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Abstract. Chemical reaction networks (CRNs) and DNA strand dis-
placement systems (DSDs) are widely-studied and useful models of
molecular programming. However, in order for some DSDs in the lit-
erature to behave in an expected manner, the initial number of copies of
some reagents is required to be fixed. In this paper we show that, when
multiple copies of all initial molecules are present, general types of CRNs
and DSDs fail to work correctly if the length of the shortest sequence of
reactions needed to produce any given molecule exceeds a threshold that
grows polynomially with attributes of the system.

1 Introduction

DNA strand displacement systems (DSDs) [10,13] and chemical reaction net-
works (CRNs) [8,7] are important molecular programming models. DSDs provide
sophisticated molecular realizations of logic circuits and even artificial neurons
[4,5], while CRNs elegantly express chemical programs that can then be trans-
lated into DSDs [8,9]. CRNs and thus DSDs can in principle simulate Turing-
general models of computation [6,3], and DSDs can be energy efficient [11,6,9,14].
It is also possible in principle to recycle molecules in DSDs by running reversible
reactions or displacements in both forwards and reverse directions, so that t
steps of the system use just O(log t) molecules [1].

However, correct behavior of some published DSDs [3,1] requires that an exact
numbers of some reactants are present initially, and it is currently impractical
to obtain the exact numbers in a wet lab. We previously considered the condi-
tions for a class of CRNs to work correctly when multiple copies of all initial
molecules are present and showed that the length of the shortest trace (sequence
of reactions) needed to “reach”, i.e., produce, any given molecule is bounded by
a polynomial function of some attributes of a CRN in this class [1]. This reach-
ability upper bound reveals important limits of molecular programs that fall in
the class covered by our result: we cannot write such programs that run correctly
in a closed chemical system and for which the number of steps (reactions) of the
program is sufficiently large relative to the volume of initial reagents.1

1 The volume is the physical volume of all the molecules. It can be approximated by
the number of all the types of reagents in the initial configurations.
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In this work we provide two new reachability upper bounds that significantly
extend our earlier work. The first new theorem applies to tagged CRNs which,
as we explain below, are important because they can be translated into DSDs of
comparable volume that can simulate the CRNs traces. The second new theorem
applies to a broader class of DSDs than does the translated version of our first
result. In the rest of this introduction we motivate our results in more detail.
Sections 2 and 3 provide technical details of both theorems; additional details
are in the full version of the paper. We list some open questions in Section 4.

New result for chemical reaction networks (CRNs). Figure 1 illustrates a CRN
of the type to which our new result applies (a formal definition of CRN is in
Section 2). Each reaction r is reversible, and has unique tag species τ+r and τ−r
on its left and right sides respectively. We explain later why we focus on tagged
CRNs, and also explain why we ignore reaction rate constants in our example and
results. When a single copy of each species in the set {A,B,E, τ+1 , τ+2 , τ+3 , τ+4 } is
initially present, it takes six reaction steps to produce the product H , and to do
so, reaction 1 must run in the forwards direction, then later run backwards, then
forwards again. However, if another copy of A and B are present initially then H
can be generated with just four reactions. The behavior of the system with two
copies does not mirror its behavior with one copy; in this sense it is incorrect.
While for this simple example it might not seem important how many steps are
needed to produce a particular product, it is critically important in contexts
where the product is the result of a computation and an erroneous result could
be produced as a result of cross-talk, or short-circuiting of multiple copies of the
intended computation.

(1) τ+
1 + A+B � C +D + τ−

1

(2) τ+
2 + C +D + E � C +D + F + τ−

2

(3) τ+
3 + A+B + F � A+B +G+ τ−

3

(4) τ+
4 + C +D +G � C +D +H + τ−

4

Fig. 1. Example of a simple tagged chemical reaction network (CRN)

In this paper, our notion of correctness is that of copy tolerance [1]. We say
that a CRN C is x-copy-tolerant if the length of the shortest trace that produces
any species s in C and in C(x) is the same, where C(x) is the CRN with the
same reactions as C but with x initial copies of each initial molecule of C. A
system is copy-tolerant if it is x-copy-tolerant for all x. The CRN of Figure 1
is not 2-copy-tolerant. Copy-tolerance is a weak notion of correctness; if a CRN
C is not 2-copy tolerant then, for example, C also fails to satisfy the stronger
requirement that each possible trace of C in the 2-copy setting is an interleaving
of two possible traces in the single copy setting. We chose to work with a weak
notion of correctness because it makes our results stronger, i.e., they apply also
to notions of correctness that are stronger than copy-tolerance.
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Our first reachability upper bound, Theorem 2, shows that in order for a
tagged CRN C to be copy-tolerant, the number of steps needed for C to produce
any given species must be suitably bounded. The bound is a polynomial function
of the volume and other attributes of C.

We prove our result for tagged CRNs—CRNs with a unique species on the left
and right side of each reaction (see Figure 1)— for two reasons. First, the tags
make it possible for us to prove strong results. The second reason stems from the
fact that our ultimate goal is to prove limits on the power of DSDs, which can be
realized with DNA strands, rather than for CRNs which are a useful theoretical
abstraction. When translating an untagged CRN to a DSD, two sets of auxiliary
DNA strand complexes, so-called transformer, are introduced per reaction of
the CRN, one set for each side of the reaction. Each set of transformers includes
unique strands that do not otherwise appear in the DSD. The CRN tag species
represent the sets of transformer DNA strands. Put another way, to translate
an untagged CRN to a DSD using current methods, it is necessary to first add
tags to the CRN and then map the tags to the sets of transformer species. Thus,
by proving a reachability upper bound for a tagged CRN, we are obtaining a
result for the DSD realization of the corresponding untagged CRN. The result
would apply also to other realizations of CRNs, perhaps even using molecules
other than DNA, in which transformer molecules are needed in the realization.
Our earlier result [1] did not apply to general tagged CRNs.

Unlike the example of Figure 1, chemical reactions have associated kinetic rate
constants that, along with species counts, determine reaction propensities [8,7].
In particular, a CRN behaves stochastically if multiple reactions are applicable
to the molecules available at one or more points in the sequence of reactions.
However, in examples such as the stack machine of Qian et al. [3] and the Gray
code counter of Condon et al. [1], correctness of the CRN does not depend on
the relative propensities of applicable reactions (although efficiency of the CRN
does). Since our results are expressed in terms of number of reactions rather
than reaction propensities, they apply to stochastic CRNs. We can interpret our
reachability result as a hitting time in the stochastic context where a hitting
time is the minimum number of reactions required to reach a goal state from a
initial state.

New result for strand displacement systems (DSDs). The second main contribu-
tion of this paper is a limit on the types of DSDs that are correct in multi-copy
settings. In strand displacement (Figure 2), an initially unbound “signal” strand
I binds to a “template” T , causing another signal strand O that was initially
bound to T to become unbound. DSDs are collections of strands that can change
configurations via successive strand displacements in a pre-programmed fashion
[13,14,2]; we provide a formal definition later.

Our first result on tagged CRNs implies a reachability upper bound for DSD
realizations of CRNs, but says nothing about DSDs more generally. In Theorem 3
we elucidate this simple upper bound which is obtained by applying the CRN
result to limited types of DSDs, those whose signal strands consist of exactly
two domains: a toehold and a long-domain. However, since the signal types are
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Fig. 2. Strand displacement. (a) An unbound DNA strand I , with a short toehold (dark
line) and long-domain (lighter line), plus a duplex consisting of a template strand T
and a third strand O that is bound to T . (b) I binds to T via its toehold. (c) Through
a process of branch migration, the long-domain of I becomes bound to T , displacing
bonds of O. (d) O is bound to T by only a toehold. (e) The toehold bonds break,
making O unbound.

limited, this result does not apply to general DSDs. This is because, while tagged
CRNs can be translated to DSDs having parameters such as the volume and the
number of types of reactants polynomial in the volume of the CRN [9], it is not
clear whether the converse is true. To see why, consider signal strands that have
three domains: a toehold and two long-domains such that they each start with
the same long-domain d∗ and toehold t∗, and end with a distinct long-domain.
Assume there are δ different types of these signal strands where δ is the number
of long-domains on the template we will consider. Note for the DSD template
having δ long-domains, over the course of several displacements, there are fac-
torially many different configurations—ways in which signal strands are bound
to the template. Figure 3 provides a simple example where any permutation of
the signal species could bind to the template. Now, we want to create a tagged
CRN that is equivalent to this DSD. Such a tagged CRN in which each template
configuration is a distinct species would thus have the number of distinct species
and reactions factorial in the volume (number of toehold and long-domains) of
the DSD. Since each reaction in the tagged CRN requires a unique tag which
needs to be present in the initial configuration, the overall volume of the tagged
CRN would be also factorial in the volume of the DSD. It is not clear how else
to translate such a DSD to a (tagged) CRN of comparable volume.
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Fig. 3. A template with 6 long-domains and 6! = 720 possible configurations. Dark
lines are toeholds and the lighter ones are long-domains. The template contains δ = 6
toehold-long-domain-toehold blocks. In each block, any one of the signal species may
be bound. Thus the number of possible configurations of this template is δ! = 6!.

Can “long” computations be correctly performed by DSDs, even in the pres-
ence of many copies? Our second reachability upper bounds for DSDs, Theo-
rems 4 and 5, answer this in the negative, showing that, if sufficiently many
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copies are present, then any unbound DNA strand that can be produced (i.e.,
reached) by a sequence of strand displacements can always be reached within
a number of displacements that grows at most polynomially in the volume of
the single-copy DSD. Thus, for example, we cannot write DSD programs that
run correctly in the multi-copy setting and for which the minimum number of
displacements needed to produce some given signal strand is exponential in the
initial volume.

As further motivation, we describe another application of our DSD reacha-
bility bound. The CRN of Figure 4 describes a traditional 3-bit binary counter.
Initially, three species, namely 03, 02 and 01 represent the bits 0 at each index of
the counter. Exactly one reaction can advance the counter from each value (all
in the forward direction), until the counter reaches 131211. For the n-bit gener-
alization of this counter, the number of species is just 2n (two species per bit)
while the number of steps is 2n. Thus the volume is logarithmic in the number
of steps. Another very nice feature of this CRN is that it works correctly even if
multiple copies of the initial species are present, not only in the sense of being
copy-tolerant but also in the sense that the trace of the multi-copy system is an
interleaving of traces of the single-copy system, even in the presence of cross-talk
(details omitted).

(1) 01 � 11

(2) 02 + 11 � 12 + 01
(3) 03 + 12 + 11 � 13 + 02 + 01

Fig. 4. Binary counter CRN

However, if tags are added to the counter in order that it can be translated
to a DSD using tags as discussed previously, the volume of species for the DSD
realization of the counter becomes exponential in n. This is because reaction
(1) is executed in the forward direction 2n−1 times and is never executed in the
reverse direction; thus 2n−1 copies of the tag on the left side of reaction (1) must
be present initially. Is there an alternative (tag-less) DSD realization of the n-bit
CRN binary counter whose volume grows polynomially in n? Our DSD result
implies that there is no such realization. If there were, then our reachability
upper bound implies that in the multi-copy setting the bit 1n could be produced
in a polynomial number of steps. But since we know that it takes 2n−1 steps to
produce 1n even in the multi-copy setting, we have a contradiction.

2 Reachability Upper Bound for CRNs

In this section we first provide formal definitions of tagged CRNs. We then
provide our main technical result, and conclude with a restatement of this result
to obtain our reachability upper bound theorem for copy-tolerant CRNs.
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2.1 Definition of Tagged CRNs

Notation. If S is a multiset, we will denote the set of distinct elements in S
as [[S]]. If S is a set and k is a positive integer, then k · S denotes the multiset
containing k copies of each element in S. Similarly, if S is a multiset, then k · S
denotes the union of k copies of S. The set operations on multisets are defined
in a usual way. In addition, we define the intersection S ∩ T of a multiset S and
a set T as S ∩ (|S| · T ), i.e., S ∩ T contains only elements in [[S]] ∩ T , and for
each x ∈ [[S]] ∩ T , the number of copies of x in S ∩ T is the same as the number
of copies of x in S.

Definition 1 (Tagged CRN). A tagged chemical reaction network is a tuple
C = 〈S, T,R,S0, T0〉 with variables defined as follows:

– S is a set of signal species and T is the set of tag species, and S ∩ T = ∅.
– R is a set of reversible or irreversible reactions, where each r ∈ R is an or-

dered pair (Ir ,Pr) of multisets of signal and tag molecules such that Ir∩T =
{τ+r } and Pr∩T = {τ−r }. Intuitively, a reaction r = (Ir,Pr) either consumes
the molecules in Ir and produces the molecules Pr, or, if the reaction is re-
versible, it can also consume Pr and produce Ir. In the first case, we say
that the reaction was applied in the forward direction and denote it as +r, in
the second case in the backward direction and denote it as −r. The symbols
+r and −r will be called oriented reactions.

– S0 is a multiset of signal molecules and T0 is a multiset of tag molecules
present initially at time-step zero. The volume of CRN C is the number of
molecules in S0 ∪ T0.

Tags limit the number of times a reaction can be applied in the same direction
without being applied in the reverse direction. For example, if r is a reversible
reaction and T0 contains only one copy of τ+r and no copies of τ−r , then in any
valid trace, the oriented occurrences of r has to alternate, starting with +r. If r
is an irreversible reaction and T0 contains x copies of τ+r , then in any valid trace,
there are at most x occurrences of +r (and no occurrences of −r). Limiting the
number of tags forces a system to recycle molecules in long traces.

Definition 2. Consider a tagged CRN system C = 〈S, T,R,S0, T0〉. Define the
bandwidth of signal species s as the maximum number of occurrences of s on the
left side Ir (respectively, left Ir or right side Pr) of any irreversible (respectively,
reversible) reaction r ∈ R. Define the maximum bandwidth bC (respectively,
total bandwidth BC) of C as the maximum (respectively, the sum) of bandwidth
over all signal species in S. Similarly, the proper bandwidth of signal species
s, the maximum proper bandwidth b̃C and the total proper bandwidth B̃C are
defined analogously but using Ir \ Ir ∩Pr instead of Ir and Pr \ Ir ∩Pr instead
of Pr. For any reversible reaction r ∈ R, let tr be the maximum of the number of
occurrences of τ+r or τ−r in T0; and for any irreversible reaction r ∈ R, let tr be
the number of occurrences of τ+r in T0. Let TC be the sum of tr’s over all reactions
r ∈ R. We define the x-copy of C, for x ∈ Z

+, as the CRN 〈S, T,R, x ·S0, x ·T0〉.
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Let ρ = r1, r2, ..., rm be a sequence of oriented reactions where ri ∈ R for all i.
For reaction r if sign(r) = +, let Ar = Ir and Br = Pr where as if sign(r) = −,
let Ar = Pr and Br = Ir. The configuration of the system at each step i
is defined as (Si, Ti) where Si = (Si−1 \ (Ar ∩ S)) ∪ (Br ∩ S) and, similarly,
Ti = (Ti−1 \ (Ar ∩T ))∪ (Br ∩T ). A reaction sequence ρ is valid if Ar ∩S ⊆ Si−1

and Ar ∩ T ⊆ Ti−1 for all i, meaning that for each molecule in Ar there must
be one in Si−1 ∪ Ti−1 to remove. A trace is a valid reaction sequence.

2.2 The Main Upper Bound

Our main upper bound, Theorem 1, shows that in the multi-copy setting, any
product of a tagged CRN can be produced within a number of reactions that is
bounded by a function of the number of signal species, the bandwidth, and the
number of tags of the CRN.

Theorem 1. Let C = 〈S, T,R, S0, T0〉 be a tagged CRN and let send ∈ S. If
some trace of C produces send, then in a (|S| − |[[S0]]|)(bC + b̃C(TC − 1)) ≤
|S|bCTC-copy CRN of C, send can be produced in at most (|S| − |[[S0]]|)(bC +
b̃C(TC − 1))TC ≤ (|S| − 1)bCT

2
C steps.

Proof. Let ρ = r1, r2, . . . , rm be a valid sequence of oriented reactions in a single-
copy system producing send starting from the initial set S0. Consider any prefix
of this sequence, say ρi = r1, . . . , ri. Construct a new sequence ρ′i by canceling
all pairs +r,−r for any reaction r ∈ R. It does not matter how these pairs are
formed. Let S′ be the set of signal molecules appearing on the left hand side
of reactions in ρ′i. Now, let us see what happens if we apply this sequence on
the initial set S0 ∪ T0 ∪ k · S′, where k is sufficiently large so that the reaction
sequence is valid. We can make the following observations:

(1) The final number of copies of each signal species is the same as if we would
apply ρi on S0 ∪ T0 ∪ k · S′.

(2) For each reaction r ∈ R, ρ′i contains either only forward or only backward
occurrences of r (or no occurrences), and their number is limited by the
number tr of corresponding tags in T0. As a consequence, the length of ρ′i is
at most TC.

(3) Consider a signal molecule s ∈ S′. Since each reaction in ρ′i removes at most
bC copies of s and the length of ρ′i is at most TC, before each reaction in ρ′i,
there are at least k − b̃C(TC − 1) copies of s.

(4) Hence, it follows that if we set k = bC + b̃C(TC − 1), then before each
reaction in ρ′i, there are at least bC copies of any signal in S′, and hence,
the reaction sequence is valid. Note that this is true even if we randomly
permute reactions in ρ′i.

For each signal s appearing in the single-copy trace and not appearing in the
initial set S0, let rindex(s) be the first reaction in ρ which produces a copy (or
more) of s. Let s1, ..., sn be the sequence of all signals not in S0 ordered by their
indices, i.e., index(s1) ≤ index(s2) ≤ · · · ≤ index(sn). Furthermore, without loss
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of generality we can assume sn = send. Let Si = {s1, ..., si}. We can make one
additional observation:

(5) For each si, the left side of each reaction in ρ′index(si) contains only signals in

[[S0]]∪Si−1. By (4), if we start in a configuration which contains the multiset
of signals and tags S0 ∪ T0 ∪ (bC + b̃C(TC − 1)) · ([[S0]] ∪ Si−1), ρ

′
index(si)

is a
trace producing a copy of si.

Construction

(S1) Start with the initial set containing bC+ b̃C(TC− 1) copies of [[S0]] and the
empty sequence of reactions.

(S2) For each i = 1, .., n: add bC + b̃C(TC − 1) copies of S0 ∪T0 to the initial set
and append bC + b̃C(TC − 1) times sequence ρ′index(si) to the constructed
sequence of reactions.

Claim 1. After each step i in (S2), the constructed sequence is valid and the
final configuration contains bC + b̃C(TC − 1) copies of each signal in [[S0]] ∪ Si.

Proof. Proof by induction: Base case: For i = 0, after (S1), we have bC+b̃C(TC−
1) copies of each signal in [[S0]] and the empty sequence of reactions is valid.
Induction step: Inductive assumption: before step i, we have bC + b̃C(TC − 1)
copies of each signal in [[S0]]∪ Si−1 and the sequence constructed so far is valid.
By (5), if we add a copy of S0 and run the reaction sequence ρ′index(si) on the

current configuration, the trace is valid. By (1), this newly added part (a copy
of S0 and reactions in ρ′index(si)) will not decrease the number of any signal.

Finally, ρ′index(si) must contain the last reaction of ρindex(si), i.e., rindex(si) which

produces at least one copy of si. If we repeat this bC + b̃C(TC − 1) times, we
will still have at least bC + b̃C(TC − 1) copies of signals in [[S0]] ∪ Si−1 plus
bC + b̃C(TC − 1) copies of si. 
�

The bound: The construction uses (n+1)(bC+ b̃C(TC−1)) copies of S0, n(bC+
b̃C(TC−1)) copies of T0 and repeats n(bC+b̃C(TC−1)) times the trace ρ′some index.
By (2), the length of each ρ′some index trace is at most TC, hence the total length

of the constructed sequence is at most n(bC + b̃C(TC − 1))TC. Furthermore, n
can be bounded by |S| − |[[S0]]|. 
�

Finally, we restate Theorem 1 for copy-tolerant CRNs.

Theorem 2. If a tagged CRN C = 〈S, T,R, S0, T0〉 is |S|bCTC-copy-tolerant
and send can be produced in C, then the length of the shortest trace of C that
produces send is at most (|S| − 1)bCT

2
C.

A natural question is whether we could improve the bound in condition (3) of
the proof of Theorem 1. The following examples shows that it is not possible in
general.
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Example 1. Assume that ρ contains exactly an even number, T , of oriented
reactions +r1, . . . ,+rT designed as follows. First for every partition π of ρ into
two sets ρπ1 and ρπ2 of same size, we introduce a new signal sπ. Let Π be the
set of all such partitions. Next, we define reactions r1, . . . , rT in such a way that
each of these signals is either an input or a product of each reactions:

Iri = {sπ; ri ∈ Rπ
1 , π ∈ Π} ,

Pri = {sπ; ri ∈ Rπ
2 , π ∈ Π} .

Note that after all reactions in ρ are applied, the number of copies of any of the
signals sπ is not changed, since there is exactly T/2 reactions in ρ adding one
copy of sπ and T/2 reactions removing one copy of sπ.

Now, we show that for any permutation of the reactions in ρ, there is a signal
molecule with k − T/2 copies when the first T/2 reactions in this order are
applied, and hence, k in (3) has to be set to at least T/2. Consider the partition
π0 of ρ into the first and the second T/2 reactions of this order. Then the signal
sπ0 appears in the input set of the first T/2 reactions, and thus, the number of
copies of sπ0 is k − T/2 after applying the first T/2 reactions.

3 Reachability Upper Bound for DSDs

In this section we first define the type of DSD to which our results apply, along
with related notation needed for our results. We then provide our main upper
bound, and conclude with a restatement of this result to obtain our reachability
upper bound theorem for copy-tolerant DSDs.

3.1 Definition of DSDs

A basic DNA strand displacement system (DSD) is a pair Δ = (S, Cinit) of
strands and initial configuration (secondary structure) for those strands, plus
allowable positional displacements, defined as follows.

– S is a finite multiset of strands; S may contain many strands of a given
type. Strands are composed of subsequences of finite strings of symbols,
called domains. Domains are partitioned into two groups: toeholds and long-
domains. Corresponding to each domain x is a complementary domain x∗;
x is a toehold if and only if x∗ is. The strands are partitioned into two
groups: signals or templates. There is no bound on the number of toeholds
and long-domains of a template or a signal. A regional interval is a sequence
of domains beginning and ending with a toehold that alternates between
toehold and long-domains. Each template strand is a concatenation of one
or more regional intervals.

We say that the DSD Δ has simple signals, if each signal in S is composed
of exactly one toehold and one long-domain.
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– Cinit is an initial configuration, where a configuration is a secondary structure
formed by the strands of S where domains can bind to their complements.
Moreover, each signal strand is either unbound or is bound to a template
strand by a single toehold and a single long domain that is adjacent to that
toehold and each regional interval of its template must have exactly one open
toehold. There are no intra-template bonds or intra-signal bonds. Note that
this implies that configurations are pseudoknot-free and contain no hairpin
loops. The volume of DSD Δ is the number of nucleotides, taken over all
strands in the initial configuration Cinit.

Starting with the initial configuration, DSDs can progress through a sequence
of configurations via positional strand displacements (PDs). PDs can move the
open toehold of the regional interval to the right or to the left. A PD moving the
open toehold to the right is specified by a positive number k, a template strand
T and a signal strand called the invader, say of type I, see Figure 2(a), where we
can now assume that only positions k− 1, k, k+1 of template T are shown. The
template should have at least k+ 1 domains. The domain d at position k of the
template should be a long-domain and should be preceded at position k − 1 by
a toehold, say t. For the displacement to be applicable to a given configuration
C, it must be that in C an additional signal strand, which we refer to as the
releasee, is bound to d at position k and to a toehold at position k + 1 of the
template T , and the toehold at position k − 1 is unbound (open). The invader
is unbound in C and contains the substring t∗d∗.

A displacement models the following steps in Figure 2(b,c,d), when toeholds
and long-domains are actual DNA sequences. First, toehold t∗ of the invader
binds to the toehold t of the template at position k−1. Then a branch migration
ensues, whereby domain d∗ of the invader binds to d at position k of the template
and the releasee is no longer bound at this position. Finally, if it exists, the bond
between the releasee and the toehold at position k + 1 is broken. Thus in the
resulting configuration C′, substring t∗d∗ of the invader is bound to td on the
template at positions k − 1 and k and the releasee is unbound, see Figure 2(e).

Formally a positional displacement (PD) of DSD Δ is a tuple of the form
(I, T, k, z), where I is a signal strand type, T is a template strand, k is a positive
integer and z ∈ {L,R}. PD (I, T, k, z) is applicable to a configuration C if the
following conditions hold:

1. Strand T has at least k + 1 domains and the kth domain, say d, must be a
long-domain. Also a strand of type O, called the releasee, is bound to the
kth domain of T .

2. In the configuration C, a strand of type I is unbound.
3. If z = R the following conditions hold (conditions for z = L are symmetric):

(a) The (k − 1)st domain of T must exist and be a toehold, say t.
(b) A strand of type I must contain substring t∗d∗. (If z = L, it must contain

d∗t∗.)
(c) The releasee must also be bound to a toehold at position k+1 of T . No

other domains of the releasee are bound.
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(d) In the configuration C the toehold at position k − 1 of strand T is un-
bound. We call this toehold the input toehold of PD (I, T, k, z).

The PD must release exactly one strand of type O. Suppose that PD (I, T, k, z)
is applicable to C. Let C′ be obtained from C by removing the bonds between T
and the releasee and by adding bonds either between any substring t∗d∗ of an
unbound strand of type I of C and the domains td at positions k − 1 and k of
T if z = L, or between any substring d∗t∗ of I and the substring dt at positions
k and k + 1 of T if z = R. Then we say that (I, T, k, z) induces C′ from C. We
say that a signal is simple if the whole string for the signal consists of t∗d∗ or
d∗t∗. A DSD is simple if all the signals in the DSD are simple. This definition
excludes cooperativity where two invading strands release a single releasee or one
invading strand releases two releasees, because, by definition, every PD must be
initiated by one invader and release exactly one releasee.

A sequence of PDs ρ = p1, p2, . . . p|ρ| is valid with respect to Cinit if there
is a sequence C1, C2, . . . C|ρ|+1 of configurations of Δ with C1 = Cinit such that
for all i, 1 ≤ i ≤ |ρ|, pi is applicable to Ci and induces Ci+1 from Ci. When
Cinit is clear from the context, we simply say that ρ is valid. A valid sequence
produces a strand s ∈ S if in C|ρ|+1, the strand s is unbound. Let Invaders(ρ)
be the set of types of invaders of ρ. Let Unbound(ρ, Cinit) be the set of types of
unbound signals in C|ρ|+1 and Unbound(ρ) the set of types of unbound signals
in C1 ∪ · · · ∪ C|ρ|+1.

Let ρ=p1, p2, ..., p|ρ| be a sequence of PDs. The regional subsequence ρ(T [u, v])
is the subsequence of ρ whose PDs pi = (Ii, Ti, ki, zi) have positions ki inside
T [u, v].

3.2 The Upper Bounds

First, we use the fact that a DSD with simple strands can be simulated by a
tagged CRN with volume that is polynomial in the volume of DSD, and thus we
can use the bound in Theorem 1 to obtain the following result. If Δ = (S, Cinit)
is a DSD, we define Δ(x) to be the DSD (x · S, x · Cinit).

Theorem 3. Let Δ be a DSD with simple signals. Let B be the number of types
of initially bound signal strands and D be the total number of long-domains of
all templates. If Δ can produce send, then Δ(2D(2D+B)) can produce send via a
sequence of at most 4D2(2D +B) PDs.

As shown in Figure 3, this strategy will not work in the case of general signal
strands. Instead of simulating a DSD by a tagged CRN, in Theorem 4, we will
prove a bound for general (i.e., not with simple signals) DSDs directly, reusing
some ideas of the proof for tagged CRNs.

Let Δ be a DSD. Roughly, our goal is to show that if there is a valid sequence
of PDs that produces a given signal send from Cinit, then in a DSD with many
copies of Cinit there is a valid sequence of PDs that produces send in a number
of steps that is bounded by a polynomial in the volume of Δ. We will build
up to the statement and proof through a series of definitions and claims. Our
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polynomial bound will be a function of two attributes of Δ: the number B of
types of signal strands that are all bound (i.e., every copy is bound) in Cinit and
the total number D of long-domains of all templates in Cinit.

Let α = p1, p2, ..., p|α| be a valid sequence of PDs that produces send. For
each type s of signal strand that is Unbound(α)\Cinit, let index(s) be the index
of the first PD of α that releases s. Let s1, . . . , sB be the sequence of all such
signals ordered by their indexes, i.e., index(s1) < index(s2) < . . . < index(sB).
Let Si = {s1, . . . , si}. We assume without loss of generality that there are B
such types and also that sB = send. Let αi = p1, p2, . . . , pindex(si).

Let T [u, v] be a regional interval, d = (v − u)/2 the number of long-domains
in T [u, v], and let αi(T [u, v]) = p1, p2, ..., p|αi(T [u,v])|, where pj = (Ij , Tj , kj , zj)
for every j = 1, . . . , |αi(T [u, v])|. We construct a subsequence βi(T [u, v]) of the
PDs in αi(T [u, v]). The PDs in this subsequence will be of two types, marked
and connector.

Markers. Mark the first PD p1 of αi(T [u, v]), and then mark the last PD of
αi(T [u, v]) to bind to each long-domain in the regional interval T [u, v]. Let
pm1 , . . . , pmd+1

be the subsequence of marked PDs (1 = m1 < m2 < · · · <
md+1). It is easy to see that the sequence of PD positions, km2 , . . . , kmd

, con-
sists of two interleaved monotonic subsequences: U = u+1, u+ 3, . . . , 
− 2 and
V = v − 1, v − 3, . . . , 
 + 2, where 
 is the long-domain position of the last PD
in αi(T [u, v]). Furthermore, the marked PDs with the long-domains in the first
subsequence have direction R and in the second subsequence direction L.

Connector sequences. Now, we must connect the marked PDs by introducing
connector sequences of PDs between each consecutive pair of marked PDs with
the goal being for each subsequent PD to use the toehold opened by the previous
PD.

Let z̄ indicate the opposite direction from z. For the connector sequence con-
necting pm1 and pm2 , select as a connector the first PD in αi(T [u, v]) with
direction z̄m2 that binds to each long-domain of T [u, v] between positions km1

and km2 inclusive. It is easy to see that either all selected connector PDs are
before pm2 in the sequence αi(T [u, v]), or pm1 = pm2 and the connector sequence
consists of the same PD. In the second case, pm1 is the only PD in αi(T [u, v])
with the long-domain position u+ 1 or v − 1.

Consider j = 2, . . . , s. Each PD of the connector sequence connecting pmj

to pmj+1 will be between pmj and pmj+1 in the sequence αi(T [u, v]). We will
consider two cases.

1. If zmj = zmj+1 , then no connector PDs are needed.
2. If zmj �= zmj+1 , then we select the connectors as follows. In the subsequence

between reactions pmj and pmj+1 , choose as a connector the first PD that
binds to each position between kmj and kmj+1 , excluding position kmj and
including position kmj+1 . Note that each PD in this connector sequence must
have direction zmj .

The construction is illustrated in Figure 5. The sequence βi(T [u, v]) contains
all the marked PDs and all the connector PDs, with distinct indices. Note that
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u+ 1 km1
kmd+1 v − 1

Fig. 5. An example of construction of the βi(T [u, v]) subsequence. At the top is the
form of the initial configuration of the regional interval and at the bottom the final
configuration. Each dot represents a PD of regional subsequence αi(T [u, v]), each dia-
mond a marked PD and each circle a connector PD. The sequence of PDs βi(T [u, v]) is
then a subsequence of αi(T [u, v]) which contains only the marked and connector PDs.

this is a subsequence of αi(T [u, v]) since for every j = 1, . . . , s, the connector
sequence connecting pmj to pmj+1 contains only PDs between between pmj and
pmj+1 .

We next provide a sequence of claims that we use to prove our main result.
All proofs can be found in the full version of the paper.

Claim 2. Each PD, pmj for j ≥ 2 in sequence βi(T [u, v]) can use the toehold
opened by the previous PD in the sequence. The PD pm1 can use the initially
open toehold.

Claim 3. The length of βi(T [u, v]) is at most (d+1)(d+2)/2, where d = (v−u)/2
is the number of long-domains in T [u, v].

Claim 4. The length of βi is at most (D+1)(D+2)/2 and thus |Invaders(βi)| ≤
(D + 1)(D + 2)/2. Also, Invaders(βi) contains only types of unbound strands of
Cinit or strand types in Si−1 = {s1, . . . , si−1}.
Claim 5. βi is valid with respect to

Cinit ∪ (D + 1)(D + 2)/2 · (Cinit ∪ Si−1).

Moreover,

(D+1)(D+2)/2 ·(Cinit ∪Si−1) ⊆ Unbound(βi, Cinit∪(D+1)(D+2)/2 ·(Cinit ∪Si−1)).
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Claim 6. Let β
(D+1)(D+2)/2
i denote the sequence βi concatenated (D + 1)(D +

2)/2 times, modified just so that the PDs of each copy refer to templates of

different copies of (D + 1)(D + 2)/2 · Cinit. Then β
(D+1)(D+2)/2
i is valid with

respect to the configuration

(D + 1)(D + 2)/2 · Cinit ∪ (D + 1)(D + 2)/2 · (Cinit ∪ Si−1).

Moreover,

(D + 1)(D + 2)/2 · (Cinit ∪ Si) ⊆ Unbound(β
(D+1)(D+2)/2
i ,

(D + 1)(D + 2)/2 · Cinit ∪ (D + 1)(D + 2)/2 · (Cinit ∪ Si−1)).

The proof of our main technical result, Theorem 4, follows from the preceding
claim.

Theorem 4. Let Δ be a DSD with B types of initially bound signal strands
and let D be the total number of long-domains of all templates. If Δ can produce
send, then Δ((D+1)(D+2)(B+1)/2) can produce send via a sequence of at most (D+
1)2(D + 2)2B/4 PDs.

Finally, we restate Theorem 4 for copy-tolerant DSDs. We say that a DSD is
x-copy-tolerant if the length of the shortest PD sequence that produces any
signal strand s in Δ and in Δ(x) is the same. A DSD is copy-tolerant if it is
x-copy-tolerant for all x.

Theorem 5. Let Δ be a DSD with B types of initially bound signal strands and
let D be the total number of long-domains of all templates. If Δ can produce send
and Δ is (D+ 1)(D+2)(B + 1)/2-copy tolerant, then Δ can produce send via a
sequence of at most (D + 1)2(D + 2)2B/4 PDs.

4 Open Questions

There are many open questions about the potential for CRNs and DSDs to be
correct in the multi-copy setting. First, can our reachability upper bound results
be strengthened? There are two possible ways to strengthen our result for CRNs
(Theorem 2): either by reducing the length of the shortest computation needed
to produce send or to show that the system is not x-copy tolerant for some
x < |S|bCTC . Similarly, there are two ways to strengthen the reachability upper
bounds for DSDs.

Also, can our result on DSDs be extended to DSDs with more complex prim-
itives, such as cooperative strand displacement [12] or irreversible reactions?
What if long-domains can form intra-molecular bonds, e.g., forming hairpins, in
addition to inter-molecular bonds?

This paper considers only reachability bounds, i.e., bounds on the number
of reactions (steps) needed to reach (produce) a given product. However, real
chemical reaction networks behave stochastically, with rates that depend on
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relative quantities of species. It is plausible that the lack of robustness implied
by our theorems, i.e., errors that occur in the multi-copy setting in CRNs that
fail to satisfy the conditions of the theorem, would be very unlikely to occur
in some CRNs and thus would not be an issue in a real system. Analyses of
robustness of CRNs under stochastic assumptions, perhaps computing expected
hitting times, would help us better understand the degree to which robustness
issues are a problem.

References
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