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Abstract. This paper presents a design of an induction gradiometer for MCG 
measurement in our laboratory environment. The pickup coil consists of two air-
core coil having a diameter of 12 cm, connected in a differential structure. With 
two simple equivalent circuit models, we emphasize the benefit of current detection 
model compared with voltage detection model. To address the problems in 
conventional current-to-voltage converter, we propose a differential structured 
current-to-voltage converter and a suitable grounding technique. For MCG 
measurement in our laboratory environment, we design a signal conditioning 
circuits for the electronics. The sensitivity is as high as 32.3 mV/pT when the 
frequency is higher than the cutoff frequency of 18 Hz. It is a challenge to  
detect MCG signal without magnetically shielded environment. To suppress 
environmental noise contained in the output voltage, we use digital filters and an 
averaging technique. Although the sensitivity is enough to detect MCG signal, the 
phase profile of the electronics distorts the original signal. With a modeled MCG 
signal generated by one-turn coil, the expected output signal is confirmed. Finally, 
we demonstrate the detection of magnetic field from a human heart in our 
laboratory environment. 

1   Introduction 

Recently, a lot of magnetic sensors are being presented by researchers [1]. Sensors 
which can detect a weak magnetic field are important for a variety of applications, 
such as magnetometers for space research, gradiometers for biomagnetism, current 
sensors for hybrid vehicles, etc. The objective of this study is the development of a 
portable magnetic sensor which can detect weak magnetic fields in the low 
frequency range. In order to detect magnetic fields of less than 1 pT, three kinds of 
detection methods are well known. The first detection method is the use of a 
superconducting quantum interference device (SQUID). Although a SQUID 
magnetometer is a standard tool for biomagnetic measurements, liquid nitrogen or 
helium and its maintenance are essential. The second detection method is the use 
of the Zeeman effect. While an optically pumped magnetometer is based on this 
method, the necessity of an alkali-metal vapor, a radio-frequency generator and a 
high power laser makes the system complicated. The third detection method is the 
use of Faraday’s law, where an induction magnetometer detects the induced 
voltage of a pickup coil. Though most previous works mention magnetometers 
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through Faraday’s law, an approach from the definition of self-inductance is 
important when the target of the magnetic field is weak and low-frequency. One 
reason for this is the necessity of an ideal analogue integrator which does not have 
1/f noise, dc drift, and a limitation in gain  [2]. 

We have been developing induction magnetometers based on the definition of 
inductance [3-8]. Our proposed design of the pickup coil is based on a Brooks coil 
[9]. This shape of the coil can achieve a maximum inductance for a given length of 
winding wire, and the estimation error of the inductance is less than 3 % [6]. 
Induction magnetometers have the ability to detect weak magnetic fields from 
extremely low frequencies to those in the audible range (0.01 Hz ~ 10 kHz). 
Although induction magnetometers were proposed in several papers [1-2, 10-15], 
the technical details were usually not described. Because the nature of the coil is a 
fundamental basis of electromagnetism, the principles of induction magnetometers 
are easy to understand. However, the optimization of their design with numerous 
parameters is not easy. In order to simplify the design for the general shape of a 
pickup coil, we pay attention to the important relationships between flux linkage, 
current and voltage. In our previous report [7], we had determined four operation 
modes of a magnetometer which can be categorised with two detection models and 
two frequency ranges. The equivalent circuits for operation modes are based on 
Faraday’s law, the definition of inductance, and Ohm’s law. Some experimental 
results also showed the validity of these models. Previous systems [3-7] used a 
conventional current-to-voltage converter in the electronics. We have already 
reported that our sensor is very sensitive to electrical interference, and a suitable 
grounding point for the electronics is definitely required for detecting a weak 
magnetic field [16]. Therefore, we could not use the real performance of the 
magnetometer.  

The purpose of this study is to demonstrate magnetocardiography (MCG) 
measurements obtained from a human heart. Magnetic field signals from the 
human heart were first detected by Baule and MacFee in 1963 [17]. Cohen 
detected magnetic fields outside of the human scalp in a multilayer magnetically 
shielded room [18]. In recent years, biomagnetism measurements have received 
considerable attention for the early detection of heart diseases. SQUID sensors are 
mostly used in real-time MCG measurements. This sensor is highly-sensitive  
but requires liquid helium/nitrogen during measurements [19]. Although the 
magnetically shielded room can provide a suitable environment for MCG 
measurement [20], it is extremely expensive, heavy, and practical problems. It is a 
challenge to detect MCG signal with simple instrumentations. In order to  
detect MCG signal in our laboratory environment, we designed an induction 
gradiometer. The pickup coil consists of two Brooks coils having a diameter of  
120 mm which is connected in a differential structure [16]. Because this structure 
of the coil cannot detect a uniform magnetic field, it can help to suppress magnetic 
environmental noise contained in the output voltage.  

First of all, we explained the operation principle of the induction gradiometer 
with two simple equivalent circuit models. Assuming the mutual inductance of two 
Brooks coils to be zero, the models are similar as the induction magnetometer [7]. 
According to the simulated results with LTSpice, we proposed a differential 
structured current-to-voltage converter. Compared with the conventional converter, 
the influence of grounding perturbation on the output voltage was found to be 
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(dΦ / dt) =  – j2π2f n a2 B  [V] (
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Φ = L I  [Wb] (2
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Vout =  –j2π2f n a2 B
 Vout = – (Rf /R) × j2

When the frequency ran
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B  [V]  (For voltage detection model)      (6
2π2f n a2 B  [V] (For current detection model)   (7

ge is higher than its own cutoff frequency, the outpu
on the frequency. 

Rin B / L  [V] (For voltage detection model)  (8
Rf B / L  [V] (For current detection model)  (9

B| [V/T] as the sensitivity of the magnetometer. Th
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V/T]      (10
L =  (Rin π na2) / L [V/T]     (1
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(a) Room 403 

 
(b) Room 408 
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the observing output waveform outside the Faraday cage. A

connected. 

 
the observing output waveform outside the Faraday cage.  A
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53

ak 
ge. 
al 
he 
ng 
en 
ut 

All 

All 



154 
 

5   Electronics Desi

For the observation of M
designed the electronics f
the electronics for LTSp
converter is 2×107 V/A w
type HPF is also inserted 
of both filters was set to 0

 

Fig. 18. A mod

Fig. 19 shows an exam
new electronics. A voltag
For the demonstration of
from 2 s to 2.5 s was add
due to the grounding pert
100 pTp-p at 1 Hz was 16
filters was observed rapi
frequency for a magnetic
by LTSpice, and the dash
Although the simulated f
phase profile was change
function of frequency. 
electronics, and the dash
means that the detected 
MCG signal.  

 

K. Tashiro, S.-i. Inoue, and H. Wakiwak

ign 

MCG signal from a human heart as low as 100 pTp-p, w
for the induction gradiometer. Fig. 18 shows a model o

pice. The transimpedance gain of the current-to-voltag
which is ten times larger than before. A differential-inpu
to reject a finite offset voltage, and the cutoff frequenc

0.3 Hz. The gain of the final amplifier is 110. 

del of the electronics for the induction gradiomter 

mple of a simulated output voltage waveform with th
ge source of 5.65 nV at 1 Hz corresponds to 100 pTp-

f the grounding disturbance, a pulse voltage of 100 m
ded to the ground. There was no significant disturbanc
turbation, and the output voltage for a magnetic field o

64 mVp-p. We can see that a transient response due to th
dly.  Fig. 20 shows the output voltage as a function o
 field of 100 pTp-p. Line represents the results simulate

hed line represents our design with theoretical estimatio
frequency response was as similar as our expected, th

ed due to the filters. Fig. 21 shows the phase profile as 
The solid line represents the results with the ne

hed line represents the current-to-voltage converter. 
signal would be distorted compared with the origin

ka

we 
of 
ge 
ut 
cy 

 

he 
-p. 

mV 
ce 
of 
he 
of 
ed 
n. 
he 
a 

ew 
It 

nal 



Design of Induction Gradiom
 

Fig. 19. Simulated outpu

Fig. 20. Output voltage 

Fig. 21
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t voltage waveform for a magnetic field of 100 pTp-p at 1 Hz 

 
as a function of frequency for a magnetic field of 100 pTp-p 

 

1. Phase profile as a function of frequency 
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In order to check the 
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Fig. 24. Measured
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d examples of the waveform for modelled MCG signal 
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Fig. 25. Measured examples
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While the design of electronics for the induction magnetometer was as same as 
design mentioned before, we chose OP27 (Analog devices) for the op-amps in 
current-to-voltage converter. From our several considerations, the offset voltage in 
the output voltage with this op-amp was 10 times lower than that with LT1028A. 
The output signal of the gradiometer was processed by digital filter after the 
voltage was recorded by LabVIEW. Digital filters are band-pass filter (BPF) and 
band-eliminate filter (BEF). The cutoff frequency of this BEF corresponds to the 
power-line frequency of 60 Hz. This BPF allows passage of 0.3 ~ 30 Hz which 
corresponds to the frequency range of MCG signal.  

Fig. 24 shows measured examples of the waveform for the modelled MCG 
signal. Although the output signal was distorted, we successfully observed the 
corresponding signal of 10 Vp-p when the value of the R-wave was 1 nTp-p. 
However, we could not clearly observe the corresponding signal when the value of 
the R-wave was 100 pTp-p. In order to suppress the noise component whose 
voltage was about 1 Vp-p, we decided to use an averaging technique. Fig. 25 shows 
examples of the waveform averaged 20 times. In this averaging, the applied 
current of MCG signal was used as a trigger signal. Even if the value of R-wave 
was 100 pTp-p, we can find the corresponding signal of 1 Vp-p. From these results, 
we confirmed that the possibility to detect a MCG signal with this induction 
gradiometer.  

6   MCG Measurement 

It is a challenge to detect MCG signal without magnetically shielded environment. 
It is known that the typical value of magnetic field from human heart is a few 
hundred pT order. According to the electronics design, our developed induction 
gradiometer has sufficient sensitivity to detect the MCG signal. Although the 
measured signal was distorted, the output voltage was 1 Vp-p which corresponds to 
the value of the R-wave. The induction gradiometer allows us to detect an 
imbalance of magnetic flux in the pickup coil, and it has constant sensitivity when 
the frequency is larger than 18 Hz. However the corresponding magnetic noise of 
60 Hz in our laboratory environment was about 0.68 nTp-p. It was already 
confirmed that the digital filter is not enough to observe the MCG signal. In order 
to demonstrate real MCG measurement in our laboratory environment, we used 
averaging technique with ECG signal from a human heart as a trigger. We made 
instrumentation amplifiers for ECG measurement. The gain of the amplifiers was 
100. For this measurement, a conventional bipolar lead (CM5) method with 
surface electrodes (Vitrode, Nihon koden) was used. The output signal was 
processed by digital filter after the voltage was recorded by LabVIEW. Digital 
filters are the same as those for the MCG measurement. Fig. 26 shows an example 
of the ECG measurement.  

Fig. 27 shows a photograph of our experiment. A human subject lied on a 
wooden bed having a hole to hold the pickup coil of the induction gradiometer. 
The pickup coil was touched to the chest of the human subject. In order to 
suppress electrical interference to the pickup coil, the measurement was conducted 
inside the Faraday cage.  
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environment, the averaging technique is not required. It means that there is the 
possibility of simultaneous MCG measurement which is desired in clinical use. 
Although the detected signal was distorted by the phase profile in the electronics, 
an inverse filter could help to reconstruct the original MCG signal. 
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