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Abstract –– A number of diseases such as the Alzheimer’s 
disease, Creutzfeldt-Jakob disease, type-2 diabetes are believed 
to be associated with the aggregation of proteins and amyloid 
peptides. In this mini-review we discuss general factors that 
govern the aggregation of polypeptide chains. It is shown that 
the extent of population of an ensemble of fibril-prone 
structures in the spectrum of conformations of an isolated 
protein, is the major determinant of fibril formation rates. 
Presently, available drugs help to mask the symptoms, but do 
not treat aggregation-associated diseases making it vital to 
develop drugs to cope them. Recent progress on design of top-
leads for the Alzheimer’s disease will be covered. 
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I. INTRODUCTION 

Proteins that are unrelated by sequence or structure 
aggregate to form amyloid-like fibrils with a characteristic 
cross b -structures, which are linked to a number of diseases 
such as Alzheimer’s and prion-disorders [1]. The 
observation that almost any protein could form fibrils 
seemed to imply that fibril rates can be predicted solely 
based on sequence composition and the propensity to adopt 
global secondary structure. Such a conclusion has limited 
validity because it does not account for fluctuations that 
populate aggregation-prone structures. Despite the common 
structural characteristics of amyloid fibrils [1] the factors 
that determine the fibril formation tendencies are not 
understood. In this review we consider the main factors that 
control the aggregation process. We highlight the role of 
aggregation-prone ensemble of N* structures [2] in the 
folding landscape of the monomer in determining τfib and 
the propensity of sequences to form fibrils.  

The design of one new drug approved by FDA takes 
about 15 years and it costs about one billion USD. In order 
to shorten this process and make it less expensive one can 
use the computer simulations to identify leads and validate 
them as potential drugs. We will discuss recent progress on 
designing new leads for Alzheimer’s disease (AD) with the 
main focus on natural products.  

II. FACTORS GOVERNING FIBRILLOGENESIS OF PROTEINS 

Protein folding and function take place in the 
environment crowded with biologicalmacromolecules. As a 
result proteins are exposed to intermolecular interactions 
that may lead to aggregation [3]. In all, about 20 proteins 
and polypeptides such as polylysine or polyglutamic acid 
peptides, myoglobin, SH3 e al are now implicated in 
amyloid formation in vivo [1]. In many cases protein 
aggregates take the form of amyloid fibrils, which appear as 
unbranched rod-like nanostructures with the diameter of an 
order of 10 nm and varying length [4]. A large body of 
evidence suggests that amyloid fibrils and associated 
oligomeric intermediates are related to a number of 
diseases, including Alzheimer’s, Parkinson’s, Huntington’s, 
and prion diseases [1]. For example, in the case of the 
Alzheimer’s disease the memory decline may result from 
the accumulation of the amyloid β (Aβ ) peptide present in 
two forms - 40 (Aβ40) and 42 (Aβ42) amino acids of which 
are produced through endoproteolysis of the β-amyloid 
precursor transmembrane protein. 

Although amyloid forming proteins and peptides exhibit 
no obvious sequence or structure homology, the common 
structural element shared by all amyloid fibrils is an 
extensive cross-b structure stabilized by backbone hydrogen 
bonds oriented parallel to the fibril axis (Fig. 1). Then an 
important question emerges is what are general principles 
that govern the fibril formation process? Experiments on 
fibril formation times (τfib) have been shown that global 
factors such as the hydrophobicity of side chains [5], net 
charge [6], patterns of polar and non-polar residues [7], 
frustration in secondary structure elements [8], and aromatic 
interactions [9] are very important. The initial hypothesis 
about the role of aromatic interactions in amyloid fibril 
formation, e.g., was based on the remarkable occurrence of 
aromatic residues in many amyloid-related proteins and 
short peptide fragments [9] as well as on the well-known 
role of aromatic stacking in processes of self-assembly in 
chemistry and biochemistry [10]. This hypothesis led to the 
suggestion that stacking of aromatic residues may play a 
role in acceleration of the assembly process in many cases 
of amyloid fibril formation. However, recent experiments 
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suggest that aromatic pi-stacking interactions are not critical 
for Aβ aggregation or for the inhibition of Aβ aggregation 
[11]. 

Using the simple lattice model [12] we have shown that 
the population of the fibril-prone state N* (Fig. 2A), PN*, is 
a key factor that governs aggregation of polypeptide chains 
[2] (the fibril-like structure of the six-chain system is shown 
in Fig. 2B). Namely, fibril formation time τfib measured in 
Monte Carlo steps (MCS), depends on PN* exponentially, 

τfib = τ0fibexp(-cPN*)                (1) 

For 8-bead sequences the prefactor τ0fib ≈ 1.014×1010 
MCS and 3.981×1011 MCS, and c ≈ 0.9 and 1.0, for number 
of chains N = 6 and 10, respectively [2] (Fig. 2C). The 
important role of the population of N* is also revealed by 
all simulations by different force fields [13,14]. 
Enhancement of PN* either by mutation or chemical cross 
linking should increase fibril formation rates. Indeed, a 
recent experiment [15] showed that the aggregation rate of 
Aβ1−40-lactam[D23-K28], in which the residues D23 and 
K28 are chemically constrained by a lactam bridge, is 
nearly a 1000 times greater than in the wild-type. Since the 
salt bridge constraint increases the population of the N* 
conformation in the monomeric state [14], it follows from 
Eq. 1, τfib should decrease. One can show that those  
 

 
 

Fig. 1 (A) The fibril from the C-terminal domain 218-289 of the prion 
protein HET-s (PDB ID: 2RNM). (B) The same as in (A) but for amylin  

which is associated with the type-2 diabetes. (C) The same as in (A) but for 
6 truncated peptides Aβ9−40. The structure was kindly provided by R. 

Tycko. (D) The same as in (C) but for 5Aβ17−42 (PDB ID: 2BEG). 

molecules that have PN* less than a few percents have low 
propensity to oligomerization [2,13]. From this prospect, 
our result (Eq. 1) is useful for elucidating the fibrillogenesis 
at the single-monomer level. This is of paramount 
importance because the fibril formation is an extremely 
slow process which is difficult for numerical study. 

 

Fig. 2 (A) The 8-bead N* conformation in the lattice models.12 (B) The 
fibril-like structure for N = 6 monomers. (C) Dependence of τfib on PN* for 

N = 6 and 10. τfib is measured in MCS and PN* in %. The correlation  
coefficient for all fits R ≈ 0.98. (C) is taken from Ref [2]. 

III. RECENT PROGRESS ON DESIGN OF NEW LEADS FOR AD  

Two major hypotheses about the pathogenesis of AD 
have been proposed: Aβ peptide and tau protein. According 
to the Aβ hypothesis this peptide forms extra-cellular fibrils, 
which in turn aggregate to form senile plaques, one of the 
two major morphological hallmarks of AD. The tau protein 
hypothesis assumes that this protein, in its hyper-
phosphorylated form, is the main component of the 
neurofibrillary tangles, the other hallmark lesion of AD [16]. 

The amyloid hypothesis states that the generation of Aβ 
is a key event of AD, and inhibiting this process may affect 
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the disease progression. Aβ peptides are generated from the 
posttranslational processing of a large transmembrane 
protein, the amyloid precursor protein (APP), by two 
proteases, β- and γ-secretase, respectively [17]. From a 
structure-based perspective, β- rather than γ-secretase has 
appeared to be a suitable target for drug design purposes 
because the structure of β-secretase has been experimentally 
resolved, while γ-secretase has not been crystallized yet. 
The β-secretase APP-cleaving enzyme (BACE-1) catalyzes 
the rate-limiting step in the production of Aβ. BACE-1 
inhibition represents a possible therapeutic strategy to 
drastically reduce Aβ levels [18]. Indeed, huge progress has 
been made in search for BACE-1 inhibitors as potential 
anti-AD drug candidates using structure-based approaches 
[19,20]. 

On the another hand, since AD is presumably associated 
with oligomerization of Aβ peptides [16], the second of 
strategy to cope with this disease is to develop compounds 
able to promote Aβ anti-aggregation and clearance. In this 
case Aβ peptides and their fibrils (Fig. 1C and D) serve as 
drug targets. Here we focus on inhibitors of this class of 
receptors. 

Because Aβ is self-assembling, one can use short peptide 
fragments homologous to the fulllength wild-type protein 
[21–25] or N-Methylated peptides [26] as inhibitors. The 
binding affinity of beta-sheet breaker peptides KLVFF and 
LPFFD have been studied by experiment [21,22] and 
simulation [27] in detail. The binding free energy is 
presumably related to hydrophobicity of ligands in such a 
way that the higher is hydrophobicity the lower inhibitory 
capacity. The use of specific peptides to inhibit Aβ 
oligomerization and toxicity, although intriguing, has yet to 
progress beyond vivo models of amyloidosis. 

Carbohydrate-containing compounds, polyamines, 
chaperones, metal chelators etc may be used to interfere Aβ 
fibrillogenesis [28,29]. One of the most important classes of 
potential leads is polyphenols [30] that represent a large 
group of natural and synthesized small molecules. They are 
composed of one ormore aromatic phenolic ringsmaking 
them susceptible to Aβ peptides. Natural polyphenols are 
phytochemicals found in high concentrations in wine,  
tea, nuts, and a wide variety of other plants. Some 
nutraceuticals, as shown by pre-clinical and certain clinical 
studies, may be of value as AD therapeutic [31,32]. Among 
them Curcumin (diferulomrthane) [33] (Fig. 3), ginkgo 
biloba [34] and (-)-Epigallocatechin-3-Gallate (EGCG) 
(green tea) [35] from the traditional Chinese and Indian 
medicines are reported to inhibit Aβ aggregation and to be 
capable against Aβ -inducedtoxicity. Ginkgo biloba tree 
extract includes many compounds including ginkgolides A, 
B, C and J (see Fig. 3 for chemical structure of ginkgolide 
A) which may protect against Aβ-induced synapse damage. 

Clinical trials are going in phase II and III for curcumin [36] 
and ginkgo biloba [37], respectively. Tannic acid (Fig. 3) is 
the most potent inhibitor of Aβ fibril formation [38] among 
polyphenols having the inhibition constant IC50 ≈ 0.01μm, 
while Curcumin has IC50 ≈ 0.8μm. 

 
Fig. 3 Chemical structures of Curcumin, ginkgolide A, Tannic acid and 

Dracorubin (ID: 160270) 

 
Recently we have conducted search for possible leads 

among compounds derived from Vietnamese herbs and 
plants for anti-aggregation of amyloid peptides [39]. This 
problem is of interest because although the traditional 
Vietnamese medicine shares common features with Chinese 
and Indian ones, it has many specific herbs due to 
difference in geography and soil quality [40]. The binding 
affinity of 342 compounds to full-length Aβ40 and Aβ42 
peptides and their mature fibrils have been studied using 
Autodock Vina version 1.1. [41] Results obtained by  
the docking have been then refined by the more  
accurate Molecular Mechanic-Poisson Boltzmann Surface 
Area (MM-PBSA) method [42]. We have found that  
the champion lead is Dracorubin which has ID number 
160270 in the Pubchem and Chemspider database  
(see http://pubchem.ncbi.nlm.nih.gov and http:// 
http://www.chemspider.com/) (Fig. 3). This compound 
shows even higher binding affinity to Aβ pepides than 
Curcumin having the binding free energy ΔGbind = −15.59 
kcal/mol [39]. Recall that Curcumin has the binding free 
energy ΔGbind ≈ −13.3 kcal/mol [43].  
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IV. CONCLUSIONS  

We have reviewed the key factors such as charge, 
hydrophobicity, aromatic rings and population of the fibril-
prone state in controlling aggregation of polypeptide chains. 
They are intrinsic and dependent on protein sequences. 
External conditions like temperature, pH, salt concentration, 
environment crowding etc also affect aggregation but they 
are not mentioned here. The recent in-silico and in-vitro 
development on search for potential drugs for AD has been 
briefly discussed. Further clinical tests for potent leads 
would be an important step in this direction.   
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