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Abstract. This chapter considers a recent algorithm to add broader diversity at the 
beginning of the evolutionary process and extends it to sigmoidal neural networks. A 
simultaneous evolution of architectures and weights is performed with a two-stage 
evolutionary algorithm. The methodology operates with two initial populations, each 
one containing individuals with different topologies which are evolved for a small 
number of generations, selecting the half best individuals from each population and 
combining them to constitute a single population. At this point, the whole 
evolutionary cycle is applied to the new population. This idea was previously 
proposed by us for product unit neural networks, and we now extend to sigmoidal 
neural networks. The experimentation has been carried out on twelve data sets from 
the UCI repository and two complex real-world problems which differ in their 
number of instances, features and classes. The results have been contrasted with 
nonparametric statistical tests and show that our proposal significantly improves the 
test accuracy of the models with respect to the obtained ones with a standard 
methodology based on a single population. Moreover, the new proposal is much more 
efficient than other methods developed previously by us. 

Keywords: Artificial neural networks, Sigmoidal units, Product units, Evolutionary 
algorithms, Classification, Population diversity. 

1   Introduction 

The diversity issue is very important to avoid a premature convergence of 
evolutionary algorithms (EAs) and to reach solutions with good quality. At the 
beginning of the algorithm is suitable a diverse population and a more condensed one 
at the end of the search [1]. In this way, the algorithm combines the two key ideas 
exploration and exploitation. The matter of generating various populations is related 
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with the diversity throughout the evolutionary process and has been also discussed 
previously (for instance in [2]). The number of populations may vary and there is not 
a common accepted value. A common view of the evolutionary cycle is that diversity 
enhances the performance of a population by providing more chances for evolution. A 
homogeneous population offers no advantage for improvement as the entire 
population is focused in a particular portion of the search space. High diversity does 
not imply better genetic algorithm performance; this is closely related to the question 
of exploration versus exploitation, but enforcing diversity in the early phases of 
evolution ensures a broad exploration of the search space [3]. 

Briefly, the main approach considered in this chapter diversifies the architecture  
of the neural network (NN) for classification problems at the beginning of the 
evolutionary process. Our previous methodology [4], which operates with 
evolutionary artificial neural networks (EANNs) based on product units [5] in a two-
stage EA (TSEA) is extended in the current chapter in order to consider EANNs with 
sigmoidal units. Our objective is to compare the improved methodology -based on 
two stages- to the standard one -composed of a single stage with a population- 
employing sigmoidal units in both cases and also to the previous TSEA methodology 
that have been employed to date by us for product unit neural networks (PUNNs). A 
computational cost analysis is performed to determine the efficiency of the standard 
and improved methodologies that have been applied first time both for sigmoidal 
neural networks in the current chapter. Also, an efficiency report between product and 
sigmoidal units applying the improved methodology is presented. 

The chapter is organized as follows: Sect. 2 describes some concepts about 
evolutionary sigmoidal and product unit neural networks, the base EA and TSEA; 
Sect. 3 introduces our proposal; Sect. 4 details the experimentation; then Sect. 5 
shows and analyzes the results obtained; finally, Sect. 6 states the concluding 
remarks. 

2   Methodology 

2.1   Evolutionary Artificial Neural Networks Based on Sigmoidal and Product 
Units 

EANNs offer a platform to optimize network performance and architecture 
simultaneously. Miller et al. [6] proposed that evolutionary computation was a very 
good candidate to search the space of architectures. Since then, many methods have 
been developed to evolve artificial neural networks (ANNs), for instance, [7, 8]. Next, 
we describe EANNs based on sigmoidal and product units. The methodology 
employed here uses an EA as a tool for simultaneous learning the architecture and 
weights of the ANN. Other authors have also considered this idea [9, 10]. In previous 
works we have trained PUNNs [4, 11], but in the current chapter we experiment, 
moreover, with sigmoidal units.  

Fig. 1 shows the scheme of two ANN models for a bi-classification problem with 
sigmoidal (at part a)) and product units (at part b)). Each one is a k:m:1 three-layer 
architecture, that is, k nodes in the input layer, m ones and a bias one in the hidden 
layer and one node in the output layer. 
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Fig. 1. Scheme of two ANN models with sigmoidal (a) and product (b) units for a bi-
classification problem 

The transfer function of each node in the hidden and output layers is the identity 
function. Thus, the functional model obtained by each of the nodes in the output layer 
with J classes is given by Eq. 1. 
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2.2   Two-Stage Evolutionary Algorithm 

We have used a base EA to design the structure and learn the weights of ANN as in 
[11]. The followed base algorithm in the current chapter, that has also several 
common points with the EA described in [12], is exactly equal to those described in 
our previous work [4] for classification tasks. However, it has been generalized to any 
type of ANNs. We have followed the same guidelines given in our previous work; a 
detailed explanation can be read in Sect. 2.2 of [4]. 
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Program: Two-Stage Evolutionary Algorithm 
Data: Training set 
Input parameters: gen, neu 
Output: Best ANN model 
1:    // First Stage 
2:   t  0 
3:     // Population P1 
4:   P1(t)  {ind1, …, ind10000}         // Individuals of P1 have neu nodes in the hidden layer 
5:   f1 (P1(t) {ind1, …, ind10000})  fitness (P1(t) {ind1, …, ind10000})  // Calculate fitness 
6:   P1(t)  P1(t) {ind1, …, ind10000}  // Sort individuals 
7:   P1(t)  P1(t) {ind1,… ind1000}   // Retain the 1000 best ones 
8:    // Population P2 
9:   P2(t)  {ind1, …, ind10000}     // Individuals of P2 have neu+1 nodes in the hidden layer 
10: f2 (P2(t) {ind1, …, ind10000})  fitness (P2(t) {ind1, …, ind10000})  // Calculate fitness 
11: P2(t)  P2(t) {ind1, …, ind10000}  // Sort individuals 
12: P2(t)  P2(t) {ind1,… ind1000}   // Retain the 1000 best ones   
13: for each Pi               // Evolution of populations P1 and P2 until 0.1*gen generations 
14:   current_generation  0 
15:   t  0 
16:      while current_generation < 0.1*gen not met do  
17:           Pi(t) {ind901,…ind1000}  Pi(t) {ind1, …, ind100} // Best 10% replace the worst 10% 
18:          Pi(t+1)  Pi(t) {ind1, …, ind900} 
19:          Pi(t+1)  pm (Pi(t+1) {ind1, …, ind90})      // Parametric mutation (10% Pi (t+1)) 
20:           Pi(t+1)  sm (Pi(t+1) {ind91, …, ind900})     // Structural mutation (90% Pi (t+1)) 
21:          fi(Pi(t+1) {ind1, .. ind900})  fitness (Pi(t+1) {ind1, …, ind900})  // Evaluate 
22:          Pi(t+1)  Pi(t+1) (ind1, …, ind900)   Pi(t){ind901, …, ind1000}  
23:          Pi(t+1)  Pi(t+1){ind1, …, ind1000}   // Sort individuals 
24:          current_generation  current_generation + 1 
25:          t  t + 1 
26:      end while 
27: end for 
28: P(0)  P1{ind1, …, ind500}   P2{ind1, …, ind500}   // Individuals of P has [neu, neu+1]  
29:       // nodes in the hidden layer 
30:  P(0)  P(0) {ind1, …, ind1000}   // Sort individuals by fitness: indi > indi+1 

31:     // Second Stage 
32:                                                   // Input: gen, neu+1 
33:   t  0 
34:   while stop criterion not met do    // main loop 
35:         P(t) {ind901,…ind1000}  P(t) {ind1, …, ind100} // Best 10% replace the worst 10% 
36:         P(t+1)  P(t) {ind1, …, ind900} 
37:         P(t+1)  pm (P(t+1) {ind1, …, ind90})       // Parametric mutation (10% P(t+1)) 
38:         P(t+1)  sm (P(t+1) {ind91, …, ind900})     // Structural mutation (90% P(t+1)) 
39:         f(P(t+1) {ind1, .. ind900})  fitness (P(t+1) {ind1, …, ind900})        // Evaluate 
40:         P(t+1)  P(t+1) (ind1, …, ind900)   P(t) {ind901, …, ind1000}  
41:         P(t+1)  P(t+1){ind1, …, ind1000}      // Sort individuals 
42:         last_generation  t 
43:         t  t+1 
44:  end while 
45:  return best (P(last_generation) {ind1}) 

 

Fig. 2. Pseudo-code of the TSEA for classification 
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A specialization of the previous algorithm called TSEA has been introduced in 
[4] for product units. Basically, the two-stage EA operates with two initial 
populations, each of one containing individuals with different topologies, evolving 
them for a small number of generations, selecting the best individuals from each 
population in the same proportion and combining them to constitute a single 
population. At this point, the whole evolutionary cycle is applied to the new 
population. The pseudo-code of the TSEA appears in Fig. 2. The individuals are 
subjected to the operations of replication and mutation, thus the algorithm falls into 
the class of evolutionary programming. We do not use the crossover operator due to 
the permutation problem [7]. 

3   Proposal Description 

The current chapter presents an extended methodology called TSEASig (Two-Stage 
Evolutionary Algorithm for neural networks with Sigmoidal units) that is derived 
from TSEA [4]. The number of neurons in the input layer is equal to the number of 
variables in the problem; a hidden layer with a number of nodes that depends on  
the data set to be classified; and the number of nodes in the output layer equal to the 
number of classes minus one because a softmax-type probabilistic approach has 
been used. The first stage consists of creating two populations, each one with 
individuals that present different maximum number of nodes, neu and neu+1, in the 
hidden layer, evolving them with equal settings of the remaining parameters of the 
EA for a small number of generations, 0.1*gen, selecting the half best individuals 
from each population and unifying them to constitute a single population. In the 
second stage, the full evolutionary process is applied to the population. The initial 
short training improves random individuals and let to explore possible promising 
areas in two directions, since there are two different populations. After that, 
individuals with different topologies coexist and the more adapted ones will remain. 
The parameters are defined as gen, the maximum number of generations; and neu, 
the maximum number of nodes in the hidden layer. In the recently cited work, we 
proposed a TSEA for EANNs with product units. TSEASig is an extension of 
TSEA that operates with NNs based on sigmoidal units. Fig. 3 depicts the structure 
of TSEASig. 

EDD (experimental design distribution) methodology has been launched by us in 
[13]. It distributes some parameters of the network topology or of the base EA over 
some computing nodes. An initial configuration, called base configuration, is defined 
and it is modified with a new value for one parameter in each of the nodes. The idea is 
to run the base EA with different configurations. Up to date, EDD has been applied 
with NNs based on product units. Now, we try out it first time with sigmoidal units 
and the resulting methodology is named EDDSig, another original contribution of this 
chapter.  
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Fig. 3. TSEASig structure 

Table 1 presents the description of the TSEA, EDDSig and TSEASig con-
figurations. The neu and gen and parameters take the values indicated as input to the 
program. 2α  is associated with the residual of the updating expression of the output-
layer weights and the initial value is fixed. For EDDSig, we have considered two 
configurations that can be compared to the equivalent one of TSEASig. Related to 
TSEA, we have taken into account the configuration 1*. It is noticeable that TSEA 
works with PUNNs and the remaining methodologies with sigmoidal units. 

Table 1. Description of the TSEA, EDDSig and TSEASig configurations 

Methodology Configuration Num. of 
neurons

Num. of  
neurons in  
each 
population 

Max.  
Num. of  
generations

Max. Num.  
of generations 
in each 
population 

α2 

TSEA 1* - neu and neu+1 - 0.1*gen 1 
EDDSig 1S neu - gen - 0.5 
EDDSig 2S neu+1 - gen - 0.5 
TSEASig 1S* - neu and neu+1 - 0.1*gen 0.5 

4   Experimentation  

4.1   Data Sets and Validation Technique 

Table 2 summarizes the data sets employed. Most of them are publicly available at the 
UCI repository [14] and the last two concern complex real-world problems. The 
following fourteen ones have been used: Statlog (Australian credit approval), Balance 
scale, breast Cancer Wisconsin, Heart disease (Cleveland), HeartY, Hepatitis, Horse 
colic, Thyroid disease (allhypo, Hypothyroid), Thyroid disease (Newthyroid), Pima  
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Indians diabetes, Waveform database generator (version 2) and Yeast regarding the 
UCI data sets, and BTX and Listeria monocytogenes as complex real-world problems. 
BTX is a multi-class classification environment problem for different types of 
drinking waters [15]. Listeria monocytogenes is a bi-class problem in predictive 
microbiology [16].  

All nominal variables have been converted to binary ones. Also, the missing values 
have been replaced in the case of nominal variables by the mode or, when concerning 
continuous variables, by the mean, considering the full data set. The experimental 
design uses the cross validation technique called stratified hold-out that consists of 
splitting the data into two sets: training and test set, maintaining the class distribution 
of the samples in each set approximately equal as in the original data set. Their sizes 
are approximately 3N/4 and N/4, being N the number of patterns in the problem. The 
proportions do not match in BTX [15] and Listeria [17] because the data is 
prearranged in two sets due to their specific features. 

Table 2. Summary of the data sets used 

Data set Total Patterns Training Patterns Test Patterns Features Inputs Classes 

Australian 690 517 173 14 51 2 

Balance 625 469 156 4 4 3 

Cancer 699 525 174 10 9 2 

Heart 303 227 76 13 26 2 

HeartY 270 202 68 13 13 2 

Hepatitis 155 117 38 19 19 2 

Horse 368 276 92 27 83 2 

Hypothyroid 3772 2829 943 29 29 4 

Newthyroid 215 161 54 5 5 3 

Pima 768 576 192 8 8 2 

Waveform 5000 3750 1250 40 40 3 

Yeast 1484 1112 372 8 8 10 

BTX 63 42 21 3 3 7 

Listeria 539 305 234 4 4 2 

4.2   Common Parameters of the Different Methodologies and Specific 
Parameters Depending on the Dataset 

Table 3 introduces the common parameters for all datasets related to TSEASig, 
EDDSig and TSEA methodologies. All values are according with our previous works 
[4, 18]. In the case of TSEA, since PUNNs are used, data is normalized to avoid input 
values near to 0, which can produce very large values of the outputs for negative 
exponents.  
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Table 3. Common parameters for TSEASig, EDDSig and TSEA 

Parameter/Feature Value   

 TSEASig/EDDSig  TSEA 

Population size (N) 1000  1000 

gen-without-improving 20  20 

Interval for the terms/exponents jiw  [-5, 5]  [-5, 5] 

Interval for the coefficients l
jβ  [-10, 10]  [-5, 5] 

Initial value of 1α  0.5  0.5 

Initial value of 2α  0.5  1 

Normalization of the input data [0.1, 0.9]  [1, 2] 

Number of nodes in node addition and node deletion operators [1, 2]  [1, 2] 

 
The values of the neu and gen parameters depend on the data set and are shown in 

Table 4. The decision about the number of neurons is a very difficult task in the scope 
of NNs, but determining the optimal values is a challenge. With respect to the number 
of generations, we have defined three kinds of values: small (100-150), medium 
(300), large (500) and very large (1000). Again, the optimal number is unknown; 
however the algorithm has a stop criterion to avoid evolving up to the maximum 
number of generations if there is no improvement. We have given values of our 
choice to the two parameters depending on the complexity of the data set (number of 
 

Table 4. Values of TSEA/EDDSig/TSEASig parameters depending on the data set 

Data set TSEA  EDDSig  TSEASig  
Num. of 
neurons 
in each 
population  
(neu and 
neu+1) 

Max. Num.  
of 
generations 
in each 
population 

Num. of  
neurons 
(neu) 

Max. Num. 
of  
generations 
(gen) 

Num. of 
neurons 
in each 
population 
(neu and 
neu+1) 

Max. Num.  
of 
generations 
in each 
population 

Australian 4 and 5 100 4 100 4 and 5 100 
Balance 5 and 6 150 4 300 4 and 5 300 
Cancer 2 and 3 100 2 100 2 and 3 100 
Heart 3 and 4 300 3 300 3 and 4 300 
HeartY 4 and 5 100 4 100 4 and 5 100 
Hepatitis 3 and 4 100 3 100 3 and 4 100 
Horse 4 and 5 300 4 300 4 and 5 300 
Hypothyroid 3 and 4 500 3 500 3 and 4 500 
Newthyroid 3 and 4 300 3 300 3 and 4 300 
Pima 3 and 4 120 3 100 3 and 4 100 
Waveform 3 and 4 500 3 500 3 and 4 500 
Yeast 11 and 12 1000 11 1000 11 and 12 1000 
BTX 5 and 6 500 5 500 5 and 6 500 
Listeria 4 and 5 300 4 300 4 and 5 300 
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classes, inputs, instances,…). Other times the values are based on previous works [4, 
18]. EDDSig and TSEASig values are in concordance to compare the performance of 
both methodologies. Sometimes, the values differ between methodologies. The initial 
tests with sigmoidal units for Balance dataset sheds light on that a high number of 
neurons provokes overfitting. 

4.3   Nonparametric Statistical Analysis 

We follow the recommendations pointed out by J. Demšar [19] to perform 
nonparametric statistical tests to determine the statistical significance of the 
differences in rank observed for each method with all data sets. There are two 
methods, Friedman and Iman-Davenport tests. The former test is based in 2

Fχ  

statistic; the null hypothesis states that all algorithms perform equal. The latter test is 
based of FF  which is a better statistic, derived from 2

Fχ . FF  is distributed according 

to the F-distribution with ( 1)k −  and ( 1)( 1)k N− − degrees of freedom with k 

algorithms and N datasets. If the null-hypothesis is rejected, we can proceed with a 
post-hoc test. Nemenyi test has been performed to compare all classifiers to each 
other. The critical difference (CD) can be computed from critical values, k and N. The 
considered significance levels have been 0.05 for Iman-Davenport test, and 0.05 and 
0.10 for the post-hoc method. 

5   Results 

First of all, this section presents the results obtained related to the Correct 
Classification Ratio (CCR) in the test set with TSEA, EDDSig and TSEASig 
methodologies. After that, a nonparametric statistical analysis compares all of them. 
Next, an analysis of the computational cost is performed. Finally, we report a 
summary of the results obtained with a good number of classifiers, from the scope of 
NNs or classical/modern machine learning.  

5.1   Results Applying TSEA, EDDSig and TSEASig 

The results obtained by applying TSEA [4] are presented, along with those obtained 
with EDDSig and TSEASig. In the case of EDDSig two configurations have been 
considered (1S and 2S). In TSEA, there were two configurations 1* and 2*; however, 
only one (1*) is considered to make a fair comparison with the remaining 
methodologies. In TSEASig, the single configuration is 1S*. EDDSig configurations 
are equivalent to 1S*. 

Table 5 shows the mean and standard deviation (SD) of the CCR and the topology 
for each data set and configuration for a total of 30 runs or iterations. By rows, the 
best result appears in boldface. The value obtained with TSEASig is in italics if it is 
better than the two values related to EDDSig. The descriptive analysis of the data 
reveals that the TSEA methodology obtains best results for eight data sets and 
TSEASig six times. Usually, TSEASig has lower SD than EDDSig and it expresses 
more homogeneous results of the former methodology. 
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Table 5. Results obtained in fourteen data sets with the different configurations related to 
TSEA, EDDSig and TSEASig methodologies 

Data set Methodologies       
 TSEA EDDSig TSEASig  
 1* 1S  2S  1S*  
 Mean±SD Top. Mean±SD Top. Mean±SD Top. Mean±SD Top. 
Australian 88.11±1.56 51:[4,5]:1 87.12±1.45 51:4:1 87.46±1.18 51:5:1 86.55±1.43 51:[4,5]:1 
Balance 96.20±1.06 4:[5,6]:2 94.14±1.87 4:4:2 95.08±1.27 4:5:2 93.93±2.21 4:[4,5]:2 
Cancer 98.74±0.61 9:[2,3]:1 98.39±0.74 9: 2:1 98.69±0.54 9:3:1 98.31±0.69 9:[2,3]:1 
Heart 83.68±2.57 26:[3,4]:1 82.89±2.46 26:3:1 83.02±2.59 26:4:1 83.85±2.65 26:[3,4]:1 
HeartY 84.01±3.05 13:[4,5]:1 83.28±2.92 13:4:1 83.18±2.61 13:5:1 83.87±2.66 13:[4,5]:1 
Hepatitis 85.26±4,34 19:[3,4]:1 86.22±4.77 19:3:1 85.78±4.12 19:4:1 86.75±3.41 19:[3,4]:1 
Horse 85.50±2.97 83:[4,5]:1 85.21±2.98 83:4:1 85.40±2.69 83:5:1 88.04±2.19 83:[4,5]:1 
Hypothyroid 95.37±0.40 29:[3,4]:3 94.69±0.39 29:3:3 94.94±0.35 29:4:3 95.15±0.18 29:[3,4]:3 
Newthyroid 94.81±0.89 5:[3,4]:3 94.07±0.75 5:3:3 94.25±1.01 5:4:3 94.38±0.59 5:[3,4]:3 
Pima 78.63±1.33 8:[3,4]:1 77.62±1.62 8:3:1 78.14±1.60 8:4:1 78.76±1.39 8:[3,4]:1 
Waveform 84.46±0.92 40:[3,4]:2 85.35±1.45 40:3:2 85.96±1.22 40:4:2 86.58±1.18 40:[3,4]:2 
Yeast 60.05±1.10 8:[11,12]:9 58.96±1.27 8:11:9 59.24±1.20 8:12:9 60.33±0.61 8:[11,12]:9 
BTX 79.68±7.39 3:[5,6]:6 72.85±7.41 3:5:6 73.01±4.89 3:6:6 76.34±5.65 3:[5,6]:6 
Listeria 86.54±1.67 4:[4,5]:1 85.06±1.13 4:4:1 85.43±0.97 4:5:1 85.75±0.66 4:[4,5]:1 

5.1.1   Statistical Analysis 
Now, we compare TSEA, EDDSig and TSEASig methodologies by means of 
nonparametric statistical tests. To determine whether there are significant 
differences we apply an Iman-Davenport test. Since two configurations were run 
for EDDSig, now we consider the best value of the two mean ones reported in Table 
5. The average ranks of the different methodologies are 2.64, 1.78 and 1.57 
respectively for EDDSig, TSEASig and TSEA. According to Iman-Davenport test 
results, since the statistic 6.16FF =  is higher than the critical value (2, 26) 3.37F =  

at 0.05α =  the null-hypothesis is rejected. Therefore, we proceed with post-hoc 
Nemenyi test. The performance of two classifiers is significantly different if the 
corresponding average ranks differ by at least the CD. Table 6 shows the Nemenyi 
test results where the ranking difference between each different pair and the detected 
significant difference level have been indicated for more clarity. In a single row, the 
CD (at 0.05α =  and 0.10α = ) is shown. 

Table 6. Pairwise comparisons of the TSEA, EDDSig and TSEASig methodologies by means 
of a Nemenyi test 

 EDDSig TSEASig TSEA 
EDDSig  0.86º  1.07 *  
TSEASig   0.21  

 ( 0.05 ) ( 0.10 )0.89;  0.78CD CDα α= == =  
Each filled cell contains the ranking difference between the methods in the row  
and the column. Also, it is specified if the former method outperforms  
the latter one at a significance level of 0.05 (*) or 0.10 (º)
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An analysis based upon the results Nemenyi test allow us to state the following. 
There are significant differences between the TSEASig and EDDSig at 0.10α = . 
Consequently, TSEASig is better than EDDSig. In other words, regarding to ANNs 
with sigmoidal units, the methodology based in the two-stage algorithm outperforms 
the standard one based in EDD. Comparing TSEA and TSEASig there are not 
significant differences. It means that the new approach is competitive with respect to 
TSEA. We can conclude that the methodology based on the two-stage algorithm is 
suitable both for sigmoidal and product units. Finally, TSEA is significantly better 
than EDDSig at 0.05α = . 

5.1.2   Analysis of Computational Cost 
The comparison between TSEA, EDDSig and TSEASig methodologies is completed  
by means of a computational cost analysis. Experiments have been run in a desktop 
computer with an Intel Core 2 Quad processor at 2.4GHz and 2GB RAM of physical 
memory. The acceleration rate of the i method with respect to j method is given by  
Eq. 4. 

( )
_ ( , )

( )

time j
Acceleration Rate i j

time i
=                                    (4) 

Table 7 reports the time results concerning to the computational cost per iteration 
measured in seconds (s). The first column specifies the data set name. From second to 
fifth columns are showed the elapsed time of an iteration with each configuration of 
the different methodologies. Two last columns depicted the accelerate rates for 
TSEASig regards to EDDSig and TSEA. Last row contains the average of the values 
in the column. Since two configurations of EDDSig are equivalent to one of 
 

Table 7. Computational cost and acceleration rates of TSEA, EDDSig and TSEASig 

Data set Computational cost (s) Acceleration rate 
 Methodologies (TSEASig, 

EDDSig) 
(TSEASig,  
TSEA) 

 TSEA  EDDSig  TSEASig   
 1*  1S 2S 1S*   
Australian 303  126 155 191 1.47 1.59 
Balance 287  317 370 382 1.80 0.75 
Cancer 98  40 51 61 1.49 1.61 
Heart 207  114 133 134 1.84 1.54 
HeartY 62  34 37 51 1.39 1.22 
Hepatitis 36  19 22 25 1.64 1.44 
Horse 817  304 378 344 1.98 2.38 
Hypothyroid 6503  4525 6090 6694 1.59 0.97 
Newthyroid 122  83 101 116 1.59 1.05 
Pima 105  63 73 88 1.55 1.19 
Waveform 9213  5217 6412 7155 1.63 1.29 
Yeast 49320  21983 30349 28538 1.83 1.73 
BTX 256  158 174 190 1.75 1.35 
Listeria 231  168 198 216 1.69 1.07 
Average 4825.71  2367.93 3181.64 3156.07 1.66 1.37 
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TSEASig, the acceleration rate (TSEASig, EDDSig) is calculated as the sum of the 
times of 1S and 2S divided by the time of 1S*. 

Having a look at the Table 7, we conclude that regarding to sigmoidal units, 
TSEASig is 1.66 times faster than EDDSig. In the comparison between TSEASig and 
TSEA, the former is 1.37 times faster than the latter. The empirical times give notice 
that the proposed methodology, TSEASig, is much more efficient than the previous 
methodology, TSEA. Moreover TSEASig is faster than EDDSig. The efficiency 
measures are based on the computation time of an iteration of the whole population 
throughout the EA running. The speed depends on the own evolutionary process and 
the number of mathematical operations that are involved to calculate the NN output. 

5.2   Results Obtained with a Good Number of Classifiers  

Now, a general review is made about the results obtained with another kind of NNs 
and other machine learning algorithms. In the literature, a huge amount of tests has 
been carried out with some of the data sets here considered. Our purpose is to view 
some of the methods that have been tested with some of the data sets dealt with in the 
current chapter. 

Related to NNs, we have reported TSEASig, TSEA, the traditional MLP model 
[20] with a learning Back-Propagation method (BP); the RBF model [21] with a 
normalized Gaussian, HMOEN_L2 [22], SONG [23] and CC-EBFNN [24]. As 
classical or modern machine learning algorithms have been included: C4.5, k-nearest 
neighbours (k-NN) -with the best accuracy for k in {1, 3, 5, 7, 9}-, PART and SVM 
[25]. Since, MLP, RBF, C4.5, k-NN, PART and SVM are implemented in Weka tool 
[26], we have conduced the experiments. The parameters have been set to the default 
values with the exceptions that we describe; for BP were the following: learning rate 

0.3η = , momentum 0.2α =  and the number of epochs was adjusted in each data set. 

To determine the learning and the momentum we try out a grid search algorithm with 
values in the range [0, 1] in 0.1 steps. Regarding the topology of the models in the 
case of MLP and RBF we have considered the default one.  

Table 8 includes the results of all classifiers, averaged for 30 runs in non-
deterministic algorithms, with each of the data set; the best ones in boldface and in 
italics the second best ones, as well as the averages of the methods run by us with all 
data sets. From a purely descriptive analysis of the results, it can be concluded that 
SVM and RBF obtain the best result for three data sets, TSEASig, MLP, C4.5 and 
PART for two data sets, and TSEA and k-NN once. There is not one method that 
performs really well with all data sets; depending on the data set, the best classifier 
belongs to either the neural networks approach or to the classical/modern machine 
learning. Furthermore, the TSEA method achieves the highest mean accuracy 
( 85.79CCR = ), followed by the TSEASig ( 85.61CCR = ) and RBF ( 84.42CCR = ). 

The previous statements point out that methodology based on two stages is proper 
with product or sigmoidal units. 
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Table 8. Summary of the results in fourteen data sets comparing TSEASig to other methods 
related to neural networks or classical/modern machine learning approaches 

Method Australian Balance Cancer Heart HeartY Hepatitis Horse 
TSEASig 86.55 93.93 98.31 83.85 83.87 86.75 88.04 
TSEA 88.11 96.20 98.74 83.68 84.01 85.26 85.50 
HMOEN_L2 - - 96.30 - - 80.30 - 
MLP 84.10 93.78 97.81 84.82 84.29 84.73 88.51 
RBF 75.84 88.27 97.20 86.75 83.79 89.30 80.47 
SONG - 87.80 97.40 - - - - 
CC-EBFNN - - 96.67 82.45 - - - 
C4.5 86.71 83.33 97.13 75.00 84.21 84.21 88.04 
k-NN 85.55 91.67 98.85 82.89 83.70 86.84 88.04 
PART 84.97 85.26 97.13 80.26 82.12 81.58 85.87 
SVM 88.44 88.46 98.28 82.89 80.37 89.47 88.04 

Method Hypothyroid Newthyroid Pima Waveform Yeast BTX Listeria 
TSEASig 95.15 94.38 78.76 86.58 60.33 76.34 85.75 
TSEA 95.37 94.81 78.63 84.46 60.05 79.68 86.54 
HMOEN_L2 - - 78.50 - - - - 
MLP 94.39 97.08 75.94 84.85 60.11 54.12 84.49 
RBF 92.83 98.27 77.34 87.29 59.83 80.95 83.70 
SONG - 97.20 76.40 - - - - 
CC-EBFNN - - 76.04 - - - - 
C4.5 99.15 96.30 74.48 76.40 54.84 80.95 85.93 
k-NN 94.06 94.44 75.00 81.12 48.39 76.19 85.93 
PART 98.83 92.59 74.48 78.16 56.72 80.95 86.67 
SVM 93.85 88.89 78.13 88.80 55.91 61.90 80.74 

 

 ( ) 85.61CCR TSEASig = ; ( ) 85.79CCR TSEA = ; ( ) 83.50CCR MLP = ;

 ( ) 84.42CCR RBF =  

 

 ( 4.5) 83.22CCR C = ; ( ) 83.76CCR k NN− = ; ( ) 83.26CCR PART = ;

 ( ) 83.16CCR SVM =  

6   Conclusions 

This chapter aims to tackle multi-classification problems using evolutionary artificial 
neural networks based on sigmoidal units. We have extended to sigmoidal units a 
previous methodology for neural networks based on product units based with an EA 
divided in two phases. The new approach has been called TSEASig. Our basic 
assumption is that it is convenient to employ a methodology based on a population 
with more diverse models in terms network architectures and this produces an 
improvement in efficiency and accuracy.  

The TSEASig methodology is applied to solve fourteen classification problems, 
twelve from the UCI repository and two real-world problems, with a great deal of 
variety in the number of instances, features and classes. The test results confirm that 
our approach obtains promising results, achieving a high classification rate level in 
the data sets at a lower computational cost than EDDSig.  
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A comparison between TSEASig, EDDSig and TSEA has been carried out by 
means of nonparametric tests. The test results reveal that there are significant 
differences between TSEASig and EDDSig. However, significant differences are not 
present between TSEASig and TSEA; this fact indicates that the methodology in two 
stages is also suitable for sigmoidal units. According to the above results, our new 
learning methodology of neural networks, TSEASig, based on sigmoidal units is 
competitive in accuracy and more efficient than the remaining methodologies. The 
empirical times give notice that TSEASig is 1.37 times faster than TSEA. 

We have also summarized the results obtained with other kinds of neural networks 
and classical/modern machine learning algorithms. From the analysis of the results we 
can observe the good performance of our new approach.  
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