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Abstract. Market power assessment is an important aspect of electric market analysis 
and operation. Market power problems are more complicated in an electric market than 
those in other markets due to the specific properties of electricity. A comprehensive 
and dynamic market power assessment has been proposed in this paper to protect and 
improve the open electricity market. This paper proposes a multi output fuzzy neural 
network (FNN) for market power assessment and for finding the on line market power 
ranking status of GENCOS in a competitive power system using a fuzzy composite 
market index (FCMI). This index is formulated by combining (i) Lerner Index, (ii) 
Relative market power and (iii) Nodal Cost. In the proposed FNN a trained multi-
output neural network is being used as a fuzzy inference engine. The input of FNN 
consists of real loads and a bipolar code to represent a trading interval while the output 
consists of the fuzzy values of FCMI. To train the FNN a number of training patterns, 
covering the full operating range of the power system, are generated using the system 
data such as offer prices and operating constraints. OPF results are used to compute the 
above three market power indices and the corresponding FCMI. Once the network is 
trained it is capable of predicting the FCMI values in five fuzzy classes (GENCO 
ranking) for any given operating scenario, on line, instantaneously, without bothering 
about the computational burden of OPF. The computational effort is required only for 
training the network which is an off line process. Since the training of ANN is 
extremely fast and test results are accurate, they can be directly floated to OASIS (open 
access same time information system) and any other web site. An Independent system 
operator(ISO) and customers can access this information instantly. The performance of 
the proposed method has been tested on an IEEE 14 bus system.   

Index Terms: Generator Market Share (GMS), Lerner Index (LI), market power, 
Must Run Ratio (MRR), open electricity market, Relative Market Power (RMP), 
transmission congestion. 

1   Nomenclature 

FNN  Fuzzy neural network 
ISO  Independent system operator 
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GENCO  Generating Company 
LI    Lerner index 
MRR   Must run ratio 
MRS   Must run share 
RMP   Relative market power 
NC    Nodal cost 
FCMI   Fuzzy composite market index 
OPF    Optimal power flow 
GMS   Generator market share 
µ            Membership value of the class to which GENCO belongs 
W    Weighting factor 

ix
    

Input variable 

ikφ
   

Input variable fuzzy membership function for ix  corresponding to  
    the data point k.

 
OASIS   Open access same time information system 
ANN   Artificial neural network 

2   Introduction 

Market power is defined as the ability to alter profitably prices away from competitive 
level. Market power can be exercised either by withholding the quantity of 
commodity or by raising the asking price  above the competitive price level without 
affecting the demand of the commodity. In power systems, transmission network 
provides the infrastructure to support a competitive electricity market, but congestion 
occurs frequently in weakly connected networks. In a competitive electricity market, 
the oligopoly structure of the market and the network constraints may produce results 
far from the perfect competition. 

One of the main objectives in the market monitoring process is the analysis of 
market power issues. The path toward liberalization has been under taken under the 
belief that the competition would strive for market efficiency [1] and price reduction 
resembling to the microeconomic model of perfect competition in which the social 
welfare would be the highest possible and the price will be the lowest. Unfortunately, 
different reasons may lead the market far from this desirable result. Some papers 
focus on the congestion impacts also in presence of the demand elasticity 
representation and the reactive load modeling [2], [3], [4], and provide methods to 
alleviate congestion impacts. In [5], the transmission congestion cost and locational 
marginal prices are considered, while in [6], thermal voltage and stability limits are 
considered to represent the feasibility region for the system. Strategic bidding has 
been extensively considered according to different approaches such as statically 
approaches [7], [8], parametric dynamic programming [9], Lagrange relaxation [10], 
genetic algorithm [11], stochastic procedure [12], fuzzy set theory [13], and game 
theory [14], [15]. In [16], the oligopolistic competition is examined in the submarkets 
that are isolated by constrained transmission lines. 

The primary objective of this paper is to explore the potential for using an 
engineering approach to measure the existence of market power in the real time 
operations of a power grid.  
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An ISO requires the bid prices of GENCOS to run the OPF. For measuring market 
power an ISO solves an Optimal Power Flow (OPF) to determine the least cost 
pattern of dispatch based on the available offers in a uniform price auction. The OPF 
is determined subject to physical constraints on the power grid, such as thermal limits 
on transmission lines, and operating constraints, such as maintaining voltage levels. 

This chapterproposes a multi output fuzzy neural network (FNN) for market power 
assessment and for finding the on line market power ranking status of GENCOS in a 
competitive power system using a fuzzy composite market index (FCMI). This index 
is formulated by combining (i) Lerner Index, (ii) Relative market power and (iii) 
Nodal Cost.  In the proposed FNN a trained multi-output neural network is being used 
as a fuzzy inference engine. The input of FNN consists of real loads and a bipolar 
code to represent a trading interval while the output consists of the fuzzy values of 
FCMI. To train the FNN a number of training patterns, covering the full operating 
range of the power system, are generated using the system data such as offer prices 
and operating constraints. OPF results are used to compute the above three market 
power indices and the corresponding FCMI. Once the network is trained it is capable 
of predicting the FCMI values in five fuzzy classes (GENCO ranking) for any given 
operating scenario, on line, instantaneously, without bothering about the 
computational burden of OPF. The computational effort is required only for training 
the network which is an off line process. Since the training of ANN is extremely fast 
and test results are accurate, they can be directly floated to OASIS (open access same 
time information system) and any other web site. The ISO and customers can access 
this information instantly. 

The main advantage of this approach is that it requires only the current load 
information for computing the FCMI and corresponding GENCO ranking without 
having to run the full OPF for every load variation. The FCMI will be used to analyze 
the GENCOS behavior in power market for any particular trading interval for any 
given loading conditions. 

The membership values of loads to linguistic classes of low, medium, high, etc. 
constitute the input vector while the output vector presents the operator with the 
probability of a GENCO belonging to different market power class. Therefore, the 
proposed method can accept and analyze data in linguistic as well as in quantitative 
form. The fuzzy load modeling enables the handling of the uncertainty associated 
with power system loads and a whole set of scenarios is analyzed at one time. 

This chapter is organized as follows. Study on market power is presented in section 
3. FNN approach for open electricity market is produced in section 4. Power market 
assessment based on hybrid FNN is done in section 5. Training and testing detail of 
proposed FNN used for ranking of GENCOS for power market assessment is 
described in section 6. Section 7 is the conclusion. 

3   Market Power 

There are two main reasons why the potential of market power is brought to the 
electricity market. First there is market dominance and then there are transmission 
constraints [9]. Market power due to market dominance is a scenario that applies for 
every imperfect market and not only for the electricity market. On the electricity 
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market, a supplier that is large enough to affect price can exploit market power by 
either economical withholding or physical withholding. When dealing with 
economical withholding a seller keeps bidding above the marginal cost of production 
and thereby driving up the price. Physical withholding simply means that a seller 
withholds some of its available capacity. 

Market power due to transmission constraints makes it necessary to get a full 
understanding of the topology of the transmission system before starting any plan of 
detecting the potential for market power [10]. 

If a supplier is placed within a so called load pocket, this participant will have a 
local market power. A supplier in this case can find himself in a position of monopoly 
by intentionally create congestion and limit access of competitors. This means that by 
getting dispatched at strategic points in the network, a supplier in a load pocket can 
gain profit even by increasing its generation rather than by withholding its 
generationcapacity [11]. Conclusively, transmission constraints in the electricity 
market make it possible even for a small supplier to exploit market power. 

In a network loads cannot be accurately forecasted and energy cannot be stored 
economically. Demand and supply must be balance all the time in order to maintain 
the system frequency, voltage, stabilization standards; Kirchhoff’s laws and 
impedance of the whole network which determine the power flows in the system [12]. 
In the congested area generation capacity will be relative scarcity, so congestion 
results in locational market power and causes invalidation of the optimization of 
generating resources in the whole network. 

Zonal market power has been recognized and analyzed in [17]. The Must-run ratio 
has been proposed to consider the transmission constraints. The MRR for Group A in 
a transmission zone is defined [18] as follows: 
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Where Pl is the import limit of the zone, max,gkP  is the output limit of Generator k in 

the zone, gN  is the number of Generators in the zone, and gAN
 
is the number of 

Generators owned by Group A in the zone and Pd is the total load of the zone. 
The MRR represents the capacity that must be provided by a generation company 

(GENCO) to supply a given load in a congestion zone as the percentage of the 
maximum available capacity of the GENCO. Theoretically, if the MRR of a seller is 
large than zero the seller is said to have market power. The MRR can provide useful 
market power signals in a congestion zone, which refers to a simple configuration in 
which one transmission line (or a set of lines in a “corridor”) can be filled to its limit 
by exporting generation from a low-cost region to a high-cost region. However, the 
MRR does not clearly indicate the controllability of a GENCO over market price 
which usually depends on the market share owned by a GENCO to supply a given 
load in a congestion zone. This can be explained using a specific GENCO with 300 
MW installed capacity in the following two different congestion zones. Congestion 
zone 1: the total load is 3000MW, the maximum import from other part of the system 
is 1000MW, the available generation capacity from other GENCOs in the zone is 
1700 MW, and the capacity must be supplied by the specific GENCO is 300 MW.  



 Market Power Assessment Using Hybrid Fuzzy Neural Network 19 

In this case, the GENCO holds 300/3000=10% Generator market share (GMS) and 
the MRR=300/300=100 %. Congestion zone 2: the total load is 1000MW, the 
maximum import from other part of the system is 200 MW, the available generation 
capacity from other GENCOs in the zone is 500MW, and the capacity must be 
supplied by the specific GENCO is 300 MW. In this case, the GENCO holds 
300/1000=30 % GMS and the MRR=300/300=100 %. Obviously, the specific 
GENCO in both cases has the same MRR but different market power due to different 
market shares. 

Market participants may exercise their market power under certain system 
operating conditions through financial withholding and quantity withholding. 
Exercising market power by a supplier can expose customers to the risk of paying 
high price. Market power may appear in a deregulated power system under 
contingency states caused by random failures. For example, a random failure in a 
transmission line may results in network congestion and a generating unit failure may 
cause inadequate system generation capacity. Network congestion and generation 
inadequacy may result in local and system market powers. Although the probability of 
a contingency state is small and the state duration is short (usually from a few minutes 
to a few hours), the market power possessed by suppliers due to random failure may 
be quite larger than that in the normal state. If market participants exercise their 
market power under contingency conditions, the price can be extremely high (price 
spike). Customers usually use the hedging tools such as long term bilateral contracts, 
futures and options as risk management instruments to reduce the risk of their paying 
high prices. A customer has to know the possible risk of paying high price before 
making the decision to select a suitable hedging tool. It is therefore necessary to 
evaluate the risk of a customer being exposed to price spikes caused by exercising 
market power. Market powers caused by random failures and the associated 
probabilities are rarely considered currently in power market analysis.   

4   FNN Approach for Open Electricity Market 

A fuzzy neural network is employed for monitoring the power market and ranking the 
GENCOS. Load uncertainty is dealt with by representing loads as fuzzy variables in 
different linguistic categories. A fuzzy composite market index is proposed to screen 
market power and rank the GENCOS on line. This index is fuzzified in different 
severity classes to get a more informative ranking compared to conventional crisp 
approaches. The excellent non linear mapping characteristics of an efficient high 
performance neural network are utilized to map inputs with the expected outputs. 
Fuzziness incorporated at the input as well as at the output level provides flexibility 
and insight into the ranking process and a whole set of load scenarios are analyzed at 
one time. The application of an efficient neural network as a fuzzy inference engine 
eliminates the complicated process of fuzzy if then rule extraction. Once the fuzzy 
neural network is properly trained, GENCOS are ranked on the basis of the class 
membership values of FCMI. It is assumed that the index belongs to the severity class 
having highest value of membership. Due to the fuzzy approach, its probability of 
belonging to other classes is also available in the form of membership to other classes.  
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a. Fuzzy composite market index (FCMI) 
A new fuzzy composite index is proposed by [31] for contingency ranking. In this 
paper same approach is used for screening of market power used by GENCOS in 
power system. The index is based on combining (i) Lerner Index, (ii) Relative market 
power (iii) Nodal cost. By including the effect of all three indicators it is ensured that 
the screening achieved will be more realistic and accurate.  
 
(i) Lerner index 
The Lerner index is used to measure the proportional deviation of price at the firm’s 
profit-maximizing output from the firms marginal cost at that output. It is defined as 
the following: 

d
ii

ii
i P

mcP
LI

ε
1=−=

                                        
 (2) 

Where iLI  is the Lerner index for firm i, ip and imc  are price and marginal cost at 

the firms profit-maximizing output, respectively, and d
iε  is the elasticity of demand 

seen by the firm. The Lerner index takes into the consideration of the effect of 
demand elasticity on market power. The Lerner index includes the effect of other 
fringe firm’s elasticity of supply in the form of the market clearing price. 
Theoretically, if the LI of a company in a power system is large than zero it possesses 
the market power. 

(ii) Relative Market Power 
In general, one would expect the degree of substitutability between two Generators to 
be inversely related to how far apart they are on the network. Some Generators have 
market power in the Actual Experiments. These are the cases that an ISO would 
observe. Hence, the next question is whether or not Generators are using their market 
power effectively to raise prices. Seeing prices for Generators substantially higher 
than the prices paid to other Generators may raise suspicions, but, this situation is 
neither sufficient nor necessary for exploiting market power. Combining the results 
for the observed OPF with the high offer and the low offer by the Generators, 
respectively, it is possible to calculate the following measure of relative market power 
(RMP): 

 
RMP=100[Competitive price-Low offer price/High offer price-Low offer price]   (3) 
 

High values of RMP close to the maximum of 100 indicate that market power has 
been exploited successfully. Although the RMP works quite well for our examples, it 
is still not an ideal measure. Developing better measures of the exploitation of market 
power is one of the ongoing objectives of our current research. It should be noted, 
however, that the main limitation of the RMP is the inability to discover the true 
costs. This is a deficiency on the supply side. From the perspective of customers, the 
prices paid are more important than measuring profits. Hence, the RMP, or, as an 
alternative, the ratio [Competitive price/Low offer price], provides a reasonably good 
measure of how well the power system is working for customers in a load pocket. 
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(iii) Nodal cost 
Nodal prices are the price of power, which the supplier are paid and the price which 
consumers are billed. In order to compute these prices the Pool Operator receives bid 
plots from market participants for both supply and demand. Fig.1 shows bid plots for 
both demand and supply. Gm and Hmare market clearing price and market clearing 
volume of electric power respectively in $/MWh and in MW. The prices shown on y- 
axis are in $/MWh.The supply bid plot shows the minimum price at which a generator 
is willing to produce a certain amount of power, while demand bid plot shows the 
maximum price, which is accepted by customers to buy a certain amount of power. 
For, the sake of simplicity it is assumed here that supply and demand bid is a single 
price not complete plot. 

 

 

Fig. 1. Supply and Demand Bid Plot 

In power market security pricing field, OPF-based approach is basically a non-
linear constrained optimization problem. One crucial outcome of this optimization 
procedure can be nodal congestion prices. This outcome in pool-market operation is 
achieved through objective-function as Maximization of social welfare i.e. 
maximizing the generator's income for their power production and simultaneously 
ensuring that consumers pay cheapest price for their power purchase. 

To combine the effect of all three, a composite index is proposed in (31) for 
contingency ranking the same approach is used here for GENCO assessment. The 
normalized values of LI, RMP and NC are fuzzified in different classes. Then the 
proposed index is computed as  

 

)()()()()()( ''''''
NCNCNCNCRMPRMPRMPRMPLILILILI WWWWWWFCMI ×+×+×+×+×+×= μμμμμμ   (4) 

where LIμ , RMPμ  and NCμ  are the memberships (highest value) of the class to 

which the market power of GENCOS belongs on the basis of FCMI value, i.e. on the 
basis of the combined effect of  LI,RMP and NC. The memberships of the adjoining 

severity class (next highest value) are '
LIμ , '

RMPμ  and '
NCμ  

and 

LIW , '
LIW ,

RMPW , '
RMPW ,

NCW  and '
NCW  are the weighing factors. 
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b. Fuzzy modeling of power system loads 
Load uncertainty is modeled by representing it as a fuzzy variable in the range (0–1) 
with memberships in different linguistic categories, such as, very small (VS), small 
(S), medium (M), large (L) and very large (VL). The membership value of ith 

linguistic category ( iμ ) is calculated as [19]: 
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where iμ  is the membership value in ith linguistic category, X is the crisp value to 

be fuzified, ia  and ib  are parameters corresponding to linguistic category i such as 

ia  determines the center value of the corresponding category, where the membership 

value is equal to 1.0 and ib  controls the width of the corresponding category. These 

parameters can be determined by carrying out simulations off-line under various 
operating conditions covering the possible range of variation. Past experience or 
operator judgment can also prove effective in setting these values. Non-linear 
membership functions are found to be most suitable to fuzzify power system variables 
(loads and FCMI) as they represent a more practical transition of loads from one 
category to the other compared to the common triangular or trapezoidal functions 
[19]. 

For each input variable xi, the m data points in the xi-y space are available. For 

every point in the xi-y space, a fuzzy membership function ikφ can be found, defined 

by [20] 

( ) ( )( ),/exp 2bxxx iikiik −−=φ (k=1, 2, m)          (6) 

c. Data normalization 
During training of a neural network, the higher valued input variables may tend to 
suppress the influence of smaller ones. Also the network does not produce outputs 
close to 1 or 0, as the neural network output governed by the activation or threshold 
function practically never realizes these values. To overcome this problem the 
input/output variables (x) are scaled in the range of 0.1–0.9. The normalized value xn 
presented to the neural network as the input or target output is calculated using the 
equation: 

( )
( ) 1.08.0

minmax

min +
−

−=
xx

xx
x n                                (7) 

Where x , maxx  and minx  are the actual, maximum and minimum values of the 

variable which is to be normalized. 
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5   Hybrid Fuzzy Neural Network Based Power Market Assessment 

The steps followed for power market assessment are: 

(i)   A large number of load patterns are generated randomly by perturbing the 
real loads at all the buses to cover the complete operating range of the power 
system under study. 

(ii)   For each pattern the values of LI, RMP and NC are calculated for each 
GENCO for each trading period using OPF solution and the offer prices of 
each GENCO.  

(iii)   The obtained indices are normalized between 0.1 and 0.9 for each load 
pattern using expression (7) and then fuzzified for computing the fuzzy 
composite market index (FCMI) using eq. (4). 

(iv)   The normalized loads at all buses are fuzzified into different linguistic 
categories and along with line codes (bi-polar digits used to represent the 
trading period) are fed to the fuzzy-neural network as training inputs. The first 
trading period is represented as (0 0 01) and so on.  

(v)   Computed FCMI in step three is then normalized and fuzzified into different 
linguistic categories. The membership values of FCMI of each GENCO form 
the desired output vector.  

(vi)   A one hidden layer neural network is trained with Levenberg– Marquardt 
back-propagation algorithm for input–output mapping. Once the network is 
properly trained, it is subjected to unseen patterns, for testing its performance. 

(vii)   During testing, a GENCO is assigned to the market power class for which it 
has highest value of membership. 

a. Description of the test system 
The hybrid fuzzy neural network was tested for measuring the existence of market 
power in the real-time operations of a power grid. An IEEE 14 bus system is used for 
testing and training the hybrid fuzzy neural network. The indices LI, RMP and NC are 
calculated from OPF solution obtained by MATPOWER [32] which simulate the full 
AC network, by using equ.(2) and (3). The weighing factors for computing FCMI in 
equ. (4) were taken equal to 1,2,3,4 and 5 for severity classes I, II, II, IV and V 
respectively for LI, RMP and NC. The weights were selected in this manner to assign 
highest weight to the most severe class (i.e. class V) and least weight to the least 
severe class (class I). Full AC, OPF solution  were run for all load scenarios to obtain 
LI,RMP and NC for each trading period of an IEEE 14 bus system. The normalized 
LI, RMP and NC values were fuzzified using data given in Tables 1, 2 and 3 
respectively. The graphical representation is given in figs 2, 3 and 4 respectively. 

The value of FCMI of individual generator for each trading period was computed 
using membership values of the indices LI, RMP and NC. Table 4 presents the 
computation of FCMI of individual generator for 10 trading period each period has 
different load condition. The overall rank (last column) is found using fuzzy values of 
computed FCMI .Out of the 220 patterns generated 200 (20x10) were used for  
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Table 1. Fuzzy representation of LI 

Linguistic 
Category for LI 

Class V Class IV Class III Class II Class I 

A 0.2 0.35 0.55 0.75 0.9 

B 0.2 0.10 0.15 0.10 0.15 

Table 2. Fuzzy representation of RMP 

Linguistic 
Category for 

RMP 

Class V Class IV Class III Class II Class I 

A 0.2 0.45 0.65 0.8 0.9 

B 0.3 0.15 0.2 0.10 0.2 

Table 3. Fuzzy representation of NC 

 
training the neural network while remaining 20 (2x10) unseen patterns were used to 
test its performance. Utility derived load compositions may also be employed to train 
the fuzzy-neural network instead of theoretically generated data. The obtained value 
of FCMI is normalized in the range of 0.1–0.9. Pattern wise normalization of FCMI 
ensures accurate ranking under peak as well as off-peak times of the day, because the 
generators are ranked for the current load based on their relative severity. Table 5  
data was used to fuzzify normalized FCMI values into five fuzzy classes. The 
graphical representation is given in Fig. 5. The flexibility in ranking due to the fuzzy 
representation can be clearly seen. The operators and planners can set the different 
parameters to suit their system (as low, medium, high, etc. would have different 
numerical significance for different systems/variables) and thus flexibility is 
incorporated in the model. 

b. Effectiveness of FCMI 

The ranking of GENCOS on the basis of LI, RMP, NC and FCMI is compared in 
table 4 for 10 trading period. The significance of using FCMI for GENCOS 
classification becomes clear from table 4 which lists the values of the constituent  
 

 

Linguistic 
Category for NC 

Class V Class IV Class III Class II Class I 

  A 0.15 0.35 0.58 0.70 0.9 

B 0.10 0.15 0.10 0.15 0.2 
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Table 4. FCMI and its Constituents LI, RMP, NC for IEEE 14 bus system 
 

 
Trading 
period 

G 
E 
N 
C 
O 

LI values R 
a 
n 
k 

RMP Values R 
a 
n 
k 

N.C. Values R 
a 
n 
k 

FCMI 
(normalized) 

Over
all 

Rank 
Highest 

LIμ  

Next 

'
LIμ  

Highest 

RMPμ
Next 

'
RMPμ

Highest 

NCμ
Next 

'
NCμ

 
 
1 

1 1.0 ,I 0.025,I
I 

I 1.0 ,I 0.025,II I 1.0 ,I 0.025,II I 3.15 (0.1) V 

2 0.93,III 0.30,II III 0.85,III 0.47,II III 0.91,III 0.35,II III 10.31 (0.39) IV 

3 0.83,IV 0.61,III IV 0.73,III 0.68,IV III 0.97,IV 0.79,V IV 17.89 (0.71) II 

4 1.0,V 0.16,IV V 1,V 0.16,IV V 1,V 0.16,IV V 16.92 (0.67) III 

5 0.97,V 0.62,IV V 0.96,V 0.69,IV V 0.99,V 0.67,IV V 22.2 (0.89) I 

 
 
2 
 

1 1.0 ,I 0.025,I
I 

I 1.0 ,I 0.025,II I 1.0 ,I 0.025,II I 3.15 (0.1) V 

2 0.96,III 0.24,II III 0.9,III 0.37,II III 0.92,III 0.33,II III 10.22 (0.39) IV 

3 0.99,IV 0.70,V IV 0.99,IV 0.63,V IV 0.99,IV 0.39,III IV 19.7 (0.78) II 

4 0.98,V 0.57,IV V 0.97,V 0.63,IV V 1,V 0.16,IV V 20.19 (0.80) II 

5 1,V 0.16,IV V 1,V 0.16,IV V 0.93,V 0.78,IV V 19.05 (0.76) II 

 
 
3 

1 1.0 ,I 0.025,I
I 

I 1.0 ,I 0.025,II I 1.0 ,I 0.025,II I 3.15 (0.1) V 

2 0.97,III 0.22,II III 0.92,III 0.34,II III 0.73,III 0.68,II III 10.34 (0.39) IV 

3 0.99,IV 0.61,V IV 1,IV 0.54,V IV 1,IV 0.45,V IV 19.96 (0.79) II 

4 1,V 0.16,IV V 1,V 0.16,IV V 1,V 0.16,IV V 16.92 (0.67) III 

5 0.98,V 0.53,IV V 0.98,V 0.57,IV V 1,V 0.24,IV V 20.16 (0.80) II 

 
 
4 

1 1.0 ,I 0.025,I
I 

I 1.0 ,I 0.025,II I 1.0 ,I 0.025,II I 3.15 (0.10) V 

2 0.99,II 0.19,III II 0.87,II 0.09,III II 0.84,II 0.61,III II 8.07 (0.30) IV 

3 0.74,III 0.67,II III 0.99,II 0.36,III II 0.99,III 0.38,II II 11.72 (0.45) III 

4 1,V 0.16,IV V 1,V 0.16,IV V 1,V 0.16,IV V 16.92(0.67) III 

5 0.9,III 0.38,II III 0.91,II 0.54,III II 0.89,II 0.88,III II 14.87 (0.58) III 

 
 
5 

1 1.0 ,I 0.025,I
I 

I 1.0 ,I 0.025,II I 1.0 ,I 0.025,II I 3.15 (0.1) V 

2 0.84,II 0.61,III II 0.95,II 0.48,III II 0.9,II 0.37,II II 10.29 (0.39) IV 

3 0.87,IV 0.58,III IV 0.73,IV 0.69,III IV 1,IV 0.49,V IV 17.66 (0.70) II 

4 1,V 0.16,IV V 1,V 0.16,IV V 0.57,IV 0.98,V V 18.46 (0.73) II 

5 0.91,V 0.85,IV V 0.9,IV 0.87,V IV 1,V 0.16,IV V 21.54 (0.86) I 

 
 
6 

1 1.0 ,I 0.025,I
I 

I 1.0 ,I 0.025,II I 1.0 ,I 0.025,II I 3.15 (0.1) V 

2 0.97,III 0.23,II III 0.91,III 0.35,II III 0.85,III 0.47,II III 10.29 (0.39) IV 

3 0.94,IV 0.83,V IV 0.97,IV 0.79,V IV 0.73,IV 0.68,V IV 20.65 (0.82) I 

4 1,V 0.16,IV V 1,V 0.16,IV V 1,V 0.16,IV V 16.92 (0.67) III 

5 0.99,V 0.73,V IV 0.99,IV 0.67,V IV 0.96,IV 0.69,V IV 22.48(0.9) I 

 
 
7 

1 1.0 ,I 0.025,I
I 

I 1.0 ,I 0.025,II I 1.0 ,I 0.025,II I 3.15 (0.10) V 

2 0.97,III 0.21,II III 0.92,III 0.33,II III 0.90,III 0.37,II III 10.19 (0.39) IV 

3 0.99,IV 0.38,V IV 0.99,IV 0.39,III IV 0.99,IV 0.63,V IV 18.1 (0.72) II 

4 1,V 0.16,IV V 1,V 0.16,IV V 0.97,V 0.63,IV V 18.65 (0.74) II 

5 0.95,V 0.72,IV V 0.93,V 0.78,IV V 1,V 0.16,IV V 21.04 (0.84) I 

 
 
8 

1 1.0 ,I 0.025,I
I 

I 1.0 ,I 0.025,II I 1.0 ,I 0.025,II I 3.15 (0.1) V 

2 0.85,III 0.47,II III 0.73,III 0.68,II III 0.92,III 0.34,II III 10.48 (0.40) IV 

3 1,IV 0.53,V IV 1,IV 0.45,V IV 1,IV 0.54,V IV 19.6 (0.78) II 

4 1,V 0.16,IV V 1,V 0.16,IV V 1,V 0.16,IV V 16.92 (0.67) III 

5 1,V 0.23,IV V 1,V 0.24,IV V 0.98,V 0.57,IV V 19.06 (0.76) II 

 
 
9 
 

1 1.0 ,I 0.025,I
I 

I 1.0 ,I 0.025,II I 1.0 ,I 0.025,II I 3.15 (0.1) V 

2 0.76,III 0.63,II III 0.84,II 0.61,III II 0.87,III 0.09,II III 9.06 (0.34) IV 

3 0.99,IV 0.40,V IV 0.99,IV 0.38,III IV 0.99,IV 0.36,III IV 14.12 (0.55) III 

4 1,V 0.16,IV V 1,V 0.16,IV V 1,V 0.16,IV V 16.92 (0.67) III 

5 0.92,V 0.81,IV V 0.89,V 0.88,IV V 0.91,V 0.54,III V 19.25 (0.77) II 

 
 

10 

1 1.0 ,I 0.025,I
I 

I 1.0 ,I 0.025,II I 1.0 ,I 0.025,II I 3.15 (0.1) V 

2 0.96,III 0.24,II III 0.90,III 0.37,II III 0.95,III 0.48,II III 10.14 (0.39) IV 

3 1,IV 0.57,V IV 1,IV 0.50,V IV 0.73,IV 0.69,III IV 18.34 (0.73) II 

4 0.98,V 0.52,IV V 0.98,V 0.57,IV V 1,V 0.16,IV V 19.8 (0.79) II 

5 1,V 0.16,IV V 1,V 0.16,IV V 0.9,IV 0.87,V V 19.23 (0.76) II 
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Table 5. Fuzzy representation of FCMI 

Linguistic 
Category for FCMI 

Class V Class IV Class III Class II Class I 

A 0.2 0.35 0.45 0.6 0.9 
B 0.3 0.15 0.2 0.15 0.2 

 
Normalized value of LI 

Fig. 2. Fuzzy representation of the LI index 

 
Normalized value of RMP 

 
Fig. 3. Fuzzy representation of the RMP index 

 
indices for 10 trading period. It can be observed that for a few trading period the 
classification remain same for all three indices but in other cases the ranking based on 
indices LI, RMP and NC is different. The composite index FCMI is hence very useful 
for ranking of GENCOS as it includes combined effect of all three individual indices. 
By using a composite index the effect of all three individual indices was effectively 
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Normalized value of NC 

Fig. 4. Fuzzy representation of the NC index 

 
Fig. 5. Fuzzy representation of the FCMI index 

included for market power assessment. The FCMI will be used to analyze the 
GENCOS behavior in power market for any particular trading interval for any given 
loading conditions. 

6   Training and Testing Detail 

The Levenberg– Marquardt algorithm [21, 22] was used for training the neural 
network. It is a variation of Newton’s method. The conventional multi-layer 
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perceptron (MLP) networks are usually trained using gradient descent based on back-
propagation (BP) algorithm, which is too slow for practical problems. Recently, 
several high performance algorithms have been developed to train MLP models that 
converge 10 to 100 times faster than the BP algorithm. These algorithms are based on 
numerical optimization techniques like conjugate gradient, quasi-Newton and 
Levenberg–Marquardt algorithms. Out of these, Levenberg–Marquardt (LM) 
algorithm is found to be the fastest method for training moderate size feed forward 
neural networks [30]. It also has very efficient Matlab implementation. The proposed 
fuzzy-neural network is very advantageous as: 

(i)    No rule formation required and  
(ii)   Misranking is eliminated. 

Hybridization of fuzzy logic with neural network has eliminated the need for deriving 
complex if-then rules by directly computing the membership values of composite 
performance index in all five severity classes. The proposed FNN-based method has 
an edge over conventional methods [23, 24, 25, 26, 27, and 28] that rank a pattern to a 
particular class based on its severity index because here any possibility of misranking 
is avoided by giving increased information in the form of membership values to 
neighboring classes. Simulations were carried out using MATLAB 7.0.1 on a Pentium 
IV processor, 2.8 GHz with 512GB RAM. The performance of the trained network 
was tested for 20 unseen trading periods. Market summary for 20 trading period are 
presented in Table 6. 

The GMS represents the capacity that must be provided by a generation company 
to supply a given load in a congestion zone as the percentage of total load of the 
congested zone. The MRR represents the capacity that must be provided by a 
generation company (GENCO) to supply a given load in a congestion zone as the 
percentage of the maximum available capacity of the GENCO. Theoretically, if the 
MRR of a seller is large than zero the seller is said to have market power. Table 6 
show the GMS and MRR for 20trading period respectively. For increased load 
demand, at trading period 4, MRR of GENCO 4 is 100% which indicate that 
GENCO4 used its maximum capacity. From table it can be easily concluded that as 
the demand is increased GENCO 4 and 5 offer high nodal costs with lowest MRR and 
GMS values try to exploit the market.   

a. Architecture of the FNN for testing 
The membership values of loads at all 14 buses along with a four digit topology number 
representing 20 trading period were used as inputs to the fuzzy-neural network making 
the number of neurons in the input layer equal to 59 (11X5+4). The first trading period 
is represented as (0001) and so on. There were five output layer neurons corresponding 
to the five membership classes of FCMI which reflect the market power assessment for 
each GENCO. Fuzzy rules for FCMI for five classes are given in table 7. GENCOS 
belonging to class 1 and 2 represent that they do not use market power. GENCOS 
belonging to class 3 represent that they partially utilize the market power to make their 
own profit, but do not exploit the market. GENCOS belonging to class 4 represent that 
GENCOS create a local market to maximize their profit, but still do not exploit the 
market. GENCOS belonging to class 5 represent that GENCOS fully utilize the market 
power to maximize their profit and fully exploit the market.  
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Table 6. Market summary for 20 testing pattern 

Trading Period  GENCO1 GENCO2 GENCO3 GENCO4 GENCO5 
1 

(Pd=314.2) 
MRR 60.34 27.04 00 51.81 35.91 
GMS 63.83 12.05 00 16.49 11.43 

Price ($/MWh) 37.26 38.93 39.94 41.04 40.72 
2 

(Pd=330.04) 
MRR 60.41 27.11 18.96 35.14 49.30 
GMS 60.84 11.49 5.740 10.65 14.94 

Price ($/MWh) 37.28 38.97 40.38 40.70 40.99 
3 

(Pd=241.89) 
MRR 58.81 26.33 00 15.78 3.34 
GMS 80.81 15.24 00 6.52 1.38 

Price ($/MWh) 36.82 38.43 39.69 40.32 40.07 
4 

(Pd=424.85) 
MRR 57.62 27.81 44.62 100 66.74 
GMS 45.08 9.16 10.50 23.54 15.71 

Price ($/MWh) 36.48 39.47 40.89 49.19 41.33 
5 

(Pd=411.99) 
MRR 60.66 27.12 16.19 71.65 48.81 
GMS 55.62 10.47 4.46 19.76 13.46 

Price ($/MWh) 37.53 38.98 40.32 41.43 40.98 
6 

(Pd=254.81) 
MRR 59.18 26.56 2.94 27.57 00 
GMS 77.21 14.59 1.15 10.82 00 

Price ($/MWh) 36.93 38.59 40.06 40.55 39.98 
7 

(Pd=330.78) 
MRR 60.7401 27.28 11.91 54.89 36.70 
GMS 61.04 11.55 3.60 16.59 11.09 

Price ($/MWh) 37.37 39.09 40.24 41.09 40.73 
8 

(Pd=367.25) 
MRR 60.28 26.97 20.09 58.30 54.50 

GMS 55.99 10.55 5.61 16.29 15.23 
Price ($/MWh) 37.25 38.88 40.40 41.17 41.09 

9 
(Pd=359.69) 

MRR 60.01 26.91 22.18 69.88 45.90 

GMS 55.46 10.47 6.17 19.43 12.76 
Price ($/MWh) 37.17 38.84 40.44 41.39 40.92 

10 
(Pd=331.87) 

MRR 60.32 27.11 16.58 38.72 52.06 

GMS 60.42 11.43 4.99 11.67 15.69 
Price ($/MWh) 37.26 38.98 40.33 40.77 41.04 

11 
(Pd=386.23) 

MRR 61.16 27.45 13.21 83.07 63.77 

GMS 52.64 9.95 3.42 21.51 16.51 
Price ($/MWh) 37.50 39.21 40.26 41.66 41.27 

12 
(Pd=278.48) 

MRR 58.66 26.14 00 37.46 22.25 

GMS 70.02 13.14 00 13.45 7.99 
Price ($/MWh) 36.78 38.30 39.49 40.75 40.44 

13 
(Pd=250.18) 

MRR 58.20 25.91 00 12.49 19.11 

GMS 77.3292 14.50 00 4.99 7.64 
Price ($/MWh) 36.65 38.14 39.45 40.25 40.38 

14 
(Pd=392.38) 

MRR 60.50 27.17 29.93 85.02 55.30 

GMS 51.26 9.69 7.63 21.67 14.09 
Price ($/MWh) 37.31 39.02 40.60 41.70 41.10 

15 
(Pd=194.29) 

MRR 51.83 23.00 00 00 00 

GMS 88.68 16.57 00 00 00 
Price ($/MWh) 34.83 36.09 37.42 37.31 38.49 

16 
(Pd=277.78) 

MRR 58.59 26.06 00 37.16 22.15 

GMS 70.11 13.14 00 13.38 7.97 
Price ($/MWh) 36.76 38.25 39.65 40.74 40.44 

17 
(Pd=362.04) 

MRR 60.87 27.40 23.93 50.56 62.16 

GMS 55.89 10.59 6.61 13.96 17.17 
Price ($/MWh) 37.41 39.18 40.48 41.01 41.24 

18 
(Pd=155.91) 

MRR 40.73 17.96 00 00 00 

GMS 86.84 16.13 00 00 00 
Price ($/MWh) 31.65 32.58 33.28 33.58 33.65 

19 
(Pd=188.51) 

MRR 49.70 22.03 00 00 00 

GMS 87.63 16.36 00 00 00 
Price ($/MWh) 34.22 35.42 36.16 37.18 36.81 

20 
(Pd=200.48) 

MRR 52.95 23.58 00 00 00 

GMS 87.79 16.46 00 00 00 
Price ($/MWh) 35.15 36.50 37.15 38.03 38.12 
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Table 7. Fuzzy rules for FCMI 

Class1 Class2 Class3 Class4 Class5 
(NMP) GENCOS do 
not use market power 

(NMP) GENCOS do 
not use market power 

(PMP) GENCOS partially 
utilize the market power 

(LMP) GENCOS create 
the local market 

(FMP) 
GENCOS Fully utilize 

the market power 
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        Fig. 6. Testing performance of FNN for               Fig. 7. Testing performance of FNN 
        Membership value of class 1                                 for Membership value of class2  
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        Fig. 8. Testing performance of FNN for                Fig. 9. Testing performance of FNN 
        Membership value of class 3                                  for Membership value of class4  

 
Test results for all the 20 trading period are presented in Figs. 6–10 and it can be 

seen that fuzzy-neural network is capable of producing membership values of all the 
classes quite accurately. A GENCO belongs to the class for which it has highest 
membership. 

Ranking of GENCOS for 20 testing trading period is shown in table 5. For each 
trading period GENCOS are ranked according to their FCMI values. For trading 
period 1 load is 314.2MW, the total load is shared by each GENCOS expect 



 Market Power Assessment Using Hybrid Fuzzy Neural Network 31 

GENCO3, which is clearly indicated by ranking as it belong to class1. However 
GENCO5 share the least load but exploit the market by offering high nodal cost and 
maximize the profit which is clearly indicated by ranking and from market summary 
table. For trading period 15,18,19 and 20 any GENCOS do not use market power as 
the load is low no congestion will occur and total load is shared by GENCO1 and 2 
which is clearly indicated by ranking of GENCOS and also the ranking can be 
checked from market summary table. For trading period 2, 4, 5, 7, 8, 9, 10, 11, 14 and 
17 demand is high congestion will occur, all GENCOS share the load, by offering 
high cost maximize their profit and exploit the market. It can be easily concluded that 
as the demand is increased GENCOS MRR will increase and they offer high cost to 
see the demand and exploit the market. The ranking of GENCO can be easily checked 
by market summary table which clearly indicate marginal cost, MRR and GMS values 
for each GENCO for each trading period. 
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     Fig. 10. Testing performance of FNN for         Fig. 11. Convergence characteristic for FNN 
Membership value of class 5  
 

b. Market power assessment for each GENCO 
The market power assessment of each GENCO for the proposed trading market is 
shown in figs 12-16. Out of the five GENCOS, GENCO1 always belong to class1 show 
that GENCO1 never use market power. GENCO2 belong to class2 and 3 show that 
GENCO2 partially try to utilize the market power but does not exploit the market. 
GENCO3, 4 and 5 belong to all classes clearly indicate that they use the market power 
to maximize their profit as per demand. GENCO 4 and 5 always try to use their market 
power as the demand is increased just because of their location in the system and also 
without their contribution demand cannot be fulfilled. Hence they raise their prices 
above the marginal cost. The proposed hybrid Fuzzy-neural network trained with LM 
algorithm is a model free estimator and its mapping accuracy is dependent on how 
closely the training patterns resemble the actual operating conditions. Being an 
intelligent system, it however has considerable fault tolerance and therefore can produce 
accurate results even for previously unseen operating conditions as long as they are 
within the same range. The computational time and complexity of conventional  
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        Fig. 14. Classes belonging to Genco3                Fig. 15. Classes belonging to Genco4 
 

 
Fig. 16. Classes belonging to Genco5 
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approaches increase when all AC limits and load compositions are incorporated in the 
model, but in case of the proposed approach there will be no such effect as once it is 
trained off-line using data obtained from conventional methods, the results will be 
produced instantaneously, during the on-line application.  

 
Discussion: 

In this paper a multi output fuzzy neural network (FNN) is trained for market power 
assessment and for finding the on line market power ranking status of GENCOS in a 
competitive power system using a fuzzy composite market index (FCMI). This index 
is formulated by combining (i) Lerner Index, (ii) Relative market power and (iii) 
Nodal Cost.  In the proposed FNN a trained multi-output neural network is being used 
as a fuzzy inference engine. The input of FNN consists of real loads and a bipolar 
code to represent a trading interval while the output consists of the fuzzy values of 
FCMI. To train the FNN a number of training patterns, covering the full operating 
range of the power system, are generated using the system data such as offer prices 
and operating constraints. OPF results are used to compute the above three market 
power indices and the corresponding FCMI. Once the network is trained it is capable  
 

Table 8. Ranking of GENCOS for each Trading Period based on FNN 

Trading 
Period 

FCMI (Normalized, Rank) 

GENCO1 GENCO2 GENCO3 GENCO4 GENCO5 
1 0.1,I 0.4,II 0.1,I 0.68,IV 0.9,V 

2 0.1,I 0.43,III 0.88,V 0.9,V 0.85,V 

3 0.1,I 0.44,III 0.1,I 0.75,IV 0.9,V 

4 0.1,I 0.38,II 0.59,III 0.9,V 0.78,IV 

5 0.1,I 0.41,II 0.73,IV 0.77,IV 0.9,V 

6 0.1,I 0.39,II 0.82,V 0.67,III 0.1,I 

7 0.1,I 0.40,II 0.77,IV 0.79,IV 0.9,V 

8 0.1,I 0.46,III 0.9,V 0.77,IV 0.87,V 

9 0.1,I 0.39,II 0.64,III 0.78,IV 0.9,V 

10 0.1,I 0.45,III 0.85,V 0.88,V 0.9,V 

11 0.1,I 0.4,II 0.49,III 0.65,III 0.9,V 

12 0.1,I 0.41,II 0.1,I 0.69,IV 0.9,V 

13 0.1,I 0.49,III 0.1,I 0.9,V 0.82,V 

14 0.1,I 0.39,II 0.59,III 0.64,IV 0.9,V 

15 0.1,I 0.46,III 0.1,I 0.1,I 0.1,I 

16 0.1,I 0.4,II 0.1,I 0.69,IV 0.9,V 

17 0.1,I 0.42,II 0.83,V 0.9,V 0.74,IV 

18 0.1,I 0.50,III 0.1,I 0.1,I 0.1,I 

19 0.1,I 0.39,II 0.1,I 0.1,I 0.1,I 

20 0.1,I 0.47,III 0.1,I 0.1,I 0.1,I 
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of predicting the FCMI values in five fuzzy classes (GENCO ranking) for any  
given operating scenario, on line, instantaneously, without bothering about the 
computational burden of OPF. The computational effort is required only for training 
the network which is an off line process.  

This proposed technique is applied on an IEEE 14 bus system. All load buses with 
their demand is taken as input to FNN and FCMI computed after running OPF 
program is taken as output to FNN. Firstly we train the FNN and then testing is done 
with unseen load patterns. After testing and training it can be easily analyzed that at 
low demand GENCOS do not use market power means they do not raise their prices 
above the marginal price. As the demand is increased due to some reasons some 
GENCOSin this case GENCO 4 and 5 raise their prices above the marginal price just 
because of their location in the system. Without their contribution demand cannot be 
supplied hence they use their market power. By calculating FCMI we can easily 
identify which GENCO uses their market power and after identification they can be 
ranked. 

Once we train FNN it requires only the current load information for computing the 
FCMI and provide GENCO ranking without having to run the full OPF for every load 
variation. The FCMI will be used to analyze the GENCOS behavior in power market 
for any particular trading interval for any given loading conditions. Since the training 
of ANN is extremely fast and test results are accurate, in future they can be directly 
floated to OASIS (open access same time information system) and any other web site. 
The ISO and customers can access this information instantly. 

7   Conclusion 

A comprehensive and dynamic market monitoring system has been proposed in this 
chapter to protect and improve the open electricity markets. Several important indices 
have been proposed as part of the market monitoring system, such as GMS, MRR, LI, 
RMP and NC all are combined together to give the single index FCMI. With this 
proposed market monitoring system handy, all participants will be able to have a 
better understanding of their markets and the policy makers will have a better gauge 
to measure the market behavior. It is also expected that this analysis will help make 
better market policies and find more incentives for everybody within the power 
system to improve the overall system operation and reliability as well as the market 
performance. It is strongly recommended that market participants and policy makers 
use this conundrums measurement and indices to locate and mitigate their market 
problems so that the power system is treated as a whole, not just as generation, 
transmission, load or other individual components. 

In this paper a hybrid fuzzy neural network is developed for online ranking of 
GENCOS for each trading period. The proposed combined index developed using the 
effect of individual indexes is found to be very efficient for ranking GENCOS 
compare to methods which use only one index. Loads are modeled as fuzzy variables 
in contrast to the conventional deterministic approaches. The complicated task of 
fuzzy rule framing is not required here because a trained neural network serves as an 
inference engine. It has been demonstrated that the proposed method is particularly 
suitable for ranking of GENCOS lying on class boundaries because the fuzzy 
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environment increases amount of information available and provides ranking within a 
severity class. The main advantage of this approach is that it requires only the current 
load information for computing the FCMI and corresponding GENCO ranking 
without having to run the full OPF for every load variation. The FCMI will be used to 
analyze the GENCOS behavior in power market for any particular trading interval for 
any given loading conditions. 
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