 (1990)

6. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the
Visualization of Graphs. Prentice-Hall (1999)

7. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. on Comput. 25(5), 956–997
(1996)

8. Fáry, I.: On straight line representations of planar graphs. Acta Sci. Math. Szeged 11, 229–
233 (1948)

9. Hong, S., Nagamochi, H.: An algorithm for constructing star-shaped drawings of plane
graphs. Comput. Geom. 43(2), 191–206 (2010)

10. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. on
Comput. 2, 135–158 (1973)

11. Korzhik, V.P., Mohar, B.: Minimal Obstructions for 1-Immersions and Hardness of 1-
Planarity Testing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 302–
312. Springer, Heidelberg (2009)

12. Kuratowski, K.: Sur le problme des courbes gauches en topologie. Fund. Math. 15, 271–283
(1930)

13. Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. World Scientific (2004)
14. Pach, J., Toth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439

(1997)
15. Read, R.C.: A new method for drawing a planar graph given the cyclic order of the edges at

each vertex. Congr. Numer. 56, 31–44 (1987)
16. Suzuki, Y.: Optimal 1-planar graphs which triangulate other surfaces. Discrete Mathemat-

ics 310(1), 6–11 (2010)
17. Tutte, W.T.: How to draw a graph. Proc. of the London Mathematical Society 13, 743–767

(1963)

Constant Time Enumeration of Bounded-Size

Subtrees in Trees and Its Application

Kunihiro Wasa1, Yusaku Kaneta1,�, Takeaki Uno2, and Hiroki Arimura1

1 IST, Hokkaido University, Sapporo, Japan
{wasa,y-kaneta,arim}@ist.hokudai.ac.jp

2 National Institute of Informatics, Tokyo, Japan
uno@nii.jp

Abstract. By the motivation to discover patterns in massive structured
data in the form of graphs and trees, we study a special case of the k-
subtree enumeration problem, originally introduced by (Ferreira, Grossi,
and Rizzi, ESA’11, 275-286, 2011), where an input graph is a tree of n
nodes. Based on reverse search technique, we present the first constant
delay enumeration algorithm that lists all k-subtrees of an input tree in
O(1) worst-case time per subtree. This result improves on the straight-
forward application of Ferreira et al’s algorithm with O(k) amortized
time per subtree when an input is restricted to tree. Finally, we discuss
an application of our algorithm to a modification of the graph motif
problem for trees.

1 Introduction

By emergence of massive structured data in the form of trees and graphs, there
have been increasing demands on efficient methods that discovers many of inter-
esting patterns or regularity hidden in collections of structured data [1,2,13,14].
For instance, the proximity pattern mining problem [8,9] is a class of such pat-
tern discovery problems, where an algorithm is requested to find all collections of
items satisfying proximity constraints in a given discrete structure. For example,
the proximity string search problem [9] and the graph motif problem [5,8] are
popular examples of such proximity pattern discovery problems.

In this paper, we consider the k-subtree enumeration problem, which is origi-
nally introduced by Ferreira, Grossi, and Rizzi [6], where an instance consists of
an undirected graph G of n nodes and a positive integer k ≥ 1, and the task is to
find all k-subtrees, a connected and acyclic node subsets consisting of exactly k
nodes in G. Ferreira et al. [6] presented the first output-sensitive algorithm that
lists all k-subtrees in a graph G of size n in O(sk) total time and O(n) space,
in other words, in O(k) amortized time per subtree, where n is the number of
edges of an input graph and s is the number of solutions. However, it has been
an open question whether there exists a faster enumeration algorithm that solves
this problem.

� Presently at Rakuten Research, Tokyo, Japan.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 347–359, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

348 K. Wasa et al.

As a main result of this paper, we present the first constant delay enumeration
algorithm for the k-subtree enumeration problem in trees . More precisely, our
algorithm lists all k-subtrees of an input tree T of size n in constant worst-
case time per subtree using O(n) preprocessing and space. Our algorithm is
based on reverse search technique, proposed by Avis and Fukuda [3], as in the
algorithm by Ferreira et al. [6] for general input graphs. However, unlike their
algorithm [6], our algorithm achieves the best possible enumeration complexity.
Finally, we discuss an application of our algorithm to a modification of the graph
motif problem for trees.

1.1 Related Work

The k-subtree enumeration problem considered in this paper is closely related to
a well-known graph problem of enumerating all spanning trees in an undirected
graph G [11]. For this problem, Tarjan and Read [11] first presented an O(ns)
time and O(n) space algorithm in 1960’s, where n is the number of edges in G.
Recently, Shioura, Tamura, and Uno [10] presented O(n+s) time and O(n) space
algorithm. Unfortunately, it is not easy to extend the algorithms for spanning
tree enumeration to subtree enumeration.

One of our motivation comes from application to the graph motif problem
(GMP, for short). Given a bag of k labels, called a pattern, and an input graph
G, called a text, GMP asks to find a k node subgraph of G whose multi-set of
labels is identical to P . Lacroix et al. [8] introduced the problem with application
to biology and presented an FPT algorithm with k = O(1), and NP-hardness in
general. Then, Fellows et al. [5] showed that the problem is NP-hard even for
trees of degree 3, and presented an improved FPT algorithm. Sadakane et al. [9]
studied the string version of GMP, and presented linear-time algorithms.

Although there are increasing number of studies on GMP [5,8], there are
few attempts to apply efficient enumeration algorithms to this problem. Fer-
reira, Grossi, and Rizzi [6] mentioned above is one of such studies. Recent stud-
ies [2,13,14] in data mining applied efficient enumeration algorithms to discovery
of interesting substructures from massive structured data in the real world.

1.2 Organization of This Paper

In Sec. 2, we define basic definitions on the k-subtree problem. In Sec. 3, we first
introduces a family tree, and in Sec. 4, then, we present a constant delay algo-
rithm that solves the k-subtree enumeration problem. Sec. 5 gives an application
to the graph motif problem. Finally, in Sec. 6, we conclude.

2 Preliminaries

In this section, we give basic definitions and notation for trees and their subtrees.
For the definitions not found here, please consult textbooks, e.g., [4]. For a set
S, we denote by |S| the number of elements in S. In this paper, all graphs are
simple (without self-loops or parallel edges).

Constant Time Enumeration of Bounded-Size Subtrees in Trees 349

Trees. A rooted tree is a directed connected acyclic graph T = (V (T), E(T),
root(T)), where V = V (T) is a set of nodes , E = E(T) ∈ V 2 is a set of directed
edges , and root(T) ∈ V is a distinguished node, called the root of T . For each
directed edge (u, v) ∈ E, we call u the parent of v and v a child of u. We assume
that every node v except the root has the unique parent. The size of T is denoted
by |T | = |V (T)| = n. We say that nodes u and v are siblings each other if they
have the same parent. For each node v, we denote the unique parent of v by
pa(v), and the set of all children of a node u by Ch(v) = { w ∈ V | (v, w) ∈ E }.

We define the ancestor-descendant relation + as follows: For any pair of nodes
u and v ∈ V , if there is a sequence of nodes π = (v0 = u, v1, · · · , vk = v) (k ≥ 0),
where (vi−1, vi) ∈ E for every i = 1 . . . k, then we define u + v, and say that u
is an ancestor of v, or v is a descendant of u. If u + v but u 	= v, then and u is
a proper ancestor of v, denoted by u ≺ v. , or v is a proper descendant of u. For
any node v, we denote by T (v) the set of all descendants of v in T .

DFS-Numbering. In this paper, we regard an input tree T of size n ≥ 0 as
an ordered tree as follows. We first assume an arbitrary fixed ordering among
siblings. Then, we number all nodes of T from 1 to n by the DFS-numbering ,
which is the preorder numbering in the depth-first search [4] on nodes in T . In
what follows, we identify the node and the associated node number, and thus,
write V = {1, · · · , n}. Thus, we can write u ≤ v (resp. or u < v) if the numbering
of u is smaller or equal to (resp. smaller than) that of v. As a basic property of
a DFS-numbering, we have the next lemma.

Lemma 1. For any u, v ∈ V , the DFS-numbering on T satisfies the following
properties (i), (ii), and (iii):

(i) If v is a proper descendant of u, i.e., u ≺ v, then u < v holds.
(ii) If v is a properly younger sibling of u, then u < v holds.
(iii) Suppose that x 	+ y and y 	+ x. For any nodes x′, y′ such that x′ , x and

y′ , y, x < y implies that x′ < y′.

The Family of k-Subtrees. Let 1 ≤ k ≤ n = |T |. A k-subtree in a tree T
is a connected and acyclic subgraph of T , as an undirected graph, consisting of
exactly k nodes. Since T is a tree, any connected subgraph is obviously acyclic,
and thus, it is completely specified by its node set. Therefore, if it is clearly
understood, we often identify a connected node set S such that |S| = k with the
k-subtree, where S is connected if its induced subgraph T (S) is connected. In
what follows, we denote by Sk = Sk(T) the family of all k-subtrees of T .

For a k-subtree S in T , we denote by root(S) and L(S) the root and the set
of leaves of S, respectively. The border set is the set B(S) = Ch(S) \ S = { y ∈
Ch(x) |x ∈ S, y /∈ S } that consists of all nodes lying immediately outside of
S. L(S) and B(S) are anti-chain of nodes in T w.r.t. the ancestor-descendant
relation +. We define the interior and exterior of S, respectively, by Int(S) =
S \L(S) and Ext(S) = T (root(S)) \ (S ∪B(S)). We can easily see that interior,
leaves, border, and exterior are mutually disjoint subsets of T (root(S)). For a
subset A ⊆ S, we define the head and the tail of S by the elements min(A)
and max(A), respectively. We define the weight of a k-subtree S by the sum

350 K. Wasa et al.

w(S) =
∑

v∈V (S) v, of the DFS numbers of the nodes in S, where w is bounded

from below by wmin = 1
2k(k + 1) ≥ 0.

Next, we introduce a class of subtrees in special form, called serial trees as
follows. Let S be any k-subtree. Then, S is serial if it is serial in their shape,
that is, whose nodes are consecutively numbered from its root r to the rightmost
leaf r + k − 1, and thus, denoted by sertree(v, k) = { r + i | i = 0, . . . , k − 1 }. S
is non-serial if it is not serial.

Lemma 2 (DFS-numbering lemma). For any k-subtree S in T , then

(a) If S is non-serial, then there is some min(S) < v < max(S) such that
v ∈ B(S).

(b) If S is non-serial, then B(S) 	= ∅ and min(B(S)) < max(L(S)) hold.
(c) If S is serial and B(S) 	= ∅, then max(L(S)) < min(B(S)) holds.

Proof. (a) If S is non-serial, then there is some v ∈ V (T)\S such that min(S) <
v < max(S). We can find some v′ ∈ B(S) such that min(S) < v′ < max(S)
and v′ is an ancestor of v. Furthermore, if we take the smallest such v, then
v′ = min(B(S)). (b) Since max(L(S)) = max(S) holds, the result follows from
Claim (a). (c) If S is serial, there is no border node between min(S) and max(S).
Since any border node is below root(S), it is properly larger than max(S).

Enumeration Algorithms. We introduce terminology for enumeration al-
gorithms according to Goldberg [7] and Uno [12]. An enumeration algorithm for
an enumeration problem Π is an algorithm A that receives an instance I and
outputs all solutions S in the answer set S(I) into a write-only output stream
O without duplicates. Let n = ||I||, m = |S(I)| be the input and the output size
on I. We say that A is of amortized constant time if the total running time of
A for computing all solutions on I is linear in m. For a polynomial p(·), A is
of constant delay using preprocessing p(n) if the delay, which is the maximum
computation time between two consecutive outputs, is bounded by a constant
c(n) after preprocessing in p(n) time. As a computation model, we adopt the
usual RAM [4]. Now, we state our problem below.

Problem 1 (k-subtree enumeration in a tree). Given an input tree T and an
integer k, enumerate all the k-subtrees of T .

This problem is a special case of the k-subtree problem, studied by Ferreira,
Grossi, and Rizzi [6], where an input graph is a tree. They showed an efficient
enumeration algorithm that lists all k-subtrees in O(k) amortized time per sub-
tree for a general class of undirected graphs. Therefore, our goal is to devise an
efficient algorithm that lists all k-subtrees in O(1) worst-case time per subtree.

3 The Parent-Child Relationship among k-Subtrees

3.1 Basic Idea: A Family Tree

Our algorithm is designed based on reverse search technique by Avis and Fukuda
[3]. In the reverse search technique, we define a tree-shaped search route on

Constant Time Enumeration of Bounded-Size Subtrees in Trees 351

12

1

2

3

7

8

9

4

6

10 115

12

1

2

3

7

8

9

4

6

10 115

12

1

2

3

7

8

9

4

6

10 115

12

1

2

3

7

8

9

4

6

10 115

12

1

2

3

7

8

9

4

6

10 115

12

1

2

3

7

8

9

4

6

10 115

12

1

2

3

7

8

9

4

6

10 115

12

1

2

3

7

8

9

4

6

10 115

12

1

2

3

7

8

9

4

6

10 115

12

1

2

3

7

8

9

4

6

10 115

12

1

2

3

7

8

9

4

6

10 115

12

1

2

3

7

8

9

4

6

10 115

12

1

2

3

7

8

9

4

6

10 115
12

1

2

3

7

8

9

4

6

10 115

12

1

2

3

7

8

9

4

6

10 115

12

1

2

3

7

8

9

4

6

10 115

12

1

2

3

7

8

9

4

6

10 115

12

1

2

3

7

8

9

4

6

10 115

12

1

2

3

7

8

9

4

6

10 115Sub-initial tree

Initial tree

Sub-initial tree

Sub-initial tree

S18

S17S16

S15

S14S13

S12
S11

S10

S9

S8

S7

S19

S6

S5

S4

S3

S2

S1

Subtrees rooted at 2

Subtrees rooted at 1 Subtree rooted at 8

Subtrees rooted at 7

Fig. 1. A family tree for all of nineteen k-subtrees of an input tree T1 of size n = 11,
where k = 4. In this figure, each set of nodes surrounded by a dotted circle indicates
a k-subtree, and each arrow (resp. dashed arrow) indicates the parent-child relation
defined by the parent function P1 of type I (resp. P2 of type II). We observe that the
arrows among each set of subtrees in a large circle indicates a sub-family tree of type I,
and the dotted arrows among the set of the initial and sub-initial k-subtrees form the
unique sub-family tree of type II.

solutions, called a family tree. Let T = (V (T), E(T), root(T) = 1) be an input
tree on V (T) = {1, . . . , n} with DFS-numbering, and let k ≥ 1 be any positive
integer.

A family tree for the class Sk (T) of all k-subtrees in T is a spanning tree
Fk(T) = (Sk (T),Pk, Ik(T)) over Sk (T) as node set. Given a family tree Fk,
we can enumerate all solutions using backtracking starting from the root Ik.
In what follows, we omit the subscript k and T , and thus write F or F (T) for
Fk(T) if it is clear from context.

In the family tree, its root node is given by the unique serial tree I (T) =
sertree(1, k), called the initial tree, whose node set ranges from 1 to k. The
collection of reverse edges is given by a function P : S (T) \ {I} → S (T), called
the parent function, that assigns the unique parent P (S) to each child k-subtree
S except the initial tree. Precise definitions of I and P will be given later.

Example 1. In Fig. 1, we show an example of a family tree for all of nineteen
k-subtrees of an input tree T1 of size n = 11, where k = 4.

A basic idea of our algorithm is to partition the search space S (T) into almost
mutually disjoint subspaces S (T) = (∪r∈V (T)S1(T, r)) ∪ S2(T), where elements
in collections S1(T, r) and S2(T) are called k-subtrees of type I and type II ,
respectively. Then, we can separately build family trees for each collections of
k-subtrees.

More precisely, as we will see later, for any node r of T , called a subroot ,
the collection S1(T, r) consists of all k-subtrees S whose root is r. We refer to

352 K. Wasa et al.

such k-subtrees as r-rooted k-subtrees. For the collection S1(T, r), we can define
a sub-family tree, denoted by F1(T, r) = (S 1(T, r),P1, I1(T, r)), which will be
given by introducing the parent function P1 for non-serial subtrees in Sec. 3.3.
Interestingly, the initial tree I1(T, r) of this collection, called the sub-initial tree,
is naturally determined to be the serial k-subtree rooted at r by the property of
P1 to be shown in Lemma 5 of Sec. 3.3. On the other hand, the collection S2(T)
of type II consists of the sub-initial trees of all collections ∪r S1(T, r) of type I,
which actually are all serial k-subtrees in T . Then, the unique sub-family tree,
denote by F2(T) = (S 2(T),P2, I2(T)), for collection S 2(T) will be given by the
parent function P2 for serial subtrees in Sec. 3.4.

3.2 Traversing k-Subtrees

We efficiently traverse between two k-subtrees, R and S ∈ Sk(T). Suppose we
are to visit S from R. Then, we first delete a leaf 	 ∈ L(R) from R, and next,
add a border node β ∈ B(R) to R. Unfortunately, this construction is not always
sound, meaning that, sometimes, a certain combination of 	 and β violates the
connectivity condition on S. The next technical lemma precisely describes when
this degenerate case happens and how to avoid it.

Lemma 3 (connectivity). Let R be any k-subtree R of size k ≥ 2. Suppose
that 	 ∈ R and β 	∈ R are any nodes of T that are properly below root(R). Then,
the set S = (R \ {	})∪ {β} is k-subtree iff 	 ∈ L(R), β ∈ B(R), and β 	∈ Ch().

Then, the next technical lemma is useful in showing identity.

Lemma 4 (identity). Let R and S ⊆ V (T) be two k-subtrees. If we take S =

(R \ {	})∪ {β} and R̂ = (S \ {β̂})∪{	̂} for some nodes 	 ∈ R, β 	∈ R, 	̂ 	∈ S, and

β̂ ∈ S, then we have that R = R̂ holds iff 	 = 	̂ and β = β̂ hold.

3.3 A Sub-family Tree for k-Subtrees of Type I

Firstly, for each subroot r ∈ V (T), we describe how to build a sub-family tree
F1(T, r) for the subspace S1(T, r) of all r-rooted k-subtrees of type I. Sup-
pose that |T (r)| ≥ k. Then, the corresponding sub-family tree F1(T, r) =
(S 1(T, r),P1, I1) is given as follows. The node set is the collection S 1(T, r).
The sub-initial tree I1 = I1(T, r) is given as a serial tree containing r as its
root. Actually, such a serial tree is uniquely determined by the k-subtree I1

consisting of k nodes { r + i | i = 0, . . . , k − 1 }.
Next, we give the parent function P1 from S 1(T, r) \ {I1} to S1(T, r) as

follows.

Definition 1 (the parent of k-subtree of type I). Let S ∈ S 1(T, r) \ {I1}
be any non-serial k-subtree rooted at r ∈ V . Then, the parent of S is the k-
subtree P1(S) = (S \ {	}) ∪ {β} obtained from S by deleting a node 	 ∈ L(S)
and adding a node β ∈ B(S) satisfying the conditions that 	 = max(L(S)) and
β = min(B(S)). Then, we say that S is a type-I child of P1(S).

Constant Time Enumeration of Bounded-Size Subtrees in Trees 353

Table 1. Change of the membership of nodes w.r.t. P1 and Child1 operations, where
I,L, B and E are regions of k-subtree S, called interior, leaves, border, and exterior,
respectively. In this figure, the leaf �∗ (resp. the border node β) in R corresponds to
the border node β (resp. the leaf �) in S.

(a) From child S to parent R via P1,
where �∗ is removed and β∗ is added.

node R S

pa(β∗) L I

β∗ B L

Ch(β∗) E B

node R S

pa(�∗) I L

�∗ L B

Ch(�∗) B E

(b) From parent R to child S via Child1,
where � is removed and β is added.

node R S

pa(�) I L

� L B

Ch(�) B E

node R S

pa(β) L I

β B L

Ch(β) E B

Lemma 5. If S ∈ S 1(T, r) \ {I1}, then P1(S) is uniquely determined, and a
well-defined k-subtree of T . Furthermore, w(P1(S)) < w(S) holds.

Proof. Since S is non-serial, β < 	 from Lemma 2. We have β 	∈ Ch() because if
we assume that β ∈ Ch() then 	 < β from Lemma 1, and thus the contradiction
is derived. It immediately follows from (iii) of Lemma 3 that P1(S) is connected.
Since β < 	 again, we have w(P1(S)) = w(S)− 	 + β < w(S).

From Lemma 5, it is natural to have I1(T, r) as the sub-initial tree of S 1(T, r).
The next lemma describes what happens when we apply P1 to S.

Lemma 6 (update of lists). Let S be any non-serial k-subtree and R = P1(S).
Then, (1) S and R satisfy the conditions in Table 1 (a) before and after applica-
tion of P1. (2) The second maximum element in L(S) becomes max(L(R)). (3)
The second minimum element in B(S) becomes min(B(R)).

For example, in Fig. 1, we observe that subtree S6 is the parent of S7 of type I
since the maximum leaf is 	 = 8 and the minimum border node is β = 3, where
L(S7) = {2, 8} and B(S7) = {3, 4, 9, 10, 11, 12}.

3.4 A Sub-family Tree for k-Subtrees of Type II

To enumerate the whole S (T), it is sufficient to compute the r-rooted k-serial tree
I1(T, r) for each possible subroot r in T , and then to enumerate S1(T, r) starting
from I1(T, r). We see, however, that this approach is difficult to implement in
constant delay because it is impossible to compute I1(T, r) from scratch in the
constant time. To overcome this difficulty, we want to directly build a sub-family
tree F2(T) of a collection S2(T) of all sub-initial trees for collections ∪r S 1(T, r).

The sub-family tree is given by F2(T) = (S 2(T),P2, I2), where S 2(T) is the
collection, I2(T) = sertree(1, k) is the initial tree that is the unique serial tree
with root 1, and P2 is the parent function from S 2(T, r)\{I2} to S2(T, r). Then,
we define function P2 as follows.

Definition 2 (the parent of k-subtree of type II). Let S be any serial
k-subtree other than I2. Then, the parent of S is the k-subtree P2(S) = (S \
{	})∪{β} obtained from S by deleting the node 	 = max(L(S)) and adding the
node β = pa(root(S)). Then, we say that S is a type-II child of P2(S).

354 K. Wasa et al.

Lemma 7. If S ∈ S2(T) \ {I2}, then P2(S) is uniquely determined, and a
well-defined k-subtree of T . Furthermore, w(P2(S)) < w(S) holds.

Proof. If S is not the initial tree, β is always defined. Since 	 is a leaf of S, (i) of
Lemma 3 shows that S′ = (S \ {β}) is connected. Since β is adjacent to root(S),
clearly, P2(S) = (S′ ∪ {	}) is also connected. Since β < v for any node v in S,
we have w(P2(S)) = w(S)− 	+ β < w(S).

For example, in Fig. 1, we observe that subtree S8 is the parent of S9 of type II
since the max. leaf is 	 = 10 and the parent of the root is β = 1, where L(S9) =
{9, 10} and B(S9) = {11, 12}.

3.5 Putting Them together

Now, we define the master family tree F (T) = (Sk (T),Pk, Ik), for the class
Sk (T) of all k-subtrees in an input tree T . Let the master initial tree Ik be the
initial tree I2, and let the master parent function P be the union of two parent
functions P1 and P2 defined in the previous subsections.

Theorem 1. The master family tree F (T) forms a spanning tree over S (T).

Proof. Suppose that starting from any S ∈ Sk (T), we repeatedly apply the par-
ent function Pk to S. Then, we have a sequence of k-subtrees S0(= S), S1, . . . , Si,
. . ., where i ≥ 0. From Lemma 5 and Lemma 7, the corresponding properly de-
creasing sequence of w(S0) > w(S1) > · · · > w(Si) > · · · has at most finite
length since w(Si) ≥ 0. Since any subtree other than Ik has the unique parent,
the above sequence of k-subtrees eventually reaches the master subtree Ik in
finite time.

For example, in Fig. 1, we see that the family tree F (T1) is a spanning tree
on S (T1) rooted at Ik = S1. From Theorem 1 above, we can enumerate all k-
subtrees in Sk starting from S1 by depth-first search on Fk using backtracking.

4 The Constant Delay Enumeration Algorithm

In this section, we present an efficient backtracking algorithm that enumerates
all k-subtrees of an input tree T in O(1) delay using O(n) preprocessing. The
remaining task is to invert the reverse edges in P to compute the children from
a given parent. We describe this process according to the types of a child S.

4.1 Generation of Non-serial k-Subtrees

We first consider the case that a child S is non-serial (Type I). In our algorithm,
we keep these nodes as pointers to nodes in the implementation.

Definition 3. We define the candidate sets DelList(R) and AddList(R) for delet-
ing nodes 	 and adding nodes β, respectively, as follows: DelList(R) = {	 ∈
L(R) | 	 < max(B(R))}, AddList(R) = {β ∈ B(R) | β > min(L(R))}.

Constant Time Enumeration of Bounded-Size Subtrees in Trees 355

Definition 4 (child generation of type I). Given a k-subtree R in T , we
define the k-subtree Child1(R, 	, β) = (R \ {	}) ∪ {β} for (i) any 	 ∈ DelList(R)
and (ii) any β ∈ AddList(R) such that (iii) β is not a child of 	.

The next lemma describes what happens when we apply Child1 to R.

Lemma 8 (update of lists). Let R be any k-subtree and S = Child1(R, 	, β)
be defined, where a leaf 	 ∈ DelList(R) is removed from and a border node β ∈
AddList(R) is added to R. Then, (1) R and S satisfy the conditions in Table 1 (b)
before and after application of Child1. (2) The leaf 	 becomes the minimum border
node in S. (3) The border node β becomes the maximum leaf in S.

Now, we show the correctness of Child1(·) as follows.

Theorem 2 (correctness of Child1). Let R and S be any k-subtree of T and
S be non-serial. Then, (1) R = P1(S), if and only if (2) S = Child1(R, 	, β) for
(i) some 	 ∈ DelList(R) and (ii) some β ∈ AddList(R) such that (iii) β 	∈ Ch().

Proof. Firstly, we can easily obtain a statement that Child1(R, 	, β) is non-serial
from Lemma 2 and Lemma 3. (1) ⇒ (2): Suppose that R = P1(S). Then, R
is obtained from S by removing 	∗ = max(L(S)) and β∗ = min(B(S)). From
Lemma 6, we see that max(L(R)) < 	∗ and β∗ < min(B(R)). If we put β = 	∗
and 	 = β∗, then we can show that β and 	 are a border node and a leaf in R,
respectively, that satisfy the pre-condition of Child1 in Def. 4. Therefore, we can
apply Child1(R, 	, β), and then, we obtain the new child from R by removing 	 =
β∗ and adding β = 	∗ fromR. From Lemma 4, the child is identical to the original
subtree S. (2) ⇒ (1): In this direction, we suppose that S = Child1(R, 	, β) for
some 	 ∈ L(R) and β ∈ B(R) satisfying the conditions (i)–(iii). Then, S is
obtained from R by removing 	 from and adding β to R. From Lemma 8, 	
becomes min(B(R)) and β becomes max(L(R)). Thus, if we put β∗ = 	 and
	∗ = β, then β∗ and 	∗ satisfies the pre-condition of P1 in Def. 1. By applying
Child1(R, 	, β), we obtain S from R by removing 	∗ = β from and adding β∗ = 	
to R. From Lemma 4, the child is identical to the original subtree S. Hence, the
result is proved.

4.2 Generation of Serial k-Subtrees

Next, we consider the special case to generate a serial subtree as a child k-subtree
S of a given parent k-subtree (Type II). A k-subtree R is a pre-serial subtree if
(i) root(R) has only one child v such that |T (v)| ≥ k, and (ii) v satisfies that
R(v) is a serial (k − 1)-subtree of T with root v.

Lemma 9. R is a pre-serial k-subtree of T if and only if root(R) has a sin-
gle child v and the equality max(L(R)) = root(R) + k − 1 = v + k − 2 holds.
Furthermore, we can check this condition in constant time.

Proof. The result follows from that a pre-serial k-subtree is obtained from a
serial (k − 1)-subtree by attaching the new root as the parent of its root.

356 K. Wasa et al.

Algorithm 1. Constant delay enumeration for all k-subtrees in a tree

1: procedure EnumSubTreeMain(T, k)
2: Input: T : a rooted tree of size n, k: size of subtrees (1 ≤ k ≤ n);
3: Number the nodes of T by the DFS-numbering;
4: Compute the initial k-subtree Ik;
5: Update the related lists and pointers;
6: EnumSubTreeRec(Ik, T, k);

7: procedure EnumSubTreeRec(S,T, k)
8: Print S;
9: for each � ∈ DelList(S) do // See Sec. 4.1.
10: for each β ∈ AddList(S) such that β �∈ Ch(max(L(S))) do
11: S ← Child1(S, �, β) by updating the related lists and pointers;
12: EnumSubTreeRec(S,T, k);
13: S ← P1(S) by restoring the related lists and pointers;

14: if S is a k-pre-serial tree then // See Sec. 4.2.
15: S ← Child2(S) by updating the related lists and pointers;
16: EnumSubTreeRec(S,T, k);
17: S ← P2(S) by restoring the related lists and pointers;

Definition 5 (child generation of type II). For any pre-serial k-subtree R,
we define S = Child2(R) = (R\{root(R)})∪{β∗(R)}, where β∗(R) = min(B(R)).

Theorem 3 (correctness of Child2). Let R and S be any k-subtrees of T .
Then, the following (1) and (2) hold:

(1) If R is pre-serial, then (i) S = Child2(R) implies (ii) R = P2(S).
(2) If S is serial, then (ii) R = P2(S) implies (i) S = Child2(R).

Proof. From Lemma 2 and Lemma 9, if R is a pre-serial k-subtree, then we have
β∗(R) = max(R) + 1 and Child2(R) is serial. (1) Suppose that S = Child2(R)
with deleting r = root(R) and adding β∗(R). Since r is the root of root(S) and
β∗(R) is the largest node in S, application of P2 to S yields R. (2) Suppose that
R is obtained from S by P2 with adding the parent r′ of root(S) and deleting
β = max(S). Since S is serial, we have max(R) = max(S)− 1 = β − 1 and then
β∗(R) = max(R) + 1 = (β − 1) + 1 = β. Thus, we obtain S if we apply Child2(·)
to R by deleting root(R) and adding β∗(R). This completes the proof.

4.3 The Proposed Algorithm

In Algorithm 1, we present the main procedure EnumSubTreeMain and a sub-
procedure EnumSubTreeRec that enumerates all k-subtrees in an input tree T
of size n in constant delay. Starting from I (T), EnumSubTreeRec recursively
computes all child k-subtrees from its parent by the children generation method
in this section.

To efficiently find deleting nodes 	 in DelList(R) and adding nodes β in
AddList(R) (resp. the parent of root(R)) by Child1 (resp. Child2) that satisfy

Constant Time Enumeration of Bounded-Size Subtrees in Trees 357

the conditions (i)–(iii) of Def. 4 (resp. Def. 5), EnumSubTreeRec maintains
the lists of nodes L(R) and B(R) in the increasing order of DFS-numbering dur-
ing the computation. This is done by attaching two pointers prev∗ and next∗ to
each node v in T for implementing doubly-linked lists in addition to the standard
pointers in the leftmost child, the rightmost child and right sibling representa-
tion of trees [4]. The algorithm also has two pointers 	̂ and β̂. The pointer 	̂

always points to the maximum leaf of DelList(R) and the pointer β̂ points to the
minimum border node of AddList(R), according to Table 1 (b).

Lemma 10 (time complexity of update). Assuming the above representa-
tion, a data structure for the above lists and pointers can be implemented to run
in O(1) worst case time per update using O(n) time preprocessing on RAM.

Proof. Initialization of the data structure is done in O(n) time by once traversing
an input tree T . At each request for update, we dynamically redirect pointers
prev∗ and next∗ when a single node or a node list is deleted or added to R to

maintain the values of L(S), B(S), 	̂, and β̂ according to Table 1 (b) of Lemma 8
in the case of Child1. We can use a similar procedure to maintain lists and
pointers in the case of Child2. Under this assumption, these operations can be
implemented in the claimed complexity.

We have the main theorem of this paper.

Theorem 4 (constant delay algorithm for k-subtree enumeration).
Given an input rooted tree T of size n, and a positive integer k ≥ 1, Algo-
rithm 1 solves the k-subtree enumeration problem in constant worst-case time
per subtree using O(n) preprocessing and space.

Proof. By the construction of EnumSubTreeRec in Algorithm 1, we observe
that each iteration of recursive call generates at least one solution. To achieve
constant delay enumeration, we need a bit care to represent subtrees and to
perform recursive call. From Lemma 10, each call performs constant number of
update operations when it expand the current subtree to descendants. Therefore
the remaining thing is to estimate the book-keeping on backtrack. This is done
as follows: When a recursive procedure call is made, we apply a constant number
of operations on candidate lists and record them on a stack as in Lemma 10, and
when the procedure comes back to the parent subtree, we apply the inverse of
the recorded operations on the lists in constant time as in Lemma 10 to reclaim
the running state in constant time. To improve the O(d) time output overhead
with backtrack from node v of depth d = O(n) to a shallow ancestor, we use
alternating output technique (see, e.g., Uno [12]) to reduce it to exactly O(1)
time per solution. Combining the above arguments, we proved the theorem.

This result improves on the straightforward application of Ferreira et al’s algo-
rithm [6] with O(k) amortized time per subtree when an input is restricted to
tree.

358 K. Wasa et al.

5 Application to the Graph Motif Problem for Trees

We consider the restricted version of graph motif problem where an input graph
is a tree. Let C be a set of colors. The graph motif problem is the problem of,
given a vertex colored graph G = (V,E) and a multi-set P of colors with total
frequency of colors k, to find a k-subtree S ⊆ V whose multi-set of colors C(S)
is identical to P . We denote by s the number of all k-subtrees in a tree T . From
Theorem 4, we have the following result.

Theorem 5. Given an input tree T of size n, a multi-set P of colors with size
m, and a positive integer k ≥ 1, the graph motif problem for tree is solvable in
O(s+ n+m) total time using O(n) space.

Proof. We use a histgram C : C → N for the frequencies of colors. Initially, the
algorithm sets the counter value to be C[c] ← (−1) ·P [c] for each color in O(|C|)
time, and also setup Algorithm 1 in O(n) time. Then, the algorithm enumerates
all the k-subtrees of T by in O(1) delay. For each enumerated k-subtree S with
removed node 	 (or added node β, resp.), we increment (or decrement, resp.) the
counter value C[c] by one according to the color c of the node. We can detect
the matching of P at some S by testing if all counter values equal zero in O(1)
time with appropriate data structure. Hence, the result is proved.

We can easily show that s = nΘ(k). In the worst case, our algorithm is not faster
than a straightforward exhaustive search algorithm with O(mnk) total time in
asymptotic sense. However, in practice, our algorithm can be faster when the
number s is much smaller than nΘ(k) and k is relatively large.

6 Conclusion

In this paper, we studied the k-subtree enumeration problem in rooted trees.
As a main result, we presented an efficient algorithm. That solve this problem
in constant worst-case time per subtree. We also discussed application to graph
motif problem.

References

1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann (1999)

2. Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient
substructure discovery from large semi-structured data. In: SDM 2002 (2002)

3. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied Mathe-
matics 65, 21–46 (1993)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press (2001)

5. Fellows, M., Fertin, G., Hermelin, D., Vialette, S.: Sharp Tractability Borderlines
for Finding Connected Motifs in Vertex-Colored Graphs. In: Arge, L., Cachin, C.,
Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 340–351.
Springer, Heidelberg (2007)

Constant Time Enumeration of Bounded-Size Subtrees in Trees 359

6. Ferreira, R., Grossi, R., Rizzi, R.: Output-Sensitive Listing of Bounded-Size Trees
in Undirected Graphs. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011.
LNCS, vol. 6942, pp. 275–286. Springer, Heidelberg (2011)

7. Goldberg, L.A.: Polynomial space polynomial delay algorithms for listing families
of graphs. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory
of Computing, STOC 1993, pp. 218–225. ACM, New York (1993)

8. Lacroix, V., Fernandes, C.G., Sagot, M.-F.: Motif search in graphs: Application to
metabolic networks. IEEE/ACM TCBB 3, 360–368 (2006)

9. Sadakane, K., Imai, H.: Fast algorithms for k-word proximity search. IEICE
Trans. Fundam. Electron., Comm., and Comp. E84-A(9), 2311–2318 (2001)

10. Shioura, A., Tamura, A., Uno, T.: An optimal algorithm for scanning all spanning
trees of undirected graphs. SIAM J. Comput. 26(3), 678–692 (1997)

11. Tarjan, R.E., Read, R.C.: Bounds on backtrack algorithms for listing cycles, paths,
and spanning trees. Networks 5(3), 237–252 (1975)

12. Uno, T.: Two general methods to reduce delay and change of enumeration algo-
rithms. Technical Report NII-2003-004E. National Institute of Informatics (2003)

13. Uno, T., Asai, T., Uchida, Y., Arimura, H.: An Efficient Algorithm for Enumerating
Closed Patterns in Transaction Databases. In: Suzuki, E., Arikawa, S. (eds.) DS
2004. LNCS (LNAI), vol. 3245, pp. 16–31. Springer, Heidelberg (2004)

14. Zaki, M.J.: Efficiently mining frequent trees in a forest. In: KDD, pp. 71–80 (2002)

External Memory Soft Heap,

and Hard Heap, a Meldable Priority Queue

Alka Bhushan� and Sajith Gopalan

Department of Computer Science and Engineering,
Indian Institute of Technology Guwahati,

Guwahati-781039, India
{alka,sajith}@iitg.ac.in
http://www.iitg.ac.in

Abstract. An external memory version of soft heap that we call
“External Memory Soft Heap” (EMSH) is presented. It supports Insert,
Findmin, Deletemin and Meld operations and as in soft heap, it guaran-
tees that the number of corrupt elements in it is never more than εN ,
where N is the total number of items inserted in it, and ε is a parameter
of it called the error-rate. For N = O(BmM/2(B+

√
m)), the amortised

I/O complexity of an Insert is O(1
B
logm

1
ε
), where M is the size of the

main memory, B is the size of a disk block and m = M/B. Findmin,
Deletemin and Meld all have non-positive amortised I/O complexities.

When we choose an error rate ε < 1/N , EMSH stays devoid of cor-
rupt nodes, and thus becomes a meldable priority queue that we call
“hard heap”. The amortised I/O complexity of an Insert, in this case,
is O(1

B
logm

N
B
), over a sequence of operations involving N Inserts.

Findmin, Deletemin and Meld all have non-positive amortised I/O com-
plexities. If the inserted keys are all unique, a Delete (by key) operation
can also be performed at an amortised I/O complexity of O(1

B
logm

N
B
).

A balancing operation performed at appropriate intervals on a hard heap
ensures that the number of I/Os performed by a sequence of S operations
on it is O(S

B
+ 1

B

∑S
i=1 logm

Ni
B
), where Ni is the number of elements in

the heap before the ith operation.

Keywords: Data Structure, I/O, External Memory Data Structure,
Priority Queue.

1 Introduction

A priority queue is a data structure used for maintaining a set S of elements,
each with a key drawn from a linearly ordered set K, and typically supports the
following operations:

1. Insert(S, x): Insert element x into S.
2. Findmin(S): Return the element with the smallest key in S.

� Present address: GISE Lab, Department of Computer Science and
Engineering, Indian Institute of Technology Bombay, India-400076.
abhushan@cse.iitb.ac.in

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 360–371, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.iitg.ac.in

External Memory Soft Heap and Hard Heap 361

3. Deletemin(S): Return the element with the smallest key in S and remove
it from S.

4. Delete(S, x): Delete element x from S.

5. Delete(S, k): Delete the element with key k ∈ K from S.

Algorithmic applications of priority queues abound [2,7].
Soft heap is an approximate meldable priority queue devised by Chazelle [5],

and supports Insert, Findmin, Deletemin, Delete, and Meld operations. A soft
heap, may at its discretion, corrupt the keys of some elements in it, by revising
them upwards. A Findmin returns the element with the smallest current key,
which may or may not be corrupt. A soft heap guarantees that the number of
corrupt elements in it is never more than εN , where N is the total number of
items inserted in it, and ε is a parameter of it called the error-rate. A Meld

operation merges two soft heaps into one new soft heap. This data structure
is used in computing minimum spanning trees [6] in the fastest known in-core
algorithm for that problem. Soft heap has also been used for finding exact and
approximate medians and percentiles optimally, and for approximate sorting
[5]. An alternative simpler implementation of soft heap is given by Kaplan and
Zwick [9].

Various external memory models have been used to design algorithms and
data structures intended to work on large data sets that do not fit in the main
memory. We work with the external memory model of Aggarwal and Vitter
[1]. This model defines the following parameters: N is the number of input data
elements,M is the size of the main memory and B is the size of a disk block. It is
assumed that 2B < M < N . In an I/O operation one block of data is transferred
between disk and internal memory. The measure of performance of an algorithm
in this model is the number of I/Os it performs. The number of I/Os needed to
read (write) N contiguous elements from (to) the disk is Scan(N) = Θ(N/B).
The number of I/Os required to sort N items is Sort(N) = Θ(NB logM/B

N
B) [1].

For all realistic values of N , B, and M , Scan(N) < Sort(N) - N . Let m denote
M/B.

I/O efficient priority queues have been reported before [3,8,10]; none of them
is a meldable priority queue. A meldable priority queue (MPQ) is presented in
literature [4] which is an extension of external memory heap (EMH) given in
[8]. The MPQ maintains a sequence of priority queues (EMHs) PQ1, PQ2, . . . ,
PQl. But, MPQ does not follow all characteristics of a priority queues and
differs from the other priority queues in the following ways: (i) the Deletemin

operation performed in MPQ may not return the minimum element because it
always deletes the minimum element from the last EMH (ii) The Meld operation
in MPQ can be performed only on the last two EMHs.

In this paper, we present an external memory version of soft heap that per-
mits batched operations and is called as “External Memory Soft Heap” (EMSH).
As far as we know, this is the first implementation of soft heap on an external
memory model. It supports Insert, Findmin, Deletemin and Meld operations.
Similar to in-core version of soft heap, it guarantees that the number of cor-
rupt elements in it is never more than εN . For N = O(BmM/2(B+

√
m)), the

362 A. Bhushan and S. Gopalan

amortised I/O complexity of an Insert is O(1
B logm

1
ε). Findmin, Deletemin

and Meld all have non-positive amortised I/O complexities. It is not yet clear
to us how EMSH can be used to improve the bound for computing minimum
spanning trees. However, other problems mentioned in [5] (e.g., finding exact
and approximate medians and percentiles optimally, approximate sorting) can
be computed in O(N/B) I/Os using EMSH.

When we choose an error rate ε < 1/N , EMSH stays devoid of corrupt nodes,
and thus becomes a meldable priority queue that we call “hard heap”. The
amortised I/O complexity of an Insert, in this case, is O(1

B logm
N
B). Findmin,

Deletemin and Meld all have non-positive amortised I/O complexities. If the in-
serted keys are all unique, a Delete (by key) operation can also be performed at
an amortised I/O complexity of O(1

B logm
N
B). We also show that a balancing op-

eration performed at appropriate intervals on a hard heap ensures that the num-
ber of I/Os performed by a sequence of S operations is O(S

B + 1
B

∑S
i=1 logm

Ni

B),
where Ni is the number of elements in the heap before the ith operation. Our
heap requires some main memory space to perform the operations in claimed
amortised costs. Even with such restriction, our hard heap can be used for com-
puting water flow across a terrain using the algorithm given in [4] with same
I/O complexity, instead of using the meldable priority queue presented in it.

This paper is organised as follows: Section 2 describes the data structure. The
correctness of the algorithm is proved in Section 3. The amortised I/O analysis
of the algorithm is presented in Section 4. EMSH with ε < 1/N is discussed in
Section 5.

2 The Data Structure

An EMSH consists of a set of trees on disk. The nodes of the trees are classified
as follows: (i) a node without a child is a leaf (ii) a node without a parent is a
root (iii) a node is internal, if it is neither a leaf, nor a root. Every non-leaf in
the tree has at most

√
m children. Nodes hold pointers to their children.

Every node has a rank associated with it at the time of its creation. The
rank of a node never changes. All children of a node of rank k are of rank
k − 1. The rank of a tree T is the rank of T ’s root. The rank of a heap H
is max{rank(T) | T ∈ H}. An EMSH can have at most

√
m − 1 trees of any

particular rank.
Each element held in the data structure has a key drawn from a linearly

ordered set. We will treat an element and its key as indistinguishable. Each
instance of EMSH has an associated error-rate ε > 0. Define r = log√m 1/ε.
Nodes of the EMSH with a rank of at most r are called pnodes (for “pure
nodes”), and nodes with rank greater than r are called cnodes (for “corrupt
nodes”). Each pnode holds an array that contains elements in sorted order. A
tree is a ptree if its rank is at most r, and a ctree otherwise.

We say that a pnode p satisfies the pnode invariant (PNI), if
p is a non-leaf and the array in p contains at most B

√
m and at least

B
√
m/2 elements, or

p is a leaf and the array in p contains at most B
√
m elements.

External Memory Soft Heap and Hard Heap 363

Note that a pnode that satisfies PNI may contain less than B
√
m/2 elements, if

it is a leaf.
Every cnode has an associated doubly linked list of listnodes. A cnode holds

pointers to the first and last listnodes of its list. The size of a list is the number
of listnodes in it. Each listnode holds pointers to the next and previous listnodes
of its list; the next (resp., previous) pointer of a listnode l is null if l is the last
(resp., first) of its list. Each listnode contains at most B

√
m, and unless it is the

last of a list, at least B
√
m/2 elements. The last listnode of a list may contain

less than B
√
m/2 elements.

Let sk be defined as follows:

sk =

⎧⎪⎨⎪⎩
0 if k ≤ r

2 if k = r + 1

� 3
2sk−1 if k > r + 1

We say that a cnode c that is a non-leaf and is of rank k satisfies the cnode
invariant (CNI), if the list of c has a size of at least �sk/2� + 1. A leaf cnode
always satisfies CNI.

Every cnode has a ckey. For an element e belonging to the list of a cnode v,
the ckey of e is the same as the ckey of v; e is called corrupt if its ckey is greater
than its key.

An EMSH is said to satisfy the heap property if the following conditions are
met: For every cnode v of rank greater than r + 1, the ckey of v is smaller than
the ckey of each of v’s children. For every cnode v of rank r+1, the ckey of v is
smaller than each key in each of v’s children. For every pnode v, each key in v
is smaller than each key in each of v’s children.

For each rank i, we maintain a bucket Bi for the roots of rank i. We store the
following information in Bi:

1. the number of roots of rank i in the EMSH; there are at most
√
m− 1 such

roots.
2. pointers to the roots of rank i in the EMSH.

3. if i > r and k = min{ckey(y) | y is a root of rank i}, then all elements of a
listnode of the list associated with the root of rank i, whose ckey value is
k; this listnode will not be the last of the list, unless the list has only one
listnode.

4. if i ≤ r, then the n smallest of all elements in the roots of rank i, for some
n ≤ B

√
m/2

5. a pointer suffixmin[i], defined in the next paragraph.

We define the minkey of a tree as follows: for a ptree T , the minkey of T is
defined as the smallest key in the root of T ; for a ctree T , the minkey of T
is the ckey of the root of T . The minkey of a bucket Bi is the smallest of the
minkeys of the trees of rank i in the EMSH; Bi holds pointers to the roots of
these trees. The suffixmin pointer of Bi points to the bucket with the smallest
minkey among {Bx | x ≥ i}.

364 A. Bhushan and S. Gopalan

For each bucket, we keep the items in 1, 2 and 5 above, and at most a
block of the elements (3 or 4 above) in main memory. When all elements of
the block are deleted by Deletemins, the next block is brought in. The amount
of main memory needed for a bucket is, thus, O(B +

√
m). As we shall show

later, the maximum rank in the data structure, and so the number of buck-
ets is O(log√m(N/B)). Therefore, if N = O(BmM/2(B+

√
m)) the main memory

suffices for all the buckets. (See Subsection 2.1).
We do not keep duplicates of elements. All elements and listnodes that are

taken into the buckets are physically removed from the respective roots. But
these elements and listnodes are still thought of as belonging to their original
positions.

A bucket Bi becomes empty, when all the elements in it have been deleted.

2.1 The Operations

In this section we discuss the Insert, Deletemin, Findmin, Meld, Sift and
Fill-Up operations on EMSH. The first four are the basic operations. The last
two are auxiliary. The Sift operation is invoked only on non-leaf nodes that
fail to satisfy the pnode-invariant (PNI) or cnode-invariant (CNI), whichever is
relevant. When the invocation returns, the node will satisfy the invariant. Note
that PNI applies to pnodes and CNI applies to cnodes. Fill-Up is invoked by
the other operations on a bucket when they find it empty.

Insert. For each heap, a buffer of size B
√
m is maintained in the main memory.

If an element e is to be inserted into heap H , store it in the buffer of H . The
buffer stores its elements in sorted order of key values. If the buffer is full (that
is, e is the B

√
m-th element of the buffer), create a new node x of rank 0, and

copy all elements in the buffer into it. The buffer is now empty. Create a tree T
of rank 0 with x as its only node. Clearly, x is a root as well as a leaf. Construct
a new heap H ′ with T as its sole tree. Create a bucket B0 for H ′, set the number
of trees in it to 1, and include a pointer to T in it. Invoke Meld operation on H
and H ′.

Deletemin. A Deletemin operation is to delete and return an element with the
smallest key in the EMSH. The pointer suffixmin[0] points to the bucket with the
smallest minkey. A Deletemin proceeds as in Algorithm 1. Note that if after a
Deletemin, a root fails to satisfy the relevant invariant, then a Sift is not called
immediately. We wait till the next Fill-Up or Meld. (While deletions happen in
buckets, they are counted against the root from which the deleted elements were
taken. Therefore, a deletion can cause the corresponding non-leaf root node of
rank less than r (more than r) to fail the relevant invariant by having less than
B
√
m/2 elements (list of size less than �sk/2�+ 1)).

Recall that we keep at most a block of B[i]’s elements in main memory. When
all elements of the block are deleted by Deletemin operations, the next block is
brought in.

External Memory Soft Heap and Hard Heap 365

Algorithm 1. Deletemin

Let Bi be the bucket pointed by suffixmin[0];
let e be the smallest element in the insert buffer;
if the key of e is smaller than the minkey of Bi then

delete e from the insert buffer, and
return e;

end if
if i ≤ r then

let e be the element with the smallest key in bucket Bi (every tree in the EMSH
has a minkey not smaller than the key of e);
delete e from Bi;
if Bi is not empty, then

update its minkey value;
end if

else
let x be the root of the tree T that lends its minkey to Bi (the ckey of x is less
than or equal to all keys in the pnodes and all ckeys);
Bi holds elements from a listnode l of x;
let e be an element from l; delete e from l;

end if
if Bi is empty then

fill it up with an invocation to Fill-Up(), and update Bi’s minkey value;
end if
update the suffixmin pointers of buckets Bi, . . . , B0;
return e;

Findmin. A Findmin returns the same element that a Deletemin would. But
the element is not deleted from the EMSH. Therefore, a Findmin does not need
to perform any of the updates that a Deletemin has to perform on the data
structure.

As it is an in-core operation, a Findmin does not incur any I/O.

Meld. In the Meld operation, two heaps H1 and H2 are to be merged into a new
heap H . It is assumed that the buckets of the two heaps remain in the main
memory.

Combine the input buffers of H1 and H2. If the total number of elements
exceeds B

√
m, then create a new node x of rank 0, move B

√
m elements from

the buffer into it, leaving the rest behind, create a tree T of rank 0 with x as its
only node, create a bucket B′

0, set the number of trees in it to 1, and include a
pointer to T in it.

Let B1,i (resp., B2,i) be the i-th bucket of H1 (resp., H2). Let max denote the
largest rank in the two heaps H1 and H2. The Meld is analogous to the summa-
tion of two

√
m-radix numbers of max digits. At position i, buckets B1,i and B2,i

are the “digits”; there could also be a “carry-in” bucket B′
i. The “summing” at

position i produces a new B1,i and a “carry-out” B′
i+1. B

′
0 will function as the

“carry in” for position 0.

366 A. Bhushan and S. Gopalan

The Meld proceeds as in Algorithm 2.

Sift. The Sift operation is invoked only on non-leaf nodes that fail to satisfy
PNI or CNI, whichever is relevant. When the invocation returns, the node will
satisfy the invariant. We shall use in the below a procedure called extract that
is to be invoked only on cnodes of rank r + 1, and pnodes, and is defined in
Algorithm 3.

Suppose Sift is invoked on a node x. This invocation could be recursive, or
from Meld or Fill-Up. Meld and Fill-Up invoke Sift only on roots. Recursive
invocations of Sift proceed top-down; thus, any recursive invocation of Sift on
x must be from the parent of x. Also, as can be seen from the below, as soon
as a non-root fails its relevant invariant (PNI or CNI), Sift is invoked on it.
Therefore, at the beginning of a Sift on x, each child of x must satisfy PNI or
CNI, as is relevant.

If x is a pnode (and thus, PNI is the invariant violated), then x contains less
than B

√
m/2 elements. Each child of x satisfies PNI, and therefore has, unless

it is a leaf, at least B
√
m/2 elements. Invoke extract(x). This can be done in

O(
√
m) I/Os by performing a

√
m-way merge of x’s children’s arrays. For each

non-leaf child y of x that now violates PNI, recursively invoke Sift(y). Now the
size of x is in the range [B

√
m/2, B

√
m], unless all of x’s children are empty

leaves.
If x is a cnode of rank r+1, then CNI is the invariant violated. The children

of x are of rank r, and are thus pnodes. There are two possibilities: (A) This
Sift was invoked from a Fill-Up or Meld, and thus x has one listnode l left
in it. (B) This Sift was invoked recursively, and thus x has no listnode left in
it. In either case, to begin with, invoke extract(x), and invoke Sift(y) for each
non-leaf child y of x that now violates PNI. The number of elements gathered
in x is B

√
m/2, unless all of x’s children are now empty leaves.

Suppose case (A) holds. Create a new listnode l′, and store in l′ the elements
just extracted into x. If l′ has a size of B

√
m/2, insert l′ at the front of x’s list;

else if l and l′ together have at most B
√
m/2 elements, then merge l′ into l; else,

append l′ at the end of the list, and transfer enough elements from l′ to l so that
l has a size of B

√
m/2.

If case (B) holds, then if x has nonempty children, once again, extract(x),
and invoke Sift(y) for each non-leaf child y of x that now violates PNI. The
total number of elements gathered in x now is B

√
m, unless all of x’s children

are empty leaves. If the number of elements gathered is at most B
√
m/2, then

create a listnode, store the elements in it, and make it the sole member of x’s
list; otherwise, create two listnodes, insert them into the list of x, store B

√
m/2

elements in the first, and the rest in the second.
In both the cases, update the ckey of x so that it will be the largest of all keys

now present in x’s list.
If x is a cnode of rank greater than r+1, then while the size of x is less

than sk, and not all children of x hold empty lists, do the following repeatedly:
(i) pick the child y of x with the smallest ckey, (ii) remove the last listnode of
x and merge it with the last listnode y, if they together have at most B

√
m

External Memory Soft Heap and Hard Heap 367

Algorithm 2. Meld

for i = 0 to max+1 do
if only one of B1,i, B2,i and B′

i exists then
that bucket becomes B1,i; Fill-Up that bucket, if B1,i is empty ;
there is no carry-out;

else
if i ≤ r then

if B1,i (resp., B2,i) contains elements then
send the elements of B1,i (resp., B2,i) back to the roots from which they
were taken;
for each root x pointed by B1,i or B2,i do

if x does not satisfy PNI, invoke Sift(x);
end for

end if
else

if B1,i (resp., B2,i) and the last listnode l1 (resp., l2) of the root x1 (resp.,
x2) with the smallest ckey in B1,i (resp., B2,i) have sizes < B

√
m/2 each,

then
merge the elements in B1,i (resp., B2,i) into l1 (resp., l2);

else
store the elements in B1,i (resp., B2,i) in a new listnode l and insert l into
the list of x1 (resp., x2) so that all but the last listnode will have≥ B

√
m/2

elements;
if x1 (resp., x2) does not satisfy CNI, then Sift it;

end if
end if

end if
if the total number of root-pointers in B1,i, B2,i and B′

i is <
√
m then

move all root-pointers to B1,i; Fill-Up B1,i;
delete B2,i and B′

i; There is no carry-out;
else

create a tree-node x of rank i+ 1;
pool the root-pointers in B1,i, B2,i and B′

i;
take

√
m of those roots and make them children of x; Sift(x);

create a carry-out bucket B′
i+1;

place in it a pointer to x; this is to be the only root-pointer of B′
i+1;

move the remaining root-pointers into B1,i; Fill-Up B1,i;
delete B2,i and B′

i;
end if

end for
update the suffixmin pointers;

Algorithm 3. Extract

extract(x)
begin
let Nx be the total number of elements in all the children of x
put together; extract the smallest min{B

√
m/2, Nx} of those elements and store

them in x;
end

368 A. Bhushan and S. Gopalan

Algorithm 4. Fill-Up

if i ≤ r then
for each root x in Bi that does not satisfy PNI do

Sift(x);
end for
Let Ni be the total number of elements in all the roots of Bi put together;
extract the smallest min{B

√
m/2, Ni} of those and store them in Bi;

else
for each root x in Bi that does not satisfy CNI do

Sift(x);
end for
pick the root y with the smallest ckey in Bi;
copy the contents of one listnode l of y’s list (not the last one) into Bi;
remove l from the list of y.

end if

elements, (iii) merge the resultant list of y to the resultant list of x such that all
but the last listnode will have at least B

√
m/2 elements, (iv) set the ckey of x

to the ckey of y, and (v) invoke Sift(y) recursively. If merging of two list nodes
(step ii) is not required, then the concatenation merely updates O(1) pointers.
Merging, when it is needed, incurs O(

√
m) I/Os.

The Sift operation removes all leaves it renders empty. An internal node
becomes a leaf, when all its children are removed.

Fill-Up. The Fill-Up operation is invoked by Deletemin and Meld on a bucket
Bi when those operations find Bi empty. Bi is filled up using the Algorithm 4.

A bucket remembers, for each element e in it, the root from which e was
extracted. This is useful when the Meld operation sends the elements in the
bucket back to their respective nodes.

Even if a Fill-Up moves all elements of a root x without children into the
bucket, x is retained until all its elements are deleted from the bucket. (A minor
point: For i ≤ r, if the roots in the bucket all have sent up all their elements into
the bucket, are without children, and have at most B

√
m/2 elements together,

then all of them except one can be deleted at the time of the Fill-Up.)

The Memory Requirement. The following lemma establishes the largest rank
that can be present in a heap. The proof is by induction on k and is omitted
due to lack of space.

Lemma 1. There are at most N

B
√
mk+1 tree-nodes of rank k when N elements

have been inserted into it.

Therefore, if there is at least one node of rank k in the heap, then N

B
√
mk+1 ≥ 1,

and so k ≤ log√m
N
B . Thus, the rank of the EMSH is at most log√m

N
B . Note

that there can be at most
√
m− 1 trees of the same rank.

External Memory Soft Heap and Hard Heap 369

The main memory space required for a bucket is O(B +
√
m). So, the total

space required for all the buckets is O((B +
√
m) log√m

N
B). We can store all

buckets in main memory, if we assume that (B +
√
m) log√m

N
B = O(M). This

assumption is valid for all values of N = O(BmM/2(B+
√
m)). Assume the modest

values forM and B given in [12]: Then, if N < 10900, which is practically always,
the buckets will all fit in the main memory.

3 A Proof of Correctness

If the heap order property is satisfied at every node in the EMSH before an
invocation of Sift(x), then it will be satisfied after the invocation returns too.
This can be easily shown and details are omitted due to lack of space.

In every other operation of the EMSH, all data movements between nodes are
achieved through Sifts. Thus, they too cannot violate the heap order property.

When we note that a Fill-Up on a bucket Bi moves into it a set of elements
with smallest keys or the smallest ckey from its roots, and that the suffixmin
pointer of B0 points to the bucket with the smallest minkey among {Bx | x ≥ 0},
we have the following Lemma.

Lemma 2. If there is no cnode in the EMSH, then the element returned by
Deletemin will be the one with the smallest key in the EMSH. If there are cnodes,
and if the returned element is corrupt (respectively, not corrupt), then its ckey
(respectively, key) will be the smallest of all keys in the pnodes and ckeys of the
EMSH.

For all k > r, and for every nonleaf x of rank k that satisfies CNI, the size of
the list in x is at least �sk/2� + 1. For a root x of rank k > r, when the size
of its list falls below �sk/2�+ 1, Sift(x) is not invoked until at least the next
invocation of Fill-Up or Meld.

The following lemmas give an upperbound on the size of the list. Due to lack
of space, their proofs are omitted.

Lemma 3. For all k > r, and for every node x of rank k, the size of the list in
x is at most 3sk.

Lemma 4. For all values of k > r,(
3

2

)k−r−1

≤ sk ≤ 2

(
3

2

)k−r

− 1

Using Lemmas 1, 3 and 4, we can prove the following lemma which gives an
upperbound on number of corrupted elements at any point of time in an EMSH.

Lemma 5. If m > 110, at any time there are at most εN corrupt elements in
the EMSH, where N is the total number of insertions performed.

370 A. Bhushan and S. Gopalan

4 An Amortised I/O Analysis

The amortised complexity of each operation is given in the the following lemma.
Due to lack of space, the proof is omitted here.

Lemma 6. In EMSH, the amortised complexity of an Insert is O(1
B logm

1
ε).

Findmin, Deletemin and Meld all have non-positive amortised complexities.

5 Hard Heap: A Meldable Priority Queue

When an EMSH has error-rate ε = 1/(N+1), no element in it can be corrupt. In
this case, EMSH becomes an exact priority queue, which we call hard heap. In it
every node is a pnode, and every tree is a ptree. Deletemins always report the
exact minimum in the hard heap. The height of each tree is O(logm

N
B), as before.

But, since all nodes are pnodes, the amortised cost of an insertion is O(1
B logm

N
B)

I/Os. The amortised costs of all other operations remain unchanged. The absence
of corrupt nodes will also permit us to implement a Delete operation in a similar
manner as in [3,8,10]. The amortised cost of a Delete is O(1

B logm
N
B) I/Os, the

same as that of an Insert.
The actual cost of a meld of two hard heap’s with N elements each is

O(
√
m logm

N
B) I/Os; the amortised cost of the meld is subzero. But this is

the case only if the buckets of both the heaps are in the main memory. Going
by our earlier analysis in Section 2.1, if N = O(BmM/2k(B+

√
m)) then k heaps

of size N each can keep their buckets in the main memory.
The buckets of the heaps to be melded could be kept in the secondary memory,

and brought into the main memory, and written back either side of the meld.
The cost of this can be accounted by an appropriate scaling of the amortised
complexities. However, operations other than meld can be performed only if the
buckets are in the main memory.

In hard heap, unlike in the other external memory priority queues, elements
move only in the upward direction. That makes hard heap easier to implement.
The external memory heap of [8], used in meldable priority queue [4] is a balanced
heap, and therefore, incurs a balancing cost. But, in it the number of I/Os

performed by a sequence of S operations is O(S
B + 1

B

∑S
i=1 logm

Ni

B), where Ni

is the number of elements remaining in the heap before the i-th operation; this
is helpful when the inserts and deletemins are intermixed so that the number
of elements remaining in the data structure at any time is small.

In comparison, hard heap is not a balanced tree data structure. It does not
use a costly balancing procedure like the heaps of [8,10]. However, for a sequence
of N operations, the amortised cost of each operation is O(1

B logm
N
B) I/Os.

We can make the amortised cost depend on Ni, the number of elements re-
maining in the hard heap before the i-th operation, at the cost of adding a
balancing procedure. In a sequence of operations, whenever NI , the number
of inserts performed, and ND, the number of deletemins performed, satisfy
NI − ND < NI/

√
m, and the height of the hard heap is log√m

NI

B , delete the
remaining NI −ND elements from the hard heap, insert them back in, and set

External Memory Soft Heap and Hard Heap 371

the counts NI and ND to NI −ND and zero respectively; we can think of this
as the end of an epoch and the beginning of the next in the life of the hard
heap. The sequence of operations, thus, is a concatenation of several epochs.
Perform an amortised analysis of each epoch independently. The cost of rein-
sertions can be charged to the elements actually deleted in the previous epoch,
thereby multiplying the amortised cost by a factor of O(1 + 1√

m
). It is easy to

see that now the number of I/Os performed by a sequence of S operations is

O(S
B + 1

B

∑S
i=1 logm

Ni

B).

Number of Comparisons in Heap Sort: To sort, insert the N input el-
ements into an initially empty hard heap, and then perform N deletemins.
When a node of rank 0 is created, O(log2(B

√
m)) comparisons per element

are performed. When an elements moves from a node to its parent, it partici-
pates in a

√
m-way merge; a

√
m-way merge that outputs k elements requires to

perform only O(log2
√
m) comparisons per element. Since the number of levels

in the hard heap is at most log√mN/B
√
m, the total number of comparisons

performed by one element is log2N . Each deletemin operation can cause at
most log√m(N/

√
mB) comparisons among the suffixmin pointers. Thus, the to-

tal number of comparisons is O(N log2N).

References
1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related

problems. Communications of the ACM 31(9), 1116–1127 (1998)
2. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The design and analysis of computer

algorithms, Massachusetts, Addison-Wesley (1974)
3. Arge, L.: The buffer tree: A technique for designing batched external data struc-

tures. Algorithmica 37(1), 1–24 (2003)
4. Arge, L., Revsbaek, M., Zeh, N.: I/O-efficient computation of water flow across a

terrain. In: Proc. 26th ACM Symposium on Computational Geometry, pp. 403–412
(2010)

5. Chazelle, B.: The soft heap: an approximate priority queue with optimal error rate.
Journal of the ACM 47(6), 1012–1027 (2000)

6. Chazelle, B.: A minimum spanning tree algorithm with inverse-Ackermann type
complexity. Journal of the ACM 47(6), 1028–1047 (2000)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, Cambridge (1990)

8. Fadel, R., Jakobsen, K.V., Katajainen, J., Teuhola, J.: Heaps and heapsort on
secondary storage. Theoretical Computer Science 220, 345–362 (1999)

9. Kaplan, H., Zwick, U.: A simpler implementation and analysis of Chazelle’s soft
heaps. In: Proc. 20th ACM -SIAM Symposium on Discrete Algorithms, pp. 477–485
(2009)

10. Kumar, V., Schwabe, E.: Improved algorithms and data structures for solving
graph problems in external memory. In: Proc. 8th IEEE Symp. on Parallel and
Distributed Processing, pp. 169–177 (1996)

11. Meyer, U., Zeh, N.: I/O-Efficient Undirected Shortest Paths. In: Di Battista, G.,
Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 434–445. Springer, Heidelberg
(2003)

12. Mungala, K., Ranade, A.: I/O-complexity of graph algorithms. In: Proc. 10th
ACM-SIAM Symposium on Discrete Algorithms, pp. 687–694 (1999)

Partially Specified Nearest Neighbor Search

Tomas Hruz and Marcel Schöngens

Institute of Theoretical Computer Science, ETH Zurich, Switzerland
{tomas.hruz,schoengens}@inf.ethz.ch

Abstract. We study the Partial Nearest Neighbor Problem that con-
sists in preprocessing n points D from d-dimensional metric space such
that the following query can be answered efficiently: Given a query vector
Q ∈ Rd and an axes-aligned query subspace represented by S ∈ {0, 1}d,
report a point P ∈ D with dS(Q,P) ≤ dS(Q,P ′) for all P ′ ∈ D, where
dS(Q,P) is the distance between Q and P in the subspace S. This prob-
lem is related to similarity search between feature vectors w.r.t. a subset
of features. Thus, the problem is of great practical importance in bioin-
formatics, image recognition, etc., however, due to exponentially many
subspaces, each changing distances significantly, the problem has a con-
siderable complexity. We present the first exact algorithms for �2- and
�∞-metrics with linear space and sub-linear worst-case query time. We
also give a simple approximation algorithm, and show experimentally
that our approach performs well on real world data.

1 Introduction

One of the fundamental problems in the study of index structures is the Nearest
Neighbor (NN) Problem: For a database D that contains n points from a d-
dimensional metric space, build a data structure such that given a query point
Q ∈ Rd, one can efficiently find a point P ∈ D closest to Q. Such a point P is
called closest point or nearest neighbor of Q and closest is meant with respect to
the underlying metric. To stay in a well-studied space, in this paper we consider
the 	2 and 	∞-metric, though the presented approach also works for other 	p-
norms. By d(P,Q) we denote the distance between two points P,Q ∈ Rd, and,
if not stated otherwise, it refers to the 	2-distance. We understand the points in
D as feature representations, or feature vectors, of real world objects. Hence, a
nearest neighbor represents an object similar to the object the query represents.

The Nearest Neighbor Problem has been studied extensively in the last
decades. However, in some important practical applications the problem for-
mulation above is too restrictive in the sense that one is often interested in
finding a point in D that is similar to a query with respect to subset of features.
This leads to the definition of the Partial Nearest Neighbor (PNN) Problem:
Build a data structure such that for a query point Q ∈ Rd together with a
query subspace represented by a vector S ∈ {0, 1}d, one can efficiently find a
point P = (p1, p2, . . . , pd) ∈ D that is closest to Q = (q1, q2, . . . , qd) with re-
spect to the subspace S = (s1, s2, . . . , sd). More formally, in Euclidean space

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 372–383, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Partially Specified Nearest Neighbor Search 373

we search for a point P with dS(P,Q) ≤ dS(P
′, Q) for all P ′ ∈ D where

dS(P,Q) =
(∑d

i=1 si(pi − qi)
2
)1/2

. The subspace represented by S is always

orthogonal to the coordinate axes. The dimension of the subspace is denoted by
w and we may say a query has w relevant dimensions. There are exponentially
many subspaces and in general for each subspace the point distances change sig-
nificantly, which is the main reason for the problem’s complexity. Our approach
considers small to medium feature space, which is supported by our experimental
evaluation that shows good results for up to 64 dimensions (Section 4).

From the application perspective it is often sufficient to find a point in D
that is relatively close to the query point, but not necessarily the closest. This
relaxation is captured by the Approximate Partial Nearest Neighbor (APNN)
Problem in which the objective is to find a point P ∈ D with dS(P,Q) ≤
(1 + γ)dS(P

′, Q) for all P ′ ∈ D and a predefined γ > 0. In the case in which
we restrict ourselves to the full space, that means S = (1, 1, . . .), the problem
specializes to the well-known Approximate Nearest Neighbor Problem [14].

The PNN problem occurs in many application areas such as bioinformatics,
image recognition, business data mining, and many more. A specific example,
which was the motivation to study the problem, is knowledge retrieval in gene
expression databases, in which biologists are interested in finding genes with a
similar response profile to a given gene. In the database, a feature vector repre-
sents a gene and a feature represents the gene’s activity in a certain anatomical
part of the organism like a brain cell, muscle cell, blood cell, etc. The anatomical
parts are organized in classes according to an ontology, in which the number of
classes is the dimension d of the full feature space (see for example [25,13]). The
set of classes according to which the search is made changes dynamically, hence,
this problem is essentially the (A)PNN Problem.

For the classical NN Problem worst-case efficient algorithms have been de-
veloped in the last decades, but they are still missing for the PNN Problem. A
trivial approach is to preprocess a NN data structure for each of the 2d sub-
spaces, such that the query time is the time needed to find the correct NN data
structure plus its query time. This approach has exponential space requirements
which especially unpractical for main memory data structures. We focus on data
structures that have only linear space requirements. Known data structures for
nearest neighbor and range searching were studied assuming constant d, thus
the influence of d on the query time is usually not known but believed to be
exponential. Obtaining good bounds is sophisticated even in the case d = 2
[20]. Hence, in the query time analysis we express the dependence of d as some
unknown function g(d).

Our Results. Space is the most critical resource when dealing with the PNN
problem (even for moderate d ≥ 10). Already for small data sets there is no
chance to deal with the brute force’ exponential overhead in space, which is not
a worst-case but a tight estimate. Consequently, we consider linear space data
structures, which come with a worse but still sub-linear query time.

374 T. Hruz and M. Schöngens

The presented method combines epsilon-nets and range searching data struc-
tures to provide an efficient and simple approach to the PNN problem, leading
to the first linear space algorithm that for the 	2- and 	∞-metric has a guaran-
teed worst-case query time sub-linear in n. This result can easily be extended to
	p-metrics for fixed p.

For the Euclidean metric and a d-dimensional database, we obtain a query
time of O

(
g(d)n1−1/(2d−4)+δ

)
w.h.p., for δ > 0, and d > 3 using O (dn) space

(Lemma 4). On the other hand, the known lower bounds on space decomposition
[23,15] give less hope to obtain fundamentally better exact algorithms.

For the 	∞-metric we obtain an exact algorithm that has O
(
dn1−1/d

)
query

time w.h.p. while using O (dn) space (Lemma 5). The approach is very flexible
and can be adapted to any metric that can be described by a constant number of
bounded degree polynomials (using Lemma 3), which also includes the 	1-metric.

We present a
√
w-approximation algorithm that has the same complexity as

the 	∞-metric case (Lemma 7). This approach is of high practical relevance: An
experimental evaluation shows that it is more than 60 times faster than a linear
scan while the approximation ratio is only 1.2 on average, and the maximal rank
over all queries was always less than 0.025% of the database (Section 4).

2 Related Work

In theory and practice little is known about the PNN Problem, which might
be due to the problem complexity that manifests in an exponential number of
possible subspaces. There are some heuristics for the problem that perform well
on real-world data, but usually they have no sublinear worst-case bound on the
query time, or do not guarantee a good solution quality.

The problem was first considered in a paper by Eastman and Zemankova in
1982 [9] in which KD Trees are used as the data structure of choice. The authors
prove that for uniformly distributed database points under the maximum norm
the expected query time isO

(
dn1−1/d

)
. With the KD tree, our approach achieves

the same result under the maximum norm, but for any point distribution.
A theoretical paper by Andoni et. al. [2] treats a special case of the PNN

problem, namely, the case if all but one feature are specified. The authors study
the problem in high-dimensional space in which the dimension d is not considered
constant. A (1 + γ)-approximation can be obtained in time O

(
d3n0.5+δ

)
using

O
(
d2nc(1/γ2+1/δ2)

)
space for any δ > 0, γ > 0, and a constant c. The result

makes use of the LSH scheme [14], which is a very successful approach for the
classical NN Problem in high-dimensional space. However, the approach has not
been extended to smaller relevant dimensions than w = d − 1. In contrast our
approach works for all w in an axes-parallel setting.

In [5] the authors develop and experimentally examine a heuristic method to
solve the PNN Problem in the 	p-metric using R-trees (resp. R∗-trees). The al-
gorithm uses an ordered active page list (APL) which contains the R-tree nodes
(enclosing rectangles) sorted in ascending order according to the distance be-
tween query and the nearest edge of the enclosing rectangle. This is essentially

Partially Specified Nearest Neighbor Search 375

a min-heap, which is initialized with the tree’s root node. The algorithm itera-
tively pops the first node in the APL and pushes the node’s children into the
APL if their distance to the query is smaller than the current candidate nearest
neighbor. The algorithm provides accurate results and it is fast in many cases
as the experiments in [5] show, however, it cannot provide a worst-case time
complexity better than a linear scan.

A heuristic for partial range searching, which is related to the PNN Problem,
was proposed in [16] in which the authors study partial vector approximation
files (VA-files) [22]. One dimensional VA-files with variable interval distribution
are constructed with the consequence that the variable intervals allow to order
the VA-files according to the so-called sensitivity. The sensitivity is defined as
number of VA interval end-points lying in the search range. It allows to correct
results in many situations. This heuristic has no guarantee on the accuracy of
the results, nor a sublinear worst-case guarantee on the query time.

3 Our Approach

We show that a combination of epsilon-nets and range searching can be used
to obtain the first exact algorithm for the PNN Problem. Furthermore, the
algorithm can be modified such that one obtains better query time for the
APNN Problem. The algorithm is based on the concepts of epsilon-nets and
range spaces: A range space S is a 2-tuple (X ,R), where X is a usually in-
finite set and R is a collection of subsets of X . The elements of X are called
points and the elements of R are called ranges. For example, a range could
be an axes-parallel, in some dimensions unbounded, hyper-rectangle HL,R =
{(x1, x2, . . . , xd) | li ≤ xi ≤ ri}, represented by two vectors L = (l1, l2, . . . , ld)
and R = (r1, r2, . . . , rd), where li, ri ∈ R ∪ {−∞,∞}. Let us denote the set of
all hyper-rectangles by H so that we can specify the range space (Rd,H). To
simplify notation, we always denote a vector from Rd by a capital letter and its
components by the lowercase.

An important measure for the complexity of a range space is its VC-dimension:
A range space (X ,R) has VC-dimension h if there exists a subset X ⊂ X of
maximal cardinality h such that {R ∩X | R ∈ R} equals the power-set of X
[11]. For example, consider the range space of all half-spaces in R2: There exists
a 3-point set P in R2 such that any subset of P can be generated by cutting
P with a half-space. This is not possible for any 4-point set in R2. Hence, the
VC-dimension of the half-space range space in R2 is 3.

Range spaces with small VC-dimension have the property that for any set
D ⊂ X there exist a small subset that is sensitive to large ranges. Such sets are
called epsilon-nets: For a finite n-point set D ⊂ X of a range space (X ,R), a
subset N of D is called epsilon-net for a parameter ε ≤ 1/2 if for any range
R ∈ R with |R ∩ D| ≥ εn there is at least one point in R ∩ N . Epsilon-nets
were introduced to computational geometry in an influential paper by Haussler
and Welzl [11], who show that epsilon-nets of small size exist for range space of
small VC-dimension:

376 T. Hruz and M. Schöngens

Lemma 1 (Epsilon-net Lemma [21]). Let (X ,R) be a range space with finite
VC-dimension h ≥ 2. For an absolute constant c, a parameter ε ≤ 1/2 and an
n-point subset D of X , there exists an epsilon-net N of D for (X ,R) of size at
most (ch/ε) log(1/ε).

For many natural ranges, such as half-spaces, balls, and ranges defined by small-
degree polynomials, the VC-dimension is usually small. Our approach uses prop-
erties of epsilon-nets that get emphasized by the following reformulation of their
definition: A subset N ⊂ D is an epsilon-net for a range space (X ,R), if for any
range R ∈ R with R∩N = ∅, the cardinality of R∩D is bounded by εn.

The Range Searching Problem for a range space (X ,R) and an n-point database
D ⊂ X can be formulated as follows: Preprocess D such that for a query range
R ∈ R one can either efficiently report or count all points in D ∩ R. We refer
to these variants as the Range Reporting Problem and Range Counting Problem
respectively. The Range Searching Problem for the range space (Rd,H), in which
the ranges are axes-parallel hyper-rectangles, is important in theory and practice
[8,10], thus one usually refers to it as the Orthogonal Range Searching Problem.
Range queries that are unbounded in some dimensions are usually called partial
range queries [10].

NN Search. We now show how to combine epsilon-nets and range reporting
to answer PNN queries. We first explain the algorithm for the special case of
the NN Problem in Euclidean space, and then adapt the algorithm for the PNN
Problem with other metrics.

On an intuitive basis, for a NN query Q ∈ Rd we find a nearest neighbor if we
can report and check all points in the d-dimensional Euclidean ball Bd

Q,r that is
centered at Q and has an appropriate radius r. The problem in this procedure is
not the range reporting, since efficient algorithms exist, but the determination
of a suitable radius r. On the one hand, if r is too large the performance of the
procedure may degenerate to a linear scan. On the other hand, if r is too small,
there is no point in the intersection and hence no nearest neighbor is found. The
idea to solve this problem is to generate an epsilon-net N on D and use the
distance of a nearest neighbor in N to bound r.

We start with the definition of an appropriate range space. A d-dimensional
Euclidean ball is defined as Bd

Q,r =
{
X ∈ Rd | d(X,Q) < r

}
and the set of all

Euclidean balls, denoted by B, equals
{
Bd
Q,r | Q ∈ Rd, r ≥ 0

}
. For the Euclidean

distance the range space (Rd,B) is suitable with respect to NN search. Note that
it is only a technical detail to define the Euclidean balls to be open, which is
clarified later. The following scheme is the basis for all subsequent algorithms.

Preprocessing: First, we build a range searching data structure for (Rd,B) on
D. Secondly, for the range space (Rd,B) and a parameter ε > 0 we generate an
epsilon-net N on D . This can be done by random sampling [11,21] or determin-
istically as described in [6]. The latter algorithm has a running time exponential
in the VC-dimension, hence we stick to random sampling which comes at the cost
of obtaining Las-Vegas algorithms. The overall preprocessing time is dominated
by the preprocessing of the range searching data structure.

Partially Specified Nearest Neighbor Search 377

Query algorithm: When processing a query Q ∈ Rd, we compare each point of
N with Q and obtain a nearest neighbor N of the epsilon-net. We set the radius
r = d(Q,N) and ask the range searching data structure to report all points in
Bd
Q,r∩D. These points are finally compared with Q to obtain a nearest neighbor

in D. If no points are in this range, then N is not only a nearest neighbor of the
epsilon-net, but also of D.

We require an efficient range searching data structure for the range space
(Rd,B). Using a standard lifting transform [8], in which all points are lifted to
the (d+1)-dimensional paraboloid, the ball range searching problem transforms
to the half-space range searching problem [19]. The most efficient range searching
data structure for this problem is presented by Chan [7] and for linear space it
achieves a query time of O

(
g(d)n1−1/
d/2�) w.h.p.. As an intermediate result we

obtain a Lemma for the NN Problem.

Lemma 2. Given an n-point set D ⊂ Rd a nearest neighbor of a query Q ∈ Rd

can be found in time O
(
g(d)n1−1/�d/2) w.h.p., using O (dn) space.

For a proof see [12]. For linear space and d > 3, our result already attains the
best known query time for NN search [7,19]. The dependence of d should roughly
be of the same order since the same techniques are used.

PNN Search. The principle feature of our approach is that it is extensible to the
PNN problem. The distance between two points is now measured with respect to
the subspace S as defined by dS . Instead of querying ranges that have the form
of balls, we query ranges that have the form CQ,S,r =

{
X ∈ Rd | dS(Q,X) < r

}
.

Their projection onto S equals Bw
Q,S, so we may refer to CQ,S,r as a partially

defined ball. For example when d = 3 and the dimension of S is w = 2, the range
corresponds to a cylinder of radius r. Let us define the range space (Rd,C) for

which C =
{
CQ,S,r | Q ∈ Rd, S ∈ {0, 1}d , r ≥ 0

}
.

In order to build a range searching data structure for (Rd,C) we require an
efficient description of the ranges in C. Though, there are exponentially many
subspaces, the ranges in C can be described by a single polynomial of the form
f(x1, . . . , xd, q1, . . . , qd, s1, . . . , sd, r) =

∑d
i=1 si(qi − xi)

2 − r2 ≤ 0. The corre-
sponding range space has VC-dimension of O

(
d2
)
(see [21], Proposition 10.3.2).

A range searching data structure that queries the desired ranges is described by
Agarwal and Matoušek [1]. We restate a simplified version of this result to show
the flexibility of our approach. Combining with the latest results on Tarski-Cell
decompositions [15] leads to the following lemma:

Lemma 3 ([1,15]). Let f(x1, . . . , xd, a1, . . . , ap) be a (d+ p)-variate polynomial
where d, p, and the degree of f is bounded. Let (Rd,R) be a range space with
R = {RA1,...,Au | A1, . . . , Au ∈ Ru}, for a fixed constant u, and RA1,...,Au ={
X ∈ Rd | f(X,A1) ≤ 0, . . . , f(X,Au) ≤ 0

}
. Then, the range searching problem

for (Rd,R) can be solved with O (n) space, and O
(
n1−1/b+δ

)
query time for

δ > 0. The parameter b = d for d ≤ 3 and b = 2d− 4 for d > 3.

This Lemma also allows the construction of a PNN data structure for 	p-metrics
with fixed p. We only need to adapt the polynomial f. Note that for

378 T. Hruz and M. Schöngens

increasing p the degree of the polynomial and thus the VC-dimension increases,
and consequently, the query time of the range searching algorithm increases. On
the other hand, in the case of the 	∞-metric, the induced partially defined balls
are hyper-rectangles, thus, a KD Tree [8] is a suitable structure. The advantage
of our algorithm is that it can handle different range searching data structures.
Hence, we formulate our main result on the PNN problem in a generic way, more
precisely, for a generic metric that has suitable range space S of VC-dimension
h. For a range searching data structure build on D which uses sS(n) space, let
t∗S(n) be the preprocessing time and let tS(n,m) be the time it takes to report
m = |D ∩ R| points in the intersection of a query range R.

Theorem 1. Let dS be a distance function and S a suitable range space of VC-
dimension h. Then, an n-point set D ⊂ Rd can be preprocessed in time t∗S(n)
into a data structure of sS space, such that a PNN query Q,S can be answered
in time O (h

√
n logn+ tS(n,

√
n)) w.h.p..

For a proof see [12]. Theorem 1 and the data structure from Lemma 3 directly
imply an algorithm for the Euclidean PNN problem. The VC-dimension of the
range space (Rd,C) is at most O

(
d2
)
(see [21], Proposition 10.3.2).

Lemma 4. An n-point set D ⊂ Rd from Euclidean space can be preprocessed in
time O (g(d)n logn) into a O (dn) space data structure, such that an PNN query
Q,S can be answered in time O

(
g(d)n1−1/b+δ

)
w.h.p., for δ > 0 and for b = d

if d ≤ 4 and b = (2d− 4) otherwise.

Opposed to the brute force approach, with O
(
2dn

)
space, O (g(d)n logn) pre-

processing time and O
(
g(d)n1−1/�d/2) query time, we obtain a worse query

time, however, we save space exponentially in d.
As we stated above, the 	∞-metric uses the range space (Rd,H), that has

VC-dimension 2d. There are reasonable fast and well-studied data structures
for (Rd,H) such as KD Trees and Range Trees [8]. If we use a KD Tree for
range searching, which reports m points in a partially defined range in time
t(Rd,H)(n,m) = O

(
dn1−1/d + dm

)
[17], and apply Theorem 1 we obtain the

following Lemma.

Lemma 5. Given an n-point set D ⊂ Rd together with the 	∞-metric. There is
a data structure of O (dn) space, which can be constructed in O (dn logn) time,
that answers a PNN query Q,S in time O

(
dn1−1/d

)
w.h.p..

Approximate PNN Search. The performance of the range searching algo-
rithm for Euclidean distance (Lemma 3) might not be satisfying for practical
applications. Even with more efficient Tarski-cell decompositions, which are the
current limiting factor in the range searching data structure, the worst-case time
cannot be better than O

(
g(d)n1−1/d

)
[23]. Consequently, it might be worth to

consider approximation algorithms that work well on real world data. We present
a simple and practically efficient

√
w-approximation algorithm that queries par-

tially specified axes-parallel hyper-rectangles instead of CQ,S,r. Better approxi-
mation ratios require the study of data structures for approximate partial ball
range reporting.

Partially Specified Nearest Neighbor Search 379

For simplicity, we describe a specific unbounded hyper-rectangle HQ,S,r with
center Q and radius r that is equal to HL,R with li = qi − r (ri = qi + r resp.) if
si = 1 and li = −∞ (ri = ∞ resp.) otherwise. As above, an epsilon-net for the
range space (Rd,C) is denoted by N and the point of the epsilon-net closest to
Q with respect to S is denoted by N ∈ N . Let r = dS(Q,N) be the radius of
the desired range CQ,S,r.

The smallest enclosing rectangle HQ,S,r, called outer cube range, is not suit-
able as a query range since its volume grows exponentially faster than the volume
of CQ,S,r. Thus, we use the hyper-rectangle HQ,S,r/

√
w of maximal size that com-

pletely fits inside the desired range CQ,S,r. Let us call this range inner cube. The
resulting point size is bounded by the epsilon-net, however, we can only get an√
w-approximation as the subsequent lemma states.

Lemma 6. Given a point N of an n-point set D, a query point Q with w-
dimensional query subspace S, and a radius r = dS(Q,N). If the hyper-rectangle
HQ,S,r/

√
w is queried, then the returned point is a

√
w-approximate PNN of D.

For a proof see [12]. As a consequence we can obtain a
√
w-approximation data

structures for the Euclidean PNN Problem.

Lemma 7. Given an n-point set D ⊂ Rd from Euclidean space and suppose
we use a KD Tree as range searching data structure. For a PNN query Q,S we
obtain a

√
w-approximation in time O

(
dn1−1/d

)
w.h.p., consuming O (dn) space

and using O (dn logn) preprocessing time.

��

�����

�����

�����

�����

���	

���	�

���	�

������� ������� ������� ������� �	
���
��

��

�	�

�	�

���

���

��

��

���

���

���

���

���

���

��

�
��

�
��

�
��
���

�
��
��

��
��

���
��
��

��

�
��

�
��

��
��

����
�� !�� ����

"���
�������
���������
��� ��#�������$
������%

$��
����&��

���$ ���
�'����
���

���$ ���
�'(����

��

���������
���

��

�����(����

��

������

�����

������

�����

������

�� �� �� �� �� ��� ��� ��� ��	
��

���

���

���

���

��

���

��
��
�
��
��
��
��
���

��
��
��

��
��
���
��
��

��
��
�
��
��
��
��
��

�������������������

������������������
����������������� !��� ����������

!�������"��
����!������#���������

����!������#)������
������������������

���������)������

Fig. 1. The average over 10000 queries is shown as straight lines within filled area
that represents the standard deviation. The speed-up is shown as bullets and triangles
with axes on the right. Left: The query time depending on the database size. Right:
The query time depending on the database dimension.

It is also possible to use different, application adapted range searching data
structures, as for example the Priority R-tree [4] (or PR-tree) if the goal is an
IO-optimal and practically efficient algorithm for memory hierarchies.

380 T. Hruz and M. Schöngens

4 Experiments

We implemented the proposed APNN algorithm for the Euclidean distance using
KD Tree and Range Tree data structure to show that the theoretical foundations
are valid and the concept performs well on a wide range of real world data.
The performance results also indicate good behavior for the exact PNN data
structure using the 	∞-metric, since the same range searching data structures
can be used. The implementation was done using C++ in a standard way [8]
without any optimizations to exploit architecture related specialties. The PNN
query points were generated by randomly perturbing points from the database
and, unless stated otherwise, the query subspace S ⊂ {0, 1}d was generated
by setting each component to 1 with probability 1/2. For each experiment we
performed 10000 queries to get reliable results.

Table 1. This table summarizes the dependence
of |CQ,S,r ∩ D| for various experimental settings
(columns from left: data set number, number of
points, number of dimensions, epsilon-net size)

n d |N | |C ∩ D| (avg) (stdv) (max)

4 214 8 210 14.5 (0.09%) 14.7 143 (0.87%)
4 215 8 210 30.4 (0.09%) 31.6 284 (0.87%)
4 216 8 210 57.8 (0.09%) 59.3 576 (0.88%)
4 217 8 210 118.0 (0.09%) 116.2 1181 (0.90%)
4 218 8 210 246.8 (0.09%) 250.7 2388 (0.91%)
4 219 8 210 515.4 (0.10%) 509.3 5487 (1.05%)
4 220 8 210 1074.2 (0.10%) 1055.3 8735 (0.83%)

1 54675 5 210 51.4 (0.09%) 52.6 517 (0.95%)
2 54675 7 210 47.9 (0.09%) 48.5 535 (0.98%)
3 54675 9 210 51.7 (0.09%) 53.5 521 (0.95%)
3 54675 11 210 56.7 (0.10%) 54.7 555 (1.02%)
3 54675 13 210 46.9 (0.09%) 48.2 570 (1.04%)

For the experimental evalua-
tion we used data sets from two
completely different domains to
emphasize the data independence
of our approach. The first data set
comes from a gene database and
contains feature vectors that rep-
resent the genes by their activity
in multiple experimental settings
and were all extracted from the
Genevestigator database [13]. A
feature represents an anatomical
class (category) such as a certain
type of neoplasmic cells or cells
from different parts of the human
brain. An element pi of the feature
vector representing gene P ∈ D
corresponds to the gene’s activity in a cell of class i. The activity is a floating
point number in [0, 100]. We consider three data sets show in Table 2. We want
to emphasize the practical relevance of the query type we use: it is the same
type as widely used in the data mining application of Genevestigator.

The second data set comes from an image collection crawled by Standford
Universities WebBase project [3,24]. We extracted an 8-dimensional (data set
#4) and a 64-dimensional (data set #5) color histogram of n = 220 images such
that each image is represented by its color intensities. This type of data was
recently used in a study dedicated to the NN problem [18] and it is also well
suitable for PNN queries: a PNN query asks for an image that is similar to the
query image with respect to a subset of colors. The coordinates of a point are
floating point numbers from the interval [0, 100].

We use randomly sampled ε-nets to study their failure probability. Our exper-
iments indicate that small epsilon-nets bound the number of points in a query
range extremely well. The average and standard deviation (see Table 1) of the
number of points in the query range is very small. Not only the average, but

Partially Specified Nearest Neighbor Search 381

also the maximal number of points behaves well and is roughly what Lemma 1
predicts. We observe that the dependence on the number of points n and dimen-
sion d is nearly linear. One could roughly state that if we used 1000 points for
the epsilon-net over 10000 queries, then a range cuts roughly a 1/1000-fraction
of points on the average (Table 1).

Table 2. Approximation ratio for the KD
Tree implementation using the image data
sets (columns from left: data set number,
number of points, number of dimensions, ap-
proximation ratio average, standard devia-
tion, maximum, and average rank)

n d range ar (avg) (stdv) (max) rank

4 220 8 inner cube 1.08 0.15 2.30 153.67
5 220 64 inner cube 1.01 0.29 5.66 87.50
4 220 8 volume-fit 1.02 0.05 1.45 81.72
5 220 64 volume-fit 1.02 0.09 2.74 54.80

There are several heuristics that
naturally stem from our approach,
which have guarantees on the ap-
proximation ratio but not on the
query time. Nevertheless, our ex-
perimental evaluation indicates that
the worst-case query time does
not occur in practice. A heuristic
to approximate CQ,S,r, denoted by
volume-fit cube, corresponds to a
hyper-rectangle that is centered at
Q and its projection onto S has the
same volume as a w-dimensional Euclidean ball Bw(r). Thus, the edge length of
the hyper-rectangle equals vol(Bw(r))

1/w . We obtain the hyper-rectangle HL,R

with li = qi− rπ1/2/(2Γ (w/2+1)1/w) and ri = qi+ rπ1/2/(2Γ (w/2+1)1/w) for
the relevant dimensions. This hyper-rectangle exceeds the boundaries of Bw(r),
and thus the number of reported points is no longer bounded by the epsilon-net,
so the query time might degenerate to a linear scan. The approximation ratio is
2Γ (w/2 + 1)/π1/2 and is much smaller than

√
w as the dimension grows. This

heuristic performs markedly as Table 2 and Figure 2 indicate.

Evaluation. We show results for the algorithms’ performance in terms of query
time, space requirements, approximation quality and rank of the answer. The
query time is compared with a linear scan and we define the speed-up to be the
ratio of the average query time of a linear scan and the average query time of
our implementation. A discussion on the performance of our approach compared
with the standard KD tree nearest neighbor query performance can be found
in [12].

The dependence of the query time on the size of the data-base is presented
in Figure 1. We observe a sub-linear dependence of the query time, and the
algorithm performs better if a KD tree is used for range searching. A factor of
over 60 times faster than a linear scan gives strong evidence for the algorithms
practical usability. The results were obtained for an approximation with the
inner cube range that has a theoretical bound on the approximation ratio of
2.8, however, the measured average approximation ratio was way less, roughly
around 1.08 (see Table 2).

The dependence of the database dimension on the query time is shown in
Figure 1. The ranges were approximated with the inner cube range and we
observe that the dimensionality of the data set has only a negligible impact on
the query time, at least for dimensions up to 13.

382 T. Hruz and M. Schöngens

��

������

������

������

������

����	

����	�

����	�

�� �� �� �	� �	�
��

��

��

��

��

�	�

�	�

�	�

�	�

�	�

���

���

���

���

��
��
��

��
��

��
	�

��

��
�
��

��
��

���

�
��

��
��
��

��
��
��

��
��

���������������	���������

������
����
�������������
���	�������������������������	��������

���������
��������
'�����
���

��������
'(��
���
��������������
���

���������(��
���

����

��

����

����

����

����

�� �� �	 �
 �� ��� ��� ��� ���
��

����

����

����

�
��

�����

�����

��
��

�
��

��
��

��
��
���

���
���
��

��

��
��
��

��
��

��
��

���
��
��

�

�������������������

�������������������	���������������� ��������������

������!"��
�� "���*��!"��

Fig. 2. The description of this figure is the same as of Figure 1. Left: Query time
depending on the dimension of the query subspace. Right: The quality of the approx-
imation (average over 10k queries: straight lines; standard deviation: filled area) and
rank of the answer point (average over 10k queries: box; standard deviation: whisker).

In Figure 2 and Table 2 we present the measured approximation quality in
terms of approximation ratio and rank of the answer. The rank is the number
of points that are closer to the query than the point found. Figure 2 shows that
the obtained approximation ratios are reasonable small. The maximal rank is
less than than 0.025 percent of the database.

We also studied the behavior of our algorithm for data with medium dimen-
sionality between 101 and 102. The 64-dimensional data set #5 using the KD
Tree as range searching data structure has a query time that is still a factor of
5 to 10 faster than the linear scan. The theoretical observation would suggest
that the approximation ratio is fairly large for this dimension, however, as Table
2 shows, the approximation ratio and rank are only slightly worse than for the
low dimensional case.

References

1. Agarwal, P.K., Matoušek, J.: On Range Searching with Semialgebraic Sets. Discrete
and Computational Geometry 11(1), 393–418 (1994)

2. Andoni, A., Indyk, P., Krauthgamer, R., Nguyen, H.L.: Approximate Line Nearest
Neighbor in High Dimensions. In: SODA 2009: Proceedings of the 20th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 293–301. ACM (2009)

3. Arasu, A., Cho, J., Garcia-Molina, H., Paepcke, A., Raghavan, S.: Searching the
Web. Technical Report 2000-37. Stanford InfoLab (2000)

4. Arge, L., Berg, M.D., Haverkort, H., Yi, K.: The priority R-tree: A practically
efficient and worst-case optimal R-tree. ACM Trans. Algorithms 4, 9:1–9:30 (2008)

5. Bernecker, T., Emrich, T., Graf, F., Kriegel, H.-P., Kröger, P., Renz, M., Schubert,
E., Zimek, A.: Subspace Similarity Search: Efficient k-NN Queries in Arbitrary
Subspaces. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp.
555–564. Springer, Heidelberg (2010)

6. Brönnimann, H., Chazelle, B., Matoušek, J.: Product Range Spaces, Sensitive Sam-
pling, and Derandomization. SIAM Journal on Computing 28(5), 1575 (1999)

Partially Specified Nearest Neighbor Search 383

7. Chan, T.M.: Optimal Partition Trees. In: SCG 2010: Proceedings of the 2010
Annual Symposium on Computational Geometry, pp. 1–10. ACM (2010)

8. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry - Algorithms and Applications, 2nd edn. Springer (2000)

9. Eastman, C.M., Zemankova, M.: Partially Specified Nearest Neighbor Searches
Using k-d Trees. Information Processing Letter 15(2), 53–56 (1982)

10. Goodman, J.E., O’Rourke, J. (eds.): Handbook of Discrete and Computational
Geometry, 2nd edn. CRC Press (2004)

11. Haussler, D., Welzl, E.: Epsilon-nets and Simplex Range Queries. In: SCG 1986:
Proceedings of the 2nd Annual Symposium on Computational Geometry, p. 71.
ACM (1986)

12. Hruz, T., Schöngens, M.: Partially Specified Nearest Neighbor Search. Technical
Report 762. Department of Computer Science, ETH Zurich (2012)

13. Hruz, T., Wyss, M., et al.: RefGenes: identification of reliable and condition specific
reference genes for RT-qPCR data normalization. BMC Genomics 12(1), 156 (2011)

14. Indyk, P., Motwani, R.: Approximate Nearest Neighbor: Towards Removing the
Curse of Dimensionality. In: STOC 1998: Proceedings of the 30th Annual ACM
Symposioum on Theory of Computing, pp. 604–613. ACM (1998)

15. Koltun, V.: Almost Tight Upper Bounds for Vertical Decompositions in Four Di-
mensions. In: FOCS 2001: Proceedings of the 42nd Annual IEEE Symposium on
Foundations of Computer Science, pp. 56–65. IEEE (2001)

16. Kriegel, H., Kroger, P., Schubert, M., Zhu, Z.: Efficient Query Processing in Ar-
bitrary Subspaces Using Vector Approximations. In: SSDBM 2006: Proceedings of
the 18th International Conference on Scientific and Statistical Database Manage-
ment, pp. 184–190 (2006)

17. Lee, D.T., Wong, C.: Worst-case Analysis for Region and Partial Region Searches
in Multidimensional Binary Search Trees and Balanced Quad Trees. Acta Infor-
matica 9(1), 23–29 (1977)

18. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe LSH: Efficient
Indexing for High-Dimensional Similarity Search. In: VLDB 2007: Proceedings of
the 33rd International Conference on Very Rarge Data Bases, pp. 950–961 (2007)

19. Matoušek, J.: Reporting Points in Halfspaces. Computational Geometry 2, 169–186
(1992)

20. Matoušek, J.: On Constants for Cuttings in the Plane. Discrete & Computational
Geometry 20(4), 427–448 (1998)

21. Matoušek, J.: Lecture Notes on Discrete Geometry. Sp (2002)
22. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan

Kaufmann Publishers Inc. (2005)
23. Sharir, M., Shaul, H.: Ray Shooting Amid Balls, Farthest Point from a Line, and

Range Emptiness Searching. In: SODA 2005: Proceedings of the 16th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 525–534 (2005)

24. Stanford WebBase Project,
http://diglib.stanford.edu:8091/~testbed/doc2/WebBase

25. Zimmermann, P., Laule, O., Schmitz, J., Hruz, T., Bleuler, S., Gruissem, W.: Gen-
evestigator transcriptome meta-analysis and biomarker search using rice and barley
gene expression databases. Molecular Plant 1(5), 851 (2008)

http://diglib.stanford.edu:8091/~testbed/doc2/WebBase

Multi-pattern Matching

with Bidirectional Indexes

Simon Gog1,�, Kalle Karhu2,��, Juha Kärkkäinen3,� � �,
Veli Mäkinen3,†, and Niko Välimäki3,‡

1 Department of Computing and Information Systems
University of Melbourne

simon.gog@unimelb.edu.au
2 Department of Computer Science and Engineering

Aalto University
kalle.karhu@aalto.fi

3 Department of Computer Science
University of Helsinki

{tpkarkka,vmakinen,nvalimak}@cs.helsinki.fi

Abstract. We study multi-pattern matching in a scenario where the
pattern set is to be matched to several texts and hence indexing the
pattern set is affordable. This kind of scenarios arise, for example, in
metagenomics, where pattern set represents DNA of several species and
the goal is to find out which species are represented in the sample and
in which quantity. We develop a generic search method that exploits
bidirectional indexes both for the pattern set and texts, and analyze the
best and worst case running time of the method on worst case text. We
show that finding the instance of the search method with minimum best
case running time on worst case text is NP-hard. The positive result is
that an instance with logarithm-factor approximation to minimum best
case running time can be found in polynomial time using a bidirectional
index called affix tree. We further show that affix trees can be simulated,
in reduced space, using bidirectional variant of compressed suffix trees.

1 Introduction

Metagenomics studies genomic material taken from environmental samples [10].
Typically millions of short DNA reads are produced from the sample with length

� Also affiliated with Ulm University. Supported by the Australian Research Council
grant DP110101743.

�� Supported by Academy of Finland grant 134287.
� � � Supported by Academy of Finland grant 118653 (ALGODAN).

† Also affiliated with Helsinki Institute for Information Technology HIIT. Supported
by Academy of Finland grants 140727 and 250345.

‡ Also affiliated with Helsinki Institute for Information Technology HIIT. Supported
by Academy of Finland grant 118653 (ALGODAN) and Helsinki Doctoral Pro-
gramme in Computer Science (Hecse).

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 384–395, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Multi-pattern Matching with Bidirectional Indexes 385

of each read varying between 30 to 400 nucleotides depending on sequencing tech-
nology, and subsequent sequence analysis tries to identify the species present in
the sample. Sequence analysis can be either fragment assembly -based or read
alignment -based. In the former approach the reads are first assembled into con-
tigs (longer fragments glued together based on read overlaps) and then compared
against reference genomes to locate statistically significant local alignments. In
the latter approach the reads are directly aligned to reference genomes. We will
focus on this latter approach.

Aligning metagenomics reads to the reference genomes can be done using e.g.
software packages building on the Burrows-Wheeler transform (BWT) [1] and
on the FM-index [4] concept. The FM-index provides a way to index a reference
genome within its compressed size exploiting BWT. This index provides so-
called backward search principle that enables very fast exact string matching on
the indexed sequence. Extensions of this idea provide very efficient methods for
doing read alignment, see bowtie [16], bwa [17], SOAP2 [3], readaligner [19].

In this paper, we propose an approach for multi-pattern matching that takes
the special characteristics of metagenomics read alignment into account. The
methods above align each read separately without exploiting the fact that reads
sets typically cover the same genomic position many times. Also repetitive areas
cause similar reads to be produced. In metagenomics scenario, the same read set
is to be aligned to several reference genomes, and hence it is affordable to spend
time in preprocessing the read set.

We show how to take the similar content in read set into account with bidirec-
tional FM-index [15,23] built both on the read set and on each reference genome.
The idea is that we first select a set of subpatterns from the read set such that
they cover the whole set (each read contains one of the subpatterns). Each such
subpattern is searched for separately in the bidirectional FM-index of a refer-
ence genome and from the bidirectional FM-index of the read set. We then show
how to continue the search synchronizing the two bidirectional indexes so that
common parts of the reads preceding and succeeding the subpattern occurrence
are scanned simultaneously.

We also study the optimization problem of selecting the optimal subpatterns
to minimize the search time. We assume a worst case scenario where all reads are
found in the reference genome. We then analyze the best and worst case running
time of our synchronized bidirectional search and show that optimal selection of
subpatterns to minimize best case search time is NP-hard. However, a greedy
approach for selection of subpatterns yields logarithm factor approximation to
the best case search time. We show that the greedy approach can be implemented
efficiently using affix trees [24,18]. We further show that one can replace affix
trees in the computation with a bidirectional variant of compressed suffix trees.

Our approach is currently limited to exact searching; see Sect. 4 for discussion
on extensions to approximate search.

Related Work. Our work is motivated by the experimental study by Karhu [13]
showing that subpattern selection from read set can reduce the total search
time in the case of several reference genomes. The difference to our work is

386 S. Gog et al.

that bidirectional indexes were not used in [13], but a more direct approach of
aligning the covered reads to the occurrences of subpatterns was used. Also the
optimization of subpattern selection was not studied there. Recently, Gagie et
al. [8] gave the first theoretical improvement for indexed multi-pattern matching
over the approach of searching each pattern separately. It is shown in [8] that
given FM-index for text of length n and the LZ77 parse of the concatenation
of p patterns of total length M and maximum individual length m, one can
count the occurrences of each pattern in a total of O((z+p) logM logm log1+ε n)
time, where z is the number of phrases in the parse. The result suites very well
the metagenomics application considered here, as the LZ77 parsing needs to be
constructed only once for the read set. However, in this application p = M/c,
where c is a constant (typically 30 ≤ c ≤ 400), and the logarithm factors may
cancel out the improved search functionality in practice; O(M) search time can
be achieved searching each pattern separately from FM-index. Our synchronized
bidirectional search does not provide good worst case bounds, but we claim that
it is more suitable for this case of short patterns: In case of short patterns,
subpattern cover captures the largest and most frequent repetitions also found by
LZ77 parse, but at the same time the search algorithm has constant coefficients.

The paper is organized as follows. We define the basic concepts in
Sections 2. In Sect. 3 we first introduce the synchronized bidirectional search
algorithm and analyse its best and worst case running time, and then study the
hardness of subpattern selection leading to a greedy approximation algorithm
and its implementation with affix trees. Then we show that affix trees can be
replaced with a more space-efficient bidirectional variant of compressed suffix
trees. We discuss the future work in Sect. 4.

2 Preliminaries

A string S = S[1, n] = S[1]S[2] · · ·S[n] is a sequence of symbols (a.k.a. characters
or letters). Each symbol is an element of an ordered alphabet Σ = {1, 2, . . . , σ}.
A substring of S is written S[i . . j] = S[i]S[i + 1] · · ·S[j]. A prefix of S is a
substring of the form S[1 . . j], and a suffix is a substring of the form S[i . . n]. If
i > j then S[i . . j] = ε, the empty string of length |ε| = 0. The lexicographical
order “<” among strings is defined in the obvious way. A text string T [1 . . n] is
a string terminated by the special symbol T [n] = $ 	∈ Σ, smaller than any other
symbol in Σ. Suffix array SA is an array of length n with SA[i] corresponding to
the starting position of the i-th smallest suffix in S.

2.1 Bidirectional FM-Index

A bidirectional index of string T consists of a forward and reverse index. The
forward index supports backward search in T , and the reverse index in TR,
where TR denotes the reversed string of T . Lam et al. [15] and Schnattinger
et al. [23] showed how to synchronize the forward and reverse index to support
bidirectional search. Let P denote a pattern, and let [sf . . ef] denote the SA

Multi-pattern Matching with Bidirectional Indexes 387

interval of the suffixes of T whose prefixes match P , and [sr . . er] denote the
suffixes of TR matching PR. Now a bidirectional search step allows us to find
out the new interval corresponding to either cP or Pc for any symbol c ∈ Σ.
The new interval is empty if the pattern is not found.

We require the following operations. The direction of the operation is given
by the parameter d ∈ {left, right}:

– pushChar(d, c, [sf . . ef], [sr . . er]): Assume that [sf . . ef] and [sr . . er] corre-
spond to the pattern P . The operation returns new intervals corresponding
to the concatenated pattern cP if d = left, or Pc if d = right. The operation
returns an empty interval if the concatenated pattern does not exists. Both
[15] and [23] show how to support this operation. The latter uses wavelet
tree for the task and supports the operation in O(log σ) time.

– getBranches(d, [sf . . ef], [sr . . er]): Returns a subset of symbols, that is,
all symbols c ∈ Σ having a non-empty pushChar(d, c, [sf . . ef], [sr . . er])
interval. If d = left, we return the set of distinct symbols occurring in
TBWT [sf . . ef], and if d = right, we return the distinct symbols occurring in
TR
BWT [sr . . er]. This can be done in O(log σ) time per distinct symbol with

a wavelet tree [9].

The space usage for the bidirectional FM-index is twice that of an FM-index
based on wavelet tree, i.e. 2n logσ + o(n logn) bits [20] for a text of length n.

3 Multi-pattern Matching

3.1 Bidirectional Search

We construct a bidirectional index for both the text T and the set of patterns
P1, P2, . . . , Pp. More precisely, the pattern index is constructed for the concate-
nated string #P1#P2# · · ·#Pp#$, where # is a special separator symbol that
does not occur in any of patterns. Let N and M denote the total length of the
text and the concatenated string of patterns, respectively. The pattern index
stores SA samples only at separator symbol positions. This requires p logM bits
of space, which might be too much for patterns shorter than logM , but allows
O(1) time locate for SA ranges [i . . j] that are prefixed by #.

We assume that the subpattern P is given as input, and the task is to locate
occurrences of patterns P1, P2, . . . , Pp, that contain subpattern P , in the text T .
In other words, for every Pi that has an occurrence of P , we must output all
occurrences of Pi in T . We proceed with the search as follows.

First, we search the subpattern P in the text index by forward and back-
ward search to retrieve the SA intervals [sf, ef] and [sr, er]. These intervals are
empty if P does not occur in T . We repeat the same search in the pattern
index — we can assume that the subpattern P appears in the pattern index
at least once. Fig. 1 gives an algorithm (rows 15–19) that starts with inter-
vals corresponding to empty pattern (rows 15–16) and then searches P using
the pushChar() operation. The rest of the search extends P recursively to both

388 S. Gog et al.

Algorithm extend([sf . . ef], [sr . . er], [sf ′ . . ef ′], [sr′ . . er′], P, d)
(1) if (P [1] = #) and (P [|P |] = #) then
(2) Report that patterns [sf ′ . . ef ′] occur at positions [sf . . ef].
(3) return
(4) if (P [1] = #) then d ← right
(5) if (P [|P |] = #) then d ← left
(6) C ← getBranches(d, [sf . . ef], [sr . . er])
(7) C′ ← getBranches(d, [sf ′ . . ef ′], [sr′ . . er′])
(8) if (d = left) then d′ ← right else d′ ← left
(9) for each c ∈ C ∩ C′ do
(10) if (d = left) then P ′ ← cP else P ′ ← Pc
(11) extend(pushChar(d, c, [sf . . ef], [sr . . er]),

pushChar(d, c, [sf ′ . . ef ′], [sr′ . . er′]), P ′, d′)
(12) if (# ∈ C′) then
(13) if (d = left) then P ′ ← #P else P ′ ← P#
(14) extend([sf . . ef], [sr . . er], pushChar(d,#, [sf ′ . . ef ′], [sr′ . . er′]), P ′, d′)

Algorithm search(P)

(15) [sf . . ef], [sr . . er] ← [1 . . N], [1 . . N] {Forward and reverse text index}
(16) [sf ′ . . ef ′], [sr′ . . er′] ← [1 . .M], [1 . .M] {Forward and reverse pattern index}
(17) for i ∈ [1 . . |P |] do
(18) [sf . . ef], [sr . . er] ← pushChar(right, P [i], [sf . . ef], [sr . . er])
(19) [sf ′ . . ef ′], [sr′ . . er′] ← pushChar(right, P [i], [sf ′ . . ef ′], [sr′ . . er′])
(20) if [sf . . ef] is non-empty then
(21) extend([sf . . ef], [sr . . er], [sf ′ . . ef ′], [sr′ . . er′], P, left)

Fig. 1. The recursive bidirectional search is initiated by calling search(P). The values
of N and M denote the total length of text and patterns, respectively. The parameter
d ∈ {left, right} denotes the direction. The intervals [sf . . ef], [sr . . er] and [sf ′ . . ef ′],
[sr′ . . er′] correspond to the forward and reverse intervals matching P in the text and
pattern indexes, respectively.

directions, over all combinations of symbols on the left and right side of sub-
patterns occurrences in P1, P2, . . . , Pp. The recursion is initiated (row 21) by
calling extend([sf . . ef], [sr . . er], [sf ′ . . ef ′], [sr′ . . er′], P, left), where [sf . . ef],
[sr . . er], [sf ′ . . ef ′] and [sr′ . . er′] are the intervals matching P and the first
extension direction is left.

Fig. 1 gives a recursive algorithm (rows 1–14) that extends the subpattern
recursively on both sides. The extension is done alternating between the direc-
tions {left, right} — interleaving left and right symbols during the search. The
following invariant holds throughout the recursion: at each step, the SA inter-
vals [sf . . ef], [sr . . er], [sf ′ . . ef ′] and [sr′ . . er′] correspond to P ’s SA intervals
in the forward text index, reversed text index, forward pattern index and reverse
pattern index, respectively. The only exception is the special separator symbol
that gets appended to the start and/or end of the pattern during the recursion;

Multi-pattern Matching with Bidirectional Indexes 389

the symbol # is never searched from the text index, it is merely a placeholder
that marks the end of pattern extension to that direction.

Let us describe extend() in more detail. The first rows 1–3 are the end con-
dition of the recursion: both ends of P have the separator symbol #, thus, the
interval [sf ′, ef ′] corresponds to some distinct subset of patterns. Occurrences of
these patterns in T can now be enumerated from [sf, ef]. The next two rows 4–5
check if there exists a separator symbol at the start (resp. end) of the pattern.
Then the next extension must be to the right (resp. left) since # marks the end
of extension to that particular direction. The rows 6–7 enumerate the symbols
that can be used for extension to direction d in text and pattern indexes. The
actual extension is done only for symbols that are branching from both the text
and pattern index (cf. the intersection of these sets at row 9). The row 8 flips the
direction for the next recursion step, and row 10 constructs the new extended
pattern. The next recursion step is called at row 11, having the new intervals
of extended pattern as parameters. The rows 12–14 check if the pattern can be
extended with the separator symbol.

Let us now analyze the number of steps required by extend(). Let x =
lsize(I, P) and y = rsize(I, P) denote the search space size, in the worst case
scenario of text containing occurrences of all the patterns, using bidirectional
index I when extending P only to the left and only to the right, respectively.
The worst case number of steps taken by the bidirectional recursive search can
be written as a recursion:

f(x, y) =
∑
c

g(xc − 1, y − 1), where
∑
c

xc = x;

g(x, y) =
∑
c

f(x− 1, yc − 1), where
∑
c

yc = x,

with initialization f(x, 1) = g(x, 1) = x for all x and f(1, y) = g(1, y) = y for all
y (and otherwise 0). Here f(x, y) and g(x, y) denote the number steps required
when extending pattern to the left and right, respectively, with all possible c.
The recursion follows from the fact that, in the worst case, extending to one
direction splits to one or more independent cases where the search space in the
other direction is only decreased by one. It is easy to see that f(x, y) < x ∗ y
and g(x, y) < x ∗ y, and hence the worst case number of steps by extend()
is lsize(I, P) ∗ rsize(I, P). This is also a strict upper bound as can be seen
as follows. Let ldepth(I, P) and rdepth(I, P) denote the maximum depth of the
search space when extending P only to the left and only to the right, respectively.
Then one can construct an instance where search space to the left starts with a
unary path of length rdepth(I, P) and hence, after rdepth(I, P) steps identifying
x ≤ min(p, rsize(I, P)) leaves, one still has to explore x times search space of
size lsize(I, P)− rdepth(I, P) = O(lsize(I, P)).

A lower bound for the number of steps required by extend(), in the worst
case scenario of text containing occurrences of all patterns, is also of interest.
This is easily seen to be lsize(I, P) + rsize(I, P).

390 S. Gog et al.

3.2 Hardness of Subpattern Selection

In the above, we developed a multi-pattern search algorithm that can exploit
given set of subpatterns that cover all patterns. Let us now study how to find a
good set of such subpatterns.

First, it is easy to see that selecting minimum size set of subpatterns to cover
all the patterns is NP-hard, by a reduction from set cover:

Problem 1 (Set cover). Given a universe U of n elements, and a collection of
subsets of U , S = {S1, . . . , Sk}, find a minimum size subcollection of S that
covers all elements of U .

From a set cover instance we create the following set of patterns for 1 ≤ i ≤ n:

Pi =
∏

Sj ,ui∈Sj

#j#k+i, (1)

where each #x is a distinct symbol, and
∏

denotes catenation. Patterns P =
P1, P2, . . . , Pn are now from alphabet {#1,#2, . . . ,#k+n}. Any subpattern oc-
curring in more than one Pi is necessarily a single symbol corresponding to a
subset in S. Finding minimum size collection of subpatterns covering P solves
the set cover instance, and the problem of selecting the best subpatterns is hence
NP-hard.

We can generalize the reduction to a more realistic version of the problem.
Let w(P) = |P |+ lsize(I, P) + rsize(I, P), that is the lower bound (and hence
an optimistic estimate) for the total number of steps taken by the recursive
bidirectional search with a worst case text.

The cost of a set S′ of subpatterns is c(S′) =
∑

P∈S′ |P | + lsize(I, P) +
rsize(I, P). We wish to find minimum cost set S′. This problem is also NP-hard
by a slight modification of the above reduction. Notice that with the current
reduction 2 ≤ |#j | + lsize(I,#j) + rsize(I,#j) ≤

∑
ui∈Sj

∑
Sj′ :ui∈Sj′

2 ≤ 2n2.

Let us modify the generated pattern set to

Pi =

⎛⎝ ∏
Sj ,ui∈Sj

#j#k+i

⎞⎠ 1 · · · 1︸ ︷︷ ︸
2n3

. (2)

Then one can verify that minimum cost cover with k′ + 1 subpatterns costs
more that maximum cost cover with k′ subpatterns. Hence, finding minimum
cost subpattern cover solves the set cover problem, and hence the former is also
NP-hard.

A positive connection to set cover also exists; an algorithm analogous to the
well-known greedy approximation algorithm for weighted set cover [25][Chapter
2] can be used to compute a good subpattern cover: Choose first pattern P

that minimizes |P |+steps(I,P)
m(P,P) , where m(P, P) denotes the number of patterns in

P which contain P as subpattern. Set P = P \ P′, where P′ denotes the set of
patterns covered by P . Iterate the process until P is empty. The set cover analysis

Multi-pattern Matching with Bidirectional Indexes 391

[25][Chapter 2] can be used verbatim to see that the process results in a set of
subpatterns with cost at most log p times the optimal, where p is the size of P.
Notice that here we do not know value steps(I, P) exactly for any pattern, so
we will only obtain approximation with respect to our estimate on steps(I, P);
the estimation error can be arbitrarily more than the log p factor from the set
cover approximation.

3.3 Subpattern Selection Using Affix Trees

The above approximation algorithm can be computed using affix trees [24,18].
Here we assume that steps(I, P) is estimated as a function of lsize(I, P) and
rsize(I, P), without fixing the exact formula (it could be the lower bound, the
upper bound, or some function whose parameters are estimated with training
data). Let us start by describing suffix trees [26]. The suffix tree of a string
T [1 . . n] represents all substrings of T in a rooted, directed tree where each
internal node has at least two children and at most one outgoing edge label that
starts with each c ∈ Σ. Edge labels are encoded as a reference to T , e.g. a pair
of starting and ending text positions. The suffix tree has O(n) nodes and, if T
is terminated with a special symbol $ 	∈ Σ, the resulting suffix tree has exactly
n leaf nodes, one for each suffix of T . The affix tree of a string T incorporates
the suffix tree of both T and its reversed string TR. An internal node in the
affix tree can have both suffix and prefix descendants: the outgoing suffix edges
(resp. prefix edges) point to the descendants of the corresponding node in the
suffix tree of T (resp. TR). For each node v in the suffix tree of T (resp. TR),
there exists a corresponding node in the affix tree having the upward suffix edge
(resp. prefix edge) labels equal to path(v). The total number of nodes and edges
is O(n). Affix trees can be constructed in linear time and space [18].

The greedy approximation algorithm requires us to compute lsize(I, P),
rsize(I, P), and m(P, P) values. The latter values can be computed with the
color set size algorithm [11]. It stores, for all nodes v in the suffix tree of
P1P · · ·Pp$, the number of patterns in P which have path(v) as a subpat-
tern. The algorithm requires linear time and space — we omit the technical
details. To compute lsize(I, P) and rsize(I, P) values, we first build an affix
tree for the concatenated string T = #P1#P2# · · ·#Pp#, where # is a special
separator symbol, # 	∈ Σ. Then, we construct a bitvector B[1, |T |] that marks
the separators’ positions, i.e. B[i] = 1 iff T [i] = #. With o(|T |) bits of extra space
we can support constant time rank and select operations [12,2] on the bitvector:
a rank1(B, i) query returns the number of 1-bits in B[1 . . i], and select1(B, i)
returns the position of the i-th 1-bit in B.

The goal is to compute the sum of edge label lengths, down to the first ter-
minator symbol, in subtrees consisting either of prefix or suffix descendants.
Let size(←−v) and size(−→v) denote the size of the subtree of v consisting ei-
ther of prefix or suffix descendants, respectively; notice that the former equals
lsize(I, path(v)) and the latter equals rsize(I, path(v)). To compute size(←−v)
and size(−→v) values for each affix tree node v, we do two depth-first traversals
over the affix tree: one traversal over all the prefix edges and one over the suffix

392 S. Gog et al.

edges. Let us describe the latter, i.e. how to compute size(−→v). We start from
the root node and traverse through suffix edges until we encounter either a leaf
node or an edge label that contains the separator symbol #. The latter condition
can be checked in constant time by taking the starting and ending position of
the edge label, say [s . . e], and calling rank1(B, e) and rank1(B, s). If the two
rankings are different, there exists at least one 1-bit in B[s . . e], the first one oc-
curring at the position select1(B, rank1(B, s− 1)+ 1). If v is a leaf node, we set
size(−→v) = 0, and if the incoming edge label of v has the separator symbol, we
set size(−→v) = select1(B, rank1(B, s−1)+1)−s, that is, label’s length up to the
first # symbol. Finally, if v is a internal node, size(−→v) is set to be the sum over
the sizes of its suffix descendants. After the traversal we have stored, for each
node v in the affix tree, the correct size(−→v) for the subpattern P = path(v).
We can repeat the same traversal over the prefix edges to compute size(←−v).

The above algorithm can be used to choose the first pattern P that mini-

mizes |P |+steps′(I,P)
m(P,P) , where steps′(I, P) is our estimator on steps(I, P) based

on lsize(I, P) and rsize(I, P). The algorithm needs to be iterated to find the
subpattern cover, each iteration requiring linear time and space. Notice that
only the m(P, P) values need to be updated on each iteration for each new set
P = P \ P′, where P′ denotes the set of patterns covered by P .

3.4 Subpattern Selection Using Bidirectional Compressed Suffix
Trees

Affix tree occupies O(M logM) bits for the pattern set of total length M . We
aim for O(M log σ) bits solution. To achieve this, we use compressed suffix trees
[22,21,6], one for T = #P1#P2# · · ·#Pp# and one for TR (i.e. latter being prefix
tree). Let us denote these two compressed suffix trees S and P (standing for suffix
and prefix). For what follows, it is sufficient to know that the compressed suffix
tree S (or identically P) supports, in addition to tree navigation operations,
the following operations: j = S.SA(i) for retrieving i-th suffix array value i.e.
the starting position of the lexicographically i-th suffix of the text indexed by
S, i = S.SA−1(j) for retrieving the lexicographic rank i of the suffix starting
at position j in the text indexed by S, v = S.lca(l, r) for retrieving the lowest
common ancestor node v of leaves denoted by suffix array indices l and r, [l, r] =
S.range(v) for retrieving range [l, r] such that l (r) is the left-most (right-most)
leaf under v, and S.sdepth(v) for retrieving the string depth of node v i.e. the
total length of labels from root to v: |S.path(v)|.

Recall the affix tree algorithm to compute size(←−v) and size(−→v). With S and
P we can independently count values size(−→v) and size(−→w) for internal nodes v
of S and internal nodes w of P , respectively, but we do not anymore have the
explicit linking between v and w, that is, to find w such that size(−→w) = size(←−v).
Moreover, S.path(v)R may not spell a path in P that ends in an internal node
w, and vice versa. We say that v in S is linked to w in P if S.path(v)R is a
prefix of P .path(w) and w has smallest string depth among nodes where this
condition holds. If S.sdepth(v) < P .sdepth(w), then S.path(v)R ends at the

Multi-pattern Matching with Bidirectional Indexes 393

incoming edge to w. Hence, knowing v is linked to w, we have the connection
size(−→w) + P .sdepth(w) − S.sdepth(v) = size(←−v). It remains to see how to
implicitly restore the linking between v and w.

Let A[i] = P .SA−1(n− S.SA(i)) for 1 ≤ i ≤ n, where n = M + p+ 1 is the
length of T . We preprocess A[1 . . . n] for range minimum and range maximum
queries: i = rminq(A, l, r) returns i such that A[i] ≤ A[j] for all l ≤ j ≤ r, and
i = rmaxq(A, l, r) returns i such that A[i] ≥ A[j] for all l ≤ j ≤ r. For each query
type, 2n + o(n) bits data structure is enough for answering the corresponding
query in constant time [5]; array A does not need to be constructed explicitly
as access to it is only required during construction time. Consider v in S and
its suffix array range [l, r] = S.range(v). We compute the corresponding suffix
array range [l′, r′] in P by

l′ ← P .SA−1(n− (S.SA(rminq(A, l, r)) + S.sdepth(v))) and
r′ ← P .SA−1(n− (S.SA(rmaxq(A, l, r)) + S.sdepth(v))).

We claim that w = P .lca(l′, r′) is the node linked to v. To see this, notice
that S.SA(l),S.SA(l + 1), . . . ,S.SA(r) are the only starting positions of pre-
fixes of T followed by S.path(v). That is, S.SA(l) + S.depth(v),S.SA(l + 1) +
S.depth(v), . . . ,S.SA(r) + S.depth(v) are the only starting positions of prefixes
of T ending with S.path(v). The relative lexicographic order of the prefixes
in this range does not change when the starting positions are increased by
S.depth(v) and hence we can select the lexicographically smallest and largest
prefixes before shifting the start positions. As all the suffixes P .SA(l′),P .SA(l′+
1), . . . ,P .SA(r′) share the same prefix S.path(v)R, it must hold for
w = P .lca(l′, r′) that S.path(v)R is a prefix of P .path(w) and w has the smallest
string depth among nodes with this property.

Finally, the space bottleneck in the computation is the storage of values
size(−→v) in S and size(−→w) in P . The values in S can be computed during depth-
first traversal and need not be stored, but one may still need to maintain O(n)
values in stack each occupying O(log n) bits; this can be improved to O(n) bits
by maintaining a dynamic partial sums data structures both for the stack and
for the values following almost verbatim the algorithm in [7].

Storage of values size(−→w) in P requires a different approach, namely, sam-
pling: Partition the leaves of P from left-to-right to blocks of length logn. Com-
pute the lowest common ancestor node for each block and mark it sampled. On
every path in the tree from root towards leaves, mark all nodes sampled until
encountering the first node marked in the first step. For all marked nodes w com-
pute the values size(−→w) using depth-first traversal similarly as for S using O(n)
bits during computation in addition to the sampled values. There are O(n/ log n)
marked nodes, so storage of the samples takes O(n) bits. Each unmarked node
w has the property that in its O(log n) size subtree, each path ends with a leaf
or with a marked node. Hence, one can compute in O(log n) time (assuming
constant navigation time) the value size(−→w).

The running time for computing the linking depends on the chosen compressed
suffix tree, but O(n log n) time can be achieved e.g. using [22].

394 S. Gog et al.

4 Future Work

We implemented the scheme presented here almost verbatim and noticed that it
needs considerable engineering to be able to compete with the standard approach
of aligning one read at a time. However, this engineering pays off. We are able to
get a 3-fold speed-up on a realistic metagenomics scenario [14]. This is obtained
by (i) modifying the bidirectional search to use different data structures than the
ones presented here and (ii) fitting a polynomial to model the actual number of
steps required by the bidirectional search so that subpattern selection optimizes
better the total running time.

The biggest issue for practicality of the approach is that supporting exact
search will be sufficient only when cutting the reads to smaller pieces. One can
support approximate search using general backtracking mechanism inside the
bidirectional search, but to do this efficiently the existing pruning mechanisms
(like in [16,17,3,19]) need to be modified or new ones introduced to work within
our search scheme. Also, subpattern cover needs to be refined in order to guar-
antee that all approximate occurrences are found.

References

1. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Technical Report Technical Report 124, Digital Equipment Corporation (1994)

2. Clark, D.R.: Compact pat trees. PhD thesis, Waterloo, Ont., Canada, Canada
(1998)

3. Li, R., et al.: Soap2. Bioinformatics 25(15), 1966–1967 (2009)
4. Ferragina, P., Manzini, G.: Indexing compressed texts. Journal of the ACM 52(4),

552–581 (2005)

5. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

6. Fischer, J., Mäkinen, V., Navarro, G.: Faster entropy-bounded compressed suffix
trees. Theor. Comput. Sci. 410(51), 5354–5364 (2009)

7. Fischer, J., Mäkinen, V., Välimäki, N.: Space efficient string mining under fre-
quency constraints. In: ICDM, pp. 193–202 (2008)

8. Gagie, T., Karhu, K., Kärkkäinen, J., Mäkinen, V., Salmela, L., Tarhio, J.: In-
dexed Multi-pattern Matching. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS,
vol. 7256, pp. 399–407. Springer, Heidelberg (2012)

9. Gagie, T., Puglisi, S.J., Turpin, A.: Range Quantile Queries: Another Virtue of
Wavelet Trees. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS,
vol. 5721, pp. 1–6. Springer, Heidelberg (2009)

10. Handelsman, J., Rondon, M.R., Brady, S.F., Clardy, J., Goodman, R.: Molecular
biological access to the chemistry of unknown soil microbes: a new frontier for
natural products. Chemistry & Biology 5, 245–249 (1998)

11. Hui, L.C.K.: Color set size problem with application to string matching. In:
Proc. 3rd Annual Symposium on Combinatorial Pattern Matching, pp. 230–243.
Springer, London (1992)

12. Jacobson, G.: Succinct Static Data Structures. PhD thesis. Carnegie–Mellon Uni-
versity, CMU-CS-89-112 (1989)

Multi-pattern Matching with Bidirectional Indexes 395

13. Karhu, K.: Improving exact search of multiple patterns from a compressed suffix
array. In: Holub, J., Žďárek, J. (eds.) Proceedings of the Prague Stringology Con-
ference 2011, pp. 226–231. Czech Technical University in Prague, Czech Republic
(2011)

14. Karhu, K., Mäkinen, V.: Practical multi-pattern matching with bidirectional in-
dexes. Submitted manuscript (2012)

15. Lam, T.W., Li, R., Tam, A., Wong, S., Wu, E., Yiu, S.M.: High throughput short
read alignment via bi-directional BWT. In: IEEE International Conference on
Bioinformatics and Biomedicine, vol. 0, pp. 31–36 (2009)

16. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient
alignment of short dna sequences to the human genome. Genome Biology 10(3),
R25 (2009)

17. Li, H., Durbin, R.: Fast and accurate short read alignment with burrows-wheeler
transform. Bioinformatics 25(14), 1754–1760 (2009)

18. Maaß, M.G.: Linear bidirectional on-line construction of affix trees. Algorith-
mica 37(1), 43–74 (2003)

19. Mäkinen, V., Välimäki, N., Laaksonen, A., Katainen, R.: Unified View of Back-
ward Backtracking in Short Read Mapping. In: Elomaa, T., Mannila, H., Orponen,
P. (eds.) Ukkonen Festschrift 2010. LNCS, vol. 6060, pp. 182–195. Springer, Hei-
delberg (2010)

20. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys 39(1), article 2 (2007)

21. Russo, L.M.S., Navarro, G., Oliveira, A.L.: Fully compressed suffix trees. ACM
Trans. Algorithms 7, 53:1–53:34 (2011)

22. Sadakane, K.: Compressed suffix trees with full functionality. Theor. Comp. Sys. 41,
589–607 (2007)

23. Schnattinger, T., Ohlebusch, E., Gog, S.: Bidirectional Search in a String with
Wavelet Trees. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp.
40–50. Springer, Heidelberg (2010)

24. Stoye, J.: Affix trees. Technical Report 2000-04, Faculty of Technology, Bielefeld
University (2000),
http://www.techfak.uni-bielefeld.de/~stoye/

rpublications/report00-04.pdf

25. Vazirani, V.V.: Approximation Algorithms. Springer (2001)
26. Weiner, P.: Linear pattern matching algorithm. In: Proc. 14th Annual IEEE Sym-

posium on Switching and Automata Theory, pp. 1–11 (1973)

http://www.techfak.uni-bielefeld.de/~stoye/rpublications/report00-04.pdf
http://www.techfak.uni-bielefeld.de/~stoye/rpublications/report00-04.pdf

Succinct Representations of Binary Trees

for Range Minimum Queries

Pooya Davoodi1,�, Rajeev Raman2, and Srinivasa Rao Satti3

1 Polytechnic Institute of New York University, United States
pooyadavoodi@gmail.com

2 University of Leicester, United Kingdom
r.raman@leicester.ac.uk

3 Seoul National University, South Korea
ssrao@cse.snu.ac.kr

Abstract. We provide two succinct representations of binary trees that
can be used to represent the Cartesian tree of an array A of size n.
Both the representations take the optimal 2n + o(n) bits of space in
the worst case and support range minimum queries (RMQs) in O(1)
time. The first one is a modification of the representation of Farzan
and Munro (SWAT 2008); a consequence of this result is that we can
represent the Cartesian tree of a random permutation in 1.92n + o(n)
bits in expectation. The second one uses a well-known transformation
between binary trees and ordinal trees, and ordinal tree operations to
effect operations on the Cartesian tree. This provides an alternative,
and more natural, way to view the 2D-Min-Heap of Fischer and Huen
(SICOMP 2011). Furthermore, we show that the pre-processing needed
to output the data structure can be performed in linear time using o(n)
bits of extra working space, improving the result of Fischer and Heun
who use n+ o(n) bits working space.

1 Introduction

Given an array A[1 · · ·n] of totally ordered values, the range minimum query
(RMQ) problem is to preprocess A into a data structure such that given two
indexes 1 ≤ i ≤ j ≤ n, we return the index of the minimum value in A[i · · · j]; the
aim is to minimize the time and space requirements of both the preprocessing
and the data structure. This problem finds a variety of applications that deal
with huge datasets, thus highly space-efficient solutions are of great interest. We
consider the problem in the word RAM model with word size Θ(log n) bits.

A standard approach to solve the RMQ problem is to use the Cartesian
tree [20]. The Cartesian tree of an array A[1 · · ·n] is a binary tree with nodes
labeled by the indexes of A. The root has label i, where A[i] is the minimum

� Part of this research was done while the first author was a PhD student at
MADALGO (supported by the Danish National Research Foundation), Aarhus Uni-
versity, Denmark.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 396–407, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Succinct Representations of Binary Trees for Range Minimum Queries 397

element in A. The left subtree of the root is the Cartesian tree of the subar-
ray A[1 · · · i − 1], and the right subtree of the root is the Cartesian tree of the
subarray A[i+1 · · ·n]. Thus the answer for the query range [i · · · j] is the label of
the lowest common ancestor (LCA) of the nodes labeled by i and j. The Carte-
sian tree of A can be constructed in O(n) time [6]. A data structure that uses
O(n) words of space and finds the LCA of two nodes in a tree of size n in O(1)
time can be constructed in O(n) time [10]—an apparently optimal solution.

In fact, the Cartesian tree of an array A completely characterizes A with
respect to RMQs: the Cartesian tree of two arrays have different topology, iff
there exists at least one query that has different answers over the two arrays.
Since the information-theoretic lower bound for representing a binary tree on n
nodes is 2n− Θ(log n) bits, there is a significant gap between this lower bound
and the space usage of [6], which is O(n) words, or O(n log n) bits. A fair amount
of effort has gone into closing this gap, particularly since in several applications
the array A need not be kept once we have enough information to answer RMQs.

It is known that binary trees can be represented succinctly, i.e. using space
within a lower-order term of the information-theoretic lower bound. Specifically,
an n-node binary tree can be represented in 2n+o(n) bits to support a number of
operations, including LCA, in O(1) time [12,1,2,3]. Unfortunately, we cannot use
these representations to solve the RMQ problem. The difficulty is that the label
of a node in the Cartesian tree (the index of the corresponding array-element)
is its rank in the inorder traversal of the Cartesian tree. However, succinct tree
representations cannot label nodes in an arbitrary manner without blowing up
the space usage, and support only a few numbering schemes, including level-order
[12], preorder [3] and others, but not inorder.

In parallel, many succinct representations of ordinal trees (arbitrary rooted
trees where the order of children matters) were developed. These take 2n+ o(n)
bits to represent n-node ordinal trees, and support a wide variety of operations
including LCA queries (see e.g. [11,2,19]). However, ordinal trees do not distin-
guish between left and right children in a binary tree, so the structure of the
Cartesian tree cannot be represented. Also, as above, we need to find a way to
translate between the array indexes and the numbering scheme of the ordinal tree
representation. To get around these problems, Sadakane [18] adds a new leaf to
each node in a Cartesian tree of n nodes, and views the resulting tree of n′ = 2n
nodes as an ordinal tree. He notes that array index i corresponds to the i-th
leaf in the ordinal tree in preorder. Representing this ordinal tree succinctly, he
answers RMQs in O(1) time, but the space usage is 2n′ + o(n′) = 4n + o(n)
bits—twice the optimal. A solution using 2n + o(n) bits that answers RMQs
in O(1) time was proposed by Fischer [4,5], who defined the 2D-Min-Heap of
an array A[1 · · ·n], an ordinal tree with n+ 1 nodes that stores information on
prefix minima of sub-arrays of A, and represents this ordinal tree succinctly.

Our Results. We present two different techniques to represent Cartesian trees
using 2n + o(n) bits, and both the representations support the inorder num-
bering scheme and LCA queries. An immediate consequence of each of these
representations is a data structure of size 2n+ o(n) bits that supports RMQs in

398 P. Davoodi, R. Raman, and S.R. Satti

O(1) time. Although we do not improve the upper bounds of [5] for the RMQ
problem in the worst case (as they were already optimal), we introduce more
natural ways or simpler approaches to solve the RMQ problem.

In Section 2, we provide a new representation of binary trees that is a modi-
fication of the representation of [2], and to support the operations of converting
between its numbering system and inorder numbering (so-called node-rankinorder
and node-selectinorder) in O(1) time. A consequence of this result is that we can
represent the Cartesian tree of a random permutation of A in 1.92n+ o(n) bits
in expectation [9], and perform RMQs in O(1) time.

In Section 3, we recall that there is a well-known transformation between
binary trees and ordinal trees, which essentially converts inorder numbers in the
binary tree to preoreder/postoreder numbers in the ordinal tree, and preserves
the preorder/postorder numbers of the binary tree. Using this, we show another
method to represent Cartesian trees: transform a Cartesian tree (a binary tree)
into an ordinal tree, and then represent the ordinal tree. Using ordinal tree
operations on the resulting tree, it is possible to represent the Cartesian tree in
optimal space and perform RMQs in constant time. This provides an alternative
and more natural way to view the 2D-Min-Heap of [5], as essentially the result
of the above transformation of the Cartesian trees into ordinal trees. We also
observe a connection between the above transformation and Jacobson’s binary
tree representation [12].

Finally, in Section 4, we show that constructing the data structure of Section 3
(outputting the data structure given an input array) can be done in linear time
using only O(

√
n logn) bits of space, “improving” the result of [5] where n +

o(n) working space is used (the accounting of space is slightly different). This
improvement is useful if the preprocessing and subsequent deployment of the
data structure are done on the same machine.

Preliminaries. Given a bit vector, rank(i) returns the number of 1s up to the
position i in the bit vector, and select(i) returns the position of the ith 1 in the
bit vector. We use the following succinct representations of bit vectors.

Lemma 1. [16] Given a bit vector of size m with n 1s, one can construct

(a) an indexable dictionary that uses log
(
m
n

)
+ o(n) + O(log logm) bits, and

supports rank, for only those positions where there is a 1 in the bit vector,
and select queries in constant time, and

(b) a fully indexable dictionary that uses log
(
m
n

)
+ o(m) bits, and supports rank

and select queries in constant time.

Given a sequence of balanced parentheses, we define the following operations:
find-close(i) returns the position of the closing parenthesis that matches the
open parenthesis at position i of the sequence (the find-open(i) opreation is anal-
ogous); excess(i) returns the difference between the number of open and closing
parentheses from the beginning of the sequence up to position i. The operation
double-enclose(i, j) returns the position of the pair of matching parentheses that

Succinct Representations of Binary Trees for Range Minimum Queries 399

tightly encloses two non-overlapping pairs of parentheses whose open parenthe-
ses respectively appear at positions i and j in the sequence. It is known that in
an ordinal tree represented by its balanced parenthesis representation (BP), the
LCA of two nodes, whose open (closing) parentheses are in positions i and j, is
equivalent to double-enclose(i, j) [14].

Lemma 2. [14,17,13] Given a sequence of balanced parentheses of size n, there
exists a data structure of size n + o(n) bits that supports the operations rank(,
select(, rank), select), find-close, find-open, excess, and double-enclose opera-
tions on the sequence all in O(1) time.

2 Representation Based on Tree Decomposition

We show a succinct representation of binary trees that supports multiple num-
berings (preorder, postorder, DFUDS order and inorder) on the nodes of the tree,
plus a comprehensive list of operations suggested by [11,2]. This data structure
is essentially the same as the k-ary (cardinal) tree representation of Farzan and
Munro [2] for the case when k = 2, with the additional support for two more
operations, node-rankinorder and node-selectinorder. The first operation returns
the inorder number of a node given its preorder number, and the second oper-
ation performs the inverse. We use the preorder numbers of the nodes to refer
to them. Since we can support the node-rank and node-select operations with
respect to inorder, postorder and DFUDS order, we can also use the numberings
of the nodes in any of these three orders to refer to them in the operations.

We begin by outlining the succinct representation of Farzan and Munro [2].
Like the representations of [8,11,15], the representation of Farzan and Munro
recursively decomposes the tree into sub-trees. A prominent property of their
decomposition method is that each sub-tree, aside from its root, has at most one
boundary node that connects the sub-tree to other sub-trees, and furthermore
the boundary node has at most one child outside of the sub-tree. The following
lemma states the result of the decomposition:

Lemma 3. [2, Theorem 1] A tree with n nodes can be decomposed into Θ(n/L)
subtrees, each of size at most L. The subtrees are disjoint aside from their roots.
Moreover, aside from edges leaving root of subtrees, there is at most one edge in
each subtree that connects a node of the subtree to its child in another subtree.

The ordinal tree is first decomposed using Lemma 3 into O(n/ log2 n) mini-
trees each of size O(log2 n). Each mini-tree is further decomposed into O(log n)
micro-trees of size at most � logn

2 . Each micro-tree is represented with its size,
and an index to a lookup table of size o(n) bits, which stores answers of all queries
asked within the micro-trees. The sum of the sizes of the representations of all the
micro-trees (i.e., the total space for storing all the indexes to the lookup table) is
2n+o(n) bits in total, which is the dominating part of the space. Each mini-tree
is represented by the explicitly stored list of pointers between the micro-trees
within the mini-tree, where each pointer uses only O(log logn) bits. The roots of

400 P. Davoodi, R. Raman, and S.R. Satti

micro-trees are represented using indexable dictionary structure of Lemma 1(a).
The original tree that contains the mini-trees is represented analogously to the
representation of mini-trees, by storing the list of pointers between the mini-
trees. All the parts together take 2n+ o(n) bits. The data structure can support
the full set of navigational operations and queries in binary trees.

Lemma 4. [2] A binary tree with n nodes can be represented using 2n + o(n)
bits of space, while a full set of operations in [2, Table 2] including LCA can be
supported in O(1) time.

We now show the main theorem of this section:

Theorem 1. Given a binary tree with n nodes, there exists a data structure of
size 2n + o(n) bits, that supports the following operations in O(1) time: node-
rankinorder, node-selectinorder, and all the operations supported by the ordinal tree
representation of Farzan and Munro [2] for Cardinal trees, including LCA.

Proof. As mentioned above, in our data structure, to perform any operation on
a node, except node-select operations, we need to give the preorder number of
the node to the operation, and the operation also returns a node in the form
of its preorder number (this is not the case if the operation does not return a
node at all such as depth). Thus, in circumstances in which we are asked to
perform an operation on a node referred to by its inorder number, we first need
to compute the preorder number of the node and then perform the operation
as usual. Similarly, when we are asked to return the result of an operation in
the form of an inorder number, we need to compute the inorder number of the
node from the preorder number returned by the operation. These two tasks are
performed by the operations node-selectinorder and node-rankinorder respectively.

node-rankinorder. For a node v, we want to compute the inorder number of v,
given its preorder number. We count the following; c1: the number of nodes that
are visited before v in inorder traversal but visited after v in preorder traversal;
c2: the number of nodes that are visited after v in inorder traversal but visited
before v in preorder traversal. It is not hard to see that the inorder number of v
is equal to its preorder number + c1 − c2.

The nodes counted in c1 are all the nodes located in the left subtree of v, which
can be counted by subtree size of the left child of v. The nodes counted in c2 are
all the ancestors of v of which left child is on the v-to-root path. We compute c2
in a way similar to computing the depth of a node as follows. At the root of each
mini-tree, we store c2 of that root, which requires O((n/ log2 n) logn) = o(n)
bits. At the root rμ of each micro-tree, we store the local-c2 of rμ, that is, the
number of ancestors of rμ, only up to the root of the mini-tree containing rμ,
where their left child is on the rμ-to-root path. The local-c2 of v is analogously
defined for the ancestors of v within its micro-tree, which can be computed using
table lookup. To calculate c2 of v, we clearly take the sum of the following: c2
of the root of the mini-tree containing v, local-c2 of the root of the micro-tree
containing v, and local-c2 of v, all computed in O(1) time.

Succinct Representations of Binary Trees for Range Minimum Queries 401

node-selectinorder. For a node v, we want to compute the preorder number of v,
given its inorder number. Notice that a node that is visited before v in preorder
traversal is the root rm of the mini-tree containing v. The preorder number of
v can be expressed as the sum of two quantities: (1) preorder number of rm;
and (2) the number of nodes that are visited after rm and before v in preorder
traversal, which may include nodes both within and outside the mini-tree. In the
following, we explain how to compute these two quantities.

(1) The preorder number of rm is stored with the mini-tree representation,
and thus we only need to find the mini-tree containing the node v. We number
all the mini-trees in some arbitrary order, counting from zero up to nm−1, where
nm = O(n/ log2 n) is the number of mini-trees. We call these numbers, names
of the mini-trees. Starting with an empty bit vector A, we traverse the tree in
inorder, and after visiting each new node, we append a bit to A as follows: during
the traversal when we enter a mini-tree from another mini-tree, we append a 1 to
A, and while we are traversing within a mini-tree we append a 0 to A. During the
traversal when we enter a mini-tree from another mini-tree, we also write down
the name of the current mini-tree in another array B. At the beginning of A we
write 1 corresponding to the first visited node (the root), and at the beginning
of B, we write the name of the first visited mini-tree (containing the root). Thus,
at the end of the traversal, A is a bit vector of length n. We observe that the
i-th node in the inorder traversal of the tree belongs to the mini-tree with name
B[j] where j to be the number of 1s before A[i+ 1] (i.e., j = rankA(i + 1)).

We store B explicitly as it only requires O(nm · logn) = o(n) bits due to the
following. The length of B is at most 2 · nm because the traversal can enter a
mini-tree at most two times (each mini-tree has at most one edge leaving the
mini-tree aside from its root; see Lemma 3), and thus its name can be written
in B at most two times. For the same reason, the number of 1s in A is at
most 2 · nm. We represent A using the FID structure of Lemma 1(b) which uses
O(log

(
n
nm

)
) = o(n) bits and supports rank operation on A in constant time.

(2) The number of nodes that are visited after rm and before v in preorder,
is computed by taking the sum of the following quantities: (i) the number of
such nodes that are outside the mini-tree; (ii) the number of such nodes that are
within the micro-tree tμ containing v; and (iii) the number of such nodes that
are within the mini-tree and outside tμ (visited after rm and before the root of
tμ). To compute these three quantities, we first need to find tμ among the other
micro-trees within the same mini-tree. We utilize the same method as we used
in (1) as follows Each mini-tree plays the role of the original tree in (1) and its
micro-trees play the role of mini-trees in (1). That is, we give a name to each
micro-tree in the mini-tree; we traverse the mini-tree in inorder; we make the
arrays A and B; and we use an FID to encode A. Applying the same analysis
provides o(n) bits space.

The nodes in (i) only exist if the mini-tree has a boundary node which is
visited before the root of tμ. The nodes in (i) are in fact all the nodes in a
subtree of such a boundary node, and thus the subtree size of the child of the
boundary node which is outside of the mini-tree determines the quantity in (i).

402 P. Davoodi, R. Raman, and S.R. Satti

The quantity in (ii) is computed using table lookup. The number in (iii) is the
local-preorder number of the root of tμ. We store the local-preorder number of
the root of each micro-tree in O(log logn) bits which requires o(n) bits in total.
This completes the proof of Theorem 1. ��

The following theorem gives a slight generalization of Theorem 1, which uses
entropy coding to exploit any differences in frequency between the four node
types (Theorem 1 corresponds to choosing all the αis to be 1/4):

Theorem 2. For any positive constants α0, αL, αR and α2, such that α0 +
αL + αR + α2 = 1, a binary tree with n0 leaves, nL (nR) nodes with only
a left (right) child and n2 nodes with both children can be represented using(∑

i∈{0,L,R,2} ni log2 1/αi

)
+ o(n) bits of space, while a full set of operations [2,

Table 2] including LCA can be supported in O(1) time.

Proof. We proceed as in the proof of Theorem 1, but if α = mini∈{0,L,R,2} αi,

we choose the size of the micro-trees to be at most μ = logn
2 log2(1/α)

. Then, given

a micro-tree with μi nodes of type i, for i ∈ {0, L,R, 2} we encode it by writing
the node types in level order (cf. [12]) and encoding this string using arithmetic
coding with the probability of a node of type i taken to be αi. The size of this

micro tree is
⌈∑

i∈{0,L,R,2} μi log2 1/αi

⌉
, from which the theorem follows. ��

Corollary 1. If A is a random permutation over {1, . . . , n}, then RMQ queries
on A can be answered using 1.92n+ o(n) bits in expectation.

Proof. Choose α0 = α2 = 1/3 and αR = αL = 1/6. The claim follows from [9,
Theorem 1]. ��

3 Transforming Binary Trees into Ordinal Trees

We now give a succinct representation of binary trees based upon a well-known
transformation between binary trees and ordinal trees. We show that this trans-
formation not only supports inorder numbering, but also permits navigational
and LCA operations by using the relevant operations on the ordinal tree.

Theorem 3. A binary tree on n nodes can be represented in 2n + o(n) bits to
support left-child, right-child, parent, subtree-size and LCA in O(1) time, where
the nodes are referred to by any of the inorder, preorder, or postorder numbers.

Proof. We first describe two (related) transformations between binary trees and
ordinal trees, and then describe how binary tree operations can be performed.
Let tb be a binary tree with n nodes that we want to transform to an ordinal
tree, and let t1 and t2 be the ordinal trees resulting from the first and second
transformation respectively. Each of t1 and t2 has n+1 nodes, where each node
corresponds to a node in tb, except the root which is dummy. In the first trans-
formation, the root of tb corresponds to the first child of the dummy root of t1;

Succinct Representations of Binary Trees for Range Minimum Queries 403

i

f

a

b

c

d

e

g

h

ifa

hgb

edc

i

h

g

f

d

ba e

c

t2tb t1

Fig. 1. An example for the transformations: tb is a binary tree, t1 and t2 are the ordinal
trees obtained by applying the first and second transformations respectively to tb. The
gray nodes are dummy and do not correspond to any node in tb.

the left child of a node in tb corresponds to the first child of the corresponding
node in t1; and the right child of a node in tb corresponds to the next sibling
of the corresponding node in t1. In the second transformation, the root of tb
corresponds to the last child of the dummy root of t2; the left child of a node
in tb corresponds to the previous sibling of the corresponding node in t2; and
the right child of a node in tb corresponds to the last child of the corresponding
node in t2 (see Fig. 1).

These two transformations have a useful property which allows us to use the
inorder number as the interface of the operations. In the first transformation,
the inorder number of a node in tb is equal to the postorder number of its
corresponding node in t1. In the second transformation, the inorder number
of a node in tb is equal to the preorder number of its corresponding node in t2.
Furthermore, the preorder number of a node in tb is equal to the preorder number
of its corresponding node in t1, and the postorder number of a node in tb is equal
to the postorder number of its corresponding node in t2.

The first and second transformations can be modified to make a third and
fourth transformation, respectively, by reversing the order of all siblings in the
ordinal tree. That is, if some node is the ith child out of the k children of its
parent in the ordinal tree, then in the reverse order, it will be the k − i + 1th
child of its parent (the new tree can be seen as the mirror image of the original
ordinal tree). The third transformation is used in Section 4.

Taking advantage of the transformations and using the known ordinal tree
representations that use preorder or postorder numbers as the interface of the
operations, we obtain binary trees representations that use the inorder numbers
as the interface of the operations. To represent a binary tree, we transform it into
an ordinal tree using either of the transformations, and then we represent the or-
dinal tree by utilizing one of the known succinct representations that supports at
least the operations ith-child, parent, next-sibling, previous-sibling, subtree-size,
leftmost leaf, rightmost leaf, LCA, level-ancestor, and depth. In the following,

404 P. Davoodi, R. Raman, and S.R. Satti

we only show how to support the operations in the binary tree using the first
transformation. Supporting the operations on the second transformation is anal-
ogous. Given a node v in a binary tree tb, let vt1 denote the corresponding node
in t1, the transformed binary tree using the first transformation.

left-child, right-child, parent. The left child of a node v in tb is the first child of
the node vt1 , which can be determined using the operation ith-child on t1. The
right child of a node v in tb is the next sibling of vt1 , which can be determined
by the operation next-sibling on t1. For the parent of a node v in tb there are
two cases: 1) if vt1 is the first child of its parent, then the answer is the parent;
2) if vt1 is not the first child of its parent, then the answer is the previous sibling
of vt1 . These also can be determined using the operations ith-child, parent, and
previous-sibling.

subtree-size. It is not difficult to see that the subtree size of v is equal to the
sum of the subtree size of vt1 and the subtree sizes of all the siblings to the right
of vt1 . Let 	 be the right-most leaf in the subtree of the parent of vt1 . To obtain
the above sum, we only subtract the preorder number of vt1 from the preorder
number of 	.

LCA. Let w be the LCA of two nodes u and v in tb that we want to compute.
Notice that the LCA of ut1 and vt1 is a node zt1 , that is a child of wt1 and an
ancestor of ut1 , assuming that u is to the left of v in tb. Thus, we only need to
find the ancestor of ut1 at level i, where i − 1 is the depth of zt1 . To compute
this, we utilize the operations LCA, depth, and level-ancestor on t1. ��

We now observe an interesting connection between the above transformation and
the binary tree representation of Jacobson [12]. Given a binary tree, we first add
external nodes wherever there is a missing child, and label the internal nodes
with an open parenthesis, and the external nodes with a closing parenthesis. We
then traverse the tree in preorder and write down the labels of the nodes visited
in the traversal order (this is similar to Jacobson’s [12] encoding, except that
he visits the tree in level-order). If the original tree has n nodes, the sequence
so obtained has length 2n + 1 (as n + 1 external nodes are added to the tree).
It is easy to show that by adding an extra open parenthesis at the beginning,
we get a balanced parenthesis sequence S of length 2n + 2. See Fig. 2 for an
example. Note that in the depth-first search, if we switch the order in which the
children of a node are visited (i.e., visit the right child before the left child), then
the resulting sequence obtained is the balanced parenthesis sequence of the tree
obtained by applying the first transformation to the given binary tree.

Furthermore, each open parenthesis in S, except the extra parenthesis that is
added, and its matching closing parenthesis, are (conceptually) associated with
a node in the given tree that was visited when the parenthesis is added to the
sequence. It is easy to verify that the open parentheses in S from left to right
correspond to the nodes in preorder, and the closing parentheses from left to
right correspond to the nodes in inorder.

Succinct Representations of Binary Trees for Range Minimum Queries 405

d h

c f

b

g

e

a

a b c d e f g h --

(((((((()))))))))(

c d b a f e h g --

Preorder

Inorder

Fig. 2. Illustrating the connection between Jacobson’s approach to representing binary
trees and the representation of Theorem 3 to a binary tree. Note that the open/closing
parentheses from left to right are in the same order as a preorder/inorder traversal of
the nodes respectively.

4 Cartesian Tree Construction in o(n) Working Space

We show how to construct the succinct representation of Section 3, using only
o(n) bits during the construction. A straightforward way to construct a succinct
representation of a Cartesian tree is to construct the standard pointer-based
representation of the Cartesian tree from the given array in linear time [6], and
then construct the succinct representation using the pointer-based representa-
tion. The drawback of this approach is that the space used during the construc-
tion is O(n logn) bits, although the final structure uses only O(n) bits. Fischer
and Heun [5] show that the construction space can be reduced to n+ o(n) bits.
In this section, we show how to improve the construction space to o(n) bits.

Theorem 4. Given an array A of n values, we can build a 2n+ o(n)-bit repre-
sentation of its Cartesian tree in O(n) time using o(n) bits of auxiliary space.

Proof. The proof assumes that the array A is present in read-only memory and
it is possible to randomly access A. The algorithm reads A from left to right,
and outputs a parenthesis sequence as follows: if, having completed the pre-
processing for A[1], . . . , A[i], for some i ≥ 0, when processing the A[i + 1], we
compare A[i+1] with all the suffix minima of A[1..i]—if A[i+1] is smaller than
j ≥ 0 suffix minima, then we output the string)j(. This is so far a restatement
of the algorithm of [6] for constructing a Cartesian tree, and it is not hard to
see that the string output is balanced, by adding j closing parentheses to the
end, where j is number of suffix minima of A[1..n]. This sequence is in fact
the reverse of the DFUDS sequence of the ordinal tree obtained by applying the
third transformation of Section 3 to the Cartesian tree. While the straightforward

406 P. Davoodi, R. Raman, and S.R. Satti

approach would be to maintain a linked list of the locations of the current suffix
minima, this list could contain Θ(n) locations and could take Θ(n log n) bits.

Our approach is to use the output string itself to encode the positions of the
suffix minima. It is not hard to see that if the output string is created by the
above process, it will be of the form b0(b1(...(bk(where each bi is a (possibly
empty) maximal balanced parenthesis string – the remaining parentheses are
called unmatched. It is not hard to see that the unmatched parentheses encode
the positions of the suffix minima in the sense that if the unmatched parenthe-
ses are the i1, i2 . . . , ik-th opening parentheses in the current output sequence
then the position i1, . . . , ik are precisely the suffix minima positions. Our task is
therefore to sequentially access the next unmatched parenthesis, starting from
the end, when adding the new element A[i+1]. We conceptually break the string
into blocks of size �

√
n�. For each block that contains at least one unmatched

parenthesis, store the following info:

– it’s block number (in the original paren string) and the total number of open
parenthesis in the current output string before the start of the block.

– the position p of the rightmost paren in the block, and the number of open
parentheses before it in the block.

– a pointer to the next block with at least one unmatched parenthesis.

This takes O(log n) bits per block, which is O(
√
n logn) bits.

– For the rightmost block (in which we add the new parens), keep positions of
all the unmatched parens: the space for this is also O(

√
n logn) bits.

When we process the next element of A, we compare it with unmatched parens
in the rightmost block, which takes O(1) time per unmatched paren that we
compared the new element with, as in the algorithm of [6]. Updating the last
block is also trivial. Suppose we have compared A[i+1] and found it smaller than
all suffix maxima in the rightmost block. Then, using the linked list, we find the
rightmost unmatched paren (say at position p) in the next block in the list, which
takesO(1) time, and compare with it (this is also O(1) time). If A[i+1] is smaller,
then sequentially scan this block leftwards starting at position p, skipping over a
maximal BP sequence to find the next unmatched paren in that block. The time
for this sequential scan is O(n) overall, since we never sequentially scan the same
paren twice. Updating the blocks is straightforward. Thus, the creation of the
output string can be done in linear time using O(

√
n logn) bits. For constructing

the auxiliary structures for the DFUDS in linear time see [7]. ��

References

1. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Repre-
senting trees of higher degree. Algorithmica 43(4), 275–292 (2005)

2. Farzan, A., Munro, J.I.: A Uniform Approach Towards Succinct Representation
of Trees. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 173–184.
Springer, Heidelberg (2008)

Succinct Representations of Binary Trees for Range Minimum Queries 407

3. Farzan, A., Raman, R., Rao, S.S.: Universal Succinct Representations of Trees?
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5555, pp. 451–462. Springer, Heidelberg (2009)

4. Fischer, J.: Optimal Succinctness for Range Minimum Queries. In: López-Ortiz, A.
(ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010)

5. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM Journal on Computing 40(2), 465–492 (2011)

6. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geom-
etry problems. In: Proc. 16th Annual ACM Symposium on Theory of Computing,
pp. 135–143. ACM Press (1984)

7. Geary, R.F., Rahman, N., Raman, R., Raman, V.: A simple optimal representation
for balanced parentheses. Theoretical Computer Science 368(3), 231–246 (2006)

8. Geary, R.F., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor
queries. ACM Transactions on Algorithms 2(4), 510–534 (2006)

9. Golin, M., Iacono, J., Krizanc, D., Raman, R., Rao, S.S.: Encoding 2D Range
Maximum Queries. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.)
ISAAC 2011. LNCS, vol. 7074, pp. 180–189. Springer, Heidelberg (2011)

10. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing 13(2), 338–355 (1984)

11. He, M., Munro, J.I.J., Rao, S.S.: Succinct Ordinal Trees Based on Tree Covering.
In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 509–520. Springer, Heidelberg (2007)

12. Jacobson, G.: Succinct Static Data Structures. PhD thesis. Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA (1989)

13. Lu, H.-I., Yeh, C.-C.: Balanced parentheses strike back. ACM Transactions on
Algorithms 4(3) (2008)

14. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM Journal on Computing 31(3), 762–776 (2001)

15. Munro, J.I., Raman, V., Storm, A.J.: Representing dynamic binary trees succinctly.
In: Proc. 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 529–
536. SIAM (2001)

16. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3(4) (2007)

17. Sadakane, K.: Succinct representations of lcp information and improvements in the
compressed suffix arrays. In: Proc. 13th Symposium on Discrete Algorithms, pp.
225–232 (2002)

18. Sadakane, K.: Succinct data structures for flexible text retrieval systems. Journal
of Discrete Algorithms 5(1), 12–22 (2007)

19. Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: Proc. 21st Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 134–149. SIAM (2010)

20. Vuillemin, J.: A unifying look at data structures. Communications of the
ACM 23(4), 229–239 (1980)

Lower Bounds against Weakly Uniform Circuits

Ruiwen Chen and Valentine Kabanets

School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada
ruiwenc@sfu.ca, kabanets@cs.sfu.ca

Abstract. A family of Boolean circuits {Cn}n�0 is called γ(n)-weakly
uniform if there is a polynomial-time algorithm for deciding the direct-
connection language of every Cn, given advice of size γ(n). This is a
relaxation of the usual notion of uniformity, which allows one to inter-
polate between complete uniformity (when γ(n) = 0) and complete non-
uniformity (when γ(n) > |Cn|). Weak uniformity is essentially equivalent
to succinctness introduced by Jansen and Santhanam [12].

Our main result is that Permanent is not computable by polynomial-
size no(1)-weakly uniform TC0 circuits. This strengthens the results by
Allender [2] (for uniform TC0) and by Jansen and Santhanam [12] (for
weakly uniform arithmetic circuits of constant depth). Our approach
is quite general, and can be used to extend to the “weakly uniform”
setting all currently known circuit lower bounds proved for the “uniform”
setting. For example, we show that Permanent is not computable by
polynomial-size (log n)O(1)-weakly uniform threshold circuits of depth
o(log log n), generalizing the result by Koiran and Perifel [16].

Keywords: advice complexity classes, alternating Turing machines,
counting hierarchy, permanent, succinct circuits, threshold circuits, uni-
form circuit lower bounds, weakly uniform circuits.

1 Introduction

Understanding the power and limitation of efficient algorithms is the major
goal of complexity theory, with the “P vs. NP” problem being the most famous
open question in the area. While proving that no NP-complete problem has a
uniform polynomial-time algorithm would suffice for separating P and NP, a
considerable amount of effort was put into the more ambitious goal of trying to
show that no NP-complete problem can be decided by even a nonuniform family
of polynomial-size Boolean circuits.

More generally, an important goal in complexity theory has been to prove
strong (exponential or super-polynomial) circuit lower bounds for “natural” com-
putational problems that may come from complexity classes larger than NP, e.g.,
the class NEXP of languages decidable in nondeterministic exponential time. By
the counting argument of Shannon [23], a randomly chosen n-variate Boolean
function requires circuits of exponential size. However, the best currently known
circuit lower bounds for explicit problems are only linear for NP problems [17,11],
and polynomial for problems in the polynomial-time hierarchy PH [14].

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 408–419, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Lower Bounds against Weakly Uniform Circuits 409

To make progress, researchers introduced various restrictions on the circuit
classes. In particular, for Boolean circuits of constant depth, with NOT and
unbounded fan-in AND and OR gates (AC0 circuits), exponential lower bounds
are known for the Parity function [8,29,9]. For constant-depth circuits that
additionally have (unbounded fan-in) MODp gates, one also needs exponential
size to compute the MODq function, for any distinct primes p and q [20,24]. With
little progress for decades, Williams [28] has recently shown that a problem in
NEXP is not computable by polynomial-size ACC0 circuits, which are constant-
depth circuits with NOT gates and unbounded fan-in AND, OR and MODm

gates, for any integer m > 1. However, no lower bounds are known for the class
TC0 of constant-depth threshold circuits with unbounded fan-in majority gates.1

To make more progress, another restriction has been added: uniformity of
circuits. Roughly speaking, a circuit family is called uniform if there is an effi-
cient algorithm that can construct any circuit from the family. There are two
natural variations of this idea. One can ask for an algorithm that outputs the
entire circuit in time polynomial in the circuit size; this notion of uniformity is
known as P-uniformity. In the more restricted notion, one asks for an algorithm
that describes the local structure of the circuit: given two gate names, such an
algorithm determines if one gate is the input to the other gate, as well as de-
termines the types of the gates, in time linear (or polynomial) in the input size
(which is logarithmic or polylogarithmic time in the size of the circuit described
by the algorithm); such an algorithm is said to decide the direct-connection
language of the given circuit. This restricted notion is called DLOGTIME- (or
POLYLOGTIME-) uniformity [22,5,3]. We will use the notion of POLYLOGTIME-
uniformity by default, and, for brevity, will omit the word POLYLOGTIME.

It is easy to show (by diagonalization) that, for any fixed exponential func-
tion s(n) = 2n

c

for a constant c � 1, there is a language in EXP (deterministic
exponential time) that is not computable by a uniform (even P-uniform) family
of Boolean s(n)-size circuits.2 Similarly, as observed in [2], a PSPACE-complete
language requires exponential-size uniform TC0 circuits. For the smaller com-
plexity class #P ⊆ PSPACE, Allender and Gore [3] showed Permanent (which
is complete for #P [26]) is not computable by uniform ACC0 circuits of sub-
exponential size. Later, Allender [2] proved that Permanent cannot be com-
puted by uniform TC0 circuits of size s(n) for any function s such that, for all k,
s(k)(n) = o(2n) (where s(k) means the function s composed with itself k times).
Finally, Koiran and Perifel [16] extended this result to show that Permanent is
not computed by polynomial-size uniform threshold circuits of depth o(log logn).

Recently, Jansen and Santhanam [12] have proposed a natural relaxation of
uniformity, termed succinctness, which allows one to interpolate between non-
uniformity and uniformity. According to [12], a family of s(n)-size circuits {Cn}

1 A plausible explanation of this “barrier” is given by the “natural proofs” framework
of [21], who argue it is hard to prove lower bounds against the circuit classes that
are powerful enough to implement cryptography.

2 Unlike the nonuniform setting, where every n-variate Boolean function is computable
by a circuit of size about 2n/n [18], uniform circuit lower bounds can be > 2n.

410 R. Chen and V. Kabanets

is succinct if the direct-connection language of Cn is decided by some circuit of
size s(n)o(1). In other words, while there may not be an efficient algorithm for
describing the local structure of a given s(n)-size circuit Cn, the local structure
of Cn can be described by a non-uniform circuit of size s(n)o(1). Note that if
we allow the non-uniform circuit to be of size s(n), then the family of circuits
{Cn} would be completely non-uniform. So, intuitively, the restriction to the
size s(n)o(1) makes the notion of succinctness close to that of non-uniformity.

The main result of [12] is that Permanent does not have succinct polynomial-
size arithmetic circuits of constant depth, where arithmetic circuits have un-
bounded fan-in addition and multiplication gates and operate over integers.
While relaxing the notion of uniformity, [12] were only able to prove a lower
bound for the weaker circuit class, as polynomial-size constant-depth arithmetic
circuits can be simulated by polynomial-size TC0 circuits. A natural next step
was to prove a super-polynomial lower bound for Permanent against succinct
TC0 circuits. This is achieved in the present paper.

1.1 Our Main Results

We improve upon [12] by showing that Permanent does not have succinct
polynomial-size TC0 circuits. In addition to strengthening the main result from
[12], we also give a simpler proof. Our argument is quite general and allows us
to extend to the “succinct” setting all previously known uniform circuit lower
bounds of [3,2,16].

Recall that the direct-connection language for a circuit describes the local
structure of the circuit; more precise definitions will be given in the next section.
For a function α : N → N, we say that a circuit family {Cn} of size s(n)
is α-weakly uniform if the direct-connection language Ldc of {Cn} is decided
by a polynomial-time algorithm that, in addition to the input of Ldc of size
m ∈ O(log s(n)), has an advice string of size α(m); the advice string just depends
on the input size m. The notion of α-weakly uniform is essentially equivalent to
the notion of α-succinct introduced in [12]; see the next section for details.

We will call a circuit family subexp-weakly uniform if it is α-weakly uniform
for α(m) ∈ 2o(m). Similarly, we call a circuit family poly-weakly uniform if it is
α-weakly uniform for α(m) ∈ mO(1). Observe that for m = O(log s), we have
2o(m) = so(1) and mO(1) = poly log s.

Our main results are as below. First, we strengthen the lower bound of [12].

Theorem 1. Permanent is not computable by subexp-weakly uniform poly-
size TC0 circuits.

Let us call a function s(n) sub-subexponential if, for any constant k > 0, we have

that the k-wise composition s(k)(n) � 2n
o(1)

. We use subsubexp to denote the
class of all sub-subexponential functions s(n). We extend a result of Allender [2]
to the “weakly-uniform” setting.

Theorem 2. Permanent is not computable by poly-weakly uniform subsubexp-
size TC0 circuits.

Lower Bounds against Weakly Uniform Circuits 411

Finally, we extend the result of [16].

Theorem 3. Permanent is not computable by poly-weakly uniform poly-size
threshold circuits of depth o(log logn).

1.2 Our Techniques

At the high level, we use the method of indirect diagonalization:

– assuming Permanent is easy and using diagonalization, we first show the
existence of a “hard” language in a certain complexity class C (the counting
hierarchy, to be defined below);

– assuming Permanent is easy, we show that the above “hard” language
is actually “easy” (as the easiness of Permanent collapses the counting
hierarchy), which is a contradiction.

In more detail, we first extend the well-known correspondence between uniform
TC0 and alternating polylog-time Turing machines (that use majority states)
to the weakly uniform setting, by considering alternating Turing machines with
advice. To construct the desired “hard” language, we use diagonalization against
such machines with advice. The assumed easiness of Permanent is used to
argue two things about the constructed “hard” language Lhard:

1. Lhard is in fact “hard” for a much more powerful class A of algorithms;
2. Lhard is decided by a “simple” algorithm A.

The contradiction ensues since algorithm A turns out to be from the class A.

1.3 Relation to the Previous Work

A similar indirect-diagonalization strategy was used (explicitly or implicitly) in
all previous papers showing uniform or weakly uniform circuit lower bounds for
Permanent [3,2,16,12]. Our approach is most closely related to that of [2,16].
The main difference is that we work in the weakly uniform setting, which means
that we need to handle a certain amount of non-uniform advice. To that end,
we have adapted the method of indirect diagonalization, making it modular (as
outlined above) and sufficiently general to work also in the setting with advice.
Due to this generality of our proof argument, we are able to extend the afore-
mentioned lower bounds from the uniform setting to the weakly uniform setting.

The approach adopted by [12] goes via the well-known connection between de-
randomization and circuit lower bounds (cf. [10,13,1]). Since the authors of [12]
work with the algebraic problem of Polynomial Identity Testing (given an arith-
metic circuit computing some polynomial over integers, decide if the polynomial
is identically zero), their final lower bounds are also in the algebraic setting:
for weakly uniform arithmetic constant-depth circuits. By making the diagonal-
ization arguments in [12] more explicit (along the lines of [2]), we are able to
get the lower bound for weakly uniform Boolean (TC0) circuits, thereby both
strengthening the results and simplifying the proofs from [12].

412 R. Chen and V. Kabanets

2 Preliminaries

We refer to [4] for the basic complexity notions.

2.1 Weakly Uniform Circuit Families

Following [22,3], we define the direct connection language of a circuit family
{Cn} as Ldc = {(n, g, h) : g = h and g is a gate in Cn, or g 	= h and h is an
input to g}, where n is in binary representation, and g and h are binary strings
encoding the gate types and names. The type of a gate could be constant 0 or 1,
Boolean logic gate NOT, AND, or OR, majority gate MAJ, modulo gate MODm

for some integer m, or input x1, x2, . . . , xn. For a circuit family of size s(n), we
need c0 log s(n) bits to encode (n, g, h), where c0 is a small constant at most 4.

A circuit family {Cn} is uniform [5,3] if its direct connection language is
decidable in time polynomial in its input length |(n, g, h)|; this was referred to
as POLYLOGTIME-uniformity in [3].

We say a function f(n) is constructible if there is a deterministic TM that
computes f(n) in binary in time O(f(n)), when given n in binary as the input3.

Following [12], for a constructible function α : N → N, we say that a circuit
family {Cn} of size s(n) is α-succinct if its direct connection language Ldc is
in SIZE(α); i.e., Ldc has (non-uniform) Boolean circuits of size α(m), where
m = c0 log s(n) is the input size for Ldc. Trivially, for α(m) � 2m, every circuit
family is α-succinct. The notion becomes nontrivial when α(m) - 2m/m. We
will use α(m) = 2o(m) (slightly succinct) and α(m) = mO(1) (highly succinct).

We recall the definition of Turing machines with advice from [15]. Given func-
tions t : N×N → N and α : N → N, we say that a language L is in DTIME(t)/α, if
there is a deterministic Turing machineM and a sequence of advice strings {an}
of length α(n) such that, for any x ∈ {0, 1}n, machine M on inputs (x, an) de-
cides whether x ∈ L in time t(n, α(n)). If the function t(n,m) is upper-bounded
by a polynomial in n+m, we say that L ∈ P/α.

Definition 1. A circuit family {Cn} of size s(n) is α-weakly uniform if its
direct connection language is decided in P/α; recall that the input size for the
direct-connection language describing Cn is m = c0 log s(n), and so the size of
the advice string needed in this case is α(c0 log s(n)).

The two notions are closely related.

Lemma 1. In the notation above, α(m)-succinctness implies α(m) logα(m)-
weak uniformity, and conversely, α(m)-weak uniformity implies (α(m)+m)O(1)-
succinctness.

Proof (sketch). A Boolean circuit of size s can be represented by a binary string
of size O(s log s); and a Turing machine running in time t can be simulated by
a circuit family of size O(t log t). ��
3 We note that f(n) is constructible in our sense if and only if 2f(n) is constructible
according to Allender’s definition in [2].

Lower Bounds against Weakly Uniform Circuits 413

The notion of weak uniformity (succinctness) interpolates between full unifor-
mity on one end and full non-uniformity on the other end. For example, 0-weak
uniformity is the same as uniformity. On the other hand, α-weak uniformity for
α(m) � 2m is the same as non-uniformity. For that reason, we will assume that
the function α in “α-weakly uniform” is such that 0 � α(m) � 2m.

Definition 2. We say a circuit family {Cn} is subexp-weakly uniform if it is α-
weakly uniform for α(m) ∈ 2o(m); similarly, we say {Cn} is poly-weakly uniform
if it is α-weakly uniform for α(m) ∈ mO(1).

2.2 Weak Uniformity vs. Alternating Turing Machines with Advice

Following [7,19,3], a threshold Turing machine is an alternating TM (ATM) with
majority (MAJ) states; a configuration inmajority state may have an unbounded
number of successors, and it is accepting iff more than half of its successors are
accepting. We denote by Thd(n)TIME(t(n)) the class of languages accepted by
threshold TMs having at most d(n) alternations and running in time O(t(n)).

The counting hierarchy [27,25] is defined as CH = ∪d�0CHd, where CH0 = P

and CHd+1 = PPCHd . The counting hierarchy can be equivalently defined via
threshold Turing machines: CHd = ThdTIME(nO(1)).

It is well-known that uniform AC0(2poly(n)) corresponds to the polynomial-
time hierarchy PH [8]. Similarly, the correspondence exists between uniform
TC0(2poly(n)) and the counting hierarchy CH [19,5,2]. For constructible t(n) such
that t(n) = Ω(log n), we have ∪d�0ThdTIME(poly(t(n))) is precisely the class of
languages decided by uniform TC0(2poly(t(n))).

The following lemma gives the correspondence between weakly uniform
threshold circuits and threshold TMs with advice. The proof follows from [3],
and is left to the full version [6].

Lemma 2. Let L be any language decided by a family of α-weakly uniform d(n)-
depth threshold circuits of size s(n). Then L is decidable by a threshold Turing
machine with d′(n) = 3d(n) + 2 alternations, taking advice of length α(m) for
m = c0 log s(n), and running in time t(n) = d′(n) · poly(m+ α(m)).

3 Indirect Diagonalization

Here we establish the components needed for our indirect diagonalization, as
outlined in Section 1.2. First, in Section 3.1, we give a diagonalization argu-
ment against alternating Turing machines with advice, getting a language in
the counting hierarchy CH that is “hard” against weakly uniform TC0 circuits
of certain size. Then, in Section 3.2, using the assumption that a canonical P-
complete problem has small weakly uniform TC0 circuits, we conclude that the
“hard” language given by our diagonalization step is actually hard for a stronger
class of algorithms: weakly uniform Boolean circuits of some size s′ without any
depth restriction. Finally, in Section 3.3, using the assumption that Permanent

414 R. Chen and V. Kabanets

has small weakly uniform TC0 circuits, we show that CH collapses, and our as-
sumed hard language is in fact decidable by weakly uniform s′-size Boolean
circuits, which is a contradiction. (Our actual argument is more general: we con-
sider threshold circuits of not necessarily constant depth d(n), and non-constant
levels of the counting hierarchy.)

3.1 Diagonalization against ATMs with Advice

Lemma 3. For any constructible functions α, d, t, T : N → N such that α(n) ∈
o(n) and t(n) log t(n) = o(T (n)), there is a language D ∈ Thd(n)TIME(T (n))
which is not decided by threshold Turing machines with d(n) alternations running
in time t(n) and taking advice of length α(n).

Proof. Define the language D consisting of those inputs x of length n that have
the form x = (M, y) (using some pairing function) such that the threshold TMM
with advice y, where |y| = α(n), rejects input (M, y) in time t(n) using at most
d(n) alternations. Language D is decided in Thd(n)TIME(T (n)) by simulatingM
and flipping the result4.

For contradiction, suppose that D is decided by some threshold Turing ma-
chine M0 with d(n) alternations taking advice {an} of size α(n). Consider the
input (M0, an) with |M0| = n − α(n); we assume that each TM has infinitely
many equivalent descriptions (by padding), and so for large enough n, there must
exist such a description of size n−α(n). By the definition of D, we have (M0, an)
is in D iff M0 with advice an rejects it; but this contradicts the assumption that
M0 with advice {an} decides D. ��

3.2 If P Is Easy

Let L0 be a P-complete language under uniform projections (functions com-
putable by uniform Boolean circuits with NOT gates only). For example, the
standard P-complete set {(M,x, 1t) : M accepts x in time t} works.

Lemma 4. Suppose L0 is decided by a family of α-weakly uniform d(n)-depth
threshold circuits of size s(n). Then, for any constructible function t(n) � n and
0 � β(m) � 2m, every language L in β-weakly uniform SIZE(t(n)) is decided
by μ(n)-weakly uniform d(poly(t(n)))-depth threshold circuits of size s′(n) =
s(poly(t(n))) on n inputs, where μ(n) = α(c0 log s

′(n)) + β(c0 log t(n)).

Proof. Let U be an advice-taking algorithm deciding the direct-connection lan-
guage for the t(n)-size circuits for L. For any string y of length β(m) for

4 Thd(n)TIME(T (n)) is closed under complement since the negation of MAJ is MAJ
of negated inputs when MAJ has an odd number of inputs; the latter is easy to
achieve by replacing MAJ(x1, . . . , xk) with MAJ(x1, x1, . . . , xk, xk, 0). Allender [2]
uses a lazy diagonalization argument [30] for nondeterministic TMs. However, that
argument seems incapable of handling the amount of advice we need. Fortunately,
the basic diagonalization argument we use here is sufficient for our purposes.

Lower Bounds against Weakly Uniform Circuits 415

m = c0 log t(n), we can run U with the advice y to construct some circuit Cy of
size t(n) on n inputs. We can construct the circuit Cy in time at most poly(t(n)),
and then evaluate it in time poly(t(n)) on any given input of size n.

Consider the language L′ = {(x, y, 1t(n)) | |x| = n, |y| = β(m), Cy(x) = 1}.
By the above, we have L′ ∈ P. Hence, by assumption, L′ is decided by an α-
weakly uniform d(l)-depth threshold circuits of size s(l), where l = |(x, y, 1t(n))| �
poly(t(n)). To get a circuit for L, we simply use as y the advice of size β(m)
needed for the direct-connection language of the t(n)-size circuits for L. Overall,
we need α(c0 log s(l)) + β(m) amount of advice to decide L by weakly uniform
d(poly(t(n)))-depth threshold circuits of size s(poly(t(n))). ��

3.3 If Permanent Is Easy

Since Permanent is hard for the first level of the counting hierarchy CH, as-
suming that Permanent is “easy” implies the collapse of CH (see, e.g., [2]). It
was observed in [16] that it is also possible to collapse super-constant levels of
CH, under the same assumption. Below we argue the collapse of super-constant
levels of CH by assuming that Permanent has “small” weakly uniform circuits.

We use the notation f ◦ g to denote the composition of the functions f and
g, and the notation f (i) is used to denote the composition of f with itself for i
times; we use the convention that f (0) is the identity function.

Lemma 5. Suppose that Permanent is in γ-weakly uniform SIZE(s(n)), for
some γ(m) � 2o(m). For every d(n) � no(1), every language A in Thd(n)
TIME(poly) is also in (2d(n) · γ)-weakly uniform SIZE((s ◦ q)(d(n)+1)(n)), for
some polynomial q dependent on A.

Proof. The language A is computable by a uniform threshold circuit family {Cn}
of depth d(n) and size poly(n). Let M be a polynomial-time TM deciding the
direct-connection language of {Cn}. More precisely, we identify the gates of the
circuit with the configurations of the given threshold TM for A; the output gate
is the initial configuration; leaf (input) gates are halting configurations; deciding
if one gate is an input to the other gate is deciding if one configuration follows
from the other according to our threshold TM, and so can be done in polynomial
time (dependent on A); finally, given a halting configuration, we can decide if it
is accepting or rejecting also in polynomial time (dependent on A).

Consider an arbitrary n. Let d = d(n). For a gate g of C, we denote by Cg

the subcircuit of C that determines the value of the gate g. We say that g is at
depth i, for 1 � i � d, if the circuit Cg is of depth i. Note that each gate at
depth i � 1 is a majority gate.

For every 0 � i � d, let Bi be a circuit that, given x ∈ {0, 1}n and a gate g
at depth i, outputs the value Cg(x).

Claim. There are polynomials q and q′ dependent on A such that, for each
0 � i � d, there are 2iγ-weakly uniform circuits Bi of size (s ◦ q)(i) ◦ q′.

416 R. Chen and V. Kabanets

Proof. We argue by induction on i. For i = 0, to compute B0(x, g), we need to
decide if the halting configuration g of our threshold TM for A on input x is
accepting or not; by definition, this can be done by the TM M in deterministic
polynomial time. Hence, B0 can be decided by a completely uniform circuit of
size at most q′(n) for some polynomial q′ dependent on the running time of M .

Assume we have the claim for i. Let s′ be the size of the γ′-weakly uniform
circuit Bi, where s

′ � (s ◦ q)(i) ◦ q′ and γ′ � 2iγ. Consider the following TM N :

“On input z = (x, g, U, y, 1s
′/2), where |x| = n, g is a gate of C, |U | =

γ(c0 log s
′), |y| = γ′(c0 log s′), interpret U as a Turing machine that takes

advice y to decide the direct-connection language of some circuit D of
size s′ on inputs of length |(x, g)|. Construct the circuit D using U and y,
where to evaluate U on a given input we simulate U for at most s′ steps.
Enter the MAJ state. Nondeterministically guess a gate h of C and a bit
b ∈ {0, 1}. If h is not an input gate for g, then accept if b = 1 and reject
if b = 0; otherwise, accept if D(x, h) = 1 and reject if D(x, h) = 0.”

We will be interested in the case where U is a polynomial-time TM. For any such
U , the running time on any input is bounded by poly(c0 log s

′ + γ′(c0 log s′)),
which is less than s′ by our assumptions that γ(m) � 2o(m) and d � (s′)o(1).
Thus, to evaluate U on a particular input, it suffices to simulate U for at most s′

steps, which is independent of what the actual polynomial time bound of U is. It
follows that we can construct the circuit D (given U and y) in time p(s′), where
p is a polynomial that does not depend on U . Also, to decide if h is an input gate
to g, we use the polynomial-time TM M . We conclude that N is a PP machine
which runs in some polynomial time (dependent on A). Since Permanent is
PP-hard [26,31], we have a uniform reduction mapping z (an input to N) to an
instance of Permanent of size q(|z|), for some polynomial q (dependent on A).

By our assumption on the easiness of Permanent, we get that the language
of N is decided by γ-weakly uniform circuits CN of size at most s′′ = s(q(s′)). If
we plug in for U and y the actual TM description and the advice needed to decide
the direct-connection language of Bi, we get from CN the circuit Bi+1. Note that
the direct-connection language of this circuit Bi+1 is decided in polynomial time
(using the algorithm for direct-connection language of CN) given the advice
needed for CN plus the advice needed to describe U and y. The total advice size
is at most γ(c0 log s

′′) + γ(c0 log s
′′) + γ′(c0 log s′) � 2(i+ 1)γ(c0 log s

′′). ��
Finally, we take the circuit Bd and use it to evaluate A(x) by computing the value
Bd(x, g) where g is the output gate of C, which can be efficiently constructed
(since this is just the initial configuration of our threshold TM for A on input
x). By fixing g to be the output gate of C, we get the circuit for A which is 2dγ-
weakly uniform of size at most (s ◦ q)(d)(r(n)), where the polynomial r depends
on the language A. Upper-bounding r by (s ◦ q) yields the result. ��

4 Proofs of the Main Results

Here we use the technical tools from the previous section in order to prove our
main results. Recall that L0 is the P-complete language defined earlier.

Lower Bounds against Weakly Uniform Circuits 417

4.1 Proof of Theorem 1

First, assuming L0 is easy, we construct a hard language in CH.

Lemma 6. Suppose L0 is in subexp-weakly uniform TC0 of depth d. Then, for
a constant d′ dependent on d, there is a language Ldiag ∈ CHd′ which is not in
subexp-weakly uniform SIZE(poly).

Proof. Let α(m) ∈ 2o(m) be such that L0 is in α-weakly uniform TC0 of depth d.
Consider an arbitrary language L in β-weakly uniform SIZE(poly), for an arbi-
trary β(m) ∈ 2o(m). By Lemma 4, L has μ(n)-weakly uniform threshold circuits
of depth d and polynomial size, where μ(n) = α(O(log n))+β(O(log n)) � no(1).
By Lemma 2, we have that L is decided by a threshold Turing machine with
d′ = O(d) alternations, taking advice of length μ(n) � no(1) � n/ log2 n, and
running in time d′ · poly(O(log n) + no(1)) � no(1) � n/ log2 n. We conclude that
every language in subexp-weakly uniform SIZE(poly) is also decided by some
threshold TM in time n/ log2 n, using d′ alternations and advice of size n/ log2 n.

Using Lemma 3, define Ldiag to be the language in Thd′TIME(n) which is not
decidable by any threshold Turing machine in time n/ log2 n, using d′ alterna-
tions and advice of size n/ log2 n. It follows that Ldiag is different from every
language in subexp-weakly uniform SIZE(poly). ��
Next, assuming Permanent is easy, we have that every language in CH is easy.
The proof is immediate by Lemma 5.

Lemma 7. If Permanent is in subexp-weakly uniform SIZE(poly), then every
language in CH is in subexp-weakly uniform SIZE(poly).

We now show that L0 and Permanent cannot both be easy. The proof is
immediate by Lemmas 6 and 7.

Theorem 4. At least one of the following must be false:

1. L0 is in subexp-weakly uniform TC0;
2. Permanent is in subexp-weakly uniform SIZE(poly).

To unify the two items in Theorem 4, we use the next lemma and its corollary.

Lemma 8 ([26,3]). For every language L ∈ P, there are uniform AC0-computable
function M (mapping a binary string to a poly-size Boolean matrix) and Boolean
function f such that, for every x, we have x ∈ L iff f(Permanent(M(x)) = 1.

This lemma immediately yields the following.

Corollary 1. If Permanent has α-weakly uniform d(n)-depth threshold cir-
cuits of size s(n), then L0 has α-weakly uniform (d(nO(1))+O(1))-depth threshold
circuits of size s(nO(1)).

Now we prove Theorem 1, which we re-state below.

Theorem 5. Permanent is not in subexp-weakly uniform TC0.

Proof. Otherwise by Corollary 1, both claims in Theorem 4 would hold, which
is impossible. ��

418 R. Chen and V. Kabanets

4.2 Proofs of Theorem 2 and Theorem 3

The following two lemmas are similar to Lemma 6, and are used to prove The-
orems 2 and 3; the proofs can be found in the full version [6].

Lemma 9. Suppose L0 is in poly-weakly uniform TC0(subsubexp) of depth d.
Then, for a constant d′ = O(d), there is a language Ldiag ∈ CHd′ which is not
in poly-weakly uniform SIZE(subsubexp).

Lemma 10. Suppose L0 is computable by poly-weakly uniform polynomial-size
threshold circuits of depth o(log logn). Then there exists a language Ldiag ∈
Thlog log nTIME(n) which is not in poly-weakly uniform SIZE(npoly(log n)).

5 Other Lower Bounds

Using similar indirect diagonalization, we are also able to show the following;
the proofs are left to the full version [6] of this paper.

Theorem 6. Permanent is not in poly-weakly uniform ACC0(2n
o(1)

).

Theorem 7. EXP is not in poly-weakly uniform SIZE(2n
o(1)

).

Theorem 8. PSPACE is not computable by poly-weakly uniform Boolean for-

mulas of size O(2n
o(1)

).

6 Conclusion

We have shown how to use indirect diagonalization to prove lower bounds against
weakly uniform circuit classes. In particular, we have proved that Permanent
cannot be computed by polynomial-size TC0 circuits that are only slightly uni-
form (whose direct-connection language can be efficiently computed using sub-
linear amount of advice). We have also extended to the weakly uniform setting
other circuit lower bounds that were previously known for the uniform case.

One obvious open problem is to improve the TC0 circuit lower bound for
Permanent to be exponential, which is not known even for the uniform case.
Another problem is to get super-polynomial uniform TC0 lower bounds for a lan-
guage from a complexity class below #P (e.g., PH). Strongly exponential lower
bounds even against uniform AC0 would be very interesting. One natural prob-
lem is to prove a better lower bound against uniform AC0 (say for Permanent)
than the known non-uniform AC0 lower bound for Parity.

References

1. Agrawal, M.: Proving Lower Bounds Via Pseudo-random Generators. In: Sarukkai,
S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 92–105. Springer, Heidelberg
(2005)

2. Allender, E.: The permanent requires large uniform threshold circuits. Chicago
Journal of Theoretical Computer Science (1999)

Lower Bounds against Weakly Uniform Circuits 419

3. Allender, E., Gore, V.: A uniform circuit lower bound for the permanent. SIAM
Journal on Computing 23(5), 1026–1049 (1994)

4. Arora, S., Barak, B.: Complexity theory: a modern approach. CUP, NY (2009)
5. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC1.

JCSS 41, 274–306 (1990)
6. Chen, R., Kabanets, V.: Lower bounds against weakly uniform circuits. In: ECCC,

vol. 19, p. 7 (2012)
7. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. JACM 28(1), 114 (1981)
8. Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierar-

chy. Mathematical Systems Theory 17(1), 13–27 (1984)
9. H̊astad, J.: Almost optimal lower bounds for small depth circuits. In: STOC 1986

(1986)
10. Heintz, J., Schnorr, C.-P.: Testing polynomials which are easy to compute.

L’Enseignement Mathématique 30, 237–254 (1982)
11. Iwama, K., Morizumi, H.: An Explicit Lower Bound of 5n-o(n) for Boolean Circuits.

In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 353–364. Springer,
Heidelberg (2002)

12. Jansen, M., Santhanam, R.: Permanent Does Not Have Succinct Polynomial Size
Arithmetic Circuits of Constant Depth. In: Aceto, L., Henzinger, M., Sgall, J. (eds.)
ICALP 2011. LNCS, vol. 6755, pp. 724–735. Springer, Heidelberg (2011)

13. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity 13(1–2), 1–46 (2004)

14. Kannan, R.: Circuit-size lower bounds and non-reducibility to sparse sets. Infor-
mation and Control 55, 40–56 (1982)

15. Karp, R.M., Lipton, R.J.: Turing machines that take advice. L’Enseignement
Mathématique 28(3-4), 191–209 (1982)

16. Koiran, P., Perifel, S.: A superpolynomial lower bound on the size of uniform non-
constant-depth threshold circuits for the permanent. In: CCC (2009)

17. Lachish, O., Raz, R.: Explicit lower bound of 4.5n − o(n) for boolean circuits. In:
Proc. of the Thirty-Third ACM Symp. on Theory of Computing, pp. 399–408 (2001)

18. Lupanov, O.B.: On the synthesis of switching circuits. Doklady Akademii Nauk
SSSR 119(1), 23–26 (1958); English translation in Soviet Mathematics Doklady

19. Parberry, I., Schnitger, G.: Parallel computation with threshold functions. In: Proc.
of the First IEEE Conf. on Structure in Complexity Theory, pp. 272–290 (1986)

20. Razborov, A.A.: Lower bounds on the size of bounded depth circuits over a com-
plete basis with logical addition. Mathematical Notes 41, 333–338 (1987)

21. Razborov, A.A., Rudich, S.: Natural proofs. JCSS 55, 24–35 (1997)
22. Ruzzo, W.L.: On uniform circuit complexity. JCSS 22(3), 365–383 (1981)
23. Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell System Tech-

nical Journal 28(1), 59–98 (1949)
24. Smolensky, R.: Algebraic methods in the theory of lower bounds for boolean circuit

complexity. In: Proc. of the Nineteenth ACM STOC, pp. 77–82 (1987)
25. Torán, J.: Complexity classes defined by counting quantifiers. JACM 38, 752 (1991)
26. Valiant, L.: The complexity of computing the permanent. TCS 8, 189–201 (1979)
27. Wagner, K.W.: The complexity of combinatorial problems with succinct input rep-

resentation. Acta Informatica 23, 325–356 (1986)
28. Williams, R.: Non-uniform ACC circuit lower bounds. In: CCC (2011)
29. Yao, A.C.: Separating the polynomial-time hierarchy by oracles. In: FOCS (1985)
30. Zak, S.: A Turing machine hierarchy. TCS 26, 327–333 (1983)
31. Zanko, V.: #P-Completeness via Many-One Reductions. IJFCS 1, 77 (1991)

On TC0 Lower Bounds for the Permanent

Jeff Kinne

Indiana State University
jkinne@cs.indstate.edu

Abstract. In this paper we consider the problem of proving lower
bounds for the permanent. An ongoing line of research has shown super-
polynomial lower bounds for slightly-non-uniform small-depth threshold
and arithmetic circuits [1,2,3,4]. We prove a new parameterized lower
bound that includes each of the previous results as sub-cases. Our main
result implies that the permanent does not have Boolean threshold cir-
cuits of the following kinds.

1. Depth O(1), poly-log(n) bits of non-uniformity, and size s(n) such
that for all constants c, s(c)(n) < 2n. The size s must satisfy another
technical condition that is true of functions normally dealt with (such
as compositions of polynomials, logarithms, and exponentials).

2. Depth o(log log n), poly-log(n) bits of non-uniformity, and size nO(1).

3. Depth O(1), no(1) bits of non-uniformity, and size nO(1).

Our proof yields a new “either or” hardness result. One instantiation is
that either NP does not have polynomial-size constant-depth threshold
circuits that use no(1) bits of non-uniformity, or the permanent does not
have polynomial-size general circuits.

1 Introduction

The Search for Hard Problems Computational complexity aims to determine
the computational costs of solving important problems, requiring both upper
bounds and lower bounds. Though many types of lower bounds have been diffi-
cult to prove, conjectured lower bounds have become central across complexity
theory. As an example, consider the area of derandomization – the task of con-
verting randomized algorithms into deterministic algorithms with as little loss
in efficiency as possible. Work initiated by Nisan and Wigderson [5] gives con-
ditions for derandomizing BPP, the set of problems decided by bounded-error
randomized polynomial-time algorithms. If E, deterministic linear-exponential
time, contains a problem requiring super-polynomial circuits then BPP is con-
tained in subexponential time (SUBEXP) [6]. If E contains a problem requiring
circuits of size 2εn for some positive constant ε then BPP = P [7]. These re-
sults are called hardness versus randomness tradeoffs because randomness can
be more efficiently removed by using stronger hardness assumptions.

The lower bound results that have been proved so far have generally been
for very high complexity classes (e.g., exponential-time Merlin-Arthur protocols

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 420–432, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On TC0 Lower Bounds for the Permanent 421

require super-polynomial size circuits [8,9]) or for restricted models of computa-
tion (e.g., lower bounds for parity on constant-depth circuits, lower bounds on
monotone circuits).

The long-term goal in proving lower bounds for restricted models is to prove
lower bounds for increasingly more general models. The lower bounds for
constant-depth circuits could be improved by allowing more powerful gates than
the standard AND, OR, NOT. [10] showed that non-uniform ACC0 circuits –
constant-depth circuits that may include MODm gates for arbitrary modulus
m – of polynomial size cannot compute languages that are complete for non-
deterministic exponential time (NEXP). Because MODm gates can be viewed
as specialized majority gates, the next step in this direction is to prove lower
bounds for constant-depth circuits with majority gates (TC0 circuits).

Uniform TC0 Lower Bounds. The discussion above refers to proving lower bounds
on non-uniform circuits – circuit families that consist of a different circuit for
each input length n, with no requirement that the circuits are related to each
other in any way. The task of proving super-polynomial lower bounds for non-
uniform TC0 circuits for languages in NEXP remains open. Progress has been
made in proving lower bounds for uniform TC0 circuits – circuit families where
there exists a single Turing machine that can be used to reconstruct the circuit
for any input length. The standard definition of uniform TC0 requires a family
of threshold circuits to be Dlogtime uniform – there exists a Turing machine
that correctly answers queries about connections in the circuits in time that is
logarithmic in the size of the circuit. We say a TC0 circuit is uniform if it is
Dlogtime uniform.

Polynomial-size uniform TC0 circuits can be simulated in logarithmic space,
so the space hierarchy theorem implies that PSPACE-complete languages cannot
be computed by uniform TC0 circuits of subexponential size. [1] showed that the
hard language can be lowered from PSPACE to the first level of the counting
hierarchy at the expense of a slight loss in the size: languages complete for PP,
such as language versions of the permanent, cannot be computed by uniform TC0

circuits of size s(n) if s is time-constructible and s(c)(n) < 2n for all constants
c, where s(c) denotes s composed with itself c times. [2] show a lower bound for
threshold circuits with super-constant depth: languages complete for PP cannot
be computed by uniform threshold circuits of depth o(log logn) and polynomial
size.

Non-Uniform TC0 Lower Bounds. While there has been progress on proving
lower bounds for uniform TC0 circuits, the ultimate question of proving super-
polynomial lower bounds for non-uniform TC0 circuits remains open. It has
been observed that for every constant k > 0 the counting hierarchy contains
languages that require general circuits of size nk (see, e.g., [11,12,4]), and this
applies to TC0 circuits as well. Thus we have two types of lower bounds for TC0

circuits in the counting hierarchy: fixed-polynomial size and fixed-polynomial
non-uniformity, and large size but uniform. [3,4] show a lower bound that is
intermediate between these two but for arithmetic circuits rather than Boolean

422 J. Kinne

threshold circuits: constant-depth constant-free arithmetic circuits of polyno-
mial size and no(1)-succinctness cannot compute the permanent. [3] introduces
the notion of succinctness as a way to interpolate between fully uniform and fully
non-uniform circuits. A circuit family is a(n)-succinct if questions about connec-
tions in the circuit can be answered by a non-uniform circuit of size a(n). Note
that Dlogtime uniform polynomial-size circuits are necessarily poly-log-succinct,
and non-uniform polynomial-size circuits are poly-succinct.
Permanent and Polynomial Identity Testing The line of research on TC0 circuit
lower bounds [1,2,3,4] has focused on the permanent as the hard language. The
primary property of the permanent that is used is the PP-completeness of the
language version of the permanent. Beyond the fact that the proofs work for
the permanent, proving lower bounds for the permanent is of interest because of
connections to derandomization and the polynomial identity testing problem.

As mentioned already, strong enough lower bounds imply derandomization of
BPP, but such lower bounds have been difficult to prove. To make progress, re-
search has focused on derandomizing specific problems. In particular, much work
has been done for polynomial identity testing (PIT) – for which there is a sim-
ple and efficient randomized algorithm while the best deterministic algorithms
known require exponential time. Some results have given fast deterministic al-
gorithms for restricted versions of PIT (for example, testing identities encoded
by depth two or three arithmetic circuits), while other results have shown that
lower bounds for restricted types of circuits yield deterministic identity testing
procedures for restricted versions of PIT.

Of particular note to the current discussion is the result that exponential lower
bounds for the permanent on constant-depth arithmetic circuits imply determin-
istic quasi-polynomial time algorithms for testing identities on constant-depth
circuits that have degree poly-log(n) in each variable [13]. Thus strong enough
TC0 lower bounds for the permanent directly imply improved PIT algorithms.
This provides motivation to continue working towards non-uniform TC0 lower
bounds for the permanent, beyond the fact that TC0 lower bounds are a logical
next step after the ACC0 lower bounds of [10].

1.1 Our Results

Lower Bounds for Permanent Our main result is a new lower bound for slightly
non-uniform small-depth threshold circuits computing the permanent, Thm. 1.1.
Let L be any PP-hard language such that any language decidable in PPTIME
(t(n)) can be reduced to an instance of L of size t(n) · poly-log(t(n)) by a quasi-
linear size uniform TC0 reduction. By [14], a paddable version of the 0-1 perma-
nent satisfies this property. Let s′(d) denote a function s′ composed with itself d
times.

Theorem 1.1. Let s(n), a(n), and d(n) be non-decreasing functions with s(n)
time-constructible and d(n), a(n) ≤ s(n) for all n. Let s′(n) = s(nO(1)), and
m = s(2O(n)). If s′(d(m))(n + a(m) + poly-log(s(m))) < 2n then L does not
have depth d(n) − O(1), (a(n) − poly-log(s(n)))-succinct threshold circuits of
size s(n)/ poly-log(s(n)).

On TC0 Lower Bounds for the Permanent 423

Each of the constants in the big-O and polylog terms in Thm. 1.1 are absolute
constants independent of the functions s, a, and d.

We have the following corollary for the extreme cases of maximizing each of
the three parameters – size, depth, and amount of non-uniformity – in Thm. 1.1.

Corollary 1.1. The permanent does not have threshold circuits of the following
kinds.

1. Depth O(1), poly-log(s(n))-succinct, and size s(n) such that s(n) is non-
decreasing, time-constructible and for all constants c, s(c)(n) < 2n and
log(s(s(2c·n))) = s(O(1))(n).

2. Depth o(log logn), poly-log(n)-succinct, and size nO(1).
3. Depth O(1), no(1)-succinct, and size nO(1).

Corollary 1.1 capture the main results from the previous works in this area
as sub-cases. The main results of [1] and [2] for the permanent correspond to
Items 11 and 2 of Cor. 1.1 but for uniform circuits. The main unconditional
lower bounds for the permanent in [4] have the same parameters as Item 3
except they are for constant-depth constant-free arithmetic circuits rather than
Boolean threshold circuits.

Lower Bounds for Permanent or Satisfiability
We prove that Thm. 1.1 can be strengthened to imply that either NP is

hard for succinct small-depth threshold circuits, or the permanent is hard for
general circuits. In Thm. 1.2, SAT is the NP-complete language Boolean formula
satisfiability. Any of the standard NP-complete languages could be used instead.

Theorem 1.2. Let s(n), a(n), and d(n) be non-decreasing functions with s(n)
time-constructible and d(n), a(n) ≤ s(n) for all n. Let s′(n) = s(nO(1)), and
m = s(s(2O(n))). If s′(d(m))(n+ a(m) + poly-log(s(m))) < 2n then either

– SAT does not have depth d(n)−O(1), (a(n)−poly-log(s(n)))-succinct thresh-
old circuits of size s(n)/ poly-log(s(n)), or

– The permanent does not have non-uniform general circuits of size
s(n)/ poly-log(s(n)).

Each item of Cor. 1.1 can also be stated in a similar way.

More Direct Proof of Known Result. Our proof of Thm. 1.1 uses the fact that the
exponential-time counting hierarchy contains a language that requires circuits
of exponential size. The result has been stated for the setting of the standard
counting hierarchy and circuits of polynomial size in a number of works – in-
cluding [11], [12] and [4] – where it is derived by combining Toda’s Theorem
[15] and the fact that the polynomial hierarchy contains languages that require
fixed-polynomial size circuits [16].

1 The last condition on s in Item 1 holds for “normal” functions, those composed of
logarithms, exponentials, and polynomials. The corresponding result of [1] does not
require this condition.

424 J. Kinne

We give a more direct proof of the result and state it for a wider range of
parameters. The argument can be used to obtain a language with hardness up
to the minimum of 2n−1 and the maximal circuit complexity. For our definition
of circuit size (string length of the circuit’s description), the maximal circuit
complexity is at least 2n.

Theorem 1.3. Let h(n) be a time-constructible function such that for all n,
n ≤ h(n) < 2n. There is a language Lhard in DTIMEPP(poly(h(n))) that does
not have circuits of size h(n).

Since separations for high resources imply separations for low resources, it will
be optimal to set h(n) as large as possible. We use the following in the proof of
Theorem 1.1.

Corollary 1.2. There is a language Lhard in DTIMEPP(2O(n)) that does not
have circuits of size 2n − 1.

We point out that our direct proof of Thm. 1.3 obviates the need to use Toda’s
theorem in a result of [12]. [12] gives an alternate proof of the result of [17] that
if polynomial identity testing can be derandomized, then either Boolean circuit
lower bounds for NEXP or arithmetic circuit lower bounds for the permanent
must follow. A number of proofs are known for these types of results [18], and the
proof of [12] gives the best-known tradeoff between the parameters. The proof of
[12] is more direct than other proofs, and using our proof of Thm. 1.3 simplifies
their proof further.

Theorem 1.3 can be used to simplify the proof of the result of [19] that for
every constant k > 0 there is a language in PP requiring circuits of size nk; for
more details see the full version of this paper on the author’s website.

1.2 Techniques

To see the structure of the proof of Thm. 1.1, we first give an outline for proving
that constant-depth uniform threshold circuits of polynomial size cannot com-
pute the permanent. We assume the permanent has uniform poly-size constant-
depth threshold circuits and aim for a contradiction. We achieve the contradic-
tion in two parts.

(i) We use the assumed easiness of the permanent to conclude that a non-
uniformly hard language can be solved by large uniform small-depth threshold
circuits. In particular, by the PP-completeness of the permanent and under the
assumed easiness of the permanent, Lhard of Cor. 1.2, which is in EPP, has
uniform constant-depth threshold circuits of size 2O(n).

(ii) Let Chard be the circuit for Lhard at input length n from (i). By viewing
the threshold gates within Chard as questions about the permanent, we shrink
the circuit as follows. The first level of threshold gates closest to the inputs
in Chard can be viewed as PP questions of size poly(n); using the assumed
easiness of the permanent a circuit C1 of size poly(n) can be used in place of
the threshold gates on the first level. A similar argument shows that the second

On TC0 Lower Bounds for the Permanent 425

level of threshold gates reduce to PP questions of size poly(|C1|), which can be
replaced by a circuit of size poly(poly(|C1|)) using the assumed easiness of the
permanent. This process is repeated for each level of threshold gates in Chard.
If Chard has depth d, we obtain a circuit of size p(d)(n) for some polynomial p
after iterating for each level of threshold gates in Chard.

The conclusion of (ii) is a contradiction – we have constructed a circuit of size
poly(n) for computing Chard although it should require size 2n.
Parameterized Proof Theorem 1.1 follows the same strategy but with the size,
depth, and succinctness of the assumed circuits for the permanent parameterized
as s(n), d(n), and a(n) respectively. Then the circuit Chard is of size, depth,
and succinctness s(m), d(m), and O(a(m) + poly-log(s(m))), for m = s(2O(n)).
The size of Chard is s(s(2O(n))) rather than just s(2O(n)) because the assumed
easiness of the permanent is used twice to reduce EPP to a threshold circuit.
The term a(m) + poly-log(s(m)) appears in the inequality of Thm. 1.1 because
the PP questions in (ii) for the threshold gates must refer to a particular gate
in Chard – which requires the O(a(m)) + poly-log(s(m)) bits of succinctness for
constructing Chard. The circuit size s is composed with itself d(m) times in the
inequality because the process is iterated for each level of threshold gates in
Chard.

Permanent or NP. For Thm. 1.2, we look more closely at how the easiness of the
permanent is used. In (i) we use the fact that there is a hard language in EPP.
For Thm. 1.2 we instead use a hard language in EΣ2 , meaning assuming NP is
easy is enough to obtain the large threshold circuit Chard. In (ii) we only use
the assumption that the permanent has a small circuit – the depth and amount
of succinctness do not matter. These two observations give Thm. 1.2.

Hardness of EPP. We give an argument for Thm. 1.3 that is more direct than
arguments that have previously been given, showing that there is a language in
DTIMEPP(poly(h(n))) that does not have circuits of size h(n) for n ≤ h(n) < 2n.
Consider input length n. The main idea is to pick an input, compute the output
of all size h(n) circuits on this input, and choose the output to differ from at
least half; then repeat this on a new input, differing from at least half of the
remaining size h(n) circuits; continue for h(n) + 1 iterations to differ from all
circuits of size h(n). h(n) + 1 iterations are enough because for the definition
of circuit size that we use (string length of the circuit’s description) there are
at most 2h(n) circuits of size h(n). The diagonalizing machine only needs to be
able to determine the majority answer of 2h(n) computations. In other words,
the power of counting is needed, so that the appropriate output can be chosen
using a PP oracle.

We point out that this diagonalization strategy has been used before, e.g., in
[20] to show that for every constant k > 0, EXP contains languages that require

more than 2n
k

time and nk bits of non-uniform advice.

Comparison with Previous Work. Each of the previous works proving super-
polynomial lower bounds for the permanent on small-depth threshold or arith-
metic circuits [1,2,4] includes a component similar to step (ii) above – the

426 J. Kinne

assumed easiness of the permanent is used to iteratively shrink a large threshold
circuit. [1] and [4] phrase that portion of their argument as collapsing the count-
ing hierarchy under the assumed easiness of the permanent. This is equivalent to
collapsing a large threshold circuit due to the equivalence between exponential-
size uniform constant-depth threshold circuits and the counting hierarchy.

[1] shows unconditionally that for s satisfying s(O(1)) < 2n the counting hier-
archy contains a language that does not have uniform constant-depth threshold
circuits of size s(n). If the permanent has uniform constant-depth threshold cir-
cuits of size s, then the counting hierarchy collapses (in a way similar to our step
(ii)) to size s(O(1))(n) uniform constant-depth threshold circuits – a contradiction
if s(O(1))(n) < 2n.

[4] uses the collapse of the counting hierarchy under the assumed easiness of
the permanent within a framework involving hitting sets for polynomials whose
coefficients are computed by constant-depth arithmetic circuits. If the permanent
is easy then there is a polynomial that avoids the hitting set and has coefficients
computable in the counting hierarchy. The collapse of the counting hierarchy
under the assumed easiness of the permanent then shows that the coefficients
of the polynomial can be computed more efficiently than should be possible.
The complete proof also uses machinery to translate between arithmetic and
threshold circuits.

[2] uses an outline that is very similar to ours. If the permanent is easy then
E has small-depth threshold circuits of size 2O(n) and depth o(log n). These
threshold circuits are then collapsed in a way that is similar to our step (ii)
above, reaching a contradiction that E can be computed by subexponential size
uniform threshold circuits (and thus in subexponential time).

Each of the earlier works uses a step similar to our step (ii) to contradict
a known separation. Each work differs in the known separation that is contra-
dicted, and the choice of separation to base the argument on effects some portions
of the argument. The separations used by [1] and [2] are uniform separations,
meaning care must be taken to keep track of the uniformity of the circuit that
results from step (ii). By using a non-uniform separation, we do not need to keep
track of the uniformity, resulting in a simpler argument. Using a non-uniform
separation is also required for obtaining hardness against non-uniform circuits.

We have also stated our result as a tradeoff between the different parameters
– size, depth, and non-uniformity – which previous works have not done.

1.3 Alternate Proof of Our Results

After completing our work, we learned that results equivalent to Cor. 1.1 were
obtained independently by Chen and Kabanets [21]. An examination of the state-
ment of results in [21] shows that our Thm. 1.1 implies Theorems 1.1, 1.2, and 1.3
of [21]. Not only are our results the same as [21], but the overall proof structure
is similar. The main difference is that [21] uses Lhard resulting from the time
hierarchy for threshold Turing machines with o(n) bits of advice, whereas we
use a non-uniformly hard language in the exponential time counting hierarchy.

On TC0 Lower Bounds for the Permanent 427

Using the different hard languages results in some differences between the two
proofs.

2 Preliminaries

We assume the reader is familiar with standard complexity classes and notions
such as Turing machines, Boolean circuits, PP, PPTIME, TC0, AC0, P, EXP,
and DTIME. We refer to standard complexity theory texts or the complexity
zoo website for precise definitions and background.

In our results and proofs, all circuits are Boolean circuits. A threshold circuit
may have, in addition to AND, OR, and NOT gates, majority gates of arbitrary
fan-in. Majority gates can be used in place of AND and OR gates, and NOT
gates can be pushed to the inputs. Thus without loss of generality a threshold
circuit takes all input bits and negations of input bits as the inputs, and all
remaining gates are majority gates.

We use the convention that the size of a circuit is the string length of its
description. Thus the number of circuits of size n is at most 2n. This makes the
analysis cleaner than using the number of gates or wires and only effects results
by polylogarithmic factors. Because there are exactly 22

n

Boolean functions on
n bits, it is immediate that there exists a language that requires circuits of size
at least 2n.

Succinct Circuits. Our results concern a notion of non-uniformity termed suc-
cinctness that was introduced in [3]. Succinctness is a natural notion of non-
uniformity for circuit classes that are only slightly non-uniform. A circuit family
{Ci}i∈N is a(n)-succinct if for each n, there is a circuit Qn that is of size a(n)
and correctly answers queries about the connections in Cn. The standard no-
tion of uniform constant-depth circuits is Dlogtime uniformity; a circuit family
is Dlogtime uniform if there is a Turing machine that correctly answers queries
about the connections in Cn and runs in time linear in its input length (and thus
logarithmic in the size of the circuit). Note that Dlogtime uniform circuits are
necessarily poly-log-succinct.

Permanent and PP. The only property of the permanent needed for our results
is PP-hardness. [14], building on [22], implies that any language in PPTIME(n)
reduces to the 0-1 permanent with a quasi-linear size uniform AC0 reduction,
where quasi-linear means n · poly-log(n).

For the main part of the proof of Thm. 1.1, we use a different PP-complete
language, LPP = {x,M, 1t| the probabilistic machine M runs in time at most t
on input x and the majority of computation paths are accepting}. The advantage
of this language is that any PPTIME(n) language reduces to LPP in linear time,
so we can avoid polylog factors in the analysis by only reducing to the permanent
at the very end of our proof. LPP is contained in quasi-linear time PP, and by
the result mentioned above reduces to instances of the permanent of quasi-linear
size.

428 J. Kinne

3 Lower Bounds for Permanent

In this section we prove our main result, Thm. 1.1. Further details on the proofs
of Thms. 1.2 and 1.3 are contained in the full version of this paper on the author’s
website.

Proof of Thm. 1.1. To prove Thm. 1.1, we combine the hard language Lhard re-
sulting from Cor. 1.2 with the following two claims. Let LPP be the PP-complete
language defined in Sect. 2

Claim 1. Let s(n), a(n), and d(n) be non-decreasing functions with s(n) time-
constructible and d(n), a(n) ≤ s(n) for all n. If LPP has a(n)-succinct threshold
circuits of depth d(n) and size s(n) then Lhard has threshold circuits of size s(m),
depth d(m), and is O(a(m)) + poly-log(s(m)))-succinct, for m = s(2O(n)).

Proving Clm. 1 amounts to plugging in the assumed circuit for LPP into the EPP

computation of Lhard.

Claim 2. Let s(n), a(n), and d(n) be non-decreasing functions with s(n) time-
constructible and d(n), a(n) ≤ s(n) for all n. If LPP has a(n)-succinct threshold
circuits of depth d(n) and size s(n) then Lhard has size s′(d(m))(n + a(m) +
poly-log(s(m))) circuits for s′(n) = s(nO(1)) and m = s(2O(n)).

To prove Clm. 2, we use the threshold circuit from Clm. 1 and shrink it by using
the easiness of LPP to collapse the threshold gates iteratively. This is the step
that is at the heart of all previous papers [1,2,3,4] proving lower bounds for the
permanent on small-depth threshold or arithmetic circuits.

If the size of the circuit for Lhard in Clm. 2 is less than 2n, we conclude that
LPP cannot have a(n)-succinct threshold circuits of depth d(n) and size s(n).
The statement of Thm. 1.1 follows by the quasi-linear size uniform AC0 reduction
from LPP to the permanent: if the permanent has depth d(n) threshold circuits
of size s(n) and succinctness a(n), then LPP has depth d(n) + O(1) threshold
circuits of size s(n) poly-log(s(n)) and succinctness a(n) + poly-log(s(n)).

All that remains is to prove the claims.

Proof of Clm. 1.We take the EPP computation of Lhard of Cor. 1.2. First consider
the PP oracle from the definition of Lhard. The oracle O in the proof of Thm.
1.3 is computable in polynomial PPTIME, and the instances we need are of
size O(2n). The oracle queries can thus be translated to queries to LPP of size
N = 2O(n) 2. Given the assumed threshold circuits for LPP, the oracle queries can
be decided by a depth d(N) threshold circuit CPP of size s(N) and succinctness
a(N) + poly-log(s(N)).

Deciding membership in Lhard amounts to querying the oracle O on at most
2n inputs. This gives an oracle circuit that makes exponentially many adaptive
queries to O. In this circuit we replace each oracle gate with the circuit CPP,

2 We can assume all queries are the same size because LPP is paddable – queries of
smaller length can be made longer to match the longest query.

On TC0 Lower Bounds for the Permanent 429

obtaining a single circuit deciding Lhard that is of size poly(2n · s(N)) that
requires a(N) + poly-log(s(N)) bits of succinctness. This circuit can be viewed
as a circuit value problem of size m′ = poly(2n · s(N)). Because P ⊆ PP and
LPP is complete for PP, this circuit value problem reduces to an instance of
LPP of size m = O(m′). Using the assumed easiness of LPP, such instances
can be solved by threshold circuits of depth d(m) and size s(m). The amount
of succinctness needed throughout the reductions is a(N) + poly-log(s(N)) +
a(m) + poly-log(s(m)), which is O(a(m) + poly-log(s(m))). The statement of
Clm. 1 results from simplifying the expression for m to s(2O(n)) using the fact
that s(n) ≥ n and both s and a are non-decreasing.

Proof of Clm. 2 Main Idea. For each input length n, we aim to build a circuit
for Lhard at input length n. With the assumed easiness of LPP and using Clm.
1, we have a threshold circuit Chard for Lhard with size s(m), depth d(m),
and succinctness O(a(m) + poly-log(s(m))), for m = s(2O(n)). The plan is to
shrink Chard by viewing the threshold gates as small PP questions and using
the assumed easiness of LPP to collapse the gates. We do this iteratively level
by level in the circuit. The proof consists mostly of keeping track of the size of
the circuit produced as a result of this process.

Iterative Shrinking of Chard. For each i, we define the following language: Li =
{(x, j)| on input x of length n, gate j in Chard is at depth i and outputs 1}.
The value j is padded to n bits to ensure that each input length of Li regards a
single value of n. We iteratively construct circuits for input length 2n = |(x, y)|
for L1, L2, ..., Ld(m). For each i, we use the circuit constructed for Li to build
the circuit for Li+1. The final circuit for Ld(m) at length 2n corresponds to the
output gate of Chard for inputs x of length n.
First level of Threshold Gates First consider L1, corresponding to the first level
of threshold gates in Chard. Given input (x, j) with x of length n, a PP machine
determines the output of gate j as follows.

1. Use O(a(m) + poly-log(s(m))) bits of advice as the succinctness for Chard

to verify that j is a gate at depth 1, and if not split into a rejecting and an
accepting state.

2. Nondeterministically guess an input label k and use the advice from 1. as
the succinctness for Chard to verify k is an input to gate j; if not split into
a rejecting and an accepting state.

3. Accept iff the input bit labeled by k is 1.

This PP computation has a majority of accepting computation paths iff j is a
gate at depth 1 and the majority of the inputs to gate j are 1. The amount of
time for the computation is poly(n+ a(m) + poly-log(s(m))), and we have used
O(a(m) + poly-log(s(m))) bits of non-uniformity. This PP computation can be
reduced to an instance of LPP of size poly(n+ a(m) + poly-log(s(m))). By the
assumed easiness of LPP, and including the O(a(m) + poly-log(s(m))) bits of
non-uniformity, these instances are solved by a threshold circuit C1 of size

S1 = s(poly(n+ a(m) + poly-log(s(m)))) +O(a(m) + poly-log(s(m))).

430 J. Kinne

Because our ultimate goal is a non-uniform, arbitrary-depth circuit for Lhard

we do not need to keep track of the depth and amount of succinctness in this
circuit.

Level i + 1 of Threshold Gates. Now consider Li+1 assuming we have a circuit
Ci for Li. Given an input (x, j), a PP machine can determine the correct output
of gate j as follows.

1. Use O(a(m) + poly-log(s(m))) bits of advice as the succinctness for Chard

to verify that j is a gate at depth i+ 1, and if not split into a rejecting and
an accepting state.

2. Nondeterministically guess a gate label k and use the advice from 1. as the
succinctness for Chard to verify k is an input to gate j; if not split into a
rejecting and an accepting state.

3. Accept iff Ci indicates that k outputs 1, namely if Ci(x, k) = 1.

This PP computation computes Li+1 just as in the case for L1 above. The
amount of time for the computation is poly(n+ a(m) + poly-log(s(m)) + |Ci|),
and we have used O(a(m) + poly-log(s(m))) + |Ci| bits of non-uniformity. This
PP computation can be reduced to an instance of LPP of size poly(n+ a(m) +
poly-log(s(m)) + |Ci|). By the assumed easiness of LPP, letting Si = |Ci|, and
including the O(a(m) + poly-log(s(m))) + |Ci| bits of non-uniformity, we have a
circuit Ci+1 for Li+1 that is of size

Si+1 = s(poly(n+ a(m) + poly-log(s(m)) + Si))

+O(a(m) + poly-log(s(m))) + Si.

Simplifying the Expression for the Circuit Size. Let us simplify the formula for Si.
First, S1 can be simplified as S1 = s(poly(n+a(m)+poly-log(s(m)))) using the
fact that s and a are non-decreasing and s(M) ≥ a(M). For similar reasons, Si+1

can be written as s(poly(n+a(m)+poly-log(s(m)+Si))). Since s and a are non-
decreasing, S1, S2, ..., Si is non-decreasing so that n+a(m)+poly-log(s(m)) ≤ Si

for each i. We can thus rewrite Si+1 as s(poly(Si)). Letting s
′(M) = s(M c) for

large enough constant c, we have that Si+1 = s′(i)(n+ a(m) + poly-log(s(m))).
Chard is computed at level d(m), so by a circuit of size s′(d(m))(n + a(m) +
poly-log(s(m))).

Acknowledgments. This research was partially supported by Indiana State
University, University Research Council grants #11-07 and #12-18. We thank
Matt Anderson, Dieter van Melkebeek, and Dalibor Zelený for discussions that
began this project, continued discussions since, and comments on early drafts of
this work. We thank Matt in particular for observations that refined the state-
ment of Thm. 1.2. We also thank the reviewers for comments and suggestions
that improved the exposition of the paper.

On TC0 Lower Bounds for the Permanent 431

References

1. Allender, E.: The permanent requires large uniform threshold circuits. Chicago
Journal of Theoretical Computer Science (1999)

2. Koiran, P., Perifel, S.: A superpolynomial lower bound on the size of uniform non-
constant-depth threshold circuits for the permanent. In: Proceedings of the IEEE
Conference on Computational Complexity (CCC), pp. 35–40 (2009)

3. Jansen, M., Santhanam, R.: Permanent Does Not Have Succinct Polynomial Size
Arithmetic Circuits of Constant Depth. In: Aceto, L., Henzinger, M., Sgall, J. (eds.)
ICALP 2011. LNCS, vol. 6755, pp. 724–735. Springer, Heidelberg (2011)

4. Jansen, M., Santhanam, R.: Marginal hitting sets imply super-polynomial lower
bounds for permanent. In: Innovations in Theoretical Computer Science (2012)

5. Nisan, N., Wigderson, A.: Hardness vs. randomness. Journal of Computer and
System Sciences 49(2), 149–167 (1994)

6. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complex-
ity 3, 307–318 (1993)

7. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: De-
randomizing the XOR lemma. In: Proceedings of the ACM Symposium on Theory
of Computing (STOC), pp. 220–229 (1997)

8. Buhrman, H., Fortnow, L., Thierauf, T.: Nonrelativizing separations. In: Proceed-
ings of the IEEE Conference on Computational Complexity (CCC), pp. 8–12 (1998)

9. Miltersen, P.B., Vinodchandran, N.V., Watanabe, O.: Super-Polynomial Versus
Half-Exponential Circuit Size in the Exponential Hierarchy. In: Asano, T., Imai,
H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627,
pp. 210–220. Springer, Heidelberg (1999)

10. Williams, R.: Non-uniform ACC circuit lower bounds. In: Proceedings of the IEEE
Conference on Computational Complexity (CCC), pp. 115–125 (2011)

11. Allender, E.: Circuit complexity before the dawn of the new millennium. In: Pro-
ceedings of the Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), pp. 1–18 (1996)

12. Kinne, J., van Melkebeek, D., Shaltiel, R.: Pseudorandom Generators and
Typically-Correct Derandomization. In: Dinur, I., Jansen, K., Naor, J., Rolim,
J. (eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 574–587. Springer,
Heidelberg (2009)

13. Dvir, Z., Shpilka, A., Yehudayoff, A.: Hardness-randomness tradeoffs for bounded
depth arithmetic circuits. SIAM Journal on Computing 39(4), 1279–1293 (2009)

14. Zanko, V.: #P-completeness via many-one reductions. International Journal of
Foundations of Computer Science 2, 77–82 (1991)

15. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM Journal on Com-
puting 20, 865–877 (1991)

16. Kannan, R.: Circuit-size lower bounds and nonreducibility to sparse sets. Informa-
tion and Control 55, 40–56 (1982)

17. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity 13(1/2), 1–46 (2004)

18. Aaronson, S., van Melkebeek, D.: A note on circuit lower bounds from derandom-
ization. Electronic Colloquium on Computational Complexity 17 (2010)

19. Vinodchandran, N.V.: A note on the circuit complexity of PP. Theoretical Com-
puter Science 347(1-2), 415–418 (2005)

432 J. Kinne

20. Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy witness: expo-
nential time vs. probabilistic polynomial time. Journal of Computer and System
Sciences 65(4), 672–694 (2002)

21. Chen, R., Kabanets, V.: Lower bounds against weakly uniform circuits. In: Gud-
mundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp.
408–419. Springer, Heidelberg (2012)

22. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer
Science 8, 189–201 (1979)

Formula Complexity of Ternary Majorities

Kenya Ueno

The Hakubi Center for Advanced Research
and Graduate School of Informatics,

Kyoto University
kenya@kuis.kyoto-u.ac.jp

Abstract. It is known that any self-dual Boolean function can be de-
composed into compositions of 3-bit majority functions. In this paper,
we define a notion of a ternary majority formula, which is a ternary
tree composed of nodes labeled by 3-bit majority functions and leaves
labeled by literals. We study their complexity in terms of formula size.
In particular, we prove upper and lower bounds for ternary majority for-
mula size of several Boolean functions. To devise a general method to
prove the ternary majority formula size lower bounds, we give an upper
bound for the largest separation between ternary majority formula size
and DeMorgan formula size.

1 Introduction

The parity and majority functions are the most basic Boolean functions studied
in the literature. When the number of input bits is odd, both of them are in-
variant under negations of all the input variables and the output (i.e., self-dual).
The class of self-dual Boolean functions is closed under compositions. Therefore
the recursive majority function defined by compositions of the 3-bit majority
function is also self-dual.

A class of Boolean functions closed under compositions is called a Boolean
clone. There are systematic studies on the relationship among Boolean clones
known as Post’s lattice [16]. (See also a survey [3] on Post’s lattice with its
applications.) According to the theory of Post’s lattice, any monotone self-dual
Boolean function can be decomposed into compositions of 3-bit majority func-
tions. In other words, the 3-bit majority function is the universal gate for the
class of monotone self-dual Boolean functions. On the other hand, the 3-bit
Boolean function denoted by (x1 ∧ ¬x2) ∨ (¬x2 ∧ ¬x3) ∨ (¬x3 ∧ x1) is the uni-
versal gate for the class of self-dual Boolean functions. It is also representable
by the 3-bit majority function with negations. Therefore any self-dual Boolean
function can be also decomposed into compositions of 3-bit majority functions
with negations.

Ibaraki and Kameda [8] developed a decomposition theory of monotone self-
dual Boolean functions for the data structure called coteries which realize mu-
tual exclusions in distributed systems. The theory was further investigated for
self-dual Boolean functions in general by Bioch and Ibaraki [2], who gave the

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 433–444, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

434 K. Ueno

decomposition scheme of the 3-bit parity function into compositions of 3-bit ma-
jority functions. We will fully utilize this decomposition scheme in our results.

There are two kinds of formula models whose nodes are labeled by 2-bit
Boolean functions, known as U2-formula (DeMorgan formula) and its extension
B2-formula (full binary basis formula). Studies on formula complexity of U2-
formulas and B2-formulas have a long period of history. Most of lower bound
methods for U2-formula size are regarded as extensions of Khrapchenko [10]
proving the Θ(n2) matching bound for the parity function. However, there are
some hard limitation against U2-formula complexity around Ω(n2) revealed in
[7,9,11,12]. In the case of B2-formula, the lower bound technique introduced by
Nechiporuk [13] Ω(n2/ logn) is the most classical and still the strongest method.

Independently from any choice of formula models, proving formula size lower
bounds is one of the most important problems in computational complexity the-
ory as a weaker version of the circuit size lower bound problem and P 	= NP.
A super-polynomial formula size lower bound for a function in some complexity
class (e.g., NP) including NC1 implies a separation between the two complexity
classes (e.g., NC1 	= NP). The complexity class NC1 is defined in terms of loga-
rithm circuit depth, which turns out to be equivalent to polynomial formula size.
Therefore, the effect of the basis for formula complexity is also significant from
the viewpoint of logical circuit design. With all the effort, it is extremely hard to
give a slight improvement for the formula size problem even for a basic Boolean
functions such as the majority function. Therefore there are fewer achievements
in recent years concerned with formula complexity in spite of its importance.

In this paper, we consider a formula model MAJ3-formula (ternary majority
formula) besides U2-formula and B2-formula. Every node of a MAJ3-formula is
labeled by the 3-bit majority function while every node of a U2-formula and B2-
formula is labeled by a 2-bit Boolean function. We will prove the MAJ3-formula
size lower and upper bounds in Section 4 and 5, respectively. To prove the lower
bounds, we will show that the largest separation between MAJ3-formula and
U2-formula complexity is at most O(nlog2 3) in Section 3. It can be regarded
as analogue of Pratt’s result [17], which showed the largest separation between
B2-formula complexity and U2-formula complexity is at most O(nlog3 10).

Our work is intended as a basis towards further studies onMAJ3-formula and
any similar kinds of circuits and formula models. Since MAJ3-formula can be
seen as the most simplified form of threshold circuits as well as neural networks,
there are possibilities to utilize related techniques. We hope that developing a
new stream of studies on MAJ3-formulas will contribute a new progress reveal-
ing the complexity of itself as well as other existing formula models.

2 Definitions

In this section, we summarize definitions concerned with Boolean functions and
formula size. We assume that the readers are familiar with the basics of these
concepts together with the notations of O, o, Ω, ω and Θ.

Formula Complexity of Ternary Majorities 435

2.1 Boolean Functions

In this paper, we consider the following Boolean functions. Through the paper,
n means the number of input bits.

Definition 1 (Boolean Functions). The parity function PARn : {0, 1}n '→
{0, 1} is defined by

PARn(x1, · · · , xn) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 (

n∑
i=1

xi ≡ 1 mod 2),

0 (

n∑
i=1

xi ≡ 0 mod 2).

The majority function MAJ2l+1 : {0, 1}2l+1 '→ {0, 1} on odd number of input
bits is defined by

MAJ2l+1(x1, · · · , xn) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 (

n∑
i=1

xi ≥ l + 1),

0 (

n∑
i=1

xi ≤ l).

The recursive majority function RecMAJh
3 : {0, 1}3h '→ {0, 1} is defined by

RecMAJh
3 (x1, · · · , x3h) = MAJ3(RecMAJh−1

3 (x1, · · · , x3h−1),

RecMAJh−1
3 (x3h−1+1, · · · , x2·3h−1),

RecMAJh−1
3 (x2·3h−1+1, · · · , x3h))

with RecMAJ1
3 = MAJ3.

We will define another Boolean function right before it will appear. The notions
of monotone and self-dual for Boolean function are defined as follows.

Definition 2 (Monotone and Self-Dual). For Boolean vectors x = (x1, · · · ,
xn) and y = (y1, · · · , yn), we define x ≤ y if xi ≤ yi for all i ∈ {1, · · ·n}.
A Boolean function f is called monotone if x ≤ y implies f(x) ≤ f(y) for
any x,y ∈ {0, 1}n. A Boolean function f is called self-dual if f(x1, · · · , xn) =
¬f(¬x1, · · · ,¬xn) where ¬ denotes the negation, which flips 1 to 0, and 0 to 1.

2.2 Formula Size

In this paper, we consider the following three formula models. For each model,
a literal means either a variable xi or the a negated variable ¬xi for some index
i. Each formula is called monotone if it does not have negated variables. In
the definition, the nodes ∧ and ∨ mean the logical conjunction and disjunction,
respectively.

436 K. Ueno

Definition 3 (Formula Models). A U2-formula is a binary tree with leaves
labeled by literals and internal nodes labeled by ∧ and ∨. A B2 -formula is a
binary tree with leaves labeled by literals and internal nodes labeled by any of
2-bit Boolean functions such as ∧, ∨ and PAR2. A MAJ3-formula is a ternary
tree with leaves labeled by literals and internal nodes labeled by MAJ3.

If we allow 0 and 1 in leaves along with literals, MAJ3-formulas can compute all
the Boolean functions becauseMAJ3(x1, x2, 0) = x1∧x2 andMAJ3(x1, x2, 1) =
x1∨x2. So the 3-bit majority function with 0 and 1 can be regarded as a kind of
the universal gate for all the Boolean functions. In this sense, MAJ3-formula is
yet another natural extension of U2-formula like B2-formula. Even if we do not
allow 0 and 1 in leaves MAJ3-formulas can compute all the self-dual Boolean
functions. Furthermore, even if we allow only variables without negations, they
can compute all the monotone self-dual Boolean functions.

The formula size for each formula model is defined as follows. For the conve-
nience, we will not distinguish a Boolean function f and a formula computing f .
Note that LMAJ3

(f) is defined only for self-dual Boolean functions while LB2(f)
and LU2(f) are defined for all Boolean functions.

Definition 4 (Formula Size). The size of a formula is its number of leaves
for any formula model. We define the formula size of a Boolean function f as
the size of the smallest formula computing f . We denote the size of U2-formula,
B2-formula and MAJ3-formula of a Boolean function f by LB2(f), LU2(f)
and LMAJ3

(f), respectively. We will sometimes abbreviate LU2(f) to L(f) for
simplicity.

3 Translation from Ternary Majority Formulas
to DeMorgan Formulas

In this section, we analyze the relation between MAJ3-formula complexity
and U2-formula complexity. The results in this section will be useful to de-
rive a MAJ3-formula size lower bound from a U2-formula size lower bound for
the same function as shown in Section 4. We begin with the following simple
proposition.

Proposition 1. LMAJ3(RecMAJh
3) = 3h.

Proof. The upper bound LMAJ3
(RecMAJh

3) ≤ 3h follows from the same con-
struction as the definition. The lower bound LMAJ3

(RecMAJh
3) ≥ 3h is also

immediate because it depends on all the variables. ��

From a majority formula L(MAJ3) ≤ 5, we can recursively construct a formula
for the recursive majority function whose size is 5h. Therefore we have an upper
bound L(RecMAJh

3) ≤ 5h, i.e., L(RecMAJh
3) ∈ O(LMAJ3(f)

1.4650) . Simi-
larly, the best upper bound we know for B2-formula is also LB2(RecMAJh

3) ≤
5h. The quantum adversary bound [11], which is useful to prove U2-formula
size lower bounds, has a nice composition property written as ADV(f · g) ≥

Formula Complexity of Ternary Majorities 437

ADV(f) ·ADV(g). It implies a formula size lower bound 4h ≤ L(RecMAJh
3),

i.e. L(RecMAJh
3) ∈ Ω(LMAJ3

(f)1.2618).
We call the value γ an expansion factor from aMAJ3-formula intoU2-formula

for an arbitrary self-dual Boolean function f if L(f) ∈ O((LMAJ3
(f))γ). In the

case of the recursive majority function, we can prove γ ≥ log3 5 by solving
5 · aγ ≤ (3a)γ where LMAJ3(f1) = LMAJ3(f2) = LMAJ3(f3) = a. At first
glance, the recursive majority function seems to have the largest expansion factor
log3 5 from a MAJ3-formula into a U2-formula among all the MAJ3-formulas.
Surprisingly, this is not true as we prove in the next lemma.

Lemma 1. For any self-dual Boolean function f ,

L(f) ∈ O(LMAJ3
(f)log2 3) ⊆ O(LMAJ3

(f)1.5850).

Proof. We are looking for the largest formula expansion from a MAJ3-formula
into a U2-formula. Differently from the recursive majority function, the same
variable might appear more than once in a ternary majority formula for an
arbitrary Boolean function f . In this case, the expanded U2-formula can shrink
more. So we can concentrate on the case in which all the variable appear exactly
once. That is, LMAJ3

(f) = n.
We assume that L(f) ≤ β · LMAJ3(f)

γ for any self-dual Boolean function
and consider an inductive argument. The expansion factor γ must satisfy an
inequality

L(f) ≤ 2 · β · (LMAJ3
(f1))

γ + 2 · β · (LMAJ3
(f2))

γ + β · (LMAJ3
(f3))

γ

≤ β · (LMAJ3
(f))γ

by looking at a formula expansion from a MAJ3-formula f = MAJ3(f1, f2, f3)
into a U2-formula f = (f1 ∧ f2) ∨ ((f1 ∨ f2) ∧ f3). This expansion is processed
from leaves to the root in a recursive way.

We can assume that LMAJ3
(f1) ≤ LMAJ3

(f2) ≤ LMAJ3
(f3) without loss of

generality. We set LMAJ3
(f1) = a−b, LMAJ3

(f2) = a+b and LMAJ3
(f3) = a+c

where a > b ≥ 0 and c ≥ b ≥ 0. In this case, we need to find the minimum value
of γ which always satisfies

2 · (a− b)γ + 2 · (a+ b)γ + (a+ c)γ ≤ (3a+ c)γ .

So we set

p(a, b, c, γ) = (3a+ c)γ − (a+ c)γ − 2 · (a+ b)γ − 2 · (a− b)γ

and seek the minimum value of γ such that p(a, b, c, γ) ≥ 0 for any a > b ≥ 0
and c ≥ b > 0.

First we fix a, b and γ and consider

q(α) = (3 + α)γ − (1 + α)γ

where α = c
a (0 < α). By the derivative y′ = γ ·xγ−1 of y = xγ , (3+α)γ increases

more than (1+α)γ whenever α slightly increases. So q(α) monotonically increases

438 K. Ueno

as α increases. To minimize p(a, b, c, γ) for fixed γ, we would like to minimize
q(α) and had better α be as small as possible. Hence we set c = b because c ≥ b.

Next we consider

r(α, γ) =
p(a, b, b, γ)

aγ
= (3 + α)γ − 3 · (1 + α)γ − 2 · (1− α)γ

where α = b
a (0 ≤ α < 1). Since r(α, γ) ≥ 0 for any α (0 ≤ α < 1) implies

p(a, b, c, γ) ≥ 0 for any a, b and c, it suffices to seek the minimum γ which
satisfies this condition.

It is easy to see that log3 5 is not the largest expansion factor because

r(1, log3 5) ≈ −0.660928 < 0

while
r(1, log3 5) = 0.

On the other hand, log2 3 seems to be a good candidate which is very near to
the largest expansion factor because

r(0, log2 3) ≈ 0.704522 > 0

and
r(1, log2 3) ≈ 1.77636× 10−15 > 0.

To confirm r(0, log2 3) ≥ 0 for 0 ≤ α < 1, it is sufficient to draw the graph of
r(α, log2 3) (0 ≤ α < 1) as shown in Figure 1. (Strictly speaking, it requires a
rigorous analysis on r(α, log2 3), but we omit it in this paper.)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Fig. 1. r(α, log2 3) = (3 + α)log2 3 − 3 · (1 + α)log2 3 − 2 · (1− α)log2 3 (0 ≤ α < 1)

Therefore the largest expansion factor is at most log2 3, which is given for
a MAJ3-formula with a − 1 = b = c, i.e., LMAJ3

(f1) = 1 and LMAJ3
(f2) =

LMAJ3(f3) for each subtree. ��

Formula Complexity of Ternary Majorities 439

Pratt [17] has proved

LU2(f) ∈ O((LB2(f))
log3 10) ⊆ O((LB2 (f))

2.096).

The exponent log3 10 is derived from theU2-formula size of 10 for the 3-bit parity
function. The above lemma can be seen as an analogue of Pratt’s bound [17] for
the relation between MAJ3-formulas and U2-formulas.

4 Ternary Majority Formula Size Lower Bounds

In this section, we devise a general method to prove ternary majority formula
size lower bounds. In general, we can derive a MAJ3-formula size lower bound
for an arbitrary Boolean function from a U2-formula size lower bound of the
same function using Lemma 1 as follows.

Theorem 1. For any self-dual Boolean function f such that L(f) ∈ Ω(nc),
LMAJ3(f) ∈ Ω(nc/ log2 3).

Proof. By Lemma 1, an upper bound for U2-formula size expanded from a
MAJ3-formula of size N is at most O(N log2 3). This size must be not smaller
than the formula size lower bound L(f) ∈ Ω(nc). Therefore we have obtained
the theorem. ��

From U2-formula size lower bounds of L(PARn) ∈ Ω(n2) and L(MAJn) ∈
Ω(n2) by Khrapchenko [10], we have the following corollaries. After completion of
our work, we have noticed that the lower bound for the parity function is weaker
than 1.33 of Chokler and Zwick [4] using the random restriction technique. Still,
our lower bound method has merit in the sense that it can be applied for any
Boolean function.

Corollary 1. For any n = 2l+1, we have LMAJ3
(PAR2l+1) ∈ Ω(n1.2618) and

LMAJ3
(MAJ2l+1) ∈ Ω(n1.2618).

Since 2/ log2 3 = log3 4, these lower bounds are equal to the U2-formula size
lower bound for the recursive majority function accidentally. It seems to be
difficult to give a matching MAJ3-formula size upper and lower bounds even
for the parity function while we can obtain those forU2-formula andB2-formula.
Both of them seem to be not tight and have room for further improvements.

The current best B2-formula size lower bound is Ω(n2/ logn) shown by
Nechiporuk [13] for the element distinctness function. We should note that
Pratt’s bound [17] LU2(f) ∈ O((LB2 (f))

2.096) is not sufficient to give a sub-
stantial lower bound larger than n differently from the case of MAJ3-formula.
This is because U2-formula size lower bounds have got stuck the barrier around
Ω(n2) [7,9,11,12] for almost all explicitly defined Boolean functions except the
Andreev function discussed from now on.

The current best U2-formula size lower bound is Ω(n3−o(1)) by H̊astad [6]
for the Andreev function [1]. We can define the Andreev function so that it is
self-dual.

440 K. Ueno

Definition 5. The Andreev function A2n is composed of 2n input bits which
are divided into 2 parts. The first part consists of n bits represent the truth table
of a Boolean function f on logn bits. The second part consists of n bits which
are also divided into logn blocks of n/ logn bits. First, the function computes
logn parity function on n/ logn input bits from the second part of the input bits.
and obtain logn output bits. Here we assume that the number of input bits for
all the parity function is even. That is, n/ logn is even. Then it computes the
Boolean function f represented by the first part with the obtained logn output
bits as input bits.

With the slightly modification of the Andreev function from its original definition
version, we can confirm that it is self-dual as follows.

Lemma 2. The Andreev function A2n defined as above is self-dual.

Proof. We consider the situation in which we flip all the input bits for the An-
dreev function. Because we defined the Andreev function so that the number of
input bits for all the parity functions inside the Andreev function is even, the
output bits are invariant when we flip all the input bits. In other words, the
parity function with even number of input bits is anti-dual, i.e.,

PARn/ log n(x1, · · · , xn/ logn) = PARn/ logn(¬x1, · · · ,¬xn/ logn).

Therefore the Andreev function outputs a bit in the same position in the first
part of the input bits after flipping all the input bits. On the other hand, this
output bit has been also flipped. Hence the output bit of the Andreev function
is also flipped after we flip all the input bits. ��
So our MAJ3-formula size lower bound for the Andreev function is given as
follows.

Theorem 2. LMAJ3
(A2n) ∈ Ω(n1.8927)

Proof. Since we have defined the Andreev function so that it is self-dual, it can
be represented by a MAJ3-formula from the theory of Post [16]. Moreover, the
modification of the Andreev function does not affect the U2-formula size lower
bound of Ω(n3−o(1)) by H̊astad [6]. Thus we can apply Theorem 1 and obtain
the lower bound by 3/ log2 3 ≈ 1.89279. ��

5 Ternary Majority Formula Size Upper Bounds

In this section, we prove MAJ3-formula size upper bounds of the parity and
majority function. In both cases, the upper bounds are shown by utilizing the
decomposition scheme of Bioch and Ibaraki [2] for the 3-bit parity function as

PAR3(x1, x2, x3) = [1, [1̄, 2̄, 3̄], [1̄, 2, 3]]

where we use notations [i, j, k] = MAJ3(xi, xj , xk), i = xi and ī = ¬xi. From the
decomposition scheme, we obtain LMAJ3

(PAR3) ≤ 7. We show that MAJ3-
formula complexity is intermediate between B2-formula complexity and U2-
complexity for both functions.

Formula Complexity of Ternary Majorities 441

5.1 The Parity Function

In the case of U2-formula, we can construct a 2-bit parity formula (x1 ∧ ¬x2) ∨
(¬x1∧x2). By a recursive construction, we can prove an upper bound L(PARn) ≤
n2 where n = 2h from a recursive inequality L(PAR2n) ≤ 4 · L(PARn).

In the case of MAJ3-formula, we can decompose the 3h-bits parity function
into a composition of a 3-bit parity function and three 3h−1-bits parity functions.
Thus we have a recursive inequality LMAJ3

(PAR3h) ≤ 7 · LMAJ3
(PAR3h−1)

from the decomposition scheme of the 3-bit parity function. Solving this in-
equality straightforwardly, we can show an upper bound LMAJ3(PAR3h) ∈
O(nlog3 7) ⊆ O(n1.7712). Actually we can give a better upper bound as follows.

Theorem 3 (See also [4]). LMAJ3
(PAR2l+1) ∈ O(n1.7329) where n = 2l+ 1.

Proof. For some constant α, we consider decomposition of the (2α + 1) ·m-bit
parity function into a composition of a 3-bit parity function with a m-bit parity
function and two α ·m-bit parity functions as follows.

PAR(2α+1)·m(x1, · · · , x(2α+1)·m) = PAR3(PARm(x1, · · · , xm),

PARα·m(xm+1, · · · , x(α+1)·m),

PARα·m(x(α+1)·m+1, · · · , x(2α+1)·m)).

Here we can assume that α ·m is an odd integer by increasing or decreasing it
at most 1. In this case, (2α+ 1) ·m becomes also an odd integer if m is odd.

Let S(n) = LMAJ3(PARn) and assume S(n) ≤ β · nγ for some constants
β, γ > 0 for any odd number n. By increasing the value of β, the slight modi-
fication which makes α ·m be an odd integer can be ignored for the following
estimation of γ. By using decomposition scheme of the 3-bit parity function,

S((1 + 2α) ·m) ≤ 3 · S(m) + 2 · S(α ·m) + 2 · S(α ·m)

≤ (3 + 4 · αγ) · β · nγ .

It suffices to show that the last expression is bounded by (1 + 2α)γ · β · nγ .
Therefore we consider the minimum value of γ which satisfies

3 + 4 · αγ ≤ (1 + 2α)γ

by eliminating β · mγ from both sides. We can verify that this inequality is
satisfied when α = 1.73896 and γ = 1.73282. ��
We have possibilities to improve the upper bound by analysis of the parity
function with larger number of input bits. In this case, the proof will become
much more complicated as the number of input bits increases. For example, we
can construct MAJ3-formula of size 21 for the 5-bit parity function as

PAR5(x1, x2, x3, x4, x5) =

[1, [1̄, 2̄, [3̄, [3, 4, 5], [3, 4̄, 5̄]]], [1̄, 2, [1̄, 2, [3, [3̄, 4̄, 5̄], [3̄, 4, 5]]]]].

From the construction, we can obtain the upper bound ofO(nlog5 21) = O(n1.8917).
This is far from the above upper bound. To obtain a better bound, we need much
more succinct construction of a MAJ3-formula for the 5-bit parity function of
size as close to 51.7328 = 16.262... as possible.

442 K. Ueno

5.2 The Majority Function

Our MAJ3-formula size upper bound for the majority function essentially relies
on the general theory established by Paterson, Pippenger and Zwick [14]. Their
idea is based on construction of a carry save adder from a full adder of fixed
size as building blocks. Here we consider a full adder FA3 from 3 bits to 2 bits.
The first and second output bits y1, y2 of FA3 are the 3-bit parity and majority
function, respectively.

In the case of U2-formula, the full adder FA3 can be constructed by

y1 = (x1 ∧ ((¬x2 ∨ x3) ∧ (x2 ∨ ¬x3))) ∨ (¬x1 ∧ ((x2 ∧ ¬x3) ∨ (¬x2 ∧ x3))),

and
y2 = (x1 ∧ x2) ∨ ((x1 ∨ x2) ∧ x3).

They defined the notion of the occurrence matrix. It summarizes the information
of the number of occurrence in the formula. For example, the occurrence matrix

of the above case is M =

(
2 4 4
1 2 2

)
. In the first and second row of the matrix,

each entry counts the number of occurrence of each variable in the first and
second formula, respectively.

From the construction of an arbitrary fixed size full adder and its correspond-
ing occurrence matrix, Paterson, Pippenger and Zwick [14] gave the following
general upper bound method.

Theorem 4 ([14]). Let M be an occurrence matrix of some full adder for some
fixed basis and some Boolean function f . Let ε(M) be the maximum value of 1

γ

such that ‖x‖γ ≤ ‖M · x‖γ for any vector x ≥ 0 where ‖x‖γ = (
∑

i |xi|γ)1/γ .
Then O(nε(M)+o(1)) gives a formula size upper bound for f on the fixed basis.

By the theorem, we can derive a U2-formula size upper bound of O(n4.70).
Paterson and Zwick [15] gave a construction of the full adder from 11 bits to 4
bits and an improved upper bound of O(n4.57).

In the case of B2-formula, Paterson, Pippenger and Zwick [14] proved a B2-
formula size upper bound of O(n3.21) improved to O(n3.13) by Paterson and
Zwick [15].

In the case of MAJ3-formula, the full adder FA3 can be constructed by y1 =
[1, [1̄, 2̄, 3̄], [1̄, 2, 3]] and y2 = [1, 2, 3]. So the corresponding occurrence matrix is

M =

(
3 2 2
1 1 1

)
. From this, we can obtain the followingMAJ3-formula size upper

bound for the majority function.

Theorem 5. LMAJ3
(MAJ2l+1) ∈ O(n3.7925) where n = 2l+ 1.

Proof. For the occurrence matrix,M =

(
3 2 2
1 1 1

)
, the inequality ‖x‖γ ≤ ‖M ·x‖γ

which appears in the theorem of Paterson, Pippenger and Zwick [14] can be
interpreted as

p(a, b, c, γ) = (3 · a+ 2 · b+ 2 · c)γ + (a+ b+ c)γ − aγ − bγ − cγ ≥ 0.

Formula Complexity of Ternary Majorities 443

If LMAJ3
(MAJn) ∈ O(nγ), there exists a, b, c > 0 such that p(a, b, c, γ) < 0. We

set a = 0.729608, b = c = 1 and 1/γ = 3.7925. Then, we have

p(a, b, c, γ) ≈ −0.0000256657< 0.

This certifies that the maximum value of 1/γ which satisfies ‖x‖γ ≤ ‖M · x‖γ
for any vectors x ≥ 0 is less than 3.7925. (The optimality of the value γ can be
confirmed by numerical analysis. That is, the minimum value of p(a, b, c, γ) > 0
for γ = 3.7924.) Thus we have obtained the upper bound. ��

The best monotone U2-formula size upper bound for the majority function is
O(n5.3) by a probabilistic construction of Valiant [18]. Following the analysis
of Valiant’s construction replaced by balanced compositions of the 3-bit ma-
jority function with random variables, we can construct a monotone MAJ3-
formula whose size is O(n4.2945) (⊇ O(nlog3/2 3+log2 3)). The size of its conversion
into a monotone U2-formula is O(n6.2913) (⊇ O(nlog3/2 5+log2 5)) and larger than
Valiant’s bound.

6 Concluding Remarks

In this paper, we have introduced the notion of MAJ3-formula and have shown
the upper and lower bounds forMAJ3-formula size of several Boolean functions.
The results shown in this paper are summarized in Figure 2. The figure also shows
comparison with U2-formula complexity and B2-formula complexity.

B2-formula MAJ3-formula U2-formula

Parity Θ(n) O(n1.7329) [4] Θ(n2) [10]

Ω(n1.2618), O(n1.3333) [4]

Majority O(n3.13) [14,15] O(n3.7925) O(n4.57) [14,15]

Ω(n log n) [5] Ω(n1.2618) Ω(n2) [10]

Recursive Majority Θ(n) O(n1.4650) [11]

Ω(n1.2618) [11]

Andreev Ω(n1.8927) Θ(n3−o(1)) [6]

Fig. 2. Formula Size Upper and Lower Bounds

There are still large gaps between the upper and lower bounds even for the
parity function while we have its matching bounds for U2-formula and B2-
formula. The obvious open questions are how to close these gaps. We hope that
a new technical discovery to clarify MAJ3-formula complexity will also shed
light on resolving the stiff barrier against formula complexity of the existing
models.

444 K. Ueno

Acknowledgment. This research is supported by the Kyoto University Hakubi
Project and Grants-in-Aid for Scientific Research from the Japan Society for the
Promotion of Science.

References

1. Andreev, A.E.: On a method for obtaining more than quadratic effective lower
bounds for the complexity of π-scheme. Moscow University Mathematics Bul-
letin 42(1), 63–66 (1987)

2. Bioch, J.C., Ibaraki, T.: Decompositions of positive self-dual boolean functions.
Discrete Mathematics 140(1-3), 23–46 (1995)

3. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with boolean blocks, part
I: Post’s lattice with applications to complexity theory. ACM SIGACT News 34(4),
38–52 (2003)

4. Chockler, H., Zwick, U.: Which bases admit non-trivial shrinkage of formulae?
Computational Complexity 10(1), 28–40 (2001)

5. Fischer, M.J., Meyer, A.R., Paterson, M.S.: Ω(nlogn) lower bounds on length of
Boolean formulas. SIAM Journal on Computing 11(3), 416–427 (1982)

6. H̊astad, J.: The shrinkage exponent of De Morgan formulas is 2. SIAM Journal on
Computing 27(1), 48–64 (1998)

7. Hrubeš, P., Jukna, S., Kulikov, A., Pudlák, P.: On convex complexity measures.
Theoretical Computer Science 411, 1842–1854 (2010)

8. Ibaraki, T., Kameda, T.: A theory of coteries: Mutual exclusion in distributed
systems. IEEE Transactions on Parallel and Distributed Computing PDS-4(7),
779–794 (1993)

9. Karchmer, M., Kushilevitz, E., Nisan, N.: Fractional covers and communication
complexity. SIAM Journal on Discrete Mathematics 8(1), 76–92 (1995)

10. Khrapchenko, V.M.: Complexity of the realization of a linear function in the case
of π-circuits. Mathematical Notes 9, 21–23 (1971)

11. Laplante, S., Lee, T., Szegedy, M.: The quantum adversary method and classical
formula size lower bounds. Computational Complexity 15(2), 163–196 (2006)

12. Lee, T.: A New Rank Technique for Formula Size Lower Bounds. In: Thomas, W.,
Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 145–156. Springer, Heidelberg
(2007)

13. Neciporuk, E.I.: A boolean function. DOKLADY: Russian Academy of Sciences
Doklady. Mathematics (formerly Soviet Mathematics–Doklady) 7, 999–1000 (1966)

14. Paterson, M.S., Pippenger, N., Zwick, U.: Optimal carry save networks. In: Boolean
Function Complexity. London Mathematical Society Lecture Note Series, vol. 169,
pp. 174–201. Cambridge University Press (1992)

15. Paterson, M.S., Zwick, U.: Shallow circuits and concise formulae for multiple ad-
dition and multiplication. Computational Complexity 3(3), 262–291 (1993)

16. Post, E.L.: The two-valued iterative systems of mathematical logic. Annals Math-
ematical Studies, vol. 5. Princeton University Press (1941)

17. Pratt, V.R.: The effect of basis on size of Boolean expressions. In: Proceedings of
the 16th Annual Symposium on Foundations of Computer Science (FOCS 1975),
October 13-15, pp. 119–121. IEEE (1975)

18. Valiant, L.G.: Short monotone formulae for the majority function. Journal of Al-
gorithms 5(3), 363–366 (1984)

On the Kernelization Complexity of Problems

on Graphs without Long Odd Cycles

Fahad Panolan and Ashutosh Rai

The Institute of Mathematical Sciences, Chennai, India
{fahad,ashutosh}@imsc.res.in

Abstract. Several NP-hard problems, like Maximum Independent

Set, Coloring, and Max-Cut are polynomial time solvable on bipar-
tite graphs. An equivalent characterization of bipartite graphs is that it
is the set of all graphs that do not contain any odd length cycle. Thus, a
natural question here is what happens to the complexity of these prob-
lems if we know that the length of the longest odd cycle is bounded by k?
Let Ok denote the set of all graphs G such that the length of the longest
odd cycle is upper bounded by k. Hsu, Ikura and Nemhauser [Math.
Programming, 1981] studied the effect of avoiding long odd cycle for
the Maximum Independent Set problem and showed that a maximum
sized independent set on a graph G ∈ Ok on n vertices can be found
in time nO(k). Later, Grötschel and Nemhauser [Math. Programming,
1984] did a similar study for Max-Cut and obtained an algorithm with
running time nO(k) on a graph G ∈ Ok on n vertices.

In this paper, we revisit these problems together with q-Coloring

and observe that all of these problems admit algorithms with running
time O(cknO(1)) on a graph G ∈ Ok on n vertices. Thus, showing that all
these problems are fixed parameter tractable when parameterized by the
length of the longest odd cycle of the input graph. However, following the
recent trend in parameterized complexity, we also study the kernelization
complexity of these problems. We show that Maximum Independent

Set, q-Coloring for some fixed q ≥ 3 and Max-Cut do not admit a
polynomial kernel unless co-NP ⊆ NP/poly, when parameterized by k,
the length of the longest odd cycle.

1 Introduction

One of the most common ways to solve NP-hard problems is to restrict the in-
puts. For an example, most NP-hard graph problems become polynomial time
solvable on trees. There are also some NP-hard problems, like Maximum In-

dependent Set, q-Coloring, and Max-Cut, that remain polynomial time
solvable on bipartite graphs. A graph G = (V,E) is called bipartite if the vertex
set V can be partitioned into two parts V1 and V2 such that every edge in E
has one end-point in V1 and the other in V2. An equivalent characterization of
bipartite graphs is that it is the set of all graphs that do not contain any odd
length cycle. Thus, a natural question here is what happens to the complexity

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 445–457, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

446 F. Panolan and A. Rai

of these problems if we know that the the length of the longest odd cycle is
bounded by k?

Let Ok denote the set of all graphs G such that the length of the longest
odd cycle is upper bounded by k. Hsu, Ikura and Nemhauser [16] initiated a
study of NP-hard optimization problems on Ok. In particular, they studied the
effect of avoiding long odd cycle for the Maximum Independent Set problem
and showed that a maximum sized independent set on a graph G ∈ Ok on n
vertices can be found in time nO(k). Later, Grötschel and Nemhauser [14] did a
similar study for Max-Cut and obtained an algorithm with running time nO(k)

on a graph G ∈ Ok on n vertices. In the modern language of parameterized
complexity, it means that these problems admit XP algorithms parameterized
by the length of the longest odd cycle of the input graph.

The goal of parameterized complexity is to find ways of solvingNP-hard prob-
lems more efficiently than brute force: here aim is to restrict the combinatorial
explosion to a parameter that is hopefully much smaller than the input size.
Formally, a parameterization of a problem is assigning an integer k to each input
instance and we say that a parameterized problem is fixed-parameter tractable
(FPT) if there is an algorithm that solves the problem in time f(k)·|I|O(1), where
|I| is the size of the input and f is an arbitrary computable function depending
on the parameter k only. There is a long list of NP-hard problems that are FPT
under various parameterizations: finding a vertex cover of size k, finding a cycle
of length k, finding a maximum independent set in a graph of treewidth at most
k, etc. There is also a theory of hardness that allows us to show that certain
parametrized problem is not amenable to this approach. XP is the class of all
problems that are solvable in time O(ng(k)). For more background, the reader is
referred to the monographs [10,11,21].

In this paper we study the following parameterized problems in the realm of
parameterized complexity. A subset S of vertices of a graph G = (V,E) is called
independent if there is no edge in E with both end-points in S.

Maximum Independent Set (MIS)

Instance: An undirected graph G = (V,E) ∈ Ok and a positive integer t.
Parameter: k.

Problem: Does G has an independent set of size t?

Let q ≥ 3 be a fixed positive integer. We say that a graph G = (V,E) is q-
colorable if there is function f : V → {1, . . . , q} such that for every edge (u, v) ∈
E, f(u) 	= f(v).

q-coloring

Instance: An undirected graph G = (V,E) ∈ Ok

Parameter: k
Problem: Does there exist a proper q-coloring of G?

Kernelization Complexity of Problems on Graphs of Bounded Odd Cycle 447

We say that a graph G = (V,E) has a cut of size t if the vertex set V can be
partitioned into two parts V1 and V2 such that the number of edges in E that
have one end-point in V1 and the other in V2 is at least t.

Max-Cut

Instance: An undirected graph G = (V,E) ∈ Ok and a positive integer t
Parameter: k

Problem: Does there exist a cut of size at least t in G?

We observe that MIS, q-Coloring and Max-Cut are FPT by giving algo-
rithms that have running time of the form O(cknO(1)) on a graph G ∈ Ok on n
vertices. However, we go further and study the kernelization complexity of these
problems. A parameterized problem is said to admit a polynomial kernel if ev-
ery instance (I, k) can be reduced in polynomial time to an equivalent instance
with both size and parameter value bounded by a polynomial in k. The study
of kernelization is a major research frontier of Parameterized Complexity and
many important recent advances in the area are on kernelization. These include
general results showing that certain classes of parameterized problems have poly-
nomial kernels [2,6,12] or randomized kernels [20]. The recent development of a
framework for ruling out polynomial kernels under certain complexity-theoretic
assumptions [5,9,13] has added a new dimension to the field and strengthened
its connections to classical complexity. For overviews of kernelization we refer
to surveys [4,15] and to the corresponding chapters in books on Parameterized
Complexity [11,21].

We show that MIS, q-Coloring for some fixed q ≥ 3 and Max-Cut do not
admit a polynomial kernel unless co-NP ⊆ NP/poly, when parameterized by k,
the length of the longest odd cycle. These are our main results. Our results fit into
the recent study of problems parameterized by other structural parameters. See,
for example Odd Cycle Transversal parameterized by various structural
parameters [19] or Treewidth parameterized by vertex cover [7] or Vertex

Cover parameterized by feedback vertex set [17], q-coloring parameterized
by the number of vertex-deletions needed to make the graph chordal [18]. The
effect of length of cycles on parameterized complexity of various problems has
also been studied [22].

2 Preliminaries

The notions of kernelization is formally defined as follows.

Definition 1. A kernelization algorithm, or in short, a kernel for a parameter-
ized problem Π ⊆ Σ∗ × N is an algorithm that, given (x, k) ∈ Σ∗ × N, outputs
in time polynomial in |x|+ k a pair (x′, k′) ∈ Σ∗ × N such that

(a) (x, k) ∈ Π if and only if (x′, k′) ∈ Π
(b) |x′|+ k′ ≤ g(k), where g is an arbitrary computable function.

448 F. Panolan and A. Rai

The function g is referred to as the size of the kernel. If g is a polynomial function
then we say that Π admits a polynomial kernel.

Let G = (V,E) be a graph and A ⊆ V , then by G[A], we denote the subgraph
induced on A.

Definition 2. Let G be a graph. A tree decomposition of a graph G = (V,E) is
a pair (T = (V (T), E(T)),X = {Xt}t∈V (T)) such that

– ∪t∈V (T)Xt = V ,
– for every edge (x, y) ∈ E, there is a t ∈ V (T) such that {x, y} ⊆ Xt, and
– for every vertex v ∈ V , the subgraph of T induced by the set {t | v ∈ Xt} is

connected.

The width of a tree decomposition is
(
maxt∈V (T) |Xt|

)
− 1 and the treewidth of

G is the minimum width over all tree decompositions of G.

Definition 3. Let G = (V,E) be a connected graph. A vertex v ∈ V is called
an articulation point of G if the graph obtained from G, after deleting vertex v,
is disconnected.

Definition 4. A connected graph on 3 or more vertices is 2-connected if it has
no articulation point. A subgraph that has no articulation point and is maximal
with this property is called a block. The block decomposition of a graph is just
the set of all the blocks of the graph.

Clearly, each block of a connected graph is either 2-connected (if it contains 3
or more vertices) or 2 vertices joined by an edge. The block decomposition of a
connected graph can be found in O(|E|) time [1].

Observation 5. A connected graph with more than one block contains at least
two blocks with at most one articulation point. Also, two blocks can share at most
one vertex.

Each tree with more than one node has at least two leaves. Since the blocks
impose a tree like structure on the graph, if there are more than one block, at
least two of them are at leaf level, and have only one articulation point. Also, we
see that the blocks are maximal 2-connected components, so if two blocks share
more than one vertex, the maximality condition gets violated.

3 FPT Algorithms

In this section we give FPT algorithms for MIS, q-Coloring and Max-Cut

by improving on block composition algorithms developed in [14,16], and using
some facts about 2-connected graphs. For MIS and Max-Cut we revisit the
algorithms developed in [14,16] and speed their main step, using the FPT al-
gorithms for MIS and Max-Cut when parameterized by treewidth, to obtain
FPT algorithms when the input graph does not contain long odd cycle. Our al-
gorithm for q-Coloring is new. For our algorithms, we also need the following
two theorems.

Kernelization Complexity of Problems on Graphs of Bounded Odd Cycle 449

Theorem 6 ([14]). Let G be a 2-connected, non-bipartite graph whose longest
odd cycle has length l0. Then the longest cycle of G has length at most 2(l0− 1).

Theorem 7 ([3]). If the size of the longest cycle of a graph is bounded by t,
then its treewidth is at most (t− 1)

Combining the above two, we get that each block in a connected graph G ∈
Ok is either 2-connected, non-bipartite subgraph with its treewidth at most
(2(k − 1)− 1) < 2k, or it is a bipartite subgraph.

For all three FPT algorithms, we assume that the input is a graph G along
with a block decomposition of G. Since it can be computed in O(|E|) time, it
does not affect the running time asymptotically, as all the algorithms already
have a multiplicative factor of nO(1).

3.1 Maximum Independent Set (MIS)

We know that the maximum sized independent set can be found in time 2twnO(1)

on graphs of treewidth tw [21]. Also, it is well known that it can be solved in time
nO(1) on bipartite graphs. Thus, for each block, the maximum sized independent
set can be computed in time 4knO(1), since treewidth of each block is bounded
by 2k. Now, we give the main lemma on which the algorithm is based.

Lemma 8 (Corollary 1, [16]). Let G = (V,E) be a graph with at least two
blocks. Let G[S] be a block of G with vertex set S ⊆ V and with only one artic-
ulation vertex v. For any X ⊆ V , let PX be the maximum sized independent set
on G[X]

1. If |PS | = |PS\{v}|, then PS\{v} ∪ PV \S is a maximum sized independent set
on G.

2. If |PS | = |PS\{v}| + 1, then (PS \ {v}) ∪ P(V \S)∪{v} is a maximum sized
independent set on G.

Now, we solve the MIS problem in the following way.

Case 1: G contains only one block. If the block is bipartite, then we can
find a maximum sized independent set in nO(1) time. Otherwise, the block
has treewidth at most 2k and the bounded treewidth algorithm works. So,
we can find a maximum sized independent set in time 4knO(1) for a single
block.

Case 2: G contains at least two blocks. We first select a block G[S] with
only one articulation point, say v (such a block is guaranteed by
Observation 5). Now, we find a maximum sized independent sets PS and
PS\{v}. If |PS | = |PS\{v}|, then we delete S from the graph to get G′ =
G \ S and find a maximum sized independent set on G′ recursively. Finally,
we obtain a maximum sized independent set of the original graph G as
PS\{v} ∪ PV \S .

Else, we delete S \ {v} from the graph to get G′ and find a maximum
sized independent set on G′ recursively. Then, we obtain the maximum sized
independent set of the original graph G as (PS \ {v}) ∪ P(V \S)∪{v}.

450 F. Panolan and A. Rai

Correctness of the algorithm follows from Lemma 8. For the running time anal-
ysis, observe that in each step, the number of blocks decreases by one. Also,
in each step, the subroutine for finding a maximum sized independent set on
a block is called at most twice. Combining the two solutions takes O(n) time.
So, in total, the algorithm makes at most n recursive calls, each of them taking
at most O(4knO(1)) time. Finally, we compare the solution size with the given
number t and answer appropriately to solve the decision version. Thus, we get
the following theorem.

Theorem 9. MIS can be solved in time 4knO(1).

3.2 q-Coloring

For our FPT algorithm we will use the well known result that one can test
whether a graph of treewidth tw is q-colorable or not in time qtwnO(1). For
bipartite graphs, we know that they are 2-colorable. We first prove the following
lemma in order to show q-Coloring is FPT.

Lemma 10. A graph G is q-colorable iff all its blocks are q-colorable.

Proof. The forward direction is trivial, since all the blocks are induced subgraphs
of G. We prove the backward direction by induction on the number of blocks in
G. Clearly, when G has only one block (G itself), the statement of the lemma is
true. Now, we take the number of blocks to be n > 1, which are all q-colorable.
We find a block B with only one articulation point, say v (such a block is
guaranteed by Observation 5). We delete (B \ {v}) to get a graph G′ which has
(n − 1) blocks. Now, since all these blocks are q-colorable, G′ is q-colorable by
induction hypothesis. We also know that B is q-colorable. If the vertex v has
got the same color in both the colorings, i.e. in B and G′, then we just take the
union of them to be the q-coloring of the graph G and we are done. We argue
that we can always get such a coloring. If not, we permute the colors in B so that
v has the same color as it has in G′. This concludes the proof of the lemma. ��

The lemma immediately gives rise to an algorithm which checks the q-colorability
of all the blocks and outputs G is q-colorable iff all its blocks are q-colorable. As
mentioned earlier, the q-colorability of a block can be checked in time q2knO(1),
and there are at most n blocks, hence the algorithm runs in time q2knO(1). Thus
we get the following result.

Theorem 11. q-Coloring for fixed q ≥ 3 can be solved in time q2knO(1).

Along the lines of Theorems 9 and 11 we get the following Theorem 12.

Theorem 12. [∗]1 Max-Cut can be solved in time 4knO(1).

1 Proofs of results marked [∗] will appear in the full version of the paper.

Kernelization Complexity of Problems on Graphs of Bounded Odd Cycle 451

4 Kernelization Lower Bounds

In this section, we show that even though MIS, q-Coloring, and Max-Cut

admit algorithms with running time 4knO(1), q2knO(1) and 4knO(1) respectively
on Ok, they do not admit polynomial kernels. We first set up the known ma-
chinery to show the kernelization lower bounds and then apply them to these
problems.

4.1 Lower Bound Machinery

In this section, we state some of the known techniques developed for showing
that problems do not admit polynomial kernels.

Definition 13 (Composition [5]). A composition algorithm (also called OR-
composition algorithm) for a parameterized problem Π ⊆ Σ∗×N is an algorithm
that receives as input a sequence ((x1, k), ..., (xt, k)), with (xi, k) ∈ Σ∗ × N for
each 1 ≤ i ≤ t, uses time polynomial in

∑t
i=1 |xi|+k, and outputs (y, k′) ∈ Σ∗×N

with (a) (y, k′) ∈ Π ⇐⇒ (xi, k) ∈ Π for some 1 ≤ i ≤ t and (b) k′ is polynomial
in k. A parameterized problem is compositional (or OR-compositional) if there
is a composition algorithm for it.

We define the notion of the unparameterized version of a parameterized problem
Π . The mapping of parameterized problems to unparameterized problems is
done by mapping (x, k) to the string x#1k , where # ∈ Σ denotes the blank
letter and 1 is an arbitrary letter in Σ. In this way, the unparameterized version
of a parameterized problem Π is the language Π̃ = {x#1k|(x, k) ∈ Π}. The
following theorem yields the desired connection between the two notions.

Theorem 14 ([5,13]). Let Π be a compositional parameterized problem whose
unparameterized version Π̃ is NP-complete. Then, if Π has a polynomial kernel
then co-NP ⊆ NP/poly.

For some problems, obtaining a composition algorithm directly is a difficult
task. Instead, we can give a reduction from a problem that provably has no
polynomial kernel unless co-NP ⊆ NP/poly to the problem in question such
that a polynomial kernel for the problem considered would give a kernel for the
problem we reduced from. We now define the notion of polynomial parameter
transformations.

Definition 15 ([8]). Let P and Q be parameterized problems. We say that P
is polynomial parameter reducible to Q, written P ≤ppt Q, if there exists a
polynomial time computable function f : Σ∗×N → Σ∗×N and a polynomial p,
such that for all (x, k) ∈ Σ∗ ×N (a) (x, k) ∈ P ⇐⇒ (x′, k′) = f(x, k) ∈ Q and
(b) k′ ≤ p(k). The function f is called polynomial parameter transformation.

Proposition 16 ([8]). Let P and Q be the parameterized problems and P̃ and Q̃
be the unparameterized versions of P and Q respectively. Suppose that P̃ is NP-
complete and Q̃ is in NP. Furthermore if P ≤ppt Q, then if Q has a polynomial
kernel then P also has a polynomial kernel.

452 F. Panolan and A. Rai

4.2 MIS

In this section, we prove thatMIS onOk does not admit polynomial kernel unless
co-NP ⊆ NP/poly. To prove this, we assume MIS has a polynomial kernel
in parameter k. Then we will show that MIS is OR-compositional. We know
MIS is NP–complete. Due to Theorem 14, this implies that co-NP ⊆ NP/poly.
Hence we will conclude that MIS on Ok does not admit polynomial kernel unless
co-NP ⊆ NP/poly.

Let ((x, l), k) denote an instance of MIS, where we want to find whether
given graph x ∈ Ok, has an independent set of size l. Here the parameter we
consider is k. Now we construct an OR-composition algorithm assumingMIS has
polynomial kernel as follows. The OR-composition algorithm receives as input
a sequence (((x1, l1), k), ..., ((xt, lt), k)), where each ((xi, li), k) is an instance of
MIS. Following are the steps of OR-composition algorithm.

1. Kernelize each instance ((xi, li), k) and get output ((yi, l
′
i), k

′
i).

2. For each ((yi, l
′
i), k

′
i) add l′i − 1 more vertices and add edges from all newly

added vertices to all vertices in yi to get the instance ((zi, l
′
i), k

′′
i), where

k′′i = k′i(l
′
i − 1).

3. Output (y, 1 +
∑t

i=1(l
′
i − 1),max(k′′i)), where y is the disjoint union of zis.

Lemma 17. (y, 1 +
∑t

i=1(l
′
i − 1),max(k′′i)) is an Yes instance of MIS if and

only if there exists i such that ((xi, li), ki) is an Yes instance of MIS

Proof. Suppose there exists i such that ((xi, li), ki) is an Yes instance of MIS.
Then ((yi, l

′
i), k

′
i) is an Yes instance of MIS. The l′i vertices of the independent

set of yi together with all newly added l′j − 1 vertices (in step 2) to yj for all

j 	= i form an independent set of y of size 1 +
∑t

i=1(l
′
i − 1). Suppose for each i,

((xi, li), ki) is No instance of MIS. Then for each i, ((yi, l
′
i), k

′
i) is No instance of

MIS. Any independent set of zi will be either completely from the vertices of yi
or completely from the newly added l′i− 1 vertices in step 2, because all vertices
in yi are adjacent to all newly added l′i − 1 vertices in step 2. The maximum
independent set size in each zi will be l

′
i−1. Hence (y, 1+

∑t
i=1(l

′
i−1),max(k′′i))

is a No instance of MIS. ��

Lemma 18. max(k′′i) is bounded by polynomial in k.

Proof. In the first step of the algorithm we kernelize each instance ((xi, li), k)
and get output ((yi, l

′
i), k

′
i). Hence each yi, l

′
i and k′i is bounded by polynomial

in k. Since in the second step, for each ((yi, l
′
i), k

′
i) we add l′i − 1 more vertices

to yi to get ((zi, l
′
i), k

′′
i), k

′′
i = k′i(l

′
i − 1) is bounded by polynomial in k. Hence

max(k′′i) is polynomial in k. ��

Hence we have the following theorem.

Theorem 19. MIS does not admit any polynomial kernel unless co-NP ⊆
NP/poly.

Kernelization Complexity of Problems on Graphs of Bounded Odd Cycle 453

B

FT

v1

v̄1

v2
v̄2

. . .

vn

v̄n

Fig. 1.

4.3 q-Coloring

In this section, we first show that 3-coloring on Ok does not admit polynomial
kernel unless co-NP ⊆ NP/poly using Proposition 16 and then extend the proof
to q-coloring. Towards our goal, we give a polynomial parameter transforma-
tion from Satisfiability (cnf-sat) parameterized by the number of variables
n to 3-coloring. It is known that CNF-SAT parameterized by the number of
variables does not admit polynomial kernel unless co-NP ⊆ NP/poly [13].

To show polynomial parameter transformation from cnf-sat to 3-coloring,
from a formula φ in conjunctive normal form having n variables and m clauses,
we construct a graph G in which odd cycle length is bounded by polynomial in
n with the property that φ is satisfiable if and only if G is 3-colorable.

Construction. We define nodes vi and v̄i corresponding to each variable xi and
x̄i. We also define three special nodes T, F and B which we refer to as True,False
and Base. We join each vi, v̄i and B to form a triangle. We also join T, F and B
to form a triangle. The graph we created so far will look like in Fig.1.

Now for each clause we will construct a gadget. For a clause having odd
number of literals we construct a gadget as shown in the Fig.2. Let Ci = v1 ∨
v2 ∨ ... ∨ vl is clause having odd number of literels. Then corresponding clause
gadget will look like in the Fig.2. Here ai-vertices and bi-vertices are new vertices
and, T and vi s are the existing vertices in Fig.1. Similar way we can construct
a clause gadget corresponding to a clause C′

i having even number of literals (say
C′

i = v1 ∨ v2 ∨ ... ∨ vr) as shown in the Fig.3. Here note that each ais, bis and c
are different for different clause gadgets.

In any proper coloring of G, we intrepret colors of vertices B, T and F as base
color, true color and false color respectively.

Lemma 20. A clause gadget corresponding to a clause C is 3-colorable if and
only if one vertex corresponding to a literal in C is colored with true color.

Proof. Let C = v1 ∨v2∨ ...∨vt is a clause. Suppose all vertices corresponding to
literals in the clause C are colored with false color, then all ais should get base
color and b1 can be colored with true color or false color. If b1 is colored true,

454 F. Panolan and A. Rai

T

v1

v2

v3

.

.

.

vl

a1

a2

a3

.

.

.

al

b1

b2

b3
.
.
.

bl

Fig. 2. Gadget corresponding to a clause having odd number of literals

b2 should be colored false, b3 should be colored true and finally bt will get color
true (in the case when t is odd) or vertex c will get color true (in the case when
t is even), which is not a proper coloring. So to have a proper coloring vertices
corresponding to the literals should not be all colored false. If at least one of
the vertices corresponding to a literal (say vj) in the clause C is colored true,
then aj can be colored false and bj can be colored base. So we can properly color
vertices bis with true and false colors. ��

Lemma 21. φ is satisfiable if and only if G is 3-colorable.

Proof. Suppose φ is satisfiable, we can color vertices corresponding literals which
are true in the satisfying assignment with true color and the vertices correspond-
ing to literals which are false in the satisfying assignment with false color. Since
φ is satisfiable for each clause gadget at least one vertex corresponding to a
literal in the clause gadget colored with true color. Hence by Lemma 20, every
clause gadget is 3-colorable. Since each vi and v̄i gets different colors, G is 3-
colorable. Conversely, if there exist a 3-coloring of G then we can assign each
variable xi is true or false depending on the color of vi. By Lemma 20, a clause
gadget is 3-colorable implies at least one vertex corresponding to a literal in the
clause gets color true. Since G is 3-colorable every clause gadget has one vertex
corresponding to a literal in the clause which is colored true and each vi and v̄i
gets different colors. Hence the constructed satisfying assignment satisfies φ. ��

Lemma 22. The largest odd cycle length in G is bounded by polynomial in n.

Proof. Each clause gadget is connected to other clause gadget only via vertices
B,T and vis which is bounded by O(n). Number of vertices in a clause gadget
is bounded by O(n). Hence largest cycle length in G is bounded by O(n2). ��

Kernelization Complexity of Problems on Graphs of Bounded Odd Cycle 455

T

v1

v2

v3
.
.
.

vr

a1

a2

a3

.

.

.

ar

b1

b2

b3
.
.
.

br

c B

Fig. 3. Gadget corresponding to a clause having even number of literals

Hence we have the following theorem.

Theorem 23. 3-coloring does not admit polynomial kernel unless co-NP ⊆
NP/poly.

Now we explain how to extend the proof of Theorem 23 to show that cnf-sat is
polynomial parameter reducible to q-coloring. From the given instance φ with
n variables of cnf-sat, we first construct a graph G as described in the proof
of Theorem 23. Now construct a graph G′ by adding a complete graph on q − 3
vertices (Kq−3) to G and adding edges between vertices from Kq−3 and vertices
from G. φ is satisfiable if and only if G is 3-colorable. Now it is easy to see
that G is 3-colorable if and only if G′ is q-colorable. Since each clause gadget in
G′ is connected with another clause gadget only via B, T, vis and Kq−3, length
of largest cycle in G′ is bounded by O (n (n+ q)). Hence we have the following
theorem.

Theorem 24. q-coloring for a fixed q, does not admit polynomial kernel un-
less co-NP ⊆ NP/poly.

Theorem 25. [∗] max-cut does not admit polynomial kernel unless co-NP ⊆
NP/poly.

5 Conclusion

In this paper we studied several NP-hard problems parameterized by the length
of the longest odd cycle. We showed that MIS, q-Coloring and Max-Cut

are FPT and do not admit polynomial kernels under certain complexity theory
assumptions when parameterized by the length of the longest odd cycle. We
also observe that our parameterized algorithms also work for weighted version
of MIS and Max-Cut. It would be interesting to obtain meta-theorems in the
realm of kernelization and parameterized complexity for graph problems on Ok.

456 F. Panolan and A. Rai

Acknowledgements. We thank Saket Saurabh for the insightful discussions
which led to this work, and the anonymous reviewers for the numerous comments.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley (1974)

2. Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving MAX-r-SAT above a
tight lower bound. In: SODA, pp. 511–517 (2010)

3. Birmele, E.: Tree-width and circumference of graphs. Journal of Graph The-
ory 43(1), 24–25 (2003)

4. Bodlaender, H.L.: Kernelization: New Upper and Lower Bound Techniques. In:
Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer,
Heidelberg (2009)

5. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

6. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thi-
likos, D.M.: (meta) kernelization. In: FOCS, pp. 629–638 (2009)

7. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for Treewidth: A
Combinatorial Analysis through Kernelization. In: Aceto, L., Henzinger, M., Sgall,
J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 437–448. Springer, Heidelberg (2011)

8. Bodlaender, H.L., Thomassé, S., Yeo, A.: Analysis of data reduction: Transfor-
mations give evidence for non-existence of polynomial kernels. Technical report
(2008)

9. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. In: STOC, pp. 251–260 (2010)

10. Downey, R.G., Fellows, M.R.: Parameterized Complexity, 530 p. Springer (1999)

11. Flum, J., Grohe, M.: Parameterized Complexity Theory (Texts in Theoretical Com-
puter Science. An EATCS Series). Springer-Verlag New York, Inc., Secaucus (2006)

12. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and
kernels. In: SODA, pp. 503–510 (2010)

13. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. In: STOC, pp. 133–142 (2008)

14. Grötschel, M., Nemhauser, G.L.: A polynomial algorithm for the max-cut problem
on graphs without long odd cycles. Math. Programming 29(1), 28–40 (1984)

15. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
SIGACT News 38(1), 31–45 (2007)

16. Hsu, W.L., Ikura, Y., Nemhauser, G.L.: A polynomial algorithm for maximum
weighted vertex packings on graphs without long odd cycles. Math. Program-
ming 20(2), 225–232 (1981)

17. Jansen, B.M.P., Bodlaender, H.L.: Vertex cover kernelization revisited: Upper and
lower bounds for a refined parameter. In: STACS, pp. 177–188 (2011)

18. Jansen, B.M.P., Kratsch, S.: Data Reduction for Graph Coloring Problems. In:
Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 90–101.
Springer, Heidelberg (2011)

19. Jansen, B.M.P., Kratsch, S.: On Polynomial Kernels for Structural Parameteriza-
tions of Odd Cycle Transversal. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011.
LNCS, vol. 7112, pp. 132–144. Springer, Heidelberg (2012)

Kernelization Complexity of Problems on Graphs of Bounded Odd Cycle 457

20. Kratsch, S., Wahlström, M.: Compression via matroids: a randomized polynomial
kernel for odd cycle transversal. In: SODA, pp. 94–103 (2012)

21. Niedermeier, R.: Invitation to Fixed Parameter Algorithms (Oxford Lecture Series
in Mathematics and Its Applications). Oxford University Press, USA (2006)

22. Raman, V., Saurabh, S.: Short cycles make W-hard problems hard: FPT algorithms
for W-hard problems in graphs with no short cycles. Algorithmica 52(2), 203–225
(2008)

The Complexity of Unary Subset Sum

Nutan Limaye1, Meena Mahajan2, and Karteek Sreenivasaiah2

1 Indian Institute of Technology, Bombay, India
nutan@cse.iitb.ac.in.

2 The Institute of Mathematical Sciences, Chennai, India
{meena,karteek}@imsc.res.in.

Abstract. Given a stream of n numbers and a number B, the subset
sum problem deals with checking whether there exists a subset of the
stream that adds to exactly B. The unary subset sum problem, USS, is
the same problem when the input is encoded in unary. We prove that
any p-pass randomized algorithm computing USS with error at most
1/3 must use space Ω(B

p
). For p ≤ B, we give a randomized p-pass

algorithm that computes USS with error at most 1/3 using space Õ(nB
p
).

We give a deterministic one-pass algorithm which given an input stream
and two parameters B, ε, decides whether there exist a subset of the
input stream that adds to a value in the range [(1− ε)B, (1 + ε)B] using
space O

(
logB

ε

)
. We observe that USS is monotone (under a suitable

encoding) and give a monotone NC2 circuit for USS. We also show that
any circuit using ε-approximator gates for USS under this encoding needs
Ω(n/ log n) gates to compute the Disjointness function.

1 Introduction

The Subset Sum problem is defined as follows: Given a number B ∈ N and a
sequence of numbers a1, . . . , an ∈ N, decide whether there is a subset S ⊆ [n]
such that

∑
i∈S ai = S. This problem is one of the earliest problems shown to

be NP-complete and can be found in [GJ79].
The Unary Subset Sum problem (USS) is the same problem, but with the

input numbers given in unary (for instance 1B01a10 . . . 1an .)
USS is known to be in P. In [EJT10], Elberfeld, Jakoby and Tantau showed

a powerful meta-theorem for obtaining logspace upper bounds, and used it to
conclude that USS is even in LogSpace. In [Kan10] Daniel Kane gave a consider-
ably simplified logspace algorithm. Improving upon this further, in [EJT12] it is
shown that under appropriate encodings USS has polynomial-sized formulas and
hence is in NC1. They also show that USS has polynomial-sized constant-depth
formulas using MAJORITY and NOT gates and hence is in TC0. On the other
hand, it can be shown easily that MAJORITY reduces to computing USS and
hence USS is TC0-hard. Thus USS is TC0-complete.

A natural question to ask at this point is: Is it crucial to have access to the
entire input at any time in order to be able to solve USS in LogSpace? In other
words: how hard, with regard to space, is USS when the inputs are, say, read

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 458–469, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Complexity of Unary Subset Sum 459

in a stream? We study the complexity of USS and related questions in different
models from this perspective.

In Section 2, we consider the space complexity of USS in the streaming world.
The input numbers arrive in a stream, and we want to design a small space algo-
rithm that makes one, or maybe a few, passes over the input stream and decides
the instance. We assume that B is the first number in the stream. We assume
that the stream contains integers in the range 1, . . . , B. We use lower bounds
from communication complexity to show that any randomized p-pass streaming
algorithm for USS that makes error bounded by 1/3 must use Ω(Bp) space (The-

orem 1). Also, by modifying the algorithm from [Kan10], we obtain, for each
p ≤ B, a randomized streaming algorithm for USS that makes p passes over the
input, uses space O((nBp) log2(Bn)), and on each input errs with probability at

most 1/3 (Theorem 2).
In Section 3, we consider the complexity of approximating USS. We say that

an algorithm ε-approximates USS if it outputs Yes exactly when there is a subset
S ⊆ [n] such that |B −

∑
i∈S ai| < εB. Note that this problem is not necessarily

easier than the exact version of USS since the exact version is not an optimization
problem. i.e., if the answer to exact-USS on an input instance is NO, this does
not mean that the answer to the approximate version is a NO. However, there is
a fully polynomial time approximation scheme (FPTAS) for approximate subset
sum, where the goal is to find a subset S such that B − εB ≤

∑
i∈S ai ≤ B (see

for instance [CLRS09]). But this is not efficient in terms of streaming space, even
when the input is given in unary. We give a simple deterministic 1-pass streaming
algorithm that takes input ε, B, ã and ε-approximates USS on the stream ã using
space O(logB

ε) (Theorem 3). We also show that this is almost tight (Lemma 3).
In Section 4, we consider the monotone circuit complexity of USS. Note that

USS is naturally monotone in the following sense: if the number of occurrences
of a number i in the stream is increased, a Yes instance remains a Yes instance.
To model this monotonicity, we consider the following encoding of USS: For
each positive integer B, the input consists of the frequency of each number in
the stream in unary. That is, an instance consists of B blocks of B bits each,
where the ith block wi has as many 1s as the number of occurrences mi of the
number i in the stream. Thus, the input records the multiplicity of each number
in [B] (without loss of generality, no multiplicity exceeds B). Call this problem
the multiplicity-USS problem, mUSS. We show, by a monotone reduction to
reachability, that this problem has monotone circuits of polynomial size and
O(log2B) depth (Theorem 5). The circuit we construct can also be used to solve
the approximate version of USS.

A related question is: How powerful are ε-approximators when used as gate
primitives in circuits? We explore this direction in section 5. We observe that ε-
approximators for mUSS (we call them ApproxUSS gates) are at least as powerful
as threshold gates. Using a technique introduced by Nisan in [Nis94], we also
show that any circuit computing the Disjointness function using ε-mUSS gates
requiresΩ(n/ logn) gates. However we have not been able to compare ApproxUSS
gates explicitly with Linear Threshold gates.

460 N. Limaye, M. Mahajan, and K. Sreenivasaiah

2 Exact USS in Streaming Model

In the communication problem corresponding to USS, both Alice and Bob are
given an integer B. Further, each of them has a multiset of numbers and they
have to determine if there is a sub-multiset of numbers among the union of their
multisets that adds to B. The goal is to minimize the number of bits exchanged
between Alice and Bob. Additionally, there may be constraints on how often the
communication exchange changes direction (the number of rounds).

A standard lower bound technique (see [AMS99]) shows that a p-pass space
O(s) streaming algorithm yields a protocol with communication complexity
O(ps) and 2p− 1 rounds. Thus a communication complexity lower bound yields
a streaming space lower bound. We use this technique to show that any 1-pass
streaming algorithm for USS needs Ω(B) space.

Lemma 1. Any deterministic or randomized 1-pass streaming algorithm for
USS uses space Ω(B).

Proof. We reduce the INDEX problem to USS. The INDEXn function is defined
as follows: Alice has x ∈ {0, 1}n and Bob has an index k ∈ [n]. The goal is to
find xk. Alice can send one message to Bob, after which Bob should announce
what he believes is the value of xk. It is known that the 1-way randomized
communication complexity of INDEXn is Θ(n) (see [BYJKS02] or [KNR95]).

The reduction from INDEXn to USS is as follows: Let B = 2n. Alice creates
a set S = {2n− i|xi = 1}. Bob creates the set T = {k}. Notice that each number
in S is at least n. And so any subset of S that has two or more numbers would
have a sum strictly greater than 2n. Hence any subset of S ∪ T that has a sum
of 2n can have at most one number from S. Now it is easy to see that if xk = 1,
the subset {(2n− k), k} has sum 2n. And if xk = 0, there is no subset of S ∪ T
that has sum 2n. Thus a protocol that correctly decides the USS instance where
B = 2n, Alice has S and Bob has T with communication cost c also correctly
decides INDEXn(x, k) with communication cost c.

Assume that there is a space s(B) 1-pass streaming algorithm for USS. Then
there is a cost s(B) protocol for USS, and hence by the above reduction, a cost
s(2n) protocol for INDEXn(x, k). By the lower bound for INDEX, s(2n) ∈ Ω(n),
and so s(B) ∈ Ω(B). ��

A generalization of the above proof gives a space lower bound for streaming USS
that depends on the number of passes.

Theorem 1. Any deterministic or randomized p-pass streaming algorithm for
USS uses space Ω(B/p).

Proof. We give a reduction from DISJn to USS. The Disjointness problem DISJn
is defined as follows: for x, y,∈ {0, 1}n, DISJn(x, y) = ∧n

i=1¬(xi ∧ yi). (That is,
if x and y are characteristic vectors of sets X,Y ⊆ [n], then DISJn(x, y) = 1
if and only if X ∩ Y = ∅.) Its complement DISJn is the intersection problem.
Alice and Bob are given x ∈ {0, 1}n and y ∈ {0, 1}n respectively. The goal
is to determine if there exists an i ∈ [n] such that xi = y1 = 1. It is known

The Complexity of Unary Subset Sum 461

[KS92, Raz92, BYJKS04] that any randomized protocol for DISJn, with any
number of rounds, must exchange Ω(n) bits to bound error probability by 1/3.

The reduction from DISJ to USS is as follows: We set B = 12n − 1. Alice
constructs the set S = {8n − 2i|xi = 1}. Bob constructs the set T = {4n +
2i− 1|yi = 1}. Notice that all numbers in S are greater than B/2, and that all
numbers in T lie in the interval (B/3, B/2). Further note that each number in
S is even and that each number in T is odd. We claim that DISJn = 1 exactly
when S ∪ T has a subset adding to B. To see why, first observe that

1. Using numbers only from S cannot give a sum of B since B itself does not
appear in S, and the sum of even two numbers from S exceeds B.

2. Using numbers only from T cannot give a sum of B since (1) B does not
appear in T ; (2) Any two numbers in T add to an even number greater than
B/2, but B is odd; and (3) adding three or more numbers from T gives a
sum greater than B.

Thus we see that if any subset of S ∪ T adds to B, then it must contain exactly
one number from S and one from T . That is, it must be of the form {8n−2i, 4n+
2j − 1}. To add up to 12n − 1, it must be the case that i = j. Hence such a
subset exists if and only if there exists an i ∈ [n] such that xi = yi = 1.

Now, as in Lemma 1, assume that there is a space s(B) p-pass streaming
algorithm for USS. Then there is a cost (2p − 1)s(B) protocol for USS with p
rounds, and hence by the above reduction, a cost (2p − 1)s(12n − 1) protocol
for DISJn. By the lower bound for DISJn, (2p − 1)s(12n − 1) ∈ Ω(n), and so
s(B) ∈ Ω(B/p). ��
We now show a space upper bound for USS, for large number of passes.

Theorem 2. For every s ≤ B, there is a randomized streaming algorithm for

USS that makes s passes over the input, uses space O(nB log2(nB)
s), and on each

input errs with probability at most 1/3.

Proof. The idea is to use the algorithm of [Kan10] for just one prime p. We
will pick this prime randomly from a large enough range to ensure that the
probability of success is high. We first briefly recapitulate Kane’s algorithm.

Let a1, . . . , an be the given set of numbers, and let A be the number of subsets
of {a1, . . . , an} that add to B. We want to determine whether A = 0. If A = 0,
then A = 0 (mod p) for all primes p. If A 	= 0, then A 	= 0 (mod p) for all
primes that do not divide A; the number of primes p such that A = 0 (mod p)
is fewer than logA ≤ log 2n = n.

The algorithm from [Kan10] proceeds as follows: Define

C = |B|+
n∑

i=1

|ai|+ 1.

Let P be the set of the first n primes beyond C. Compute A (mod p) for each
p ∈ P . Clearly, A = 0 ⇐⇒ ∀p ∈ P : A = 0 (mod p). So it suffices to show how
to compute A (mod p) for p ∈ P . To do this, Kane establishes the following key
lemma, which we also use.

462 N. Limaye, M. Mahajan, and K. Sreenivasaiah

Lemma 2 (Lemma 1 from [Kan10]). For any prime p > C:

p−1∑
x=1

x−B
n∏

i=1

(1 + xai) ≡ −A (mod p)

This gives a space-efficient way of computing A (mod p), for any fixed p: com-
pute the left-hand-side above modulo p by sequentially accumulating the con-
tributions from each x ∈ {1, . . . , p − 1}. This yields the logspace algorithm of
[Kan10].

However, this approach seems to require multiple passes over the input, since
for each x ∈ {1, . . . , p− 1} we need all the input numbers, and furthermore, we
need to compute A (mod p) for each p ∈ P .

To handle the second problem, we choose a single prime p uniformly at random
from the first 3n primes beyond C. More precisely, we choose D such that there
are at least 3n primes between C and D. Let Q be the set of primes between
C and D. Now we pick a prime p ∈ Q uniformly at random. If A = 0, then
A = 0 (mod p). If A > 0, then A = 0 (mod p) for at most n distinct primes p.
Hence the probability that our randomly chosen prime p yields A = 0 (mod p)
is at most 1/3. Thus it suffices to compute the left-hand-side of the expression
in Lemma 2 for a single randomly chosen prime p. We are left with the problem
of dealing with sequential accumulation, each x requiring all inputs.

Assume that p has been chosen. Define

f(x) = x−B
n∏

i=1

(1 + xai) (mod p)

σ(i, j) =

j∑
x=i+1

f(x) (mod p)

−A ≡ σ(0, p− 1) (mod p)

f(x) can be computed in 1 pass using O(log p) space. Hence σ(i, j) can be com-
puted in j − i passes with O(log p) space. But it can also be computed in 1 pass
with O((j − i) log p) space, by computing f(x) for each x ∈ [i+ 1, j] in parallel.
In fact, we have a trade-off: for any 1 ≤ s ≤ j − i, if s passes are allowed, then

σ(i, j) can be computed in (j−i)
s log p space.

We use this trade-off to compute σ(0, p − 1) in s passes. We first compute
K = �p−1

s . We then compute σ(0,K) in the first pass, σ(K, 2K) and hence
σ(0, 2K) in the second pass and so on. In s passes, we can obtain σ(0, p − 1),
and we use O(K log p) space throughout. This works provided s ≤ p − 1; since
p > B, it works fo all s ≤ B.

The kth prime is roughly k ln k ∈ O(k log k). The prime we use, p, is at most as
large as the (C+3n)th prime. Since C ∈ O(nB), we see that p ∈ O(nB log(nB)).

Hence the space used is O(nB log2(nB)
s). ��

The Complexity of Unary Subset Sum 463

3 Approximate USS in Streaming Model

As computing exact USS is provably hard (Theorem 1), the next natural question
to ask is: can it be approximated? There is a classical approximation algorithm
for the following approximation version of the Subset Sum problem: Given a set
of numbers and a target B, let B∗ be the largest value smaller than B expressible
as a sum of a subset of the given numbers. Find a subset with sum in the range
[(1− ε)B∗, B∗], for a given ε. (Note that B∗ itself is not explicitly known.) It is
known that this problem has a fully polynomial time approximation scheme (an
algorithm with run time polynomial in n, B, 1/ε); see for instance [CLRS09].
This algorithm is one-pass and works even if the input data is given in binary.
However, the space used is O(n) even if the input is given in unary. We wish to
approximate USS using a small number of passes on the input and using space
polylogarithmic in the length of the input. We consider the following variant: For
any ε and B and input stream ã = a1, . . . , an where each ai ∈ [B], we say that
set S ⊆ [n] is an ε-approximator of B in ã if

(∑
i∈S ai

)
∈ [B(1 − ε), B(1 + ε)].

Given ε, B, ã, we want to decide whether there is an ε-approximator of B in ã.
We prove the following theorem:

Theorem 3. There is a deterministic 1-pass streaming algorithm that on an
input stream ε, B, ã, uses space O(logB

ε) and outputs 1 if and only if there exists
an ε-approximator for B in the stream ã.

Proof. Consider the following algorithm A:

Maintain a set of intervals T .
Initialise: T ← {[B(1− ε), B(1 + ε)]}.
while End of stream not reached do
a← Next number in stream.
if ∃ interval [α, β] ∈ T such that a ∈ [α, β] then
Output YES and halt.

else
T ′ ← {[α, β], [α − a, β − a] | [α, β] ∈ T };
T ← T ′.
Merge overlapping intervals in T to get a set of pairwise disjoint intervals.
(If [a, b], [c, d] ∈ T and a ≤ c ≤ b ≤ d, remove [a, b], [c, d] and add [a, d].)

end if
end while

Before seeing why the algorithm is correct, we first consider the space analysis.
Note that at the beginning of each iteration, T has a set of disjoint intervals and
each interval has size at least 2Bε. The space required to store the endpoints of
each interval is O(logB). There can be at most B/(2Bε) disjoint intervals from
1 to B, so at any given time, |T | ≤ 1

ε . Since T
′ has two intervals for each interval

of T , |T ′| is also O(1ε). So the space used is O(logB
ε).

We now show that A is correct; that is, A outputs YES if and only if there
exists a subset of the input numbers that has sum in [l, r]. The intuition behind

464 N. Limaye, M. Mahajan, and K. Sreenivasaiah

the correctness is the following: We maintain the set of intervals T such that if
any number in the union of the intervals in T is seen as input, then there indeed
exists a subset that generates B. This is true in the beginning by the way we
initialize T . When a number m is read, a copy of each interval in T is shifted
down by m to create a new interval. So if a number in any of these new intervals
is seen, then it can be combined with m to give a number in one of the older
intervals. (The original intervals are also retained, so we can also not use m in
creating a subset.) And this property is maintained by updating T with every
number seen. Note that no interval in T gets deleted. Intervals in T only get
merged into other intervals to become larger intervals and this does not affect
the invariant property.

We now describe the proof more formally: For a set of intervals T , define
R(T) = {a | ∃[α, β] ∈ T : a ∈ [α, β]}; R(T) is the union of all the intervals in T .
Let l = B(1− ε) and r = B(1 + ε). Initially, R(T) = {a | l ≤ a ≤ r}.

⇒: Assume that A outputs YES. Let Tk denote the collection of intervals after
reading k numbers from the stream. A accepts at a stage k when it reads a
number ak ∈ R(Tk−1). We show below, by induction on k, that if a ∈ R(Tk),
then there is a subset of {a1, . . . , ak} ∪ {a} with sum in [l, r]. This establishes
that the YES answers are correct.

In the beginning, T0 is initialized to {[l, r]}. Thus a ∈ R(T0) ⇒ a ∈ [l, r].
Now assume that the property holds after reading k − 1 numbers. That is, if

a ∈ R(Tk−1), then there is a subset of {a1, . . . , ak−1} ∪ {a} with sum in [l, r].
If ak ∈ R(Tk−1), the algorithm terminates here and there is nothing more to

prove. Otherwise, ak 	∈ R(Tk−1), and the algorithm goes on to construct Tk. The
update sets R(Tk) to contain all of R(Tk−1) as well as all numbers b such that
ak + b ∈ R(Tk−1). Now consider an a ∈ R(Tk). If it also holds that a ∈ R(Tk−1),
then we can pretend that ak was not read at all, and using induction, pull
out a subset of {a1, . . . , ak−1} ∪ {a} with sum in [l, r]. If a 	∈ R(Tk−1), then
ak + a ∈ R(Tk−1). By induction, we have a subset of {a1, . . . , ak−1} ∪ {ak + a}
with sum in [l, r]. Hence we have a subset of {a1, . . . , ak−1, ak} ∪ {a} with sum
in [l, r], as desired.

⇐: Let S, |S| = k, be the first subset of numbers in the input stream that has
sum in [l, r]. That is,

– S = {ai1 , ai2 , . . . , aik} for some i1 < i2 < . . . < ik,

–
∑k

j=1 aij = B −Bλ for some |λ| < |ε|, and
– there is no such subset in a1, . . . aik−1.

We will show that A outputs YES on reading aik .
To simplify notation, let sj denote aij .
Observe that if a number a enters R(T) at any stage, then it remains in R(T)

until the end of the algorithm. This is because an interval is deleted only when
an interval containing it is added.

Now we observe the way T gets updated. After reading s1, R(T) will contain
the intervals {[l, r], [l − s1, r − s1]}. (It may contain more numbers too, but

The Complexity of Unary Subset Sum 465

that is irrelevant.) After reading s2, R(T) will contain {[l, r], [l− s1, r − s1], [l−
s2, r− s2], [l− s1 − s2, r− s1 − s2]}. Proceeding in this way, and using the above
observation that R(T) never shrinks, after reading s1, s2, · · · , sk−1, R(T) will
contain [l− (s1 + · · ·+ sk−1), r − (s1 + s2 + · · ·+ sk−1)]. But this interval is the
following:

[(B(1 − ε)− (s1 + · · ·+ sk−1)), (B(1 + ε)− (s1 + · · ·+ sk−1))]

= [(B(1 − ε)− (B −Bλ− sk)), (B(1 + ε)− (B −Bλ− sk))]

= [(sk +Bλ−Bε), (sk +Bλ+Bε)]

= [(sk −B(ε− λ)), (sk +B(ε+ λ))]

Since ε > 0 and |λ| < |ε|, sk ∈ [(sk + B(λ − ε)), (sk + B(λ + ε))]. Hence A will
output YES when sk is read. ��

The following lemma shows that the simple streaming algorithm discussed above
is pretty much tight.

Lemma 3. Let f be any real-valued function. If f(2x) log x ∈ o(x), then there
is no randomized 1-pass streaming algorithm that ε-approximates USS and uses
only O(f(1ε) logB) space.

Proof. Assume to the contrary that A is a randomized 1-pass algorithm that
ε-approximates USS and uses space O(f(1ε) logB). Choose ε = 1

2B . Now for this
value of ε, and for every stream ã, A will behave like an exact algorithm for USS.
The lower bound from Lemma 1 now implies that f

(
1
ε

)
logB ∈ Ω(B), and hence

f(2B) logB ∈ Ω(B). But the last relation cannot hold if f(2x) log x ∈ o(x). ��

4 Multiplicity USS (mUSS) and Monotone Circuits

In this section, we consider the monotone circuit complexity of USS. Without the
monotone restrictions, it is known that USS is complete for the circuit class TC0

([EJT12]). However, in a very natural sense, Subset Sum is a monotone problem,
and so we can consider monotone circuits for it. The encoding of the input
becomes crucial for achieving monotonicty. We choose the following encoding:

For each positive integer B, the input consists of the frequency of each number
in the stream in unary. An instance w ∈ {0, 1}B2

consists of B blocks of B bits
each. For each k ∈ [B], if k occurs in the stream mk times, then the kth block

wk has exactly mk 1s; that is,
∑B

j=1 wkj = mk. Thus the input records the
multiplicity of each number in [B] (we assume that no multiplicity exceeds B).

Define the transitive relation +: For u = (u1, u2, . . . , uB), v = (v1, v2, . . . , vB)

with uk, vk ∈ {0, 1}B, u + v if and only if ∀k ∈ [B],
∑B

j=1 ukj ≤
∑B

j=1 vkj .
We define the multiplicity-USS problem, denoted as mUSS, and its approxi-

mation variant ε-mUSS, as follows.

466 N. Limaye, M. Mahajan, and K. Sreenivasaiah

mUSS(w,B) = 1 ⇐⇒ ∃y = (y1, y2, . . . , yB) :

yk ∈ {0, 1}B ∀k ∈ [B], y + w, and

B =

⎛⎝ B∑
k=1

k

⎛⎝ B∑
j=1

ykj

⎞⎠⎞⎠
ε-mUSS(w,B) = 1 ⇐⇒ ∃y = (y1, y2, . . . , yB) :

yk ∈ {0, 1}B ∀k ∈ [B], y + w, and

B(1 − ε) ≤

⎛⎝ B∑
k=1

k

⎛⎝ B∑
j=1

ykj

⎞⎠⎞⎠ ≤ B(1 + ε)

We call such a y a witness for (w,B). The vector y represents a subset of the
multi-set represented by w such that the elements in y sum to B (or to a number
within ε of B, respectively).

For example, for B = 4, the stream 1 3 2 2 1 4 3 can be encoded by any of the
following strings (and by many more): 1100 1100 1100 1000, 1010 0101 0011 0010.
Some witnesses for this instance are 1100 1000 0000 0000 (use two 1s and a 2),
0100 0000 0001 0000 (use a 1 and a 3), 0000 0000 000 1000 (use the 4).

Fact 4. mUSS is a monotone function, i.e. for each positive integer B, and
for each u = (u1, u2, . . . , uB), if mUSS(u,B)= 1, and if v = (v1, v2, . . . , vB) is
obtained from u by changing some 0s to 1s, then mUSS(v,B)= 1.
Similarly, for each ε and B, ε-mUSSis a monotone function.

It has been known for over three decades ([MS80]) that USS is in nondetermin-
istic logspace; hence USS reduces to the problem Reach defined below:

Given: a layered directed acyclic graph G, two designated nodes s, t
Output: 1 if there is a path from s to t in G, 0 otherwise.

It is well-known that Reach has monotone circuits of depth O(log2 n), where n is
the number of vertices in the input instance. (This follows from the construction
of [Sav70]. See for example [AB09].) We show that with the encoding described
above, exact and approximate versions of mUSS reduce to Reach via monotone
projections, and hence have small depth monotone circuits.

Theorem 5. For every positive integer B, mUSS(·, B) and ε-mUSS(·, B) have
monotone circuits of depth O(log2B).

Proof. (Sketch) We prove this by reducing an instance of mUSS into an instance
of Reach via a monotone projection.

For every integer B, and given w ∈ {0, 1}B2

= (w1, w2, . . . , wB) we create a
graph with B2+1 layers. The zero-th layer consists of the source vertex and the
other B2 layers have (B + 1) vertices each. We further partition B2 layers into
B blocks of B consecutive layers each.

Let vij,k denote the i-th vertex in the layer j in the block k. Intuitively, each
layer corresponds to a bit position in the input string. We add edges in order to

The Complexity of Unary Subset Sum 467

ensure that a vertex vik,j is reachable from the source vertex if and only if the
stream corresponding to the first k− 1 blocks of w and j bits from the kth block
has a subset that adds to i.

If after reading l bits of w there is a subset that adds to i then this subset
continues to exist even after reading more bits. To capture this phenomenon, we
add horizontal edges from every vertex v in layer l to the copy of v in layer l+1.

If the bit wkj = 1, then using this copy of k, for each existing subset sum s,
the subset sum s + k can also be created. To capture this, we include slanted
edges from each vij,k to vi+k

j+1,k.

Thus, there is a path form the source to vertex viB,B exactly when there is

a subset that sums to i. By connecting viB,B for appropriate i to a new target
node t, we reduce mUSS or ε-mUSS to Reach. ��

5 Circuits with ε-Approximators for mUSS as Gates

We now examine the power of ε-approximators for mUSS when used as a prim-
itive to compute other functions. In [Nis94], Nisan showed that any circuit for
DISJn using linear threshold gates requires Ω(n/ logn) gates. We introduce a
new kind of gate, an ApproxUSS gate, that we show is at least as powerful as
a Threshold or Majority gate, and show that any circuit that uses ApproxUSS
gates to compute Disjointness needs size Ω(n/ logn). However, we do not know
whether linear threshold gates can simulate ApproxUSS gates with at most sub-
logarithmic blowup in the number of gates or vice versa.

We define approximate USS gates, denoted ApproxUSS, as gates that solve the
ε-mUSS problem defined in Section 4. An ApproxUSSε,B gate takes a bit string
x of length B2 as input, and outputs 1 exactly when ε-mUSS(x,B) =1.

While it is trivial to see that majority can be computed with a single call to an
oracle for mUSS, it is not immediately clear that oracle access to ε-mUSS when
ε > 0 is also sufficient. We show that this is indeed the case, by showing that
ApproxUSS gates are at least as powerful as standard threshold gates. Specifically,
we show that an ApproxUSS gate can simulate majority with only a polynomial
blowup in the number of wires.

Lemma 4. The MAJ2n+1 function can be computed by an ApproxUSSε,B gate
with B = O(n3) and a suitable non-zero value for ε.

On the other hand, it is not known whether ApproxUSS, for ε 	= 0, can be de-
cided with a single oracle call to majority. It is conceivable that demanding a
YES answer for a wider range of inputs (the approximation) makes the prob-
lem harder. It is therefore interesting to examine the power of circuits using
ApproxUSS gates. We follow this thread below.

The communication problem ccApproxUSS corresponding to ApproxUSS can
be described as follows. Let S ⊆ [B2]. Both Alice and Bob know S, B and ε.
Alice knows the bits xi for i ∈ S, and Bob knows the remaining bits of x. They
must decide whether ApproxUSSε,B(x) = 1, that is, whether ε-mUSS(x,B) =1.

468 N. Limaye, M. Mahajan, and K. Sreenivasaiah

In Theorem 3 we proved that for every ε, there is a one-pass streaming algo-
rithm that ε-approximates USS using space O ((logB)/ε). The algorithm works
for every possible ordering of the numbers in the input stream. This implies
that there is a O ((logB)/ε) bit one-round protocol for ccApproxUSS for worst
case partitioning of the input (for every S ⊆ [B2]). (The string x determines
the multi-set of numbers. For any partition of x, Alice and Bob can construct a
stream of numbers forming this multi-set, where Alice has the initial part of the
stream and Bob has the latter part. Treat the indices in B2 as pairs k, j where
k is the block number and j is the index within the block. Alice includes in her
stream a copy of k for each bit xkj = 1 in her part. Bob does the same.) There-
fore, using an argument similar to that of [Nis94], we can prove the following
lemma:

Lemma 5. Let C be a circuit that computes DISJn using s ApproxUSSε,B gates,
where ε ∈ Θ(1), and the value of B at each ApproxUSSε,B is bounded above by a
polynomial in n. Then s ∈ Ω(n/ logn).

Proof. Let C be such a circuit, with s ApproxUSS gates. Let t denote the max-
imum value of B in any of the gates. We use C to obtain a protocol for DISJn
as follows. Alice and Bob evaluate C bottom-up, reaching a gate only after
all its children have been evaluated. At each ApproxUSS gate, we know that
logB ∈ O(log t) ⊆ O(log n). When an ApproxUSS gate has to be evaluated, an
efficient protocol of O ((log t)/ε) bits for ccApproxUSS is invoked with the ap-
propriate partition of the inputs of the gate. As there are s ApproxUSS gates,
the entire protocol for computing DISJn uses O(((log t)/ε)× s) bits of commu-
nication. However, we know that any protocol for DISJn requires Ω(n) bits of
communication ([KS92, Raz92, BYJKS04]). Hence, s log t = Ω(εn). By assump-
tion, ε ∈ Θ(1), and log t = O(log n). Hence s = Ω(n/ logn). ��

6 Discussion

We now discuss a few aspects of our results and some open questions.

– The upper and lower bounds from Theorems 1 and 2, for s-pass streaming
algorithms for USS, do not quite match. There is a gap of n log2(nB). Closing
this gap will be interesting.

– If the multiplicities of all numbers are restricted to be between {0, 1}, then
the problem does not become easier. In fact, our lower bound proof for USS
in Section 2 (Theorem 1) generates such instances.

– We know that USS is in TC0 [EJT12] and we have proved that mUSS
is in monotone NC2. It is known that there exists a monotone formula
of polynomial size which cannot be computed by constant depth polyno-
mial sized monotone threshold circuits [Yao89]. However, the question of
whether monotone TC0 is contained in monotone NC1 is open (see for in-
stance [Ser04]). Majority is known to be in monotone NC1 [Val84]. And it is
easy to observe that majority reduces to USS. In the light of these results,
the question of whether mUSS is contained in monotone NC1 is interesting.

The Complexity of Unary Subset Sum 469

References

[AB09] Arora, S., Barak, B.: Computational Complexity - A Modern Approach.
Cambridge University Press (2009)

[AMS99] Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating
the frequency moments. Journal of Computer and System Sciences 58(1),
137–147 (1999)

[BYJKS02] Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: Information
theory methods in communication complexity. In: Proceedings of the
17th Annual IEEE Conference on Computational Complexity, pp. 93–102
(2002)

[BYJKS04] Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information
statistics approach to data stream and communication complexity. Journal
of Computer and System Sciences 68(4), 702–732 (2004); (preliminary
verion in FOCS 2002)

[CLRS09] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to
Algorithms, 3rd edn. The MIT Press (2009)

[EJT10] Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems
of Bodlaender and Courcelle. In: FOCS, pp. 143–152, (2010); ECCC TR
62 (2010)

[EJT12] Elberfeld, M., Jakoby, A., Tantau, T.: Algorithmic meta theorems for
circuit classes of constant and logarithmic depth. In: 29th STACS: Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 14, pp. 66–77
(2012); See also ECCC TR 128 (2011)

[GJ79] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman (1979)

[Kan10] Kane, D.M.: Unary subset-sum is in logspace. CoRR (arxiv),
abs/1012.1336 (2010)

[KNR95] Kremer, I., Nisan, N., Ron, D.: On randomized one-round communication
complexity. Computational Complexity 8, 596–605 (1995)

[KS92] Kalyanasundaram, B., Schnitger, G.: The probabilistic communication
complexity of set intersection. SIAM Journal on Discrete Mathemat-
ics 5(4), 545–557 (1992)

[MS80] Monien, B., Sudborough, I.H.: The interface between language theory and
complexity theory. In: Book, R.V. (ed.) Formal Language Theory. Aca-
demic Press (1980)

[Nis94] Nisan, N.: The communication complexity of threshold gates. In: Proceed-
ings of Combinatorics, Paul Erdos is Eighty, pp. 301–315 (1994)

[Raz92] Razborov, A.A.: On the distributional complexity of disjointness. Theo-
retical Computer Science 106(2), 385–390 (1992)

[Sav70] Savitch, W.: Relationships between nondeterministic and deterministic
tape complexities. Journal of Computer and System Sciences 4(2), 177–
192 (1970)

[Ser04] Servedio, R.A.: Monotone boolean formulas can approximate monotone
linear threshold functions. Discrete Applied Mathematics 142(1-3), 181–
187 (2004)

[Val84] Valiant, L.G.: Short monotone formulae for the majority function. Journal
of Algorithms 5(3), 363–366 (1984)

[Yao89] Yao, A.C.: Circuits and local computation. In: Proceedings of the Twenty-
First Annual ACM Symposium on Theory of Computing, STOC, pp. 186–
196. ACM, NY (1989)

On the Advice Complexity of Tournaments

Sebastian Ben Daniel�

Dept. of Computer Science, Ben-Gurion University, Beer Sheva, Israel

Abstract. Advice complexity, introduced by Karp and Lipton, asks how
many bits of “help” suffice to accept a given language. This is a notion
that contains aspects both of informational and computational complex-
ity, and captures non-uniform complexity. We are concerned with the
connection between this notion and P-selective sets. The main question
we study in our paper is how complex should the advice be as a func-
tion of the power of the interpreter, from the standpoint of average-case
complexity. In the deterministic case, Ko proved that quadratic advice
suffices, and Hemaspaandra and Torenvliet showed that linear advice is
required. A long standing open problem is the question how to close
this gap. We prove that in the probabilistic case linear size advice is
enough, as long as this advice depends on the randomness. This is the
first sub-quadratic result for the class P-sel for bounded-error probabilis-
tic machines. As a consequence, several Karp-Lipton type theorems are
obtained. Our methods are based on several fundamental concepts of
theoretical computer science, as hardness amplification and Von Neu-
mann’s Minimax theorem, and demonstrate surprising connections be-
tween them and the seemingly unrelated notion of selectivity.

1 Introduction

Can we accept more languages in a certain model of computation when given
somewhat more of a certain resource? This fundamental question has challenged
many complexity theorists since Hartmanis and Stearns [19] seminal paper re-
garding deterministic Turing machines. Time and space hierarchy theorems have
long been the main tools for separation of classes in Complexity theory. We ad-
dress this question, where the resource is the non-uniformity needed for certain
complexity classes. Can we give lower bounds against this resource? Can we re-
duce the amount of non-uniformity needed in respect to the trivial results? We
emphasize the importance of both questions: strong answers to the former can
yield separation between complexity classes, while to the latter can facilitate the
decision procedures required for the sets in question.

1.1 Selectivity and Membership-Comparability

Partial information classes relate to the complexity of approximating the deci-
sions problems. If we consider membership for tuples of words, the meaning of

� The author is partially supported by the Frankel Center for Computer Science.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 470–481, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On the Advice Complexity of Tournaments 471

approximate can be described as reducing the number of exponentially (in the
size of the tuple) many possible outcomes for the characteristic function of the
set. Algorithms that get a set of problem instances arise both in theory and in
practice. Even if the problem itself is not one of multiple instances, they often
arise via the use of divide-and-conquer methods or self-reductions.

A P-selective set is a set which can be decided in polynomial time by some
algorithm A, which takes as input a pair (x, y) of strings and selects one of them
as “more likely” to belong to the set, in the sense that if exactly one of the two
strings belongs to the set, then it is guaranteed that this one is selected by A.
Selman [37] introduced P-selective sets as the polynomial time analog of semi-
recursive sets [26] and used them to study polynomial time reducibilities on NP.
Since Selman’s first paper on P-selective sets, these sets and their nondetermin-
istic counterparts have found application in several areas of complexity theory.
They have played an important role in understanding the structure of NP, and
were studied in [38, 41, 12]. The interested reader is referred to Hemaspaandra
and Torenvliet’s book [24] for an extensive introduction.

Ogihara [36] introduced the notion of membership comparable sets, as an
extension of P-selective languages. Informally, for a membership comparable set
there exists a polynomial time algorithm that when given as input a collection
of sufficiently many strings, excludes one of the incorrect possible values of the
characteristic function. Ogiahara [36] and Amir, Beigel, and Gasarch [2] proved
that, for constant number of queries, the class is a subset of P/poly. They also
showed that for polynomial number of queries, the class is a subset of Σ2/poly.
Beigel [6], extending on the first result, has shown that in the logarithmic case,
the class has polynomial size circuits.

These properties encourage the study of various questions: how simple are
P-selective sets? How robust are P-selective sets? In particular, the following
question has received a lot of attention in literature [17, 16, 20, 21, 23, 22, 28],
and is the starting point of our paper:

Question 1. What is the advice complexity of a (deterministically or nondeter-
ministically) polynomial time selective language?

Ko [28] proved that P-selective sets have quadratic advice complexity: for each
P-selective set L, there is a polynomial time Turing machine that accepts L
with only n2 bits of advice (for input of length n). Can Ko’s quadratic-advice
be replaced by a linear-size advice (possibly by increasing the power of the
interpreter)? This was first achieved by Hemaspaandra et al. [20], who showed
that with a PP interpreter, linear advice is enough. Hemaspaandra and Torenvliet
[23] extend this result to NP interpreters.In fact, they prove that P-sel ⊆ NP/n+
1, yet P-sel 	⊆ NP/n. Thus, it follows that P-sel 	⊆ P/n. Also, if P-sel /∈ P/linear,
then P 	= NP. Note that Hemaspaandra and Torenvliet’s upper and lower bounds
(for NP) on the advice complexity for sets is tight. However, as discussed above,
the bounds on the advice complexity for sets in P-sel when the advice interpreter
is deterministic are not: quadratic versus linear. Thus, understanding the advice
complexity of P-sel, might shed light on the P vs. NP question. Thakur [40] has
shown that no relativizable proof can show linear advice in the deterministic

472 S. Ben Daniel

case. Since showing that linear advice is not enough separates P from NP, such
proof cannot be relativizable as well [39].

Our Approach. The main essence of our technique is a series of quid pro quo
arguments, exchanging complexity measures to reduce the required resources.
First, we give a simple proof which shows that for every distribution on the
inputs, the average-case advice complexity of P-sel is linear. Then, we show that
for the uniform distribution and balanced sets, we can significantly increase the
success probability of the algorithm. Finally, we argue that there exists a single
algorithm which works for every distribution, in the expense of the advice being
dependent on the randomness of the algorithm.

1.2 Results

P-Selective and Membership-Comparable Sets. We show that P-selective sets
have probabilistic polynomial time algorithms with linear advice, which depends
on the randomness. In the case of average-case complexity, we show that the
success probability can be increased to 1−1/ logn and still have linear advice, if
we restrict ourselves to the uniform distribution and balanced sets. If a set L is
in k-mc, then it can be decided with a deterministic polynomial time algorithm
(in n and 2k), with advice of length O(n2 · 2k), which extends the results of [36],
giving a continuous trade-off for k > logn. For probabilistic machines, we can
achieve linear advice and bounded error probability in polynomial time (provided
we have random access to the advice), which extends the result of [23].

BPP-Selective Sets. We define a new classes of problems, BPP-sel, k-BPPmc,
which are probabilistic analogs of P-sel and k-mc respectively. A “natural” prop-
erty of this classes is that they extended the well known connection between
P-selective and tournaments to generalized tournaments [32]. For formal defini-
tions and basic theorem about this kind of tournaments, we refer the reader to
Moon’s book [33]. We show them to have polynomial size circuits. We also show
that if SAT is BPP-selective then NP = RP.

Overview. In Section 3, we analyze the average-case complexity of the sets. Next,
in Section 4, we building on the previous section, we show that membership-
comparable sets have low probabilistic advice complexity. We conclude the paper
with some suggested extension to our work.

2 Preliminaries

We assume basic familiarity with complexity classes such as P,BPP,NP, and
their exponential-time versions. When we write that a language L ⊆ Σ∗ has
a DTime(f(n)) machine M , we mean that there exists a deterministic Turing
machine such that for every input x, halts in f(|x|) steps and correctly decides
L. We denote the characteristic function of a language L ⊆ Σ∗ by χL. It is

On the Advice Complexity of Tournaments 473

convenient to often refer to languages via their characteristic function, if it is
not clear from the context, we explicitly mention this. We say that a complexity
class C is closed under reduction ≤ if ∀B ∈ C and ∀A ⊆ Σ∗ the following holds:
A ≤ B ⇒ A ∈ C.

Definition 1 ([37]). A set L is P-selective if there exists a polynomial time
computable function f such that for each x, y ∈ Σ∗

1. f(x, y) ∈ {x, y} and
2. {x, y} ∩ L 	= ∅ ⇒ f(x, y) ∈ L.

The class of all P-selective sets is denoted by P-sel.

Definition 2. A set L is k-membership-comparable if there exists a polynomial
time function f s.t. for all x1, . . . , xk ∈ Σ∗, the function f(x1, . . . , xk) outputs

(b1, . . . , bk) ∈ {0, 1}k such that bi 	= χL(xi) for at least one 1 ≤ i ≤ k. The class
of all k-membership comparable sets is denoted by k-mc.1

Wang [46] extended the notion of selectivity to include probabilistic unbounded-
error selector functions. Following this same path we include bounded-error prob-
abilistic selector functions.

Definition 3 (BPP-selective). A set L is BPP-selective if there exists a prob-
abilistic polynomial time computable function f such that, for every x, y ∈ Σ∗

1. f(x, y) ∈ {x, y} with probability one, and
2. if {x, y}∩L 	= ∅ then Pr[f(x, y) ∈ L] ≥ 2/3 (the probability is taken over the

random coins of f).

The class of all BPP-selective sets is denoted by BPP-sel.

By a BPP algorithm we mean a polynomial time probabilistic Turing machine
that accepts every input with probability at least 2/3 or at most 1/3. For a BPP
algorithm A, we will denote by L(A) the language decided by A, i.e., L(A) =
{x|Pr[A accepts x] > 2/3}.

We define what it means for a language to be computable in BPP with advice.
The model of advice we use is the model defined by Trevisan and Vadhan [44],
where the advice depends on the randomness. We say L ∈ BPP//a(n), if there
is a probabilistic machine M such that for any random string r used by the
machine on inputs of length n, there is a string f(r), where |f(r)| = a(n), such
that given as advice on that random string, satisfies the following: for each x of
length n, if x ∈ L, M accepts with probability at least 2/3 over r given f(r);
when x /∈ L, M rejects with probability at least 2/3 over r given f(r).

An average case complexity class consists of pairs, called distributional prob-
lems. Each such pair consists of a decision problem and a probability distribution
on the problem instances. It is convenient to refer to the probability measure as
an ensemble of probabilities over {0, 1}n. The uniform distribution will play an
important role, and we denote it by U .
1 It is easy to verify that P-sel ⊆ 2-mc: if w.l.o.g the selector return x1, then (0, 1) is
an impossible answer.

474 S. Ben Daniel

Definition 4 (Distributional Problem). A distributional decision problem
is a pair (L, μ), where L : {0, 1}∗ → {0, 1} and μ is an ensemble of distributions
{μn}n∈N over {0, 1}n.

Definition 5 (Average-case Complexity). Let C be a class of algorithms
(e.g., polynomial time Turing machines) and (L, μ) be a distributional problem.
We say that (L, μ) ∈ AvgεC if there is an algorithm g ∈ C such that for every
large enough n, Pr

x∼μn

[L(x) 	= g(x)] ≤ ε.

3 Average-Case Complexity of Membership Comparable
Sets

In this section, we show that given a distribution ensemble, for any membership-
comparable set, there a exists an polynomial algorithm and an advice of size
proportional to the arity of the comparability function, which computes the set
on average. Following ideas from [8] we are able to show a simple proof for the
next theorem.

Theorem 1. Let L ∈ Avgε k-mc . For every distribution ensemble μ = {μn}n∈N

there exists a deterministic polynomial time algorithm which decides L, with
probability (2k−1)(1 − ε)/(2k − 1) over μn, and takes (k − 1) · n + log k +O(1)
bits of advice. Furthermore, If L ∈ P-sel the algorithm never errs.

Proof. Let A be the algorithm which witnesses that L ∈ Avgε k-mc . For every
distribution μn we construct Aμ such that the probability according to μn that
Aμ agrees with L is at least 2k−1ε/(2k − 1) = 1− ε′. For the construction of Aμ

we use constants q0, . . . , qk such that 1 = q0 ≥ q1 ≥ · · · ≥ qk. These constants
will be specified later. We also use the following random variables Z1, . . . , Zk

defined as follows. We pick inputs x1, . . ., xk according to the distribution μk
n.

Let σ1, . . . , σk be the output of A(x1, . . . , xk). Finally, for 1 ≤ i ≤ k, we define
Zi = T if σi = L(xi) and Zi = F otherwise.

By the correctness of A, Pr[Z1 = · · · = Zk = T] ≤ ε = qk, where the probabil-
ity is taken over the choice of the inputs according to the distribution μk

n. Since

Pr[Z1 = · · · = Zk = T] =
∏k

i=1 Pr[Zi = T |Z1 = · · · = Zi−1 = T], thus, there
must be an index i, where 1 ≤ i ≤ k, such that Pr[Zi = T |Z1 = · · · = Zi−1 =
T] ≤ qi/qi−1. Let i be the least such index. Let (x1, . . . , xi−1, xi+1, . . . , xk) be a
fixed tuple which achieves this probability, that, together with their membership
in L, i, and the most frequent answer for this coordinate, will be the advice of
length 1 + log k + (n + 1) · (k − 1) = O(nk) for Aμ. That is, Pr[Zj = T |Z1 =

· · · = Zj−1 = T] ≥ qj/qj−1 for 1 ≤ j ≤ i − 1. In particular, p
def
= Pr[Z1 = · · · =

Zi−1 = T] ≥ (q1/q0) · (q2/q1) · . . . · (qi−1/qi−2) = qi−1.
Intuitively, Aμ will use the fact that with a noticeable probability it can take

the i-th output of A and invert it to obtain a correct output for the i-th input
(assuming they are distributed according to μn).

On the Advice Complexity of Tournaments 475

Construction: Given x, Aμ executes A(x1, . . . , xi−1, x, xi+1, . . . , xk)=σ1, . . . , σk.
If σj = L(xj) for 1 ≤ j ≤ i− 1, then Aμ outputs σi. Otherwise, Aμ outputs the
most frequent answer for this coordinate (which is also a part of the advice).

Next we claim that if the input x is distributed according to μn, then the error
of Aμ is at most 1− ε′. Algorithm Aμ is correct in two cases: (1) σj = L(xj) for
1 ≤ j ≤ i − 1 and σi 	= L(x); by our choice of i, this happens with probability
at least p · (1− qi/qi−1) and (2) σj 	= f(xj) for some 1 ≤ j ≤ i− 1 and b = L(x);
this happens with probability 0.5(1 − p). All together, the success probability
of Aμ is p · (1 − qi/qi−1) + 0.5(1 − p), where the probability is taken over the
choice of the inputs x according to the distribution μn, the choice of the other
k− 1 inputs for A according to μk−1

n , and the choice of b. Since p ≥ qi−1 and by
choosing qi, qi−1 such that qi/qi−1 ≤ 0.5, the success probability is at least

qi−1 · (1− qi/qi−1) + 0.5(1− qi−1) = 0.5 + 0.5qi−1 − qi. (1)

We choose q0
def
= 1 and qi

def
= 2i−1

2i−1 ε
′ − (1 − 1

2i−1) for 1 ≤ i ≤ k. Notice that
0.5 + 0.5qi−1 − qi = 1− ε′ for 1 ≤ i ≤ k, and that

qk =
2k − 1

2k−1

(
1

2
− 1/2− 2k−1

2k − 1

)
− (1 − 1

2k−1
) = ε.

With our choice for qi and (1) we have that qi/qi−1 = (2i−1−0.5)ε′−2i−2+0.5
2((2i−2−0.5)ε′−2i−3+0.5) ≤

0.5 for ε ≤ 0.5, thus the success probability of Aμ is at least 1− ε′. The proof of
the furthermore part appears in the final version of the paper.

3.1 Hardness Amplification

In this part, we show how to amplify the constant probability algorithm we
showed to exist, to succeed with probability 1− 1/ logn on U for balanced sets,
while increasing the advice by a constant factor. In order to achieve this, we
implement hardness amplification techniques that have been previously showed
to work within NP, but in the opposite direction.

The standard technique for hardness amplification is the Yao’s famous XOR
lemma; this method cannot work for P-selective sets because the class is not
closed under XOR as proved in [25]. However, P-sel is closed under positive
reductions [11], which allows us to rely on the work initiated by O’Donnel [35],
and later improved by [42, 43, 13], on hardness amplification within NP. As in
these papers, we want to achieve hardness against semi-uniform machines like
BPP//linear, i.e., uniform classes with advice where the non-uniformity is small.

Lemma 1 (advice efficient version of the Hard-core lemma [42]). Let
C be a distribution of circuits samplable in time t, f : [N] → {0, 1} be a func-
tion. and let γ, ε, δ be such that for every subset H ⊆ [N], |H | = δN , we have
PrC∼C [Prx∈H [f(x) = C(x)] ≥ 1

2 + ε] ≥ γ. Then, there is a distribution C′ sam-
plable in time t ·poly(1/ε, 1/δ) such that PrC∼C′ [Prx∈[N][f(x) = C(x)] ≥ 1−δ] ≥
γpoly(1/ε,1/δ).

476 S. Ben Daniel

The conclusion of this lemma can formulated in the following form: There exists
a probabilistic algorithm which produces a list of (1/γ)poly(1/ε,1/δ) circuits such
that with high probability one of them solves f on (1− δ) fraction of the inputs.

Theorem 2 ([35]). For every ε, δ > 0 there is a k = poly(1/ε, 1/δ) and a func-

tion g : {0, 1}k → {0, 1} such that the following holds. Let f : {0, 1}n → {0, 1} be

a function ε/k closed to balanced2, H ⊂ {0, 1}n be of density δ, bf1 , . . . , b
f
k :

{0, 1}n → {0, 1} be independent random functions such that bfi (x) = f(x)

for x /∈ H and bfi (x) outputs a random bit if x ∈ H. Then the distribu-

tions x1, . . . , xk, g(b
f
1(x1), . . . , b

f
k(xk)) and x1, . . . , xk, r have statistical distance

at most 2ε, where the xi are uniform in {0, 1}n and r is uniform in {0, 1}.

The second step is the following statement, which is the reduction to the infor-
mation theoretic case, and is based on the existence of an appropriate function
we can use instead of the XOR function Theorem 2 .

Lemma 2 ([42]). let g : {0, 1}k → {0, 1} be as in Theorem 2, f : {0, 1}n →
{0, 1} be ε/k close to balanced and A be a polynomial time algorithm such that
Pr[A(x1, . . . , xk) = g(f(x1), . . . , f(xk))] ≥ 1

2 + 3ε. Then there is a polynomial
time samplable distribution of circuits C such that for every set H ⊂ {0, 1}n of
density δ we have PrC∼C [Prx∈H [C(x) = f(x)] ≥ ε

2δk] ≥
ε

δk2·22k−1 .

In the proof of Lemma 2, Trevisan treats the algorithm A, as an oracle solving
f , i.e., if A is a probabilistic algorithm with advice, the only difference will be
that the resulting algorithm solving f on a significant larger fraction of the input
will also require that advice. Finally, putting it all together,

Lemma 3. Let g : {0, 1}k → {0, 1} be as in Theorem 2, f : {0, 1}n → {0, 1} be
ε/k close to balanced and A be a polynomial time algorithm with 	 length advice,
such that Pr[A(x1, . . . , xk) = g(f(x1), . . . , f(xk))] ≥ 1

2 +3ε. Then there is a poly-
nomial time samplable distribution of circuits C such that PrC∈C[Prx∈H [C(x) =
f(x)] ≥ 1− δ] ≥ 2− poly(1/ε,1/δ).

Putting all together we get the following

Theorem 3. There exists a constant c > 0 such that every balanced language L
in P-sel, can be decided on average with a probabilistic polynomial time, (regular)
linear length advice, and logarithmic length advice depending on the randomness.
Thus algorithm which succeeds on a 1− 1/ logc n fraction of the inputs.

4 Games, Strategies, and Advice-Efficient Version
of the Minimax Theorem

Building on the average-case result from Section 3, in this section we construct
a randomized algorithm with advice for every set in P-sel and k-mc. The natural

2 Closed to balanced refers to the absolute distance from 1/2 of (YES instances/NO
instances).

On the Advice Complexity of Tournaments 477

path to take is to describe a random strategy using the “hard” direction of the
minmax principle. However, this usually gives an exponential-size strategy (in
the length of the input). This is useful in models for which the size of the pro-
gram can grow fast and the complexity measure is not affected by this growth,
e.g; communication complexity. Our complexity measure is a polynomial time
machines with linear advice, which allows only linear-size “growth” in the pro-
gram length. In order to overcome this, we will use an advice-efficient version of
the minmax theorem, introduced in [1, 31] for general measures.

Theorem 4 (Minimax [34]). min
p

max
j

∑
i

p(i)Mij = max
q

min
i

∑
j

q(i)Mi,j.

Definition 6. A mixed strategy is 	-uniform if it chooses uniformly from a mul-
tiset of 	 pure strategies.

Lipton and Young [29] showed that for 	 proportional to the logarithm of the
number of pure strategies available to the opponent, each player has a near-
optimal 	-uniform strategy.

Definition 7 ([29]). Fix a finite class P of programs, a finite class I of inputs,
and a function M : P×I → {0, 1} (where Mi,j is 1 if the computation of machine
i on input j errs and 0 otherwise). The (unlimited) randomized complexity of
M is minp maxj∈I

∑
i p(i)Mi,j, where p ranges over the probability distributions

on P , i.e., the cost of the best program on the worst input. The (unlimited)
distributional complexity of machine M is maxq mini∈I

∑
j q(j)Mi,j, where q

ranges over the probability distributions on I, i.e., the worst distribution on the
best program. The program/input game for M is the two-player zero-sum game
given by Mi,j for i ∈ P and j ∈ I.

As Yao [47] observed, von Neumann’s theorem applied to the program/input
game implies that the unlimited randomized complexity and the unlimited dis-
tributional complexity are equal to ν(M).

Corollary 1 ([29]). For any c > 0 and k > ln(|I|)/2ε2, the k-uniform ran-
domized complexity of M exceeds the unlimited randomized complexity by less
than ε.

Recall that our complexity measure is polynomial time Turing machines, with
linear advice. Applying the above corollary to our measure, we obtain the
following,

Theorem 5. If L ∈ 2-mc, then L ∈ BPP//linear. Furthermore, the machine
needs only logn + O(1) random coins on an n-bit input. If L ∈ P-sel then the
probabilistic machine never errs.

Proof. By Theorem 1, for every distribution μ there exists a polynomial time
deterministic algorithm Aμ which computes L correctly with probability at least
2/3 over the inputs according to μ. Yao’s version of the Minmax theorem states
that we have a mixed strategy over programs which achieves the same success

478 S. Ben Daniel

probability. We have 2n+O(1) different programs because we have 2n+O(1) differ-
ent advice, with the same algorithm for all advice.

Corollary 1, with ε = 0.1, gives an 	-uniform strategy over O(ln(2n+2)) =
O(n) programs with error ≤ 1/3+0.1. This strategy gives the desired algorithm,
where the advice (of linear size) is the appropriate program we need to execute.
The O(n)-uniform strategy can be viewed as a probabilistic algorithm and a set
of O(n) advice, from which it chooses one uniformly. The error probability is
taken over the coins and is independent of the input distribution. We can run
the algorithm O(1) times, and take the majority vote, in order to reduce the
error to the desired error probability. We need only O(log n) random coins to
choose uniformly from the O(n) different programs. Our strategy essentially uses
the distributional algorithms (the pure strategies) as oracles, which means that
if L ∈ P-sel then by the furthermore part of Theorem 1 the algorithm never errs,
and returns “?” with small probability.

Corollary 2. If L ∈ k-mc, then L ∈ BPP//O(n · 22k), with error probability at
most (2k−1 − 1)/(2k − 1). Thus, L ∈ DTime(poly(n) · 22k)/O(n · 2k).

4.1 Karp-Lipton Type Results

A few interesting consequences of our results, are several Karp-Lipton [27] type
of results. Very informally, we refer to results of the type ”if SAT ∈ P/poly
then PH collapses to some low level of the hierarchy”, see [5, 4, 14, 15, 27] for
further studies on this type of questions. We show that if we have some additional
information about the language, e.g., it can be decided in exponential time, or
it is complete for some class with an instance-checker ([3, 30]), we can remove
the advice completely. Intuitively, if L has an instance checker, then machine
C, given an input x and an oracle L′ that suppose to compute L, with high
probability will be able to verify the validity of the oracle on x by comparing
L′(x) to CL′

(x). The following result uses this in a similar way that the self-
reducibility of SAT is used to prove that NP ⊂ P/ log ⇒ P = NP.

Theorem 6 ([44]). If L ∈ BPP//a(n) admitting an instance checker with
queries of length 	(n) then L ∈ BPTime(poly(n) · 2a(�(n))).

Combining theorems 2, 6, and the fact that every problem that is complete for
EXP,PSpace, or P#P has an instance checker [3, 30], we conclude the following,
which can be viewed as probabilistic extension to the fact that P-selective sets
which are also self-reducible are in P [10].

Corollary 3. If L ∈ k-mc is complete for one of
{
EXP,PSpace,P#P

}
then L ∈

BPTime(poly(n)22
2knd), for some constant d > 0.

Corollary 4. Let f(n) ≥ logn be any time constructible function. There exists

a constant c > 0 s.t. if SAT ∈ f(n)-mc then Σn
3 ⊆ Σ2f(nc)c

2 .

Theorem 7. If SAT is BPP-selective then NP = RP.

On the Advice Complexity of Tournaments 479

5 Concluding Remarks

Prior to our paper there where no indications that P-selective sets have sub-
quadratic advice-complexity. In fact, the only conclusion of the negation of this
claim, was that P 	= NP which is widely accepted. We argue that our results
justifies giving a fresh look to this classes, together with the evident importance
of small and especially optimal circuits. We suggest a few possible paths for
further extending our work.

Improving the Probabilistic Algorithm. In the main theorem of Section 3, we only
use the fact that the sets are O(1)-mc, and we know that this is a strictly greater
class as proved in [2]. Furthermore, [7] showed that there exists a 2-mc which
is not nc non-adaptive reducible to a P-selective set, and that it is essential
to use the selectiveness between different lengths. We showed that these sets
have low randomized complexity, and it was already known that they also have
low non-deterministic complexity (with advice). It can be proven that in such
situations the uniform assumptions required for derandomizing the algorithm
can be relaxed, e.g, ZPP 	= EXP (instead of BPP 	= EXP) is sufficient for sub-
exponential simulation.

Better Parameters for Hardness Amplification. In our proof we apply methods
which were previously used to show such results for NP. However, there are
evidences [18, 45] that NP may be a problematic companion, because it will
be hard to improve the amplification for NP, and as a result, in our case. The
bottleneck in our proof is the list size in Trevisan’s proof. Better derandomized
uniform direct product lemma’s can give better parameters. Since we have an
errorless algorithm for P-selective sets, an interesting direction can be to achieve
an errorless hardness amplification result in our setting as in [9].

References

1. Althfer, I.: On sparse approximations to randomized strategies and convex combi-
nations. Linear Algebra and its Applications 199(Suppl. 1), 339–355 (1994); Special
Issue Honoring Ingram Olkin

2. Amir, A., Beigel, R., Gasarch, W.I.: Some connections between bounded query
classes and non-uniform complexity. ECCC 7(024) (2000)

3. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-
prover interactive protocols. In: Proc. of the 31st IEEE Symp. on Foundations of
Computer Science, pp. 16–25 (1990)

4. Balcázar, J., Book, R.V., Schöning, U.: Sparse sets lowness and highness. SIAM J.
Comput. 15, 739–747 (1986)

5. Balcázar, J.L., Book, R.V., Schöning, U.: The polynomial-time hierarchy and
sparse oracles. J. ACM 33, 603–617 (1986)

6. Beigel, R.: Personal communication. Weak Approximation, Help Bits, and the
Complexity of Optimization Problems (2005)

7. Beigel, R., Fortnow, L., Pavan, A.: Membership comparable and P-selective sets.
Technical Report 2002-006N. NEC Research Institute (2008)

480 S. Ben Daniel

8. Beimel, A., Ben Daniel, S.A., Kushilevitz, E., Weinreb, E.: Choosing, Agreeing,
and Eliminating in Communication Complexity. In: Abramsky, S., Gavoille, C.,
Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS,
vol. 6198, pp. 451–462. Springer, Heidelberg (2010)

9. Bogdanov, A., Safra, S.: Hardness amplification for errorless heuristics. In: Annual
IEEE Symposium on Foundations of Computer Science, vol. 0, pp. 418–426 (2007)

10. Buhrman, H., Torenvliet, L.: P-selective self-reducible sets: A new characterization
of p. J. Comput. Syst. Sci. 53(2), 210–217 (1996)

11. Buhrman, H., Torenvliet, L., van Emde Boas, P.: Twenty questions to a P-selector.
Inf. Process. Lett. 48(4), 201–204 (1993)

12. Buhrman, H., van Helden, P., Torenvliet, L.: P-selective self-reducibles sets: a new
characterization of p. In: Proceedings of the Eighth Annual Structure in Complexity
Theory Conference 1993, pp. 44–51, 18–21 (1993)

13. Buresh-Oppenheim, J., Kabanets, V., Santhanam, R.: Uniform hardness amplifi-
cation in NP via monotone codes. Electronic Colloquium on Computational Com-
plexity (ECCC) 13(154) (2006)

14. Cai, J., Chakaravarthy, V., Hemaspaandra, L., Ogihara, M.: Some Karp-Lipton
type theorems based on S2 Technical Report TR-819, Department of Computer
Science, University of Rochester, Rochester, NY (2001)

15. Cook, S.A., Kraj́ıcek, J.: Consequences of the provability of NP subset of or equal
to P/poly. J. Symb. Log. 72(4), 1353–1371 (2007)

16. Faliszewski, P., Hemaspaandra, L.: Open questions in the theory of semifeasible
computation. SIGACT News 37, 47–65 (2006)

17. Faliszewski, P., Hemaspaandra, L.A.: Advice for semifeasible sets and the
complexity-theoretic cost(lessness) of algebraic properties. Int. J. Found. Comput.
Sci. 16(5), 913–928 (2005)

18. Gopalan, P., Guruswami, V.: Hardness amplification within NP against determinis-
tic algorithms. In: Annual IEEE Conference on Computational Complexity, vol. 0,
pp. 19–30 (2008)

19. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms.
Transactions of the American Mathematical Society 117, 285–306 (1965)

20. Hemaspaandra, E., Naik, A.V., Ogihara, M., Selman, A.L.: P-selective sets, and
reducing search to decision vs. self-reducibility (1994)

21. Hemaspaandra, L.A., Naik, A.V., Ogihara, M., Selman, A.L.: Computing solu-
tions uniquely collapses the polynomial hierarchy. SIAM J. Comput. 25(4), 697–708
(1996)

22. Hemaspaandra, L.A., Nasipak, C., Parkins, K.: A note on linear nondetermin-
ism, linear-sized, Karp-Lipton advice for the P-selective sets. JJUCS 4(8), 670–674
(1998)

23. Hemaspaandra, L.A., Torenvliet, L.: Optimal advice. Theoretical Computer Sci-
ence 154(2), 367–377 (1996)

24. Hemaspaandra, L.A., Torenvliet, L.: Theory of Semi-Feasible Algorithms. Springer,
New York (2003)

25. Hemaspaandra, L.A., Zhigen, J.: P-selectivity: Intersections and indices. Theoret-
ical Computer Science 145(1-2), 371–380 (1995)

26. Jockusch, C.: Semirecursive sets and positive reducibility. Transactions of the
American Mathematical Society 131(2), 420–436 (1968)

27. Karp, R.M., Lipton, R.J.: Some connections between nonuniform and uniform com-
plexity classes. In: STOC, pp. 302–309 (1980)

28. Ko, K.: On self-reducibility and weak P-selectivity. JCSS 26(2), 209–221 (1983)

On the Advice Complexity of Tournaments 481

29. Lipton, R., Young, N.E.: Simple strategies for large zero-sum games with appli-
cations to complexity theory. In: Proceedings of ACM Symposium on Theory of
Computing, pp. 734–740 (1994)

30. Lund, C., Fortnow, L., Karloff, H.: Algebraic methods for interactive proof systems.
J. ACM 39(4), 859–868 (1992)

31. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. J. of the ACM 41(5), 960–981 (1994)

32. Moon, J.W.: An extension of Landau’s theorem on tournaments. Pacific J.
Math. 13, 1343–1345 (1963)

33. Moon, J.W.: Topics on tournaments. Rinehart and Winston, New York (1968)
34. Von Neumann, J.: Zur theorie der gesellschaftsspiele. Mathematische An-

nalen 100(1), 295–320 (1928)
35. O’Donnell, R.: Hardness amplification within NP. In: STOC 2002: Proceedings of

the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 751–760.
ACM, New York (2002)

36. Ogihara, M.: Polynomial-time membership comparable sets. SIAM J. Com-
put. 24(5), 1068–1081 (1995)

37. Selman, A.L.: P-Selective Sets, Tally Languages, and the Behavior of Polynomial
Time Reducibilities on NP. In: Maurer, H.A. (ed.) ICALP 1979. LNCS, vol. 71,
pp. 546–555. Springer, Heidelberg (1979)

38. Selman, A.L.: Analogues of semicursive sets and effective reducibilities to the study
of NP complexity. Information and Control 52(1), 36–51 (1982)

39. Baker, T., Gill, J., Solovay, R.: Relativizations of the P =?NP question. SIAM
Journal on Computing 4(4), 431–442 (1975)

40. Thakur, M.: On optimal advice for P-selective sets. Technical Report TR-819,
Department of Computer Science. University of Rochester, Rochester, NY (2003)

41. Toda, S.: On polynomial-time truth-table reducibility of intractable sets
to P-selective sets. Theory of Computing Systems 24, 69–82 (1991),
doi:10.1007/BF02090391

42. Trevisan, L.: List-decoding using the XOR lemma. In: Proceedings of the 44th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2003, pp.
126–135. IEEE Computer Society, Washington, DC (2003)

43. Trevisan, L.: On uniform amplification of hardness in NP. In: STOC 2005: Pro-
ceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing,
pp. 31–38. ACM, New York (2005)

44. Trevisan, L., Vadhan, S.P.: Pseudorandomness and average-case complexity via
uniform reductions. Computational Complexity 16(4), 331–364 (2007)

45. Viola, E.: The complexity of constructing pseudorandom generators from hard
functions. Computational Complexity 13, 147–188 (2005), doi:10.1007/s00037-004-
0187-1

46. Wang, J.: Some results on selectivity and self-reducibility. Inf. Proc. Letters 55(2),
81–87 (1995)

47. Yao, A.C.: Some complexity questions related to distributed computing. In: Proc.
of the 11th ACM Symp. on the Theory of Computing, pp. 209–213 (1979)

A Remark on One-Wayness versus

Pseudorandomness�

Periklis A. Papakonstantinou and Guang Yang

Institute for Theoretical Computer Science,
Institute for Interdisciplinary Information Sciences, Tsinghua University,

Beijing 100084, China
papakons@tsingua.edu.cn, yangguang10@mails.tsinghua.edu.cn

Abstract. Every pseudorandom generator is in particular a one-way
function. If we only consider part of the output of the pseudorandom
generator is this still one-way? Here is a general setting formalizing this
question. Suppose G : {0, 1}n → {0, 1}	(n) is a pseudorandom generator
with stretch �(n). Let MR ∈ {0, 1}m(n)×	(n) be a linear operator com-
putable in polynomial time given randomness R. Consider the function

F (x,R) =
(
MRG(x), R

)
We obtain the following results.

– There exists a pseudorandom generator s.t. for every positive con-
stant μ < 1 and for an arbitrary polynomial time computable MR ∈
{0, 1}(1−μ)n×	(n), F is not one-way.

Furthermore, our construction yields a tradeoff between the hard-
ness of the pseudorandom generator and the output length m(n). For
example, given α = α(n) and a 2cn-hard pseudorandom generator
we construct a 2αcn-hard pseudorandom generator such that F is
not one-way, where m(n) ≤ βn and α+ β = 1− o(1).

– We show this tradeoff to be tight for 1-1 pseudorandom generators.
That is, for any G which is a 2αn-hard 1-1 pseudorandom generator,
if α + β = 1 + ε then there is MR ∈ {0, 1}βn×	(n) such that F is a
Ω(2εn)-hard one-way function.

Keywords: cryptographic hardness, one-way function, pseudorandom
generator.

1 Introduction

A one-way function is a function easy to compute but hard to invert. A pseudo-
random generator is an efficient deterministic algorithm that stretches a short
random seed to a longer one which is hard to distinguish from random. They
are both fundamental primitives in private-key cryptography.

� This work was supported in part by the National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of
China Grant 61033001, 61061130540, 61073174, 61150110582.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 482–494, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Remark on One-Wayness vs. Pseudorandomness 483

We tend to believe that one-wayness is a weaker notion than pseudorandom-
ness. One reason is that every pseudorandom generator is in particular a one-way
function, but the other direction fails dramatically. In this paper we consider
the effect on the one-wayness of a pseudorandom generator when “hashing” its
output. A natural way to formalize this is to consider the application of an effi-
ciently sampleable linear operator, which also captures (but a minor issue1) uni-
versal families of hash functions and certain randomness extractors. Formally,
let G : {0, 1}n → {0, 1}�(n), 	(n) > n be a pseudorandom generator, and fix
an arbitrary polynomial time algorithm that on input R it outputs a matrix
MR ∈ {0, 1}m(n)×�(n). Consider the following “hashing method”:

FG(x,R) =
(
MRG(x), R

)
We study the effect of the size of m(n) on the one-wayness of FG. In fact, all of
our results hold for affine F(x,R) =

(
MRG(x) + bR,R

)
as well.

1.1 Previous Work and Motivation

Studying relations among basic cryptographic primitives is fundamental for cryp-
tography. Since the seminal work of H̊astad-Impagliazzo-Levin-Luby [HILL89],
the first to construct a pseudorandom generator from any one-way function,
there is a line of excellent works (e.g. [HRV10, HHR06a, HHR06b]) improving
its efficiency. Questions regarding the other direction have so far been neglected2.

Instead of asking whether one-wayness is preserved when hashing the output
of every pseudorandom generator, we can ask the weaker question of whether
there exists a pseudorandom generator that has this property. Suppose that it
was possible to apply a simple length-shrinking hash (e.g. a projection) on the
output of an NC0 pseudorandom generator, then via the work of Applebaum-
Ishai-Kushilevitch [AIK04, AIK05] we can build several cryptographic primitives
in a streaming fashion. Streaming Cryptography [KGY89, BJP11], not to be con-
fused with stream ciphers, concerns the computation of cryptographic primitives
with a device that has small working memory, e.g. logarithmic or sub-linear, and
it makes a small number of passes, e.g. poly-logarithimic, over its input. Our re-
sults rule out a natural class of constructions in Streaming Cryptography.

1.2 Our Results

We have obtained both negative and positive results. We show that there exists a
pseudorandom generator where if we apply a length-shrinking, even by a constant
factor, linear operator on its output then this is not a one-way function. Our
construction (Theorem 1) yields a tradeoff between the hardness of this generator
and the shrinkage factor. Theorem 1 is also, in particular, about universal families

1 Applying a random linear operator does not exactly yield a universal family of hash
functions just because of its value at 0.

2 This is not surprising, since a pseudorandom generator is in particular a one-way
function.

484 P.A. Papakonstantinou and G. Yang

of hash functions. In Theorem 2 we show that our construction is optimal, in
the sense that if instead we use any generator which is a little harder, or if the
shrinkage factor is a little bigger, then the resulting function is one-way.

Theorem 1. Suppose G is a pseudorandom generator with hardness sG(·). Then
for every constant μ > 0 and δ > 0, and for an arbitrary polynomial 	(n), there
is a pseudorandom generator

G∗ : {0, 1}n → {0, 1}�(n)

such that FG∗
(x,R) = (MRG

∗(x), R) is not one-way, where MR ∈ Fm(n)×�(n)
2 is

polynomial time computable using randomness R with m(n) ≤ (1 − μ)n. More-
over, G∗ preserves the injectivity of G and has hardness at least sG(μn− nδ).

The “moreover” part makes the theorem stronger. Also, preserving injectivity in
this theorem finds application in explaining a subtle issue regarding the optimal
output length of hash functions in the first step of [HILL89] construction (see
Section 4 in [HILL89], or p.138 in [Gol01]).

A variant of Theorem 1 shows that when MR is restricted to random projec-
tions with m(n) = O(n

log(n)) (i.e. just sampling m(n) bits from the output of G),

then there exists (another) G∗ s.t. FG∗
is invertible in non-uniform NC2.

On the other hand, we prove that when hashing a 2cn-hard pseudorandom
generator to a little more than (1− c)n bits then its one-wayness is preserved.

Theorem 2. Suppose f : {0, 1}n → {0, 1}�(n) is a 2cn-hard 1-1 pseudorandom
generator. Let F := F f(x, h) =

(
h(f(x)), h

)
, where h : {0, 1}�(n) → {0, 1}m(n)

is a hash function from a universal family of hash functions S
m(n)
�(n) . If m(n) ≥

(1− c+ ε)n for constant ε ∈ (0, c5), then F is one-way with hardness 2εn.

In fact, the above theorem holds true if instead of a pseudorandom generator we
consider f to be an injective one-way function.

1.3 Outline

In Section 2, we introduce notations, definitions, and basic facts. In Section 3, we
construct G∗ from a pseudorandom generator G such that FG∗

is not one-way
when hashing down its output by a constant factor. In Section 4 we show that for
every 1-1 pseudorandom generator f with hardness 2cn and m(n) ≥ (1− c+ ε)n,
F f preserves the one-wayness and has hardness at least 2εn. We conclude in
Section 5 with some further research directions.

2 Preliminary

2.1 Notation and Definitions

Probability Notation. For probability distributions X,Y , we denote by X ∼ Y
that X and Y are identically distributed. x← X denotes that x is sampled from
X , and x ∈R S denotes that x is sampled uniformly from S. Un denotes the uni-
form distribution over {0, 1}n. The statistical distance between two distributions
X and Y is defined as Δ(X,Y) = 1

2

∑
z |Pr[X = z]− Pr[Y = z]|.

A Remark on One-Wayness vs. Pseudorandomness 485

Universal Families of Hash Functions. Let Sm
n denote a set of functions from

{0, 1}n to {0, 1}m. Let Hm
n be a random variable uniformly distributed over Sm

n .
Sm
n is called a universal family of hash functions if following conditions hold:

– Sm
n is a pairwise independent family of mappings: for every x 	= y, Hm

n (x)
and Hm

n (y) are independent and both identically to Um.
– Sm

n has a succinct representation: ∀h ∈ Sm
n , the description of h is poly(n,m).

– Sm
n can be efficiently evaluated: there is a polynomial time algorithm H such

that for every h ∈ Sm
n , x ∈ {0, 1}n, H(h, x) = h(x).

Specifically, h(x) = M · x + b is a universal family of hash functions when the
matrixM and vector b are uniformly distributed. Actually, h(x) =M ·x satisfies
all above conditions except that Hm

n (x) is not uniformly distributed when x = 0.

Cryptographic Primitives. Here are the definitions of one-way functions, pseu-
dorandom generators, and k-wise independent distributions. The definitions are
for uniform adversaries, however our results hold in the non-uniform setting as
well (c.f. [Gol01, Vad11]).

A one-way function f : {0, 1}∗ → {0, 1}∗ is a polynomial time computable
function where no probabilistic polynomial time algorithm A inverts f with
non-negligible probability; i.e. for every k and any polynomial time algorithm
A, Prx←Un [A(f(x), 1

n) ∈ f−1(f(x))] < n−k holds for sufficiently large n.
Furthermore, we say that f has hardness s(n) if for every sufficiently large

input of length n, f cannot be inverted with probability ≥ 1
s(n) by any adversary

A which runs in time ≤ s(n). Obviously, f is a one-way function if f has super-
polynomial hardness s(n).

A pseudorandom generator G is a polynomial time computable function which
stretches every n-bit input to an output of length 	(n) > n, such that no proba-
bilistic polynomial time algorithm D can distinguish between U�(n) and G(Un);

i.e. for every k andD, |Pr[D(G(Un), 1
n) = 1]−Pr[D(U�(n), 1

n) = 1]| < n−k when
n is sufficiently large. We call 	 the stretch of G. Similar to one-way functions
we define an s(n)-hard pseudorandom generator.

We subscript a string σ ∈ {0, 1}n with R ⊆ {1, . . . , n}, and we write σR,
to denote the substring of σ keeping exactly the bits indexed by R. In this
notation, a function h is called k-wise independent if for every K ⊆ {1, . . . , n}
where |K| = k we have that h(Un)K ∼ Uk.

Circuit Classes. We denote by NC2 the functions computed by non-uniform
families of poly-size boolean circuits with multiple outputs, where the gates are
of constant fan-in and the depth of the circuit is O(log2 n) for input length n.

2.2 Basic Facts and Lemmas

Below is a well-known fact (implicitly shown in [LR87], also see e.g. [Gol01]).

Lemma 1. Let G be a pseudorandom generator. Then, G is a one-way function.

486 P.A. Papakonstantinou and G. Yang

The following lemma states that a uniform randomly chosen matrix has a good
chance of being row independent. In fact, more general results hold for n × n
matrices (see e.g. [BKW97, Muk84]). The proof of the following lemma is an
easy exercise and is omitted here.

Lemma 2. Uniformly at random pick a p×q matrix N over F2; i.e. N ∈R Fp×q
2 .

Then, N has full row-rank with probability at least 1− 2p−q.

A deep result due to Mulmuley [Mul87] (which derandomizes [BvzGH82]) states
that Gaussian elimination for linear systems over F2 can be done in uniform NC2.
Later on, when applying this lemma in our paper, we introduce non-uniformity
for a different reason.

Lemma 3 ([Mul87]). Gaussian elimination can be done in uniform NC2.

3 Length-Shrinking Linear Operators Destroy
One-Wayness: A Shrinkage-Hardness Tradeoff

We prove Theorem 1. That is, given a pseudorandom generator G of hardness
sG(n) we construct a pseudorandom generator G∗ of almost the same hardness
sG∗(n) = sG

(
(μ− o(1))n

)
for some constant μ, such that an application of any

efficiently sampled linear operator, which outputs (1 − μ)n bits, on the output
of G∗ does not preserve one-wayness.

First we introduce the construction of G∗. It is easy to see that it preserves
pseudorandomness and injectivity; i.e. if G is 1-1 then G∗ is also 1-1.

Construction 1. Construct G∗ as

G∗(x1, x2, x3) = (Ĝ(x1) + (PG(x3) · x2), x2, x3) (1)

|x1| = n1, |x2| = n2, |x3| = n3, n1 + n2 + n3 = n. Ĝ(x1) = G(z)(x1)|{1,2,··· ,�′(n)}
where G(z) means z iterated compositions of G with itself such that |G(z)(x1)| ≥
	′(n) = 	(n) − n2 − n3. PG(x3) is an 	′(n) × n2 pseudorandom matrix whose
entries are generated by iteratively applying G on x3. All operations are over F2.

By definition of Ĝ, |Ĝ(x1)| = 	′(n). That is, |G∗(x1, x2, x3)| = 	′(n) +n2 +n3 =
	(n). Since we XOR Ĝ(x1) with PG(x3) · x2, then sG(n1) lower bounds the
hardness of G∗(x). We can choose n3 to be an arbitrarily small polynomial in
n. The parameters n1 and n2 determine a tradeoff between the hardness of the
pseudorandom generator G∗ and the shrinking length. This tradeoff is not a
minor issue. If we were to choose arbitrarily close to 1 the constants in the
hardness and in the shrinking length then a modification of [HILL89] would
have shown that exponentially hard pseudorandom generators, unconditionally,
do not exist (this is not an immediate argument).

A Remark on One-Wayness vs. Pseudorandomness 487

The following lemma is the main ingredient of the proof of Theorem 1.

Lemma 4. Let FG∗
(x,R) = (MRG

∗(x), R) and let G∗(x1, x2, x3) be as in Con-
struction 1. Let MR ∈ {0, 1}m(n)×�(n),m(n) < n2, be computable in polynomial
time given R. Then, there is a probabilistic polynomial time algorithm A s.t.

Pr
y,R

[FG∗
(A(y,R)) = (y,R)] > 1− 2−(n2−m(n)) − poly(

1

sG(n3)
)

Proof. Recall that G∗(x1, x2, x3) =
(
Ĝ(x1) + (PG(x3) · x2), x2, x3

)
, where x =

(x1, x2, x3) and x1, x2, x3 has length n1, n2, n3 respectively. Then,

FG∗
(x,R) =

(
MRG

∗(x), R
)
=
(
MR(Ĝ(x1) + (PG(x3) · x2), x2, x3), R

)
Therefore for the goal FG∗

(x,R) = (y,R), it suffices to find an x such that

MR

(
Ĝ(x1) + (PG(x3) · x2), x2, x3

)
= y (2)

We analyze further the structure of the above matrix equation. Without loss of
generality, we may assume thatMR is already in reduced row echelon form, after
applying Gaussian elimination, and it has full row-rank (easy to guarantee by
deleting all zero rows). To match the form of the column vector

(
Ĝ(x1)+(PG(x3)·

x2), x2, x3
)
, we partition MR into MR = (M1|M2|M3) where the sub-matrices

M1,M2,M3 have 	′(n), n2 and n3 columns respectively. Then

MR =
(
M1 M2 M3

)
=

⎛⎝M ′
1 M

′′
2 M ′′′

3

0 M ′
2 M ′′

3

0 0 M ′
3

⎞⎠
where M ′

1,M
′
2 and M ′

3 have full row-rank. Note that depending on MR, it is
possible that M ′

2,M
′
3 and M ′′

3 are empty (i.e. size 0, instead of having 0-entries).
Equation (2) can be rewritten as a linear system in x2,

⎧⎨⎩
(
M ′

1PG(x3)+ M ′′
2

)
x2 = y1 +M ′′′

3 x3 +M ′
1Ĝ(x1)

M ′
2 x2 = y2 +M ′′

3 x3
0 = y3 +M ′

3x3

(3)

Now the problem reduces to finding a solution x to (3). We present an adversary
A which finds a solution to the above system.

488 P.A. Papakonstantinou and G. Yang

A : Inverting FG∗
(on input (y,R)):

1 Compute MR with input R;
2 Do Gaussian elimination on the left of (MR|y);
3 Delete zero-rows and return “No answer” if detecting a row (0, 0, · · · , 0, 1);
4 Compute M ′

1,M
′
2,M

′′
2 ,M

′
3,M

′′
3 ,M

′′′
3 ;

5 Set x1 to a fixed value u, say n1 zeros;
6 Uniformly at random pick v from {x3

∣∣M ′
3x3 = y3} ⊆ {0, 1}n3

(v ← Un3 if M ′
3 is empty);

7 Compute PG(v) and Ĝ(u);

8 Consider:

(
M ′

1PG(v) +M ′′
2

M ′
2

)
x2 =

(
y1 +M ′

1Ĝ(u) +M ′′′
3 v

y2 +M ′′
3 v

)
;

9 Solve x2 and output (x,R) = ((u, x2, v), R).
Output “Fail” if there is no solution.

It is easy to verify that A runs in polynomial time and the output is a pre-
image of (y,R). Now, we analyze the probability that A succeeds. It suffices to
calculate the probability that A outputs “Fail”, which is upper bounded by the

probability thatM =

(
M ′

1PG(v) +M ′′
2

M ′
2

)
does not have full row-rank. LetM′ =(

M ′
1 · U�′(n)×n2

+M ′′
2

M ′
2

)
. Since M ′

1,M
′
2 have full row-rank, M′ ∼

(
Ur1×n2

M ′
2

)
does not have full row-rank with probability at most

∑
1≤i≤r1

2r2+i−1

2n2
< 2r1+r2

2n2
=

2−(n2−r1−r2) by Lemma 2, where r1, r2 is the number of rows in M ′
1,M

′
2 respec-

tively. Moreover, the gap between the probability Pr[M has full row-rank] and
Pr[M′ has full row-rank] is bounded by poly(1

sG(n3)
), since otherwise there ex-

ists a polynomial time distinguisher for PG(v) and U�′(n)×n2
with advantage

poly(1
sG(n3)

). So we have

Pr[M has full row-rank] ≥ Pr[M′ has full row-rank]− poly(
1

sG(n3)
)

≥ 1− 2−(n2−r1−r2) − poly(
1

sG(n3)
).

Since MR has m(n) rows in total, which implies r1 + r2 ≤ m(n),

Pr
y
[A succeeds] ≥ Pr[M has full row-rank] ≥ 1− 2−(n2−m(n)) − poly(

1

sG(n3)
)

Thus complete our proof of Lemma 4.

Corollary 1. If m(n) ≤ n2 − ω(log(n)) and n3 = nΩ(1), then FG∗
(x,R) =(

MRG
∗(x), R

)
is not (even weakly) one-way.

A Remark on One-Wayness vs. Pseudorandomness 489

Let n1 = μn−nδ, n2 = (1−μ)n+ log2(n), and n3 = n−n1 −n2 = nδ − log2(n)
in Construction 1 and m(n) = n2 − log2(n) = (1 − μ)n. Applying Lemma 4
and Corollary 1, we conclude the proof of Theorem 1. In general, hashing down
the output of a pseudorandom generator by a constant factor does not preserve
one-wayness, even if the pseudorandom generator is exponential hard.

Regarding the roles of n1, n2, n3 in above argument, we first notice that n3

is the least important one since we only need sG(n3) super-polynomial. In most
common cases of interest sG(·) is monotonically increasing (hence, s−1

G is well

defined), it suffices to set n3 = s−1
G (nω(1)) which could be as small as logO(1)(n)

for exponential sG. Meanwhile, the difference n2 − m(n) is also negligible. It
turns out n1+m(n) = n− o(n). Recalling that G∗ has hardness sG(n1), there is
the tradeoff between the hardness of G∗ and the output length of MR. Letting
n1 = αn,m(n) = βn, we get α+ β = 1− o(1) as stated in the abstract.

Special Case of Random Projections. WhenMR is a projection of length O(n
logn)

we construct a simpler pseudorandom generator G∗ where FG∗
is invertible in

NC2. For this we combine the “strong pseudorandom” (cryptographic) object G
with a “weak pseudorandom” object, a k-wise independent generator. Specifi-
cally, let G∗(x1, x2) = (Ĝ(x1) +Hx2) where H realizes a k-wise generator with
k = Θ(n

log(n)). See Proposition 6.5 in [ABI86] and Chap. 7.6 in [MS77] for details.

Lemma 5. Let m(n) ≤ k, where k as above. Then,FG∗
(x,R) =

(
MRG

∗(x), R
)

can be inverted in NC2.

The adversary is a modification of A which appears in the proof of Lemma 4.
In particular, in Step 4, only M ′

1 matters since other matrices are 0-sized; in
Step 6,7,8, PG(v) is replaced by H and the linear system in Step 8 becomes
M ′

1Hx2 = y1 + Ĝ(u). Although Ĝ is polynomial time computable, we can non-
uniformly hardwire the value of Ĝ on a constant one for each input length. Since
u can be fixed, then by Lemma 3 we have that M ′

1H is invertible in NC2.

4 Tightness of the Construction

Even if we assume that a pseudorandom generator of hardness 20.99n exists,
Theorem 1 says that then there is a generator of hardness 20.99αn such that
when applying a linear map on its output shrinking it down to βn many bits
then this is not one-way, for α+β = 1−o(1). We show that this tradeoff between
α and β is tight, i.e. when α+β = 1+ ε and a 1-1 generator f has hardness 2αn,
then F f forms a 2εn-hard one-way function.

For the proof of Theorem 2 we apply the following well-known lemma, but in
a non-uniform setting.

Lemma 6 ([Gol01], also [HILL89, Sip83, GL89]). Let m < 	 be integers,
Sm
� be a universal family of hash functions, and b,δ be two reals such that m ≤
b ≤ 	 and δ ≥ 2−

b−m
2 . Suppose that X� is a random variable distributed over

490 P.A. Papakonstantinou and G. Yang

{0, 1}� such that for every x, it holds Pr[Xn = x] ≤ 2−b. Then for every ξ ∈
{0, 1}m and for all but at most 2−(b−m)δ−2 fraction of the h’s in Sm

� , it holds
that

Pr
X�

[h(X�) = ξ] ∈ (1± δ)2−m

Proof (Proof of Theorem 2). We present the proof for a non-uniform adversary,
simpler to present but already a rather involved argument. Fix one efficient
construction of sampling from a universal family of hash functions (e.g. choose
one from [Vad11]). Now F is well-defined for a given f . Assume that F is not
a 2εn-hard one-way function. Let A be a probabilistic algorithm which runs in
time TA = O(2εn) and inverts F with probability pA(n), i.e.

Pr
x←Un,h←RS

m(n)

�(n)

[A(h(f(x)), h) ∈ F−1(h(f(x)), h)] = pA(n) >
1

2εn

We show that f is not 2cn-hard with oracle access to A. That is, we construct
a non-uniform adversary Af that given y ← f(Un), Af computes x′ such that
f(x′) = y in time O(2cn) and with probability at least Ω(2−cn).

Af is defined as follows: with the non-uniform advice h0 ∈ S
m(n)
�(n) , Af first

computes (h0(y), h0), then applies A to compute x′ such that h0(f(x
′)) = h0(y).

Therefore, Af runs in time O(TA) = O(2εn) = O(2cn). In what follows we
denote by x′ = x′(h(y), h) the output of A on input (h(y), h). Now, we calculate
the probability that Af outputs x′. We will determine later how to find h0, and
in fact why h0 exists.

Pr
y←f(Un)

[Af inverts f on y] = Pr
y←f(Un)

[x′ = A(h0(y), h0), f(x
′) = y] (4)

= Pr
x←Un

[f(x′) = f(x)] (5)

where in the last equation we omit how x′ is derived and its dependence.

Pr
x←Un

[f(x′) = f(x)]

=
∑

z∈h0(f({0,1}n))

Pr
x←Un

[h0(f(x)) = z] Pr
x←Un

[f(x′) = f(x)
∣∣h0(f(x)) = z]

=
∑

z∈h0(f({0,1}n))

Pr
x←Un

[h0(f(x)) = z] Pr
x∈R(h0◦f)−1(z)

[x = x′ = x′(z, h0)]

f(x′) = f(x) is equivalent to x′ = x since f is 1-1. From this point on, x′(z, h0)
is uniquely defined from z and h0. So we can take it out of the probability.

=
∑

z∈h0(f({0,1}n))

|(h0 ◦ f)−1(z)|
2n

·
(1

|(h0 ◦ f)−1(z)| · I[h0(f(x
′(z, h0))) = z]

)
=

1

2n

∑
z∈h0(f({0,1}n))

I[h0(f(x
′)) = z] =

1

2n

∑
z∈{0,1}m

I[h0(f(x
′)) = z] (6)

A Remark on One-Wayness vs. Pseudorandomness 491

where I[h0(f(x
′)) = z] is the indicator of the event “h0(f(x

′)) = z for x′ =
A(z, h0)”. Note that the sum

∑
z∈{0,1}m I[h0(f(x

′)) = z] corresponds to the

number of z’s that A inverts (z, h0).
However, when fixing h0, the probability “A succeeds” is

Pr
x←Un

[A inverts (h0(f(x)), h0)] =
∑

z∈{0,1}m

Pr
x←Un

[h0(f(x)) = z]I[h0(f(x
′)) = z]

(7)

Notice that (7) is the probability of “A succeeds on
(
h0(f(Un)), h0

)
”, while (6)

counts the number of z’s that A inverts
(
z, h0

)
. These two are related in the

following sense. Remember that hashing down a weak random source smooths
the distribution, hence h0(f(Un)) seems close to Um. In this sense, we make an
estimation with error upper bounded by their statistical distance.∣∣ Pr

x←Un

[A inverts (h0(f(x)), h0)]−
1

2m

∑
z∈{0,1}m

I[h0(f(x
′)) = z]

∣∣
=
∣∣ ∑
z∈{0,1}m

Pr
x←Un

[h0(f(x)) = z] · I[h0(f(x′)) = z]−
∑

z∈{0,1}m

1

2m
I[h0(f(x

′)) = z]
∣∣

≤
∑

z∈{0,1}m

∣∣ Pr
x←Un

[h0(f(x)) = z]− 1

2m

∣∣ · I[h0(f(x′)) = z]

=2Δ
(
h0(f(Un)), Um

)
(8)

Plugging (8) into (6), it immediately leads to the lower bound

Pr
x←Un

[f(x′) = f(x)]

≥2m−n
(

Pr
x←Un

[A inverts (h0(f(x)), h0)]− 2Δ
(
h0(f(Un)), Um

))
(9)

Now, our goal is to show that there exists a choice for h0 in (9) giving the Ω(1
2cn)

lower bound.

Claim. There is a (good) h0 ∈ S
m(n)
�(n) such that

– Property 1: Δ
(
h0(f(Un)), Um

)
< 2 · 2 1+εn−(n−m)

3 ;

– Property 2: Prx←Un [h0(f(x
′)) = h0(f(x))] ≥ 2−(1+εn).

For Property 1, it suffices for concluding the proof to have δ = 2
1+εn−(n−m)

3 and

Pr
ξ←Um

[Pr[h0(f(Un)) = ξ] /∈ (1± δ) · 2−m] < 21+εn−(n−m)δ−2

Let δ = 2
1+εn−(n−m)

3 , b = n,m = m(n), 	 = 	(n) and X = f(Un) as in Lemma 6.
Since m ≤ b ≤ 	(n) and f is 1-1 (PrX [X = z] ≤ 1

2n for every z), we have

that ∀ξ ∈ {0, 1}m and for all but at most 2−(n−m)δ−2 fraction of the h’s in

492 P.A. Papakonstantinou and G. Yang

S
m(n)
�(n) , it holds Pr[h(f(Un)) = ξ] ∈ (1 ± δ) · 2−m. Let B(h, ξ) denote the event

Pr[h(f(Un)) = ξ] /∈ (1± δ) · 2−m, then taking probability over ξ and h,

Pr
ξ←Um,h←S

m(n)

�(n)

[B(h, ξ)] ≤ 2−(n−m)δ−2

=⇒ Pr
h←S

m(n)

�(n)

[Pr
ξ←Um

[B(h, ξ)] ≥ 21+εn−(n−m)δ−2] ≤ 1

21+εn
(10)

Thus, Prξ←Um [Pr[h(f(Un)) = ξ] /∈ (1± δ) · 2−m] < 21+εn−(n−m)δ−2 holds for at

least 1− 1
21+εn fraction of the h’s in S

m(n)
�(n) . In particular, Property 1 is satisfied

by that many h’s.
For Property 2, we lower bound the probability that A performs not so bad

for a randomly chosen h, i.e. Pr
h←S

m(n)

�(n)

[Prx←Un [h(f(x
′)) = h(f(x))] ≥ 1

21+εn].

Let Eh denote the event that Prx←Un [h(f(x
′)) = h(f(x))] ≥ 2−1−εn, we have

2−εn ≤ pA(n) = Pr
h←S

m(n)

�(n)
,x←Un

[h(f(x′)) = h(f(x))]

=Pr
h
[Eh] Pr

x
[h(f(x′)) = h(f(x))

∣∣Eh] + Pr
h
[Eh] Pr

x
[h(f(x′)) = h(f(x))

∣∣Eh]
≤ Pr

h←S
m(n)

�(n)

[Eh] · 1 + Pr
h←S

m(n)

�(n)

[Eh] · 2−1−εn < Pr
h←S

m(n)

�(n)

[Eh] + 2−1−εn

=⇒ Pr[Eh] > 2−1−εn

Hence, we lower bound the probability of h having Property 2 as follows

Pr
h←S

m(n)

�(n)

[Pr
x←Un

[h(f(x′)) = h(f(x))] ≥ 2−1−εn] = Pr
h←S

m(n)

�(n)

[Eh] > 2−1−εn

The following calculation shows that an h0 as required exists.

Pr
h←S

m(n)

�(n)

[h satisfies both Property 1 and 2] > (1− 1

21+εn
) + 2−1−εn − 1 = 0

Using this h0 in (9), and recalling that m = m(n) = (1− c+ ε)n, we obtain

Pr
x←Un

[f(x′) = f(x)] ≥ 2−1−cn − 2(7+(5ε−4c)n)/3 = Ω(2−cn)

Note that the running time of Af is bounded by O(2cn), contradicting that f is
2cn hard. In conclusion, F (x, h) =

(
h(f(x)), h

)
is one-way, and its hardness is

at least 2εn.

5 Conclusions and Open Questions

We have showed that “hashing” the output of a pseudorandom generator to a
constant fraction of its input length, in general, destroys its one-wayness. We

A Remark on One-Wayness vs. Pseudorandomness 493

prove this in the form of a tradeoff between cryptographic hardness and output
length of the hash. We also show that this tradeoff is tight.

An interesting question is whether there exists a pseudorandom generator of
reasonable hardness where one-wayness is preserved when hashing its output.
This question remains open. We speculate that is a difficult mathematical prob-
lem. For example, an interesting direction would be to show that this question is
equivalent to constructing 2n

ε

-hard one-way functions; i.e. a problem essentially
about Ω(2n

ε

) circuit lower bounds.

Acknowledgements. We would like to thank John Steinberger and Andrew
Wan for the helpful remarks on a previous draft. We would also like to thank An-
drej Bogdanov, Oded Goldreich, and Charles Rackoff for the helpful
discussions.

References

[ABI86] Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algo-
rithm for the maximal independent set problem. Journal of Algorithms 7,
567–583 (1986)

[AIK05] Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private ran-
domizing polynomials and their applications. Computational Complex-
ity 15(2), 115–162 (2006); also CCC 2005

[AIK04] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. SIAM
Journal on Computing (SICOMP) 36(4), 845–888 (2006); also FOCS 2004
(2004)

[BJP11] Bronson, J., Juma, A., Papakonstantinou, P.A.: Limits on the Stretch of
Non-adaptive Constructions of Pseudo-Random Generators. In: Ishai, Y.
(ed.) TCC 2011. LNCS, vol. 6597, pp. 504–521. Springer, Heidelberg (2011)

[BKW97] Blömer, J., Karp, R., Welzl, E.: The rank of sparse random matrices over
finite fields. Random Structures Algorithms 10(4), 407–419 (1997)

[BvzGH82] Borodin, A., von zur Gathen, J., Hopcroft, J.: Fast parallel matrix and
GCD computations. Information and Control 52(3), 241–256 (1982)

[GL89] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions.
In: Symposium on Theory of Computing (STOC), pp. 25–32 (1989)

[Gol01] Goldreich, O.: Foundations of cryptography. Cambridge University Press,
Cambridge (2001); Basic tools (vol. I)

[HHR06a] Haitner, I., Harnik, D., Reingold, O.: Efficient Pseudorandom Generators
from Exponentially Hard One-Way Functions. In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp.
228–239. Springer, Heidelberg (2006)

[HHR06b] Haitner, I., Harnik, D., Reingold, O.: On the Power of the Randomized
Iterate. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 22–40.
Springer, Heidelberg (2006)

[HILL89] Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom
generator from any one-way function. SIAM Journal on Computing
(SICOMP) 28(4), 1364–1396 (1999); also STOC 1989

494 P.A. Papakonstantinou and G. Yang

[HRV10] Haitner, I., Reingold, O., Vadhan, S.: Efficiency improvements in con-
structing pseudorandom generators from one-way functions. In: Sympo-
sium on Theory of Computing (STOC), pp. 437–446 (2010)

[KGY89] Kharitonov, M., Goldberg, A.V., Yung, M.: Lower bounds for pseudoran-
dom number generators. In: Foundations of Computer Science (FOCS),
pp. 242–247 (1989)

[LR87] Luby, M., Rackoff, C.: A study of password security. Journal on Cryp-
tology 1(3), 151–158 (1989); Luby, M., Rackoff, C.: A Study of Password
Security. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp.
392–397. Springer, Heidelberg (1988)

[MS77] MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes.
North-Holland (1977)

[Muk84] Mukhopadhyay, A.: On the probability that the determinant of an n× n
matrix over a finite field vanishes. Discrete Math. 51(3), 311–315 (1984)

[Mul87] Mulmuley, K.: A fast parallel algorithm to compute the rank of a matrix
over an arbitrary field. Combinatorica 7(1), 101–104 (1987)

[Sip83] Sipser, M.: A complexity theoretic approach to randomness. In: Sympo-
sium on Theory of Computing (STOC), pp. 330–335 (1983)

[Vad11] Vadhan, S.: Pseudorandomness (April 2011)

Integral Mixed Unit Interval Graphs

Van Bang Le1 and Dieter Rautenbach2

1 Institut für Informatik, Universität Rostock, Rostock, Germany
le@informatik.uni-rostock.de

2 Institut für Optimierung und Operations Research, Universität Ulm, Ulm, Germany
dieter.rautenbach@uni-ulm.de

Abstract. We characterize graphs that have intersection representa-
tions using unit intervals with open or closed ends such that all ends of
the intervals are integral in terms of infinitely many minimal forbidden
induced subgraphs. Furthermore, we provide a quadratic-time algorithm
that decides if a given interval graph admits such an intersection repre-
sentation.

Keywords: intersection graph; interval graph; proper interval graph;
unit interval graph.

Classification of the topic: Graph Theory, Communication Networks,
and Optimization.

1 Introduction

Interval graphs and subclasses like proper interval graphs and unit interval
graphs have well studied structural [2, 10] as well as algorithmic [3–5, 12, 13]
properties and occur in many applications [1, 9, 11, 14–18]. Interval graphs are
the intersection graphs of closed (real) intervals and unit interval graphs are the
intersection graphs of closed unit intervals.

As long as intervals of different lengths are allowed, it actually does not matter
in the definition of interval graphs whether the ends of the intervals are closed or
open. For unit interval graphs, this is no longer true. While Frankl and Maehara
[7] proved that unit interval graphs coincide with the intersection graphs of open
unit intervals, the intersection graphs of the unit intervals of different types form
a strict superclass of unit interval graphs.

In two previous papers we studied the classes of intersection graphs of closed
and open unit intervals [19] and of mixed unit intervals [6] where for mixed unit
intervals all four combinations for the two ends, namely open-open, closed-closed,
open-closed, and closed-open are allowed. Partial results in [6] naturally lead to
the problem of characterizing the graphs that have intersection representations
using mixed unit intervals where additionally all ends of the intervals are integers.

We refer to such graphs as integral mixed unit interval graphs.
Our contributions in the present paper are

– a characterization of twin-free integral mixed unit interval graphs in terms
of the complete list of minimal forbidden induced subgraphs, and

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 495–506, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

496 V.B. Le and D. Rautenbach

– a quadratic-time algorithm that decides if a given interval graph is an integral
mixed unit interval graph, and if so, outputs a suitable representation.

The paper is organized as follows. In Section 2 we introduce some terminology
and notation, give exact definitions, and recall some previous results. In Section
3 we study the forbidden induced subgraphs. In Section 4 we derive structural
properties of the maximal cliques of integral mixed unit interval graphs. Section
5 is devoted to the representation algorithm and its analysis. Finally, in Section
6 we combine all results of the earlier sections and prove our main results.

2 Preliminaries

Let M be a family of sets. An M-representation of a graph G is a function
M : V (G) → M such that for every two distinct vertices u and v of G, we have
uv ∈ E(G) if and only if M(u) ∩M(v) 	= ∅. A graph is an M-graph if it has
a M-representation. Two vertices u and v in a graph G are twins, if they have
the same closed neighborhood, that is, they are adjacent and for every vertex
w in V (G) \ {u, v}, the vertices u and w are adjacent if and only if the vertices
v and w are adjacent. Note that if u and v are twins in a graph G, then G is
an M-graph if and only if G − u is an M-graph. Thus, it suffices to consider
twin-free graphs when discussing graphs admitting an M-representation.

For two real numbers x and y, the open interval (x, y) is {z ∈ R | x < z < y},
the closed interval [x, y] is {z ∈ R | x ≤ z ≤ y}, the open-closed interval (x, y] is
{z ∈ R | x < z ≤ y}, and the closed-open interval [x, y) is {z ∈ R | x ≤ z < y}.
Let

I−− = {(x, y) | x, y ∈ R, x < y}, U−− = {(x, x+ 1) | x ∈ R},
I++ = {[x, y] | x, y ∈ R, x ≤ y}, U++ = {[x, x+ 1] | x ∈ R},
I−+ = {(x, y] | x, y ∈ R, x < y}, U−+ = {(x, x+ 1] | x ∈ R},
I+− = {[x, y) | x, y ∈ R, x < y}, U+− = {[x, x+ 1) | x ∈ R},
I± = I++ ∪ I−−, U± = U++ ∪ U−−,
I = I± ∪ I−+ ∪ I+−, U = U± ∪ U−+ ∪ U+−.

We allow arithmetic operations on intervals, that is, for an interval I in I and
two real numbers x and y, we have xI + y = {xz + y | z ∈ I}.

For an interval I in I, let 	(I) = inf(I) and r(I) = sup(I) denote the left and
right end of I, respectively.

A U-representation I of a graph G is integral if {	(I(u)) | u ∈ V (G)} ⊆ Z,
that is, all ends of the intervals are integers.

Interval graphs are I++-graphs and unit interval graphs are U++-graphs. A graph
G is a proper interval graph if it has a I++-representation I : V (G) → I++ for
which there are no two vertices u and v of G such that I(u) is a proper subset
of I(v). In this case I is a proper interval representation of G.

A fundamental result relating these three classes of interval graphs is due to
Roberts. Please refer to Figure 1 for an illustration of the Claw K1,3.

Integral Mixed Unit Interval Graphs 497

a

b c d

Claw

b

a

c

d

Fig. 1. The Claw K1,3 and its four integral U-representations

Theorem 1 (Roberts [20]). A graph is a unit interval graph if and only if it
is a proper interval graph if and only if it is a K1,3-free interval graph.

As mentioned in the introduction, for the definition of interval graphs, the
type of the intervals does not make a difference, more precisely, if M,N ∈
{I, I++, I−−, I+−, I−+}, then G is a M-graph if and only if G is a N -graph
[6,19]. Since the Claw K1,3 has a U±-representation (cf. Figure 1), the situation
is different for unit interval graphs. The main two results from [6,19] are the fol-
lowing. Please refer to Section 3 and Figure 2 for the definition and illustration
of all graphs mentioned in these results.

Theorem 2 (Rautenbach and Szwarcfiter [19]). A twin-free graph is a
U±-graph if and only if it is a {R0, Q1, D3, D5}-free interval graph.

a

b

c

d

Fig. 2. The Diamond

Theorem 3 (Dourado et al. [6]). For a diamond-free graph G, the following
statements are equivalent.

(1) G is a {Rk | k ∈ N0}-free interval graph.

(2) G has an integral U-intersection representation.

(3) G is a U-graph.

Mainly the last theorem motivated the characterization problem of the graphs
that have an integral U-representation.

498 V.B. Le and D. Rautenbach

3 Forbidden Induced Subgraphs

Let G be the class of twin-free integral mixed unit interval graphs, that is, of
those twin-free graphs that have an integral U-representation.

Let G ∈ G and let I : V (G) → U be an integral U-representation of G. For a
vertex u of G, let c(u) denote the number of distinct maximal cliques of G that
contain u.

Since G is twin-free, the function I is necessarily injective. Hence, if H is
an induced subgraph of G, then the restriction of I to V (H) is an injective
integral U-representation of H , that is, even if H is not twin-free, there is an
integral U-representation of H that assigns different intervals to the vertices of
H . Therefore, the minimal forbidden induced subgraphs for G are exactly those
graphs that do not have an injective integral U-representation while every proper
induced subgraph has.

The integrality of the representation I immediately implies that every vertex
u of G belongs to at most three maximal cliques of G, that is,

(C1) c(u) ≤ 3 for every vertex u of G.

where c(u) = 3 implies that I(u) is necessarily a closed interval.

Lemma 1. The graphs R0, D1, D2, and D3 are minimal forbidden induced
subgraphs for G.

Proof. It follows from (C1) that R0, D1, and D2 are forbidden induced subgraphs
for G, because c(a) > 3 for each of these graphs. Suppose D3 is an induced
subgraph of some G ∈ G, labelled as in Figure 4. Since G has no twins, we may
assume, by symmetry, that there exists a vertex b′ adjacent to a and non-adjacent
to b. Now c(a) > 3, contradicting (C1). Thus, D3 is also a forbidden induced
subgraph for G. Finally, it is easy to verify that for each H ∈ {R0, D1, D2, D3}
and every v ∈ V (H), the graph H−v has an injective integral U-representation.

Lemma 2. The graphs S0, T0, K5, and D4 are minimal forbidden induced sub-
graphs for G.

Lemma 3. The graph D5 is a minimal forbidden induced subgraph for G.

a

b c d e

R0

a

b c d e f

S0

a b c d

e f g

T0

Fig. 3. The graphs R0, S0, and T0

Integral Mixed Unit Interval Graphs 499

a

b c d e f

D1

a

b c d e f

D2

a b

c d e

D3

a b c

d e

D4

a b

c d e f

D5

a d

b c e f

D6

a d

b c e f

D7

Fig. 4. The graphs D1 to D7

Lemma 4. The graphs D6 and D7 are minimal forbidden induced subgraphs
for G.

We now describe three infinite sequences of forbidden induced subgraphs for G.
For k ∈ N, let the graph Qk arise from a path a0a1a2 . . . ak+1 by adding the

vertices b1, b2, . . . , bk+1, the edges aibi for 1 ≤ i ≤ k + 1, and the edges ai−1bi
for 2 ≤ i ≤ k + 1. See Figure 5 for an illustration.
For k ∈ N,

– let Q̃k arise from Qk by adding a vertex b0 and four edges a0b0, a0b1, a1b0,
and b0b1,

– let Rk arise from Qk by adding two vertices ak+2 and bk+2 and two edges
ak+1ak+2 and ak+1bk+2,

a0 a1 a2

b1 b2

Q1

a0 a1 a2 a3 a4

b1 b2 b3 b4

Q3

a0 a1 a2

b0 b1 b2

Q̃1

Fig. 5. The graphs Q1, Q3, and Q̃1

500 V.B. Le and D. Rautenbach

a0 a1 a2 a3

b1 b2 b3

R1

a0 a1 a2 a3 a4

b1 b2 b3 b4 b5

S2

a0 a1 a2 a3

b0 b1 b2 b3 b4

T1

Fig. 6. The graphs R1, S2, and T1

– let Sk arise from Qk by adding three vertices ak+2, bk+2, and bk+3 and six
edges ak+1ak+2, ak+1bk+2, ak+1bk+3, ak+2bk+2, ak+2bk+3, and bk+2bk+3, and

– let Tk arise from Q̃k by adding three vertices ak+2, bk+2, and bk+3 and six
edges ak+1ak+2, ak+1bk+2, ak+1bk+3, ak+2bk+2, ak+2bk+3, and bk+2bk+3.

See Figures 5 and 6 for an illustration.
For k ∈ N, the two vertices ak+1 and bk+1 are called the special vertices of Qk

and Q̃k, respectively.

Lemma 5. The graphs Rk, Sk, and Tk for k ∈ N are minimal forbidden induced
subgraphs for G.

4 Properties of Maximal Cliques

Throughout this section, let G be a fixed connected twin-free interval graph. It
is well-known [8] that there is a linear ordering of the maximal cliques of G,
say C = (C1, . . . , Cq), such that every vertex of G belongs to maximal cliques
that are consecutive in that ordering, that is, for every vertex u of G, there are
indices 	(u) and r(u) with

{i | 1 ≤ i ≤ q and u ∈ Ci} = {i | 	(u) ≤ i ≤ r(u)}.

Note that this linear ordering is unique up to reversal and that the number c(u)
of distinct maximal cliques of G that contain u equals r(u) + 1− 	(u). Hence a
vertex u of G is simplicial if and only if c(u) = 1 if and only if 	(u) = r(u).

If C and D are distinct maximal cliques of G, then C \D and D \C are both
not empty, that is, for every j ∈ {1, . . . , q}, there are vertices u and v such that
r(u) = 	(v) = j. This also implies that C1 and Cq contain simplicial vertices.

Note that, since G is twin-free, there are no two distinct vertices u and v with
	(u) = 	(v) and r(u) = r(v).
The purpose of the present section is to derive the following structural properties
of the sequence C that are implied by forbidding certain induced subgraphs from
Section 3.

Integral Mixed Unit Interval Graphs 501

(C1) c(u) ≤ 3 for every vertex u of G.
(C2) There are no two vertices u and v of G with c(u) = c(v) = 3 and r(v) −

r(u) = 1.

Lemma 6. Let G, C, and 	(u), r(u), and c(u) for every vertex u of G be as
above.

(i) If G is {R0, D1, D2, D3, D4}-free, then (C1) holds.
(ii) If G is {D5, D6, D7}-free, then (C2) holds.

Proof. (i) For contradiction, we assume that c(u1) ≥ 4 for some vertex u1 of G.
Let i = 	(u1). Note that r(u1) ≥ i + 3. Let the vertices u2, u3, u4, and u5 be
such that r(u2) = i, 	(u3) = i + 3, r(u4) = i + 1, and 	(u5) = i + 2. Since G is
R0-free, we may assume, by symmetry, that 	(u4) ≤ i. Let the vertex u6 be such
that 	(u6) = i+ 1.

First, we assume that r(u5) = i + 2. Since G is R0-free, this implies r(u6) ≥
i + 2. If r(u6) = i + 2, then G[{u1, . . . , u6}] is D1, and, if r(u6) ≥ i + 3, then
G[{u1, u3, . . . , u6}] is D3, which is a contradiction. Hence we may assume that
r(u5) ≥ i+ 3. Let the vertex u7 be such that r(u7) = i+ 2.

If r(u6) = i + 2, then G[{u1, . . . , u6}] is D2, which is a contradiction. If
r(u6) ≥ i+ 3, then G[{u1, u3, u5, u6, u7}] is D4, which is a contradiction. Hence
we may assume that r(u6) = i + 1 and, by symmetry, 	(u7) = i + 2. Now
G[{u1, u2, u3, u6, u7}] is R0, which is a contradiction. This completes the proof
of (i).

(ii) For contradiction, we assume that the vertices u1 and u2 are such that
c(u1) = c(u2) = 3 and r(u2) = r(u1) + 1.

Let i = 	(u1). Let the vertices u3, u4, u5, and u6 be such that r(u3) = i,
	(u4) = i + 3, r(u5) = i + 1, and 	(u6) = i + 2. Now G[{u1, . . . , u6}] is one of
the graphs D5, D6, and D7, which is a contradiction. This completes the proof
of (ii).

5 The Representation Algorithm

Throughout this section, let G be a fixed connected twin-free interval graph that
is not a clique. Let C = (C1, . . . , Cq) and 	(u), r(u), and c(u) for every vertex u
of G be as in the first paragraph of Section 4. Since G is not a clique, we have
q ≥ 2.

In this section, we describe and analyze the algorithm IntMixUniIntRep that,
given C as input, produces a function I : V (G) → U such that 	(I(u)) ∈ Z
for every vertex u of G. We prove that I is an integral U-representation of G
provided that C satisfies certain structural properties and G does not contain
certain induced subgraphs. The algorithm works essentially in two phases:

– In a first phase, the algorithm determines a path P : v0 . . . vk+1 in G (cf.
ClosedVertices). To the vertices of this path it assigns the intervals I(vi) =
[i, i+ 1] for i ∈ {0, . . . , k + 1} (cf. line 2 of IntMixUniIntRep).

502 V.B. Le and D. Rautenbach

– In a second phase, it processes the maximal cliques of G according to the
ordering given by C (cf. line 3 of IntMixUniIntRep). When it processes the
maximal clique Ci, then I(u) is defined for all vertices u of G with 	(u) = i,
that is, it specifies the unit interval for those vertices that appear in Ci for
the first time and do not belong to P . (cf. line 4 of IntMixUniIntRep).

Recall that a vertex u is simplicial if and only if c(u) = 1.

Procedure ClosedVertices

1. let v0 be a simplicial vertex in C1

2. i := 0; j := 1
3. repeat
4. i := i+ 1
5. let vi be a vertex in Cj \ {v0, . . . , vi−1} with maximum r(v)
6. j := r(vi)
7. until j = q
8. k := i
9. let vk+1 be a simplicial vertex in Cq

If i ∈ {0, . . . , k − 1}, then r(vi) < q and the connectivity of G implies r(vi+1) >
r(vi). This implies that ClosedVertices necessarily terminates. Clearly, by the
choice of the vertices, P : v0v1 . . . vk+1 is a path in G.

Lemma 7. If C satisfies (C1) and (C2), then the vertices v0, . . . , vk+1 selected by
ClosedVertices satisfy the following properties.

(i) r(vi) = 	(vi+1) for i ∈ {0, . . . , k}.
(ii) The vertices v0, . . . , vk+1 are uniquely determined.

(iii) Each maximal clique Cj of G contains one or two vertices from V (P).
Furthermore,

• if Cj contains only one vertex from V (P), say vi, then j ∈ {2, . . . , q−1},
	(vi) = j − 1, and r(vi) = j + 1, and

• if Cj contains two vertices from V (P), then Cj ∩ V (P) = {vi, vi+1} for
some i ∈ {0, . . . , k} and r(vi) = 	(vi+1) = j.

(iv) c(u) ≤ 2 for every vertex u in V (G) \ V (P).

(v) For every j ∈ {1, . . . , q}, there are at most two vertices u with 	(u) =
j that do not belong V (P), that is, |Cj \ (Cj−1 ∪ V (P))| ≤ 2 for every
j ∈ {1, . . . , q}. Furthermore, if Cj \ (Cj−1 ∪ V (P)) contains two distinct
vertices u and v for some j ∈ {1, . . . , q}, then j ∈ {2, . . . , q − 1} and
{c(u), c(v)} = {1, 2}.

Integral Mixed Unit Interval Graphs 503

Proof. (i) For i = 0 or i = k, the desired statement follows easily because v0 and
vk+1 are simplicial vertices with 	(v0) = r(v0) = 1 and 	(vk+1) = r(vk+1) = q.
Now let i ∈ {1, . . . , k−1}. By line 5 of ClosedVertices, we have r(vi) ≥ 	(vi+1).
Therefore, for contradiction, we assume that r(vi) > 	(vi+1). As noted above, we
have r(vi+1) > r(vi). By the choice of vi, this implies 	(vi) < 	(vi+1). By (C1) and
since G is twin-free, this implies that c(vi) = c(vi+1) = 3 and r(vi) = 	(vi+1)+1,
which yields a contradiction to (C2).

(ii) Since G is twin-free, each of the cliques C1 and Cq contains exactly one
simplicial vertex, which implies that v0 and vk+1 are uniquely determined. If vi
has already been determined and r(vi) < q, then i ≤ k. Now part (i) and the
twin-freeness of G imply that vi+1 is uniquely determined.

(iii) This follows immediately from part (i) and the observation r(vi+1) > r(vi)
for i ∈ {0, . . . , k − 1}.

(iv) In view of (C1), we may assume, for contradiction, that c(u) = 3 for some
u ∈ V (G) \ V (P). Let j = 	(u).

If there is exactly one vertex vi from V (P) with vi ∈ Cj , then part (iii) implies
	(vi) < j < r(vi). This implies c(vi) = 3 and r(u) = r(vi) + 1, which yields a
contradiction to (C2).

If there are two vertices from V (P) in Cj , then part (iii) implies that Cj ∩
V (P) = {vi, vi+1} for some i ∈ {0, . . . , k} such that j = 	(vi+1). Since G is
twin-free, this implies c(vi+1) ≤ 2, which yields a contradiction to the choice of
vi+1.

(v) This follows from part (iv) and the twin-freeness of G.

Lemma 8. Let C satisfy (C1) and (C2) and let I be the function defined by
IntMixUniIntRep.

(i) For every two distinct vertices u and v of G, if {u, v} ∩ V (P) 	= ∅, then
uv ∈ E(G) if and only if I(u) ∩ I(v) 	= ∅.

(ii) For every two distinct vertices u and v of G, if uv ∈ E(G), then
I(u) ∩ I(v) 	= ∅.

Lemma 9. Let C satisfy (C1) and (C2). Just after an execution of line 16 of
IntMixUniIntRep that defines I(u), there is an induced subgraph H of G such
that

– 	(v) < 	(u) for every v ∈ V (H) \ {u, vi+1}, that is, I(v) is already defined
for every vertex v of H,

– u, vi, vi+1 ∈ V (H),
– H is

• either K4,
• or Qk for some k ∈ N such that u and vi+1 are the special vertices of H,
• or Q̃k for some k ∈ N such that u and vi+1 are the special vertices of H.

Proof. We prove the statement by induction on j where j and i are as in the
considered execution of line 16 of IntMixUniIntRep.

504 V.B. Le and D. Rautenbach

Algorithm IntMixUniIntRep

1. run ClosedVertices to compute P : v0 . . . vk+1

2. for i := 0 to k + 1 do I(vi) := [i, i+ 1]
3. for j := 1 to q do
4. for each u ∈ V (G) \ V (P) with �(u) = j do
5. if

∣∣Cj ∩ V (P)
∣∣ = 1 then

6. let Cj ∩ V (P) = {vi} for some i ∈ {0, . . . , k + 1}
7. if u is simplicial
8. then I(u) := (i, i+ 1)
9. else I(u) := (i, i+ 1]

10. endif
11. if

∣∣Cj ∩ V (P)
∣∣ = 2 then

12. let Cj ∩ V (P) = {vi, vi+1} for some i ∈ {0, . . . , k}
13. if u is simplicial then
14. if there is no v ∈ V (G) \ V (P) with �(I(v)) = i
15. then I(u) := (i, i+ 1]
16. else I(u) := [i+ 1, i+ 2)
17. else I(u) := [i+ 1, i+ 2)
18. endif
19. endfor
20. endfor

In view of line 14 of IntMixUniIntRep, just before the considered execution of
line 16 of IntMixUniIntRep, there is a vertex v ∈ V (G)\V (P) with 	(I(v)) = i,
which implies that 	(v) < 	(u) and j, i ≥ 1. By Lemma 7, we have 	(vi) ∈
{j−1, j−2}. By Lemma 8, the vertex v is adjacent to vi, that is, v and vi both lie
in a maximal clique ofG. If 	(v) < 	(vi), then, by Lemma 7, 	(vi−1) = 	(v)−1 and
	(vi) = 	(v)+1 and in view of IntMixUniIntRepwe obtain I(v) = (i−1, i], which
is a contradiction. Hence 	(v) ≥ 	(vi). If v ∈ Cj , then H = G[{vi, vi+1, u, v}] is
K4. Hence, we may assume that r(v) < j = 	(u).

If 	(v) > 	(vi), then, by Lemma 7, 	(vi) = j − 2, 	(v) = r(v) = j − 1, and
|Cj−1 ∩ V (P)| = 1. Now H = G[{vi−1, vi, vi+1, v, u}] is Q1 such that u and vi+1

are the special vertices of H . Hence we may assume that 	(v) = 	(vi).
If c(v) = 2, then, by Lemma 7, 	(vi) = j − 2, 	(v) = j − 2, r(v) = j − 1, and

|Cj−2 ∩ V (P)| = 2. Let the vertex w be such that 	(w) = j − 1. If r(w) = j − 1,
then H = G[{vi−1, vi, vi+1, w, u}] is Q1 such that u and vi+1 are the special
vertices of H . If r(w) > j−1, then H = G[{vi, vi+1, w, u}] is K4. Hence, we may
assume that c(v) = 1.

Since 	(I(v)) = i, we obtain that I(v) was defined by an earlier execution of
line 16 of IntMixUniIntRep. By induction, this implies that, just after I(v) was
defined, there was an induced subgraph H ′ of G with the desired properties.
Now H = G[{V (H ′) ∪ {u, vi+1}}] has the desired properties.

Lemma 10. Let C satisfy (C1) and (C2) and let I be the function defined by
IntMixUniIntRep.

Integral Mixed Unit Interval Graphs 505

If G is {K5} ∪ {Ri | i ∈ N} ∪ {Si | i ∈ N0} ∪ {Ti | i ∈ N0}-free, then I is an
integral U-representation of G.

6 Harvest

In this section we prove our two main results.

Theorem 4. If G is a twin-free connected interval graph that is not a clique,
and C is as in the first paragraph of Section 4, then the following statements are
equivalent.

(1) G is {D1, . . . , D7}∪{K5}∪{Ri | i ∈ N0}∪{Si | i ∈ N0}∪{Ti | i ∈ N0}-free.
(2) C satisfies (C1) and (C2) and G is {K5} ∪ {Ri | i ∈ N} ∪ {Si | i ∈ N0} ∪ {Ti |

i ∈ N0}-free.
(3) G has an integral U-representation.

Proof. By Lemma 6, the first statement implies the second. By Lemma 10, the
second statement implies the third. Finally, by Lemmas 1, 2, 3, 4, and 5, the
third statement implies the first.

It is straighforward yet tedious to derive from Theorem 4 the complete list of all
minimal forbidden induced subgraphs of integral mixed unit interval graphs by
considering the forbidden induced subgraphs of interval graphs and all minimal
twin-free supergraphs of the graphs mentioned in (1) of Theorem 4. We leave
the details to the reader.

Furthermore, Theorem 4 directly implies Theorem 3: Let G be a diamond-free
graph satisfying (1) of Theorem 3. Note that we may assume that G is twin-free.
This easily implies that G is K4-free. Hence G satisfies (1) in Theorem 4, and
therefore G satisfies (2) in Theorem 3. In Theorem 3, the implication (2) ⇒ (3) is
trivial and the implication (3) ⇒ (1) follows by noting that all Rk are forbidden
induced subgraphs even for the class of U-graphs.

Theorem 5. There is a quadratic-time algorithm that, given an interval graph
G, decides if G has an integral U-representation, and if so, outputs such a rep-
resentation for G.

Proof. Let G be an interval graph. Since all twins of G can be detected in time
O(|V (G)|2), we may assume that G is twin-free. Note that a linear ordering
C = (C1, . . . , Cq) of the maximal cliques of G can be computed in linear time
(cf. [10]). If some Cj has more than four vertices, G does not have an integral
U-representation (cf. Lemma 2). Otherwise, we compute c(u), 	(u), and r(u) for
u ∈ V (G) in linear time in an obvious way, and run IntMixUniIntRep to get
the function I. Note that, since |Cj | ≤ 4 for all j, IntMixUniIntRep has linear
running time. Now we test whether I is an intersection representation of G or
not by constructing the graph H = (V (G), {uv | I(u) ∩ I(v) 	= ∅}) and checking
if G = H , that is, checking NG(v) = NH(v) for all v ∈ V (G). This can be
done in time O(|V (G)|2). If G = H , then I is an integral U-representation of G.
Otherwise, Lemma 10 and Theorem 4 imply that G has no such a representation.

506 V.B. Le and D. Rautenbach

References

1. Halldórsson, M.M., Patt-Shamir, B., Rawitz, D.: Online Scheduling with Interval
Conflicts, in. In: Proceedings of the 28th Annual Conference on Theoretical Aspects
of Computer Science (STACS), pp. 472–483 (2011)

2. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA (1999)

3. Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: Simple linear time
recognition of unit interval graphs. Inf. Process. Lett. 55, 99–104 (1995)

4. Corneil, D.G., Olariu, S., Stewart, L.: The ultimate interval graph recognition
algorithm? (Extended abstract). In: Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 175–180 (1998)

5. Corneil, D.G.: A simple 3-sweep LBFS algorithm for the recognition of unit interval
graphs. Discrete Appl. Math. 138, 371–379 (2004)

6. Dourado, M.C., Le, V.B., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: Mixed unit
interval graphs. manuscript (2011)

7. Frankl, P., Maehara, H.: Open-interval graphs versus closed-interval graphs. Dis-
crete Math. 63, 97–100 (1987)

8. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J.
Math. 15, 835–855 (1965)

9. Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against
physical mapping of DNA. J. Comput. Biol. 2, 139–152 (1995)

10. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, Amsterdam, The
Netherlands. Annals of Discrete Mathematics, vol. 57 (2004)

11. Heggernes, P., Suchan, K., Todinca, I., Villanger, Y.: Characterizing Minimal In-
terval Completions. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393,
pp. 236–247. Springer, Heidelberg (2007)

12. Hell, P., Shamir, R., Sharan, R.: A fully dynamic algorithm for recognizing and
representing proper interval graphs. SIAM J. Comput. 31, 289–305 (2001)

13. Herrera de Figueiredo, C.M., Meidanis, J., Picinin de Mello, C.: A linear-time
algorithm for proper interval graph recognition. Inf. Process. Lett. 56, 179–184
(1995)

14. Kaplan, H., Shamir, R.: Pathwidth, bandwidth, and completion problems to proper
interval graphs with small cliques. SIAM J. Comput. 25, 540–561 (1996)

15. Kendall, D.G.: Incidence matrices, interval graphs, and seriation in archaeology.
Pacific J. Math. 28, 565–570 (1969)

16. Kratsch, D., Stewart, L.: Approximating Bandwidth by Mixing Layouts of Interval
Graphs. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 248–258.
Springer, Heidelberg (1999)

17. Krokhin, A.A., Jeavons, P.G., Jonsson, P.: The Complexity of Constraints on Inter-
vals and Lengths. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. STACS
2002, pp. 443–454. Springer, Heidelberg (2002)

18. Papadimitriou, C.H., Yannakakis, M.: Scheduling interval-ordered tasks. SIAM J.
Comput. 8, 405–409 (1979)

19. Rautenbach, D., Szwarcfiter, J.L.: Unit Interval Graphs - A Story with Open Ends.
In: European Conference on Combinatorics, Graph Theory and Applications (Eu-
roComb 2011). Electronic Notes in Discrete Mathematics, vol. 38, pp. 737–742
(2011)

20. Roberts, F.S.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph
Theory, pp. 139–146. Academic Press (1969)

Complementary Vertices

and Adjacency Testing in Polytopes

Benjamin A. Burton�

School of Mathematics and Physics, The University of Queensland,
Brisbane QLD 4072, Australia

bab@maths.uq.edu.au

Abstract. Our main theoretical result is that, if a simple polytope has
a pair of complementary vertices (i.e., two vertices with no facets in
common), then it has a second such pair. Using this result, we improve
adjacency testing for vertices in both simple and non-simple polytopes:
given a polytope in the standard form {x ∈ Rn |Ax = b and x ≥ 0} and
a list of its V vertices, we describe an O(n) test to identify whether any
two given vertices are adjacent. For simple polytopes this test is perfect;
for non-simple polytopes it may be indeterminate, and instead acts as a
filter to identify non-adjacent pairs. Our test requires an O(n2V + nV 2)
precomputation, which is acceptable in settings such as all-pairs adja-
cency testing. These results improve upon the more general O(nV) com-
binatorial and O(n3) algebraic adjacency tests from the literature.

Keywords: polytopes, complementary vertices, disjoint facets, adjacent
vertices, vertex enumeration, double description method.

1 Introduction

Two vertices of a polytope are complementary if they do not belong to a common
facet. Complementary vertices play an important role in the theory of polytopes;
for instance, they provide the setting for the d-step conjecture [9,10] (now re-
cently disproved [15]), and in the dual setting of disjoint facets they play a role
in the classification of compact hyperbolic Coxeter polytopes [6]. In game the-
ory, Nash equilibria of bimatrix games are described by an analogous concept of
complementary vertices in pairs of polytopes [8,16].

Our first main contribution, presented in Section 2, relates to the minimal
number of complementary vertex pairs. Many polytopes have no pairs of com-
plementary vertices at all (for instance, any neighbourly polytope). However, we
prove here that if a simple polytope P of dimension d > 1 has at least one pair
of complementary vertices, then it must have at least two such pairs.

The proof involves the construction of paths through a graph whose nodes
represent pairs of complementary or “almost complementary” vertices of P . In
this sense it is reminiscent of the Lemke-Howson algorithm for constructing

� Supported by the Australian Research Council (project DP1094516).

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 507–518, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

508 B.A. Burton

Nash equilibria in bimatrix games [12], although our proof operates in a less
well-controlled setting. We discuss this relationship further in Section 4.

Our second main contribution, presented in Section 3, is algorithmic: we use
our first theorem to build a fast adjacency test. Specifically, given a polytope in
the standard form P = {x ∈ Rn |Ax = b and x ≥ 0} with V vertices, we begin
with an O(n2V + nV 2) time precomputation step, after which we can test any
two vertices for adjacency in O(n) time. If P is simple (which the algorithm can
also identify) then this test always gives a precise response; otherwise it may be
indeterminate but it can still assist in identifying non-adjacent pairs.

The key idea is, for each pair of vertices u, v ∈ P , to compute the join u ∨ v;
that is, the minimal face containing both u and v. If P is simple then our theorem
on complementary vertices shows that u∨v = u′∨v′ for a second pair of vertices
u′, v′. Our algorithm then identifies such “duplicate” joins.

Although the precomputation is significant, if we are testing all
(
V
2

)
pairs

of vertices for adjacency then it does not increase the overall time complexity.
Our O(n) test then becomes extremely fast, outperforming the standard O(nV)
combinatorial and O(n3) algebraic tests from the literature [7]. Even in the non-
simple setting, our test can be used as a fast pre-filter to identify non-adjacent
pairs of vertices, before running the more expensive standard tests on those pairs
that remain.

In Section 4 we discuss these performance issues further, as well as the appli-
cation of these ideas to the key problem of polytope vertex enumeration.

All time complexities are measured using the arithmetic model of computa-
tion, where we treat each arithmetical operation as constant-time.

We briefly remind the reader of the necessary terminology. Following Ziegler
[17], we insist that all polytopes be bounded. A facet of a d-dimensional polytope
P is a (d − 1)-dimensional face, and two vertices of P are adjacent if they are
joined by an edge. P is simple if every vertex belongs to precisely d facets (i.e.,
every vertex figure is a (d−1)-simplex), and P is simplicial if every facet contains
precisely d vertices (i.e., every facet is a (d− 1)-simplex). As before, two vertices
of P are complementary if they do not belong to a common facet; similarly, two
facets of P are disjoint if they do not contain a common vertex.

2 Complementary Vertices

In this section we prove the main theoretical result of this paper:

Theorem 1. Let P be a simple polytope of dimension d > 1. If P has a pair of
complementary vertices, then P has at least two distinct pairs of complementary
vertices.

Note that these pairs of vertices are distinct, but need not be disjoint: they might
be of the form {u, v} and {u,w} for some vertices u, v, w ∈ P .

The proof of Theorem 1 involves an auxiliary graph, which we now describe.
To avoid confusion with vertices and edges of polytopes, we describe graphs in
terms of nodes and arcs. We do not allow graphs to have loops or multiple edges.

Complementary Vertices and Adjacency Testing in Polytopes 509

Definition 2 (Auxiliary graph). Let P be a simple polytope of dimension
d > 1. We construct the auxiliary graph Γ (P) as follows:

– The nodes of Γ (P) are unordered pairs of vertices {u, v} of P where u, v
have at most one facet in common. We say the node {u, v} is of type A if
the vertices u, v ∈ P are complementary (they have no facets in common),
or of type B otherwise (they have precisely one facet in common).

– The arcs of Γ (P) join nodes of the form {u, x} and {u, y}, where x and y
are adjacent vertices of P , and where no single facet of P contains all three
vertices u, x, y.

A

B C

D

E

F G

H

{A, G}

{D, F}{C, E}

{B, H}

{A, C}

{A, H}

{D, E}

{E, G}

{C, H}

{B, G}

{C, F}

{B, E}

{F, H}{A, F}

{D, G} {B, D}

Type A

Type B

Fig. 1. A polytope P and the corresponding auxiliary graph Γ (P)

Figure 1 illustrates this graph for the case where P is a cube. Informally, each
arc of Γ (P) modifies a node by “moving” one of its two vertices along an edge
of P , so that if the two vertices lie on a common facet F then this movement is
away from F . More formally, we can characterise the arcs of Γ (P) as follows:

Lemma 3. Let ν = {u, v} be a node of Γ (P) as outlined above.

(i) If ν is of type A, there are precisely 2d arcs meeting ν. These include d
arcs that connect ν with {u, x} for every vertex x adjacent to v in P , and
d arcs that connect ν with {y, v} for every vertex y adjacent to u in P .

(ii) If ν is of type B, there are precisely two arcs meeting ν. Let F be the unique
facet of P containing both u and v. Then these two arcs join ν with {u, x}
and {y, v}, where x is the unique vertex of P adjacent to v for which x /∈ F ,
and y is the unique vertex of P adjacent to u for which y /∈ F .

Proof. We consider the type A and B cases in turn.

(i) Let ν = {u, v} be of type A, and let x be any vertex of P adjacent to v.
Since ν is of type A, u and v have no facets in common. Since P is simple,
at most one facet of P contains x but not v. Therefore u and x have at
most one facet in common, and so {u, x} is a node of Γ (P).

510 B.A. Burton

Since {u, x} is a node of Γ (P) and no facet contains both u and v, it follows
that ν = {u, v} and {u, x} are joined by an arc. A similar argument applies
to nodes {y, v} where y is any vertex of P adjacent to u. Because P is
simple there are precisely d vertices adjacent to v and d vertices adjacent
to u, yielding precisely 2d arcs of this type.

(ii) Now let ν = {u, v} be of type B, and let F be the unique facet of P
containing both u and v. If there is an arc from ν to any node of the form
{u, x}, it is clear from Definition 2 that we must have x adjacent to v and
x /∈ F . Because P is simple, there is precisely one x with these properties.

We now show that an arc from ν to {u, x} does indeed exist. Because P is
simple, at most one facet of P contains x but not v. The vertex v in turn
has only the facet F in common with u; since x /∈ F it follows that u and
x have at most one facet in common. Therefore {u, x} is a node of Γ (P).
Because x /∈ F there is no facet containing all of u, v and x, and so the arc
from ν to {u, x} exists.

A similar argument applies to the arc from ν to {y, v}, yielding precisely
two arcs that meet ν as described in the lemma statement.

To finish, we note that every vertex belongs to d > 1 facets, and so every node
{u, v} of Γ (P) has u 	= v. This ensures that we do not double-count arcs in our
argument; that is, the 2d arcs in case (i) join ν to 2d distinct nodes of Γ (P),
and likewise the two arcs in case (ii) join ν to two distinct nodes of Γ (P). ��

Our strategy for proving Theorem 1 is to show that, if we follow any path from
a type A node of Γ (P), we must arrive at some different type A node; that is,
we obtain a new pair of complementary vertices. The details are as follows.

Proof of Theorem 1. To establish Theorem 1, we must prove that if Γ (P) con-
tains at least one type A node, then it contains at least two type A nodes.

Let ν be a type A node, and let α be any arc meeting ν. Since every type B
node has degree two (by Lemma 3), this arc α begins a well-defined path through
Γ (P) that passes through zero or more type B nodes in sequence, until either
(a) it arrives at a new type A node ν′, or (b) it returns to the original type A
node ν and becomes a cycle (see Figure 2). Case (a) gives us the desired result;
our task is to prove that case (b) is impossible.

Type A

Type B

Case (a) Case (b)

ν
ν

ν′

μ1

μ1

μ2μ2

μk

μk α
α

Fig. 2. Following a path from the type A node ν

Complementary Vertices and Adjacency Testing in Polytopes 511

Suppose then that case (b) occurs, and there is a cycle that passes through
nodes ν, μ1, μ2, . . . , μk, ν in turn, where ν is type A and μ1, . . . , μk are type B.
Since Γ (P) is a graph with no loops or multiple edges, we have k ≥ 2. Since
deg(μi) = 2, the nodes μ1, . . . , μk are all distinct.

For any node η = {u, v} of Γ (G), let Φ(η) denote the set of all facets of P
that contain either u or v. Because P is simple, Definition 2 gives |Φ(η)| = 2d if
η is type A, or |Φ(η)| = 2d− 1 if η is type B.

We now show that Φ(μ1) = Φ(μ2) = . . . = Φ(μk). Consider two adjacent
nodes μi = {x, y} and μi+1 = {x, z} along our cycle. Because y and z are
adjacent vertices of the simple polytope P , there is only one facet F for which
y ∈ F but z /∈ F . By Lemma 3, this facet F must be the unique facet containing
both x and y. Therefore every facet that contains either x or y must also contain
either x or z, and we have Φ(μi) ⊆ Φ(μi+1). Because |Φ(μi)| = |Φ(μi+1)| = 2d−1
we have Φ(μi) = Φ(μi+1), and by induction Φ(μ1) = Φ(μ2) = . . . = Φ(μk).

Consider now the type A node ν that begins and ends the cycle. Let ν = {u, v},
and without loss of generality let μ1 = {u, x} for some vertex x ∈ P . Because
|Φ(μ1)| = 2d− 1 < 2d = |Φ(ν)|, there must be some facet F for which F ∈ Φ(ν)
but F /∈ Φ(μ1); it follows then that v ∈ F but x /∈ F .

Moving to the other end of the cycle: since μk is adjacent to ν in Γ (P), we
have either μk = {u, x′} where x′ is adjacent to v in P , or else μk = {x′, v}
where x′ is adjacent to u in P . The second option is not possible because v ∈
F /∈ Φ(μ1) = Φ(μk); therefore μk = {u, x′} for some x′ adjacent to v.

We now know that both vertices x and x′ are adjacent to v; moreover, since
F /∈ Φ(μ1) = Φ(μk) we have x, x′ /∈ F . However, P is a simple polytope with
v ∈ F , and so there is only one vertex adjacent to v that is not in F . Therefore
x = x′ and μ1 = μk, contradicting the earlier observations that k ≥ 2 and the
nodes μ1, . . . , μk are all distinct. This completes the proof of Theorem 1. ��

Remark. The proof of Theorem 1 is algorithmic: given a simple polytope P
of dimension d > 1 and a pair of complementary vertices u, v ∈ P , it gives an
explicit algorithm for locating a second pair of complementary vertices.

In essence, we arbitrarily replace one of the vertices u with an adjacent vertex
u′, and then repeatedly adjust this pair of vertices according to Lemma 3 part (ii)
until we once again reach a pair of complementary vertices. For each adjustment,
Lemma 3 part (ii) gives two options (corresponding to the two arcs that meet
a type B node); we always choose the option that leads us “forwards” to a new
pair, and not “backwards” to the pair we had immediately before.

The proof above ensures that we will eventually reach a complementary pair
of vertices again, and that these will not be the same as the original pair u, v.

Passing to the dual polytope, Theorem 1 gives us an immediate corollary:

Corollary 4. Let P be a simplicial polytope of dimension d > 1. If P has a pair
of disjoint facets, then P has at least two distinct pairs of disjoint facets.

We finishing by showing that the “simple” and “simplicial” conditions are nec-
essary in Theorem 1 and Corollary 4.

512 B.A. Burton

Observation 5. The triangular bipyramid (Figure 3, left) is a non-simple poly-
tope of dimension d = 3 with precisely one pair of complementary vertices (the
apexes at the top and bottom, shaded in the diagram).

Its dual is the triangular prism (Figure 3, right), which is a non-simplicial
polytope of dimension d = 3 with precisely one pair of disjoint facets (the trian-
gles at the top and bottom, shaded in the diagram).

Fig. 3. A triangular bipyramid (left) and a triangular prism (right)

These constructions are easily generalised. For instance, we can build a non-
simple bipyramid over a neighbourly polytope: the two apexes form the unique
pair of complementary vertices, and all other pairs of vertices are adjacent. Fe-
likson and Tumarkin provide further examples in the dual setting [6], involving
non-simplicial Coxeter polytopes with precisely one pair of disjoint facets.

3 Adjacency Testing

In this section we prove our main algorithmic result, which uses Theorem 1 to
identify simple polytopes and test for adjacent vertices. Throughout this section
we work with polytopes of the form

P = {x ∈ Rn |Ax = b and x ≥ 0}, (1)

where A is some n-column matrix. This form is standard in mathematical pro-
gramming, and appears in key applications of vertex enumeration [4,5]. Note
that the dimension of P is not immediately clear from (1), although n− rankA
gives an upper bound; likewise, it is not immediately clear whether P is simple.

We recall some standard terminology from polytope theory: if F and G are
faces of the polytope P , then the join F ∨G is the unique smallest-dimensional
face that contains both F and G as subfaces. For example, recall the cube from
Figure 1, and consider the edges AD and DC . Their meet AD∧DC is the vertex
D (where they intersect), and their join AD ∨ DC is the square facet ABCD
(the smallest face containing both edges).

Note that the join may be the entire polytope P (for instance, this happens
if the faces F and G are complementary vertices).

Complementary Vertices and Adjacency Testing in Polytopes 513

Our main algorithmic result is the following:

Theorem 6. Consider any polytope P = {x ∈ Rn |Ax = b and x ≥ 0}, and
suppose we have a list of all vertices of P , with V vertices in total. Then, after
a precomputation step that requires O(n2V + nV 2) time and O(nV 2) space:

– we know immediately the dimension of P and whether or not P is simple;
– if P is simple then, given any two vertices u, v ∈ P , we can test whether or

not u and v are adjacent in O(n) time;
– if P is not simple then, given any two vertices u, v ∈ P , we may still be able

to identify that u and v are non-adjacent in O(n) time.

We discuss the importance and implications of this result in Section 4; in the
meantime, we devote the remainder of this section to proving Theorem 6.

Our overall strategy is to use our main theoretical result (Theorem 1) to char-
acterise and identify adjacent vertices. As a first step, we describe complementary
vertices in terms of joins:

Lemma 7. Let u and v be distinct vertices of a polytope P . Then u and v are
complementary vertices if and only if u ∨ v = P .

Proof. If u ∨ v 	= P then there is some facet F for which u ∨ v ⊆ F ; therefore
u, v ∈ F , and u and v cannot be complementary.

On the other hand, if u ∨ v = P then there is no facet F for which u, v ∈ F
(otherwise we would have u∨v ⊆ F). Therefore u and v are complementary. ��

Using this lemma, we can now make a direct link between Theorem 1 and adja-
cency testing in polytopes:

Theorem 8. Let P be a simple polytope, and let F be a face of P . Then F is
an edge if and only if there is precisely one pair of distinct vertices u, v ∈ P for
which F = u ∨ v.

If P is any polytope (not necessarily simple), then the forward direction still
holds: if F is an edge then there must be precisely one pair of distinct vertices
u, v ∈ P for which F = u ∨ v.

Proof. The forward direction is straightforward: let F be an edge of any (simple
or non-simple) polytope P , and let the endpoints of F be the vertices u and v.
It is clear that F = u∨ v, and because F contains no other vertices it cannot be
expressed as the join x ∨ y for any other pair of distinct vertices x, y.

We now prove the reverse direction in the case where P is a simple polytope.
Let F be a face of P , and suppose that F is not an edge. If dimF < 1 then F
contains at most one vertex, and so there can be no pairs of distinct vertices u, v
for which F = u ∨ v.

Otherwise dimF > 1; moreover, since P is a simple polytope then the face F
is likewise simple when considered as a polytope of its own. Hence we can invoke
Theorem 1 to finish the proof. If F = u∨v for distinct vertices u, v, then Lemma 7
shows that u, v are complementary in the “sub-polytope” F . By Theorem 1 there
must be another pair of complementary vertices {u′, v′} 	= {u, v} in F , and by
Lemma 7 we have F = u′ ∨ v′ as well. ��

514 B.A. Burton

To make the join operation accessible to algorithms, we describe faces of poly-
topes using zero sets. Fukuda and Prodon [7] define zero sets for points in P ;
here we extend this concept to arbitrary faces.

Definition 9 (Zero set). Consider any polytope of the form P = {x ∈ Rn |
Ax = b and x ≥ 0}, and let F be any face of P . Then the zero set of F , denoted
Z(F), is the set of coordinate positions that take the value zero throughout F .
That is, Z(F) = {i |xi = 0 for all x ∈ F} ⊆ {1, 2, . . . , n}.

Zero sets are efficient for computation: each can be stored and manipulated using
a bitmask of size n, which for moderate problems (n ≤ 64) involves just a single
machine-native integer and fast bitwise CPU instructions. Joins, equality and
subface testing all have natural representations using zero sets:

Lemma 10. Let F and G be non-empty faces of the polytope P . Then:

– F ⊆ G if and only if Z(F) ⊇ Z(G);

– F = G if and only if Z(F) = Z(G);

– the join has zero set Z(F ∨G) = Z(F) ∩ Z(G).

Proof. These are all consequences of the fact that every non-empty face F ⊆ P
is the intersection of P with all hyperplanes of the form xi = 0 where i ∈ Z(F).
See the full version of this paper for detailed proofs. ��

We now define the main data structure that we build during our precomputation
step in Theorem 6:

Definition 11 (Join map). Consider any polytope of the form P = {x ∈ Rn |
Ax = b and x ≥ 0}. The join map of P , denoted JP , is a map of the form
JP : 2{1,...,n} → Z≥0; that is, JP maps subsets of {1, . . . , n} to non-negative
integers. For each subset S ⊆ {1, . . . , n}, we define the image JP (S) to be the
number of pairs of distinct vertices {u, v} ∈ P for which Z(u ∨ v) = S.

The following result reformulates Theorem 8 in terms of the join map, and follows
immediately from Theorem 8 and Lemma 10.

Corollary 12. Let P be a simple polytope, and let u, v be vertices of P . Then
u and v are adjacent if and only if JP (Z(u) ∩ Z(v)) = 1.

If P is any polytope (not necessarily simple), then the forward direction still
holds: if u and v are adjacent then we must have JP (Z(u) ∩ Z(v)) = 1.

As a further corollary, the join map can be used to identify precisely whether or
not a polytope is simple:

Corollary 13. Let P be any polytope of dimension d. Then P is simple if and
only if, for every vertex u ∈ P , there are precisely d other vertices u′ ∈ P for
which JP (Z(u) ∩ Z(u′)) = 1.

Complementary Vertices and Adjacency Testing in Polytopes 515

Proof. If P is simple then, for each vertex u ∈ P , there are precisely d other
vertices u′ ∈ P adjacent to u. By Corollary 12 it follows that there are precisely
d other vertices u′ ∈ P for which JP (Z(u) ∩ Z(u′)) = 1.

If P is non-simple then there is some vertex u ∈ P that belongs to > d edges,
and so there are > d other vertices u′ ∈ P adjacent to u. By Corollary 12, we
have JP (Z(u) ∩ Z(u′)) = 1 for each of these adjacent vertices. ��

We now show that the join map enjoys many of the properties required for the
complexity bounds in Theorem 6:

Lemma 14. Consider any polytope P = {x ∈ Rn |Ax = b and x ≥ 0}, and
suppose we have a list of all vertices of P , with V vertices in total. Then we can
construct the join map JP in O(nV 2) time and O(nV 2) space. Once it has been
constructed, we can compute JP (S) for any set S ⊆ {1, . . . , n} in O(n) time.

Proof. We store the join map JP using a trie (also known as a prefix tree). This
is a binary tree of height n. Each leaf node (at depth n) represents some set
S ⊆ {1, . . . , n}, and stores the corresponding image JP (S). Each intermediate
node at depth k < n supports two children: a “left child” beneath which every
set S has k+1 /∈ S, and a “right child” beneath which every set S has k+1 ∈ S.

We optimise our trie by only storing leaf nodes for sets S with JP (S) ≥ 1, and
only storing intermediate nodes that have such leaves beneath them. Figure 4
illustrates the complete trie for an example map with n = 3.

Join map:
S { } {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
JP (S) 0 0 7 5 4 0 1 1

Root

1 ∈ S

3 ∈ S

2 ∈ S

1 ∉ S

3 ∉ S

2 ∉ S 2 ∈ S

3 ∉ S 3 ∈ S 3 ∈ SLeaves:

{1,2,3}
↦ 1

{3}
↦ 5

{2}
↦ 7

{2,3}
↦ 1

{1,2}
↦ 4

Set S:
Stored image:

Fig. 4. An example of a trie representing a join map for n = 3

Tries are fast to use: for any set S ⊆ {1, . . . , n}, the operations of looking
up the value of JP (S), inserting a new value of JP (S), or updating an existing
value of JP (S) are all O(n), since each operation requires us to follow a single
path from the root down to level n (possibly inserting new nodes as we go). For
further information on tries in general, see a standard text such as [11].

516 B.A. Burton

It is clear now that we can construct JP in O(nV 2) time: for each of the
(
V
2

)
pairs of vertices {u, v}, we construct the set S = Z(u∨v) = Z(u)∩Z(v) in O(n)
time (just test which coordinate positions are zero in both u and v), and then
perform anO(n) lookup for S in the trie. If S is present then we increment JP (S);
otherwise we perform an O(n) insertion to store the new value JP (S) = 1.

It is also clear that the trie consumes at most O(nV 2) space: because the
construction involves O(V 2) insertions we have O(V 2) leaf nodes, and since the
trie has depth n this gives O(nV 2) nodes in total.

Finally, for any set S ⊆ {1, . . . , n}, computing JP (S) involves a simple lookup
operation in the trie, which again requires O(n) time. ��

We are now ready to complete the proof of our main result, Theorem 6:

Proof of Theorem 6. The precomputation involves three stages:

(i) building the join map JP ;
(ii) computing dimP using a rank computation;
(iii) iterating through the join map to determine whether P is simple.

By Lemma 14, stage (i) requires O(nV 2) time and O(nV 2) space.
To compute the dimension in stage (ii) we select an arbitrary vertex v0 ∈ P ,

and build a (V − 1) × n matrix M whose rows are of the form v − v0 for each
vertex v 	= v0. It follows that dimP = rankM , and using standard Gaussian
elimination we can compute this rank in O(n2V) time and O(nV) space.

For stage (iii) we once again scan through all
(
V
2

)
pairs of vertices u, v, compute

Z(u)∩Z(v) for each in O(n) time, and use an O(n) lookup in JP to test whether
JP (Z(u) ∩ Z(v)) = 1. We can thereby identify whether or not, for each vertex
u ∈ P , there are precisely dimP other vertices u′ ∈ P for which JP (Z(u) ∩
Z(u′)) = 1; by Corollary 13 this tells us whether or not P is simple. The total
running time for this stage is O(nV 2).

Summing the three stages together, we find that our precomputation step
requires a total of O(n2V + nV 2) time and O(nV 2) space.

Once this precomputation is complete, it is clear from stages (ii) and (iii) that
we know immediately the dimension of P and whether or not P is simple.

Consider now any two vertices u, v ∈ P . As before, we can compute the set
Z(u)∩Z(v) in O(n) time, and using Lemma 14 we can evaluate JP (Z(u)∩Z(v))
in O(n) time. Now Corollary 12 tells us what we need to know: if P is simple then
u and v are adjacent if and only if JP (Z(u) ∩Z(v)) = 1, and if P is non-simple
but JP (Z(u)∩Z(v)) 	= 1 then we still identify that u and v are non-adjacent. ��

4 Discussion

As noted in the introduction, the proof of Theorem 1 is reminiscent of the Lemke-
Howson algorithm for constructing Nash equilibria [12]. The Lemke-Howson al-
gorithm operates on a pair of simple polytopes P and Q (best response polytopes
for a bimatrix game), each with precisely f = dimP + dimQ facets labelled

Complementary Vertices and Adjacency Testing in Polytopes 517

1, . . . , f , and locates vertices u ∈ P and v ∈ Q whose incident facet labels
combine to give the full set {1, . . . , f}. See [3,12] for details.

The Lemke-Howson algorithm can also be framed in terms of paths through
a graph Γ , where it can be shown that these paths yield a 1-factorisation of Γ .
One then obtains the corollary that the number of fully-labelled vertex pairs is
even; in particular, because there is always a “trivial” pair (0,0), there must be
a second pair (which gives to a Nash equilibrium).

In this paper our setting is less well controlled. We work with a single polytope
P , which means we must avoid transforming the pair of vertices {u, v} into the
identical pair {v, u}. Moreover, P may have arbitrarily many facets, which makes
the arcs of Γ (P) more difficult to categorise. In particular, we do not obtain any
such 1-factorisation or parity results. To illustrate this, Figure 5 shows that
both parities can occur: the cube (on the left) has four complementary pairs of
vertices, whereas the cube with one truncated vertex (on the right) has nine.

Fig. 5. Simple polytopes with (i) four, and (ii) nine complementary vertex pairs

Moving to Theorem 6: our O(n) time adjacency test is the fastest we can hope
for, since vertices require Ω(n) space to store (a consequence of the fact that
there may be exponentially many vertices [13]). In contrast, standard approaches
to adjacency testing use either an O(nV) “combinatorial test” (where we search
for a third vertex w ∈ u∨ v), or an O(n3) “algebraic test” (where we use a rank
computation to determine dim(u∨v)). See [7] for details of these standard tests.

If we are testing adjacency for all pairs of vertices, our total running time
including precomputation comes to O(n2V + nV 2), as opposed to O(nV 3) or
O(n3V 2) for the combinatorial and algebraic tests respectively. This is a signif-
icant improvement, given that V may be exponential in n.

The main drawback of our test is that it only guarantees conclusive results for
simple polytopes. Nevertheless, it remains useful in the general case: it can detect
when a polytope is simple, even if this is not clear from the initial representation
{x ∈ Rn |Ax = b and x ≥ 0}, and even in the non-simple setting it gives a fast
filter for eliminating non-adjacent pairs of vertices.

One application of all-pairs adjacency testing is in studying the graph of a
polytope; that is, the graph formed from its vertices and edges. Another key
application is in the vertex enumeration problem: given a polytope in the form
{x ∈ Rn |Ax = b and x ≥ 0}, identify all of its vertices. This is a difficult
problem, and it is still unknown whether there exists an algorithm polynomial
in the combined input and output size.

The two best-known algorithms for vertex enumeration are reverse search [1,2]
and the double description method [7,14], each with their own advantages and

518 B.A. Burton

drawbacks. The double description method, which features in several application
areas such as multiobjective optimisation [4] and low-dimensional topology [5],
inductively constructs a sequence of polytopes by adding constraints one at a
time. Its major bottleneck is in identifying pairs of adjacent vertices in each
intermediate polytope, and in this setting our fast all-pairs adjacency test can
be of significant practical use.

References

1. Avis, D.: A revised implementation of the reverse search vertex enumeration algo-
rithm. In: Polytopes—Combinatorics and Computation (Oberwolfach, 1997), DMV
Sem., vol. 29, pp. 177–198. Birkhäuser, Basel (2000)

2. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration
of arrangements and polyhedra. Discrete Comput. Geom. 8(3), 295–313 (1992)

3. Avis, D., Rosenberg, G.D., Savani, R., von Stengel, B.: Enumeration of Nash equi-
libria for two-player games. Econom. Theory 42(1), 9–37 (2010)

4. Benson, H.P.: An outer approximation algorithm for generating all efficient extreme
points in the outcome set of a multiple objective linear programming problem. J.
Global Optim. 13(1), 1–24 (1998)

5. Burton, B.A.: Optimizing the double description method for normal surface enu-
meration. Math. Comp. 79(269), 453–484 (2010)

6. Felikson, A., Tumarkin, P.: Coxeter polytopes with a unique pair of non-
intersecting facets. J. Combin. Theory Ser. A 116(4), 875–902 (2009)

7. Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M.,
Manoussakis, I., Euler, R. (eds.) CCS 1995. LNCS, vol. 1120, pp. 91–111. Springer,
Heidelberg (1996)

8. Jansen, M.J.M.: Maximal Nash subsets for bimatrix games. Naval Res. Logist.
Quart. 28(1), 147–152 (1981)

9. Kim, E.D., Santos, F.: An update on the Hirsch conjecture. Jahresber. Dtsch.
Math.-Ver. 112(2), 73–98 (2010)

10. Klee, V., Walkup, D.W.: The d-step conjecture for polyhedra of dimension d < 6.
Acta Math. 117, 53–78 (1967)

11. Knuth, D.E.: The Art of Computer Programming, vol. 3: Sorting and Searching,
2nd edn. Addison-Wesley, Reading (1998)

12. Lemke, C.E., Howson Jr., J.T.: Equilibrium points of bimatrix games. J. Soc.
Indust. Appl. Math. 12(2), 413–423 (1964)

13. McMullen, P.: The maximum numbers of faces of a convex polytope. Mathe-
matika 17, 179–184 (1970)

14. Motzkin, T.S., Raiffa, H., Thompson, G.L., Thrall, R.M.: The double descrip-
tion method. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory
of Games, Vol. II. Annals of Mathematics Studies, vol. 28, pp. 51–73. Princeton
University Press, Princeton (1953)

15. Santos, F.: A counterexample to the Hirsch conjecture. To appear in Ann. of Math.
(2) (2010), arXiv: 1006.2814

16. Winkels, H.M.: An algorithm to determine all equilibrium points of a bimatrix
game. In: Game Theory and Related Topics (Proc. Sem., Bonn and Hagen, 1978),
pp. 137–148. North-Holland, Amsterdam (1979)

17. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152.
Springer, New York (1995)

Online Coloring of Bipartite Graphs

with and without Advice�

Maria Paola Bianchi1, Hans-Joachim Böckenhauer2,
Juraj Hromkovič2, and Lucia Keller2

1 Dipartimento di Informatica, Università degli Studi di Milano, Italy
2 Department of Computer Science, ETH Zurich, Switzerland

maria.bianchi@unimi.it, {hjb,juraj.hromkovic,lucia.keller}@inf.ethz.ch

Abstract. In the online version of the well-known graph coloring prob-
lem, the vertices appear one after the other together with the edges to
the already known vertices and have to be irrevocably colored immedi-
ately after their appearance. We consider this problem on bipartite, i. e.,
two-colorable graphs. We prove that 1.13747 · log2 n colors are neces-
sary for any deterministic online algorithm to color any bipartite graph
on n vertices, thus improving on the previously known lower bound of
log2 n+ 1 for sufficiently large n.

Recently, the advice complexity was introduced as a method for a
fine-grained analysis of the hardness of online problems. We apply this
method to the online coloring problem and prove (almost) tight linear
upper and lower bounds on the advice complexity of coloring a bipartite
graph online optimally or using 3 colors. Moreover, we prove that O(

√
n)

advice bits are sufficient for coloring any graph on n vertices with at most
	log2 n
 colors.

1 Introduction

In an online problem, the input is revealed piecewise in consecutive time steps
and an irrevocable part of the output has to be produced at each time step, for a
detailed introduction and an overview of online problems and algorithms, see [4].
One of the most studied online scenarios is the problem of coloring a graph online.
Here, the vertices of the graph are revealed one after the other, together with the
edges connecting them to the already present vertices. The goal is to assign the
minimum number of colors to these vertices in such a way that no two adjacent
vertices get the same color. As usual in an online setting, each vertex has to be
colored immediately after its appearance. The quality of an online algorithm for
this problem is usually measured by the so-called competitive ratio, i. e., the ratio
between the number of colors used by this algorithm and an optimal coloring
for the resulting graph as it could be computed by an offline algorithm with
unlimited computing power, knowing the whole graph in advance.

It turns out that online coloring is a very hard online problem for which
no constant competitive ratio is possible [9]. For an overview of results on the

� The research is partially funded by the SNF grant 200021–141089.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 519–530, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

520 M.P. Bianchi et al.

online graph coloring problem, see, e. g., [11, 12]. In particular, some bounds on
the chromatic number of the class Γ (k, n) of k-colorable graphs on n vertices
have been proven: given G ∈ Γ (k, n), any online coloring algorithm for G needs

at least Ω
(
((logn)/(4k))k−1

)
colors [15]. On the other hand, there exists an

online algorithm for coloring G with O
(
n log(2k−3) n

log(2k−4) n

)
colors [13], where log(k) is

the log-function iterated k times. Even for the very restricted class of bipartite,
i. e., two-colorable, graphs, any online algorithm can be forced to use at least
�log2 n+ 1 colors for coloring a bipartite graph on n vertices [1]. On the other
hand, an online algorithm coloring every bipartite graph with at most 2 log2 n
colors is known [13]. In the first part of this paper, we improve the lower bound
for bipartite graphs to 1.13747 · log2 n.

The main drawback in the competitive analysis of online algorithms is that
an online algorithm has a huge disadvantage compared to an offline algorithm
by not knowing the future parts of the input. This seems to be a rather unfair
comparison since there is no way to use an offline algorithm in an online setting.
Recently, the model of advice complexity of online problems has been introduced
to enable a more fine-grained analysis of the hardness of online problems. The
idea here is to measure what amount of information about the yet unknown
parts of the input is necessary to compute an optimal (or near-optimal) solution
online [3, 5, 6, 10]. For this, we analyze online algorithms that have access to
a tape with advice bits that was computed by some oracle knowing the whole
input in advance. The advice complexity of such an algorithm measures how
many of these advice bits the algorithm reads during its computation. As usual,
the advice complexity of an online problem is defined as the amount of advice
needed by the best algorithm solving the problem.

It turns out that, for some problems, very little advice can drastically improve
the competitive ratio of an online algorithm, e. g., for the simple knapsack prob-
lem, a single bit of advice is sufficient to jump from being non-competitive at all
to 2-competitiveness [2]. On the other hand, many problems require a linear (or
even higher) amount of advice bits for computing an optimal solution [2, 3, 6].
The advice complexity of a coloring problem was first investigated in [8] where
linear upper and lower bounds for coloring a path were shown.

In the second part of this paper, we investigate the advice complexity of the
online coloring problem on bipartite graphs. We prove almost tight upper and
lower bounds on the advice complexity of computing an optimal solution, more
precisely, for a graph on n vertices, n − 2 advice bits are sufficient and n − 3
advice bits are necessary for this. Moreover, we prove linear upper and lower
bounds on the advice complexity of computing a 3-coloring, namely an upper
bound of n/2 and a lower bound of n

2 − 4. We complement these results by an

algorithm that uses less than n/
√
2k−1 advice bits for coloring a bipartite graph

online with k colors.
The paper is organized as follows. In Section 2, we formally define the online

coloring problem and fix our notation, in Section 3, we consider online algorithms
without advice and present the improved lower bound on the number of necessary

Online Coloring of Bipartite Graphs with and without Advice 521

colors for deterministic online coloring algorithms. The proof of this lower bound
is contained in Section 4, while Section 5 is devoted to the advice complexity
of the online coloring of bipartite graphs. Due to space limitations, some proofs
are omitted.

2 Preliminaries

In this section, we fix our notation and formally define the problem we are dealing
with in this paper.

Definition 1 (Coloring). Let G = (V,E) be an undirected and unweighted
graph with vertex set V = {v1, v2, . . . , vn} and edge set E. A (proper) coloring of
a graph G is a function col : V → S which assigns to every vertex vi ∈ V a color
col(vi) ∈ S and has the property that col(vi) 	= col(vj), for all i, j ∈ {1, 2, . . . , n}
with {vi, vj} ∈ E.

Usually, we consider the set S = {1, 2, . . . , n} ⊂ N+. Let V ′ ⊆ V , then we
denote by col(V ′) the set of colors assigned to the vertices in V

′
. To distinguish

the coloring functions used by different algorithms, we denote, for an algorithm
A, its coloring function by colA. We denote the subgraph of G = (V,E) induced
by a vertex subset V ′ ⊆ V by G[V ′], i. e., G[V ′] = (V ′, E′), where E′ = {{v, w} ∈
E | v, w ∈ V ′}.

An instance I for the online coloring problem can be described as a sequence
I = (G1, G2, . . . , Gn) of undirected graphs such that Vi = {v1, v2, . . . , vi} and
Gi = Gn[Vi]. Informally speaking, Gi is derived from Gi−1 by adding the vertex
vi together with its edges incident to vertices from Vi−1. Let Gn denote the set of
all online graph instances on n vertices. Then, G is the set of all possible online
graph instances for the online coloring problem for all n ∈ N, i. e., G =

⋃
n∈N

Gn.
With this, we can formally define the online coloring problem.

Definition 2 (Online Coloring Problem)

Input: I = (G1, G2, . . . , Gn) ∈ G for some n ∈ N+.
Output: (c1, c2, . . . , cn) ∈ N+ such that col(vi) = ci and col : Vi → N+ is a

coloring for all i ∈ {1, 2, . . . , n}
Cost: Number of colors used by the coloring.
Goal: Minimum.

In the following, we will restrict our attention to the class of bipartite, i. e.,
two-colorable graphs. We denote the subproblem of the online coloring prob-
lem restricted to bipartite input graphs by BipCol. In a bipartite graph G =
(V (G), E(G)), the vertex set V (G) can be partitioned into two subsets, called
shores and denoted by S1(G) and S2(G), with the property that the edges in
E(G) connect only vertices from different shores. If the graph is clear from the
context, we write V , E, S1, S2 instead of V (G), E(G), S1(G), S2(G).

Given two vertices vi and vj , we write vi ↔t vj iff there exists a path in Gt

from vi to vj . It is always possible to partition Vt into connected components

522 M.P. Bianchi et al.

according to the equivalence relation ↔t, and we call such components Ct(vi) =
[vi]↔t . In the case of connected components, the shore partition is unique.

We want to analyze BipCol with giving bounds on the number of colors used
in the online coloring process. These bounds will always depend on the number
n of vertices in the final graph Gn. Let A be an online coloring algorithm. We
denote by FA(G) = |colA(Vn)| the number of colors used by A to color graph
G. Then, FA(n) = maxG∈Gn FA(G) is the maximum number of colors A uses
to color any online graph instance with n vertices in the final graph Gn. We
say that U : N → N is an upper bound on the number of colors sufficient for
online coloring, if there exists an algorithm A such that, for all n ∈ N, we have
FA(n) ≤ U(n). Hence, it is sufficient to find a good deterministic online algorithm
A to get an upper bound on the number of colors used to color an instance of
Gn. Similarly, L : N → N is a lower bound on the number of colors necessary
for online coloring any graph if, for all online algorithms A for infinitely many
n ∈ N, we have L(n) ≤ FA(n), i. e., if, for every algorithm A for infinitely many
n, there is an online graph GA(n) ∈ Gn for which A needs at least L(n) colors.

3 Online Coloring without Advice

In this section, we deal with the competitive ratio of deterministic online algo-
rithms without advice. The following upper bound is well known.

Theorem 1 (Lovász, Saks, and Trotter [13]). There is an online algorithm
requiring at most 2 log2 n colors for coloring any bipartite graph of n vertices.

There is also a well-known lower bound which even holds for trees.

Theorem 2 (Bean [1]). For every k ∈ N+, there exists a tree Tk on 2k−1

vertices such that for every online coloring algorithm A, colA(Tk) ≥ k.

Theorem 2 immediately implies that there exists an infinite number of trees (and
thus of bipartite graphs) forcing any online algorithm to use at least log2 n+ 1
colors on any graph on n vertices from this class. In the remainder of this section,
we improve on this result by describing a graph class which forces every coloring
algorithm A to use even more colors. This class is built recursively. In the proof,
we will focus only on those Gi’s in an instance (G1, G2, . . . , Gn) ∈ Gn in which
one new color has to be used by any deterministic online coloring algorithm to
color vi.

Lemma 1. For every i ∈ N+ and every online coloring algorithm A, there exists
an online graph GA(i) such that:

1. FA(GA(i)) ≥ i,
2. FA(S1(GA(i))) ≥ i− 2,
3. FA(S2(GA(i))) ≥ i− 1,
4. |V (GA(i))| =: B(i) ≤ B(i − 1) + B(i − 2) + B(i − 3) + 1, for i ≥ 3, and

B(0) = 0, B(1) = 1, and B(2) = 2.

Online Coloring of Bipartite Graphs with and without Advice 523

We will prove Lemma 1 in the following section. The recurrence given by property
4 of Lemma 1 can be resolved as follows.

Corollary 1. B(k) ≤ 1.35526 · 1.83929k − .400611

Proof (Sketch). One can show by induction that B(k) =
∑k+1

i=0 T (i) where T (i)
is the i-th Tribonacci number (see [7, 14]). The number T (n) can be computed
as follows:

T (n) = 3b ·
(
1
3 (a+ + a− + 1)

)n
b2 − 2b+ 4

≤ .336229 · 1.83929n,

where a+ = (19 + 3
√
33)

1
3 , a− = (19− 3

√
33)

1
3 , and b = (586 + 102

√
33)

1
3 . ��

Theorem 3. The lower bound on the number of colors used by any online col-
oring algorithm A to color any online graph instance with n vertices is

1.13747 · log2(n).

Proof. The claim follows immediately from Corollary 1. ��

4 Proof of Lemma 1

In this section, we prove Lemma 1. We proceed by an induction over k, the
number of colors. For every k, we generate a class G̃(k) consisting of online
graphs defined as

G̃(k) = {GB(k) | B is an online coloring algorithm and

properties 1 to 4 of Lemma 1 are satisfied} .

Hence, for a fixed k, we will find in G̃(k), for every online coloring algorithm B,
an instance that forces B to use at least k colors to color GB(k). Those instances
are built inductively. We will prove that we can construct, for any online coloring
algorithm A, a hard instance GA(k), using three graphsGk−1 ∈ G̃(k−1), Gk−2 ∈
G̃(k − 2), Gk−3 ∈ G̃(k − 3), that are revealed in this order, and an additional
vertex v. Let H(k) be the induction hypothesis, formulated as follows:

H(k): For all j ≤ k and all online algorithms B, there exists
a graph GB(j) with properties 1 to 4 of Lemma 1.

Assuming H(k − 1) holds, it is easy to show that a graph Gk−1 exists. To
show the existence of Gk−2 and Gk−3, we have to take into account that the
algorithmA already knows a part of the instance, and hence it behaves differently
from the case where there is no part known.

In a second step, we merge the shores of Gk−1, Gk−2, and Gk−3 in an ap-
propriate way and, with an additional vertex v, we assure that all conditions of
Lemma 1 are satisfied. We can stop the construction of this online graph also
earlier, as soon as all four conditions are satisfied.

We merge two graph instancesG = (G1, . . . , Gl) ∈ G andG′ = (G′
1, . . . , G

′
m) ∈

G to an instance M = G◦G′, defined asM = (G1, . . . , Gl, Gl∪G′
1, . . . , Gl∪G′

m)
∈ G.

524 M.P. Bianchi et al.

v1
1

v2
2

(b) Case k = 2

v1
1

(a) Case k = 1

Fig. 1. Base cases: W.l.o.g., the vertices are colored as indicated. The indices of the
vertices indicate their order of appearance.

4.1 Base Cases (k ≤ 3)

For k = 0, 1, 2, it is easy to show that the hypothesis is satisfied (see Figure 1).
In the case k = 3, for every online coloring algorithm A, GA(3) can be con-

structed recursively using two graphs G2 ∈ G̃(2), G1 ∈ G̃(1) and possibly a new
vertex. The vertices of G2 are colored w.l.o.g. with 1 and 2, and there are three
possibilities to color G1 (see Figure 2).

In the case (c) of Figure 2, we are already done, since we reached 3 colors
and S1(GA(3)) = {v1} is colored with one color and S1(GA(3)) = {v2, v3} with
two colors. In cases (a) and (b), we have to add one new vertex v4 which is
connected to two vertices with different colors to force every online coloring
algorithm A to use a third color. In case (a) (equivalently, case (b)), we have
S1(GA(3)) = {v1, v4} and S2(GA(3)) = {v2, v3}. Both shores are colored with
two colors, hence conditions 1, 2 and 3 are satisfied, and also condition 4, since
B(3) ≤ B(2) +B(1) + 1.

4.2 Inductive Step (k ≥ 4)

For every online algorithm A and every k ∈ N+, we will construct GA(k) in four
steps using three graphs Gk−1 ∈ G̃(k − 1), Gk−2 ∈ G̃(k − 2), Gk−3 ∈ G̃(k − 3)
satisfying properties 1 to 4 from Lemma 1, and an additional vertex v.

First, we want to show that such graphs Gk−1, Gk−2, and Gk−3 actually exist.
Then, we will show that we can merge them, using an additional vertex v, to a
graph GA(k) satisfying properties 1 to 4 from Lemma 1.

v1
1

v2
2

v3
1

v4
3

S1

S2

(a)

v2
2

v1
1

v3
2

v4
3

S1

S2

(b)

v1
1

v2
2

v3
3

S1

S2

(c)

Fig. 2. The base case k = 3

Online Coloring of Bipartite Graphs with and without Advice 525

Existence of the Graphs Gk−1, Gk−2, and Gk−3. We assume thatH(k−1)
holds. Hence, for every online coloring algorithm B and j ∈ {k− 1, k− 2, k− 3}
there exists a graph GB(j) with properties 1 to 4 of Lemma 1.

Step 1. Because of H(k − 1), we know that a graph Gk−1 = GA(k − 1) exists.
Step 2. In the next phase, algorithm A receives a second graph. We denote by

A|Gk−1
the work of algorithm A having already processed the graph Gk−1.

A|Gk−1
can be simulated by an algorithm B which does the same work as

A|Gk−1
but which did not receive any other graph before. Because ofH(k−1),

and thus H(k − 2), we know that, for such algorithm B, there is a graph
Gk−2 = GB(k−2) = GA|Gk−1

(k−2) satisfying properties 1 to 4 of Lemma 1.

Step 3. Now, algorithm A gets a third graph. Again, the work of A|Gk−1◦Gk−2

can be simulated by an algorithm C. Because of the induction hypothesis, a
graph Gk−3 = GC(k − 3) = GA|Gk−1◦Gk−2

(k − 3) exists.

Hence, we have the graphs Gk−1, Gk−2, and Gk−3 at our disposal and can force
a new color, possibly with the help of an additional vertex v.

Construction of Graph GA(k). Due to space limitations, we only sketch this
part of the proof. There are two possible cases with respect to the first graph
Gk−1:

A) A uses exactly k − 1 colors on Gk−1

Here, we will distinguish five cases with respect to the colors that appear in
both shores in Gk−1 and the placement of the remaining colors. For sure,
we have at least k − 4 common colors, since otherwise properties 2 and 3
of Lemma 1 for i = k − 1 would not be satisfied. If we have k − 1 or k − 2
common colors, one additional vertex v forces the algorithm to use color k
and immediately all properties of Lemma 1 for i = k are satisfied. With k−3
common colors, we have to distinguish again two cases: Either the remaining
colors a and b are both in one shore or they are in different shores. In the first
case, we can proceed as before. In the second case, it depends on whether
one of the colors a and b appears in Gk−2 or not. If there is neither a nor
b, there will be a new color c for sure. If there are k − 4 common colors, we
can either satisfy all the conditions of Lemma 1 for i = k using some new
colors that appear only in Gk−2 and Gk−3, or we find some of the colors that
appear only in one shore of Gk−1 in Gk−2 and in Gk−3. Joining the shores
in an appropriate way, we can force with a new vertex a new color k.

B) A uses at least k colors on Gk−1

The graphGk−1 already contains sufficiently many colors to satisfy condition
1 of Lemma 1 for i = k. In general, the graph Gk−1 has the following colors:
col(S1(Gk−1)) 1, 2, . . . , x, b1, b2, . . . , bj
col(S2(Gk−1)) 1, 2, . . . , x, a1, a2, . . . , ai
Because of H(k − 1), we have x + j ≥ k − 3 and x + i ≥ k − 2. Hence,
we have either to add two colors to S1(Gk−1) or one color to each shore in
order to satisfy conditions 2 and 3 of Lemma 1 for i = k. If l is the total

526 M.P. Bianchi et al.

number of colors in Gk−1, i. e., x + i + j = l, and m is the total number of
colors in all three graphs Gk−1, Gk−2, and Gk−3, then we have to distinguish
some cases with respect to the relation between m and l. If m ≥ l + 2, we
have sufficiently many new colors in Gk−2 or Gk−3 to satisfy conditions 2
and 3 of Lemma 1 for i = k. If m = l + 1, we have one new color c in
one of the two smaller graphs, and either we have a second new color or we
can find one of the colors a1, . . . , ai, b1, . . . , bj in either Gk−2 or Gk−3. This
depends on the relation of k and x. In the casem = l, we have to fill the gaps
in order to satisfy conditions 2 and 3 of Lemma 1 with some of the colors
a1, . . . , ai, b1, . . . , bj which again can be found in Gk−2 and Gk−3, depending
on the relation between x and k.

5 Advice Complexity

In this section, we investigate the advice complexity of the online coloring prob-
lem on bipartite graphs. We start with giving an upper bound on the amount of
advice needed for achieving an optimal coloring.

Theorem 4. There exists an online algorithm for BipCol which needs at most
n− 2 advice bits to be optimal on every instance of length n.

Proof. We present the algorithm A2 that works as follows. The first vertex re-
ceives color 1. Then the algorithm asks for one bit of advice: if it is 1, then
A2 will assign color 1 to every isolated vertex, otherwise it will ask for a bit of
advice for every other isolated vertex, to decide whether to assign color 1 or 2.
Any vertex that has an edge to some previously received vertex v, receives the
opposite color with respect to v. It is easy to see that, on an input of length n,
whenever there are at least n−1 isolated vertices, the advice is a string of length
one; in all other cases it is smaller than n− 2 bits.

Notice that, since the advice tape is infinite and it is up to the algorithm to
decide how many bits to read, A2 could not simply read one advice bit for every
vertex from v2 to vn−1 without knowing the length of the input in advance. ��

We can complement this result by an almost matching lower bound.

Theorem 5. Any deterministic online algorithm for BipCol needs at least n−3
advice bits to be optimal on every instance of length n.

Proof (Sketch). Let Â be an algorithm with advice for BipCol that uses 2
colors. Given, for any 0 ≤ α ≤ n− 2, the graph Gα with n vertices described in
Figure 3, we consider as the set of possible instances of Â any online presentation
of Gα, for all 0 ≤ α ≤ n − 2, such that the first n − 2 vertices are presented
as a permutation of {vj}1≤j≤n−2. We say that two instances are equivalent iff
the order of the first n − 2 vertices reflects the same shore partition, and, by

a counting argument, the number of such equivalence classes is 2n−2

2 = 2n−3.
It is not hard to see that, in order to avoid using a third color on v̂ or v̂′, the
algorithm needs to assign the same color to all vertices of each shore, so instances
in different equivalence classes must have different advice strings. ��

Online Coloring of Bipartite Graphs with and without Advice 527

v1 v2 · · · vα v̂1

vα+1 · · · vn−2 v̂2

Fig. 3. Structure of the graph Gα used in the proof of Theorem 5. The set of edges is
E = {{vs, v̂2} | 1 ≤ s ≤ α} ∪ {{vs, v̂1} | α+ 1 ≤ s ≤ n− 2} ∪ {{v̂1, v̂2}}.

We now analyze how much advice is sufficient to guarantee a given constant
competitive ratio.

Theorem 6. For any integer constant k > 2, there exists an online algorithm
for BipCol that needs less than n√

2k−1
advice bits to color every instance of

length n with at most k colors.

Proof. We will consider the same algorithm A used in the proof for Theorem 1
shown in [12]: the idea is to make A ask for an advice only when it is about to
assign color k − 1, in order to avoid assigning that color to vertices on both shores
of the final graph. This implies that the algorithm will always have vertices of
color k − 1 (if any) only on one shore and vertices of color k (if any) only on the
other shore, so that color k + 1 will never be needed.

We now describe the algorithm Ak at step t, when the vertex vt is revealed.
By calling Kt (Rt, respectively) the set of colors assigned to vertices on the same
(opposite, respectively) shore as vt, Ak will choose its output as follows:

– if ∃ 1 ≤ c ≤ k − 2 such that c /∈ Rt, then colAk
(vt) = min {c ≥ 1 | c /∈ Rt},

– if either k − 1 ∈ Rt or k ∈ Kt, then colAk
(vt) = k,

– if either k ∈ Rt or k − 1 ∈ Kt, then colAk
(vt) = k − 1,

– if Rt = {1, 2, . . . , k−2}, then Ak asks for one bit of advice to decide whether
to assign color k − 1 or k to vt.

Algorithm Ak asks for an advice only when it is about to assign color k − 1,

which may happen at most every 2
k−1
2 vertices, as shown in [12] for algorithm

A, so the maximum number of advice bits required is n√
2k−1

. ��

The proof of Theorem 6 can be easily extended to the case of using a non-
constant number of colors, only the size n of the input has to be encoded into the
advice, using �log(n)+2�log log(n) additional bits. This leads to the following
corollary.

Corollary 2. There is an online algorithm for BipCol that needs at most
O(

√
n) advice bits to color every instance of length n with at most �log(n)

colors.

In the remainder of this section, we want to analyze the case of near-optimal
coloring using 3 colors. For this case, Theorem 6 gives the following upper bound
on the advice complexity.

528 M.P. Bianchi et al.

v1 v2 · · · vn
2
−1 v̂

v′1 v′2 · · · v′n
2
−1 v̂′

Fig. 4. Graph G′ used in the proof of Theorem 7. The edges are E′ =
{{vs, v′s}, {vs, v̂′}, {v′s, v̂}, {v̂, v̂′} | 1 ≤ s ≤ n

2
− 1}.

Corollary 3. There exists an online algorithm for BipCol that needs at most
n
2 advice bits to color every instance of length n with at most 3 colors.

We conclude with an almost matching lower bound for coloring with 3 colors.

Theorem 7. Any deterministic online algorithm for BipCol needs at least n
2−4

advice bits to color every instance of length n with at most 3 colors.

Proof. Consider the graph G′ = (V ′, E′) described in Figure 4. By calling ct
the subgraph of G′ induced by the vertices {vt, v′t}, we will consider a set of
instances where the first n

2 − 1 vertices are revealed isolated: each of those can
be arbitrarily chosen between the two shores of ct, for all the ct’s from left to
right. After time n

2 − 1, the algorithm will receive the corresponding neighbors
in each ct of all the previously received vertices. Finally, vertices v̂ and v̂′ are
revealed. By calling πr(i) the vertex revealed at step i, we identify any input
instance Ir with the binary string σr = (σr(1), . . . , σr(

n
2 − 1)) such that, for all

1 ≤ t ≤ n
2 − 1,

σr(t) =

{
0 if πr(t) = vt
1 if πr(t) = v′t.

In other words, σr tells us in which order the two vertices in each ct are revealed.
With a slight abuse of notation, we say that colσr (t) = (α, β) iff, in Ir, the color

assigned to vt is α and the color assigned to v′t is β. We also write colRσr
(t) = (β, α)

iff colσr (t) = (α, β). We say that a color α is mixed if it appears on both shores
of the bipartition, i. e., if there exist t1, t2 ∈ {1, . . . , n2 − 1} such that vt1 and v′t2
receive both color α. It is easy to see that an instance of the form considered
above can be colored with at most 3 colors only if at most 1 color is mixed in
the first n− 2 vertices. As a consequence, we can never have an advice such that

colσr (t1) = colRσr
(t2), (1)

for some t1, t2 ∈ {1, . . . , n2 − 1}, otherwise two colors would be mixed.
In general, if the advice on an instance σi is such that either σi(t1) = σi(t2) ∧

colσi(t1) = colσi(t2) or σi(t1) 	= σi(t2) ∧ colσi(t1) = colRσi
(t2), then, for any

other instance σj such that σi(t1) = σj(t1) ∧ σi(t2) 	= σj(t2), σj must have a

different advice, otherwise we would have colσj (t1) = colRσj
(t2).

Our aim now is to find out how many instances can have the same advice as
σi. We can distinguish three situations:

Online Coloring of Bipartite Graphs with and without Advice 529

Table 1. The possible instances using the same advice as σi in the second situation in
the proof of Theorem 7

σi σ̄i σj σ̄j

t ∈ A σi 1− σi σi 1− σi

t ∈ B σi 1− σi 1− σi σi

Table 2. The possible instances using the same advice as σi in the third situation in
the proof of Theorem 7

σi σ̄i σj σ̄j σk σ̄k σh σ̄h

t ∈ A σi 1− σi σi 1− σi σi 1− σi σi 1− σi

t ∈ B σi 1− σi σi 1− σi 1− σi σi 1− σi σi

t ∈ C σi 1− σi 1− σi σi 1− σi σi σi 1− σi

1. The advice on σi is such that the algorithm uses only one couple of colors,
i. e., for every t, colσi(t) = (α, β). In this case, the only other instance which
can have the same advice and still avoids mixing two colors in the first n− 2
vertices is σ̄i, such that σ̄i(t) 	= σi(t), for all t ∈ {1, . . . , n2 − 1}, because on
any other instance we would have the situation described in Equation (1).

2. The advice is such that the algorithm uses only two couples of colors, more
formally, there exists a partition A,B ⊂ {1, . . . , n2 − 1}, for two nonempty
sets A,B such that

∀t∈A : colσi(t)=(α, β), ∀t∈B : colσi(t)=(α, γ).

In order to avoid Equation (1), the only instances σ that can have the same
advice as σi are the ones such that σ(t1) = σ(t2) for any t1, t2 in the same
set of the partition {A,B}, which are the four described in Table 1.

3. The advice is such that the algorithm uses all three couples of colors, i. e.,
there exists a partition A,B,C ⊂ {1, . . . , n2 −1}, with A,B,C 	= ∅, such that

∀t∈A : colσi(t)=(α, β), ∀t∈B : colσi(t)=(α, γ), ∀t∈C : colσi(t)=(β, γ).

Again, in order to avoid Equation (1), an instance σ with the same advice
as σi must be such that σ(t1) = σ(t2) for any t1, t2 in the same set of the
partition {A,B,C}. This property is satisfied only by the eight instances
described in Table 2.

However, the two instances σh and σ̄h would have all colors mixed, if they were
given the same advice as σi. This implies that at most six instances of the form
σr can have the same advice, and since the number of instances of the form σr

is 2
n
2 −1, there must be at least 2

n
2

−1

6 > 2
n
2 −4 different advice strings. ��

530 M.P. Bianchi et al.

References

1. Bean, D.R.: Effective Coloration. J. Symbolic Logic 41(2), 469–480 (1976)
2. Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: On the Advice Com-

plexity of the Knapsack Problem. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS,
vol. 7256, pp. 61–72. Springer, Heidelberg (2012)

3. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the
Advice Complexity of Online Problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

4. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press (1998)

5. Dobrev, S., Královič, R., Pardubská, D.: How Much Information about the Fu-
ture Is Needed? In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat,
P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 247–258. Springer,
Heidelberg (2008)

6. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online Computation with Ad-
vice. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas,
W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 427–438. Springer, Heidelberg (2009)

7. Finch, S.R.: Mathematical Constants (Encyclopedia of Mathematics and its Ap-
plications). Cambridge University Press, New York (2003)

8. Forǐsek, M., Keller, L., Steinová, M.: Advice Complexity of Online Coloring for
Paths. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp.
228–239. Springer, Heidelberg (2012)

9. Gyárfás, A., Lehel, J.: On-line and first fit colorings of graphs. Journal of Graph
Theory 12(2), 217–227 (1988)

10. Hromkovič, J., Královič, R., Královič, R.: Information Complexity of Online Prob-
lems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36.
Springer, Heidelberg (2010)

11. Kierstead, H.A.: Recursive and on-line graph coloring. In: Ershov, Y.L., Goncharov,
S.S., Nerode, A., Remmel, J.B., Marek, V.W., (eds.) Handbook of Recursive Math-
ematics Volume 2: Recursive Algebra, Analysis and Combinatorics. Studies in Logic
and the Foundations of Mathematics, vol. 139, pp. 1233–1269. Elsevier (1998)

12. Kierstead, H.A., Trotter, W.T.: On-line graph coloring. In: McGeoch, L.A., Sleator,
D.D. (eds.) On-line Algorithms. DIMACS Series in Discrete Mathematics and The-
oretical Computer Science, vol. 7, pp. 85–92. AMS—DIMACS—ACM (1992)

13. Lovász, L., Saks, M.E., Trotter, W.T.: An on-line graph coloring algorithm with
sublinear performance ratio. Discrete Mathematics 75(1–3), 319–325 (1989)

14. Sloane, N.J.A.: Sequence A000073 in The On-Line Encyclopedia of Integer Se-
quences (2012), Published electronically, http://oeis.org/A000073

15. Vishwanathan, S.: Randomized online graph coloring. Journal of Algorithms 13(4),
657–669 (1992)

http://oeis.org/A000073

Deep Coalescence Reconciliation with Unrooted Gene
Trees: Linear Time Algorithms�

Paweł Górecki1 and Oliver Eulenstein2

1 Department of Mathematics, Informatics and Mechanics, University of Warsaw, Poland
gorecki@mimuw.edu.pl

2 Department of Computer Science, Iowa State University, USA
oeulenst@cs.iastate.edu

Abstract. Gene tree reconciliation problems invoke the minimum number of
evolutionary events that reconcile gene evolution within the context of a species
tree. Here we focus on the deep coalescence (DC) problem, that is, given an un-
rooted gene tree and a rooted species tree, find a rooting of the gene tree that
minimizes the number of DC events, or DC cost, when reconciling the gene tree
with the species tree. We describe an O(n) time and space algorithm for the DC
problem, where n is the size of the input trees, which improves on the time com-
plexity of the best-known solution by a factor of n. Moreover, we provide an
O(n) time and space algorithm that computes the DC scores for each rooting of
the given gene tree. We also describe intriguing properties of the DC cost, which
can be used to identify credible rootings in gene trees. Finally, we demonstrate
the performance of our new algorithms in an empirical study using data from
public databases.

Species trees represent the evolutionary history of species and play a key-role in a broad
spectrum of applications, including comparative genomics, population divergence, and
understanding patterns of diversification [3]. There has also been an increased inter-
est in species trees to maintain biodiversity [7,10], and to study the effects of global
change [9,19,21]. Species trees are traditionally inferred from the evolutionary history
of gene families. Therefore, it is assumed that the history of a gene family, which can
be represented as a gene tree, and the corresponding species tree are identical. While
accurate species trees are crucial for their proper interpretation, for many gene families
their gene trees disagree with the topology of the actual species tree [15,14,16]. Com-
plex evolutionary events like deep coalescence, gene duplication and subsequent loss,
and horizontal gene transfer can cause tremendous heterogeneity in gene trees that ob-
scures species relationships. Reconciling such gene trees with a species tree by invoking
the minimum number of evolutionary events, or reconciliation cost, is a common and
well-studied approach to address these complications, and extensions of this approach
are used to infer species trees [4,11,15,14,16]. While classical reconciliation problems
are only applicable to rooted trees, there is a need to reconcile unrooted gene trees with
rooted species trees. Most standard inference methods, like maximum parsimony or

� This work was supported by MNiSW (#N N301 065236) to PG, by the National Science
Foundation (#0830012 and #106029) to OE, and by NCN (#2011/01/B/ST6/02777) and the
NIMBioS Working Group “Gene Tree Reconciliation” to PG and OE.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 531–542, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

532 P. Górecki and O. Eulenstein

maximum likelihood, infer only unrooted gene trees from molecular sequences. When
evolutionary events cause heterogeneity in gene trees it is difficult, if not impossible, to
correctly root them [18,20]. In contrast, species trees often encompass a trusted root,
which, for example, can be based on the NCBI taxonomy [17]. However, reconciliation
problems can be naturally extended to reconcile an unrooted gene tree with a rooted
species tree, by seeking a rooting of the gene tree that invokes the minimum reconcilia-
tion cost when reconciled with the species tree [12,22]. In addition, such reconciliation
problems provide a direct mechanism to root gene trees based on their reconciliation
score.

Here we focus on the DC problem, that is defined as follows: find the rooting of a
given unrooted gene tree that minimizes the number of deep coalescence events, called
DC cost, when reconciled with a given rooted species tree. This problem can be solved
in quadratic time [22]. When faced with the need to reconcile large collections of trees
with thousands of genes, however, quadratic runtime becomes prohibitive. For example,
the gene tree parsimony (GTP) problem for deep coalescence [23] seeks for a given
collection of gene trees a species tree with the overall minimum DC cost. Local search
heuristics aim to solve this intrinsically difficult problem by solving the DC problem for
thousands to hundreds of thousands instances that reconcile gene trees with typically
large species trees [1,5].

a b c d e f g h i

 S

e
37

g

34

37

d

31

34

b

31

31

f i

31

31

32

32

h

31

31

a

32

32
c

33

33

c

34

34

a

35

35

b

 G

Fig. 1. Right side: An unrooted gene tree G (right). Left side: A rooted species tree S. Each edge
in G is labeled by the DC score when G is rooted at this edge, and then reconciled with S. There
are 7 optimal rootings forming the valley, which is the red-colored subtree in G, with the DC
score 31. The remaining colors identify rootings with DC scores of 32, 33, 34, 35, and 37.

Our Contributions. Here, we describe an O(n) algorithm for the DC problem,
where n is the size of the given input trees, that improves on the best-known solution
for this problem [22] by a factor of n. This substantial improvement can significantly
speed-up applications relying on solutions to the DC problem (e.g., GTP heuristics
based on the DC cost [1]). In fact, a variant of our algorithm provides the DC cost
of every rooting of the given unrooted gene tree in O(n) time and space. Computing
these costs can be beneficial in identifying and supporting rootings of gene trees. Our
original algorithms are designed for reconciling full binary trees as well as multifur-
cated trees. Furthermore, we show that the DC cost relates to the intriguing convexity
property that states that the DC scores of all rootings in the unrooted gene tree form
“terraces” surrounding a unique “valley”. More precisely, the places of all optimal root-
ings in the gene tree induce a unique subtree, the “valley”. The DC scores of rootings

Deep Coalescence Reconciliation with Unrooted Gene Trees: Linear Time Algorithms 533

along every path from this subtree to a leaf are monotonically increasing, which forms
the “terraces”. An example is depicted in Fig. 1. The convexity property can be crucial
for the credible identification of rootings in gene trees. Optimal rootings of the gene tree
can also be found using reconciliation costs other than the DC cost. For example the
duplication and loss (DL) cost is the minimum number of duplications and losses that
need to be invoked to reconcile a rooted gene tree with a rooted species tree. We show
that every optimal rooting of an unrooted tree under the DL score is also an optimal
rooting under the DC score. Finally, we demonstrate the performance of our algorithms
and their quality in determining rootings of gene trees using an empirical data set of
over 3000 gene family trees inferred from OrthoMCL database [6].

1 Basic Definitions and Preliminaries

1.1 Basic Definitions and Notation

We begin by recalling some basic definitions from phylogenetic theory. Let I be the set
of taxa. An unrooted gene tree is an acyclic, connected, and undirected graph in which
each node has degree 3 (internal) or 1 (leaves), and every degree-one vertex is labeled
with an element from I.

A rooted binary tree is defined similarly to an unrooted gene tree, with the difference
that it has a distinguished vertex, called root, which have a degree of two. Tree T can
be viewed as an upper semilattice with the least upper bound operation +, and the top
element denoted by 1; that is, the root of T . In other words, for vertices a, b ∈ VT ,
a+ b is the least common ancestor of a and b in T .

A species tree is a rooted binary tree with leaves uniquely labeled by the elements
from I. A rooted gene tree is a rooted binary tree with leaves labeled by the elements
from I. For a rooted tree T , by T (v) we denote the subtree of T rooted at v. By
L(T), we denote the set of all leaf labels in T . For a node v in a rooted gene tree
or a species tree T , by c(v) we denote the cluster of v, that is, L(T (v)). For instance,
a species tree (a, (b, c)) has 5 nodes with the following clusters: a, b, c, bc and abc. Let
MG : VG → VS be the least common ancestor (lca) mapping, from a rooted tree G into
S that preserves the labeling of the leaves. Note, that if a, b ∈ VG are the children of v,
then MG(v) =MG(a) +MG(b). An example is depicted in Fig. 2.

a e a b c d

G

a b c d e

S

Fig. 2. The lca-mapping M from the gene tree G into the species tree S

534 P. Górecki and O. Eulenstein

1.2 DC Measure for Comparing Unrooted Gene Trees with Species Trees

The deep-coalescence (DC) score between a rooted gene tree T and a species tree S,
such that L(T) ⊆ L(S) is defined as follows [23]:

DC(T, S) :=
∑

g∈int(T)
a,b children of g

||MT (a),MT (b)||, (1)

where int(T) is the set of internal nodes in T , MT : VT → VS is the lca-mapping, and
||x, y|| denotes the number of edges on the path connecting x and y in S.

For the remainder of this work we denote by G = 〈VG, EG〉 an unrooted gene tree
and by S a species tree, such that L(G) ⊆ L(S). A rooting in G is defined by selecting
an edge e ∈ EG on which the root is to be placed. Such a rooted tree will be denoted by
Ge. To distinguish between rootings of G, all defined symbols for a rooted trees will be
extended by inserting index e. For example, Me is the lca-mapping from Ge to S, etc.

Definition 1. The unrooted Deep coalescence (urDC) measure between an unrooted
tree G and a rooted tree S, is defined as follows:

urDC(G,S) := min{DC(Ge, S) : e ∈ EG}. (2)

The edges e ∈ EG, for which the rooting Ge has the minimal DC score will be called
optimal.

2 Methods

2.1 Orientation and Labeling of G

First, we transformG into a directed graph Ĝ, by replacing each undirected edge {v, w}
fromG by a pair of directed edges 〈v, w〉 and 〈w, v〉. Formally, we have Ĝ = 〈VG, ÊG〉,
where ÊG = {〈v, w〉, 〈w, v〉 : {v, w} ∈ EG}.

The edges in Ĝ are labeled by nodes of S as follows. If v ∈ VG is a leaf labeled by a,
then the edge 〈v, w〉 ∈ ÊG is labeled a. When v is an internal node in Ĝ we assume that
〈w1, v〉 and 〈w2, v〉 are labeled by b1 and b2, respectively. Then the edge 〈v, w3〉 ∈ ÊG,
such that w3 	= w1 and w3 	= w2 is labeled b1 + b2. Such labeling will be used to
explore mappings of rootings of G.

Every internal node v and its neighbors in Ĝ define a subtree of ÊG, called a star
with a center v, as depicted in Fig. 3a. The edges 〈v, wi〉 are called outgoing, while the
edges 〈wi, v〉 are called incoming. We will refer to the undirected edge {v, wi} as ei,
for i = 1, 2, 3.

Under the assumption that MGe = 1 (it is independent of e), there are several
types of possible star topologies based on the labeling (for proofs and details see [12]):
(S1) a star has one incoming edge labeled 1 and two outgoing edges labeled 1, and
these edges are connected to the three siblings of the center, (S2) a star has exactly
two outgoing edges labeled by 1, (S3) a star has all outgoing edges and exactly one
incoming edge labeled by 1, (S4) a star has all edges labelled by 1, and (S5) a star has
all outgoing edges and exactly two incoming edges labeled by 1. The star topologies
are depicted in Fig. 3c, where we use the simplified notation introduced in Fig 3b.

Deep Coalescence Reconciliation with Unrooted Gene Trees: Linear Time Algorithms 535

(a)

v
b1
a1

w1

b 2
a 2

w2

b
3a

3

w3 (b) T
T

double

T
<T

single

<T
<T

empty

(c)

S1 S2 S3 S4 S5

Fig. 3. (a) A star created after the transformation of gene tree edges adjacent to a node v. (b)
Simplified notation of edges used in stars. (c) S1-S5 - all possible types of stars that can be
present in the transformed gene trees.

2.2 DC Cost and the Star Topologies

We analyse how the cost is changing when we move the root in G by one position.
Throughout this section we use the notation of a star that is introduced in Fig. 3.

For an edge e in G, let λe = DC(Ge, S).

Proposition 1. Let b1 = 1. Then,

λe1 ≤ λe2 = λe3 .

Moreover, the equality holds only if a1 = 1.

Proof: All rootings of G share the same subtrees attached to w1, w2 and w3, therefore, all
costs share the same component c coming from the partial DC score for these subtrees. The
rest follows in a straightforward way from the definition of the rooted DC score and Fig. 3a:
λe1 = c+ x+ y + z and λe2 = λe3 = c+ x + y + 2 ∗ z, where x = ||b3, a1||, y = ||b2, a1||
and z = ||a1,�|| (note that a1 = b3 + b2). Clearly, z = 0 if and only if a1 = �. []

From Proposition 1 it follows that all rootings of the edges in stars S3-S5 have the same
cost. Moreover, in the case of S1, placing the root on the incoming edge labeled by 1
(the left edge of S1 in Fig.3c) yields a smaller DC score than in the other rootings.

Proposition 2. Let bi 	= 1 for all i = 1, 2, 3. Then, from exactly one i, say i = 1,
ai 	= 1, and

λe1 < λe2 = λe3 .

Proof: Observe that this case is related to the star S2, where a2 = a3 = � and a1, b1 �= �.
Similarly, to the previous proof, we have the following equalities: λe1 = c+ v + x+ y + v and
λe2 = λe3 = c + v + x + y + 2 ∗ z, where x = ||b3, a1||, y = ||b2, a1||, z = ||a1,�|| and
v = ||b1,�||. By assumption that a1 �= �, z > 0. This completes the proof. []

2.3 Algorithm

Theorem 1. LetG be an unrooted tree and S be a species tree such thatL(G) ⊆ L(S).
Let MinG be the set of optimal edges in G for the urDC score computed for G and S.

536 P. Górecki and O. Eulenstein

(i) If Ĝ has a double edge then MinG contains edges from all stars S3-S5 present in
Ĝ.

(ii) If Ĝ has an empty edge then this edge is the only optimal edge (star S2).
(iii) MinG is a full subtree1 of G.
(iv) An optimal edge in MinG can be found by using a greedy method of gradient

descent: leave a star in the reverse direction of the outgoing edge labeled 1. Ter-
minate when a symmetric edge is found.

Proof: (i) Assume that Ĝ has a double edge. It follows from the star topologies that Ĝ has a
star S3, S4 or S5. Then, it is easy to show that the set of stars from G contains only stars: S1,
S3, S4 or S5. Moreover, the set of double edges induces a connected subgraph of G. Now, with
Proposition 1 it follows directly that all rootings of edges from stars S3-S5 share the same DC
score. Additionally, by Proposition 2 this cost is smaller than scores of the other edges; that is,
the edges that are not present in S3-S5 stars. The proof (inductive) is straightforward and omitted
for brevity. This completes the proof of case (ii).

(ii) Observe that Ĝ has at most 2 stars of type S2 that share the empty edge e. All remaining
stars are of type S1. From Proposition 2 it follows that the score of e is smaller than scores of
the other edges in stars of type S2. By Proposition 1 we have that the score of e is smaller than
scores of all other edges (not present in S2 stars). Again, we omit the straightforward inductive
proof for brevity. This completes the proof of case (ii).

(iii) Suppose that MinG has more than one edge. Then, MinG contains at least one double
edge (see (i) and (ii)). Then, by (i), MinG consists of all edges present in stars S3-S5. Observe
that these edges induce a connected subgraph of G, which is a full subtree of G.

(iv) The claim follows directly from statements (i), (ii) and (iii). []

Algorithm 1 details the greedy descent procedure (Thm. 1 (iv)) and the urDC score
computation. An example of star topologies is depicted in Fig. 4.

e
37

g

34

37

d

31

34

b

31

31

f i

31

31

32

32

h

31

31

a

32

32

c

33

33

c

34

34

a

35

35

b

 G

Fig. 4. Gene tree G from Fig. 1 converted into the star representation. This tree have 3 optimal
stars: two of type S3 and one of type S4.

The proof of correctness of the optimal edge search follows immediately from Thm. 1
and the following property (easy details omitted):

Lemma 1. For any edge e = {x, y} in G, mx,y = Me(x). Moreover, if e′ is an edge
of G not present in Ge(x), then mx,y = Me′(x).

1 A subtree T ′ of T is a full subtree of T if for any node v ∈ T and the set of edges E adjacent
with v in T , either E ⊆ ET ′ or E ∩ET ′ has at most one element.

Deep Coalescence Reconciliation with Unrooted Gene Trees: Linear Time Algorithms 537

Algorithm 1. Optimal edge and urDC score computation
1: Input: A species tree S, an unrooted gene tree G with at least three leaves, L(G) ⊆ L(S).
2: Output: urDC(G,S).
3: Compute ̂G with the labelling of edges by as follows. Let mv,w be the label, that is a species node, of

〈v, w〉 in ̂G. For each directed edge 〈v, w〉 in ̂G, let

mv,w :=

{

s v ∈ G and s ∈ S are leaves with the same label,
mx,v +my,v if {x, y,w} is the set of all neighbours of v in G.

4: For some edge e = {x, y} of G, let � := mx,y +my,x (here � is the mapping of the root of Ge; it is
independent of e).

5: Let v be a node from ̂G.
6: While there exits a node w adjacent with v such that mw,v = � 	= mv,w:

let v := w (star S1, continue search).
7: Let e = {v, w}, where w is a neighbor of v such that mv,w = � = mw,v or mv,w 	= � 	= mw,v (e

is an optimal and symmetric edge).
8: Return: δv,w + δw,v + ||mv,w, mw,v ||, where

δa,b =

{

0 if a is a leaf
δc,a + δd,a + ||mc,a, md,a|| if {c, d} are the children of a in Ge.

.

In other words, the mappingsm computed in the third line of Alg. 1, are shared among
rootings ofG. These mappings can be used to compute the optimal cost or even costs of
all rootings, by using the values of δa,b. The following lemma justifies this observation.

Lemma 2. Under notation introduced in Alg.1. If 〈a, b〉 ∈ ÊG such that b is not a child
of a in Ge, we have δa,b = DC(Ge(a), S), where e is the optimal edge found by Alg. 1.

Theorem 2. The time complexity of Alg. 1 is O(|G| + |S|).

Proof: Let |EG| = k and |S| = n. It follows from [2] that a single least common ancestor
query can be computed in O(1) number of steps after an initial preprocessing requiring O(n)

steps. The labeling of Ĝ requires 2k lca-queries. Therefore, the procedure of finding an op-
timal edge in G can be completed in O(k + n) time. Now, we analyze the time complexity
of the score computation. Assume that the distances from �, called here �-queries, are calcu-
lated for each node of S. Observe that such preprocessing can be done in O(n) time. Then,
each distance of the form ||x, y|| we compute by using three �-queries and one lca-query:
||x, y|| = ||x,�||+ ||y,�|| − 2 ∗ ||x+ y,�||. In total, we have 3k �-queries and k lca-queries
in the 8th line of Alg.1. Finally, we have the preprocessing phase that can be done in O(n) time,
3k lca-queries and 3k �-queries to compute the optimal DC score. This completes the proof. []

It should be clear, that the space complexity of Alg. 1 and is O(|G| + |S|). The next
theorem presents the most general result for the DC score computation.

Theorem 3. For an unrooted gene tree G and a species tree S, computing DC scores
for all rootings of G can be done in O(|S| + |G|) time.

Proof: Let |EG| = k and |S| = n. Lemma 1 and Lemma 2 state that the values of m and δ

are shared among rootings of G. Therefore, if e = {x, y} is an edge in G, then DC(Ge, S) =

δx,y+δy,x+ ||mx,y,my,x||. Thus, first we need to compute m and δ for each directed edge from
ÊG (2k edges). Computing δ requires 6k �-queries (see the proof of Thm. 2) and 2k lca-queries.
Additionally, for the computation of DC scores, we need 3k �-queries and k lca-queries. Finally,

538 P. Górecki and O. Eulenstein

after the preprocessing phase that can be completed in O(n) time, we have 5k lca-queries and 9k

�-queries to compute m (see Thm. 2), δ and all DC scores. []

2.4 Multifurcated Trees

Most of gene trees inferred from sequences and species taxonomies have multifurca-
tions that represent uncertainties. The analysis of multifurcations in gene and species
trees leads to essentially the same results. Formally, a multifurcated tree has potentially
higher degrees of internal nodes than the binary gene and species trees (see definitions
in Section 1.1). For this reason, stars in the multifurcated case can have more than 3
edges. Their construction, which is omitted here for brevity, is based on the approach
taken from binary trees (see Fig. 3). All multifurcated stars are depicted in Fig. 5. We
conclude that all binary stars can be naturally transformed into the multifurcated ones.
However, one new topology has to be defined. For instance, when G = S = (a, b, c),
the unrooted gene tree G has exactly one star of a new type M6. Observe, that a star of
type M6 cannot be inferred when both G and S are binary.

Similarly to Thm. 1, we have the following result:

Theorem 4. Let G be an unrooted tree and S be a rooted species tree, both with multi-
furcations, such that L(G) ⊆ L(S). Let MinG be the set of optimal edges in G for the
urDC score computed for G and S.

(i) If Ĝ has a double edge then MinG contains edges from all stars M3-M5 present
in Ĝ.

(ii) If Ĝ has an empty edge then this edge is the only optimal edge (star M2).
(iii) If Ĝ has no symmetric edges then Ĝ has exactly one star of type M6. All edges if

this star are optimal.
(iv) MinG is a full subtree of G.
(v) An optimal edge in MinG can be found a greedy method of gradient descent sim-

ilarly to the binary case (based on Alg. 1).

Note that Alg. 1 and its properties (Thm. 2 and Thm. 3) can be easily adopted to cover
multifurcated trees and stars of type M6. Observe, that such modified algorithm will
have the same time and space complexity as Alg. 1. Here, we omit proofs and formal
details for brevity.

M1 M2 M3 M4 M5 M6

Fig. 5. Star topologies for the multifurcated trees, M1 is a multifurcated variant of S1, M2 of S2,
etc. The star M5 has at least two double edges and at least one single edge. Note, that M6 is not
present if both the gene tree and the species tree are binary.

Deep Coalescence Reconciliation with Unrooted Gene Trees: Linear Time Algorithms 539

2.5 Rooting at Nodes

Gene trees can be either rooted at an edge or an internal node. Our approach can nat-
urally cover this case, and it can be shown, that the set of optimal edge-rootings can
be extended with the rootings placed on internal nodes of the optimal valley. We skip
formal details for brevity.

2.6 Relations between urDC and the Duplication-Loss Cost

We present relationships between the duplication-loss and the urDC cost. For more
details, please refer to [12].

Theorem 5. Let S be a binary species tree and G a binary unrooted gene tree. Then
each optimal rooting of the weighted duplication-loss cost is optimal for the urDC
measure.

Proof: The optimal edges for the urDC cost (see Fig. 3) are: the symmetric edge in S2-S3 stars
and all edges present in S4-S5 stars. From Thm. 7 [12], the optimal rootings for the duplication-
loss cost are determined by all edges of stars S4-S5 and by the symmetric edge of stars S2-S3.
By Thm. 1, these edges are also optimal for the urDC cost. []

Fig. 6 illustrates an example of the duplication-loss cost analysis for the trees from the
previous figures. It follows from the theory of unrooted reconciliation for the dupli-
cation-loss cost that the optimal rootings determine evolutionary scenarios that differ
only in the duplications mapped to the rooting edge. This observation supports the bio-
logical importance of the urDC cost evaluation.

e
39

g

33

39

d

30

33

b

27

30

f i

27

27
31

31

h

30

30

a

31

31

c

32

32

c

33

33

a

37

37

b

 G

a b c d e f g h i

Fig. 6. Left: the duplication-loss cost example with the star representation of the trees from Fig. 1.
There are 3 optimal edges (star S4) with cost 27. Observe that these edges are also optimal
for the urDC cost (Fig. 4). Right: visualization of an optimal evolutionary scenario, that is, the
embedding of the rooting of G placed on the bottom optimal edge into S.

3 Experiment

In our experimental study we computed 3150 unrooted, and mostly multifurcated, gene
family trees from the OrthoMCL-DB database [6]. Our new urDC measure allowed us

540 P. Górecki and O. Eulenstein

ftul|YP_169126
mlep|YP_002503710

mtub|NP_217354
aaeo|NP_213070

sent|NP_457667
sfle|NP_708968
ecol|AP_003712
yent|YP_001004805.1
ypes|YP_002348384
vcho|NP_230293

micr|ACO64874
otau|0700010305

crei|174010
rcom|30131.m007150
atha|NP_195199
osat|NP_001056734

ppat|gw1.354.17.1
syne|NP_898298

cbot|YP_001787728.1
cper|YP_696372

cpne|NP_224523
rbal|NP_866737

bant|YP_020587
lmon|NP_464852

spne|NP_345073
saur|NP_371794

gsul|NP_952640
tmar|NP_228664

cbur|NP_820414
bpse|YP_333315.2
bmal|YP_102759
rsol|NP_519411

deth|YP_181705
tpal|NP_219325
cmer|CMT486C

ctep|NP_661146
drad|NP_294625

bsui|NP_699141
atum|NP_353121

wend|YP_001976106
rpro|NP_220816.1
rtyp|YP_067381

1.0 tpal
tmar
drad
deth
rbal
aaeo
ctep
rsol
bpse
bmal
gsul
vcho
cbur
ecol
sent
yent
ypes
sfle
ftul
wend
rpro
rtyp
bsui
atum
cbot
cper
spne
bant
lmon
saur
cpne
syne
mlep
mtub
cmer
ppat
osat
rcom
atha
micr
otau
crei

rtyp

ftul

mlep
mtub

aaeo

sent
sfle

ecol

yentypes

vcho

micr

otau

crei rcom

atha
osat

ppat
syne

cbot

cpercpnerbal

bant
lmon

spne

saur

gsul

tmar

cburbpse

bmal
rsol

deth

tpal

cmer

ctep

drad

bsui

atum

wend
rpro

94

89

85

82

81

81
81

81

82

8383
84

86

86

84

82

85

89

9797

97

89
94

94

85

81
81

81

83

86

90

90

86

83
86

90

95

95
90

86

81

81

82
83

84 87
8784

83

82

83

86

86

89

89

92

92

83

81

8181

83

8386

90

90

86

81

82

82

81

82

83

83

85

89

89

89

94

Fig. 7. Top right: an unrooted gene tree for ribosome-binding factors A and similar proteins from
the OrthoMCL family OG5 131740[6]. Top left: a rooted species tree based on the NCBI taxon-
omy [17] inferred for the set of species present in the OG5 131740 family. Bottom: the result of
the urDC cost analysis. The minimum DC score (81) has 14 edges.

Deep Coalescence Reconciliation with Unrooted Gene Trees: Linear Time Algorithms 541

to compare each of these unrooted gene trees with the rooted species taxonomy (which
includes multifurcations) from the NCBI taxonomy [17].

To infer the gene trees, we first extracted orthologous groups of protein sequences
from the OrthoMCL DB v5.0 [6] with at least 11 members. Then, we aligned the pro-
tein sequences of each group using the program Muscle [8] by applying the default
parameter setting. Maximum likelihood gene trees were inferred from each of these
alignments using the program PhyML [13]. The resulting unrooted and binary ML-
trees usually contained short edges. To avoid uncertain edges we collapsed edges with
an edge weight that was smaller than 0.06. As a result we inferred 3150 unrooted gene
trees with multifurcations.

The species tree is based on the NCBI taxonomy [17]. For each inferred gene tree
G, we transformed the NCBI taxonomy into a rooted species tree that contains only the
species from G by removing unused species and contracting edges.

Using an implementation of our algorithm for the urDC measure, we reconciled each
of the 3150 gene trees with the corresponding rooted species taxonomy. The overall
computation of the scores was completed within a minute on a standard workstation.
An example for one of these reconciled gene trees is depicted in Figure 7. The minimum
urDC score for this gene tree is 81 and can be obtained by rooting the tree at one of the
edges that are forming the valley consisting of 14 optimal edges.

Software and exemplary datasets are freely available through the following website:
http://bioputer.mimuw.edu.pl/gorecki/urdc

4 Conclusion and Outlook

In this article we addressed the problem of reconciling an unrooted gene tree with a
rooted species tree under the deep coalescence cost. We presented novel linear time and
space algorithms for computing DC costs, which can be used to support a wide variety
of applications, including (i) the rooting of unrooted gene trees, (ii) the reconciliation
of unrooted gene trees with rooted species trees based on the DC cost, and (iii) the
comparative phylogenetic analyses of unrooted gene trees with rooted species trees.
Further, we showed that the optimal rootings under the DC cost and the duplication-
loss cost are closely related, and that these rootings form a valley in the gene tree.
These properties can provide a valuable approach for establishing credible rootings.

Our results suggest to investigate on extending our algorithms to solve more general
problems under the DC cost, which include (i) the reconciliation of an unrooted gene
tree with an unrooted species tree, (ii) the error correction in unrooted gene trees, and
(iii) local search algorithms for unrooted GTP heuristics.

References

1. Bansal, M.S., Burleigh, J.G., Eulenstein, O.: Efficient genome-scale phylogenetic analysis
under the duplication-loss and deep coalescence cost models. BMC Bioinformatics 11(suppl.
1), S42 (2010)

2. Bender, M.A., Farach-Colton, M.: The LCA Problem Revisited. In: Gonnet, G.H., Viola, A.
(eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)

http://bioputer.mimuw.edu.pl/gorecki/urdc

542 P. Górecki and O. Eulenstein

3. Bininda-Emonds, O.R.P., Gittleman, J.L., Steel, M.A.: The (super) tree of life: procedures,
problems, and prospects. Annual Review of Ecology and Systematics 33, 265–289 (2002)

4. Burleigh, J.G., Bansal, M.S., Eulenstein, O., Hartmann, S., Wehe, A., Vision, T.J.: Genome-
scale phylogenetics: inferring the plant tree of life from 18,896 discordant gene trees. Sys-
tematic Biology 60, 117–125

5. Chaudhary, R., Bansal, M., Wehe, A., Fernández-Baca, D., Eulenstein, O.: iGTP: A software
package for large-scale gene tree parsimony analysis. BMC Bioinformatics 11(1), 574 (2010)

6. Chen, F., Mackey, A.J., Stoeckert, C.J., Roos, D.S.: Orthomcl-db: querying a comprehensive
multi-species collection of ortholog groups. Nucleic Acids Research 34(suppl. 1), D363–
D368

7. Davies, J.T., Fritz, S.A., Grenyer, R., Orme, C.D.L., Bielby, J., Bininda-Emonds, O.R.P.,
Cardillo, M., Jones, K.E., Gittleman, J.L., Mace, G.M., Purvis, A.: Phylogenetic trees and
the future of mammalian biodiversity. PNAS 105, 11556–11563 (2008)

8. Edgar, R.C.: MUSCLE: multiple sequence alignment with high accuracy and high through-
put. Nucleic Acids Research 32, 1792–1797 (2004)

9. Edwards, E.J., Still, C.J., Donoghue, M.J.: The relevance of phylogeny to studies of global
change. Trends In Ecology & Evolution 22(5), 243–249 (2007)

10. Forest, F., et al.: Preserving the evolutionary potential of floras in biodiversity hotspots. Na-
ture 445(7129), 757–760 (2007)

11. Górecki, P., Tiuryn, J.: DLS-trees: A model of evolutionary scenarios. Theor. Comput.
Sci. 359(1-3), 378–399 (2006)

12. Górecki, P., Tiuryn, J.: Inferring phylogeny from whole genomes. Bioinformatics 23(2),
e116–e122 (2007)

13. Guindon, S., Delsuc, F., Dufayard, J., Gascuel, O.: Estimating maximum likelihood phylo-
genies with PhyML. Methods Mol. Biol. 537, 113–137 (2009)

14. Koonin, E.V., Galperin, M.Y.: Sequence - evolution - function: computational approaches in
comparative genomics. Kluwer Academic (2003)

15. Maddison, W.P.: Gene trees in species trees. Systematic Biology 46, 523–536 (1997)
16. Page, R.D.M., Holmes, E.C.: Molecular evolution: a phylogenetic approach. Blackwell Sci-

ence (1998)
17. Sayers, E.W., et al. Database resources of the national center for biotechnology information.

Nucleic Acids Research 37(suppl. 1), D5–D15 (2009)
18. Smith, A.: Rooting molecular trees: problems and strategies. Biol. J. Linn. Soc. 51, 279–292
19. Thuiller, W., Lavergne, S., Roquet, C., Boulangeat, I., Lafourcade, B., Araujo, M.: Conse-

quences of climate change on the tree of life in Europe. Nature 470(7335), 531–534 (2011)
20. Wheeler, W.: Nucleic acid sequence phylogeny and random outgroups. Cladistics – The In-

ternational Journal of the Willi Hennig Society 51, 363–368 (1990)
21. Willis, C.G., Ruhfel, B., Primack, R.B., Miller-Rushing, A.J., Davis, C.C.: Phylogenetic pat-

terns of species loss in thoreau’s woods are driven by climate change. PNAS 105, 17029–
17033 (2008)

22. Yu, Y., Warnow, T., Nakhleh, L.: Algorithms for MDC-Based Multi-locus Phylogeny Infer-
ence. In: Bafna, V., Sahinalp, S.C. (eds.) RECOMB 2011. LNCS, vol. 6577, pp. 531–545.
Springer, Heidelberg (2011)

23. Zhang, L.: From Gene Trees to Species Trees II: Species Tree Inference by Minimizing Deep
Coalescence Events. IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics 8, 1685–1691 (2011)

On the 2-Central Path Problem�

Yongding Zhu and Jinhui Xu

Department of Computer Science and Engineering,
State University of New York at Buffalo,

Buffalo, NY 14260, USA
{yzhu3,jinhui}@buffalo.edu

Abstract. In this paper we consider the following 2-Central Path Problem
(2CPP): Given a set of m polygonal curves P = {P1, P2, . . . , Pm} in the plane, find
two curves Pu and Pl, called 2-central paths, that best represent all curves in P.
Despite its theoretical interest and wide range of practical applications, 2CPP has
not been well studied. In this paper, we first establish criteria that Pu and Pl ought
to meet in order for them to best represent P. In particular, we require that there
exists parametrizations fu(t) and fl(t) (t ∈ [a, b]) of Pu and Pl respectively such
that the maximum distance from { fu(t), fl(t)} to curves in P is minimized. Then
an efficient algorithm is presented to solve 2CPP under certain realistic assump-
tions. Our algorithm constructs Pu and Pl in O(nm log4 n2α(n)α(n)) time, where
n is the total complexity of P (i.e., the total number of vertices and edges), m is
the number of curves in P, and α(n) is the inverse Ackermann function.Our algo-
rithm uses the parametric search technique and is faster than arrangement-related
algorithms (i.e. Ω(n2)) when m� n as in most real applications.

1 Introduction

In this paper, we introduce a relatively new concept of k-central paths among a set of
paths. Given a set of polygonal curves P = {P1, P2, . . . , Pm} in the plane, the k-central
path problem is to find k curves, called k-central paths, that “best” represent all curves
in P, where k is an integer and 1 ≤ k ≤ m. The problem is a generalization of the well-
known k-center problem of points, where the centers are naturally the best representa-
tives of the set of input points. For polygonal curves, however, it is less clear what are
the “best representatives”. To define better representatives, we let f1(t), f2(t), . . . , fk(t)
(t ∈ [a, b]) be a parametrization of the k-central paths and propose two criteria for the
selection of the k-central paths: (1) Each k-central path preserves the shapes of curves
in P; (2) For any given t ∈ [a, b], the distance from { f1(t), f2(t), . . . , fk(t)} to any input
path in P is minimized, that is, we need to find the smallest radius r such that every
path in P intersects some disk D(fi(t), r) centered at fi(t) with radius r. The first cri-
terion is relatively easy to fulfill by requiring all k-central paths and the paths in P
(except some outliers) start at the same region and end at some common region in the
plane. For the second criterion, we need to solve an optimization problem of minimiz-
ing max

a≤t≤b,i=1,2,...,m
d({ f1(t), f2(t), . . . , fk(t)}, Pi), where d(·, ·) is the Euclidean distance (i.e.,

the closest distance).
� This research was partially supported by NSF through a CAREER award CCF-0546509 and

grants IIS-0713489 and IIS-1115220.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 543–555, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

544 Y. Zhu and J. Xu

The problem arises in a variety of application fields. With the rapid advancement of
new technologies like sensor networks, global positioning systems, and mobile phone
networks, it is now possible to record the traces of certain objects such as patients,
animals, vehicles, hurricanes for later analysis. In such applications, traces are usually
represented as trajectories, which is a time-stamped path that a moving object traverses
[4], i.e., a sequence of 2D or 3D points with time stamps. In some applications though,
the temporal information (time stamps) may be discarded or ignored when studying
their spatial patterns, thus resulting in a set of polygonal trajectories (or paths) in the
plane. Effective analysis of the recorded data usually requires finding the common or
representative patterns of the trajectories, and thus can be formulated as a k-central path
problem. The k-central path problem is also motivated by problems in segmentation,
medical imaging, data mining and pattern recognition. In multi-surfaces segmentation
[15], the accurate boundary of an object in noisy images often needs to first gener-
ate a set of candidate segmentations using algorithms following different optimization
criteria and then derive the most likely solution from them (e.g., segmenting by en-
semble clustering method [14]), which can be formulated as a problem of finding the
“k-central” paths. Despite its importance, studies on “k-center” or “k-median” of curves
have only been initiated recently.

In article [4], Buchin et al. investigated the so-called median trajectory (actually
median path as no temporal information is considered). In their definition, the median
trajectory has to be part of the input trajectories. In addition, the median trajectory must
be in the “middle” of the input trajectories. More precisely, for any point p of the median
trajectory, the minimum number of distinct trajectories that p must cross to reach the
unbounded face is (m+ 1)/2, where m is the number of input trajectories. They showed
that by applying an arrangement algorithm, the median trajectory can be computed in
O(n2) time, where n is the total complexity of the input [4].

In this paper, we extend the concept of “1-center (e.g., median)” to “2-center” and
introduce the following 2-central path problem (2CPP): Given a set of polygonal curves
P = {P1, P2, . . . , Pm} in the plane, find two curves Pu and Pl, called 2-central paths, so
that the maximum distance from { fu(t), fl(t)} to curves in P is minimized for all t. To
meet the first criterion proposed above, we assume that there are two vertical lines Ls

and Lt such that every path in P starts on Ls and ends on Lt (i.e., the common starting
and ending regions are lines). Note that this assumption is reasonable in many appli-
cations. For example, shopping carts with RFID tags are usually starting and ending at
common locations.

To our best knowledge, the concept of “2-center” of curves has not been explored in the
past. Existing algorithms are mainly for the 2-center problem of points [6,3,9,10,13,7,5],
which seeks two congruent disks with minimum radius to cover a set of points. The
point case of the 2-center problem has been studied extensively. It was believed to be at
least quadratic-time solvable for decades [6,9,10]. The major breakthrough was achieved
by Sharir. In [13], he showed that the planar 2-center problem can be solved in sub-
quadratic time (i.e., O(n log9 n)). This result was improved to O(n log2 n) by Eppstein by
using randomized algorithm [7]. Later, Chan improved the deterministic running time to
O(n log2 n log2 log n) [5].

On the 2-Central Path Problem 545

In this paper, we investigate the geometric properties of the 2-central paths Pu and
Pl and show that they can be constructed in O(nm log4 n2α(n)α(n)) time under certain
realistic assumptions by using parametric search. Our result is near linear time when m
is small (actually m is a constant in many applications).

2 Preliminary

Assumptions. For simplicity, we make the following assumptions on P:

(1) General position assumption: No three edges intersect at one common point.
(2) Non-overlapping assumption: No two edges partially or fully overlap, and no vertex

of one input curve lies on another curve.
(3) Monotonicity assumption: All curves in P are x-monotone.
(4) Common x-span assumption: All curves start at the same vertical starting line Ls,

end at the same vertical ending line Lt, and lie completely between them (see
Figure 1).

P1

P2

P3

P4

Pu

Pl

Ls Lt

Fig. 1. An example of 2CPP. P1, P2, P3 and P4

are 4 input curves; Pu and Pl (dashed curves)
are the 2-central paths.

Pi

Ls
Lt

r

Ũi

Fig. 2. The Minkowski sumM(Pi, r). The red
curve is the upper boundary ˜Ui.

The above assumptions are reasonable in many applications. For instance, the first two
assumptions can be easily satisfied by slightly perturbing the vertices of the curves. For
the third assumption, since many moving objects (except for possible outliers) share
similar spatial patterns, it is often possible to discard outliers in advance and uses certain
transformations (e.g., using radial scanning and polar coordinates locally at those non-
monotone places) to make them x-monotone. For the fourth assumption, one can find
two vertical lines Ls and Lt and extends (or truncates) the two ends of each curve to
them, without compromising the quality of the 2-central paths. With these assumptions,
a natural way to parameterize curves in P and the 2-central paths Pu and Pl is to use x
as the parameter. Thus throughout the paper, we use fu(x) and fl(x) to represent Pu and
Pl, where x ∈ [a, b] and a and b are the x-coordinates of Ls and Lt respectively.

Parametric Search. Parametric search is an important optimization technique devel-
oped by Meggido [11,12], and applied to numerous geometric optimization problems
like the ones in [1,2]. Let n be the input data size and λ be a parameter. The goal of
parametric search is to find a value λ∗ of λ so that the output satisfies certain properties.

546 Y. Zhu and J. Xu

Assume that an oracle As exists to solve the following decision problem in Ts time:
Given a constant λ, decide if it is larger than, smaller than, or equal to the desired value
λ∗. Further, assume that As can be parallelized (denoted as Ap) using p processors in Tp

parallel steps. Then, we can simulate Ap sequentially by generating p values of λ for
each parallel step of Ap, sorting the p values of λ, and applying binary search using As

as comparator. In this way, we can solve the original problem in O(pTp + TsTp log p).

3 Decision Problem

As mentioned in last section, to solve 2CPP by parametric search, it is essential to solve
the following fixed-size decision problem.

Definition 1 (Decision 2CPP or D2CPP). Given a set of 2D polygonal curves P =
{P1, P2, . . . , Pm} with total complexity n and a parameter r, decide if there exist two
curves Pu and Pl such that max

a≤x≤b,i=1,2,...,m
d({ fu(x), fl(x)}, Pi) is less than or equal to r,

where d is the Euclidean distance of two sets of points.

To solve D2CPP, we first consider the Minkowski sums of input curves.

3.1 Minkowski Sum

Definition 2 (Minkowski Sum). Let Pi be a path in P, i = 1, 2, . . . ,m, and Dr be a
closed disk of radius r and centered at the origin. The Minkowski Sum of Pi and Dr is
M(Pi, r) = {p1 + p2|p1 ∈ Pi, p2 ∈ Dr, p1 + p2 is located between Ls and Lt}.

The following few lemmas show some good properties of the Minkowski sumM(Pi, r).

Lemma 1. BothM(Pi, r) and R2\M(Pi, r) are connected.

Lemma 1 implies that M(Pi, r) is a closed region bounded by the upper and lower
boundary curves, Ls and Lt. Next, we present an efficient algorithm to compute the up-
per and lower boundary curves ofM(Pi, r), which can be easily parallelized. Without
loss of generality, only the upper boundary ofM(Pi, r) is considered; the lower bound-
ary is symmetric and can be handled similarly. Let ˜Ui be the upper boundary curve of
M(Pi, r). As showed in Figure 2, ˜Ui consists of line segments and circular arcs (i.e., an
edge of ˜Ui is either a line segment or a circular arc).

Definition 3. A candidate edge of a site (vertex or edge) in Pi for ˜Ui is defined as
follows.

1. If the site is an (closed) edge e, the candidate edge C(e) is a segment parallel to e
and above it by a distance of r with the endpoints of e and C(e) forming a rectangle
(see Figure 3 (left));

2. If the site is a reflex vertex (looking from +∞ of the y axis) v, the candidate edge
C(v) is a circular arc centered at v, of radius r, and lying above Pi with its two
endpoints on the rays emanating from v and orthogonal to the two adjacent edges
of v respectively (see Figure 3 (right));

On the 2-Central Path Problem 547

r

r

Pi

e

v

Pi

C(e)

C(v)

Fig. 3. Two cases of candidate edges. The in-
put curve Pi is in solid lines. The dashed
curves are candidate edges.

Pi

Pi

Ũi

Ũi

Fig. 4. Partial structures of the upper boundary
of M(Pi, r). The upper boundary curve is in
dashed line.

3. If the site is a non-reflex vertex, no candidate edge exists.

If v is one of the two endpoints of Pi, we treat v as a reflex vertex, in which case the
reflex angle is equal to 2π.

Lemma 2. Each edge of ˜Ui is part of some candidate edge. Each candidate edge can
only contain at most one edge of ˜Ui.

It is possible that a candidate edge contains none of the upper boundary edges of
M(Pi, r). For example, in Figure 4, the horizontal edges of Pi do not have edges of
˜Ui associated with it.

Lemma 3. The upper boundary ofM(Pi, r) ˜Ui is x-monotone.

The following lemma shows that the ordering of the upper boundary curve is consistent
with that of the input curve Pi.

Lemma 4. Let α and β be two sites (either an edge or a vertex) of Pi. Let eα and eβ be
two edges of ˜Ui contained by C(α) and C(β) respectively. Then α is on the left of β if
and only if eα is on the left of eβ.

Proof. Suppose α is on the left of β but eα is on the right of β. Let pα ∈ eα and pβ ∈ eβ
be two arbitrary points. Let qα ∈ α and qβ ∈ β are the two closest points on Pi of pα and
pβ respectively. Then d(pα, qα) = r and d(pβ, qβ) = r. By Lemma 3, we know that both
Pi and ˜Ui are x-monotone. Thus, the two line segments pαqα and pβqβ must intersect at
some point. By triangle inequality, we have d(pα, qα)+d(pβ, qβ) > d(pα, qβ)+d(pβ+qα),
i.e., d(pα, qβ)+d(pβ+qα) < 2r. Thus one of the two points pα and pβ must have distance
to Pi less than r. This contradicts the fact that both pα and pβ are on ˜Ui.

The above lemma suggests that we can construct the upper boundary ofM(Pi, r) by a
simple plane sweep algorithm as follows.

Minkowski-Sum Algorithm

1. Compute the candidate edge for each edge or reflex vertex of Pi;
2. Let ˜Ui = {} be the initial upper boundary ofM(Pi, r);
3. Starting from the leftmost endpoint of Pi, for each candidate edge, compute the

intersection between the candidate edge and the last edge of ˜Ui;
4. If there is no intersection point, discard the last edge from ˜Ui and go to step 3;

548 Y. Zhu and J. Xu

5. If there is an intersection point p, truncate both edges at p and add the truncated
candidate edge at the end of ˜Ui;

6. Proceed to the next candidate edge in left-to-right order, repeat step 3 − 6 until the
rightmost endpoint of Pi is reached;

7. Discard the portions of ˜Ui not lying between Ls and Lt.

Theorem 1. Given a path Pi ∈ P with ni vertices and edges and a positive constant r,
the complexity ofM(Pi, r) is O(ni) and the Minkowski-Sum Algorithm correctly com-
putesM(Pi, r) in O(ni) time.

Note that the Minkowski sum M(Pi, r) can be alternatively computed using existing
approaches (such as those based on medial axis or Voronoi diagram). However, those
algorithms can not be easily parallelized for parametric search. In contrast, our algo-
rithm is much simpler and more friendly to parallelization.

3.2 Double Stabbing Problem

The rough idea of our D2CPP algorithm is to first computeM(Pi, r) for all Pi ∈ P and
sort the vertices of the upper and lower boundary curves. Then compute the two leftmost
endpoints of Pu and Pl on Ls, denoted by su and sl respectively. At last, starting from
su and sl, we sweep a vertical line from left to right and build Pu and Pl if they exist.

Let L be an arbitrary vertical line between Ls and Lt. L∩M(Pi, r) forms a connected
line segment by Lemma 1. We denote the line segment by an interval Ii = [yi

1, y
i
2],

where yi
1 and yi

2 are the y-coordinate of the two endpoints. Let I = {I1, I2, . . . , Im}. To
determine if there exists a feasible pair of points on L like su and sl, we need to solve
the following double stabbing problem.

Definition 4 (Double Stabbing Problem (DSP)). Given a set of intervals I, find two
points pu and pl such that there exists a partition Iu and Il (i.e., I = Iu ∪Il) such that
pu ∈ ∩I∈Iu I and pl ∈ ∩I∈Il I. In other words, ∩I∈Iu I and ∩I∈Il I are not empty.

Lemma 5. Given P and r > 0, if there exist Pu and Pl for D2CPP, then there exists a
feasible solution for the double stabbing problem on I for any L between Ls and Lt.

Proof. Let pu and pl be two intersection points between L and Pu, Pl respectively. Since
Pu and Pl are the 2-central paths for r > 0, by definition we have min(d(pu, Pi), d(pl, Pi))
≤ r for all Pi ∈ P. Thus either pu or pl is contained by Ii.

We can solve the double stabbing problem in linear time by using the plane sweep
paradigm if the endpoints are sorted. The main idea is to scan a vertical line from left to
right with the right endpoints of the intervals in I as event points. Meanwhile, maintain
∩I∈Iu I and ∩I∈Il I, add an interval to either Iu or Il with adding to Il having a higher
priority. Let Iu = ∩I∈Iu I and Il = ∩I∈Il I.

Lemma 6. The above algorithm correctly solves the double stabbing problem in O(m)
time if the endpoints are sorted, where m is the total number of intervals.

On the 2-Central Path Problem 549

3.3 Solving the D2CPP

After solving the double stabbing problem on Ls, if there is no solution, we immediately
know that there exist no pair of paths Pu and Pl for the D2CPP. Otherwise, we sweep
a vertical line L from Ls to Lt and maintain Iu and Il. Let Pu ⊂ P and Pl ⊂ P be the
two sets of input curves corresponding to Iu and Il respectively. Whenever Iu or Il is
shrunk to a single point (called singularity event point, see Figure 5), we have to update
Iu and Il. The reason is that if we continue sweeping L without updating Iu and Il,
one of the two intervals Iu and Il that contains the singularity event point will disappear.
But that does not necessarily mean there is no solution for the double stabbing problem
on L. One way to resolve this problem is to solve the double stabbing problem again.
However, there are three major drawbacks for this approach: 1) We can not afford it
because we potentially have Ω(n) event points; Thus an o(log m) update scheme is de-
sired; 2) The Double Stabbing Algorithm possibly generates the same Iu and Il as they
are still feasible solution; 3) The new Iu (or Il) is likely to be disjoint with the old Iu

(or Il), which leads to discontinuous or non-x-monotone 2-central paths (see Figure 5).
The following lemma suggests that we only need to find and remove one curve from
Iu (or Il) and then add it to Il (or Iu) to avoid all the drawbacks. Furthermore, the
update only takes O(1) time if the two curves intersecting at the singularity event point
are known.

p

LS Lt
L

Iu

Il

Fig. 5. The singularity event point p in Iu. Af-
ter an update, the old Iu is a subset of the new
Iu and the new Il is a subset of the old Il. But Il

can become empty.

Ij

Ik

Ij

Ik

ε

Ls Lt

L
L′

p

Fig. 6. Illustration of the proof of Lemma 7

Lemma 7. While sweeping L, if one of the two intervals Iu and Il becomes singular
(i.e., the interval only contains one single point) and L � Lt, there are two cases:

1. Iu is composed of a single point p and Il is not empty. Let I j ∈ Iu be the interval
whose left endpoint is p and Ik ∈ Iu be the interval whose right endpoint is p. If
Ik ∩ Il = ∅, then no solution for the D2CPP (see Figure 5);

2. Il is composed of a single point p and Iu is not empty. Let I j ∈ Il be the interval
whose left endpoint is p and Ik ∈ Il be the interval whose right endpoint is p. If
I j ∩ Iu = ∅, then no solution for the D2CPP;

Proof. We only prove the first case (the second case is similar). If Ik∩ Il = ∅, there must
exist an interval I′k ∈ Il such that Ik ∩ I′k = ∅. Furthermore, the upper boundary curve
ofM(Pk, r) intersects the lower boundary curve ofM(P j, r) at a point on L. Consider
a vertical line L′ which is infinitesimally close to L on the right. Then on L′ we must

550 Y. Zhu and J. Xu

have I j ∩ Ik = ∅ (see Figure 6). Thus there exist three pairwise disjoint intervals I j, Ik, I′k
on L′, i.e., there do not exist two paths P and P′ for the D2CPP. �

Remarks: Lemma 7 tells us exactly when we should stop our plane sweep algorithm and
assert no solution exists. However, there is one situation that the lemma has difficulty
to handle. Consider the interval Ik in case 1. There are basically three subcases: 1) if
Ik∩ Il = ∅, no solution (quit and return failure); 2) if Ik∩ Il is a non-singular interval, we
continue our plane sweeping algorithm with the updated partition; 3) Ik ∩ Il is singular.
The problematic subcase 3 brings us back to the singular event point problem that we
are trying to solve. If we use case 2 of Lemma 7 to solve subcase 3, the only thing it
would do is to add Ik back to Iu. So one of Iu and Il must be singular. One way to resolve
the issue is to find the interval Ii ∈ Il that shares an endpoint with Ik at the new singular
point. Then find the two arcs ηk and ηi of the lower boundary curves ofM(Pk, r) and the
upper boundary curve ofM(Pi, r) that passes the singular point. Check if ηk lies above
ηi and on the right side of L. If yes, no solution for D2CPP. Otherwise, we continue the
plane sweep algorithm. Since this procedure does not increase the asymptotic running
time, for simplicity of description, we assume that this subcase will never happen, i.e.
Ik ∩ Il is either empty or a non-singular interval.

In order to determine if Ik ∩ Il or I j ∩ Iu is empty in Lemma 7, we have to maintain
Iu and Il (and the partition Iu and Il). However, the data structure changes at each
intersection point between curves within Pu or Pl. There are ω(n2) intersection points
in the worst case (i.e., the complexity of the arrangement of O(n) circular arcs). To
resolve this issue, we need to solve the following four problems: 1) Find all singularity
event points (this type of event points have to be considered because the existence of
Pu and Pl is determined by them); 2) Reduce the total number of event points to about
that of the singularity event points; 3) Determine if Ik ∩ Il or I j ∩ Iu is empty at each
singularity event point in constant or logarithmic time; 4) Construct Pu and Pl on the
fly or efficiently. The last issue is relatively easy to solve by exploring the features of
Pu and Pl (Lemma 8).

Let U = {˜U1, ˜U2, . . . , ˜Um} and L = {˜L1,˜L2, . . . ,˜Lm} be the set of upper and lower
boundary curves of all M(Pi, r) respectively. Let UL(L) be the upper envelope of L
and LU(U) be the lower envelope ofU.

Lemma 8. Given P, r > 0 and L, if there exists a solution to D2CPP, Pu = UL(L) and
Pl = LU(U) are the 2-central paths for D2CPP.

Proof. By Lemma 5, for any vertical line L between Ls and Lt, there exists a solution
to the stabbing problem. By Lemma 6 (and an observation in its proof), for the intervals
generated by the intersection between L and allM(Pi, r)’s, the rightmost left endpoint
and the leftmost right endpoint are eligible for being the pair of stabbing points pu

and pl. pu and pl are actually the intersection points between L and UL(L), LU(U)
respectively. Since L is arbitrary, the loci of pu and pl, when L sweeps from Ls to Lt,
respectively form the upper envelope ofL and the lower envelope ofU. In other words,
the two envelopes are the solution to D2CPP if exist. �

The following lemma reveals the complexities of UL(L) and LU(U).

On the 2-Central Path Problem 551

Lemma 9. Given n circular arcs in the plane, the upper (or lower) envelope has a
complexity of O(n2α(n)) and can be computed in O(nα(n) log n) time, where α(n) is the
inverse Ackermann function.

Since UL(L) and LU(U) have near-linear complexity, we can take advantage of the
data structures to identify the singularity event points and reduce the total number of
event points. Let E be the intersection points between ˜Ui and UL(L), ˜Li and LU(U) for
all i = 1, 2, . . . ,m. The following lemma shows that E contains all critical singularity
event points.

Lemma 10. Let p be a singularity event point of case 1 or case 2 in Lemma 7. p is
contained in E.

Lemma 11. E has a complexity of O(nm4α(n)) and can be computed in O(nm2α(n)

α(n) log n) time.

With Lemma 11, the total number of event points is now reduced to O(nm4α(n)) from
ω(n2). The remaining problem is to examine the emptiness of Ik ∩ Il or I j ∩ Iu at each
singularity event point in constant or logarithmic time. The interval I j or Ik can be stored
at each event point while computing E. Thus checking the emptiness of Ik ∩ Il or I j ∩ Iu

can be done in O(1) time.
We are now ready to present the D2CPP algorithm. First, compute the Minkowski

sum M(Pi, r) for each Pi ∈ P, construct the two envelopes UL(L) and LU(U), and
compute all event points in E. When sweeping L from Ls to Lt, at each event point
v ∈ E, check if there is a solution to D2CPP by Lemma 7. Below are the main steps of
the algorithm.

D2CPP Algorithm

1. For each input curve Pi ∈ P, computeM(Pi, r);
2. Compute UL(L) and LU(U);
3. Compute E and store the arc intersecting UL(L) or LU(U) at each event point;
4. Sweep L from Ls to Lt and for each encountered event point vi (initially, i = 1) do;

(a) Find the three input curves Pi, P j, Pk ∈ P such that ˜Li ∩ L = UL(L) ∩ L,
˜U j ∩ L = LU(U) ∩ L, and ˜Lk ∩ L = vi or ˜Uk ∩ L = vi;

(b) If ˜Lk ∩ L = vi, check if ˜Uk ∩ L > ˜Li ∩ L; If yes, i = i + 1; otherwise, stop and
return failure;

(c) If ˜Uk ∩ L = vi, check if ˜U j ∩ L > ˜Lk ∩ L; If yes, i = i + 1; otherwise, stop and
return failure;

Theorem 2. The D2CPP Algorithm correctly solves D2CPP in O(nm2α(n)α(n) log n)
time, where n is the total complexity of P and m is the number of curves in P.

Proof. Step 1 takes O(n) time by Theorem 1. Step 2 takes O(nα(n) log n) time by
Lemma 9. Step 3 takes O(nm2α(n)α(n) log n) time by Lemma 11. For the loop (step
4), there are O(nm4α(n)) event points. At each event point, steps 4(a) − 4(c) take O(1)
time each. Thus the total running time is O(nm2α(n)α(n) log n). Note that the two inter-
section points UL(L) ∩ L and LU(U) ∩ L can be computed during the sweep process
by adding the vertices of UL(L) and LU(U) into E without increasing the asymptotic
running time. Hence we know that the running time of steps 4(b) and 4(c) is O(1). �

552 Y. Zhu and J. Xu

4 Solving the 2CPP

To apply the parametric search technique, an efficient parallel algorithm (in Valiant’s
comparison model) for D2CPP has to be designed. Most of the steps in the D2CPP
Algorithm are routine to parallelize. For example, sorting can be performed in O(log n)
parallel steps by using n processors if the input size is n [1,2]. The lower and upper
envelopes can be computed in O(log2 n) parallel steps by using n processors [8]. The
main steps of our parallel algorithm are sketched below.

Parallel D2CPP Algorithm
1. For each input curve Pi ∈ P, computeM(Pi, r) by a parallel algorithm;
2. Compute UL(L) and LU(U) by parallel envelope algorithms;
3. Compute E by parallel envelope algorithms;
4. Let Li be the vertical line passing vi (vi ∈ E);
5. In parallel, execute steps 4(a)-4(c) of the D2CPP Algorithm for each event point vi;

Next, we analyze the parallel running time for each step of the algorithm.
We first consider how to compute the upper boundary curve ˜Ui ofM(Pi, r) by using

Θ(ni) processors (the lower boundary curve ˜Li can be similarly computed), where ni

is the total number of edges and vertices in Pi. As mentioned in the last section, the
Minkowski-Sum Algorithm is friendly to parallelization. The reason is that we can
simulate Minkowski-Sum Algorithm by using a balanced binary tree structure Ti (see
Figure 7). For every edge or reflex vertex of Pi ∈ P, there is a leaf node associated with
it. All leaf nodes of Ti are ordered from left to right consistent with Pi. Clearly, Ti can
be constructed in a bottom-up fashion in O(ni) time, since there are at most ni leaf nodes
(these tree structures are constructed at the beginning of the whole algorithm). At each
node p of T , we store the partial Minkowski sum curve formed by the candidate edges
in the subtree rooted at p. If p is a leaf node, the candidate edge is stored. Thus, the
main idea of our parallel algorithm is to compute the partial Minkowski sum structures
layer-by-layer in parallel, starting from the lowest layer (i.e., the leaf nodes). Then the
Minkowski sum curve stored at the root becomes ˜Ui.

Now we consider the problem of constructing the partial Minkowski sum curve of
a non-leaf node from the partial Minkowski sums of its children. Let p be a node of
height j (1 ≤ j ≤ �n�), and pl and pr be its two children. Then the complexity of the
partial Minkowski sum curve at p is at most 2 j. And the Minkowski sum structures at
pl and pr have a complexity of at most 2 j−1. Let Al = {βl1, βl2, . . . , βl2 j−1 } and Ar =

{βr1, βr2, . . . , βr2 j−1 } be the sets of arcs of the partial Minkowski sum curve at pl and pr

respectively. Then we have the following lemma.

Lemma 12. There is exactly one intersection point betweenAl andAr.

Proof. First of all, there is at least one intersection point by Lemma 1. Secondly, sup-
pose that there are two intersection points q1 and q2. Let Pil ⊂ Pi and Pir ⊂ Pi be the
two continuous portions of Pi whose candidate edges contain Al and Ar respectively.
Then d(q1, Pil) = d(q2, Pir) = r. Thus, d(q1, Pil ∪ Pir) = d(q2, Pil ∪ Pir) = r, which
means that the merged partial Minkowski sum structure at p must have both q1 and q2

on its upper boundary. This is impossible by Lemma 4. �

On the 2-Central Path Problem 553

Pi

T

p

pl pr

Fig. 7. The binary tree T constructed on input path Pi

As mentioned in the proof of Theorem 1, if the Minkowski sum curve at p consists
of only one arc, but both Minkowski sum structures at its children have a complexity of
2 j−1, we have to compute the intersection points for 2 j times. This will be a problem for
our parallel Minkowski-Sum algorithm. To fix this problem, instead of computing the
partial Minkowski sum curve sequentially, we use 2 j−1 processors to compute it con-
currently. Since the total complexity of all partial Minkowski sum curves in any layer
is at most ni, we only need ni/2 processors for each layer. Furthermore, we use binary
search to reduce the dependency. The following algorithm finds the partial Minkowski
sum curve at p.

Partial-Minkowski-Sum Algorithm

1. In parallel, for each arc βlkl in Al (where 1 ≤ kl ≤ 2 j−1), perform a binary search
on Ar , i.e., if there is no intersection between βlkl and βlkr ∈ Ar , compute the in-
tersection point between βlkl and β

l kr+2 j−1

2

; otherwise, the intersection point between

Al andAr has already been found;
2. MergeAl andAr at the intersection point found at step 1;

Lemma 13. The Partial-Minkowski-Sum Algorithm runs in O(j) parallel steps by using
2 j−1 processors.

Lemma 14. The Minkowski sumM(Pi, r) can be computed in O(log2 ni) parallel steps
by using ni processors, where ni is the complexity of Pi.

Proof. At the layer of height j in T , there are ni

2 j nodes. By Lemma 13, the partial
Minkowski sum curve can be computed in O(j) parallel steps by using 2 j−1 processors.
Thus all partial Minkowski sum curves in that layer can be computed in O(j) steps, us-
ing ni

2 j ∗ 2 j−1 = ni
2 processors, since each node can be computed independently. Hence,

by using ni processors, the Minkowski sumM(Pi, r) (i.e., both upper and lower bound-
ary curves) can be computed in O(1+ 2 + . . .+ �log ni�) = O(log2 ni) parallel steps. �

From Lemma 14, we immediately know that Minkowski sums for all Pi ∈ P can be
computed in O(log2 max

i=1,2,...,m
ni) = O(log2 n) parallel steps using n processors.

Lemma 15. The envelopes UL(L) and LU(U) in step 2 of the Parallel D2CPP Algo-
rithm can be computed in O(log2 n) time by using n processors; Step 3 takes O(log2 n)
parallel steps by using nm2α(n) processors.

Proof. The first claim is a direct application of [8]. By Lemma 11, we know that
computing the intersection points between ˜Ui and UL(L) is equivalent to computing

554 Y. Zhu and J. Xu

their upper or lower envelope. There are O(ni + n2α(n)) curves in total. Thus the inter-
section between ˜Ui and UL(L) can be computed in O(log2 n) parallel steps by using

O(ni + n2α(n)) processors. Then by using
m
∑

i=1

O(ni + n2α(n)) = O(nm2α(n)) processors, E

can be computed in O(log2 n) parallel steps. �

Lemma 16. Step 5 of the Parallel D2CPP Algorithm takes O(1) time by using O(nm
4α(n)) processors.

Theorem 3. The Parallel D2CPP Algorithm can be computed in O(log2 n) parallel
steps by using O(nm4α(n)) processors.

Theorem 4. The 2CPP can be solved in O(nm log4 n2α(n)α(n)) time, where n is the total
complexity of P, m is the number of curves in P, and α(n) is the inverse Ackermann
function.

Acknowledgment. The authors would like to thank Professor Joseph S.B. Mitchell,
State University of New York at Stony Brook, for helpful suggestions and discussions.

References

1. Agarwal, P.K., Sharir, M.: Applications of parametric searching in geometric optimization.
Journal of Algorithms 17, 292–318 (1994)

2. Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. ACM Computing
Surveys 30, 412–458 (1998)

3. Agarwal, P.K., Sharir, M., Welzl, E.: The discrete 2-center problem. In: Proceedings of the
13th Annual ACM Symposium Computation Geometry, pp. 147–155 (1997)

4. Buchin, K., Buchin, M., van Kreveld, M., Löffler, M., Silveira, R.I., Wenk, C., Wiratma, L.:
Median Trajectories. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346,
pp. 463–474. Springer, Heidelberg (2010)

5. Chan, T.M.: More planar two-center algorithms. Computational Geometry Theory Applica-
tion 13, 189–198 (1997)

6. Drezner, Z.: The planar two-center and two-median problem. Transportation Science 18,
351–361 (1984)

7. Eppstein, D.: Faster construction of planar two-centers. In: Proceedings of the 8th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 131–138 (1997)

8. Goodrich, M.T.: 42 parallel algorithms in geometry
9. Hershberger, J.: A faster algorithm for the two-center decision problem. Information Pro-

cessing Letters 47, 23–29 (1993)
10. Jaromczyk, J.W., Kowaluk, M.: A geometric proof of the combinatorial bounds for the num-

ber of optimal solutions to the 2-center euclidean problem. In: Proceedings of the 7th Canada-
dian Conference Computational Geometry, pp. 19–24 (1995)

11. Megiddo, N.: Combinatorial optimization with rational objective functions. In: Proceedings
of the 10th Annual ACM Symposium on Theory of Computing, pp. 1–12 (1978)

12. Megiddo, N.: Applying parallel computation algorithms in the design of serial algorithms.
Journal ACM 30, 852–865 (1983)

On the 2-Central Path Problem 555

13. Sharir, M.: A near-linear algorithm for the planar 2-center problem. In: Discrete Computa-
tional Geometry, pp. 147–155 (1996)

14. Singh, V., Mukherjee, L., Peng, J., Xu, J.: Ensemble clustering using semidefinite pro-
gramming. In: Proceedings of the 21st Advances in Neural Information Processing Systems
(2007)

15. Xu, L., Stojkovic, B., Zhu, Y., Song, Q., Wu, X., Sonka, M., Xu, J.: Efficient algorithms
for segmenting globally optimal and smooth multi-surfaces. In: Proceedings of the 22nd
Biennial International Conference on Information Processing in Medical Imaging, pp. 208–
220 (2011)

Making Profit in a Prediction Market

Jen-Hou Chou, Chi-Jen Lu�, and Mu-En Wu

Institute of Information Science, Academia Sinica, Taipei, Taiwan
{jhchou,cjlu,mn}@iis.sinica.edu.tw

Abstract. Suppose one would like to estimate the outcome distribution
of an uncertain event in the future. One way to do this is to ask for a
collective estimate from many people, and prediction markets can be used
to achieve such a task. By selling securities corresponding to the possible
outcomes, one can infer traders’ collective estimate from the market price
if it is updated properly. In this paper, we study prediction markets from
the perspectives of both traders and market makers. First, we show that
in any prediction market, a trader has a betting strategy which can
guarantee a positive expected profit for him when his estimate about the
outcome distribution is more accurate than that from the market price.
Next, assuming traders playing such a strategy, we propose a market
which can update its price to converge quickly to the average estimate of
all traders if the average estimate evolves smoothly. Finally, we show that
a trader in our market can guarantee a positive expected profit when his
estimate is more accurate than the average estimate of all traders if the
average estimate again evolves in a smooth way.

1 Introduction

Prediction markets are financial markets which are designed to aggregate knowl-
edge or opinions about uncertain events. For example, to predict if a political
candidate will win an election or if a horse will win a race, one can set up a
market which offers a security that will pay off one dollar if and only if that
outcome actually happens. In general, for a future event of n possible outcomes,
one can have a market with n securities, one for each possible outcome. Then a
risk neutral trader who believes that the probability of an outcome is p would be
willing to buy (or sell) a share of the corresponding security for any price below
(or above) p. Thus, the current price of a security may be interpreted as the col-
lective estimate of traders on the likelihood of that outcome. By harnessing the
wisdom of the crowd, the estimate can be quite accurate, even more accurate
than estimates made by traditional methods. As a result, prediction markets
have been widely adopted in diverse areas such as politics, business, and sports
[8,2,7,10,3].

� Also with Department of Computer Science, National Chiao-Tung University, Tai-
wan. Supported in part by the National Science Council under Grant NSC 100-2221-
E-001-008-MY3.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 556–567, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Making Profit in a Prediction Market 557

To collect more information from the crowd, a market would like to attract
more traders to participate. It helps when there is an automated market maker
which can take orders from traders arriving at any time. Furthermore, it also
helps if the market maker can be expected to lose money, in which case the
market turns into a positive-sum game for traders. The loss of the market maker
can be seen as the cost of obtaining valuable information from traders, but still a
market designer would like to minimize it. Several mechanisms have been known
to guarantee a bounded loss for the market maker, and the most well-known one
is perhaps Hanson’s market [11,12] based on the logarithmic market scoring rule
(LMSR). However, the pricing mechanisms used by most prediction markets may
not look intuitive enough for traders to plan their orders easily. For example,
consider a cost function based market [4] which calculates the payment of an
order according to a cost function C in the following way. Suppose a trader wants
to buy qi shares of security i whose current number of outstanding shares is si, for
every i ∈ {1, . . . , n}. Then the trader pays C(s+ q)−C(s) dollars to the market
maker, where s = (s1, . . . , sn), q = (q1, . . . , qn), and s+q = (s1+q1, . . . , sn+qn).
A simpler pricing mechanism, just as in most product markets, is to have a price
vector (P1, . . . , Pn), where Pi is the price for buying one share of security i, so
that the trader simply pays

∑n
i=1 Piqi dollars to the market maker.

We feel that trading according to such a price vector may be more intuitive
and more appealing to traders, which may attract more traders to participate,
resulting in more information being collected. Thus, we believe that such markets
deserve more study, and we will focus on such markets in this paper. We must
stress that we do not claim that such markets are superior; our intention is
to explore other alternatives and study their strength and weakness. For such
markets, the first question one may ask is whether or not such markets can
still have the desirable properties such as the guarantee of bounded loss for the
market maker. Chen et al. [5] provided one such example, which is based on the
well-known multiplicative update algorithm [13,9] in machine learning and can
be seen as a discrete implementation of LMSR. However, in order to achieve a
bounded loss, it is required that only a very small fraction of a share can be
purchased for each security at each step, which means that a larger order must
be divided into several smaller ones. As a result, even an order from one trader
may need to be processed in several steps and at different prices. Then it is not
clear how fast such a market can aggregate beliefs from traders. Furthermore, it
is not clear if the price, which is supposed to reflect the beliefs of traders, will
converge even when the beliefs of traders remain fixed over time, if they disagree
with each other considerably.

We would like to have a market for which we can prove that the market price
does converge quickly to the average belief of traders. In order to achieve that,
it may help to understand the behavior of traders. It seems that most previous
works on prediction markets take the perspective of a market maker, but we
feel that it is also important to study prediction markets from the perspective
of a trader. We consider the situation in which a trader has confidence in his
own belief, which may evolve over time. That is, although he can infer from

558 J.-H. Chou, C.-J. Lu, and M.-E. Wu

the current market price some information about the current beliefs of other
traders, he is not affected too much by that and he has more trust in his own
judgement and his own source of information. We do not consider the situation in
which a trader can obtain some outside payoff and thus has outside incentive to
manipulate the market price [6]. Instead, as in most previous works on prediction
markets, we consider the model in which a trader can only obtain the payoff from
inside the market. Then for such a trader, what is a good strategy to bet? Under
which condition can he make a profit? How much money can he make?

Our Results. Our first result shows that in a prediction market with any pric-
ing mechanism, a trader can make a positive profit if he has a more accurate
estimation of the outcome distribution than that from the market price. More
precisely, suppose the market runs for T steps, and let P (t) denote the price
vector at step t. Then a simple strategy, which we call the uniform strategy, for

a trader is to bet the same amount of money at each step t, with a fraction b
(t)
i

of that amount on security i ∈ [n], where b
(t)
i is the probability he believes at

step t that outcome i will happen. Note that this is similar to the famous Kelly
strategy, except that we divide the money into T parts and spend only one part
at each step. We show that a trader spending m dollars using this strategy can
make an expected profit of at least

m

T

∑
t∈[T]

(
KL(R‖P (t))−KL(R‖b(t))

)
dollars, where R = (R1, . . . , Rn) is the outcome distribution (with Ri being the

probability of outcome i), b(t) = (b
(t)
1 , . . . , b

(t)
n), and KL(·‖·) is the KL-divergence

which measures the distance between its two input distributions. From this we
see that a trader with a more accurate belief can have a larger expected profit. A
somewhat related result can be found in [1], which shows that the Kelly strategy
in fact maximizes a trader’s expected log utility in a prediction market with a
binary event. This may provide a further justification for our uniform strategy.

With this in mind, we next propose a prediction market, which is based on
the market of Chen et al. [5] but differs in the following ways. At each step t,
the market maker waits for a period of time to collect orders from all possible
traders, and sells the requested shares to the traders all at the price P (t). Then
the price at step t+ 1 is updated as

P
(t+1)
i = P

(t)
i exp

(
ηB

(t)
i /P

(t)
i

)
/Z(t),

for some parameter η, where B
(t)
i is the fraction of total money spent at step

t on security i and Z(t) is a normalization factor. The normalization factor is

used to make
∑

i∈[n] P
(t+1)
i = 1 in order for our market to be arbitrage free. For

simplicity, here we only allow traders to buy shares, but we show that even with
this simplification, our market can still aggregate beliefs from traders effectively.
More precisely, our second result shows that in our market, the market price

Making Profit in a Prediction Market 559

P (t) converges quickly to the distribution B(t) = (B
(t)
1 , . . . , B

(t)
n), if B(t) evolves

in a smooth way. Note that B(t) reflects what the traders believe on average at
step t about how likely each outcome will happen. In fact, it becomes exactly
(approximately) the average belief of the traders when all (most) traders play
the uniform strategy, which is the case when all (most) traders have confidence in
their beliefs. Furthermore, we can also guarantee a bounded loss for the market
maker by limiting the number of shares that can be purchased at each step or
by charging a small fee for each transaction.

Finally, recall from our first result that a trader can have a positive expected
profit if his belief is more accurate compared to the market price. However, a
more natural comparison may be to compare a trader’s belief to others’ beliefs
instead of to the market price. With the help of our second result, we show in our
third result that in our market, a positive expected profit can still be guaranteed
for a trader if his belief is slightly more accurate than the average belief of all
traders and the average belief again evolves in a smooth way.

Comparison to Related Works. Although it is commonly believed that one can
treat themarket price as traders’ average belief, the justification seems to bemostly
basedonempirical analysis, and relatively few theoretical results seemtobeknown.
One such theoretical result is byWolfers andZitzewitz [15],who considered amodel
in which each trader has his own belief and tries to maximize some logarithmic (or
someother)utility function.They showed that if themarket ever reaches an equilib-
rium with supply equal to demand, the price coincides exactly (or approximately)
with the average belief of traders. However, they did not address the issue of how
the market reaches an equilibrium, so they did not have any convergence analysis.
Another result is byOstrovsky [14], who consideredmarkets based onmarket scor-
ing rules with the so-called strictly proper property. Assuming that there is only
one security in the market and each trader initially holds some partial information
about the value of the security, he showed that if traders iteratively revise their be-
liefs and trade according their strategies in a perfectBayesian equilibrium, then the
beliefs of traders will eventually all converge to a consensus which equals the value
of the security. Note that the setting consideredbyOstrovsky is different fromours.
He considered traders who have reliable but partial information and have trust on
the information revealed by other traders, and as a result, they can converge to the
same belief. On the other hand,we consider the situation inwhich tradersmay have
incorrect information and thus some traders may have confidence in their own be-
liefs and may not trust the information revealed by others. Consequently, traders
maynever reach the same belief, but ourmarket price still converges, to the average
belief of traders.Furthermore,wederivebounds on the convergence rate of ourmar-
ket, while Ostrovsky did not provide such a bound. Finally, although it is generally
considered true that a trader with a more accurate belief should be able to make a
profit, not much work has been done to study the strategies such a trader can use
to increase his profit, and according to our limited knowledge, we are not aware of
previousworkwhich quantifies the amount of profit such a trader canmake. In gen-
eral, it seems that most previous results on predictionmarkets focus on qualitative
aspects, while we strive to obtain quantitative results.

560 J.-H. Chou, C.-J. Lu, and M.-E. Wu

2 Preliminaries

For n ∈ N, let [n] denote the set {1, . . . , n}. For an n-dimensional vector x and
i ∈ [n], let xi denote the component in the i’th dimension of x. For two n-
dimensional vectors x and y, let ‖x − y‖1 denote their L1-distance, defined by
‖x− y‖1 =

∑n
i=1 |xi − yi|. We will see a probability distribution over n elements

as a vector in [0, 1]n. We will use the KL-divergence to measure the distance
between two probability distributions P,Q ∈ [0, 1]n, defined by KL(P‖Q) =∑n

i=1 Pi ln
Pi

Qi
.

In this paper, we consider prediction markets with n ≥ 2 securities correspond-
ing to n possible and mutually exclusive outcomes of some event, which operate
for a total of T steps in the following way, for a large enough T . At each step

t ∈ [T], the market maker first announces a price vector P (t) = (P
(t)
1 , . . . , P

(t)
n),

and any purchase of one share of security i ∈ [n] made by a trader at this step

costs P
(t)
i dollars (or any unit of money). Here we assume that the price vector

at each step t satisfies the condition that
∑

i∈[n] P
(t)
i = 1, which can be easily

achieved by scaling the unit of money. After the T steps, some outcome i ∈ [n]
happens, and the market maker pays only to shares of security i, one dollar for
every share.

We will consider the following variant of the prediction market introduced by
Chen et al. [5], which is based on the well-known multiplicative update algorithm
[13,9]. We call our market the MU-Market. For simplicity, we will only allow
traders to buy but not sell shares in our market.

Definition 1. (MU-Market) The market is associated with a parameter η in the
range 1/

√
T ≤ η ≤ 1/n4, and operates for T steps in the following way, starting

with the price P
(1)
i = 1/n for every i ∈ [n]. At each step t, any trader is allowed

to make a request, and the market maker sells the requested shares to the traders
all at the price P (t). Then the market maker updates the next price to

P
(t+1)
i = P

(t)
i exp

(
ηB

(t)
i /P

(t)
i

)
/Z(t), with Z(t) =

n∑
j=1

P
(t)
j exp

(
ηB

(t)
j /P

(t)
j

)
,

where B
(t)
i is the fraction of total money spent at step t on security i.

As a market maker, he would like to have the guarantee that the money he loses
in the worst case is small. One way to achieve this is to have a large enough
T , so that the money involved at each step is small. Following the analysis in
[5], which is based on a standard regret analysis of the multiplicative update
algorithm, we can have the following.

Lemma 1. Suppose that the total amount of money spent by all traders at each

step is at most β and P
(t)
i ≥ γ for any t and i. Then the amount of money the

market maker loses in the worst case is at most (β/η) lnn+ (η/β)(β/γ)2T.

Making Profit in a Prediction Market 561

3 Betting Strategies for Traders

Consider any prediction market, and let P (t) = (P
(t)
1 , . . . , P

(t)
n) be its price vector

at step t. Let R = (R1, . . . , Rn) denote the outcome distribution, where Ri is
the probability that the outcome i will happen. Now, consider a trader who has

the belief b(t) = (b
(t)
1 , . . . , b

(t)
n) at step t, where b

(t)
i is the probability he believes

at step t that the outcome i will happen and
∑

i∈[n] b
(t)
i = 1. We will show that

if he has confidence in his belief, then a good betting strategy for him is the
following.

– Uniform Strategy: Bet the same amount of money at each step t, with a

fraction b
(t)
i of that amount on security i ∈ [n].

Our main result of this section is the following, which provides a bound on the
expected profit a trader can make with one dollar using the uniform strategy;
for a trader with m dollars, his expected profit is multiplied by m by linearity
of expectation.

Theorem 1. For a trader using the uniform strategy, his expected profit per
dollar is at least

1

T

∑
t∈[T]

(
KL(R‖P (t))−KL(R‖b(t))

)
.

Note that KL(R‖P (t)) measures the distance between the outcome distribution
R and the market price P (t) at step t, while KL(R‖b(t)) measures the distance
between R and the trader’s belief b(t) at step t. Thus, KL(R‖P (t))−KL(R‖b(t)) >
0 reflects in a sense that the trader’s belief is more accurate than the market
price at step t about the outcome distribution. Then, according to Theorem 1,
if the trader’s belief is more accurate than the market price for most steps, he
is guaranteed to have a positive expected profit. Now we proceed to prove the
theorem.

Proof. (of Theorem 1) Assume that the trader has 1 dollar, and using the uniform
strategy he spends exactly 1

T dollar at each step. Then at step t ∈ [T], his
expected profit is

∑
i∈[n]

Ri
b
(t)
i /T

P
(t)
i

− 1

T
=

1

T

⎛⎝∑
i∈[n]

Ri
b
(t)
i

P
(t)
i

− 1

⎞⎠ ≥ 1

T

⎛⎝ln
∑
i∈[n]

Ri
b
(t)
i

P
(t)
i

⎞⎠ ,

using the fact that 1 + lnx ≤ x and hence x − 1 ≥ lnx, for any x. By Jensen’s
inequality, the righthand side of the above inequality is at least

1

T

⎛⎝∑
i∈[n]

Ri ln
b
(t)
i

P
(t)
i

⎞⎠ =
1

T

(
KL(R‖P (t))−KL(R‖b(t))

)
.

As a result, by summing the bound over t, we have the theorem. ��

562 J.-H. Chou, C.-J. Lu, and M.-E. Wu

4 Convergence of Price to Belief in the MU-Market

Recall that the main purpose of a prediction market is to aggregate the beliefs of
the traders. In this section, we show that the MU-market defined in Definition 1

can indeed achieve this effectively. Recall that B
(t)
i denotes the fraction of total

money spent by all traders at step t on security i, so the distribution B(t) =

(B
(t)
1 , . . . , B

(t)
n) reflects what the traders believe on average at step t about how

likely each outcome will happen. In fact, B(t) becomes exactly (approximately)
the weighted average of the beliefs of all the traders at step t, with each trader’s
belief weighted by the money he spends, when all (most) traders play the uniform
strategy, which is the case when all (most) traders have confidence in their beliefs.
Our result in this section is the following, which shows that the market price
converges to the average belief when it evolves in a smooth way. In fact, the
convergence is quick as it takes O(1/η) ln(1/η) steps to have the price come
within a distance of η from the average belief.

Theorem 2. SupposeP
(t)
i ≥ η for any t and i, and ‖B(t)−B(t−1)‖1 ≤ η2/ ln(1/η)

for any t ≥ 2. Then for any t ≥ 1 + (4/η) ln(1/η),

KL(B(t)‖P (t)) ≤ 5η.

We will prove the theorem in Subsection 4.1. The key is to show that after one
step of update, the market price moves closer to the average belief. For this, we
need the following lemma, which we will prove in Subsection 4.2.

Lemma 2. Suppose P
(t)
i ≥ η for any t and i. Then for any t ≥ 2,

KL(B(t−1)‖P (t)) ≤ (1 − η/2) ·KL(B(t−1)‖P (t−1)) + η2.

Note that the lemma shows that the new price P (t) moves towards to the old
average belief B(t−1) instead of the new average belief B(t). If the average be-
lief stays the same for all the time steps, then the lemma immediately implies
that the market price converges quickly towards the average belief. Interest-
ingly, our Theorem 2 shows that even when the average belief can change over
time, the market price can still move close to it, as long as the average belief
changes smoothly. The idea is to show that KL(B(t)‖P (t)) is in fact close to
KL(B(t−1)‖P (t)).

4.1 Proof of Theorem 2

By definition, we have

KL(B(t)‖P (t))−KL(B(t−1)‖P (t))

=
∑
i∈[n]

B
(t)
i ln

B
(t)
i

P
(t)
i

−
∑
i∈[n]

B
(t−1)
i ln

B
(t−1)
i

P
(t)
i

=
∑
i∈[n]

(
B

(t)
i −B

(t−1)
i

)
ln
B

(t)
i

P
(t)
i

+
∑
i∈[n]

B
(t−1)
i ln

B
(t)
i

B
(t−1)
i

,

Making Profit in a Prediction Market 563

where in the last line, the second term is −KL(B(t−1)‖B(t)) ≤ 0 and the first
term is at most∑

i∈[n]

∣∣∣B(t)
i −B

(t−1)
i

∣∣∣ · ln(1/η) = ‖B(t) −B(t−1)‖1 · ln(1/η) ≤ η2,

since we assume that P
(t)
i ≥ η and ‖B(t) − B(t−1)‖1 ≤ η2/ ln(1/η). From this

together with Lemma 2, we have

KL(B(t)‖P (t)) = KL(B(t−1)‖P (t)) +
(
KL(B(t)‖P (t))−KL(B(t−1)‖P (t))

)
≤ (1− η/2) ·KL(B(t−1)‖P (t−1)) + η2 + η2.

Then a simple induction shows that

KL(B(t)‖P (t)) ≤ (1− η/2)t−1 ·KL(B(1)‖P (1)) + 2η2
t−1∑
i=1

(1− η/2)i−1

≤ (1− η/2)t−1 ·KL(B(1)‖P (1)) + 4η,

where we have

KL(B(1)‖P (1)) =
∑
i∈[n]

B
(1)
i ln

B
(1)
i

P
(1)
i

≤
∑
i∈[n]

B
(1)
i ln(1/η) = ln(1/η),

since P
(1)
i ≥ η. As a result, for any t ≥ 1 + (4/η) ln(1/η), we have

KL(B(t)‖P (t)) ≤ (1− η/2)t−1 ln(1/η) + 4η ≤ η2 ln(1/η) + 4η ≤ 5η.

This proves Theorem 2.

4.2 Proof of Lemma 2

Let δ ≡ KL(B(t−1)‖P (t))−KL(B(t−1)‖P (t−1)), which by definition equals∑
i∈[n]

B
(t−1)
i ln

P
(t−1)
i

P
(t)
i

=
∑
i∈[n]

B
(t−1)
i ln

Z(t−1)

exp
(
ηB

(t−1)
i /P

(t−1)
i

)
= lnZ(t−1) − η

∑
i∈[n]

B
(t−1)
i

(
B

(t−1)
i /P

(t−1)
i

)
.

Note that

Z(t−1) =
∑
j∈[n]

P
(t−1)
j · exp

(
ηB

(t−1)
j /P

(t−1)
j

)
≤
∑
j∈[n]

P
(t−1)
j ·

(
1 + ηB

(t−1)
j /P

(t−1)
j +

(
ηB

(t−1)
j /P

(t−1)
j

)2)
= 1 + η + η2

∑
j∈[n]

B
(t−1)
j

(
B

(t−1)
j /P

(t−1)
j

)
,

564 J.-H. Chou, C.-J. Lu, and M.-E. Wu

where the inequality uses the fact that exp (x) ≤ 1 + x + x2 for any x ∈ [0, 1]

and ηB
(t−1)
j /P

(t−1)
j ≤ η/η = 1. Then using the fact that ln(1 + x) ≤ x for any

x, we have

lnZ(t−1) ≤ η + η2
∑
i∈[n]

B
(t−1)
i

(
B

(t−1)
i /P

(t−1)
i

)
,

which implies that

δ ≤ η + (η2 − η)
∑
i∈[n]

B
(t−1)
i

(
B

(t−1)
i /P

(t−1)
i

)
.

Note that η2 − η < 0 and B
(t−1)
i /P

(t−1)
i ≥ 1 + ln

(
B

(t−1)
i /P

(t−1)
i

)
since x ≥

1 + lnx for any x. As a result, we have

δ ≤ η + (η2 − η)
∑
i∈[n]

B
(t−1)
i

(
1 + ln

(
B

(t−1)
i /P

(t−1)
i

))
= η + (η2 − η)

(
1 + KL(B(t−1)‖P (t−1))

)
= η2 + (η2 − η) ·KL(B(t−1)‖P (t−1))

≤ η2 − (η/2) ·KL(B(t−1)‖P (t−1)),

since η ≤ 1/2. This proves Lemma 2.

5 Trader’s Profit in the MU-Market

Recall from Theorem 1 that in any prediction market, a trader can have a pos-
itive expected profit when his belief is more accurate compared to the market
price. However, it seems that a more natural comparison is to the beliefs of other
traders, instead of to the price. With the help of Theorem 2, we have the fol-
lowing, which shows that in the MU-market, a trader can still have a positive
expected profit when his belief is slightly more accurate than the average belief
of all traders.

Theorem 3. Suppose B
(t)
i ≥ 4 4

√
η for any t and i, and ‖B(t) − B(t−1)‖1 ≤

η2/ ln(1/η) for any t ≥ 2. Then for a trader using the uniform strategy with
belief b(t) for t ∈ [T], his expected profit per dollar is at least

1

T

∑
t∈[T]

(
KL(R‖B(t))−KL(R‖b(t))

)
− 2 4

√
η.

We will prove Theorem 3 in Subsection 5.1. Note that in order to apply Theo-

rem 2, we need the condition that P
(t)
i ≥ η for any t and i. The following lemma,

which we will prove in Subsection 5.2, shows that the condition follows from the
assumption of Theorem 3.

Lemma 3. If B
(t)
i ≥ 4 4

√
η for every t and i, then P

(t)
i ≥ 4

√
η for every t and i.

Making Profit in a Prediction Market 565

Let us make some remarks about Theorem 3. First, in the theorem we use the
assumption that B(t) is close to B(t−1) for every t ≥ 2, which corresponds to the
case that the average belief evolves in a smooth way. The result, nevertheless, can
be easily extended to the case when abrupt changes only occur sporadically, in
which case we can divide the T steps into a small number of smoothly-evolving
intervals and apply the theorem on each interval. Next, with the parameter
setting of the theorem, let us see how much money the market maker may lose
in the worst case. Consider again that every trader plays the uniform strategy.
Then for a large enough T , we can assume that the money spent by traders at
each step is β ≤ η. Then Lemma 1 can only guarantee that the loss of the market
maker is at most lnn + (η/β)(β/ 4

√
η)2T = lnn +

√
ηβT, which unfortunately

is unbounded for our choice of η ≥ 1/
√
T . One way around this is to allow

the market maker to charge a transaction fee of
√
η dollar for every dollar of

purchase, and the loss of the market maker becomes at most

lnn+
√
ηβT −√

ηβT = lnn,

which is now bounded. With such a transaction fee, the trader’s expected profit
per dollar is still at least

1

T

∑
t∈[T]

(
KL(R‖B(t))−KL(R‖b(t))

)
− 2 4

√
η −√

η.

5.1 Proof of Theorem 3

From Theorem 1, we know that the trader’s expected profit per dollar is at least

1

T

∑
t∈[T]

(
KL(R‖P (t))−KL(R‖b(t))

)
.

To show that it is at least

1

T

∑
t∈[T]

(
KL(R‖B(t))−KL(R‖b(t))

)
− 2 4

√
η,

it suffices to show that KL(R‖B(t)) and KL(R‖P (t)) are close for most t, or
more precisely, to show that

1

T

∑
t∈[T]

Δt ≤ 2 4
√
η, where Δt ≡ KL(R‖B(t))−KL(R‖P (t)).

With the help of Lemma 3, we can apply Theorem 2 to show that P (t) converges
to B(t). More precisely, consider any t ≥ 1 + 	, where 	 ≡ (4/η) ln(1/η). From
Theorem 2, we have

KL(B(t)‖P (t)) ≤ 5η.

566 J.-H. Chou, C.-J. Lu, and M.-E. Wu

Then by Pinsker’s inequality, we have |P (t)
i −B

(t)
i | ≤

√
5η for any i, and hence

P
(t)
i

B
(t)
i

≤ B
(t)
i +

√
5η

B
(t)
i

= 1 +

√
5η

B
(t)
i

≤ 1 +

√
5η

4 4
√
η
≤ 1 + 4

√
η ≤ exp (4

√
η),

where the second inequality uses the assumption that B
(t)
i ≥ 4 4

√
η and the last

inequality uses the fact that 1 + x ≤ exp (x). Thus for any t ≥ 1 + 	, we have

Δt =
∑
i∈[n]

Ri ln
P

(t)
i

B
(t)
i

≤
∑
i∈[n]

Ri ln (exp (4
√
η)) = 4

√
η.

On the other hand, for any t ≤ 	, with B
(t)
i ≥ 4 4

√
η, we have

Δt =
∑
i∈[n]

Ri ln
P

(t)
i

B
(t)
i

≤
∑
i∈[n]

Ri ln
1

4 4
√
η
≤ 1

4
ln(1/η).

By combining the two bounds of Δt for different ranges of t, we have

1

T

∑
t∈[T]

Δt ≤
T − 	

T
· 4
√
η +

	

T
· ln(1/η) ≤ 4

√
η +

1

ηT
ln2(1/η) ≤ 2 4

√
η,

since η ≥ 1/
√
T and T is large enough. This proves Theorem 3.

5.2 Proof of Lemma 3

We show this by induction on t. It holds for t = 1 since P
(1)
i = 1/n ≥ 4

√
η for

any i ∈ [n]. Now suppose it holds for t− 1 and we next show that it holds for t.
Consider any i ∈ [n]. Recall that

P
(t)
i = P

(t−1)
i · exp

(
ηB

(t−1)
i /P

(t−1)
i

)
/Z(t−1),

where
Z(t−1) =

∑
j∈[n]

P
(t−1)
j · exp

(
ηB

(t−1)
j /P

(t−1)
j

)
.

Since exp (x) ≤ 1 + 2x for x ∈ [0, 1] and ηB
(t−1)
j /P

(t−1)
j ≤ η/ 4

√
η ≤ 1 for any j

by inductive hypothesis, we have

Z(t−1) ≤
∑
j∈[n]

P
(t−1)
j

(
1 + 2

(
ηB

(t−1)
j /P

(t−1)
j

))
= 1 + 2η.

Moreover, since exp (x) ≥ 1 + x for any x, we can also have

exp
(
ηB

(t−1)
i /P

(t−1)
i

)
≥ 1 +

(
ηB

(t−1)
i /P

(t−1)
i

)
.

As a result, we have

P
(t)
i ≥ P

(t−1)
i ·

(
1 +

(
ηB

(t−1)
i /P

(t−1)
i

))
/(1 + 2η).

Therefore, if P
(t−1)
i ≤ B

(t−1)
i /2, we have P

(t)
i ≥ P

(t−1)
i · 1 ≥ 4

√
η; otherwise, we

still have P
(t)
i ≥ P

(t−1)
i · (1/2) ≥ B

(t−1)
i /4 ≥ 4

√
η. This proves Lemma 3.

Making Profit in a Prediction Market 567

References

1. Beygelzimer, A., Langford, J., Pennock, D.: Learning performance of prediction
markets with Kelly bettors, CoRR abs/1201.6655 (2012)

2. Berg, J., Forsythe, R., Nelson, F., Rietz, T.: Results from a dozen years of election
futures markets research. In: Handbook of Experimental Economic Results

3. Chen, K., Plott, C.: Information aggregation mechanisms: concept, design and
implementation for a sales forecasting problem. Working paper No. 1131, California
Institute of Technology, Division of the Humanities and Social Sciences (2002)

4. Chen, Y., Pennock, D.M.: A utility framework for bounded-loss market makers. In:
Proceedings of the 23rd Conference on Uncertainty in Artificial Intelligence (UAI),
pp. 49–56 (2007)

5. Chen, Y., Fortnow, L., Lambert, N., Pennock, D.M., Wortman, J.: Complexity
of combinatorial market makers. In: Proceedings of the 9th ACM Conference on
Electronic Commerce (EC), pp. 190–199 (2008)

6. Chen, Y., Gao, X.A., Goldstein, R., Kash, I.A.: Market manipulation with out-
side incentives. In: AAAI 2011: Proceedings of the 25th Conference on Artificial
Intelligence (2011)

7. Debnath, S., Pennock, D., Giles, C., Lawrence, S.: Information incorporation in
online in-game sports betting markets. In: Proceedings of the Fourth Annual ACM
Conference on Electronic Commerce (EC), pp. 258–259 (2003)

8. Forsythe, R., Rietz, T., Ross, T.: Wishes, expectations, and actions: a survey on
price formation in election stock markets. Journal of Economic Behavior and Or-
ganization 39, 83–110 (1999)

9. Freund, Y., Schapire, R.: A decision theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences 55(1),
119–139 (1997)

10. Goel, S., Pennock, D., Reeves, D.M., Yu, C.: Yoopick: A combinatorial sports
prediction market. In: Proceedings of the 23rd Conference on Artificial Intelligence
(AAAI), pp. 1880–1881 (2008)

11. Hanson, R.D.: Combinatorial information market design. Information Systems
Frontiers 5(1), 107–119 (2003)

12. Hanson, R.D.: Logarithmic market scoring rules for modular combinatorial infor-
mation aggregation. Journal of Prediction Markets 1(1), 1–15 (2007)

13. Littlestone, N., Warmuth, M.: The weighted majority algorithm. Information and
Computation 108(2), 212–261 (1994)

14. Ostrovsky, M.: Information aggregation in dynamic markets with strategic traders.
In: Proceedings of the 10th ACM Conference on Electronic Commerce (EC), pp.
253–254 (2009)

15. Wolfers, J., Zitzewitz, E.: Interpreting Prediction Market Prices as Probabilities.
NBER Working Paper No. 12200

Computing Shapley Value

in Supermodular Coalitional Games�

David Liben-Nowell1, Alexa Sharp2, Tom Wexler2, and Kevin Woods3

1 Department of Computer Science, Carleton College
2 Department of Computer Science, Oberlin College

3 Department of Mathematics, Oberlin College
dlibenno@carleton.edu, {alexa.sharp,tom.wexler,kevin.woods}@oberlin.edu

Abstract. Coalitional games allow subsets (coalitions) of players to co-
operate to receive a collective payoff. This payoff is then distributed
“fairly” among the members of that coalition according to some divi-
sion scheme. Various solution concepts have been proposed as reason-
able schemes for generating fair allocations. The Shapley value is one
classic solution concept: player i’s share is precisely equal to i’s expected
marginal contribution if the players join the coalition one at a time, in
a uniformly random order. In this paper, we consider the class of su-
permodular games (sometimes called convex games), and give a fully
polynomial-time randomized approximation scheme (FPRAS) to com-
pute the Shapley value to within a (1 ± ε) factor in monotone super-
modular games. We show that this result is tight in several senses: no
deterministic algorithm can approximate Shapley value as well, no ran-
domized algorithm can do better, and both monotonicity and supermod-
ularity are required for the existence of an efficient (1±ε)-approximation
algorithm. We also argue that, relative to supermodularity, monotonic-
ity is a mild assumption, and we discuss how to transform supermodular
games to be monotonic.

1 Introduction

Game theory is broadly defined as the study of self-interested players. These
players may be restricted to make independent decisions, leading to competitive
games; alternatively, players may be allowed to cooperate in order to achieve
their goals, leading to coalitional, or cooperative, games. Although the recent
increased attention on algorithmic game theory from theoretical computer sci-
entists largely focuses on competitive games, both models provide rich computa-
tional and theoretical challenges, as demonstrated by a long history of research
across the fields of economics, politics, and biology.

In any game, we are interested in the outcomes that might be achieved as a
result of players’ self-interested behavior. For competitive games, the standard
solution concept is the Nash equilibrium; for coalitional games, a number of

� This work was supported in part by NSF grant CCF-0728779 and by grants from
Oberlin College and Carleton College. Thanks to Josh Davis for helpful discussions.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 568–579, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Computing Shapley Value in Supermodular Coalitional Games 569

reasonable solution concepts exist. One class of solution concepts focuses on
“fair” divisions of wealth. Assume that all players work together to form the
grand coalition of all players. How can the total utility generated be divided
so that each player’s portion is proportional to his or her influence or power?
The Shapley value [35] is one such fair allocation scheme. Other well-known
solution concepts include the Banzhaf power index [4], the core [17,37], and the
kernel [9]. The Banzhaf index is similar in spirit to the Shapley value, while the
other solution concepts aim to describe outcomes that are “stable” (robust to
deviating subcoalitions) rather than fair.

Generally, under these solution concepts for coalitional games, solutions are
hard to compute. In some restricted domains, however, it is possible to find exact
or approximate solutions efficiently. In this paper, we consider supermodular
games (also known as convex games in the economics literature [36]), a class
of coalitional games in which incentives for joining a coalition increase as the
coalition grows. This paper is devoted to the efficient computation of Shapley
value in these games.

1.1 Related Work: Computing the Shapley Value

Shapley first introduced his eventually eponymic solution concept in 1953 [35].
The Shapley value, Banzhaf index, core, kernel, and related measures have been
studied extensively; they are described and surveyed in, e.g., [2, 5, 10, 11, 16, 24].

Finding the allocations described by these solution concepts is computation-
ally intractable in general. Hence, much of the research in this area focuses on
a variety of restricted domains in which one can hope to find either an exact or
approximate solution efficiently.

One such domain is weighted majority games, in which a coalition receives a
payoff of 1 if its members constitute a majority of all players’ weights, and 0 oth-
erwise. Mann–Shapley [25] motivate this class of coalitional games and propose a
Monte Carlo sampling algorithm to approximate the Shapley value. They apply
their algorithm to U.S. electoral college data, but do not provide formal anal-
ysis. Deng–Papadimitriou [12] and Matsui–Matsui [29] show that it is NP-hard
to determine whether a given player has nonzero Shapley value, and #P-hard
to calculate it exactly. Matsui–Matsui [28] make the exact computation with
a pseudo-polynomial dynamic programming algorithm, and find that Mann–
Shapley’s algorithm has error that goes to zero like 1/

√
#samples. Fatima et

al. [13,14] give exact polynomial-time algorithms to compute the Shapley value
for specific subclasses of weighted majority games, characterize when this ap-
proach becomes intractable, and consider linear-time approximations.

Another domain to receive attention is that of simple coalitional games, a
generalization of weighted majority games in which every coalition has a payoff
of 0 or 1. Bachrach et al. [3] apply the Mann–Shapley algorithm in this more
general setting, and give an oracle-based sampling algorithm to approximate
Shapley value in polynomial time, also with 1/

√
#samples additive error. They

also show that no approximation algorithm can do much better by giving lower
bounds for both deterministic and randomized algorithms for these calculations.

570 D. Liben-Nowell et al.

A third domain with interesting results is that of submodular games [33, 34],
in which incentives for joining a coalition decrease as the coalition grows. Ap-
proximability results are known for the least-core value but not for the Shapley
value.

1.2 Related Work: Supermodular Games

Supermodular coalitional games are another restricted class of coalitional games,
and the class upon which we focus in this paper. These games, first introduced
by Shapley [36] as convex games, capture the intuitive notion that incentives for
joining a coalition increase as the coalition grows. In addition to many natural
applications that result in supermodular coalitional games, these games also have
pleasing theoretical properties: the core is nonempty [36], the Shapley value is in
the core and is the center of mass of the core’s vertices [36], the kernel is a single
point corresponding to the nucleolus [27], and the stable set and bargaining set
for the grand coalition coincide with the core [26]. Many specific and natural
examples of supermodular games are studied in the literature; a sampling of
these games are described in the remainder of this section.

The multicast tree game [1, 15, 18, 21] is used to model distribution networks
such as waterways and telecommunication networks. Players receive a payoff for
being connected to the source but must cover the cost of building the underlying
(and fixed) tree. As more players join the network, the cost to a previously
connected player cannot increase, and thus the game is supermodular.

The edge synergy game [12] takes place on an undirected graph, with the
nodes as players. Each edge of a graph has an associated nonnegative benefit,
and the value of a coalition is the sum of the benefits in its induced subgraph.
This game possesses increasing returns of scale, as a player who joins a coalition
adds value for each neighbor already in that coalition.

The bankruptcy game, first studied by O’Neill [31], is another natural super-
modular game. In this setting, there is an estate to which each player has some
claim, but not all claims can be satisfied. The value of a coalition S is what
remains of the estate after satisfying the claims of the players not in S. Curiel
et al. [8] show that bankruptcy games are supermodular.

These examples are meant to sample just some of the supermodular games in
the literature; other specific examples have been recently studied algorithmically
by, e.g., Jain–Vazirani [21] and Ieong–Shoham [19].

1.3 Our Results

In many of the games described in Section 1.2, computing the exact Shapley
value is fairly easy; however, to the best of our knowledge, efficient computation
of Shapley value for general supermodular games has not been addressed.

Our main result (Theorem 2) resolves the open question regarding the compu-
tation of Shapley value in supermodular games: we give an efficient randomized
algorithm to approximate arbitrarily well the Shapley value of any monotone
supermodular coalitional game. Specifically, we show that the Mann–Shapley

Computing Shapley Value in Supermodular Coalitional Games 571

Monte Carlo sampling algorithm [25] is a fully polynomial-time randomized ap-
proximation scheme (FPRAS) for the Shapley value of a monotone supermodular
game, assuming access to an oracle that returns the value of any given coalition.
We also show that this result is the best possible in the following senses: no fully
polynomial deterministic algorithm can approximate Shapley value as well; no
randomized algorithm can do better; and both monotonicity and supermodular-
ity are required to approximate Shapley value within any multiplicative factor.
Note that our definition of polynomial running time is slightly atypical, as we
do not have the entire game as input, but rather have only oracle access to it.
Also note that our negative results hold regardless of whether P 	= NP.

The remainder of this paper is structured as follows. Section 2 formally defines
coalitional games and the Shapley value. Section 3 presents and analyzes the
FPRAS for Shapley value in monotone supermodular games, and Section 4 shows
that this FPRAS is essentially the best result that one can hope to achieve.

Finally, Section 5 gives reason to believe that the additional assumption of
monotonicity in a supermodular game is reasonably natural. Specifically, we ex-
amine two ways to convert any supermodular game v into a monotone supermod-
ular game. The zero-normalization transform, vZ , translates the utility function
so that vZ({i}) = 0 for each player i. This shift does not change the strategies
of the players, and, hence for any supermodular v we can approximate player i’s
gain over v({i}) under the Shapley allocation. The opt-out transform, vO, al-
lows any players who contribute negative value to a coalition not to participate,
thereby receiving zero utility. While vO is a more substantive transform of v, in
many settings it is a natural operation. For both transforms, we prove that if the
original game is supermodular, then the transformed game is both supermodu-
lar and monotone, and furthermore we can compute the value of any coalition
efficiently. Thus our results from Sections 3 and 4 apply to both vO and vZ .

2 Model and Definitions

A coalitional game v is defined by a set N of n players, and a function v :
P(N) → R, where v(S) denotes the value generated by a coalition S ⊆ N .
Without loss of generality, we assume throughout that v(∅) = 0. We further
assume that a game is represented by an oracle that, given S ⊆ N , returns v(S).

A game is monotone if, for all S ⊆ T ⊆ N , we have v(S) ≤ v(T).
A game is supermodular if v(S ∪ T) + v(S ∩ T) ≥ v(S) + v(T) for any two

sets S, T ⊆ N , or equivalently, if v(S ∪{i})− v(S) ≤ v(T ∪{i})− v(T) whenever
S ⊆ T and i /∈ T . That is, the marginal value that a player i adds to a coalition S
is no greater than the marginal value i adds to a coalition T ⊇ S.

A weaker notion than supermodularity is superadditivity: a game is superad-
ditive if, for all disjoint sets S, T ⊆ N , we have v(S ∪ T) ≥ v(S) + v(T). In a
superadditive game, cooperation is always beneficial, and the grand coalition of
all players will form. We will assume, at minimum, that a game is superadditive.
The question, then, is how the players will divvy up v(N), the value of the grand
coalition. An allocation x = 〈x1, . . . , xn〉 should certainly be (economically) effi-
cient (no money is left on the table) and individually rational (no player makes

572 D. Liben-Nowell et al.

less than he could make by acting alone): formally, we require
∑

i xi = v(N) and
xi ≥ v({i}) for all i. Solution concepts for coalitional games further refine these
requirements.

The Shapley value [35] is the most well-known solution concept based on the
notion that the allocation for player i should be proportional to i’s “power” in
the game—that is, how much value i creates. Formally, it is defined as follows:

Definition 1. The Shapley value is the allocation where

xi =
∑

S⊆N\{i}
|S|! (n−|S|−1)!

n!

[
v(S ∪ {i})− v(S))

]
.

Given a permutation π ordering the arrival of the players, the marginal contribu-
tion of πj is v({π1, . . . , πj})− v({π1, . . . , πj−1}); the Shapley value for player i
is the average, over all permutations, of the marginal contribution of i to the set
of players who arrive before i.

3 Algorithms to Approximate the Shapley Value

We say that a vector s is a (multiplicative) ε-approximation to the vector s if
|si − si| ≤ εsi for all indices i. In this section, we show that there is an oracle-
based fully polynomial-time randomized approximation scheme (FPRAS) for
the Shapley value, as long as the game is both supermodular and monotone.
That is, we give a poly(n, 1/ε)-time randomized algorithm to ε-approximate
the Shapley value in monotone supermodular games with high probability. In
Section 4, we show that this result is essentially the best possible. Our approach
is based on sampling: we compute the marginal value of each player in a random
permutation, and average over many permutations. (This type of sampling is
also used by Mann–Shapley [25] and Bachrach et al. [3]; however, Mann–Shapley
provides no theoretical analysis, and Bachrach et al.’s analysis does not apply to
non-simple coalitional games. The comparative difficulty here is that our game
may have payoffs besides 0 and 1, and so there is not an immediate bound on
the variance of the sampling.)

Algorithm SV-Sample [25]. Given an n-player game v and ε > 0:
Generate m = 4n(n− 1)/ε2 random permutations of the players {1, . . . , n}.
For each player, define si to be the average marginal contribution of player i
over these m permutations. Return the vector s.

Theorem 2. There is an FPRAS for the Shapley value of any game v that
is both supermodular and monotone. In particular, Algorithm SV-Sample(v, ε)
produces an ε-approximation to the Shapley value with probability at least 3/4.

Proof. Let Xi denote the marginal contribution of player i in a random per-
mutation. Because v is both supermodular and monotone, we have Xi ≥ 0. By
definition, the Shapley value for player i is si := E[Xi]. By supermodularity, the
maximum possible value achieved by Xi occurs when i is the last player in the
permutation, which happens in a 1/n fraction of permutations. Thus Xi achieves
its maximum value with probability at least 1/n, and so Xi is at most n · si.

Computing Shapley Value in Supermodular Coalitional Games 573

To upper bound the variance of Xi, we first define a new random variable Yi
that is n · si with probability 1/n and 0 otherwise. Note that the variances of Xi

and Yi satisfy σ
2
Xi

≤ σ2
Yi
, because Xi and Yi have the same expectation, and we

have simply pushed individual values to the extremes as much as possible in Yi.
Therefore we have

σ2
Xi

≤ σ2
Yi

= E[Y 2
i]− E[Yi]

2 =
1

n
(n · si)2 − s2i = (n− 1) · s2i .

Compute the sample mean si =
1
m

∑m
j=1X

(j)
i , where eachX

(j)
i is an independent

trial as above. Now

σ2
si = σ2

Xi
/m ≤ (n− 1)s2i /m and E[si] = si.

Using Chebyshev’s inequality [30], we have

Pr[|si − si| ≥ ε · si] ≤
σ2
si

s2i ε
2

≤ (n− 1)s2i /m

s2i ε
2

=
n− 1

m · ε2 .

Taking a union bound, we have that

Pr[∃i : |si − si| ≥ ε · si] ≤ n(n− 1)

mε2
.

Because we definedm = 4n(n−1)/ε2, this upper bound on the failure probability
is 1/4. Thus s is an ε-approximation to s with probability at least 3/4. ��

The choice of 3/4 as the success probability in Theorem 2 is arbitrary. By re-
running Algorithm SV-Sample Θ(log(1/δ)) times, taking the coordinate-wise
median value for each player, and rescaling the resulting vector to preserve eco-
nomic efficiency (i.e., ensuring that

∑n
i=1 si and v(N) are equal), we get an

ε-approximation to s with failure probability at most δ.

4 Lower Bounds for Approximating Shapley Value

In this section, we prove that the randomized approximation scheme from Sec-
tion 3 is the best possible, in several senses: no deterministic algorithm can do
as well, a randomized algorithm can do no better, and both the monotonicity
and supermodularity conditions are required to achieve this approximation.

We will use the following class of n-player supermodular games for several
of the lower bounds, for an even number n. Let C be a collection of subsets of
{1, . . . , n}, each of cardinality n/2. Define the game vC as follows:

vC(A) =

⎧⎨⎩2|A| − n if |A| > n/2
1 if |A| = n/2 and A ∈ C
0 otherwise.

In other words, no coalition of fewer than half the players can receive any value,
only some coalitions of size exactly n/2 (those in C) receive some value, and

574 D. Liben-Nowell et al.

larger coalitions receive linearly increasing value as the size grows (regardless of
membership).

By examining each player’s marginal contributions, we can see that vC is
supermodular. The Shapley value of each player in the game v∅ is 1, and the
games v∅ and vC differ only on the sets in C. Thus, writing Ai = {A : |A| =
n/2 and i ∈ A} and Ai = {A : |A| = n/2 and i /∈ A}, we have

the Shapley value for player i in vC = 1 +
|C ∩ Ai|(
n−1

n/2−1

)
· n

− |C ∩ Ai|(
n−1
n/2

)
· n
.

A fully polynomial-time deterministic approximation scheme (FPTAS) is the
deterministic analog to an FPRAS. Our next result says that the randomiza-
tion used in Theorem 2 is in fact necessary: there is no FPTAS for Shapley
value in monotone supermodular games. (That is, there is no poly(n, 1/ε)-time
deterministic algorithm to ε-approximate Shapley value in n-player monotone
supermodular games.)

Theorem 3. There is no FPTAS for the Shapley value, even for games that are
both supermodular and monotone.

Proof. Assume that such an algorithm exists. For any n, we take ε = 1/2n.
The algorithm must ε-approximate a player i’s Shapley value with only poly(n)
oracle calls. Define Ai = {A : |A| = n/2 and i ∈ A}. Assume that the oracle
responds to all queries as if the game is v∅, and let Qi ⊆ Ai be the collection of
sets among Ai queried by the algorithm. Then these queries cannot distinguish
between the games v∅ and vAi\Qi

. The Shapley values for player i in these two
games are

1 and 1 +
1

n
− |Qi|(

n−1
n/2−1

)
n
,

respectively. Because |Qi| is polynomial in n, and
(

n−1
n/2−1

)
grows faster than any

polynomial, we may take n large enough so that |Qi|/
(

n−1
n/2−1

)
< 1/2. In this case,

the purported algorithm cannot distinguish between two games whose Shapley
values differ by a multiplicative factor of ε = 1/2n, as was required. Therefore,
such an algorithm cannot exist. ��

The randomized sampling algorithm from Section 3 requires poly(n, 1/ε) time to
ε-approximate Shapley values. In other words, for any polynomial q(m), we can
get a 1/q(m) approximation in poly(n,m) time. One might hope for a better
algorithm—for example, a 1/2m approximation in poly(n,m) steps. We now
apply Yao’s Minimax Principle to show that no such algorithm exists. (A similar
argument is used by Bachrach et al. [3].)

Theorem 4. Suppose ε(m) is a function that converges to zero faster than
1/q(m) for any polynomial q(m). Then no randomized algorithm can ε(m)-
approximate the Shapley value of an n-player monotone supermodular game in
poly(n,m) time.

Computing Shapley Value in Supermodular Coalitional Games 575

Proof. Yao’s Minimax Principle [39] states that it suffices to prove that no de-
terministic polynomial-time algorithm can give an ε(m) approximation on any
particular probability distribution of games. We define the distribution as fol-
lows. Let i be a particular player, let Ai = {A : |A| = n/2 and i ∈ A}, and
let k = ε(n)

(
n−1

n/2−1

)
n. (Assume that n is large enough that ε(n) < 1/n.) With

probability 1/2, we choose the game v∅, and with probability 1/2 we choose
uniformly at random a subcollection Qi of Ai of exactly k sets. The respective
Shapley values for player i in v∅ and vQi are

1 and 1 +
k(

n−1
n/2−1

)
n
= 1 + ε(n).

Thus the algorithm must be able to distinguish v∅ and vQi with probability 3/4.
But the only way to differentiate is to query a set that is in Qi. The probability
of querying a set in Qi in one query is k/

(
n−1

n/2−1

)
= nε(n), and the probability of

querying a set in Qi in p(n) queries is at most p(n) ·nε(n). As 1/ε(n) eventually
exceeds any polynomial and the number of queries p(n) is polynomial in n, this
probability approaches zero, contradicting the requirement that the algorithm
distinguish v∅ and vQi with probability 3/4. ��

Finally, we prove that both the supermodularity and monotonicity conditions
are required, in a very strong sense: with only one of the two properties,
no polynomial-time algorithm can distinguish a zero from a nonzero Shap-
ley value (either deterministically or probabilistically). Therefore, there is no
ε-approximation algorithm that runs in polynomial time, for any ε > 0.

Theorem 5. No polynomial-time (deterministic or randomized) algorithm can
determine whether the Shapley value of a supermodular game is nonzero.

Proof. First we prove the deterministic version. For a given collection C of subsets
of size n/2, define a new game v′C by v′C(A) = vC(A)−|A| for all subsets A. Each
player’s Shapley value is decreased by 1 under this transformation. Such a game
is still supermodular, but v′C is not monotone, because v′C(∅) = 0 > −1 = v′C({i})
for any player i. Suppose that the oracle answers queries as if the game is v′∅, in
which every player has Shapley value 0. Because the algorithm can make only
poly(n) oracle calls and there are

(
n

n/2

)
sets of size n/2, one of these sets, A, has

not been queried (for sufficiently large n). Then in the game v′{A} each player has
nonzero Shapley value—the players in A have positive Shapley value, those not
in A have negative Shapley value—but the algorithm cannot distinguish v′{A}
from v′∅ based on its oracle calls.

For the randomized version, we use Yao’s Minimax Principle, as in Theorem 4.
For the random distribution, with probability 1/2 we take v′∅, and otherwise we
take v′{A} for a set A of size n/2 chosen uniformly at random. ��

Theorem 6. No polynomial-time (deterministic or randomized) algorithm can
determine whether the Shapley value of a monotone game is nonzero, even as-
suming superadditivity.

576 D. Liben-Nowell et al.

Proof. Fix a player i. Suppose the oracle answers a query about v(A) as if we
have the following monotone, superadditive game: if |A| > n/2, or if |A| = n/2
and i /∈ A, then v(A) = 1; otherwise v(A) = 0. Player i has Shapley value 0 in
this game. A polynomial number of oracle calls cannot differentiate this game
from a monotone, superadditive game v′ where one set B, of size n/2 and with
i /∈ B, is changed from value 1 to value 0 (which gives player i nonzero Shapley
value in v′). The randomized version follows as before. ��

Note that, while Theorem 3 shows that there is no FPTAS for computing the
Shapley value of a supermodular game, it is an open question whether there
is a PTAS—i.e., a deterministic ε-approximation algorithm that runs in time
poly(n) for any fixed ε > 0.

5 Ensuring Monotonicity in Supermodular Games

Section 4 shows that computing the Shapley value of a supermodular game, even
approximately, is difficult when the game is not monotone. There are, however,
two natural transforms that add monotonicity to any supermodular game, while
maintaining supermodularity.

Zero-Normalization Transform. Given a coalitional game v, define a new
game vZ where

vZ(A) = v(A) −
∑
i∈A

v({i}).

The zero-normalization transform offsets the value of any coalition A by the
value that each member of A would gather alone, be that amount positive or
negative. Thus the value of any singleton coalition is normalized to 0. This change
does not affect the strategic character of the game, as only the relative utility
of a player’s options are important. Note that player i’s Shapley values in v and
in vZ differ by exactly v({i}); that is, the value in vZ is the share of the gains
due to cooperation that are allocated to a player. If v is supermodular, then we
will show shortly that vZ is both supermodular and monotone, meaning these
Shapley values can be approximated efficiently, using Theorem 2.

Opt-Out Transform. Given a coalitional game v, define a new game vO where

vO(A) = max
S⊆A

v(S).

The opt-out transform essentially allows players to “opt out” of any coalition
and receive zero utility. Thus, whenever v({i}) is negative, we can think of v({i})
as the cost for player i to participate in the game, and he will do so only if this
cost is offset by the benefits of cooperating.

If v is supermodular, then the following lemma shows that the game vO (like
the game vZ) is both supermodular and monotone, and vO(A) can be efficiently
computed. Thus Shapley values can be efficiently approximated here as well.

Computing Shapley Value in Supermodular Coalitional Games 577

Lemma 7. If v is supermodular, then both vZ and vO are supermodular and
monotone. Furthermore, we can compute vZ(A) and vO(A) in polynomial time.

Proof. Supermodularity of vZ follows from the definition. Because the marginal
contribution of a player to the empty set is now zero, his marginal contribu-
tion to any set is nonnegative (by supermodularity), so vZ must be monotone.
Computation of vZ(A) is straightforward.

Monotonicity of vO is immediate by definition. For supermodularity, we use a
simpler version of a result of Topkis [38]. For all sets B1 and B2 and all subsets
A1 ⊆ B1 and A2 ⊆ B2, we have

vO(B1 ∪B2) + vO(B1 ∩B2) ≥ v(A1 ∪ A2) + v(A1 ∩ A2) (by definition of vO)

≥ v(A1) + v(A2) (by supermodularity of v)

Maximizing the right-hand side over all A1 ⊆ B1 and A2 ⊆ B2 gives us

vO(B1 ∪B2) + vO(B1 ∩B2) ≥ vO(B1) + vO(B2)

as desired. The ability to compute vO(A) in polynomial time follows from our
ability to maximize the supermodular function v [20, 32]. ��

To illustrate these two transforms, consider the following coalitional game v. Let
G be an undirected graph. The players of v are the vertices of G, and the value
of a coalition A is as follows. Every vertex in A pays an activation cost c, and
gains a benefit b ≥ 0 for each neighbor in A. That is,

v(A) = 2b · |EA| − c · |A|,

where EA is the set of edges induced by the vertex set A. One can verify that the
game v is supermodular, even when generalized to weighted costs and benefits.

Notice that vZ is equivalent to v but with c = 0; thus, vZ is precisely the
edge synergy game studied by Deng and Papadimitriou [12], who show that the
Shapley value of player i is exactly deg(i) · b. Thus, in v, the Shapley value for
player i is deg(i) · b − c.

The game vO provides another interesting variant of v. In particular, we can
think of vO as a version of v in which we allow players to opt out of a given
coalition A if their participation would incur a net loss. This game appears to
be markedly different from vZ . We can efficiently compute the exact Shapley
value of each player when b ≥ 3c/4. In this case, player i’s value is a function
of both deg(i) and the degrees of the nodes within a small radius of i in G. For
smaller b, we can approximate Shapley values using the algorithm SV-Sample.
Broadly speaking, a player’s Shapley value in vO increases as her degree increases,
and it also increases when nodes near her in the network become more valuable.
One potentially intriguing way of interpreting Shapley value in vO is as a new
measure of influence of nodes in a network—as in [6, 7, 22, 23], among others.

578 D. Liben-Nowell et al.

References

1. Archer, A., Feigenbaum, J., Krishnamurthy, A., Sami, R., Shenker, S.: Approxi-
mation and collusion in multicast cost sharing. Games and Economic Behavior 47,
36–71 (2004)

2. Aziz, H.: Algorithmic and complexity aspects of simple coalitional games. PhD
thesis, University of Warwick (2009)

3. Bachrach, Y., Markakis, E., Resnick, E., Procaccia, A.D., Rosenschein, J.S., Saberi,
A.: Approximating power indices: theoretical and empirical analysis. In: Au-
tonomous Agents and Multi-Agent Systems, vol. 20, pp. 105–122 (2010)

4. Banzhaf, J.F.: Weighted voting doesn’t work: A mathematical analysis. Rutgers
Law Review 19, 317–343 (1965)

5. Barua, R., Chakravarty, S.R., Roy, S.: Measuring power in weighted majority
games. Technical report. Department of Economics, Iowa State University (2007)

6. Bonacich, P.: Power and centrality: A family of measures. American Journal of
Sociology 92(5), 1170–1182 (1987)

7. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems 30(1–7), 107–117 (1998)

8. Curiel, I.J., Maschler, M., Tijs, S.: Bankruptcy games. Zeitschrift für Operations
Research 31, 143–159 (1987)

9. Davis, M., Maschler, M.: The kernel of a cooperative game. Naval Research Logis-
tics Quarterly 12, 223–259 (1965)

10. Deegan, J., Packel, E.W.: A new index of power for simple n-person games. Inter-
national Journal of Game Theory 7(2), 113–123 (1978)

11. Deng, X., Fang, Q.: Algorithmic cooperative game theory. Pareto Optimality, Game
Theory and Equilibria 17(1), 159–185 (2008)

12. Deng, X., Papadimitriou, C.: On the complexity of cooperative solution concepts.
Mathematics of Operations Research 19(2), 257–266 (1994)

13. Fatima, S.S., Wooldridge, M., Jennings, N.R.: A randomized method for the Shap-
ley value for the voting game. In: Proc. 6th Conference on Autonomous Agents
and Multiagent Systems, pp. 955–962 (May 2007)

14. Fatima, S.S., Wooldridge, M., Jennings, N.R.: A linear approximation method for
the Shapley value. Artificial Intelligence 172(14), 1673–1699 (2008)

15. Feigenbaum, J., Papadimitriou, C., Shenker, S.: Sharing the cost of multicast trans-
missions. J. Computing Systems Sciences 63, 21–41 (2001)

16. Felsenthal, D., Machover, M.: The measurement of voting power: Theory and prac-
tice, problems and paradoxes. Public Choice 102(3-4), 373–376 (2000)

17. Gillies, D.B.: Solutions to general non-zero-sum games. Contributions to the The-
ory of Games 4, 47–85 (1959)

18. Herzog, S., Shenker, S., Estrin, D.: Sharing the “cost” of multicast trees: an ax-
iomatic analysis. IEEE/ACM Transactions on Networking 5, 847–860 (1997)

19. Ieong, S., Shoham, Y.: Marginal contribution nets: a compact representation
scheme for coalitional games. In: Proc. 6th ACM Conference on Electronic Com-
merce (2005)

20. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial, strongly polynomial-time
algorithm for minimizing submodular functions. In: Proc. 32nd Symposium on
Theory of Computing, pp. 97–106 (2000)

21. Jain, K., Vazirani, V.: Applications of approximation algorithms to cooperative
games. In: Proc. 33rd ACM Symposium on Theory of Computing (2001)

Computing Shapley Value in Supermodular Coalitional Games 579

22. Katz, L.: A new status index derived from sociometric analysis. Psychome-
trika 18(1), 39–43 (1953)

23. Kleinberg, J., Tardos, E.: Balanced outcomes in social exchange networks. In:
Proc. 40th Symposium on Theory of Computing (2008)

24. Leech, D.: An empirical comparison of the performance of classical power indices.
Political Studies 50(1), 1–22 (2002)

25. Mann, I., Shapley, L.S.: Values of large games, IV: Evaluating the electoral col-
lege by Monte-Carlo techniques. Technical report. The Rand Corporation, Santa
Monica, CA (1960)

26. Maschler, M., Peleg, B., Shapley, L.S.: The kernel and bargaining set for convex
games. International Journal of Game Theory 1, 73–93 (1971)

27. Maschler, M., Peleg, B., Shapley, L.S.: Geometric properties of the kernel, nu-
cleolus, and related solution concepts. Mathematics of Operations Research 4(4),
303–338 (1979)

28. Matsui, Y., Matsui, T.: A survey of algorithms for calculating power indices
of weighted majority games. Journal of the Operations Research Society of
Japan 43(1), 71–86 (2000)

29. Matsui, Y., Matsui, T.: NP-completeness for calculating power indices of weighted
majority games. Theoretical Computer Science 263(1-2), 305–310 (2001)

30. Motwani, R., Raghavan, P.: Randomized Algorithms, Cambridge (1995)
31. O’Neill, B.: A problem of rights arbitration from the Talmud. Mathematical Social

Sciences 2(4), 345–371 (1982)
32. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in

strongly polynomial time. Journal of Combinatorial Theory B 80, 346–355 (2000)
33. Schulz, A.S., Uhan, N.A.: Approximating the least core value and least core of

cooperative games with supermodular costs. Working paper (2010)
34. Schulz, A.S., Uhan, N.A.: Sharing supermodular costs. Operations Research 58(4),

1051–1056 (2010)
35. Shapley, L.S.: A value for n-person games. In: Kuhn, H., Tucker, A.W. (eds.)

Contributions to the Theory of Games II, pp. 307–317. Princeton University Press
(1953)

36. Shapley, L.S.: Cores of convex games. International Journal of Game Theory 1,
11–26 (1971)

37. Shapley, L.S., Shubik, M.: On the core of an economic system with externalities.
American Economic Review 59, 678–684 (1969)

38. Topkis, D.M.: Minimizing a submodular function on a lattice. Operations Re-
search 26(2), 305–321 (1978)

39. Yao, A.C.: Probabilistic computations: Toward a unified measure of complexity. In:
Proc. 18th Symposium on Foundations of Computer Science, pp. 222–227 (1977)

Equilibria of GSP for Range Auction

H.F. Ting and Xiangzhong Xiang

Department of Computer Science, The University of Hong Kong, Hong Kong
{hfting,xzxiang}@cs.hku.hk

Abstract. Position auction is a well-studied model for analyzing online
auctions for internet advertisement, in which a set of advertisers bid for
a set of slots in a search result page to display their advertisement links.
In particular, it was proved in [10,11] that the Generalized Second Price
(GSP) mechanism for position auction has many interesting properties.
In this paper, we extend these results to range auction, in which a bidder
may specify a range of slots he is interested in. We prove GSP for range
auction has an envy free equilibrium, which is bidder optimal and has the
minimum pay property. Further, this equilibrium is equal to the outcome
of the Vickrey-Clarke-Groves mechanism. We also show that the social
welfare of any equilibrium of GSP for range auctions is not far from the
optimal; it is at least 1/2 of the optimal.

Classification: Algorithmic Game Theory and Online Algorithms.

Keywords: Online Auctions, Nash Equilibria, Envy-free, Valuations.

1 Introduction

Internet advertising, which sells online advertisements via search engines, is one
of the biggest and fastest growing businesses on internet. The idea of this new
type of advertisement is simple: in response to a user query, a search engine dis-
plays not only the result of the search, but also a set of sponsored advertisement
links. When a user clicks a sponsored link and is brought to the advertisement
page, the owner of the link will be charged a price, which is called price-per-
click in the industry. To determine in nearly real-time whose advertisement links
would be displayed, most search engines run online auctions. To enter the auc-
tions, an advertiser specifies a set of keywords related to his product, together
with a bid indicating the maximum price-per-click he is willing to pay. Given
a query, which consists of keywords, those advertisers whose sets of keywords
include some keywords in the query would participate in an auction to compete
for positions for their advertisements.

The Generalized Second Price (GSP) mechanism has been the most widely
used auction mechanism in internet advertising since its introduction in 2002
(for Google’s AdWords Select system). It is tailor-made for internet advertising,
which has the unique feature that there is an ordering on the slots of sponsored
links. For example, in the case of Google, Yahoo and MSN, these slots are located
near the right border of a page, ordered linearly from top to bottom. Experiences

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 580–591, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Equilibria of GSP for Range Auction 581

confirm that a higher slot often receives more clicks and thus is more desirable.
GSP allocates the slots (from top to bottom) to the advertisers in descending
order of the bids and charges the advertiser the bid of the next one in this order.

GSP is simple, transparent, and easy to be explained to ordinary advertisers.
Search engine companies have made a successful business out of GSP. For ex-
ample, the combined revenue of Google and Yahoo exceeded $34 billion in 2010.
Given this huge commercial success, there were many studies on GSP in recent
years. For instance, Aggarwal, Goel and Motwani [4] showed that although GSP
equals the optimal Vickrey-Clarke-Groves (VCG) mechanism if there is only one
slot, they are very different otherwise. In particular, they proved that while VCG
is always truthful [7, 12], GSP may not be truthful for auctions with more than
one slot. Later, Edelman, Ostrovsky and Schwarz [10], and independently Var-
ian [11] studied the equilibria of GSP. Note that popular search engines such as
Google and Yahoo provide tools for advertisers to analyze the performance of
their advertisements and allow them to change their bids frequently. Hence, a
key concern about the auction is whether this auction has equilibrium. Edelman,
Ostrovsky and Schwarz [10] and Varian [11] proposed the following position auc-
tion model to study GSP’s equilibria formally: There are n advertisers and k
slots where n ≥ k. For 1 ≤ i ≤ n, advertiser i has a value of vij for his ad-
vertisement provided that it is allocated at slot j. For 1 ≤ j ≤ k, slot j has a
click-through-rate cj ≥ 0 where c1 ≥ c2 ≥ . . . ≥ ck. If i has his advertisement
assigned to j and is charged a total price of pj , he has a net profit of vijcj − pj .

It is proved in [10,11] that GSP for position auction has Nash equilibrium if the
value of an advertisement is independent of its location, i.e., vi1 = vi2 = . . . = vik
for every i. Furthermore, this equilibrium is an envy-free Nash equilibrium, and
its assignment and pricing are identical to those of the VCG mechanism. Follow-
ing [10, 11], there are many studies on position auction [2, 3, 5, 8]. In particular,
Aggarwal, Feldman and Muthukrishnan [2] observed that the value of an ad-
vertisement may not be independent of its location; a higher slot not only has
a higher click-through-rate but also has other advantages. They cited a study
by the Interactive Advertising Bureau confirming that higher slots have better
brand awareness effect. Furthermore, users have a tendency of clicking the ad-
vertisement links from top to bottom, and one at a higher slot may capture the
attention of a user earlier. To provide better control for the advertisers, Aggarwal
et al. generalized position auction to the prefix position auction model, or simply
prefix auction, in which an advertiser i specifies a bid bi and a bottom cutoff
κi ∈ [1, k], indicating that he is only interested in the first κi slots, and is willing
to pay a maximum price-per-click of bi if his advertisement is placed at one of
them. They proved that under the assumption that vi1 = vi2 = . . . = viκi ≥ 0,
and vi(κi+1) = . . . = vik = 0 for every 1 ≤ i ≤ n, GSP for prefix auction has
envy-free Nash equilibrium, and its assignment and pricing are identical to those
of VCG. Furthermore, this equilibrium is bidder optimal, and has the ordering
and the minimum pay properties.

Our Contributions. In this paper, we study a natural extension of the prefix
auction. This extension is proposed by Aggarwal et al. [2], who observed that

582 H.F. Ting and X. Xiang

sometimes an advertiser may also want a top cutoff (in addition to a bottom
cutoff). For example, he may want his advertisement to appear consistently in
a small range of positions (or even at some fixed position), or he may want
to avoid the topmost slots in order to “weed out clickers who do not persist
through the topmost advertisements to choose the most appropriate one” [2].
Thus, they proposed the range auction, in which every advertiser i specifies a
top cutoff τi and a bottom cutoff κi, indicating that he is only interested in
the slots τi, τi + 1, . . . , κi. Despite this seemingly insignificant extension, it is
surprising that range auction is fundamentally different from the position and
the prefix auctions. Recall that for both the position and the prefix auctions,
GSP has a Nash equilibrium whose allocation and pricing equal those of VCG,
and it has the ordering and the minimum pay properties [2, 10, 11]. However,
Aggarwal et al. [2] showed that for range auction, GSP can no longer guarantee
that it has a Nash equilibrium with allocation and pricing equal those of VCG.

After a careful study, we are convinced that submitting a single bid for all
preferred slots is not sufficiently expressive for an advertiser to capture his pref-
erences. This paper investigates the fundamental question on what properties of
GSP for range auction can be restored if each advertiser i is allowed to submit
more than one bid (i.e., allow i to submit some different bids bij for those slots
j that he has different preferences). With this extension, we prove that GSP for
range auction has once again an envy-free Nash equilibrium, and this equilib-
rium is bidder optimal and its assignment and pricing are identical to those of
VCG. Furthermore, we show that this extended GSP for range auction has the
minimum pay property, but it does not have the ordering property. In fact, we
show that no reasonable mechanism has the ordering property for range auction.

We note that previous proofs of the same properties of the equilibria of GSP
for prefix auctions are based on a fundamental lemma (Lemma 1 in [2]) on the
allocations of VCG. In Example 2, we show that this lemma no longer holds for
range auction. Hence, we have to prove these properties of equilibria in a differ-
ent, but more direct way. Interestingly, our proofs do not need the assumption
used in all previous works, namely the value of an advertisement is independent
of the slot it locates, i.e., viτi = vi(τi+1) = . . . = viκi > 0, and vij = 0 for
j 	∈ [τi, κi]. Instead, we need the less restrictive and more reasonable assumption
that the value of an advertisement is not diminished if it is relocated to some
higher slot: viτi ≥ vi(τi+1) ≥ . . . ≥ viκi > 0, and vij = 0 for j 	∈ [τi, κi].

We also study how the extension from position auction to range auction affects
the social welfare of GSP. Given an allocation which assigns advertiser i to
slot j, its social welfare is defined to be

∑
1≤j≤k vijcj . In [9], Paes Leme and

Tardos proved that for position auction, any Nash equilibrium of GSP has social
welfare at least 1

1.618 times that of the optimal allocation. This bound is recently
improved to 1

1.282 in [6]. We generalize these results to the range auction. We
prove that any Nash equilibrium of GSP for range auction has social welfare at
least 1

2 times that of the optimal one. Furthermore, we show that this bound
is nearly tight, or more precisely, we prove that for any small enough positive
ξ, we can construct a Nash equilibrium whose social welfare is at most 1

2−ξ

Equilibria of GSP for Range Auction 583

times that of the optimal. The main difficulty for extending existing results for
position auction to range auction is as follows. For position auction the optimal
allocation is the greedy allocation, which assigns the advertiser with the largest
value to the highest slot, the one with the second highest value to the second
slot and so on. Hence, we can use mathematical induction to bound the social
welfare of the greedy allocation with that of the GSP allocation. However, this
greedy allocation property does not hold for range auction, and we can no longer
inductively get the bound.

2 Preliminaries and Notations

2.1 Range Auction

In our discussion, we assume that there are n advertisers 1, 2, . . . , n and k slots
1, 2, . . . k where n ≥ k. Each slot j is associated with a click-through-rate cj ,
and each advertiser i has a value vij and submits a bid bij for slot j. He also
specifies a top cutoff τi and a bottom cutoff κi. These values have the following
relationships:

– c1 ≥ c2 ≥ . . . ≥ ck ≥ 0.
– For each i, viτi ≥ vi(τi+1) ≥ . . . ≥ viκi > 0, and vij = 0 for every j 	∈ [τi, κi].

If advertiser i is assigned to slot j, and is charged a price of pj , the net-profit of
i is vijcj − pj. Note that if we let ρj = pj/cj denote the price-per-click, then his
net-profit can be rewritten as vijcj − ρjcj .

We say that a given allocation and pricing is at envy-free Nash equilibrium if
each advertiser’s net-profit will not increase if he is reassigned to another slot
and pay the price there. To be more precise, suppose that px is the price that the
current occupant at slot x is paying. If advertiser i is currently assigned to slot
j and pay the price pj, then for any other slot x, we have cxvix − px ≤ cjvij − pj
; if i is not assigned to any slot, then cxvix − px ≤ 0. We say that the allocation
and pricing is bidder optimal if each advertiser’s net profit is the maximum net
profit he can make among all envy-free equilibria.

We are also interested in the following properties of an auction mechanism.

Minimum Pay Property. If for any input bids, it satisfies the following: Suppose
the advertiser assigned to the slot j is charged the price-per-click ρj , then he
pays the minimum amount he would have needed to bid in order to be assigned
to slot j, i.e., if he has bidden less than ρj , he could not be assigned to slot j,
and if he has bidden more than ρj , he will be assigned slot j or some higher slot.

Ordering Property. If advertiser xj is assigned to slot j (1 ≤ j ≤ k), then
bx11 ≥ bx22 ≥ . . . ≥ bxkk.

2.2 The Vickrey-Clarke-Groves (VCG) Auction

In our analysis of GSP for range auction, we need to refer to the pricing method
of VCG. This section gives minimum details about VCG that are necessary for

584 H.F. Ting and X. Xiang

our discussion. The allocation Θ ⊆ {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ k} returned by
VCG is a matching from the set of advertisers to the set of slots such that

(i) it is feasible, i.e., if (i, j) ∈ Θ then τi ≤ j ≤ κi; and
(ii) its value v(Θ) =

∑
(i,j)∈Θ vijcj is the maximum over all feasible matchings.

If i is assigned to j, i.e, (i, j) ∈ Θ, then it is charged by VCG a price of

v(Θ−i)− (v(Θ)− cjvij)

where Θ−i is the allocation returned by VCG if we take i out of the auction.
Following is an example.

Example 1. There are three slots with c1 = 4, c2 = 2, c3 = 1, and four advertisers
with (v11, v12, v13) = ($20, $0, $0), (v21, v22, v23) = ($15, $15, $0), (v31, v32, v33) =
($10, $10, $0), and (v41, v42, v43) = ($0, $5, $5). Then, Θ = {(1, 1), (2, 2), (4, 3)}.
Note that (1, 1) ∈ Θ and Θ−1 = {(2, 1), (3, 2), (4, 3)}; thus the price charged to
advertiser 1 by VCG is v(Θ−1)− (v(Θ) − c1v11) = 85− (115− 80) = 50.

To represent the difference between Θ and Θ−i succinctly, observe that when
converting Θ to Θ−i, i is moved out and some advertiser i0 takes its slot. Then,
another advertiser i1 takes the slot vacated by i0, and so on until some previously
unassigned advertiser j is assigned to the last vacated slot (or no advertiser bids
for this slot). We call this sequence j → . . .→ i1 → i0 → i of moving advertisers
the chain for converting Θ to Θ−i, and a transition, say 	 → 	′, a link in the
chain. Note that for those slots occupied by other advertisers, we can assume
their assignments are the same in both Θ and Θ−i (to see this, try substituting
a purported better assignment on these slots back into Θ). We say that a chain
is of minimum length if there is no shorter chain that transforms Θ to some
allocation not involving i and having the same valuation as Θ−i. In Example 1,
the chain for converting Θ to Θ−1 is 3 → 2 → 1.

Before leaving this section, we show a fundamental difference between range
auction and position/prefix auction. Consider any link i0 → i1 in the chain.
Suppose that i0 and i1 are located at slots j0 and j1, respectively. We say that
the link is an upward link if j0 > j1; otherwise, it is downward. To prove the
above properties of equilibria for prefix auction, Aggarwal et al. [2] needed a
fundamental lemma on downward-upward-link (Lemma 1 in [2]), which asserts
that the minimum length chain for converting Θ to Θ−i does not contain a
downward link followed by an upward link. This is not true for range auction.
In range auction, we have an example in which the minimum length chain for
converting Θ to Θ−i contains a downward link followed by an upward link.

Example 2. There are three slots 1,2,3 and five advertisers 1, 2, 3, 4, 5. The click
through rates are c1 = 6, c2 = 5, c3 = 4. Their values for these slots are:
(v11, v12, v13) = ($0, $10, $10), (v21, v22, v23) = ($9, $9, $9), (v31, v32, v33) = ($100,
$0, $0), (v41, v42, v43) = ($0, $8, $0) and (v51, v52, v53) = ($1, $1, $1). Then, the
VCG-allocation Θ = {(3, 1), (1, 2), (2, 3)} and Θ−3 = {(2, 1), (4, 2), (1, 3)}. So
the chain for converting Θ to Θ−3 is 4 → 1 → 2 → 3. Note that in this minimum
length chain: 1 → 2 is a downward link (advertiser 1 is at slot 2, and 2 is at slot
3) while 2 → 3 (advertiser 2 is at slot 3 and 3 is at slot 1) is an upward link.

Equilibria of GSP for Range Auction 585

3 GSP and VCG for Range Auction

In this section, we first study some useful properties of GSP for range auction,
which works as follows.

For each slot j = 1, 2, . . . , k in order from top to bottom, iteratively
run the following standard second-price auction: Let U be the set of
advertisers i who are interested in the current slot j, i.e., τi ≤ j ≤ κi
and have not been allocated any slot yet. The advertiser i in U with the
highest bid bij is allocated slot j, and is charged a price-per-click equal
to the second-highest bid in {bxj | x ∈ U}.

It is trivial to prove that GSP for range auction has the Minimum Pay Property.
Suppose xj is allocated slot j and pays the price pj . Then, according to the
pricing mechanism, pj is the highest bid among all those unassigned advertisers
interested in j other than xj . Obviously, if xj changes its bid to some value lower
than pj, he will lose slot j to the one who currently has this bid pj ; otherwise,
he will not lose it.

GSP for range auction cannot guarantee the Ordering Property. The following
simple example shows that no reasonable mechanism can guarantee the ordering
property for range auction. There are two advertisers 1, 2 and two slots 1, 2. The
bid of the advertiser 1 is b11 = 100, b12 = 0, and for advertiser 2 is b21 = 0, b22 =
200. Note that advertiser 1 only wants slot 1 and advertiser 2 slot 2. Since
each slot has only one effective bidder, a reasonable mechanism should assign
advertiser 1 to slot 1 and 2 to slot 2. Note that it is not true that advertisers
with higher bids win higher slots. The ordering property does not hold.

In the rest of this section, we prove a fundamental property about VCG
for range auction: Suppose VCG assigns advertisers i and i′ to slots j and j′,
respectively. Suppose that j < j′ and i′ is also interested in this higher slot j.
Then, VCG must charge i a higher price-per-click than that it charges i′. Note
that previous analysis also needs this property, but their proofs are based on the
upward-downward link lemma, which is not true for range auction.

To prove this price-per-click ordering property, we need some notations. We
use

(
j
i

)
to denote the fact that slot j is allocated to advertiser i, and in general,

we use
(
j0 j1 ... jm
i0 i1 ... im

)
to denote the fact that the slots j0, j1, . . . , jm are allocated

to the advertisers i0, i1, . . . , im, respectively. Define

v
((

j0 j1 ... jm
i0 i1 ... im

))
= vi0j0cj0 + . . .+ vimjmcjm .

Recall that Θ denotes the VCG allocation, which has the maximum value among
all possible allocations, and Θ−i is the one returned by VCG after taking ad-
vertiser i out of the auction. To analyze the price-per-click ordering property,
we need to compare the value of Θ−x and Θ−y for any two advertisers x and y.
First, we have the following trivial fact.

Fact 31. Suppose that in Θ−y, x is assigned to slot j, and y is also interested
in j, i.e., τy ≤ j ≤ κy. Then, v(Θ−x) ≥ v(Θ−y)− v(

(
j
x

)
) + v(

(
j
y

)
).

586 H.F. Ting and X. Xiang

To see this, just replace x by y at slot j in Θ−y, and we get an allocation without
x with value v(Θ−y)−v(

(
j
x

)
)+v(

(
j
y

)
), which, by optimality of Θ−x, is no greater

than v(Θ−x). The next lemma shows similar relationship for some other slot
determined by Θ, not Θ−y.

Lemma 32. Suppose that in Θ, x is assigned to slot j, and y is also interested
in j, i.e., τy ≤ j ≤ κy. Then, v(Θ−x) ≥ v(Θ−y)− v(

(
j
x

)
) + v(

(
j
y

)
).

Proof. Note that if x is also assigned to slot j in Θ−y, then the lemma follows
directly from Fact 31. Suppose that x is not assigned to slot j in Θ−y. Since x
is in slot j in Θ, but is moved out of j in Θ−y, it must be in the chain

y ← i� ← . . .← i1 ← x ← w ← . . .

that converts Θ to Θ−y. Suppose that in Θ, x, i1, . . . , i� and y are assigned to
j, j1, . . . , j�, j�+1, respectively, i.e.,

Θ = Θ′ ∪
(
j j1 j2 ... j� j�+1

x i1 i2 ... i� y

)
where Θ′ denotes the allocation of the other slots in Θ. After converting Θ to
Θ−y by the chain, we have

Θ−y = Θ′
−y ∪

(
j j1 j2 ... j� j�+1

w x i1 ... i�−1 i�

)
,

where Θ′
−y denotes the other allocation in Θ′

−y. Now, consider the new allocation

X = Θ′ ∪
(
j j1 j2 ... j� j�+1

y x i1 ... i�−1 i�

)
.

The optimality of Θ suggests that v(Θ) ≥ v(X), i.e.,

v
(
Θ′ ∪

(
j j1 j2 ... j� j�+1

x i1 i2 ... i� y

))
≥ v

(
Θ′ ∪

(
j j1 j2 ... j� j�+1

y x i1 ... i�−1 i�

))
,

or equivalently,

v
((

j
x

))
+ v

((
j1 j2 ... j� j�+1

i1 i2 ... i� y

))
≥ v

((
j
y

))
+ v

((
j1 j2 ... j� j�+1

x i1 ... i�−1 i�

))
. (1)

Recall that Θ−y = Θ′
−y ∪

(
j j1 j2 ... j� j�+1

w x i1 ... i�−1 i�

)
. Let Y = Θ′

−y ∪
(
j j1 j2 ... j� j�+1

w i1 i2 ... i� y

)
.

Then,

v(Y)+ v
((

j
x

))
= v(Θ′

−y) + v
((

j
w

))
+ v

((
j1 j2 ... j� j�+1

i1 i2 ... i� y

))
+ v

((
j
x

))
≥ v(Θ′

−y) + v
((

j
w

))
+ v

((
j1 j2 ... j� j�+1

x i1 ... i�−1 i�

))
+ v

((
j
y

))
= v(Θ−y) + v

((
j
y

))
.

(The inequality is from (1).) It can be verified that Y does not assign x to any
slot, and by the optimality of Θ−x, we conclude that v(Θ−x) ≥ v(Y).

Lemma 33. Suppose that in the allocation Θ of VCG, advertisers x and y are
assigned to slots j and j′, respectively. Suppose that j < j′, and y is also inter-
ested in this higher slot j, i.e., τy ≤ j ≤ κy. Then, the price-per-click that VCG
charges x is no smaller than that VCG charges y.

Equilibria of GSP for Range Auction 587

Proof. The price-per-click that VCG charges x is ρx =
v(Θ−x)−(v(Θ)−cjvxj))

cj
. By

Lemma 32 (recall that v
((

j
i

))
= cjvij), we have

ρx ≥ v(Θ−y)−(v(Θ)−cjvyj))
cj

=
v(Θ−y)−v(Θ)

cj
+ vyj . (2)

Note that v(Θ−y) − v(Θ) ≤ 0, cj ≥ cj′ and vyj ≥ vyj′ , (2) can be rewritten as

ρx ≥ v(Θ−y−v(Θ))
cj′

+ vyj′ =
v(Θ−y)−(v(Θ)−cj′vyj′)

cj′
, which is the price-per-click that

VCG charges y.

4 Equilibria of GSP for Range Auction

We are now ready to analyze the equilibria of GSP for range auction. We show
that it has an envy-free Nash equilibrium whose allocation and pricing is identical
to those of VCG, and among all envy-free Nash equilibria, this one is bidder-
optimal.

To simplify the notation, we rename the advertisers if necessary and assume
that advertiser j is assigned to slot j for 1 ≤ j ≤ k in the VCG allocation
Θ. Suppose that VCG charges j a total price of pj, and thus a price-per-click
ρj = pj/cj . The following procedure determines a bidding Γ of the advertisers
that will lead us the desired equilibrium.

1 Initialize all bij as 0, set all advertisers’ stated cutoffs to be their true cutoffs
and set j = 1.

2 If τj < j, set bj(j−1) = bjj = ρj−1.
3 If τj = j, set bjj = ρj + ε, where ε is a very small positive real number.
4 If j = k or τj+1 = j + 1, find the y ∈ {j + 1, j + 2, ..., n} with the largest vyj .

Set byj = ρj .
5 If j < k, set j = j + 1 and go to Step 2.

Theorem 41. The allocation and pricing resulted by applying GSP for range
auctions to Γ is identical to those given by VCG, i.e., each advertiser is allocated
the same slot and charged the same price-per-click. Furthermore, this allocation
and pricing is at envy-free Nash equilibrium.

Proof. For any 1 ≤ j ≤ k, since advertiser j is assigned to slot j in Θ, we have
τj ≤ j ≤ κj . We show below that GSP will also assign advertiser j to slot j and
charge him a price-per-click ρj . Consider two cases.

Case i. Suppose that τj < j. In Step 2 of our procedure, we set bjj = ρj−1.

– If j < k and τj+1 < j + 1, then b(j+1)j = ρj. Since τj < j, advertiser j
is also interested in slot j − 1, and by Lemma 33, price-per-click for slot
j − 1 is no lower than that for j, i.e., ρj−1 ≥ ρj . Hence bjj = ρj−1 ≥
ρj = b(j+1)j , and together with the fact that other advertisers’ bids for
slot j are all 0, j would win slot j, and is charged price-per-click of the
second highest bid, which is b(j+1)j = ρj .

588 H.F. Ting and X. Xiang

– Suppose that j = k or τj+1 = j + 1. By the procedure, there is one
advertiser y with byj = ρj , and all the other bids for the slot j are
0. Again, we have ρj−1 ≥ ρj because j is also interested in slot j − 1
(Lemma 33); thus, bjj = ρj−1 ≥ ρj = byj, and advertiser j wins slot j
and is charged a price-per-click ρj .

Case ii. Suppose that τj = j. Then Step 3 of our procedure sets bjj = ρj + ε.
– If j < k and τj+1 < j + 1, then the procedure sets b(j+1)j = ρj , and

all other bids for j are 0. Obviously, bjj = ρj + ε > ρj = b(j+1)j and
advertiser j wins slot j, and is charged a price-per-click of the second
highest bid b(j+1)j = ρj .

– Suppose that j = k or τj+1 = j + 1. There is one advertiser y with
byj = ρj , and all other bids for j are 0. Then, bjj = ρj + ε > ρj = byj ,
and advertiser j will win slot j, and is charged a price-per-click ρj .

Thus, the allocation and pricing of GSP for Γ is identical to those given by VCG.
Now we show that the allocation and pricing is at envy-free equilibrium. We

have proved above that for any 1 ≤ i ≤ k, advertiser i is assigned to slot i by
GSP and is charged the VCG price pi = ciρi = v(Θ−i)− (v(Θ)−civii). Consider
any such advertiser i. We now show that i will not envy any other advertiser j
assigned to slot j; or more precisely, we show that the current net profit of i,
which is civii − pi, is no smaller than cjvij − pj, the net profit he would make if
i is assigned to slot j and pays a price of pj. We assume that i is interested in j
(otherwise, vij = 0 and i does not envy j obviously). From Lemma 32, we have

v(Θ−j) ≥ v(Θ−i)− v(
(
j
j

)
) + v(

(
j
i

)
)

⇔ v(Θ−j)− (v(Θ) − cjvjj) ≥ v(Θ−i)− (v(Θ) − cjvij)
⇔ pj ≥ pi − civii + cjvij
⇔ civii − pi ≥ cjvij − pj , as required.

Now consider some advertiser i that is not assigned to any slot. Then, i has
zero net profit. To show that he does not envy any slot j that he is interested,
we need to show cjvij − pj ≤ 0. Replacing j by i at slot j in Θ, we have an
allocation without j, and by the optimality of Θ−j over these allocations, we
have v(Θ−j) ≥ v(Θ) − cjvjj + cjvij . Hence, v(Θ−j) − v(Θ) + cjvjj ≥ cjvij ⇒
pj ≥ cjvij ⇒ cjvij − pj ≤ 0.

The following lemma studies the net profit of the advertisers.

Lemma 42. The allocation and pricing determined by GSP for Γ is bidder
optimal, i.e., each advertiser makes the maximum net profit that he can make
over any envy-free equilibrium.

Proof. Recall that the allocation and pricing of GSP for Γ is identical to the
VCG allocation Θ and its price is the VCG price, and we have also assumed
that in this allocation, advertiser i is assigned to slot i. Hence, the total value
of this GSP allocation equals v(Θ) and for any slot i, its net profit in this GSP
allocation is civii − pi = civii − (v(Θ−i)− (v(Θ) − civii)) = v(Θ) − v(Θ−i). We

Equilibria of GSP for Range Auction 589

need to prove that this net profit is no smaller than what i will make in any
other envy-free equilibrium.

Consider an arbitrary envy-free equilibrium with allocation E and pricing q.
Suppose that for 1 ≤ i ≤ k, advertiser xi is assigned to slot i in E and is charged
a price of qi. To avoid unnecessary complication, assume that the remaining n−k
unassigned advertisers are assigned to n− k dummy slots j with cj = 0 and are
charged with zero price. First, we argue that v(E) = v(Θ). By the envy-free
property of E, we have the net-profit of xi is no smaller than that he will make
if we reassign him to slot xi, i.e., civxii − qi ≥ cxivxixi − qxi . It follows that∑

1≤i≤n(civxii − qi) ≥
∑

1≤i≤n(cxivxixi − qxi)

⇔
∑

1≤i≤n civxii ≥
∑

1≤i≤n cxivxixi

⇔ v(E) ≥ v(Θ).

(Recall that we have assumed that in the VCG allocation Θ, advertiser x is
assigned to slot x.) But Θ has the maximum value, thus, v(E) = v(Θ).

Now we show that for any advertiser xi0 , the net profit he makes in E is not
greater than what he makes in GSP, i.e.,

ci0vxi0 i0
− qi0 ≤ v(Θ) − v(Θ−xi0

). (3)

Since v(E) = v(Θ), E is also an optimal allocation. Let xi0 ← xi1 ← . . . ← xi�
be the chain that converts E to Θ−xi0

. Since E is envy-free, for j ∈ [0, 	− 1], we
have cij+1vxij+1

ij+1 − qij+1 ≥ cijvxij+1
ij − qij . It follows that∑

0≤j≤�−1 qij ≥
∑

0≤j≤�−1(cijvxij+1
ij − cij+1vxij+1

ij+1 + qij+1).

⇔ qi0 ≥ ci0vxi1 i0
− ci1vxi1 i1

+ ...+ ci�−1
vxi�

i�−1
− ci�vxi�

i� + qi�
⇒ qi0 ≥ (ci0vxi1 i0

+ ...+ ci�−1
vxi�

i�−1
)− (ci1vxi1 i1

+ ...+ ci�vxi�
i�)

⇔ qi0 ≥ v(Θ−xi0
)− v(E) + ci0vxi0 i0

= v(Θ−xi0
)− v(Θ) + ci0vxi0 i0

,

and (3) follows.

5 Social Welfare

Our result that GSP for range auction has Nash equilibrium equal to the outcome
of the VCG mechanism is encouraging because VCG makes truthful behavior the
dominant strategy and its outcome has the maximum total valuation or social
welfare. However, we may not be able to reach this particular equilibrium. In
fact, Abrams, Ghosh and E. Vee [1] have shown that even for the less restrictive
position-based auction, there are input values for the vij ’s and cj ’s such that for
any safe bidding (which means that every advertiser i bids a price bij for slot
j no higher than the value-per-click vij , i.e., bij ≤ vij), GSP cannot return the
VCG outcomes for this input. It is natural to ask how bad, in terms of social
welfare, a Nash equilibrium of GSP can be. In this section, we prove that, under
the assumption that every advertiser i only submits safe bids, i.e., bij ≤ vij for
any slot j, any Nash equilibrium of GSP for range auction has social welfare

590 H.F. Ting and X. Xiang

at least 1
2 times that of VCG, and we also show that this bound is tight. Note

that this bound holds for any Nash equilibrium, not just the envy-free Nash
equilibrium. To be precise, we give the definition of (general) Nash equilibrium
here: Consider an allocation and pricing given by GSP for some bidding b. We
say that this allocation and pricing is at Nash equilibrium if for each advertiser
x, if he changes his bid, and the bids of all the other advertisers remain the same,
then the new profit of x will not increase. In other words, suppose that advertiser
x is originally assigned to slot j and charged a price of p, and is reassigned to
slot j′ and charged a new price p′ after only x changes his bid, then

cjvxj − p ≥ cj′vxj′ − p′. (4)

To derive the 1
2 bound, we consider a Nash equilibrium given by GSP for some

bidding b in the rest of this section. We assume that b is safe, i.e., bij ≤ vij for
any advertiser i and slot j. Suppose that for any slot j, advertiser πj is assigned
to j by GSP, and charged a price-per-click ρj (and hence a price of pj = cjρj).
We have the following lemma.

Lemma 51. For any slots 1 ≤ i, j ≤ k, we have civπii + cjvπjj ≥ civπj i.

Proof. First, consider the case when i < j. Since i < j, bπii ≥ bπji (or else GSP
will not assign πi to slot i). Note that if πj increases his bid bπji for slot i to
bπii + ε, and the other advertisers make no change to their bids, then πj will
win slot i, and pay the price bπii, the second highest price for slot i after the
change. Since the allocation and pricing is at Nash equilibrium, by (4), we have
cjvπjj−cjρj ≥ civπji−cibπii ⇒ cjvπjj ≥ civπji−civπii ⇒ civπii+cjvπjj ≥ civπji,
where the second inequality holds because ρj ≥ 0 and bπii ≤ vπii (safe bid).

For the case when j ≤ i, we have cj ≥ ci and vπjj ≥ vπji, and obviously
civπii + cjvπjj ≥ cjvπjj ≥ civπji.

We are now ready to compare the social welfare of GSP with that of VCG,
whose social welfare is optimal. To simplify the analysis, we assume again there
are n−k dummy slots k+1, k+2, . . . n such that the click-through rate of dummy
slot j is cj = 0, and vij = 0 for all advertisers i. Furthermore, we assume that
in VCG, advertiser i is assigned to slot i. Then, the allocation of VCG is a
perfect matching, and its social welfare is

∑
1≤h≤n chvhh. For GSP, we assume

that after GSP decides the allocation and pricing for the top k slots, we assign
the unassigned advertisers to the unallocated slots arbitrary, and each of them is
charged a price of 0. (Note that for any unassigned advertiser i, if he is assigned
to unallocated slot j, then its value is cjvij = 0.) Then, the social welfare of
GSP becomes

∑
1≤h≤n chvπhh. It is easy to verify that Lemma 51 is still true if

either i or j is dummy slot.

Theorem 52. The social welfare of GSP is at least half that of VCG, i.e.,∑
1≤h≤n chvπhh ≥ 1

2

∑
1≤h≤n chvhh.

Proof. By Lemma 51, we have, for any 1 ≤ i, j ≤ n, civπii+cjvπjj ≥ civπji. Con-
sider any slot h. After substituting j = h, i = πh in the inequality, we have cπh

·

Equilibria of GSP for Range Auction 591

vππh
πh
+ch·vπhh ≥ cπh

·vπhπh
. It follows that

∑
1≤h≤n

(
cπh

· vππh
πh

+ ch · vπhh

)
≥∑

1≤h≤n cπh
· vπhπh

⇔
∑

1≤t≤n ct · vπtt +
∑

1≤h≤n ch · vπhh ≥
∑

1≤t≤n ct · vtt ⇔∑
1≤h≤n ch · vπhh ≥ 1

2

∑
1≤h≤n ch · vhh, the theorem follows.

We can show that the bound 1
2 is tight by an example. Assume that there are

2 slots and 2 advertisers. v11 = 100 + ε, v12 = 100 + ε, v21 = 100, v22 = 0;
c1 = 1 + σ, c2 = 1. (0 < ε < 1, 0 < σ < 1). The bidding b is: b11 = 100 + ε,
b12 = 100 + ε, b21 = 0, b22 = 0. The allocation and pricing given by GSP for
b is at Nash equilibrium. Advertiser 1 is assigned to slot 1 and advertiser 2
to slot 2. Each of them is charged a price of 0. Advertiser 1 has no incentive
to lower his bid and advertiser 2 cannot win slot 1 by changing his bid. The
social welfare of GSP is v(b) = c1 · v11 + c2 · v22 = (1 + σ) · (100 + ε) + 0.
In VCG, advertiser 2 is assigned to slot 1 and advertiser 1 to slot 2; its social
welfare is v(Θ) = c1 · v21 + c2 · v12 = (1 + σ) · 100 + 1 · (100 + ε). Therefore,
v(b)
v(Θ) =

(1+σ)(100+ε)
(1+σ)·100+1·(100+ε) =

1
2 + 100σ+ε+2σε

2(200+100σ+ε) .

References

1. Abrams, Z., Ghosh, A., Vee, E.: Cost of conciseness in sponsored search auctions.
Internet and Network Economics, 326–334 (2007)

2. Aggarwal, G., Feldman, J., Muthukrishnan, S.: Bidding to the top: VCG and equi-
libria of position-based auctions. Approximation and Online Algorithms, 15–28
(2007)

3. Aggarwal, G., Feldman, J., Muthukrishnan, S., Pál, M.: Sponsored search auctions
with markovian users. Internet and Network Economics, 621–628 (2008)

4. Aggarwal, G., Goel, A., Motwani, R.: Truthful auctions for pricing search keywords.
In: Proceedings of the 7th ACM Conference on Electronic Commerce, pp. 1–7.
ACM (2006)

5. Blumrosen, L., Hartline, J., Nong, S.: Position auctions and non-uniform conversion
rates. In: ACM EC Workshop on Advertisement Auctions (2008)

6. Caragiannis, I., Kanellopoulos, P., Kaklamanis, C., Kyropoulou, M.: On the ef-
ficiency of equilibria in generalized second price auctions. In: Proceedings of the
12th ACM Conference on Electronic Commerce, pp. 81–90. ACM (2011)

7. Clarke, E.H.: Multipart pricing of public goods. Public Choice 11(1), 17–33 (1971)
8. Even-Dar, E., Feldman, J., Mansour, Y., Muthukrishnan, S.: Position auctions with

bidder-specific minimum prices. Internet and Network Economics, 577–584 (2008)
9. Leme, R.P., Tardos, E.: Pure and bayes-nash price of anarchy for generalized second

price auction. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science, pp. 735–744. IEEE (2010)

10. Ostrovsky, M., Schwarz, M., Edelman, B.G.: Internet advertising and the gener-
alized second price auction: Selling billions of dollars worth of keywords. NBER
Working Paper (2005)

11. Varian, H.R.: Position auctions. International Journal of Industrial Organiza-
tion 25(6), 1163–1178 (2007)

12. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. The
Journal of Finance 16(1), 8–37 (1961)

Stretch in Bottleneck Games

Costas Busch and Rajgopal Kannan

Louisiana State University, Baton Rouge, LA 70803, USA
{busch,rkannan}@csc.lsu.edu

Abstract. In bottleneck congestion games the social cost is the worst
congestion (bottleneck) on any resource, and each player selfishly mini-
mizes the worst resource congestion in its strategy. We examine the price
of anarchy with respect to the stretch which is a measure of variation in
the resource utilization in the strategy sets of the players. The stretch is
particularly important in routing problems since it compares the chosen
path lengths with the respective shortest path lengths. We show that
the price of anarchy in general bottleneck games is bounded by O(sm),
where s is the stretch and m is the total number of resources. In linear
bottleneck games, where the resource latencies are linearly proportional
to the players’ workloads, the price of anarchy is improved to O(

√
sm).

These bounds are asymptotically tight. For constant stretch linear games
we obtain a Θ(

√
m) improvement over the previously best known bound.

Keywords: algorithmic game theory, congestion games, bottleneck
games, price of anarchy.

1 Introduction

We consider non-cooperative atomic congestion games with n players, where
each player’s pure strategy consists of a subset from a set of shared resources R.
Access to the common resources causes congestion which is expressed with a
delay function on each resource. We consider the utility cost of a player to be
the largest congestion (bottleneck) experienced in any of the resources in its
chosen strategy. Players prefer smaller bottleneck congestion. The social cost,
denoted C, is the largest bottleneck congestion that appears in any resource.
Bottleneck congestion games capture the effect that the bottleneck player utility
costs have on the bottleneck social cost.

Bottleneck congestion games have been studied in the literature primarily
in the context of routing games [1,2,3] where resources correspond to network
links (or nodes) and player strategies are paths over the links. In [1] the authors
observe that bottleneck routing games are important in networks for various
practical reasons. In wireless networks, the maximum congested link affects the
lifetime of the network since adjacent nodes transmit large number of packets
resulting to fast energy depletion. High congestion links also induce hot-spots
which slow-down the network throughput. This may further expose the network
to malicious attacks which aim to increase the congestion in the hope to bring
down the network.

J. Gudmundsson, J. Mestre, and T. Viglas (Eds.): COCOON 2012, LNCS 7434, pp. 592–603, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Stretch in Bottleneck Games 593

Table 1. Price of anarchy (PoA) bounds for bottleneck games

PoA Upper Bound Kind of Bottleneck Game Theorem

sm general game Theorem 1√
sm+ 1 uniform linear game (λ = 1) Theorem 2√
8
3
sm arbitrary linear game (any λ) Theorem 3

√
2sm+ o(

√
sm) + 1 special linear game with 1 < λ ≤ 2o(

√
sm) Theorem 4

Bottleneck games are also important to machine scheduling problems, where
each resource corresponds to a machine and a player’s strategy is a sequence
of jobs that are to be scheduled on respective machines. The seminal result
of Leighton et al. [10] demonstrates the existence of (coordinated) scheduling
algorithms that dispatch the jobs in time very close to C+D, where C is the social
bottleneck congestion and D is the maximum strategy size. When C 3 D, the
congestion becomes the dominant factor in the scheduling performance. Thus,
smaller bottleneck congestion immediately implies improved task throughput.
Same observation also applies to packet scheduling problems.

An important aspect of bottleneck games is the stretch on the players’ strate-
gies. The stretch expresses the variability on the resource utilization in the strat-
egy sets of the players. For a player the stretch is the ratio of the maximum
versus the minimum resource utilization considering all of the player’s strategy
set. The stretch of the game, denoted s, is simply the maximum stretch of any
player. Note that s ≥ 1. Stretch is an important metric of performance. In net-
works it expresses how much longer are path lengths compared to shortest paths.
Constant stretch paths are typically preferred since routed packets can be deliv-
ered very fast under low traffic conditions. In machine scheduling problems low
stretch implies smaller total resource utilization which is beneficial for improved
job throughput.

1.1 Contributions

We examine the consequence of the players’ selfish behavior to the social welfare
in pure Nash equilibria in which no player can unilaterally improve its situation.
The impact of selfishness is quantified with the price of anarchy (PoA) [9,13],
which expresses how much larger is the worst social cost in a Nash equilibrium
compared to the social cost in the optimal coordinated solution. Ideally, the price
of anarchy should be small.

We explore the impact of stretch on the price of anarchy in bottleneck games.
We summarize our results in Table 1. We first consider general bottleneck games
where each player can apply arbitrary weights on the resources that it uses. The
congestion on a resource is simply the sum of the weights of the players that use
the resource. We show that the price of anarchy is sm, where s is the stretch
and m is the number of resources (m = |R|). We demonstrate that this bound
is asymptotically tight by giving a matching worst case lower bound.

594 C. Busch and R. Kannan

We then turn to the class of linear bottleneck games [6] where a user applies
the same weight on each resource that it uses (different users may have different
weights). The congestion of a resource is a linear function on the sum of the
weights of the players that use the resource, as expressed by a linear coefficient
associated with the resource. Linear games represent many natural problems
in network routing and machine scheduling, as for example problems where a
player has the same perception of cost for each network link or system machine.

We show that the price of anarchy in linear bottleneck games is
√

8
3sm. We

also demonstrate that this bound is tight within a constant factor. Therefore,
linear bottleneck games have a significant benefit compared to general bottleneck
games. In [6] is is shown that in linear bottleneck games the price of anarchy is
O(m). For constant stretch s = O(1) we obtain price of anarchy O(

√
m). Thus,

we improve significantly the previously known bound for linear games by a factor
of Θ(

√
m), and there is always an asymptotic benefit for s = o(m).

The constant factor of
√

8
3 in the price of anarchy bound can be improved

when we consider special cases of linear bottleneck games. Let λ denote the
ratio of the largest linear coefficient versus the smallest linear coefficient on
any resource. In uniform games, where λ = 1, the price of anarchy bound is√
sm+ 1. This is within an additive constant of 1 away from a worst case lower

bound. When 1 < λ ≤ 2o(
√
sm), which allows for a wide range of different

values in the linear coefficients of the resources, the price of anarchy becomes√
2sm+ o(

√
sm) + 1.

Our analysis relies on the observation that in a Nash equilibrium the average
congestion of a set of resources Q can be related with the optimal congestion
and the stretch s. In a uniform linear game, if a player uses x resources in a Nash
equilibrium, then it is guaranteed to use at least x/s resources in the optimal
solution. These resources are either in Q or in Q′ = R \ Q. Thus, by taking
one of the sets Q or Q′ with the largest use of resources in it, we can manage
to relate the average and optimal congestion with the sizes of Q and R though
the stretch s. We also identify appropriate support sets of resources which have
high congestion in the equilibrium and are also used in the optimal solution.
These observations can be extended to arbitrary linear games to provide the
aforementioned price of anarchy bounds.

1.2 Related Work

Congestion games were introduced and studied in [12,14]. Rosenthal [14] proves
that congestion games have always pure Nash equilibria. Koutsoupias and Pa-
padimitriou [9] introduced the notion of price of anarchy in the specific parallel
link networks model in which they provide the bound PoA = 3/2. Roughgarden
and Tardos [16] provided the first result for splittable flows in general networks
in which they showed that PoA ≤ 4/3 for a player cost which reflects to the
sum of congestions of the resources of a path. Pure equilibria with atomic flow
have been studied in [3,5,11,18] (our work fits into this category), and with
splittable flow in [15,16,17]. Most of the work in the literature uses a player cost

Stretch in Bottleneck Games 595

metric related to the aggregate sum of congestions on all the edges of the player’s
path; and the social cost metric is also an aggregate expression of all the edge
congestions [5,15,16,17,18].

Banner and Orda [1] study bottleneck routing games in general networks for
splittable and atomic flow, where they show the existence and non-uniqueness
of equilibria. They prove that finding the best Nash equilibrium that minimizes
the social cost is a NP-hard problem. They also establish that if the resource
congestion delay function is bounded by some polynomial with degree k ≥ 1
then PoA = O(mk), where m is the number of links in the underlying network
graph. Further, they show that the price of anarchy may be unbounded for
specific resource congestion functions. Busch and Magdon-Ismail [3] consider
atomic bottleneck routing games where they prove that 	 ≤ PoA ≤ c(2 +
log2|V |), where 	 is the size of the largest edge-simple cycle in the network raph
and c is a constant. In [3] it is also shown that if k = 1 there are game instances
with PoA = Ω(m).

Bottleneck games with the C + D metric are studied in [2]. In [7] a proof
for the existence of strong Nash equilibria is given (which concern coalitions of
players) for games with the lexicographic improvement property; such games
include the bottleneck games that we consider here. Variations of bottleneck
games with player coalitions are studied in [6]. In [4] a polynomial time algorithm
is presented for computing Nash Equilibria in bottleneck routing games where
there is a single sink or source and linear delay functions. In [8], the authors
study games with the bottleneck social cost, which achieve low price of anarchy
when the players use a cost function which is an aggregate exponential expression
of the congestions of the edges in their selected paths.

Outline of Paper: In Section 2 we give basic definitions. In Section 3 we
present the price of anarchy result for the general bottleneck games and also
prove the worst case lower bound. In Section 4 we present the price of anarchy
bounds for uniform linear bottleneck games. In Section 5 we present the price
of anarchy bounds for arbitrary linear bottleneck games.

2 Basic Definitions

A (general) bottleneck congestion game with n players and m resources is a
strategic game G = (Π,R,W , S) with: Players Π = {π1, . . . , πn}; Resources
R = {r1, . . . , rm}; Weights W = {wπ,r : π ∈ Π ∧ r ∈ R}, where each wπ,r ≥ 0 is
a weight for player π on resource r; Strategy space S = Sπ1 × · · · × Sπn , where
Sπ ⊆ 2R is a (pure) strategy set for player π.

A game state (strategy profile) is an n-tuple S = (Sπ1 , . . . , Sπn) ∈ S, where
each strategy Sπi is a set of resources. Each resource r ∈ R has a delay cost
Cr(S) equal to the sum of weights of the players that use the resource r: Cr(S) =∑

(π∈Π)∧(r∈Sπ)
wπ,r. In any game state S ∈ S, each player π ∈ ΠG has a player

(utility) cost pcπ(S) = maxr∈Sπ Cr(S) (player bottleneck congestion).
For any state S, we use the standard notation S = (Sπi , S−πi) to emphasize

the dependence on player πi. Player πi is locally optimal (or stable) in state S

596 C. Busch and R. Kannan

if pcπi(S) ≤ pcπi((S
′
πi
, S−πi ,)) for all strategies S′

πi
∈ Sπi . A greedy move by

a player πi is any change of its strategy from S′
πi

to Sπi which improves the
player’s cost, that is, pcπi((Sπi , S−πi)) < pcπi((S

′
πi
, S−πi)). A state S is in a

Nash Equilibrium if every player is locally optimal; in other words, no greedy
move is available to any player. Nash Equilibria quantify the notion of a stable
selfish outcome. In [7] it is shown that bottleneck congestion games have always
at least one Nash equilibrium.

For any game G and state S, we will consider a social cost (or global cost)
function, denoted C(S), which measures the state’s impact to the global welfare.
In bottleneck congestion games C(S) = maxr∈RCr(S). A state S∗ is called
optimal if it has minimum attainable social cost: for any other state S, C(S∗) ≤
C(S). We quantify the quality of the states which are Nash Equilibria with the
price of anarchy (PoA) (sometimes referred to as the coordination ratio). Let P
denote the set of distinct Nash Equilibria. Then, the price of anarchy of game
G is:

PoA = sup
S∈P

C(S)

C(S∗)
.

We continue to define the stretch of a game. Given a bottleneck congestion game,
for any set of resourcesQ and player π, let σπ(Q) =

∑
r∈Qwπ,r (and for the linear

games that we define below σπ(Q) =
∑

r∈Q arwπ) denote the resource utilization

for player π on set Q. Let σmin
π = minS∈Sπ σπ(S) and σmax

π = maxS∈Sπ σπ(S),
denote the respective minimum and maximum resource utilization for player π
among all available strategies to π. For a player π we define its stretch sπ as:
sπ = σmax

π /σmin
π . The stretch s of the game is simply the maximum stretch of

the players: s = maxπ∈Π sπ.
We will examine the special case of linear bottleneck games which have the

following two restrictions:

– Single player weight: Each player π ∈ Π applies the same weight wπ > 0 on
each resource that it uses (different players may have different weights).

– Linear coefficients: Each resource r ∈ R has a coefficient ar > 0 so that its
delay cost is evaluated as: Cr(S) = ar

∑
(π∈Π)∧(r∈Sπ)

wπ .

Note that linear bottleneck games are special cases of general bottleneck games,
where each player’s resource weight is represented with a fixed player weight
multiplied by the resource’s coefficient. For a linear bottleneck game, we denote
amin = minr∈R ar and amax = maxr∈R ar. We define the coefficient ratio as
λ = amax/amin. The special case of uniform linear games is when λ = 1, where
all there resources have the same coefficient.

3 General Bottleneck Games

Let G be a general bottleneck game. Consider a Nash equilibrium S =
(Sπ1 , . . . , Sπn) which has the maximum possible congestion among all Nash equi-
libria in G. Let S∗ = (S∗

π1
, . . . , S∗

πn
) denote an optimal state. Denote C(S) = C

and C(S∗) = C∗.

Stretch in Bottleneck Games 597

Theorem 1 (PoA for General Bottleneck Games). Any general bottleneck
game with m resources and stretch s has PoA ≤ sm.

Proof. Consider a resource r′ ∈ R with Cr′ = C. Let X denote the set of players
that use r′ in state S. Since the stretch factor is s, we have that for each player
π ∈ Π ,

∑
r∈Sπ

wπ,r ≤ s
∑

r∈S∗
π
wπ,r. We denote by W =

∑
π∈X

∑
r∈S∗

π
wπ,r the

total utilization of the resources in R by the optimal strategies of the players X .
We have:

C =
∑
π∈X

wπ,r′ ≤
∑
π∈X

∑
r∈Sπ

wπ,r ≤
∑
π∈X

s
∑
r∈S∗

π

wπ,r = s
∑
π∈X

∑
r∈S∗

π

wπ,r = sW.

We also have that in state S∗ at least one resource experiences congestion at
least W/R: C∗ ≥ W/|R| = Wm. Consequently, PoA ≤ C/C∗ ≤ sm.

In order to demonstrate the asymptotic tightness of the result in Theorem 1, we
give a game instance with price of anarchy Ω(sm), for any s ≥ 1. This game uses
m > 0 resources (for simplicity assume that m is a multiple of 2), and involves
two players π1 and π2. There are two disjoint sets of resources R = R1∪R2, each
of size m/2. There are two special resources r1 ∈ R1 and r2 ∈ R2. Player π1 has
two strategies, strategy S1

π1
which contains all resources in R1 with wr

π1
= 1 for

each r ∈ R1, and strategy S2
π1

which contains only r2 ∈ R2 with wr2
π1

= sm/2.
Symmetrically, player π2 has two strategies, strategy S1

π2
which contains all

resources in R2 with wr
π2

= 1 for each r ∈ R2, and strategy S2
π2

which contains
only r1 ∈ R1 with wr1

π2
= sm/2.

Note that the stretch for each player is s. The optimal state is S∗ = (S1
π1
, S1

π2
)

with C∗ = 1. The state S = (S1
π1
, S1

π2
) is a Nash equilibrium with C = sm/2.

(The example can be adjusted appropriately for arbitrary values ofm which may
not be powers of 2). Therefore, we have the following lemma:

Lemma 1 (Lower Bound for General Bottleneck Games). For anym ≥ 1
and s ≥ 1, there is a general bottleneck game instance with m resources and
stretch s, such that PoA = Ω(sm).

4 Uniform Linear Bottleneck Games

We continue to examine the price of anarchy in uniform linear bottleneck games,
where λ = 1. We start with defining the notion of a support set which identifies
a set of resources used in the optimal state but with high utility costs in the
Nash equilibrium. We express the price of anarchy with respect to the size of
a support set. We also show that the average congestion in a resource set is
related to its size and the game stretch. Combining these observations we obtain
a theorem that relates the price of anarchy with the stretch.

Consider for nowG to be an arbitrary linear bottleneck game (with λ ≥ 1). Let
S = (Sπ1 , . . . , Sπn) be a Nash equilibrium which has the maximum congestion
among all Nash equilibria in G. Let S∗ = (S∗

π1
, . . . , S∗

πn
) denote an optimal state.

Denote C(S) = C and C(S∗) = C∗. We denote with C(Q) =
∑

r∈QCr(S)/|Q|
the average congestion of a set of resources Q ⊆ R in state S. Denote C̆(S) =
minr∈QCr(S) the smallest congestion of any resource in Q and state S.

598 C. Busch and R. Kannan

4.1 Support Sets

For any resource r let X(r) denote the set of players that use r in state S. Let
π ∈ X(r). The support of player π for resource r in state S, denoted F (r, π),
contains all resources r′ ∈ R such that: (i) r′ belongs to the optimal strategy of
π, that is, r′ ∈ S∗

π, and (ii) π would experience higher cost if it switched to its
optimal strategy because of r′, that is, Cr′ + ar′wπ ≥ Cr. We define the support
of resource r in state S as the union of the respective supports of the players
that use r: F (r) =

⋃
π∈X(r) F (r, π). The support for a set of resources Q ⊆ R is

defined as F (Q) =
⋃

r∈Q F (r).

Lemma 2. For any set of resources Q ∈ R, C̆(F (Q)) ≥ C̆(Q)− C∗.

Proof. From the definition of support F (r, π), for each resource r′ ∈ F (r, π)
there is a player π ∈ X(r) such that r′ belongs to the optimal strategy of π,
r′ ∈ S∗

π. Consequently, ar′wπ ≤ C∗. Moreover, Cr′ + ar′wπ ≥ Cr, which gives
Cr′ ≥ Cr − ar′wπ ≥ Cr −C∗. Now considering the union of all the support sets
of all the players that use r, we obtain C̆(F (r)) ≥ Cr − C∗. Therefore,

C̆(F (Q)) ≥ min
r∈Q

C̆(F (r)) ≥ min
r∈Q

(Cr − C∗) = C̆(Q)− C∗.

Lemma 3. For any resource r with Cr = C, PoA ≤ λ|F (r)|.

Proof. From the way we selected r we have C = Cr =
∑

π∈X(r) arwπ. From the

definition of F (r), every player π ∈ X(r) has at least one resource rπ ∈ S∗
π∩F (r).

Since arπ ≥ ar/λ, we obtain:

C∗ ≥
∑

π∈X(r) arπwπ

|F (r)| ≥ 1

|F (r)|
∑

π∈X(r)

arwπ

λ
=

1

λ|F (r)|
∑

π∈X(r)

arwπ =
C

λ|F (r)| .

Thus, PoA = C/C∗ ≤ λ|F (r)|.

4.2 Price of Anarchy and Stretch

In the next result we take an arbitrary set of resources Q and we bound the
optimal congestion with respect to the average congestion in Q, the size of Q,
the stretch s, and the total number of resources m in the game. This result is
crucial for later relating the price of anarchy with the stretch.

Lemma 4. For any linear bottleneck game and any set of resources Q ⊆ R,
C∗ ≥ C(Q)|Q|/(sm).

Proof. Let Y denote the set of players that use resources in Q. Let Z =
∑

r∈QCr

be the total cost contributed by the players in Y in the edges Q in state S. From
the definition of C(Q), we have Z = C(Q)|Q|.

For any set of resources T ⊆ R we denote withW (T) =
∑

π∈Y

∑
r∈S∗

π∩T arwπ

the total cost contributed in T by the players in Y when they use their optimal
strategies. Clearly, W (R) = W (Q) +W (Q′), where Q′ = R \Q.

Stretch in Bottleneck Games 599

Since the stretch factor is s, we have that for each player π ∈ Π ,∑
r∈Sπ

arwπ ≤ s
∑

r∈S∗
π
arwπ. Therefore,

Z =
∑
π∈Y

∑
r∈Sπ∩Q

arwπ ≤
∑
π∈Y

∑
r∈Sπ

arwπ ≤
∑
π∈Y

s
∑
r∈S∗

π

arwπ

= s
∑
π∈Y

∑
r∈S∗

π∩R

arwπ = sW (R).

Let W (Q′) = (1 − ε)W (R), where 0 ≤ ε ≤ 1. For ε < 1 we have that |Q′| > 0
and we obtain:

C∗ ≥ W (Q′)
|Q′| =

(1− ε)W (R)

|Q′| ≥ (1− ε)Z

s|Q′| =
(1 − ε)C(Q)|Q|

s|Q′| . (1)

For ε > 0 we have that |Q| > 0 and we obtain (recall that s ≥ 1):

C∗ ≥ W (Q)

|Q| =
εW (R)

|Q| ≥ εZ

s|Q| =
εC(Q)|Q|
s|Q| =

εC(Q)

s
. (2)

Consequently, from Equations 1 and 2 we obtain for 0 < ε < 1:

C∗ ≥ C(Q)

s
·max

{
(1− ε)|Q|

|Q′| , ε

}
(3)

A lower bound in Equation 3 is obtained when we set (1− ε)|Q|/|Q′| = ε, which
gives ε = |Q|/(|Q′| + |Q|) = |Q|/|R| = |Q|/m. Therefore, C∗ ≥ C(Q)|Q|/(sm).
This bound holds also in the boundary values ε = 0 or ε = 1: if ε = 0 then
Equation 1 gives C∗ ≥ C(Q)|Q|/(s|Q′|) ≥ C(Q)|Q|/(sm); if ε = 1 then Equation
2 gives C∗ ≥ C(Q)/s ≥ C(Q)|Q|/(sm).

Lemma 5. PoA ≤
√
λsm+ 1.

Proof. Consider resource r with Cr = C. Let A = F (r). From Lemma 3, PoA ≤
λ|A|. Further, from Lemma 6, C(A) ≥ C̆(A) ≥ Cr − C∗ = C − C∗.

From Lemma 4, we obtain C∗ ≥ C(A)|A|/(sm) ≥ (C − C∗)|A|/(sm). Thus,
PoA = C/C∗ ≤ 1 + sm/|A|.

When we combine the above price of anarchy bounds we obtain for q = |A|:

PoA ≤ min

{
λq, 1 +

sm

q

}
≤ 1 + min

{
λq,

sm

q

}
.

An upper bound on this expression is obtained when λq = sm/q which gives
q =

√
sm/λ. Therefore, PoA ≤

√
λsm+ 1.

From Lemma 3, since |F (r)| ≤ m, we have that PoA ≤ λm. By setting λ = 1,
we obtain from Lemma 5:

Theorem 2 (PoA for Uniform Linear Bottleneck Games). For any uni-
form linear bottleneck game with λ = 1, PoA ≤ min(

√
sm+ 1,m).

600 C. Busch and R. Kannan

5 Arbitrary Linear Bottleneck Games

We continue to provide a bound to the price of anarchy in arbitrary linear
bottleneck games that does not depend on the value of λ. We will start with
defining the notion of an extensive support set which is a repetitive expansion of
support sets. The extensive support set helps to express the average congestion
and the price of anarchy with respect to the size of a set of resources without
depending on λ. Then, using Lemma 4 we obtain the main result.

5.1 Extensive Support Sets

We now define the extensive support Hk(Q) for set of resources Q and for any in-
teger k ≥ 0, so that H0(Q) = Q and for k ≥ 1, Hk(r) = Hk−1(Q)∪F (Hk−1(Q)).

Lemma 6. For any set of resources Q ⊆ R and integer k ≥ 0, C̆(Hk(Q)) ≥
C̆(Q)− kC∗.

Proof. We will prove the main claim by induction on k. Since C̆(H0(Q)) = C̆(Q),
the claim holds for k = 0. Suppose that the claim holds up to k > 0. We will
show it holds for k + 1. We have that

C̆(Hk+1(Q)) = C̆(Hk(Q) ∪ F (Hk(Q))) = min{C̆(Hk(Q)), C̆(F (Hk(Q)))}.

From induction hypothesis, C̆(Hk(Q)) ≥ C̆(Q)− kC∗. From Lemma 2,

C̆(F (Hk(Q))) ≥ C̆(Hk(Q))− C∗ ≥ C̆(Q)− (k + 1)C∗.

Consequently,

C̆(Hk+1(Q)) ≥ min{C̆(Q)− kC∗, C̆(Q)− (k + 1)C∗} = C̆(Q)− (k + 1)C∗.

Let T = {r} with Cr = C. Denote T k = Hk(T). Suppose for convenience that
T−1 = ∅. Let β ≥ 1 be the smallest integer such that ă(T β) = ă(T β−1) (we
denote with ă(Q) = minr∈Q ar the smallest coefficient in any set of resources
Q). Observe that for all 0 ≤ k ≤ β − 1, |T k| ⊂ |T k+1| and hence, |T k| < |T k+1|,
which implies |T k| ≥ k+1. Further |T β| ≥ |T β−1| ≥ β. There is a set of β distinct
resources A = {ri0 , . . . , riβ−1

}, such that rij ∈ T j \ T j−1, with arij = ă(T j) for

all 0 ≤ j ≤ β − 1. Let Ak ⊆ A, where 0 ≤ k ≤ β − 1, denote the subset with the
first k resources: Ak = {ri0 , . . . , rik} (note T = A0 and A = Aβ−1).

Lemma 7. C(Ak) ≥ C − k
2C

∗ for 0 ≤ k ≤ β − 1

Proof. From Lemma 6, C̆(T j) ≥ C̆(T) − jC∗ = C − jC∗. Therefore, Crij
≥

C − jC∗ and we get:

C(Ak) =
1

k + 1
·

k∑
j=0

Crij
≥ 1

k + 1
·

k∑
j=0

(C − jC∗) = C − C∗

k + 1
·

k∑
j=0

j = C − k

2
C∗.

Stretch in Bottleneck Games 601

Lemma 8. PoA ≤ |T β|+ β − 1.

Proof. From Lemma 6, we have that C̆(T β−1) ≥ C̆(T)− (β − 1)C∗ = C − (β −
1)C∗. Thus, Criβ−1

≥ C − (β − 1)C∗. Further, Criβ−1
=
∑

π∈X(riβ−1
) ariβ−1

wπ .

From the definition of T β every player π ∈ X(riβ−1
) has at least one resource in

S∗
π ∩ T β. Consequently,

C∗ ≥
∑

π∈X(riβ−1
)

ă(T β)wπ

|T β| =
1

|T β|
∑

π∈X(riβ−1
)

ă(T β−1)wπ

=
1

|T β|
∑

π∈X(riβ−1
)

ariβ−1
wπ =

1

|T β|Criβ−1
≥ 1

|T β| (C − (β − 1)C∗).

Thus, PoA = C/C∗ ≤ |T β|+ β − 1.

The following result can be proved using Lemmas 6, 7, and 8.

Lemma 9. There is a set of resources Q ⊆ R and constants 0 < δ1, δ2 ≤ 2,
with δ1/δ2 ≤ 8/3, such that PoA ≤ δ1|Q| and C(Q) ≥ δ2C.

Since PoA ≤ δ1|Q| ≤ δ1m ≤ 2m, Lemma 9 gives:

Corollary 1. PoA ≤ 2m.

Corollary 1 is useful for the cases where s exceeds m, and it provides an alter-
native upper bound on the price of anarchy. A similar bound as in Corollary 1
was also proven in [6] using different techniques.

5.2 Price of Anarchy for Arbitrary Linear Games

Next is a central result for the price of anarchy in linear bottleneck games.

Lemma 10. PoA ≤
√

8
3sm.

Proof. From Lemma 9, there is a set of resources Q and constants 0 < δ1, δ2 ≤ 2,
with δ1/δ2 ≤ 8/3, such that PoA ≤ δ1|Q| and C(Q) ≥ δ2C.

When we apply Lemma 4 with Q we obtain: C∗ ≥ C(Q)|Q|/(sm) ≥
δ2C|Q|/(sm), which gives PoA ≤ sm/(δ2|Q|).

When we combine the above two price of anarchy bounds and for q = |Q| we
get:

PoA ≤ min

{
δ1q,

sm

δ2q

}
.

An upper bound on this expression is obtained when δ1q = sm/(δ2q) which gives

q =
√

sm
δ1δ2

. Therefore,

PoA ≤ δ1

√
sm

δ1δ2
=

√
δ1sm

δ2
≤
√

8

3
sm.

By combining Corollary 1 and Lemma 10, we obtain:

602 C. Busch and R. Kannan

Theorem 3 (PoA for Arbitrary Linear Bottleneck Games). For any lin-

ear bottleneck game, PoA ≤ min
(√

8
3sm, 2m

)
.

Special Case: There is a special case of linear games for which we can improve
by a constant factor the price of anarchy given in Theorem 3.

Theorem 4. For λ > 1 and any ε > 0, PoA ≤
√
(1 + ε)sm+ log1+ε λ+ 1.

Theorem 4 allows for a parametrization on λ and a constant ε > 0. In Table 1 we
demonstrate the case where 1 < λ ≤ 2o(

√
sm) and ε = 1, which gives the factor√

2 in front of the term
√
sm in the price of anarchy bound.

5.3 Lower Bound for Linear Games

We describe a linear game instance G with price of anarchy Ω(
√
sm) which

demonstrates the asymptotic tightness of Theorem 3. This is a uniform game
instance where each resource has the same coefficient, that is, λ = 1. In particular
we take ar = 1 for each r ∈ R. The game involves n players Π = {π1, . . . , πn},
where each player π ∈ Π has the same weight wπ = 1. Under this model the
maximum value of stretch s is bounded by the number of resources m.

The set of resources is partitioned into disjoint sets as R = Z ∪Q1 ∪ · · · ∪Qn.
Set Z consists of n resources, Z = {r1, . . . , rn}, and each Qi consists of �n/s�−1
resources. Note that for s = n each Qi is empty. The total number of resources
is m = n+ n(�n/s� − 1) = Θ(n2/s).

Each player πi ∈ Π has two strategies, strategy S1
πi

which consists of resources
Qi∪{ri}, and strategy S2

πi
which consists of all resources in Z. Thus, the stretch

is at least n/�n/s� = Ω(s).
The optimal strategy is S∗ = (S1

π1
, . . . , S1

πn
) with C∗ = 1. The state S =

(S2
π1
, . . . , S2

πn
) is a Nash equilibrium with C = n. Thus, the price of anarchy is

PoA = n = Ω(
√
sm). Therefore, we have.

Lemma 11 (Lower Bound for Linear Bottleneck Games). For any m ≥ 1
and s, 1 ≤ s ≤ m, there is a linear bottleneck game instance with m resources
and stretch for each player at least s such that PoA = Ω(

√
sm).

The price of anarchy in the above example is very tight in boundary values of
s. For s = 1 the game gives PoA =

√
m =

√
sm, and for s = n (which implies

n = m) the game gives PoA = m =
√
sm. Since λ = 1, these results are within

an additive constant of 1 from the bound PoA ≤
√
sm+ 1 of Theorem 2.

References

1. Banner, R., Orda, A.: Bottleneck routing games in communication networks. IEEE
Journal on Selected Areas in Communications 25(6), 1173–1179 (2007); also ap-
pears in INFOCOM 2006

Stretch in Bottleneck Games 603

2. Busch, C., Kannan, R., Vasilakos, A.V.: Approximating congestion + dilation in
networks via ‘quality of routing’ games. IEEE Transactions on Computers (2011);
also appears in WICON 2008

3. Busch, C., Magdon-Ismail, M.: Atomic routing games on maximum congestion.
Theoretical Computer Science 410(36), 3337–3347 (2009); also appears in AAIM
2006

4. Caragiannis, I., Galdi, C., Kaklamanis, C.: Network Load Games. In: Deng, X.,
Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 809–818. Springer, Heidelberg
(2005)

5. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion
games. In: Proceedings of the 37th Annual ACM Symposium on Theory of Com-
puting (STOC), Baltimore, MD, USA, pp. 67–73. ACM (May 2005)

6. de Keijzer, B., Schäfer, G., Telelis, O.A.: On the Inefficiency of Equilibria in Linear
Bottleneck Congestion Games. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G.
(eds.) SAGT 2010. LNCS, vol. 6386, pp. 335–346. Springer, Heidelberg (2010)

7. Harks, T., Klimm, M., Möhring, R.H.: Strong Nash Equilibria in Games with the
Lexicographical Improvement Property. In: Leonardi, S. (ed.) WINE 2009. LNCS,
vol. 5929, pp. 463–470. Springer, Heidelberg (2009)

8. Kannan, R., Busch, C.: Bottleneck Congestion Games with Logarithmic Price of
Anarchy. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010.
LNCS, vol. 6386, pp. 222–233. Springer, Heidelberg (2010)

9. Koutsoupias, E., Papadimitriou, C.: Worst-Case Equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

10. Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-scheduling in
O(congestion+ dilation) steps. Combinatorica 14, 167–186 (1994)

11. Libman, L., Orda, A.: Atomic resource sharing in noncooperative networks. Tele-
comunication Systems 17(4), 385–409 (2001)

12. Monderer, D., Shapely, L.S.: Potential games. Games and Economic Behavior 14,
124–143 (1996)

13. Papadimitriou, C.: Algorithms, games, and the Internet. In: ACM Proceedings of
the 33rd Annual ACM Symposium on Theory of Computing (STOC), Hersonissos,
Crete, Greece, pp. 749–753 (July 2001)

14. Rosenthal, R.W.: A class of games possesing pure-strategy Nash equilibria. Inter-
national Journal of Game Theory 2, 65–67 (1973)

15. Roughgarden, T.: Selfish routing with atomic players. In: Proc. 16th Symp. on
Discrete Algorithms (SODA), pp. 1184–1185. ACM/SIAM (2005)

16. Roughgarden, T., Tardos, É.: How bad is selfish routing. Journal of the ACM 49(2),
236–259 (2002)

17. Roughgarden, T., Tardos, É.: Bounding the inefficiency of equilibria in nonatomic
congestion games. Games and Economic Behavior 47(2), 389–403 (2004)

18. Suri, S., Toth, C.D., Zhou, Y.: Selfish load balancing and atomic congestion games.
Algorithmica 47(1), 79–96 (2007)

Author Index

Aichholzer, Oswin 216
Argyriou, Evmorfia 287
Arimura, Hiroki 347
Artamonov, Stepan 109

Babenko, Maxim A. 109
Bampis, Evripidis 25
Bekos, Michael 287
Belmonte, Rémy 204
Ben Daniel, Sebastian 470
Bevern, René van 121
Bezáková, Ivona 49
Bhattacharya, Binay 1
Bhushan, Alka 360
Bianchi, Maria Paola 519
Böckenhauer, Hans-Joachim 519
Burton, Benjamin A. 507
Busch, Costas 592

Carmi, Paz 275
Chaitman-Yerushalmi, Lilach 275
Chandran, L. Sunil 181
Chen, Ruiwen 408
Cheong, Otfried 252
Chou, Jen-Hou 556
Couturier, Jean-François 133

Davoodi, Pooya 396
Dumitrescu, Adrian 240
Durocher, Stephane 228

Eades, Peter 335
Eulenstein, Oliver 531

Floderus, Peter 37
Frati, Fabrizio 311

Geiß, Darius 264
Gog, Simon 384
Gopalan, Sajith 360
Gordon, Taylor 299
Górecki, Pawe�l 531

Han, Xin 61
Heggernes, Pinar 133, 204
Hong, Seok-Hee 335
Hromkovič, Juraj 519
Hruz, Tomas 372

Jaiswal, Ragesh 13

Kabanets, Valentine 408
Kameda, Tsunehiko 1
Kaneta, Yusaku 347
Kannan, Rajgopal 592
Karhu, Kalle 384
Kärkkäinen, Juha 384
Kaufmann, Michael 287
Kawase, Yasushi 61
Keller, Lucia 519
Kim, Hyo-Sil 252
Kinne, Jeff 420
Klein, Rolf 264
Kloks, Ton 157
Knauer, Kolja 323
Korman, Matias 216
Kowaluk, Miros�law 37
Kumar, Amit 13

Langley, Zachary 49
Le, Van Bang 495
Letsios, Dimitrios 25
Li, Chih-Hsuan 169
Liben-Nowell, David 568
Limaye, Nutan 458
Lingas, Andrzej 37
Liotta, Giuseppe 335
Lu, Chi-Jen 556
Lundell, Eva-Marta 37

Mahajan, Meena 458
Mäkinen, Veli 384
Makino, Kazuhisa 61
Mastrolilli, Monaldo 98
Mehrabi, Saeed 228
Micek, Piotr 323
Milis, Ioannis 25

606 Author Index

Nagamochi, Hiroshi 74

Panolan, Fahad 445
Papakonstantinou, Periklis A. 482
Peng, Pan 145
Penninger, Rainer 264
Pilz, Alexander 216
Poon, Sheung-Hung 157, 335
Popa, Alexandru 193

Rai, Ashutosh 445
Rajendraprasad, Deepak 181
Raman, Rajeev 396
Rautenbach, Dieter 495
Rote, Günter 240
Rué, Juanjo 86

Saei, Reza 204
Salikhov, Kamil 109
Satti, Srinivasa Rao 396
Sau, Ignasi 86
Schöngens, Marcel 372
Sen, Sandeep 13
Sharp, Alexa 568
Sreenivasaiah, Karteek 458
Stamoulis, Georgios 98
Symvonis, Antonios 287

Thilikos, Dimitrios M. 86
Ting, H.F. 580
Tóth, Csaba D. 240

Ueno, Kenya 433
Ung, Chin-Ting 157
Uno, Takeaki 347

Välimäki, Niko 384
van ’t Hof, Pim 133, 204
Villanger, Yngve 133
Vogtenhuber, Birgit 216

Walczak, Bartosz 323
Wang, Biing-Feng 169
Wang, Yue-Li 157
Wasa, Kunihiro 347
Wexler, Tom 568
Woods, Kevin 568
Wu, Mu-En 556

Xiang, Xiangzhong 580
Xiao, Mingyu 74
Xu, Jinhui 543

Yang, Guang 482

Zhu, Yongding 543
Zois, Georgios 25

	Title
	Preface
	Organization
	Table of Contents
	A Linear Time Algorithm for Computing Minmax Regret 1-Median on a Tree
	Introduction
	Preliminaries
	Definitions
	Properties of Median and Minmax Regret Median in a Tree

	Medians and Their Costs
	Computing Medians m(s) for Every s
	Computing Fs(m(s)) for Every s

	Optimal Facility Location
	Preparation
	Pruning Steps
	Choosing Pivot Vertex r
	Time Complexity Analysis

	Conclusion
	References

	A Simple D2-Sampling Based PTAS for k-Means and other Clustering Problems
	Introduction
	Other Related Work
	Our Contributions

	Preliminaries
	PTAS for k-Means
	Other Distance Measures
	References

	Speed Scaling for Maximum Lateness
	Introduction
	Budget Variant
	The Problem without Release Dates
	The Problem with Release Dates

	Aggregated Variant
	The Problem with No Release Dates
	The Problem with Release Dates

	References

	Induced Subgraph Isomorphism: Are Some Patterns Substantially Easier Than Others?
	Introduction
	Lower Bounds on Detecting Induced Subgraphs
	Lower Bounds on Detecting and Counting Induced Subgraphs
	Simple Lower Bounds
	References

	Contiguous Minimum Single-Source-Multi-Sink Cuts in Weighted Planar Graphs
	Introduction
	Preliminaries
	Reduction to Contiguous Forward Cuts
	Non-crossing Tours
	Counting and Sampling Contiguous Minimum (s,T)-Cuts
	References

	Online Knapsack Problem with Removal Cost
	Introduction
	Related Work
	Our Results

	Proportional Cost Model
	Lower Bound
	Upper Bound

	Unit Cost Model
	The Case c1/2
	The Case c<1/2

	References

	An Improved Exact Algorithm for TSP in Degree-4 Graphs
	Introduction
	Preliminaries
	Sufficient Conditions for Infeasibility
	A Solvable Case
	Reductions

	Weight Setting
	Branching Rules
	Cases-1,2 and 3 of Branching at f4-vertices
	Concluding Remarks
	References

	Dynamic Programming for H-minor-free Graphs
	Introduction
	Preliminaries
	Connected Packing-Encodable Problems
	Polyhedral Decomposition of H-minor-free Graphs

	H-minor-free Cut Decompositions
	Combinatorial Behavior of the Vortices
	Upper-Bounding the Size of the Tables
	References

	Restricted Max-Min Fair Allocations with Inclusion-Free Intervals
	Introduction
	Related Work
	The Approach

	Satisfying All the Kids
	A Linear Program to Assign Large Presents Integrally and Small Presents Fractionally
	Allocating the Presents
	Assigning Small Presents to the Rest of the Kids

	References

	An Improved Algorithm for Packing T-Paths in Inner Eulerian Networks
	Preliminaries
	Introduction
	Basic Notation and Facts

	Algorithm
	Outline
	Skew-Symmetric Graphs
	Case | T | 3

	General Capacities
	References

	Towards Optimal and Expressive Kernelization for d-Hitting Set
	Introduction
	A Linear-Time Problem Kernel for d-Hitting Set
	Reducing the Number of Vertices to `3́9`42`"̇613A``45`47`"603AO(kd-1)
	Conclusion
	References

	Maximum Number of Minimal Feedback Vertex Sets in Chordal Graphs and Cographs
	Introduction
	Preliminaries
	A Tight Bound for Chordal Graphs
	A Tight Bound for Cographs
	Circular Arc Graphs and Concluding Remarks
	References

	A Local Algorithm for Finding Dense Bipartite-Like Subgraphs
	Introduction
	Preliminaries
	Description of the Algorithm and the Main Theorem
	Analysis of the Local Algorithm
	A Spectral Algorithm for Finding Subgraphs with Small Bipartiteness Ratio
	The Abundance of Good Starting Vertices
	Proof of Theorem 1

	References

	Algorithms for the Strong Chromatic Index of Halin Graphs, Distance-Hereditary Graphs and Maximal Outerplanar Graphs
	Introduction
	The Strong Chromatic Index of Halin Graphs
	Cubic Halin Graphs
	Halin Graphs of General Degree

	Distance-Hereditary Graphs
	Maximal Outerplanar Graphs
	Concluding Remarks
	References

	On the Minimum Degree Hypergraph Problem with Subset Size Two and the Red-Blue Set Cover Problem with the Consecutive Ones Property
	Introduction
	The MDH Problem with k = 1 and Subset Size Two
	Dom et al.'s Algorithm
	Cluster-Edge Representation and Depth-First Search
	A Linear Time Algorithm for the MDH Problem with k = 1 and Subset Size Two

	The RBSC Problem with the C1P
	Chang et al.'s Algorithm
	An Improved Algorithm

	Concluding Remarks
	References

	Rainbow Colouring of Split and Threshold Graphs
	Introduction
	Our Results
	Preliminaries

	Split Graphs: Hardness and Approximation Algorithm
	Threshold Graphs: Characterisation and Exact Algorithm
	References

	Approximating the Rainbow – Better Lower and Upper Bounds
	Introduction
	Preliminaries
	Approximation Algorithm
	Hardness of Approximation
	Conclusions and Open Problems
	References

	Ramsey Numbers for Line Graphs and Perfect Graphs
	Introduction
	Definitions and Notation
	Ramsey Numbers for Line Graphs
	Ramsey Numbers for Perfect Graph Classes
	Conclusions and other Graph Classes
	References

	Geodesic Order Types
	Introduction
	Preliminaries
	Orientations and Geodesics
	Contribution

	Geodesic Hull versus Convex Hull
	Realizing the Pappus Arrangement
	The Arrangement
	The Realization

	Conclusion
	References

	Computing Partitions of Rectilinear Polygons with Minimum Stabbing Number
	Introduction
	Preliminaries
	Finding an Optimal CR Partition of a Histogram
	An Approximation Algorithm for Rectilinear Polygons
	Hardness for Rectilinear Polygons with Holes
	Generalizing the Approximation Algorithm
	Conclusion
	References

	Monotone Paths in Planar Convex Subdivisions
	Introduction
	Proof of Theorem 1
	Monotone Paths in Simple Polygons
	Proof of Theorem 2
	References

	The Cost of Bounded Curvature
	Introduction
	Preliminaries
	Regions of the Square for 0 < d < 2
	Explicit Expressions for the Length of CCC-Paths
	CCC-Paths for d < 2 and Case A
	RSL-Paths for d < 2 and Case B
	The Dubins Cost Function
	References

	Optimally Solving a Transportation Problem Using Voronoi Diagrams
	Introduction
	Definitions
	Partitions of Prescribed Size
	Optimality
	Conclusion and Future Work
	References

	Unexplored Steiner Ratios in Geometric Networks
	Introduction
	Steiner Ratio for Budgeted Trees
	Budget Allocation
	Budget Minimum Spanning Trees
	The Steiner Ratio of Budgeted Trees

	Steiner Ratio for t-Spanners
	Lower Bound
	Upper Bound

	References

	Geometric RAC Simultaneous Drawings of Graphs
	Introduction
	Related Work
	A Wheel and a Cycle: A Negative Result
	A Cycle and a Matching: A Positive Result
	A Planar Graph and Its Dual: An Interesting Variation
	Conclusion – Open Problems
	References

	Simultaneous Embeddings with Vertices Mapping to Pre-specified Points
	Introduction
	Book Embeddings
	Overview of the Drawing Technique
	Drawing a Planar Graph with a Fixed Vertex Mapping
	Simultaneous Embeddings with a Fixed Vertex Range
	Lower Bounds on the Number of Bends
	References

	Multilevel Drawings of Clustered Graphs
	Introduction
	The Main Theorem
	Base Cases
	Inductive Cases
	Conclusions
	References

	Outerplanar Graph Drawings with Few Slopes
	Introduction
	Basic Definitions
	Bounding Regions
	The Drawing
	References

	F´ary’s Theorem for 1-Planar Graphs
	Introduction
	Preliminaries
	Necessity
	Sufficiency: The Augmentation Algorithm
	Red-Maximal 1-Plane Graphs and Red Augmentation
	The First Step: Adding Edges around Crossings
	The Second Step: Triangulating Remaining Faces

	Sufficiency: The Drawing Algorithm
	Properties of Red-Maximal 1-Plane Graphs
	Decomposition of Biconnected Graphs into Triconnected Components
	Algorithm for Constructing a Straight-Line 1-Planar Drawing

	Lower Bound on Area
	Final Remarks
	References

	Constant Time Enumeration of Bounded-Size Subtrees in Trees and Its Application
	Introduction
	Related Work
	Organization of This Paper

	Preliminaries
	The Parent-Child Relationship among k-Subtrees
	Basic Idea: A Family Tree
	Traversing k-Subtrees
	A Sub-family Tree for k-Subtrees of Type I
	A Sub-family Tree for k-Subtrees of Type II
	Putting Them together

	The Constant Delay Enumeration Algorithm
	Generation of Non-serial k-Subtrees
	Generation of Serial k-Subtrees
	The Proposed Algorithm

	Application to the Graph Motif Problem for Trees
	Conclusion
	References

	External Memory Soft Heap, and Hard Heap, a Meldable Priority Queue
	Introduction
	The Data Structure
	The Operations

	A Proof of Correctness
	An Amortised I/O Analysis
	Hard Heap: A Meldable Priority Queue
	References

	Partially Specified Nearest Neighbor Search
	Introduction
	Related Work
	Our Approach
	Experiments
	References

	Multi-pattern Matching with Bidirectional Indexes
	Introduction
	Preliminaries
	Bidirectional FM-Index

	Multi-pattern Matching
	Bidirectional Search
	Hardness of Subpattern Selection
	Subpattern Selection Using Affix Trees
	Subpattern Selection Using Bidirectional Compressed Suffix Trees

	Future Work
	References

	Succinct Representations of Binary Trees for Range Minimum Queries
	Introduction
	Representation Based on Tree Decomposition
	Transforming Binary Trees into Ordinal Trees
	Cartesian Tree Construction in o(n) Working Space
	References

	Lower Bounds against Weakly Uniform Circuits
	Introduction
	Our Main Results
	Our Techniques
	Relation to the Previous Work

	Preliminaries
	Weakly Uniform Circuit Families
	Weak Uniformity vs. Alternating Turing Machines with Advice

	Indirect Diagonalization
	Diagonalization against ATMs with Advice
	If P Is Easy
	If Permanent Is Easy

	Proofs of the Main Results
	Proof of Theorem 1
	Proofs of Theorem 2 and Theorem 3

	Other Lower Bounds
	Conclusion
	References

	On TC0 Lower Bounds for the Permanent
	Introduction
	Our Results
	Techniques
	Alternate Proof of Our Results

	Preliminaries
	Lower Bounds for Permanent
	References

	Formula Complexity of Ternary Majorities
	Introduction
	Definitions
	Boolean Functions
	Formula Size

	Translation from Ternary Majority Formulas to DeMorgan Formulas
	Ternary Majority Formula Size Lower Bounds
	Ternary Majority Formula Size Upper Bounds
	The Parity Function
	The Majority Function

	Concluding Remarks
	References

	On the Kernelization Complexity of Problems on Graphs without Long Odd Cycles
	Introduction
	Preliminaries
	FPT Algorithms
	Maximum Independent Set (MIS)
	q-Coloring

	Kernelization Lower Bounds
	Lower Bound Machinery
	MIS
	q-Coloring

	Conclusion
	References

	The Complexity of Unary Subset Sum
	Introduction
	Exact USS in Streaming Model
	Approximate USS in Streaming Model
	Multiplicity USS (mUSS) and Monotone Circuits
	Circuits with -Approximators for mUSS as Gates
	Discussion
	References

	On the Advice Complexity of Tournaments
	Introduction
	Selectivity and Membership-Comparability
	Results

	Preliminaries
	Average-Case Complexity of Membership Comparable Sets
	Hardness Amplification

	Games, Strategies, and Advice-Efficient Version of the Minimax Theorem
	Karp-Lipton Type Results

	Concluding Remarks
	References

	A Remark on One-Wayness versus Pseudorandomness
	Introduction
	Previous Work and Motivation
	Our Results
	Outline

	Preliminary
	Notation and Definitions
	Basic Facts and Lemmas

	Length-Shrinking Linear Operators Destroy One-Wayness: A Shrinkage-Hardness Tradeoff
	Tightness of the Construction
	Conclusions and Open Questions
	References

	Integral Mixed Unit Interval Graphs
	Introduction
	Preliminaries
	Forbidden Induced Subgraphs
	Properties of Maximal Cliques
	The Representation Algorithm
	Harvest
	References

	Complementary Vertices and Adjacency Testing in Polytopes
	Introduction
	Complementary Vertices
	Adjacency Testing
	Discussion
	References

	Online Coloring of Bipartite Graphs with and without Advice
	Introduction
	Preliminaries
	Online Coloring without Advice
	Proof of Lemma 1
	Base Cases (k3)
	Inductive Step (k4)

	Advice Complexity
	References

	Deep Coalescence Reconciliation with Unrooted Gene Trees: Linear Time Algorithms
	Basic Definitions and Preliminaries
	Basic Definitions and Notation
	DC Measure for Comparing Unrooted Gene Trees with Species Trees

	Methods
	Orientation and Labeling of G
	DC Cost and the Star Topologies
	Algorithm
	Multifurcated Trees
	Rooting at Nodes
	Relations between urDC and the Duplication-Loss Cost

	Experiment
	Conclusion and Outlook
	References

	On the 2-Central Path Problem
	Introduction
	Preliminary
	Decision Problem
	Minkowski Sum
	Double Stabbing Problem
	Solving the D2CPP

	Solving the 2CPP
	References

	Making Profit in a Prediction Market
	Introduction
	Preliminaries
	Betting Strategies for Traders
	Convergence of Price to Belief in the MU-Market
	Proof of Theorem 2
	Proof of Lemma 2

	Trader's Profit in the MU-Market
	Proof of Theorem 3
	Proof of Lemma 3

	References

	Computing Shapley Value in Supermodular Coalitional Games
	Introduction
	Related Work: Computing the Shapley Value
	Related Work: Supermodular Games
	Our Results

	Model and Definitions
	Algorithms to Approximate the Shapley Value
	Lower Bounds for Approximating Shapley Value
	Ensuring Monotonicity in Supermodular Games
	References

	Equilibria of GSP for Range Auction
	Introduction
	Preliminaries and Notations
	Range Auction
	The Vickrey-Clarke-Groves (VCG) Auction

	GSP and VCG for Range Auction
	Equilibria of GSP for Range Auction
	Social Welfare
	References

	Stretch in Bottleneck Games
	Introduction
	Contributions
	Related Work

	Basic Definitions
	General Bottleneck Games
	Uniform Linear Bottleneck Games
	Support Sets
	Price of Anarchy and Stretch

	Arbitrary Linear Bottleneck Games
	Extensive Support Sets
	Price of Anarchy for Arbitrary Linear Games
	Lower Bound for Linear Games

	References

	Author Index

