
I. Jordanov and L.C. Jain (Eds.): Innovations in Intelligent Machines -3, SCI 442, pp. 119–138.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

Chapter 8
An Investigation into the Adaptive Capacity
of Recurrent Neural Networks

N.H. Siddique1 and B.P. Amavasai2

1 School of Computing and Intelligent Systems, University of Ulster,
 Northland Road, Londonderry, BT48 7JL
 nh.siddique@ulster.ac.uk
 http://www.infm.ulst.ac.uk/~siddique
2 Reading Innovation Centre, Procter and Gamble, 460 Basingstoke Road,
 Reading RG2 0QE, UK
 amavasai.b@pg.com

Abstract. The characteristic feature of any intelligent system is its ability to
appropriately adjust its behaviour in response to a change of the environment and/or
change in the structure of the system. Such a feature or behaviour of a system is
termed as “adaptive behaviour”, which is a measure of the learning ability of a
system. Feed-forward neural networks have commonly been used to model such
behaviours. However the weights of feed-forward neural networks remain static once
strained and so can hardly be categorised as adaptive. On the contrary, recurrent
networks have the capability to exhibit dynamic behaviour. In general, the feedback
connections in a recurrent network are made after the non-linear activation function.
In this chapter we investigated network architectures with different feedback
connections made before and after the non-linear activation function to observe
adaptive capability of these networks. Backpropagation training algorithms are
applied to these networks with a minimum number of recurrent neurons at which
adaptive behaviour is attainable. Three benchmark problems are chosen to investigate
the performances on learning ability of the proposed architectures and results are
presented and analysed.

Keywords: Recurrent network, Learning capacity, Adaptive behaviour, Back
propagation algorithm.

1 Introduction

All forms of multilayer perceptron networks (MLP), radial basis functions networks
(RBF), generalised regression networks (GRN) and probabilistic networks (PN) are
classified as feedforward networks. They are typically used as static networks in such
varied applications like identification, control, prediction, speech generation and
pattern recognition [1]-[7]. Research interest in recurrent neural networks (RNN) has
grown over the years because of their capability of exhibiting dynamic behaviour and

120 N.H. Siddique and B.P. Amavasai

computational power [8]. RNNs have empirically shown the ability to perform
inference in problems as diverse as grammar induction, demonstrated potential for
applications such as time series prediction, process modelling, and process control
[9]-[14]. These networks can be trained, depending on their architecture and weights,
as oscillators, as associative memories and also as in finite automata. Generally,
training of this class of neural networks has been difficult due to the excessive time
required to converge [15], [16]. Stability issues of training in recurrent neural
networks are addressed in [17], [18]. Some researchers have suggested improvements
that can be made to well known algorithms, which can improve the training of
recurrent networks. Practical problems during the learning process of recurrent
networks are mainly due to the presence of local minima in the cost function [19].
The adaptation of recurrent neural networks with fixed weights has been investigated
by many researchers. It has been demonstrated that dynamic networks can learn
without changing their synaptic weights [20]-[24]. Bengio et al. showed that gradient-
based learning algorithms face an increasingly difficult problem as the duration of the
dependencies to be captured increases [25]. De Jesus et al. demonstrated that spurious
minima are introduced into the error surface due to characteristics in the input
sequence that make the training more difficult for gradient descent algorithms in
recurrent network [15]. Other early results on recurrent training algorithms have been
reported in [26]-[28].

In this chapter we investigated the RNN architectures with different feedback
connections, mainly, before and after the application of the non-linear activation
function to observe the adaptive capability of these networks with varying weights for
the feed forward connections and fixed weights for the recurrent connections.
Therefore, traditional backpropagation (BP) training algorithms can be applied to
networks with minimum number of recurrent neurons at which adaptive behaviour
is attainable. Three different benchmark problems were chosen to verify the
performances of the proposed architectures of the recurrent neural networks.

The rest of the chapter is organised as follows. Section 2 presents an overview of
different RNN architectures; the proposed architectures and their block diagrams are
described in section 3. The training algorithm for the proposed RNN is presented in
section 4. The benchmark problems, experimentation and analysis of results are
presented in section 5. Finally the chapter concludes with some remarks in section 6.

2 Overview of Recurrent Architectures

In the past few decades several recurrent neural network models have been proposed
[9], [10], [14], [29]-[36]. These recurrent architectures can be classified into three
broad categories where feedback connections are taken from three locations in the
feedback loop: synapse feedback, feedback from the neuron output before non-
linearity and output feedback after non-linearity proposed by different researchers [9],
[10], [13], [14], [37]. All of these architectures reported in the literature are
summarised according to their feedback connectivity in Table 1.

 An Investigation into the Adaptive Capacity of Recurrent Neural Networks 121

Table 1. Summary of architectures

Architecture Synapse
feedback

Output feedback
before nonlinearity

().f
after nonlinearity

().f

Hopfield yes
Elman
(uses context units)

- - yes

Jordan
(uses context units)

- - yes

William-Zipser
(allows any neuron)

- - yes

Frasconi-Gori-Soda - yes yes
De Vries-Principe yes - -
Poddar- Unnikrishnan - - yes
Back-Tsoi yes - -

The structure of the original Jordan network has three layers, with the main feedback

connections taken from the output layer to the context layer. It has been theoretically
shown that the original Jordan network [32] is not capable of representing arbitrary
dynamic systems. However, by adding the feedback connections from the hidden layer
to the context layer, (similar to the case of the Elman network [9]) a modified Jordan
network is obtained. The modified Jordan network can be trained using the standard BP
algorithm to model different dynamic systems. The values of the feedback connection
weights have to be fixed by the user if the standard BP algorithm is employed.

The Elman architecture differs from the above in that it uses an extra layer of
context neurons to copy hidden layer outputs and after delaying these values for one
time unit, feeds them back as additional inputs to hidden layer neurons [9]. The idea
of introducing self-feedback connections for the context units was borrowed from
Jordan [32]. The standard BP algorithm is employed to Elman networks.

The William-Zipser architecture allows any neuron in the network to be connected
to any other neuron in the network [14]. The William-Zipser architecture typically
suffers from a lack of stability, i.e., for a given set of initial values, activations of
linear output units may grow without limit and it has a slow convergence [13].
Frasconi et al. experimented with a slightly different architecture where they
introduced local activation feedback and output feedback taken from hidden layer
neurons after it has passed through the non-linearity and weighted by a constant value
[10]. Their architecture is represented by the following equation:







 ++−= 

=

n

i
ii bxwtykfty

1
1)1()((1)

Where ix , ni ,...,2,1= are the inputs, iw is the weight, b is the bias,)1(−ty is the

output delayed by one time unit and 1k is the weighting factor of the output.

122 N.H. Siddique and B.P. Amavasai

The Back-Tsoi architecture is different from Frasconi et al. architecture in that the
feedback is taken at the synapse output [13]. They introduced a synapse with a linear
transfer function instead of a synapse with a constant weight. Poddar-Unikrishnan
[33] introduced a memory neuron which remembers the past output values. This
architecture has a feedback transfer function with one pole only. A critical review of
the various feedback architectures that appeared in the literature can be found in [13].

The Hopfield network consists of a set of neurons and a corresponding set of unit
delays, where the output of each neuron is fed back to each of the other neurons
except itself via the delay units [38]. The number of feedback connections is equal to
the number of neurons. It consists of n neurons. The discrete Hopfield network is
described in discrete time as

niijforbxtywty
n

j
iijiji ,,2,1,)1()(

1

=≠









−+−Γ= 

=
 (2)

Where ()Γ is the activation function defined as sgn(.) , ix is the external input to

ith neuron and ib is the bias. The feedback input to the ith neuron is equal to the

weighted sum of neuron outputs jy , where nj ,,2,1 = . The matrix of synaptic

weights W in the Hopfield model is an nn × symmetric matrix i.e. jiij ww = and

the diagonal elements are zero i.e. 0=ijw for ji =∀ and defined as



















=

0

0

0

21

221

112







nn

n

n

ww

ww

ww

W (3)

Hence no connection exists from any neuron back to itself. Though the difference
equation in (2) is highly coupled and nonlinear, the solution of the Hopfield model is
stable when the weight matrix in (3) is symmetric and the biases are zero. This yields
a non-increasing energy function for Hopfield network defined as

−=
i j

jiij yywyH
2

1
)((4)

3 Proposed Network Architecture

The architecture considered in this study is a combination of Elman and Frasconi-
Gori-Soda architecture with three layers of neurons in that it does not use any context
layer and has a single unit time delay. Two types of feedback connections are
investigated in this study: (i) output feedback before the activation function (non-
linearity) and (ii) output feedback after the activation function (non-linearity). The
two architectures can be described mathematically in the following equations. The

 An Investigation into the Adaptive Capacity of Recurrent Neural Networks 123

recurrent architecture with feedback connections before nonlinearity is described by
the equations (5)-(7).











+








= 

=
k

m

j

h
jkjk tywfty θ

1

)()(, lk ,,2,1 = (5)

())()(tnetfty j
h
j = (6)









−+







 += 
==

m

j
jsjj

n

i
jijij tnetKwxwtnet

11

)1()(θ (7)

The architecture with feedback connections after nonlinearity can be described by the
equations (5)-(6) and (8).









−+







 += 
==

m

j

h
jsjj

n

i
jijij tyKwxwtnet

11

)1()(θ (8)

where ni ,,3,2,1 = , mj ,,3,2,1 = and lk ,,3,2,1 = . n , m and

l represent the maximum number of neurons in the input, hidden and output

layer respectively. []T
lk yyyyy ,,,, 321 = are the outputs of the output-

layer, [])(,),(),(),()(321 tytytytyty h
m

hhhh
j = are the outputs of the

hidden neurons after the nonlinear activation function,

[]T
mj tnettnettnettnettnet)(,),(),(),()(321 = are the outputs of the hidden

neurons, []T
ni xxxxx ,,,, 321 = are the inputs, kjw is the weight matrix of

ml × dimension representing connectivity from hidden layer neurons to output layer

neurons, jiw is the weight matrix of nm × dimension representing connectivity

from input layer to hidden layer neurons, []T
klkkkk θθθθθ ,,,, 321 = and

[]Tjmjjjj θθθθθ ,,,, 321 = are biases of the output layer and the hidden layer

neurons respectively. jjw is the weight matrix of mm× dimension represents the

recurrent connectivity between neurons in the hidden layer. The scaling factor sK

scales the feedback variables to neurons. The matrix jjw can take the form of a full,

symmetric, upper diagonal, lower diagonal, diagonal or a null matrix, which
represents different connectivity between hidden-layer neurons. The two architectures
proposed in this section, described by the equations (5)-(8), can be written in the
following form, which will help understanding the block structure of the two
networks.

124 N.H. Siddique and B.P. Amavasai

() kkk ItnetFty)()(= (9)

k
h

kk tyAtnet Θ+=)()((10)

() jj
h ItnetFty)()(= (11)

() ())1()(−+Θ+= tnetKBxAtnet jsjjj (12)

() ())1()(−+Θ+= tyKBxAtnet h
sjjj (13)

The equations (9)-(11) and (12) represent the recurrent architecture with feedback
connections before non-linearity and the equations (9)-(11) and (13) represent the

recurrent architecture with feedback connections after non-linearity. jij wA = ,

kjk wA = and jjwB = are connection matrices, []T
mj θθθθ ,,,, 321 =Θ and

[]T
lk θθθθ ,,,, 321 =Θ are vectors of biases. []T

jI 111 = and

[]T
kI 111 = are vectors of 1×m and 1×l dimensions respectively. jF

and kF are diagonal matrices of non-linear activation functions of hidden layer and

output layer defined as

()
()

()

















=

.00

0

0.0

00.

2

1

m

j

f

f

f

F






 (14)

()
()

()

















=

.00

0

0.0

00.

2

1

l

k

f

f

f

F






 (15)

Thus, the equations (9)-(13) along with the definitions of the non-linear activation
matrices defined by equations (14)-(15) can be described by the block notation form

of the networks shown in Figures (1) and (2). While represents one unit of time
delay element in the feedback path resulting in a recurrent network. The block
notation, first used by Santini et al. [39] derived from Narendra’s [2], are developed
for the two network architectures to provide a clearer representation of the
feedforward and feedback connectivity.

1−z

 An Investigation into the Adaptive Capacity of Recurrent Neural Networks 125

Aj

B

Fj Σ Ak Σ Fk

x

y

z-1

Θj Θk

yh

netj(t-1) output layer

hidden layer

Ks

netj netk

Fig. 1. Block diagram of the recurrent network with feedback before activation function

Aj

B

Fj Σ Ak Σ Fk

x

y

z-1

Θj Θk

yh

yh(t-1) output layer

hidden layer

Ks

netj netk

Fig. 2. Block diagram of the recurrent network with feedback after activation function

jjwB = in Figure 1 and Figure 2 represents the feedback connection matrix

describing the feedback connectivity between hidden neurons and can take various
forms depending on the connectivity described by the equations (16)-(26). The
feedback connection matrix can be a full-matrix shown in equation (16), where the

elements { } ℜ∈mmbbb ,,, 1211  are real values. The full-matrix implies that all

neurons in the hidden layer are connected to each other in all possible ways, which

yields a connection matrix ()FB of the form



















=

mmmm

m

m

F

bbb

bbb

bbb

B







21

22221

11211

 (16)

126 N.H. Siddique and B.P. Amavasai

When the connectivity matrix is a full matrix (FB), it can be seen as a special case of

the Williams-Zipser architecture and its performance is well-known for its slow
convergence [14].

The connectivity matrix between hidden neurons can be symmetric, which means
that the outputs are fed back to other neurons except themselves. Such feedback

connectivity can be described by the matrix ()SB given by equation (22) with

diagonal elements zero.



















=

0

0

0

21

221

112







mm

m

m

S

bb

bb

bb

B (17)

The feedback connection matrix can be an upper diagonal matrix ()UB shown in

equation (18) where neurons are connected to the next neuron in the layer. For
example, neuron 1 is connected to neurons 2 to n, neuron 2 is connected to 3 to n, and
neuron n does not have any connections.



















=

000

00

0

2

112







m

m

U

b

bb

B (18)

The connectivity matrix can be a lower diagonal matrix ()LB as shown in equation

(19). The connections are just reversed to connections in matrix ()UB .



















=

0

00

000

21

21







mm

L

bb

b
B (19)

The outputs of the hidden neurons can be fed back only to the neuron itself. In this

case the weight matrix will be a diagonal matrix ()DB described by equation (20).

The connectivity is shown in Figure 3. The connectivity before non-linearity is shown
in Figure 3(a) and after non-linearity is shown in the Figure 3(b).



















=

mm

D

b

b

b

B







00

00

00

22

11

 (20)

 An Investigation into the Adaptive Capacity of Recurrent Neural Networks 127

 θj

θk



yh(t-1)

x y
f(.)

wji
wkj

wjj

z-1

z-1

f(.)

f(.)

z-1

(a) Feedback connection before nonlinearity.

 θj

θk



yh(t-1)

x y
f(.)

wji

wkj

wjj

z-1

z-1

f(.)

f(.)

z-1

(b) Feedback connection after nonlinearity.

Fig. 3. Feedback connections to neurons themselves

If there are no feedback connections, it implies a feedforward network and yields a

null matrix ()NB in equation (21). In this case, the network is simply a feedforward

network.

128 N.H. Siddique and B.P. Amavasai



















=

000

000

000







NB (21)

The symmetric matrix SB , upper diagonal UB and lower diagonal matrix LB cases

are abandoned for computational simplicity. The diagonal matrix DB is chosen for

detailed investigation in this chapter.

4 Training Algorithm of the RNN

Generally the training of RNNs have been difficult due to the time dependencies
present in the architecture and difficulties in gradient descent algorithms. The most
common error (criterion) function E for the training of dynamic neural networks is
given by

()
=

−=
T

t
d tytyE

0

2)()(
2

1
 (22)

j
j A

E
A

∂
∂−=Δ η (23)

k
k A

E
A

∂
∂−=Δ η (24)

Where T is the maximum training time at which error function E approaches very
close to zero i.e. for 0, →∞→ ET . η is a fixed positive learning rate. A varying

feedback connection weights may produce better results but for simplicity feedback

connection weights ()B are considered fixed in the both cases. Therefore, B∂ is

constant and hence the learning of the weights does not occur. Since the weights of
the feedback connections are considered fixed, the weight update rule for B is

0=
∂
∂−=Δ

B

E
B η (25)

From the derivations above, the recurrent network can be considered as a feedforward
network and by using the weight-update rules in (23)-(25) the network can be trained
with standard BP algorithm.

To apply the BP procedure to RNNs, the ordered list of dependencies for the
recurrent topologies needs to be adjusted. The present value of the activation of the
state denoted as)(ty depends on the previous value)1(−ty . The sensitivity of the

present state also depends on the previous sensitivities.

 An Investigation into the Adaptive Capacity of Recurrent Neural Networks 129

5 Experimentation and Analysis of Results

The recurrent network architectures and training procedures described in Section 3
were trained using the BP algorithm to demonstrate the capabilities of the networks.
Three well-known benchmark problems were chosen for this task:

(i) Two-input XOR,
(ii) Three-input XOR, and
(iii) Shape eight

The XOR problem has historically been considered a good test of a network model
and its associated learning algorithm. There are many reasons for this choice. Firstly,
the XOR problem is one of the simplest problems, which is not linearly separable and
complex enough for BP algorithm to be trapped in local minima without reaching the
global optimum. Secondly, there has been a significant number of research work
which claimed that the XOR problem exhibits local minima, a view that is widely
accepted in neural network literature [40]-[42]. The configuration of the network and
the truth table for the two-input XOR are shown in Figure 4 and Table 2 respectively.
Only the symbolic representations of the networks are produced here.



x1

x2

y

1

2

3

N

Fig. 4. Neural network for two-input XOR problem

Table 2. Truth-table for two-input XOR

inputs output
x1 x2 y
0
1
0
1

0
0
1
1

0
1
1
0

130 N.H. Siddique and B.P. Amavasai

The parity problem can be considered as a generalised XOR. The generalised XOR
problem is good test for computer simulation, because we can systematically vary the
mismatch between the degrees of freedom for the problem (number of weights in an
unconstrained network). The configurations of the network and truth tables for the
three-input generalised XOR is shown in Figure 5 and Table 3.



x1

x2 y

1

2

3

N

x3

Fig. 5. Neural network for three-input generalised XOR problem

Table 3. Truth-table for three-input generalised XOR

inputs output
x1 x2 x3 y
0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

0
1
1
0
1
0
0
1

A continuous target trajectory like shape eight is also used as benchmark problem

by many researchers [43], [44]. The analytical equations of the corresponding target
trajectory of figure eight are given by equations (26)-(27).

))*2sin(*9.01(*5.0)(1 ttr += (26)

))sin(*9.01(*5.0)(2 ttr += (27)

where ℜ∈t and chosen between []8,1 . The network configuration and the target

trajectory are shown in Figure 6 and Figure 7 respectively.

 An Investigation in

x1

x2

Fig. 6

In this study, sigmoidal
linear activation functions
architectures with 1 to 18 h
problems. For each problem
epochs were set. Trainin
acceleration were different
XOR (2XOR) and three-in
figure eight problem, which

nto the Adaptive Capacity of Recurrent Neural Networks



y1

1

2

3

N

y2

. Neural network for figure eight problem

Fig. 7. The shape eight problem

l activation functions were used for the hidden layer
were used for the output layer. Experiments on differ
hidden neurons were investigated on the three benchm
m an error goal of 0.009 and a maximum iteration of 250
ng parameters such as learning rate, momentum,

for each problem. 11 patterns were chosen for two-in
nput XOR (3XOR) problem. 27 patterns were used for
h is found to be the minimum for representing a reasona

131

and
rent

mark
000
and

nput
the

ably

132 N.H. Siddique and B

smooth curve. For even sm
required, and so it not cons
sensitive to the convergenc
for each case of the three be

For the two-input XOR w
an error goal of 0.1955 a
linearity, a 2-4R-1 RNN ac
latter case, full feedback ca
factor was introduced. Th

10 << sK and produced

learning rate, momentum, a

and 5. The weight matrices

and yielded better result th
two-input XOR problem
researchers that the existen
architecture of the network
be very rare [45]. In a study
for the XOR problem has n
theories of the occurrence
that the performance of 2-4
that of 2-12R-1 RNN with

Fig. 8. L

.P. Amavasai

moother curve representations, more training time will
sidered in this study. The initial weights of the network
e of the learning profile and hence found by trial and er
enchmark problems.
with feedback after non-linearity, a 2-12R-1 RNN achie
at 25000 epochs. For the case of feedback before n
chieved an error goal of 0.0517 at 25000 epochs. For
aused instability of the network output and hence a scal
he RNN was found to be stable for a scaling fac

d the best result at a value of 2.0=sK . In both ca

and acceleration were kept constant, as shown in Table

s jA and kA were initialised within the range (-0.5, +0

han if initialised between [0, 1]. The learning profiles
are shown in Figure 8. It has been reported by m

nce of local minima depends on both the problem and
being investigated. Rumelhart et al. found local minim

y by Hamey, it is shown that a feedforward neural netw
no local minima, which provides a valuable refinemen
of local minima [46]. It is clearly evident from Figur

4R-1 RNN with feedback before non-linearity is better t
h feedback after non-linearity. Although feedback bef

Learning profile for two-input XOR problem

l be
are

rror

eved
non-

the
ling
ctor

ases,

es 4

0.5)

for
many

the
a to

work
nt of
re 8
than
fore

 An Investigation in

nonlinearity shows a small
exhibits a smooth learning
experimentations, we also
combinations of hidden ne
produced poorer results in t

For the three-input gene

RNN achieved an error go

kA were initialised within

non-linearity, a 3-4R-1 RNN

scaling factor of 0=sK

within range of [0, 1] pro
Training parameters were e
for three-input XOR proble
after non-linearity shows tw
local minima for wrong
feedback before non-linear
with a smaller architecture
an even number of hidden n

Fig. 9. Le

nto the Adaptive Capacity of Recurrent Neural Networks

l local minimum basin at a very early stage of learning
g curve with a much smaller sum squared error. In

investigated cases with different odd and even num
eurons. It was found that odd numbers of hidden neur
the case of two-input XOR.
eralised XOR with feedback after non-linearity, a 3-6R

al of 0.0089 at 8792 epochs. The weight matrices jA

the range of [-0.5, 0.5]. For the case of feedback bef

N achieved an error goal of 0.00899 at 8080 epochs wit

2. In this case, weight matrices jA and kA initiali

oduced better result than within the range of [-0.5, 0
exactly the same in the both cases. The learning prof

em are shown in Figure 9. The learning profile for feedb
wo local minima. Training could be easily trapped in th
choice of parameters whereas the learning profile
ity shows smoother training and much better performa
with 4 hidden neurons. Investigations further showed t

neurons produce better result than that of odd numbers.

earning profile for three-input XOR problem

133

g, it
the

mber
rons

R-1

and

fore

th a

ised

0.5].
files
back
hose

for
ance
that

134 N.H. Siddique and B

Fig. 1

Fi

0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
S

um
 s

qu
ar

ed
 e

rr
or

.P. Amavasai

10. Learning profile for figure 8 problem

g. 11. Trajectory tracking for figure 8

1 1.5 2 2.5

x 10
4Iterations

Before nonlinearity

After nonlinearity

 An Investigation into the Adaptive Capacity of Recurrent Neural Networks 135

For the figure-eight problem with feedback after non-linearity, a 2-7R-2 RNN
achieved an error goal of 0.00899 at 3339 epochs. For the case of feedback before
non-linearity, a 2-4R-2 RNN achieved an error goal of 0.01562 at 25000 epochs with

a scaling factor of 2.0=sK . Training parameters were kept same in the both cases.

The weight matrices jA and kA were initialised within the range of [-1, 1]. The

learning profiles for the shape-eight problem are shown in Figure 10. The learning
profile for feedback after non-linearity shows local minima. Training could be easily
trapped for incorrect choice of parameters where as the learning profile for feedback
before non-linearity shows smoother training and much better performance with a
smaller number of hidden neurons, i.e. 4 hidden neurons. Investigations show that
odd number of hidden neurons produced better results in the case of feedback after
non-linearity and even number produced better result in the case of feedback before
non-linearity. It is found that such architectures of RNN can follow a continuous
trajectory as shown in Figure 11.

A summary of network training parameters used for the three benchmark problems
are shown in Table 4 and Table 5.

Table 4. Feedback after non-linearity

 Learning
rate

Momentum Acceleration Hidden
neuron

sK Epochs Error

2XOR .04 .8 -0.1 12 1 25000 .1955
3XOR .04 .8 -0.1 6 1 8792 .0089
Fig8 1.2 .7 -0.7 7 1 3339 .0089

Table 5. Feedback before non-linearity

 Learning
rate

Momentum Acceleration Hidden
neuron

sK Epochs Error

2XOR .04 .8 -0.1 4 .2 25000 .0517
3XOR .04 .8 -0.1 4 .2 8080 .0089
Fig8 1.2 .7 -0.7 4 .2 25000 .0156

As can be seen from Table 5 that feedback connection before non-linearity is more
stable than that of feedback connection after non-linearity, require less hidden layer
neurons, and achieve better error goal within fewer epochs.

6 Conclusion

The adaptive capacity of the RNN was investigated on two different neural
architectures. The three benchmark problems have been used to investigate the
performance of the proposed RNN architectures. Improved performances have been

136 N.H. Siddique and B.P. Amavasai

demonstrated by RNN architectures with feedback connections before the application
of the non-linear function when compared with RNN architectures with feedback
connection applied after the non-linear function. The experiments have shown that the
RNN can be trained with a reduced risk of the stability, which is mainly caused by
recurrent connection after non-linearity. The results from this investigation will thus
be useful in designing future applications that incorporates RNNs.

References

[1] Parlos, A.G., Parthasarathy, S., Atiya, A.F.: Neuro-Predictive Process Control using On-
line Controller Adaptation. IEEE Transaction on Control Systems Technology 9(5), 741–
755 (2001)

[2] Narendra, K.S., Parthsarathy, K.: Identification and control of dynamical systems using
Neural Network. IEEE Transaction on Neural Networks 1(1), 4–27 (1993)

[3] Narendra, K.S., Mukhopadhyay, S.: Adaptive Control using Neural Networks and
Approximate Models. IEEE Transactions on Neural Networks 8, 475–485 (1997)

[4] Powell, M.J.D.: Radial Basis Functions for Multivariable Interpolation: A review. IMA
Conference Algorithm for Approximation of Functions and Data, RMCS Shrivenham
(1985)

[5] Specht, D.F.: Probabilistic Neural Networks. Neural Networks, International Neural
Network Society 3, 109–118 (1990)

[6] Specht, D.F.: A Generalized Regression Neural Network. IEEE Transactions on Neural
Networks 2(6), 568–576 (1991)

[7] Millan, J.R., Mourino, J., Franze, M., Cincotti, F., Varsta, M., Heikkonen, J., Babiloni,
F.: A Local Neural Classifier for the Recognition of EEG Patterns Associated to Mental
Tasks. IEEE Transaction on Neural Networks 13(3), 678–686 (2002)

[8] Feldkamp, L.A., Prokhorov, D.V., Feldkamp, T.M.: Simple and Conditioned Adaptive
Behaviour from Kalman Filter Trained Recurrent Networks. Neural Networks 16, 683–
689 (2003)

[9] Elman, J.L.: Finding Structure in Time. Cognitive Science 14, 179–211 (1990)
[10] Frasconi, P., Gori, M., Soda, G.: Local feedback multilayered networks. Neural

Computing 4, 120–130 (1992)
[11] Patan, K.: Stability Analysis and the Stabilization of a Class of Discrete-Time Dynamic

Neural Networks. IEEE Transaction on Neural Networks 18(3), 660–673 (2007)
[12] Spiegel, R., Suret, M., Le Pelley, M.E., McLaren, I.P.L.: Analysing State Dynamics in a

Recurrent Neural Network. In: IEEE International Conference on Neural Networks, pp.
834–839 (2002)

[13] Tsoi, A.C., Back, A.D.: Locally Recurrent Globally Feedforward Networks: A Critical
Review of Architectures. IEEE Transaction on Neural Networks 5(2), 229–239 (1994)

[14] Williams, R.J., Zipser, D.: A Learning Algorithm for Continually Running Fully
Recurrent Networks. Neural Computing 1, 270–280 (1989)

[15] De Jesus, O., Horn, J.M., Hagan, M.T.: Analysis of Recurrent Network Training and
Suggestions for Improvements. In: IEEE International Joint Conference on Neural
Networks, pp. 2632–2637 (2001)

[16] Towntey, S., Ilchmann, A., Weib, M.G., Mcclements, W., Ruiz, A.C., Owens, D.H.,
Pratzel-Wolters, D.: Existence and Learning of Oscillation in Recurrent Neural
Networks. IEEE Transactions on Neural Networks 11(1), 205–214 (2000)

[17] Suykens, J.A.K., De Moor, B., Vandewalle, J.: Robust Local Stability of Multilayer
Recurrent Neural Networks. IEEE Transactions on Neural Networks 11(1), 222–229
(2000)

 An Investigation into the Adaptive Capacity of Recurrent Neural Networks 137

[18] Xia, Y., Wang, J.: Global Exponential Stability of Recurrent Networks for Solving
Optimisation and Related Problems. IEEE Transactions on Neural Networks 11(4),
1017–1022 (2000)

[19] Bianchini, M., Gori, M., Maggini, M.: On the Problem of Local Minima in Recurrent
Neural Networks. IEEE Transactions on Neural Networks 5(2), 167–177 (1994)

[20] Feldkamp, L., Puskorius, G., Moore, P.: Adaptation from Fixed Weight Dynamic
Networks. In: Proceedings of IEEE International Conference on Neural Networks, pp.
155–160 (1996)

[21] Younger, A.S., Conwell, P.R., Cotter, N.E.: Fixed-Weight on-line Learning. IEEE
Transaction on Neural Networks 10(2), 272–283 (1999)

[22] Prokhorov, D.V., Feldkamp, L.A., Tyukin, I.Y.: Adaptive Bahaviour with Fixed Weights
in RNN: An Overview. In: IEEE International Joint Conference on Neural Networks, pp.
2018–2022 (2002)

[23] Younger, A.S., Hochreiter, S., Conwell, P.R.: Meta Learning with Backpropagation. In:
IEEE International Conference on Neural Networks, pp. 2001–2006 (2001)

[24] Lo, J.T., Bassu, D.: Adaptive vs. Accommodative Neural Networks for Adaptive System
Identification. In: IEEE International Joint Conference on Neural Networks, pp. 1279–
1284 (2001)

[25] Bengio, Y., Simard, P., Frasconi, P.: Learning Long-Term Dependencies with Gradient
Descent is Difficult. IEEE Transactions on Neural Networks 5(2), 157–166 (1994)

[26] Atiya, A.F., Parlos, A.G.: New Result on Recurrent Network Training: Unifying the
Algorithms and Accelerating Convergence. IEEE Transactions on Neural Networks
11(3), 697–709 (2000)

[27] Campolucci, P., Uncini, A., Piazza, F., Rao, B.D.: On-Line Learning Algorithms for
Locally Recurrent Neural Networks. IEEE Transactions on Neural Networks 10(2), 253–
271 (1999)

[28] Leistritz, L., Galicki, M., Witte, H., Kochs, E.: InitialState Training Procedure Improves
Dynamic Recurrent Networks with Time-Dependent Weights. IEEE Transaction on
Neural Networks 12(6), 1513–1518 (2001)

[29] Back, A., Tsoi, A.: FIR and IIR synapses, a new neural network architecture for time
series modelling. Neural Computation 3(3), 375–385 (1991)

[30] Billings, S.A., Jamaluddin, H.B., Chen, S.: Properties of neural networks with
applications to modelling non-linear dynamical systems. International Journal of
Control 55(1), 193–224 (1992)

[31] Arai, K., Nakano, R.: Stable Behaviour in a Recurrent Neural Network for a FiniteState
Machine. Neural Networks 13, 667–680 (2000)

[32] Jordan, M.I.: Attractor dynamics and parallelism in a connectionist sequential machines.
In: Proceedings of the 8th Conference of the Cognitive Science Society, pp. 531–546.
Erlbaum (1986)

[33] Poddar, P., Unnikrishnan, K.P.: Non-linear prediction of speech signals using memory
neuron networks. In: Juang, B.H., Kung, S.Y., Kammedts, C.A. (eds.) Proceedings of the
1991 IEEE Workshop on Neural Networks for Signal Processing, pp. 1–10 (1991)

[34] Gers, F.A., Schmidhuber, J.: LSTM Recurrent Networks Learn Simple Context-Free and
Context-Sensitive Languages. IEEE Transactions on Neural Networks 12(6), 1333–1340
(2001)

[35] De Vries, B., Principe, J.C.: The gamma model – A new neural network for temporal
processing. Neural Networks 5, 565–576 (1992)

[36] Chalup, S.K., Blair, A.D.: Incremental Training of First Order Recurrent Neural
Networks to Predict a Context-Sensitive Language. Neural Networks 16, 955–972 (2003)

[37] Lin, T., Horne, B.G., Giles, C.L.: How embedded memory in recurrent neural network
architectures helps learning long-term temporal dependencies. Neural Networks 11, 861–
868 (1998)

138 N.H. Siddique and B.P. Amavasai

[38] Hopfield, J.: Neural networks and physical systems with emergent collective computational
abilities. Proceedings National Academy of Sciences, USA 79, 2554–2558 (1982)

[39] Santini, S., Del Bimbo, A., Jain, R.: Block-Structured Recurrent Neural Networks.
Neural Networks 8(1), 135–147 (1995)

[40] Cetin, B.C., Burdick, J.W., Barhen, J.: Global descent replaces gradient descent to avoid
local minima problem in learning with artificial neural networks. In: Proceedings of of
the IEEE International Conference on Neural Networks, Piscataway, NJ, USA, vol. 2, pp.
836–842 (1993)

[41] Dayhoff, J.E.: The exclusive-OR: A classic problem. In: Neural Network Architectures:
An Introduction, pp. 76–79. Van Nostrand Reinhold, New York (1990)

[42] Gori, M., Tesi, A.: On the problem of local minima in backpropagation. IEEE
Transactions on Pattern Analysis and Machine Intelligence 14, 76–85 (1992)

[43] Galiki, M., Leistritz, L., Witte, H.: Learning Continuous Trajectories in Recurrent Neural
Networks with Time-Dependent Weights. IEEE Transaction on Neural Networks 10(4),
741–756 (1999)

[44] Leistritz, L., Galicki, M., Witte, H., Kochs, E.: Training Trajectories by Continuous
Recurrent Multilayer Networks. In: IEEE International Joint Conference on Neural
Networks, pp. 283–291 (2002)

[45] Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error
propagation. In: Parallel Distributed Processing, pp. 318–362. MIT Press, Cambridge
(1986)

[46] Hamey, L.G.C.: XOR has no local minima: A case study in neural network error surface
analysis. Neural Networks 11, 669–681 (1998)

	An Investigation into the Adaptive Capacity of Recurrent Neural Networks

	Introduction
	Overview of Recurrent Architectures
	Proposed Network Architecture
	Training Algorithm of the RNN
	Experimentation and Analysis of Results
	Conclusion
	References

