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Abstract. The characteristic feature of any intelligent system is its ability to 
appropriately adjust its behaviour in response to a change of the environment and/or 
change in the structure of the system. Such a feature or behaviour of a system is 
termed as “adaptive behaviour”, which is a measure of the learning ability of a 
system. Feed-forward neural networks have commonly been used to model such 
behaviours. However the weights of feed-forward neural networks remain static once 
strained and so can hardly be categorised as adaptive. On the contrary, recurrent 
networks have the capability to exhibit dynamic behaviour. In general, the feedback 
connections in a recurrent network are made after the non-linear activation function. 
In this chapter we investigated network architectures with different feedback 
connections made before and after the non-linear activation function to observe 
adaptive capability of these networks. Backpropagation training algorithms are 
applied to these networks with a minimum number of recurrent neurons at which 
adaptive behaviour is attainable. Three benchmark problems are chosen to investigate 
the performances on learning ability of the proposed architectures and results are 
presented and analysed.  

Keywords: Recurrent network, Learning capacity, Adaptive behaviour, Back 
propagation algorithm. 

1   Introduction 

All forms of multilayer perceptron networks (MLP), radial basis functions networks 
(RBF), generalised regression networks (GRN) and probabilistic networks (PN) are 
classified as feedforward networks. They are typically used as static networks in such 
varied applications like identification, control, prediction, speech generation and 
pattern recognition [1]-[7]. Research interest in recurrent neural networks (RNN) has 
grown over the years because of their capability of exhibiting dynamic behaviour and 
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computational power [8]. RNNs have empirically shown the ability to perform 
inference in problems as diverse as grammar induction, demonstrated potential for 
applications such as time series prediction, process modelling, and process control 
[9]-[14]. These networks can be trained, depending on their architecture and weights, 
as oscillators, as associative memories and also as in finite automata. Generally, 
training of this class of neural networks has been difficult due to the excessive time 
required to converge [15], [16]. Stability issues of training in recurrent neural 
networks are addressed in [17], [18]. Some researchers have suggested improvements 
that can be made to well known algorithms, which can improve the training of 
recurrent networks. Practical problems during the learning process of recurrent 
networks are mainly due to the presence of local minima in the cost function [19]. 
The adaptation of recurrent neural networks with fixed weights has been investigated 
by many researchers. It has been demonstrated that dynamic networks can learn 
without changing their synaptic weights [20]-[24]. Bengio et al. showed that gradient-
based learning algorithms face an increasingly difficult problem as the duration of the 
dependencies to be captured increases [25]. De Jesus et al. demonstrated that spurious 
minima are introduced into the error surface due to characteristics in the input 
sequence that make the training more difficult for gradient descent algorithms in 
recurrent network [15]. Other early results on recurrent training algorithms have been 
reported in [26]-[28]. 

In this chapter we investigated the RNN architectures with different feedback 
connections, mainly, before and after the application of the non-linear activation 
function to observe the adaptive capability of these networks with varying weights for 
the feed forward connections and fixed weights for the recurrent connections. 
Therefore, traditional backpropagation (BP) training algorithms can be applied to 
networks with minimum number of recurrent neurons at which adaptive behaviour  
is attainable. Three different benchmark problems were chosen to verify the 
performances of the proposed architectures of the recurrent neural networks. 

The rest of the chapter is organised as follows. Section 2 presents an overview of 
different RNN architectures; the proposed architectures and their block diagrams are 
described in section 3. The training algorithm for the proposed RNN is presented in 
section 4. The benchmark problems, experimentation and analysis of results are 
presented in section 5. Finally the chapter concludes with some remarks in section 6.    

2   Overview of Recurrent Architectures 

In the past few decades several recurrent neural network models have been proposed 
[9], [10], [14], [29]-[36]. These recurrent architectures can be classified into three 
broad categories where feedback connections are taken from three locations in the 
feedback loop: synapse feedback, feedback from the neuron output before non-
linearity and output feedback after non-linearity proposed by different researchers [9], 
[10], [13], [14], [37]. All of these architectures reported in the literature are 
summarised according to their feedback connectivity in Table 1. 
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Table 1. Summary of architectures 

Architecture Synapse 
feedback 

Output feedback 
before nonlinearity 

( ).f  
after nonlinearity 

( ).f   

Hopfield   yes 
Elman  
(uses  context units) 

- - yes 

Jordan 
(uses context units) 

- - yes 

William-Zipser 
(allows any neuron) 

- - yes 

Frasconi-Gori-Soda - yes yes 
De Vries-Principe yes - - 
Poddar- Unnikrishnan - - yes 
Back-Tsoi yes - - 

 
The structure of the original Jordan network has three layers, with the main feedback 

connections taken from the output layer to the context layer. It has been theoretically 
shown that the original Jordan network [32] is not capable of representing arbitrary 
dynamic systems. However, by adding the feedback connections from the hidden layer 
to the context layer, (similar to the case of the Elman network [9]) a modified Jordan 
network is obtained. The modified Jordan network can be trained using the standard BP 
algorithm to model different dynamic systems. The values of the feedback connection 
weights have to be fixed by the user if the standard BP algorithm is employed.  

The Elman architecture differs from the above in that it uses an extra layer of 
context neurons to copy hidden layer outputs and after delaying these values for one 
time unit, feeds them back as additional inputs to hidden layer neurons [9]. The idea 
of introducing self-feedback connections for the context units was borrowed from 
Jordan [32]. The standard BP algorithm is employed to Elman networks.  

The William-Zipser architecture allows any neuron in the network to be connected 
to any other neuron in the network [14]. The William-Zipser architecture typically 
suffers from a lack of stability, i.e., for a given set of initial values, activations of 
linear output units may grow without limit and it has a slow convergence [13]. 
Frasconi et al. experimented with a slightly different architecture where they 
introduced local activation feedback and output feedback taken from hidden layer 
neurons after it has passed through the non-linearity and weighted by a constant value 
[10]. Their architecture is represented by the following equation: 



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

 ++−= 
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n

i
ii bxwtykfty
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1 )1()(                                               (1) 

Where ix , ni ,...,2,1= are the inputs, iw is the weight, b is the bias, )1( −ty is the 

output delayed by one time unit and 1k is the weighting factor of the output.  
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The Back-Tsoi architecture is different from Frasconi et al. architecture in that the 
feedback is taken at the synapse output [13]. They introduced a synapse with a linear 
transfer function instead of a synapse with a constant weight. Poddar-Unikrishnan 
[33] introduced a memory neuron which remembers the past output values. This 
architecture has a feedback transfer function with one pole only. A critical review of 
the various feedback architectures that appeared in the literature can be found in [13].  

The Hopfield network consists of a set of neurons and a corresponding set of unit 
delays, where the output of each neuron is fed back to each of the other neurons 
except itself via the delay units [38]. The number of feedback connections is equal to 
the number of neurons. It consists of n neurons. The discrete Hopfield network is 
described in discrete time as  
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Where ()Γ  is the activation function defined as sgn(.) , ix  is the external input to 

ith neuron and ib is the bias. The feedback input to the ith neuron is equal to the 

weighted sum of neuron outputs jy , where nj ,,2,1 = . The matrix of synaptic 

weights W in the Hopfield model is an nn ×  symmetric matrix i.e. jiij ww =  and 

the diagonal elements are zero i.e. 0=ijw  for ji =∀   and defined as  
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Hence no connection exists from any neuron back to itself. Though the difference 
equation in (2) is highly coupled and nonlinear, the solution of the Hopfield model is 
stable when the weight matrix in (3) is symmetric and the biases are zero. This yields 
a non-increasing energy function for Hopfield network defined as  

−=
i j

jiij yywyH
2

1
)(                                           (4) 

3   Proposed Network Architecture 

The architecture considered in this study is a combination of Elman and Frasconi-
Gori-Soda architecture with three layers of neurons in that it does not use any context 
layer and has a single unit time delay. Two types of feedback connections are 
investigated in this study: (i) output feedback before the activation function (non-
linearity) and (ii) output feedback after the activation function (non-linearity). The 
two architectures can be described mathematically in the following equations. The 
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recurrent architecture with feedback connections before nonlinearity is described by 
the equations (5)-(7).    
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The architecture with feedback connections after nonlinearity can be described by the 
equations (5)-(6) and (8).  
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where ni ,,3,2,1 = , mj ,,3,2,1 =  and lk ,,3,2,1 = . n , m  and  

l  represent the maximum number of neurons in the input, hidden and output  

layer respectively. [ ]T
lk yyyyy ,,,, 321 = are the outputs of the output- 

layer, [ ])(,),(),(),()( 321 tytytytyty h
m

hhhh
j =  are the outputs of the  

hidden neurons after the nonlinear activation function, 

[ ]T
mj tnettnettnettnettnet )(,),(),(),()( 321 =  are the outputs of the hidden 

neurons, [ ]T
ni xxxxx ,,,, 321 =  are the inputs, kjw is the weight matrix of 

ml ×  dimension representing connectivity from hidden layer neurons to output layer 

neurons, jiw  is the weight matrix of nm × dimension representing connectivity 

from input layer to hidden layer neurons, [ ]T
klkkkk θθθθθ ,,,, 321 = and 

[ ]Tjmjjjj θθθθθ ,,,, 321 =  are biases of the output layer and the hidden layer 

neurons respectively. jjw is the weight matrix of mm×  dimension represents the 

recurrent connectivity between neurons in the hidden layer. The scaling factor sK  

scales the feedback variables to neurons. The matrix jjw  can take the form of a full, 

symmetric, upper diagonal, lower diagonal, diagonal or a null matrix, which 
represents different connectivity between hidden-layer neurons. The two architectures 
proposed in this section, described by the equations (5)-(8), can be written in the 
following form, which will help understanding the block structure of the two 
networks.  



124 N.H. Siddique and B.P. Amavasai 

( ) kkk ItnetFty )()( =                                                          (9) 

k
h
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h ItnetFty )()( =                                                       (11) 

( ) ( ))1()( −+Θ+= tnetKBxAtnet jsjjj                                       (12) 

( ) ( ))1()( −+Θ+= tyKBxAtnet h
sjjj                                       (13) 

The equations (9)-(11) and (12) represent the recurrent architecture with feedback 
connections before non-linearity and the equations (9)-(11) and (13) represent the 

recurrent architecture with feedback connections after non-linearity. jij wA = , 

kjk wA =  and jjwB = are connection matrices, [ ]T
mj θθθθ ,,,, 321 =Θ and 

[ ]T
lk θθθθ ,,,, 321 =Θ are vectors of biases. [ ]T

jI 111 = and 

[ ]T
kI 111 = are vectors of 1×m  and 1×l  dimensions respectively. jF

and kF are diagonal matrices of non-linear activation functions of hidden layer and 

output layer  defined as  
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Thus, the equations (9)-(13) along with the definitions of the non-linear activation 
matrices defined by equations (14)-(15) can be described by the block notation form 

of the networks shown in Figures (1) and (2). While  represents one unit of time 
delay element in the feedback path resulting in a recurrent network. The block 
notation, first used by Santini et al. [39] derived from Narendra’s [2], are developed 
for the two network architectures to provide a clearer representation of the 
feedforward and feedback connectivity.  

 

1−z
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Fig. 1. Block diagram of the recurrent network with feedback before activation function 
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Fig. 2. Block diagram of the recurrent network with feedback after activation function 

jjwB =  in Figure 1 and Figure 2 represents the feedback connection matrix 

describing the feedback connectivity between hidden neurons and can take various 
forms depending on the connectivity described by the equations (16)-(26). The 
feedback connection matrix can be a full-matrix shown in equation (16), where the 

elements { } ℜ∈mmbbb ,,, 1211   are real values. The full-matrix implies that all 

neurons in the hidden layer are connected to each other in all possible ways, which 

yields a connection matrix ( )FB  of the form   
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When the connectivity matrix is a full matrix ( FB ), it can be seen as a special case of 

the Williams-Zipser architecture and its performance is well-known for its slow 
convergence [14].  

The connectivity matrix between hidden neurons can be symmetric, which means 
that the outputs are fed back to other neurons except themselves. Such feedback 

connectivity can be described by the matrix ( )SB  given by equation (22) with 

diagonal elements zero.  
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The feedback connection matrix can be an upper diagonal matrix ( )UB  shown in 

equation (18) where neurons are connected to the next neuron in the layer. For 
example, neuron 1 is connected to neurons 2 to n, neuron 2 is connected to 3 to n, and 
neuron n does not have any connections.    
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The connectivity matrix can be a lower diagonal matrix ( )LB as shown in equation 

(19). The connections are just reversed to connections in matrix ( )UB .   
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The outputs of the hidden neurons can be fed back only to the neuron itself. In this 

case the weight matrix will be a diagonal matrix ( )DB  described by equation (20). 

The connectivity is shown in Figure 3. The connectivity before non-linearity is shown 
in Figure 3(a) and after non-linearity is shown in the Figure 3(b). 



















=

mm

D

b

b

b

B







00

00

00

22

11

                                     (20) 



 An Investigation into the Adaptive Capacity of Recurrent Neural Networks 127 

 θj 

θk 



yh(t-1) 

x y 
f(.)

wji 
wkj

wjj

z-1

z-1

f(.)

f(.)

z-1

 

(a) Feedback connection before nonlinearity. 
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(b) Feedback connection after nonlinearity. 

Fig. 3. Feedback connections to neurons themselves 

If there are no feedback connections, it implies a feedforward network and yields a 

null matrix ( )NB in equation (21). In this case, the network is simply a feedforward 

network.  
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The symmetric matrix SB , upper diagonal UB and lower diagonal matrix LB cases 

are abandoned for computational simplicity. The diagonal matrix DB  is chosen for 

detailed investigation in this chapter.  

4   Training Algorithm of the RNN 

Generally the training of RNNs have been difficult due to the time dependencies 
present in the architecture and difficulties in gradient descent algorithms. The most 
common error (criterion) function E  for the training of dynamic neural networks is 
given by  
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Where T is the maximum training time at which error function E  approaches very 
close to zero i.e. for 0, →∞→ ET . η  is a fixed positive learning rate. A varying 

feedback connection weights may produce better results but for simplicity feedback 

connection weights ( )B  are considered fixed in the both cases. Therefore, B∂ is 

constant and hence the learning of the weights does not occur.  Since the weights of 
the feedback connections are considered fixed, the weight update rule for B  is 

0=
∂
∂−=Δ

B

E
B η                                                  (25) 

From the derivations above, the recurrent network can be considered as a feedforward 
network and by using the weight-update rules in (23)-(25) the network can be trained 
with standard BP algorithm.   

To apply the BP procedure to RNNs, the ordered list of dependencies for the 
recurrent topologies needs to be adjusted. The present value of the activation of the 
state denoted as )(ty  depends on the previous value )1( −ty . The sensitivity of the 

present state also depends on the previous sensitivities.  
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5   Experimentation and Analysis of Results 

The recurrent network architectures and training procedures described in Section 3 
were trained using the BP algorithm to demonstrate the capabilities of the networks. 
Three well-known benchmark problems were chosen for this task:  

(i) Two-input XOR,  
(ii) Three-input XOR, and  
(iii) Shape eight  

The XOR problem has historically been considered a good test of a network model 
and its associated learning algorithm. There are many reasons for this choice. Firstly, 
the XOR problem is one of the simplest problems, which is not linearly separable and 
complex enough for BP algorithm to be trapped in local minima without reaching the 
global optimum. Secondly, there has been a significant number of research work 
which claimed that the XOR problem exhibits local minima, a view that is widely 
accepted in neural network literature [40]-[42]. The configuration of the network and 
the truth table for the two-input XOR are shown in Figure 4 and Table 2 respectively. 
Only the symbolic representations of the networks are produced here. 
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Fig. 4. Neural network for two-input XOR problem 

Table 2. Truth-table for two-input XOR 

inputs output 
x1 x2 y 
0 
1 
0 
1 

0 
0 
1 
1 

0 
1 
1 
0 
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The parity problem can be considered as a generalised XOR. The generalised XOR 
problem is good test for computer simulation, because we can systematically vary the 
mismatch between the degrees of freedom for the problem (number of weights in an 
unconstrained network). The configurations of the network and truth tables for the 
three-input generalised XOR is shown in Figure 5 and Table 3. 
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Fig. 5. Neural network for three-input generalised XOR problem 

Table 3. Truth-table for three-input generalised XOR 

inputs output 
x1 x2 x3 y 
0 
1 
0 
1 
0 
1 
0 
1 

0 
0 
1 
1 
0 
0 
1 
1 

0 
0 
0 
0 
1 
1 
1 
1 

0 
1 
1 
0 
1 
0 
0 
1 

 
A continuous target trajectory like shape eight is also used as benchmark problem 

by many researchers [43], [44]. The analytical equations of the corresponding target 
trajectory of figure eight are given by equations (26)-(27). 

))*2sin(*9.01(*5.0)(1 ttr +=                                               (26) 

))sin(*9.01(*5.0)(2 ttr +=                                                  (27) 

where ℜ∈t and chosen between [ ]8,1 . The network configuration and the target 

trajectory are shown in Figure 6 and Figure 7 respectively.   
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For the figure-eight problem with feedback after non-linearity, a 2-7R-2 RNN 
achieved an error goal of 0.00899 at 3339 epochs.  For the case of feedback before 
non-linearity, a 2-4R-2 RNN achieved an error goal of 0.01562 at 25000 epochs with 

a scaling factor of 2.0=sK . Training parameters were kept same in the both cases. 

The weight matrices jA and kA were initialised within the range of [-1, 1]. The 

learning profiles for the shape-eight problem are shown in Figure 10. The learning 
profile for feedback after non-linearity shows local minima. Training could be easily 
trapped for incorrect choice of parameters where as the learning profile for feedback 
before non-linearity shows smoother training and much better performance with a 
smaller number of hidden neurons, i.e. 4 hidden neurons.  Investigations show that 
odd number of hidden neurons produced better results in the case of feedback after 
non-linearity and even number produced better result in the case of feedback before 
non-linearity. It is found that such architectures of RNN can follow a continuous 
trajectory as shown in Figure 11.  

A summary of network training parameters used for the three benchmark problems 
are shown in Table 4 and Table 5. 

Table 4. Feedback after non-linearity 

 Learning  
rate 

Momentum Acceleration Hidden 
neuron 

sK  Epochs Error 

2XOR .04 .8 -0.1 12 1 25000 .1955 
3XOR .04 .8 -0.1 6 1 8792 .0089 
Fig8 1.2 .7 -0.7 7 1 3339 .0089 

Table 5. Feedback before non-linearity 

 Learning  
rate 

Momentum Acceleration Hidden 
neuron 

sK  Epochs Error 

2XOR .04 .8 -0.1 4 .2 25000 .0517 
3XOR .04 .8 -0.1 4 .2 8080 .0089 
Fig8 1.2 .7 -0.7 4 .2 25000 .0156 

 
 

As can be seen from Table 5 that feedback connection before non-linearity is more 
stable than that of feedback connection after non-linearity, require less hidden layer 
neurons, and achieve better error goal within fewer epochs.   

6   Conclusion 

The adaptive capacity of the RNN was investigated on two different neural 
architectures. The three benchmark problems have been used to investigate the 
performance of the proposed RNN architectures. Improved performances have been 
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demonstrated by RNN architectures with feedback connections before the application 
of the non-linear function when compared with RNN architectures with feedback 
connection applied after the non-linear function. The experiments have shown that the 
RNN can be trained with a reduced risk of the stability, which is mainly caused by 
recurrent connection after non-linearity. The results from this investigation will thus 
be useful in designing future applications that incorporates RNNs.  
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