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Abstract. In this paper, we investigate the computational power of
two variants of Winfree’s abstract Tile Assembly Model [14] at tempera-
ture 1: the Stage Tile Assembly Model and the Step-wise Tile Assembly
Model. In the Stage Tile Assembly Model, the intermediate assemblies
are assembled in several “bins” and they can be mixed in prescribed or-
der and attach together to form more complex structures. The Step-wise
Tile Assembly Model is a simplified model of stage assembly in which
only one bin is used and assembly happens by attaching tiles one by one
to the growing structure.

An interesting and still open question is whether the abstract Tile As-
sembly Model at temperature 1 is Turing Universal, i.e., it can simulate
a Turing machine. It is known that various slight modifications of the
model are indeed Turing Universal. Namely, deterministic self-assembly
in 3D and probabilistic self-assembly in 2D at temperature 1 [3] and
self-assembly model at temperature 1 with a single negative glue [10] are
known to be able to simulate a Turing machine. In this paper we show
that the Step-wise Tile Assembly Model and the Stage Tile Assembly
Model are also Turing Universal at temperature 1.

1 Introduction

Informally, self-assembly is a bottom-up process in which a small number of
types of components automatically assemble to form a more complex structure.

In 1998, Winfree [14] introduced the (abstract) Tile Assembly Model (TAM) –
which utilizes the idea of Wang tiling [13] – as a simplified mathematical model
of the DNA self-assembly pioneered by Seeman [12]. Nature provides many ex-
amples: Atoms react to form molecules. Molecules react to form crystals and su-
permolecules. Similarly, self-assembly of cells plays a part in the development of
organisms. Simple self-assembly schemes are already widely used in chemical syn-
theses. It has been suggested that more complicated schemes will ultimately be
useful for circuit fabrication, nano-robotics, DNA computation, and amorphous
computing [2,15,11,7,6,1]. Several promising experiments as well has been sug-
gested and practiced. In accordance with its practical importance, self-assembly
has received increased theoretical attention over the last few years [9,14,2,15,8].
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One of the interesting theoretical questions about this process is how
“powerful” the model of Winfree is. In the past years Self Assembly Model
has been studied by many researchers from computational aspect of view. Many
of these results are focused on the systems with temperature 2 or higher [3,5].
In such models strength of at least two is needed for a tile to permanently bind
to an assembly. It is known that at temperatures equal or greater than 2, Self
Assembly Systems are quite powerful, in fact it is shown that they are Turing
Universal [3]. But for temperature 1, where the system is allowed to place a tile
at a position if any positive strength bond exist among the tile and the neighbors
at that position, the computational “power” is unknown.

From practical point of view, temperature 1 systems are more well-mannered
and easier to control for laboratory experiments. Thus recent attention has been
redirected to some variants of temperature 1 Self Assembly Model. It is shown
that by adding some constraints and features to the original model more “power”
is achievable. Cook et al. [3] proved the Turing Universality for deterministic
self-assembly in 3D and probabilistic self-assembly in 2D at temperature 1, and
Patitz et al. [10] introduced a self-assembly model at temperature 1 with a
single negative glue, and showed it is Turing Universal. All results use the idea
of “geometric tiles”.

In this paper we study the power of two variants of the Self Assembly Model
at temperature 1: “the Stage Tile Assembly Model” and “the Step-wise Tile
Assembly Model”. These models are defined in Section 2. We reuse the idea
of “geometric tiles”, and prove that these models are Turing Universal as well.
In Section 3, we introduced the Zig-Zag Assembly which can simulate Turing
machines at temperature 2. To show our main results it is enough to simulate
the Zig-Zag assembly at temperature 1 in these two models. Details of these
simulations are presented in Sections 4 and 5, respectively.

2 Abstract Tile Assembly Model

We present a brief description of the tile assembly model based on Rothemund
and Winfree, for a more detailed description we refer the reader to [14]. We
will be working on a Z×Z grid of unit square locations. The set of directions
D = {N,E,W, S} is used to indicate relative positions in the grid. Formally,
they are functions Z×Z → Z×Z such that:

N(i, j) = (i, j+1), E(i, j) = (i+1, j), S(i, j) = (i, j−1) and W (i, j) = (i−1, j).

The inverse directions are defined in a natural way, for example, N−1(i, j) =
S(i, j).

Let Σ be a set of binding domains (glues). The setΣ contains a special binding
domain null that represents no glue. A tile type t is a 4-tuple (tN , tE , tS , tW ) ∈
Σ4 indicating the associated binding domains on the north, east, south and
west sides, respectively. Note that tile types are oriented, thus a rotated version
of a tile type is considered to be a different tile type. We denote the set of tile
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types with T . There is a special tile type empty = (null , null , null , null) in T
which represents an empty space, i.e., no tile has been placed in that position. A
configuration is a function C, mapping Z×Z to the set of tile types in T . Hence,
C(i, j) is the tile at the position (i, j) in the configuration C. Let a structure
S(C) of a configuration be the set of positions that are not mapped to empty in
C. A configuration may contain finite or infinte number of tiles.

Under Tile Assembly Model a tile system is a 5-tuple 〈Σ, T, φ, g, τ〉, where T
is the finite set of tile types with binding domains from Σ and contains the tile
empty , φ is a set of configurations on T called set of seed configurations, g is a
function which determines the strength of glues, and τ is a threshold parameter
called temperature. In this paper we will omit parameters Σ and g when they
are defined already.

A strength function sΣ : Σ × Σ→N measures the strength of interaction
between binding domains. For example, for simple strength function at temper-
ature 1 τ = 1, denoted by sΣ , it must satisfy sΣ(σ, σ

′) = 1, if σ = σ′ �= null ,
and sΣ(σ, σ

′) = 0 otherwise. A tile t can be added to a configuration at position
(i, j), if and only if the sum of the interaction strengths of t with its neighbors
at position (i, j) reaches or exceeds τ (the temperature). If the assembly process
reaches a point when no more attachments are possible, the produced assembly
is denoted terminal and is considered the output assembly of the system. The
smallest number of tile types and glues required to assemble a given shape are
called the tile and glues complexity of the shape, respectively.

2.1 Staged Tile Assembly Model

Erik D. Demaine et al. [4], presented the Staged Tile Assembly Model, a gen-
eralization of the tile assembly model that captures the temporal aspect of the
laboratory experiment, and enables more flexibility in the design and fabrication
of complex shapes using a small tile and glue complexity. The main feature of
staged assembly is the ability of gradual addition of specific tiles in a sequence
of stages. In addition, any tiles that have not yet attached as part of a growing
structure can be washed away and removed (in practice, using a weight-based
filter, for example) at the end of the stage. More generally, we can have any
number of bins, each containing tiles and/or assemblies that self-assemble as in
the standard tile assembly model. During a stage, any collection of operations
of two types are allowed: (1) add (arbitrarily many copies of) new tiles to an
existing bin; and (2) pour one bin into another bin, mixing the contents of the
former bin into the latter bin. In both cases, any tiles that do not assemble
into larger structures are removed at the end of the stage. These operations
let us build intermediate terminal assemblies in isolation and then combine dif-
ferent terminal assemblies to more complex structures. Two new complexity
measures in addition to tile and glue complexity arise: the number of stages, or
stage complexity, measures the time required by the operator of the experiment,
and the number of bins, or bin complexity, measures the space required for the



4 B. Behsaz, J. Maňuch, and L. Stacho

experiment. (When both of these complexities are 1, the model is equivalent to
the regular tile assembly model.)

2.2 Step-Wise Tile Assembly Model

Reif proposed a related, but simpler, model called the Step-wise Assembly Model
[11]. This model is the special case of Staged Assembly Model, in which the bin
complexity is 1. Step-wise Assembly Model uses several sets of tiles (one for
each step). Let Ti be the tile set for step i. {Ti}ki=1 is a sequence of finite sets
of tiles. At first step we immerse a seed tile into one of the sets, filter out the
assembled shape from this set and place the assembled shape into the next set of
tiles where it now acts as a seed tile and assembly continues. Step-wise Assembly
Model enables production of more efficient assemblies in terms of tile types at
the price of the work of an operator. Here one new complexity measure can be
defined as well, the number of steps, or step complexity, which measures the
time required for the experiment.

3 Zig-Zag Tile Assembly Model

Informally, a Zig-Zag assembly is an assembly in which the assembly can grow
only left to right (or right to left) up to the point at which a first tile is placed
into the next row north, and the direction of growth is reversed in the next top
row.

Temperature 2 Zig-Zag assembly system: A tile system Γ = 〈T, s, 2〉 is called
temperature 2 Zig-Zag system if the tiles in T assures the assembly grows under
these two conditions:

1. The assembly sequence, which specifies the order in which tile types are
attached to the system is unique, i.e., the system is deterministic.

2. If the (i− 1)th tile added to the assembly sequence is placed in an even row
(counting from the row 0, containing the seed tile) in position (x, y) of the
grid, then the ith tile is either placed in position E(x, y) or N(x, y). And
if the (i − 1)th tile added is placed in an odd row, then the next tile to be
added (i.e. ith tile in the sequence) is placed either in the position W (x, y)
or N(x, y).

Because τ = 2, the key property of Zig-Zag system is interaction of strength at
least two between the sides of a tile and size neighbors is required to be able to
add the ith tile to the sequence. Right after adding a tile t to the assembly the
glues on the sides of t that already have neighbors, are called “inputs” and the
glues on the sides of t that are exposed are called “outputs” of tile t. Cook et al.
proved that the deterministic Zig-Zag Tile Assembly Model at temperature 2 is
Turing universal [10], and using this they proved the deterministic assembly in
3D and the probabilistic assembly in 2D at temperature 1, are Turing Universal
by simulating Zig-Zag assembly System with the idea of “geometric tiles”. We
will use the same technique to prove our main results.
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4 Turing Universality of Step Tile Assembly System

This section and Section 5 contain the main results of this paper. First we prove
that every Zig-Zag tile assembly system at temperature 2 can be simulated by
a step-wise assembly tile system at temperature 1.

Theorem 1. For any temperature 2 Zig-Zag tile assembly system Γ = 〈T, s, 2〉
there exists a Step-wise tile assembly system Γ ′ at temperature 1 that simulates
Γ at vertical scale 5, horizontal scale O(log(|T |)), step complexity and tile com-
plexity O(|T | log(|T |)).
Proof. We follow the idea of the proof in [3]. We represent each tile in Γ with a
set of tiles in Γ ′ called “macro tiles” and “fake” the cooperative attachment of
tiles in temperature 2.

Let G be the set of all strength 1 glues on north and south side of tiles that
appear in the system Γ . Label each type of these glues with numbers 0 to |G|−1
in an arbitrary order. For any glue g ∈ G let b(g) be the binary representation
of the label of g. The main idea is to geometrically represent number b(g) on
the side of macro tile that is representing the north or south glue of each t ∈ T .
We symbolize each bit of b(g), 0 or 1, with bumps. For east and west side glues
and for strength 2 glues we do not use geometrical representation. Those are
represented with simple strength 1 glues. By alternating between the two tile
sets, the system will simulate the input from the south with its bumps, and from
left and right the inputs are read with a strength 1 glue. After reading the input,
the outputs are unpacked (written) using the same geometrical representation
of the bits of the binary coding of output glue on the north (if any) and a glue
of strength 1 on east or west side (according to the side of the outputs of the
tile in the Zig-Zag system that the system is assembling).

Each macro tile has two bumps of vertical length 2 on beginning and end
of its north side as shown in Figure 1. These special bumps will guarantee that
macro tiles in the assembly will be aligned. The actions of reading and unpacking
glues for a macro tile m that corresponds to a tile t ∈ τ with south and west
inputs and north and east outputs are discussed in more details in what follows.
Examples of tile with other combinations of input and output are illustrated in
Figure 1.

Reading the South and West Inputs: Each macro tile starts from the south.
The first tile that starts the macro tile has the west input on its west side with
one single glue. Then the assembly continues by reading along the north side
of the macro tile beneath it. Figure 2 pictures the basic idea behind reading
each bit. As it is shown in Figure 2 each bit has width 4 and we recognize
whether the bit is 0 or 1 by the location of the bump. Also, each bit is being
read in exactly two steps and with exactly two tile sets T1 an T2, represented in
Figure 2. The final tile sets T1 and T2 is a union of all required tiles for different
tiles respectively in step 1 and 2.

The tiles shown in Figures 3a and 3c are the key tile types in each tile set
(tile set 1 and 2) responsible for reading bit i of the glue on the south side. The
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Fig. 1. Macro tiles simulating the tile types from Zig-Zag Tile Assembly System shown
on the right side of each macro tile

final assembly of this part of the macro tile which reads the glue on the south
of the macro tile for a tile t ∈ T with glue 110 on the south side, is illustrated
in Figure 4.

For reading each bit of the binary representation of the glue on the south side
of each macro-tile, say m, there are O(1) unique tiles in tile sets T1 and |T2|.
These tiles assemble together and read the ith bit of the glue on the south side
of m when the glue is being read in process of creating m.

After reading log(|G|) bits, the glue on the south is read completely. The west
input is read via the glue on west side of the first step in the assembly sequence
of the macro tile. Thus, at this point both inputs are read and the outputs can
be determined deterministically (since Zig-Zag TAS is deterministic) and this
mapping is done with the tile shown in Figure 3e.

Unpacking the North and East Outputs:When the outputs are determined
the assembly crawls back on itself (in this case it crawls back to east). Then it
starts “writing” the binary representation of the north glue with illustrating 0
an 1 geometrically. This process is in essence the same as what discussed above
but naturally with reverse functionality. Instead of adding the next right digit in
this case we delete the right most digit each time at each step. The key tile types
necessary for unpacking a glue is illustrated in Figure 5. Note that it unpacks
the east glue again with a single unique strength 1 glue on the tile at the very
south east position of macro-tile. The complexity of tile types is the same as the
reading tiles.

For each bit of the binary representation of the glue on the south or north
side of each macro-tile, say m, there are O(1) unique tiles in the tile sets T1 and
T2. Each macro-tile needs O(log(|T |)) unique tile types. The terminal assembly
of Zig-Zag assembly Γ has O(|T |) tiles and all of the O(log(|T |) tiles assembling
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Fig. 2. (a) The first tile set T1. (b) The final assembly for 0 after the first step (after
exposing to T1). The tiles colored light gray belong to the first tile set and the tiles
colored with dark gray belong to the macro-tile beneath. The assembly is growing from
left to right. (c) The final assembly for 1 after the first step (after exposing to T1). (d)
The first tile set T1. (e) The final assembly for 0 after the first step (after exposing to
T1). (f) The final assembly for 1 after the first step (after exposing to T1).
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Fig. 3. (a) The subset of T1 reading the ith bit from left to right. ai, . . . , ji are different
representations of the first i−1 bits. (b) The final assembly reading bit 0 after exposing
to the first tile set. The tiles that are colored light gray belong to the first tile set and
the tiles colored with dark gray belong to the “reading part” of this macro-tile. (c)
The subset of T2 reading the ith bit from left to right. (d) The final assembly tile set
reading bits 0 and 1 after exposing to second tile set. (e) The tile mapping the input
of a macro tile that is read to the corresponding output. At this point, the assembly
starts crawling back on the assembly and start unpacking.
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Fig. 4. An example of reading the glue 110 on south side of a macro tile bit by bit
from left to right

macro-tile m has to store the original tile that m belongs to in Γ . Thus, we
use O(|T | log(|T |)) unique tile types. Also, each macro-tile is constructed in
O(log(|G|)) steps. Hence, the tile and step complexity of the final assembly is
O(|T |(log |T |)). The assembly system described here clearly simulates Γ .
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For every Turing machineM and w ∈ Σ∗ there exists a Zig-Zag Tile Assembly
Model Γ that simulates M on input w [3]. By Theorem 1 there is a step-Tile
Assembly System that simulates Γ . Therefore, we have the following result:

Theorem 2. The Step-wise Tile Assembly Model is Turing Universal.
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Fig. 5. (a) The subset of T1 unpacking the ith bit from left to right. ai, . . . , ji are
different representations of the first i− 1 bits. (b) The final assembly unpacking bit 0
after exposing to the first tile set. The tiles that are colored light gray belong to the
first tile set and the tiles colored with dark gray belong to the macro-tile beneath. (c)
The subset of T2 unpacking the ith bit from left to right. (d) The final assembly tile
set unpacking bits 0 and 1 after exposing to second tile set.

5 Turing Universality of Stage-Assembly System

By performing the exact procedure which is described in Section 4, the Turing
Universality of Stage Assembly Model can be proved. But for Stage-wise As-
sembly Model we can utilize the construction with the “bins” and reduce the
number of stages. For this, we use a similar technique as in the construction in
Theorem 1. We take an instance of Zig-Zag assembly system, say Γ and simulate
it with an instance of stage-assembly system which is constructed with macro
tiles as described in the previous section. But here with the use of different bins
we can decrease the stage complexity to O(log(|T |)).
Theorem 3. For any temperature 2 Zig-Zag tile assembly system Γ = 〈T, s, 2〉
there exists a Stage Tile Assembly system Γ ′ at temperature 1 that simulates Γ
at vertical scale 5, horizontal scale O(log(|T |)), stage complexity O(log(|T |)) and
tile complexity O(|T | log(|T |)).
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Proof. The construction of Γ ′ is almost the same as proof of Theorem 1. Again
let G be the set of north/south glues. For each t ∈ T we create a unique macro-
tile. The tile sets of Γ ′ are T ′

1 and T ′
2, which are the same as T1 and T2 in Γ which

is described in the proof of Theorem 1, respectively. The difference is that the
tiles in the south side of each macro-tile do not read a binary number. Instead
they unpack (write) the corresponding binary number, which is the binary num-
ber of the glue of the south side of t. The tile types which assist unpacking this
glue are the same as the tiles types that are used to read this glue for the macro
tile corresponding to t in the proof of Theorem 1. For each tile t ∈ T we use
a unique bin. The seed tile here is the tile which maps the input to the output
of the macro tile which is shown in Figure 3c. So the assembly sequence for the
assembly that unpacks the south glue is the reverse of the assembly sequence
which reads the south glue in Section 4. After each macro-tile assembled in each
bin we will pour the desired assembled macro tiles in one bin with choosing the
macro-tile in Γ ′ corresponding to the seed tile in Γ be the seed configuration
in Γ ′.

Fig. 6. The possible slips for two macro-tiles one with south side depicting (110) the
other with north side (101). The two segments of (10) can be matched together without
the vertical teeth of length two on the south of macro tiles.

In each bin it takes O(log(|G|)) stages before the assembly of the macro tile
is final, this yields to stage complexity O(log |T |). Since the tile types are the
same in Section 4, the tile complexity is O(|T | log(|T |)).

Now, since Γ is a deterministic system the macro-tiles automatically assemble
by matching inputs and outputs uniquely in one step. The vertical bump of
length 2 on south side of each macro-tile guarantees that the beginning and
the end of each macro-tile matches exactly with the beginning and the end
of other macro-tiles in north and south side of the macro-tile. Without these
bumps horizontal slips of macro-tiles along each other is possible as shown in
Figure 6.

6 Conclusion

In this paper, we proved Turing Universality at temperature 1 for two tile assem-
bly models: Step-wise Tile Assembly Model and Stage Tile Assembly Model. The
question whether the Tile Assembly Model at temperature 1 is Turing Universal
remains open.



Turing Universality of Step-Wise and Stage Assembly at Temperature 1 11

References

1. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight Jr., T.F., Nag-
pal, R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Commun.
ACM 43(5), 74–82 (2000)

2. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D., Kempe, D., de Espanés, P.M.,
Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In:
Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Comput-
ing, pp. 23–32 (2002)

3. Cook, M., Fu, Y., Schweller, R.: Temperature 1 self-assembly: Deterministic assem-
bly in 3D and probabilistic assembly in 2D. In: Proceedings of the 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms (2011)

4. Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller,
R.T., Souvaine, D.L.: Staged Self-assembly: Nanomanufacture of Arbitrary Shapes
with O(1) Glues. In: Garzon, M.H., Yan, H. (eds.) DNA 13. LNCS, vol. 4848, pp.
1–14. Springer, Heidelberg (2008)

5. Doty, D., Patitz, M.J., Summers, S.M.: Limitations of self-assembly at temperature
1. Theor. Comput. Sci. 412(1-2) (January 2011)
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