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Preface

This volume contains the papers presented at DNA 18: the 18th International
Conference on DNA Computing and Molecular Programming, held August
14–17, 2012 at Aarhus University, Aarhus, Denmark.

Research in DNA computing and molecular programming draws together
mathematics, computer science, physics, chemistry, biology, and nanotechnol-
ogy to address the analysis, design, and synthesis of information-based molecular
systems. This annual meeting is the premier forum where scientists of diverse
backgrounds come together with the common purpose of advancing the engi-
neering and science of biology and chemistry from the point of view of computer
science, physics, and mathematics. Continuing this tradition, under the auspices
of the International Society for Nanoscale Science, Computation, and Engineer-
ing (ISNSCE), DNA18 focused on the most recent experimental and theoretical
results that promise the greatest impact.

The DNA 18 Program Committee received 37 paper submissions, of which 11
were selected for oral presentation and inclusion in the proceedings, and another
11 for oral presentation. Others were selected for poster presentations. Additional
poster presentations came from a poster-only submission track.

The conference program included two tutorials—Milan Stojanovic, Columbia
University: “Aptamers in Sensing and Molecular Computing”; and Damien
Woods, California Institute of Technology: “A Crash Course in the Theory of
Computing.”

The conference program also included a plenary Turing Lecture by Grzegorz
Rozenberg, University of Leiden: “Processes Inspired by Interactions of Chem-
ical Reactions in Living Cells”, and invited talks by Drew Berry, Walter and
Eliza Hall Institute of Medical Research: “Visualizations of the Molecular Ma-
chines That Create Flesh and Blood”; Jeremy Gunawardena, Harvard Medi-
cal School: “Protein Computing”; Radhika Nagpal, Harvard University: “The
TERMES Project: An Expedition in Large-Scale Self-assembly”; and Peng Yin,
Harvard University: “Modular Self-Assembly of Molecular Shapes.”

On the day before the conference, dnatec2012, a one-day workshop on struc-
tural DNA nanotechnology, was held, with contributions from Ned Seeman,
New York University: “Using DNA’s Inherent Chemical Information to Control
Structure”; Andy Ellington, University of Texas: “DNA Nanotechnology: Too
Small and Too Costly”; William Shih, Harvard Medical School: “Self-Assembled
DNA-Nanostructure Tools for Molecular Biophysics”; Hao Yan, Arizona State
University: “Designer DNA Architectures for Programmable Self-Assembly”;
Andrew Turberfield, Oxford University: “Molecular Machinery from DNA”;
Itamar Willner, Hebrew University of Jerusalem: “Nanobiotechnology with
DNA”; Chengde Mao, Purdue University: “Self-Assembled DNA Nanocages”;
Masayuki Endo, Kyoto University: “Direct Observation of Single Enzymatic and
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Chemical Reactions in the Designed DNA Nanostructures”; Friedrich Simmel,
Technische Universität München: “DNA Devices and Circuits as Components
for Cell-Like Microcompartments”; Thom H. LaBean, North Carolina State
University: “Building Agency into Molecular Materials”; and Luc Jaeger, Uni-
versity of California Santa Barbara: “Is RNA Self-assembly the Same as DNA
Self-assembly?”.

The editors would like to thank the members of the Program Committee and
the external reviewers for their hard work in reviewing the papers and providing
comments to the authors. They also thank the members of the Organizing Com-
mittee and the Steering Committee, and particularly the Committee Chairs,
Kurt Vesterager Gothelf and Natasha Jonoska, for their support and advice.
Generous financial support by the conference sponsors—the Danish National
Research Foundation, Aarhus University, and DNA Technology A/S (Risskov,
Denmark)—is gratefully acknowledged.

June 2012 Darko Stefanovic
Andrew Turberfield
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Turing Universality of Step-Wise

and Stage Assembly at Temperature 1

Bahar Behsaz1, Ján Maňuch1,2, and Ladislav Stacho1

1 Department of Mathematics, Simon Fraser University, Burnaby, Canada
2 Department of Computer Science,

University of British Columbia, Vancouver, Canada
{bbehsaz,lstacho}@sfu.ca, jmanuch@cs.ubc.ca

Abstract. In this paper, we investigate the computational power of
two variants of Winfree’s abstract Tile Assembly Model [14] at tempera-
ture 1: the Stage Tile Assembly Model and the Step-wise Tile Assembly
Model. In the Stage Tile Assembly Model, the intermediate assemblies
are assembled in several “bins” and they can be mixed in prescribed or-
der and attach together to form more complex structures. The Step-wise
Tile Assembly Model is a simplified model of stage assembly in which
only one bin is used and assembly happens by attaching tiles one by one
to the growing structure.

An interesting and still open question is whether the abstract Tile As-
sembly Model at temperature 1 is Turing Universal, i.e., it can simulate
a Turing machine. It is known that various slight modifications of the
model are indeed Turing Universal. Namely, deterministic self-assembly
in 3D and probabilistic self-assembly in 2D at temperature 1 [3] and
self-assembly model at temperature 1 with a single negative glue [10] are
known to be able to simulate a Turing machine. In this paper we show
that the Step-wise Tile Assembly Model and the Stage Tile Assembly
Model are also Turing Universal at temperature 1.

1 Introduction

Informally, self-assembly is a bottom-up process in which a small number of
types of components automatically assemble to form a more complex structure.

In 1998, Winfree [14] introduced the (abstract) Tile Assembly Model (TAM) –
which utilizes the idea of Wang tiling [13] – as a simplified mathematical model
of the DNA self-assembly pioneered by Seeman [12]. Nature provides many ex-
amples: Atoms react to form molecules. Molecules react to form crystals and su-
permolecules. Similarly, self-assembly of cells plays a part in the development of
organisms. Simple self-assembly schemes are already widely used in chemical syn-
theses. It has been suggested that more complicated schemes will ultimately be
useful for circuit fabrication, nano-robotics, DNA computation, and amorphous
computing [2,15,11,7,6,1]. Several promising experiments as well has been sug-
gested and practiced. In accordance with its practical importance, self-assembly
has received increased theoretical attention over the last few years [9,14,2,15,8].

D. Stefanovic and A. Turberfield (Eds.): DNA 18, LNCS 7433, pp. 1–11, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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One of the interesting theoretical questions about this process is how
“powerful” the model of Winfree is. In the past years Self Assembly Model
has been studied by many researchers from computational aspect of view. Many
of these results are focused on the systems with temperature 2 or higher [3,5].
In such models strength of at least two is needed for a tile to permanently bind
to an assembly. It is known that at temperatures equal or greater than 2, Self
Assembly Systems are quite powerful, in fact it is shown that they are Turing
Universal [3]. But for temperature 1, where the system is allowed to place a tile
at a position if any positive strength bond exist among the tile and the neighbors
at that position, the computational “power” is unknown.

From practical point of view, temperature 1 systems are more well-mannered
and easier to control for laboratory experiments. Thus recent attention has been
redirected to some variants of temperature 1 Self Assembly Model. It is shown
that by adding some constraints and features to the original model more “power”
is achievable. Cook et al. [3] proved the Turing Universality for deterministic
self-assembly in 3D and probabilistic self-assembly in 2D at temperature 1, and
Patitz et al. [10] introduced a self-assembly model at temperature 1 with a
single negative glue, and showed it is Turing Universal. All results use the idea
of “geometric tiles”.

In this paper we study the power of two variants of the Self Assembly Model
at temperature 1: “the Stage Tile Assembly Model” and “the Step-wise Tile
Assembly Model”. These models are defined in Section 2. We reuse the idea
of “geometric tiles”, and prove that these models are Turing Universal as well.
In Section 3, we introduced the Zig-Zag Assembly which can simulate Turing
machines at temperature 2. To show our main results it is enough to simulate
the Zig-Zag assembly at temperature 1 in these two models. Details of these
simulations are presented in Sections 4 and 5, respectively.

2 Abstract Tile Assembly Model

We present a brief description of the tile assembly model based on Rothemund
and Winfree, for a more detailed description we refer the reader to [14]. We
will be working on a Z×Z grid of unit square locations. The set of directions
D = {N,E,W, S} is used to indicate relative positions in the grid. Formally,
they are functions Z×Z→ Z×Z such that:

N(i, j) = (i, j+1), E(i, j) = (i+1, j), S(i, j) = (i, j−1) and W (i, j) = (i−1, j).

The inverse directions are defined in a natural way, for example, N−1(i, j) =
S(i, j).

Let Σ be a set of binding domains (glues). The setΣ contains a special binding
domain null that represents no glue. A tile type t is a 4-tuple (tN , tE , tS , tW ) ∈
Σ4 indicating the associated binding domains on the north, east, south and
west sides, respectively. Note that tile types are oriented, thus a rotated version
of a tile type is considered to be a different tile type. We denote the set of tile
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types with T . There is a special tile type empty = (null , null , null , null) in T
which represents an empty space, i.e., no tile has been placed in that position. A
configuration is a function C, mapping Z×Z to the set of tile types in T . Hence,
C(i, j) is the tile at the position (i, j) in the configuration C. Let a structure
S(C) of a configuration be the set of positions that are not mapped to empty in
C. A configuration may contain finite or infinte number of tiles.

Under Tile Assembly Model a tile system is a 5-tuple 〈Σ, T, φ, g, τ〉, where T
is the finite set of tile types with binding domains from Σ and contains the tile
empty , φ is a set of configurations on T called set of seed configurations, g is a
function which determines the strength of glues, and τ is a threshold parameter
called temperature. In this paper we will omit parameters Σ and g when they
are defined already.

A strength function sΣ : Σ × Σ→N measures the strength of interaction
between binding domains. For example, for simple strength function at temper-
ature 1 τ = 1, denoted by sΣ , it must satisfy sΣ(σ, σ

′) = 1, if σ = σ′ �= null ,
and sΣ(σ, σ

′) = 0 otherwise. A tile t can be added to a configuration at position
(i, j), if and only if the sum of the interaction strengths of t with its neighbors
at position (i, j) reaches or exceeds τ (the temperature). If the assembly process
reaches a point when no more attachments are possible, the produced assembly
is denoted terminal and is considered the output assembly of the system. The
smallest number of tile types and glues required to assemble a given shape are
called the tile and glues complexity of the shape, respectively.

2.1 Staged Tile Assembly Model

Erik D. Demaine et al. [4], presented the Staged Tile Assembly Model, a gen-
eralization of the tile assembly model that captures the temporal aspect of the
laboratory experiment, and enables more flexibility in the design and fabrication
of complex shapes using a small tile and glue complexity. The main feature of
staged assembly is the ability of gradual addition of specific tiles in a sequence
of stages. In addition, any tiles that have not yet attached as part of a growing
structure can be washed away and removed (in practice, using a weight-based
filter, for example) at the end of the stage. More generally, we can have any
number of bins, each containing tiles and/or assemblies that self-assemble as in
the standard tile assembly model. During a stage, any collection of operations
of two types are allowed: (1) add (arbitrarily many copies of) new tiles to an
existing bin; and (2) pour one bin into another bin, mixing the contents of the
former bin into the latter bin. In both cases, any tiles that do not assemble
into larger structures are removed at the end of the stage. These operations
let us build intermediate terminal assemblies in isolation and then combine dif-
ferent terminal assemblies to more complex structures. Two new complexity
measures in addition to tile and glue complexity arise: the number of stages, or
stage complexity, measures the time required by the operator of the experiment,
and the number of bins, or bin complexity, measures the space required for the
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experiment. (When both of these complexities are 1, the model is equivalent to
the regular tile assembly model.)

2.2 Step-Wise Tile Assembly Model

Reif proposed a related, but simpler, model called the Step-wise Assembly Model
[11]. This model is the special case of Staged Assembly Model, in which the bin
complexity is 1. Step-wise Assembly Model uses several sets of tiles (one for
each step). Let Ti be the tile set for step i. {Ti}ki=1 is a sequence of finite sets
of tiles. At first step we immerse a seed tile into one of the sets, filter out the
assembled shape from this set and place the assembled shape into the next set of
tiles where it now acts as a seed tile and assembly continues. Step-wise Assembly
Model enables production of more efficient assemblies in terms of tile types at
the price of the work of an operator. Here one new complexity measure can be
defined as well, the number of steps, or step complexity, which measures the
time required for the experiment.

3 Zig-Zag Tile Assembly Model

Informally, a Zig-Zag assembly is an assembly in which the assembly can grow
only left to right (or right to left) up to the point at which a first tile is placed
into the next row north, and the direction of growth is reversed in the next top
row.

Temperature 2 Zig-Zag assembly system: A tile system Γ = 〈T, s, 2〉 is called
temperature 2 Zig-Zag system if the tiles in T assures the assembly grows under
these two conditions:

1. The assembly sequence, which specifies the order in which tile types are
attached to the system is unique, i.e., the system is deterministic.

2. If the (i− 1)th tile added to the assembly sequence is placed in an even row
(counting from the row 0, containing the seed tile) in position (x, y) of the
grid, then the ith tile is either placed in position E(x, y) or N(x, y). And
if the (i − 1)th tile added is placed in an odd row, then the next tile to be
added (i.e. ith tile in the sequence) is placed either in the position W (x, y)
or N(x, y).

Because τ = 2, the key property of Zig-Zag system is interaction of strength at
least two between the sides of a tile and size neighbors is required to be able to
add the ith tile to the sequence. Right after adding a tile t to the assembly the
glues on the sides of t that already have neighbors, are called “inputs” and the
glues on the sides of t that are exposed are called “outputs” of tile t. Cook et al.
proved that the deterministic Zig-Zag Tile Assembly Model at temperature 2 is
Turing universal [10], and using this they proved the deterministic assembly in
3D and the probabilistic assembly in 2D at temperature 1, are Turing Universal
by simulating Zig-Zag assembly System with the idea of “geometric tiles”. We
will use the same technique to prove our main results.
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4 Turing Universality of Step Tile Assembly System

This section and Section 5 contain the main results of this paper. First we prove
that every Zig-Zag tile assembly system at temperature 2 can be simulated by
a step-wise assembly tile system at temperature 1.

Theorem 1. For any temperature 2 Zig-Zag tile assembly system Γ = 〈T, s, 2〉
there exists a Step-wise tile assembly system Γ ′ at temperature 1 that simulates
Γ at vertical scale 5, horizontal scale O(log(|T |)), step complexity and tile com-
plexity O(|T | log(|T |)).

Proof. We follow the idea of the proof in [3]. We represent each tile in Γ with a
set of tiles in Γ ′ called “macro tiles” and “fake” the cooperative attachment of
tiles in temperature 2.

Let G be the set of all strength 1 glues on north and south side of tiles that
appear in the system Γ . Label each type of these glues with numbers 0 to |G|−1
in an arbitrary order. For any glue g ∈ G let b(g) be the binary representation
of the label of g. The main idea is to geometrically represent number b(g) on
the side of macro tile that is representing the north or south glue of each t ∈ T .
We symbolize each bit of b(g), 0 or 1, with bumps. For east and west side glues
and for strength 2 glues we do not use geometrical representation. Those are
represented with simple strength 1 glues. By alternating between the two tile
sets, the system will simulate the input from the south with its bumps, and from
left and right the inputs are read with a strength 1 glue. After reading the input,
the outputs are unpacked (written) using the same geometrical representation
of the bits of the binary coding of output glue on the north (if any) and a glue
of strength 1 on east or west side (according to the side of the outputs of the
tile in the Zig-Zag system that the system is assembling).

Each macro tile has two bumps of vertical length 2 on beginning and end
of its north side as shown in Figure 1. These special bumps will guarantee that
macro tiles in the assembly will be aligned. The actions of reading and unpacking
glues for a macro tile m that corresponds to a tile t ∈ τ with south and west
inputs and north and east outputs are discussed in more details in what follows.
Examples of tile with other combinations of input and output are illustrated in
Figure 1.

Reading the South and West Inputs: Each macro tile starts from the south.
The first tile that starts the macro tile has the west input on its west side with
one single glue. Then the assembly continues by reading along the north side
of the macro tile beneath it. Figure 2 pictures the basic idea behind reading
each bit. As it is shown in Figure 2 each bit has width 4 and we recognize
whether the bit is 0 or 1 by the location of the bump. Also, each bit is being
read in exactly two steps and with exactly two tile sets T1 an T2, represented in
Figure 2. The final tile sets T1 and T2 is a union of all required tiles for different
tiles respectively in step 1 and 2.

The tiles shown in Figures 3a and 3c are the key tile types in each tile set
(tile set 1 and 2) responsible for reading bit i of the glue on the south side. The
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Fig. 1. Macro tiles simulating the tile types from Zig-Zag Tile Assembly System shown
on the right side of each macro tile

final assembly of this part of the macro tile which reads the glue on the south
of the macro tile for a tile t ∈ T with glue 110 on the south side, is illustrated
in Figure 4.

For reading each bit of the binary representation of the glue on the south side
of each macro-tile, say m, there are O(1) unique tiles in tile sets T1 and |T2|.
These tiles assemble together and read the ith bit of the glue on the south side
of m when the glue is being read in process of creating m.

After reading log(|G|) bits, the glue on the south is read completely. The west
input is read via the glue on west side of the first step in the assembly sequence
of the macro tile. Thus, at this point both inputs are read and the outputs can
be determined deterministically (since Zig-Zag TAS is deterministic) and this
mapping is done with the tile shown in Figure 3e.

Unpacking the North and East Outputs:When the outputs are determined
the assembly crawls back on itself (in this case it crawls back to east). Then it
starts “writing” the binary representation of the north glue with illustrating 0
an 1 geometrically. This process is in essence the same as what discussed above
but naturally with reverse functionality. Instead of adding the next right digit in
this case we delete the right most digit each time at each step. The key tile types
necessary for unpacking a glue is illustrated in Figure 5. Note that it unpacks
the east glue again with a single unique strength 1 glue on the tile at the very
south east position of macro-tile. The complexity of tile types is the same as the
reading tiles.

For each bit of the binary representation of the glue on the south or north
side of each macro-tile, say m, there are O(1) unique tiles in the tile sets T1 and
T2. Each macro-tile needs O(log(|T |)) unique tile types. The terminal assembly
of Zig-Zag assembly Γ has O(|T |) tiles and all of the O(log(|T |) tiles assembling
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Fig. 2. (a) The first tile set T1. (b) The final assembly for 0 after the first step (after
exposing to T1). The tiles colored light gray belong to the first tile set and the tiles
colored with dark gray belong to the macro-tile beneath. The assembly is growing from
left to right. (c) The final assembly for 1 after the first step (after exposing to T1). (d)
The first tile set T1. (e) The final assembly for 0 after the first step (after exposing to
T1). (f) The final assembly for 1 after the first step (after exposing to T1).
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Fig. 3. (a) The subset of T1 reading the ith bit from left to right. ai, . . . , ji are different
representations of the first i−1 bits. (b) The final assembly reading bit 0 after exposing
to the first tile set. The tiles that are colored light gray belong to the first tile set and
the tiles colored with dark gray belong to the “reading part” of this macro-tile. (c)
The subset of T2 reading the ith bit from left to right. (d) The final assembly tile set
reading bits 0 and 1 after exposing to second tile set. (e) The tile mapping the input
of a macro tile that is read to the corresponding output. At this point, the assembly
starts crawling back on the assembly and start unpacking.
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macro-tile m has to store the original tile that m belongs to in Γ . Thus, we
use O(|T | log(|T |)) unique tile types. Also, each macro-tile is constructed in
O(log(|G|)) steps. Hence, the tile and step complexity of the final assembly is
O(|T |(log |T |)). The assembly system described here clearly simulates Γ .
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For every Turing machineM and w ∈ Σ∗ there exists a Zig-Zag Tile Assembly
Model Γ that simulates M on input w [3]. By Theorem 1 there is a step-Tile
Assembly System that simulates Γ . Therefore, we have the following result:

Theorem 2. The Step-wise Tile Assembly Model is Turing Universal.
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Fig. 5. (a) The subset of T1 unpacking the ith bit from left to right. ai, . . . , ji are
different representations of the first i− 1 bits. (b) The final assembly unpacking bit 0
after exposing to the first tile set. The tiles that are colored light gray belong to the
first tile set and the tiles colored with dark gray belong to the macro-tile beneath. (c)
The subset of T2 unpacking the ith bit from left to right. (d) The final assembly tile
set unpacking bits 0 and 1 after exposing to second tile set.

5 Turing Universality of Stage-Assembly System

By performing the exact procedure which is described in Section 4, the Turing
Universality of Stage Assembly Model can be proved. But for Stage-wise As-
sembly Model we can utilize the construction with the “bins” and reduce the
number of stages. For this, we use a similar technique as in the construction in
Theorem 1. We take an instance of Zig-Zag assembly system, say Γ and simulate
it with an instance of stage-assembly system which is constructed with macro
tiles as described in the previous section. But here with the use of different bins
we can decrease the stage complexity to O(log(|T |)).
Theorem 3. For any temperature 2 Zig-Zag tile assembly system Γ = 〈T, s, 2〉
there exists a Stage Tile Assembly system Γ ′ at temperature 1 that simulates Γ
at vertical scale 5, horizontal scale O(log(|T |)), stage complexity O(log(|T |)) and
tile complexity O(|T | log(|T |)).



10 B. Behsaz, J. Maňuch, and L. Stacho

Proof. The construction of Γ ′ is almost the same as proof of Theorem 1. Again
let G be the set of north/south glues. For each t ∈ T we create a unique macro-
tile. The tile sets of Γ ′ are T ′

1 and T ′
2, which are the same as T1 and T2 in Γ which

is described in the proof of Theorem 1, respectively. The difference is that the
tiles in the south side of each macro-tile do not read a binary number. Instead
they unpack (write) the corresponding binary number, which is the binary num-
ber of the glue of the south side of t. The tile types which assist unpacking this
glue are the same as the tiles types that are used to read this glue for the macro
tile corresponding to t in the proof of Theorem 1. For each tile t ∈ T we use
a unique bin. The seed tile here is the tile which maps the input to the output
of the macro tile which is shown in Figure 3c. So the assembly sequence for the
assembly that unpacks the south glue is the reverse of the assembly sequence
which reads the south glue in Section 4. After each macro-tile assembled in each
bin we will pour the desired assembled macro tiles in one bin with choosing the
macro-tile in Γ ′ corresponding to the seed tile in Γ be the seed configuration
in Γ ′.

Fig. 6. The possible slips for two macro-tiles one with south side depicting (110) the
other with north side (101). The two segments of (10) can be matched together without
the vertical teeth of length two on the south of macro tiles.

In each bin it takes O(log(|G|)) stages before the assembly of the macro tile
is final, this yields to stage complexity O(log |T |). Since the tile types are the
same in Section 4, the tile complexity is O(|T | log(|T |)).

Now, since Γ is a deterministic system the macro-tiles automatically assemble
by matching inputs and outputs uniquely in one step. The vertical bump of
length 2 on south side of each macro-tile guarantees that the beginning and
the end of each macro-tile matches exactly with the beginning and the end
of other macro-tiles in north and south side of the macro-tile. Without these
bumps horizontal slips of macro-tiles along each other is possible as shown in
Figure 6.

6 Conclusion

In this paper, we proved Turing Universality at temperature 1 for two tile assem-
bly models: Step-wise Tile Assembly Model and Stage Tile Assembly Model. The
question whether the Tile Assembly Model at temperature 1 is Turing Universal
remains open.
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Abstract. Recently we have introduced a formal graph-based data mo-
del for DNA complexes geared towards database applications. The model
is accompanied by the programming language DNAQL for querying data-
bases in DNA. Due to natural restrictions on the implementability and
termination of operations on DNA, programs in DNAQL are not always
well defined on all possible inputs. Indeed, a problem left open by our
previous work has been to devise a type system for DNAQL, with a
soundness property to the effect that well-typed programs are well de-
fined on all inputs adhering to given input types. The contribution of the
present paper is to propose such a type system and to establish sound-
ness. Moreover, we show that the type system is flexible enough so that
any database manipulation expressible in the relational algebra is also
expressible in DNAQL in a well-typed manner.

1 Introduction

Since Adleman’s experiment [2], many different models for DNA computing have
been invented and investigated, as can be learned from the books [3,16] and more
recent developments [11,24,18]. At the same time, DNA computing has also high
potential for database applications [4,7,25,20]. In this spirit, in recent work [13,5],
we have defined the programming language DNAQL: a programming language
specifically designed for the querying of databases in DNA. The goal of the
present paper is to provide DNAQL with a sound type system.

DNAQL is a query language rather than a general-purpose programming lan-
guage. It includes basic operators on DNA complexes in solution. Apart from the
application of these operators, programs are formed using a let-construct and
an if-then-else construct based on the detection of DNA in a test tube. Last but
not least, the language includes a for-loop construct for iterating over the bits
of a data entry, encoded as a vector of DNA codewords. Indeed, the number of
operations performed during the execution of a DNAQL program, on any input,
is bounded by a polynomial that depends solely on the dimension of the data,
i.e., the number of bits needed to represent a single data entry. This makes that
the execution time of programs scales well with the size of the input database.

A difficulty with DNAQL, and with DNA computing in general, however, is
that various manipulations of DNA must make certain assumptions on their
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input so as to be effectively implementable and produce a well-defined output.
Even when these assumptions are well understood for each operation in isola-
tion, the problem is exacerbated in an applicative programming language like
DNAQL, where the output of one operation serves as input for another. Indeed
the problem of deciding whether a given program will have well-defined behavior
on all possible intended inputs is typically undecidable. While this undecidabil-
ity is well known for Turing-complete programming languages, it remains so for
database languages that are typically not Turing-complete [6].

The standard solution to ensure well-definedness of programs is to use a type
system and check programs syntactically so as to allow only well-typed programs.
Well-devised type systems have a soundness property to the effect that, once a
program has been checked to be well-typed for a given input type, the behavior
of the program is then guaranteed to be well defined on all inputs of the given
type [17,14]. In the present paper, we propose a type system for DNAQL and
establish a soundness theorem. Moreover, we show that the type system is flexible
enough so that arbitrary relational databases can be represented as typed DNA
complexes, and so that arbitrary relational algebra expressions on these data
can be expressed by well-typed DNAQL programs. The relational algebra is the
applicative language at the core of standard database query languages such as
SQL [9,12,1].

We would like to make clear in what sense the present paper enhances previ-
ous work. That the relational algebra can be simulated in DNAQL has already
been shown [13], but only insofar as the dynamic behavior at run-time is con-
cerned. Here we show that the simulation can be syntactically guaranteed to be
possible with well-typed DNAQL programs only. Also in recent work [5] we for-
mulated a syntactic test on the well-definedness of hybridization, similar to weak
satisfiability [15]. This syntactic test is but one component of the type system
presented here, and here it is also extended to account for components of DNA
complexes that are immobilized on separation surfaces such as magnetic beads.

Most importantly, a crucial feature of the type system presented here is a
wildcard mechanism to account for the fact that the length (in bits), as well as
the actual values, of data entries are unknown at compile time. This mechanism is
integrated in a type-checking system that keeps track of mandatory components
in DNA complexes, as well as their hybridization status. The result is a type
system that allows a natural and flexible representation of structured data in
DNA, in a way so that a significant class of data manipulations can be typed as
programs in DNAQL.

2 Sticker Complexes

We recall [13,5] the data model of DNA sticker complexes, a graph-theoretically
defined formalization of DNA complexes of a limited format geared towards data
representation. Due to space limitations, we must be brief.

From the outset we assume a finite alphabet Σ. As customary in formal
models of DNA computing [16], each letter represents a string over the DNA
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alphabet {A,C,G, T }, such that the resulting set of sequences forms a set of
DNA codewords [8,22,23]. This should always be kept in mind. The alphabet Σ
is matched with its negative version Σ̄ = {ā | a ∈ Σ}, disjoint fromΣ. Thus there
is a bijection between Σ and Σ̄, which is called complementarity and is denoted
by overlining; we also set ¯̄a = a so complementarity is symmetric. Obviously, ā
stands for the Watson-Crick complement of the DNA sequence represented by a.
The elements of Σ are called positive symbols and the elements of Σ̄ are called
negative symbols.

For the purpose of data formatting we further assume that Σ = Λ∪Ω ∪Θ is
composed of three disjoint parts: the set Λ of atomic value symbols ; the set Ω of
attribute names ; and the set Θ = {#1,#2,#3,#4,#5,#6,#7,#8,#9} of tags.

The overall structure of a DNA complex is abstracted in the notion of pre-
complex. Formally, a pre-complex is a 6-tuple (V, L, λ, μ, ι, β), where

1. V is a finite set of nodes;
2. L ⊆ V × V is a set of directed edges without self-loops;
3. λ : V → Σ ∪ Σ is a total function labeling the nodes with positive and

negative alphabet symbols;
4. μ ⊆ [V ]2 = {{u, v} | u, v ∈ V and u �= v} is a partial matching on the nodes,

i.e., each node occurs in at most one pair μ. Note that the pairs in μ are
unordered.

5. ι ⊆ V is the set of immobilized nodes; and
6. β ⊆ V is the set of blocked nodes.

Let C be a pre-complex as above. A strand of C is simply a connected component
of the directed graph (V, L), so ignoring μ. The length of a strand is its number of
nodes. A sticker complex (or complex for short) now is a pre-complex satisfying
the following restrictions:

1. Each node has at most one incoming and at most one outgoing edge. Thus,
each strand has the form of a chain or a cycle.

2. Strands are homogeneously labeled, in the sense that either all nodes are
labeled with positive symbols, or all with negative symbols. Naturally, a
strand with positive (negative) symbols is called a positive (negative) strand.

3. Every negative strand has length one or two; if it has length two, then it
must have a single edge (i.e., it cannot be a 2-cycle). Negative strands are
also referred to as “stickers”.

4. Matchings by μ only occur between complementarily labeled nodes: formally,
if {x, y} ∈ μ then λ(y) = λ(x).

5. A node can be immobilized only if it is the sole node of a negative strand.
6. Each component can contain at most one immobilized node.
7. Nodes in β do not occur in μ.

We see that the edges of a sticker complex indicate the sequence order within
strands, and the matching μ makes explicit where stickers have annealed to pos-
itive strands. The predicate β represents longer stretches of double strands and



A Type System for DNAQL 15

is used to restrict the places where hybridization can still occur [21]. Immobi-
lized nodes represent probes attached to magnetic beads or surfaces that can be
separated from the rest of the solution.

Components and Redundancy. Two strands s and s′ are bonded if there
is a node v in s and some node v′ in s′ with {v, v′} ∈ μ. When two strands
are connected (possibly indirectly) by this bonding relation, we say they belong
to the same component. Thus a component of a pre-complex is a substructure
formed by a maximal set of strands connected by the bonding relation. Note
that a component of a pre-complex is in itself a pre-complex. We use comp(C)
to denote the set of components of pre-complex C. Conversely, we can view a set
of sticker complex components as a single sticker complex, basically by taking
the union.

The intention of our model is that a complex defines the structural content of
a test tube, which, however, will hold copies in surplus quantity of each compo-
nent. Thus, each component of a complex stands for multiple occurrences. We
formalize this using the notions of subsumption, equivalence, and minimality.

A pre-complex C1 is subsumed by pre-complex C2 if for each component D1 in
C1 there is an isomorphic componentD2 in C2. Two pre-complexes are equivalent
if they subsume each other. A component D in pre-complex C is redundant if
there exists a component D′ in C such that D and D′ are isomorphic. Note
that removing D from C yields an equivalent sticker complex. A pre-complex is
minimal if there are no redundant components.

Saturated Complexes.We call a complex C saturated if there do not exist any
two nodes v and w such that adding the pair {v, w} still results in a legal sticker
complex. Intuitively, when a complex is saturated, hybridization is finished in
the complex.

Representation of Data Entries. Dimension of a Complex: The three
disjoint parts of the alphabet Σ = Λ ∪ Ω ∪ Θ serve distinct roles. Nodes la-
beled with tags from Θ indicate regions in the complex that have a function for
data manipulation, as cleavage sites, or sites where stickers can anneal so as to
circularize or concatenate strands. Nodes labeled with attribute names from Ω
are used as annotations to data entries. Finally, the data entries themselves are
represented using nodes labeled by atomic value symbols from Λ.

Atomic value symbols fulfill the same function as bits in a digital computer. A
sequence of atomic value symbols represent a value, much like 100 is the binary
representation of the number 8. Similar to the word size (number of bits) used in
a digital computer to represent single data elements (such as integers), we will
use sequences of atomic value symbols of a fixed length , called the dimension.
Let s = s1 . . . s� be a sequence of  consecutive nodes of a strand of a sticker
complex. If all nodes are labeled with atomic value symbols, s is called an -core.
Let s = s0 . . . s�+1 be a sequence of +2 consecutive nodes of a strand of a sticker
complex. Such a sequence is called an -vector if s0 is labeled with #3, s�+1 is
labeled with #4 and s1 . . . s� is an -core.
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The dimension is now defined as follows. For a fixed value of , we say that
sticker complex C has dimension , if all nodes labeled with an atomic value
symbol occur in an -vector. We then call C an -complex.

3 DNAQL

DNAQL [13] is an applicative programming language for expressing functions from
-complexes to -complexes. A crucial feature of DNAQL is that the same program
can be applied uniformly to complexes of any dimension . DNAQL is not compu-
tationally complete, as it is meant as a query language and not a general-purpose
programming language. The language is based on a basic set of operations on com-
plexes, some distinguished constants, an emptiness test (if-then-else), let-variable
binding, counters that can count up to the dimension of the complex, and a limited
for-loop for iterating over a counter. The syntax of DNAQL is given in Figure 1.
Note that expressions can contain two kinds of variables: variables standing for
complexes, and counters, ranging from 1 to the dimension. Complex variables can
be bound by let-constructs, and counters can be bound by for-constructs. The
free (unbound) complex variables of a DNAQL expression stand for its inputs. A
DNAQL program is a DNAQL expression without free counters. So, in a program,
all counters are introduced by for-loops.

〈expression〉 ::= 〈complexvar 〉 | 〈foreach〉 | 〈if 〉 | 〈let〉 | 〈operator 〉 | 〈constant 〉
〈foreach〉 ::= for 〈complexvar 〉 := 〈expression〉 iter 〈counter〉 do 〈expression〉

〈if 〉 ::= if empty(〈complexvar 〉) then 〈expression〉 else 〈expression〉
〈let〉 ::= let x := 〈expression〉 in 〈expression〉

〈operator 〉 ::= ((〈expression〉) ∪ (〈expression〉)) | ((〈expression〉) − (〈expression〉))
| hybridize(〈expression〉) | ligate(〈expression〉) | flush(〈expression〉)
| split(〈expression〉, 〈splitpoint 〉) | block(〈expression〉, Σ − Λ)

| blockfrom(〈expression〉, Σ − Λ) | blockexcept(〈expression〉, 〈counter〉)
| cleanup(〈expression〉)

〈constant 〉 ::= Σ+ | (
Σ − Λ

) (
Σ − Λ

) | immob(Σ) | empty
〈splitpoint 〉 ::= #2 | #3 | #4 | #6 | #8

Fig. 1. Syntax of DNAQL

The constant expressions provide particular complexes as constants. A word
w ∈ Σ+ stands for a single, linear, positive strand that spells the word w. A
two-letter word āb̄, for a, b ∈ Σ−Λ, stands for a single, linear, negative strand of
length two of the 1 → 2 with λ(1) = b̄ and λ(2) = ā. The expression immob(ā),
for a ∈ Σ, stands for a single, negative, immobilized node labeled ā: we call such
a node a probe. The expression empty stands for the empty complex. The split
operation is implemented by a restriction enzyme. As the number of restriction
enzymes is limited, and to ensure biological feasability of DNAQL, we allow only
a limited number of split points.
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The operation ∪ takes the disjoint union of two complexes. The difference
C −D of complexes C and D, which may be implemented using a subtractive
hybridization technique [10], keeps only the strands of C that do not appear in
D, and is only well defined when C and D consist solely of positive, equal-length
strands. The operation hybridize performs hybridization as formalized [5] and
extended here to take immobilized components into account, and may be unde-
fined due to nonterminating behavior. Moreover, ligate behaves as ligase; flush
removes supernatant (keeps only immobilized components), and split cleaves
complexes. The blocking operations block a single node (block) or block a range
starting from a primer (blockfrom); blockexcept(C, i) blocks, in each -vector
s0, s1, . . . , s�, s�+1 in the -complex C, all nodes except si. For the blocking op-
erations to be well defined, the complex must be saturated. Finally, cleanup
undoes matchings and blockings and removes all strands except the longest pos-
itive ones.

The for-loop iterates its body with the counter running from 1 to , thus
allowing access to specific bits in data entries with the aid of the blockexcept

construct.

Example 1. We give an example of a DNAQL program, over the input variables
x1 and x2, with a behavior similar to the selection operator and the cartesian
product operator from the relational algebra. Below, a and b are assumed to be
atomic value symbols.

let y1 := cleanup(flush(hybridize(x1 ∪ immob(ā)))) in

let y2 := cleanup(flush(hybridize(x2 ∪ immob(b̄)))) in

if empty(y1) then empty else

if empty(y2) then empty else

cleanup(ligate(hybridize(y1 ∪ y2 ∪#5#1)))

Assume complex C1 holds a set of strands of the form #3∗#4#5, where ∗ stands
for a data entry in the form of an -core, and C2 similarly holds a set of strands
of the form #1#3∗#4. Then the program applied to C1 and C2 filters from C1

(C2) the strands whose data entry contains the letter a (b); if both intermediate
results are nonempty, the program then uses the stickers #5#1 to concatenate
each remaining strand from C1 with each remaining strand from C2.

4 Sticker Complex Types

Intuitively, a sticker complex type is an -complex where all data entries have
been replaced by wildcards. What remains is a structural description of the
components that may appear in the complex, with attribute names and tags
explicit, but the dimension and actual values of data entries hidden. In order to
obtain a powerful type system for DNAQL, these “weak” types S are augmented
to “strong” types that have an indication 
 of the mandatory components,
which must occur, and a bit h indicating that the type is saturated. The former
is needed to type common DNAQL programs that use hybridization, and the
latter is needed to type blocking operators in a DNAQL program.
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Formally, we begin by introducing four symbols assumed not present in Σ∪Σ̄:

1. ∗ (free) represents an -core with none of the nodes matched or blocked;
2. ∗ (blocked) represents an -core with all nodes blocked;
3. ∗̂ (open) is the result of a block-except operator on an -core;

Let N denote the set {∗, ∗, ∗̂}. The positive alphabet without atomic value sym-
bols, but with the above new symbols is denoted ΣN = Ω ∪Θ ∪N .

The fourth new symbol, denoted by ‘?’ will be used to represent a probe, i.e.,
a single negative atomic value symbol that has been immobilized. The nega-
tive alphabet without the negative atomic value symbols, but with ? is denoted
ΣN = Ω ∪ Θ ∪ {?}. Note that ? is considered to be a negative symbol. The
complementarity relation is extended by ∗ =? and ∗̂ =?. Complementarity is
thus no longer a bijection, but a relation.

A sticker complex type is very similar to a sticker complex: it is a structure
S = (V, L, λ, μ, ι, β) that satisfies the same definition as that of a sticker complex
with the following exceptions:

− the range of the node labeling function λ is now ΣN ∪ΣN instead of Σ ∪Σ;
− β ⊆ V is not allowed to contain nodes labeled with a symbol from N ;
− a node can be labeled ‘?’ only if it is immobilized;
− there are no redundant components.

Next, we define the important notion of when a sticker complex C = (V, L, λ, μ,
ι, β) of some dimension  is said to be well typed. Thereto, recall the intuitive
meaning of the new symbols {∗, ∗, ∗̂, ?}. Formally, consider an -core r occurring
in C. We say that r is of type ∗ if no node of r is involved in μ nor in β; r is of
type ∗ if all nodes of r belong to β; and r is of type ∗̂ if all but one node of r
belong to β. Now we call C well typed if every -core occurring in C is of type ∗,
∗ or ∗̂. Moreover, if C is well typed, we define stype(C) as the sticker complex
type obtained by replacing every -core occurring in C by a single node labeled
by the type of the -core (∗, ∗ or ∗̂), and replacing the label of any probe by ?.

The subsumption relation among sticker complexes (Section 2) can be adapted
naturally to sticker complex types. We finally say that a well-typed sticker com-
plex C is of some sticker complex type S, denoted by C : S, if stype(C) is
subsumed by S. For sticker complex C, stype(C) is the “smallest” type, in the
sense that there is no sticker complex type S′ such that C : S′ and S′ is strictly
subsumed by S.

A sticker complex type is weak, in the sense that any well-typed sticker com-
plex having as stype a subset of the components of a sticker complex type is of
that type. In particular, the empty sticker complex is of every sticker complex
type. This is too weak to type common DNAQL programs involving hybridiza-
tion, where we need to know about components that are sure to be present.
Thereto, we define a strong sticker complex type as a triple τ = (S,
, h), where
S is a sticker complex type, 
 is a sticker complex type subsumed in S, h is a
boolean, and moreover if h = true, then C ∪
 is saturated for all every compo-
nent C of S. Sticker complex type S is called the weak type of τ , the components
of 
 are called mandatory in τ , and h is called the h-bit of τ .
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A type τ is called saturated if all complexes having type τ are saturated.
For a well-typed complex C and a strong sticker complex type τ = (S,
, h),

we now say that C has type τ if C is of type S; the complex 
 is subsumed by
stype(C); and C is saturated if h = true.

From now on, we will refer to sticker complex types as weak types and to
strong sticker complex types as types.

5 A Type System for DNAQL

Given a DNAQL program e(x1, . . . , xk) with free complex variables x1, . . . , xk,
and given types τ1, . . . , τk for the respective input variables, we would like to
determine whether e is safe under these input types, meaning that for any di-
mension  and for any input complexes C1, . . . , Ck of dimension  and of the
given types τ1, . . . , τk, the result e(C1, . . . , Ck) on these inputs is well defined.
Since types do not restrict the dimension of complexes, if a type involves wild-
cards, there are infinitely many complexes of that type. Hence safety is not easy
to guarantee, indeed safety is undecidable: this will follow from our later Theo-
rem 2 and an easy reduction from satisfiability of well-typed relational algebra
expressions, which is undecidable [1].

The best we can do is to come up with a type system that tries to infer the
output types from given input types. We have developed a type system that,
given e and Γ = τ1, . . . , τk as above, determines whether e is well-typed under
Γ , and, if so, infers an output type τ , this is denoted by Γ � e : τ . The DNAQL
type system enjoys the following soundness property:

Theorem 1. If Γ � e : τ then e is safe under Γ , and the resulting complex of e
applied to any inputs of type Γ will be of type τ .

The full type-checking system and soundness proof are omitted from this con-
ference paper. Here we give some intuitions and examples.

Obviously devising a sound type-checking system in itself is no challenge, as it
suffices to judge every program ill typed so that soundness becomes trivial! The
challenge is to have a sound type-checking system that still judges most useful
DNAQL programs to be typed. Our type system checks DNAQL expressions
bottom-up by applying the DNAQL operations on complexes symbolically, on
the type level. The operations may fail on the type level, in case we cannot
deduce from the type that the operation will be well-defined on all inputs of
the given type. If we can deduce well-definedness, we output a tight result type
and the type-checking continues. Furthermore, the typing inference made for if-
then-else constructs, shown in Figure 2, are designed so as to maximally benefit
from knowledge that complexes are nonempty. These rules maximally infer the
presence of mandatory components, which allows later hybridization operations
to be typed.

Example 2. Recall the program from Example 1 in Section 3. Consider the weak
types S1 = #3∗#4#5 and S2 = #1#3∗#4. The program is well-typed under
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Γ � e1 : τ1 Γ [x := τ1] � e2 : τ1

Γ � for x := e1 iter i do e2 : τ1

Γ � x : (Sx, ∅, hx) Sx = (∅, ∅, ∅, ∅, ∅, ∅) Γ � e1 : τ1

Γ � if empty(x) then e1 else e2 : τ1

Γ � x : (Sx,�x, hx) �x �= ∅ Γ � e2 : τ2

Γ � if empty(x) then e1 else e2 : τ2

Γ � x : (Sx,�x, hx) �x = ∅ |comp(Sx)| = 1
Γ � e1 : (S1,�1, h1) Γ [x := (Sx, comp(Sx), hx)] � e2 : (S2,�2, h2)

Γ � if empty(x) then e1 else e2 : (S1 ∪ S2,�1 ∩ �2, h)
h = (S1 ∪ S2 is saturated)

Γ � x : (Sx,�x, hx)
�x = ∅ |comp(Sx)| > 1 Γ � e1 : (S1,�1, h1) Γ � e2 : (S2,�2, h2)

Γ � if empty(x) then e1 else e2 : (S1 ∪ S2,�1 ∩ �2, h)
h = (S1 ∪ S2 is saturated)

Fig. 2. Typing relation for the control flow of DNAQL

the types τ1 = (S1, S1, false) for x1 and τ2 = (S2, ∅, false) for x2. Since S1 is
mandatory in τ1, we know that input x1 will be nonempty. Note also that the
h-bit in τ1 is false, although complexes of type S1 are necessarily saturated. The
subexpression e1 = hybridize(x1 ∪ immob(ā)) is typed as (S?

1 , ∅, true), where
S?
1 consists of the following components: (i) S1 itself; (ii) immob(?); and the

complex formed by the union of (i) and (ii) and matching the node ∗ with
the node ?. Note that there are no mandatory components, since on inputs
without an a, only (i) and (ii) will occur, whereas on inputs where all strands
have an a, only (iii) will occur. The h-bit is now true since a complex resulting
from hybridization is always saturated. Applying flush to e1 yields output type
(S?

1
′
, ∅, true), where S?

1
′
consists of components (ii) and (iii) above. Finally the

variable y1 in the let-construct is assigned the type (S1, ∅, true). Similarly, y2
gets the type (S2, ∅, true). Yet, by the design of the if-then-else typing rules, the
subexpression on the last line of the program will be typed under the strong types
(S1, S1, true) for y1 and (S2, S2, true) for y2. Because all components are now
mandatory, the type inferred for subexpression hybridize(y1 ∪ y2 ∪#5#1) will
be (S12, S12, true), where S12 is the weak type obtained from the union of S1, S2

and #5#1 by matching the #5 and #5 and the #1 and #1 nodes, respectively.
After ligate and cleanup the output type is (S, S, true) where S consists of the
single strand #3∗#4#5#1#3∗#4. The final output type of the entire program,
combining the then- and else-branches, is (S, ∅, true).
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For another example, consider the program

hybridize(hybridize(x ∪
⋃
a∈Λ

immob(a)) ∪#3#4).

This program is ill typed under the type τ = (S, S, true) for x with S = #3∗#4.
Indeed, the nested hybridize subexpression is still well-typed, yielding the output
type (S?, ∅, true) without any mandatory components. Adding the component
#3#4 to S?, however, yields a complex with nonterminating hybridization [5],
so the type checker will reject the top-level hybridize.

Yet, this program will have a well-defined output on every input C of type τ .
Indeed, every strand in C contains some a ∈ Λ, so the minimal type of the result
of the nested hybridize will actually have a single complex component formed by
the union of S and immob(?) with ∗ and ? matched. Then the top-level hybridize
will terminate since each sticker complex can have at most immobilized node.

This example shows that well-defined programs may be ill typed; this is un-
avoidable in general since safety is undecidable.

6 Relational Algebra Simulation

In this section we strengthen an earlier result [13] to the effect that relational
algebra expressions can be simulated by DNAQL programs: we show that the
simulation is already possible by well-typed programs. This illustrates the power
of our type system (cf. the comment made after Theorem 1).

Basically we assume a universe U of data elements. A relation schema R is a
finite set of attribute names. We can use the same alphabet Ω for these attribute
names. A tuple over R is a mapping from R to U . A relation instance over R is
a finite set of tuples over R.

The syntax of the relational algebra [9,12,1] is generated by the following
grammar:

e ::= x | (e ∪ e) | (e− e) | (e × e) | σA=B(e) | π̂A(e) | ρA/B(e)

Here, x stands for a relation variable, and A and B stand for attributes. Our
version of the relational algebra is slightly nonstandard in that our version of
projection (π̂) projects away some given attribute, as opposed to the standard
projection which projects on some given subset of the attributes.

The relational algebra obeys a simple type system where expressions are typed
by relation schemes [6]. Given a relational algebra expression e(x1, . . . , xk) over
the input relation variables x1, . . . , xk, and given input relation schemas Γ =
R1, . . . , Rk, we can determine whether e is well typed under Γ , and, if so, infer a
result relation schema R, denoted by Γ � e : R or just e : R if Γ is understood.
The typing rules are simple. If e1 : R and e2 : R then (e1∪e2) : R and (e1−e2) : R;
if e1 : R1 and e2 : R2 for disjoint R1 and R2, then (e1 × e2) : R1 ∪ R2; if e : R
and A,B ∈ R then σA=B(e) : R; if e : R and A ∈ R then π̂A(e) : R \ {A}; if
e : R and A ∈ R and B /∈ R then ρA/B(e) : (R \ {A}) ∪ {B}.
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The semantics of the relational algebra is well known and we omit a formal
definition. Provided Γ � e : R, on any input relation instances I1, . . . , Ik over
R1, . . . , Rk, the result e(I1, . . . , Ik) is well defined and is a relation instance
over R.

We want now to represent relation instances by complexes. We will store
data elements as vectors of atomic value symbols. So formally, we use the set of
strings Λ∗ as our universe U. Then a tuple t (relation instance I) is said to be of
dimension  if all data elements appearing in t(I) are strings of length . Let t
be a tuple of dimension  over relation schema R. We may assume a fixed order
on all attribute names. Let the attributes of R in order be A, . . . , B. We then
represent t by the following -complex:

complex (t) = #2A#3t(A)#4 . . .#2B#3t(B)#4.

A relation instance I of dimension  is then represented by the -complex

complex (I) =
⋃
{complex (t) | t ∈ I}.

Note that complex (I) is of strong type τR = (complex (R), ∅, true), where
complex (R) is #2A#3∗#4 . . .#2B#3∗#4.

We are now in a position to state our main theorem.

Theorem 2. Let e(x1, . . . , xk) be an arbitrary well-typed relational algebra ex-
pression, let Γ = R1, . . . , Rk be input relation schemas, and let R be an output
relation schema such that Γ : e � R. Then e can be translated into a DNAQL
program eDNA(x1, . . . , xk), such that the following holds:

1. eDNA is well-typed, i.e., τR1 , . . . , τRk
� eDNA : τR.

2. eDNA simulates e uniformly over all dimensions , i.e., for each natural
number  and for any -dimensional input relation instances I1, . . . , Ik over
R1, . . . , Rk respectively,

eDNA(complex (I1), . . . , complex (Ik)) = complex (e(I1, . . . , Ik))

(up to isomorphism).

The proof of the first statement is omitted in this conference paper. The second
statement has been proven in previous work [13].

7 Conclusion

An interesting problem is to understand the precise expressive power of well-
typed DNAQL programs. Theorem 2 provides a lower bound; a corresponding
upper bound, to the effect that every well-typed DNAQL program can be sim-
ulated in the relational algebra (on relational structures representing the typed
input complexes) would establish DNAQL as the DNA-computing equivalent of
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the relational algebra. We note that untyped operations, e.g., the difference oper-
ator applied to arbitrary complexes of unknown type, are strictly more powerful
than the relational algebra.

On the practical level, the obvious research direction is to verify some non-
trivial DNAQL programs experimentally, or simulate them in silico. Indeed, we
have gone to great efforts to design an abstraction that is as plausible as possi-
ble. A static analysis of the error rates of DNAQL programs on the type level is
another necessary topic for further research.
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Abstract. Chemical reaction networks (CRNs) formally model chem-
istry in a well-mixed solution. CRNs are widely used to describe infor-
mation processing occurring in natural cellular regulatory networks, and
with upcoming advances in synthetic biology, CRNs are a promising lan-
guage for the design of artificial molecular control circuitry. Nonetheless,
despite the widespread use of CRNs in the natural sciences, the range of
computational behaviors exhibited by CRNs is not well understood.

CRNs have been shown to be efficiently Turing-universal when al-
lowing for a small probability of error. CRNs that are guaranteed to
converge on a correct answer, on the other hand, have been shown to
decide only the semilinear predicates. We introduce the notion of func-
tion, rather than predicate, computation by representing the output of
a function f : N

k → N
l by a count of some molecular species, i.e.,

if the CRN starts with x1, . . . , xk molecules of some “input” species
X1, . . . , Xk, the CRN is guaranteed to converge to having f(x1, . . . , xk)
molecules of the “output” species Y1, . . . , Yl. We show that a function
f : Nk → N

l is deterministically computed by a CRN if and only if its
graph {(x,y) ∈ N

k × N
l | f(x) = y} is a semilinear set.

Finally, we show that each semilinear function f can be computed on
input x in expected time O(polylog ‖x‖1).

1 Introduction

The engineering of complex artificial molecular systems will require a sophisti-
cated understanding of how to program chemistry. A natural language for de-
scribing abstract chemical systems in a well-mixed solution is that of (finite)
chemical reaction networks (CRNs), i.e., finite sets of chemical reactions such as
A+B → A+C. When the goal is to model the behavior of individual molecules in
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a well-mixed solution, CRNs are assigned semantics through stochastic chemical
kinetics [7], in which reactions occur probabilistically with rate proportional to
the product of the molecular count of their reactants and inversely proportional
to the volume of the reaction vessel.

Traditionally CRNs have been used as a descriptive language to analyze
naturally occurring chemical systems. However, recent investigations of CRNs
as a programming language for engineering artificial chemical systems have
shown CRNs to have surprisingly powerful computational ability. For exam-
ple, bounded-space Turing machines can be simulated with an arbitrarily small,
non-zero probability of error by a CRN with only a polynomial slowdown [1], and
even Turing universal computation is possible with an arbitrarily small, non-zero
probability of error over all time [11]. This is surprising since finite CRNs nec-
essarily must represent binary data strings in a unary encoding, since they lack
positional information to tell the difference between two molecules of the same
species. Other work has investigated the power of CRNs to simulate Boolean
circuits [9], digital signal processing [8], the (un)decidability of whether a CRN
will reach a state where no further reaction is possible [13], and the robust-
ness of CRNs to tolerate multiple copies of the network running in parallel [6].
Finally, recent work proposes concrete chemical implementations of arbitrary
CRN programs, particularly using nucleic-acid strand-displacement cascades as
the physical reaction primitive [5, 12].

Angluin, Aspnes and Eisenstat [2] investigated the computational power of
deterministic CRNs (under a different name, that of the equivalent distributed
computing model known as population protocols). Some CRNs, when started in
an initial configuration assigning nonnegative integer counts to each of k different
input species, are guaranteed to converge on a single “yes” or “no” answer, in the
sense that there are two special “voting” species L1 and L0 so that eventually
either L1 is present and L0 absent to indicate “yes”, or vice versa to indicate
“no.” The set of inputs S ⊆ Nk that cause the system to answer “yes” is then a
representation of the decision problem solved by the CRN. Angluin, Aspnes and
Eisenstat showed that the input sets S decidable by some CRN are precisely the
semilinear subsets of Nk (see below).

We extend these prior investigations of decision problem or predicate compu-
tation to study deterministic function computation. Consider the three examples
in Fig. 1(top). These CRNs have the property that they converge to the right
answer no matter in what order the reactions occur. Formally, we say a function
f : Nk → Nl is computed by a CRN C if the following is true. There are “input”
species X1, . . . , Xk and “output” species Y1, . . . , Yl such that, if C is initialized
with x1, . . . , xk copies of X1, . . . , Xk, then it is guaranteed to reach a configura-
tion in which the counts of Y1, . . . , Yl are described by the vector f(x1, . . . , xk),
and these counts never again change. For example, the CRN C with the sin-
gle reaction X → 2Y computes the function f(x) = 2x in the sense that, if C
starts in an initial configuration with x copies of X and 0 copies of Y , then C
is guaranteed to stabilize to a configuration with 2x copies of Y (and no copies
of X). Similarly, the function f(x) = x/2� is computed by the single reaction
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f(x1, x2)=  f(x1, x2)= max(x1, x2)f(x)= ⌊x/2⌋

{ n1 · (1, 1, 1) + n2 · (1, 0, 1) | n1 , n2 ∈ ℕ}

∪{ n1 · (1, 1, 1) + n2 · (1, 1, 0) | n1 , n2 ∈ ℕ}

{ n1 · (1, 1, 0) + n2 · (1, 0, 0)(1, 0, 1) | n1 , n2 ∈ ℕ}
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n1 · (1, 1, 0) + n2 · (0, 1, 0) | n1 , n2 ∈ ℕ}

{ (1, 0) + n1 · (2, 1) | n1 ∈ ℕ}

∪{ n1 · (2 , 1) | n1 ∈ ℕ}

start with: 
(input) #X1=x1, #X2=x2,
(initial context) 1 N
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start with: 
(input) #X1=x1, #X2=x2

output: #Y
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+

if x1>x2
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Fig. 1. Examples of deterministically computable functions. (Top) Three functions and
examples of CRNs deterministically computing them. Example (a) computes via the
relative stoichiometry of reactants and products of a single reaction. In example (b), a
single molecule, converted between N or Y forms, goes back and forth consuming X1

and X2, and whether it gets stuck in the N or Y form indicates the excess of X1 or X2.
To see that the CRN in (c) correctly computes the maximum, note that the first two
reactions eventually produce x1 + x2 molecules of Y , while the third reaction eventu-
ally produces min(x1, x2) molecules of K. Thus the last reaction eventually consumes
min(x1, x2) molecules of Y leaving x1 + x2 −min(x1, x2) = max(x1, x2) Y ’s. (Bottom)
Graphs of the three functions. The set of points belonging to the graph of each of these
functions is a semilinear set. Under each plot this semilinear set is written in the form
of a union of linear sets corresponding to equation 1.1. The defining vectors are shown
as colored arrows in the graph.

2X → Y (Fig. 1(a)), in that the final configuration is guaranteed to have exactly
x/2� copies of Y (and 0 or 1 copies of X , depending on whether x is even or
odd). Note that the CRN in Fig. 1(b) can be thought to compute the predicate
“x1 > x2?” with species N voting “no” and Y voting “yes”. Examples (a) and
(c) cannot be phrased in the form of predicate computation.

What do the functions in Fig. 1(top) have in common such that the CRNs
computing them can inevitably progress to the right answer no matter what
order the reactions occur in? What other functions can be computed similarly?
Answering these questions may seem difficult because it appears like the three
examples operate on different principles and use different ideas.

We show that the functions deterministically computable by CRNs are pre-
cisely the semilinear functions, where we define a function to be semilinear if
its graph {(x,y) ∈ Nk × Nl | f(x) = y} is a semilinear subset of Nk × Nl. (See
Fig. 1(bottom) for the graphs of the functions just mentioned.) This means that
the graph of the function is a union of a finite number of linear sets – i.e. sets
that can be written in the form{

b+ n1u
1 + . . .+ npu

p
∣∣ n1, . . . , np ∈ N

}
(1.1)

for some vectors b,u1, . . . ,up ∈ Nk × Nl. Fig. 1(bottom) shows the graphs of
the three example functions expressed as a union of sets of this form. Informally,
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semilinear functions can be thought of as “piecewise linear functions” with a
finite number of pieces, and linear domains of each piece.1

This characterization implies, for example, that such functions as f(x1, x2) =
x1x2 or f(x) = x2 are not deterministically computable. For instance, the graph
of the function f(x1, x2) = x1x2 consists of infinitely many lines of different
slopes, and thus, while each line is a linear set, the graph is not a finite union of
linear sets.

Our result employs the predicate computation characterization of Angluin,
Aspnes and Eisenstat [2], together with some nontrivial additional technical ma-
chinery. In particular, we introduce the notion of “reducing” the computation of
one CRN to that of another, essentially using one CRN as a black box in con-
structing another. This is more difficult than in standard programming languages
since there is in general no way of knowing when a CRN is done computing, or
whether it will change its answer in the future.

Having established what functions are deterministically computable by CRNs
given unbounded time, we turn our attention to the time required for CRNs to
converge to the answer. We show that every semilinear function can be determin-
istically computed on input x in expected time polylog(‖x‖). This is done by a
similar technique used by Angluin, Aspnes, and Eisenstat [2] to show the equiva-
lent result for predicate computation. They run a slow deterministic computation
in parallel with a fast randomized computation, allowing the deterministic com-
putation to compare the two answers and update the randomized answer only
if it is incorrect, which happens with low probability. However, novel techniques
are required since it is not as simple to “nondestructively compare” two integers
(so that the counts are only changed if they are unequal) as to compare two
Boolean values.

2 Preliminaries

Throughout the paper we use both superscripts and subscripts to index vari-
ables to make for easier reading; the superscript never means exponentiation.
Apologies in advance.

Given a vector x ∈ Nk, let ‖x‖ = ‖x‖1 =
∑k

i=1 |xi|, where xi denotes the ith
coordinate of x. If f : Nk → Nl is a function, define the graph of f to be the set{

(x,y) ∈ Nk × Nl
∣∣ f(x) = y

}
. A set A ⊆ Nk is linear if there exist vectors

b,u1, . . . ,up ∈ Nk such that

A =
{

b+ n1u
1 + . . .+ npu

p
∣∣ n1, . . . , np ∈ N

}
.

1 Semilinear sets have a number of characterizations. They are often thought of as
generalizations of arithmetic progressions. They are also exactly the sets that are
definable in Presburger arithmetic [10]: the first-order theory of the natural numbers
with addition. Equivalently, they are the sets accepted by boolean combinations of
“modulo” and “threshold” predicates [2]. Semilinear functions are less well-studied.
The “piecewise linear” intuitive characterization is formalized in Lemma 4.3.
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A is semilinear if it is a finite union of linear sets. We say a partial function
f : Nk ��� Nl is affine if there exist kl rational numbers a11, . . . , a

l
k ∈ Q ∩ [0,∞)

and l + k integers b1, . . . , bl, c1, . . . , ck ∈ Z such that for each 1 ≤ j ≤ l, yj =

bj +
∑k

i=1 a
j
i (xi + ci). In other words, the graph of f , when projected onto

the (k + 1)-dimensional space defined by the k coordinates corresponding to x
and the single coordinate corresponding to yj , is a subset of a k-dimensional
hyperplane.

2.1 Chemical Reaction Networks

If Λ is a finite set (in this paper, of chemical species), we write NΛ to denote the
set of functions f : Λ→ N. Equivalently, we view an element C ∈ NΛ as a vector
of |Λ| nonnegative integers, with each coordinate “labeled” by an element of Λ.
Given X ∈ Λ and C ∈ NΛ, we refer to C(X) as the count of X in C. We write
C ≤ C′ to denote that C(X) ≤ C′(X) for allX ∈ Λ. Given C,C′ ∈ NΛ, we define
the vector component-wise operations of addition C + C′, subtraction C − C′,
and scalar multiplication nC for n ∈ N. If Δ ⊂ Λ, we view a vector C ∈ NΔ

equivalently as a vector C ∈ NΛ by assuming C(X) = 0 for all X ∈ Λ \Δ.
Given a finite set of chemical species Λ, a reaction over Λ is a triple α =

〈r,p, k〉 ∈ NΛ × NΛ × R+, specifying the stoichiometry of the reactants and
products, respectively, and the rate constant k. If not specified, assume that
k = 1 (this is the case for all reactions in this paper), so that the reaction α =
〈r,p, 1〉 is also represented by the pair 〈r,p〉 . For instance, given Λ = {A,B,C},
the reaction A+2B → A+3C is the pair 〈(1, 2, 0), (1, 0, 3)〉 . A (finite) chemical
reaction network (CRN) is a pair N = (Λ,R), where Λ is a finite set of chemical
species, and R is a finite set of reactions over Λ. A configuration of a CRN
N = (Λ,R) is a vector C ∈ NΛ. We also write #CX to denote C(X), the count
of species X in configuration C, or simply #X when C is clear from context.

Given a configuration C and reaction α = 〈r,p〉, we say that α is applicable
to C if r ≤ C (i.e., C contains enough of each of the reactants for the reaction
to occur). If α is applicable to C, then write α(C) to denote the configuration
C + p− r (i.e., the configuration that results from applying reaction α to C). If
C ′ = α(C) for some reaction α ∈ R, we write C →N C′, or merely C → C′ when
N is clear from context. An execution (a.k.a., execution sequence) E is a finite or
infinite sequence of one or more configurations E = (C0, C1, C2, . . .) such that,
for all i ∈ {1, . . . , |E| − 1}, Ci−1 → Ci. If a finite execution sequence starts with
C and ends with C′, we write C →∗

N C′, or merely C →∗ C′ when the CRN N
is clear from context. In this case, we say that C′ is reachable from C.

Let Δ ⊆ Λ. We say that P ∈ NΔ is a partial configuration (with respect to
Δ). We write P = C � Δ for any configuration C such that C(X) = P (X) for
all X ∈ Δ, and we say that P is the restriction of C to Δ. Say that a partial
configuration P with respect to Δ is reachable from configuration C′ if there
is a configuration C reachable from C′ and P = C � Δ. In this case, we write
C′ →∗ P .
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An infinite execution E = (C0, C1, C2, . . .) is fair if, for all partial configura-
tions P , if P is infinitely often reachable then it is infinitely often reached.2 In
other words, no reachable partial configuration is “starved”. This definition of
fairness is stricter than that used by Angluin, Aspnes, and Eisenstat [2], which
used only full configurations rather than partial configurations. We choose this
definition to prevent intuitively unfair executions from vacuously satisfying the
definition of “fair” simply because of some species whose count is monotonically
increasing with time (preventing any configuration from being infinitely often
reachable).3

Note that the definition given above, applied to finite executions, deems all
of them fair vacuously. We wish to distinguish between finite executions that
can be extended by applying another reaction and those that cannot. Say that
a configuration is terminal if no reaction is applicable to it. We say that a finite
execution is fair if and only if it ends in a terminal configuration.

In order to show that CRNs can compute semilinear functions, we need to
have some guarantee that the execution sequence is not chosen such that some
reactions are simply not allowed to happen. (For example, {X → 2Y,A →
B,B → A} cannot correctly compute y = 2x if an “adversary” simply does not
let the first reaction occur, always preferring the second or third.) We consider
two models. In the first part of this paper, we follow [2] in applying the above
condition of fairness on the allowed execution sequences, which captures com-
binatorially what we need of the execution sequence. In the second part of the
paper (Section 4) we consider the kinetic model, which ascribes probabilities to
execution sequences. The kinetic model also defines the time of reactions, allow-
ing us to study the computational complexity of the CRN computation. Note
that in the kinetic model, if the reachable configuration space is bounded for any
start configuration (i.e. if from any starting configuration there are finitely many
configurations reachable) then any observed execution sequence will be fair with
probability 1. (This will be the case for our construction in Section 4.)

2.2 Stable Decidability of Predicates

We now review the definition of stable decidability of predicates introduced by
Angluin, Aspnes, and Eisenstat [2]. Those authors use the term “stably com-
pute”, but we reserve the term “compute” to apply to the computation of non-
Boolean functions. Intuitively, some species “vote” for a yes/no answer, and
a CRN N is a stable decider if, for all initial configurations, N is guaranteed
(under fair executions) to reach a consensus vote, which is potentially different
for different initial configurations but consistent over all fair executions starting
from a fixed initial configuration.

A chemical reaction decider (CRD) is a tuple D = (Λ,R,Σ, Υ, φ, σ), where
(Λ,R) is a CRN, Σ ⊆ Λ is the set of input species, Υ ⊆ Λ is the set of voters,

2 i.e. (∀Δ ⊆ Λ)(∀P ∈ N
Δ)[((∃∞i ∈ N) Ci →∗ P ) =⇒ ((∃∞j ∈ N) P = Cj � Δ)].

3 Such a definition is unnecessary in the work of Angluin, Aspnes, and Eisenstat [2]
because population protocols by definition have a finite state space, since they enforce
that every reaction has precisely two reactants and two products.
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φ : Υ → {0, 1} is the (Boolean) output function, and σ ∈ NΛ\Σ is the initial
context. Intuitively, the goal is for the CRD to get all voters to be eventually
unanimous and correct (and for at least one to be present). An input to D will
be a vector I0 ∈ NΣ . Thus a CRD together with an input vector defines an
initial configuration I defined by I(X) = I0(X) if X ∈ Σ, and I(X) = σ(X)
otherwise. We say that such a configuration is a valid initial configuration, i.e.,
I � (Λ \Σ) = σ. If we are discussing a CRN understood from context to have a
certain initial configuration I, we write #0X to denote I(X).

We extend φ to a partial function Φ : NΛ ��� {0, 1} as follows. Φ(C) is
undefined if either C(X) = 0 for all X ∈ Υ , or if there exist X0, X1 ∈ Υ such
that C(X0) > 0, C(X1) > 0, φ(X0) = 0 and φ(X1) = 1. Otherwise, there exists
b ∈ {0, 1} such that (∀X ∈ Υ )(C(X) > 0 =⇒ φ(X) = b); in this case, the
output Φ(C) of configuration C is b.

A configuration C is output stable if Φ(C) is defined and, for all C′ such that
C →∗ C′, Φ(C′) = Φ(C). We say that a CRD D is stable if, for any valid initial
configuration I ∈ NΛ, there exists b ∈ {0, 1} such that every fair execution
E = (I, C1, C2, . . .) contains an output stable configuration C with Φ(C) = b
(i.e., D always converges to a defined output on input I, and this output is the
same for any fair execution starting from I). If D is stable, then some unique
subset S0 ⊆ NΣ of all possible initial configurations always converges to output
0 and stays with that output, and the remainder S1 = NΣ \S0 always converges
to output 1 and stays with that output. We say that D stably decides the set
S1, or that D stably decides the predicate ψ : NΣ → {0, 1} defined by ψ(I0) = 1
if I0 ∈ S1 and ψ(I0) = 0 if I0 ∈ S0.

The following theorem is due to Angluin, Aspenes, and Eisenstat [2]:

Theorem 2.1 ( [2]). A set A ⊆ Nk is stably decidable by a CRD if and only if
it is semilinear.

The definitions of [2] assume that Υ = Λ (i.e., every species votes). However,
it is not hard to show that we may assume there are only two voting species,
L0 and L1, so that #L0 > 0 and #L1 = 0 means that the CRD is answering
“no”, and #L0 = 0 and #L1 > 0 means that the CRD is answering “yes.” This
convention will be more convenient in this paper.

2.3 Stable Computation of Functions

We now define a notion of stable computation of functions similar to those above
for predicates.4 Intuitively, the inputs to the function are the initial counts of
inputs species X1, . . . , Xk, and the outputs are the counts of “output” species
Y1, . . . , Yl, such that the CRN is guaranteed to eventually reach a configuration
in which the counts of the output species have the correct values and never
change from that point on.

4 The extension from Boolean predicates to functions described by Aspnes and Rup-
pert [4] applies only to finite-range functions, where one can choose |Λ| ≥ |Y | for
output range Y .
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We now formally define what it means for a CRN to stably compute a function.
Let k, l ∈ Z+. A chemical reaction computer (CRC) is a tuple C = (Λ,R,Σ, Γ, σ),
where (Λ,R) is a CRN, Σ ⊂ Λ is the set of input species, Γ ⊂ Λ is the set of
output species, such that Σ ∩ Γ = ∅, |Σ| = k, |Γ | = l, and σ ∈ NΛ\Σ is
the initial context. Write Σ = {X1, X2, . . . , Xk} and Γ = {Y1, Y2, . . . , Yl}. We
say that a configuration C is output count stable if, for every C′ such that
C →∗ C′ and every Yi ∈ Γ , C(Yi) = C′(Yi) (i.e., the counts of species in Γ will
never change if C is reached). As with CRD’s, we require initial configurations
I of C with input I0 ∈ NΣ to obey I(X) = I0(X) if X ∈ Σ and I(X) =
σ(X) otherwise, calling them valid initial configurations. We say that C stably
computes f : Nk → Nl if, for every valid initial configuration I ∈ NΛ, every
fair execution E = (I, C1, C2, . . .) contains an output count stable configuration
C such that f(I(X1), I(X2), . . . , I(Xk)) = (C(Y1), C(Y2), . . . , C(Yl)). In other
words, the counts of species in Γ are guaranteed to converge to the value of
f(x1, x2, . . . , xk) when started in an initial configuration with xi copies of Xi

for each i ∈ {1, . . . , k}. We say that such a CRC is count stable. For any species
A ∈ Λ, we write #∞A to denote the eventual convergent count of A if #A is
guaranteed to stabilize; otherwise, #∞A is undefined.

As an example of a formally defined CRC consider the function f(x) = x/2�
shown in Fig. 1(a). This function is deterministically computed by the CRC
(Λ,R,Σ, Γ, σ) where (Λ,R) is the CRN consisting of a single reaction 2X → Y ,
Σ = {X} is the set of inputs species, Γ = {Y } is the set of output species, and
the initial context σ is zero for all species in Λ\Σ. In Fig. 1(b) the initial context
σ(N) = 1, and is zero for all other species in in Λ \Σ.

In sections 3 and 4 we will describe systematic (but much more complex)
constructions for these and all functions with semilinear graphs.

2.4 Kinetic Model

In this paper, the rate constants of all reactions are 1, and we define the kinetic
model with this assumption. A reaction is unimolecular if it has one reactant
and bimolecular if it has two reactants. We use no higher-order reactions in this
paper when using the kinetic model.

The kinetics of a CRN is described by a continuous-time Markov process as
follows. Given a fixed volume v and current configuration C, the propensity of
a unimolecular reaction α : X → . . . in configuration C is ρ(C,α) = #CX .
The propensity of a bimolecular reaction α : X + Y → . . ., where X �= Y , is
ρ(C,α) = #CX#CY

v . The propensity of a bimolecular reaction α : X+X → . . . is

ρ(C,α) = 1
2
#CX(#CX−1)

v . The propensity function determines the evolution of
the system as follows. The time until the next reaction occurs is an exponential
random variable with rate ρ(C) =

∑
α∈R ρ(C,α) (note that ρ(C) = 0 if no

reactions are applicable to C). The probability that next reaction will be a

particular αnext is
ρ(C,αnext)

ρ(C) .

The kinetic model is based on the physical assumption of well-mixedness
valid in a dilute solution. Thus, we assume the finite density constraint, which
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stipulates that a volume required to execute a CRN must be proportional to the
maximum molecular count obtained during execution [11]. In other words, the
total concentration (molecular count per volume) is bounded. This realistically
constrains the speed of the computation achievable by CRNs. Note, however,
that it is problematic to define the kinetic model for CRNs in which the reach-
able configuration space is unbounded for some start configurations, because
this means that arbitrarily large molecular counts are reachable.5 We apply the
kinetic model only to CRNs with configuration spaces that are bounded for each
start configuration.

3 Deterministic Function Computation

In this section we use Theorem 2.1 to show that only “simple” functions can be
stably computed by CRCs. This is done by showing how to reduce the compu-
tation of a function by a CRC to the decidability of its graph by a CRD, and
vice versa. In this section we do not concern ourselves with kinetics. Thus the
volume is left unspecified, and we consider the combinatorial-only condition of
fairness on execution sequences.

We say a function is semilinear if its graph is semilinear. The next lemma
shows that every function computable by a chemical reaction network is semi-
linear.

Lemma 3.1. Every function stably computable by a CRC is semilinear.

Proof. Let C = (Λ,R,Σ, Γ, σ) be the CRC that stably computes f : Nk → Nl,
with input species Σ = {X1, . . . , Xk} and output species Γ = {Y1, . . . , Yl}.
Modify C to obtain the following CRD D = (Λ′, R′, Σ′, Υ ′, φ′, σ′). Let YC =
{Y C

1 , . . . , Y C
l }, where each Y C

i �∈ Λ are new species. Let YP = {Y P
1 , . . . , Y P

l },
where each Y P

i �∈ Λ are new species. Intuitively, #Y P
i represents the number of

Yi’s produced by C and #Y C
i the number of Yi’s consumed by C. The goal is for

D to stably decide the predicate f(#0X1, . . . ,#0Xk) = (#0Y
C
1 , . . . ,#0Y

C
l ). In

other words, the initial configuration of D will be the same as that of C except
for some copies of Y C

i , equal to the purported output of f to be tested by D.
Since every predicate stably decidable by a CRD is semilinear (Theorem 2.1),
this will prove the lemma.

Let Λ′ = Λ ∪ YC ∪ YP ∪ {L0, L1}. Let Σ′ = Σ ∪ YC . Let Υ ′ = {L0, L1},
with φ(L0) = 0 and φ(L1) = 1. Let σ′(S) = 0 for all S ∈ Λ′ \ Σ′. Modify R by
adding reactions to obtain R′ as follows. For each reaction α that consumes a
net number n of Yi molecules, append n products Y C

i to α. For each reaction
α that produces a net number n of Yi molecules, append n products Y P

i to
α. For example, the reaction A + 2B + Y1 + 3Y3 → Z + 3Y1 + 2Y3 becomes
A + 2B + Y1 + 3Y3 → Z + 3Y1 + 2Y3 + 2Y P

1 + Y C
3 . Since C is count-stable,

eventually no reactions producing or consuming net copies of Yi are possible,
whence D as defined so far is count output stable with respect to Y P

i and Y C
i

as well.
5 One possibility is to have a “dynamically” growing volume as in [11].
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Then add the following additional reactions to R′, for each i ∈ {1, . . . , l},

Y P
i + Y C

i → L1 (3.1)

Y P
i + L1 → Y P

i + L0 (3.2)

Y C
i + L1 → Y C

i + L0 (3.3)

L0 + L1 → L1 (3.4)

In the following, we use #↑
∞Y P

i to denote the total number of Y P
i ever produced

and #↑
∞Y C

i to denote #0Y
C
i plus the total number of Y C

i ’s ever produced. Note
that, if and only if f(#0X1, . . . ,#0Xk) = (#0Y

C
1 , . . . ,#0Y

C
l ), then eventually,

for each i, #Y P
i and #Y C

i stabilize to equal values in the absence of reaction
(3.1); in other words, if and only if #↑

∞Y P
i = #↑

∞Y C
i .

Since Y P
i and Y C

i are possibly produced but not consumed by reactions other
than (3.1), we may think of reaction (3.1) as if it does not occur until #Y P

i and
#Y C

i have stabilized, even though reaction (3.1) may consume some copies of
Y P
i and Y C

i before all eventual copies have been produced.
Reactions (3.1)-(3.4) ensure that if #↑

∞Y P
i = #↑

∞Y C
i for all i ∈ {1, . . . , l},

then #∞L1 > 0 and #∞L0 = 0, and if #↑
∞Y P

i �= #↑
∞Y C

i for some i ∈ {1, . . . , l},
then #∞L1 = 0 and #∞L0 > 0. To show that this holds, we have two cases for
each i ∈ {1, . . . , l}. In the following, we write f(#X1, . . . ,#Xk)i to denote the
value #Yi if f(#X1, . . . ,#Xk) = (#Y1, . . . ,#Yl).

1. f(#0X1, . . . ,#0Xk)i = #0Y
C
i for all i ∈ {1, . . . , l}: Then #↑

∞Y P
i = #↑

∞Y C
i

for all i ∈ {1, . . . , l}, so eventually every Y P
i and Y C

i disappears through
reaction (3.1). At this point there are some number of L0’s and L1’s re-
maining. The number of L1’s must be positive since the final execution of
reaction (3.1) created a copy of L1. Since none of reactions (3.1)-(3.3) are
possible, #L1 stays positive forever. After this time, reaction (3.4) eventually
removes all copies of L0.

2. f(#0X1, . . . ,#0Xk)i �=#0Y
C
i for some i ∈ {1, . . . , l}: Then #↑

∞Y P
i �= #↑

∞Y
C
i

for some i ∈ {1, . . . , l}, so reaction (3.1) ensures that eventually either 1)
#∞Y C

i = 0 and #∞Y P
i > 0, or 2) #∞Y C

i > 0 and #∞Y P
i = 0. Eventually

reaction (3.1) is not possible for any j ∈ {1, . . . , l} because either #∞Y P
j = 0

or #∞Y C
j = 0, and at that point, no more copies of L1 are produced. From

then on, reaction (3.2) (in case (1)) or reaction (3.3) (in case (2)) ensures
that eventually all copies of L1 are converted to L0. Reaction (3.4) may
convert some copies of L0 back to L1 before this happens, but this strictly
decreases the quantity (#L1 + #L0). If this quantity reaches 1 then reac-
tion (3.4) is no longer possible. Thus eventually all existing copies of L1 are
converted to L0 and reaction (3.4) is no longer possible.

Thus, if f(#0X1, . . . ,#0Xk)=(#0Y
C
1 , . . . ,#0Y

C
l ), then #∞L1 > 0 and #∞L0=

0, and otherwise, #∞L1 = 0 and #∞L0 > 0, showing that D stably decides the
graph of f . ��
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The next lemma shows the converse of Lemma 3.1. Intuitively, it uses a random
search of the output space to look for the correct answer to the function and
uses a predicate decider to check whether the correct solution has been found.

Lemma 3.2. Every semilinear function is stably computable by a CRC.

Proof. Let f : Nk → Nl be a semilinear function, and let

F =
{

(x,y) ∈ Nk × Nl
∣∣ f(x) = y

}
denote the graph of f . We then consider the set

F̂ =
{

(x,yP ,yC) ∈ Nk × Nl × Nl
∣∣ f(x) = yP − yC

}
.

Intuitively, F̂ defines the same function as F , but with each output variable
expressed as the difference between two other variables. Note that F̂ is not the
graph of a function since for each y ∈ Nl there are an infinite number of pairs
(yP ,yC) such that yP − yC = y. However, we only care that F̂ is a semilinear
set so long as F is a semilinear set.

Then by Theorem 2.1, F̂ is stably decidable by a CRD D = (Λ,R,Σ, Υ, φ, σ),
where

Σ = {X1, . . . , Xk, Y
P
1 , . . . , Y P

l , Y C
1 , . . . , Y C

l },
and we assume that Υ contains only species L1 and L0 such that for any output-
stable configuration of D, exactly one of #L1 or #L0 is positive to indicate a
yes or no answer, respectively.

Define the CRC C = (Λ′, R′, Σ′, Γ ′, σ′) as follows. Let Σ′ = {X1, . . . , Xk}. Let
Γ ′ = {Y1, . . . , Yl}. Let Λ′ = Λ∪Γ ′. Let σ′(S) = 0 for all S ∈ Λ\ (Σ∪{L0}), and
let σ′(L0) = 1. Intuitively, we will have L0 change the value of y (by producing
either Y P

i or Y C
i molecules), since L0’s presence indicates that D has not yet

decided that the predicate is satisfied. It essentially searches for new values of
y that do satisfy the predicate. This indirect way of representing the value y is
useful because yP and yC can both be increased monotonically to change y in
either direction. If we wanted to test a lower value of yi, then this would require
consuming a copy of Yi, but this may not be possible if D has already consumed
all of them.

Let R′ be R plus the following reactions for each 1 ≤ i ≤ l:

L0 → L0 + Y P
i + Yi (3.5)

L0 + Yi → L0 + Y C
i (3.6)

It is clear that reactions (3.5) and (3.6) enforce that at any time, #Yi is equal
to the total number of Y P

i ’s produced by reaction (3.5) minus the total number
of Y C

i ’s produced by reaction (3.6) (although some of each of Y P
i or Y C

i may
have been produced or consumed by other reactions in R).

Suppose that f(x) �= (#Y1, . . . ,#Yl). Then if there are no L0 molecules
present, the counts of Y P

i and Y C
i are not changed by reactions (3.5) and (3.6).

Therefore only reactions in R proceed, and by the correctness of D, eventually
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an L0 molecule is produced (since eventually D must reach an output-stable
configuration answering “no”, although L0 may appear before D reaches an
output-stable configuration, if some L1 are still present). Once L0 is present,
by the fairness condition (choosing Δ = {Y1, . . . .Yl}), eventually the value of
(#Y1, . . . ,#Yl) will change by reaction (3.5) or (3.6). In fact, every value of
(#Y1, . . . ,#Yl) is possible to explore by the fairness condition.

Suppose then that f(x) = (#Y1, . . . ,#Yl). Perhaps L
0 is present because the

reactions in R have not yet reached an output-stable “yes” configuration. Then
perhaps the value of (#Y1, . . . ,#Yl) will change so that f(x) �= (#Y1, . . . ,#Yl).
But by the fairness condition, a correct value of (#Y1, . . . ,#Yl) must be present
infinitely many times, so again by the fairness condition, since from such a
configuration it is possible to eliminate all L0 molecules before producing Y P

i

or Y C
i molecules, this must eventually happen. When all L0 molecules are gone

while f(x) = (#Y1, . . . ,#Yl), it is no longer possible to change the value of
(#Y1, . . . ,#Yl), whence C has reached a count-stable configuration with the
correct answer. Therefore C stably computes f . ��

Lemmas 3.1 and 3.2 immediately imply the following theorem.

Theorem 3.3. A function f : Nk → Nl is stably computable by a CRC if and
only if it is semilinear.

One unsatisfactory aspect of Lemma 3.2 is that we “peek inside the black box” of
D by using the fact that we know it is deciding a semilinear predicate. Lemma 3.1,
on the other hand, uses only the fact that C is computing some function. Al-
though we know that C, being a chemical reaction computer, is only capable of
computing semilinear functions, if we imagine that some external powerful “ora-
cle” controlled the reactions of C to allow it to stably compute a non-semilinear
function, then D would decide that function’s graph. Thus Lemma 3.1 is more
like the black-box oracle Turing machine reductions employed in computability
and complexity theory, which work no matter what mythical device is hypothe-
sized to be responsible for answering the oracle queries.

4 Speed of Deterministic Function Computation

Lemma 3.2 describes how a CRN can deterministically compute any semilinear
function. However, there are problems with this construction if we attempt to use
it to evaluate the speed of semilinear function computation in the kinetic model.
First, the configuration space is unbounded for any input since the construction
searches over outputs without setting bounds. Thus, more care must be taken to
ensure that any infinite execution sequence will be fair with probability 1 in the
kinetic model. What is more, since the maximum molecular count is unbounded,
it is not clear how to set the volume for the time analysis. Even if we attempt to
properly define kinetics, it seems like any reasonable time analysis of the random
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search process will result in expected time at least exponential in the size of the
output.6

Angluin, Aspnes, and Eisenstat combined the results of [2] with a fast, error-
prone simulation of a bounded-space Turing machine to show that semilinear
predicates can be computed without error in expected polylogarithmic time [1].
In this section we show that a similar technique implies that semilinear functions
can be computed by CRNs without error in expected polylogarithmic time in
the kinetic model.

For our asymptotic time analysis, let n = ‖x‖. In this section, the total molec-
ular count attainable will always be O(n); thus, for by finite density constraint,
the volume v = O(n).

Theorem 4.1. Let f : Nk → Nl be semilinear. Then there is a CRC C that stably
computes f , and the expected time for C to reach a count-stable configuration on
input x is O(polylog ‖x‖).

Proof. (proof sketch) Our CRC will use the counts of Yj for each output dimen-
sion yj as the global output, and begins by running in parallel7:

1. A fast, error-prone CRC F for y,b, c = f(x). It is constructed based on [1].
By [1], for any constant c > 0, we may design F so that it is correct and
finishes in time O(log5 n) with probability at least 1 − n−c. We modify it

so that upon halting, it copies an “internal” output species Ŷj to Yj (the

global output), Bj , and Cj through reactions H + Ŷj → Yj + Bj + Cj (in
asymptotically negligible time). Here, H is some molecule that is guaranteed
with high probability not to be present until F has halted, and to be present
in large (Ω(n)) count so that the conversion is fast. In this way we are
guaranteed that the amount of Yj produced by C is the same as the amounts
of Bj and Cj no matter whether its computation is correct or not.

2. A slow, deterministic CRC S for y′ = f(x). It is constructed as in Lemma 4.2,
running in expected O(n log n) time.

3. A slow, deterministic CRD D for the semilinear predicate “b = f(x)?”. It is
constructed as in [3] and runs in expected O(n logn) time.

Following Angluin, Aspnes, and Eisenstat [1], we construct a “timed trigger”
as follows, using a leader molecule, a marker molecule, and n = ‖x‖ interfering
molecules. (These interfering molecules can simply be the input species and some
of their “descendants” such that their count is held constant.) The leader fires
the trigger if it encounters the marker molecule d times without any intervening

6 The random walk is biased downward because of the increasing propensities of the
reactions consuming Yi’s.

7 Throughout this section, we use the technique of “running multiple CRNs in parallel”
on the same input. To accomplish this it is necessary to split the inputs X1, . . . , Xk

into separate molecules using a reaction Xi → X1
i +X2

i + . . .+Xp
i , which will add

only O(log n) to the time complexity, so that each of the p separate parallel CRNs
do not interfere with one another. For brevity we omit stating this formally when
the technique is used.
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reactions with the interfering molecules. This happens rarely enough that with
high probability the trigger fires after F andD finishes (time analysis is presented
below). When the trigger fires, it checks if D is outputting a “no” (e.g. has a
molecule of L0), and if so, produces a molecule of Pfix. This indicates that the
output of the fast CRC F is not to be trusted, and the system should switch
from the possible erroneous result of F to the sure-to-be correct result of S.

Once a Pfix is produced, the system converts the output molecules Y ′
j of the

slow, deterministic CRC S to the global output Yj , and kills enough of the global
output molecules to remove the ones produced by the fast, error-prone CRC:

Pfix + Y ′
j → Pfix + Yj (4.1)

Pfix + Cj → Pfix + Y j (4.2)

Yj + Y j → ∅. (4.3)

Finally, Pfix triggers a process consuming “essential components” of F in ex-
pected O(log n) time so that afterward, F cannot produce any output molecules.
While this step is not required for correctness, it is necessary for the time analy-
sis in order to ensure that F does not take too long to output (if F fails it could
produce its output even after S).

First, observe that the output will always eventually converge to the right
answer, no matter what happens: If Pfix is eventually produced, then the output
will eventually be exactly that given by S which is guaranteed to converge cor-
rectly. If Pfix is never produced, then the fast, error-prone CRC must produce
the correct amount of Yj — otherwise, D will detect a problem.

For the expected time analysis, let us first analyze the trigger. The proba-
bility that the trigger leader will fire on any particular reaction number is at
most n−d. In time n2, the expected number of leader reactions is O(n2). Thus,
the expected number of firings of the trigger in n2 time is n−d+2. This implies
that the probability that the trigger fires before n2 time is at most n−d+2. The
expected time for the trigger to fire is O(nd).

We now consider the contribution to the total expected time from 3 cases:

1. F is correct, and the trigger fires after time n2. There are two subcases:
(a) F finishes before the trigger fires. Conditional on this, the whole system
converges to the correct answer, never to change it again, in expected time
O(log5 n). This subcase contributes at most O(log5 n) to the total expected
time. (b) F finishes after the trigger fires. In this case, we may produce a Pfix

molecule and have to rely on the slow CRC S. The probability of this case
happening is at most n−c. Conditional on this case, the expected time for
the trigger to fire is still O(nd). The whole system converges to the correct
answer in expected time O(nd), because everything else is asymptotically
negligible. Thus the contribution of this subcase to the total expectation is
at most O(n−c · nd) = O(n−c+d).

2. F is correct, but the trigger fires before n2 time. In this case, we may produce
a Pfix molecule and have to rely on the slow CRC S for the output. The
probability of this case occurring is at most n−d+2. Conditional on this case
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occurring, the expected time for the whole system to converge to the correct
answer can be bounded by O(n2). Thus the contribution of this subcase to
the total expectation is at most O(n−d+2 · n2) = O(n−d+4).

3. F fails. In this case we’ll have to rely on the slow CRC S for the output
again. Since this occurs with probability at most n−c, and the conditional
expected time for the whole system to converge to the correct answer can
be bounded by O(nd) again, the contribution of this subcase to the total
expectation is at most O(n−c · nd) = O(n−c+d).

So the total expected time is bounded by O(log5 n) + O(n−c+d) + O(n−d+4) +
O(n−c+d) = O(log5 n) for d > 4, c > d. ��

Lemma 4.2. Let f : Nk → Nl be semilinear. Then there is a CRC C that stably
computes f , and the expected time for C to reach a count-stable configuration on
input x is O(‖x‖ log ‖x‖) (where the O() constant depends on f).

Proof. By Lemma 3.2, there is a CRC Cs that stably computes f . However, that
CRC is too slow to use in this proof. We provide an alternative proof that every
semilinear function can be computed by a CRC in expected time O(‖x‖ log ‖x‖).
Rather than relying on a random search of the output space as in Lemma 3.2,
it computes the function more directly.

By Lemma 4.3, there is a finite set F = {f1 : Nk ��� Nl, . . . , fm : Nk ��� Nl}
of affine partial functions, where each dom fi is a linear set, such that, for each
x ∈ Nk, if fi(x) is defined, then f(x) = fi(x). We compute f on input x as
follows. Since each dom fi is a linear (and therefore semilinear) set, we compute
each predicate φi = “x ∈ dom fi and (∀1 ≤ i′ < i) x �∈ dom fi′?” by separate
parallel CRD’s. (The latter condition ensures that for each x, precisely one of
the predicates is true.)

By Lemma 4.5, we can compute each fi by parallel CRC’s. Assume that for
each 1 ≤ i ≤ m and each 1 ≤ j ≤ l, the jth output of the ith function is
represented by species Ŷ i

j . Each Ŷ i
j is an “inactive” version of “active” output

species Y i
j .

For each 1 ≤ i ≤ m, we assume that the CRD computing the predicate φi

represents its output by voting species Li
1 to represent “yes” and Li

0 to represent
“no”. Then add the following reactions for each 1 ≤ i ≤ m and each 1 ≤ j ≤ l:

Li
1 + Ŷ i

j → Li
1 + Y i

j + Yj

Li
0 + Y i

j →M i
j

M i
j + Yj → Li

0 + Ŷ i
j .

That is, a “yes” answer for function i activates the ith output and a “no” answer
deactivates the ith output. Eventually each CRD stabilizes so that precisely one
i has Li

1 present, and for all i′ �= i, Li′
0 is present. At this point, all outputs for

the correct function fi are activated and all other outputs are deactivated. Since
eventually the count of Y i

j stabilizes to 0 for all but one value of i, this ensures
that #Yj stabilizes to the correct value of output yj .
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It remains to analyze the expected time to stabilization. Let n = ‖x‖. By
Lemma 4.5, the expected time for each affine function computation to complete
is O(n log n). Since the Ŷ j

i are produced monotonically, the most Y j
i molecules

that are ever produced is #∞Ŷ j
i . Since we have m computations in parallel, the

expected time for all of them to complete is O((n log n)m) = O(n logn) (since
m depends on f but not n). We must also wait for each predicate computation
to complete. By Theorem 5 of [2], each of these predicates takes expected time
O(n) to complete, so all of them complete in expected time O(nm) = O(n).

At this point, the Li
1 leaders must convert inactive output species to active,

and Li′
0 (for i′ �= i) must convert active output species to inactive. A simi-

lar analysis to the proof of Lemma 4.5 shows that each of these requires at
most O(n logn) expected time, therefore they all complete in expected time
O((n log n)m) = O(n logn). ��

Lemma 4.3. Let f : Nk → Nl be a semilinear function. Then there is a finite
set {f1 : Nk ��� Nl, . . . , fm : Nk ��� Nl} of affine partial functions, where each
dom fi is a linear set, such that, for each x ∈ Nk, if fi(x) is defined, then
f(x) = fi(x).

Proof. Let F =
{
(x,y) ∈ Nk × Nl

∣∣ f(x) = y
}
be the graph of f . Since F is

semilinear, it is a finite union of linear sets {L1, . . . , Ln}. It suffices to show that
each of these linear sets Lm is the graph of an affine partial function. Let L′

m be
the (k+1)-dimensional projection ofLm onto the coordinates defined by x and yi,
which is linear becauseLm is. SinceL′

m is linear, there exist vectorsb,u1, . . . ,up ∈
Nk+1 such that L′

m =
{
b+ n1u

1 + . . .+ npu
p
∣∣ n1, . . . , np ∈ N

}
.

It suffices to show that L′
m is a subset of a k-dimensional hyperplane. This is

true if at most k of the u1, . . . ,up are linearly independent. Suppose not; then
there are k+1 linearly independent vectors among the list. Assume without loss
of generality that they are u1, . . . ,uk+1. For each 1 ≤ i ≤ k + 1, let vi be ui

projected onto the first k coordinates. Since there are k+1 vectors and they are
k-dimensional, v1, . . . ,vk+1 must be linearly dependent. By Lemma 4.4, there
exist two lists of natural numbers N = (n1, . . . , nk+1) and M = (m1, . . . ,mk+1)

such that N �= M and
∑k+1

i=1 niv
i =

∑k+1
i=1 miv

i. Then the points

z1 = b+

k+1∑
i=1

niu
i and z2 = b+

k+1∑
i=1

miu
i

are in L′
m. They must have different y-coordinates, or else we would have z1 = z2

(since their first k coordinates agree), which would contradict the linear inde-
pendence of u1, . . . ,uk+1. Therefore L′

m does not define the graph of a function
since these two identical inputs map to two different outputs, a contradiction.

��

Lemma 4.4. Let v1, . . . ,vt ∈ Nk be linearly dependent vectors. Then there are
two lists of natural numbers N = (n1, . . . , nt) ∈ Nt and M = (m1, . . . ,mt) ∈ Nt

such that N �= M and
∑t

i=1 niv
i =

∑t
i=1 miv

i.
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Proof. By the definition of linear dependence, there exist two lists of real num-
bers N ′ = (n′

1, . . . , n
′
t) ∈ Rt and M ′ = (m′

1, . . . ,m
′
t) ∈ Rt such that N ′ �= M ′

and
∑t

i=1 n
′
iv

i =
∑t

i=1 m
′
iv

i ∈ Nk (since all points, integer or not, in the basis of
v1, . . . ,vt ∈ Nk can be so expressed). Perhaps some of the coefficients are nega-
tive; however, by increasing both n′

i and m′
i by min{n′

i,m
′
i} (which changes each

sum by the same amount, keeping them equal), we may assume that all coeffi-
cients are nonnegative. Furthermore, since the sum

∑t
i=1 niv

i is integer-valued,
N ′,M ′ ∈ Qt.

Let L be the least common multiple of the denominators of each n′
i and m′

i

when expressed in lowest terms. By multiplying each coefficient by L, we obtain
nonnegative integers N = (n1, . . . , nt) ∈ Nt and M = (m1, . . . ,mt) ∈ Nt such
that N �= M and

∑t
i=1 niv

i =
∑t

i=1 miv
i. ��

Lemma 4.5. Let f : Nk ��� Nl be a partial affine function. Then there is a CRC
that computes f on input x in expected time O(‖x‖ log ‖x‖), such that the output
molecules monotonically increase with time (i.e. none are ever consumed).

Proof. If y = f(x), then there exist kl + l + k integers a11, . . . , a
l
k ∈ Q ∩ [0,∞)

and b1, . . . , bl, c1, . . . , ck ∈ Z such that each yj = bj +
∑k

i=1 a
j
i (xi + ci). Define

the CRC as follows. It has input species Σ = {X1, . . . , Xk} and output species
Γ = {Y1, . . . , Yl}.

Let bj1, . . . , b
j
k ∈ {−|bj|, . . . , |bj|} be integers such that

∑k
i=1 b

j
i = bj. Let

c1i , . . . , c
l
i ∈ {−|ci|, . . . , |ci|} be integers such that

∑l
j=1 c

j
i = ci. For each 1 ≤

i ≤ k and 1 ≤ j ≤ l, start with a leader molecule L̂j

i,cji
. For each 1 ≤ i ≤ k and

1 ≤ j ≤ l, let
nj
i

dj
i

be aji expressed as a fraction such that dji > ci and, if bj < 0,

nj
i ≥ −bj . For each 1 ≤ i ≤ k, add the reaction

Xi → X1
i +X2

i + . . .+X l
i

For each 1 ≤ i ≤ k, 1 ≤ j ≤ l and m such that min{0, cji} ≤ m ≤ dji , add the
reactions

L̂j
i,m +Xj

i →
{
L̂j
i,m+1, if m < dji ;

Lj
i,0 + (nj

i + bji )Yj , otherwise.

Lj
i,m +Xj

i →
{
Lj
i,m+1, if m < dji ;

Lj
i,0 + nj

iYj , otherwise.

Each initial leader L̂ starts counting (m is the “current count”) at an initial
value either above or below 0 (depending on the sign of ci) to account for the
initial offset ci of Xi. Also, each initial leader releases a different amount of Yj

(again depending on the sign of bj) to account for the initial offset bj of Yj .

After counting to dji , each initial leader L̂ converts to a normal leader L, which

releases nj
i Yj molecules for every dji Xi molecules encountered. Therefore (after

accounting for initial offsets) each Xi molecule converts into a number of Yj



42 H.-L. Chen, D. Doty, and D. Soloveichik

molecules based on the weighted sum of the aji coefficients. Therefore when all

Xj
i molecules are consumed, the number of Yj molecules is the proper value

yj = bj +
∑k

i=1 a
j
i (xi + ci).

It remains to analyze the expected completion time. Let n = ‖x‖. Since the
total number of molecules in solution at any time is O(n), the volume required is
also O(n). We measure the time to consume all Xi molecules for all i. We start
with n such molecules, so the time for all of them to convert is the maximum
of n exponential random variables, each with constant expected value, which is
O(log n).

Then all Lj
i molecules must encounter every Xj

i molecule. By a coupon collec-
tor argument, this requires at mostO(n log n) time. Therefore the CRC stabilizes
in expected time O(n logn). ��
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6. Condon, A., Hu, A., Maňuch, J., Thachuk, C.: Less Haste, Less Waste: On Recy-
cling and Its Limits in Strand Displacement Systems. Journal of the Royal Society
Interface (to appear, 2012); In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS,
vol. 6937, pp. 84–99. Springer, Heidelberg (2011)

7. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal
of Physical Chemistry 81(25), 2340–2361 (1977)

8. Jiang, H., Riedel, M., Parhi, K.: Digital signal processing with molecular reactions.
IEEE Design and Test of Computers (to appear, 2012)

9. Magnasco, M.O.: Chemical kinetics is Turing universal. Physical Review Let-
ters 78(6), 1190–1193 (1997)
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Abstract. Chemical reaction networks (CRNs) and DNA strand dis-
placement systems (DSDs) are widely-studied and useful models of
molecular programming. However, in order for some DSDs in the lit-
erature to behave in an expected manner, the initial number of copies of
some reagents is required to be fixed. In this paper we show that, when
multiple copies of all initial molecules are present, general types of CRNs
and DSDs fail to work correctly if the length of the shortest sequence of
reactions needed to produce any given molecule exceeds a threshold that
grows polynomially with attributes of the system.

1 Introduction

DNA strand displacement systems (DSDs) [10,13] and chemical reaction net-
works (CRNs) [8,7] are important molecular programming models. DSDs provide
sophisticated molecular realizations of logic circuits and even artificial neurons
[4,5], while CRNs elegantly express chemical programs that can then be trans-
lated into DSDs [8,9]. CRNs and thus DSDs can in principle simulate Turing-
general models of computation [6,3], and DSDs can be energy efficient [11,6,9,14].
It is also possible in principle to recycle molecules in DSDs by running reversible
reactions or displacements in both forwards and reverse directions, so that t
steps of the system use just O(log t) molecules [1].

However, correct behavior of some published DSDs [3,1] requires that an exact
numbers of some reactants are present initially, and it is currently impractical
to obtain the exact numbers in a wet lab. We previously considered the condi-
tions for a class of CRNs to work correctly when multiple copies of all initial
molecules are present and showed that the length of the shortest trace (sequence
of reactions) needed to “reach”, i.e., produce, any given molecule is bounded by
a polynomial function of some attributes of a CRN in this class [1]. This reach-
ability upper bound reveals important limits of molecular programs that fall in
the class covered by our result: we cannot write such programs that run correctly
in a closed chemical system and for which the number of steps (reactions) of the
program is sufficiently large relative to the volume of initial reagents.1

1 The volume is the physical volume of all the molecules. It can be approximated by
the number of all the types of reagents in the initial configurations.

D. Stefanovic and A. Turberfield (Eds.): DNA 18, LNCS 7433, pp. 43–57, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In this work we provide two new reachability upper bounds that significantly
extend our earlier work. The first new theorem applies to tagged CRNs which,
as we explain below, are important because they can be translated into DSDs of
comparable volume that can simulate the CRNs traces. The second new theorem
applies to a broader class of DSDs than does the translated version of our first
result. In the rest of this introduction we motivate our results in more detail.
Sections 2 and 3 provide technical details of both theorems; additional details
are in the full version of the paper. We list some open questions in Section 4.

New result for chemical reaction networks (CRNs). Figure 1 illustrates a CRN
of the type to which our new result applies (a formal definition of CRN is in
Section 2). Each reaction r is reversible, and has unique tag species τ+r and τ−r
on its left and right sides respectively. We explain later why we focus on tagged
CRNs, and also explain why we ignore reaction rate constants in our example and
results. When a single copy of each species in the set {A,B,E, τ+1 , τ+2 , τ+3 , τ+4 } is
initially present, it takes six reaction steps to produce the product H , and to do
so, reaction 1 must run in the forwards direction, then later run backwards, then
forwards again. However, if another copy of A and B are present initially then H
can be generated with just four reactions. The behavior of the system with two
copies does not mirror its behavior with one copy; in this sense it is incorrect.
While for this simple example it might not seem important how many steps are
needed to produce a particular product, it is critically important in contexts
where the product is the result of a computation and an erroneous result could
be produced as a result of cross-talk, or short-circuiting of multiple copies of the
intended computation.

(1) τ+
1 + A+B � C +D + τ−

1

(2) τ+
2 + C +D + E � C +D + F + τ−

2

(3) τ+
3 + A+B + F � A+B +G+ τ−

3

(4) τ+
4 + C +D +G � C +D +H + τ−

4

Fig. 1. Example of a simple tagged chemical reaction network (CRN)

In this paper, our notion of correctness is that of copy tolerance [1]. We say
that a CRN C is x-copy-tolerant if the length of the shortest trace that produces
any species s in C and in C(x) is the same, where C(x) is the CRN with the
same reactions as C but with x initial copies of each initial molecule of C. A
system is copy-tolerant if it is x-copy-tolerant for all x. The CRN of Figure 1
is not 2-copy-tolerant. Copy-tolerance is a weak notion of correctness; if a CRN
C is not 2-copy tolerant then, for example, C also fails to satisfy the stronger
requirement that each possible trace of C in the 2-copy setting is an interleaving
of two possible traces in the single copy setting. We chose to work with a weak
notion of correctness because it makes our results stronger, i.e., they apply also
to notions of correctness that are stronger than copy-tolerance.
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Our first reachability upper bound, Theorem 2, shows that in order for a
tagged CRN C to be copy-tolerant, the number of steps needed for C to produce
any given species must be suitably bounded. The bound is a polynomial function
of the volume and other attributes of C.

We prove our result for tagged CRNs—CRNs with a unique species on the left
and right side of each reaction (see Figure 1)— for two reasons. First, the tags
make it possible for us to prove strong results. The second reason stems from the
fact that our ultimate goal is to prove limits on the power of DSDs, which can be
realized with DNA strands, rather than for CRNs which are a useful theoretical
abstraction. When translating an untagged CRN to a DSD, two sets of auxiliary
DNA strand complexes, so-called transformer, are introduced per reaction of
the CRN, one set for each side of the reaction. Each set of transformers includes
unique strands that do not otherwise appear in the DSD. The CRN tag species
represent the sets of transformer DNA strands. Put another way, to translate
an untagged CRN to a DSD using current methods, it is necessary to first add
tags to the CRN and then map the tags to the sets of transformer species. Thus,
by proving a reachability upper bound for a tagged CRN, we are obtaining a
result for the DSD realization of the corresponding untagged CRN. The result
would apply also to other realizations of CRNs, perhaps even using molecules
other than DNA, in which transformer molecules are needed in the realization.
Our earlier result [1] did not apply to general tagged CRNs.

Unlike the example of Figure 1, chemical reactions have associated kinetic rate
constants that, along with species counts, determine reaction propensities [8,7].
In particular, a CRN behaves stochastically if multiple reactions are applicable
to the molecules available at one or more points in the sequence of reactions.
However, in examples such as the stack machine of Qian et al. [3] and the Gray
code counter of Condon et al. [1], correctness of the CRN does not depend on
the relative propensities of applicable reactions (although efficiency of the CRN
does). Since our results are expressed in terms of number of reactions rather
than reaction propensities, they apply to stochastic CRNs. We can interpret our
reachability result as a hitting time in the stochastic context where a hitting
time is the minimum number of reactions required to reach a goal state from a
initial state.

New result for strand displacement systems (DSDs). The second main contribu-
tion of this paper is a limit on the types of DSDs that are correct in multi-copy
settings. In strand displacement (Figure 2), an initially unbound “signal” strand
I binds to a “template” T , causing another signal strand O that was initially
bound to T to become unbound. DSDs are collections of strands that can change
configurations via successive strand displacements in a pre-programmed fashion
[13,14,2]; we provide a formal definition later.

Our first result on tagged CRNs implies a reachability upper bound for DSD
realizations of CRNs, but says nothing about DSDs more generally. In Theorem 3
we elucidate this simple upper bound which is obtained by applying the CRN
result to limited types of DSDs, those whose signal strands consist of exactly
two domains: a toehold and a long-domain. However, since the signal types are
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Fig. 2. Strand displacement. (a) An unbound DNA strand I , with a short toehold (dark
line) and long-domain (lighter line), plus a duplex consisting of a template strand T
and a third strand O that is bound to T . (b) I binds to T via its toehold. (c) Through
a process of branch migration, the long-domain of I becomes bound to T , displacing
bonds of O. (d) O is bound to T by only a toehold. (e) The toehold bonds break,
making O unbound.

limited, this result does not apply to general DSDs. This is because, while tagged
CRNs can be translated to DSDs having parameters such as the volume and the
number of types of reactants polynomial in the volume of the CRN [9], it is not
clear whether the converse is true. To see why, consider signal strands that have
three domains: a toehold and two long-domains such that they each start with
the same long-domain d∗ and toehold t∗, and end with a distinct long-domain.
Assume there are δ different types of these signal strands where δ is the number
of long-domains on the template we will consider. Note for the DSD template
having δ long-domains, over the course of several displacements, there are fac-
torially many different configurations—ways in which signal strands are bound
to the template. Figure 3 provides a simple example where any permutation of
the signal species could bind to the template. Now, we want to create a tagged
CRN that is equivalent to this DSD. Such a tagged CRN in which each template
configuration is a distinct species would thus have the number of distinct species
and reactions factorial in the volume (number of toehold and long-domains) of
the DSD. Since each reaction in the tagged CRN requires a unique tag which
needs to be present in the initial configuration, the overall volume of the tagged
CRN would be also factorial in the volume of the DSD. It is not clear how else
to translate such a DSD to a (tagged) CRN of comparable volume.
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Fig. 3. A template with 6 long-domains and 6! = 720 possible configurations. Dark
lines are toeholds and the lighter ones are long-domains. The template contains δ = 6
toehold-long-domain-toehold blocks. In each block, any one of the signal species may
be bound. Thus the number of possible configurations of this template is δ! = 6!.

Can “long” computations be correctly performed by DSDs, even in the pres-
ence of many copies? Our second reachability upper bounds for DSDs, Theo-
rems 4 and 5, answer this in the negative, showing that, if sufficiently many
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copies are present, then any unbound DNA strand that can be produced (i.e.,
reached) by a sequence of strand displacements can always be reached within
a number of displacements that grows at most polynomially in the volume of
the single-copy DSD. Thus, for example, we cannot write DSD programs that
run correctly in the multi-copy setting and for which the minimum number of
displacements needed to produce some given signal strand is exponential in the
initial volume.

As further motivation, we describe another application of our DSD reacha-
bility bound. The CRN of Figure 4 describes a traditional 3-bit binary counter.
Initially, three species, namely 03, 02 and 01 represent the bits 0 at each index of
the counter. Exactly one reaction can advance the counter from each value (all
in the forward direction), until the counter reaches 131211. For the n-bit gener-
alization of this counter, the number of species is just 2n (two species per bit)
while the number of steps is 2n. Thus the volume is logarithmic in the number
of steps. Another very nice feature of this CRN is that it works correctly even if
multiple copies of the initial species are present, not only in the sense of being
copy-tolerant but also in the sense that the trace of the multi-copy system is an
interleaving of traces of the single-copy system, even in the presence of cross-talk
(details omitted).

(1) 01 � 11

(2) 02 + 11 � 12 + 01
(3) 03 + 12 + 11 � 13 + 02 + 01

Fig. 4. Binary counter CRN

However, if tags are added to the counter in order that it can be translated
to a DSD using tags as discussed previously, the volume of species for the DSD
realization of the counter becomes exponential in n. This is because reaction
(1) is executed in the forward direction 2n−1 times and is never executed in the
reverse direction; thus 2n−1 copies of the tag on the left side of reaction (1) must
be present initially. Is there an alternative (tag-less) DSD realization of the n-bit
CRN binary counter whose volume grows polynomially in n? Our DSD result
implies that there is no such realization. If there were, then our reachability
upper bound implies that in the multi-copy setting the bit 1n could be produced
in a polynomial number of steps. But since we know that it takes 2n−1 steps to
produce 1n even in the multi-copy setting, we have a contradiction.

2 Reachability Upper Bound for CRNs

In this section we first provide formal definitions of tagged CRNs. We then
provide our main technical result, and conclude with a restatement of this result
to obtain our reachability upper bound theorem for copy-tolerant CRNs.
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2.1 Definition of Tagged CRNs

Notation. If S is a multiset, we will denote the set of distinct elements in S
as [[S]]. If S is a set and k is a positive integer, then k · S denotes the multiset
containing k copies of each element in S. Similarly, if S is a multiset, then k · S
denotes the union of k copies of S. The set operations on multisets are defined
in a usual way. In addition, we define the intersection S ∩ T of a multiset S and
a set T as S ∩ (|S| · T ), i.e., S ∩ T contains only elements in [[S]] ∩ T , and for
each x ∈ [[S]] ∩ T , the number of copies of x in S ∩ T is the same as the number
of copies of x in S.

Definition 1 (Tagged CRN). A tagged chemical reaction network is a tuple
C = 〈S, T,R,S0, T0〉 with variables defined as follows:

– S is a set of signal species and T is the set of tag species, and S ∩ T = ∅.
– R is a set of reversible or irreversible reactions, where each r ∈ R is an or-

dered pair (Ir ,Pr) of multisets of signal and tag molecules such that Ir∩T =
{τ+r } and Pr∩T = {τ−r }. Intuitively, a reaction r = (Ir,Pr) either consumes
the molecules in Ir and produces the molecules Pr, or, if the reaction is re-
versible, it can also consume Pr and produce Ir. In the first case, we say
that the reaction was applied in the forward direction and denote it as +r, in
the second case in the backward direction and denote it as −r. The symbols
+r and −r will be called oriented reactions.

– S0 is a multiset of signal molecules and T0 is a multiset of tag molecules
present initially at time-step zero. The volume of CRN C is the number of
molecules in S0 ∪ T0.

Tags limit the number of times a reaction can be applied in the same direction
without being applied in the reverse direction. For example, if r is a reversible
reaction and T0 contains only one copy of τ+r and no copies of τ−r , then in any
valid trace, the oriented occurrences of r has to alternate, starting with +r. If r
is an irreversible reaction and T0 contains x copies of τ+r , then in any valid trace,
there are at most x occurrences of +r (and no occurrences of −r). Limiting the
number of tags forces a system to recycle molecules in long traces.

Definition 2. Consider a tagged CRN system C = 〈S, T,R,S0, T0〉. Define the
bandwidth of signal species s as the maximum number of occurrences of s on the
left side Ir (respectively, left Ir or right side Pr) of any irreversible (respectively,
reversible) reaction r ∈ R. Define the maximum bandwidth bC (respectively,
total bandwidth BC) of C as the maximum (respectively, the sum) of bandwidth
over all signal species in S. Similarly, the proper bandwidth of signal species
s, the maximum proper bandwidth b̃C and the total proper bandwidth B̃C are
defined analogously but using Ir \ Ir ∩Pr instead of Ir and Pr \ Ir ∩Pr instead
of Pr. For any reversible reaction r ∈ R, let tr be the maximum of the number of
occurrences of τ+r or τ−r in T0; and for any irreversible reaction r ∈ R, let tr be
the number of occurrences of τ+r in T0. Let TC be the sum of tr’s over all reactions
r ∈ R. We define the x-copy of C, for x ∈ Z+, as the CRN 〈S, T,R, x ·S0, x ·T0〉.
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Let ρ = r1, r2, ..., rm be a sequence of oriented reactions where ri ∈ R for all i.
For reaction r if sign(r) = +, let Ar = Ir and Br = Pr where as if sign(r) = −,
let Ar = Pr and Br = Ir. The configuration of the system at each step i
is defined as (Si, Ti) where Si = (Si−1 \ (Ar ∩ S)) ∪ (Br ∩ S) and, similarly,
Ti = (Ti−1 \ (Ar ∩T ))∪ (Br ∩T ). A reaction sequence ρ is valid if Ar ∩S ⊆ Si−1

and Ar ∩ T ⊆ Ti−1 for all i, meaning that for each molecule in Ar there must
be one in Si−1 ∪ Ti−1 to remove. A trace is a valid reaction sequence.

2.2 The Main Upper Bound

Our main upper bound, Theorem 1, shows that in the multi-copy setting, any
product of a tagged CRN can be produced within a number of reactions that is
bounded by a function of the number of signal species, the bandwidth, and the
number of tags of the CRN.

Theorem 1. Let C = 〈S, T,R, S0, T0〉 be a tagged CRN and let send ∈ S. If
some trace of C produces send, then in a (|S| − |[[S0]]|)(bC + b̃C(TC − 1)) ≤
|S|bCTC-copy CRN of C, send can be produced in at most (|S| − |[[S0]]|)(bC +
b̃C(TC − 1))TC ≤ (|S| − 1)bCT

2
C steps.

Proof. Let ρ = r1, r2, . . . , rm be a valid sequence of oriented reactions in a single-
copy system producing send starting from the initial set S0. Consider any prefix
of this sequence, say ρi = r1, . . . , ri. Construct a new sequence ρ′i by canceling
all pairs +r,−r for any reaction r ∈ R. It does not matter how these pairs are
formed. Let S′ be the set of signal molecules appearing on the left hand side
of reactions in ρ′i. Now, let us see what happens if we apply this sequence on
the initial set S0 ∪ T0 ∪ k · S′, where k is sufficiently large so that the reaction
sequence is valid. We can make the following observations:

(1) The final number of copies of each signal species is the same as if we would
apply ρi on S0 ∪ T0 ∪ k · S′.

(2) For each reaction r ∈ R, ρ′i contains either only forward or only backward
occurrences of r (or no occurrences), and their number is limited by the
number tr of corresponding tags in T0. As a consequence, the length of ρ′i is
at most TC.

(3) Consider a signal molecule s ∈ S′. Since each reaction in ρ′i removes at most
bC copies of s and the length of ρ′i is at most TC, before each reaction in ρ′i,
there are at least k − b̃C(TC − 1) copies of s.

(4) Hence, it follows that if we set k = bC + b̃C(TC − 1), then before each
reaction in ρ′i, there are at least bC copies of any signal in S′, and hence,
the reaction sequence is valid. Note that this is true even if we randomly
permute reactions in ρ′i.

For each signal s appearing in the single-copy trace and not appearing in the
initial set S0, let rindex(s) be the first reaction in ρ which produces a copy (or
more) of s. Let s1, ..., sn be the sequence of all signals not in S0 ordered by their
indices, i.e., index(s1) ≤ index(s2) ≤ · · · ≤ index(sn). Furthermore, without loss
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of generality we can assume sn = send. Let Si = {s1, ..., si}. We can make one
additional observation:

(5) For each si, the left side of each reaction in ρ′index(si) contains only signals in

[[S0]]∪Si−1. By (4), if we start in a configuration which contains the multiset
of signals and tags S0 ∪ T0 ∪ (bC + b̃C(TC − 1)) · ([[S0]] ∪ Si−1), ρ

′
index(si)

is a
trace producing a copy of si.

Construction

(S1) Start with the initial set containing bC+ b̃C(TC− 1) copies of [[S0]] and the
empty sequence of reactions.

(S2) For each i = 1, .., n: add bC + b̃C(TC− 1) copies of S0 ∪T0 to the initial set
and append bC + b̃C(TC − 1) times sequence ρ′index(si) to the constructed
sequence of reactions.

Claim 1. After each step i in (S2), the constructed sequence is valid and the
final configuration contains bC + b̃C(TC − 1) copies of each signal in [[S0]] ∪ Si.

Proof. Proof by induction: Base case: For i = 0, after (S1), we have bC+b̃C(TC−
1) copies of each signal in [[S0]] and the empty sequence of reactions is valid.
Induction step: Inductive assumption: before step i, we have bC + b̃C(TC − 1)
copies of each signal in [[S0]]∪ Si−1 and the sequence constructed so far is valid.
By (5), if we add a copy of S0 and run the reaction sequence ρ′index(si) on the

current configuration, the trace is valid. By (1), this newly added part (a copy
of S0 and reactions in ρ′index(si)) will not decrease the number of any signal.

Finally, ρ′index(si) must contain the last reaction of ρindex(si), i.e., rindex(si) which

produces at least one copy of si. If we repeat this bC + b̃C(TC − 1) times, we
will still have at least bC + b̃C(TC − 1) copies of signals in [[S0]] ∪ Si−1 plus
bC + b̃C(TC − 1) copies of si. ��

The bound: The construction uses (n+1)(bC+ b̃C(TC−1)) copies of S0, n(bC+
b̃C(TC−1)) copies of T0 and repeats n(bC+b̃C(TC−1)) times the trace ρ′some index.
By (2), the length of each ρ′some index trace is at most TC, hence the total length

of the constructed sequence is at most n(bC + b̃C(TC − 1))TC. Furthermore, n
can be bounded by |S| − |[[S0]]|. ��

Finally, we restate Theorem 1 for copy-tolerant CRNs.

Theorem 2. If a tagged CRN C = 〈S, T,R, S0, T0〉 is |S|bCTC-copy-tolerant
and send can be produced in C, then the length of the shortest trace of C that
produces send is at most (|S| − 1)bCT

2
C.

A natural question is whether we could improve the bound in condition (3) of
the proof of Theorem 1. The following examples shows that it is not possible in
general.
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Example 1. Assume that ρ contains exactly an even number, T , of oriented
reactions +r1, . . . ,+rT designed as follows. First for every partition π of ρ into
two sets ρπ1 and ρπ2 of same size, we introduce a new signal sπ. Let Π be the
set of all such partitions. Next, we define reactions r1, . . . , rT in such a way that
each of these signals is either an input or a product of each reactions:

Iri = {sπ; ri ∈ Rπ
1 , π ∈ Π} ,

Pri = {sπ; ri ∈ Rπ
2 , π ∈ Π} .

Note that after all reactions in ρ are applied, the number of copies of any of the
signals sπ is not changed, since there is exactly T/2 reactions in ρ adding one
copy of sπ and T/2 reactions removing one copy of sπ.

Now, we show that for any permutation of the reactions in ρ, there is a signal
molecule with k − T/2 copies when the first T/2 reactions in this order are
applied, and hence, k in (3) has to be set to at least T/2. Consider the partition
π0 of ρ into the first and the second T/2 reactions of this order. Then the signal
sπ0 appears in the input set of the first T/2 reactions, and thus, the number of
copies of sπ0 is k − T/2 after applying the first T/2 reactions.

3 Reachability Upper Bound for DSDs

In this section we first define the type of DSD to which our results apply, along
with related notation needed for our results. We then provide our main upper
bound, and conclude with a restatement of this result to obtain our reachability
upper bound theorem for copy-tolerant DSDs.

3.1 Definition of DSDs

A basic DNA strand displacement system (DSD) is a pair Δ = (S, Cinit) of
strands and initial configuration (secondary structure) for those strands, plus
allowable positional displacements, defined as follows.

– S is a finite multiset of strands; S may contain many strands of a given
type. Strands are composed of subsequences of finite strings of symbols,
called domains. Domains are partitioned into two groups: toeholds and long-
domains. Corresponding to each domain x is a complementary domain x∗;
x is a toehold if and only if x∗ is. The strands are partitioned into two
groups: signals or templates. There is no bound on the number of toeholds
and long-domains of a template or a signal. A regional interval is a sequence
of domains beginning and ending with a toehold that alternates between
toehold and long-domains. Each template strand is a concatenation of one
or more regional intervals.

We say that the DSD Δ has simple signals, if each signal in S is composed
of exactly one toehold and one long-domain.
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– Cinit is an initial configuration, where a configuration is a secondary structure
formed by the strands of S where domains can bind to their complements.
Moreover, each signal strand is either unbound or is bound to a template
strand by a single toehold and a single long domain that is adjacent to that
toehold and each regional interval of its template must have exactly one open
toehold. There are no intra-template bonds or intra-signal bonds. Note that
this implies that configurations are pseudoknot-free and contain no hairpin
loops. The volume of DSD Δ is the number of nucleotides, taken over all
strands in the initial configuration Cinit.

Starting with the initial configuration, DSDs can progress through a sequence
of configurations via positional strand displacements (PDs). PDs can move the
open toehold of the regional interval to the right or to the left. A PD moving the
open toehold to the right is specified by a positive number k, a template strand
T and a signal strand called the invader, say of type I, see Figure 2(a), where we
can now assume that only positions k− 1, k, k+1 of template T are shown. The
template should have at least k+ 1 domains. The domain d at position k of the
template should be a long-domain and should be preceded at position k − 1 by
a toehold, say t. For the displacement to be applicable to a given configuration
C, it must be that in C an additional signal strand, which we refer to as the
releasee, is bound to d at position k and to a toehold at position k + 1 of the
template T , and the toehold at position k − 1 is unbound (open). The invader
is unbound in C and contains the substring t∗d∗.

A displacement models the following steps in Figure 2(b,c,d), when toeholds
and long-domains are actual DNA sequences. First, toehold t∗ of the invader
binds to the toehold t of the template at position k−1. Then a branch migration
ensues, whereby domain d∗ of the invader binds to d at position k of the template
and the releasee is no longer bound at this position. Finally, if it exists, the bond
between the releasee and the toehold at position k + 1 is broken. Thus in the
resulting configuration C′, substring t∗d∗ of the invader is bound to td on the
template at positions k − 1 and k and the releasee is unbound, see Figure 2(e).

Formally a positional displacement (PD) of DSD Δ is a tuple of the form
(I, T, k, z), where I is a signal strand type, T is a template strand, k is a positive
integer and z ∈ {L,R}. PD (I, T, k, z) is applicable to a configuration C if the
following conditions hold:

1. Strand T has at least k + 1 domains and the kth domain, say d, must be a
long-domain. Also a strand of type O, called the releasee, is bound to the
kth domain of T .

2. In the configuration C, a strand of type I is unbound.
3. If z = R the following conditions hold (conditions for z = L are symmetric):

(a) The (k − 1)st domain of T must exist and be a toehold, say t.
(b) A strand of type I must contain substring t∗d∗. (If z = L, it must contain

d∗t∗.)
(c) The releasee must also be bound to a toehold at position k+1 of T . No

other domains of the releasee are bound.
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(d) In the configuration C the toehold at position k − 1 of strand T is un-
bound. We call this toehold the input toehold of PD (I, T, k, z).

The PD must release exactly one strand of type O. Suppose that PD (I, T, k, z)
is applicable to C. Let C′ be obtained from C by removing the bonds between T
and the releasee and by adding bonds either between any substring t∗d∗ of an
unbound strand of type I of C and the domains td at positions k − 1 and k of
T if z = L, or between any substring d∗t∗ of I and the substring dt at positions
k and k + 1 of T if z = R. Then we say that (I, T, k, z) induces C′ from C. We
say that a signal is simple if the whole string for the signal consists of t∗d∗ or
d∗t∗. A DSD is simple if all the signals in the DSD are simple. This definition
excludes cooperativity where two invading strands release a single releasee or one
invading strand releases two releasees, because, by definition, every PD must be
initiated by one invader and release exactly one releasee.

A sequence of PDs ρ = p1, p2, . . . p|ρ| is valid with respect to Cinit if there
is a sequence C1, C2, . . . C|ρ|+1 of configurations of Δ with C1 = Cinit such that
for all i, 1 ≤ i ≤ |ρ|, pi is applicable to Ci and induces Ci+1 from Ci. When
Cinit is clear from the context, we simply say that ρ is valid. A valid sequence
produces a strand s ∈ S if in C|ρ|+1, the strand s is unbound. Let Invaders(ρ)
be the set of types of invaders of ρ. Let Unbound(ρ, Cinit) be the set of types of
unbound signals in C|ρ|+1 and Unbound(ρ) the set of types of unbound signals
in C1 ∪ · · · ∪ C|ρ|+1.

Let ρ=p1, p2, ..., p|ρ| be a sequence of PDs. The regional subsequence ρ(T [u, v])
is the subsequence of ρ whose PDs pi = (Ii, Ti, ki, zi) have positions ki inside
T [u, v].

3.2 The Upper Bounds

First, we use the fact that a DSD with simple strands can be simulated by a
tagged CRN with volume that is polynomial in the volume of DSD, and thus we
can use the bound in Theorem 1 to obtain the following result. If Δ = (S, Cinit)
is a DSD, we define Δ(x) to be the DSD (x · S, x · Cinit).

Theorem 3. Let Δ be a DSD with simple signals. Let B be the number of types
of initially bound signal strands and D be the total number of long-domains of
all templates. If Δ can produce send, then Δ(2D(2D+B)) can produce send via a
sequence of at most 4D2(2D +B) PDs.

As shown in Figure 3, this strategy will not work in the case of general signal
strands. Instead of simulating a DSD by a tagged CRN, in Theorem 4, we will
prove a bound for general (i.e., not with simple signals) DSDs directly, reusing
some ideas of the proof for tagged CRNs.

Let Δ be a DSD. Roughly, our goal is to show that if there is a valid sequence
of PDs that produces a given signal send from Cinit, then in a DSD with many
copies of Cinit there is a valid sequence of PDs that produces send in a number
of steps that is bounded by a polynomial in the volume of Δ. We will build
up to the statement and proof through a series of definitions and claims. Our
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polynomial bound will be a function of two attributes of Δ: the number B of
types of signal strands that are all bound (i.e., every copy is bound) in Cinit and
the total number D of long-domains of all templates in Cinit.

Let α = p1, p2, ..., p|α| be a valid sequence of PDs that produces send. For
each type s of signal strand that is Unbound(α)\Cinit, let index(s) be the index
of the first PD of α that releases s. Let s1, . . . , sB be the sequence of all such
signals ordered by their indexes, i.e., index(s1) < index(s2) < . . . < index(sB).
Let Si = {s1, . . . , si}. We assume without loss of generality that there are B
such types and also that sB = send. Let αi = p1, p2, . . . , pindex(si).

Let T [u, v] be a regional interval, d = (v − u)/2 the number of long-domains
in T [u, v], and let αi(T [u, v]) = p1, p2, ..., p|αi(T [u,v])|, where pj = (Ij , Tj , kj , zj)
for every j = 1, . . . , |αi(T [u, v])|. We construct a subsequence βi(T [u, v]) of the
PDs in αi(T [u, v]). The PDs in this subsequence will be of two types, marked
and connector.

Markers. Mark the first PD p1 of αi(T [u, v]), and then mark the last PD of
αi(T [u, v]) to bind to each long-domain in the regional interval T [u, v]. Let
pm1 , . . . , pmd+1

be the subsequence of marked PDs (1 = m1 < m2 < · · · <
md+1). It is easy to see that the sequence of PD positions, km2 , . . . , kmd

, con-
sists of two interleaved monotonic subsequences: U = u+1, u+ 3, . . . , − 2 and
V = v − 1, v − 3, . . . ,  + 2, where  is the long-domain position of the last PD
in αi(T [u, v]). Furthermore, the marked PDs with the long-domains in the first
subsequence have direction R and in the second subsequence direction L.

Connector sequences. Now, we must connect the marked PDs by introducing
connector sequences of PDs between each consecutive pair of marked PDs with
the goal being for each subsequent PD to use the toehold opened by the previous
PD.

Let z̄ indicate the opposite direction from z. For the connector sequence con-
necting pm1 and pm2 , select as a connector the first PD in αi(T [u, v]) with
direction z̄m2 that binds to each long-domain of T [u, v] between positions km1

and km2 inclusive. It is easy to see that either all selected connector PDs are
before pm2 in the sequence αi(T [u, v]), or pm1 = pm2 and the connector sequence
consists of the same PD. In the second case, pm1 is the only PD in αi(T [u, v])
with the long-domain position u+ 1 or v − 1.

Consider j = 2, . . . , s. Each PD of the connector sequence connecting pmj

to pmj+1 will be between pmj and pmj+1 in the sequence αi(T [u, v]). We will
consider two cases.

1. If zmj = zmj+1 , then no connector PDs are needed.
2. If zmj �= zmj+1 , then we select the connectors as follows. In the subsequence

between reactions pmj and pmj+1 , choose as a connector the first PD that
binds to each position between kmj and kmj+1 , excluding position kmj and
including position kmj+1 . Note that each PD in this connector sequence must
have direction zmj .

The construction is illustrated in Figure 5. The sequence βi(T [u, v]) contains
all the marked PDs and all the connector PDs, with distinct indices. Note that
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u+ 1 km1
kmd+1 v − 1

Fig. 5. An example of construction of the βi(T [u, v]) subsequence. At the top is the
form of the initial configuration of the regional interval and at the bottom the final
configuration. Each dot represents a PD of regional subsequence αi(T [u, v]), each dia-
mond a marked PD and each circle a connector PD. The sequence of PDs βi(T [u, v]) is
then a subsequence of αi(T [u, v]) which contains only the marked and connector PDs.

this is a subsequence of αi(T [u, v]) since for every j = 1, . . . , s, the connector
sequence connecting pmj to pmj+1 contains only PDs between between pmj and
pmj+1 .

We next provide a sequence of claims that we use to prove our main result.
All proofs can be found in the full version of the paper.

Claim 2. Each PD, pmj for j ≥ 2 in sequence βi(T [u, v]) can use the toehold
opened by the previous PD in the sequence. The PD pm1 can use the initially
open toehold.

Claim 3. The length of βi(T [u, v]) is at most (d+1)(d+2)/2, where d = (v−u)/2
is the number of long-domains in T [u, v].

Claim 4. The length of βi is at most (D+1)(D+2)/2 and thus |Invaders(βi)| ≤
(D + 1)(D + 2)/2. Also, Invaders(βi) contains only types of unbound strands of
Cinit or strand types in Si−1 = {s1, . . . , si−1}.
Claim 5. βi is valid with respect to

Cinit ∪ (D + 1)(D + 2)/2 · (Cinit ∪ Si−1).

Moreover,

(D+1)(D+2)/2 ·(Cinit ∪Si−1) ⊆ Unbound(βi, Cinit∪(D+1)(D+2)/2 ·(Cinit ∪Si−1)).



56 A. Condon, B. Kirkpatrick, and J. Maňuch

Claim 6. Let β
(D+1)(D+2)/2
i denote the sequence βi concatenated (D + 1)(D +

2)/2 times, modified just so that the PDs of each copy refer to templates of

different copies of (D + 1)(D + 2)/2 · Cinit. Then β
(D+1)(D+2)/2
i is valid with

respect to the configuration

(D + 1)(D + 2)/2 · Cinit ∪ (D + 1)(D + 2)/2 · (Cinit ∪ Si−1).

Moreover,

(D + 1)(D + 2)/2 · (Cinit ∪ Si) ⊆ Unbound(β
(D+1)(D+2)/2
i ,

(D + 1)(D + 2)/2 · Cinit ∪ (D + 1)(D + 2)/2 · (Cinit ∪ Si−1)).

The proof of our main technical result, Theorem 4, follows from the preceding
claim.

Theorem 4. Let Δ be a DSD with B types of initially bound signal strands
and let D be the total number of long-domains of all templates. If Δ can produce
send, then Δ((D+1)(D+2)(B+1)/2) can produce send via a sequence of at most (D+
1)2(D + 2)2B/4 PDs.

Finally, we restate Theorem 4 for copy-tolerant DSDs. We say that a DSD is
x-copy-tolerant if the length of the shortest PD sequence that produces any
signal strand s in Δ and in Δ(x) is the same. A DSD is copy-tolerant if it is
x-copy-tolerant for all x.

Theorem 5. Let Δ be a DSD with B types of initially bound signal strands and
let D be the total number of long-domains of all templates. If Δ can produce send
and Δ is (D+ 1)(D+2)(B + 1)/2-copy tolerant, then Δ can produce send via a
sequence of at most (D + 1)2(D + 2)2B/4 PDs.

4 Open Questions

There are many open questions about the potential for CRNs and DSDs to be
correct in the multi-copy setting. First, can our reachability upper bound results
be strengthened? There are two possible ways to strengthen our result for CRNs
(Theorem 2): either by reducing the length of the shortest computation needed
to produce send or to show that the system is not x-copy tolerant for some
x < |S|bCTC . Similarly, there are two ways to strengthen the reachability upper
bounds for DSDs.

Also, can our result on DSDs be extended to DSDs with more complex prim-
itives, such as cooperative strand displacement [12] or irreversible reactions?
What if long-domains can form intra-molecular bonds, e.g., forming hairpins, in
addition to inter-molecular bonds?

This paper considers only reachability bounds, i.e., bounds on the number
of reactions (steps) needed to reach (produce) a given product. However, real
chemical reaction networks behave stochastically, with rates that depend on
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relative quantities of species. It is plausible that the lack of robustness implied
by our theorems, i.e., errors that occur in the multi-copy setting in CRNs that
fail to satisfy the conditions of the theorem, would be very unlikely to occur
in some CRNs and thus would not be an issue in a real system. Analyses of
robustness of CRNs under stochastic assumptions, perhaps computing expected
hitting times, would help us better understand the degree to which robustness
issues are a problem.
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1. Condon, A., Hu, A.J., Maňuch, J., Thachuk, C.: Less haste, less waste: On recycling
and its limits in strand displacement systems. J R Soc. Interface (2012)

2. Cardelli, L.: Two-domain DNA strand displacement. In: Proc. of Developments in
Computational Models (DCM 2010). Electronic Proceedings in Theoretical Com-
puter Science, vol. 26, pp. 47–61 (2010)

3. Qian, L., Soloveichik, D., Winfree, E.: Efficient Turing-Universal Computation with
DNA Polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518,
pp. 123–140. Springer, Heidelberg (2011)

4. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand
displacement cascades. Science 332, 1196–1201 (2011)

5. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand
displacement cascades. Nature 475, 368–372 (2011)

6. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic
circuits. Science 314(5805), 1585–1588 (2006)

7. Soloveichik, D.: Robust stochastic chemical reaction networks and bounded tau-
leaping. J. Comput. Biol. 16(3), 501–522 (2009)

8. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochas-
tic chemical reaction networks. Nat. Comp. 7, 615–633 (2008)

9. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical
kinetics. Proc. Nat. Acad. Sci. USA 107(12), 5393–5398 (2010)

10. Yurke, B., Mills, A.P.: Using DNA to power nanostructures. Genet. Program.
Evolvable Mach. 4(2), 111–122 (2003)

11. Yurke, B., Turberfield, A.J., Mills Jr., A.P., Simmel, F.C., Neumann, J.L.:
A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)

12. Zhang, D.Y.: Cooperative hybridization of oligonucleotides. J. Am. Chem. Soc. 133,
1077–1086 (2011)

13. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven
reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007)

14. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand displacement
reactions. Nature Chemistry 3, 103–113 (2011)



Synthesizing Minimal Tile Sets

for Complex Patterns in the Framework
of Patterned DNA Self-Assembly

Eugen Czeizler1 and Alexandru Popa2

1 Department of Information and Computer Science,
School of Science

2 Department of Communications and Networking,
School of Electrical Engineering,

Aalto University P.O. Box 15400, FI-00076 Aalto, Finland
firstname.lastname@aalto.fi

Abstract. Ma and Lombardi (2009) introduce and study the Pattern
self-Assembly Tile set Synthesis (PATS) problem. In particular they show
that the optimization version of the PATS problem is NP-hard. However,
their NP-hardness proof turns out to be incorrect. Our main result is to
give a correct NP-hardness proof via a reduction from the 3SAT. By
definition, the PATS problem assumes that the assembly of a pattern
starts always from an “L”-shaped seed structure, fixing the borders of
the pattern. In this context, we study the assembly complexity of various
pattern families and we show how to construct families of patterns which
require a non-constant number of tiles to be assembled.

1 Introduction

Algorithmic self-assembly of nucleic acids (DNA and RNA) has advanced ex-
tensively in the past 30 years, from a seminal idea to the current designs and
implementations of complex nano-structures and devices [3, 5, 8, 13]. Currently,
DNA self-assembly is one of the most promising methodologies for computa-
tionally directed bottom-up manufacturing. A key technique here is the use of
a self-assembling system of DNA tiles to build a scaffold structure on which
functional units (ions, proteins, other molecules) are deposited [5, 12, 20]. Such
an approach became even more attractive with the introduction of Rothemund’s
[15] DNA origami technique, as the “origami-tiles” obtained in this way are
highly addressable. Recently, several laboratory techniques for synthesising the
requisite 2D DNA template lattices have been demonstrated by several groups
[7, 14, 21].

As a pre-requisite of the manufacture of anisotropic structures, such as elec-
tronic circuit designs, the DNA structures grounding these constructions need to
be addressable. When the template is construed as a tiling from a family of DNA
tiles, one can view the base tiles as being coloured according to their different
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functionalities, and the completed template implementing a desired colour pat-
tern. In [2] for example, the authors presented a scheme whereby the synthesis of
arbitrary logical circuits can be achieved by the self-assembly of a collection of
14 tiles, each being differentially functionalised by appropriate carbon nanotube
deposits.

The Pattern self-Assembly Tile set Synthesis (PATS) problem is first intro-
duced by Ma and Lombardi [9, 10], and placed inside the general Tile Assem-
bly Model (TAM) framework, introduced by Winfree [16]. Given a coloured
pattern of a rectangular shape, the PATS problem asks to construct a Tile
Assembly System (TAS) assembling the pattern which obeys the following con-
strains: the TAS uses only strength-one glues (while the total temperature of
the system is two), and the seed structure from which the assembly commence
consists of the complete lower and left-most border of the pattern1. From a
practical perspective, the optimization version of the PATS problem which asks
to minimize the number of tile types needed for assembling a given pattern,
is of particular interest. This problem was considered in several publications,
and a number of algorithms were proposed. Ma and Lombardi provide two
greedy heuristics [9, 10]; subsequently Göös and Orponen [4] present an ex-
haustive partition-search branch-and-bound algorithm. Recently, Lempiäinen et
al. [6] consider a randomized search algorithm which, coupled with a paral-
lel implementation, achieves almost optimal results for large patterns. Finally,
in [11], the authors consider a version of the PATS problem, the assembly of
coloured 1D patterns, applicable this time in the framework of staged self-
assembly.

Ma and Lombardi [10] consider the computational complexity of the opti-
mization PATS problem and claim that the problem is NP-hard. However the
proof of this result is incorrect: the authors show a reduction from the PATS
problem to an optimization problem on a tile and a bond graph and show that
the latter is NP-hard. Since they don’t show a reduction in the reverse direction,
their result does not prove the NP-hardness of PATS.

In the present work we provide a correct proof of the NP-hardness of the
(optimization version of) PATS problem via a reduction from the 3SAT prob-
lem. Another problem that we consider is the design of complex patterns that
need a large number of tile types for their assembly. The problem appears as a
natural consequence of the testing effort for several PATS approximation algo-
rithms [6]. In this framework, in order to test the efficiency of the algorithm, one
needs a family of patterns which require a non-constant number of tiles to be
assembled. In here we provide such families of patterns of unbounded assembly
complexity.

1 In the literature, the seed assembly of a TAS is often taken to be a single seed tile
whereas in this context we consider an L-shaped seed assembly. These boundaries
can always be self-assembled using m + n + 1 different tiles with strength-2 glues,
but for practical purposes we allow for the possibility of using, for example, DNA
origami techniques to construct these boundary conditions, see e.g. [18, 19].
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2 The Tile Assembly Model and the PATS Problem

2.1 The Tile Assembly Model

Let D = {N,E, S,W} be the set of directions. To each of them we associate
a corresponding function N,E, S,W : Z2 → Z2, so that N(x, y) = (x, y + 1),
E(x, y) = (x + 1, y), S = N−1 and W = E−1. If Σ is a finite set of glue types,
let s : Σ × Σ → N be a glue strength function, i.e., s(σ1, σ2) = s(σ2, σ1) for all
σ1, σ2 ∈ Σ. In this paper, we restrict to strength-one self-sticking glues, that is,
s(σ, σ) = 1 for all σ ∈ Σ, and zero otherwise. A tile type t ∈ Σ4 is a quadruple
(σN (t), σE(t), σS(t), σW (t)) of glue types associated with the four sides of a unit
square (we assume the tiles cannot be rotated or reflected). An assembly A is a
partial mapping from Z2 to Σ4. A tile assembly system (TAS) T = (T,S, s, τ)
consists of a finite set T of tile types, an assembly S called the seed assembly, a
glue strength function s and a temperature τ ∈ Z+ (we restrict here to τ = 2).
By definition, we assume that the seed assembly S is stable and can not be
disassembled2.

For a TAS T = (T,S, s, τ) and an assembly A, a new tile can be adjoined to
A if it shares a common boundary with tiles that bind it into place with total
strength at least τ . For two assemblies A and A′, A′ = A ∪ {((x, y), t)}, we
write A →T A′ to denote such a tile addition event. By denoting as →∗

T the
reflexive transitive closure of →T we say that a TAS T produces an assembly A
if S →∗

T A. That is, A is an extension of the seed assembly S. We denote by
ProdT the set of all assemblies produced by T . An assembly A that cannot be
further extended is called a terminal assembly. We denote by TermT the set of
terminal assemblies of T .

We say that a TAS T is deterministic if for any assembly A ∈ ProdT and for
every (x, y) ∈ Z2 there exists at most one t ∈ T such that A can be extended
with t at position (x, y). In case of finite assemblies, an equivalent definition of
determinism is that all assembly sequences S →T A1 →T A2 →T · · · terminate
and Term T = {P} for some assembly P . In this case we say that T uniquely
produces P .

2.2 The PATS Problem

Let [n] be the ordered set {1, 2, ...n}. For somem,n ≥ 1, a mapping c : [m]×[n]→
[k] defines a k-colouring or a k-coloured pattern (or simply pattern). The PATS
problem (first considered in [9]) asks to construct a TAS that produces the
pattern. However, when doing so, we impose a strict condition on the starting
point of this process and on the glue strength of the tiles. Namely, we impose
that the seed assembly consists of all boundary tiles placed on the West and
South borders of the m by n rectangle and that all the tiles used for extending
the seed assembly have strength-one glues.

2 On some experimental implementations of the TAM, the seed assembly is imple-
mented using e.g., DNA origami [18, 19].
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Definition 1 (Pattern self-Assembly Tile set Synthesis (PATS) [9])

Given: A k-colouring c : [m]× [n]→ [k].
Find: A tile assembly system T = (T,S, s, 2) such that

P1. The tiles in T have bonding strength 1.
P2. The domain of S is [0,m] × {0} ∪ {0} × [0, n] and all the

terminal assemblies have the domain [0,m]× [0, n].
P3. There exists a colouring d : T → [k] such that for each ter-

minal assembly A ∈ Term T we have d(A(x, y)) = c(x, y)
for all (x, y) ∈ [m]× [n].

In [4] it was proved that any minimal solution to the PATS problem has to be
deterministic. Thus, in the following we restrict ourselves to the case of determin-
istic TAS. In this case, the self-assembly process proceeds in a uniform manner
directed from South-West to North-East. Hence we can make the following obser-
vation regarding deterministic TAS in the context of the PATS problem:

Proposition 1. [4] Solutions T = (T,S, s, 2) of the PATS problem are deter-
ministic precisely when for each pair of glue types (σ1, σ2) ∈ Σ2 there is at most
one tile type t ∈ T so that σS(t) = σ1 and σW (t) = σ2.

Throughout the paper we also use the following notations. We define an l-colour
sub-pattern p (or sub-pattern) as a partial function p : [w] × [h] → [l]. We say
that the sub-pattern p is complete3 if it is defined on all positions inside [w]× [h].
For two complete sub-patterns p1 and p2, we denote by p1 · p2 the pattern formed
by horizontally adjoining the two patterns. Also, for a collection of complete
sub-patterns pi, 1 ≤ i ≤ n we denote by

∏
1≤i≤n pi the pattern p1 · p2 · . . . · pn.

Given a sub-pattern p : [w] × [h]→ [l], we say that a pattern c : [m]× [n]→ [k]
contains (or includes) p if m ≥ w, n ≥ h, k ≥ l, and there exists (x, y) ∈ N2 such
that p(q, r) = c(q+ x, r+ y) for all positions (q, r) ∈ [w]× [h] where p is defined.

Given a TAS T = (T,S, s, 2) and a k-colouring tile function d : T → [k], we
say that the pair (T , d) is a k-coloured TAS (or simply TAS if no confusion can
arise). Then, given a pattern c : [m] × [n] → [k], we say that the TAS (T , d)
assembles the pattern c (starting from a full-border seed) if the domain of S is
[0,m]×{0}∪{0}× [0, n], the domain of T ’s terminal assembly A is [0,m]× [0, n],
and for all (x, y) ∈ [m]× [n], d(A(x, y)) = c(x, y).

3 The Algorithmic Complexity of the PATS Minimization
Problem

In this section we prove that the PATS minimization problem is NP-hard. In
particular, we consider the decision version of the PATS problem, which we term

3 Clearly, the notions of pattern and complete sub-pattern overlap each other. In
general, we are going to use the term complete sub-pattern when we want to indicate
that the pattern in case will be later included into some bigger structure.
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Fixed-N PATS problem, and prove the NP-completeness of this decision problem
via a reduction from the 3SAT. The Fixed-N PATS problem asks if there exists
a tiling for the given pattern that uses precisely N tiles. Before giving the proof
of the NP-completeness result we need to give a few intermediary results. Due
to space limitations, most of the proofs are left to the full version.

Proposition 2. For any given colour “1” and any value n ≥ 1 there exists a
family of sub-patterns pm, m ≥ 1 such that for any pattern c containing all pm,
any deterministic TAS assembling c contains at least n tile types coloured “1”.

The above result can be applied whenever we want to enforce the existence
of some n number of tile types which are similarly coloured inside a TAS. In
particular, we use it for the case n = 3 as described in the following corollary.

Corollary 1. For any given colour “1” we can design a sub-pattern p : [10] ×
[2] → {1, C1, ..., C5} such that for any TAS (T , d) assembling a pattern c con-
taining p we have that |{t ∈ T | d(t) = 1}| ≥ 3. That is, the TAS must contain
at least three different tile types which are coloured “1”.

Indeed, the sub-pattern p defined as in Figure 1 satisfies the condition.

Fig. 1. A sub-pattern p enforcing the existence of at least three different tile types
coloured “1”

Observation 3. Note that for the previously constructed sub-pattern p and a
pattern c containing it, any TAS (T , d) assembling c needs at least 8 different
tile types: 3 coloured “1”, and one for each of the colours Ci, 1 ≤ i ≤ 5.

In some of our constructions, we need not only to enforce the existence of two
different tile types with the same colour, but also to enforce that the East glues
of these tiles are different. This is achieved by the following construction.

Proposition 4. For any given colour “1” we can design a sub-pattern p : [8]×
[2]→ {1, A,B,C} such that for any TAS (T , d) assembling a pattern c containing
p we have |{t ∈ T | d(t) = 1}| ≥ 2. Moreover, if T is such that |{t ∈ T | d(t) =
1}| = 2 and |{t ∈ T | d(t) = A}| = |{t ∈ T | d(t) = B}| = |{t ∈ T | d(t) =
C}| = 1, then the two tiles t1, t2 ∈ T for which d(t1) = d(t2) = 1 satisfy that
σE(t1) �= σE(t2).

The pattern enforcing the above constraint is described in Figure 2.
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Fig. 2. A pattern p for which we need at least two tile types coloured “1”, and for
which if we have exactly two tile types coloured “1” then these tiles must differ on
their East glue

Observation 5. Note that for the previously constructed sub-pattern p and a
pattern c containing it, any TAS (T , d) assembling c needs at least 5 different tile
types: two coloured “1”, and one for each of the colours A,B, and C, respectively.

The following result provides a method of enforcing the existence of n different
tile types which are identically coloured by designing a pattern of size polynomial
in n.

Proposition 6. For any given colour “1” and any values n, k ≥ 1 we can design
a sub-pattern p : [2nk] × [2] → {1, Ci, F

j}, with 1 ≤ i ≤ n and 1 ≤ j ≤ k
with the following property. For any coloured TAS (T , d) assembling a pattern
c containing the sub-pattern p we have that either |{t ∈ T | d(t) = 1}| ≥ n,
in which case |T | ≥ 2n + k or if |{t ∈ T | d(t) = 1}| = m with m < n then
|T | ≥ m+ n+ k n

m .

The pattern enforcing the above constraint is obtained by horizontally adjoining
the patterns described in Figure 3.

Fig. 3. The (pk
n)n,k family of sub-patterns used in Proposition 6; all C1, . . . , Cn, and

F 1, . . . , F k represent different colours

By considering the parameter k large enough, it becomes more and more
un-economical to use some m < n tile types coloured “1”, instead of using n
different ones. In particular, the case k = n represents the threshold value for
this phenomenon.
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Corollary 2. For any given colour “1” and any n ≥ 1 we can design a complete
sub-pattern pol (n) : [2n2]× [2]→ {1, Ci, F

j , Dj
i }, 1 ≤ i, j ≤ n, with the following

property. There exists a TAS (T , d) assembling the complete sub-pattern pol (n)
such that |{t ∈ T | d(t) = 1}| = n and |T | = 3n + n2. Moreover, for any other
TAS (T ′, d) assembling pol (n) such that |{t ∈ T ′ | d(t) = 1}| = m with m < n,
we have that |T ′| − |T | > 0.

Indeed, by replacing k with n in the inequality of Proposition 6 we obtain: (Note
that a number of n2 new colours, and thus tile types, are needed to complete
the pattern.)

|T ′| − |T | ≥
(
m+ n+ n

n

m
+ n2

)
−
(
3n+ n2

)
= m− 2n+

n2

m
=

(n−m)2

m
> 0.

We are now ready to construct the 3SAT reduction. Let C = C1 ∧ C2 ∧ . . . ∧
Cm be an arbitrary instance of a 3SAT problem involving a set of n variables
V = {x1, x2, . . . , xn}. For each 1 ≤ j ≤ m, let Cj = (X1

j ∨ X2
j ∨ X3

j ), where

X1
j , X

2
j , X

3
j ∈ {x1, x2, . . . xn}

⋃
{¬x1,¬x2, . . . ,¬xn}.

First, we associate to the pair (V,C) a complete sub-pattern patt(c), and
ascertain the minimal TAS assembling it. Then, we define two more complete
sub-patterns assgn(c) and val (c): the first one implements a truth assignment
of the variables in V , while the second is used to verify whether the previous
assignment validates the formula C. In particular, we show that if all of these
complete sub-patterns are adjoined, the minimal TAS assembling them has the
following properties:

– While assembling the pattern assgn(c), no new tile types are needed (except
for covering new colours appearing in assgn(c) but not in patt(c));

– While assembling the pattern val (c), no new tile types are needed (except
for covering new colours not in patt(c) · assgn(c)), if and only if the formula
C is satisfiable.

Let RainbowC (or simply Row) denote the following set of all different colours:
Row = {αxi , A

xi , Bxi , Cxi , Dxi

l , xi,¬xi, LC,Clj , E
g
j , G

e
j , 1, Ci, F

h, Dh
i }, where

1 ≤ i, h ≤ n, 1 ≤ j ≤ m, 1 ≤ l ≤ 7, 1 ≤ g ≤ 5, 1 ≤ e ≤ 8.
For each 3SAT instance C with n variables and m clauses we associate a unique
complete sub-pattern patt(c) : [12n+ 16m+ 2n2]× [2]→ Row, consisting of the
following families of complete sub-patterns:

– for all 1 ≤ i ≤ n define def (xi ) : [12]× [2]→ {αxi , A
xi , Bxi , Cxi , Dxi

l , xi,¬xi,
LC}, 1 ≤ l ≤ 7, as in Figure 4;

– for all 1 ≤ j ≤ m let def (Cj ) : [16]× [2]→ {Clj, E
g
j , [X

1
j ], [X

2
j ], [X

3
j ], G

e
j , LC},

where 1 ≤ e ≤ 8, 1 ≤ g ≤ 5 and [X1
j ], [X

2
j ], and [X3

j ] stand for the colours
associated with the signed-variables in clause Cj . (That is for example, if
Cj = (x2∨¬x5∨¬x6), then {[X1

j ], [X
2
j ], [X

3
j ]} = {x2,¬x5,¬x6}.) The pattern

def (Cj ) is defined as in Figure 5;

– pol (n) : [2n2] × [2] → {1, Ci, F
h, Dh

i }, with 1 ≤ i, h ≤ n, as defined in
Corollary 2.
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Fig. 4. The complete sub-pattern def (xi ) associated to variable xi; all αxi , A
xi , Bxi ,

Cxi , Dxi
l , xi, ¬xi, LC represent different colours, where 1 ≤ i ≤ n and 1 ≤ l ≤ 7.

Fig. 5. The complete sub-pattern def (Cj ) associated to clause Cj ; all Clj , E
g
j , G

e
j rep-

resent different colours, where 1 ≤ j ≤ m, 1 ≤ g ≤ 5 and 1 ≤ e ≤ 8. The colours
[X1

j ], [X
2
j ], and [X3

j ] stand for the colours associated with the signed-variables in clause
Cj and are the same as in Figure 4; similarly, the colour LC is the same as in def (xi ).

Proposition 7. A minimal TAS (T , d) assembling the complete sub-pattern
patt(c) (where patt(c) =

∏
1≤i≤n def (xi ) ·

∏
1≤j≤m def (Cj ) · pol (n)), contains 1 +

17n + 16m + n2 different tile types. Moreover, for any variable xi ∈ V , |{t ∈
T | d(t) = αxi}| = 2, and no two tiles coloured by some αxi and αxj colours
(possibly with i = j) have the same glue on their East edge.

Proof. Intuitively, by previous results we have that at least two tiles are needed
for each αxi colour, three tiles for each Clj colour, n tiles for the “1” colour, and
one tile for each of the remaining 1+14n+13m+n2 different colours. Moreover,
such a construction using this minimal number of tiles is reachable. Also, since
in such a construction only one tile is coloured LC, all the αx coloured tiles
become uniquely identifiable by their East glue.

We introduce now the patterns assgn(c) : [3n] × [2] → {αxi , 1, LB,Hi, O
1
i , O

2
i },

1 ≤ i ≤ n and val (c) : [2m] × [2] → {Clj, 1, LB,Kj, O
′1
j , O

′2
j }, 1 ≤ j ≤ m,

presented in Figure 6 and Figure 7, respectively. Intuitively, in the first pattern
we introduce a truth assignment for all the variables, while in the second one we
are checking whether these truth values validate all the clauses.

Proposition 8. Let (T , d) be a minimal coloured TAS assembling the complete
sub-pattern patt(c) · assgn(c). Then, in this tile system there exist exactly n tile
types coloured “1”.

Proof (Idea of the proof). Indeed, if less than n tiles are coloured “1”, say p,
by Proposition 2 the number of tiles for assembling pol (n) increases with more
than n−p. Thus, the advantage obtained by using less than n tiles coloured “1”
becomes completely lost.
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Fig. 6. The complete sub-pattern assgn(c); all αxi , 1, LB,Hi, O
1
i , O

2
i represent different

colours, where 1 ≤ i ≤ n.

Corollary 3. The minimal coloured TAS assembling the complete sub-pattern
patt(c) · assgn(c) contains 2 + 20n+ 16m+ n2 tile types as follows:

– two different tile types coloured αxi for each 1 ≤ i ≤ n;
– three different tile types coloured Clj for each 1 ≤ j ≤ m;
– n different tile types coloured “1”;
– one tile type for each of the remaining 2+ 17n+13m+n2 different colours.

Consider a minimal coloured TAS as above. Since each tile coloured “1” is placed
on the right hand side of a tile coloured αxi , its West glue must be equal to the
East glue of the tile coloured αxi ; that is, it must be equal with the West glue of
either the tile coloured xi, or the tile coloured ¬xi. Thus, that tile type coloured
“1” is chosen to non-deterministically represent either the “true” or the “false”
value of the variable xi.

Consider now the complete sub-pattern, val (c), in which we are performing a
checking whether the truth assignment implemented inside assgn(c) validates all
the clauses. This is achieved in the following way. For each clause Cj , inside the
pattern def (Cj ) (namely on positions def (Cj )(11, 2) to def (Cj )(16, 2)), we placed a
tile coloured Clj to the left of exactly three signed variable colours (that is either
colours of the form x or ¬x). These signed variable colours correspond to exactly
those three variable truth assignments which validate the clause Cj . Thus, if as
a result of assembling the pattern assgn(c) we introduced a tile type coloured “1”
which was assigned either of the above three truth-values validating the clause
Cj , let us denote this tile by tx1 , we proceed as follows. Inside the pattern val (c),
on the position coloured Clj , we place the tile type tClj (out of the three possible
choices) for which σE(tClj ) = σW (tx1), and on its right hand side we place tx1 .
Otherwise, if none of the tile types coloured “1” are corresponding to a truth-
value validating the clause Cj , then it means that the West glue of all the n
previously introduced tiles coloured “1” is different than the East glue of all the

Fig. 7. The complete sub-pattern val (c); all Clj , 1, LB,Ki, O
′1
i , O′2

i represent different
colours, where 1 ≤ i ≤ n.
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tile types coloured Clj . Thus, a new tile type (either coloured Clj or coloured
“1”) must be introduced.

Theorem 1. Let C = C1 ∧ C2 ∧ . . . ∧ Cm be a an instance of a 3SAT problem
with n variables, V = {x1, x2, . . . , xn}. Let (T , d) be a minimal TAS assembling
the pattern patt(c) · assgn(c) · val (c). Then |T | = 2+ 20n+ 19m+ n2 if and only
if the formula C is satisfiable.

Proof. Assume first that the formula C is satisfiable; that is, there exists a
truth-value assignment for the variables x1, . . . , xn such that all the m clauses
C1, . . . , Cm are satisfied. We construct the minimal TAS assembling first the
horizontally adjoined patterns patt(c) and assgn(c), such that the tiles coloured
“1” (and by Corollary 3 we have exactly n of them) are associated with the
above truth-value assignments of the variable. By Corollary 3, such a minimal
TAS contains exactly 2 + 20n + 16m + n2 different tile types. By the above
considerations, we can adjoin also the pattern val (c) and tile the entire structure
using an extra of 3m tile types, one for each of the new colour used in this pattern:
Kj, O

′1
j , and O′2

j . Thus, the total number of different tile types reaches the value

2 + 20n+ 19m+ n2.
Assume now that although the formula is not satisfiable, we can still assemble

the three adjoined sub-patterns by a TAS using the above mentioned number
of tile types. Because inside the sub-pattern val (c) we use 3m colours which do
not appear in any of the other two sub-patterns, we can conclude that the TAS
T assembles the sub-pattern patt(c) · assgn(c) using at most 2 + 20n+ 16m+ n2

different tile types. Furthermore, by Corollary 3, we have that at least this
number of tile types is needed and moreover, the restriction of T to these tile
types represents a minimal coloured TAS assembling the sub-pattern patt(c) ·
assgn(c). Also, by the same result, we can partition the tile types as follows:

– two different tile types coloured αxi for each 1 ≤ i ≤ n; denote them as t1αxi

and t2αxi

– three different tile types coloured Clj for each 1 ≤ j ≤ m;
– n different tile types coloured “1”;
– one tile type for each of the remaining 2+ 17n+13m+ n2 different colours.

Proposition 4 implies that for each variable xi, σE(t
1
αxi

) �= σE(t
2
αxi

). Moreover,

since we use a unique tile coloured LC we have that all the tiles αx with x ∈ V ,
are uniquely identifiable by the glue placed on their East side. By Corollary 3,
we also know that there are exactly n tile types coloured “1” which are used for
assembling the pattern patt(c) · assgn(c). By the above observation regarding the
uniqueness of the East glue of any of the tiles coloured αx, and since there exist a
unique tile type coloured LB, we obtain that all n tile types coloured “1” differ
on their West glue. Moreover, we also have that for each x ∈ V , there exists
exactly one tile type coloured “1”, denote it as 1x for which σW (1x) is either
equal with σW (tx) or with σW (t¬x), where tx and t¬x denote the unique tile
types coloured x and ¬x. Thus, the n tiles coloured “1” (inside the sub-pattern
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assgn(c)) determine (uniquely) a truth assignment for the variables xi, . . . , xn.
Since the coloured TAS contains a total of 2+20n+19m+n2 different tile types,
out of which 2 + 20n + 16m + n2 are used for assembling patt(c) · assgn(c) and
3m are coloured Kj, O

′1
j , and O′2

j , 1 ≤ j ≤ m, we conclude that for assembling
the sub-pattern val (c) no new tile types coloured Clj , “1”, or LB are defined.
Thus, it means that the previous truth assignment of the variables x1, . . . , xn

(uniquely identified by the West glues of the n tiles coloured “1”) validates the
formula C (contradiction). ��

Corollary 4. The Fixed-N PATS problem is NP-complete.

Indeed, let us assume that we can construct a polynomial algorithm P solving
the Fixed-N PATS problem. Consider now an instance of a 3SAT problem using
n variables and m clauses. We generate the patterns patt(c), assgn(c) and val (c)
and use the algorithm P to verify whether the pattern patt(c) · assgn(c) · val (c)
can be assembled using a coloured TAS with exactly N = 2 + 20n + 19m + n2

different tile types. By the above theorem, we can thus decide using P whether
the formula C is satisfiable or not.

Corollary 5. The optimization problem for PATS is NP-hard.

Note: In the above NP-hardness proof of the PATS problem we have employed
a reduction from 3SAT.

In our reduction from 3SAT proving the NP-hardness of PATS we employ a
construction which utilizes a number of colours which is linear in the size of the
logic formula; more precise it is linear in the number of variables and of clauses of
the CNF formula. In a recent breakthrough, Seki [17] proposes an improvement
of the result, showing that a 3SAT reduction is possible in which the constructed
tile pattern uses only a constant number of colours, independent of the size of
the CNF formula.

4 Families of Patterns of Unbounded Assembly
Complexities

In the following we study the assembly complexity of various patterns within the
PATS framework, that is, when the assembly proceeds from an “L”-shaped seed
structure, which fixes the borders of the pattern. In particular, we are pursuing
the task of finding some families of patterns with an unbounded assembly com-
plexity. Note that because we assume the assembly starts from an “L”-shaped
seed, one can construct a variety of complex patterns (and families of patterns)
using only a constant number of tiles. For example, let us consider the ‘black”
n × n-square pattern, for any n ≥ 1. If starting from a one-tile seed structure,
it was shown in [16] (and proved to be asymptotically tight in [1]) that the as-
sembly complexity of this pattern is in Ω( logn

log logn ). However, if we are allowed
to start from an “L”-shaped seed structure which fixes the border of the pat-
tern, the assembly complexity becomes trivially equal to 1. Other patterns which
are assembled with constant number of tiles are the Sierpinski pattern and the
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binary-counter pattern, see Figure 8. Thus, the problem of finding a family of
patterns of unbounded assembly complexity (and using only a bounded number
of colours) is not immediate.

Fig. 8. a) The Sierpinski pattern and a tile set assembling it; b) The binary-counter
pattern and a tile set assembling it. In both cases the assembly starts from an appro-
priate L-seed structure.

Given a pattern A, we say that it has assembly complexity4 η if the minimal
TAS assembling A and obeying the constraints P1, P2, P35 from Definition 1
(of the PATS problem), contains η different tile types; we denote by ηA the tile
assembly complexity of the pattern A.

Given two increasing functions Fw, Fl : N→ N, we define a family of patterns
(An)n≥1 as a sequence where for all n ≥ 1 there exist numbers (kn)n≥1, with
kn ≥ 1 (for all n ≥ 1) and kn ≤ kn+1, such that An : [Fw(n)] × [Fl(n)] →
[kn] is a pattern. If kn = k for all n ≥ 1, we say that (An)n≥1 is a family
of k−coloured patterns. Moreover, if for all n ≥ 1, An(w, l) = An+1(w, l) for
all (w, l) ∈ [Fw(n)] × [Fl(n)] (i.e., the pattern An is embedded into the down-
left corner of the pattern An+1), we say that (An)n≥1 is an embedded family
of patterns. Given a family of patterns (An)n≥1 we say that it has unbounded
assembly complexity if for every n ≥ 1 there exists some p ≥ 1 such that ηAn <
ηAn+p . Otherwise, we say that (An)n≥1 has bounded assembly complexity. In the
last case, we denote by η(An)n≥1

= max{ηAn , n ≥ 1} the maximal assembly
complexity of all the patterns in the family (An)n≥1.

The problem of finding a family of patterns of unbounded assembly complex-
ity can be solved immediately if one does not bound the number of colours.
Indeed, we can define an embedded family of patterns in which between any two
consecutive element of the family we add at least one position which is covered
by a new colour. Thus, from now on, we consider only the case of families of
patterns over a bounded number of colours.

4 We differentiate from the classical notion of tile complexity in order to underline the
difference between the pre-requirements of the two definitions.

5 One can summarize these constrains as: P1. Glues strength one for all glues; P2.
Seed-assembly of the form [0, m]× {0} ∪ {0} × [0, n]; P3. The TAS together with a
colouring function assembles the pattern.
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Family of patterns of fixed height. For any value k ≥ 2, define the strip of
height k as the subspace Sk = N× [k]. We restrict in the following to families of
patterns included into some strip Sk, and we consider first the case of S2. We
call a pattern binary, if it consists of only two colours.

Theorem 2. Any family of binary patterns included into the S2 strip has bounded
assembly complexity. In particular, the assembly complexity is at most 4.

On the other hand, assume now that for some strip-2 binary pattern A : [m]×
[2] → {0, 1} we can find included within all the following four sub-patterns
p(i,j) : [2]× [2] → {0, 1} , with 0 ≤ i, j ≤ 1 and p(i,j)(2, 1) = p(i,j)(1, 2) = i and
p(i,j)(2, 2) = j. Then, by Proposition 2, any tile system T which assembles A
deterministically must contain at least two tile types coloured “0” and two tile
types coloured “1”. Thus, ηA ≥ 4 and by Theorem 2, we get ηA = 4.

Theorem 2 can be generalized both in terms of the number of colours and in
terms of the height of the strip.

Proposition 9. (i) For every k ≥ 2 and any S2 pattern A : [m]× [2]→ [k], we
have that ηA ≤ k2. Moreover, there exists a S2 pattern A2

k such that ηA2
k
= k2.

(ii) For every k, p ≥ 2 and any Sp pattern A : [m]× [p]→ [k], we have ηA ≤ kp.

Based on the previous result, we conclude that if we restrict to some Sk domain,
as long as we bound the number of possible colours appearing into the pattern,
we cannot construct a family of patterns of unbounded assembly complexity.

Theorem 3. For every k, p ≥ 2, there exists no family of k-colour patterns
(An)n≥1 included into the Sp strip which is of unbounded assembly complexity.

The result of Proposition 9 upper bounds the assembly complexity of any Sp

k-coloured pattern. However, it does not say whether this bound is tight, as is
the situation in the p = 2 case. In the following we show that there exist patterns
whose assembly complexity gets close to the described upper bound.

Proposition 10. (i) For every p ≥ 2, there exists a Sp binary pattern park 2
p

such that ηpark 2
p
≥ 2�2(p−1)/2�.

(ii) For every k, p ≥ 2 there exists a Sp k-colour pattern park k
p
such that

ηpark k
p
≥ k�k(p−1)/2�.

Families of Patterns of Unbounded Assembly Complexity. Based on the
patterns park k

p
we can now describe two families of patterns (the second being

an embedded family) which have an unbounded assembly complexity.

Example 1. For any n ≥ 1 define An as park k
n
above. By Proposition 10, (An)n≥1

is a k-colour family of patterns of unbounded assembly complexity.

For defining an embedded family of unbounded complexity, we need first to define
a stacking operation for patterns. Given two patterns A1 : [l1]× [h1]→ K1 and
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A2 : [l2] × [h2] → K2, and some background (arbitrary) colour “0”, we define
the stacking of the two patterns A2�A1 (with background “0”) as the pattern
A2�A1 : [l]× [w1 + w2]→ K1 ∪K2 ∪ {0}, where l = max(l1, l2), and

– A2�A1(i, j) = A1(i, j) for all 1 ≤ i ≤ l1, 1 ≤ j ≤ h1,
– A2�A1(i, h1 + j) = A2(i, j) for all 1 ≤ i ≤ l2, 1 ≤ j ≤ h2,
– A2�A1(i, j) = 0 for all remaining positions.

Example 2. For n ≥ 2 we define the family of patterns (An)n≥1 inductively as
follows: A2 = park 2

2
; Ai+1 = park 2

i+1
�Ai. By its definition, (An)n≥1 is indeed an

embedded family of (binary) patterns. Moreover, by Proposition 10 and the pre-
vious example, we have that (An)n≥1 is an embedded family of binary patterns
of unbounded assembly complexity.
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[2] Czeizler, E., Lempiäinen, T., Orponen, P.: A design framework for carbon nan-
otube circuits affixed on DNA origami tiles. In: Proc. FNANO 2011 (2011) (Poster)

[3] Douglas, S., Bachelet, I., Church, G.: A Logic-Gated Nanorobot for Targeted
Transport of Molecular Payloads. Science 335(6070) (2012)
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Abstract. Finding a large set of single DNA strands that do not
crosshybridize to themselves or to their complements (so-called domains
in the language of chemical reaction networks (CRNs)) is an important
problem in DNA computing, self-assembly, DNA memories and phyloge-
netic analyses because of their error correction and prevention proper-
ties. In prior work, we have provided a theoretical framework to analyze
this problem and showed that Codeword Design is NP-complete using
any single reasonable metric that approximates the Gibbs energy, thus
practically excluding the possibility of finding any procedure to find max-
imal sets exactly and efficiently. In this framework, codeword design is
reduced to finding large sets of strands maximally separated in DNA
spaces and, therefore, the size of such sets depends on the geometry of
these spaces. Here, we introduce a new general technique to embed them
in Euclidean spaces in such a way that oligos with high/low hybridiza-
tion affinity are mapped to neighboring/remote points in a geometric
lattice, respectively. This embedding materializes long-held mataphors
about codeword design in terms of sphere packing and leads to designs
that are in some cases known to be provable nearly optimal for some oligo
sizes. It also leads to upper and lower bounds on estimates of the size of
optimal codes of size up to 32−mers, as well as to infinite families of DNA
strand lengths, based on estimates of the kissing (or contact) number for
sphere packings in Euclidean spaces. Conversely, we show how solutions
to DNA codeword design obtained by experimental or other means can
also provide solutions to difficult spherical packing geometric problems
via this embedding. Finally, the reduction suggests an analytical tool
to arrange the dynamics of strand displacement cascades in CRNs to
effect the transformation through bounded Gibbs energy changes, and
thus is potentially useful in compilers for wet tube implementation of
biomolecular programs.

Keywords: Gibbs energy, DNA space, molecular design, spherical
codes, noncrosshybridizing oligonucleotide bases, molecular compiler.

1 Introduction

DNA computing has brought forth the important theoretical problem of deep
understanding of the thermodynamics hybridization for a variety of applications,
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such as self-assembly (Qian & Winfree, 2011; Seeman, 2006), natural language
processing (Garzon et al., 2009; Neel at al., 2006; Bobba et al., 2006) and DNA-
based memories (Neel & Garzon, 2008) and, more recently, biological phyloge-
nies based purely on whole-genomic DNA (Garzon & Wong, 2011). Of primary
importance in all these applications is the appropriate identification of DNA
molecular ensembles that encode inputs to computational problems or serve as
building blocks for the appropriate nanostructures in order to guarantee that
the desirable reactions take place as intended, amidst the tendency of DNA
molecules to form other structures due to the uncertainty and variability inher-
ent in hybridization affinity. This so-called Codeword Design problem has seen
some progress in the last decade in at least two subareas. First, in searching
and/or building such DNA code sets (Garzon et al., 2009; Deaton et al., 2006;
Tulpan et al., 2005; Chen et al., 2006), in which the size of feasible computa-
tional problems or self-assembled nanostructures is usually directly related to the
largest ensemble of DNA molecules that satisfy a given set of cross-hybridization
and noncrosshybrization constraints. The second area deals with developing the
appropriate theoretical framework to understand this type of problems, find so-
lutions, and organize the knowledge about the subject in a systematic manner.

Solutions to finding large sets of short oligonucleotides with noncrosshybridiz-
ing (nxh) properties have been produced by several groups, particularly the PCR
Selection (PCRS) protocol used below (Garzon et al., 2009; Deaton et al., 2006;
Tulpan et al., 2005; Chen et al., 2006). In prior work (Phan & Garzon, 2009), we
have also provided a theoretical framework to analyze this problem. In this frame-
work, codeword design is reduced to finding large sets of strands maximally sepa-
rated in theDNAspace of all oligos of a given size.The size of such sets thus depends
on the geometry of these DNA spaces. However, we showed therein that Codeword
Design isNP-complete using any single reasonablemeasure that approximates the
Gibbs energy by any reasonablemetric that would provide such a nice geometry to
analyze DNA spaces, thus practically excluding the possibility of finding any pro-
cedure to find trulymaximal sets exactly and efficiently through such an approach.
In this paper, we introduce a new general technique to bring the problem into the
more geometric context of ordinaryEuclidean spaces,where ordinary intuitionmay
provide better insights into the nature and characteristics of DNA spaces. Specif-
ically, we describe in Section 3 a way to embed DNA spaces in Euclidean spaces
and thus, among others, reduce the word design problem to the well known sphere
packing problem in ordinary geometry. The embedding sheds some insights into
the geometry of DNA spaces via the best known metric approximation of Gibbs
energy landscapes, namely the h−distance , which is briefly described in Section
2.1. In Section 2.2, we show that this metric can be extended to give a provably
close approximation of theGibbs energies of duplex formation,while preserving the
metric property (i.e., isometrically.) From this embedding, we develop a technique
to obtain nearly optimal codeword sets for short oligomer spaces (up to 12-mers
or so) in Section 3. The quality of these sets is evaluated against the only general
purpose method to produce maximal codes, the PCR Selection protocol, using a
well accepted model of the Gibbs energy of duplex formation, namely the nearest
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neighbor model. In the conclusion in Section 4, other potential applications of the
embedding are discussed to gain further understanding of the Gibbs energy land-
scapes for DNA spaces.

2 Optimal DNA Codes, Gibbs Energies and DNA Spaces

The cardinality of maximal codes for given parameters has been previously es-
tablished only for simple models (King, 2003; Marathe, 1999) but were largely
unknown under more realistic measures of hybridization. Attempts to construct
non-crosshybridizing sets in silico using various methods such as templates (Arita
et al. 2002) or heuristic search (Shortreed et al., 2005; Tulpan et al., 2005) tended
to produce relatively small sets. Other methods to create non-crosshybridizing
sets (Chen et al., 2004) in vitro are attractive for being able to produce a maxi-
mal physical set, but suffer from the challenge of identifying precisely its size and,
more importantly, the composition of the sequences. More recently, nearly opti-
mal codes have explicitly obtained by simulations of the PCR Selection (PCRS)
protocol (Garzon et al., 2005; Garzon et al., 2004) for short length oligoncule-
toides (up to 13−mers) and for longer lengths by a so-called shuffle operation
to generate longer codes from smaller ones (Garzon et al., 2009). No general,
scalable, analytic and efficient method exists that is capable of producing the
explicit sequences in DNA codeword sets, to the best of our knowledge. One
such method is described in the following sections using a model equivalent to
the one described in prior work (Phan & Garzon, 2009; Garzon et al., 1997).

2.1 Gibbs Energies

DNA duplex formation of two single strands is determined by the familiar Gibbs
energy in thermodynamics and physics, which generally depends on physical pa-
rameters such as the internal energy (U), pressure (p), volume (V), temperature
(T), and entropy (S) of the environment in which the duplex is formed. The Gibbs
energy is the chemical equivalent of the potential energy in physics. The more neg-
ative the Gibbs energy, the more stable the duplex formed. Unfortunately, mod-
els of biochemistry are inherently approximations and so no gold standard exists
to assess Gibbs energies other than accepted empirical approximations (Wetmur,
1997), although it is known that the energy depends not only on the nucleotide
composition of the strands but also on their arrangement, in addition to other
thermodynamical factors (temperature, pressure, acidity of the solvent, etc.).

On the other hand, knowledge of the corresponding Gibbs energy landscapes
would appear critical in an analysis of the codeword design problem. The most
popularmethod to approximate theGibbs energy is the so-called nearest-neighbor
(NN hereafter) method, which postulates that the free energy for duplex
formation basically depends on three factors: the initial free energy given by the
unfavorable entropy due to the loss of translational freedom, the sum of the com-
plementary pair-wise terms between the nucleotides sequences being stacked to
form the duplex, and the entropic penalty of the maintenance of the symmetry
in a double strand. To date, several different experimental thermodynamic pa-
rameters for the 10 ‘nearest-neighbor’ di-nucleotide sequences, namely dAA/dTT,
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dAT/dTA, dTA/dAT, dCA/dGT, dGT/dCA, dCT/dGA, dGA/dCT, dCG/dGC,
dGC/dCG, dGG/dCC, have been measured experimentally (Huguet et al., 2010;
SantaLucia, 1998). A full use of even the NNmodel to analyze the codeword design
problem forces the examination of exponentially many configurations in the min-
imization of the energy and thus it is computationally intractable, where we need
to deal in principle with 24

n

possible subsets of the entire DNA space to search for
the code set of the largest size.

2.2 Combinatorial Approximations to the Gibbs Energy

In this paper we will therefore use a different method, using the h−distance
introduced in (Garzon et al., 1997) as a rougher but also more tractable and close
approximation of the Gibbs energy. Briefly, the relevant chemistry is abstracted
as two operations of interest for our purpose, a unary operation of Watson-Crick
complementation and a binary operation of hybridization. The Watson-Crick
complement y′ of strand y is obtained by reversing it and swapping nucleotides
within the pairs a, t and c, g. Hybridization is modeled as a binary operation
between two single strands x, y that forms a double-stranded molecule in which
pairs of nucleotides are joined in a duplex molecule by two or three hydrogen
bonds, for an a− t or a c− g pair, respectively. The distance is defined in terms
of the h-measure between two single strands x, y as follows.

h(x, y) := min
−n<k<n

{
|k|+H(x, σk(y′))

}
(1)

where σk(y) is the shift of y by k positions (right-shift if k > 0; left-shift if k < 0)
with respect to x, y′ is the Watson-Crick complement of y, and the Hamming
distance H measures the number of different bases in the overlap of x and y′

in the specified frameshift σk(y′). In words, the h-measure finds the optimal
alignment in which x and y have the maximum number of complementary pairs,
thus forming the most stable duplex. A measure of h(x, y) = 0 means x = y′.
A large distance indicates that even when x finds itself in the proximity of y,
they contain few complementary base pairs regardless of the position they find
themselves in, and thus are unlikely to form a stable duplex, i.e. no hybridization
will take place. For example, if x = agc, y = tgg (and y′ = cca), at shift k = −2,
there are 2 base pair mismatches and one identity match, so 2 + H(a, a) = 2;
at shift k = −1, there are 3 pair mismatches 1 + H(ag, ca) = 3; At shift 0
(perfect alignment) there are 3 mismatches H(agc, cca) = 3; at shift 1, the
number of mismatches is 1 + H(gc, cc) = 2; and at shift 2, the distance is
2 + H(c, c) = 2. Therefore, h(agc, ttg) = 2. Note that h is invariant under
Watson-Crick complementation, as well as under both reversal and pointwise
complementation of each nucleotide, i.e., for every pair of strands x, y ∈ Dn,

h(x, y) = h(x′, y′) = h(xr, yr) = h(xc, yc)

From an analytic point of view, it is desirable to have a measure of hybridization
that can be thought of as some sort of distance, intuitively analogous to the
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ordinary distance in Euclidean spaces. Unfortunately, the h-measure does not
possess the requisite properties to makeDn a so-calledmetric space. Even though
the h-measure possesses the properties of non-negativity, it misses the triangle
inequality (since x can be chosen so that 0 < h(x, x) but 0 = h(x, x′)+h(x′, x).)
This measure becomes a true distance function, however, if we bundle together
complementary strands into a so-called poligos X = {x, x′} and measure the
distance between two poligos as

h(X,Y ) = min
x∈X,y∈Y

h(x, y) . (2)

It has been established in (Phan & Garzon, 2009) that this function truly defines
a metric in Dn. This metric model reduces codeword design to a well known
problem that has been researched for over half a century, namely the design
of communication codes in information theory (Roman, 1995). Although the
analogy has proved useful in using error-correcting codes in information theory
to produce DNA codes (Arita et al., 2003, Garzon et al., 1997), the fact that the
h−distance is very different in nature from the Hamming distance (as can be
seen by perusing eq. (1) and the consequent properties below) makes the analogy
only a metaphor. Therefore, the h-distance quantifies hybridization afinity more
closely while preserving the advantages of a metric space structure in Dn, the
space of all n−mers of given length n (Phan & Garzon, 2009).

For the purpose of this paper, we carry this reduction a step further by build-
ing a modified version of the NN model described above, using the values in
Table 1 as multipliers for the corresponding counts of mismatches in the optimal
alignment that produced the standard h−distance h(x, y) between strands x and
y. The weights were normalized by the standard partition function (divide every
weight by the total sum of all weights involved) to obtain weights ranging from
0 to 1 for all the possible nucleotide mismatches, as shown in the first column of
Table 1. Now, the proof in (Phan & Garzon, 2009) is easily seen to carry over to
this modification of the h−distance so that the normalized h−distance remains
a metric. (We will continue to refer to this normalized version as the h−distance
in the reminder of this paper.)

That this normalized h−distance comes close enough for an approxi-
mation of the Gibbs energy can be seen as follows. A genetic algorithm was
employed to generate the weights with two fitness functions: accuracy and RMSE
(statistical root mean square error) over all n−mers for code sets in the column
headers in Table 1. The accuracy is defined as the ratio of the weighted h−distance
s that are within a certain range of their Gibbs energy (as given by the NNmodel)
to the total number of possible Gibbs energies for that set. The range that was used
for deciding whether the weightedh−distancewas close toGibbs energy or not was
calculated with a parabolic function that will make sure that difference should be
minimal in the critical region about−6.0Kcal/mole. A function of ε+(ΔG−0.5)2

was the threshold for the difference between the normalized weighted h−distance
and Gibbs energy ΔG. The RMSE fitness is defined as 1 − RMSE of the differ-
ences over the same distribution. The results are uniformly very good since they
are nearly identical for all weight sets and are summarized in Fig 1.



78 M.H. Garzon and K.C. Bobba

Table 1. Weights for the corresponding counts of mismatches in the optimal alignment
that normalizes the h−distance into the interval [0, 1] so that hybridization between
strands occurs when h(x, y) < 0.5 (equivalent to ΔG < −6.0 Kcal/mole.) The weights
were obtained by search through a genetic algorithm that minimizes the RMSE differ-
ence between a linear combination (with the weights) of the number of occurrences of
the di-nucleotides mismatches in optimal alignments for the h−distance and the (nor-
malized) NN Gibbs energies (at 20oC) across a representative sample of all strands.
Naturally, the weights depend on the temperature at which the NN Gibbs energy is
computed, but analogous weights can be similarly obtained for other temperatures.

Mismatches 6−mers (100%) 6−mers (40%) 7−mers (1%) 8−mers (1%)

AA 2.651 2.620 2.616 2.443
AC/CA 2.631 2.605 2.485 2.417
AG/GA 2.602 2.631 2.560 2.516
A-/-A 1.328 1.307 1.257 1.011

CC 2.636 2.562 2.532 2.347
CT/TC 2.647 2.629 2.558 2.476

C-/-C 1.334 1.317 1.280 1.040
TT 2.642 2.636 2.586 2.672

TG/GT 2.639 2.633 2.545 2.458
T-/-T 1.258 1.335 1.274 1.226

GG 2.560 2.632 2.535 2.321
G-/-G 1.315 1.316 1.268 1.437

To facilitate the comparison of the h−distance to the NN Gibbs energy,
both values are rescaled to the unit interval as follows. Normalization of the
h−distance was calculated as a ratio of the sum of the weights for all the mis-
matches in the best alignment in computing the h−distance to the sum over the
maximum possible number of mismacthes,. i.e., 2n−1, where n is the size of the
words in the code set. On the oher hand, Gibbs energies of a DNA code set were
normalized by a piecewise linear function so that the minimum Gibbs energy of
the set maps to 0, −6.0 Kcal/mole maps to 0.5 and the maximum Gibbs energy
of the set maps to 1. As shown in Fig 1, these two independent fitnesses show
that over 80% of the two agree across all oligo sets tested for the purpose of
deciding whether or not a hybridization event occurs (Gibbs energies were com-
puted at 20oC.) Further, the uniformity of the results shown in Table 1 show
that this result is likely to scale for larger oligos as far as the NN model holds,
albeit with descresing values and slightly lower performance. Further evidence
of the apropriateness of the h−distance as an approximation can be obtained
by comparison of results in optimal code sets obtained independently by both
methods. These results can be constrated in columns 3 and 4 of Table 2, al-
though a more complete set of results up to 20−mers is not yet available. A
more principled argument can be given from the definitions of the Gibbs en-
ergy in the NN model and the h−distance , since both are minimizing over all
possible frameshifts, under the hypothesis of stiffness mentioned below, but the
argument is too long for the space allowed and will be reported elsewhere.
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Fig. 1. Accuracy of the normalized h−distance in predicting hybridization events, as
compared to a Gibbs energy model of duplex formation (nearest neighbor model.) The
accuracy is measured by the percentage of hits (h(x, y) < 0.5 exactly when ΔG(x, y) <
−6.0 Kcal/mole) and the Root Mean Square Error (RMSE) of the difference of the
two, in both cases over the entire DNA space.

The h−distance thus provides a more computationally efficient approxima-
tion of the Gibbs energy based solely on composition and sequence. Although
the h−distance makes the assumption that DNA oligos are stiff and do not form
bulges or hairpins, this is a mild assumption for short oligos up to 16−mers or
so because pre-processing can filter out in polynomial time strands not satisfy-
ing this condition (such as Watson-Crick palindromes.) On the other hand, the
h−distance allows a fine control of hybridization stringency, considers hybridiza-
tion in all possible frameshifts, and is therefore on some sense more realistic than
the simpler models mentioned above. As such, the h−distance may afford good
insights into the structure of DNA spaces and reasonable avenues into the code-
word design problem, as further evidenced by the results below.

With this degree of soundness of the h−distance approximation for the Gibbs
energy in place, we can proceed to the discussion of the algorithm for nearly
optimal code design using the h−distance .

3 Optimal Codes from Geometric Packing

The second phase in the reduction of the codeword design problem to a sphere
packing problem proceeds in three stages. First, we show that it suffices to
solve the problem for the h−distance approximation, as discussed in Section 2.
Second, we will show how to map DNA spaces into ordinary Euclidean spaces so
that their Gibbs energy landscapes are basically converted into more intuitive
and analyzable geometric objects. As a result, the codeword design problem is
reduced to an age-old problem in geometry, originated in Newton’s problem of
the 12 spheres (conways & Sloane, 1999, p. 21). Third, a number of solutions
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to this problem are shown to provide answers that are nearly optimal given the
state of the art of the geometric problem. For space reasons, in this section we
will be illustrate with a particular case, the so-called h0-distance defined as above
but without considering frameshifts, i.e.,

h0(x, y) := min {H(x, y), H(x, y′)} (3)

The technique scales to the full normalized h−distance (Phan & Garzon, 2009),
but the technical details are more involved to explain than the space allowed
here -see (Phan & Garzon, 2009) for more details.

For the first stage in the reduction, we find a representation of DNA strands
x ∈ Dn as vectors in the Euclidean space R4n of dimension 4n by coarse coding
them as follows. Given a basis b ∈ {a, c, g, t}, let Ψb(x) ∈ R4n be the vector
given by Ψb(x)i = ψ(b, xi) = 1 if b = xi and 0 otherwise, i.e., Ψb(x)i indicates
the presence or absence of nucleotide b in position i in x. The representation Ψ
of a strand x is given by the concatenation of these vectors in the following order

Ψ(x) = Ψa(x)Ψc(x)Ψg(x)Ψt(x) . (4)

The following properties of Ψ are easy to verify for every pair of strands x, y,
where ||Ψ(x)|| is the standard Euclidean norm of a vector, “·” denotes the stan-
dard dot (scalar) product between two vectors inR4n, and |x| denotes the length
of strand x:

1. Strands of length n are represented as points on a sphere of radius
√
n, i.e.

||Ψ(x)||2 = |x| = n and ||Ψ(x)|| =
√
n ;

2. The number of Watson-Crick complementary matches between x and y in
perfect alignment is m(x, y) = Ψ(x) · Ψ(y). Therefore

H(x, y) = n− Ψ(x) · Ψ(y) ;

3. The Hamming distance can be normalized as

1

n
H(x, y) = 1− 1√

n
Ψ(x) · 1√

n
Ψ(y) (5)

= 1− cos θ(Ψ(x), Ψ(y)) = 2 sin2(θ/2) . (6)

where θ is the angle between the two 4nD vectors Ψ(x), Ψ(y). This metric
essentially is equivalent to H and has the advantage that it represents DNA
strands as points on the unit sphere in the Euclidean space of dimension 4n.
From now on, we will identify a DNA oligo x with its representation Ψ(x).

4. Complementation is reduced to a reversal operation, i.e.,

Ψ(y′) = Ψ(y)r = R(Ψ(y)) ,
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where R is a linear transformation reversing the coordinates of a vector in
R4n. This operation can in fact be shown to be a reflection about a subspace
of dimension 2n. For example, when n = 1, the bases a ≡ 1000, c ≡ 0100 can
be obtained by reversal of the vectors for the bases t ≡ 0001, g ≡ 0010, re-
spectively, in 4D-space. This linear transformation has two eigenvalues ±1,
each of multiplicity 2, with eigenvectors 1001, 0110 (left invariant for be-
ing palindromes) and 1̄001, 01̄10, respectively (1̄ ≡ −1.) The complement of
strand x is thus obtained by image reflection about the fixed 2D plane gener-
ated by the first two eigenvalues (hereforth called themirror) and amounts to
a change in sign of the other two components in the orthogonal coordinate
system consisting of these eigenvalues. Longer strands can then be repre-
sented by adding sets of 4-tuples for the additional bases without changing
these procedures to find the complementary strands by reflection (about a
higher dimensional subspace of dimension 2n, of course.)

5. The normalized h0−distance is then computed by just the simple normalized
Hamming distance provided we ensure that the two vectors x, y lie on the
“same side” of the mirror (the invariant subspace), i.e.,

1

n
h0(x, y) = 2 sin2(θ/2) . (7)

Therefore, maximal DNA codeword sets of n−mers with a noncrosshybridizing
quality given by a minimum separating h0−distance of τ (now normalized after
division by

√
n) is reduced to an age-old packing problem in ordinary geom-

etry going back to Newton and Gauss in the 1600-1800s. This is the so-called
spherical packing problem, analogous to but essentially different from the or-
dinary sphere packing problem in geometry and classical coding theory (Conway
& Sloane, 1999, p.24). This problem is challenging and far from resolved, but
a wealth of knowledge has been gathered over the centuries, which can now be
used to help answer critical questions about the DNA codeword design problem.
For example, the well-known kissing number problem in nD-Euclidean space
asks for the maximum number of congruent spheres that can be arranged to
touch a given one. We are actually concerned here with the analogous kissing
number on the surface of the unit sphere Ω4n in the same 4nD space, denoted
A∗(n, φ), where 2 sin2(φ/2) ≥ τ and τ > 0 is the parameter coding for quality
in the codeword set (fault-tolerance to reaction conditions, etc.). Resolving this
inequality gives a minimum angle φ0 = 2 arcsin(

√
τ/2) for the minimum sep-

aration between DNA points on Ω4n for τ < 1. As a second example, known
solutions to the spherical code problem (usually called spherical codes, i.e., a set
of points C ⊆ Ω4n satisfying a minimal separation distance as measured by the
angle φ = x · y between two points/vectors x, y) can be used to obtain sets of
noncrosshybridizing DNA codeword of nearly the same quality as the centers of
the kissing spheres in Ω4n by selecting vectors representing n−mers that come
close enough to points in C.

The optimality and/or quality of the solutions to the kissing spheres
problem is usually inversely related to the simplicity in generating them. The
best known solutions are afforded by so-called lattice packings, obtained by
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diophantine (integer coefficients) combinations of n linearly independent vec-
tors (usually assumed to be diophantine as well.) We illustrate the third stage in
our method to obtain a DNA codeword set with the optimal solution for lattice
packings in 24D-space (i.e., for 6−mers), the Leech lattice, which can be gen-
erated from Golay’s [24,12] 3-error correcting code in 24D Hamming space and
is known to have a separation angle of arccos(1/3) ≈ 70◦ (Conway & Sloane,
1999, p. 27). The basic ideas is to decompose the lattice point in 4D-space into
nearly concentric layers (usually referred to as shells) around one of its points
located as origin (perhaps after a translation.) The points in this shell are then
projected onto Ω4n by dividing by their norm. They provide an approximate
solution to the sphere kissing problem on Ω4n because their angle separation
does not change due to the projection. Finally, the DNA codeword sets to be
guaranteed to be at a minimum distance τ will be obtained by filtering from this
kissing set those 4n-dimensional points coding for DNA strands that are within
a suitable angle ε/k (usually k = 2 or 3 will do) of a (normalized) shell point, for
a suitable value of k. Here ε = |φ − Arccos(1/3)| is the difference between the
angle separation of two lattice points and the desired angle separation between
DNA codewords. Table 2 shows the results for the corresponding set of 6−mers
obtained from the Leech lattice. It is clear from this construction that the code-
word sets thus obtained are nearly optimal in the DNA space with respect to
the h0−distance IF the spherical code is (nearly) optimal.

Thus, well established solutions to sphere packing problems can be used to
obtain DNA codeword designs that are in some cases known to be nearly optimal
(through difficult and elaborate proofs.) They include upper and lower bounds
on estimates of the size of optimal codes for dimensions up to 128−mers as well
as infinite families of DNA strand lengths, based on estimates of the kissing (or
contact) number for sphere packings in Euclidean spaces, as shown in Table 2.

Table 2. Size of DNA (nearly optimal) codeword sets obtained from (nearly) optimal
spherical codes and packings in comparison to best known sets obtained by exhaustive
computational searches (Garzon et al., 2009) or other means. The second/last column
shows the best (or best known) proven theoretical lower/upper bounds, respectively, on
A∗(n, φ), the kissing numbers for h−distance spheres in the DNA space of all n−mers,
as derived from the respective bounds for A(4n, φ) for 4nD-spaces (Conway & Sloane,
1999, p. 24-27). Footnotes † indicate a result for metric h0 only (hence the < ), and � a
result from PCRS in vitro; c is a constant independent of n and φ < φ0 ≈ 70◦. (Blank
cells either follow the general bounds or the precise values are still being computed.)

Dn, n−mers ? ≤ A∗(n, φ) Spherical codes† Best Known A∗(n, φ) ≤ ?

6 < 1, 268 620 196, 560
8 < 4, 096 4,549 261, 120
10 15,600 (N/A)
16 >> 58, 500 9, 694, 080
20 < 100, 000� (N/A)

n 2−4n log2(csinφ) (N/A) (N/A) 27608(1−cosφ)−4n
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4 Conclusions and Future Work

DNA Codeword design addresses the issue of capacity of fixed size olignucleotides
for fault-tolerant self-assembly and computing and therefore is an important and
challenging problem for molecular programming. We have used the theoretical
framework described in (Phan & Garzon, 2009; Garzon et al., 1997) to show how
the important Codeword Design problem of selecting noncrosshybrizing DNA
oligonucleotides for DNA computing can be approximated through a geometric
approach, despite its established NP-complete status. In this framework, Code-
word Design is reduced to finding large sets of strands maximally separated in
DNA spaces endowed with a mathematical metric directly related to the Gibbs
energy of duplex formation (or rather its nearest neighbor model.) The size and
composition of such sets is very difficult to establish because of the lack of in-
tuition and tools as to the structure of the Gibbs energy landscapes. We have
used a metric approximation of the Gibbs energy, the combinatorial h−distance
, to introduce a new general technique to embed DNA spaces in the familiar
Euclidean spaces by an isometric transformation that maps the h−distance to
the ordinary Euclidean distance. To illustrate the type of practical applications
of this embedding, we have shown a linear time reduction of the codeword design
problem in DNA spaces to well researched but difficult sphere packing problems
in Euclidean spaces (e.g., the so-called spherical code design problem (Conway
& Sloan, 1999, p. 24).) Thus, upper and lower bounds on the size of optimal
codeword designs for dimensions up to 128−mers as well as infinite families of
DNA strand lengths have been obtained. A full optimal solution to the problem
of codeword design via this reduction, however, remains difficult despite their
familiarity, because sphere packings are age-old difficult geometric problems.
For example, their computational complexity and even specific solutions for a
fixed dimension (including 3) are still unknown. Nevertheless, the consideration
of sphere packings is necessary in this approach, despite the fact that not ev-
ery point in Euclidean space represents a DNA strand, because the geometric
intuitions and results afforded by the model are entirely absent in the string
representation of DNA strands.

Conversely, this connection between codeword design and geometric problems
has other applications. Solutions to codeword design obtained by experimental
or other means also enable solutions to spherical packing problems via our em-
bedding. Prior results for optimal codes by exhaustive search (Garzon et al.,
2009) can be used to obtain packing lattices of reasonable quality for various
applications (such as microarray design, crystallography, error-correcting codes
in communication theory, and numeric integration.) As another example, the
NP-completeness of finding optimal codeword sets for the h−distance implies
the NP-completeness of computing the kissing number A(n, φ) for Ωn,
a problem that to the best of our knowledge has been open for some time.

There remains the question of whether these codes will be appropriate for
use in vitro. This paper also presented a validation of the h−distance using the
nearest neighbor model of the Gibbs energy, which is a standard model in ex-
perimental applications. Thus there is a good degree of confidence that these
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codes will increase the error-preventing/-correcting capability of codeword de-
signs close to the extent possible. Moreover, the visualization of Gibbs energy
landscapes for a given size of n−mers enabled by this embedding affords a more
analytic and accessible tool to understanding biomolecular programming. For
example, it appears plausible that this new metric approximation of Gibbs en-
ergies may allow other applications in shedding light on the structure of Gibbs
energy landscapes for DNA spaces, particularly for designing long sequences of
strands to form cascades descending towards stable equilibria along trajecto-
ries in Gibbs energy landscapes. For example, the embedding of DNA space of
n−mers onto a hypersphere maps oligos with high (low) hybridization affinity (a
domain in the language of chemical reaction networks) to neighboring (remote,
respectively) points in a geometric lattice. Given an initial strand x in a domain
and a target strand y in another, a shortest path connecting x to y in the spher-
ical embedding (which can be easily found using Dijkstra’s algorithm), suggests
an optimal cascade of displacement reactions through intermediate strands to
effect the transformation through minimal energy changes in going from one
neighbor to the next. Moreover, this cascade would be fully fault-tolerant in the
sense that nowhere along the cascade will the strands ever have a chance to
“switch domains”, i.e., to myshybridize with other strands in the mixture. (A
more detailed description can be found in the analogy with planetary motion
described in the Appendix on “Planetary Perturbations” in (Conway & Sloan,
1999, p. 29).) This application will be fully explored elsewhere.
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Abstract. In this paper we report on a module in the RTRACS molec-
ular computing system, constructed with DNA, RNA and enzymes. The
module is a 2-input logic gate that receives input and produces output
in the form of RNA molecules. Each of the two input molecules is chosen
from a set of two, and the logic gate produces an output molecule for
each of the four possible input combinations. Two output RNA molecules
can be produced by this module, one for only one combination of inputs,
whilst the remaining three combinations lead to the production of the
other output. Since the RNA strands can be arbitrarily assigned logical
values, this module is capable performing multiple logical operations, in-
cluding AND, NAND, OR and NOR, given the appropriate mapping of
RNA molecules to logical values. We performed numerical simulations of
the logic gate reaction scheme, revealing the details of the kinetics of the
production of output molecules and the theoretical input-output char-
acteristics. We also experimentally demonstrated the proper functioning
of the logic gate, showing the correct formation of intermediate steps,
the real time production of output molecules as well as the input-output
characteristics of the module. We believe this versatile logic gate has
significant advantages as a basic module of RTRACS due to the wide
variety of possible logical operations.

Keywords: Biomolecular computing, DNA computing, logic gate.

1 Introduction

RTRACS (Reverse-transcription andTRanscription-basedAutonomousComput-
ing System) is a modular biomolecular computing system composed of DNA, RNA
and enzymes, whose mechanism is based on retroviral replication. RTRACS mod-
ules are comprised of DNA molecules that communicate with each other through
RNA strands, and the modules are capable of logical operations performed by en-
zymatically catalyzed reactions. The module functions autonomously as once all
the component reactants and enzymes are in place, no further action and the gate
will begin operation once the input RNA strands are added. The logical operations
of such modules are analogous to electronic logic gates, although here inputs and
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outputs are in the form of RNA molecules rather than voltage levels. The modular-
ity ofRTRACS allows formany simple logic gates to be combined together by using
outputRNAas input for successive gates to create systems capable of sophisticated
computational operations. The mechanism of retroviral replication has been nat-
urally adapted to integrate with living cells, allowing RTRACS to be a potentially
powerful tool for genetic diagnosis and therapy [1].

In this work we have built on the reaction scheme first suggested by Sakai
et al. [2], demonstrating that the logic gate’s reaction scheme can be used to
perform a wide variety of logical operations, as well as showing the input-output
relations using numerical simulations and real time experimental data.

2 Reaction Scheme

The logic gate module receives input and produces output in the form of 52 base
single stranded RNA molecules. There are four possible input molecules, grouped
into two pairs labeled X = {X, X ′} and Y = {Y, Y ′}, and the outputs are a pair
labeled Z = {Z, Z ′}. Each input and output RNA strand is comprised of two
connected orthonormal sequences. Orthonormal sequences have been developed
for reliable DNA computing [3], and our case are 23 bases long, have a uniform
melting temperature, and no potential for mishybridization or stable self-folded
structures. The labels x, x′, y, ay, ay′, z, z′, and yp refer to such orthonormal
segments, and sequences labelled cA are also orthonormal and complementary
to A. All sequences are given in the 5’→3’ direction. The RNA strand sequences
are y-x for X , ay′-x′ for X ′, ay-y for Y , ay′-y for Y ′, z-yp for Z and z′-yp for
Z ′. In this case, the Z output of the gate is designed to be a Y input strand
for another similar gate, so that the sequence of the Z outputs follows the same
format as for the Y strands.

The logic gate itself consists of two ssDNA (single stranded DNA) primer
strands, two converter ssDNA molecules, and three enzymes to catalyze the
necessary reactions. The primer strands consist of one orthonormal sequence, cx
and cx′. The converter molecules Q and Q′ have sequences cyp − cz − ct7 − ay
and cyp− cz′− ct7−ay′ respectively, where t7 is the T7 promoter sequence. The
converter molecules are capped by an NH2 group at the 3’ end to prevent wasteful
elongation of the converter strands. The required enzymes are: AMV RTase
(Reverse Transcriptase), which performs reverse transcription reactions, and is
also capable of DNA polymerization and RNase H (Ribonuclease H) activity;
Thermus thermophilus T7 RNAP (T7 RNA polymerase), which specifically binds
to a double stranded T7 promoter sequence and produces RNA strands based
on the DNA template; Thermus Themophilus RNase H, which specifically binds
to RNA-DNA hybrids and digests the RNA.

The reaction proceeds with steps of RNA-DNA hybridization, reverse tran-
scription, and RNA digestion, and follows the scheme of Fig. 1. The reaction
begins similarly for both of the X input RNA strands, initially hybridizing with
a complementary 23 base DNA primer strand, after which the RTase extends
the primer strand to 52 bases, creating a sequence complementary to the RNA
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Fig. 1. The reaction scheme of the logic gate module for each distinct input combina-
tion. The curved lines denote RNA strands, whilst straight lines denote DNA strands.
The polymer lengths in each case refer to the length of the DNA strands. RT denotes
a reverse transcription reaction, RH to a ribonuclease H reaction and DP to a DNA
polymerization reaction.

template. RNase H then cleaves the RNA strand from the RNA-DNA hybrid,
leaving a 52 base ssDNA strand. Following this reaction, the scheme diverges for
X and X ′. With X input, the Y strands hybridize with the extended primer,
undergoing further reverse transcription, elongation and RNA digestion to cre-
ate a 78 base DNA strand. This completes the logical operation, with the newly
extended segment of the 78 base DNA strand complementary to a segment of a
converter DNA molecule, Q with the Y input or Q′ with the Y ′ input.

With X ′ input, the logical operation is complete after a single reverse tran-
scription, elongation and RNA digestion step, when the primer is 52 bases long.
In this case, the Y and Y ′ molecules are not necessary as the newly extended
segment is already complementary to the Q′ converter molecule.

Once the extended primers hybridize to the complementary converter ssDNA,
the DNA polymerase activity of the RTase elongates the extended primer to 147
bases in the case of the X input and 121 bases with X ′ input. This elongation
creates a double stranded T7 promoter and output sequence, allowing the T7
RNA polymerase to bind and begin the production of Z output RNA molecules.
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Table 1. Possible logical operations of the logic gate showing the required mapping of
logical assignments (1 or 0) to RNA molecules.

RNA AND NAND OR NOR INH NINH
Molecule Mapping Mapping Mapping Mapping Mapping Mapping

X 1 1 0 0 0 1 0 1
X ′ 0 0 1 1 1 0 1 0
Y 1 1 0 0 1 0 1 0
Y ′ 0 0 1 1 0 1 0 1
Z 1 0 0 1 1 1 0 0
Z′ 0 1 1 0 0 0 1 1

3 Logical Operations

Each pair of RNA inputs X and Y can be arbitrarily assigned to a pair of logical
values {0, 1}. Unlike previous similar logic gates, such as the simpler AND gate
[4], the reaction scheme of the logic gate presented here produces an output
molecule for all correct combinations of inputs, and the output strands Z can
also be arbitrarily assigned to logical 1 or 0. As well as allowing us to distinguish

Table 2. Truth table for the reaction
scheme

X Input Y Input Z Output
X Y Z
X ′ Y Z ′

X Y ′ Z ′

X ′ Y ′ Z ′

logical 0 from a malfunctioning of the
gate, this has the added benefit of ex-
tending the functionality of this logic
gate to multiple logical operations.

The gate is capable of performing
any logical operation which combines
two inputs, and outputs one molecule
(Z) for only one specific combination,
and another molecule (Z ′) for any
of the other three combinations, as

shown on the truth table in Table 2. Since the logical values can be assigned
to both input and output strands in a situation dependent manner, any logical
operation in this class can be performed. This class contains the AND, NAND,
OR, NOR, INH (inhibitory, where the logical 1 output is produced only with a
10 or 01 input), and NINH (NOT inhibitory) operations, and the relevant map-
ping of molecule to logical value for each operation is shown in Table 1. Since
this module is capable of both NOR and NAND operations, it is functionally
complete and any logical operation can be realized with a combination of solely
this logic gate module.

4 Numerical Simulation

To demonstrate the functioning of this logic gate module, we first conducted
numerical simulations following the methodology outlined by Takinoue et al.
[4]. The logic gate was modeled using coupled ordinary differential equations,
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with a rate equation for each of the intermediate species and complexes. The
reaction scheme in Fig. 1 does not take into account several back hybridizations
and backward RNase H reactions that are possible under the reaction scheme,
and these led to 6 new intermediate complexes not accounted for by the initial
scheme. For example, the bound X ′ − cx′ complex is capable of undergoing
reverse transcription to elongate the DNA, as well as an RH reaction to digest
the X ′ input RNA. Taking all the possible species and complexes into account,
as well as DNA molecule number conservation, we were ultimately left with 28
ordinary differential equations (not shown for brevity).

Several basic assumptions were made to simplify the model. Firstly, all enzy-
matic reactions were modeled with Michaelis Menten kinetics. Also, hybridiza-
tion reactions were taken to be unidirectional since the bound products are
stable, and the rates were taken to be proportional only to strand length.

d[J ]
dt

= kL[Ii][Ij ] (1)

d[J ]
dt

=
vET [I]
KM

(
1 +

∑
i

[Ii]
KMi

)−1

(2)

d[J ]
dt

=
∑

j

vjETj [I]
[I] + KMj

(3)

For each species or complex in the reaction, the rate equation is composed of
appropriate hybridization and enzymatic terms. Hybridization terms are in the
form of Eq. (1) (square brackets denote concentrations), for reactions of the
form Ii + Ij → J , where L is the base length of the binding section, and k
an experimentally determined binding rate. The enzymatic reactions are of the
general form I+E

k+
⇀
↽
k−

IE
v→ J +E, although since enzymes can catalyze multiple

reactions, and several substrates are capable of binding to multiple enzymes,
it was necessary to use 2 different terms for each case. When substrates are
competing for enzymes, Eq. (2) is used, with the parameter v denoting the rate
of the enzymatic reaction, ET the total enzyme concentration, KM = k−+v

k+

and is the Michaelis-Menten constant for the reaction, and with the sum over i
being the sum over the other possible reactions capable of being catalyzed by the
enzyme. When enzymes compete for substrates, Eq. (3) is used, with the sum
denoting the sum over all enzyme species capable of performing the reaction.
To further simplify the equations, the results were normalized such that kL = 1
for L = 26 bases, and all RNA and DNA concentrations were normalized to
[Q] = [Q′] = 1. Full derivations of equations (1)–(3) are given in reference [4].

The model was parametrized using results reported in other biochemical re-
search. For RTase the Michaelis-Menten parameters are taken as KM,RT =
0.01 uM for all reactions, and the maximum enzymatic catalysis rates for RTase
are taken as vRT = 2 s−1 for reverse transcription, vRT,DP = vRT

3 for DNA
polymerization and vRT,RH = vRT

1200 for the RTase RNase H activity [5,6].



A DNA Based Molecular Logic Gate Capable 91

Fig. 2. Numerical simulation results: (a) Output RNA concentration as a function of
time, with the red line corresponding to Z output RNA concentration for the (X, Y )
input, and the green line corresponding to the Z′ output RNA concentration for the
(X ′, Y ′) input. In both cases the input RNA concentrations were kept at 1 normalized
units (= 0.1 μM) (b) Input-output characteristics for the logic gate module showing
output RNA concentration after τ = 500 as a function of initial input RNA, with the
red and green lines showing Z output RNA concentration as a function of X and Y
respectively for the (X, Y ) input, and the blue line showing the Z′ output as a function
of X ′ for the (X ′, Y ′) input.

T7 RNAP has KM,RP = 0.02 μM and vRP = 0.9 s−1 for dsDNA [7], and basal
transcription levels from ssDNA set to KM,RPB = 0.1 μM and vRPB = vRP

2 ,
based on our experiments. RNase H parameters were KM,RH = 7.8 μM (defined
for a 4-mer RNA sequence), vRH = 0.082 s−1 [8]. The hybridization rate k was
set at 10 μM−1s−1, based on our experimental measurements. Whilst many of
the parameters in the literature are defined for slightly different temperatures
than actually occurred in our reactions, we believe that the model captures the
qualitative features of the reaction well. The total enzyme concentrations in the
simulations were taken set to 0.8 M for RTase, 0.15 μM for T7 RNAP and
5.1 × 10−5 M for RNase H, and these were the enzyme concentrations used in
later experiments.

Figure 2(a) shows the results of the numerical simulations. This figure displays
the reaction results for only the (X, Y ) and (X ′, Y ′) input states, since the
kinetics for the (X, Y ′) and (X ′, Y ) reactions are identical to the (X, Y ) and
(X ′, Y ′) cases respectively.

The simulations revealed a lag on the production in the reactions containing the
X input as compared to the X ′ input arising from the extra steps in the reaction.
Several factors contribute to this lag, firstly increased competition for the RTase
enzyme, slowing many enzymatic steps. In particular, the ribunuclease H steps
caused the greatest delay in the reaction, due to the low concentration of RNaseH
itself and the competition for RTase. The lag was shortest at lower concentrations
of input, and increased with input RNA concentration, due to higher concentra-
tions of intermediate steps delaying output production due to increased compe-
tition for enzymes and back reactions. The maximum production rate of output
RNA increased with input concentration, and approached a maximum soon after
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the concentration of the input surpassed the primer concentration, as this led to all
of the relevant converter molecules becoming double stranded. Given enough in-
put RNA, the output production rate is therefore primarily limited by the concen-
tration of T7 RNAP, as the concentration of double stranded converter molecules
is well above the Michaelis-Menten constant for T7 RNAP.

Fig. 2(b) shows the theoretical input-output characteristics of the logic gate,
giving the concentration of output RNA after 500 simulation time units (τ) as
a function of input RNA concentration. The logic gate was sensitive to the in-
put molecules, giving a sharp increase in response as the concentration of input
molecules is raised from zero. A maximum is reached at the point when there
was enough input RNA to lead to the full conversion of the converter molecules
from ssDNA to dsDNA, and this is slightly higher than the concentration of the
primers due to the unwanted back reactions. After the peak, increasing input
RNA concentration did not further increase the gradient of output RNA con-
centration, but did linearly increase the lag time, thus there was a shallow linear
decrease in the RNA output concentration as input concentration is increased.
For the (X, Y ) (and (X, Y ′)) input the production was slightly more sensitive
to the X input RNA than to the Y (or Y ′) input RNA.

5 Experimental Data

Weexperimentally demonstrated the proper operation of the logic gate in two sepa-
rateways.Firstly, the production of the correct intermediate states of the logic gate
were demonstrated by showing the elongation of DNA primer strands. Secondly,
we observed the real time production kinetics of the correct output RNA strands.

5.1 Correct Elongation

To demonstrate correct formation of intermediate states, the full logic gate re-
action was carried out with ssDNA primer strands tagged with fluorescent dye
at the 5’ end, Cy5-cx and Cy3-cx′. The dyes emit fluorescence at different wave-
lengths, allowing the products to be easily identified.

The full reaction for each of the four input states (X, Y ), (X, Y ′), (X ′, Y )
and (X ′, Y ′) was carried out at 50 ◦C for 2 hours. The results of each reac-
tion were mixed with a denaturing 8M Urea and TBE electrophoresis buffer,
and added to different lanes of a denaturing gel containing 12% polyacrylamide
(acrylamide/bisacrylamide, 29:1). The electrophoresis was then performed at 250
V and 65 ◦C. Following the separation of the reaction products, the gel was im-
aged at the appropriate wavelengths to observe Cy5 and Cy3 fluorescence using
a fluoroimage analyzer, FLA-5100 (Fuji Film, Japan).

Figure 3 shows the results of the electrophoresis, clearly showing the cor-
rectly elongated fluorescent primers. In both images, the bottom-most band
corresponds to the unelongated primers. As expected from the reaction scheme,
the Cy5-cx primer elongation only occurred in the reactions containing the X
input RNA, whereas the Cy3-cx′ primer was elongated only in the presence
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Fig. 3. Images of Cy5 and Cy3 fluorescence
intensity in the same gel after denaturing gel
electrophoresis

of the X ′ molecule. The Cy5-
cx primer was elongated 3 times,
firstly to 52 bases, then to 78 bases,
by successive steps of RNA hy-
bridization, reverse transcription,
and RNA digestion, the third 147
base product was created by the
DNA polymerization step after
hybridization with the converter
molecule. In contrast, the Cy3-cx′

primer was elongated twice, firstly
to 52 bases and then to 121 bases
following binding to the converter
molecule Q′ and DNA polymeriza-
tion, as expected from the reaction
scheme.

5.2 Real Time Operation

To experimentally observe the real time production of output RNA molecules,
the full reaction was carried out using molecular beacons to report on the output
of Z RNA molecules. The molecular beacons are RNA/DNA molecules capable
of forming stem and loop structures, with the loop containing a segment com-
plementary to the RNA sequences of interest. The ends of the molecular beacons
strands are attached to a fluorophore and a quencher such that the hairpin state
does not emit fluorescence due to FRET (fluorescence resonance energy transfer)
quenching the fluorophore. Two molecular beacon types were added to the reac-
tion, cz-FAM and cz′-Cy5, to report on Z and Z ′ respectively, and the beacons
are spectrally distinct. The molecular beacons were annealed before the reaction
to ensure that they were in the hairpin state, and consequently emit only low
fluorescence in the absence of the appropriate Z molecule.

The full reaction for each of the 4 input states was conducted at 50 ◦C using
the same buffer condition as for the electrophoresis reaction, with the exception of
the addition of 1.5 μM of cz-FAM and cz′-Cy5 molecular beacons. The FAM and
Cy5 fluorescence intensity was then measured every 30 seconds in real time PCR
apparatus, the LightCycler 480 II (Roche), and the results are given in Fig. 4.

The results clearly show that the logic gate reaction produced the expected
outputs. The significant gains in fluorescence occurred only for the input states
in which we expect the appropriate Z output molecule to be present. The flu-
orescence intensity in reactions containing the correct inputs increased over 3
fold compared to those without in a period of 2 hours, allowing for robust result
determination. The behaviour of the fluorescence intensity for reactions without
the appropriate inputs were indistinguishable from no input at all, and the slight
increase in intensity corresponds to basal levels of spurious transcription arising
from T7 RNAP acting on ssDNA converter strands.
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Fig. 4. Real time PCR data showing the normalized fluorescence intensity of spectrally
distinct molecular beacons during the same reaction. (a) cz-FAM molecular beacon
fluorescence intensity reporting on Z output RNA molecules, (b) cz′-Cy5 molecular
beacon fluorescence intensity reporting on Z′ RNA. In both charts, the red line corre-
sponds to the (X, Y ) input, the green line to the (X, Y ′) input, the dark blue line to
the (X, Y ′) input, the purple line to the (X ′, Y ′) input, and the light blue line to no
input RNA molecules present. The fluorescence intensity is normalized to the intensity
of the molecular beacon at 95 ◦C.

To show the input-output characteristics of the gate, the fluorescence intensity
of the cz′-Cy5 molecular beacon is shown as a function of input RNA concen-
tration in Fig. 5. Since the reactions for the (X, Y ) and (X, Y ′) have the same
kinetics, differing only in the sequences of the DNAs and RNAs, only the results
for the (X, Y ′) state are shown in comparison to (X ′, Y ′) (itself being identical
to (X ′, Y )) so that Cy5 fluorescence can be compared.

Figure 5 demonstrates the experimentally determined input-output charac-
teristics of the logic gate module, with the fluorescence intensity of the cz′-Cy5
molecular beacon shown as a function of input RNA concentration for two com-
binations of inputs that produce the Z ′ output RNA molecule. The logic gate
was sensitive to low concentrations of input RNA, with the normalized fluores-
cence intensity of the molecular beacon increasing to over 2 fold the basal levels
with even 0.025 μM of input RNA. The shape of the output response matches
theoretical predictions, peaking close to 0.1 μM after which there was a shallow
decline due to increased lag time. Also as predicted by simulation, the output
was more sensitive to the X input RNA molecules than the Y ′.

The experimentally determined results in Figs. 4 and 5 matched those of the
numerical simulations results in Fig. 2 well. The kinetics of the X input states
displayed the production lag predicted by the models, which was on the order of
10 minutes. The gradients of Z and Z ′ production were similar, also matching
simulation results. The difference in the gradients of the output of the X and
X ′ reactions was more pronounced than the models suggested, although this
can be understood to have arisen from RNA degradation occurring during the
experiments that the model did not take into account.
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Fig. 5. Cy5 fluorescence intensity reporting on the Z′ output RNA as a function of
input RNA concentration after 3000 seconds of the reaction. Blue line and triangle
markers correspond to varying X ′ for the (X ′, Y ′) input, the red line with circular
markers corresponds to varying X for the (X, Y ′) input, and the green line with square
markers corresponds to varying Y ′ for the (X, Y ′) input.

6 Discussion

We have successfully demonstrated numerically and experimentally the function-
ing of the of this RTRACS logic gate module. The production of correct RNA
output molecules is significant enough to allow for robust determination of the
result of the logical operation on hour timescales. The lags in production arising
from more reaction steps for certain input combinations were only on the order
of 10 minutes, and are thus unlikely to slow downstream kinetics significantly
if this module is used in a complex reaction network. The logic gate was also
sensitive to input RNA concentrations, and gives a significant increase in output
RNA at all input RNA concentrations above 0.5 μM .

The versatility of the logical operations possible by this gate is very promis-
ing, allowing complex logical operations to be performed with combinations of
this logic gate module in series. When embedded in an RTRACS network com-
prised of several modules, this logic gate is capable of performing different logical
operations in different situations without needing to alter the network, adding
to the power and versatility of RTRACS. To demonstrate that the gates can be
chained together, simulations were performed with a linear growth of input RNA
molecules rather than at a fixed initial concentration, as would be the case if
one module followed another in series. The input RNA molecule concentrations
were initially at 0, and increased with a maximal gradient of output RNA con-
centration found in Fig. 2(a). The results in Fig. 6 demonstrate that although
the lag on the output of the second gate us larger, there was still a significant
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Fig. 6. Chaining gates: simulation results for the operation of the gate varying initial
conditions. The green line corresponds to the Z output of the gate with an initial fixed
amount of X and Y input RNA molecules (1 normalized unit = 0.1 μM), the red line
is the Z output for a linear increase in X and Y input RNA molecules from 0 with the
gradient being the maximal gradient of the green line.

increase in output RNA for the second gate, and the output production rate did
eventually reach the maximal rate. In this way, gates connected in series could
perform computation through successive logical operations.

Although the gate is not dynamic since output production continues indefi-
nitely once the logical operation is complete, given enough monomers and enzyme
activity, components of the logic gate remain unused, which raises intriguing pos-
sibilities for their reuse in subsequent reactions. For example, after an (X, Y )
input creates the Z producing duplex, the cx′ and Q′ molecules are still avail-
able for subsequent operations, so that in certain situations the gate could be
used more than once. Such free components of the module could also provide
efficiencies when scaling up RTRACS to contain several such modules.

The numerical modeling of the gate has been shown as a useful and accurate
tool to model the operation of the gate, and such simulations could be extended
to model several modules in concert. This would be a valuable tool in the design
of more complex RTRACS circuits, and to optimize designs for particular tasks.

7 Conclusion

We have successfully demonstrated the proper functioning of the logic gate mod-
ule, and have shown that our numerical models can accurately portray the be-
haviour of the module. The sensitivity and high versatility of this basic module
shows great promise in giving RTRACS powerful computing capabilities.
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Abstract. Splicing as a binary word/language operation is inspired by
the DNA recombination under the action of restriction enzymes and
ligases, and was first introduced by Tom Head in 1987. Shortly thereafter,
it was proven that the languages generated by (finite) splicing systems
form a proper subclass of the class of regular languages. However, the
question of whether or not one can decide if a given regular language is
generated by a splicing system remained open. In this paper we give a
positive answer to this question. Namely, we prove that, if a language
is generated by a splicing system, then it is also generated by a splicing
system whose size is a function of the size of the syntactic monoid of the
input language, and which can be effectively constructed.

1 Introduction

In [10] Head described an operation on formal languages, called splicing, which
models DNA recombination, a cut-and-paste operation on DNA strands under
the action of restriction enzymes and ligases. A splicing system consists of a set
of axioms or initial words and a set of (splicing) rules. The most commonly used
definition for a splicing rule is a quadruple of words r = (u1, v1;u2, v2). This rule
splices two words x1u1v1y1 and x2u2v2y2: the words are cut between the factors
u1, v1, respectively u2, v2, and the prefix (the left segment) of the first word is
recombined by catenation with the suffix (the right segment) of the second word,
see Figure 1 and also [17].

Splicing as a language-theoretic word operation is meant to abstract the ac-
tion of two compatible restriction enzymes and the ligase enzyme on two DNA
strands. The first enzyme recognizes the subword u1v1, called its restriction
site, in any DNA string and cuts the string containing this subword between u1

and v1. The second restriction enzyme, with restriction site u2v2, acts similarly.
Assuming that the “sticky ends” obtained after these cuts are in some sense
“compatible”, the enzyme ligase aids then the recombination (catenation) of the
first segment of one cut string with the second segment of another cut string.
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x1 u1 v1 y1

x2 u2 v2 y2

=⇒ x1 u1

v2 y2

v1
y1

u2

x2

Fig. 1. Splicing of the words x1u1v1y1 and x2u2v2y2 by the rule r = (u1, v1;u2, v2).
The splicing result is the word x1u1v2y2.

A splicing system generates a language which contains every word that can
be obtained by successively applying rules to axioms and the intermediately
produced words. The most natural variant of splicing systems, often referred to
as finite splicing systems, is to consider a finite set of axioms and a finite set of
rules. In this paper, by a splicing system we always mean a finite splicing system.
Shortly after the introduction of splicing in formal language theory, Culik II
and Harju [6] proved that splicing systems generate regular languages, only; see
also [12,16]. Gatterdam [7] gave (aa)∗ as an example of a regular language which
cannot be generated by a splicing system; thus, the class of languages generated
by splicing systems is strictly included in the class of regular languages. However,
for a regular language L over an alphabet Σ, adding a marker b /∈ Σ to the left
side of every word in L results in the language bL which can be generated by a
splicing system [11]; e. g., the language b(aa)∗ is generated by the axioms {b, baa}
and the rule (baa, ε; b, ε), where ε is the empty word.

This led to the question of whether or not one of the known subclasses of the
regular languages corresponds to the class S of languages which can be generated
by a splicing system. All investigations to date indicate that the class S does
not coincide with another naturally defined language class. A characterization
of reflexive splicing systems using Schützenberger constants has been given by
Bonizzoni, de Felice, and Zizza [1–3]. A splicing system is reflexive if for all rules
(u1, v1;u2, v2) in the system we have that (u1, v1;u1, v1) and (u2, v2;u2, v2) are
rules in the system, too. A word v is a Schützenberger constant of a language
L if x1vy1 ∈ L and x2vy2 ∈ L imply x1vy2 ∈ L [18]. Recently, it was proven by
Bonizzoni and Jonoska that every splicing language has a constant [5]. However,
not all languages which have a constant are generated by splicing systems, e. g.,
in the language L = (aa)∗+b∗ every word bi is a constant, but L is not generated
by a splicing system.

Another approach was to find an algorithm which decides whether a given
regular language is generated by a splicing system. This problem has been in-
vestigated by Goode, Head, and Pixton [8, 9, 13] but it has only been partially
solved: It is decidable whether a regular language is generated by a reflexive
splicing system. It is worth mentioning that a splicing system by the original
definition in [10] is always reflexive.

In this paper we settle the problem by proving that for a given regular lan-
guage L, it is indeed decidable whether L is generated by a splicing system
(which is not necessarily reflexive), Corollary 1. More precisely, if the language
L is generated by a splicing system, then it is generated by one particular splic-
ing system whose size is a function of the size of the syntactic monoid of L,
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Theorem 1. If m is the size of the syntactic monoid of L, then all axioms and
all components of rules have a length in O(m2). By results from [12, 13], we
can construct a finite automaton which accepts the language generated by this
splicing system, compare it with a finite automaton which accepts L, and, thus,
decide whether L is generated by a splicing system.

Due to page limitations the proofs of most of the lemmas have been omitted
in this version of the paper. The missing proofs can be found in the arXiv
version [15].

2 Notation and Definitions

We assume the reader to be familiar with the fundamental concepts of language
theory, see [14]. Let Σ be an alphabet, Σ∗ be the set of all words over Σ, and
ε denote the empty word. A subset L of Σ∗ is a language over Σ. Throughout
this paper, we consider languages over the alphabet Σ, only. We consider the
letters of Σ to be ordered and for words u, v ∈ Σ∗ we denote the (strict) length-
lexicographical order by u ≤�� v (resp., u <�� v); i. e., u ≤�� v if either |u| ≤ |v|,
or |u| = |v| and u is equal or less than v in lexicographic order. For a length
bound m ∈ N we let Σ≤m denote the set of words whose length is at most m,
i. e., Σ≤m =

⋃
i≤m Σi. Analogously, we define Σ<m =

⋃
i<m Σi. Let w ∈ Σ∗

be a word. If w = xyz for some x, y, z ∈ Σ∗, then x, y, and z are called prefix,
factor, and suffix of w, respectively. If a prefix or suffix of w is distinct from w,
it is said to be proper.

Every language L induces a syntactic congruence ∼L over words such that
u ∼L v if and only if for all words x, y we have xuy ∈ L ⇐⇒ xvy ∈ L.
The syntactic class (with respect to L) of a word u is [u]L = {v | u ∼L v}. The
syntactic monoid of L is the quotient monoid ML = Σ∗/∼L = {[u]L | u ∈ Σ∗}.
It is well-known that a language L is regular if and only if its syntactic monoid
ML is finite. We will use two basic facts about syntactic monoids of regular
languages.

Lemma 1. Let L be a regular language and let w be a word with |w| ≥ |ML|2.
We can factorize w = αβγ with β �= ε such that α ∼L αβ and γ ∼L βγ.

Lemma 2. Let L be a regular language. Every element X ∈ ML contains a
word x ∈ X with |x| < |ML|.

3 Splicing Systems and Regular Languages

We consider the splicing operation as defined in [17]. This is the most commonly
used definition for splicing in formal language theory. The notation we use has
been employed in previous papers, see e. g., [2, 9]. A quadruple of words r =
(u1, v1;u2, v2) ∈ (Σ∗)4 is called a (splicing) rule. The words u1v1 and u2v2 are
called left and right side of r, respectively. This splicing rule can be applied to
two words w1 = x1u1v1y1 and w2 = x2u2v2y2, that each contain one of the sides,
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in order to create the new word z = x1u1v2y2, see again Figure 1. This operation
is called splicing and it is denoted by (w1, w2) �r z. The splicing position of this
splicing is the position between the factors x1u1 and v2y2 in z.

For a rule r we define the splicing operator σr such that for a language L

σr(L) = {z ∈ Σ∗ | ∃w1, w2 ∈ L : (w1, w2) �r z}

and for a set of splicing rules R, we let σR(L) =
⋃

r∈R σr(L). The reflexive and
transitive closure of the splicing operator σ∗

R is given by

σ0
R(L) = L, σi+1

R (L) = σi
R(L) ∪ σR(σ

i
R(L)), σ∗

R(L) =
⋃
i≥0

σi
R(L).

A finite set of axioms I ⊆ Σ∗ and a finite set of splicing rules R ⊆ (Σ∗)4

form a splicing system (I, R). Every splicing system (I, R) generates a language
L(I, R) = σ∗

R(I). Note that L(I, R) is the smallest language which is closed
under the splicing operator σR and includes I. It is known that the language
generated by a splicing system is regular, see [6, 16]. A (regular) language L is
called a splicing language if a splicing system (I, R) exists such that L = L(I, R).

A rule r is said to respect a language L if σr(L) ⊆ L. It is easy to see that
for any splicing system (I, R), every rule r ∈ R respects the generated language
L(I, R) and a rule r /∈ R respects L(I, R) if and only if L(I, R ∪ {r}) = L(I, R).
Furthermore, we say a splicing step (w1, w2) �r z respects a language L if
w1, w2 ∈ L and r respects L; obviously, this implies z ∈ L, too.

The purpose of this section is to prove that if a regular language L is a splicing
language, then it is created by a splicing system (I, R) which only depends on
the syntactic monoid of L.

Theorem 1. Let L be a splicing language and m = |ML|. The splicing system

(I, R) with I = Σ<m2+6m ∩ L and

R =
{
r ∈ Σ<m2+10m ×Σ<2m ×Σ<2m ×Σ<m2+10m

∣∣∣ r respects L
}

generates the language L = L(I, R).

The structure of this section is the following. In Section 3.1 we will present
techniques to obtain rules that respect a regular language L from other rules
respecting L and we show how we can modify a single splicing step, such that
the words used for splicing are not significantly longer than the splicing result;
similar results can be found in [8, 9]. In Section 3.2 we use these techniques to
show that a long word z ∈ L can be obtained by a series of splicings from a set
shorter words from L and by using rules which satisfy certain length restrictions.
Finally, in Section 3.3 we prove Theorem 1.

3.1 Rule Modifications

Our first lemma tells us that we can extend the sides of a rule r such that the
extended rule respects all languages that are respected by r.
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Lemma 3. Let r = (u1, v1;u2, v2) be a rule which respects a language L. For
every word x, the rules (xu1, v1;u2, v2), (u1, v1x;u2, v2), (u1, v1;xu2, v2), and
(u1, v1;u2, v2x) respect L as well.

Henceforth, we will refer to the rules (xu1, v1;u2, v2), (u1, v1x;u2, v2) as exten-
sions of the left side and to (u1, v1;xu2, v2), (u1, v1;u2, v2x) as extensions of the
right side.

Next, for a language L, let us investigate the syntactic class of a rule r =
(u1, v1;u2, v2). The syntactic class (with respect to L) of r is the set of rules
[r]L = [u1]L × [v1]L × [u2]L × [v2]L and two rules r and s are syntactically
congruent (with respect to L), denoted by r ∼L s, if s ∈ [r]L.

Lemma 4. Let r be a rule which respects a language L. Every rule s ∈ [r]L
respects L.

Consider a splicing (x1u1v1y1, x2u2v2y2) �r x1u1v2y2 which respects a regular
language L, as shown in Figure 2 on the left side. The factors v1y1 and x2u2 may
be relatively long but they do not occur as factors in the resulting word x1u1v2y2.
In particular, it is possible that two long words are spliced and the outcome is
a relatively short word. Using the Lemmas 3 and 4, we can find shorter words
in L and a modified splicing rule which can be used to obtain x1u1v2y2.

x1 u1

v2 y2

v1
y1

u2

x2

=⇒ x1 u1

v2 y2

ṽ1

ũ2

Fig. 2. Replacing v1y1 and x2u2 by short words

Lemma 5. Let r = (u1, v1;u2, v2) be a rule which respects a regular language L
and w1 = x1u1v1y1 ∈ L, w2 = x2u2v2y2 ∈ L. There is a rule s = (u1, ṽ1; ũ2, v2)
which respects L and words w̃1 = x1u1ṽ1 ∈ L, w̃2 = ũ2v2y2 ∈ L such that
|ṽ1| , |ũ2| < |ML|. More precisely, ṽ1 ∈ [v1y1]L and ũ2 ∈ [x2u2]L.

In particular, whenever (w1, w2) �r x1u1v2y2 = z, then there is a splicing
(w̃1, w̃2) �s z which respects L where w̃1, w̃2, and s have the properties described
above.

3.2 Series of Splicings

Let us consider the creation of words by a series of splicings. We begin with a
simple observation. In case when a word is created by two (or more) successive
splicings, but the sides of the splicings do not cover the splicing position of
the other splicing, then the order of these splicings is irrelevant. Recall that
the splicing position of a splicing (w1, w2) �r z with r = (u1, v1;u2, v2) is the
position between the factors u1 and v2 in z. The notation in Remark 1 is the
same as in the Figure 3.
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x1 u1
v1

y1

u2

x2

z2
ṽ2

y2

v3 y3
u3

x3

ũ2

v2

Fig. 3. The word x1u1z2v3y3 can be created by either using the right splicing first or
by using the left splicing first

Remark 1. Let w1 = x1u1v1y1, w2 = x2u2z2ṽ2y2, where v2 is a prefix of z2
and ũ2 is a suffix of z2, w3 = x3u3v3y3 be words and r1 = (u1, v1;u2, v2),
r2 = (ũ2, ṽ2;u3, v3) be rules. In order to create the word z = x1u1z2v3y3 by
splicing, we may use splicings

(w1, w2) �r1 x1u1z2ṽ2y2 = z′, (z′, w3) �r2 z or

(w2, w3) �r2 x2u2z2v3y3 = z′′, (w1, z
′′) �r1 z.

Consider a splicing system (J, S) and the generated language L = L(J, S). Let n
be the length of the longest word in J and let μ be the length-lexicographically
largest word that is a component of a rule in S. Define Wμ = {w ∈ Σ∗ | w ≤�� μ}
as the set of words which are at most as large as μ, in length-lexicographic order.
Furthermore, let I = Σ≤n ∩ L be a set of axioms and let

R =
{
r ∈ W 4

μ

∣∣ r respects L
}

be a set of rules. It is not difficult to see that J ⊆ I, S ⊆ R, and L = L(I, R).
Whenever convenient, we will assume that a splicing language L is generated by
a splicing system which is of the form of (I, R).

Let xzy ∈ L be a word where the length of the middle factor z is at least |μ|.
The creation of xzy by splicing in (I, R) can be traced back to a word x1zy1 = z1
where either z1 ∈ I or where z1 is created by a splicing that affects the factor
z, i. e., the splicing position lies in the factor z. The next lemma describes this
creation of xzy = zk+1 by k splicings in (I, R), and shows that we can choose
the rules and words which are used to create zk+1 from z1 such that the words
and bridges of rules are not significantly longer than  = max {|x| , |y|}.

Lemma 6. Let L be a splicing language, let , n ∈ N, let m = |ML|, and
let μ be a word with |μ| ≥  + 2m such that for I = Σ≤n ∩ L and R ={
r ∈ W 4

μ

∣∣ r respects L
}
we have L = L(I, R).

Let zk+1 = xk+1zyk+1 with |z| ≥ |μ| and |xk+1| , |yk+1| ≤  be a word that
is created by k splicings from a word z1 = x1zy1 where either z1 ∈ I or z1 is
created by a splicing (w̃1, w̃2) �s z1 where w̃1, w̃2 ∈ L, s respects L, and the splic-
ing position lies in the factor z. Furthermore, for i = 1, . . . , k the intermediate
splicings are either

(i) (wi, zi) �ri xi+1zyi+1 = zi+1, wi ∈ L, ri ∈ R, yi+1 = yi, and the splicing
position lies on the left of the factor z or

(ii) (zi, wi) �ri xi+1zyi+1 = zi+1, wi ∈ L, ri ∈ R, xi+1 = xi, and the splicing
position lies on the right of the factor z.
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There are rules and words creating zk+1, as above, satisfying in addition:

1. There is k′ ≤ k such that for i = 1, . . . , k′ all splicings are of the form (i)
and for i = k′ + 1, . . . , k all splicings are of the form (ii).

2. For i = 1, . . . , k′ the following bounds apply: |xi| <  + 2m, |wi| <  + 2m,
ri ∈ Σ<�+m ×Σ<2m ×Σ<2m ×Wμ, and xk′+1 = xk′+2 = · · · = xk+1.

3. For i = k′+1, . . . , k the following bounds apply: |yi| < +2m, |wi| < +2m,
ri ∈ Wμ ×Σ<2m ×Σ<2m ×Σ<�+m, and y1 = y2 = · · · = yk′+1.

In particular, if n ≥ + 2m, then w1, . . . , wk ∈ I.

The first statement follows by the fact that |z| ≥ |μ| and by Remark 1. The
proof of the other two statements requires a much more complicated analysis of
the creation of the word zk+1 by splicing which is omitted in this version of the
paper.

3.3 Proof of Theorem 1

Let L be a splicing language and m = |ML|. Throughout this section, by ∼
we denote the equivalence relation ∼L and by [ · ] we denote the corresponding
equivalence classes [ · ]L.

Recall that Theorem 1 claims that the splicing system (I, R) with

I = Σ<m2+6m ∩ L and

R =
{
r ∈ Σ<m2+10m ×Σ<2m ×Σ<2m ×Σ<m2+10m

∣∣∣ r respects L
}

generates L. The proof is divided in two parts. In the first part, Lemma 7, we

proof that the set of rules can be chosen as
{
r ∈ (Σ<m2+10m)4

∣∣∣ r respects L
}

for some finite set of axioms. The second part concludes the proof of Theorem 1,
by employing the length bound 2m for the second and third component of rules
and by proving that the set of axioms can be chosen as I = Σ<m2+6m ∩ L.

Lemma 7. Let L and m as above. There exists n ∈ N such that the splicing
system (I, R) with I = Σ≤n ∩ L and

R =
{
r ∈ (Σ<m2+10m)4

∣∣∣ r respects L
}

generates the same language L = L(I, R).

Proof. As every word in I belongs to L and every rule in R respects L, the
inclusion L(I, R) ⊆ L holds (for any n).

Let (I ′, R′) be a splicing system that generates L = L(I ′, R′) and let n such
that n − 6m is larger than any word in I ′ and larger than any component of a
rule in R′. As in the claim, let I = Σ≤n ∩ L.

For a word μ we let Wμ = {w ∈ Σ∗ | w ≤�� μ}, as we did before. Define the
set of rules where every component is length-lexicographically bounded by μ

Rμ =
{
r ∈ W 4

μ

∣∣ r respects L
}
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and the language Lμ = L(I, Rμ); clearly, Lμ ⊆ L. For two words μ ≤�� v we see
that Rμ ⊆ Rv, and hence, Lμ ⊆ Lv. Thus, if Lμ = L for some word μ, then for
all words v with μ ≤�� v, we have Lv = L. As L = L(I ′, R′), there exists a word
μ such that Lμ = L and |μ| + 6m ≤ n. Let b be the lexicographically largest

letter in Σ. For ν = bm
2+10m−1 the set Rν contains exactly the rules that respect

L and where every component has a length of less than m2 + 10m; therefore,
Rν = R and if Lν = L, the claim holds. For the sake of contradiction assume
Lν �= L and let μ be the smallest word, in the length-lexicographic order, such
that Lμ = L; hence, |μ| ≥ m2 + 10m. Let μ′ be the next-smaller word than μ,
in the length-lexicographic order, and let S = Rμ′ . Note that L(I, S) � L and
Rμ \ S contains only rules which have a component that is equal to μ.

Choose w from L\L(I, S) as a shortest word, i. e., for all w̃ ∈ L with |w̃| < |w|,
we have w̃ ∈ L(I, S). Factorize w = xzy with |x| = |y| = 3m, n. b., |z| ≥ |μ|,
otherwise w ∈ I. Factorize μ = δ1αβγδ2 with |δ1| , |δ2| ≥ 5m, |αβγ| = m2, β �= ε,
α ∼ αβ, and γ ∼ βγ (Lemma 1).

Wewill showthat there is a series of splicingswhich createsw froma set of shorter
words and by using splicing rules from S. This yields a contradiction to the choice
of w. In order to find this series of splicings we investigate the creation of a word
xz̃y where z̃ is derived by using a pumping argument on all factors αβγ in z.

Let j be a sufficiently large even number (j > 4 |μ| + |z| will suffice). Let z̃
be the word that we obtain by replacing all factors αβγ by αβjγ in z by the
following pumping algorithm:

1. z̃ := z;
2. if there is a factor αβγ of z̃ such that neither

(a) the factor αβγ is a prefix of a factor αβj/2 in z̃ nor
(b) the factor αβγ is a suffix of a factor βj/2γ in z̃,
then replace this factor by αβjγ;

3. repeat step 2 until there is no such factor αβγ left.

A proof that the algorithm will terminate, hence z̃ is well defined, can be found
in the arXiv version [15]. The new word z̃ may still contain the factor αβγ, but
if it does, then (a) or (b) holds. By induction and as αβγ ∼ αβjγ, it is easy to
see that z̃ ∼ z.

Let us trace back the creation of xz̃y ∈ L by splicing in (I, Rμ) to a word
x1z̃y1 where either x1z̃y1 ∈ I or where x1z̃y1 is created by a splicing that affects
z̃, i. e., the splicing position lies within the factor z̃. Let zk+1 = xk+1 z̃yk+1,
where xk+1 = x and yk+1 = y, be created by k splicings from a word z1 = x1z̃y1
where either x1z̃y1 ∈ I or x1z̃y1 is created by a splicing (w̃1, w̃2) �s z1 with
w̃1, w̃2 ∈ L, s ∈ Rμ, and the splicing position lies in the factor z̃. Furthermore,
for i = 1, . . . , k the intermediate splicings are either

(i) (wi, zi) �ri xi+1z̃yi+1 = zi+1, wi ∈ L, ri ∈ Rμ, yi+1 = yi, and the splicing
position lies on the left of the factor z̃ or

(ii) (zi, wi) �ri xi+1z̃yi+1 = zi+1, wi ∈ L, ri ∈ Rμ, xi+1 = xi, and the splicing
position lies on the right of the factor z̃.

Note that |z̃| ≥ |z| ≥ |μ| and, therefore, we can apply Lemma 6 (with  = 3m).
Thus, wi ∈ I and |xi| , |yi| < 5m for i = 1, . . . , k.
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Consider a rule ri in a splicing of the form (i). By Lemma 6, ri ∈ Σ<4m ×
Σ<2m ×Σ<2m ×Wμ. Suppose the fourth component of ri covers a prefix of the
left-most factor αβj/2 in z̃ which is longer than α (as j is very large, it cannot
fully cover αβj/2). By extension (Lemma 3), we may write ri = (u1, v1;u2, ṽαβ

e)
for some e ≥ 1. By Lemma 4 and as α ∼ αβ, we may replace this rule by
(u1, v1;u2, ṽα). Note that, as the fourth component got shorter, now ri ∈ S.

After we symmetrically treated rules of form (ii), these new rules r1, . . . , rk
and the words w1, . . . , wk can be used in order to create w = xk+1zyk+1 from
x1zy1 by splicing. In order to see this, observe that, even though the factors αβγ
in z, which we pumped up before, may overlap with each other, the left-most
(and right-most) position where we replaced β by βj is preceded by the factor
α (resp., succeeded by the factor γ) in z̃.

Furthermore, the rules r1, . . . , rk all belong to S. By contradiction, suppose
ri /∈ S for some i and, by symmetry, suppose the i-th splicing is of the form (i).
Thus, the fourth component of ri has to be μ = δ1αβγδ2. As |δ1| ≥ 5m > |xi|,
αβγ is a factor of z̃. The pumping algorithm ensured that (a) the prefix α is
succeeded by βj/2 or (b) the suffix γ is preceded by βj/2. As j/2 is very large
and the splicing position is too close to the left end of zi, case (b) is not possible.
Thus, the fourth component of ri overlaps in more than |α| letters with the
left-most factor αβj/2 in z̃ and we used the replacement above, which ensured
ri ∈ S — the contradiction.

Let us summarize: If x1zy1 was in L(I, S), then w ∈ L(I, S) as well, which
would contradict the choice of w. If z1 = x1z̃y1 ∈ I, then x1zy1, which is at
most as long as z1, would belong to I and we are done. We only have to consider
the case when (w̃1, w̃2) �s z1 = x1z̃y1 and the splicing position lies within
the factor z̃. We will show that, from this splicing, we derive another splicing
(ŵ1, ŵ2) �t x1zy1 which respects L(I, S) and, therefore, yields the contradiction.

Let s = (u, v1;u2, v), w̃1 = xuv1 and w̃2 = u2vy where |v1| , |u2| < m, by
Lemma 5 (here, x and y are newly chosen words). We have

z1 = x1z̃y1 = xuvy

where xu is a proper prefix of x1z̃ and vy is a proper suffix of z̃y1.
We will see next that if s /∈ S, then we can use a rule s̃ ∈ S and maybe slightly

modified words in order to obtain z1 by splicing. If s /∈ S, then u = μ or v = μ.
Suppose u = μ = δ1αβγδ2. Thus, αβγ is a factor of z̃, as |δ1| ≥ 5m > |x1|, and,
as such, either (a) α is succeeded by βj/2 or (b) γ is preceded by βj/2. If (b)
holds, δ1α is a suffix of a word in β+. We may write δ1α = β2β

� where  ≥ 0
and β2 is a suffix of β. Replace u by β2γδ1 and use this new rule s̃ in order
to splice (w̃1, w̃2) �s̃ z1. Note that the first component is now shorter than μ.
Otherwise, (a) holds and γδ2v is a prefix of a word in β+. As j is very large
and γ is a prefix of a word in β+, we may extend v (Lemma 3) such that we
can write βγδ2 = β�1β1 and v = β2β

�2γ where 1 ≥ 1, 2 ≥ 0 and β1β2 = β.
Now, we pump down one of the β in the first component and β�2 in the fourth
component and we let s̃ = (δ1αβ

�1−1β1, v1;u2, β2γ) ∼ s. As both components
are shorter than μ, we see that s̃ ∈ S and
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(xδ1αβ
�1−1β1v1, u2β2β

�2+1γy) �s̃ z1,
i. e., we have shifted one of the occurrences of β from w̃1 to w̃2. Note that β2γ
is a prefix of β2β

�2+1γ. Treating the fourth component analogously justifies the
assumption that s ∈ S.

Next, we will pump down the factors αβjγ to αβγ in z̃ again. At every position
where we pumped up before, we are now pumping down (in reverse order) in
order to obtain the words x̂, û, v̂, ŷ from the words x, u, v, y, respectively. For
each pumping step:

If u is covered by the factor αβjγ (which we pump down in this step), extend
u to the left such that it becomes a prefix of αβjγ. Symmetrically, if v is covered
by the factor αβjγ, extend v to the right such that it becomes a suffix of αβjγ
(Lemma 3). Observe that extension ensures that the factor αβjγ is covered by
either xu, uv, or vy. If αβj or βjγ is fully covered by one of x, u, v, or y, then
replace this factor by αβ or βγ, respectively. Otherwise, let us show how to pump
when αβjγ is covered by xu. The cases when αβjγ is covered by uv or vy can
be treated analogously. We can factorize

x = x̃αβj1β1, u = β2β
j2γũ

where β1β2 = β and j1 + j2 + 1 = j. The pumping result are the words x̃αβ1

and β2γũ, respectively.
Observe that, after reversing all pumping steps, x̂û ∼ xu, v̂ŷ ∼ vy, x̂ûv̂ŷ =

x1zy1, and the rule t = (û, v1;u2, v̂) respects L. Furthermore, if we used extension
for u (or v) in one of the steps, then |û| ≤ m2 (resp., |v̂| ≤ m2); in any case
t ∈ S. Recall that w was chosen as the shortest word from L \ L(I, S). As
|x̂ûv1| , |u2v̂ŷ| < |z|+6m = |w|, the words x̂ûv1 and u2v̂ŷ belong to L(I, S), and
as (x̂ûv1, u2v̂ŷ) �t x1zy1, we conclude that x1zy1 as well as w belong to L(I, S)
— the desired contradiction. ��

Now, let us outline how the proof of Theorem 1 can be concluded. The full proof
can be found in the arXiv version [15].

For a splicing language L with m = |ML| we intend to prove that the splicing

system (I, R) with I = Σ<m2+6m ∩ L and

R =
{
r ∈ Σ<m2+10m ×Σ<2m ×Σ<2m ×Σ<m2+10m

∣∣∣ r respects L
}

generates the language L = L(I, R). By Lemma 7, we may assume that L is
generated by a splicing system (J, S) where

S =
{
r ∈ (Σ<m2+10m)4

∣∣∣ r respects L
}
.

In order to prove L ⊆ L(I, R), we use induction on the length of words in L. For
w ∈ L with |w| < m2 + 6m, by definition, w ∈ I ⊆ L(I, R).

For w ∈ L with |w| ≥ m2 + 6m, the induction hypothesis states that every
word w̃ ∈ L with |w̃| < |w| belongs to L(I, R). Factorize w = xαβγδy such that
|x| = |y| = 3m, |αβγ| = m2, β �= ε, α ∼ αβ, and γ ∼ βγ.
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The proof idea is similar to the idea in the proof of Lemma 7, but this time
we are using induction instead of a proof-by-contradiction. We use a pumping
argument on β in order to obtain a very long word ŵ. This word has to be
created by a series of splicings in (J, S). Due to Lemma 6 these splicings can be
modified in order to create ŵ by splicing from a set of strictly shorter words and
with rules from R. Just like in the proof of Lemma 7, almost the same words
and rules can be used in order to create w from a set of strictly shorter words
and with rules from R. Then, the induction hypothesis yields w ∈ L(I, R).

4 Conclusion and Final Remarks

The main question we intended to answer when starting our investigation was, if
it is decidable whether a given regular language L is a splicing language. If we can
decide whether a splicing rule respects a regular language and if we can construct a
(non-deterministic) finite automaton accepting the language generated by a given
splicing system, then we can decide whether L is a splicing language as follows.
We compute the splicing system (I, R) as given in Theorem 1, we compute a finite
automaton accepting the splicing language L(I, R), and we test whether L(I, R)
equals to L. Recall that Theorem 1 implies that L is a splicing language if and
only if L = L(I, R) and that equivalence of regular languages is decidable [14]. It
is known from [8, 13] that it is decidable whether a classic splicing rule respects
a regular language. Furthermore, there is an effective construction of a finite au-
tomaton which accepts the language generated by a splicing system [12,16]. These
observations lead to the following decidability result.

Corollary 1. For a given regular language L, it is decidable whether or not L
is a splicing language. Moreover, if L is a splicing language, a splicing system
(I, R) generating L can be effectively constructed.

Another variant of splicing has been defined by Pixton in [16]. Pixton’s variant of
splicing can be seen as more general than the classical splicing, which we investi-
gated in this paper, because every classical splicing rule can easily be translated
into a Pixton splicing rule, but not the other way around. Actually, the class of
classical splicing languages is strictly included in the class of Pixton splicing lan-
guages [4]. In the online version of our paper [15] we also prove that if a regular
language L is a Pixton splicing language, then it is generated by one particular
Pixton splicing system whose size is a function of the size of the syntactic monoid
of L. A decidability result, analogous to Corollary 1, follows immediately.

As final remarks, note that it has been known since 1991 that the class S of lan-
guages that can be generated by a splicing system is a proper subclass of the class
of regular languages. However, to date, no other natural characterization for the
class S exists. The problem of deciding whether a regular language is generated by
a splicing system is a fundamental problem in this context and has remained un-
solved. To the best of our knowledge, the problem was first stated in the literature
in 1998 [11]. In this paper we solved this long standing open problem.
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Abstract. We present a computing model based on the DNA strand
displacement technique which performs Bayesian inference. The model
will take single stranded DNA as input data, representing the presence
or absence of a specific molecular signal (evidence). The program logic
encodes the prior probability of a disease and the conditional probability
of a signal given the disease playing with a set of different DNA com-
plexes and their ratios. When the input and program molecules interact,
they release a different pair of single stranded DNA species whose rela-
tive proportion represents the application of Bayes’ Law: the conditional
probability of the disease given the signal. The models presented in this
paper can empower the application of probabilistic reasoning in genetic
diagnosis in vitro.

1 Introduction

Since the birth of biomolecular computation in Leonard Adleman’s seminal work
[2], different applications have been proposed in the literature. The trend of
resolving NP-complete problems during the early years of the discipline [11]
progressively evolved towards nanotechnology and biomedicine oriented applica-
tions, such as genetic diagnosis and drug delivery automata [5,3,1,4].

An important research line emerged taking advantage of the DNA strand
displacement phenomenon, which in short can be described as follows: a strand
A displaces another strand B from a complex A′B, due to the higher affinity
between A and A′ and the greater stability of the duplex AA′. We cite only a
few contributions to this extensive topic introduced by Yurke et al. [23], like for
example the design of logic gates [19,21,9], DNA automata [22] and theoretical
models [6].

The interest in molecular logical inference was reawakened in 2009 with the
work presented by the group of Prof. Shapiro [15], where the authors developed
an enzyme driven system able to perform autonomously simple logical deductions
with DNA molecules. Since then, Rodríguez-Patón et al. [16,17,13] have been
working on the design of enzyme free logical inference models that only exploit
the DNA strand displacement operation.

D. Stefanovic and A. Turberfield (Eds.): DNA 18, LNCS 7433, pp. 110–122, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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With the exception of the work done by the group of Prof. Benenson about
stochastic enzymatic reactions [1,4], all the logical models cited above share a
common property: they only implement Boolean logic, and thus their output
always represent an absolute truth value (true / false, active / inactive, presence
/ absence, 1 / 0, etc.). None of these deterministic models is able to deal with
uncertain knowledge. Other enzyme free models (but not autonomous) have been
presented implementing stochastic paradigms [10,24].

Probabilistic reasoning can be used when we want to consider diagnostic ac-
curacy or uncertainty of tests in our clinical decisions (i.e. classic systems like
Mycin [20]). With the motivation of designing a model that can process this
uncertainty, this article presents a Bayesian biosensor that makes probabilistic
reasoning and whose output represents the probability (value between 0 and 1)
of a disease. Such type of device can be used to estimate and update the proba-
bility of a certain diagnose based in the light of new evidence, i.e., based on the
presence or absence of a new specific signal (or set of signals). The DNA sensor
device would encode two different probabilities as program data: the conditional
probability of the signal given the disease (P (signal|disease)) and the prior
probability of the disease (P (disease)). Then, when the sensor interacts with an
input representing the evidence of a signal (its presence or absence), Bayes’ Law
would be autonomously computed by means of strand displacement cascades,
releasing a set of DNA species whose ratio encodes the posterior probability of
the disease given the input (P (disease|signal)).

The rest of the paper is structured as follows: Section 2 includes a brief review
of the main concepts in probability theory and Bayesian inference. Section 3 de-
scribes how the model encodes the prior and conditional probabilities, as well as
the input evidences. Section 4 shows an inference process example that updates
the knowledge of a disease applying the Bayes’ rule, and how it is implemented
by our model. Section 5 discusses in detail the scalability and the mapping of
the biological evidences as inputs to the system. Finally, Section 6 summarizes
the conclusions and future work.

2 Principles of the Model

Basic concepts of probability theory and Bayesian inference [14,18] used through-
out the article are summarized first:

Random variable. A function whose possible values are numerical outcomes
of a random phenomenon. It can take different value domains, so that we can
talk about continuous, discrete, or Boolean random variables. This paper will
focus on boolean random variables, that can take the value true or false with
a certain probability. For example, we can talk about the random variable D
representing a given disease, which can be present (true) or absent (false).

Logical proposition. A logical formula expressing an assignment between a
random variable and one of its potential domain values. Hence, the propo-
sitions D = present (also denoted as D1) and D = absent (also denoted as
D0) are the possible formulations that can be hypothesized on the random
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variable D. Generic propositions of a given variable are denoted with its
corresponding lower case letter, for example, P (d) can refer either to P (D1)
or P (D0).

Probability function. A function P that assigns a probability to each value in
the random variable domain (and thus to each potential logical proposition
derived from the variable). Building on the above example, we can talk
about the probability of D as the duple P (d) = 〈P (D1), P (D0)〉. The sum
of probabilities of all the values of the domain must be equal to 1:

P (D1) + P (D0) = 1 (1)

When this function is defined without any dependence on other random
variables, we call it prior probability.

Joint probability. Having a set of different propositions, a1, ..., an, the prob-
ability of all of them happening at the same time is defined by the joint
probability function, represented as P (a1 ∧ ... ∧ an) or P (a1, ..., an).

Conditional probability. This function can be intuitively seen as the degree
of belief in a variable after the observation of other variables related to
the first. So the conditional probability of a proposition a given b is the
probability of a when b is known to occur. It is commonly denoted as P (a|b).
Conditional probability can also be expressed as a function of prior and joint
probabilities:

P (a|b) =
P (a ∧ b)

P (b)
(2)

This formula can be derived into the so called product rule:

P (a ∧ b) = P (a|b) · P (b) = P (b|a) · P (a) (3)

Continuing the above example, when a disease is extensively studied, the
probability of a disease d given the signal s is known and expressed as P (d|s).
This is also called posterior probability.

Conditional independence. Two propositions a and b are conditionally inde-
pendent when they do not have any dependency relationship. In such case
we can rewrite their probabilities as

P (a|b) = P (a); P (b|a) = P (b); P (a, b) = P (a) · P (b) (4)

Bayes’ Law Can be derived from the conditional probability and the product
rule formulations, and is stated as follows:

P (d|s) =
P (s|d) · P (d)

P (s)
(5)

This rule, together with the property of independence, are key in probabilis-
tic reasoning and allows the establishment of relationships between probabil-
ities and evidences. It allows to update the certainty value of a hypothesis or
a diagnosis (prior probability P (d)), in the light of new evidence (P (s)) and
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the signal likelihood (P (s|d)), to obtain an “updated” posterior probability
(P (d|s)).

Assuming we are able to exhaustively estimate all the probabilities con-
cerning the variable D, we can rewrite the law as:

P (d|s) = α · P (s|d) · P (d) = α · P (d ∧ s) (6)

Since the sum of the probabilities P (D = present|s) and P (D = absent|s)
must be equal to 1, we can treat α as a normalization factor.

3 Encoding

Our sensor model aims to implement the product of the probabilities P (s|d) ·
P (d) = P (d∧s) shown in Equation 6. This will be achieved using single stranded
DNA in the encoding of the prior probabilities (P (d)) and double stranded com-
plexes in the encoding of conditional probabilities (P (s|d)). Also the input evi-
dences will need a specific DNA encoding. Details come below:

Encoding Input Evidences

Input evidences are encoded using single stranded DNA. A strand S1 represents
the presence of the signal, while S0 represents its absence. As we talk about
evidences, only one specie can be present at a time: either only input strands S1

(meaning the signal is present) or S0 (meaning the signal is not present). This
input will tell the sensor that the prior probability of the disease needs to be
updated according to the given evidence.

Fig. 1. Encoding input evidences. S1 represents the presence of the signal; S0 represents
its absence. Only S1 or S0 species should be present at the same time.

In case of unwanted presence of one of the two signals in significant con-
centration, the input could not any more be considered as an evidence as the
probabilities Pi (i = 0, 1) it would be different of 1 or 0. Thus the computation
result would be altered and not valid.
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Encoding Prior Probabilities

The prior probability of D is represented as the duple P (d) = 〈P (D1), P (D0)〉.
Our model encodes each value using two different single stranded species: D1 rep-
resenting P (D = present) and D0 representing P (D = absent). The probability
values are implicitly encoded in the ratio of molecules of each specie against the
total for D. If we denote the number of molecules of each specie Ai as |Ai|, we
can express the probability as P (d) =

〈
|A1|

|A1|+|A0| ,
|A0|

|A1|+|A0|
〉
. The Figure 2 shows

an example DNA encoding of P (d) = 〈0.5, 0.5〉. The coloured toeholds at the
5’ end will allow their interaction with the molecules encoding the conditional
probabilities.

Fig. 2. Encoding prior probabilities. The model encodes each value using two different
single stranded species: D1 representing P (D = present) and D0 representing P (D =
absent). The probability P (d) = 〈0.5, 0.5〉 is encoded as the ratio between the number
of molecules of each specie and the total number of species for D.

Encoding Conditional Probabilities

The conditional probability of S given D needs to encode values for the following
propositions:

– (S = present|D = present)
– (S = absent|D = present)
– (S = present|D = absent)
– (S = absent|D = absent)

The reader can see that for each proposition strand d interacting with a con-
ditional probability molecule, two different outputs encoding two different joint
probabilities can be released: (S = present∧d) and (S = absent∧d). Therefore,
from the four different joint probabilities that could be released from the inter-
action of the Di species and the conditional probability molecules (representing
(S = present∧D = present), (S = absent∧D = present), (S = present∧D =
absent) and (S = absent ∧ D = absent)), the system needs to be able to select
only the outputs corresponding to the input evidence:
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– If the input evidence is S1, the output strands released should encode (S =
present ∧ D = present) and (S = present ∧ D = absent).

– If the input evidence is S0, the output strands released should encode (S =
absent ∧ D = present) and (S = absent ∧ D = absent)).

The desired behaviour described above for the conditional probability molecules
can be attained using a motif equivalent to the AND gate presented by Seelig et
al. [19]. Other motifs implementing such logic could be equally valid, but we have
chosen this one due to its simplicity and iteration capability. Figure 3-A shows an
example of how the strands building the joint probability P (S = present∧D =
present) (depicted as S1∧D1) are released in the presence of the input evidence
S1 and D1. Figure 3-B shows the detailed motifs of the molecules that encode
the conditional probabilities P (s|d). Similarly to the case of prior probabilities,
the probability figures are taken as ratios relating to the number of molecules of
each motif. It also shows the formula to establish the correspondence between
each motif and the conditional probability values they encode.

In order to ensure we are working with probability values, the following re-
strictions need to be ensured:

– |S0|D0|
|S0|D0|+|S1|D0| + |S1|D0|

|S0|D0|+|S1|D0| = 1 (derived from Equation 1)

– |S0|D1|
|S0|D1|+|S1|D1| + |S1|D1|

|S0|D1|+|S1|D1| = 1 (derived from Equation 1)

– |S0|D0|+ |S1|D0| = |S0|D1|+ |S1|D1| (this ensures that different |Si|Dj | can
be mixed in the output for a fixed i)

4 Inference Process

Let us imagine we need to diagnose a disease D with the help of its signal S.
The following data is known upfront, due to empirical data:

– Prior probability of the disease:
• P (D = present) = 0.5
• P (D = absent) = 0.5

– Conditional probability of the signal given the disease:
• P (S = absent|D = absent) = 0.7
• P (S = present|D = absent) = 0.3
• P (S = absent|D = present) = 0.2
• P (S = present|D = present) = 0.8

Now we get the confirmation that the signal is present (S = present). What is
now the probability of the disease being present given that the signal is present,
P (D = present|S = present)? Since we don’t know the prior probability of the
signal (P (s)), we cannot directly apply the Bayes’ Law as stated in Equation 5.
We apply the derivation stated in Equation 6 instead:

P (D = present|S = present) = α · P (S = present|D = present) · P (D =
present) = α · 0.8 · 0.5 = α · 0.4
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Fig. 3. Encoding conditional probabilities. (A) The top panel shows the hybridization
flow releasing the joint probability strand P (S = present ∧ D = present) (depicted
as S1 ∧ D1) when the input evidence S = present (depicted as S1) and D = present
(depicted as D1). It also releases a fluorophore from its quencher, which will allow the
measurement of the output. DNA segments named with an asterisk prefix (∗S1 and ∗D1

in this panel) are Watson-Crick complementary to the corresponding toeholds named
without that asterisk. (B) The bottom panel shows the four motifs encoding the condi-
tional probabilities P (s|d), together with the formulas that relate their concentrations
to the respective probability values.
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In order to find α, we need to calculate P (D = absent|S = present) as well:

P (D = absent|S = present) = α·P (S = present|D = absent)·P (D = absent) =
α · 0.3 · 0.5 = α · 0.15

Since P (D = present|S = present) + P (D = absent|S = present) = 1 (see
Equation 1) we can derive α = 1.81 and P (D = present|S = present) = 0.73).

Following the encoding model described in Section 3, we can reproduce with
DNA the inference process described above:

– The prior probability P (d) = 〈0.5, 0.5〉 is encoded with two different DNA
species, D1 and D0. Each specie will count 50 copies (|D1| = 50, |D0| = 50).

– The conditional probabilities are encoded as follows:
• P (S = absent|D = absent) is encoded with 70 copies of the complex

S0|D0.
• P (S = present|D = absent) = 0.3 is encoded with 30 copies of the

complex S1|D0.
• P (S = absent|D = present) = 0.2 is encoded with 20 copies of the

complex S0|D1.
• P (S = present|D = present) = 0.8 is encoded with 80 copies of the

complex S1|D1.
– The input evidence S = present is encoded with a unique DNA specie, S1,

with a number of copies much bigger than the total number of molecules
encoding conditional probabilities.

Then the DNA inference process would start by mixing evidences, prior and
conditional probabilities all together (see Figure 4):

1. The strands Dj interact with the strands Si|Dj. Assuming an ideal solution
(perfectly mixed), the number of complexes Si|Dj “activated” by strands Dj

would be updated as follows:
– 35 copies of the complex S0|D0.
– 15 copies of the complex S1|D0.
– 10 copies of the complex S0|D1.
– 40 copies of the complex S1|D1.

2. The input strands S1 interact with the complexes S1|D0 and S1|D1, releasing
15 copies of the strand S1 ∧ D0 and 40 copies of the strand S1 ∧ D1.

3. The number of copies of each output strand is estimated by the increase of
the different fluorescent colours (red for S1 ∧ D0 and green for S1 ∧ D1).
The only step missing is the calculation of the probability encoded in that
output, which is easily done normalizing both values as follows: P (D|S) =〈

|S1|D1|
|S1|D0|+|S1|D1| ,

|S1|D0|
|S1|D0|+|S1|D1|

〉
= 〈0.73, 0.27〉.

5 Discussion

The DNA biosensor presented here operates as a Bayesian inference device, which
allows the introduction of quantitative information in the tests, highlighted by
the molecular indicators or signals.
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Fig. 4. Inference process. DNA segments named with an asterisk prefix are Watson-
Crick complementary to the corresponding toeholds named without that asterisk. (1)
The DNA probabilistic reasoning starts with the prior probability species Di interacting
with the conditional probability molecules Si|Dj . (2) Then the input evidence species
S1 interact with the molecules Si|Dj that had interacted previously with the species Di,
releasing the strand species S1 ∧D1 and S1 ∧D0. (3) Finally, the probability P (D|S =
present) is inferred by normalization of the red and green fluorescence emissions.
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Its operation is inspired by the stochasticity of the competing transitions pre-
sented by Adar et al.[1], also used by the authors in another work to modulate
the ratio between the drug and the drug suppressor in the output [4]. Our work
is also based on transitions competing stochastically, but using the DNA strand
displacement operation to eliminate the dependence on the enzyme Fok I. More-
over, we have aimed to identify the way to map the basic concepts of probability
theory and Bayesian inference and map them into DNA strand displacement
motifs, so that they can be used as design patterns when implementing Bayesian
reasoning with DNA.

In order this model to have realistic applications in genetic diagnosis, it needs
to deal with more than one signal (s1, ..., sn) for the same disease d (superscripts
denote the signal number). According to Equation 6, the following formulation of
the Bayes’ Law would need to be solved: P (d|s1, ..., sn) = α·P (d)·P (s1, ..., sn|d).
Assuming conditional independence of the signals given the disease (as in the
Naïve Bayes model [12]) we can apply Equation 4 and derive the following ex-
pression: P (d|s1, ..., sn) = α ·P (d) ·P (s1 |d) · ... ·P (sn |d). We can see that the first
two terms of the product (ignoring α) correspond to the formulation we have
used for just one signal. Substituting those terms by application of Equation 2
we get this final expression: P (d|s1, ..., sn) = α·P (s1∧d)·...·P (sn |d). Translating
this into our DNA encoding model:

– P (d), P (s1) and the evidences S1
i (i = 0, 1) are encoded as described in

Sections 3 and 4, with subscripts denoting absence (0) or presence (1) of
signal.

– Since the output of the previous steps has the form of species S1
i ∧ Dk

(i = 0, 1; k = 0, 1), the devices encoding P (s2|d) will need to accept the
strands S1

i ∧ Dk instead of the strands Dk. The output of this step will
release species S1

i ∧ S2
j ∧ Dk.

– Previous step would be repeated for each P (sx|d) (x = 1, ..., n) until the last
signal is reached.

Another important matter to be addressed is the translation of the biological
data coming from real samples into the input evidence species. When the evi-
dence to be sensed is determined by the presence of a specific nucleic acid strand,
that strand could be directly taken as the input evidence strand S1 the system
expects. The problem comes if the signal is determined by the absence of a spe-
cific nucleic acid strand. How can that be mapped into an input evidence strand
S0? One possible solution is the addition of an extra “pre-processing” layer, con-
sisting of extra DNA device as described in Figure 5: if no input signal from the
samples, the device in the pre-processing layer works as being the input strand
S0; but if an input signal is present, it unreleases the strand S1. Another poten-
tial solution would be the use of a DNA aptamer [25]. Other non DNA aptamers
[8] could also be exploited to allow our model take other molecules different from
nucleic acids as inputs.
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Fig. 5. Processing input as absence of DNA strand. If no signal available among the
input samples, the device in the pre-processing layer works as being the input strand
S0 (top-left). However, if an input signal is present (top-right), it unreleases the strand
S1 (bottom-left), leaving a waste molecule that will not react in the system.

6 Conclusions and Future Works

We have introduced a new DNA model for realization of Bayesian inference. The
model is completely autonomous, enzyme-free and it is based on DNA strand
displacement techniques. Its implementation can be based on experimentally
verified and general design derived in [19]. According to the properties examined
in [7], the model can be characterized as partly scalable, time-responsive and
energy-efficient.

We think the models presented in this paper can empower new quantitative
applications of probabilistic genetic diagnosis in vitro. We plan to construct the
model in a wet lab and to continue enhancing this model, so that it can be
generalized to work with all types of Bayesian networks (and not only the ones
following the Naïve Bayes approach [12]).
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Abstract. We study DNA self-assembly and DNA computation using
a coarse-grained DNA model within the directional dynamic bonding
framework [C. Svaneborg, Comp. Phys. Comm. 183, 1793 (2012)]. In our
model, a single nucleotide or domain is represented by a single interac-
tion site. Complementary sites can reversibly hybridize and dehybridize
during a simulation. This bond dynamics induces a dynamics of the
angular and dihedral bonds, that model the collective effects of chem-
ical structure on the hybridization dynamics. We use the DNA model
to perform simulations of the self-assembly kinetics of DNA tetrahedra,
an icosahedron, as well as strand displacement operations used in DNA
computation.

1 Introduction

Sequence specific hybridization of DNA single strands makes DNA molecules a
flexible programmable building block. By choosing the right sequences, DNA self-
assembly behavior can be programmed to produce well defined nano-structures.
In the pioneering work of Seeman et al., branched DNA constructs have been uti-
lized to self-assemble into a variety of structures [32,8,36,35]. With DNA origamis
Rothemund invented a way to fold long DNA single strands into well defined pla-
nar structures by adding a large number of short stabilizing oligomer strands[26].
Later it was demonstrated how to let the planar origamis self-assemble into 3D
nano-structures such as a box [2]. Ever since the pioneering work of Adlemann
in 1994 [1], DNA has also been recognized as a massively parallel, versatile, and
inexpensive computing substrate. In order for such substrate to be of practical
interest, however, it is desirable that the computational framework is scalable
and that individual computational elements can be combined to form circuits.
Recently, a scalable approach to enzyme-free DNA computing has been pro-
posed where circuits consist of relatively short DNA strands that communicate
via strand displacement [31,25].

D. Stefanovic and A. Turberfield (Eds.): DNA 18, LNCS 7433, pp. 123–134, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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The Poland-Scheraga (PS) model has been very successful in predicting ther-
mal melting and renaturing of long DNA strands [24,13]. It describes a DNA
double strand as a 1D lattice where each base-pair is either hybridized or open.
To each state is associated a free energy that has a sequence specific contribu-
tion from nearest neighbor interactions [29] as well as a polymer contribution
from the conformational entropy of internal bubbles and frayed ends. Gener-
alizations of the PS model exists, where the single strands are represented as
semi-flexible polymers on a 3D lattice [12,14]. This provides a conceptual sim-
plification since the polymer free energy contributions are given implicitly. The
Dauxois-Peyrard-Bishop[22] (DPB) model represents a DNA double strand as a
1D lattice, but each base-pair is described by a continuous base-pair extension.
The DPB model is defined by a Hamiltonian which includes a hybridization
potential and a harmonic term penalizing deviations between nearest neighbor
extensions.

The chemical structure of short DNA oligomers can be studied with atomistic
molecular dynamics simulations such as Amber[6,7] and Charmm[4,17]. How-
ever, if we are interested in mesoscopic properties of long DNA molecules, it
is more effective to utilize coarse-grained simulation models. Coarse-graining is
the statistical mechanical process by which microscopic details are systematically
removed, producing an effective mesoscopic model [16,21]. The major computa-
tional advantage of coarse-graining is that it allows us to focus our computational
resources on studying the structures and dynamics at the mesoscopic level.

Coarse-grained models describe a nucleotide by a small number of effective
interaction sites. In the “three site per nucleotide” model of de Pablo and co-
workers, three sites represent the phosphate backbone site, the sugar group, and
the base, respectively[28,27]. There is also a number of “two site per nucleotide”
models, e.g. the model of Ouldridge and co-workers [19,20], where one site rep-
resents the base and another site the backbone and the sugar ring. Savelyev and
Papoian [30] have formulated a “one site per nucleotide” model. As the number of
interaction sites per nucleotide is reduced, the chemical structure is progressively
lost. In simulations of DNA tagged nanoparticles, even more coarse-grained mod-
els are used. DNA molecules have been modeled e.g. as semi-flexible polymers
with attractive sites on each monomer [11], or as a single sticky site that can
be hybridized with free complementary free sticky sites [18]. While the chemical
structure of DNA has been completely eliminated, these models still retain the
DNA sequence specific hybridization effects on nanoparticle self-assembly.

We are interested in studying the statistical mechanics of hybridizing DNA
strands and in particular the kinetics of DNA self-assembly and DNA computa-
tion using a DNA model that is as coarse-grained as possible. We have imple-
mented a general framework allowing directional bonds to be reversibly formed
and broken during molecular dynamics simulations[33]. Along with the bonds,
the angular and dihedral interactions required to model the residual effects of
chemical structure are also dynamically introduced and removed as dictated by
the bond dynamics. This framework allows us to simulate reversible hybridiza-
tion of complementary beads and chains built from such beads. In the present
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paper, we study a minimal dynamic bonding DNA model. For simplicity, we
assume that the binding energy, as well as the bond, angular, and dihedral po-
tentials are independent of sequence, and we have chosen a force field that pro-
duces a flat ladder-like structure in the double stranded state. Our motivation
for these choices are to minimize the number of parameters required to specify
the DNA model.

Dynamic bonding DNA models combine ideas from most of the existing DNA
models. We regard them as dynamic generalizations of statistical mechanical
theories and simultaneously as simplifications of coarse-grained DNA models. As
in the PS model, a complementary base-pair can either be hybridized or open.
When a base-pair is hybridized, it is characterized by a continuous hybridization
potential as in the DPB model. Dynamic bonding DNA models can also be
regarded as off-lattice generalizations of the lattice PS model [12]. Rather than
trying to model chemical structure with interaction sites as in the “two and
three site per nucleotide” models [28,27,19,20] dynamic bonding DNA models use
angular and dihedral interactions to model the residual effects of local chemical
structure. Dynamic bonded DNA double stands can reversibly melt and reanneal,
which is not possible with the “one site per nucleotide model” of Savelyev and
Papoian [30]. Finally, as in the sticky DNA models[18], a single bead in a dynamic
bonding DNA model can equally well represent a domain.

Sect. 2 presents the dynamic bonding DNA model, which is used in Sect. 3 to
study self-assembly of DNA constructs and DNA-computing constructs. Sect. 4
ends the article with a conclusions.

2 Dynamic Bonding DNA Model

In the present dynamic bonding DNA model, single stranded DNA (ssDNA) is
represented by a string of nucleotide beads connected by stiff springs representing
directional backbone bonds. Instead of using a four letter alphabet representing
the ACGT nucleotides, in the present paper we increase the alphabet maximally
to avoid getting trapped in transiently hybridized states. Physically, this corre-
sponds to assuming that each bead represents a short sequence of nucleotides
i.e. a domain, and that two non-complementary beads or domains are unable
to hybridize. A novel feature of our DNA model is that it involves dynamic
hybridization bonds, which are introduced or removed between complementary
interaction sites or beads when they enter or exit the hybridization reaction ra-
dius. Along with the bonds, we dynamically introduce or remove angular and
dihedral interactions in the chemical neighborhood of a hybridizing bead pair.
These interactions are introduced based on the local bond and bead type pat-
tern, and hence allows us to retain some effects of the local chemical structure in
coarse-grained models. We utilize bonds carrying directionality to represent the
3’-5’ backbone structure of DNA molecules. This allows us to introduce dihe-
dral interactions that can distinguish between parallel and anti-parallel strand
alignments. We have implemented this framework in a modified version of the
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [23,33].
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The DNA model relies on two ingredients, a Langevin dynamic for propagating
a system in time and space, and a dynamic directional bonding scheme [33] that
propagates the chemical structure of the system. The force on bead i is given by
a Langevin equation

Fi = −∇RiU − m

Γ
Ṙi + ξi with U = Ubond + Uangle + Udihedral + Upair.

Here, the first term denotes a conservative force derived from the potential U .
The second term is a velocity dependent friction, and the third a stochastic driv-
ing force characterized by 〈ξi(t)ξj(t′)〉 = kBTm/(ΓΔt)δijδ(t− t′). The potential
U comprises four terms representing bond, angular, dihedral, and non-bonded
pair interactions, respectively. The friction and stochastic driving force implicitly
represents the effect of a solvent with a specified friction and temperature. The
Langevin dynamics is integrated using a Velocity Verlet algorithm with a time
step Δt = 0.001τL and Γ = 2τL using a customized version of LAMMPS [23,33].

Here and in the rest of the paper we use reduced units defined by the Langevin
dynamics and DNA model. The unit of energy is ε = kBT , where we set Boltz-
mann’s constant kB to unity. The bead-to-bead distance along a single strand
defines the unit of length σ which correponds to the rise distance of DNA. The
mass is m = 1 for all beads. A Langevin unit of time is defined as τL = σ

√
m/ε.

The diffusion coefficient of DNA model strand is D(n) = kBTΓ/(mn) where n
is the total number of beads. This an be can be equated with the DNA diffusion
coefficient of a particular experimental conditions to obtain a time mapping.
Extrapolating the data in Ref. [34] yields τL ≈ 1.6 × 10−12s for n = 20.

Fig. 1a shows complementary nucleotide beads with the same hue but differ-
ent levels of color saturation. As a simplification, we allow each bead only to
hybridize with a single complementary bead. The DNA model has two types of
bond interactions: permanent backbone bonds (shown green/blue) and dynamic

Fig. 1. Illustrative DNA conformation. a) complementary beads, backbone and hy-
bridization bonds, b) angular interactions indicated by two lines parallel to the involved
bonds, c) dihedral interactions indicated by three lines parallel to the involved bonds.
The figure is explained in the text.
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hybridization bonds (shown red). Backbone bonds and hybridization bonds are
characterized by the two potentials:

Ubond,bb(r) =
Umin,bb

(rb
c − rb

0 )2
(
(r − rb

0 )2 − (rb
c − rb

0 )2
)
,

and

Ubond,hyb(r) =

{
Umin,hyb
(rh

c−rh
0)2

(
(r − rh

0 )2 − (rh
c − rh

0 )−2
)

for r < rh
c

0 for r ≥ rh
c .

In the simulations, we use Umin,bb = 100ε, rb
0 ≡ 1σ, and rb

c = 1.2σ, rh
0 = 2σ and

rh
c = 2.2σ. Note that Ubond,hyb(r) ≤ 0 for all distances. When two non-hybridized

beads of complementary type are within a reaction distance rh
c a hybridization

bond is introduced between them. If they move further apart than rh
c again, the

hybridization bond is broken. The pair-interaction between beads is given by a
soft repulsive potential, while we use the same potential for angular and dihedral
interactions. They are given by

Upair(r) = A

[
1 + cos

(
πr

rp
c

)]
for r < rp

c ,

where we use A = 1ε and rp
c = 1σ in the simulations, and

U(Θ; Θ0, Umin) = −Umin

2
(cos[Θ − Θ0] + 1) ,

Along the backbone of single strands we use a permanent angular interaction
defined by U(Θ; Θ0 = π, Umin = 25ε). This determines the persistence length of
single strands. In Fig. 1b backbone angular interactions are shown as thick red
lines around the central bead defining the angle.

In real DNA molecules, the hydrogen bonds between Watson-Crick comple-
mentary nucleotides act together with stacking interactions and the phospho-
rdiester backbone bonds to give rise to a helical equilibrium structure of the
double strand. In our coarse-grained model, we utilize angular and dihedral in-
teractions to determine the ladder-like equilibrium structure of our DNA model.
To control the stiffness of the double strands and to ensure anti-parallel 3’-5’
alignment of the two single strands, we have assigned directionality to the back-
bone bonds [33]. This is also necessitated by the fact that the 3’ and 5’ carbons
of the nucleotide sugar ring have been merged into the single nucleotide bead.
Fig. 1a shows the backbone bonds colored green/blue to indicate the 3’ and 5’
ends, respectively.

When a hybridization bond is introduced, we also dynamically add angu-
lar interactions between the hybridization bond and the neighboring backbone
bonds. These angular interactions are characterized by the potential U(Θ; Θ0 =
π/2, Umin,a), which favors a right angle conformation. When a hybridization bond
is broken, concomitantly all the associated angular interactions are removed. In
Fig. 1b the angular interactions are shown as green lines indicating the angle.
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Besides introducing angular interactions, we also dynamically introduce dihe-
dral interactions. A dihedral interaction involves four beads connected by three
bonds, which defines a particular bond pattern, where the bonds can either be a
hybridization bond, a 3′ − 5′ backbone bond, or a 5′ − 3′ backbone bond. Three
bond patterns are possible. The bond pattern corresponding to red dihedrals
in Fig. 1c, is characterized by U(Θ; Θ0 = 0, Umin,d) which favors a planar (cis)
conformation. The bond pattern corresponding to blue dihedrals is characterized
by U(Θ; Θ0 = π, Umin,d, a = 0) which favors parallel backbone (trans) conforma-
tion. The last dihedral pattern corresponding to green dihedrals is characterized
by U(Θ; Θ0 = 0, Umin,d) which favors a parallel (cis) conformation. Note that
without the directional backbone bonds, we would not be able to distinguish
between these two latter dihedral patterns.

During a simulation, at each time we introduce a hybridization bond, we also
introduce up to four angular interactions and up to eight dihedral interactions,
less if the hybridization bond is at the end of a strand. Let Δ be the total decrease
in binding energy when two beads hybridize inside a chain, and we assign one
third of this energy to bond, angular, and dihedral interactions, respectively. This
choice does not affect the static properties of the model, which are determined
by the total energy associated with a conformation, however it does influence
the dynamic properties. Hence Umin,hyb = Δ/3, Umin,a = Δ/12, and Umin,d =
Δ/18. We define Δ = 10ε as a reference energy. Since only the ratio Δ/T enters
the partition function of the model, this effectively fixes the absolute melting
temperature of the stands. With the present model, the time spend per particle
per step is approximately 1 × 10−5s on a standard PC.

3 Results

Three dimensional DNA structures can be built by utilizing the self-assembly
properties of complementary strands and by linking several stands into a e.g.
end-linked constructs. In particular, we have designed four constructs each com-
prising three end-linked 16 bead long strands. By programming the complemen-
tarity of the strands, we have designed the constructs to self-assemble into a
tetrahedron[10,9]. We have also programmed the complementarity of 12 DNA
constructs each comprising 5 end-linked 8 bead long strands. These constructs
have been designed to self-assemble into an icosahedron[3]. We estimate that the
melting temperatures are Tm(8) ≈ 1.3ε, and Tm(16) ≈ 1.6ε from a separate set
of melting simulations (not shown).

Fig. 2 shows visualizations of the DNA constructs during the self-assembly
process. Initially the constructs are randomly placed into the simulation box.
Progressively, complementary strands hybridize with each other, and the con-
structs form fragments that ultimately yield the designed target structures. The
time scale of the self-assembly dynamics is determined by the time it takes the
constructs to diffuse, collide, and hybridize completely. Since we have the sim-
ulation trajectory, we can also characterize the detailed time dependence of the
self-assembly dynamics. Fig. 3 shows the fraction of hybridized bonds as a func-
tion of time. By analyzing the bond structure, we can furthermore study the
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Fig. 2. Self-assembly of a tetrahedron from four 3-functional DNA constructs (top row)
and an icosahedron from twelve 5-functional DNA constructs (bottom row). Snapshots
correspond to times t = 1000τL, 10.000τL , 20.000τL , 50.000τL steps (top row), and for
t = 1000τL, 20.000τL , 30.000τL, 60.000τL steps (bottom row). Simulations have been
performed at T = 1.0ε. Note that periodic boundary conditions apply to the simulation
box.

Fig. 3. Fraction of hybridized bonds (top) and number of fragments (bottom) vs. time
and temperature during the self-assembly of a tetrahedron and an icosahedron.

evolution of the number of structural fragments. For the icosahedron, we see a
slow increase in the hybridized bond fraction towards unity as the structure is
progressively assembled, while the number of fragments drops simultaneously
from initially twelve free constructs to one when all constructs form a single
icosahedron. However, even through we only have a single fragment, it takes fur-
ther time for the remaning hybridization bonds to be formed. The equilibrium
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hybridization bond fraction does not appear to be reached at the end of the
simulation at 1× 108τ . For the tetrahedron, we observe a similar increase in the
fraction of hybridized bonds, however with six distinct steps corresponding to
the hybridization of each edge of the tetrahedron.

The self-assembly dynamics is stochastic and depends on initial conditions
and random diffusive motion. We have run some of the simulations twice to see
how they approach equilibrium along different trajectories. The equilibrium hy-
bridization bond fraction appears to have been reached by the tetrahedron self-
assembly simulations. For tetrahedra, we observe that self-assembly at higher
temperatures leads to a marked decrease in the average hybridization bond frac-
tion similar to melting of DNA double strands. At T = 1.8ε the temperature is
above the melting temperature of the DNA constructs, and they only transiently
hybridize. Since we have a single fragment at equilibrium, the bond reduction
is most likely due to DNA bubbles. From the data sets we can estimate that
the melting temperature of the tetrahedron i.e. Θ(Tm) = 0.5 is approximately
Tm(Tetrahedron) ≈ 1.5ε.

In the strand displacement approach to DNA computation, individual gates
consist of one DNA template that is composed of several logical domains. In
their initial state, all domains but one are hybridized to one or more comple-
mentary strands and are therefore inert. The only exposed single strand domain
of each gate is a short toehold region at one end of the template. This toehold
region can reversibly bind a complementary signal strand which is designed to
be longer than the toehold domain and complementary to the next domain(s)
of the template. The newly binding signal is then able to hybridize to all match-
ing domains of the template, thereby displacing strands that where previously
bound [37]. The displaced strands can be fluorescently marked output signals, or
internal signals that can bind to toehold regions of downstream gates. By choos-
ing domains of appropriate length, it can be guaranteed that toehold binding is
reversible, whereas the final strand displacement is effectively irreversible, thus
computation is energetically downhill and kinetically irreversible, if and only if
the correct input strands are present and match the logical setup of the gates.
It has been shown that this approach leads to modular logic gates that enable
the design of large scale DNA circuits [5,15].

Fig. 4 shows simulations of the strand displacement process underlying Seelig
et al.’s DNA computing approach [31]. The top row shows the successful dis-
placement of an initially hybridized 12 bead long signal strand from a 20 bead
long template by a 20 bead long signal strand: once the signal strand diffuses
to and binds to the toehold region, branch migration occurs quickly (during
300 time units) and the formerly bound signal strand is displaced irreversibly.
The bottom row, on the other hand, shows how the displacement stalls in the
presence of mismatches: here, a mismatch in the domain (last 10 beads) permits
further hybridization of the signal strand. The newly binding and the original
signal strand compete for matching bases in a random walk process until the non-
matching strand dehybridizes again and leaves the gate available for potential
matching signals (not present in the simulation).
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Fig. 4. Simulations of strand displacement. A 20 bead long oligomer displaces a 12 bead
long oligomer initially hybridized to a template for times t =500, 1.600, 1.700, 1.900τL

(top row). A 10+10 bead long oligomer where the latter half is non-complementary fails
to displace a short oligomer hybridized to a template for times t = 100, 3.000, 7.000,
10.000τL. Simulations are run at temperature T = 1ε. Non-complementary beads are
show as gray.

Fig. 5. Time evolution of branch migration on individual template nucleotide beads.
From top to bottom a) A 12 bead long oligomer (red) being displaced by a 20 bead
long oligomer (green) on the template. b) a 20 bead long oligomer with different ran-
dom conditions. c) 12 bead oligomer (red) competing with a 12 + 8 oligomer with 12
complementary and 8 non-complementary beads (green), d) a 12 bead oligomer (red)
competing with a 10+10 oligomer, e) a 12 bead oligomer (red) competing with a 8+10
oligomer, f) a 12 bead oligomer (red) competing with 5 + 10 oligomer. Also shown is
the branch migration point (black).
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Fig. 5 shows statistics of the displacement processes for several runs: the
graphs depict hybridized bases of the original (red) and the newly binding sig-
nal strand (green), as well as the branch migration point (black). In the case of
matching signals (top two simulations), it can be seen that displacement occurs
quickly and essentially irreversible once the original strand is fully displaced.
In the third simulation the signal strand and hybridized strand has the same
length, and the interface is seen to diffuse forwards and backwards. A single
dehybridization event is also observed for the original strand. In the case of mis-
matching signals (bottom three simulations), the displacement cannot proceed
further than nucleotide 10, and the interface randomly moves between posi-
tions 8 and 10, until – occasionally – the mismatching signal dehybridizes from
the toehold region (lack of green markers). In this case, the number of beads
complementary to the toehold region (here 10, 8, and 5 beads) determines the
equilibrium between hybridized and dehybridized configurations, and thus the
performance and availability of the gate. Fig. 5 also depicts a source of potential
failure in logical gates based on strand displacement, as the output signal can
spontaneously dehybridize even in the absence of a matching input signal (as
observed in the fourth simulation).

4 Conclusions

With these initial simulations, we have demonstrated that our coarse-grained
DNA model can succesfully simulate DNA assembly as well as DNA strand
displacement dynamics which form the basis of state-of-the-art DNA computing
approaches. We have successfully simulated self-assembly of DNA tetrahedra and
icosahedra from four and twelve branched DNA constructs, respectively. Simula-
tions show that the constructs self-assemble into the expected target structures.

We have further simulated successful displacement of an output strand when
a matching input strand is present. In the presence of mismatches, we could
demonstrate how the displacement process is prevented. Our simulations also
capture potential failures of gates based on strand displacement, namely spon-
taneous release of the output strand in the absence of an input signal. These
proof of concept simulations demonstrate how our coarse-grained model can be
used to optimize the length and arrangement of toehold and domain structures
in DNA computing approaches.

While such gate optimizations do not necessarily require spatially resolved
models, our coarse-grained DNA model enables us to study systems that inte-
grate DNA assembly and computing within a single framework. This enables us
to use these simulations as a starting point for building and testing statistical
mechanical theories describing these complex systems.
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Space and Energy Efficient Computation
with DNA Strand Displacement Systems
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Abstract. Chemical reaction networks (CRN’s) are important models of molec-
ular programming that can be realized by logically reversible, and thus energy
efficient, DNA strand displacement systems (DSD’s). Qian et al., [12] showed
that energy efficient DSD’s are Turing-universal; however their simulation of a
computation requires space (or volume) proportional to the number of steps of
the computation. Here we show that polynomially space bounded computations
can be simulated in both a space and energy efficient manner using logically
reversible CRN’s and DSD’s. A consequence of our proofs is that determining
whether a particular molecular species can be produced from an initial pool of
molecules of a CRN or DSD is PSPACE-hard, and thus also verifying the cor-
rectness of CRN’s and DSD’s is PSPACE-hard.

1 Introduction

The area of molecular programming enjoys active research from both theoreticians and
experimentalists due in part to its promise of embedded logical computation that can
naturally interface with biological systems. For instance, if a condition is detected in a
cell, then a certain therapeutic agent can be released. Molecular programs can be writ-
ten in the language of chemical reaction networks (CRN) which detail how sets of reac-
tant molecules can be transformed into new sets of product molecules. A most widely
studied and experimentally practical model of computation in molecular programming
entails so-called DNA strand displacement systems (DSD). DSDs leverage the fact that
substrings of DNA strands will hybridize to their perfect complements and can also
displace other bound strands sharing the same substring (see Fig. 1), and can in general
realize any CRN [12,10]. By a careful, non-trivial design of strands one can realize a
complex, yet deterministic computation. DSDs have been experimentally implemented
and verified to simulate logic gates [14], neural networks [13], and DNA walkers [15],
among numerous other applications.

Aside from the potential biological and chemical applications, DSDs and CRNs are
also of independent interest due to their promise for realizing energy efficient compu-
tation. Rolf Landauer proved that logically irreversible computation—computation as
modeled by a standard Turing machine—dissipates energy proportional to the number
of bits of information lost, such as previous state information, and therefore cannot be
energy efficient [8]. Surprisingly, Charles Bennett showed that in principle energy effi-
cient computation is possible, by proposing a logically reversible universal Turing ma-
chine and by identifying nucleic acids (RNA/DNA) as a potential medium for reversible
computation [1]. A logically reversible computation is a chain from an initial state to
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a final state where each intermediate state has exactly one predecessor and one suc-
cessor. Bennett’s seminal work was space inefficient as his reversible Turing machine
simulation required O(T (n)) space to simulate a non-reversible machine that required
T (n) steps to complete, regardless of its space usage. He later proved that PSPACE
equals reversible PSPACE [2]—the class of problems solvable in deterministic poly-
nomial space can be solved by a reversible Turing machine in polynomial space. This
result has since been generalized to prove DSPACE equals reversible DSPACE [9]. Un-
til recently, it remained unclear if a physical system could realize logically reversible
computation. Qian et al., [12] gave a DSD implementation of a stack machine capable
of energy efficient Turing universal computation. Similar to Bennett’s seminal work,
their implementation requires space proportional to the number of steps in the compu-
tation as it consumes fuel molecules to drive the overall process forward. Condon et
al., [4] demonstrated that, in principle, logically reversible and space efficient compu-
tations can be realized in CRNs and DSDs by giving an n-bit Gray code counter that
progresses through 2n states using only O(poly(n)) space.

In this work, we ask the question: can space and energy efficient computation be
realized? We answer in the affirmative by showing how any problem in PSPACE can be
solved by a logically reversible CRN using polynomial space. Our CRN can be realized
by an energy efficient DSD implementation. Not only do our results further character-
ize the computational power of CRNs and DSDs, they shed light on the complexity
of a number of important related problems such as CRN and DSD model checking
and verification [6,7]. We show that even determining if an arbitrary state is reachable
from an initial state of a CRN or DSD—a question that must be solved when verify-
ing the correctness of a CRN or DSD—is PSPACE-hard. We show that the problem
is PSPACE-complete for restricted classes of CRNs and DSDs. Our results also gives
strong evidence that predicting low energy barrier folding pathways for multiple inter-
acting nucleic acid strands is PSPACE-complete.

In section 2, we give definitions and the necessary background information for our
results. In section 3 we develop our main result by showing how a PSPACE-complete
problem can be solved by a logically reversible CRN. In section 4 we show how our
CRN can be realized as an energy efficient DSD. In section 5 we demonstrate a num-
ber of consequence of our result and resolve the complexity of a number of related
problems. We summarize our results in section 6.

2 Preliminaries

A chemical reaction equation details a process whereby certain molecule types can be
consumed—the reactants—and others produced—the products—within some reaction
volume. For simplicity, we assume that the reaction volume is a closed system. A reac-
tion may also require the presence of catalyst molecules of certain types. We refer to all

three categories, generically, as signals. For example, the reaction A
C→ B consumes a

signal of type A and produces a signal of type B in the presence of the catalyst signal

C. This reaction is irreversible; however, the reaction A
C� B is reversible meaning

that a signal of type A can also be produced by consuming a signal of type B in the
presence of the catalyst signal C. A chemical reaction network (CRN) is a set of chem-
ical reactions, in addition to a multiset of signals present within the reaction volume,
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prior to any reaction occurring, called the initial set. A CRN is proper if every reaction
consumes the same number of signals that it produces. The state of a CRN is the cur-
rent composition of signals within the reaction volume. The CRN can move from some
current state, S, to a new state, S′, by applying any reaction requiring reactants and cat-
alysts present in S. In general, many reactions may be applicable for the current state.
We define a computation of a CRN C, as a trace of the states from C’s initial state Sinit

to some final target state Send. We say that C is a logically reversible CRN if the com-
putation forms a chain from Sinit to Send such that in any non-terminal state along the
chain, exactly two reactions are possible: a reversal of the previous reaction, and one
other reaction. In the CRNs considered in this work, we assume applicable reactions
are selected with equal probability and with the same rate in the forward and reverse
direction. Thus, a computation of length n for a logically reversible CRN will perform
an unbiased random walk along the state chain and is expected to reach the end state
within O(n2) steps [5].

A B

Fig. 1. A gate implementing the reaction A � B via toehold-mediated branch migration

A DNA strand displacement (DSD) system is an implementation of a CRN, consist-
ing of single stranded signals and double stranded gates that facilitate reactions. Strands
in the system are composed of two types of domains: short toehold domains, and long
domains. Toehold domains bind reversibly, and long domains irreversibly, to comple-
mentary regions on gates. The fundamental operation in a DSD is toehold mediated
strand displacement, whereby the toehold of a signal strand can bind to an unbound
complementary toehold domain of a gate and, if the adjacent long domain is comple-
mentary, it can displace a currently bound signal strand of the same length (see Fig. 1).

Consider an example DSD where the initial state consists of two copies of the A
signal, but only one copy of the gate T is available in the reaction volume. It would be
impossible to produce two copies of signal B. To properly account for gates at the CRN
level of abstraction, we augment chemical reactions with unique tags. For example, the
reaction of Fig. 1 can be described by the tagged reactionA+T � T ′+B, denoting that
a gate of type T is required to consume signal A, produce signal B, and results in the
gate being reversed—that is, the same gate can only be used next to consume a B signal,
produce an A signal, and reset itself to the forward orientation. We define the space
complexity of a trace for a tagged CRN as the sum of two quantities: the maximum
signal set size of any state in the trace, and the number of tags required to complete the
computation. Intuitively, this corresponds to the required size of the reaction volume. In
the remainder of the paper we only consider tagged CRNs; however, for simplicity we
omit the actual tag signals in the reaction equations. We observe the following obvious,
but useful property of proper CRNs.

Lemma 1. A proper CRN with initial set S will always have |S| free signals during a
computation.



138 C. Thachuk and A. Condon

CRNs can be implemented by DSDs in a number of ways. We will leverage one such
implementation in our results, which relies on the assumption that certain signals only
occur as a single copy within the reaction volume. The use of a single copy mutex
species is used to ensure that a strand displacement cascade which implements any
particular reaction will occur as a transaction and therefore appear atomic. Specifically,
either the entire cascade implementing a reaction will succeed, or it will return to the
state prior to beginning the cascade. Importantly, the mutex molecule is sequestered
during the cascade and therefore another reaction cannot begin.

Theorem 1 (Qian et al., [12], Condon et al., [4]). Any logically reversible tagged CRN
requiring O(s) space can be simulated by a DSD in O(poly(s)) space that ensures
reactions appear atomic and occur in the same logical reaction sequence.

Finally, we formally define three problems we reason about in this work.

CRN REACHABILITY (CRNR)
Instance: A chemical reaction network with initial state Sinit and an arbitrary state S′.
Question: Is S′ reachable from Sinit?

DSD REACHABILITY (DSDR)
Instance: A DNA strand displacement system with initial state Sinit and an arbitrary
state S′.
Question: Is S′ reachable from Sinit?

TOTALLY QUANTIFIED 3-SATISFIABILITY (Q3SAT)
Instance: A totally quantified boolean formula ψ of n variables in prenex normal form,
∀xn∃xn−1∀xn−2 . . . Q1x1 φ, where φ is an unquantified boolean formula of m clauses
in conjunction normal form, each containing a literal for 3 distinct variables.
Question: Is the formula ψ satisfiable?

3 Space Efficient CRN Simulation of PSPACE

Our goal is to demonstrate that any problem in PSPACE can be solved by a space ef-
ficient, logically reversible, tagged CRN. To that end, we will show how a CRN with
those properties can be constructed to solve any arbitrary instance of the Q3SAT prob-
lem. We present our solution in three logical parts. In section 3.1, we demonstrate how
to construct a CRN for verifying if a 3SAT formula is satisfied. In section 3.2, we present

∀x3 ∃x2 ∀x1 (x1 ∨ x2 ∨ x3)∧ (¬x1 ∨ ¬x2 ∨ ¬x3)
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Fig. 2. Solving a Q3SAT instance. Edge labeled paths from root to leaf denote variable assign-
ments. Nodes are satisfied based on quantifier and satisfiability of left and right subtrees.
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an elegant solution for traversing a perfect binary tree in post-order that is both space
efficient and logically reversible. In section 3.3, we demonstrate how the two CRNs can
be integrated and then modified to capture the semantics of strictly alternating variable
quantifiers in the Q3SAT instance.

To understand the intuition behind our construction, consider that a perfect binary
tree of height n, with each level of the tree representing a variable, has 2n leaves, each
with a unique path from the root specifying a unique variable assignment. A tree defined
in this manner can be used to express the semantics of strictly alternating quantifiers
in the Q3SAT instance (see Fig. 2). Leaf nodes are considered satisfied if and only if
the current variable assignment satisfies the unquantified 3SAT formula of the Q3SAT

instance. Internal nodes can be used to propagate satisfiability of a partially solved in-
stance up the tree. For example, if an internal node represents a universally quantified
variable, then it is marked as true if and only if both of its subtrees are satisfied. Simi-
larly, a node representing an existentially quantified variable is marked false if and only
if both subtrees are not satisfied. In this straightforward manner, the overall quantified
formula can be determined to be satisfied or not, once the root is marked. Since the
satisfiability of a node can immediately be determined once that of its two subtrees is
known, we perform a post-order traversal of the tree. Furthermore, we exploit the fact
that once the satisfiability of a subtree is marked, the satisfiability of its descendants
is irrelevant and can be forgotten. This allows us to smartly reuse space in our tree
traversal procedure.

3.1 Verifying a 3SAT Instance Variable Assignment

We first demonstrate how the formula φ can be verified as satisfied or unsatisfied for
a particular variable assignment. A variable assignment ensures exactly one signal for
each variable xi is present: xT

i for a true assignment, and xF
i otherwise. We first in-

troduce the necessary reactions to verify an individual clause and demonstrate how the
overall formula can be determined true or false.

Verifying an Arbitrary Clause. Recall that in a 3SAT instance, each clause consists
of exactly three literals, each for a distinct variable. As such, there are exactly eight
possible truth assignments and we create a reversible reaction for each. The reactions
for verifying the ith clause, containing literals for variables xj , xk and xl are given in
Fig. 3 (left). When the clause signal molecule C?

i is present, exactly one of the eight
reactions can be applied, specified by the current variable assignment. The variable
signals act as catalysts and the C?

i signal is consumed producing either a CT
i signal if

the clause is satisfied, or CF
i otherwise.

For example, suppose Ci represents the following clause: (xj ∨¬xk ∨xl). The reac-
tion having catalysts xF

j , xT
k , and xF

l will produce CF
i . The other seven reactions will

produceCT
i . Note that for a particular variable assignment, only one reaction will apply

in both the forward and reverse direction, ensuring the process is logically reversible.

Verifying the Overall Formula. The overall process of verifying the formula φ can be
thought of as a process that is initiated by consuming the signal φ? and completes by
producing either the signal φT , if φ is satisfied, or φF otherwise. The variable assign-
ment signals are catalysts, and their values are maintained after the process completes.
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(1) C?
i

xF
j +xF

k +xF
l

� C
[F/T ]
i , 1≤i≤m

C?
i

xF
j +xF

k +xT
l� C

[F/T ]
i , 1≤i≤m

...

C?
i

xT
j +xT

k +xT
l

� C
[F/T ]
i , 1≤i≤m

(2) φ? � C?
1

(3) CT
i � C?

i+1 , 1≤i<m

(4) H?
i + CF

i � H�
i + φF , 1≤i≤m

(5) CT
m � φT

Fig. 3. (left) Eight reaction equations to verify an arbitrary 3SAT clause Ci for each combina-
tion of variable assignments. The product of the reaction is CT

i for assignments that satisfy the
ith clause, and CF

i otherwise. (right) Reaction equations to verify the overall 3SAT formula φ,
consisting of m clauses.

φ? C?
1 C?

2

H�
1 + φF

· · ·

H�
2 + φF

C?
m φT

H�
m + φF

CT
1

H?
1 CF

1

CT
2

H?
2 CF

2

CT
m−1 CT

m

H?
m CF

m

Fig. 4. Flow control when verifying a formula φ having m clauses.

For the formula to be true, all clauses must be satisfied. However, any combination
of unsatisfied clauses will result in φ being false. For this reason, care must be taken
that clauses are checked systematically to ensure reversibility. The overall process is
depicted in Fig. 4 and the reactions are given in Fig. 3 (right). The process checks
each clause, in sequence, and if the current clause is unsatisfied then the φF signal
is immediately produced in addition to a history signal denoting the first clause to be
unsatisfied. The sole purpose of the history signal is to ensure the reversibility of the
computation, should the φF signal be produced. Otherwise, all clauses are satisfied,
and thus the signal φT can be produced and is sufficient to ensure the computation is
reversible.

Lemma 2. A 3SAT boolean formula of m clauses over n variables can be verified by a
logically reversible tagged CRN in O(m) reaction steps using Θ(m+ n) space.

Proof. Importantly, we must now establish that the process is logically reversible. We
argue formally by induction on m, the number of clauses of the 3SAT formula φ. In
addition to the clause history domains, we assume initially that the signal φ? is present
and exactly one signal for each variable xi denoting its truth assignment—xT

i or xF
i .

Consider the base case when m = 1. Given the initial set of signals, only reaction (2)
can be applied which produces C?

1 . At this point, exactly two reactions can occur: a
reversal of the previous reaction, or the clause checking reaction that consumes C?

1

and corresponds to the current variable assignment of the three variables in clause 1.
If clause 1 is satisfied (not satisfied), CT

1 (CF
1 ) is produced. In both cases, other than

reversing the previous reaction, only one reaction is possible. If the clause is satisfied,
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φT is next produced ending the process. If the clause is unsatisfied, φF and H�
1 are next

produced, ending the process. Note that in both cases, only the reverse of the previous
reaction could be applied next. Thus, the process is logically reversible. Suppose the
same holds for m− 1 clauses and consider the case when φ has m clauses. We consider
two cases:

Case 1 (The first m− 1 clauses of φ are satisfied). By the inductive hypothesis, signal
C?

m will eventually be produced, in a logically reversible manner. As before, other than
the reverse of the previous reaction, only one clause reaction will be applicable and will
produce either CT

m or CF
m. If CT

m is produced, the reverse of the previous reaction can
be applied, or φT is next produced, ending the process. Similarly, if CF

m was produced,
either the reverse of the previous reaction can be applied, or φF +H�

m is next produced,
ending the process. Note that in either case, only one reaction can be applied next: the
reverse of the last reaction. Thus, the process is logically reversible.

Case 2 (At least one of the first m − 1 clauses of φ are unsatisfied). By the inductive
hypothesis, this case will correctly produce φF and a history signal denoting the first
unsatisfied clause. The new reactions pertaining to clause m are not applicable and thus
inconsequential.

It is easy to see that in the worst case, O(m) reactions steps are required. Finally, we
establish the space claim. The initial set of signals has size Θ(m + n) as it consists
of the n variable signals, m clause history domains and the signal φ?. The CRN is
proper, therefore by Lemma 1 the number of signals will remain the same throughout
the computation. The CRN has Θ(m) reactions since there are a constant number for
each of the m clauses and the overall formula verification. Since each reaction is applied
at most once when verifying a formula, one tag per reaction is sufficient, therefore
establishing the Θ(m+ n) space bound. ��

3.2 A Space Efficient Post-Order Tree Traversal

Next we demonstrate how to perform a post-order traversal of a perfect binary tree
in a space-efficient manner. Importantly, the procedure must be logically reversible.
The intuition is captured in Fig. 5. For any node with a left and right child, once the
descendants of the left child have been recursively traversed (Fig. 5 (a)), the left child
can be marked (Fig. 5 (b)). Any information stored in those descendant nodes is no
longer required and the whole traversal of that subtree can be reversed (Fig. 5 (c)), the
traversal can move to the right child (Fig. 5 (d)), the right subtree can be recursively
traversed (Fig. 5 (e)), and finally the right child marked (Fig. 5 (f)).

Lemma 3. Given a perfect binary tree of height h, all descendants of the root can be
traversed in post-order, by a logically reversible tagged CRN, in Θ(3h) reaction steps,
using Θ(h) space.

Proof. As each reaction of the CRN is reversible, after every reaction step, the reverse
of the previous reaction can always be applied. To demonstrate the CRN is logically
reversible, we need to demonstrate that at any point there is at most one other reaction
that can be applied. We will further establish the invariant that each reaction strictly
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(6) l?i
xF
i +r?i+r�j

� l�i , 1≤i≤h
1≤j<i

(a) recursively solve
tree rooted at li

�
(b) mark li

(7) xF
i

l�i +r?i+l?j
� xT

i , 1≤i≤h
1≤j<i

(c) reverse all steps
from (a)

�
(d) move to right sub-
tree

(8) r?i
r?i+1+l�i +xT

i +r�j
� r�i , 1≤i≤h

1≤j<i

(e) recursively solve
tree rooted at ri

�
(f) mark ri

Fig. 5. A logically reversible post-order traversal of all descendants of the root of a height h
perfect binary tree

alternates in being applied in the forward and reverse direction, ensuring at most one
tag is required for each type of reaction. We will argue by structural induction. Let sh
denote the number of reaction steps required for a tree of height h.

Consider the base case when h = 1 with initial set
{
r?2, x

F
1 , l

?
1, r

?
1

}
. Reaction (8)

cannot be applied until the signal xT
1 is present which is produced by reaction (7). Sim-

ilarly, reaction (7) cannot be applied until signal l�1 is present. Thus, it is easy to see that
reaction (6) must first be applied—marking the left subtree—followed by reaction (7)—
moving to the right subtree—and finally reaction (8)—marking the right subtree and
completing the traversal in s1 = 3 reaction steps. Each reaction was only applied once,
in the forward direction, so the strictly alternating invariant is trivially maintained.

Suppose the traversal completes in sh−1 reactions steps, is logically reversible, and
the strictly alternating invariant is maintained for a tree of height h − 1. Consider a
tree of height h, having initial set S = {r?h+1} ∪

⋃
1≤i≤h

{
xF
i , l

?
i , r

?
i

}
. Before reac-

tion (6) (and thus reaction (7) and (8)) can be applied, the signals
⋃

1≤j<h

{
r�j

}
must

be present. As the left subtree is selected, the signal r?h is present, and by the induc-
tion hypothesis, the only available action is to produce these signals in sh−1 logically
reversible reaction steps, that maintain the strictly alternating invariant, by traversing
the subtree rooted at lh (see Fig. 5 (a)). Importantly, the signals

⋃
1≤j<h−1

{
r?j
}

are
now absent and therefore no reaction affecting levels 1, . . . , h−2 can occur. Other than
reversing the previous reaction, which produced signal r�h−1, only reaction (6) can be
applied for level h, thus producing l�h (see Fig. 5 (b)). Next, observe that reaction (7)
cannot be applied until the signals

⋃
1≤j<h

{
l?j
}

are present. Other than reversing the
previous reaction, only a reversal of all sh−1 reaction steps that traversed the left subtree
can be applied next, yielding the required signals to next apply reaction (7), producing
signal xT

h , denoting a move to the right subtree (see Fig. 5 (c) and (d)).
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Note that the reversal of the left subtree will maintain the strictly alternating invariant
as it ensures all lower level reactions have been reset to their initial state, in order to be
used again in the right subtree. Similar to reaction (6), reaction (8) cannot be applied
at level h until the right subtree is traversed in sh−1 logically reversible reaction steps
(see Fig. 5 (e)). Other than reversing the previous reaction, only reaction (8) can next be
applied at level h producing the signal r�h and ensuring no further reactions on lower
levels can occur. The traversal is complete and no reaction, other than the reverse of
the previous, can occur. Thus, the overall traversal is logically reversible, and is clearly
in post-order. As the strictly alternating invariant was maintained for all lower level
reactions, and all reactions at level h have been applied for the first time, and only once,
the invariant is maintained for a tree of height h.

Exactly 3 reactions occurred at level h, and 3sh−1 reactions were required for the
two traversals and one reversal of the height h − 1 subtrees, giving us the recurrence
sh = 3sh−1+3. Solving sh with s1 = 3 gives us the closed form expression 3

2 (3
h−1),

establishing the claimed Θ(3h) reaction steps.
Finally, consider the space claim. As we have shown that reactions strictly alternate

being applied in the forwards and reverse direction, at most one tag for each of the
Θ(h) reactions is sufficient. Consider that the initial set for a tree of height h is S =
{r?h+1} ∪

⋃
1≤i≤h

{
xF
i , l

?
i , r

?
i

}
and therefore |S| = 3h + 1. Since the CRN is proper,

we immediately establish the space claim by Lemma 1. ��

3.3 Solving a Q3SAT Instance

We now have the means to verify if a variable assignment satisfies a 3SAT formula φ.
We can also traverse a perfect binary tree in post-order, and in the process enumerate
all possible variable assignments for φ. What remains is to combine these processes
together in order to determine if a Q3SAT instance can be satisfied. We approach the
integration in two parts. First, we will demonstrate how the formula verification pro-
cess can be triggered immediately prior to the tree-traversal marking a leaf node and
how the verification reactions can be entirely reversed, prior to the next time the verifi-
cation procedure must run. This effectively demonstrates how any problem in NP can
be solved by a logically reversible CRN in polynomial space, if we specify the end of
computation as the presence of the signal φT , or the signal φF in conjunction with the
signals for the final variable assignment to be enumerated. Finally, we demonstrate how
the tree traversal reactions of Fig. 5 can be augmented in order to capture the semantics
of alternating universal and existential quantifiers, thus demonstrating how any problem
in PSPACE can be solved in polynomial space by a logically reversible CRN.

Integrating Formula Verification and Tree Traversal. Recall the sequence of logical
steps in traversing level 1 of the tree, i.e., the leaves: (1) mark left, (2) move right, (3)
mark right. We augment the reactions for level 1 to force the following sequence: (1a)
verify φ, (1b) mark left, (2a) reverse (1a), (2b) move right, (3a) verify φ, (3b) mark
right. This new sequence ensures two invariants: (i) the current variable assignment is
verified prior to marking the current leaf, and (ii) the verification procedure is fully
reversed prior to the next verification.
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The augmented reactions are given in Fig. 6. Both reactions marking a leaf have
been split into two variants, each ensuring the verification procedure has completed by
requiring as a catalyst one of the two possible outcomes of the verification process.
In addition, we add new signals to record whether or not the variable assignment for
a particular leaf is a satisfying assignment for φ. These signals will be used later to
propagate satisfiability up the tree, once quantifiers have been integrated. Note that the
reaction to move to the right leaf now requires the signal φ? as a catalyst. This forces
all steps performed in the previous verification to reverse. After moving to the right
leaf, and thus swapping the value of variable x1, the verification process can again run
immediately prior to marking the right leaf. Importantly, we want to ensure that the
verification procedure is completely integrated into the leaf level reactions and cannot
perform any reactions while the traversal is marking higher level nodes. This is easily
accomplished by augmenting reactions (2)-(5) to require r?2 as a catalyst. Note that the
augmented variants of the tree traversal reactions are also fully distinguishable by their
catalysts (and products), thus ensuring the process is logically reversible.

L?
1+l?1

···� l�1 +LF
1 L?

1+l?1
···� l�1 +LT

1

xF
1

···� xT
1

R?
1+r?1

···� r�1 +RF
1 R?

1+r?1
···� r�1 +RT

1

move right

mark right

mark left

φ? φF φT

New Catalysts

Fig. 6. Integrating the 3SAT verification procedure into the leaf level reactions of the tree traversal
procedure. Two reaction variants are created for marking leaf nodes as either satisfied or unsat-
isfied based on the result of the verification procedure. The move right reaction requires φ? as
a catalyst, thus ensuring the verification procedure is reversed prior to the next verification step.
Existing catalysts omitted for space.

Integrating Quantifiers into the Tree Traversal. Integrating quantifiers in non-leaf
levels of the tree is relatively straightforward. Recall that the levels of the tree strictly
alternate between universal and existential quantification. For each level, we create four
variants of the correct quantifier for both the left and right node marking reactions to
additionally produce a signal indicating if the current subtree is satisfied. The reaction
variants for marking a left node are given in Fig. 7. These reactions require as catalysts
the signals indicating if the left and right subtree of the current node is satisfied and
therefore four variants are sufficient to consider all cases, for each type of quantifier. As
with the leaf level reactions, the augmented reaction variants can be fully distinguished
by their catalysts ensuring the computation remains logically reversible, and the correct
reactions are reversed.

Ending the Computation. Once both subtrees of the root have been solved the output
signal can be produced based on the satisfiability of the subtrees and on the quantifier im-
posed on the root level variablexn. The reaction equations for the universal quantifier are
shown in Fig. 8. Modifying the reactions for an existential quantifier is straightforward.
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L?
i+l?i

···� l�i +LF
i L?

i+l?i
···� l�i +LF

i L?
i+l?i

···� l�i +LF
i L?

i+l?i
···� l�i +LT

i

L?
i+l?i

···� l�i +LF
i L?

i+l?i
···� l�i +LT

i L?
i+l?i

···� l�i +LT
i L?

i+l?i
···� l�i +LT

i

∀ levels

∃ levels

LF
i−1 +RF

i−1 LF
i−1 +RT

i−1 LT
i−1 +RF

i−1 LT
i−1 +RT

i−1

New Catalysts

Fig. 7. Integrating quantifiers to non-leaf levels of the tree traversal. For both universal and exis-
tential levels, four variants of the left node reactions are created to process the four combinations
of left and right subtree satisfiability. The integration is identical for right node reactions. Existing
catalysts omitted for space.

(9) ψ?
LF

n−1+RF
n−1+r�j

� ψF , 1≤j<n

ψ?
LF

n−1+RT
n−1+r�j

� ψF , 1≤j<n

ψ?
LT

n−1+RF
n−1+r�j

� ψF , 1≤j<n

ψ?
LT

n−1+RT
n−1+r�j

� ψT , 1≤j<n

(a) visit descendants

�
(b) produce output

Fig. 8. After both subtrees of the root have been solved a solution can be determined based on
the quantifier of the root level. Equations are shown assuming the root variable xn is universally
quantified.

Recall that reactions at level n−1 cannot proceed unless the signal r?n is present. We
could have the reaction producing the solution signal also consume r?n. This would end
the computation chain as only reversing the previous reaction would be possible next.
However, for reasons we will make clear in the following section, the signal r?n is never
altered and therefore after the solution signal is produced, the entirety of the tree traver-
sal steps will be reversed before reaching the end of the computation chain. The entire
configuration of the CRN system will appear identical to the initial configuration, with
the exception that the output has been written (i.e., the ψ? signal has been consumed
and been replaced by ψF or ψT ). See Fig. 9 for a schematic of the logically reversible
computation chain.

Theorem 2. Any arbitrary instance of Q3SAT with n variables and m clauses can be
solved by a logically reversible tagged CRN in O(m 3n) reaction steps using Θ(m+n)
space.

Proof. Let ψ be the totally quantified boolean formula of the instance and φ be the un-
quantified 3SAT formula. By Lemma 2 a set of Θ(m) reactions can be created to verify
if φ is satisfied, or not, for a particular variable assignment. By Lemma 3, a set of Θ(n)
reactions can be created to traverse the height n tree representing all possible assign-
ments of the n variables. Furthermore, the above modifications demonstrate how these
two processes can be integrated into one logically reversible computation chain, and
how quantifiers can be added to the non-leaf levels to determine if there is a satisfying
solution for ψ by propagating satisfiability of subtrees up to higher levels. Importantly,
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the modifications only increase the number of reactions by a constant factor and are
designed to maintain the property that the computation is logically reversible. Consider
that the number of reaction steps acting on a tree node, prior to reaching the root, has
not increased. However, prior to marking every leaf in the traversal, the verification pro-
cedure is run for the current variable assignment (and reversed in between). Therefore,
by Lemmas 2 and 3, the root of the height n tree can be reached, and a solution signal
produced, within O(m 3n) reaction steps. As forcing the entire tree traversal to reverse
prior to the end of computation only doubles the number of reaction steps, the claim on
computation length is established.

Next, consider the space required of the combined CRN. The modified verifica-
tion procedure requires the following initial set, where T3sat is the set of required
tags: S3sat =

⋃
1≤i≤m

{
C?

i , H
?
i

}
∪
{
φ?, r?2

}
∪ T3sat. The augmented tree traversal

procedure requires the following initial set, where Ttree is the set of required tags:
Stree =

⋃
1≤i<n

{
l?i , x

?
i , r

?
i , L

?
i , R

?
i

}
∪
{
r?n, φ

?, ψ?
}
∪ Ttree. The space required for

the combined CRN is therefore |Sq3sat| = |Stree ∪ S3sat|. As the combined CRN
maintains the property that reactions strictly alternate being applied in the forward and
reverse direction, then one tag for each of the Θ(m + n) reactions is sufficient and
|Stree| ∈ Θ(m+ n). ��

As Q3SAT is a complete problem for PSPACE [11], we immediately have the following.

Corollary 1. Any problem in PSPACE can be solved by a logically reversible tagged
CRN using polynomial space.

4 Space and Energy Efficient DSD Simulation of PSPACE

The remarkable consequence that Bennett’s work demonstrates is that energy consump-
tion is not necessarily an intrinsic cost of computation. In particular, if the computation
is logically reversible, there is no theoretical energy expenditure. However, there must
be a reasonable probability the actual solution can be observed. This can be problematic
in a logically reversible computation which is free to immediately reverse once reach-
ing a solution state. Qian et al., [12] solved this problem by using fuel to provide a
slight bias for remaining in a solution state once the computation completes. However,
in our result, since reactions must be reused efficiently in both directions to maintain a
polynomial space bound, they cannot be biased in general.

To overcome this, we have designed our reactions that produce an output signal to
ensure the next logical step in the computation is to reverse the tree traversal. This effec-
tively doubles the length of the logically reversible computation chain and established
the important property that the output signal can be observed in strictly more than half
of the states (see Fig. 9). Notice that this was also the case for Bennett’s original re-
versible Turing machine implementation1. As the computation performs an unbiased
random walk along the logically reversible computation state space, the steady state
probability of observing the output signal is p > 0.5. This probability can be further

1 The forward traversal of the tree, production of the output signal, and reversal of the traversal
are analogous to the compute, copy output, and retrace phases of Bennett’s original reversible
Turing machine simulation [1].
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· · · · · ·

reach root and produce answer

traversing descendants of root

t states

reversing traversal

t+ 1 states

Fig. 9. The logically reversible computation chain of the Q3SAT CRN. In more than half of the
states, the output signal is present (shown shaded).

increased in a number of ways. For instance, at the DSD level, we could design the
gates which implement the reactions producing the output signal to have a slight bias in
the forward direction, by manipulating relative toehold lengths, effectively biasing our
overall computation towards the second half of the chain shown in Fig. 9 [17]. As this
reaction is only performed once, the gate implementing the reaction is not reused and
therefore, the bias is not problematic for the overall computation to complete.
Combining Theorem 1 and Corollary 1 we have the following.

Theorem 3. Any problem in PSPACE can be solved by a space and energy efficient
DSD.

We note that the CRN and DSD description given here is a non-uniform model of com-
putation. Specifically, the CRN description is dependent on, and encodes, a particular
problem instance. Therefore, different problem instances will result in different CRN
descriptions and thus a different DSD implementation. Particularly at the DSD level,
where synthesizing strands and gates is challenging, it would be desirable if only the
input strands differed between unique instances. This may be achievable by construct-
ing a more general quantified boolean formula that is within a polynomial size of the
original encoding described here. In such a construction, part of the input would de-
scribe which clauses are active for the particular problem instance. The generalized
formula would be for a fixed number n of variables and could be used to solve any
instance having at most n variables. We will explore the details of such a construction
in the full version of this manuscript.

5 Complexity of Verifying CRNs and DSDs

Next we show there exists a polynomial time and space reduction from an arbitrary
Q3SAT instance I into an instance I ′ of the CRN reachability problem (Q3SAT ≤p

CRNR), such that I can be solved if and only if I ′ can be solved.

Theorem 4. The reachability problem for CRNs (CRNR) is PSPACE-hard.

Proof. Given an arbitrary Q3SAT instance, construct the CRN of Theorem 2 which is
of polynomial size and can therefore be constructed in polynomial time and space. Ask
the question of whether the state Sinit/{ψ?} ∪ {ψT} can be reached from Sinit, where
Sinit is the initial state of the CRN. ��
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By Lemma 1 it is easy to see the reachability problem for proper CRNs is in PSPACE.
Whether other forms of CRNs are in PSPACE is dependent on their definition and
how the required space to complete a computation is accounted for. Any tagged CRN
accounts for the necessary fuel as part of the size of the reaction volume and therefore,
by this interpretation, is in PSPACE.

Corollary 2. The reachability problem for proper/tagged CRNs is PSPACE-complete.

We note that other results are known for unrestricted CRNs which are not studied here.
(Un-tagged) reversible CRNs correspond to reversible Petri nets where the reachability
problem is EXPSPACE-complete [3]. CRN reachability has also been studied for the
probabilistic case [16,18] and nondeterministic case [18] and the connection with Petri
nets was also explored [18].

By Theorem 1 and Theorem 4 we immediately have the following analogous results
for DSDs.

Corollary 3. The reachability problem for DSDs (DSDR) is PSPACE-hard.

Clearly the reachability problem is PSPACE-complete for the set of DSDs implement-
ing a proper CRN. When fuel molecules are considered part of the space usage, as
would be the case for closed volumes that are studied here, then the reachability prob-
lem is PSPACE-complete. We also conjecture that a DSD instance created by the above
chain of reductions (i.e., Q3SAT ≤p CRNR ≤p DSDR), can be adapted to show the min-
imum energy barrier folding pathway prediction problem is PSPACE-complete. The
challenge in achieving this result is to properly consider the possibility of blunt-end
displacements, which are generally assumed to not occur when reasoning about DSD
systems. We will explore the details of the proof for the full version of the manuscript.

Conjecture 1. The minimum energy barrier pseudoknot-free folding pathway problem
for multiple interacting nucleic acid strands is PSPACE-complete.

6 Conclusions

In this work, we asked the question: can space and energy efficient computation be
realized by chemical reaction networks (CRN) and DNA strand displacement systems
(DSD)? We have shown this can be achieved in general by giving a logically reversible
space efficient CRN implementation capable of solving any problem in PSPACE—the
class of all problems solvable in polynomial space. Furthermore, our CRN can be re-
alized by a space and energy efficient DSD. In addition to further characterizing the
computational power of standard molecular programming systems, our result has a
number of important consequences. For instance, we show that even determining if
a certain state is reachable in a CRN, such as a desirable or undesirable configuration,
is PSPACE-hard, effectively demonstrating the intrinsic complexity of model checking
and formal verification of chemical reaction networks. We further show the problem is
PSPACE-complete for a restricted class of CRNs. The results also hold at the DSD level
and give strong evidence of the hardness at the sequence level for the related problem
of predicting minimum energy barrier folding pathways between two configurations of
multiple interacting nucleic acid strands.
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