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1  Introduction

Photosynthesis is a fundamental process on the Earth’s surface that can convert the 
sunlight energy to chemical energy that can be used by essentially all forms all life 
(Komissarov 2003; Krauß 2003). The outstanding English chemist Joseph Priestley 
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in 1771 and 1772 firstly hypothesised on photosynthesis that plants can restore to 
the air whatever breathing animals and burning candles remove. Jan Ingenhousz in 
1779 showed that light is essential to the plant process that somehow purifies air 
fouled by candles or animals. Based on the experiments, he concluded that plants 
are dependent on light and their green parts for nutrients and energy.

The experiments conducted by J. Senebier and N. Th. de Saussure revealed that 
the initial substances of photosynthesis are carbon dioxide (CO2) and water (H2O) 
(de Saussure 1804; Bay 1931). It has been shown by de Saussure (1804) that H2O 
is a reactant in photosynthesis. The CO2 cleavage hypothesis readily accounted 
for the deceptively simple overall photosynthesis equation (CO2 + H2O + hυ → 
CH2O + O2) (de Saussure 1804). The C:2H:O proportion in the reaction made 
people assumed that carbon from the photodecomposition of CO2 can recombine 
with the elements of water. In 1905 the British scientist F. Blackmann discovered 
that photosynthesis consists of a light reaction, which is rapid, and a slower dark 
reaction (Blackman 1905; Blackman and Matthaei 1905). In 1924, O. Warburg 
and T. Uyesugi explained the result of Blackman as showing that photosynthe-
sis has two classes of reactions: light and dark reactions (Warburg and Uyesugi 
1924). In 1922 the German Scientists O. Warburg and E. Negelein revealed the 
minimum quantum requirement (i.e., minimum number of photons) to be 3–4 per 
oxygen molecule evolved during the overall process of photosynthesis (Warburg 
and Negelein 1922). This was later shown to be in error by a factor of 2–3 
(Govindjee 1999). Warburg then was awarded the 1931 Nobel Prize in Physiology 
and Medicine for his discoveries concerning respiration. In 1937 the British scien-
tist R. Hill provided the biochemical proof of the existence of these light and dark 
phases (Hill 1937, 1939).

In 1931 the American microbiologist van Niel showed that the photosynthetic 
processes in various pigmented organisms can be interpreted as special cases of a 
general process expressed as follows (van Niel 1931):

where light energy is used to photodecompose a hydrogen donor (H2A) whilst car-
bon dioxide is reduced anaerobically to cell substance in the dark, using enzymatic 
reactions (van Niel 1931). According to this generalization, H2A is water in the 
case of plants, whilst H2A is H2S (or Na2S2O3, Na2SO3, S, molecular hydrogen, 
organic substrates and so on) in green and purple sulfur bacteria. Therefore, O2 is 
the by-product of plant photosynthesis and elemental sulfur or other compounds 
are the by-products of bacterial photosynthesis (van Niel 1931, 1936; Roelofsen 
1935; Muller 1933).

van Niel in 1941 postulated that the photoinduced reaction in the photosynthetic 
processes of green bacteria, purple bacteria, and green plants represents, in all cases, a 
photodecomposition of water (van Niel 1941). The scientist Hill then demonstrated that 
isolated chloroplasts can evolve oxygen but cannot assimilate CO2 (Hill 1939, 1951). 
In 1941, two Soviet and several American scientists discovered that oxygen released 

(1.1)2H2A + CO2
Pigments and

−→
[Radiant energy]

CH2O + H2O + 2A
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by higher plants and algae in photosynthesis is originated from H2O and not from CO2 
(Ruben et al. 1941; Vinogradov and Teı̌s 1941).

Calvin and his colleagues (A. Benson and J. Bassham) during the period of 
1947–1956 depicted the mechanism that carbon travels through a plant dur-
ing photosynthesis, starting from its absorption as atmospheric carbon dioxide to 
its conversion into carbohydrates and other organic compounds (Bassham et al. 
1956; Calvin 1956). They showed that sunlight can act on chlorophyll in a plant to 
fuel the production of organic compounds, rather than on CO2 as was previously 
believed. Calvin was then awarded the Nobel Prize in Chemistry in 1961 for his 
Calvin cycle (sometimes termed as Calvin-Benson-Bassham Cycle).

Since then, a lot of studies have been conducted on photosynthesis regarding 
release of electrons from chlorophylls, characterization of the primary reaction 
centers of photosystems (PSI and PSII), occurrence and formation of chlorophyll 
dimer in PSI and PSII, functions and roles of PSI and PSII, endogenous forma-
tion of hydrogen peroxide (H2O2) in photosynthetic cells, release of O2, and so 
on (Hill 1937, 1939; van Niel 1931; Bach 1894; Arnon 1949, 1959, 1961, 1971; 
Mehler 1951; Asada et al. 1974; Chance et al. 1979; Halliwell 1981; Holland  
et al. 1982; Boekema et al. 1987, 2001 Shipman et al. 1976; Hynninen and 
Lötjönen 1993; Krauss et al. 1993; Krauß et al. 1996; Shubin et al. 1993; Golbeck 
1994; Kruip et al. 1994; Boussaad et al. 1997; Brettel 1997; Wilhelm et al. 1996, 
1997, 1999; Klukas et al. 1999; Halliwell and Gutteridge 1999; López-Huertas  
et al. 1999; Stewart et al. 2000; Jordan et al. 2001; Baker and Graham 2002;  
Ben-Shem et al. 2003; Catalan et al. 2004; Dashdorj et al. 2004; Germano et al. 
2004; Diner and Rappaport 2002; del Río et al. 2006; Li et al. 2006; Krasnovsky 
2007;  Krieger-Liszkay et al. 2008; Rappaport and Diner 2008; Amunts et al. 2010; 
Müller et al. 2010; Nilsson Lill 2011; Umena et al. 2011).

Moreover, release of O2 during photosynthesis still remains under debate 
because it is considered to be originated either from H2O (Dashdorj et al. 2004; 
Germano et al. 2004; Rappaport and Diner 2008; Müller et al. 2010; Takahashi 
et al. 1987; Periasamy et al. 1978) or from H2O2 (Komissarov 1994, 2003; Bach 
1893; Velthuys and Kok 1978; Asada and Badger 1984; Asada and Takahashi 
1987; Mano et al. 1987; Renger 1987; Anan’ev and Klimov 1988; Bader and 
Schmid 1988, 1989; Schroeder 1989; Schröder and Åkerlund 1990; Miyake and 
Asada 1992; Bader 1994, 1995; Yin et al. 2006; Mostofa et al. 2009; Kuznetsov 
et al. 2010; Bernardini et al. 2011; Mostofa et al. 2009). The scientist Bach has 
been the first to show that plants actively accumulate H2O2 upon illumination 
(Bach 1894). The major generation sites of reactive oxygen species (ROS) are 
the PSI and PSII photosystems in chloroplast thylakoids in higher plants. Here, 
 photoreduction of O2 to H2O2 in PSI has firstly been discovered by Mehler 
(Mehler 1951). Subsequently, the primary reduced product has been identified 
as the superoxide anion (O2

•−), the disproportionation of which can produce 
H2O2 and O2 (Asada et al. 1974). Recently, H2O2 instead of H2O has been pro-
posed to react with CO2 in photosynthesis, whereas H2O2 is used as an inter-
mediate to release O2 (Komissarov 1994, 2003; Velthuys and Kok 1978; Mano 
et al. 1987; Renger 1987; Anan’ev and Klimov 1988; Bader and Schmid 1988, 
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1989; Schroeder 1989; Schröder and Åkerlund 1990; Miyake and Asada 1992; 
Bader 1994; 1995; Yin et al. 2006; Mostofa et al. 2009; Kuznetsov et al. 2010; 
Bernardini et al. 2011). Komissarov (1994, 1995, 2003) has been summarizing on 
the new hypothesis concerning the photosynthetic reaction, according to which the 
interaction between CO2 in air and H2O2 in aqueous media (instead of H2O as for 
the earlier concept) may form carbohydrate in plants.

Photosynthesis is significantly affected by several factors such as seasonal vari-
ation in sunlight and UV radiation (Marshall and Orr 1928; Barker 1935; Jenkin 
1937; Rabinowitch 1951; Nielsen 1951, 1952; Aro et al. 1993; Melis 1999; 
Andersson and Aro 2001; Han et al. 2001; Nishiyama et al. 2001, 2009; Sinha  
et al. 2001a; Adir et al. 2003; Rastogi et al. 2010; Jiang and Qiu 2011; Sobek  
et al. 2007; Zhang et al. 2010), occurrence of CO2 forms (CO2, H2CO3, HCO3

−, 
and CO3

−) (Wong et al. 1975; O’Leary 1981; Cooper and McRoy 1988; Farquhar 
et al. 1989; Raven and Farquhar 1990; Fogel et al. 1992; Rau et al. 1992; Francois 
et al. 1993; Raven et al. 1993, 2002; Jasper and Hayes 1994; Laws et al. 1995; 
Yoshioka 1997; Hu et al. 2012), variations in temperature (Sobek et al. 2007; 
Mortain-Bertrand et al. 1988; Davison 1991; Wilen et al. 1995; Lesser and 
Gorbunov 2001; Baulch et al. 2005; Doyle et al. 2005; Yoshiyama and Sharp 
2006; Ogweno et al. 2008; Higuchi et al. 2009; Bouman et al. 2010), effects of 
water stress (drought) and precipitation/rainfall (Munns et al. 1979; Jones and 
Turner 1978; Matsuda and Riazi 1981; Kaiser 1987; Asada 1992; Hopkins and 
Hüner 1995; Aziz and Larher 1998; Li and van Staden 1998; Nam et al. 1998; 
Cornic 2000; Wilson et al. 2000; Lawlor 2002; Velikova and Tsonev 2003; Flexas 
et al. 2004; Hassan 2006; Liu et al. 2006; Ohashi et al. 2006; Fariduddin et al. 
2009), effects of the contents and nature of DOM and POM (Haan 1974; de 
Haan 1977; Stabel et al. 1979; Jackson and Hecky 1980; Wright 1988; Lindell 
et al. 1995; Brussaard et al. 1996; Brussaard et al. 2005; Brussaard et al. 2007; 
Carpenter et al. 1998; Igarashi et al. 1998; Reche et al. 1998; Rengefors and 
Legrand 2001; Sukenik et al. 2002; de Lange et al. 2003; Hanson et al. 2003; 
Houser et al. 2003; Druon et al. 2010), variation in nutrient contents (Yoshiyama 
and Sharp 2006; Martinez and Cerda 1989; Vıllora et al. 2000; Parkhill et al. 2001; 
Smith 2003; Kaneko et al. 2004; Sterner et al. 2004; Turhan and Eris 2005; Huszar 
et al. 2006; Liu et al. 2007; Wang and Han 2007; Nõges et al. 2008; McCarthy  
et al. 2009; Mohlin and Wulff 2009; Achakzai et al. 2010; Bybordi 2010; 
Tunçtürk et al. 2011), variation in trace metal ions with effects on aquatic micro-
organisms (Zhang et al. 2010; Crist et al. 1981; Zhou and Wangersky 1985, 1989; 
Simkiss and Taylor 1989; Xue and Sigg 1990; Tessier and Turner 1995; Sunda 
and Huntsman 1998; Burda et al. 2003; Koukal et al. 2003; Mylon et al. 2003; 
Sigfridsson et al. 2004; Berden-Zrimec et al. 2007; Lamelas and Slaveykova 2007; 
Hopkinson and Barbeau 2008; Lamelas et al. 2009; Pan et al. 2009), effect of 
salinity or salt stress (Liu et al. 2007; Bybordi 2010; Tunçtürk et al. 2011; Satoh 
et al. 1983; Ahel et al. 1996; Moisander et al. 2002; Marcarelli et al. 2006; Segal 
et al. 2006; Demetriou et al. 2007; Allakhverdiev and Murata 2008; Melgar et al. 
2008; Pandey and Yeo 2008; Pandey et al. 2009; Bybordi et al. 2010a, b, c), effects 
of toxic pollutants on aquatic microorganisms (Berden-Zrimec et al. 2007; Mayer 
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et al. 1997; Halling-Sørensen et al. 2000; Katsumata et al. 2005, 2006 Kvíderová 
and Henley 2005; Zrimec et al. 2005; Pan et al. 2009; Yates and Rogers 2011), 
effect of size-fractionated phytoplankton (Malone 1980; Chisholm 1992; Li 1994; 
Tarran et al. 2001; Hansen and Hjorth 2002; Stibor and Sommer 2003; Tittel et al. 
2003; Cermeno et al. 2005; Unrein et al. 2007; Zubkov et al. 2007; Zubkov and 
Tarran 2008), and effects of global warming (Mostofa et al. 2009; Baulch et al. 
2005; Yates and Rogers 2011; Morris and Hargreaves 1997; Cooke et al. 2006; 
Huisman et al. 2006; Llewellyn 2006; Richardson 2007; Malkin et al. 2008; Prince 
et al. 2008; Davis et al. 2009; Castle and Rodgers 2009; Mostofa and Sakugawa 
2009; Etheridge 2010; Keeling et al. 2010). These factors have been assessed 
in recent studies and are vital to understanding and solving the debate about the 
occurrence of photosynthesis in terrestrial plants and aquatic microorganisms.

This chapter will give a general overview on photosynthesis, its key biogeo-
chemical functions, the functions of photosystems (I and II) in organisms during 
photosynthesis, and will describe a new hypothesis for photosynthesis that adopts 
H2O2 instead of H2O. It will also address the debates/questions regarding O2 
release from PSI and PSII during photosynthesis. Finally, it will extensively dis-
cuss the key factors that may significantly influence the photosynthetic activities 
of organisms, including higher plants.

2  Photosynthesis in Natural Waters

Photosynthesis is typically defined as a combination of photoinduced and bio-
logical processes that can convert carbon dioxide (CO2) and hydrogen peroxide 
(H2O2: photoinduced generation from dissolved oxygen in water) into organic 
compounds (e.g. carbohydrates) and O2 using the sunlight energy. These processes 
take place in photosynthetic cells of higher plants, cyanobacteria (or algae) and 
bacteria. Carbohydrates are then used for metabolic activities within the cell, and 
the whole process is termed as the oxygenic photosynthesis. It should be noted that 
cyanobacteria are not bacterial but generally referred to as algae. The chloroplast 
pigments of all cyanobacteria and aquatic higher plants have absorption bands in 
the blue region of the spectrum, such as the chlorophyll Soret band, and carotenoid 
bands (Kirk 1976). The action spectrum of photosynthesis in green algae, brown 
algae, diatoms and euglenas has two broad and intense peaks in the range from 
400 to 500 nm of wavelength and in the region from 670 to 700 nm, respectively 
(Kirk 1976; Haxo and Blinks 1950; Mann and Myers 1968; Kirk and Reade 1970; 
Iverson and Curl 1973; Telfer et al. 1990; Schelvis et al. 1992; Durrant et al. 1995; 
Renger and Marcus 2002; Zhang et al. 2009). Photons of light initiate photosyn-
thesis through releases of electrons across a membrane. It is catalysed by a special 
type of membrane-bound pigment-protein complexes called photosynthetic reac-
tion centers (RCs). They are composed of photosystem I (PSI) and photosystem 
II (PSII), which will be discussed in the next sections. Oxygenic photosynthe-
sis is caused by cooperation of PSI and PSII RCs and generally occurs in higher 
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plants, bacteria and cyanobacteria. Cyanobacteria, in contrast to higher plants, are 
well enriched with PSI as compared with PSII: the PSI/PSII ratio is about unity 
in higher plants, but it is much higher in cyanobacteria, varying between 3 and 
5.5 (Rakhimberdieva et al. 2001). On the other hand, either PSI or PSII RCs are 
used to convert light energy in anoxygenic photosynthesis, which typically occurs 
in many bacteria. Anoxygenicphotosynthesis is a process where uptake of light 
energy occurs without the release of O2. Anoxygenic species can utilize hydrogen 
sulfide (H2S) or other species as sources of reductants, giving various forms of sul-
fur as by-products. It is noted that green bacteria can use H2S, while purple  sulfur 
bacteria (Thiorhodaceae) can use various reduced sulfur compounds including 
Na2S2O3, Na2SO3, S and H2S, molecular hydrogen (H2) and organic substances 
during photosynthesis (van Niel 1931; 1936; Roelofsen 1935; Muller 1933). 
Anoxygenic species are mostly equipped with variety of bacteriochlorophylls.

The chlorophyll absorption bands at the red end of the spectrum are only of lim-
ited use in water ecosystems, because of the rapid attenuation of red light by water 
(Kirk 1976). Therefore, the ability of many cyanobacteria and aquatic higher plants 
to photosynthesize and grow are markedly affected by the availability of blue light, 
which is in turn highly dependent on the concentration of yellow substance within 
water (Kirk 1976). All natural waters generally contain a significant amount of yel-
low substances that absorb light in the blue and ultraviolet (Hutchinson 1957; Kalle 
1966; Jerlov 1968; Morel et al. 2007). Yellow substances originate generally from 
the occurrences of both allochthonous humic substances (fulvic and humic acids) 
of terrestrial plant origin and autochthonous fulvic acids of algal or phytoplank-
ton origin, which absorb light in the blue and ultraviolet range (see also chapters  
“Dissolved Organic Matter in Natural Waters” and “Fluorescent Dissolved Organic 
Matter in Natural Waters”) (Mostofa et al. 2009; Mostofa et al. 2009; Zhang et al. 
2009; Hutchinson 1957; Kalle 1966; Jerlov 1968; Parlanti et al. 2000).

2.1  Biogeochemical Functions of Photosynthesis

The different functions of photosynthesis can be summarized as follows: (i) 
Photosynthetic oxygen production by cyanobacteria can lead to oxygenation of 
the atmosphere and oceans, in turn allowing aerobic respiration and the evolu-
tion of large, complex and ultimately intelligent organisms (Catling et al. 2005). 
Oxygenic photosynthesis has evolved hundreds of millions of years before the 
atmosphere became permanently oxygenated. Therefore, biogenic oxygen produc-
tion started very early in Earth’s history, before the start of the geological record, 
leading to an Archaean (greater than 2.5 Ga, gigaannum: 109 years) atmosphere 
that was highly oxygenated (Ohmoto 1997; Catling and Claire 2005; Buick 2008). 
(ii) Photosynthesis is the only process that can balance the biosphere by convert-
ing atmospheric CO2 into organic/biological matter, at the same time by releas-
ing O2 into the atmosphere. (iii) All forms of life in the biosphere are dependent 
on food and primarily on vegetables and terrestrial plants, the matter of which is 

http://dx.doi.org/10.1007/978-3-642-32223-5_1
http://dx.doi.org/10.1007/978-3-642-32223-5_6
http://dx.doi.org/10.1007/978-3-642-32223-5_6
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produced through photosynthesis. (iv) Plant litter materials or biomass, developed 
initially through photosynthesis, represent the largest pool of terrestrial carbon. It 
is currently estimated at approximately 1500–2000 Pg of C that are stored in the 
world’s soils (Schlesinger 1997; CAST 2004). Upon microbial processing, this 
material can produce soil organic matter or allochthonous dissolved organic mat-
ter (DOM), including humic substances (fulvic and humic acids) and inorganic 
components such as nutrients and various elements (see also chapter “Dissolved 
Organic Matter in Natural Waters”) (Mostofa et al. 2009; Nakane et al. 1997; 
Uchida et al. 2000; Kögel-Knabner 2002; Grandy and Neff 2008; Moore et al. 
2008; Braakhekke et al. 2011; Spence et al. 2011; Tu et al. 2011). These chemical 
components are ultimately released into the water ecosystem and undergo photoin-
duced and microbial degradation. Their end-products are CO2, H2O2 and dissolved 
inorganic carbon (DIC: generally defined as dissolved CO2, H2CO3, HCO3

−, 
and CO3

2−), which can fuel/accelerate the primary production (see also chapter 
“Photoinduced and Microbial Degradation of Dissolved Organic Matter in Natural 
Waters” and “Impacts of Global Warming on Biogeochemical Cycles in Natural 
Waters”) (Mostofa et al. 2009; Jones 1992; Hessen and Tranvik 1998; Jansson et 
al. 2000; Meili et al. 2000; Grey et al. 2001; Hernes and Benner 2003; Tranvik 
et al. 2009; Ballaré et al. 2011; Zepp et al. 2011). (v) Photosynthesis is the key 
process for primary and secondary production and uses natural sunlight in aquatic 
ecosystems. Aquatic microorganisms that are key components of the Earth’s bio-
sphere can produce more than 50 % of the biomass of our planet through photosyn-
thesis, using allochthonous DOM and nutrients. Therefore, aquatic environments 
can incorporate at least the same amount of atmospheric carbon dioxide (CO2) as 
terrestrial ecosystems (de Haan 1974, 1977; Tranvik 1988; Häder et al. 2003; Zepp 
et al. 2007). Life is mostly composed of the elements carbon, hydrogen, nitrogen, 
oxygen, sulfur and phosphorus, which make up nucleic acids (e.g. DNA), pro-
teins and lipids and can thus form the bulk of living matter (Wolfe-Simon et al. 
2011). (vi) Aquatic microorganisms (e.g. algae or phytoplankton cells) can produce 
autochthonous DOM, including autochthonous fulvic acids, CO2 and nutrients 
under both photoinduced and microbial respiration or assimilation (see also chap-
ters “Dissolved Organic Matter in Natural Waters”, “Photoinduced and Microbial 
Degradation of Dissolved Organic Matter in Natural Waters”, “Fluorescent 
Dissolved Organic Matter in Natural Waters”, and “Impacts of Global Warming on 
Biogeochemical Cycles in Natural Waters”) (Mostofa et al. 2009; Mostofa et al. 
2009; Zhang et al. 2009; Tranvik et al. 2009; Biddanda and Benner 1997; Gobler et 
al. 1997; Kritzberg et al. 2006; Mostofa et al. 2011). These compounds can be used 
by aquatic microorganisms for their further photosynthetic activity and can, there-
fore, promote the primary production (see also chapters “Dissolved Organic Matter 
in Natural Waters”, and “Impacts of Global Warming on Biogeochemical Cycles in 
Natural Waters”) (Hessen and Tranvik 1998; Cole et al. 1982). (vii) Photosynthesis 
is the dominant energy mobilization process for secondary production in natural 
waters, where organic carbon fixed by primary producers is consumed directly 
by grazing or is recycled via the microbial loop (Wetzel 2001). (viii) The primary 
producers in freshwater and marine ecosystems can constitute the basis of the 

http://dx.doi.org/10.1007/978-3-642-32223-5_1
http://dx.doi.org/10.1007/978-3-642-32223-5_1
http://dx.doi.org/10.1007/978-3-642-32223-5_14
http://dx.doi.org/10.1007/978-3-642-32223-5_14
http://dx.doi.org/10.1007/978-3-642-32223-5_10
http://dx.doi.org/10.1007/978-3-642-32223-5_10
http://dx.doi.org/10.1007/978-3-642-32223-5_1
http://dx.doi.org/10.1007/978-3-642-32223-5_4
http://dx.doi.org/10.1007/978-3-642-32223-5_4
http://dx.doi.org/10.1007/978-3-642-32223-5_6
http://dx.doi.org/10.1007/978-3-642-32223-5_6
http://dx.doi.org/10.1007/978-3-642-32223-5_10
http://dx.doi.org/10.1007/978-3-642-32223-5_10
http://dx.doi.org/10.1007/978-3-642-32223-5_1
http://dx.doi.org/10.1007/978-3-642-32223-5_1
http://dx.doi.org/10.1007/978-3-642-32223-5_10
http://dx.doi.org/10.1007/978-3-642-32223-5_10
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intricate food webs, providing energy for the primary and secondary consumers. 
Therefore, they are important contributors for the production of the human staple 
diet in the form of crustaceans, fish, and mammals derived from the sea (Häder  
et al. 2007). (xi) Cyanobacteria (e.g., mostly Anabaena and Nostoc spp.) that grow 
through photosynthesis are a rich source of potentially useful marine natural prod-
ucts (secondary metabolites) that have specific activities such as anti-HIV, antican-
cer, antifungal, antimalarial, antifoulants, anti-inflammatory, antituberculosis, and 
antimicrobial (Moore 1996; Burja et al. 2001; Singh et al. 2002; Blunt et al. 2007). 
For example cyanovirin (CV-N, cyanovirin-N), a 101 amino acid protein extracted 
from Nostoc ellipsosporum has potent activity against a wide range of immunode-
ficiency viruses such as HIV-1, M-and T-tropic stains of HIV-1, HIV-2, SIV (sim-
ian) and FIV (feline) (Burja et al. 2001). (x) Marine microorganisms could be used 
as sources of natural bioactive molecules that play a photoprotective role, which 
could be used in commercial applications (Rastogi et al. 2010). A number of pho-
toprotective compounds such as melanins, mycosporines, mycosporine-like amino 
acids (MAAs), scytonemin, parietin, usnic acid, carotenoids, phycobiliproteins, 
phenylpropanoids and flavonoids and several other UV-absorbing substances of 
unknown chemical structure are produced by different microorganisms (Rastogi 
et al. 2010; Blunt et al. 2007; Jeffrey et al. 1999; Gauslaa and McEvoy 2005; Sinha 
et al. 2007b; Coesel et al. 2008; Klisch and Häder 2008; Hylander et al. 2009; Lee 
and Shiu 2009; Ingalls et al. 2010).

3  New Hypothesis for Photosynthesis Using H2O2  
Instead of H2O

Studies demonstrate that the reaction of CO2 and H2O2 (instead of H2O) can 
cause photosynthesis of organisms in photosynthetic cell in new hypothesis 
(Komissarov 1994, 1995, 2003; Velthuys and Kok 1978; Mano et al. 1987; Renger 
1987; Anan’ev and Klimov 1988; Bader and Schmid 1988, 1989; Schroeder 1989; 
Schröder and Åkerlund 1990; Miyake and Asada 1992; Bader 1994; Mostofa 
et al. 2009; Kuznetsov et al. 2010; Bernardini et al. 2011; Mostofa et al. 2009). 
According to these studies, the reaction of CO2 and H2O2 (instead of H2O) can 
cause photosynthesis of organisms by either simultaneous photoinduced formation 
of H2O2 in chlorophylls bound in photosynthetic cell or photoinduced and micro-
bial formation of H2O2 and CO2 from dissolved organic matter (DOM) and par-
ticulate organic matter (POM) in aqueous media.

The general photosynthetic reaction can be expressed as follows (Eqs. 3.1, 3.2):

(3.1)xCO2(H2O)
+ yH2O2(H2O)

hν
−→ Cx (H2O)y + O2 + E(±)

(3.2)
2H2O2 + photoinduced/biological processes → O2 + 2H2O/unknown oxidants
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Carbohydrate Cx(H2O)y is formed (Eq. 3.1), where x and y are whole num-
bers that differ depending on the specific carbohydrate that is being produced. 
The release of O2 in photosynthesis is the fundamental photoinduced conversion 
reaction, which under the present hypothesis is supposed to involve H2O2 either 
via disproportionation or upon biological processes (Eq. 3.2) (Komissarov 2003; 
Buick 2008; Moffett and Zafiriou 1990; Liang et al. 2006).

The release of O2 from H2O2 instead of H2O can be understood from several 
mechanistic approaches: (i) Mechanism for oxygen release from H2O2 instead of 
H2O; (ii) Effective oxidation of H2O2 instead of H2O in releasing photosynthetic 
O2 (iii) generation of H2O2 from DOM and POM; (iv) photoinduced generation 
of H2O2 from ultrapure H2O; (v) Endogenous H2O2 in the photosynthetic cell and 
effects of exogenous H2O2; (vi) H2O2 formation in water, lipid and protein envi-
ronments in the presence of Chlorophyll; and (vii) Occurrence of H2O2 and its 
effects on photosynthesis.

3.1  Mechanism for Oxygen Release from H2O2 Instead of H2O

Experimental studies show that various cyanobacteria may release O2 from the 
decomposition of H2O2 during photosynthesis (Komissarov 1994, 1995, 2003; 
Velthuys and Kok 1978; Mano et al. 1987; Renger 1987; Anan’ev and Klimov 
1988; Bader and Schmid 1988, 1989; Schroeder 1989; Schröder and Åkerlund 
1990; Miyake and Asada 1992; Bader 1994). Based on the mechanism given by 
Komissarov (1994, 1995, 2003 ) and the mechanism of H2O2 photodecomposition 
by earlier studies (Christensen et al. 1982; Bielski et al. 1985), the release of O2 
from H2O2 can be generalized as follows (Eqs. 3.3–3.6 or 3.7–3.10):

or

(3.3)H2O2 → H+
+ HO2

−

(3.4)HO2
−

+ h → HO2

(3.5)HO2 → H+
+ O2

−

(3.6)O2
−

+ h → O2

(3.7)H2O2 + HO
• → HO2

• + H2O k = 3. 0 × 10
7

M
−1

s
−1

(3.8)HO2
• + HO2

• → H2O2 + O2 k = 8. 3 × 10
5

M
−1

s
−1

(3.9)HO2
• + O2

•− → HO2
− + O2 k = 9. 7 × 10

7
M

−1
s
−1

(3.10)HO2
• ↔ O2

•− + H
+

k = 1. 58 × 10
−5

M
−1

s
−1
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where h is an electron vacancy (hole), generated in the pigment under the effect of 
light. The generation of a single molecule of oxygen from water requires at least 
four light quanta, each of which generates an ‘electron–hole’ couple. The electron 
is used in the reaction (H+ + e → H) required for the subsequent fixation of CO2.

Hylakoid particle preparations of the filamentous cyanobacterium Oscillatoria 
chalybea in laboratory experiments using labeled 16O2 and 18O2 show the occur-
rence of at least three types of oxygen uptake: one is associated with PSII and the 
S-state system, whereas the other two types apparently belong to the respiratory 
pathway. The S-state system is involved in 18O2 production from H2O2 (Bader and 
Schmid 1988, 1989). Comparison of the relaxation kinetics of the first two flashes of 
a sequence with the steady-state signals as well as the detailed analysis of the mass 
spectrometric signals reveal that O2 is evolved by various cyanobacteria through the 
decomposition of H2O2, which requires only two light quanta (Bader 1994).

The release of O2 from H2O2 is confirmed by the redox behavior of H2O2 in 
water (Moffett and Zafiriou 1990; Rose and Waite 2003; Jeong and Yoon 2005). 
When H2O2 acts as a reductant, O from H2O2 is transformed into O2 (Moffett and 
Zafiriou 1990). When H2O2 acts as an oxidant, O from H2O2 is converted into 
H2O (Moffett and Zafiriou 1990). The chain reactions of H2O2 as reductant and 
oxidant are schematically depicted below (Fig. 1) (Moffett and Zafiriou 1990):

The detailed mechanism for the release of O2 in the first scheme can be gen-
eralized using the reduction of Fe3+ (or Cu2+) by H2O2 in the following ways 
(Eqs. 3.11–3.15) (Bielski et al. 1985; Hardwick 1957; Moffett and Zika 1987a, b; 
Marianne and Sulzberger 1999):

(3.11)HOOH ↔ H+
+ HO2

−

(3.12)Fe3+
+ HO2

−
→ Fe2+

+ HO2
•

(3.13)HO2
• ↔ H

+ + O2
•−

k = 1. 58 × 10
−5

M
−1

s
−1

(3.14)Fe
3+ + O2

•− → Fe
2+ + O2 k = 1. 5 × 10

8
M

−1
s
−1

(3.15)H2O2 + Fe2+
→ Fe3+

+ HO•
+ OH− k = 63 M−1s−1

H2O2 HO  –2 HO2 O  –2 O2 : H2O2 reductant

H2O2  OH   +   H2O  :    

OH –

OH –

H2O  :

H2O2 oxidant

→ 

↓

Fig. 1  Electron transfer and proton transfer reactions in the reduction of O2 from H2O2 to H2O, 
demonstrating the intermediates involved. Data source Moffett and Zafiriou (1990)
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In the reactions above, release of O2 occurs not from H2O but from H2O2.
Correspondingly, photosynthetic O2 evolution would involve differ-

ent stages that carry out a gradual accumulation of oxidizing equivalents in the 
Mn-containing water-oxidizing complex (WOC) (Samuilov et al. 2001). The 
WOC can exist in different oxidation states (Sn, where high n indicates the most 
oxidised states), which can be probed by addition of different redox-active mol-
ecules. The interaction of H2O2 with the S states of the WOC is depicted in the 
scheme that follows (Velthuys and Kok 1978; Mano et al. 1987; Samuilov et al. 
2001; Latimer 1952; Ilan et al. 1976; Samuilov 1997):

S-1

O2
•– +  2H+ H2O2

E0 = 1.71 V

S0

2H2OH2O2 + 2H+

O2 + 2H+ H2O2 + 2H+

S2 S1

E0 = 0.69 V

E0 = 1.77 V

These studies suggest that H2O2 is an evolutionary precursor of H2O as 
the electron donor for PSII in cyanobacteria (Bader 1994; Samuilov 1997; 
Blankenship and Hartman 1998).

The release of O2 from H2O2 instead of H2O can be justified by the rapid for-
mation of H2O2 and of highly reactive chemical forms collectively denoted as 
‘reactive oxygen species (ROS)’. Both H2O2 and ROS are formed from O2 when 
it is exposed to high-energy or electron-transfer chemical reactions, which can be 
expressed as follows (Chance et al. 1979; Koppenol 1976; Klotz 2002; Apel and 
Hirt 2004):

 

(3.16)3O2 + hυ →
1O2 →

1O2

(3.17)3O2 + e−
+ hυ → O2

•− H+
−→ HO2

•

(3.18)O2
•−

+ e−
+ hυ → O2

2− 2H+
−→ H2O2

(3.19)

(3.20)O−
+ e−

+ hυ → O2− 2H+
−→ H2O



572 K. M. G. Mostofa et al.

Singlet oxygen (1O2) and superoxide radical ion 
(

O2
•−

)

 are formed from the tri-
plet state of O2

(

3O2

)

 in the presence of light (Eqs. 3.16, 3.17). The radical ion O2
•− 

then reacts with an hydrogen ion (H+) to form the perhydroxyl radical (HO2
•) (Eq. 

3.17). The species O2
•− can also accept one more electron (e−) to form peroxide 

ion (O2
2−), which then combines with H+ to generate hydrogen peroxide (H2O2) 

(Eq. 3.18). Further acceptance of one e− by O2
2− can form O2

3−, which can then 
produce H2O and an oxene ion (O−) in the presence of H+ (Eq. 3.19). The ion radi-
cal O− can produce the hydroxyl radical in the presence of H+ (Eq. 3.19). Further 
acceptance of one e− by O− can yield the oxide ion (O2−), which finally gives H2O 
in the presence of H+ (Eq. 3.20). This result shows that formation of water from O2 
is relatively more difficult than the process involving H2O2.

In the new hypothesis, the relationship between the fundamental biological pro-
cess and breathing is complicated because the final product in breathing is water, 
which would not dissociate during photosynthesis (Fig. 2b) (Komissarov 2003). 
This is not contemplated in the conventional view of photosynthesis, which is 
illustrated in Fig. 2a. Breathing is followed from right to left in both equations.

However, breathing is accompanied by the formation of endogenous H2O2 that 
is not only a source of O2, injected into the atmosphere, but also of hydrogen used 
in the synthetic processes of growth (Komissarov 2003).

Mass spectrometric examination of photosynthetic generation of O2 using 
H2O2, marked with heavy isotopic oxygen 

(

H2
18O2

)

, suggests that H2O2 is the 
source of the entire amount of generated O2 (Mano et al. 1987). Experimental 
studies using 18O-labeled H2O2 

(

H2
18O2

)

and O2

(

18O2

)

 added to seawater also 
suggest that photoinduced oxidation can produce 18O2and H2O (Moffett and 
Zafiriou 1990), whereas label transfer is governed by the mass balance (Eq. 3.21):

Similarly, catalytic epoxidation experiments using the 18O labels in an ace-
tone/water 

(

H2
18O

)

 solvent demonstrate that no 18O coming from water 
(

H2
18O

)

 

(3.21)−∆H2
18O2 = ∆H2

18O + ∆
18O2

Fig. 2  The relationship 
between photosynthesis 
and (photo) bleeding within 
the framework of the 
conventional considerations 
regarding photosynthesis 
(a) and in accordance with 
the concept proposed by the 
author of the article (b). Data 
source Komissarov (2003)
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is incorporated into epoxide products, even though oxygen exchange is observed 
between the MnIV catalyst species and H2

18O. Therefore, one can conclude that 
O2 transfer does not proceed by the well-known oxygen-rebound mechanism (Yin 
et al. 2006). Experiments using labeled dioxygen, 18O2, and hydrogen peroxide, 

H2
18O2, confirm that an oxygen atom is transferred directly from the H2

18O2
 

oxidant to the olefin substrate in the predominant pathway (Yin et al. 2006). 
Moreover, some recent experiments show that photoinduced H2O oxidation occurs 
in the presence of inorganic catalysts (Kuznetsov et al. 2010; Bernardini et al. 
2011). This result does not imply that H2O is oxidized, but rather that O2

•− and 
then H2O2 are produced photolytically. H2O2 is then photolytically decomposed 
into O2 and H2O.

Biological release of O2 is observed using catalase for the decomposition of 
H2O2 in aqueous media, a process that can be depicted as follows (Eqs. 3.22, 3.23) 
(Moffett and Zafiriou 1990):

In the above reactions, catalase enzymatically activates HOOH* to use them 
as oxidants (electron acceptors) and reductants (electron donors) (Eq. 3.22). 
Afterwards, disproportionation of activated HOOH* converts them into H2O 
and O2 (Eq. 3.23). Therefore, H2O2 can release O2 under both photoinduced and 
microbial decomposition processes. The widespread occurrence of such a process 
justifies the hypothesis that the release of photosynthetic O2 may occur from H2O2 
instead of H2O. Note that the contribution percentage decay of H2O2 is 65–80 % 
by catalase enzyme and 20–35 % by peroxidase enzyme, as estimated by isotopic 
measurements in seawater (Moffett and Zafiriou 1990).

Based on the current evidence, it is hypothesized that oxygenic photosynthesis 
has evolved by the end of the ‘Great Oxidation Event’ ca. 2.4 Ga ago. It has per-
manently raised atmospheric oxygen above the levels produced by photolysis of 
water (Buick 2008). The latter process can produce primarily H2O2, which might 
be source of oxygenic photosynthesis.

3.2  Effective Oxidation of H2O2 Instead of H2O in Releasing 
Photosynthetic O2

The oxidation of water to molecular oxygen is described by the equation 
(Rappaport and Diner 2008): 2H2O → O2 + 4H+ + 4e−, where at pH 7.0 the 
midpoint potential of the O2/2H2O couple is 810 mV. Water is a very stable mol-
ecule and its oxidation requires the successive absorption of four photons and their 
photoinduced conversion into electrochemical energy. The energy of the quantum 
of a visible light is relatively small, such as 1.8 eV at the maximum absorption of 
chlorophyll (Komissarov 2003).

(3.22)HOOH + Catalase → HOOH∗
+ Catalase#

(3.23)2HOOH
∗ + Catalase

# → H−O−H + O2 + Catalase
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The value of standard electrode potential of the reaction of O2 formation from 
H2O2 (Eq. 3.19) is significantly lower than for H2O (Eqs. 3.24, 3.25) (Komissarov 
2003):

Therefore, in vivo formation of oxygen would be preferable from hydrogen 
peroxide than from water.

3.3  Generation of H2O2 from DOM and POM

The most important source of H2O2 is the photoinduced generation from DOM 
and POM (e.g. algae) under solar illumination in natural waters. The mecha-
nism has been discussed in earlier chapters (see “Photoinduced and Microbial 
Generation of Hydrogen Peroxide and Organic Peroxides in Natural Waters” and 
“Chlorophylls and Their Degradation in Nature”). In addition, DOM can also pro-
duce H2O2 under dark incubation. Algae or phytoplankton can produce H2O2 from 
superoxide radical anion 

(

O2
•−

)

, which can be formed either by photoinduced 
generation of electrons from Chlorophyll bound in microorganisms, or via autoch-
thonous DOM. In the latter case, H2O2 generation can take place under photo- and 
microbial respiration (assimilations) of phytoplankton (see chapter “Photoinduced 
and Microbial Generation of Hydrogen Peroxide and Organic Peroxides in Natural 
Waters” and “Chlorophylls and Their Degradation in Nature”). Overall, production 
of H2O2 from various sources can be depicted as follows (Fig. 3).

3.4  Endogenous H2O2 in the Photosynthetic Cell and Effects 
of Exogenous H2O2

Endogenous H2O2 is formed in photosynthetic cells of organisms through produc-
tion of superoxide radical ion 

(

O2
•−

)

 from whole bacteria of several species, from 
phagocytic cells, from spermatozoa as well as peroxisomes, mitochondria and 

(3.24)H2O2 = O2 + 2H+
+ 2e−, E0

= −0. 69 V

(3.25)H2O = 1/2O2 + 2H+
+ 2e−, E0

= −1. 23 V

Phytoplankton

DOM  +  POM  

H2O2 + by-products

Autochthonous DOM

hυ
dark condition (microbially)

Microbial respiration

DOM  +  POM 

2 2 -

hυ + dark condition 

Photo-
respiration

Phytoplankton

Fig. 3  Production of H2O2 from various sources in natural waters
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chloroplasts (Komissarov 2003; Bach 1894; Chance et al. 1979; Halliwell 1981; 
Holland et al. 1982; Wilhelm et al. 1996, 1997, 1999; Halliwell and Gutteridge 
1999; López-Huertas et al. 1999; Baker and Graham 2002; del Río et al. 2006; 
Krieger-Liszkay et al. 2008; Lyubimov and Zastrizhnaya 1992a, b; Turrens 1997; 
Karuppanapandian et al. 2011). H2O2 is also detected in the lens of the human eye 
and cataracts, aqueous humor and urine, in expired human breath and rat breath. 
Furthermore, increased H2O2 concentrations are also observed in patients with the 
adult respiratory distress syndrome, in patients with a cardiopulmonary bypass, in 
people exposed to ozone, in alveolar and peritoneal macrophages isolated from 
rats exposed to hypoxia, and in the breath of smokers (Wilhelm et al. 1996, 1997; 
Bhuyan and Bhuyan 1977; Spector and Garner 1981; Williams and Chance 1983; 
Ramachandran et al. 1991; Wilson et al. 1993; Nowak et al. 1996; Madden et al. 
1997).

It has also been observed that oral bacteria may produce H2O2 (Thomas 
and Pera 1983) and that several enzymes, including glycollate and urate oxi-
dases, can produce H2O2. It is calculated that 82 nM of H2O2 is produced per 
g of tissue per min in perfused livers isolated from normally fed rats (Chance 
et al. 1979). The H2O2 production rate is increased with inclusion of glycollate 
or urate in the perfusion medium. H2O2 is a precursor of HO•, a strong oxi-
dizing agent, which is mostly formed either in the Fenton-type reaction in the 
presence of transition metals or via the Haber–Weiss reaction in the presence of 
superoxide and iron (Fong et al. 1976). Catalase, the enzyme that metabolizes 
H2O2 to H2O and O2 is detected in liver, kidney, blood, mucous membranes 
and other highly vascularized tissues (Sohal et al. 1994; Matutte et al. 2000). 
Correspondingly, detoxification of H2O2 by catalase has also been observed in 
the rabbit iris-ciliary body and in cultured lens epithelial cells (Delamere and 
Williams 1985; Giblin et al. 1990).

The radical O2
•− can rapidly produce H2O2 and O2 by the following reaction 

(Eq. 3.26) (Koppenol 1976):

although the reaction between O2
•−

and HO2
• is much faster.

Similarly, HO• can react with O2
− to produce H2O and O2 (Eq. 3.27) (Koppenol 

1976):

Several studies have proposed that 1O2 is formed in the cells or in PSII 
(Halliwell and Gutteridge 1999; Krieger-Liszkay et al. 2008; Kautsky et al. 1931; 
Durrant et al. 1990; Vass et al. 1992; Macpherson et al. 1993; Hideg et al. 1994; 
Keren et al. 1997; Fufezan et al. 2002; Krieger-Liszkay 2005). The chlorophyll 
(Chl) triplet state can produce the very reactive 1O2 upon reaction with ground 
state 3O2, if it is not efficiently quenched (Krieger-Liszkay et al. 2008). The life-
time of 1O2 in a cell is estimated into approximately 3 s (Skovsen et al. 2005; Hatz 
et al. 2007).

(3.26)2O2
•−

+ 2H+
→ H2O2 + O2 k = 4. 5 × 105M−1s−1at pH 7 and 22

◦

C

(3.27)HO•
+ O2

−
+ H+

→ O2 + H2O
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The reactive transient 1O2 is also formed from superoxide anion (O2
−) in the 

following process (3.28) (Koppenol 1976):

In addition, any sensitizer (e.g. photoactive organic matter) can photolytically 
produce 1O2 via the following processes (Eqs. 3.29, 3.30) (Braun and Oliveros 
1990):

where Sens is the sensitizer that can absorb photons and is promoted to the singlet 
excited state 

(

1Sens∗
)

. The latter can undergo intersystem crossing (ISC) and be 
converted into the triplet state 

(

3Sens∗
)

 (Eq. 3.29), which can react with O2 to pro-
duce 1O2

 (Eq. 3.30).
On the other hand, deactivation of 1O2 involves two major processes such as 

energy-transfer quenching and charge-ransfer quenching,through any acceptor or 
sensitizer (Eqs. 3.31, 3.32) (Braun and Oliveros 1990; Halliwell and Gutteridge 
2007):

The H2O2 concentration in plant cells is approximately 0.5–1 μmol per milli-
gram of Chl, including Chl of photosynthetic antennae (Lyubimov and Zastrizhnaya 
1992a). Therefore, the amount of H2O2 is much higher than the Chl content in the 
composition of so called oxygen-evolving complexes in chloroplasts (Lobanov  
et al. 2008). Experimental studies have shown that the content of H2O2 can increase 
during ontogenesis of both the whole plant and populations of protoplasts of sepa-
rate leaves in the dark, and the light-dependent component of  peroxide formation 
increases regardless of the metabolic type of the plant antennae (Lyubimov and 
Zastrizhnaya 1992b). It is known that each molecule of the chlorophyll absorbs 
light quanta ~1 time per second, even at the maximum intensity of daylight 
(Komissarov 2003). Synthetic Chl, metal complexes of porphyrins and phthalocya-
nines are photoactive and can produce H2O2 under irradiation in aqueous solutions 
saturated with O2 (Lobanov et al. 2008; Hong et al. 1987; Bazanov et al. 1999; 
Premkumar and Ramaraj 1999).

Lower volatility of H2O2 compared to H2O may cause the green leaves to 
be a unique concentrator of H2O2 (Komissarov 2003). It is shown that the heat 
of vapour formation of pure H2O2 is 12.3 kcal mole−1, whilst that of water is 
10.5 kcal mole−1 (Shamb et al. 1958). Transpiration (evaporation of water by 
plants) may evidently play the same function of H2O2 concentrator in addition 
to the protection of plants against overheating. For each kg of water, absorbed by 
the roots from soil, only 1 g is used by the plant for the construction of tissue. 
Therefore, the transpiration process may enhance the total contents of H2O2 in the 

(3.28)O2
− →1

O2 + e
−

where E0 = +0. 65 V

(3.29)Sens + hυ →1
Sens

∗ →3
Sens

∗

(3.30)
3
Sens

∗ + O2 → Sens +1
O2

(3.31)1O2 + Sens → SensO2

(3.32)SensO2 → O2 + Sens
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plant cells. Terrestrial plants can receive high concentrations of rainwater H2O2 
(0–199,000 nM: see Table 2 in chapter “Photoinduced and Microbial Generation 
of Hydrogen Peroxide and Organic Peroxides in Natural Waters”), which is a vital 
source of exogenous H2O2 and is susceptible to promote photosynthesis in plants 
and algae (Komissarov 1994, 1995, 2003; Mostofa et al. 2009). Experimental 
studies demonstrate that H2O2 concentrations (up to 10−5 M) in culture media 
can stimulate plant growth (Komissarov 1994, 1995, 2003). In addition, H2O2 can 
inhibit growth at concentrations as low as 10−5–10−4 M under the conditions of a 
dialysis culture (Samuilov et al. 2001). H2O2 can inhibit the photosynthetic elec-
tron transport in cells of cyanobacteria (Samuilov et al. 2001, 2004) and can also 
destroy the function of the oxygen-evolving complex (OEC) in some chloroplasts 
and photosystem II preparations. In such a case it would cause the release of man-
ganese from cyanobacterial cells, which inhibits the OEC activity.

3.5  H2O2 Formation in Water, Lipid and Protein 
Environments in the Presence of Chlorophyll

Chlorophyll can produce H2O2 in aqueous solution under acidic and alkaline pH 
conditions (pH = 3.8–12.4) under visible light irradiation (Lobanov et al. 2008). 
The mechanism behind the production of H2O2 from illuminated Chl can be illus-
trated as follows (3.33–3.39) (Lobanov et al. 2008; Parmon 1985; Bruskov2002): 
At pH < 7

At pH > 7

The electron donor for the conversion O2 → O2
•− (redox potential 

φ° = –0.12 V) can be Chl in the singlet or triplet excited state (the S1 and T1), 
with φ° = –1.14 and –1.54 V, respectively (Lobanov et al. 2008). The occurrence 
of reaction (Eq. 3.39) is confirmed by the addition of 1 M ethanol as a scavenger 
of HO• into the water suspension of silica gel with immobilized Chl inhibits the 

(3.33)Chl + hυ → Chl∗

(3.34)Chl∗ + O2 → Chl+ + O2
•−

(3.35)O2
•− + H

+ → HO2
•

k = 5 × 10
10

Ms
−1

(3.36)HO2
• + O2

•− + H
+ → H2O2 + O2 k = 9 × 10

7
Ms

−1

(3.37)HO2
• + HO2

• → H2O2 k = 2 × 10
6

Ms
−1

(3.38)H2O2 + Fe2+
(or other metals) → HO•

+ HO−
+ Fe3+

(3.39)HO
• + HO

• → H2O2 k = 6 × 10
9

Ms
−1

http://dx.doi.org/10.1007/978-3-642-32223-5_2
http://dx.doi.org/10.1007/978-3-642-32223-5_2
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formation of H2O2 in the alkaline medium with pH 12.4 (Lobanov et al. 2008; 
Bruskov and Masalimov 2002). Formation of H2O2 from Chl can generally be 
expressed as follows (Eq. 3.40) (Lobanov et al. 2008): at pH < 7,

where redox potentials (Δϕ°) and Gibbs energy changes (ΔG0) for the reduc-
tion of O2 to H2O2 with simultaneous oxidation of Chl to the radical cation 
(T = 298 K) are −0.03 V and 5.8 kJ for H2O2 generation, 1.83 V and −353 kJ 
for the singlet excited state of Chl, as well as 1.23 V and −237 kJ for the triplet 
excited state of Chl, respectively.Similarly at pH > 7 (Eq. 3.41),

where Δϕ° and ΔG0 for the reduction of O2 to HO2
− with simultaneous oxidation 

of Chl to the cation radical (T = 298 K) are −0.80 V and 154 kJ for HO2
− gen-

eration, 1.06 V and −204 kJ for the singlet excited state of Chl, and 0.46 V and 
−89 kJ for the triplet excited state of Chl, respectively (Lobanov et al. 2008).

In addition, H2O2 is significantly formed photolytically in aqueous mixtures of 
Chl and either micelles of cetyltrimethylammonium bromide (CTAB) or macro-
molecules of bovine serum albumin (BSA) in a noncovalent complex. Insuch a 
case, Chl acts as a photocatalyst (Lobanov et al. 2008). The Chl may affect the 
donors of electron density, polarize chemical bonds, and stabilize reaction inter-
mediates (similar to enzyme–substrate complexes) by the occurrence of N-, O-, 
and S-containing functional groups bound in proteins and lipids (Lobanov et al. 
2008).

Under certain physiological conditions such as exposure to high light inten-
sity or drought, reduction of O2 in photosynthetic organisms can produce reac-
tive oxygen species (ROS), such as O2

•−, H2O2 or 1O2. These species can lead 
to the closure of the stomata and cause low CO2 concentrations in the chloro-
plasts (Krieger-Liszkay et al. 2008; Asada 1992, 2006 Halliwell and Gutteridge 
1990; Hideg et al. 2001, 2002; Trebst et al. 2002). It is shown that a key ROS in 
UV-irradiated leaves is O2

•−, whilst 1O2 is minor (Hideg et al. 2002). Therefore, 
H2O2 may be produced in the plant cells via O2

•−. Under such conditions, the 
plastoquinone pool can be in a very highly reduced state that would allow pho-
toinhibition, i.e. the light induced loss of PSII activity (Adir et al. 2003). The 
HO• produced photolytically from H2O2 or 1O2 and ROS itself can react with 
proteins, pigments, nucleic acids and lipids, and could also be connected to the 
light-induced loss of PSII activity, to the degradation of the D1 polypeptide (PSII 
reaction centre polypeptide) and to pigment bleaching (Krieger-Liszkay et al. 
2008; Aro et al. 1993; Nishiyama et al. 2001, 2004; Vass et al. 1992; Hideg et al. 
1994; Keren et al. 1997; Halliwell and Gutteridge 1990; Sopory et al. 1990; Prasil 
et al. 1992; Hideg et al. 1998; Okada et al. 1996; 2006; Allakhverdiev and Murata 
2004; Nixon et al. 2005; Hideg et al. 2007; Aro 2007; Tyystjärvi 2008). Such reac-
tions are often observed in water, where photoinduced generation of HO• either 
from H2O2 (both upon direct photolysis by sunlight and photo-Fenton reaction) 
or other sources (e.g. NO2

−and NO3
−) can decompose the DOM components 

(3.40)1/2O2 + H+
+ Chl + hυ → 1/2H2O2 + Chl+

(3.41)1/2O2 + Chl + hυ → 1/2HO2
−

+ Chl+
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(Draper and Crosby 1981; Zepp et al. 1992; Wang et al. 2001; White et al. 2003; 
Nakatani et al. 2007; Vione et al. 2006, 2009a, b).

3.6  Occurence of H2O2 and its Effect on Photosynthesis

In support of the involvement of H2O2 in the photosynthetic reaction, several 
H2O2-related phenomena have been observed in natural waters, which can be clas-
sified as follows (Mostofa et al. 2009). First, the correlation between carbon pro-
duction and photolytically formed H2O2 concentration, suggesting a link between 
hydrogen peroxide and organic matter photosynthesis in lake water (Anesio et al. 
2005). Second, Chl a production in the epilimnetic layer (5–10 m) is typically 
observed to increase with a decrease in total CO2 contents (Talling 2006), sug-
gesting that photosynthesis is highest at the epilimnetic layer (5–10 m) than in 
the uppermost epilimnion (0–1 m). Correspondingly, the O2 and Chl a contents 
reach a minimum when the water temperature become highest during the summer 
stratification period (Talling 2006), suggesting that photoinduced degradation or 
assimilation of Chl a may be responsible for the decrease in Chl a at the upper-
most layer. Here O2 may be involved in the production of free radicals (H2O2 or 
HO•) that could inhibit photosynthesis (Mostofa and Sakugawa 2009; Moffett and 
Zafiriou 1990). This result is similar to earlier studies where photosynthesis was 
observed to be less effective in the uppermost layer (1 m) compared to the subse-
quent epilimnion (3 m) (Nozaki et al. 2002). A ratio of variable to maximal fluo-
rescence (Fv/Fm) of phytoplankton productivity showed a decrease as irradiance 
increased during the morning and an increase as irradiance declined in the after-
noon. These results may be associated with both photoprotective strategies in the 
antennae of PSII and photo damage of PSII reaction centers (Zhang et al. 2008). 
Conversely, H2O2 usually increases gradually starting in the morning, reaches a 
maximum at noon and then gradually decreases in the afternoon (Mostofa and 
Sakugawa 2009). It is therefore suggested that high production of H2O2 and sub-
sequent photoinduced generation of HO• at noon is susceptible to damage the PSII 
reaction centers.

Third, H2O2 may be concentrated by particulate organic matter or small fungi 
through rapid transpiration (Komissarov 1994, 1995, 2003). This hypothesis 
can be supported by observation of relatively low production of H2O2 in unfil-
tered samples compared to filtered ones during irradiation (Moffett and Zafiriou 
1990; Cooper et al. 1988; Petasne and Zika 1997). An increase in the growth rate 
of plants and mycelial fungi is detected when the H2O2 concentration increases 
up to an optimum level, from 1 nM to 10 M, and the growth rate decreases when 
H2O2 approaches 1 mM (Komissarov 2003; Ivanova et al. 2005). High levels of 
H2O2 may photolytically produce HO•, a strong oxidizing agent, that may cause 
ecophysiological disorders in plants, decrease the CO2 assimilation rate and 
affect stomatal conductance, fluorescence and needle life span (Kume et al. 2000; 
Kobayashi et al. 2002). In natural waters, HO• that is produced photolytically from 
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H2O2 can degrade phytoplankton cells, thereby decreasing photosynthesis. The 
synergistic effect of high contents of H2O2 combined with elevated seawater tem-
perature (27–31 °C) can result in a 134 % increase in respiration rates of the coral 
Galaxea fascicularis, which can surpass the effect of either H2O2 or high seawater 
temperature alone (Higuchi et al. 2009). A possible explanation is that an increase 
in growth of plant species with increasing H2O2 might enhance carbohydrate pro-
duction, and therefore enhance the activity throughout the food web.

4  Functions of Photosystems (I and II) in Organisms 
During Photosynthesis

Photosynthesis is primarily initiated by the light-induced release of electrons 
across a membrane, which is catalyzed by two multisubunits, special type of 
membrane-bound pigment-protein complexes called photosynthetic reaction cen-
tres (RCs). They are photosystem I (PSI) and photosystem II (PSII) (Krauß 2003; 
Golbeck 1994; Brettel 1997; Li et al. 2006; Rappaport and Diner 2008; Müller 
et al. 2010; Nilsson Lill 2011; Umena et al. 2011; Renger and Holzwarth 2005; 
Fromme 2008; Holzwarth 2008). PSI of higher plants and algae (named PSI-200) 
consists of the PSI core complex and the peripheral light-harvesting complex 
LHCI. In cyanobacteria, it only consists of the PSI core (Schlodder et al. 2011). 
The PSI core complexes in cyanobacteria are organized preferentially as trimers, 
whereas PSI in higher plants and algae is present only as a monomer (Boekema  
et al. 1987, 2001; Shubin et al. 1993; Kruip et al. 1994; Jordan et al. 2001; Amunts 
et al. 2010).

By studying the crystal structure of cyanobacterial PSI it has been shown that 
it is composed of 128 cofactors including approximately 96–100 Chl molecules, 
two phylloquinones, three [Fe4S4] clusters, 22 carotenoids, four lipids and a puta-
tive Ca2+ ion (Fig. 4) (Krauß 2003; Krauss et al. 1993; Krauß et al. 1996; Klukas  
et al. 1999; Jordan et al. 2001; Ben-Shem et al. 2003; Müller et al. 2010; Webber 
and Lubitz 2001). The PSI antenna consists of 90 Chls, of which 79 are bound 
to a heterodimeric core formed by subunits PsaA and PsaB, with 2 × 11 trans-
membrane α-helices (Krauß 2003). The cofactors in the RC of PSI form two 
quasi-symmetric branches (Fig. 4), diverging from a Chl a∕Chl a pair (ec1A∕ec1B) 
traditionally called P700 (Jordan et al. 2001; Müller et al. 2010). In each branch 
there is a pair of Chl a molecules (ec2A∕ec3A or ec2B∕ec3B) and a phylloquinone 
(PhQA or PhQB) and then the branches join again at the FX iron-sulfur (FeS) 
cluster (Müller et al. 2010). The carotenoids have a dual function in light harvest-
ing and photoprotection. The organic cofactors of the electron transfer chain are 
bound to PsaA/PsaB and arranged in two branches of three Chl and one phyllo-
quinone molecule each, related by a pseudo-C2 axis (Krauß 2003). These studies 
show that the PSI reaction center or primary donor P700 in PSI is composed of six 
chlorophyll (Chl) a cofactors: the P700 special pair Chls (analogous to the special 
pair bacteriochlorophylls in purple bacterial reaction centers), two accessory Chls 
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(analogous to the accessory bacteriochlorophylls), and two chlorophylloid. Based 
on the crystal structures, it is generally assumed that the PSI core complexes, par-
ticularly the cofactor arrangement in the reaction centre, are similar in all organ-
isms and plants (Jordan et al. 2001; Ben-Shem et al. 2003).

On the other hand, crystal structure analysis of cyanobacterial photosystem II 
(PSII) demonstrates that PSII monomer contains 20 subunits with a total molec-
ular mass of 350 kDa (Umena et al. 2011). It is composed of 19 protein subu-
nits, 32–36 Chl molecules (35 Chls for T. vulcanus) (Umena et al. 2011) including 
chlorophyll a dimer (PD1PD2) and monomers (ChlD1 and ChlD2), two pheophytins 
a (PheoD1 and PheoD2), 11 ß-carotenes, more than 20 lipids, two plastoquinones 
QA and QB, two haem irons, one non–haem iron, a tetranuclear manganese cluster 
forming Mn4CaO5(H2O)4 or Mn4CaO4(OH)(H2O)4, three or four calcium atoms 

Fig. 4  Organization of 
the ET cofactors in the 
RC of PSI, based on the 
X-ray crystal structure of 
cyanobacterial PSI [1JB0] 
(Jordan et al. 2001), and 
using the nomenclature 
suggested by Redding and 
van der Est (Redding and 
van der Est 2006) (Figure 
is generated using UCSF 
Chimera). Data source 
Müller et al. (2010)
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(one of which is in the Mn4Ca cluster), three Cl− ions (two of which are near 
the Mn4CaO5 cluster), one bicarbonate ion and more than 15 detergents (Fig. 5) 
(Krauß 2003; Nilsson Lill 2011; Umena et al. 2011; Zouni et al. 2001; Kamiya and 
Shen 2003; Ferreira et al. 2004; Loll et al. 2005; Murray et al. 2008; Kawakami 
et al. 2009; Guskov et al. 2009; Biesiadka et al. 2004). PSII reaction center or pri-
mary donor P680 in PSII is an approximately C2-symmetric structure formed by 
polypeptides (D1 and D2) and six chlorin cofactors: four chlorophyll a and two 
pheophytin a (PheoD1 and PheoD2) (Fig. 5) (Nilsson Lill 2011; Umena et al. 2011). 
Each PSII monomer consists of more than 1,300 water molecules, yielding a total 
of 2,795 water molecules in the dimer (Umena et al. 2011). The water molecules 
are organized into two layers located on the surfaces of the stromal and lumenal 
sides, respectively, with the latter having more water molecules than the former 
(Umena et al. 2011). A few water molecules are detected within the membrane 
region, most of them serving as ligands to chlorophylls (Umena et al. 2011).

Fig. 5  Overall structure of PSII dimer from Thermosynechococcus vulcanus at a resolution of 
1.9Å. View from the direction perpendicular to the membrane normal. a Overall structure. The 
protein subunits are coloured individually in the right hand monomer and in light grey in the left-
hand monomer, and the cofactors are coloured in the left-hand monomer and in light grey in the 
right-hand monomer. Orange balls represent water molecules. b Arrangement of water molecules 
in the PSII dimer. The protein subunits are coloured in light grey and all other cofactors are omit-
ted. The central broken lines are the noncrystallographic two-fold axes relating the two mono-
mers. Data source Umena et al. (2011)
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Mn4CaO5(H2O)4 or Mn4CaO4(OH)(H2O)4 is formed through five oxygen 
atoms that act as oxo bridges linking the five metal atoms, and four water mol-
ecules that are bound to the Mn4CaO5 cluster and can generate O2 (Fig. 6) (Umena 
et al. 2011; Yamanaka et al. 2012). Among the five metal and five oxygen atoms, 
three Mn, one Ca and four O form a cubane-like structure in which Ca and Mn 
occupy four corners and the O atoms occupy the other four. The fourth manga-
nese (Mn4) is located outside the cubane; it is linked to Mn1 and Mn3 within the 
cubane by O5, and to O4 by a di-μ-oxo bridge (Umena et al. 2011). In this way, 
every two adjacent Mn atoms are linked by di-μ-oxo bridges: Mn1 and Mn2 via 
O1 and O3, Mn2 and Mn3 via O2 and O3, and Mn3 and Mn4 via O4 and O5. The 
calcium is linked to all four Mn by oxo bridges: to Mn1 via the di-μ-oxo bridge 
formed by O1 and O5, to Mn2 via O1 and O2, to Mn3 via O2 and O5, and to Mn4 
via the mono-μ-oxo bridge formed by O5 (Umena et al. 2011). It is also shown 
that four water molecules (W1 to W4) are associated with the Mn4CaO5 cluster, 
of which W1 and W2 are coordinated to Mn4 with respective distances of 2.1 and 
2.2 Å, and W3 and W4 are coordinated to Ca with a distance of 2.4 Å. This sug-
gests that some of the four waters may serve as the substrates for water oxidation 
(Umena et al. 2011).

Several studies are conducted to evaluate the functions of the PSI and 
PSII (Jordan et al. 2001; Dashdorj et al. 2004; Germano et al. 2004; Diner and 
Rappaport 2002; Li et al. 2006; Rappaport and Diner 2008; Müller et al. 2010; 
Nilsson Lill 2011; Schlodder et al. 2007, 2011; Nanba and Satoh 1987; Dekker 
and van Grondelle 2000; Greenfield and Wasielewski 1996; Klug et al. 1998; 
Prokhorenko and Holzwarth 2000; Byrdin et al. 2002; Yoder et al. 2002; Holzwarth 
et al. 2006).

Fig. 6  Structure of the 
Mn4CaO5 cluster. Stereo 
view of the Mn4CaO5 cluster 
and its ligand environment. 
The distances shown are 
the average distances 
between the two monomers. 
Manganese, purple; calcium, 
yellow; oxygen, red; D1, 
green; CP43, pink. Data 
source Umena et al. (2011)
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4.1  Debates/Questions Regarding O2-Releases  
from PSI and PSII

Some key issues on the debate concerning the details of electron- and O2-release 
from PSI and PSII will be discussed in the following parts.

First, an electron is released upon excitation by light, either producing the 
charge-separated state P680+HA

− from Chl molecules (P680), or accompanied by 
no charge separation (or by considerable protein relaxation) (Dashdorj et al. 2004; 
Germano et al. 2004; Rappaport and Diner 2008; Müller et al. 2010; Takahashi 
et al. 1987; Periasamy et al. 1978). Accordingly, after release of an electron by 
PSI or PSII upon excitation by light, is it possible to accept the same component 
of PSI or PSII? From the point of view of aquatic humic substances (fulvic and 
humic acids) or CDOM (DOM or FDOM, fluorescent dissolved organic matter), 
the answer is no. The secondary component (dissolved O2 in water) can accept 
the electron to produce super oxide radical anion (O2

•−) and then H2O2 (Eqs. 
3.36–3.40). The detailed mechanism for H2O2 production from DOM (or FDOM 
or CDOM) is extensively discussed in chapter “Photoinduced and Microbial 
Generation of Hydrogen Peroxide and Organic Peroxides in Natural Waters”.

Second, which and how many Chl molecules are taking part to the primary 
donor sites in PSI and PS II? (Stewart et al. 2000; Jordan et al. 2001; Diner and 
Rappaport 2002; Li et al. 2006; Müller et al. 2010; Durrant et al. 1995; Dekker 
and van Grondelle 2000; van Gorkom and Schelvis 1993) The answer is that the 
first electron is released from the functional or chromophoric group bound to PSI 
or PSII, which is the easiest way to do it upon excitation by light. Subsequent 
electron releases occur in succession from the functional groups (for an analogy, 
see CDOM and FDOM, chapter “Colored and Chromophoric Dissolved Organic 
Matter in Natural Waters” and “Fluorescent Dissolved Organic Matter in Natural 
Waters”). It has been shown by fluorescence spectroscopy that longer-wavelength 
excitation is usually the first to take place, followed by the others. Therefore, Chl 
dimers or Chl molecules (generally with emission wavelengths >675 nm) bound 
to PSI or PSII are primarily responsible for excitation of electrons. In contrast, 
proteins or aromatic amino acid residues (generally having shorter emission wave-
lengths: <370 nm) are not excited in presence of Chl molecules upon irradiation 
(see also chapter “Fluorescent Dissolved Organic Matter in Natural Waters”).

Third, why are PSI and PSII formed by a number of Chl molecules in their 
structure? It is assumed here that Chl a (or dimer Chl a) molecules are extremely 
photosensitive and can be excited by a small light intensity. Continuous H2O2 gen-
eration in the presence of little light is enabled by the occurrence of high numbers 
of Chl a molecules in PSI and PSII, which at the same time can contribute to the 
continuous photosynthesis in organisms and plants under light conditions. The fac-
tors affecting the generation of H2O2 (e.g. high or low light intensity, pH, nutrients 
and so on) can affect photosynthesis and induce structural modifications in PSI 
and PSII. For example, under intense light conditions there is an elevated produc-
tion of H2O2, the excess of which can be photolytically converted into HO•. The 

http://dx.doi.org/10.1007/978-3-642-32223-5_2
http://dx.doi.org/10.1007/978-3-642-32223-5_2
http://dx.doi.org/10.1007/978-3-642-32223-5_5
http://dx.doi.org/10.1007/978-3-642-32223-5_5
http://dx.doi.org/10.1007/978-3-642-32223-5_6
http://dx.doi.org/10.1007/978-3-642-32223-5_6
http://dx.doi.org/10.1007/978-3-642-32223-5_6
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hydroxyl radical can then degrade the proteins or amino acid residues. Such an 
effect can reduce the contents of proteins or amino acid residues, which are often 
observed in PSI and PSII (Neufeld et al. 2004; Shutova et al. 2005). The decom-
position of proteins or amino acids (e.g. tryptophan) is also generally observed in 
sunlit water environments because of the effects of HO• and other ROS (Mostofa  
et al. 2007, 2010, 2011; Moran et al. 2000).

Fourth, are there any O2 or H2O2 molecules that may remain undetected among 
the 1,300 water molecules found in PSII? It is consistent to detect O2 and H2O2 
molecules in the PSII structure, which have often been observed in earlier studies. 
The occurrence of a large number of H2O molecules suggests that O2 may remain 
and be dissolved in those water molecules. Furthermore, H2O2 may be produced 
photolytically from O2 as discussed before. Two facts may be responsible for not 
detecting O2 or H2O2: (i) O2 and H2O2 may disappear during the primary process-
ing of the photosynthetic cells before examination; and (ii) former studies did not 
focus on the occurrence of H2O2 in PSII. In a recent study, it has been assumed 
that H2O2 may be “lost” amongst 1,300 H2O molecules (Umena et al. 2011). The 
most likely reasons would be the structural similarity and the fact that H2O2 occur-
rence in the PSII structure was not expected. It should be noted that H2O2 may be 
decomposed to H2O during the processing of photosynthetic cells for the determi-
nation of PS crystal structure.

It has been shown that two H2O molecules in four reaction-center Chls are 
linked through H-bonding between water ligand and ChlD1 (Umena et al. 2011), 
and it may well be H2O2 that can make H-bonding in the proposed structure. It is 
also shown that two balls labeled I and II represent a single water molecule, dis-
ordered at two different positions separated by 1.8 Å. Position-I is able to H-bond 
to YD (redox-active tyrosine residue located at D2-tyr 160), whereas position-II is 
not able to H-bond to YD (Supplementary part) (Umena et al. 2011). On this basis, 
it can be assumed that H2O2 may occur in that structure instead of H2O. Note that 
the bond length of O–O in H2O2 is 1.49 Å, which is larger than in the ground 
(triplet) state of molecular oxygen (3O2, 1.21 Å) (Abrahams et al. 1951). Among 
the 1300 H2O molecules in each PSII monomer, a few of them are detected as dis-
ordered (Umena et al. 2011), a case in which the probability to mistakenly detect 
H2O instead of H2O2 is relatively high. Future studies will be important to find out 
any presence of H2O2 instead of H2O in the crystal structure of PSII.

The first two questions will be discussed comprehensively in the next section.

4.2  Mechanism for Electron Transfer and O2-Release  
in Photosystem II Reaction Centers

Upon excitation by light, the electron release takes place at the central part of the 
reaction center (RC), at the primary donor P700 in PSI or P680 in PSII (Figs. 4, 5) 
(Müller et al. 2010; Nilsson Lill 2011; Umena et al. 2011). It is suggested that the 
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primary electron release in PSII involves the chlorophyll a dimer (Boussaad et al. 
1997; Nilsson Lill 2011). This can be justified by the theory of excitation of mul-
tiple functional groups bound to macromolecular organic substances (e.g. fulvic 
acids or humic acids). Light excitation is expected to induce first the release of the 
electron less strongly bound in the relevant functional groups, and then of the sub-
sequent ones (see chapter “Colored and Chromophoric Dissolved Organic Matter 
in Natural Waters”).

It is hypothesized that the first electron is released from the π-bonding sys-
tem formed between two N-atoms in the porphyrin ring and Mg. In fact, Mg 
(1s22s22p63s13px

13py
03pz

0) can form two covalent bonds with two N-atoms of 
the porphyrin ring using 3s1 and 3px

1 orbitals, whilst other two empty 3py
0 and 

3pz
0 orbitals can accept the π-electrons from the remaining two N-atoms. The 

π-bonding systems among these orbitals (3py and 3pz) can interchange with one 
another because of the similar energy levels. Therefore, one can have resonance 
configuration upon exchange of electrons between the orbitals and Mg (Fig. 7a). 
Chl a dimer is formed through hydrogen bonding via H2O bridges, and H2O is the 
key component in the formation of such dimers (Shipman et al. 1976; Hynninen 
and Lötjönen 1993; Boussaad et al. 1997; Catalan et al. 2004). It is supposed that 
hydrogen (H)-bonding is formed between the non-bonding π-electrons of two 
N-atoms in the porphyrin ring. The latter is also a resonance structure where elec-
trons can move through the whole Chl a dimer (Fig. 7b).

The formation of H-bonds through H2O bridges is suggested by earlier studies 
(Shipman et al. 1976), and can be justified by the shift of the π-bonding system 
in H–N–Mg–N–H (Fig. 7b). This system can assist the release of electrons in a 
much easier way than the single N–Mg–N system (Fig. 7a). Based on multimer 
model studies one obtains equal site energies and inhomogeneous widths for all 
pigments, which leads to similar distances and to nearest-neighbor dipole–dipole 
interactions between the central chlorin cofactors (Durrant et al. 1995; Renger and 
Marcus 2002; Barter et al. 2003). This may result into two wavelength positions 
for the electronic states in the reaction center (RC): uncoupled Chls can absorb at 
670 nm, and electronically coupled chlorins (the central cofactors) or Chl dimers 

(a)

(b)

Fig. 7  The possible resonance configuration of Mg with π-electrons of two N-atoms located in 
the chlorophyll a structure (a) and chlorophyll a dimer (b). Only the two N-atoms in porphyrin 
ring with Mg are presented in the structure to simplify the resonance structure

http://dx.doi.org/10.1007/978-3-642-32223-5_5
http://dx.doi.org/10.1007/978-3-642-32223-5_5


587Photosynthesis in Nature: A New Look

can absorb between 676 and 684 nm (Telfer et al. 1990; Durrant et al. 1995; 
Renger and Marcus 2002). Red shifts are commonly observed in in vitro Chl a 
systems, such as thin films, monolayers and colloidal dispersions, used as models 
for the in vivo system (Katz et al. 1991). It is known that red shifts occur when the 
release of electrons takes place in the functional groups that is bound to the com-
ponent system (see also chapter “Colored and Chromophoric Dissolved Organic 
Matter in Natural Waters”, “Fluorescent Dissolved Organic Matter in Natural 
Waters”) (Mostofa et al. 2009; Senesi 1990). Note that Chl a has a broad absorp-
tion spectrum and can form dimers or aggregates through self assembly, which 
typically leads to changes in its optical properties (Shipman et al. 1976; Hynninen 
and Lötjönen 1993; Closs et al. 1963; Katz et al. 1963; Fong 1974; Shipman et 
al. 1975; Katz 1990, 1994; Frackowiak et al. 1994). Formation of the dimer often 
occurs through H-bonding in the N-heterocyclic base pair (Catalan et al. 2004), 
which can support the occurrence of H-bonding between N and H2O (Fig. 7b).

Two possible hydrogen bonds were also discussed in earlier studies. First, for-
mation of H-bonds might occur between central Mg and H2O according to the 
Mg…OH2 interaction (Hynninen and Lötjönen 1993). Second, the keto carbonyl 
group of Chl a may participate in the formation of Chl a dimers, either through 
coordination with Mg or through H-bonding of the H–X type, where X = O, 
N and S (Shipman et al. 1976; Closs et al. 1963; Katz et al. 1963; Fong 1974; 
Shipman et al. 1975; Katz 1990). However, these two previous assumptions are 
not possible electronically because the outer shells of Mg are entirely full, after 
bonding with two covalent bonds and two unpaired π–electron systems with four 
N-atoms of the Chl a. Therefore, Mg has less probability to accept further elec-
trons or H-bonding with other groups. Moreover, the formation of such proposed 
bonding systems is not consistent with the easiest way of electron release via 
absorption in the longer wavelength region.

Crystal structures of the reaction center have identified two chlorophyll mono-
mers forming a dimer with a partial structural overlap, which are thus stabilized 
by van der Waals interactions (Nilsson Lill 2011). The structure of the chlorophyll 
dimer has been optimized using dispersion-corrected density functional theory 
(B3LYP-DCP) and it has been found that the dimerization energy is approximately 
−17 kcal mol−1 (Nilsson Lill 2011). Electrons may be rapidly released from these 
resonance configurations upon irradiation of the Chl a dimmer, according to the 
proposed dimer formation (Fig. 6). This can be understood from the interaction 
mechanism between the functional group [–CH2–(NH3

+)–CH–COO−] in trypto-
phan [C8H5(NH)-CH2(NH3

+)CHCOO−] and metal ions, where the functional group 
[–CH2-(NH3

+)–CH–COO−] can display resonance configuration that is responsible 
for the longer wavelength fluorescence emission spectra (see chapter “Complexation 
of Dissolved Organic Matter With Trace Metal Ions in Natural Waters”).

PSII acts as one component and upon irradiation, the released electron may not 
accept the same component of PSII that can be understood from aquatic ecosystem. For 
example, in aqueous media fulvic acid or humic acid upon irradiation can donate the 
electron to O2 and form O2

•− and then H2O2, which is a well-accepted mechanism by 
all aquatic scientists. Therefore, it is hypothesized that the released electron in PSII may 

http://dx.doi.org/10.1007/978-3-642-32223-5_5
http://dx.doi.org/10.1007/978-3-642-32223-5_5
http://dx.doi.org/10.1007/978-3-642-32223-5_6
http://dx.doi.org/10.1007/978-3-642-32223-5_6
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http://dx.doi.org/10.1007/978-3-642-32223-5_9


588 K. M. G. Mostofa et al.

react with other components present in the cells, the most efficient of which is O2 that 
can form O2

•− and then H2O2. The latter species are often detected in cells as discussed 
in the earlier sections. It is also established that H2O2 formation is the primary step of 
many photoinduced processes in aqueous solution that finally lead to the formation of 
the HO• radical (see chapter “Photoinduced and Microbial Generation of Hydrogen 
Peroxide and Organic Peroxides in Natural Waters”).

Upon excitation, an electron is transferred from the Chls to the Pheo HA, 
producing the charge-separated state P680+HA

− as assumed by earlier studies 
(Germano et al. 2004; Rockley et al. 1975; Thurnauer et al. 1975; Shuvalov and 
Klevanik 1983; Kirmaier and Holten 1987; Holzapfel et al. 1990). Similarly, in 
PSI a primary charge separation occurs in the P700 reaction center that can lead 
to the reduction of A0 (two chlorophylloid primary electron acceptors), creating 
the radical ion pair P700+A0

− (Krauß 2003; Brettel 1997; Müller et al. 2010; 
Webber and Lubitz 2001; Fromme et al. 2001). However, no concrete evidence 
has been found for the formation of these types of radicals in PSI or PSII. Rather, 
experimental studies support the idea that primary electron transfer reactions are 
accompanied by molecular readjustments or reorganizations involving pigments 
and proteins, or the interaction of pigment-protein complexes in the reaction 
center (Dashdorj et al. 2004; Kleinfeld et al. 1984; Woodbury and Parson 1984; 
Kirmaier et al. 1985a, b; Holten et al. 1986; Kirmaier et al. 1986; Tiede et al. 
1987; Mullineaux et al. 1993; Savikhin et al. 2001; Karapetyan 2004).

It is also observed that chlorophyll-binding PsbS protein (22-kD protein of 
PSII), which belongs to the family of light-harvesting proteins, can contribute only 
to quenching but not to light harvesting (Li et al. 2000, 2002; Aspinall-O’Dea et 
al. 2002; Bergantino et al. 2003). Indeed, the degree of fluorescence quenching in 
vivo can correlate with the content of PsbS (Li et al. 2004). Dissipation of energy 
in PSI trimers of cyanobacteria takes place with a contribution of the long-wave-
length chlorophyll, and the excited state of which is quenched by the cation radical 
of P700 or by P700 in its triplet state (Karapetyan 2004). The low fluorescence 
yield of Chls in light-harvesting antenna complexes is indicative of an additional 
pathway of energy dissipation in oligomers, which would protect the PSII complex 
of cyanobacteria against photodestruction (Karapetyan 2004).

It can thus be hypothesized that excitation followed by charge transfer could 
produce P680+O2

•− instead of P680+HA
−. O2 is the primary acceptor for excited 

electrons in aquatic media and is involved in the production of H2O2 as dis-
cussed earlier. This result is supported by Laser flash photolysis studies, in which 
a charge-transfer excited state has not been detected from the spectra. Recovery 
kinetics, including observation of both triplet decay and ground-state folding reac-
tions, show that the flash transient obtained from the pinned form consists of a 
triplet and of a ground state moiety in the unpinned configuration (Periasamy et al. 
1978). Experimental optical data and structure-based simulations showed nanosec-
ond absorption dynamics at ~685 nm, after excitation of PS I from Synechocystis 
sp. PCC 6803. It is suggested that the electrochromic shift of absorption bands 
of the Chl a pigments may occur around the secondary electron acceptor, through 
considerable protein relaxation (Dashdorj et al. 2004; Savikhin et al. 2001).

http://dx.doi.org/10.1007/978-3-642-32223-5_2
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A recent study has shown that the PSII monomer consists of 1300 H2O mole-
cules, a few of which have been detected as disordered (Umena et al. 2011). H2O2 
was not considered as a component of PSII structure in that study. Concurrently, 
four successive photoinduced turnovers provide the WOC with four oxidising 
equivalents and drive it through an S-state cycle, with S-states ranging from S0 to 
S4 and O2 is being released on the S3 to S4 transition.

Now the questions are: how is it possible for H2O to undergo photodissocia-
tion through four successive photoinduced turnovers, needing energy in the pres-
ence of H2O2 that can easily be decomposed and produce O2? How can H2O in a 
cell accept four consecutive electrons in the presence of many additional compo-
nents including O2 that can more easily accept electrons? Under these conditions, 
the easiest pathway would be the addition of one electron to O2 with formation 
of O2

•− and then of H2O2. This is a well established mechanism in water media 
and could take place in photosynthetic cells as well. Note that the main radia-
tion absorbers in natural waters are chromophoric (or colored) DOM (CDOM) 
 (10–98 %), phytoplankton or chlorophyll (32–85 %), H2O (0.3–9 % in the red 
portion of the visible spectrum, depending on water being clear or turbid) and so 
on (see chapter “Colored and Chromophoric Dissolved Organic Matter in Natural 
Waters”). It is entirely impractical to consider that H2O can accept four successive 
electrons under light condition in the presence of O2 or other organic components 
in a photosynthetic cell and there is no evidence in that regards.

It is therefore theorized that

if H2O would decompose by the reaction with CO2 in photosynthesis, then all H2O would 
convert into O2 by organisms and plants after the origin of life on earth to date and no 
H2O would remain in the biosphere. Instead of H2O, photoinduced generation of H2O2 
from dissolved O2 in water bound in photosynthetic cells (3.33–3.39) is reacted with CO2 
in photosynthesis that can limit the photosynthesis under light condition.
Then further conversion of H2O2 to O2 either through photosynthesis [xCO2(H2O) 
+ yCO2(H2O) → Cx(H2O)y + O2 + E (±)] or both photolytically (2H2O2 
+ hυ → O2 + unknown oxidant) and biologically (2H2O2 + catalases/peroxidases → 
O2 + 2H2O) may balance the environment.

This can be supported by the observation of several phenomena:
(i) Formation and occurences of H2O2 in photosynthetic cells of organ-

isms through production of O2
•− from whole bacteria of several species, from 

phagocytic cells, from spermatozoa as well as peroxisoms, mitochondria and 
 chloroplasts (Komissarov 2003; Bach 1894; Chance et al. 1979; Halliwell 1981; 
Holland et al. 1982; Wilhelm et al. 1996, 1997, 1999; Halliwell and Gutteridge 
1999; López-Huertas et al. 1999; Baker and Graham 2002; del Río et al. 2006; 
Krieger-Liszkay et al. 2008; Lyubimov and Zastrizhnaya 1992a, b; Turrens 
1997; Karuppanapandian et al. 2011). (ii) Releases of O2 from H2O2 dur-
ing photosynthesis are evidenced in earlier studies (Komissarov 1994, 2003; 
Velthuys and Kok 1978; Asada and Badger 1984; Asada and Takahashi 1987; 
Mano et al. 1987; Renger 1987; Anan’ev and Klimov 1988; Bader and Schmid 
1988, 1989; Schroeder 1989; Schröder and Åkerlund 1990; Miyake and Asada 
1992; Kuznetsov et al. 2010; Bernardini et al. 2011; Yin et al. 2006). (iii) The 

http://dx.doi.org/10.1007/978-3-642-32223-5_5
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O2-releases [H2O2 + light or enzymes (catalases/peroxidases) → O2 + 2H2O 
or other components] and their reused in H2O2 generation in photosynthetic 
organisms (O2 + Chl  + H+ + hυ → H2O2) can balance the O2 level in the 
environments in new photosynthetic reaction. But this does not occur in old pho-
tosynthetic reaction. (iv) Conversion of H2O2 to O2 occurs at a higher extent in 
biological systems than in photoinduced decomposition processes (Moffett and 
Zafiriou 1990). For instance, the Cu(II) bathocuproinedisulfonic acid complex 
(Cubc2) can convert H2O2 to O2 via the reaction (Eq. 4.1) (Moffett et al. 1985):

Unconvincing evidence has been found for S0 to S4 transitions, and four suc-
cessive transitions are needed for H2O decomposition (Rappaport and Diner 2008; 
Kok et al. 1970; Joliot and Kok 1975; Krishtalik 1986, 1990).

(v) It is hypothesized that the O–O bond formation occurs when O5 in Mn4CaO5 
cluster provides one O atom via formation of hydroxide ion in the S1 state (Umena 
et al. 2011; Saito et al. 2012). A major issuer is then if it is possible to break down 
O5 in the Mn4CaO5 cluster. The problem is that, were it possible, probably the entire 
PSII system would be broken down. Furthermore, each Mn atom in the Mn4CaO5 
cluster is in octrahedral form with six ligands, and it is also paramagnetic with 5 
unpaired electrons in its outer d-orbitals (Mn2+ = 1s22s22p63s23p64s03d5). The 
result is that Mn could carry out strong H-bonding with other components. Such an 
effect enables a second coordination sphere by D1-Asp 61, D1-His 337 and CP43-
Arg 357, in addition to the direct ligands. Therefore, these three residues might be 
responsible for maintaining the oxygen-evolving activity (Umena et al. 2011; Nixon 
and Diner 1994; Chu et al. 1995; Hwang et al. 2007; Service RJ, Hillier W, Debus 
RJ 2010). D1-Asp 61 is located at the entrance of a proposed proton exit channel 
involving a chloride ion (Cl−) in Mn4CaO5 (Umena et al. 2011; Kawakami et al. 
2009; Guskov et al. 2009; Murray and Barber 2007; Ho and Styring 2008). This res-
idue may facilitate proton exit from the Mn cluster. Proton releases from Mn4CaO5 
may play a key role in the formation of H2O2 via O2

•− and HO2
•.

(vi) Finally, the occurrence of about 1,300 water molecules in the PSII mono-
mer, located at the luminal and stromal sides (Umena et al. 2011), could allow 
the inclusion of a lot of dissolved O2 molecules. They could add electrons after 
they are released from Chl molecules upon excitation by light. Crystal structures 
of PSI or PSII do not include any information about dissolved O2, and issue that 
will need further studies to be clarified.

5  Factors Affecting the Photosynthesis of Organisms

Cyanobacteria carry out oxygenic photosynthesis using a photosynthetic system 
similar to that observed in chloroplasts of higher plants. Therefore, cyanobacteria can 
be used in model studies to understand the effects of various environmental factors 

(4.1)2Cu(II)bc2 + H2O2 → 2Cu(I)bc2 + O2 + 2H
+
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(Allakhverdiev and Murata 2008; Pfenning 1978; Öquist et al. 1995). However, the 
anti-oxidant systems in cyanobacteria are significantly different from those of higher 
plants (Asada 2006; Demmig-Adams and Adams III 1992, 2002). This can vary the 
effects of various environmental stresses on cyanobacteria, bacteria and higher plants.

Studies show that terrestrial plants are adapted to their annual life cycles of 
growth, reproduction and senescence. Compared to the annual climate cycle, phy-
toplankton biomass can turn over around 100 times a year as a result of fast growth 
and equally fast consumption by grazers (Calbet and Landry 2004; Behrenfeld  
et al. 2006; Winder and Cloern 2010). It has been observed that the timing of these 
life-history transitions can vary among species and among regions with variation in 
temperature and sunlight intensity (Winder and Cloern 2010; Myneni et al. 1997; 
Menzel and Fabian 1999; Peñuelas and Filella 2001; Jolly et al. 2005; White et al. 
2009; Richardson et al. 2010). Correspondingly, annual phytoplankton cycles can 
differ across ecosystems, because of year to year variability and with changes in the 
climate system (Winder and Cloern 2010; Garcia-Soto and Pingree 2009; Thackeray 
et al. 2008; Paerl and Huisman 2008; McQuatters-Gollop et al. 2008; Cloern and 
Jassby 2008; Winder and Schindler 2004; Edwards and Richardson 2004; Scheffer 
1991; Pratt 1959). These periodic cycles can be linked with annual fluctuations of 
mixing, temperature, light, precipitation and with other drivers of population vari-
ability, including human disturbance. There are also effects from periodic weather 
events and strong trophic coupling between phytoplankton and their consumers 
(Winder and Cloern 2010; Smetacek 1985; Sommer et al. 1986; Cloern 1996).

Cyanobacteria can control a variety of environmental stressors such as UV 
light, heat, cold, drought, salinity, nitrogen starvation, photo-oxidation, anaerobio-
sis and osmotic stress, by developing a number of defence mechanisms (Fay 1992; 
Tandeau de Marsac and Houmard 1993; Sinha and Häder 1996). The most impor-
tant one is the production of photoprotective compounds such as mycosporine-
like amino acids (MAAs) and scytonemin (Sinha et al. 1998, 1999a, b; 2001); 
availability of enzymes such as superoxide dismutase, catalase and peroxidase 
(Burton and Ingold 1984; Canini et al. 2001); repair of DNA damage (Sinha and 
Häder 2002) and synthesis of shock proteins (Sinha and Häder 1996; Borbely and 
Suranyi 1988; Bhagwat and Apte 1989).

Organisms are thus affected by several factors that could either increase or 
decrease their photosynthetic and respiratory activities (Doyle et al. 2005; Nozaki  
et al. 2002; Shimura and Ichimura 1973; Pope 1975; Pick and Lean 1987; Babin et 
al. 1996; Shapiro 1997; Hyenstrand et al. 1998; Elser 1999; Dokulil and Teubner 
2000; MacIntyre et al. 2000; Xie et al. 2003; Qu et al. 2004; Tank et al. 2005; 
Wängberg et al. 2006; Sobrino et al. 2008). The key factors affecting these activi-
ties are mostly documented on the basis of the growth and development of organ-
isms. Such factors are: (i) seasonal variation in sunlight and UV radiation, which 
affect photosynthesis; (ii) occurrence of CO2 forms (dissolved CO2, carbonic acid, 
bicarbonate, carbonate); (iii) variation in temperature; (iv) water stress (drought) and 
precipitation/rainfall; (v) contents and nature of DOM and POM; (vi) nutrient avail-
ability; (vii) variation in trace metal ions; (viii) salinity or salt stress; (ix) presence of 
toxic pollutants; (x) effect of size-fractionated phytoplankton; (xi) global warming.
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5.1  Seasonal Variation in Sunlight and UV Radiation  
on Photosynthesis

Solar radiation is the key driving force for the occurrence of photosynthesis in nat-
ural waters (Sinha et al. 2001; Rastogi et al. 2010; Jiang and Qiu 2011; Sobek et 
al. 2007). Exposure of photosynthetic organisms to strong light (or UV light) can 
significantly inhibit the PSII activity, with resulting photoinhibition of or photo-
damage to PS II (Aro et al. 1993; Melis 1999; Andersson and Aro 2001; Han et 
al. 2001; Nishiyama et al. 2001, 2008; Adir et al. 2003). Photoinhibition of photo-
synthesis is a process by which excessive irradiance, absorbed by the leaves, can 
inactivate or impair the chlorophyll-containing reaction centers of chloroplasts, 
thus inhibiting photosynthesis (Bertamini et al. 2006). Because of the differ-
ences among the organisms, the effects of light can be classified into two sections 
(aquatic microorganisms and higher plants) for their better understanding.

Effects of Sunlight on Aquatic Microorganisms

Cyanobacteria or phytoplankton cells can utilize photosynthetically active radia-
tion (PAR, 400–700 nm) to drive photosynthesis within the euphotic zone (see 
also global warming chapter “Impacts of Global Warming on Biogeochemical 
Cycles in Natural Waters”) (Smith and Baker 1979; Abboudi et al. 2008; Li et 
al. 2011). Solar UV-A radiation (315–400 nm) acts as an additional source of 
energy for photosynthesis to enhance the CO2 fixation in tropical marine phyto-
plankton (Li et al. 2011; Gao et al. 2007, 2007). However, UV-A does not bring 
any enhancement to carbon fixation in pelagic water (Li et al. 2011). The cells 
of aquatic microorganisms can be exposed to ultraviolet radiation (UVR, 280–
400 nm), which can penetrate up to 60 m into the pelagic water column (Smith 
and Baker 1979). Furthermore, depletion of the stratospheric ozone layer can 
cause additional penetration of UV radiation in the Arctic and Antarctic regions. 
Such a phenomenon has detrimental effects on the processes involved in primary 
production (see also chapter “Impacts of Global Warming on Biogeochemical 
Cycles in Natural Waters”) (Huisman et al. 2006; Häder et al. 2007; Zhang et al. 
2007). Solar UV-B (280–315 nm), and partly UV-A (315–400 nm) can reduce 
growth and photosynthetic rates, increase permeability of cell membranes, damage 
proteins or DNA molecules, pigments, and even lead to cell death (see also chap-
ter “Impacts of Global Warming on Biogeochemical Cycles in Natural Waters”) 
(Jiang and Qiu 2011; Wängberg et al. 2006; Behrenfeld et al. 1993; Sass et al. 
1997; Campbell et al. 1998; Rajagopal et al. 2000; Helbling et al. 2001; He and 
Häder 2002; Buma et al. 2003; Sobrino et al. 2004; Litchman and Neale 2005; Wu 
et al. 2005; Bouchard et al. 2006; Agusti and Llabrés 2007; Rath and Adhikary 
2007; Gao et al. 2008; Pattanaik et al. 2008; Jiang and Qiu 2005).

It has been shown that, ranging from coastal (case 1) to pelagic (case 2) surface 
seawaters, UV-B can cause similar inhibition whilst the inhibition of photosynthesis 
by UV-A (315–400 nm) increases when passing from coastal to offshore waters (Li 
et al. 2011). UV-B inhibits photosynthesis up to 27 % and UV-A up to 29 %. It has 
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also been shown that the daily integrated inhibition by UV-A can reach 4.3 % and 
13.2 %, whilst that by UV-B can reach 16.5 % and 13.5 % in coastal and offshore 
waters, respectively (Li et al. 2011). Additionally, exclusion of UV radiation can 
increase photosynthesis by 10–65 % in algae from the Mediterranean, 17–46 % in 
intertidal algae from southern Chile, and 15–20 % in algae (Laminaria Saccharina) 
from the North Sea (Hanelt et al. 1997; Jiménez et al. 1998; Gómez et al. 2004).

UV-stimulated inorganic carbon acquisition is often observed in phytoplank-
ton species (Beardall et al. 2009; Wu and Gao 2009). Phytoplankton cells grown 
in nutrient replete conditions are more resistant to solar UV radiation, and also 
their contents of UV-absorbing compounds increases (Marcoval et al. 2008). 
Microplankton (>20 m) are more plentiful in coastal waters, while picoplankton 
(<2 m) are more abundant in open oceans (Marañón et al. 2001; Ho et al. 2008). 
In terms of their responses to UV, large cells are capable of synthesizing and accu-
mulating UV-absorbing compounds that play a protective role against UV. These 
screening compounds are not found in picoplankton cells (Raven 1991; Garcia-
Pichel 1994) that, therefore, would be more sensitive to solar UV. This issue is 
partially offset by a much faster repair process of damaged DNA (Helbling et 
al. 2001; Callieri et al. 2001). Because taxonomic composition, accumulation of 
UV-absorbing compounds and nutrient availability are typically different, physio-
logical responses of phytoplankton assemblages to solar UV can differ geographi-
cally from coastal to pelagic waters (Li et al. 2011).

Cyanobacteria are important and ubiquitous prokaryotes that populate terres-
trial and aquatic habitats, and they are important contributors to global photosyn-
thetic biomass production (Whitton and Potts 2000). Enhanced UV-B radiation can 
affect cyanobacterial growth, photosynthetic efficiency, pigments, morphology, as 
well as cell size and shape. Anyway, different responses are observed in different 
species exposed to different UV doses (Wu et al. 2005; Rath and Adhikary 2007; 
Pattanaik et al. 2008; Jiang and Qiu 2005; Harrison and Smith 2009). It has also 
been shown that exposure to UV radiation can reduce the activity of alkaline phos-
phatase, a common extracellular enzyme, by up to 57 %. Interestingly, it is more 
often decreased under ultraviolet A than ultraviolet B exposure (Tang et al. 2005). 
As already mentioned, algal nutritional status can influence the UV radiation sen-
sitivity but, on the other hand, UV radiation can inhibit uptake and assimilation of 
inorganic nutrients (Harrison and Smith 2009). This is likely caused by the rapid 
UV radiation-induced changes of nitrate into HO• and •NO2/NO2

−, which may 
reduce the availability of NO3

− for primary production (see chapter “Photoinduced 
Generation of Hydroxyl Radical in Natural Waters”).

It is estimated that, depending on location, ambient UV radiation can reduce 
carbon fixation rates up to 65 % in surface waters of the Antarctic region, down 
to undetectable levels at 36 m (Boucher and Prezelin 1996). On average, up to 
42 % of primary production inhibition in the water column is carried out by 
UV radiation on a daily basis outside the ozone hole (Wängberg et al. 2006; 
Harrison and Smith 2009; Helbling et al. 1992; Smith et al. 1992; Holm-Hansen 
et al. 1993; Bertoni et al. 2011). In contrast, during a ozone hole depletion event, 
the inhibition is increased to ~50 %. This can be supported by the experimental 
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observations that UV-B radiation can inhibit the oxygen-evolving complex of 
PSII in M. aeruginosa (Jiang and Qiu 2011). The whole electron-transport activ-
ities are significantly varied: the transfer from water to methyl viologen being 
inhibited by 27.9 % under UV-B, that from diphenylcarbazide to methyl viologen 
by 13.3 % (Jiang and Qiu 2011).

Cyanobacterial blooms in freshwater have apparently increased over the last 
few decades all over the world (Xu et al. 2000; Chen et al. 2003; McCarthy et 
al. 2007). UV-B influences the CO2-uptake mechanism of M. aeruginosa, and this 
cyanobacterium has many adaptive strategies to cope with prolonged UV-B expo-
sure (Jiang and Qiu 2005; Song and Qiu 2007). It has been shown that maximum 
quantum yield and maximum electron transport rate in seaweeds collected from 
the Red Sea decreased largely due to the combined effects of increased irradiance 
(PAR) and presence of UV radiation (Figueroa et al. 2009). A 33-kDa protein of 
the water-splitting complex is sensitive to UV-B. Therefore, its degradation con-
tributes importantly to the decline of the electron transport rate (Jiang and Qiu 
2011; Prabha and Kulandaivelu 2002). Short-term UV-B exposure can severely 
inhibit photosynthetic capability, which could be quickly restored upon exposure 
to PAR (Jiang and Qiu 2011). Quite surprisingly, UV-A can assist the photo repair 
of UV-damaged DNA and enhance carbon fixation under reduced levels of solar 
radiation or fast mixing conditions (Gao et al. 2007, 2007; Karentz et al. 1991; 
Barbieri et al. 2002; Helbling et al. 2003). Recent study reveals that the PSII of 
M. aeruginosa FACHB 854 is more sensitive to UV-B exposure than PSI, and the 
oxygen-evolving complex of PS II is an important target for UV-B damage (Jiang 
and Qiu 2011).

The mechanisms behind the photoinhibition effects of strong sunlight, UV light 
or high irradiance (drought/heat stress) on aquatic microorganisms are presumably 
involving two facts: First, there are direct effects in which a high number of elec-
trons is released from chlorophylls (Chl) (P680) in PSII of microorganisms, upon 
excitation by strong light or strong UV light (Eq. 5.1). The release of many elec-
trons can produce elevated amounts of reactive oxygen species (ROS) such as 1O2, 
O2

•−, H2O2 and HO• (Eq. 5.2). Among the ROS, H2O2 can be used in photosyn-
thesis whilst the remaining ROS including H2O2 can react with the Chl+ (P680+) 
functional groups bound to PSII, killing the cells (Eq. 5.3). These reactions can be 
schematically depicted as follows:

ROS production in cells of aquatic microorganisms has generally been detected in 
earlier studies, which are extensively discussed in earlier sections. The process is sup-
ported by the earlier observation that chlorophylls can easily undergo photooxidation, 
involving attack of singlet oxygen and enzymatic degradation (Brown SB and Hendry 
1991; Gossauer and Engel 1996). Experimental studies show that H2O2 can affect the 

(5.1)Chl (or P680) + hυ → Chl+
(

or P680+
)

+ e−

(5.2)e
− + O2 + hυ →1

O2/O2
•−/H2O2 + hυ → HO

•

(5.3)HO•
(

1O2/O2
•−/H2O2

)

+ Chl+
(

or P680+
)

→ Chl+
(

or P680+
)

damage
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cyanobacterium at 10 times lower concentrations than green alga and diatom, and a 
strong light-dependent toxicity can enhance the difference (Drábková et al. 2007).

Second, indirect effects can be operational by which UV or strong light can 
produce a significant amount of strong oxidizing agents. For instance, HO• can be 
photolytically generated in the presence of H2O2 (photo-Fenton raction or direct 
photodissociation), hydrogen peroxide being produced by DOM (of both algal 
and terrestrial origin). The hydroxyl radical can also be photoproduced by other 
chemical species such as NO2

− and NO3
− (see the chapters “Dissolved Organic 

Matter in Natural Waters”, “Photoinduced and Microbial Generation of Hydrogen 
Peroxide and Organic Peroxides in Natural Waters”, “Photoinduced Generation 
of Hydroxyl Radical in Natural Waters” and “Photoinduced and Microbial 
Degradation of Dissolved Organic Matter in Natural Waters” for a detailed descrip-
tion). The HO• radical would subsequently react with the functional groups present 
in the cells of aquatic microorganisms. The indirect effect may significantly affect 
waters with high contents of DOM and POM, which are usually associated to ele-
vated production of photo- and microbial products and, as a consequence, to high 
photosynthesis and high primary production. Moreover, it has been shown that 
the production of HO• during an ozone hole (151 Dobson units) is enhanced by at 
least 20 %, mostly from nitrate photolysis and to a lesser extent from DOM pho-
toinduced reactions, in Antarctic seawater. Similar results have been observed for 
Arctic water (see chapters “Photoinduced and Microbial Generation of Hydrogen 
Peroxide and Organic Peroxides in Natural Waters” and “Photoinduced and 
Microbial Degradation of Dissolved Organic Matter in Natural Waters” for detailed 
description) (Rex et al. 1997; Qian et al. 2001; Randall et al. 2005).

Note that cyanobacteria (or phytoplankton) can produce autochthonous DOM 
including autochthonous fulvic acids, which are very efficient in the production of 
H2O2 (and of HO• as a consequence under irradiation). Regeneration of autoch-
thonous DOM and nutrients 

(

NO3
−

, NO2
−

, PO4
3−

and NH4
+
)

 occurs during the 
photoinduced and microbial assimilation of cyanobacteria or phytoplankton, and 
simultaneously also from the photoinduced degradation of DOM in natural waters 
(see chapter “Dissolved Organic Matter in Natural Waters”, “Photoinduced and 
Microbial Generation of Hydrogen Peroxide and Organic Peroxides in Natural 
Waters”, “Photoinduced Generation of Hydroxyl Radical in Natural Waters”, 
and “Impacts of Global Warming on Biogeochemical Cycles in Natural Waters” 
for detailed description). High solar irradiation generally induces the production 
of large amounts of H2O2 and HO•, from DOM or NO2

− and NO3
− in aque-

ous media (see also the chapters “Photoinduced and Microbial Generation of 
Hydrogen Peroxide and Organic Peroxides in Natural Waters” and “Photoinduced 
Generation of Hydroxyl Radical in Natural Waters”) (Mostofa and Sakugawa 
2009; Takeda et al. 2004). Moreover, light plays a significant role in the cycling of 
terrestrially-derived DOM and (to a certain extent) of autochthonous DOM. It can 
potentially increase metabolism of both terrestrially and microbially derived DOM 
in natural waters (Hiriart-Baer et al. 2008). Low light levels, due to increased 
CDOM, do not have significant effects on the benthic microfloral community at 
mid-shelf locations (Darrow et al. 2003).
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Enhanced solar UV-A (315–400 nm) and/or UV-B radiation (280–315 nm) 
can reduce growth and photosynthetic rates, inhibit pigment production, increase 
permeability of cell membranes, damage proteins or DNA molecules, and even 
lead to cell death (see chapter “Impacts of Global Warming on Biogeochemical 
Cycles in Natural Waters” for more references) (Jiang and Qiu 2011). At nor-
mal ozone concentrations (i.e. 344 Dobson Units), UV radiation can reduce pri-
mary productivity in surface waters by as much as 50 % (see chapter “Impacts 
of Global Warming on Biogeochemical Cycles in Natural Waters” for more ref-
erences) (Cullen and Neale 1994). A normal level of UV radiation also reduces 
phytoplankton production by 57 % at a depth of 1 m, while such inhibition 
decreases to <5 % at 30 m, at 50ºS in mid December (Arrigo 1994). Such effects 
on aquatic organisms might be caused directly by UV radiation and indirectly 
through high production of HO• in epilimnetic (upper layer) waters. Both effects 
are able to alter the structural configuration of organisms with release of many 
organic substances in epilimnetic (surface layer) waters (see chapter “Impacts of 
Global Warming on Biogeochemical Cycles in Natural Waters” for more refer-
ences) (Mostofa et al. 2009; Mostofa et al. 2009; Rastogi et al. 2010; Ingalls et 
al. 2010). Some studies also hypothesize that the primary target of photodamage 
to PSII by strong light is the PSII reaction center. A primary event in photoinhibi-
tion could be the damage to the D1 protein, which activates its rapid degradation 
by several proteases (Aro et al. 1993; Andersson and Aro 2001; Nishiyama et al. 
2008; Kanervo et al. 1993; Tyystjärvi et al. 2001). Studies show that hydroper-
oxides (H2O2 and organic peroxides, ROOH) are often considered as indicators 
of membrane damage (see also chapter “Photoinduced and Microbial Generation 
of Hydrogen Peroxide and Organic Peroxides in Natural Waters”) (Hagege et al. 
1990a, b).

Effects of Sunlight on Higher Plants

High irradiance can affect the PSII activity, with negative effect on the PSII-
mediated electron transport rate, disarrangement of PSII system, degradation of 
the D1 protein and/or its metabolism in a circadian-dependent manner (the same 
issue could also involve various polypeptides) (Aro et al. 1993; Pandey and Yeo 
2008; Maslenkova et al. 1995; Rintamäki et al. 1995; Baena–González and Aro 
2002; Booij-James et al. 2002; Hofman et al. 2002; Henmi et al. 2003, 2004; 
Nováková et al. 2004; Porta et al. 2004; Suzuki et al. 2004; Szilárd et al. 2007). 
The final result is a decrease of the photosynthetic capacity of plants. The decrease 
in photosynthetic efficiency is mostly associated with three facts: First, the decline 
in the enzymatic reactions of the Calvin–Benson cycle (Friedrich and Huffaker 
1980); second, the decrease in the light reactions, i.e. the photoinduced reac-
tions of PSI and PSII (Grover and Mohanty 1992; Wingler et al. 2004); and third, 
the changes in the structure of chloroplasts (Tang et al. 2005). UV-B  sensitivity 
depends on the oxidation state of the water-splitting complex of PS II in higher 
plant such as spinach (Szilárd et al. 2007). It has been shown that ROS produced 
endogeneously under high-irradiance conditions can cause more deleterious effect 
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http://dx.doi.org/10.1007/978-3-642-32223-5_2


597Photosynthesis in Nature: A New Look

in the decrease of PSII-mediated electron transfer rate, compared with exoge-
nously applied H2O2 and •OH stresses (Pandey and Yeo 2008). Strong illumina-
tion of thylakoid membranes in the absence of an acceptor can results in oxygen 
accepting electrons and subsequently producing reactive oxygen species, ROS 
(Pandey and Yeo 2008).

The photoproduction rate of ROS is largely enhanced under conditions 
where photon intensity is in excess of that required for the CO2 assimilation 
(Asada 2006). It has been shown that the quantum yield of PSII is increased 
more rapidly than CO2 assimilation in 20 % O2, which can result from the elec-
tron flux through the water–water cycle (Makino et al. 2002). This flux can 
reach a maximum just after illumination, and can rapidly produce non-pho-
toinduced quenching. With increasing CO2 assimilation, the electron flux of 
water–water cycle and the non-photoinduced quenching is decreased (Makino 
et al. 2002). The cyclic electron flow around PSI can produce non-photoinduced 
quenching, which remains at elevated levels upon switching to low oxygen 
(2 % O2) (Makino et al. 2002). The water–water cycle is thus believed to dis-
sipate the energy of excess photons (Asada 1999, 2000, 2006; Foyer and Noctor 
2000; Osmond 1997; Osmond and Grace 1995; ). Such a cycle is defined as the 
process of the electron flow from water in PSII to water in PSI (Asada 1999). 
In addition, H2O2 and ROS can directly be produced by excited PSII under pho-
toinhibitory conditions that trigger the turnover of the D1 protein (see also ear-
lier sections) (Aro et al. 1993; Prasil et al. 1992; Bradley et al. 1991). ROS can 
influence the outcome of photodamage, primarily via inhibition of translation 
of the psbA gene, which encodes the precursor of the D1 protein (Nishiyama et 
al. 2001). The rate of photo-damage is proportional to irradiance (Pandey and 
Yeo 2008).

The mechanism behind the high irradiance (or heat stress or high tempera-
ture or drought) effect on higher plant is the similar to that explained before for 
cyanobacteria or phytoplankton in aqueous media. However, in higher plants 
the reaction centers of PSI and PSII in chloroplast thylakoids are the major ROS 
generation site. Photoreduction of O2 to H2O2 occurs in PSI (Mehler 1951): the 
primary reduced species is the superoxide radical anion 

(

O2
•−

)

, and its dispropor-
tionation produces H2O2 and O2 (Asada et al. 1974). Correspondingly, ground (tri-
plet) state oxygen 

(

3O2

)

 in PSII is excited to singlet state 
(

1O2

)

 by the triplet state 
of chlorophyll (Hideg et al. 1998; Telfer et al. 1994). The mechanism behind the 
photoreduction of O2 in PSI of higher plants according to Asada (Asada 2006) and 
other studies (Lobanov et al. 2008; Parmon 1985; Bruskov and Masalimov 2002) 
can be expressed as follows (Eqs. 5.4–5.11):

(5.4)P680 or P700 + hυ → e−
+ P680+or P700+

(5.5)O2(aq) + e− + hυ → O2
•− (PSI)

(5.6)2O2
•− + 2H

+ → H2O2 + O2

(5.7)H2O2 + 2AsA → 2H2O + 2MDA
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In this modified mechanism, the electron is originated mostly from photoin-
duced excitation of both P680 and P700 (Eq. 5.4). Dissolved O2 in water is thus 
reduced photolytically, differently from the results of earlier studies. The dispro-
portionation of O2

− to H2O2 and O2 is catalyzed by superoxide dismutase (Eq. 
5.6). H2O2 is then reduced to H2O by ascorbate (AsA), a process that is catalyzed 
by ascorbate peroxidase (APX). AsA is oxidized to monodehydroascorbate radi-
cal, MDA (Eq. 5.7).

Additional electron pathways in chloroplasts that protect the photosynthetic 
apparatus from photo-oxidative stress are the Mehler reaction, xanthophyll 
cycle–dependent energy, the cyclic electron flow around PSI, the cyclic electron 
flow within PSII, and antioxidant metabolism (Mehler 1951; Heber et al. 1978; 
Verhoeven et al. 1997; Miyake and Yokota 2001; Miyake et al. 2002; Hirotsu et 
al. 2004). Nitrate assimilation is referred to as alternative electron flow (Makino 
et al. 2002). The Mehler reaction implies that the photoreduction of O2 at PSI can 
produce superoxide radical 

(

O2
•−

)

, which disproportionates to H2O2 (Mehler 
1951; Asada 2006). It is estimated that the maximum rate of O2 photoreduc-
tion is approximately 7.5 mmol O2

•− (mol Chl)−1 s−1 (30 mol (mg Chl)−1 h−1) 
in washed thylakoids, which corresponds to 5–10 % of the rate of total electron 
transport (Asada et al. 1974). It has also been observed that the O2

•− reduction 
rate can reach a maximum around 2.0 kPa O2 (Heber and French 1968; Takahashi 
and Asada 1982).

5.2  CO2 Forms Used in Phytoplankton Photosynthesis

CO2 and DIC (CO2, H2CO3, HCO3
−, and CO2−

3 ) can be produced either photo-
lytically or microbially from both DOM and POM (e.g. alage or phytoplankton) 
in natural waters (see also chapter “Photoinduced and Microbial Degradation of 
Dissolved Organic Matter in Natural Waters” and “Impacts of Global Warming 
on Biogeochemical Cycles in Natural Waters”) (Jones 1992; Jansson et al.  
2000; Meili et al. 2000; Grey et al. 2001; Hernes and Benner 2003; Tranvik  
et al. 2009; Ballaré et al. 2011; Zepp et al. 2011; Miller and Zepp 1995; Graneli 
et al. 1996; Granéli et al. 1998; Bertilsson and Tranvik 2000; Ma and Green 
2004; Xie et al. 2004; Fu et al. 2007). This production varies seasonally and spa-
tially depending on several factors such as contents of DOM and POM, solar 
intensity, water temperature and other geological and environmental conditions 
(White et al. 2010).

Gaseous CO2 is rapidly dissolved in waters (Liu et al. 2010):

where the reaction (Eq. 5.8) is an equilibrium mixture of dissolved carbon 
dioxide ([CO2]aq), carbonic acid (H2CO3), bicarbonate 

(

HCO3
−
)

 and carbon-
ate 

(

CO3
2−

)

 ions with the pKa of 6.3 and 10.3 for H2CO3 ↔ H+ + HCO3
−

and HCO3
− ↔ H

+ + CO3
2−

, respectively (Liu et al. 2010; Appelo and Postma 

(5.8)CO2 + H2O ↔ H2CO3 ↔ H+
+ HCO3

−
↔ 2H+

+ CO2−
3

http://dx.doi.org/10.1007/978-3-642-32223-5_10
http://dx.doi.org/10.1007/978-3-642-32223-5_10
http://dx.doi.org/10.1007/978-3-642-32223-5_10
http://dx.doi.org/10.1007/978-3-642-32223-5_10
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2005). The proportion of each species depends on pH: at high pH the reaction shifts 
to the right hand side of (Eq. 5.8) and HCO3

− dominates at pH between 7 and 9, 
approximately 95 % of the carbon in water. At pH > 10.5, CO3

2− predominates 
(Dreybrodt 1988). The equilibrium constants for this system are altered by the salinity 
of the medium: the values for seawater are an order of magnitude higher than those of 
freshwater toward the right-hand-side of the reaction (Raven et al. 2002; Millero and 
Roy 1997).

It is well known that the stable carbon isotope composition (δ13C value) of 
organic matter, produced either by phytoplankton or terrestrial plants during 
photosynthesis, is significantly varied depending on the taxon-specific photo-
synthetic pathways (such as C3, C4, and crassulacean acid metabolism, CAM). 
It also varies depending on: variety of phytoplankton; diffusion of CO2; incor-
poration of CO2 by phosphoenolpyruvate carboxylase or Ribulose Bisphosphate 
Carboxylase-Oxygenase (Rubisco), and respiration; sources and interconversion of 
CO2 and HCO3

− (depending on a variety of environmental conditions including 
light intensity, temperature, DOM and POM contents, water depth, atmospheric 
CO2 concentration and so on) (O’Leary 1981; Cooper and McRoy 1988; Farquhar 
et al. 1989; Raven and Farquhar 1990; Yoshioka 1997; Raven et al. 2002; Hu  
et al. 2012). Note that the δ13C values of [CO2]aq and DIC are −16.5 to −14.5 ‰ 
and −7.4 to −4.5 ‰, respectively (Yoshioka 1997). The values of δ13C of organic 
matter in marine macroalgae and seagrass collected from the natural environment 
can vary from –2.7 ‰ to –35.3 ‰ (Raven et al. 2002; Hu et al. 2012; Beardall 
2003; Hemminga and Mateo 1996; Raven 1997; Dunton 2001). Plants with C4 
characteristics show δ13C values of −6 to −19 ‰ whilst plants with C3 character-
istics exhibit δ13C values of −24 to −34 ‰ (Smith and Epstein 1971).

Such variation in the δ13C value can be caused by (Farquhar et al. 1989; Raven 
and Farquhar 1990): (i) the isotope fractionation factor (α), which is the ratio of 
the reaction rates of 12

CO2 and
13

CO2
 with Rubisco (α = 1.029 for gaseous CO2 

and α = 1.030 for dissolved CO2); (ii) the relative contribution of phospho-
enolpyruvate carboxylase (PEPC) activity to the photosynthetic carbon assimila-
tion; and (iii) the supply of CO2 to Rubisco is restricted by the boundary layer, 
stomata, and intercellular gas spaces that can differ for CO2 diffusion in the gas 
phase (α = 1.0044), and in the aqueous phase (α = 1.0007).

The δ13C values of POM are varied spatially and seasonally. They increase 
with increasing pH of lake water, which may reflect a shift by phytoplank-
ton from using CO2 to using HCO3

− for photosynthesis (Zohary et al. 1994; 
Doi et al. 2006). The pH is increased with increasing water temperature dur-
ing the time span of the summer stratification period, which may be con-
nected with photoinduced degradation of DOM and POM (see also chapter 
“Photoinduced and Microbial Degradation of Dissolved Organic Matter in Natural 
Waters”) (Kopáček et al. 2003; Mostofa et al. 2005). Photoinduced generation of 
H2O2

(

2O2
•− + 2H+ → H2O2 + O2

)

 (Mostofa and Sakugawa 2009; Fujiwara 
et al. 1993) might be one of the key factors for enhancing alkalinity or pH in 
waters. Therefore, uptake of HCO3

− for phytoplankton photosynthesis at high pH 
might be the effect of its dominant presence in waters. A significant increase in the 

http://dx.doi.org/10.1007/978-3-642-32223-5_4
http://dx.doi.org/10.1007/978-3-642-32223-5_4
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δ13C value in the phytoplankton bloom season suggests that phytoplankton pho-
tosynthesis may be limited by CO2 depletion (Takahashi et al. 1990). It has been 
observed that aqueous CO2, [CO2]aq, determined in freshwater and marine waters 
is relatively low (0.13–35 M) in freshwater and relatively higher (5–120 M) 
in seawater (Fogel et al. 1992; Francois et al. 1993; Yoshioka 1997; Takahashi  
et al. 1990; Herczeg and Fairbanks 1987). All aquatic phototrophs are depleted in 
δ13C relative to dissolved inorganic carbon (DIC), because Rubisco discriminates 
against 13C (Hu et al. 2012).

The spatial and temporal variability of δ13C values in aquatic organisms 
depends on several factors such as isotopic shifts in available inorganic carbon, 
resulting from light-induced HCO3

− utilization, variation in solar intensity, differ-
ences in water temperature, internal recycling of respiratory CO2, photoinduced 
generation of DIC from DOM and POM, and dissolution of sedimentary carbonate 
(Yoshioka 1997; Raven et al. 2002; Jones 1992; Ma and Green 2004; Xie et al. 
2004; White et al. 2010; Liu et al. 2010; Dreybrodt 1988; Hemminga and Mateo 
1996; Campbell and Fourqurean 2009). It is shown that [CO2]aq concentration is 
inversely correlated with the δ13C of organic matter produced by phytoplankton 
(Rau et al. 1992; Freeman and Hayes 1992). The carbon isotope fractionation of 
phytoplankton could be a useful indicator for the assessment of its growth rate 
and of CO2 availability (Fogel et al. 1992; Takahashi et al. 1991). Phytoplankton 
can actively transport CO2 by a carbon-concentrating mechanism (CCM) that can 
affect its δ13C value (Yoshioka 1997; Sharkey and Berry 1985; Bums and Beardall 
1987; Thielmann et al. 1990). Correspondingly, ß-carboxylation catalysed by 
phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase can 
affect the δ13C of phytoplankton (Descolas-Gros and Fontugne 1985; Falkowski 
1991).

To understand the mechanism behind the uptake of CO2 or HCO3
−, a fractionation 

equation was developed for plant photosynthesis (O’Leary 1981; Farquhar et al. 1989; 
Raven et al. 1993) and phytoplankton photosynthesis (Fogel et al. 1992; Rau et al. 
1992; Francois et al. 1993; Jasper and Hayes 1994; Laws et al. 1995; Yoshioka 1997; 
Berry 1988).

5.2.1  Basic Equation for Expressing Photosynthetic Carbon Isotope 
Fractionation

The photosynthetic carbon isotope fractionation is initially derived based on the 
land C3 plants (O’Leary 1981; Farquhar et al. 1989; Yoshioka 1997). The photo-
synthetic process for uptake of carbon can be depicted as follows (Yoshioka 1997)::

where ki is the rate constant for process i. Processes 1 and 3 are the diffusive influx 
and efflux of CO2, respectively, whilst process 2 is the carboxylation step by 

(5.9)[CO2]out
k1

←→
k3

[CO2]in −→ k2 organic carbon
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Rubisco. At steady state, or d[CO2]in/dt  = 0, the overall fractionation factor (α) 
can be written as

where Ce and Ci are the CO2 concentrations in air and at the carboxylation site, 
respectively, and Δki = αi − 1. In the equation (O’Leary 1981), subscripts for 
efflux and carboxylation steps are 2 and 3, respectively, and Ei = 1 + Δki:

When a = Δk1, b = Δk2 and CO2 concentrations in air and intercellular leaf 
spaces are denoted in partial pressure pa and pi, respectively, then (Eq. 5.10) can 
be modified into Farquhar’s equation:

On the other hand, the fractionation equation for passive diffusion-phytoplank-
ton photosynthesis is substantially similar to that of land C3 plants (Eq. 5.10). The 
CO2 diffusion must be considered in the aqueous phase and Ce denotes the CO2 
concentration in bulk solution or [CO2]aq. The term ‘CO2 demand’ = ‘Ce – Ci’ has 
been introduced into the new model (Rau et al. 1992). The relationship between 
the δ13C value of POM and [CO2]aq can be determined using the fractionation 
equation that includes the (Ce–Ci) term:

where (Ce – Ci) = 7–8 μM in southwestern Indian Ocean. When (Ce – Ci) is con-
stant, the (Eq. 5.10) at infinite Ce can be expressed as:

This implies that the overall fractionation can reach a maximum value, which 
corresponds to that of Rubisco (α = 1.027–1.029, or Δk2 = 0.027 – 0.029) at 
high Ce (Roeske and O’Leary 1984; Farquhar and Richards 1984). Furthermore, 
(Ce – Ci) may increase with increasing Ce as found in a culture study of 
Skeletonema costatum and Emiliania huxley, which introduces the possibility of 
β-carboxylation at high Ce (Hinga et al. 1994). Interestingly, the activity of the 
PEPCKase of S.costatum can increase to >50 % of Rubisco activity at the end of 
growth (Descolas-Gros and Fontugne 1985, 1990).

The low fractionation observed at high Ce is possibly due to β-carboxylation 
(Goericke and Fry 1994), particularly in the case of PEPCKase-mediating 
β-carboxylation. The latter shows similar discrimination against 13CO2 as 
that of Rubisco (Arnelle and O’Leary 1992). Active transport by CCM may 
contribute to a fractionation at high Ce, which is lower than that given by the 

(5.10)α= 1+∆k1 + (∆k2 − ∆k1)
Ci

Ce

(5.11)α=E1(E3/E2 + k3/k2)(1 +
k3

k2
)

(5.12)∆= α − 1 = a + (b − a)
pi

pa

(5.13)εp = ε1 +

(

1 −
Ce − Ci

Ce

)

(ε2 − ε1)

(5.14)α = 1 + ∆k2
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fractionation equation (Yoshioka 1997). It is shown that passive CO2 diffu-
sion is efficient to sustain maximum growth of Phaeodactylum tricornutum, 
which does not require active transport of inorganic carbon at [CO2]aq = 10 M 
(Laws et al. 1995). This study also shows that maximum growth rate is expected 
when the CO2 influx is equal to the growth rate (Laws et al. 1995). In that case, 
Ci = 0 and also the growth rate (photosynthetic activity) is zero or even nega-
tive, because of the oxygenase activity of Rubisco (Yoshioka 1997). The con-
tradiction may occur because the growth rate is not independent of Ce and Ci. 
Therefore, diffusive transport of CO2 can operate together with active transport 
(Yoshioka 1997), and CCM possibly requires an energy expenditure (Berry 
1988). However, it is difficult to identify the relative contribution of active 
transport to the total CO2 influx from the ealier fractionation equations. In the 
derivation of (Eq. 5.10), it is assumed that the resistance to CO2 diffusion is 
similar in either direction across the cell membrane, or k1 = k3 (Francois et al. 
1993). This assumption originally came from the expectation that resistance to 
CO2 diffusion through the stoma of a plant leaf would be the same in both direc-
tions (O’Leary 1981). Aquatic phytoplankton may have a CCM with different 
values for this resistance (k1 ≠ k3), probably (k1 > k3), and thus the fractionation 
equation can be rewritten as:

which may provide some measure of the contribution of active transport. It is gen-
erally assumed that the resistances to CO2 diffusion in both directions across the 
cell membrane are the same (symmetric permeability). A fractionation equation is 
required to express the decrease in fractionation with increasing contribution of 
active transport (f), as some function f (Yoshioka 1997). Basically, f and k1 ≠ k3 
may have the same importance for CO2 acquisition by phytoplankton. Therefore, 
active transport of inorganic carbon by CCM may be linked (as a homologue) to 
the asymmetric permeability of the cell membrane for CO2.

Deviation of Fractionation Equations Involving Active Transport (Yoshioka 
1997)

Various phytoplankton species can actively transport CO2 and HCO3
− in aqueous 

media (Bums and Beardall 1987). However, they depend on two phenomena: (i) 
the occurrence of internal and external carbonic anhydrase (CA), which can cata-
lyse the equilibrium between CO2 and HCO3

− and can affect the determination 
of the inorganic carbon species crossing the cell membrane; (ii) the difference 
in inorganic carbon species can substantially vary the fractionation factor of the 
substrate for photosynthesis. It is shown that fractionation between [CO2]aq and 
HCO3

− can differ by at most 10 ‰ in both equilibrium- and CA-catalyzed reac-
tions (Deines et al. 1974; Paneth and O’Leary 1985). Considering these phenom-
ena, it is important to develop the fractionation equations for two cases in which 
transported carbon has the δ13C value of either bulk [CO2]aq or HCO3

−.

(5.15)α = 1 + ∆k1 + (∆k2 − ∆k1)
k3Ci

k1Ce
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(1) Active transport of CO2. The δ13C value of actively transported inorganic car-
bon is assumed to be the same as that of Ce (Fig. 8). Extracellular CA may 
contribute to the conversion of HCO3

− to CO2 at the cell surface.

At steady state:

where F4 is the is the flux of actively transported CO2.
The relative contribution of active transport (f) can be defined by:

If 0 ≤ f < 1, (Eq. 5.17) can be rewritten as:

Overall, fractionation becomes:

By assuming the same f value for 12
CO2 and

13
CO2, and Δk1 = Δk3, (Eq. 5.19) 

becomes the same as (Eq. 5.15) when k1/k3 is substituted for (1 − f). This supports 
the expectation that active transport might be linked with the asymmetric perme-
ability of the cell membrane for CO2. Leakiness, X (the ratio of efflux to influx of 
DIC) (Berry 1988), can be expressed as follows:

When all carbon is transported by active transport (f = 1), k1Ce would be zero.
In that case, one cannot substitute f = 1 in (Eq. 5.19), because the denominator in 
(Eq. 5.18) becomes zero. Then, α becomes:

X is not zero, but

(5.16)
dCi

dt
= k1Ce + F4 − (k2 − k3)Ci = 0

(5.17)f =
F4

k1Ce + F4

(5.18)
dCi

dt
=

1

1 − f
k1Ce − (k2 + k3)Ci = 0

(5.19)α = 1 + ∆k1 + (∆k2 − ∆k1)(1 − f )
Ci

Ce

(5.20)
X = 1 +

k3Ci

k1Ce F4

(1 − f )
Ci

Ce

(5.21)α = 1 +
∆k2 − ∆k1

∆k1 + 1

k3Ci

F4

= 1 + (∆k2 − ∆k1)
k3Ci

F4

(Ce)            (Ci)
CO2  CO2 ← Organic C

HCO3
- → CO2

* Phytoplankton cell  

→←
k3

k1

← →

k4

k4

↑ F4

k2

CA

Fig. 8  Schematic presentation of the active transport of CO2. The δ13C of the actively trans-
ported carbon (CO2

*) is assumed to be the same as that of the CO2 in the medium (Ce). Data 
source Yoshioka (1997)
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(2) Active transport of HCO3
−: The transported carbon has the same δ13C value 

as HCO3
−, as depicted in the scheme shown in (Fig. 9). The overall fractiona-

tion equation is substantially different from Eq. (5.19), although the steady-
state for Ci is denoted by a similar term as Eq. (5.16), which can be written 
as:

where Δk4 denotes the fractionation in the CO2—HCO3
− dissociation process.

Note that f and X are the same as those in the active transport of CO2.
Considering that the second- and third-order terms of Δki are negligible, and 

Δk1 = Δk3, then α can be approximated as follows:

When  f = 1, α becomes:

which implies that the overall fractionation decreases by (Δk1 + Δk4) when 
all  carbon derives from the active transport of HCO3

− ( f = 1) , compared to 
the  passive diffusion model (Eq. 5.15). It can be deduced from (Eq. 5.24) that 
all  fractionation steps, including overall fractionation would be affected by f. 
The  difference between (Eqs. 5.19 and 5.24) or (Δk1 + Δk4) corresponds to the 
 difference in δ13C values between CO2 and HCO3

−
. These equations indicate that 

the overall fractionation from [CO2]aq to organic carbon may be less than unity 
under some conditions (Yoshioka 1997).

From a reanalysis of Hinga’s data (Hinga et al. 1994) one gets that the active trans-
port of CO2 for S. costatum can contribute ~ 30–40 % of the total carbon influx. The 
relative contribution of active transport can reach 25–35 %, without any change in 
CO2 demand for an uptake of 10 % of the total carbon mediated by β-carboxylation 
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(Yoshioka 1997). Finally, carbon assimilation by various kinds of phytoplankton, 
such as S. costatum, Microcystis spp. and others (Fogel et al. 1992; Francois et al. 
1993; Yoshioka 1997; Takahashi et al. 1990; Herczeg and Fairbanks 1987; Hinga  
et al. 1994) may operate under almost constant CO2 demand, amounting on average 
to 4.4 μM in seawater and 0.29 μM in freshwater (Yoshioka 1997). Phytoplankton 
photosynthesis is largely dependent on habitats (either seawater or freshwater), and 
on phytoplankton species that have variable efficiency for CCM. The process involves 
either active transport of HCO3

−, or coupled dehydration of HCO3
− by a cell-surface 

carbonic anhydrase and CO2 transport (MacIntyre et al. 2000; Badger and Price 1992; 
Tortell et al. 1997; Berman-Frank et al. 1998; Nimer et al. 1999).

5.3  Variation in Temperature

Temperature, driven by solar radiation, is one of the key factors for variating 
the primary production by photosynthesis in natural waters (Sobek et al. 2007; 
Mortain-Bertrand et al. 1988; Davison 1991; Wilen et al. 1995; Lesser and 
Gorbunov 2001; Baulch et al. 2005; Doyle et al. 2005; Yoshiyama and Sharp 
2006; Ogweno et al. 2008; Bouman et al. 2010; Fu et al. 2007). This effect can be 
discussed, based on aquatic microorganisms and higher plants.

Temperature Effects on Aquatic Microorganisms

Cyanobacteria, the most ancient life forms on earth, are unusual prokaryotic micro-
organisms that are able to perform oxygenic photosynthesis. Optimum growth, with 
respect to optimal temperatures, is in this case influenced by their ability to toler-
ate temperature stress, such extreme cold in Antarctica (where temperatures never 
exceed −20 °C) and in water pockets of Antarctic lake ice, where temperatures are 
always below 0 °C. At the opposite end of the variation scale there are extremely 
high temperatures such as 55–60 °C and even the case of hot springs, where temper-
atures reach 70 °C (Schopf et al. 1965; Meeks and Castenholz 1971; Margulis 1975; 
Priscu et al. 1998; Psenner and Sattler 1998; Ward et al. 1998).

At ambient water temperature (WT), the primary excitation requires 2–3 ps, 
and the subsequent electron transfer to the primary quinone QA exhibits multipha-
sic kinetics (80–300 ps) (Dashdorj et al. 2004). It is commonly considered that 
that the primary excitation occurs within 1–3 ps after the creation of the electroni-
cally excited special pair P700* (Brettel 1997; Dashdorj et al. 2004). The state of 
thylakoid membranes in cyanobacteria plays a prominent role in the tolerance of 
the photosynthetic machinery to environmental stresses, such as cold (chilling) 
(Wada et al. 1990; Murata et al. 1992).

At low temperatures, ultrafast time-resolved spectroscopy suggests multiexpo-
nential evolution of the excited state and of photoproduct populations, even when 
excitation takes place in the red edge of the absorption spectrum (Germano et al. 
2004). The different time components observed at low temperatures are generally 
recognized to produce charge separation. The latter can either take place through 
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direct excitation of the primary donor by 1–5 ps (Prokhorenko and Holzwarth 
2000; Tang et al. 1990; Germano M et al. 1995; Groot et al. 1997; Konermann  
et al. 1997; Greenfield et al. 1999), or be slowed down by energy transfer to the 
primary donor in tens or hundreds of picoseconds (Groot et al. 1997; Greenfield 
et al. 1999). However, calculations based on structural information, from both the 
crystallographic structure and a model, predict subpicosecond excitation energy 
equilibration among the six central cofactors (Durrant et al. 1995; Renger and 
Marcus 2002; Zouni et al. 2001; Kamiya and Shen 2003; Svensson et al. 1996; 
Leegwater et al. 1997). Electron transfer thus occurs from other Chls, and the 
slower components observed in the tens of picoseconds timescale at low tempera-
tures are due to secondary electron transfer (Prokhorenko and Holzwarth 2000). A 
model study has shown that the ~67 % variability of observed primary production 
indicates that estuarine production is mainly controlled by light availability and 
temperature (Yoshiyama and Sharp 2006). Bacterial abundance (12 × 106 mL−1) 
and production (1.7 g C L−1 h−1) depend on temperature. During late spring and 
summer, at constantly higher temperatures, bacterial production can correlate posi-
tively with readily utilisable substrates and humic compounds (Freese et al. 2007).

High surface temperatures and heavy precipitation in late spring and summer can 
give rise to a highly-stratified water column that can stimulate a series of phytoplankton 
blooms. During winter in Tokyo bay, a weakly-stratified and deeply-mixed water col-
umn can lead to a rapid decline in phytoplankton biomass under light-limited growth 
conditions (Bouman et al. 2010). The effect of high WT can be a decrease in PSII effi-
ciency, which can ultimately cause cell stress (Lesser and Gorbunov 2001).

At highly elevated WT, several effects on phytoplankton can take place such as 
disorganization of thylakoid membranes, disrupted electron flow to the dark reac-
tions of photosystem II, elevated concentrations of damaging oxygen and hydroxyl 
radicals, and the loss of the D1 repair protein (Goulet et al. 2005). The mecha-
nism behind the changes in photosynthetic efficiency caused by WT, driven by 
natural solar intensity, mostly follows a similar mechanism as sunlight effects (see 
the earlier section). However, WT can cause photosynthetic efficiency to be either 
enhanced or decreased, an issue that involves three facts: First, at low WT (lower 
than 12 °C, including chilling stress that generally refers to nonfreezing tempera-
tures at 0–12 °C) the key reactants such as CO2, H2O2 and DIC (generated both 
photolytically and microbially from DOM and POM) are quite low at low sun-
shine in natural surface waters. Low availability of these reactants can decrease the 
photosynthetic efficiency of aquatic microorganisms in natural waters.

Second, at moderate WT (approximately 12–25 °C) and with an increase in 
WT, the key reactants are significantly increased, usually also because of enhanced 
sunlight intensity. This effect may greatly enhance photosynthesis at optimum WT 
and, as a consequence, primary production in waters. It has been shown that the 
Chl a concentrations at the epilimnion are well correlated with WT in lakes, but 
those correlations are not observed in the deeper layers (Fu et al. 2010; Mostofa 
KMG et al., unpublished data). This suggests that an optimum water temperature, 
driven by solar intensity, may play a significant role in the origin of Chl a or in 
enhancing phytoplankton biomass in natural waters.
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At highly elevated WT (approximately >25–50 °C), photoinduced and micro-
bial degradation of DOM and POM is extremely enhanced, with extremely high 
generation of H2O2, CO2 and DIC. It has been shown that [CO2]aq is significantly 
higher (~10–120 M) at 25 °C than at 15 °C (~5–110 M) or at 9 °C (~5–50 M) in 
marine waters (Hinga et al. 1994). This effect can cause extremely high photo-
synthesis and high primary production. This can be supported by the synergistic 
effect of high H2O2, combined with high seawater temperature, which can cause 
a 134 % increase in respiration rates. Such an increase surpassed the effect of 
either H2O2 or high seawater temperature alone (Higuchi et al. 2009). High tem-
perature, driven by strong solar intensity, is responsible for high production of 
H2O2 (see also chapter “Photoinduced and Microbial Generation of Hydrogen 
Peroxide and Organic Peroxides in Natural Waters”) (Mostofa and Sakugawa 
2009), which is directly linked with photosynthesis. Simultaneously, this pro-
cess can also generate a high amount of ROS such as O2

•−, 1O2, H2O2, and HO•. 
The latter is a strong oxidizing agent, produced either from H2O2 (via direct 
photo-dissociation by sunlight or photo-Fenton reaction) or other sources, such 
as the direct photolysis of NO2

− and NO3
− (see the chapters “Photoinduced and 

Microbial Generation of Hydrogen Peroxide and Organic Peroxides in Natural 
Waters”, “Photoinduced Generation of Hydroxyl Radical in Natural Waters” 
and “Photoinduced and Microbial Degradation of Dissolved Organic Matter in 
Natural Waters”). This effect can significantly degrade algal or phytoplankton 
cells, thereby decreasing the photosynthetic efficiency. All these processes should 
be able to significantly promote the photosynthetic efficiency in waters with high 
contents of DOM and POM.

Temperature Effects on Higher Plants

Plants need an optimum temperature for photosynthesis. The stress represented by 
extremely high- or low-temperature has a significantly negative effect on the growth 
and productivity of plants (Allen and Ort 2001; Adams et al. 2002; Adams Iii et al. 
2004; Öquist and Huner 2003; Yang et al. 2009). It has been shown that suboptimal and 
above-optimal temperatures can promote photoinhibition, caused by an over-excitation 
of photosystems (Powles 1984; Öquist et al. 1993; Huner et al. 1998). Effects of tem-
perature on the photosynthesis of plants have been discussed as follows: First, low tem-
perature stress or chilling stress (generally at 0–12 °C) can highly inhibit growth and 
development of most plants, and in particular of those coming from tropical and sub-
tropical regions (Allen and Ort 2001; Yang et al. 2009; D’Ambrosio et al. 2006).

The chilling stress or lower temperatures can affect several physiological func-
tions and induce water deficiency. Commonly observed effects are decrease of leaf 
water potential, of electron transport rate, of total Chl contents, of CO2 uptake and 
of the carotenoid content; stomatal closure; inhibition of thylakoid electron trans-
port and photophosphorylation; Rubisco inactivation; inhibition of carbohydrate 
metabolism; and finally, a significant decrease of the maximum quantum effi-
ciency of PSI and PSII primary photochemistry (Allen and Ort 2001; Yang et al. 
2009; D’Ambrosio et al. 2006; Berry and Bjorkman 1980; Eamus 1986; Sage and 
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Sharkey 1987; Huner et al. 1993; Ebrahim et al. 1998; Sundar and Ramachandra 
Reddy 2001; Caramori et al. 2002; Kudoh and Sonoike 2002; Yu et al. 2002; 
Huang and Guo 2005). The latter effect can limit the photosynthetic rates or pro-
cesses of chilling-sensitive plants.

It is also shown that low temperatures can inhibit the enzymes of carbon assim-
ilation, such as fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase 
(D’Ambrosio et al. 2006; Sassenrath et al. 1990; Sassenrath and Ort 1990). It has 
also been shown that the O2-induced inhibition of photosynthesis can increase 
with temperature, from 12.2 % at 5 °C to 33.5 % at 35 °C (D’Ambrosio et al. 
2006). Plants of B. vulgaris exposed to low temperatures (5–15 °C) also show a 
significant stimulation of CO2 assimilation at 2 % O2 concentration (D’Ambrosio 
et al. 2006). The inhibition of photosynthesis (photorespiration) at high tempera-
tures is generally caused by the increase of the ratio oxygenase/carboxylase activ-
ity of Rubisco (Sage and Sharkey 1987).

It has been observed that low night temperature under chilling conditions 
(mostly affected at 5 °C) can increase photoinhibition of photosynthesis with 
a marked loss of D1 and 33 kDa proteins in various plants (Yang et al. 2009; 
Sundar and Ramachandra Reddy 2001; Lidon et al. 2001; Bertamini et al. 2006). 
This can be due to accumulation of soluble sugars and reduced orthophosphate 
cycling from the cytosol back to the chloroplast. Therefore, it limits the ATP syn-
thesis needed for Rubisco regeneration (Ebrahim et al. 1998; Hurry et al. 1998). 
Inhibition of photosynthetic electron transport is susceptible to lessen net pho-
tosynthesis in some chilling-sensitive plant species, despite relatively minimal 
reductions in the ratio of variable to maximum chlorophyll (Chl) fluorescence 
(Fv/Fm). Such an effect is due to the net photoinactivation of PSI rather than PSII 
(Bertamini et al. 2006; Tjus et al. 1998; Sonoike 1999). A significant decrease of 
electron transport rate under chilling conditions might cause a low temperature-
induced limitation of carbon metabolism. Furthermore, sinks of electrons can 
result in alternative processes to CO2 fixation (D’Ambrosio et al. 2006; Huner et 
al. 1993; Osmond 1981; Hendrickson et al. 2003, 2004). The decrease of elec-
tron transport in PSII (D’Ambrosio et al. 2006) is susceptible to decrease in the 
photoinduced generation of O2

•− and then H2O2, which is directly liked to the 
occurrences of photosynthesis. The decrease in the contents of H2O2 production 
at chilling conditions can decrease the photosynthesis that subsequently decreases 
the growth and development of plants. This effect is mostly responsible for other 
physiological changes in plants at chilling stress.

It has also been observed that a significant increase of the proportion of elec-
tron flow in chilling conditions can occur in non-assimilative processes in some 
plants, such as maize and grapevine leaves (Fryer et al. 1998; Flexas et al. 1999). 
These studies suggest that a higher electron flow could reach O2, by the Mehler 
reaction, as an alternative acceptor to CO2 at low temperatures. This effect can 
enhance the production of ROS such as O2

•− and H2O2, which may not be used in 
photosynthesis because of CO2 shortage and other still unknown reasons. In con-
trast, H2O2 and photogenerated HO• can damage the cells. Coherently, damage of 
chlorophyll-protein complexes and pigments in has been observed in plant cells 
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under chilling condition (Powles 1984; Kudoh and Sonoike 2002; Bongi and Long 
1987; Garstka et al. 2007). The decrease of the carotenoid content at lower tem-
peratures in B. vulgaris can enhance damage by ROS, because of the important 
photoprotective function of carotenoids in scavenging highly destructive singlet 
oxygen. Furthermore, they can prevent 1O2 formation by reacting with the chlo-
rophyll triplet state (Havaux et al. 1998). Low temperature stress can also enhance 
photodamage to PS II under strong light (Wada et al. 1990; Murata et al. 1992; 
Öquist et al. 1993; Öquist and Huner 1991), and repair of PS II under low-temper-
ature stress conditions is inhibited both in Synechocystis and plants (Gombos et al. 
1994; Wada et al. 1994; Moon et al. 1995; Alia et al. 1998).

At higher temperature (>25 °C) caused by heat stress or drought stress, pho-
tosynthetic efficiency is significantly altered and can lead to decreased growth 
and development of plants (D’Ambrosio et al. 2006; Pastenes and Horton 1996; 
Pastenes and Horton 1996; Salvucci and Crafts-Brandner 2004; Sharkey 2005). 
The effect of high temperature on organisms is expected to become more and 
more significant. The global mean temperature has increased by 0.6 °C from 
1990 to 2000 and is projected to increase by another 1.4 to over 5 °C by 2100 
(see chapter “Impacts of Global Warming on Biogeochemical Cycles in Natural 
Waters” for detailed description). Heat stress can induce several processes such 
as: saturation of electron transport rate and disruption of its activity; decrease 
of  stomatal conductance; increase in increase in O2-consuming photorespira-
tion and  non-photoinduced quenching; decreased affinity of the enzyme for CO2; 
decrease in CO2 fixation; inactivation of the oxygen-evolving enzymes of PSII; 
increase in the activity of antioxidant enzymes such as superoxide dismutase, 
ascorbate  peroxidase, guaiacol peroxidase, and catalase; decrease in PSII activ-
ity, and finally of photosynthetic capacity (Ogweno et al. 2008; D’Ambrosio  
et al. 2006; Pastenes and Horton 1996; Pastenes and Horton 1996; Salvucci and 
Crafts-Brandner 2004; Sharkey 2005; Schuster and Monson 1990; Heckathorn 
et al. 2002; Mazorra et al. 2002; Barua et al. 2003; Núñez et al. 2003; 
El-Shintinawy et al. 2004; Rivero et al. 2004; Cao et al. 2005).

Moderate heat stress can cause increased thylakoid proton conductance and 
increased cyclic electron flow around PSI (Pastenes and Horton 1996; Bukhov  
et al. 1999, 2000; Bukhov and Carpentier 2000; Egorova and Bukhov 2002). PSI-
mediated cyclic electron flow can occur via either of two routes: the first is anti-
mycin A-sensitive and involves ferredoxin plastoquinone reductase; the second 
one involves the NAD(P)H dehydrogenase complex (Bukhov et al. 2000; Thomas 
et al. 1986; Boucher et al. 1990; Joët et al. 2001).

It has also been shown that high temperatures stress (often above 45 °C) can 
damage PSII (Terzaghi et al. 1989; Thompson et al. 1989; Gombos et al. 1994; 
Çjánek et al. 1998; Yamane et al. 1998). Furthermore, photorespiration increases 
with increasing temperature, faster than photosynthesis (Schuster and Monson 
1990). High leaf temperatures can reduce plant growth, and it is estimated that up 
to 17 % decrease in crop yield can occur for each degree Celsius increase of aver-
age temperature during the growing season (Lobell and Asner 2003). Additionally, 
leaves with low transpiration rates (e.g. oak leaves) can suffer frequent 
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high-temperature episodes when leaf temperature can exceed the air temperature 
by as much as 15 °C (Singsaas and Sharkey 1998; Hanson et al. 1999; Singsaas et 
al. 1999). Rubisco can produce hydrogen peroxide as a result of oxygenase side 
reactions, which can increase substantially with temperature (Sharkey 2005).

Moreover, an increase in temperature can induce sinks of electron transport 
different from CO2 assimilation, and photorespiration is increased at 30–35 °C 
(D’Ambrosio et al. 2006). The O2-independent electron transport can account for up 
to 20 % of the total PSII electron transport in wild watermelon leaves (Miyake and 
Yokota 2000, 2001). The electron flux in PSII that exceeds the flux required for the 
cycles of photosynthetic carbon reduction and photorespiratory carbon oxidation, 
can induce photoreduction of O2 in the water–water cycle (Miyake and Yokota 2000, 
2001). It has been shown that the greater partitioning of reductive power to non-
assimilative processes consuming O2 (photorespiration, Mehler reaction and chlo-
rorespiration) with respect to CO2 assimilation allows keeping the PSII efficiency 
factor unmodified at temperatures as high as 35 °C (D’Ambrosio et al. 2006).

The unsaturation of fatty acids can protect PSII from the inhibition of the activ-
ity that is caused by strong light at low temperatures (Wada et al. 1990; Murata 
et al. 1992), and can accelerate the repair of photodamaged PSII (Gombos 
et al. 1994; Wada et al. 1994; Moon et al. 1995). After photodamage to PSII in 
Synechocystis at low temperatures (0–10 °C), activity recovery can reach up to 
50 % of the original level in the darkness at moderate temperatures, without the de 
novo synthesis of D1 protein (Nishiyama et al. 2008).

High-temperature stress can disrupt the cellular metabolic homeostasis and promote 
the production of reactive oxygen species (H2O2, 1O2, O2

•−, and HO•) (Mittler 2002). 
Oxidative stress occurs in any plant cell when there is an imbalance between produc-
tion of ROS and antioxidant defense (Apel and Hirt 2004; Mittler 2002; Scandalios 
2002). The consequence is a decrease of the net photosynthetic efficiency that affects 
various plant activities (Ogweno et al. 2008; Apel and Hirt 2004; García-Ferris and 
Moreno 1994; Alscher et al. 1997; Anderson 2002; Irihimovitch and Shapira 2000; 
Pfannschmidt 2003). Calvin-cycle enzymes within chloroplasts are particularly sensi-
tive to high levels of H2O2, which decreases CO2 fixation and foliar biomass (Willekens 
et al. 1997; Zhou et al. 2004, 2006). The mechanism behind the decline of plant photo-
synthesis by high-temperature stress, driven by high irradiance or drought or heat stress, 
is similar to that of high irradiance as mentioned earlier.

5.4  Effects of Water Stress (Drought)  
and of Precipitation/Rainfall

Water stress or drought stress can significantly affect plant photosynthesis and 
decrease their growth, development and productivity (Li and van Staden 1998; 
Hassan 2006; Liu et al. 2006; Ohashi et al. 2006; Fariduddin et al. 2009). Water 
or drought stress can stimulate changes in water balance, leaf area expansion, 
absorption of photosynthetically active radiation, stomatal closure that reduces 
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the internal CO2 concentration, integrity of membranes and proteins, metabolic 
dysfunction, damage at the cellular and subcellular membrane levels via lipid 
peroxidation, loss of activity of membrane-based enzymes, chloroplast capac-
ity, and PSII activities (Jones and Turner 1978; Matsuda and Riazi 1981; Kaiser 
1987; Asada 1992; Hopkins and Hüner 1995; Aziz and Larher 1998; Nam et al. 
1998; Cornic 2000; Wilson et al. 2000; Lawlor 2002; Velikova and Tsonev 2003; 
Flexas et al. 2004; Hassan 2006; Fariduddin et al. 2009; Munns et al. 1979). The 
final result is a decline in net photosynthesis. The drought stress can reduce sto-
matal conductance and lead to decreased carbon assimilation, with consequently 
low biomass production (Fariduddin et al. 2009; Medrano et al. 2002). Decrease 
in photosynthetic efficiency is generally attributed to reduced CO2 supply result-
ing from stomatal closure (Hsiao 1973). A decrease in nitrate reductase activity 
can inhibit protein synthesis, inactivate enzymes, and reduce the flux of nitrate to 
the leaf (Fariduddin et al. 2009; Morilla et al. 1973; Shaner and Boyer 1976). The 
rapid loss of nitrate reductase activity could be part of a biochemical adaptation to 
water deficit, shutting off the nitrate assimilation pathway and preventing accumu-
lation of nitrite and ammonium (Huffaker et al. 1970).

Cell membranes, which are structurally composed of large amounts of polyunsatu-
rated fatty acid, are highly susceptible to react photolytically with possible changes in 
membrane fluidity, permeability, and cellular metabolic functions (Bandyopadhyay et 
al. 1999). The elevation in the antioxidant system defences can detoxify the reactive 
oxygen species generated by drought stress and can thereby recover the altered physi-
ological performance of stressed plants (Fariduddin et al. 2009).

Water (drought) stress and high temperature together can cause a marked 
decrease of PSII activity that, together with other functions, can lead to a signifi-
cant decrease in the net photosynthetic rate of plants (Hassan 2006; Flagella et al. 
1998; Hassan et al. 1998; Yordanov et al. 1997, 1999, 2000). It has been shown 
that this effect may be caused by stomatal and non-stomatal limitations. Stomatal 
closure usually occurs before inhibition of photosynthesis and restricts CO2 avail-
ability at the assimilation sites in chloroplast. In contrast, non-stomatal limitation 
of photosynthesis has been attributed to reduced carboxylation efficiency, reduced 
ribulose-1,5-bisphosphate (RuBP) regeneration, or inhibited chloroplast activity 
(Wise et al. 1992; Lawlor 1995; Shangguan et al. 1999). Conversely, water stress 
mostly causes a progressive suppression of photosynthetic carbon assimilation in 
desiccation-tolerant and intolerant wheat plants (Deltoro et al. 1998).

The mechanism behind the water (drought) stress effect of decreasing photo-
synthesis is similar to that of high-irradiance/high temperature stress. It occurs 
particularly in tropical and subtropical regions as mentioned before. Moreover, 
water stress or drought in low temperature regions can decrease the water content 
of plant cells that contain dissolved O2. Shortage of dissolved O2 in response to 
water stress can decrease the photoinduced generation of H2O2, which is directly 
linked to photosynthesis. This effect can decrease photosynthesis and cause 
decline in growth or death of organisms.

The water stress can shift the temperature threshold towards higher values 
and cause an increase of the heat resistance (Yordanov et al. 1997, 2000; Havaux 
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1992). Some desiccation-tolerant cells accumulate large amounts of the disac-
charides trehalose and/or sucrose. Of these, mostly trehalose can prevent damage 
from dehydration, not only by inhibiting fusion between adjacent membrane ves-
icles during drying, but also by maintaining membrane lipids in the fluid phase 
in the absence of water (Singh et al. 2002; Crowe et al. 1987, 1992; Leslie et al. 
1994). Trehalose can depress the phase transition temperature of the dry lipids 
after desiccation and maintain them in the liquid crystal state (Crowe et al. 1992; 
Leslie et al. 1994). The increasing activities of catalase, peroxidase and super-
oxide dismutase and the level of proline can constitute a natural endogenous 
defense system that increases the response to water stress (Fariduddin et al. 2009; 
Schützendübel and Polle 2002).

Rainfall can greatly increase photosynthesis, particularly by increasing vari-
ous physiological phenomena such as leaf water potential, net photosynthetic 
rate, stomatal conductance, and transpiration (Souch and Stephens 1998; Smit 
and Rethman 2000; Morris et al. 2004; Li et al. 2007). Moreover, it can sig-
nificantly enhance the sudden growth of plants all over the world at the begin-
ning of summer season and at the end of winter season. The consequence is an 
increase of annual biomass production and a simultaneous increase of the pro-
duction of various food and crops. Maximum photoinduced efficiency of PSII is 
significantly increased with an increase in rainfall (Li et al. 2007). Among other 
issues, this might also be caused by the occurrence of H2O2 and nutrients in rain 
water. The supply of exogenous H2O2 from rainfall (up to 200 μM, see chapter 
“Photoinduced and Microbial Generation of Hydrogen Peroxide and Organic 
Peroxides in Natural Waters”) could enhance photosynthesis and make PSII reach 
its maximum photoinduced efficiency. On the other hand, leaf wetness causes not 
only instantaneous suppression of photosynthesis but also chronic damage to the 
photosynthetic apparatus (Ishibashi and Terashima 1995). Interestingly, a direct 
link has been observed between rainwater H2O2 content and the rate of photosyn-
thesis ( Komissarov 1995, 2003; Mostofa et al. 2009). However, high concentra-
tions of H2O2 (50–100 M) in the presence of iron (Fe) and oxalate can generate 
HO• that would decrease plant productivity and growth (Kobayashi et al. 2002).

In the case of aquatic microorganisms, drought stress or absence of rainfall for 
a longer period can significantly affect photosynthesis. In this case, similar mecha-
nisms are followed as for high light irradiance as explained in the earlier section.

5.5  Effects of the Contents and Nature of DOM and POM

Organic matter (OM) consisting of DOM and POM is one of the key factors that 
can produce nutrients (NO2

−, NO3
− and PO4

3−) and various photo- and micro-
bial products, such as H2O2, CO2, DIC, LMW DOM, and so on (see also chap-
ters “Dissolved Organic Matter in Natural Waters”, “Photoinduced and Microbial 
Degradation of Dissolved Organic Matter in Natural Waters”, “Chlorophylls 
and Their Degradation in Nature”, and “Impacts of Global Warming on 
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Biogeochemical Cycles in Natural Waters”) (Mostofa et al. 2009; Mostofa and 
Sakugawa 2009; Zhang et al. 2009; Tranvik et al. 2009; Zepp et al. 1987, 2011; 
Mostofa et al. 2011; Graneli et al. 1996; Granéli et al. 1998; Ma and Green 2004; 
White et al. 2010; Liu et al. 2010; Fu et al. 2010; Palenik et al. 1987; Cooper and 
Lean 1992; Bushaw et al. 1996; Molot et al. 2005; Kim et al. 2006; Johannessen et 
al. 2007; Borges et al. 2008; Li et al. 2008; Kujawinski et al. 2009; Lohrenz et al. 
2010; Omar et al. 2010; Cai 2011). Such processes can influence photosynthesis 
directly or indirectly in water.

Photoinduced degradation of DOM and POM (POM includes e.g. phytoplank-
ton) can be summarized as follows (Eq. 5.29):

where DIC is usually defined as the sum of an equilibrium mixture of dissolved

Microbial degradation of DOM and POM could be indicated as (5.30):

Products of these reactions are extensively discussed in chapter “Dissolved 
Organic Matter in Natural Waters”, “Photoinduced and Microbial Generation of 
Hydrogen Peroxide and Organic Peroxides in Natural Waters” and “Photoinduced 
and Microbial Degradation of Dissolved Organic Matter in Natural Waters”, 
“Colored and Chromophoric Dissolved Organic Matter in Natural Waters”, 
“Fluorescent Dissolved Organic Matter in Natural Waters”. The compounds H2O2, 
CO2, DIC, and nutrients (NO3

− and PO4
3−) are primarily responsible for an 

increase in photosynthetic efficiency in water (Eq. 3.1). Therefore photosynthesis 
depends on the contents and chemical nature of allochthonous OM (of terrestrial 
vascular plant origin) and autochthonous OM (of algal or phytoplankton origin). 
They are characterized by a large variation in different water environments (see 
chapter “Dissolved Organic Matter in Natural Waters”). Dependence of photosyn-
thesis on OM (DOM and POM) is supported by several observation reported below.

First, DOM contents can affect photosynthesis in the water column. DOM can 
limit productivity and affect epilimnetic and hypolimnetic respiration (Jackson 
and Hecky 1980; Carpenter et al. 1998; Hanson et al. 2003; Houser et al. 2003; 
Druon et al. 2010). Both DOM and POM can limit light penetration in deeper 
water, thus shoaling the euphotic zone (Bertilsson and Tranvik 2000; Laurion  
et al. 2000; Hayakawa and Sugiyama 2008; Effler et al. 2010). The vertical attenu-
ation coefficient for downward irradiance of PAR (KPAR) is strongly dependent on 
water color (Eloranta 1978; Jones and Arvola 1984), which subsequently depends 
on DOC concentration (Jones and Arvola 1984). Elevated DOM may decrease the 
efficiency of photosynthesis and growth in deeper waters and produce surface Chl 

(5.29)
DOM + POM + hυ → H2O2 + CO2 + DIC + LOW DOM + NO3

− + NO2
−

+PO3−
4 + autochthonous DOM + other species

CO2, H2CO3, HCO3
−

, and CO
2−
3

.

(5.30)

DOM + POM + microbes → H2O2 + CO2 + DIC + LOW DOM

+ NO3
−

+ PO3−
4 + autochthonous DOM + other species

http://dx.doi.org/10.1007/978-3-642-32223-5_10
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a maxima in the upper epilimnion (0–8 m). Such an effect has been observed in 
the lakes Hongfeng, Baihua and Kinneret, and is quite different from Lake Biwa 
(0–20 m) and Lake Baikal where DOM contents are relatively low (see also chap-
ters “Dissolved Organic Matter in Natural Waters” and “Chlorophylls and Their 
Degradation in Nature”) (Fu et al. 2010; Mostofa KMG et al., unpublished data; 
Hayakawa 2004; Yacobi 2006). Waters with high contents of DOM and POM are 
responsible for the occurrence of toxic algal blooms through high photosynthesis. 
The latter would be linked to elevated amounts of photo- and microbial products, 
provided that algal growth is limited by nutrient availability and not by light, and 
would also be affected by global warming (see later).

The second issue is the dependence of photosynthesis on allochthonous DOM. 
It has been shown that photosynthetic primary production is significantly depend-
ent on allochthonous humic substances (fulvic and humic acids) in natural waters. 
It has been observed an increase of bacterial biomass with high humic contents 
(Jones 1992; Tranvik 1988; 1989; Hessen 1985; Tranvik and Höfle 1987). Typhoon-
enhanced terrestrial discharges can elevate Chl a concentrations by four times and 
shift phytoplankton composition (spectral class-based), from an initial dominance of 
diatoms and green microalgae to the dominance of blue green microalgae (cyano-
bacteria are increased by more than 200 %) and cryptophytes (Blanco et al. 2008). 
This enhancement is likely caused either by favorable nutrient availability (Blanco 
et al. 2008) or by high input of allochthonous DOM including humic substances. 
A higher ratio of bacterial production to primary production has been observed in a 
humic lake compared with a clear-water lake, suggesting that the bacterioplankton of 
the humic lake utilized allochthonous substrates in addition to substrates originating 
from autochthonous primary production (Tranvik 1989). Moreover, a isolated (ca. 
Pseudomonas sp.) bacterial cell does not utilize fulvic acid, but in the presence of 
added lactate fulvic acid is partially degraded and causes an increase in the cell yield 
because of co-metabolism (Stabel et al. 1979; Wright 1988; de Haan 1974). Bacteria 
(ca. Arthrobacter sp.) can utilize fulvic acid, but this is only partially degraded and 
produces a small cell yield compared to e.g. benzoate. However, in media containing 
benzoate and fulvic acid, bacteria have higher growth rate and cell yield compared to 
media with only benzoate or fulvic acid (de Haan 1977). The fluctuations in the con-
tent of fulvic acids and the amount of benzoate-oxidizing bacteria suggest that the 
priming effect might be more important than co-metabolism during the decomposi-
tion of fulvic acids in lake water (de Haan 1977). The mechanism behind this phe-
nomenon is, presumably, the acceleration of the photoinduced degradation of fulvic 
acid in the presence of benzoate. It may cause enhanced production of biologically 
labile substrates that subsequently increase bacterial production. Benzoate (C6H5-
COONa) may photolytically release electrons (eaq

−) in aqueous solutions of fulvic 
acid (Fujiwara et al. 1993; Zepp et al. 1987; Assel et al. 1998; Richard and Canonica 
2005), an effect that might lead to the production of hydrogen peroxide in natural 
waters (Mostofa and Sakugawa 2009; Fujiwara et al. 1993).

The generation of hydrogen peroxide (H2O2) upon irradiation of ultra-filtered 
river DOM is substantially increased, from 15 to 368 nM h−1, with increasing salin-
ity at circumneutral pH values (Osburn et al. 2009). Production of HO• from H2O2 

http://dx.doi.org/10.1007/978-3-642-32223-5_1
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either by direct photoinduced reaction (H2O2 + hυ → 2HO•) or by photo-Fenton 
processes is susceptible to decompose DOM in aqueous solution (Zepp et al. 1992; 
Zellner et al. 1990; Goldstein and Rabani 2008). These photoinduced effects are 
associated with two impacts on growth of primary production: (i) photoinduced 
generation of HO• has direct negative effects on bacterial growth and/or indirect 
effects, because of the loss of bioavailable DOM associated to ROS mineralization 
(Scully et al. 2003a). Correspondingly, extracellular enzymes (e.g., phosphatase 
and glucosidase) can be inactivated in natural waters by secondary photoinduced 
processes that can lead to a reduction of the substrate uptake by bacteria (Scully  
et al. 2003b; Ortega-Retuerta et al. 2007). (ii) Studies of abundance and 
growth in the presence of humic substances indicate that bacteria are the 
most significant utilizers of allochthonous DOM. This issue is appar-
ently made easier by DOM photolysis under natural sunlight, with pro-
duction of lower molecular weight, and biologically labile organic 
products (Miller and Zepp 1995; Strome and Miller 1978; Amador  
et al. 1989; Kieber et al. 1989; Moran and Zepp 1997). This photoinduced effect can 
be supported by the observation that DOM photobleaching is accompanied by bacte-
rial growth in humic lakes with significant amounts of chromophoric DOM (Lindell 
et al. 1995; Reche et al. 1998; de Lange et al. 2003). Thus, humic substances in lakes 
may serve as a substrate for bacterioplankton and lead to enhanced microbial pro-
duction. Such stimulation of bacterioplankton productivity could influence food 
chains in two ways (Jones 1992): firstly, by providing an alternative base (in addi-
tion to autotrophic primary production) for the energetic and nutritional support of 
consumer organisms, of course if bacterial production can be effectively grazed; sec-
ondly, by increasing bacterial demand for limiting nutrients at the expense of phyto-
plankton, thereby depressing autotrophic primary production (Jones 1992).

A further issue is the dependence of photosynthesis on autochthonous DOM. 
Autochthonous DOM or unknown compounds produced by the cyanobacte-
rium Trichormus doliolum or filtrates of dinoflagellate Peridinium aciculiferum or 
Prorocentrum lima can inhibit the PSII in other cyanobacteria, decreasing the pho-
tosynthetic efficiency (Igarashi et al. 1998; Rengefors and Legrand 2001; Sukenik  
et al. 2002; Windust et al. 1996; von Elert and Juttner 1997; Sugg and VanDolah 1999). 
Compounds produced by the cyanobacterium Microcystis sp. can inhibit carbonic 
anhydrase activity of the dinoflagellate P. gatunense, leading to CO2 limitation and 
inhibition of photosynthesis (Sukenik et al. 2002). When tested as a pure compound, 
okadaic acid produced by the dinoflagellate Prorocentrum lima could inhibit the growth 
of three microalgal species (Windust et al. 1996), possibly because okadaic acid is a 
potent phosphatase inhibitor (Bialojan and Takai 1988). Also microcystins produced by 
the cyanobacterium Microcystis aeruginosa can inhibit phosphatase (Dawson 1998). 
Microalgal compounds have been shown to damage red blood cell membranes, which 
suggest that competing phytoplankton could be similarly affected (Igarashi et al. 1998). 
On the other hand, autochthonous DOM released by phytoplankton can be utilized with 
high efficiency by heterotrophic bacteria and can thus stimulate heterotrophic growth 
and nutrient cycling (Brussaard et al. 1996, 2005, 2007; Gobler et al. 1997; Fuhrman 
1992; Bratbak et al. 1998; Middelboe 2003).
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Interestingly, the viral lysis of an Aureococcus anophagefferens bloom can 
release approximately 500 g C L−1 that can support bacterial demands for both car-
bon and nutrients (Gobler et al. 1997). It has been shown that >62 % of a bacte-
rial lysate is metabolized by other bacteria following viral lysis within a few days, 
with a correspondent bacterial growth efficiency of 45 % (Middelboe 2003). Fatty 
acids potentially produced by microalgae have been shown to increase permeabil-
ity of the plasma membranes of chlorophytes and cyanobacteria, which might be 
connected with an increase of photosynthesis (Wu et al. 2006). Photoproduction of 
biologically labile substrates from CDOM could potentially stimulate the growth of 
biomass in Hudson Bay coastal waters (Granskog et al. 2007).

Bacterial biomass exhibits high values during the summer season and lower 
ones during winter in lakes with different water color (Wright 1984; Arvola and 
Kankaala 1989; Jones 1990). In winter, the bacterioplankton in humic lakes may 
primarily consist of a dormant, substrate-limited community that may sustain only 
a small number of microzooplankton grazers (Jones 1992; Wright 1984). During 
the spring and summer season fresh inputs of labile allochthonous DOM and 
autochthonous DOM, possibly with enhanced photoinduced activity, stimulate an 
increase in bacterial production (Jones 1992). In turn, a rapid development is pro-
moted of grazing flagellates until a quasi steady-state is reached, resulting into an 
active, grazer-controlled bacterioplankton (Wright 1984).

Currently, model results reveal that the progressive release of dissolved organic 
nitrogen (DON) in the ocean’s upper layer during the summer season increases 
the regenerated primary production by 30–300 % (Druon et al. 2010). This in 
turn enhances the dissolved organic carbon (DOC) production, mainly deriving 
from phytoplankton exudation in the upper layer, and the solubilization of par-
ticulate organic matter (POM) deeper in the water column (Druon et al. 2010). 
A microcosm experimental study on summer carbon metabolism in a humic lake 
has shown that DOC is 80–85 % of total carbon, while 75 % of POC is detritus. 
Bacterial biomass and production can exceed those of phytoplankton (Hessen et 
al. 1990). It has been shown that most of the zooplankton body carbon (46–82 %) 
is apparently derived from direct ingestion of the large detrital carbon pool. The 
loop of ingestion and defecation is important, giving a detritus particle turnover 
rate of 0.39 d−1, and suggests that carbon cycling in humic lakes is essentially dif-
ferent from that in clear-water lakes (Hessen et al. 1990).

Finally, both autochthonous and allochthonous DOM contribute to the pro-
duction of photo- and microbial products (CO2, DIC, H2O2 and so on) and to 
the photoinduced generation of the reactive oxygen species (ROS) such as O2

•−, 
H2O2 and HO• in photosynthesis. Negative effects of photoproducts on bacterial 
growth are linked with phototransformation of algal-derived autochthonous DOM 
(Ortega-Retuerta et al. 2007; Tranvik and Bertilsson 2001). This can be supported 
by the highly photosensitive and photodegradable nature of autochthonous DOM 
of algal/phytoplankton origin compared to allochthonous DOM (Mostofa et al. 
2009; Johannessen et al. 2007). Penetration of sunlight to deep water significantly 
depends on the DOM contents, and high-DOM lakes are characterized by shoaling 
of the euphotic zone (Laurion et al. 2000).
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Photosynthetic efficiency of phytoplankton decreases as irradiance increases 
during the morning, and increases as irradiance declines in the afternoon. These 
trends are associated with photoprotective strategies in the antennae of PSII and 
photodamage of PSII reaction centers (Zhang et al. 2008). Conversely, H2O2 usu-
ally shows strong diurnal variation and its concentrations increases gradually from 
the morning, reaches a maximum at noon and then gradually decreases in the 
afternoon (Mostofa and Sakugawa 2009). Therefore, high production of H2O2 and 
the subsequent HO• photogeneration (either direct of photo-Fenton mediated) at 
noon is susceptible to damages PSII reaction centers.

In addition, autochthonous DOM can produce relatively high amounts of ROS 
that can inhibit primary production. The daily estimated net CO2 fluxes (due to all 
processes) are much smaller than daylight photosynthetic rates (14C uptake) and 
sometimes go in the opposite direction (Kelly et al. 2001). This indicates that CO2 
fixation measured by 14C uptake is largely offset, and sometimes exceeded, by CO2 
production. Allochthonous DOC degradation could account for only a part of this 
CO2 production and the remainder presumably comes from the respiration of pho-
tosynthetically fixed carbon (Kelly et al. 2001). The average rates of net epilim-
netic CO2 fixation, or net epilimnetic production (NEP) range from 20 to 60 % of 
14C uptake (Kelly et al. 2001). This is similar to previous estimates of the relation-
ship between net 24 h and daylight photosynthetic fixation (Berman and Pollingher 
1974). Note that NEP is a community parameter, including the respiration of grazers, 
sediment bacteria and so on. Therefore, is not the same as the term “net photosynthe-
sis” that refers only to the photosynthesis and respiration of algae (Kelly et al. 2001).

5.6  Variation in Nutrient Contents

Photosynthesis of organisms is dependent on the contents of nutrients that can 
either enhance or decrease its efficiency (Parkhill et al. 2001; Liu et al. 2007; 
Bybordi 2010). The effects of nutrients on photosynthesis can be classified in two 
ways depending on the types of organisms.

Nutrients Effects on Aquatic Microorganisms

The effect of nutrients on photosynthesis in water may be a stimulation of pri-
mary production (Chl a), or not (Yoshiyama and Sharp 2006; Parkhill et al. 
2001; Smith 2003; Kaneko et al. 2004; Sterner et al. 2004; Huszar et al. 2006; 
Nõges et al. 2008; McCarthy et al. 2009; Mohlin and Wulff 2009; Canfield 
1983; Auclair et al. 1985; Ferris and Tyler 1985; Steinberg and Muenster 1985; 
Francko 1986; Jones et al. 1988; Lewis 1990; Salas and Martino 1991; Cullen 
et al. 1992; Sarnelle et al. 1998; Brown et al. 2000; Guildford and Hecky 2000; 
Jones 2000). Observing the uptake of nutrients during primary production or 
algal productivity is a complex issue, because of the many factors involved for 
the demand and supply of N and P in water. Such factors can be classified as 
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follows: (i) Nutrients (NO3
−, NO2

−, NH4
+ and PO4

3−) are mostly released dur-
ing photoinduced and microbial assimilation or respiration of algal/phytoplankton 
biomass (Mostofa et al. 2011; Kopáček et al. 2003; Li et al. 2008; Mallet et al. 
1998; Carrillo et al. 2002; Lehmann et al. 2004; Fu et al. 2005). (ii) Formation 
of N-containing (NH4

+ or NO2
−) and P-containing inorganic compounds (PO4

3−) 
typically occurs upon degradation of dissolved organic nitrogen (DON) and dis-
solved organic phosphorus (DOP) in natural waters (Mostofa et al. 2011; Kim  
et al. 2006; Li et al. 2008; Bronk 2002; Zhang et al. 2004; Vähätalo and Järvinen 
2007; Haaber and Middelboe 2009). The degradation of Phaeocystis pouchetii 
lysates is associated with significant regeneration of inorganic N and P and 
produces 148 g N L−1 and 7 g P L−1, which corresponds to 78 % and 26 % of 
lysate N and P being mineralized to NH4

+ and PO4
3−, respectively (Haaber and 

Middelboe 2009). Contribution of nutrients through viral lysis might be an impor-
tant mechanism that promotes heterotrophic nutrient cycling and stimulates pri-
mary production (Haaber and Middelboe 2009, 2008; Brussaard et al. 2008). 
(iii) NO3

− and NO2
− can be regenerated by oxidation of ammonia in nitrifica-

tion (NH4
+ + 2O2 → NO3

− + 2H+ + H2O) and of dissolved organic nitrogen 
(DON) in lake waters (Lehmann et al. 2004; Mack and Bolton 1999; Kopáček et 
al. 2004; Minero et al. 2007). (iv) NO2

− and NO3
− are preferentially detected in 

epilimnetic water rather than the hypolimnion (Mostofa KMG et al., unpublished 
data; Kim et al. 2006; Li et al. 2008; Lehmann et al. 2004; Kopáček et al. 2004; 
Minero et al. 2007), and they are also involved in photoinduced generation of HO• 
that is able to degrade DOM in the epilimnion (see also chapters “Photoinduced 
Generation of Hydroxyl Radical in Natural Waters” and “Photoinduced and 
Microbial Degradation of Dissolved Organic Matter in Natural Waters”) (Mostofa 
et al. 2009; Nakatani et al. 2007; Takeda et al. 2004; Zellner et al. 1990; Mopper 
and Zhou 1990). Furthermore, the NO2

− ion is generally observed at low concen-
tration during the summer season (Mostofa KMG et al., unpublished data; Kim et 
al. 2006; Li et al. 2008), and possibly it is photolytically more active in production 
of HO• than in NO3

− (see also chapters “Photoinduced Generation of Hydroxyl 
Radical in Natural Waters” and “Photoinduced and Microbial Degradation of 
Dissolved Organic Matter in Natural Waters”). It is also a rather photolabile 
compound in surface waters, undergoing faster direct photolysis in lake than in 
ultrapure water. This effect is linked to the scavenging of photogenerated tran-
sients by DOM, which finally prevents the recombination of photogenerated, tran-
sient nitrogen species back into nitrite (Vione et al. 2009a).

Primary production or Chl a often increases with increasing total phosphorus 
(TP) and nutrients, suggesting that uptake of P and nutrients takes place during 
primary production (Doyle et al. 2005; Huszar et al. 2006; Nõges et al. 2008; 
McCarthy et al. 2009; Mohlin and Wulff 2009; Guildford and Hecky 2000; 
Lehmann et al. 2004; Schindler 1974, 2006; Havens et al. 1995; Smith et al. 
1995). Chl a is significantly correlated with total P in marine environments, but 
total P concentration in marine sites is relatively higher compared to freshwater 
(Guildford and Hecky 2000). Uptake of phosphorus during phytoplankton growth 
is greatly stimulated in presence of humic substances, but the phosphate uptake is 
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inhibited by toxic compounds (Kaneko et al. 2004; Auclair et al. 1985; Steinberg 
and Muenster 1985; Francko 1986; Jones et al. 1988). Humic substances can eas-
ily undergo photoinduced decomposition into several photoproducts such as CO2, 
H2O2, DIC, LMW DOM, and so on. These compounds are directly and indirectly 
linked with photosynthesis and can stimulate primary production.

Primary producers or phytoplankton (or Chl a) depend on the total nitrogen 
(TN) as they can uptake both inorganic and organic N forms such as urea, NH4

+, 
and NO3

− (McCarthy et al. 2007, 2009; Walsh and Dugdale 1971; Kappers 1980; 
Syrett 1981; Dugdale et al. 1990; Probyn 1992; Blomqvist et al. 1994; Berg et 
al. 2003; Giani et al. 2005; Rolland et al. 2005; Heil et al. 2007). No evidence 
has been found for a control of Chl a by TN in lake and marine environments 
(Guildford and Hecky 2000). However, TN (mostly NO3

− and NH4
+) can limit 

primary production in most cases where nutrients are limiting (Huszar et al. 2006; 
Sarnelle et al. 1998; Barica et al. 1980; Smith 1982; Elser et al. 1990; Aldridge  
et al. 1995; Levine et al. 1997; Philips et al. 1997; Lewis 1996, 2002).

The nutrients-ratio theory predicts that cyanobacteria will dominate in lakes with 
low TN:TP ratios, due to their superior ability to compete for dissolved N and, in 
some cases, to fix atmospheric N (Smith 1983). Recent studies show that primary 
production or cyanobacteria do not follow this predicted theory in a variety of waters, 
with either high or low TN:TP ratio (Nõges et al. 2008; McCarthy et al. 2009; Xie 
et al. 2003; Smith et al. 1995; Smith 1983; Smith and Bennett 1999; Downing et 
al. 2001). The TN:TP ratio theory can not consistently predict cyanobacterial 
dominance in a variey of waters. Indeed, recent studies show that nutrients such as 
PO4

3− and NO3
− are significantly produced from either POM (e.g. phytoplankton) 

or allochthonous and autochthonous DOM (see chapters “Dissolved Organic Matter 
in Natural Waters”, “Photoinduced and Microbial Degradation of Dissolved Organic 
Matter in Natural Waters”  “Impacts of Global Warming on Biogeochemical Cycles 
in Natural Waters”). Correspondingly, waters with extreme eutrification are com-
posed of excess PO4

3− that does not follow this theory at all. This can be justified 
by the observation that primary production is probably not limited by nutrient avail-
ability, because of the high nutrient loadings in natural water (McCarthy et al. 2007, 
2009; Heath 1992). Primary productivity within a plume appears to rely upon recy-
cled nutrients, with organic fractions representing the majority of the nutrient pool 
(Davies 2004). Furthermore, remineralized nutrients from the declining chlorophyll 
bloom in surface waters are taken up by heterotrophic bacteria in the water-column 
and by benthic microalgae in sediments (Darrow et al. 2003). Variations in DOM and 
POM contents can greatly modify the contents of nutrients, and additional factors 
would be involved into the variations of primary production.

Based on these studies, photosynthesis dependence on nutrients is quite com-
plex in natural waters. First, photosynthesis does not depend on nutrients in waters 
with high contents of DOM and POM, particularly in lakes, estuarine and coastal 
waters. High content of DOM and POM can often supply the nutrients (NO3

− and 
PO4

3−) under both photoinduced and microbial assimilation or degradation, thus 
the nutrients in excess have no effects on primary production. Second, photosyn-
thesis may depend on nutrients in waters with low contents of DOM and POM. 

http://dx.doi.org/10.1007/978-3-642-32223-5_1
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This effect is the opposite as the previous one, and is most likely accounted for by 
the low production of nutrients from low contents of DOM and POM.

On the other hand, a decrease in PSII efficiency with changes in cellular physi-
ology of microalgae can result into nutrient (and mostly nitrogen) stress, ultimately 
followed by a cell stress (Parkhill et al. 2001; Babin et al. 1996; Cullen et al. 1992; 
Geider et al. 1993; Graziano et al. 1996). These studies thus show that a decrease 
of photosynthetic efficiency is caused by nutrient stress. Nitrogen stress is found to 
reduce the maximum quantum yield of carbon fixation (Babin et al. 1996). The mech-
anism behind the N-containing (NO2

− and NO3
−) nutrient stress is presumably that 

the strong oxidizing agent HO•, photogenerated from both NO2
− and NO3

−, could 
react with the functional groups bound to PSII and can damage the cells. The result 
is a decline of the overall photosynthetic efficiency that suppresses the primary pro-
duction. In addition, the synergic effect of UV radiation due to depletion of the stra-
trospheric ozone layer in combination with N-containing nutrient stress can generate 
extremely high contents of HO•, which can kill aquatic microorganisms. Note that in 
Antarctic seawater during an ozone hole event, the production of HO• is enhanced by 
at least 20 %. Such enhancement would mostly come from nitrate photolysis and to 
a minor extent from DOM photoinduced reactions (see also chapter “Photoinduced 
Generation of Hydroxyl Radical in Natural Waters”) (Qian et al. 2001).

Nutrients Effects on Higher Plants

Plant growth is enhanced at 200 mg l−1 N (as NH4NO3) in cvs. (cultivars) 
‘Licord’ and ‘Okapi’, but it is reduced when the N concentration increases up to 
300 mg l−1 (Bybordi 2010). Nitrate reductase (NR), a substrate inducible enzyme, 
is slightly inhibited by salinity in tomato roots, while leaf NR is decreased sharply 
(Cramer and Lips 1995). In the leaves of tomatoes and cucumbers, NR activity 
can increase with exogenous nitrate concentration (Martinez and Cerda 1989). NR 
is decreased in leaves under salinization, which can subsequently decrease NO3

− 
uptake by plants under salt stress (Bybordi 2010; Cramer and Lips 1995; Lacuesta 
et al. 1990; Abd-El Baki et al. 2000). The decreased of nitrate is accompanied by 
a high Cl− uptake and low rate of xylem exudation in high osmotic conditions, by 
either NaCl or other nutrients (Parida et al. 2004; Tabatabaie et al. 2004). Reduced 
nitrate uptake or translocation can lead to lower NO3

− concentration in leaves, 
which can consequently decrease the NR activity under saline conditions.

Several factors (e.g. salinity) can modify the uptake of some nutrients (e.g. Fe, 
Mn, Cu, Zn, K, etc.), and either increase or decrease their contents in various parts 
of most plants (Vıllora et al. 2000; Turhan and Eris 2005; Wang and Han 2007; 
Achakzai et al. 2010; Tunçtürk et al. 2011).

5.7  Effects of Trace Elements on Aquatic Microorganisms

Aquatic organisms that carry out photosynthesis are largely affected by trace ele-
ments, and PSII is thought to be the primary and most sensitive site of inhibition 
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(Zhang et al. 2010; Crist et al. 1981; Zhou and Wangersky 1985, 1989; Simkiss 
and Taylor 1989; Xue and Sigg 1990; Tessier and Turner 1995; Sunda and 
Huntsman 1998; Burda et al. 2003; Koukal et al. 2003; Mylon et al. 2003; 
Sigfridsson et al. 2004; Berden-Zrimec et al. 2007; Lamelas and Slaveykova* 
2007; Hopkinson and Barbeau 2008; Lamelas et al. 2009; Pan et al. 2009). Various 
trace elements detected in phytoplankton are N, P, S, K, Mg, Ca, Sr, Fe, Mn, 
Zn, Cu, Co, Cd, Ni, and Mo (Quigg et al. 2003, 2011; Finkel et al. 2006). Study 
shows that many elements (Fe, Mn, Zn, Cu, Co, and Mo) are enriched relative to 
P by about two to three orders of magnitude under irradiances that are limiting for 
growth, and net steady-state uptake of element: P is often elevated under lower 
irradiances (Finkel et al. 2006). Cyanobacteria or phytoplankton cells can form 
complexes with or uptake trace metals, either directly or in the presence of humic 
acids (Zhou and Wangersky 1985, 1989; Xue and Sigg 1990; Koukal et al. 2003; 
Mylon et al. 2003; Lamelas and Slaveykova* 2007; Lamelas et al. 2009). The 
latter can substantially enhance the metal ion uptake. Bacteria, algae (or phyto-
plankton cells) and their exudates are composed of a mosaic of functional groups 
(e.g. amino, phosphoryl, sulfhydryl, and carboxylic), and the net charge on the cell 
wall is dependent on the pH of the medium (see also chapter “Complexation of 
Dissolved Organic Matter With Trace Metal Ions in Natural Waters” for detailed 
description) (Mostofa et al. 2009; Zhang et al. 2009, 2010; Mostofa et al. 2011; 
Filella 2008). Cyanobacteria or phytoplankton are composed of two fluores-
cent components that can be identified using parallel factor (PARAFAC) analy-
sis on the excitation-emission maxima (EEM) spectra of their resuspensions in 
pure water (Fig. 10) (Mostofa KMG et al. unpublished data). The EEM spectra 
of these two fluorescent components identify functional groups bound to trypto-
phan or protein-like components (Fig. 10; see the chapter “Fluorescent Dissolved 
Organic Matter in Natural Waters” for detailed description) (Mostofa KMG et al. 
unpublished data). Furthermore, some trace metal ions (e.g., Th4+ and U) form 
complexes at the surface of particulate matter with an organic ligand that might be 
a nonmetal-specific chelator originating from the cell surface of microorganisms 

Fig. 10  Two fluorescent components (a, b) of lake green algae isolated and resuspensions in 
aqueous media (Milli-Q waters) identified using PARAFAC modeling on the respective EEM 
data. Data source Mostofa KMG et al. (unpublished data)

http://dx.doi.org/10.1007/978-3-642-32223-5_9
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(Hirose 2004). In addition, autochthonous DOM originating from phytoplankton 
or algal biomass may contain amino and sulfidic functional groups in its molecular 
structure, which may form complexes with trace metals in water (Xue and Sigg 
1993; Xue et al. 1995).

Fe uptake by phytoplankton is significantly enhanced in the presence of humic 
substances (Provasoli 1963; Prakash et al. 1973), which is presumably caused by 
improved metal chelation in aqueous solution (Anderson and Morel 1982). Under 
low-Fe conditions, Fe allocation in the diatoms Thalassiosira weissflogii and 
Thalassiosira oceanica is localized in photosynthetic light–harvesting and elec-
tron-transport proteins (Strzepek and Harrison 2004). Increased iron quotas and 
lowered iron-use efficiencies are often observed in phytoplankton, in response to 
decreased light levels (Hopkinson and Barbeau 2008; Strzepek and Harrison 2004; 
Sunda and Huntsman 1997). Iron requirements by phytoplankton increase as avail-
able light for photosynthesis decreases, which can lead to the hypothesis that phyto-
plankton may be colimited by iron and light in low-light environments (Sunda and 
Huntsman 1997). In an iron–light colimited state growth and photosynthesis are 
ultimately limited by light processing, whilst production of photosynthetic proteins 
able to harvest and process light is constrained by iron availability (Hopkinson and 
Barbeau 2008). Iron– light colimitation may occur in low-iron regions with deep 
mixed layers, such as the Southern Ocean, or even in macronutrient-limited and 
stratified waters, near the base of the euphotic zone (Sunda and Huntsman 1997). 
An iron–light colimitation is observed during winter in the subarctic North Pacific. 
Here a deep mixed layer (80 m), low incident irradiance, and lack of available iron 
are all combined to limit photosynthesis, which maintains low phytoplankton bio-
mass (Maldonado et al. 1999). Iron can limit growth in an area with a relatively 
shallow (40 m) mixed layer in the Subantarctic Front. However light, in conjunc-
tion with iron, can control growth in an area with deeper (90 m) mixed layers 
(Boyd et al. 2001). Iron–light colimitation should also be a factor influencing phy-
toplankton growth during the North Atlantic spring bloom (Moore et al. 2006).

Availability of iron alone has also been implicated as an important factor in the 
bloom of some harmful algal species (Bruland et al. 2001; Maldonado et al. 2002), 
whilst an increase in the toxicity of Microcystis aeruginosa has been observed when 
iron is limited (Lukač and Aegerter 1993). Iron deficiency can affect the electron 
transfer rate in Pisum sativum chloroplasts (Muthuchelian et al. 2001), and stable 
organic Fe(III) complexes (FeL) photolytically produce dissolved inorganic iron at a 
higher extent than thermal decomposition and cell-surface reduction of FeL. Such a 
process can facilitate phytoplankton uptake of iron in the ocean (Fan 2008). On the 
other hand, during nighttime the reactive oxygen species (H2O2 and O2

•−) produced 
by reductases on cell surfaces react with FeL, producing Fe(II). Such a process 
slows down the oxidation of Fe(II) and the subsequent formation of FeL, thereby 
maintaining significant levels of bio-available Fe (Fan 2008).

A significant effect of toxic metals on photosynthesis is observed, and the rel-
evant photosynthetic efficiency can be either enhanced or suppressed in natural 
waters (Zhang et al. 2010; Burda et al. 2003; Koukal et al. 2003; Sigfridsson et al. 
2004; Berden-Zrimec et al. 2007; Pan et al. 2009; Mayer et al. 1997; Horton and 
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Bowyer 1990; Prasad et al. 1991; Barraza and Carballeira 1999; Susplugas et al. 
2000; Appenroth et al. 2001; Franklin et al. 2001; Drinovec et al. 2004; Miller-
Morey and van Dolah 2004; Shanker et al. 2005; Alam et al. 2007; Hayat et al. 
2007; Perales-Vela et al. 2007; Ali et al. 2008; Hasan et al. 2008; Vernay et al. 
2008). The esterase activity in several species of marine and freshwater cyano-
bacteria can be either enhanced or suppressed by copper (Franklin et al. 2001), 
and antimony (Sb) exposure at concentrations ranging from 1.0 to 10.0 mg L−1 
inhibits O2 evolution (Zhang et al. 2010). A decrease in photosynthetic efficiency 
is caused by the reduction of phytoplankton enzyme activity, which may be a gen-
eral indicator of cell stress. The stimulating action of Cu for a definite concentra-
tion level (e.g. 0.02 mg Cu L−1) on PSII system is often observed in natural waters 
(Franklin et al. 2001; Burda et al. 2002; Schaffer and Sebetich 2004).

Toxicity of Cd and Zn to the green alga Pseudokirchneriella subcapitatais 
can be significantly (p < 0.05) reduced in the presence of humic acids (soil and 
peat), but not in the presence of Suwannee River fulvic acid (SRFA) (Koukal et al. 
2003). It is postulated that humic acid can reduce Cd and Zn toxicity in two differ-
ent ways (Koukal et al. 2003): (i) Humic acid is capable of decreasing the amount 
of free metal ions through complex formation with the metal. Humic acid has high 
molecular weight and is relatively stable with regard to metal-exchange reactions, 
which can make the metals less bioavailable. (ii) Humic acid can be adsorbed onto 
algal surfaces, shielded the cells from free Cd and Zn ions. On the other hand, 
several hypotheses have been advanced to explain why SRFA is unable to reduce 
metal toxicity (Koukal et al. 2003): (i) Cd- and Zn-SRFA complexes are thought 
to be labile (i.e. to undergo rapid dissociation); (ii) SRFA can coagulate, presum-
ably during equilibration, which can alter their metal complexing behavior; and 
(iii) SRFA has a low ability to adsorb on cell membranes at pH > 7.

For better understanding the mechanism of metal toxicity to organisms, it 
is interesting to have a look at the outer-shell electronic configurations of toxic 
metals:

As33: 1s22s22p63s23p63d104s24p3 and As3+: 1s22s22p63s23p63d104s24p0;

Sb51:  1s22s22p63s23p63d104s24p64d105s25p3 and Sb3+:1s22s22p63s23p63d104s2

4p64d105s25p0;

 Zn30: 1s22s22p63s23p63d104s2 and Zn2+: 1s22s22p63s23p63d104 s0;

Cd48:  1s22s22p63s23p63d104s24p64d105 s 2 and  
Cd2+: 1s22s22p63s23p63d104s24p64d105 s0;

Cr24: 1 s2 2s22p6 3s23p64 s1 3d5 and Cr4+: 1 s2 2s22p6 3s23p64s13d1

Cu29: 1 s2 2s22p6 3s23p64 s1 3d10 and Cu2+: 1 s2 2s22p6 3s23p64s13d8

These metal ions have empty s-, p- or d-orbitals in the outer shell, which allows 
them to be involved in a strong π–electron bonding system through donation of 
electrons from the functional groups of PSII (e.g. N- and S-containing carbox-
ylic, amino, thio and hydroxyl groups) (see chapter “Complexation of Dissolved 
Organic Matter With Trace Metal Ions in Natural Waters” for detailed discussion) 

http://dx.doi.org/10.1007/978-3-642-32223-5_9
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(Mostofa et al. 2009, 2011). After formation of the strong π–electron bonding 
system in the metal-protein (or organism) complex, the remaining outer-shell 
electrons (e.g. 4s2 for As) are loosely bound and can easily move (see chapter 
“Complexation of Dissolved Organic Matter With Trace Metal Ions in Natural 
Waters” for detailed explanation). After complex formation between metals and 
proteins (or amino acids) in PSII, the normal cells metabolism can be disrupted by 
electrons in the outer shell of the metal ion itself, or via HO• formation in Fenton 
or Fenton-like or other unknown processes, finally leading to cell death.

Interestingly, As-protein complexes may be accumulated in the human skin and, 
when the skin is exposed to natural sunlight (mostly UV-light), irradiation induces 
the formation of HO• or other reactive oxygen species (e.g. O2

•− and H2O2). 
These species can cause damage to DNA and finally induce cancer in the human 
body. Coherently, it has been suggested that DNA damage induced by methylated 
trivalent arsenicals is mediated by reactive oxygen species (Nesnow et al. 2002). 
Furthermore, arsenite can play a role in the enhancement of UV-induced skin can-
cers (Rossman et al. 2004). The carcinogenic effects may be connected with accu-
mulation of As3+ or Sb3+ and other toxic metals. As3+ or Sb3+ have two electrons 
in the outer shell, while their inner shells are entirely filled with electrons. This sit-
uation makes the outer-shell electrons of metal-protein complexes highly mobile.

As and cigarette smoke are synergistic, producing an elevated risk of bladder 
and lung cancer in smokers (Hopenhayn-Rich et al. 1998; Steinmaus et al. 2003; 
Chen et al. 2004). Smoking could help promoting the excitation of electrons from 
the outer shells of As in As-protein complexes, which can finally induce forma-
tion of HO• that damages DNA. While eating soil is quite unusual for humans, in 
some rural Bangladesh villages it is customary for pregnant women to eat shikal 
(it sounds like “chain” in English), which consists of small (2 in. × 1 in. × 1/2 in.) 
pellets made out of flooded soil (information source is personal experience of one 
of the authors). While the origin of this tradition is quite uncertain, it is noteworthy 
that it was observed in one of the world’s regions where human exposure to As 
is the highest. Interestingly, intake of black soil (dark brown soil) with high con-
tents of humic acid could reduce As levels in the human body, because complexes 
between As and humic acids are much stronger than As-protein or As-fulvic acids 
ones (see chapter “Complexation of Dissolved Organic Matter With Trace Metal 
Ions in Natural Waters” for detailed discussion).

Coming back to photosynthetic microorganisms, the decrease in photosynthetic 
efficiency can be cause by complex formation between metals and the functional 
groups of PSII. Two possible mechanisms can be operational. First, the formed 
metal-cells or metal-proteins complexes in the PSII of aquatic microorganisms can 
produce electrons (e−) photolytically upon exposure to sunlight, which can finally 
lead to H2O2 generation. (see chapter “Photoinduced and Microbial Generation of 
Hydrogen Peroxide and Organic Peroxides in Natural Waters” for detailed mech-
anism) (Komissarov 2003; Mostofa and Sakugawa 2009; Mostofa et al. 2011; 
Fujiwara et al. 1993). Coherently, it has been observed that methyl viologen acts 
as an inducer of photo-oxidative stress (Donahue et al. 1997; Mano et al. 2001) 
and can induce the photoreduction of dioxygen (O2) by accepting electrons from 

http://dx.doi.org/10.1007/978-3-642-32223-5_9
http://dx.doi.org/10.1007/978-3-642-32223-5_9
http://dx.doi.org/10.1007/978-3-642-32223-5_9
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the iron-sulfur cluster Fe-SA/Fe-SB of PS1. This process could induce the produc-
tion of superoxide radical (O2

•−) and H2O2 (Fujii et al. 1990). When catalytic free 
metals [e.g., Fe(II), Cu(I) and Mn(II)] are present near the production site of O2

•− 
and H2O2, the strong oxidizing agent OH• can be produced via a Fenton reaction 
or by direct photodissociation (Zepp et al. 1992; Nakatani et al. 2007; Zellner  
et al. 1990; Goldstein and Rabani 2008; Halliwell and Gutteridge 1984; Stadtman 
1993). The photo-Fenton reaction could proceed as follows (Eqs. 5.31, 5.32):

The HO• radical thus generated kills the cells of microorganisms in natural 
waters. Fe concentration and pH can significantly affect both the growth and the 
reactive oxygen species (ROS) production in Chattonella marina, a harmful algal 
bloom species (Liu et al. 2007). The rapid photoinduced release of electrons from 
the outer shell of metal ions in PSII metal-protein complexes can be involved in 
chronic toxicity. It has recently been shown that exposure of PSII to Sb3+ and 
Cr4+ in Synechocystis sp. can increase the dissipated energy flux and decrease the 
performance index and the maximum quantum yield for primary photochemis-
try (ϕPO) (Zhang et al. 2010; Pan et al. 2009). It can also cause damage to cel-
lular components and to the overall photosynthetic driving force. The fluorescence 
yield at 684 nm, which is connected to the maximum quantum yield for primary 
photochemistry (Zhang et al. 2010) is affected by the metal-functional groups of 
PSII. It can be the easiest way by which electrons are released, which can sub-
sequently result into high production of HO• via O2

•− or H2O2. Such a process 
can decressee photosynthetic efficiency or damage the PSII or DNA. Along with 
this effect, complexation between metal ions and the functional groups of PSII 
can inhibit electron transport and cause the overall photosynthetic efficiency 
to decline. Severe damage in the water-splitting site of PSII can produce an 
increased ratio of FO ∕ FV (fluorescence level before and after flash) (Pan et al. 
2009), which may occur because of HO• photoproduction. Note that Sb3+ com-
pounds are approximately ten times more toxic than Sb5+ ones, possibly because 
of the two unpaired electrons in Sb3+ species. In contrast, Sb5+ species have no 
outer shell electrons.

Another possible effect linked with complex formation between metals and the 
functional groups bound to PSII is the blockage of the normal function of electron 
release by PSII-bound functional groups. This can also significantly decrease the 
photosynthetic efficiency of aquatic organisms.

The stimulating effect of Cu2+ (1s2 2s22p6 3s23p64s13d8) on PSII is presuma-
bly caused by the partially and completely filled outer shell of its s- and d-orbit-
als. Therefore, the complexes formed between Cu2+ and the PSII functional 
groups are not as strong as those involving other metal ions with empty orbit-
als. This effect can roughly recover the normal function of PSII in organisms. 
In addition, the electrons released from the metal-protein complexes of PSII can 
induce the generation of relatively low amounts of H2O2, which might enhance 

(5.31)Fe3+
+ hυ/H2O•/O2

•−
→ Fe2+

+ O2 + H+

(5.32)Fe2+
+ H2O2 + hυ → Fe3+

+ HO•
+ OH−
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photosynthesis in aquatic organisms. Further studies will be needed to evalu-
ate the exact mechanism behind this phenomenon. The formation of complexes 
between metals and the functional groups of either PSII or PSI is a relatively 
new hypothesis, which could greatly help improving the present understand-
ing of the effects of metal ions on the photosynthetic efficiency of aquatic 
organisms.

5.8  Effect of Salinity or Salt Stress

Salinity is an important controlling factor for photosynthesis, its effect depending 
on the organisms such as higher plants or aquatic microorganisms. Therefore, the 
effect of salinity can be divided into two classes: (i) effect on aquatic microorgan-
isms; (ii) effect on higher plants.

Effects of Salinity on Aquatic Microorganisms

Water salinity or salt stress has a significant impact on the photosynthetic capa-
bility of organisms, but the actual effect is highly dependent on the different 
kinds of microorganisms (Liu et al. 2007; Satoh et al. 1983; Ahel et al. 1996; 
Moisander et al. 2002; Marcarelli et al. 2006; Segal et al. 2006; Demetriou et al. 
2007; Allakhverdiev and Murata 2008). It has been shown that salinity in marine 
waters can alter the PSI and PSII of organisms, which is connected to salt stress. 
However, some organisms such as cyanobacteria or phytoplankton can over-
come the salt stress and are capable of growing under salinity conditions which 
would be harmful to most other organisms. The basic physiological responses of 
cyanobacterial cells to salt stress occur in three phases (Hagemann and Erdmann 
1997). First, within seconds an increase of the ambient concentration of NaCl 
can cause an influx of Na+ and Cl− ions into the cytoplasm. Second, within an 
hour it starts the replacement of Na+ by K+ ions, leading to a decline in the toxic 
effects of high Na+ concentrations. Third, within several hours the cells become 
acclimatized to the elevated ion concentrations. During this phase, the synthesis 
or uptake of compatible solutes/components mitigates the toxic effects of salts 
and preserves the structures of complex proteins and cell membranes (Bhagwat 
and Apte 1989; Reed et al. 1985; Hagemann et al. 1990, 1991; Hayashi and 
Murata 1998; Chen and Murata 2002). The cyclic electron transport via PSI is 
also activated (Joset et al. 1996; Hibino et al. 1996). However, over a longer 
period of time, such as within several days, salt stress can inhibit cell division 
(Ferjani et al. 2003).

The increase in the intracellular concentrations of Na+ and Cl– ions can cause 
irreversible inactivation of the oxygen-evolving machinery and of the electron-
transport activity of PSI (Kuwabara and Murata 1983; Miyao and Murata 1983; 
Murata and Miyao 1985; Allakhverdiev et al. 2000a, b). For instance, incubation 
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of Synechococcus cells with 0.5 M NaCl can suppress the reduction of P700+ 
(Allakhverdiev et al. 2000a). Because P700+ is reduced by plastocyanin, it is sug-
gested that the association of this compound with the PSI complex is disturbed by 
the presence of NaCl (Allakhverdiev et al. 2000a, b).

In cyanobacteria, the oxygen-evolving machinery of PSII located on the 
luminal side of thylakoid membranes is stabilized by three extrinsic pro-
teins. They are PsbO (33-kD protein), PsbV (cytochrome c550), and PsbU 
(Allakhverdiev and Murata 2008; Shen et al. 1998; Nishiyama et al. 1999). Cyt 
c550 and PsbU are loosely bound to the donor side of the core complex of PSII 
(Nishiyama et al. 1997, 1999). These proteins could be easily dissociated from 
the cyanobacterial PSII complex in the presence of elevated concentrations of 
NaCl (Shen et al. 1998, 1992). Moreover, pulse-chase experiments revealed that 
salt stress can inhibit the de novo synthesis of D1 in Synechococcus (Ohnishi 
and Murata 2006).

Light is an important factor in restoring the activity of PSII and PSI during dark 
incubation of cyanobacterial cells under salt stress (Allakhverdiev et al. 2005). When 
light is applied to Synechococcus cells, protein synthesis occurs for the recovery of 
the photosystems from salt stress (Allakhverdiev and Murata 2008; Hagemann et al. 
1991; Allakhverdiev et al. 1999, 2005). Weak light at 70 mE m−2 s−1 is sufficient to 
generate ATP, which seems to support recovery (Allakhverdiev and Murata 2008). 
Such conditions are sufficient to induce the necessary excitation, because of the for-
mation of complexes between cations (e.g. Na+ and other cations from salts) and the 
functional groups bound to PSII and PSI. Recent studies of PSII photoinhibition in 
cyanobacteria suggest that oxidative stress due to reactive oxygen species (ROS) can 
inhibit protein synthesis and the repair of PSII. However, it does not stimulate pho-
todamage to PSII (Nishiyama et al. 2005, 2006; Takahashi and Murata 2008; Murata 
et al. 2007). Note that salinity in marine waters is accounted for various salts includ-
ing NaCl (86 %), but comparison of river and sea water shows that Na+, Ca2+, 
Mg2+, K+, HCO3

−, Cl− and SO4
2− in the sea are typically 1,670, 27, 330, 170, 2.4, 

2,400 and 245 times, respectively, higher than in rivers (see chapter “Complexation 
of Dissolved Organic Matter With Trace Metal Ions in Natural Waters” for more 
discussion). Also note that the occurrence of these salts can cause changes in the 
absorption properties of chromophoric dissolved organic matter (CDOM), and in the 
fluorescence properties of fluorescent dissolved organic matter (FDOM). A change 
in the optical properties (generally shifting from shorter towards longer wave-
lengths) and in the complexation behavior of both CDOM and FDOM can be linked 
to an enhanced photoinduced generation of H2O2 (see chapters “Photoinduced and 
Microbial Generation of Hydrogen Peroxide and Organic Peroxides in Natural 
Waters” “Colored and Chromophoric Dissolved Organic Matter in Natural Waters”, 
“Fluorescent Dissolved Organic Matter in Natural Waters”, and “Complexation of 
Dissolved Organic Matter With Trace Metal Ions in Natural Waters”, respectively for 
their detailed discussion).

A proposed mechanism for the decline of photosynthesis of microorganisms 
is that cations (e.g. Na+, Ca2+, Mg2+, Sr2+) of various salts occurring in marine 
waters can form complexes with functional groups bound to microorganisms (or 
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with their PSII). This complexation can decrease photosynthesis, either by induc-
ing high photoinduced formation of HO• from H2O2, which would damage PSII, 
or by blocking the normal function of electron release by the PSII functional 
groups. Either effect could alter the normal function of PSII, as extensively dis-
cussed in an earlier section (see the “effect of trace metal ions” section). In addi-
tion, complexes of trace metal ions in marine waters with autochthonous DOM of 
algal/phytoplankton origin and with terrestrial DOM of vascular plant origin can 
induce rapid photoinduced excitation of electrons (e−). Such a process can pro-
duce O2

•−, H2O2 and HO• that can subsequently either decompose the proteins 
and the functional groups bound to microorganisms, decreasing their photosyn-
thetic efficiency, or transform the DOM components with production of a number 
of photoproducts such as CO2, DIC, H2O2 and LMW DOM. These products are 
directly linked with an enhancement of photosynthesis and might account for algal 
blooms, particularly in coastal marine environments.

This mechanism is supported by earlier studies, showing that the inhibi-
tion of electron flow on the oxidizing (water) side of PSII causes photoinhibition. 
Moreover, photoactivation and dark-inactivation of electron flow on the reducing 
side of PSI is completely inhibited at high salinity (Satoh et al. 1983). It is known 
that photobleaching of carotenoids and Chl can take place when the oxidizing side 
of PSII is inhibited (Yamashita et al. 1969; Katoh 1972). It has also been observed 
that inhibition on the reducing side of PSI can give rise to strong reductants, which 
can also destroy the reaction centers of both PSI and PSII (Satoh and Fork 1982a, 
b). Photobleaching of carotenoids and Chl might be caused by HO• or other oxi-
dants, generated photolytically by the above mechanism, in analogy with the well-
known phenomena concerning DOM photobleaching in natural waters (see chapters 
“Photoinduced Generation of Hydroxyl Radical in Natural Waters”, “Photoinduced 
and Microbial Degradation of Dissolved Organic Matter in Natural Waters”, 
“Colored and Chromophoric Dissolved Organic Matter in Natural Waters”, and 
“Fluorescent Dissolved Organic Matter in Natural Waters” for detailed discussion).

Effects of Salinity on Higher Plants

Salinity of soil or water is one of the key environmental factors that limit plant 
growth and productivity, particularly in arid, semi-arid and freshwater land near 
coastal regions. Salinity can have a two-fold effect on plants: (i) osmotic stress, 
by which salt in the soil can reduce the availability of water to the roots, and 
(ii) ionic stress due to the salt taken up by the plant that can be accumulated to 
toxic levels in certain tissues (Munns et al. 1995). Reduction of photosynthesis 
caused by salt stress has an impact on several physiological responses, such as 
inhibition of growth and development, modification of ion balance, mineral nutri-
tion, water status, stomatal behavior, decrease in photosynthetic efficiency and in 
chlorophyll content (which leads to a corresponding reduction of light absorption 
by leaves), decrease of carotenoids, carbon allocation and utilization, net carbon 
dioxide exchange, respiration and protein synthesis, and finally, induction of cell 
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expansion in both roots and leaves in salt-sensitive plants (Bybordi 2010; Tunçtürk 
et al. 2011; Melgar et al. 2008; Pandey and Yeo 2008; Pandey et al. 2009; Bybordi 
et al. 2010a, b; Flowers et al. 1977; Munns and Termaat 1986; Zidan et al. 1990; 
Ashraf and Wu 1994; Neumann et al. 1994; Evans 1996; Jungklang et al. 2003; 
Meloni et al. 2003; Qiu and Lu 2003; Lee et al. 2004; Pal et al. 2004; Suwa et al. 
2006; Ali et al. 2007; Desingh and Kanagaraj 2007; Šiler et al. 2007; Ahmed et al. 
2008). It has been shown that some physiological responses (e.g. chlorophyll and 
carotenoids) are initially increased at moderate NaCl levels, but they are generally 
decreased by increasing salinity. It has also been observed that cations or metal 
ions in all plant parts are typically increased with an increase in salt stress.

The effects of salinity are mostly linked to a decrease in stomatal conductance and/
or to the non-stomatal limitation related to carbon fixation (Bongi and Loreto 1989; 
Brugnoli and Björkman 1992; Delfine et al. 1998, 1999; Centritto et al. 2003). It is sug-
gested that stomatal limitation prevails at intermediate salinity levels, while the non-
stomatal limitations predominate under severe salt stress conditions (Bongi and Loreto 
1989). The photosynthetic rate, PSII efficiency, root and shoot growth of Centaurium 
erythraea is increased or remains the same at moderate salt levels (50–200 mM NaCl), 
but it is decreased significantly at high salt concentration (400 mM NaCl). Root 
growth is more adversely affected by increasing NaCl concentration than shoot growth 
(Šiler et al. 2007). Chlorophyll contents are decreased under elevated salinity condi-
tions for some salt-sensitive plant species, but they are not modified at moderate salt  
levels (Jungklang et al. 2003; Lee et al. 2004; Šiler et al. 2007; Delfine et al. 1998, 
1999; Ashraf et al. 2002). This suggests that the decline of chlorophyll content depends 
on the salinity level, on the time of exposure to salts and on the plant species. Salinity 
can rapidly inhibit root growth and subsequently decrease the uptake of water and 
essential mineral nutrients from soil (Neumann 1997). An increase of NaCl concen-
tration in solution can reduce N and NO3 concentrations in leaves, when plants are 
treated with NaCl and NH4NO3 (Bybordi 2010). An apparent increase in salt tolerance 
is observed when N levels, supplied under saline conditions, exceed the optimum ones 
observed under non-saline conditions (Bybordi et al. 2010a; Papadopoulos and Rendig 
1983). This indicates that increased fertilization, especially by N, may improve the del-
eterious effect of salinity (Ravikovitch and Porath 1967).

A contribution to salt stress in salt-sensitive plants may derive from the fact that 
an increase of salinity can enhance the metal ion contents in plant cells, because 
metal ions can form complexes with PSII functional groups. As already men-
tioned, such a complexation may cause either a high production of photoinduced 
electrons (e−) and of superoxide anion (O2

•−), H2O2 and HO•, which can damage 
PSII, or block further photoinduced generation of electrons from PSII itself.

Conversely, the plant growth at moderate levels of NaCl might also be favored 
by photoinduced generation of H2O2 from PSII-metal complexes. If moderate, such 
H2O2 levels could be favourable to photosynthesis as discussed before (Eq. 3.1). 
The balance is delicate, however, because excessive salt can cause high production 
of H2O2 and HO• that can damage the PSII. These proposed mechanisms can be 
justified by the observation of several physiological functions caused by salt stress, 
such as: (i) salinity stress in plants can produce reactive oxygen species (ROS) such 
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as O2
•−, H2O2 and HO•, particularly in chloroplasts and mitochondria (Mittler 

2002; Masood et al. 2006). Plants possess a number of antioxidant enzymes such 
as superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione 
reductase (GR) for protection against the damaging effects of ROS (Asada 1992; 
Prochazkova and Wilhelmova 2007), but ROS-linked salinity stress can cause 
membrane disorganization, metabolic toxicity and attenuated nutrients (Frommer 
et al. 1999; Zhu 2000; Costa et al. 2005) These initial effects can then induce more 
catastrophic events in plants. Excessive salt stress can eventually cause photoinhi-
bition and photodamage of PSII (Krause and Weis 1991; Belkhodja et al. 1994). 
(ii) Strong salt stress in salt-sensitive species can severely reduce the potential of 
electron transport in PSII (Jungklang et al. 2003). (iii) Salinity can increase or 
decrease uptake of some nutrients (e.g. Fe, Mn, Cu, Zn, K, etc.) depending on 
the plant species (Vıllora et al. 2000; Turhan and Eris 2005; Wang and Han 2007; 
Achakzai et al. 2010; Tunçtürk et al. 2011; Greenway and Munns 1980; Martinez 
et al. 1987; Cornillon and Palloix 1997; Alpaslan et al. 1998). The increase in these 
metals can enhance complexation with the PSI and PSII functional groups, lead-
ing to ROS production. High Na+ content is generally responsible for alteration of 
the nutrient balance, which can cause specific ion toxicity in addition to disturb-
ing the osmotic regulation (Greenway and Munns 1980). (iv) Due to the complex 
formation between metals and PSII functional groups, electron excitation at low 
irradiance can induce effective generation of H2O2 and ROS. This can be justified 
by the in vivo observation of ROS generation inside PSII membranes. Salt stress 
may thus damage the photosynthetic activity of PSII even at low irradiance (Pandey  
et al. 2009). (v) Complexation of trace metal ions with functional groups bound 
to PSII under salinity conditions can enhance electron release and, as a conse-
quence, ROS production (see chapter “Complexation of Dissolved Organic Matter 
With Trace Metal Ions in Natural Waters”). Such effects are able to photodamage 
PSII in Chlamydomonas reinhardtii, barley leaves (Hordeum vulgare), sorghum 
(Sorghum bicolor), rye (Secale cereal), and Spirulina platensis (Neale and Melis 
1989; Sharma and Hall 1991; Hertwig et al. 1992; Lu and Zhang 1999).

Chl content in salt-tolerant plants would either remain the same or be sig-
nificantly enhanced with increasing salinity (Qiu and Lu 2003; Brugnoli and 
Björkman 1992), and accumulation of compatible solutes (e.g. proline, betaine, 
polyols, sugar alcohols, and soluble sugars) in many plants can increase the toler-
ance of PSI and PSII to salt stress (Chen and Murata 2002; Fulda et al. 1999; Zhu 
2002; Reed and Stewart 1988). The increase of Na+ and Cl− ions in both leaves 
and roots is accompanied with an increase in proline and soluble sugars which 
could play a role in salt tolerance (Melgar et al. 2008; Ahmed et al. 2008).

While functioning in an otherwise similar way as non-tolerant plants, salt-tolerant 
plant species may supply relatively low amounts of salt ions to leaves through roots. 
The consequence may be the occurrence of relatively low contents of H2O2. If the 
latter be present in moderate amount, it would mostly be used in photosynthesis and 
would not produce dangerous levels of HO•. Therefore, the plant may maintain nor-
mal photosynthesis in the presence of high salt levels. Salt tolerance in canola is asso-
ciated with the ability to reduce uptake and/or transport of saline ions (Bybordi 2010). 

http://dx.doi.org/10.1007/978-3-642-32223-5_9
http://dx.doi.org/10.1007/978-3-642-32223-5_9
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In addition, resistance to salinity may occur when a plant is capable of producing 
large amounts of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate 
peroxidase (APX) and glutathione reductase (GR) (Asada 1992; Prochazkova and 
Wilhelmova 2007; Mittova et al. 2002; Gossett et al. 1994; Pastori and Trippi 1993). 
These enzymes can significantly scavenge free radicals under stress conditions.

Elevated levels of GR are capable of increasing the amount of NADP+, which 
accepts electrons from the photosynthetic electron transport chain (Peltzer et al. 
2002; Reddy et al. 2004). The activity of antioxidant enzymes under saline con-
ditions are typically increased in the case of salt-tolerant cotton varieties, shoot 
cultures of rice, cucumber, wheat shoot and pea (Bybordi et al. 2010b, c; Meloni 
et al. 2003; Desingh and Kanagaraj 2007; Fadzilla et al. 1997; Lechno et al. 1997; 
Hernandez et al. 1999; Meneguzzo et al. 1999). Due to salinity stress, plants can 
accumulate osmolytes such as proline and glycine betaine, which are known to 
protect macromolecules by stabilizing protein structure during dehydration and/
or by scavenging ROS produced under stress conditions (Desingh and Kanagaraj 
2007; McNeil et al. 2001; Zhu 2001; Matysik et al. 2002; Rontein et al. 2002). 
Tolerance of photosystems to salt stress can be enhanced by genetically engi-
neered increase in the unsaturation of fatty acids in membrane lipids, and by intra-
cellular synthesis of compatible solutes (e.g. glucosylglycerol and glycinebetaine) 
(Allakhverdiev and Murata 2008). When photosynthetic organisms are exposed 
to salt stress, fatty acids of membrane lipids are desaturated (Huflejt et al. 1990). 
Therefore, unsaturation of fatty acid in membrane lipids can enhance tolerance of 
PSI and PSII to salt stress (Allakhverdiev and Murata 2008).

Enhanced tolerance of PSII to salt stress upon unsaturation of membrane lipids is 
probably accounted for by the fact that unsaturated fatty acids are generally capable of 
surrounding the cations [e.g. Na+/H+ antiporter(s) and/or H+-ATPase(s)] with their 
electron-rich double bonds. An increase in the levels of the antiport system components 
can decrease the concentration of Na+ ions in the cytosol, which may protect PSII and 
PSI against NaCl-induced inactivation (Allakhverdiev and Murata 2008).

5.9  Effects of Toxic Pollutants on Aquatic Microorganisms

Environmentally-occurring toxic organic pollutants can decrease the efficiency 
of photosynthesis, most presumably by adversely affecting the PSII (Berden-
Zrimec et al. 2007; Mayer et al. 1997; Halling-Sørensen et al. 2000; Katsumata  
et al. 2005, 2006; Kvíderová and Henley 2005; Zrimec et al. 2005; Pan et al. 2009; 
Yates and Rogers 2011). Some antibiotics (e.g. ampicillin, streptomycin, levo-
floxacin hydrochloride, mecillinam, trimethoprim, ciprofloxacin), phenols (e.g. 
3,5-dichlorophenol), pesticides and herbicides (e.g. DCMU or diuron, simazine, 
atrazine) are highly toxic to microorganisms such as cyanobacteria or phytoplank-
ton cells (Berden-Zrimec et al. 2007; Halling-Sørensen et al. 2000; Katsumata  
et al. 2005, 2006 Kvíderová and Henley 2005; Zrimec et al. 2005; Pan et al. 2009; 
Yates and Rogers 2011; DeLorenzo et al. 2001). The toxic organic compounds 
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are effective in inhibiting O2 evolution and PSII activity of microorganisms. The 
inhibitory effect on PSII is often increased with increasing concentration of toxic 
compounds. Levofloxacin hydrochloride, one of the most commonly used fluo-
roquinolone antibiotics, can decrease the density of the active photosynthetic 
reaction centers of Synechocystis sp., inhibit electron transport, and increase the 
dissipated energy flux per reaction center. All these effects together are able to 
decrease the photosynthetic efficiency (Pan et al. 2009).

The adverse effect on photosynthesis is thought to be caused by two facts. 
First, the molecular structures of organic contaminants are mostly composed of 
N-, S-, O-, and/or P-containing functional groups, which are susceptible to form 
H-bonding with the functional groups of PSII. This effect can decrease the effi-
ciency of electron release from PSII. It has in fact been demonstrated that the her-
bicide DCMU can directly block the electron transport in PSII (Berden-Zrimec  
et al. 2007; Tissut et al. 1987; Behrenfeld et al. 1998). The second issue is that N-, 
S-, O-, or P-containing functional groups can release electrons upon excitation by 
light, which can produce ROS such as O2

•−, H2O2 and HO•. These oxidizing spe-
cies can damage the PSII system, thereby reducing the photosynthetic efficiency as 
a whole.

KCN (an inhibitor of mitochondrial respiration) and 3-(3,4-dichlorophenyl)-
1,1-dimethylurea (an inhibitor of photosynthesis) had no significant effects on 
ROS production. In contrast, vitamin K3 (a plasma membrane electron shuttle) 
can enhance ROS production and its antagonist, dicumarol, can decrease it (Liu  
et al. 2007). Photosynthetic organisms can produce ROS by activating various oxi-
dases and peroxidases, in response to environmental stresses such as pathogens, 
drought, light intensity, an increase in temperature from 7 °C to 30 °C, and con-
taminants such as paraquat (Peng and Kuc 1992; Moran et al. 1994; Karpinski  
et al. 1997; Iturbe-Ormaetxe et al. 1998; Twiner and Trick 2000).

5.10  Effect of Size-Fractionated Phytoplankton

Planktonic algae of <5 μm in size are major fixers of inorganic carbon in the ocean 
and dominate phytoplankton biomass in post-bloom, stratified oceanic temperate 
waters (Li 1994; Tarran et al. 2001). Large and small algae are viewed as having 
a critical growth dependence on inorganic nutrients. The latter can be assimilated 
at lower ambient concentrations due to the higher surface-area-to-volume ratios 
of small vs. larger organisms (Malone 1980; Chisholm 1992; Zubkov and Tarran 
2008). Experimental studies that adopted phosphate tracer suggest that small algae 
can uptake inorganic phosphate indirectly, possibly through feeding on bacterio-
plankton (Hansen and Hjorth 2002; Stibor and Sommer 2003; Tittel et al. 2003; 
Unrein et al. 2007; Zubkov et al. 2007; Jones 2000; Bird and Kalff 1986; Arenovski 
et al. 1995; Rothhaupt 1996; Thingstad et al. 1996; Caron 2000). Inorganic phos-
phate and other nutrients (e.g. NO3

−) can originate mostly from two processes:  
(i) photoinduced and microbial assimilations of algae (or cyanobacteria), and (ii) 



633Photosynthesis in Nature: A New Look

photoinduced and microbial degradation of allochthonous DOM of plant origin and 
autochthonous DOM of algal/phytoplankton origin (see also chapters “Dissolved 
Organic Matter in Natural Waters”, “Photoinduced and Microbial Degradation of 
Dissolved Organic Matter in Natural Waters”, and “Impacts of Global Warming on 
Biogeochemical Cycles in Natural Waters”). Small algae can carry out 40–95 % of 
the bacterivory activity in the euphotic layer of the temperate North Atlantic Ocean 
in summer, and 37–70 % in the surface waters of the tropical North-East Atlantic 
Ocean (Zubkov and Tarran 2008). This reveals that the smallest algae have less 
dependence on dissolved inorganic nutrients (Zubkov and Tarran 2008).

The volume of planktonic bacteria increases as water temperature decreases 
(Albright and McCrae 1987; Chrzanowski et al. 1988; Bjørnsen et al. 1989), and 
thus the occurrence of larger cells in the hypolimnion is linked to its low tempera-
ture (Wiebe et al. 1992; Callieri et al. 2009; Bertoni et al. 2010). Bacterial cells are 
often observed to be approximately 30 % larger in the Arctic Ocean and Antarctic 
coastal waters than in temperate regimes (Straza et al. 2009).

The mechanism behind this size shift is presumably that low temperature in 
hypolimnion and Arctic or Antactic regions can protect against cell degradation, 
whereas microbial assimilations of planktonic bacteria cells can release both nutri-
ents and autochthonous DOM. Correspondingly, high temperatures along with 
solar radiation and surface waters mixing by strong waves are effective in pho-
tolytically and microbially releasing nutrients and autochthonous DOM. These 
two effects could be responsible for the occurrence of large cells in low tempera-
ture regions including the hypolimnion. The photoinduced and microbial releases 
of nutrients, photo-/microbial products, and autochthonous DOM from algae/
phytoplankton (Mostofa et al. 2009; Zhang et al. 2009; Tranvik et al. 2009; Zepp  
et al. 2011; Ma and Green 2004; White et al. 2010; Liu et al. 2010; Mostofa et al. 
2005; Bushaw et al. 1996; Molot et al. 2005; Johannessen et al. 2007; Borges et al. 
2008; Kujawinski et al. 2009; Lohrenz et al. 2010; Omar et al. 2010; Cai 2011) are 
responsible for low photosynthesis in most upper surface layers.

It has also been observed that lower photosynthesis in the shallower epilimnion 
(1 m) than in the deeper epilimnion (3 m) (Nozaki et al. 2002) might be the effect 
of higher photoinduced degradation of algae near the water surface. This effect, 
coupled with strong wind mixing and turbulence can decrease the size structure 
of phytoplankton or algae in the upper epilimnion, thereby decreasing the photo-
synthetic efficiency (Cermeno et al. 2005; Nozaki et al. 2002). Note that physical 
mixing in the surface mixing zone is an important factor for promoting the pho-
toinduced degradation of DOM (see chapter “Complexation of Dissolved Organic 
Matter With Trace Metal Ions in Natural Waters”).

5.11  Effects of Global Warming

Global warming causes an increase in water temperature, lengthens the sum-
mer season, extends the surface water mixing zone and increases the stability of 

http://dx.doi.org/10.1007/978-3-642-32223-5_1
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http://dx.doi.org/10.1007/978-3-642-32223-5_4
http://dx.doi.org/10.1007/978-3-642-32223-5_10
http://dx.doi.org/10.1007/978-3-642-32223-5_10
http://dx.doi.org/10.1007/978-3-642-32223-5_9
http://dx.doi.org/10.1007/978-3-642-32223-5_9
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the vertical stratification in large parts of lakes and oceans. An increase in pho-
toinduced and microbial degradation rates of OM (DOM and POM) by global 
warming may affect water transparency and generation of photo- and microbial 
products (H2O2, CO2, DIC, and so on), may modify seasonal patterns in chloro-
phyll or primary production, contents of nutrients (NO2

−, NO3
−, and PO4

3−), 
carbon cycling, pH values, microbial food web stimulation that varies seasonally 
on a variety of time scales, and the depth of the mixing layer (see also chap-
ters “Dissolved Organic Matter in Natural Waters”, “Chlorophylls and Their 
Degradation in Nature”, and “Impacts of Global Warming on Biogeochemical 
Cycles in Natural Waters”) (Mostofa et al. 2009; Baulch et al. 2005; Morris and 
Hargreaves 1997; Cooke et al. 2006; Huisman et al. 2006; Malkin et al. 2008; 
Davis et al. 2009; Castle and Rodgers 2009; Mostofa and Sakugawa 2009; 
Keeling et al. 2010; Zepp et al. 2011; Granéli et al. 1998). Two phenomena can 
result from this. First, in water with high contents of OM, photoinduced and 
microbial processes that correspond to high photosynthesis may be prolonged, 
thereby causing the prolongation of the primary productivity (Malkin et al. 
2008). This may eventually result into toxic or harmful algal bloom in natural 
waters. Second, low photosynthesis could take place in waters with low contents 
of OM, causing low production of photo- and microbial products. This can sub-
sequently reduce the vertical mixing and suppress the upward flux of nutrients, 
leading to a decrease in primary production in oceans (Huisman et al. 2006).

An increase in water temperature by global warming can also decrease the 
concentration of dissolved oxygen (O2) in natural waters (Keeling et al. 2010; 
Epstein et al. 1993; Garcia et al. 1998; Sarmiento et al. 1998; Plattner et al. 2001; 
Bopp et al. 2002; Keeling and Garcia 2002; Matear and Hirst 2003). This could 
enhance the growth of cyanobacteria and other algae (Epstein et al. 1993) and/
or decrease the growth of other organisms (Keeling et al. 2010). The decrease 
of dissolved O2 in the upper surface layer would occur because of decreased O2 
solubility in warmer water and due to photoinduced generation of superoxide radi-
cal ion (O2

•−) and H2O2 (see chapter “Photoinduced and Microbial Generation 
of Hydrogen Peroxide and Organic Peroxides in Natural Waters” for detailed 
mechanism) by the effect of global warming. An increase in O2 can enhance the 
production of H2O2 (Moffett and Zafiriou 1990) and different algae can show una-
like responses to O2 concentration (Pope 1975). This may for instance be linked 
to eutrophication from excess algal growth. The most prominent symptoms of 
eutrophication are oxygen depletion in bottom waters and harmful algal blooms 
(Richardson and Jorgensen 1996).

The decrease of dissolved O2 in deeper waters would be caused by the 
decrease in vertical mixing of the water column due to the longer stratification 
period as a consequence of global warming. This effect can reduce the primary 
production as well as to survival of organisms in deeper water layers, particularly 
in lakes and oceans. Earlier studies did not provide any clear mechanisms about 
the decrease of dissolved O2, which includes changes in ocean circulation rates 
(Bindoff and McDougall 2000; Shaffer et al. 2000; Emerson et al. 2001; Keller 
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et al. 2001), in preformed values (Garcia et al. 1998), in Redfield ratios (Pahlow 
and Riebesell 2000), and in biological production (Emerson et al. 2001). The 
abundance and geographic distribution of toxin-producing algae is significantly 
increasing with respect to global warming and because of increased anthro-
pogenic input of nutrients to aquatic environments (Shumway 1990; Harvell et 
al. 1999; Haines et al. 2000; vanDolah 2000; Shumway et al. 2003; Phlips et al. 
2004; Yan and Zhou 2004; Luckas et al. 2005). The effects of global warming on 
waters are extensively discussed in the global warming chapter, which can help 
understanding the overall effects on photosynthesis and other key biogeochemi-
cal issues (see chapter “Impacts of Global Warming on Biogeochemical Cycles in 
Natural Waters”).

5.11.1 Harmful Algal Blooms

The harmful algal blooms are presumably an effect of global warming on 
waters with high content of DOM and POM, as extensively discussed in ear-
lier sections. Harmful algal blooms can cause loss of phytoplankton competi-
tor motility, inhibition of photosynthesis, inhibition of enzymes, membrane 
damage, large fish kills, shellfish poisoning, deaths of livestock and wildlife, 
death of coral reefs and, finally, illness or even death in humans (Yates and 
Rogers 2011; Llewellyn 2006; Richardson 2007; Prince et al. 2008; Etheridge 
2010; Harvell et al. 1999; Hallock and Schlager 1986; Hallegraeff 1993; Negri 
et al. 1995; Braun and Pfeiffer 2002; Landsberg 2002; Legrand et al. 2003). 
Autochthonous organic compounds (e.g. autochthonous fulvic acids) and nutri-
ents are generally produced by algae or phytoplankton, either biologically 
(also termed allelopathy: a biological phenomenon by which an organism can 
produce various types of biochemicals, which can influence growth, survival, 
death, and reproduction of other organisms) or photolytically (see also chapters 
“Dissolved Organic Matter in Natural Waters”, “Photoinduced and Microbial 
Degradation of Dissolved Organic Matter in Natural Waters”, “Colored and 
Chromophoric Dissolved Organic Matter in Natural Waters” and “Fluorescent 
Dissolved Organic Matter in Natural Waters” for detailed description) (Mostofa 
et al. 2009, 2011; Prince et al. 2008; Zhang et al. 2009). In addition, various 
types of algae such as diatoms, dinoflagellates and cyanobacteria can produce 
toxins that can cause death of higher organisms (Castle and Rodgers 2009; 
Falconer 1993). Blooms of a red-tide dinoflagellate such as Karenia brevis, 
occurring in the coastal seawaters, and Prymnesium parvum, also known as 
golden algae, can produce neurotoxic compounds (brevetoxins) that can kill fish 
and accumulate in shellfish (Yates and Rogers 2011; Landsberg 2002; Southard 
et al. 2010; Tester et al. 1991). Moreover, autochthonous compounds and toxins 
produced during toxic algal blooms are susceptible to decrease the photosyn-
thetic efficiency of natural waters.
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6  Scope of the Future Researches

The mechanisms of the photosynthetic reaction and the changes of the photosyn-
thetic efficiency of organisms are affected by the different factors discussed in this 
study. A number of issues may greatly assist to improve the present understand-
ing of photosynthesis. For example, formation of complexes between metal ions 
and the functional groups of PSII or PSI is a new suggestion about the processes 
that might occur in aquatic environments. Earlier studies did not place much atten-
tion on the complexation theory, which may greatly assist a better understanding 
of similar researches. The effects of organic matter (DOM and POM) and of other 
factors on photosynthesis are important for understanding the mechanisms of the 
release of electrons and O2, as well as other vital phenomena. The complexation 
theory may provide a better understanding of the molecular basis for the mecha-
nisms of photosystem tolerance to salt or metal ions stress. If proven, such a the-
ory may greatly help the introduction, by plant breeding and genetic engineering, 
of salt tolerance in crop plants.

The need for additional studies in photosynthesis can be summarized as fol-
lows: (i) Observations are required of the effects of diverse toxic and non-toxic 
organic substances and metals on efficiency of the photosynthesis of various 
microorganisms; (ii) The mechanism of relase of O2 from H2O2 during photosyn-
thesis should be substantiated; (iii) Special attention should be paid to the photo-
systems crystal structure, to find out any presence of H2O2 (or O2) instead of H2O. 
Concurrently, further studies are needed that take special attention during sample 
preparation, to avoid the possible decomposition of H2O2. Such studies would help 
solving the debate concerning the process of oxygen release; (iv) A better under-
standing is required of the effect on photosynthesis of exogenous H2O2, produced 
from allochthonous DOM (humic substances including fulvic and humic acids); 
(v) The effect of autochthonous DOM (autochthonous fulvic acids of algal/phyto-
plankton origin) on photosynthesis also requires better understanding; (vi) Crystal 
structures of PSI or PSII do not include any information about dissolved O2, but 
they are composed of about 1,300 water molecules (Umena et al. 2011) and issue 
that will need further studies to be clarified. Finally, it is important to remember 
during the sample processing of any photosynthesis experiments that H2O2 is rap-
idly decomposed microbilly and it is also rapidly produced under light condition.

7  Nomenclature

CCM Carbon-concentrating mechanism
Chl Chlorophyll
CO2 Carbon dioxide
DIC Dissolved inorganic carbon = dissolved CO2, H2CO3, HCO3

−, and CO3
2−

DOM Dissolved organic matter
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Ga Gigaannum: 109 years
H2O Water
H2O2 Hydrogen peroxide
MAAs Mycosporine-like amino acids
1O2 Singlet state of oxygen
3O2 Triplet state of oxygen
O2

•− Superoxide radical anion
OEC Oxygen-evolving complex
POM Particulate organic matter
PSI Photosystem I
PSII Photosystem II
ROS Reactive oxygen species
Rubisco Ribulose Bisphosphate Carboxylase-Oxygenase
UV Ultraviolet
WOC Water-oxidizing complex

Problems

 1. Define oxygenic photosynthesis and how does it differ from anoxygenic 
photosynthesis. Explain three key functions of photosynthesis in aquatic 
environments.

 2. Define the key photosynthetic reactions under the hypotheses of H2O and 
H2O2 involvement.

 3. Which and how many Chl molecules can participate in the primary donor 
sites in PSI and PS II under illumination?

 4. Explain the mechanism of H2O2 formation from chlorophyll bound in photo-
synthetic cells and ultrapure water under illumination.

 5. Why are PSI and PSII composed of a number of chlorophyll molecules in 
their structures?

 6. Explain the mechanism of electron transfer and O2 release from PSII during 
photosynthesis.

 7. Distinguish the various factors that influence photosynthesis. How do sea-
sonal light cycle and temperature affect photosynthesis?

 8. Why do precipitation/rainfall substantially enhance plant photosynthesis?
 9. Explain the mechanism for the occurrence of algal (cyanobacterial) bloom 

in waters with high contents of DOM and POM. How does global warming 
accelerate the algal bloom in natural waters?

 10. How do trace metal ions become toxic during phytoplankton photosynthesis? 
Explain the mechanism.

 11. Explain how does salinity affect both plant and phytoplankton photosynthesis.
 12. How can UV radiation affect phytoplankton photosynthesis?
 13. How does metal toxicity impact organisms or induce cancer in humans?
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Kopáček J, Hejzlar J, Kaňa J, Porcal P, Klementová Š (2003) Photochemical, chemical, and bio-
logical transformations of dissolved organic carbon and its effect on alkalinity production in 
acidified lakes. Limnol Oceanogr 48:106–117
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“If H2O would decompose by the reaction with CO2 in photosynthesis, then all 
H2O would convert into O2 by organisms and plants after the origin of life on 
earth to date and no H2O would remain in the biosphere.

Instead of H2O, photoinduced generation of H2O2 from dissolved O2 in water 
bound in photosynthetic cells is reacted with CO2 in photosynthesis that can limit 
the photosynthesis under light condition.

Then further conversion of H2O2 to O2 either through photosynthesis [xCO2 
(H2O) + yH2O2(H2O) → Cx(H2O)y + O2 + E (±)] or both photolytically 
(2H2O2 + hυ → O2 + unknown oxidant) and biologically (2H2O2 + catalases/
peroxidases → O2 + 2H2O) may balance the environment.”
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