
I. Jordanov and L.C. Jain (Eds.): Innovations in Intelligent Machines -3, SCI 442, pp. 139–153.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

Chapter 9
An Extended Approach of a Two-Stage
Evolutionary Algorithm in Artificial Neural
Networks for Multiclassification Tasks

Antonio J. Tallón-Ballesteros1, César Hervás-Martínez2, and Pedro A. Gutiérrez2

1 Department of Languages and Computer Systems,
 University of Seville,
 Reina Mercedes Avenue, Seville, 41012 Spain
2 Department of Computer Science and Numerical Analysis,
 University of Córdoba,
 Campus of Rabanales, Albert Einstein Building, Córdoba, 14071 Spain
 atallon@us.es

Abstract. This chapter considers a recent algorithm to add broader diversity at the
beginning of the evolutionary process and extends it to sigmoidal neural networks. A
simultaneous evolution of architectures and weights is performed with a two-stage
evolutionary algorithm. The methodology operates with two initial populations, each
one containing individuals with different topologies which are evolved for a small
number of generations, selecting the half best individuals from each population and
combining them to constitute a single population. At this point, the whole
evolutionary cycle is applied to the new population. This idea was previously
proposed by us for product unit neural networks, and we now extend to sigmoidal
neural networks. The experimentation has been carried out on twelve data sets from
the UCI repository and two complex real-world problems which differ in their
number of instances, features and classes. The results have been contrasted with
nonparametric statistical tests and show that our proposal significantly improves the
test accuracy of the models with respect to the obtained ones with a standard
methodology based on a single population. Moreover, the new proposal is much more
efficient than other methods developed previously by us.

Keywords: Artificial neural networks, Sigmoidal units, Product units, Evolutionary
algorithms, Classification, Population diversity.

1 Introduction

The diversity issue is very important to avoid a premature convergence of
evolutionary algorithms (EAs) and to reach solutions with good quality. At the
beginning of the algorithm is suitable a diverse population and a more condensed one
at the end of the search [1]. In this way, the algorithm combines the two key ideas
exploration and exploitation. The matter of generating various populations is related

140 A.J. Tallón-Ballesteros, C. Hervás-Martínez, and P.A. Gutiérrez

with the diversity throughout the evolutionary process and has been also discussed
previously (for instance in [2]). The number of populations may vary and there is not
a common accepted value. A common view of the evolutionary cycle is that diversity
enhances the performance of a population by providing more chances for evolution. A
homogeneous population offers no advantage for improvement as the entire
population is focused in a particular portion of the search space. High diversity does
not imply better genetic algorithm performance; this is closely related to the question
of exploration versus exploitation, but enforcing diversity in the early phases of
evolution ensures a broad exploration of the search space [3].

Briefly, the main approach considered in this chapter diversifies the architecture
of the neural network (NN) for classification problems at the beginning of the
evolutionary process. Our previous methodology [4], which operates with
evolutionary artificial neural networks (EANNs) based on product units [5] in a two-
stage EA (TSEA) is extended in the current chapter in order to consider EANNs with
sigmoidal units. Our objective is to compare the improved methodology -based on
two stages- to the standard one -composed of a single stage with a population-
employing sigmoidal units in both cases and also to the previous TSEA methodology
that have been employed to date by us for product unit neural networks (PUNNs). A
computational cost analysis is performed to determine the efficiency of the standard
and improved methodologies that have been applied first time both for sigmoidal
neural networks in the current chapter. Also, an efficiency report between product and
sigmoidal units applying the improved methodology is presented.

The chapter is organized as follows: Sect. 2 describes some concepts about
evolutionary sigmoidal and product unit neural networks, the base EA and TSEA;
Sect. 3 introduces our proposal; Sect. 4 details the experimentation; then Sect. 5
shows and analyzes the results obtained; finally, Sect. 6 states the concluding
remarks.

2 Methodology

2.1 Evolutionary Artificial Neural Networks Based on Sigmoidal and Product
Units

EANNs offer a platform to optimize network performance and architecture
simultaneously. Miller et al. [6] proposed that evolutionary computation was a very
good candidate to search the space of architectures. Since then, many methods have
been developed to evolve artificial neural networks (ANNs), for instance, [7, 8]. Next,
we describe EANNs based on sigmoidal and product units. The methodology
employed here uses an EA as a tool for simultaneous learning the architecture and
weights of the ANN. Other authors have also considered this idea [9, 10]. In previous
works we have trained PUNNs [4, 11], but in the current chapter we experiment,
moreover, with sigmoidal units.

Fig. 1 shows the scheme of two ANN models for a bi-classification problem with
sigmoidal (at part a)) and product units (at part b)). Each one is a k:m:1 three-layer
architecture, that is, k nodes in the input layer, m ones and a bias one in the hidden
layer and one node in the output layer.

 An Extended Approach of a Two-Stage Evolutionary Algorithm in ANNs 141

1
x

2x

kx

å
1

m

11w

1mw
21w

2mw

bias

1kw

kmw
1
0b

1
1b

1
mb...

.

..

1
x

2x

kx

å
1s

ms

11w

1mw
21w

2mw

bias

1kw

kmw
1
0b

1
1b

1
mb...

.

..

a) b)

Fig. 1. Scheme of two ANN models with sigmoidal (a) and product (b) units for a bi-
classification problem

The transfer function of each node in the hidden and output layers is the identity
function. Thus, the functional model obtained by each of the nodes in the output layer
with J classes is given by Eq. 1.

1 2 0
1

(, ,...,) (,) 1, 2,...,
m

l l
k j j j

j

f x x x B w l Jβ β
=

= + = x (1)

where Bj follows different expressions depending on the type of unit:

 Product unit:

1

(,) ji

k
w

j j i
i

B w x
=

= ∏x (2)

 Sigmoidal unit:

0

1
(,)

1 exp()
1

j j

j ji i

B w
k

w w x
i

=
+ − − 

=

x
 (3)

2.2 Two-Stage Evolutionary Algorithm

We have used a base EA to design the structure and learn the weights of ANN as in
[11]. The followed base algorithm in the current chapter, that has also several
common points with the EA described in [12], is exactly equal to those described in
our previous work [4] for classification tasks. However, it has been generalized to any
type of ANNs. We have followed the same guidelines given in our previous work; a
detailed explanation can be read in Sect. 2.2 of [4].

142 A.J. Tallón-Ballesteros, C. Hervás-Martínez, and P.A. Gutiérrez

Program: Two-Stage Evolutionary Algorithm
Data: Training set
Input parameters: gen, neu
Output: Best ANN model
1: // First Stage
2: t  0
3: // Population P1
4: P1(t)  {ind1, …, ind10000} // Individuals of P1 have neu nodes in the hidden layer
5: f1 (P1(t) {ind1, …, ind10000})  fitness (P1(t) {ind1, …, ind10000}) // Calculate fitness
6: P1(t)  P1(t) {ind1, …, ind10000} // Sort individuals
7: P1(t)  P1(t) {ind1,… ind1000} // Retain the 1000 best ones
8: // Population P2
9: P2(t)  {ind1, …, ind10000} // Individuals of P2 have neu+1 nodes in the hidden layer
10: f2 (P2(t) {ind1, …, ind10000})  fitness (P2(t) {ind1, …, ind10000}) // Calculate fitness
11: P2(t)  P2(t) {ind1, …, ind10000} // Sort individuals
12: P2(t)  P2(t) {ind1,… ind1000} // Retain the 1000 best ones
13: for each Pi // Evolution of populations P1 and P2 until 0.1*gen generations
14: current_generation  0
15: t  0
16: while current_generation < 0.1*gen not met do
17: Pi(t) {ind901,…ind1000}  Pi(t) {ind1, …, ind100} // Best 10% replace the worst 10%
18: Pi(t+1)  Pi(t) {ind1, …, ind900}
19: Pi(t+1)  pm (Pi(t+1) {ind1, …, ind90}) // Parametric mutation (10% Pi (t+1))
20: Pi(t+1)  sm (Pi(t+1) {ind91, …, ind900}) // Structural mutation (90% Pi (t+1))
21: fi(Pi(t+1) {ind1, .. ind900})  fitness (Pi(t+1) {ind1, …, ind900}) // Evaluate
22: Pi(t+1)  Pi(t+1) (ind1, …, ind900)  Pi(t){ind901, …, ind1000}
23: Pi(t+1)  Pi(t+1){ind1, …, ind1000} // Sort individuals
24: current_generation  current_generation + 1
25: t  t + 1
26: end while
27: end for
28: P(0)  P1{ind1, …, ind500}  P2{ind1, …, ind500} // Individuals of P has [neu, neu+1]
29: // nodes in the hidden layer
30: P(0)  P(0) {ind1, …, ind1000} // Sort individuals by fitness: indi > indi+1

31: // Second Stage
32: // Input: gen, neu+1
33: t  0
34: while stop criterion not met do // main loop
35: P(t) {ind901,…ind1000}  P(t) {ind1, …, ind100} // Best 10% replace the worst 10%
36: P(t+1)  P(t) {ind1, …, ind900}
37: P(t+1)  pm (P(t+1) {ind1, …, ind90}) // Parametric mutation (10% P(t+1))
38: P(t+1)  sm (P(t+1) {ind91, …, ind900}) // Structural mutation (90% P(t+1))
39: f(P(t+1) {ind1, .. ind900})  fitness (P(t+1) {ind1, …, ind900}) // Evaluate
40: P(t+1)  P(t+1) (ind1, …, ind900)  P(t) {ind901, …, ind1000}
41: P(t+1)  P(t+1){ind1, …, ind1000} // Sort individuals
42: last_generation  t
43: t  t+1
44: end while
45: return best (P(last_generation) {ind1})

Fig. 2. Pseudo-code of the TSEA for classification

 An Extended Approach of a Two-Stage Evolutionary Algorithm in ANNs 143

A specialization of the previous algorithm called TSEA has been introduced in
[4] for product units. Basically, the two-stage EA operates with two initial
populations, each of one containing individuals with different topologies, evolving
them for a small number of generations, selecting the best individuals from each
population in the same proportion and combining them to constitute a single
population. At this point, the whole evolutionary cycle is applied to the new
population. The pseudo-code of the TSEA appears in Fig. 2. The individuals are
subjected to the operations of replication and mutation, thus the algorithm falls into
the class of evolutionary programming. We do not use the crossover operator due to
the permutation problem [7].

3 Proposal Description

The current chapter presents an extended methodology called TSEASig (Two-Stage
Evolutionary Algorithm for neural networks with Sigmoidal units) that is derived
from TSEA [4]. The number of neurons in the input layer is equal to the number of
variables in the problem; a hidden layer with a number of nodes that depends on
the data set to be classified; and the number of nodes in the output layer equal to the
number of classes minus one because a softmax-type probabilistic approach has
been used. The first stage consists of creating two populations, each one with
individuals that present different maximum number of nodes, neu and neu+1, in the
hidden layer, evolving them with equal settings of the remaining parameters of the
EA for a small number of generations, 0.1*gen, selecting the half best individuals
from each population and unifying them to constitute a single population. In the
second stage, the full evolutionary process is applied to the population. The initial
short training improves random individuals and let to explore possible promising
areas in two directions, since there are two different populations. After that,
individuals with different topologies coexist and the more adapted ones will remain.
The parameters are defined as gen, the maximum number of generations; and neu,
the maximum number of nodes in the hidden layer. In the recently cited work, we
proposed a TSEA for EANNs with product units. TSEASig is an extension of
TSEA that operates with NNs based on sigmoidal units. Fig. 3 depicts the structure
of TSEASig.

EDD (experimental design distribution) methodology has been launched by us in
[13]. It distributes some parameters of the network topology or of the base EA over
some computing nodes. An initial configuration, called base configuration, is defined
and it is modified with a new value for one parameter in each of the nodes. The idea is
to run the base EA with different configurations. Up to date, EDD has been applied
with NNs based on product units. Now, we try out it first time with sigmoidal units
and the resulting methodology is named EDDSig, another original contribution of this
chapter.

144 A.J. Tallón-Ballesteros, C. Hervás-Martínez, and P.A. Gutiérrez

Population 1
Size: N

Kind of unit: sigmoidal
Hidden nodes: neu

Short evolution: 0.1*gen

Ne w popula tion
Si ze : N

K i n d o f un i t : si gm o i da l
Hi d d e n no d e s: ne u a n d ne u +1

Fu l l e vo l u t i on : gen

Popula tion 2
Si ze : N

K i n d o f u n i t : si g m o i d a l
Hi d d e n n od e s: neu+1

Sh o rt e vo l u t i o n : 0 .1 *g e n
Best individuals

1 / 2, ..., Ni i
Best individuals

1 / 2, ..., Ni i

Stage 2

Stage 1 Stage 1

Stage 2

Fig. 3. TSEASig structure

Table 1 presents the description of the TSEA, EDDSig and TSEASig con-
figurations. The neu and gen and parameters take the values indicated as input to the
program. 2α is associated with the residual of the updating expression of the output-
layer weights and the initial value is fixed. For EDDSig, we have considered two
configurations that can be compared to the equivalent one of TSEASig. Related to
TSEA, we have taken into account the configuration 1*. It is noticeable that TSEA
works with PUNNs and the remaining methodologies with sigmoidal units.

Table 1. Description of the TSEA, EDDSig and TSEASig configurations

Methodology Configuration Num. of
neurons

Num. of
neurons in
each
population

Max.
Num. of
generations

Max. Num.
of generations
in each
population

α2

TSEA 1* - neu and neu+1 - 0.1*gen 1
EDDSig 1S neu - gen - 0.5
EDDSig 2S neu+1 - gen - 0.5
TSEASig 1S* - neu and neu+1 - 0.1*gen 0.5

4 Experimentation

4.1 Data Sets and Validation Technique

Table 2 summarizes the data sets employed. Most of them are publicly available at the
UCI repository [14] and the last two concern complex real-world problems. The
following fourteen ones have been used: Statlog (Australian credit approval), Balance
scale, breast Cancer Wisconsin, Heart disease (Cleveland), HeartY, Hepatitis, Horse
colic, Thyroid disease (allhypo, Hypothyroid), Thyroid disease (Newthyroid), Pima

 An Extended Approach of a Two-Stage Evolutionary Algorithm in ANNs 145

Indians diabetes, Waveform database generator (version 2) and Yeast regarding the
UCI data sets, and BTX and Listeria monocytogenes as complex real-world problems.
BTX is a multi-class classification environment problem for different types of
drinking waters [15]. Listeria monocytogenes is a bi-class problem in predictive
microbiology [16].

All nominal variables have been converted to binary ones. Also, the missing values
have been replaced in the case of nominal variables by the mode or, when concerning
continuous variables, by the mean, considering the full data set. The experimental
design uses the cross validation technique called stratified hold-out that consists of
splitting the data into two sets: training and test set, maintaining the class distribution
of the samples in each set approximately equal as in the original data set. Their sizes
are approximately 3N/4 and N/4, being N the number of patterns in the problem. The
proportions do not match in BTX [15] and Listeria [17] because the data is
prearranged in two sets due to their specific features.

Table 2. Summary of the data sets used

Data set Total Patterns Training Patterns Test Patterns Features Inputs Classes

Australian 690 517 173 14 51 2

Balance 625 469 156 4 4 3

Cancer 699 525 174 10 9 2

Heart 303 227 76 13 26 2

HeartY 270 202 68 13 13 2

Hepatitis 155 117 38 19 19 2

Horse 368 276 92 27 83 2

Hypothyroid 3772 2829 943 29 29 4

Newthyroid 215 161 54 5 5 3

Pima 768 576 192 8 8 2

Waveform 5000 3750 1250 40 40 3

Yeast 1484 1112 372 8 8 10

BTX 63 42 21 3 3 7

Listeria 539 305 234 4 4 2

4.2 Common Parameters of the Different Methodologies and Specific
Parameters Depending on the Dataset

Table 3 introduces the common parameters for all datasets related to TSEASig,
EDDSig and TSEA methodologies. All values are according with our previous works
[4, 18]. In the case of TSEA, since PUNNs are used, data is normalized to avoid input
values near to 0, which can produce very large values of the outputs for negative
exponents.

146 A.J. Tallón-Ballesteros, C. Hervás-Martínez, and P.A. Gutiérrez

Table 3. Common parameters for TSEASig, EDDSig and TSEA

Parameter/Feature Value

 TSEASig/EDDSig TSEA

Population size (N) 1000 1000

gen-without-improving 20 20

Interval for the terms/exponents jiw [-5, 5] [-5, 5]

Interval for the coefficients l
jβ [-10, 10] [-5, 5]

Initial value of 1α 0.5 0.5

Initial value of 2α 0.5 1

Normalization of the input data [0.1, 0.9] [1, 2]

Number of nodes in node addition and node deletion operators [1, 2] [1, 2]

The values of the neu and gen parameters depend on the data set and are shown in

Table 4. The decision about the number of neurons is a very difficult task in the scope
of NNs, but determining the optimal values is a challenge. With respect to the number
of generations, we have defined three kinds of values: small (100-150), medium
(300), large (500) and very large (1000). Again, the optimal number is unknown;
however the algorithm has a stop criterion to avoid evolving up to the maximum
number of generations if there is no improvement. We have given values of our
choice to the two parameters depending on the complexity of the data set (number of

Table 4. Values of TSEA/EDDSig/TSEASig parameters depending on the data set

Data set TSEA EDDSig TSEASig
Num. of
neurons
in each
population
(neu and
neu+1)

Max. Num.
of
generations
in each
population

Num. of
neurons
(neu)

Max. Num.
of
generations
(gen)

Num. of
neurons
in each
population
(neu and
neu+1)

Max. Num.
of
generations
in each
population

Australian 4 and 5 100 4 100 4 and 5 100
Balance 5 and 6 150 4 300 4 and 5 300
Cancer 2 and 3 100 2 100 2 and 3 100
Heart 3 and 4 300 3 300 3 and 4 300
HeartY 4 and 5 100 4 100 4 and 5 100
Hepatitis 3 and 4 100 3 100 3 and 4 100
Horse 4 and 5 300 4 300 4 and 5 300
Hypothyroid 3 and 4 500 3 500 3 and 4 500
Newthyroid 3 and 4 300 3 300 3 and 4 300
Pima 3 and 4 120 3 100 3 and 4 100
Waveform 3 and 4 500 3 500 3 and 4 500
Yeast 11 and 12 1000 11 1000 11 and 12 1000
BTX 5 and 6 500 5 500 5 and 6 500
Listeria 4 and 5 300 4 300 4 and 5 300

 An Extended Approach of a Two-Stage Evolutionary Algorithm in ANNs 147

classes, inputs, instances,…). Other times the values are based on previous works [4,
18]. EDDSig and TSEASig values are in concordance to compare the performance of
both methodologies. Sometimes, the values differ between methodologies. The initial
tests with sigmoidal units for Balance dataset sheds light on that a high number of
neurons provokes overfitting.

4.3 Nonparametric Statistical Analysis

We follow the recommendations pointed out by J. Demšar [19] to perform
nonparametric statistical tests to determine the statistical significance of the
differences in rank observed for each method with all data sets. There are two
methods, Friedman and Iman-Davenport tests. The former test is based in 2

Fχ

statistic; the null hypothesis states that all algorithms perform equal. The latter test is
based of FF which is a better statistic, derived from 2

Fχ . FF is distributed according

to the F-distribution with (1)k − and (1)(1)k N− − degrees of freedom with k

algorithms and N datasets. If the null-hypothesis is rejected, we can proceed with a
post-hoc test. Nemenyi test has been performed to compare all classifiers to each
other. The critical difference (CD) can be computed from critical values, k and N. The
considered significance levels have been 0.05 for Iman-Davenport test, and 0.05 and
0.10 for the post-hoc method.

5 Results

First of all, this section presents the results obtained related to the Correct
Classification Ratio (CCR) in the test set with TSEA, EDDSig and TSEASig
methodologies. After that, a nonparametric statistical analysis compares all of them.
Next, an analysis of the computational cost is performed. Finally, we report a
summary of the results obtained with a good number of classifiers, from the scope of
NNs or classical/modern machine learning.

5.1 Results Applying TSEA, EDDSig and TSEASig

The results obtained by applying TSEA [4] are presented, along with those obtained
with EDDSig and TSEASig. In the case of EDDSig two configurations have been
considered (1S and 2S). In TSEA, there were two configurations 1* and 2*; however,
only one (1*) is considered to make a fair comparison with the remaining
methodologies. In TSEASig, the single configuration is 1S*. EDDSig configurations
are equivalent to 1S*.

Table 5 shows the mean and standard deviation (SD) of the CCR and the topology
for each data set and configuration for a total of 30 runs or iterations. By rows, the
best result appears in boldface. The value obtained with TSEASig is in italics if it is
better than the two values related to EDDSig. The descriptive analysis of the data
reveals that the TSEA methodology obtains best results for eight data sets and
TSEASig six times. Usually, TSEASig has lower SD than EDDSig and it expresses
more homogeneous results of the former methodology.

148 A.J. Tallón-Ballesteros, C. Hervás-Martínez, and P.A. Gutiérrez

Table 5. Results obtained in fourteen data sets with the different configurations related to
TSEA, EDDSig and TSEASig methodologies

Data set Methodologies
 TSEA EDDSig TSEASig
 1* 1S 2S 1S*
 Mean±SD Top. Mean±SD Top. Mean±SD Top. Mean±SD Top.
Australian 88.11±1.56 51:[4,5]:1 87.12±1.45 51:4:1 87.46±1.18 51:5:1 86.55±1.43 51:[4,5]:1
Balance 96.20±1.06 4:[5,6]:2 94.14±1.87 4:4:2 95.08±1.27 4:5:2 93.93±2.21 4:[4,5]:2
Cancer 98.74±0.61 9:[2,3]:1 98.39±0.74 9: 2:1 98.69±0.54 9:3:1 98.31±0.69 9:[2,3]:1
Heart 83.68±2.57 26:[3,4]:1 82.89±2.46 26:3:1 83.02±2.59 26:4:1 83.85±2.65 26:[3,4]:1
HeartY 84.01±3.05 13:[4,5]:1 83.28±2.92 13:4:1 83.18±2.61 13:5:1 83.87±2.66 13:[4,5]:1
Hepatitis 85.26±4,34 19:[3,4]:1 86.22±4.77 19:3:1 85.78±4.12 19:4:1 86.75±3.41 19:[3,4]:1
Horse 85.50±2.97 83:[4,5]:1 85.21±2.98 83:4:1 85.40±2.69 83:5:1 88.04±2.19 83:[4,5]:1
Hypothyroid 95.37±0.40 29:[3,4]:3 94.69±0.39 29:3:3 94.94±0.35 29:4:3 95.15±0.18 29:[3,4]:3
Newthyroid 94.81±0.89 5:[3,4]:3 94.07±0.75 5:3:3 94.25±1.01 5:4:3 94.38±0.59 5:[3,4]:3
Pima 78.63±1.33 8:[3,4]:1 77.62±1.62 8:3:1 78.14±1.60 8:4:1 78.76±1.39 8:[3,4]:1
Waveform 84.46±0.92 40:[3,4]:2 85.35±1.45 40:3:2 85.96±1.22 40:4:2 86.58±1.18 40:[3,4]:2
Yeast 60.05±1.10 8:[11,12]:9 58.96±1.27 8:11:9 59.24±1.20 8:12:9 60.33±0.61 8:[11,12]:9
BTX 79.68±7.39 3:[5,6]:6 72.85±7.41 3:5:6 73.01±4.89 3:6:6 76.34±5.65 3:[5,6]:6
Listeria 86.54±1.67 4:[4,5]:1 85.06±1.13 4:4:1 85.43±0.97 4:5:1 85.75±0.66 4:[4,5]:1

5.1.1 Statistical Analysis
Now, we compare TSEA, EDDSig and TSEASig methodologies by means of
nonparametric statistical tests. To determine whether there are significant
differences we apply an Iman-Davenport test. Since two configurations were run
for EDDSig, now we consider the best value of the two mean ones reported in Table
5. The average ranks of the different methodologies are 2.64, 1.78 and 1.57
respectively for EDDSig, TSEASig and TSEA. According to Iman-Davenport test
results, since the statistic 6.16FF = is higher than the critical value (2, 26) 3.37F =

at 0.05α = the null-hypothesis is rejected. Therefore, we proceed with post-hoc
Nemenyi test. The performance of two classifiers is significantly different if the
corresponding average ranks differ by at least the CD. Table 6 shows the Nemenyi
test results where the ranking difference between each different pair and the detected
significant difference level have been indicated for more clarity. In a single row, the
CD (at 0.05α = and 0.10α =) is shown.

Table 6. Pairwise comparisons of the TSEA, EDDSig and TSEASig methodologies by means
of a Nemenyi test

 EDDSig TSEASig TSEA
EDDSig 0.86º 1.07 *
TSEASig 0.21

 (0.05) (0.10)0.89; 0.78CD CDα α= == =
Each filled cell contains the ranking difference between the methods in the row
and the column. Also, it is specified if the former method outperforms
the latter one at a significance level of 0.05 (*) or 0.10 (º)

 An Extended Approach of a Two-Stage Evolutionary Algorithm in ANNs 149

An analysis based upon the results Nemenyi test allow us to state the following.
There are significant differences between the TSEASig and EDDSig at 0.10α = .
Consequently, TSEASig is better than EDDSig. In other words, regarding to ANNs
with sigmoidal units, the methodology based in the two-stage algorithm outperforms
the standard one based in EDD. Comparing TSEA and TSEASig there are not
significant differences. It means that the new approach is competitive with respect to
TSEA. We can conclude that the methodology based on the two-stage algorithm is
suitable both for sigmoidal and product units. Finally, TSEA is significantly better
than EDDSig at 0.05α = .

5.1.2 Analysis of Computational Cost
The comparison between TSEA, EDDSig and TSEASig methodologies is completed
by means of a computational cost analysis. Experiments have been run in a desktop
computer with an Intel Core 2 Quad processor at 2.4GHz and 2GB RAM of physical
memory. The acceleration rate of the i method with respect to j method is given by
Eq. 4.

()
_ (,)

()

time j
Acceleration Rate i j

time i
= (4)

Table 7 reports the time results concerning to the computational cost per iteration
measured in seconds (s). The first column specifies the data set name. From second to
fifth columns are showed the elapsed time of an iteration with each configuration of
the different methodologies. Two last columns depicted the accelerate rates for
TSEASig regards to EDDSig and TSEA. Last row contains the average of the values
in the column. Since two configurations of EDDSig are equivalent to one of

Table 7. Computational cost and acceleration rates of TSEA, EDDSig and TSEASig

Data set Computational cost (s) Acceleration rate
 Methodologies (TSEASig,

EDDSig)
(TSEASig,
TSEA)

 TSEA EDDSig TSEASig
 1* 1S 2S 1S*
Australian 303 126 155 191 1.47 1.59
Balance 287 317 370 382 1.80 0.75
Cancer 98 40 51 61 1.49 1.61
Heart 207 114 133 134 1.84 1.54
HeartY 62 34 37 51 1.39 1.22
Hepatitis 36 19 22 25 1.64 1.44
Horse 817 304 378 344 1.98 2.38
Hypothyroid 6503 4525 6090 6694 1.59 0.97
Newthyroid 122 83 101 116 1.59 1.05
Pima 105 63 73 88 1.55 1.19
Waveform 9213 5217 6412 7155 1.63 1.29
Yeast 49320 21983 30349 28538 1.83 1.73
BTX 256 158 174 190 1.75 1.35
Listeria 231 168 198 216 1.69 1.07
Average 4825.71 2367.93 3181.64 3156.07 1.66 1.37

150 A.J. Tallón-Ballesteros, C. Hervás-Martínez, and P.A. Gutiérrez

TSEASig, the acceleration rate (TSEASig, EDDSig) is calculated as the sum of the
times of 1S and 2S divided by the time of 1S*.

Having a look at the Table 7, we conclude that regarding to sigmoidal units,
TSEASig is 1.66 times faster than EDDSig. In the comparison between TSEASig and
TSEA, the former is 1.37 times faster than the latter. The empirical times give notice
that the proposed methodology, TSEASig, is much more efficient than the previous
methodology, TSEA. Moreover TSEASig is faster than EDDSig. The efficiency
measures are based on the computation time of an iteration of the whole population
throughout the EA running. The speed depends on the own evolutionary process and
the number of mathematical operations that are involved to calculate the NN output.

5.2 Results Obtained with a Good Number of Classifiers

Now, a general review is made about the results obtained with another kind of NNs
and other machine learning algorithms. In the literature, a huge amount of tests has
been carried out with some of the data sets here considered. Our purpose is to view
some of the methods that have been tested with some of the data sets dealt with in the
current chapter.

Related to NNs, we have reported TSEASig, TSEA, the traditional MLP model
[20] with a learning Back-Propagation method (BP); the RBF model [21] with a
normalized Gaussian, HMOEN_L2 [22], SONG [23] and CC-EBFNN [24]. As
classical or modern machine learning algorithms have been included: C4.5, k-nearest
neighbours (k-NN) -with the best accuracy for k in {1, 3, 5, 7, 9}-, PART and SVM
[25]. Since, MLP, RBF, C4.5, k-NN, PART and SVM are implemented in Weka tool
[26], we have conduced the experiments. The parameters have been set to the default
values with the exceptions that we describe; for BP were the following: learning rate

0.3η = , momentum 0.2α = and the number of epochs was adjusted in each data set.

To determine the learning and the momentum we try out a grid search algorithm with
values in the range [0, 1] in 0.1 steps. Regarding the topology of the models in the
case of MLP and RBF we have considered the default one.

Table 8 includes the results of all classifiers, averaged for 30 runs in non-
deterministic algorithms, with each of the data set; the best ones in boldface and in
italics the second best ones, as well as the averages of the methods run by us with all
data sets. From a purely descriptive analysis of the results, it can be concluded that
SVM and RBF obtain the best result for three data sets, TSEASig, MLP, C4.5 and
PART for two data sets, and TSEA and k-NN once. There is not one method that
performs really well with all data sets; depending on the data set, the best classifier
belongs to either the neural networks approach or to the classical/modern machine
learning. Furthermore, the TSEA method achieves the highest mean accuracy
(85.79CCR =), followed by the TSEASig (85.61CCR =) and RBF (84.42CCR =).

The previous statements point out that methodology based on two stages is proper
with product or sigmoidal units.

 An Extended Approach of a Two-Stage Evolutionary Algorithm in ANNs 151

Table 8. Summary of the results in fourteen data sets comparing TSEASig to other methods
related to neural networks or classical/modern machine learning approaches

Method Australian Balance Cancer Heart HeartY Hepatitis Horse
TSEASig 86.55 93.93 98.31 83.85 83.87 86.75 88.04
TSEA 88.11 96.20 98.74 83.68 84.01 85.26 85.50
HMOEN_L2 - - 96.30 - - 80.30 -
MLP 84.10 93.78 97.81 84.82 84.29 84.73 88.51
RBF 75.84 88.27 97.20 86.75 83.79 89.30 80.47
SONG - 87.80 97.40 - - - -
CC-EBFNN - - 96.67 82.45 - - -
C4.5 86.71 83.33 97.13 75.00 84.21 84.21 88.04
k-NN 85.55 91.67 98.85 82.89 83.70 86.84 88.04
PART 84.97 85.26 97.13 80.26 82.12 81.58 85.87
SVM 88.44 88.46 98.28 82.89 80.37 89.47 88.04

Method Hypothyroid Newthyroid Pima Waveform Yeast BTX Listeria
TSEASig 95.15 94.38 78.76 86.58 60.33 76.34 85.75
TSEA 95.37 94.81 78.63 84.46 60.05 79.68 86.54
HMOEN_L2 - - 78.50 - - - -
MLP 94.39 97.08 75.94 84.85 60.11 54.12 84.49
RBF 92.83 98.27 77.34 87.29 59.83 80.95 83.70
SONG - 97.20 76.40 - - - -
CC-EBFNN - - 76.04 - - - -
C4.5 99.15 96.30 74.48 76.40 54.84 80.95 85.93
k-NN 94.06 94.44 75.00 81.12 48.39 76.19 85.93
PART 98.83 92.59 74.48 78.16 56.72 80.95 86.67
SVM 93.85 88.89 78.13 88.80 55.91 61.90 80.74

 () 85.61CCR TSEASig = ; () 85.79CCR TSEA = ; () 83.50CCR MLP = ;

 () 84.42CCR RBF =

 (4.5) 83.22CCR C = ; () 83.76CCR k NN− = ; () 83.26CCR PART = ;

 () 83.16CCR SVM =

6 Conclusions

This chapter aims to tackle multi-classification problems using evolutionary artificial
neural networks based on sigmoidal units. We have extended to sigmoidal units a
previous methodology for neural networks based on product units based with an EA
divided in two phases. The new approach has been called TSEASig. Our basic
assumption is that it is convenient to employ a methodology based on a population
with more diverse models in terms network architectures and this produces an
improvement in efficiency and accuracy.

The TSEASig methodology is applied to solve fourteen classification problems,
twelve from the UCI repository and two real-world problems, with a great deal of
variety in the number of instances, features and classes. The test results confirm that
our approach obtains promising results, achieving a high classification rate level in
the data sets at a lower computational cost than EDDSig.

152 A.J. Tallón-Ballesteros, C. Hervás-Martínez, and P.A. Gutiérrez

A comparison between TSEASig, EDDSig and TSEA has been carried out by
means of nonparametric tests. The test results reveal that there are significant
differences between TSEASig and EDDSig. However, significant differences are not
present between TSEASig and TSEA; this fact indicates that the methodology in two
stages is also suitable for sigmoidal units. According to the above results, our new
learning methodology of neural networks, TSEASig, based on sigmoidal units is
competitive in accuracy and more efficient than the remaining methodologies. The
empirical times give notice that TSEASig is 1.37 times faster than TSEA.

We have also summarized the results obtained with other kinds of neural networks
and classical/modern machine learning algorithms. From the analysis of the results we
can observe the good performance of our new approach.

Acknowledgments. This chapter has been partially subsidized by TIN2007-68084-C02-02 and
TIN2008-06681-C06-03 projects of the Spanish Inter-Ministerial Commission of Science and
Technology (MICYT), FEDER funds and the P08-TIC-3745 project of the "Junta de
Andalucía" (Spain).

References

1. Maaranen, H., Miettinen, K., Mäkelä, M.M.: Quasi-random initial population for genetic
algorithms. Computers & Math. with Appl. 47, 1885–1895 (2004)

2. Wang, L., Zheng, D.Z., Tang, F.: An improved evolutionary programming for
optimization. In: Proc of the 4th world Congress on Intelligent Control and Automation,
vol. 3, pp. 1769–1773. IEEE, Shanghai (2002)

3. Amor, H.B., Rettinger, A.: Intelligent exploration for genetic algorithms: using self-
organizing maps in evolutionary computation. In: Proc. of the 2005 Conference on Genetic
and Evolutionary Computation, GECCO 2005, pp. 1531–1538. ACM, Washington DC
(2005)

4. Tallón-Ballesteros, A.J., Hervás-Martínez, C.: A two-stage algorithm in evolutionary
product unit neural networks for classification. Expert Syst. with Appl. 38(1), 743–754
(2011)

5. Durbin, R., Rumelhart, D.: Products units: a computationally powerful and biologically
plausible extension to back-propagation networks. Neural Comp. 1(1), 133–142 (1989)

6. Miller, G.F., Toddm, P.M., Hegde, S.U.: Designing neural networks using genetic
algorithms. In: Proc. of the 3rd International Conference on Genetic Algorithms, ICGA
1989, pp. 379–384. Morgan Kaufmann, George Mason University, Fairfax, Virginia, USA
(1989)

7. Yao, X.: Evolving artificial neural networks. Proc. of the IEEE 87(9), 1423–1447 (1999)
8. Yao, X., Liu, Y.: A new evolutionary system for evolving artificial neural networks. IEEE

Trans. on Neural Netw. 8(3), 694–713 (1997)
9. Yao, X., Liu, Y.: Making use of population information in evolutionary artificial neural

networks. IEEE Trans. on Syst., Man and Cybernetics, Part B: Cybernetics 28(3), 417–425
(1998)

10. Azzini, A., Tettamanzi, A.G.B.: A new genetic approach for neural network design,
vol. 82, pp. 289–323. Springer, Heidelberg (2008)

11. Martínez-Estudillo, F.J., Hervás-Martínez, C., Gutiérrez, P.A., Martínez-Estudillo, A.C.:
Evolutionaryproduct-unit neural networksclassifiers. Neurocomputing 72(1-3), 548–561
(2008)

 An Extended Approach of a Two-Stage Evolutionary Algorithm in ANNs 153

12. Martínez-Estudillo, A.C., Martínez-Estudillo, F.J., Hervás-Martínez, C., García-Pedrajas,
N.: Evolutionary product unit based neural networks for regression. Neural Netw. 19, 477–
486 (2006)

13. Tallón-Ballesteros, A.J., Gutiérrez-Peña, P.A., Hervás-Martínez, C.: Distribution of the
search of evolutionary product unit neural networks for classification. In: Proc. of the
IADIS Internacional Conference on Applied Computing, AC 2007, pp. 266–273. IADIS,
Salamanca (2007)

14. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. School of Information
and Computer Science. University of California, Irvine (2007),
http://www.ics.uci.edu/~mlearn/MLRepository.html

15. Hervás, C., Silva, M., Gutiérrez, P.A., Serrano, A.: Multilogistic regression by
evolutionary neural network as a classification tool to discriminate highly overlapping
signals: Qualitative investigation of volatile organic compounds in polluted waters by
using headspace-mass spectrometric analysis. Chemom. and Intell. Lab. Syst. 92, 179–185
(2008)

16. Beuchat, L.R.: Listeria monocytogenes: incidence on vegetables. Food Control 7(4-5),
223–228 (1996)

17. Valero, A., Hervás, C., García-Gimeno, R.M., Zurera, G.: Product unit neural network
models for predicting the growth limits of Listeria monocytogenes. Food Microbiol. 24(5),
452–464 (2007)

18. Gutiérrez, P.A., Hervás, C., Lozano, M.: Designing multilayer perceptrons using a guided
saw-tooth evolutionary programming algorithm. Soft Computing 14, 599–613 (2010)

19. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn.
Res. 7, 1–30 (2006)

20. Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press, Oxford
(2004)

21. Howlett, R.J., Jain, L.C.: Radial Basis Function Networks 1: Recent Developments in
Theory and Applications. Springer, Heidelberg (2001)

22. Goh, C.K., Teoh, E.J., Tan, K.C.: Hybrid multi objective evolutionary design for artificial
neural networks. IEEE Trans. on Neural Netw. 19(9), 1531–1548 (2008)

23. Inoue, H., Narihisa, H.: Self-organizing neural grove and its applications. In: Proc. of the
International Joint Conference on Neural Networks, IJCNN 2005, vol. 2, pp. 1205–1210.
IEEE, Montreal (2005)

24. Tian, J., Li, M., Chen, F.: A hybrid classification algorithm based on coevolutionary
EBFNN and domain covering method. Neural Comput. & Applic. 18, 293–308 (2009)

25. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
26. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques with

Java implementations. Morgan Kaufmann, San Francisco (2005)

	An Extended Approach of a Two-Stage Evolutionary Algorithm in Artificial Neural Networks for Multiclassification Tasks

	Introduction
	Methodology
	Evolutionary Artificial Neural Networks Based on Sigmoidal and Product Units

	Two-Stage Evolutionary Algorithm

	Proposal Description
	Experimentation
	Data Sets and Validation Technique
	Common Parameters of the Different Methodologies and Specific Parameters Depending on the Dataset

	Nonparametric Statistical Analysis

	Results
	Results Applying TSEA, EDDSig and TSEASig
	Results Obtained with a Good Number of Classifiers

	Conclusions
	References

