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Abstract. Dramatically increasing requests for frequency bands in recent years, 
which has resulted in spectrum scarcity, lead us to examine the feasibility of 
dynamic spectrum access (DSA) technology. Cognitive radio (CR) has been 
considered as the key enabler of DSA because of its capability to perform 
spectrum sensing by using different detection techniques that guarantee acceptable 
probability of interference to primary users (PU), due to secondary user(s) (SU) 
access. Furthermore, cooperative spectrum sensing, which combines the 
observations/decision from a number of CR nodes, in order to determine the 
presence or absence of a PU signal, can yield better performance than that arrived 
by a single CR alone. This chapter provides a review of techniques and challenges 
encountered in cooperative spectrum sensing. 

1   Introduction and a Summary of Sensing Methods 

Cognitive Radio is built on the software defined radio (SDR) platform with an 
extra feature, “re-configurability.” The idea behind CR is to identify “spectrum 
holes,” performing real-time spectrum allocation and acquisition. This temporarily 
idle space, which is also known as “white space,” is basically the absence of 
transmission of licensed users. Of course, this space should be vacated in case of 
re-appearance of primary user(s). For this purpose, following spectrum sensing 
techniques have been proposed and implemented [1]: matched filter (or pilot) 
detection (MFD), energy detection (ED), cyclostationary (or characterization) 
detection (CD), eigenvalue detection (EVD), autocorrelation (or covariance) 
detection (AD), wavelet detection (WD), and probability-based detection (PD); 
advantages and disadvantages of these strategies have been reviewed in [2]. Some 
of these techniques discussed are also presented here. All these techniques are 
suffering from hidden terminal problem, which could be caused by heavily 
multipath fading and shadowing effects. The cooperative spectrum sensing has 
been proposed in order to combat this critical issue [3]; in this work only the hard 
decision combining, i.e., one bit quantization of CR data has been considered. The 
soft decision, i.e., multiple bits quantization of CR data was investigated in [4]. 
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Detection of any phenomenon, based on stochastic data, can lead to errors in 

decision. When a PU is present, the sensing device could declare that it is not 
present, leading to a miss, which is the complement of detection. Similarly, when a 
PU is absent (or spectral hole), the sensing device could declare that a PU is 
present, leading to a false alarm. If a sensing device is designed to control one type 
of error, say, the probability of miss ௠ܲ, which is One minus the probability of 
detection ሺ ௠ܲ ൌ 1 െ ௗܲሻ, below a specified value, the other probability of error, 
the probability of false alarm ௙ܲ, is determined by the quality of the received signal 
and the noise in the system. From a PU point of view, a larger probability of 
detection would provide it with better protection, as the chance of a SU 
transmitting while the PU is present will be less. From a SU point of view a low 
probability of false alarm is better, as it provides a SU with more access. It is 
interesting that, depending on the values of these probabilities, one can classify the 
sensing system in three different categories: Conservative System which has an 
opportunistic spectrum utilization rate less than or equal to 50% and a probability 
of interference less than 50% that is ௗܲ ൐ 0.5, ௙ܲ ൒ 0.5. Aggressive System which 
expects to achieve more than 50% opportunistic spectrum utilization while 
maintaining less than 50% probability to interfere with the PU that gives the 
condition of  ௗܲ ൐ 0.5, ௙ܲ ൏ 0.5 . Hostile System that targets more than 50% 
opportunistic spectrum utilization and is likely to cause interference to the PU with 
a probability greater than or equal to 50% that means  ௗܲ ൑ 0.5, ௙ܲ ൏ 0.5 [5]. 

Furthermore, according to the nature of sensing techniques we can divide the 
sensing systems into two major groups: Blind sensing that does not rely on any 
target signal features, like energy detection and autocorrelation detection or signal 
specific sensing that utilizes specific target signal features, like matched filter 
detection and cyclostationary detection. On the other hand, IEEE 802.22 standard 
proposal mentions that no specific spectrum sensing technique is mandatory in the 
standard and designers will be free to implement whatever spectrum sensing 
technique they choose as long as it meets the specified sensing requirements [6].  

The MFD method provides coherent detection and gives the best performance 
in terms of signal power to noise power ratio (SNR) as the secondary user receiver 
assumes the exact knowledge of the signal arriving from the transmission of a 
primary user. This means necessity of having exact knowledge of the modulation 
scheme employed by the primary transmitter, time synchronization of arriving 
symbols, and the channel parameters and if this information is not correct, the 
MFD performs poorly. In many practical scenarios, such exact knowledge is 
unavailable and hence it may not be realizable. Of course, the main advantage of 
MFD is that it needs less time to determine the presence of a PU signal with 
acceptable probabilities of errors tolerance, when compared to other methods. 
However, a significant drawback of a matched filter is that a cognitive radio 
would need a dedicated receiver for every PU class [7]. 

If a signal exhibits cyclostationary properties, its presence could be detected 
even in low SNR because CD is capable of differentiating the primary signal from 
the interference and noise. A signal is cyclostationary, if its autocorrelation is a 
periodic function. By searching for the peak in the spectral correlation function, 
the presence of the signal can be identified. It is more robust as noise does not 
possess any cyclic property whereas different modulated signals have different 
unique cyclic frequencies. A drawback is that CD is more complex to implement 
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and requires the knowledge of modulation format [1]. We can say CD method, as 
well as MFD technique, are good to be used in high processing power systems. 
For more efficient and reliable performance, the enhanced feature detection 
scheme, combining cyclic spectral analysis with pattern recognition based on 
neural networks is proposed in [8]. 

Eigenvalues detection is not computationally complex and primary user 
waveform information is not required. EVD is based on random matrix theory and 
auto-correlations are applied on received signal samples thereby estimating the 
covariance matrix. Then, the maximum eigenvalue of the covariance matrix is 
compared with predetermined threshold value to determine primary user presence; 
it has been shown that at lower SNR, EVD has even better results compare to 
MFD, ED and CD [9]. 

The Wavelet Detection is based on wavelet transform, which is a multi-
resolution method where an input signal is decomposed into different frequency 
components. By computing the wavelet transform of the power spectral density of 
received signal, the singularity in spectrum can be located and therefore vacant 
frequency bands can be found. Again, high sampling rate and computational 
complexity are the disadvantages. The covariance detection exploits the difference 
between the autocorrelation of a noise process and that of a signal process in order 
to sense a PU signal, this technique is suitable for low processing power systems.  

The Energy Detection is also termed as a radiometer or a non-coherent 
detection method. An ED is simply base on Neyman-Pearson approach and 
computes the energy of a signal present in a certain bandwidth and compares it to 
certain threshold value to decide whether the desired signal is present or not. The 
main advantage of ED is that it does not require any knowledge of the signal, such 
as modulation format or symbol synchronization. When a PU is transmitting, a SU 
which is located within a reasonable distance from the PU receives the PU signal 
in noise. The nature of channel between the PU and the SU and hence the power 
of the received signal in relation to the noise level will impact the performance of 
the ED. The performance improves with increased signal sensing (observation) 
time, which, however, results in lapsed opportunity to exploit a significant portion 
of the duration of PU spectral hole for SU transmission. Moreover, accurate 
determination of noise level is needed in order to guarantee a certain false alarm 
probability; error in noise power estimation can result in performance loss. The 
energy detector shows poor performance in low SNR, because the noise variance 
is not accurately known at low SNR. Although ED has a simple algorithm when 
compared to other techniques, at values of SNR below certain threshold, the ED 
could become useless. Another drawback is the inability of ED to differentiate the 
interference from other SUs and a PU. There are some other spectrum sensing 
techniques like multi-tape spectrum estimation (MTSE), which is based on 
maximal energy concentration of the Fourier transform of Slepian vectors and 
filter bank spectrum estimation (FBSE), which is a simplified version of MTSE; 
more details about these methods and a comparison between different sensing 
techniques could be found in [6]. Also, there is a recently proposed scheme, which 
is called probability based detection (PD). This method is based on the assumption 
that the idle duration of the licensed spectrum band is exponentially distributed, so 
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that the probability model regarding the appearance of the primary signal at each 
sampling point of a CR user frame is established [10].  

It is conceivable that the sensing performance of a CR network could be 
significantly improved, if two or more SUs, who want to opportunistically use the 
spectrum in a given band, cooperatively sense the presence or absence of a PU in 
their vicinities. The success of such a cooperative spectrum sensing depends on 
several factors: first, the SU’s ability to cooperate and network among themselves; 
second, mobile SUs may necessitate dynamically configuring CR networks and 
third, establishment of a network coordinator or a fusion center, where a final 
determination based on the sensing data from several SUs could be made. The 
superiority of cooperative sensing results from the fact that multiple pieces of 
information from several SUs would be better than one piece of information at a 
single SU; this is especially true when one of the SU receivers is hidden from a 
nearby PU transmitter, whereas one or more of other SU receivers in the vicinity 
of the PU may pick up the transmitted signal.  However, there may exists a 
scenario, where the determination of the presence of a PU by a set of SUs may not 
be relevant to another SU, simply because the particular PU sensed may really 
belong only to the “vicinity” of other SUs and not to the one SU under question. 
This brings up the question of vicinity determination before SUs could 
cooperatively sense. Hence, one could argue that the determination of a PU is not 
only with respect to time (present or absent) but also with respect to the location. 
A detailed discussion of this aspect with ensuing analysis is presented in a recent 
paper [11]. In this survey, we make the simplified assumption that an appropriate 
group of cooperative SUs has been determined in order to assess the presence of a 
PU in their vicinity. Cooperative sensing mechanism draws upon results from 
distributed detection and its application to wireless sensor networks. 

Based upon the distributed detection concept, a cooperative CR system can 
either use data fusion or decision fusion rules for combining individual 
observations of CRs. According to the nature of CR networks and their common 
applications, bandwidth limitation of the reporting (control) channel still remains 
as a challenge and has been discussed in various literature. In [12], a censoring 
method for a hard decision scenario is proposed in which every cognitive users 
obtain an observation independently and determines the reliability of the 
information and only the users with reliable information were allowed to report 
their local binary decisions to a common receiver at the fusion center (FC). In that 
work, the authors studied the performance of spectrum sensing in perfect and 
imperfect reporting channels and their analytical results show that the average 
number of sensing bits can be decreased greatly without impacting a great loss of 
PU detection performance.  

2   Cooperative Spectrum Sensing Algorithms and Challenges 

Cooperative spectrum sensing, when implemented appropriately, would yield 
better sensing performance and better throughput in CR networks. Most of the 
works reviewed here, excluding very recent contributions, have also been included 
in [13].  In this section, the terms CR and sensor will be used interchangeably. 
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Different studies have considered different signal models, fusion rules, or 
performance issues such as, sensing throughput tradeoffs and SNR walls [5, 14-
20]. We discuss below some of these results. 

In [5], the authors consider energy detection and a large number of samples at 
the detector so that the ED output can be considered to be Gaussian under both the 
hypotheses. The mean and variance of the output under the PU present hypothesis 
are larger than the corresponding values for spectral holes hypothesis. The CRs 
transmit the ED outputs directly, without any quantization, to a FC over listening 
channels. After front-end processing at the FC, it is assumed that the received 
statistic from a CR is a zero-mean Gaussian corrupted version of the transmitted 
statistic. A LRT at the fusion center will be a linear quadratic statistic and will 
require computation of multidimensional Gaussian integrals in order to determine 
the test threshold that meets a specific detection probability at the FC. Because of 
this computational complexity, a linear combination of received observations was 
considered. Optimization of weighting vector, for different cases of Conservative, 
Aggressive and Hostile systems was considered. For small values of N, the LRT 
performance was also determined numerically and then compared with that of a 
linear combiner. The results show usefulness of the linear combiner. In [14], it is 
shown that the optimization of weights can be done without any approximation 
and without having to delineate three cases. 

In [15], each CR uses identical energy detectors and transmits their binary 
decisions to the FC over error-free links. The power of the additive noise 
component in a sensor is assumed to have been estimated by the sensor, with the 
error in the estimate assumed to be distributed as log-normal with zero mean. 
Similarly, under the presence of a PU, each CR is assumed to receive a shadowed 
version of the transmitted PU signal in AWGN noise. For this condition, received 
power at a CR is modeled as a log-normal distribution with a mean value and a 
variance that depends on the shadowed-signal variance. Moreover, the signal 
powers in decibels at two CRs are assumed to have a correlation that decreases 
exponentially with distance between the receivers. With the assumed knowledge 
of a minimum value of the mean signal power level at the edge of a PU transmitter 
range and the goal of keeping the ௠ܲ  (miss probability, termed as interference 
probability, the probability of wrongly deciding absence of PU and therefore 
transmitting SU signal) below a number, a Neyman-Pearson (NP) test was 
considered. Because of correlated sensor observations, the individual decisions 
made at the sensors will be dependent. Because of the dependence, a LRT at the 
FC would require complete joint probability calculations, which would be 
computationally cumbersome. A suboptimal test based on the sensor decisions, 
termed linear-quadratic (LQ), was formulated and was shown to provide better 
performance, i.e., higher probability of spectrum holes detection at a prescribed 
probability of interference level, than a simple counting rule. 

The question of improvement attainable in sending multiple bits (soft 
decisions) from CRs to the FC, instead of single bits (hard decisions) was 
examined in [16]. The model assumes the detection of an OFDM signal with 
cyclic prefix at a CR and assumes a LRT statistic based on the computed 
autocorrelation coefficient [17]. Assuming the sensor signal observation interval 
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to be very large compared to one OFDM block and that the SNR is small, the 
distributions of the test statistic under both hypotheses are approximately 
Gaussian. This becomes a problem of testing two Gaussian distributions with 
known means and variances. For hard decision combining, the OR, AND, and 
majority logic (ML), in the class of fusion counting rules were considered. For 
soft decision combining, the quantizer at a CR was assumed to be a maximum 
output entropy quantizer and the fusion rule is the comparison of the sum of 
estimated quantized values against a threshold. The estimated quantized value of a 
sensor at the FC may differ from the quantized value at the sensor, due to 
noisiness of the sensor-fusion link. It was assumed the each sensor-fusion is link 
static and independent of each other, so each exhibits a constant bit error 
probability (BEP). The theoretical and simulation results show that the ML logic 
is more robust to bit error probability variations in sensor-fusion (listening 
channel) link when compared to both OR and AND. 

The reference [16] also talks about a BEP wall. The basic idea is that, for the 
listening channel bit error rate above a certain limit, it is possible that no sensor 
quality could achieve certain prescribed fusion center performance, specified in 
terms of both required probabilities, probability of detection ( ௗܲ଴) and probability 
of false alarm ( ௙ܲ଴). Another way to describe this is to calculate the SNR loss in 
dB defined as the difference between the minimum SNR required at the SUs to 
meet the constraints on ௗܲ଴, ௙ܲ଴ in the presence of reporting channel errors ( ௕ܲ) 
and the minimum SNR required at the SUs in the ideal case of using exact log-
likelihood ratio (LLR), an optimal fusion rule and error free reporting channels 
( ௕ܲ ൌ 0). A plot of SNR loss against BEP ( ௕ܲ) was done for soft decision and 
various hard decision fusion schemes.  BEP wall is the point at which the SNR 
loss increases without bound. BEP wall close to “1” is desirable, since in that case, 
the cooperative sensing is robust for larger values of BEP. The soft decision 
combining with two or more bits provide better performance, both in terms of 
reduced SNR loss and the BEP wall, when compared to hard decision fusion. 
Among the counting rules examined, ML performs the best.  In a related issue, 
[18] considers the upper bound on ௙ܲ (alternatively 1 െ ௗܲ), for a given channel ௕ܲ  and a specific k-out-of-n fusion rule (counting rule), so that a specified fusion 
center performance can be met. In other words, if ௙ܲ  exceeds the bound, the 
specified fusion center performance cannot be attained. BEP wall basically points 
out the limitations imposed by the listening channel quality. In [19], the effect of 
the quality of listening channel on the sensor false alarm and detection 
probabilities, as seen at the FC, was examined. In that paper, minimum sensor 
SNR was computed for a prescribed fusion center performance and a given 
link  ௕ܲ . Alternatively speaking, since only certain parameters can be controlled by 
devising a test, under a prevailing condition, certain demands on performance 
levels may never be met. 

In [20], the authors consider a multiband detection procedure for detecting the 
presence or absence of PUs at the same time. The assumption is that multiple sub-
bands within a wideband may be occupied by several PUs and that a simultaneous 
identification of spectral holes in these sub-bands would allow several SUs to 
opportunistically transmit their signals. Each sub-band detection is allowed to 
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have different false alarm probability, and hence different sensor detection 
threshold. By putting a bound on cost function for the interference caused to PUs, 
and by putting bounds on false alarm and miss probabilities for each sub-band, the 
authors address the problem of finding optimum sensor thresholds so that the 
aggregate throughput of all SUs is maximized. The authors show that this 
optimization problem can be recast into a convex optimization problem so that a 
computationally feasible solution can be sought. The problem was then extended 
to the situation of pooled data from all SUs (i.e., cooperative sensing). As in [5], a 
linear combination of ED sensor outputs was considered. The optimization is now 
with respect to the weighting vector of the linear combiner and the threshold 
vector for decisions at the FC (notice that, in this case, no individual decisions are 
made at a CR). The general optimization problem is not convex; however, by 
optimizing only the lower bound on the aggregate throughput, and not the exact 
throughput, the problem can be seen as a convex optimization problem. 
Simulation results show that cooperative sensing scheme proposed can 
significantly improve the system performance. 

In [21], the authors proposed a cooperative wideband detection scheme with an 
optimal fusion based on a likelihood ratio test (LRT). In this scheme, which is 
independent of noise variance estimation, each SU detects the availability of 
spectrum hole, based on a robust Bayesian estimation algorithm, and then sends 
their decisions to the fusion center. The authors’ simulation results show the 
effectiveness of the scheme in improving the probability of detection under log-
normal shadow fading channel. As mentioned previously, gathering all 
participating radios data in one place may be very difficult under practical 
communication constraints [22].  

Some distributed cooperative spectrum sensing methods based on consensus 
algorithms are proposed [23-25]. In [26] consensus schemes for decision fusion-
based cooperative spectrum sensing, i.e., OR fusion, AND fusion, and k-out-of-n 
fusion is investigated. Theoretical analysis shows that by exchanging decision 
information among adjacent neighboring nodes in a distributed way, these 
algorithms will converge to the traditional optimal central decision fusion results, 
assuming that network topology does not change throughout the consensus 
process. 

Another problem addressed is related to finding the optimal number of 
secondary users. In [27] it was shown that co-operating all secondary users in the 
network does not achieve the optimum  ௗܲ  (probability of detection) or ௙ܲ 
(probability of false alarm). The optimum values are usually achieved by 
exploiting cooperation among a group of users that have higher primary user’s 
signal to noise ratios (SNR). Also, numerical and simulation results provided in 
[28] show that there exists an optimum number of cooperating users, for a pair of 
fixed probabilities of detection and false alarm, and cooperating a certain number 
of users with highest reputation will achieve better sensing performance by 
accounting for network security. 

In [29], the authors consider SNR walls for signal detection. Of specific interest 
is the spectrum sensing in CR. Given that there will be uncertainty in noise models 
(noise is never perfectly WGN, noise power measured is uncertain within some 
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non-zero interval), signal models, and transmission channel models (fading 
parameters can be known only within certain uncertain intervals), dictates of 
specific false alarm probability and miss probability may not be met, even if the 
number of independent samples received by a detector become infinitely large. 
When a radiometer (ED) is used to detect the presence of a weak (very small 
SNR) unknown signal in AWGN noise, with the noise variance assumed to lie 
over the uncertainty interval:ሾߪଶ/ߩ, ߩ  ଶሿߪߩ ൐ 1, the detector will be unable to 
meet specified constraints on both  ௙ܲ ൏ ߙ ൏ 0.5  ௠ܲ ൏ ߚ ൏ 0 if the SNR is 
below the SNR wall specified by ሺߩଶ െ 1ሻ/ߩ. That is, any amount of sensing time 
for the radiometer cannot provide the required accuracy. Drawbacks of ED can be 
clearly seen in this context. If certain information about PU signal, such as the 
presence of a pilot tone, is known to the radiometer, the SNR wall could be 
pushed back, but the noise uncertainty still poses a non-zero SNR wall. Thus, if a 
licensed PU is allowed to transmit any choice signals and at the same time, severe 
constraint on miss probability for a SU is imposed, the opportunistic spectrum 
access can yield only a very limited throughput for secondary users. But, if the 
rules mandate a PU to transmit a pilot at certain power, then SUs can operate more 
successfully at the cost of potentially lower performance for the PU. This general 
tradeoff can be seen as capacity-robustness tradeoff [29]. 

In [30], the authors consider optimizing sensing time in order to maximize 
secondary user throughput, subject to constraint on interference to PU. Assume a 
lower bound on the probability of detection (to protect primary user) and an 
available block of total time out of which a portion of time τ is allocated for 
sensing and the remaining time for secondary user data transmission, when a SU 
decides to transmit. Then the problem is to find an optimum τ so that the 
throughput R of the secondary user is maximized. Notice that R has two 
components: one when a spectrum hole truly exists, the SU correctly identifies it 
and the other when a PU is present, but the SU mistakenly considers it to be 
absent (sneak through case). For radiometer detection it was shown an optimum τ 
exists and that it can be numerically found. The paper also considers extension to 
distributed spectrum sensing with multiple SUs. Assuming the knowledge of 
sensing channels’ coefficients, a maximal ratio combiner is considered at the FC. 
Performance of OR, AND, and ML were also studied. 

We discuss now some of the recent contributions to spectrum sensing in CR.  
In [31] sensing efficiency of the AND, OR, and the k-out-of-n fusion rules has 
been discussed, where the authors focus on two important issues of spectrum 
sensing: the discovered spectrum opportunity and the overall sensing overhead 
and presented the cooperative spectrum sensing strategies for single and multiple 
licensed channels. In [32] the authors consider the combining of hard decisions 
from multiple energy detectors and compare the sensing efficiency for different 
fusion rules. The optimal decision threshold for the k-out-of-n rule that can 
maximize the sensing efficiency was determined and was shown that this rule is 
optimal in terms of sensing efficiency when compared to tow other rules, for a 
given false alarm probability. Also, it has been observed that if SU senses the 
channel over a longer duration, then a lower decision threshold will be required in 
spectrum sensing, because sensing accuracy will be higher. 
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In [33] the authors have studied the optimization of cooperative spectrum 
sensing when the local decisions of the CR users are correlated and a counting rule 
is employed at the fusion center. Also, the optimal number of users and the local 
sensing threshold that jointly minimize the probability of sensing error are 
obtained using the genetic algorithm (GA), when the correlation index is known. 
Detection performance analysis shows that the cooperative spectrum sensing 
scheme degrades with an increase in the correlation between CR local decisions 
for all fusion rules i.e. AND, OR, majority logic and any other counting rule. 

In [34] the authors have considered an additional parameter of probability of 
interference along with the probability of missed detection in order to increase the 
performance of spectrum hole discovery. Their optimization formulation considers 
both single and cooperative sensing and the case of one primary user existence. 
When compared to conventional approaches, their “interference-aware” metric 
can result in a better utilization of the spectrum by allowing the secondary user to 
maximize its transmission opportunity, without sacrificing the desired degree of 
protection for primary users. 

Knowing that the reporting channels are not error free in real implementation of 
CR, in [35] the authors designed a realistic cooperative spectrum sensing network, 
where the reporting channels from the cognitive radios to the fusion center are 
affected by AWGN and Rayleigh fading and an optimal minimum mean square 
error (MMSE) detector is used to improve the detection performance. It is 
observed that the performance of this detector converges to that of fusion center 
operating in an ideal (noise free) environment with increasing SNR. 

In [36] the authors investigated the performance of cooperative spectrum 
sensing with cognitive radio users censored on the basis of the quality of 
Rayleigh-faded reporting channel connecting CR users to a FC. The authors 
observed that no further improvement in missed detection performance is obtained 
by increasing the number of CRs beyond a certain limit. 

Many analyses presented dealt with cooperative spectrum sensing assuming 
one primary user. In fact, most of the detection techniques do not require the 
information about primary users, but in real environment, multiple primary users 
might exist. In [37] multi-antenna cooperative spectrum sensing in cognitive radio 
networks, when there may be multiple primary users, is considered. In this 
approach, sensing performance of a multiple primary users’ detector, based on the 
spherical test (ST) is investigated and also the detection performance is analyzed 
by deriving closed-form approximations by matching the moments of the test 
statistics to the Beta distributions, under both hypotheses. Besides, the ST detector 
estimates whether the covariance matrix differs from a matrix proportional to the 
identity matrix. According to simulation results, the authors conclude that, in the 
presence of more than one primary user, some performance gain may be obtained 
via the spherical test, even without knowing the number of primary users. 

3   Conclusion 

In this chapter we provided a review of some of the research on cooperative 
spectrum sensing techniques. The review has not been complete, but an effort was 
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made to present some of the key results. Since the technology for implementation 
is at an early stage, the topic is of interest to many researchers and we can 
anticipate more results in the near future. 
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