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Preface 

This research volume is a continuation of our previous volumes on intelligent machines. 
We laid the foundation of intelligent machines in SCI Series Volume 70 by including 
the possible and successful applications of computational intelligence paradigms in 
machines for mimicking the human behaviour. 

The present volume includes the recent advances in intelligent paradigms and 
innovative applications such as document processing, language translation, English 
academic writing, crawling system for web pages, web-page retrieval technique, 
aggregate k-Nearest Neighbour for answering queries, context-aware guide, 
recommendation system for museum, meta-learning environment, case-based reasoning 
approach for adaptive modelling in exploratory learning, discussion support system for 
understanding research papers, system for recommending e-Learning courses, 
community site for supporting multiple motor-skill development, community size 
estimation of internet forum, lightweight reprogramming for wireless sensor networks, 
adaptive traffic signal controller and virtual disaster simulation system. 

Modern information technology relies on intelligent systems that can learn and 
reason over a range of knowledge hidden in available datasets. Achieving these 
objectives involve applying machine learning biology and nature inspired methods to 
inductively construct computational and mathematical models (that can use explicit or 
implicit human supervision) and gain insight in terms of patterns and relationships 
hidden into the datasets in hand. This ‘insight’ helps the intelligent systems to reason 
and learn and to use the extracted knowledge for prediction of trends and tendencies, 
for processes and products monitoring and control, for fault detection and diagnosing 
in a wide range of application areas. 

The aim of this edited book is to promote current theoretical and application 
oriented Intelligent systems research (more specifically in the field of neural networks 
computing) and to present examples of experimental and real-world investigations 
that demonstrate contemporary achievements and advances in the area.  

Leading researchers contribute articles presenting works from this multi-faceted 
and burgeoning area of research at both theoretical and application levels, covering a 
variety of topics related to intelligent systems. 

This book is directed to engineers, scientists, researchers, professor and the 
undergraduate/postgraduate students who wish to explore the applications of intelligent 
paradigms further. 

We are grateful to the authors and reviewers for their contribution and appreciate 
the assistance provided by the editorial team of Springer-Verlag. 

 
Dr. Ivan Jordanov, University of Portsmouth, UK 

Professor Lakhmi C. Jain, University of South Australia, Adelaide, Australia 
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Chapter 1

An Introduction to Contemporary Achievements
in Intelligent Systems

Jeffrey W. Tweedale1 and Ivan Jordanov2

1 School of Electrical and Information Engineering
University of South Australia
Mawson Lakes Campus
South Australia SA 5095
Australia

2 School of Computing
University of Portsmouth
Portland Building
Hampshire PO1 2UP
United Kingdom

1 Introduction

The term intelligent systems is used to describe the necessary level of performance re-
quired to achieve the system goals. Intelligence has been observed and scientifically
categorized as a biological stimuli response mechanism that is provided to satisfy an
intended activity.Intelligence considers cognitive aspects of human behaviour, such as
perceiving, reasoning, planning, learning, communicating and innovation. As society
evolved, innovative individuals invented tools to assist them in achieving better out-
comes. Since the industrial revolution [1], science and mechanization have become
central to many academic challenges, driving a paradigm shift from philosophy to-
wards systems engineering techniques. This desire to improve mechanized systems
created the need for improvements to automation processes. These achievements ex-
tend the pioneering efforts of others stimulating new research and developments [2].
Computational Intelligence (CI) has evolved over the past 60 years [3] with many new
fields of study emerging to dissolve obstacles encountered. These attempts relate to
efforts at personifying attributes of human behavior and knowledge processes within
machines. The resulting Machine Intelligence [4, 5] efforts stimulated the study of Arti-
ficial Intelligence (AI) [6, 7] and led to the evolution of many contemporary techniques.

Agent technologies, and in particular agent teaming, are increasingly being used to
aid in the design of intelligent systems [8]. Software engineer have made significant
progress in fields, such as knowledge representation, inference, machine learning, vi-
sion and robotics [9]. Minsky suggested that AI is the science relating to making ma-
chines do things that would be done by a human [10]. AI researchers originally studied
science relating to human and animal intelligence. These concepts were initially con-
ceived by Newell and Simon using production systems [11]; however, the study quickly

I. Jordanov and L.C. Jain (Eds.): Innovations in Intelligent Machines -3, SCI 442, pp. 1–14.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013



2 J.W. Tweedale and I. Jordanov

divided into two streams with John McCarthy and Nil Nillson considered the Neats (us-
ing formal logic as a central tool to achieving AI, while Marvin Minsky and Roger
Schanks where considered the scrufs (using a psychological approach to AI ). Russel
and Norvig entered the argument by describing an environment as something that pro-
vides input and receives output, using sensors as inputs to a program, producing outputs
as a result of acting on something within that program. The AI community now uses
this notion as the basis of definition of an agent [12]. AI technology is becoming the
paradigm of choice for the development of complex distributed systems and as the natu-
ral progression from pure object oriented programming. Learning has an important role
to play in both cooperative and autonomous systems. Agents with predefined behaviors
based on a priori knowledge of the system that is modified using feedback from expe-
rience will continue to mature. Rather than having purely agent-based applications, we
then have cooperative applications involving teams of agents and humans. AI will retain
their architectural foundations but the availability of more appropriate reasoning models
and better design methodologies will see them being increasingly used in mainstream
software development. Furthermore, better support for human-agent teams will see the
development of a new class of intelligent decision support applications. For more in-
formation, see the evolution of intelligent agents within the world wide web [13] and
the ability to embedded automation into modern intelligent systems in a Human-Agent
environment [14].

This book examines the basic concepts relating to contemporary in Intelligent Sys-
tems and provides a number of case studies to examine specific examples. Prior to
examining those topics, the basic terms are defined to provide clarity and additional
references where the reader chooses to seek more information. The following section
progressively build the concepts associated with Intelligent Systems and some of the
techniques used to create them. Hence the discussion review the definition of a system,
intelligence, AI and associated intelligent paradigms.

1.1 What Is a System?

A system is defined as “a set of things working together as parts of a mechanism or
an interconnecting network” [15]. Other dictionaries qualify the definition based on
categories or functionality. For instance, the American Heritage dictionary defines a
system as [16]:

– A group of interacting, interrelated, or interdependent elements forming a complex
whole

– A functionally related group of elements, especially:
• The human body regarded as a functional physiological unit.
• An organism as a whole, especially with regard to its vital processes or

functions.
• A group of physiologically or anatomically complementary organs or parts. Ex-

amples include the nervous system and the skeletal system.
• A group of interacting mechanical or electrical components.
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• A network of structures and channels, as for communication, travel, or
distribution.

• A network of related computer software, hardware, and data transmission de-
vices.

– An organized set of interrelated ideas or principles.
– A social, economic, or political organizational form.
– A naturally occurring group of objects or phenomena. For example, the solar

system.
– A set of objects or phenomena grouped together for classification or analysis.
– A condition of harmonious, orderly interaction.
– An organized and coordinated method; a procedure.
– The prevailing social order; the establishment.

This book discusses the concept of a system in relation to intelligent systems using
contemporary achievements. The focus is on using software to enhance machine in-
telligence to control robotic behavior. Examples provided are associated with AI tech-
niques aimed at harnessing knowledge from artifacts collected within the environment
or learning algorithms using neural networks.

1.2 What Is Intelligence?

By definition, intelligence is “the ability to acquire and apply knowledge and skills”
[15]. The level of intelligence grades the ability to think, postulate or even compose
a thesis to a solution. This measure examines many skills, compliance to lots of rules
and a significant level of expert knowledge in the problem Domain. We measure hu-
man intelligence using a variety of Intelligence Quotient (IQ) tests. This measures a
wide range of skills to generate a rating using a common standard. Psychologist can ad-
minister professionally engineered tests, such as the Wechsler Adult Intelligence Scale
(WAIS)1 and the Ravens Progressive Matrices2. What is measured and its relevance is
the major issue clouding the terminology. Computers appear to achieve intelligent feats,
but they are not intelligent, they are merely doing what they are programmed to do!

Intelligence has been defined in several ways [17]:

– the ability to learn or understand from experience,
– ability to acquire and retain knowledge,
– mental ability,
– the ability to respond quickly and successfully to a new situation, and
– use of the faculty of reason in solving problems or directing conduct effectively.

In this book, the concept of intelligence is associated with techniques used to enhance
a machines ability to achieve tasks that are currently not supported by existing systems.
Research into intelligent systems is evolving, however no scale exists to measure or

1 See wilderdom.com for more information.
2 See www.pearsonassessments.com

http://wilderdom.com/personality/intelligenceWAISWISC.html
http://www.pearsonassessments.com/haiweb/Cultures/en-US/Site/ProductsAndServices/Ravens.htm
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compare machine intelligence because of the complexity required to normalize the re-
sults. Ongoing research into automation may develop an machine intelligence quotient3,
until then, the focus remains on improving the techniques associated with collecting in-
formation and generating knowledge.

1.3 What Is an Intelligent System?

An intelligent system is therefore a collective set of techniques that create a mecha-
nism to achieve temporary objectives within a limited space and time using informa-
tion sensed within its environment. The system uses concept provided or divined in
response to its current state and perceived situation based on the constraints of its pro-
gramming. There is no clear definition, although society is forming a belief that an
intelligent system should be a machine that is capable of simulating the human decision
making process (exhibit a basic IQ). In reality intelligent machines remain formal or
informal systems that gather or manage data, to obtain and process information into
knowledge to enable reasoned judgments by human decision makers. The term is not
limited to intelligence organizations or services but includes any system, in all its parts,
that accomplishes the listed tasks [18].

The concept of embedding intelligence within machines has existed since the first
AI conference held at Dartmouth in 1956 [19]. Software has traditionally been used
to monitor systems without providing significant direction or control. Machines and
production lines are still controlled by operators that require specified skills to achieve
predetermined goals. When the required stimuli is missing or delayed, that machine or
process become disrupted and may fail. The efficiency of attaining a goal, should not be
confused with the intelligence of the machine or operator. Automation is the incarnation
of a known sequence of series of processes that contribute to a predefined task. This
concept should not be interpreted as intelligence, regardless of the level of technology
or efficiency it provides [14]. Applications are increasingly being developed using AI
techniques to automate functions traditionally conducted by the human element within
the overall system. At present, many of these systems retian one or more humans in the
loop, however they are being displaced are more advanced AI techniques evolve.

1.4 What Is AI?

The term AI was born out of a conference held at Dartmouth in 1956 [19] and generally
attributed to John McCarthy [3]. He was latter acknowledged as the father of AI and
has since reported he should have used the term CI [20]. The concept of AI at that
time was documented by Newell and Simon [21, 22] who highlighted their production
systems [11] in those examples. The field soon divided into two streams with John
McCarthy and Nils Nilsson considered the Neats4, while Marvin Minsky and Roger
Schanks where considered the scrufs5. Minsky has since told reporters in 1982 that,

3 It would be appropriate to use the term Machine Quotient (MQ) in lieu of machine intelligence
quotient because it would reflect the personified association with humans.

4 Who started using science and formal logic as a central tool to achieving weak AI.
5 Who retained a cognitive or psychological approach to strong AI.
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“AI has one foot in science and one in engineering” [23]. Where as Roszak stated “AIs
record of barefaced public deception is unparalleled in annals of academic study” [24].
The definition has become a heated debate, so now we focus on the terms strong AI and
weak AI.

The goal of strong AI is to build a machine that is capable of thought, con-
sciousness and emotion (the mind), where weak AI merely develops models to test
theories about understanding humans and animals, usually in robotic form. These
models provides useful tools that help us understand the mind. We know that AI
bounds a number of disciplines that include: psychology, philosophy, linguistics and
neuroscience.

Psychology: The Pavlov’s dog demonstrated how to observe behavior, through the
study of stimulus and response. Fredholm determined there was a valid set of
concepts that explained memory, learning and reasoning [25]. The study of
intelligence in AI exhibits this interdisciplinary approach to cognitive psychol-
ogy.

Philosophy: Simon introduced the theory on computational intelligence. In 1957
he suggested that “within ten years, that most psychological theories would
take the form of computer programs” [26]. Descartes introduced the concept
of dualism where he argued there was a fundamental difference between the
mental realm and the physical realm [27]. There is a parallel about the com-
puter program requiring a computer to manifest itself and the mind requiring a
brain to exist. This attempts to embody knowledge into machines makes several
assumptions regarding ontology and hermeneutics, such as the sorts of things
machines need to know. There are varying degrees of intelligence in humans, in
machines this relies on the computation engine. Walter Grey constructed sev-
eral robots with a number of sensors for collision detection. Elsie wandered
autonomously until her battery level fell6 and provided the illusion of mimick-
ing what appeared to be complex behavior [28]. Similarly, Wilhelm von Osten
claimed to train a horse to do maths, albeit gesture driven behavior. Both ex-
amples highlight the problems associated with determining an agents capacity
solely on behavior.

Linguistics: Chomsky had a predisposition for language and believed the human
competency for speech was only shaped by their environment (noting we are
born with some knowledge of language).

Neuroscience: This concept forms the foundation of most high-level cognitive
processes used in AI.

1.5 Putting AI to Work

In 1966 a robot called shaky was built at Stanford [29]. He combined a number of AI
techniques to assist him organising blocks within a simple constrained environment.

6 At which point, she was attracted to a light positioned inside a charging tunnel. When fully
charged, she repeatedly continued wandering.
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Wheel slippage introduced errors into the sense, model, plan and act cycle which dis-
rupted perception and positioning within the environment. Unfortunately as the envi-
ronment became more complex the techniques in this model eventually failed [30]. As
AI matured into the modern era, McClelland introduced the connectionist theory which
quickly theory gained popularity [31].

McCulloch and Pitts presented the concept of a Neural Networks (NN) by making
many parallels to the brain on a highly abstracted level. One obvious difference is the
brain only processes information at a rate of approximately 1000 signals per second. It
does however conduct millions, possibly billions, of parallel processes simultaneously7.
The brain has approximately 100 billion neurons with at least 100 trillion synapses in-
terconnected by axons using multiple microtubules. Each neuron behaves like a single
processor, which itself runs an application one instruction at a time (serially). It could
take billions of instructions to recognise one shape, pattern or image. We are also aware
that the brain organises symbols in a hierarchical order based on the frequency of mem-
ories or association. This means that machine learning must encompass techniques from
both the symbolic and connectionist branches of AI. In symbolic representation the in-
formation used for comparison is generally stored within a central or locatable package.
We know in the real world, much of that information is distributed, therefore connec-
tions are required to enable information to be evoked. Literate discussing innovative
examples using AI techniques within multi-agent systems is available [32].

1.6 New AI

It was Gregory Bateson who ushered in a new set of principles when he said: “What
thinks is a brain in a human being who is part of a system that includes an environ-
ment” [33]. Some use the term, new AI. If we follow the disembodied theory, we should
concentrate on autonomous agent behavior in the everyday world (free of situation)
working from the bottom up. The higher-level functions, like knowledge and reason-
ing should still be approached top-down. Brooks showed this concept using a robot
called genghis that had fifty-one parallel programs (sub-systems) [34]. Again Luc Steels
demonstrated the concept of a shared lexicon in agency theory via his talking heads ex-
periments [35].

1.7 Intelligent Paradigms

A number of Intelligent Paradigm techniques are reported in literature. These include;
decision-trees, rule-based, Bayesian, rough sets, dependency networks, reinforcement
learning, Support Vector Machines (SVM), NNs, genetic algorithms, evolutionary al-
gorithms and swarm intelligence. Many of these topics are covered in this book. An
example of intelligence is to use AI search algorithms to create automated macros or
templates [36]. Again Generic Algorithm (GA) can be employed to induce rules us-
ing rough sets or numerical data. A simple search on data mining will reveal numerous
paradigms, many of which are intelligent. The scale of search escalates with the volume

7 In comparison the Intel i7-990X Extreme Gulftown has six independent cores all running at
3.73 GHz peak (or 12 hyper-threads).
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of data, hence the reason to model data. As data becomes ubiquitous, there is increasing
pressure to provide an on-line presence to enable access to public information reposito-
ries and warehouses. Industry is also increasingly providing access to certain types of
information using kiosks or paid web services. Data warehousing commonly uses the
following steps to model information:

– data extraction,
– data cleansing,
– modeling data,
– applying data mining algorithm,
– pattern discovery, and
– data visualization.

Any number of paradigms are used to mine data and visualize queries. For instance,
the popular six-sigma approach (define, measure, analyse, improve and control) is used
to eliminate defects, waste and quality issues. An alternative is the SEMMA (sample,
explore, modify, model and Assess). Other intelligent techniques are also commonly
employed. Although we don’t provide a definitive list of such techniques, this book
focuses on many of the most recent paradigms being developed, such as Bayesian anal-
ysis, SVMs and learning techniques.

1.8 Knowledge

Information, knowledge and wisdom are labels commonly applied to the way humans
aggregate practical experience into an organized collection of facts. Knowledge is con-
sidered a collection of facts, truths, or principles resulting from a study or investigation.
The concept of knowledge is a collection of facts, principles, and related concepts.
Knowledge representation is the key to any communication language and a fundamen-
tal issue in AI. The way knowledge is represented and expressed has to be meaningful
so that the communicating entities can grasp the concept of the knowledge transmitted
among them. This requires a good technique to represent knowledge. In computers sym-
bols (numbers and characters) are used to store and manipulate the knowledge. There
are different approaches for storing the knowledge because there are different kinds of
knowledge such as facts, rules, relationships, and so on. Some popular approaches for
storing knowledge in computers include procedural, relational, and hierarchical rep-
resentations. Other forms of knowledge representation used include Predicate Logic,
Frames, Semantic Nets, If-Then rules and Knowledge Inter-change Format. The type of
knowledge representation to be used depends on the AI application and the domain that
Intelligent Agents (IAs) are required to function. [37]. Knowledge should be separated
from the procedural algorithms in order to simplify knowledge modification and pro-
cessing. For an IA to be capable of solving problems at different levels of abstraction,
knowledge should be presented in the form of frames or semantic nets that can show
the is-a relationship of objects and concepts. If an IA is required to find the solution
from the existing data, Predicate logic using IF-THEN rules, Bayesian or any number
of techniques can be used to cluster information [14].
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1.9 Other Effects

Cognitive Science is a field of research attracting significant effort. It was preceded by
the process management evolution with many prominent achievements, such as, Taylors
introduction to Scientific Management and the Hawthorn Experiments
conducted by the National Research Council (NRC). Formalizing organizational sys-
tems and behavioral science provides the tools required to decompose human oriented
task. Any real-world system takes inputs as sensors will only react appropriately when
it is able to modify the outputs. Simulation models rely on the same approach. Agents
can be used to monitor sensors and stimulate the decision making required to modify
one or more outputs.

Apollo 13 experienced a quintuple fault which required an army of ground crew
the challenge of remotely assessing the status/health of the spacecraft prior to rapidly
redesigning a new mission plan with revised procedures. The ultimate decision com-
promised the original mission goal of landing on the moon which was quickly revised
to a successful return to earth. The ground crew were required to search for a new un-
intended reconfiguration of the space crafts subsystems with the required procedures
required to effect those changes manually.

Agent technologies, and in particular agent teaming, are increasingly being used to
aid in the design of “intelligent systems” [38]. In the majority of the agent-based soft-
ware currently being produced, the structure of agent teams have been reliant on struc-
tures defined by the programmer or software engineer. The development of a model
that extends the communications architecture of an agent framework that is adaptable
when contacting a series of Multi-Agent System (MAS) or teams. The ideal proper-
ties of agents, includes: deliberative agents, reactive agents, interface agents (HCI) and
mobile agents [26]. Different systems may be instantiated with a variety of hierarchies,
with each level performing predetermined tasks in a subordinate or supervisory role.
An Agent Architecture is considered to include at least one agent that is independent or
a reactive/proactive entity and conceptually contains functions required for perception,
reasoning and decision. The architecture specifies how the various parts of an agent
can be assembled to accomplish a specific set of actions to achieve the systems goals.
Wooldridge believes that it is essential for an agent to have “the ability to interact with
other agents via some communication language” [39].

Research on agents requires the formation of teams of agents in order to dynamically
configure the team with the ability to solve the decomposed task of the goal presented.
Traditionally all tasks must be completed successfully or the team fails the goal [8]. A
dynamic architecture would substitute agents within the team with alternative capabili-
ties in order to succeed. It may even compromise and offer a partial solution and offer it
to another system to complete. A good communications framework is required to pass
messages between separate agent and other systems. An IA frameworks has recently
been extended within the Knowledge-Based Intelligent Information and Engineering
Systems (KES) Centre to enable individual students to successfully fast track the de-
velopment of their research concepts. A Plug n Play concept based on a multi-agent
blackboard architecture forms the basis of this research. The authors believe that a core
architecture is required for MAS developers to achieve flexibility. Current research fo-
cuses on how agents can be teamed to provide the ability to adapt and dynamically
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organize the required functionality to automate in a team environment. The model is
conceptual and is proposed initially as a blackboard model, where each element rep-
resents a block of functionality required to automate a process in order to complete a
specific task. Discussion is limited to the formative work within the foundation layers
of that framework.

1.10 Why Agents?

As stated previously, agents are increasing being used to solve progressively more com-
plex problems. As we approach applications that solve real-world problems, the skills
required have risen dramatically. Practical examples of where agents are currently used,
include: spell checking, spam filters, travel and event booking systems. The code re-
quired to create an agent factory will focus on the needs of the programmer. This code
could be linked at compile-time, but more preferably, instantiated and attached during
run-time. In order to abstract the inherent complexity of this task, a factory is required.
It needs functionality that dynamically wraps and packages a given capability. Intelli-
gent systems can be developed to modify existing code, even when in memory, without
loss of state or downtime. Agents are typically used in this process.

2 Chapters Included in the Book

This book includes nine chapters. The following section contains a summary of each
topic.

Chapter 2: Market Power Assessment Using Hybrid Fuzzy Neural Network

This research discusses market power assessment as an important aspect of electric
market analysis and operation. It proposes a multi output fuzzy neural network (FNN)
for market power assessment and for finding on line market power ranking status of the
generating company in a competitive power system, using a fuzzy composite market
index (FCMI). This index is formulated by combining a Lerner index, a Relative market
power and a Nodal Cost indices. In the proposed FNN, a trained multi-output neural
network is used as a fuzzy inference engine. The input of the FNN consists of real loads
and a bipolar code to represent a trading interval, while the output consists of the fuzzy
values of the FCMI. A number of training patterns covering the full operating range of
the power system are generated using the system data (such as offer prices and operating
constraints) in order to train the FNN. The determined optimal power flow results are
used to compute the above three market power indices and the corresponding FCMI.
The performance of the proposed method is tested on an IEEE 14 bus system for 20
testing trading periods. The obtained results can be directly uploaded to an open access
on-line information system (or to a dedicated web site), so that an independent system
operator or customers can make use of this valuable information.
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Chapter 3: Coaching Robots: Online Behavior Learning from Human Subjective
Feedback

Efforts to coach robots resulted in an a novel methodology to create an agent learn-
ing behavior that incorporates both interactive and iterative approaches. The method is
called Coaching and allows human trainer to give a subjective evaluation of the robotic
agent in real time and the agent can simultaneously update the reward function. The
research demonstrates agents capability of learning the desired behavior by receiving
simple and subjective instructions (positive and negative) by implementing Coaching
framework of typical reinforcement learning. The proposed approach is also effective
when it is difficult to determine in advance a suitable reward function for the learn-
ing situation. The validation and verification of the investigated method advantages are
done through conducting several experiments involving simulated and a real robot arm
systems.

Chapter 4: Persian Vowel Recognition Using the Combination of Haar Wavelet
and Neural Network

This chapter studies Lip image localization and segmentation as part of lips movement
analysis which has significant role in speech recognition. Even after detecting the lips
there are still major problems that any vowel (especially Persian) recognition method
is faced with, such as: low chromatic in lip region; low contrast luminance; overlap
between the lip and facial skin color; and similarity between lips movement in some
vowels. A new, automatic and fast approach for the lip extraction based on using the
Haar wavelet is proposed here and its output is used as a input feature vector for a hy-
brid neural network. The proposed algorithm uses the CIE L*U*V* and CIE L*a*b*
color spaces in order to improve the contrast between the lip and the other face regions.
Subsequently, the lips are modeled and a feature vector with longitudinal and angular
parameters is extracted and used as an input for a feedforward backpropagation hy-
brid neural network. The proposed method is tested on 2200 images and the obtained
accuracy shows about 15% improvement when compared with similar methods.

Chapter 5: The Reproduction of the Physiological Behaviour of the Axon of
Nervous Cells by Means of Finite Element Models

This research investigates 3D Finite Element modeling solutions for a segment of a ner-
vous cell axon, which take into account the non linear and time varying dynamics of
the membrane surrounding it, in order to reproduce its physiological behavior in terms
of Action Potentials elicitation and its temperature dependence. A combination of the
so called Hodgkin-Huxley equations modeling the dynamics of the membrane voltage-
controlled ionic channels, together with the Maxwell equations in Electro Quasi-Static
approximation describing the electromagnetic behavior of each medium, is tackled in
a numerical procedure implemented in a commercial Finite Elements multi-physical
environment. Two different models are investigated: the first one exploits typical thin
layer approximation for the axon membrane, proving to be useful when the field solu-
tion inside the membrane domain is not of interest; and in the second model the axon
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membrane is considered a non-linear active medium (exploiting its equivalent electric
conductivity), allowing also reproduction of the electric potential inside the membrane,
which is more realistic representation of the studied system. Although theoretical, this
chapter presents models that open a wide range of applications and extensions in order
to understand the true behavior of a complete neuron.

Chapter 6: A Study of a Single Multiplicative Neuron (SMN) Model for Software
Reliability Prediction

This is an application oriented investigation that studies the use of a single multiplicative
neuron model for prediction of cumulative faults of software. Standard back propaga-
tion (BP) and real coded genetic algorithm (GA) with mean squared error as a fitness
function are employed for the model parameters optimisation. The performance of the
proposed model is tested and evaluated on two real data sets and the obtained results are
compared with existing parametric software reliability models, showing the superiority
of the investigated SMN model (for both BP and GA training). The advantages of the
model are based on its easy applicability on wide range of software failure data and its
computational efficiency resulting from simplified NN architecture (no hidden layers).

Chapter 7: Numerical Treatment for Painlev Equation I Using Neural Networks
and Stochastic Solvers

This study investigates theoretically and proposes a new stochastic numerical
method for solving Painlev I equation. The mathematical model of the equation is for-
mulated with feed-forward artificial neural networks. Linear combination of the net-
works defines the unsupervised error for the equation. For the networks training genetic
algorithm, simulating annealing and pattern search algorithms hybridized with interior
point algorithm for rapid local search are implemented and compared. The reliability
and the effectiveness of the discussed approach are validated through statistical analy-
sis. Comparison with standard approximate analytic solvers of the equation shows that
the proposed stochastic solvers not only produce reliable and effective solutions, but are
also superior for larger inputs.

Chapter 8: An Investigation into the Adaptive Capacity of Recurrent Neural
Networks

Typical characteristic of any intelligent system is its ability to appropriately adjust its
behaviour or modify its structure in response to environmental change. Feed-forward
neural networks have commonly been used to model such behaviours. However, the
weights of feed-forward neural networks remain static once trained and so can hardly
be categorised as adaptive. On the contrary, recurrent networks (RNN) have the capa-
bility to exhibit dynamic behaviour having, in general, feedback connections after the
applied non-linear activation function. In this work, network architectures with differ-
ent feedback connections made before and after the non-linear activation function are
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studied in order to investigate their adaptive capabilities. Backpropagation training al-
gorithms are applied to these networks with a minimum number of recurrent neurons
at which adaptive behaviour is attainable. Three benchmark problems are investigated
to analyse the performance and the learning ability of the proposed RNN architectures,
demonstrating better performances for architectures with feedback connections before
the nonlinear activation function when compared with feedback applied after the non-
linear function. These results can be very useful in designing RNN applications for a
variety of problems.

Chapter 9: An Extended Approach of a Two-Stage Evolutionary Algorithm in
Artificial Neural Networks for Multiclassification Tasks

This chapter studies a modified algorithm which operates with evolutionary artificial
neural networks (EANN) to add broader diversity at the beginning of the evolution-
ary process and extends it to EANN with sigmoidal units. A simultaneous evolution of
the investigated architectures and weights is performed with a two-stage evolutionary
algorithm. The proposed methodology operates with two initial populations, each one
containing individuals with different topologies which are evolved for a small number
of generations. At this point half of the best individuals from each population are se-
lected and combined to constitute a single population and the whole evolutionary cycle
is applied to this new population. This idea was previously proposed by the authors for
product unit neural networks and here it is extended to sigmoidal neural networks. The
simulation, testing and validation of the proposed approach is carried out on twelve data
sets from the UCI repository and two complex real-world problems that differ in their
number of instances, features and classes. The results are analysed using nonparametric
statistical tests to show significantly improved accuracy of the proposed models when
compared with a standard methodology based on a single population. Moreover, the
new methodology proves to be much more efficient than the previously developed by
the authors a two-stage algorithm in evolutionary product unit neural networks.

3 Conclusion

An introduction to Contemporary Achievements in Intelligent Systems is provided to
orient the reader and define the terminology used in this book. The following collection
of case studies highlights the research contributions of many leading subject matter ex-
perts in the field of intelligent systems. This book is intended for students, professionals
and academics from all disciplines to enable them the opportunity to engage in the state
of art developments in:

– Fuzzy Neural Network: for commercial Power Assessment;
– Behavior Learning: Coaching Robots using On-line Behavior Learning from Hu-

man Subjective Feedback;
– Haar Wavelet and Neural Network: using Persian Vowel Recognition;
– Software Reliability Prediction: A Study of a Single Multiplicative Neuron (SMN)

Model;
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– Finite Element Models: to Reproduce the Physiological Behavior of The Axon of
Nervous Cells;

– Neural Networks and Stochastic Solvers: Numerical Treatment for Painlev Equa-
tion I;

– evolutionary algorithm in NN: An extended approach using artificial neural net-
works for multi-classification tasks; and

– Recurrent Neural Networks: An Investigation into their Adaptive Capacity.

Readers are invited to contact individual authors to engage with further discussion or
dialog on each topic.

References

1. Hudson, P.: The Industrial Revolution. Oxford University Press, Carey (1992)
2. Leedy, D.P., Ormrod, J.E.: Practical Research: Planning and Design, 8th edn. Person Press,

New Jersey (2001)
3. Andresen, S.L.: John McCarthy: Father of AI. IEEE Intelligent Systems 17, 84–85 (2002)
4. Friedberg, R.M.: A learning machine: part I. IBM J. Res. Dev. 2, 2–13 (1958)
5. Friedberg, R.M., Dunham, B., North, J.H.: A learning machine: part II. IBM J. Res. Dev. 3,

282–287 (1959)
6. Minsky, M.: Heuristic aspects of the artificial intelligence problem. Lincoln Laboratory Re-

port, Federal Scientific and Technical Information, Dept. of Commerce, Washington, pp.
34–55 (1956)

7. Russel, S., Norvig, P. (eds.): Artificial Intelligence: A Modern Approach, 2nd edn. Prentice
Hall Series in Artificial Intelligence. Prentice Hall (2003)

8. Wooldridge, M., Jennings, N.R.: The cooperative problem-solving process. Journal of Logic
and Computation 9, 563–592 (1999)

9. Grevier, D.: AI–The Tumultuous History of the Search for Artificial Intelligence. Basic
Books, New York (1993)

10. Minsky, M.: Society of Mind. Simon and Schuster, Pymble (1985)
11. Thagard, P.R.: Computational Philiosphy of Science. MIT Press (1993)
12. Franklin, S., Graesser, A.: Is it an agent, or just a program?: A taxonomy for autonomous

agents. In: Proceedings of the Third International Workshop on Agent Theories, Architec-
tures and Languages, Budapest, Hungary, pp. 193–206 (1996)

13. Tweedale, J., Jain, L.: The evolution of intelligent agents within the world wide web. In:
Nguyen, N., Jain, L. (eds.) Intelligent Agents in the Evolution of Web and Applications.
SCI, vol. 167, pp. 1–9. Springer, Heidelberg (2009)

14. Tweedale, J., Jain, L.C.: Embedded Automation in Human-Agent Environment. Adaptation,
Learning, and Optimization, vol. 10. Springer, Heidelberg (2011)

15. Soanes, C., Stevenson, A.: Concise Oxford English dictionary. Oxford University Press, New
York (2004)

16. Harcourt, A., Brace, D. (eds.): The American Heritage Dictionary of the English Language,
5th edn. Houghton Mifflin, Boston (2011)

17. Krishnakumar, K.: Intelligent systems for aerospace engineering - an overview. Technical
Report ADA484100, NASA AMES Research Center, Mountain View, CA (2003)

18. J7, J.D.D. (ed.): DoD Dictionary of Military and Associated Terms. Number JP 102, US
Joint Staff, Washington DC (June 2003)

19. McCarthy, J.: Programs with common sense. In: Symposium on Mechanization of Thought
Processes, Teddington, England. National Physical Laboratory (1958)



14 J.W. Tweedale and I. Jordanov

20. McCorduck, P.: Machines who think, pp. 1–375. Freeman, San Francisco (1979)
21. Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, Englewood Cliffs (1972)
22. Newell, A.: Production systems: Models of control structure. In: Chase, W.G. (ed.) Visual

and Information Processing, pp. 463–526. Academic Press, San Diego (1973)
23. French, R.M.: The chinese room: Just say “no!”. In: Gleitman, L.R., Joshi, A.K. (eds.) 22nd

Annual Cognitive Science Society Conference. Institute of Research and Cognitive Science,
pp. 657–662. Lawrence Erlbaum Assoc., NJ (2000)

24. Vaux, J., Dale, R.: Review of “mind over machine”. In: AI & Society, vol. 1(1), pp. 72–76.
Springer, New York (1987)

25. Fredholm, L.: Pavlov’s Dog. Nobel Media, Stockholm (2001)
26. Ericsson, K.A.: The Cambridge handbook of expertise and expert performance. Cambridge

University Press, New York (2006)
27. Descartes, R.: Meditation vi. In: Cottingham, J. (ed.) Meditations on the First Philosophy

(Translated 1986). Cambridge University Press (1641)
28. Grey, W.W.: The Living Brain. Duckworth (1953)
29. Rosen, C.A., NiIsson, N.J., Adams, M.B.: A research and development program in applica-

tions of intelligent automata to reconnaissance. Proposal for Research ESU 65-1, Stanford
Research Institute, Menlo Park, California (1965)

30. Raphael, B.: Robot research at stanordresearch institute. Technical Note 64, Stanford Re-
search Institute, Menlo Park, California (1972)

31. Hayward, M.: A connectionist model of poetic meter. In: Dowd, T., Janssen, S. (eds.) Poetics,
vol. 20(4), pp. 303–317. Elsevier Press, New York (1991)

32. Tweedale, J., Ichalkaranje, N., Sioutis, C., Jarvis, B., Consoli, A., Phillips-Wren, G.: Innova-
tions in multi-agent systems. Journal of Network Computing Applications 30(3), 1089–1115
(2007)

33. Bateson, G.: Steps to an Ecology of Mind. University of Chicago Press, Chicago (1972)
34. Brooks, R.A.: A robot that walks; emergent behaviors from a carefully evolved network.

Technical Report 1091, MIT Artificial Intelligence Laboratory (1989)
35. Steels, L., Kaplan, F.: Bootstrapping grounded word semantics. In: Briscoe, T. (ed.) Lin-

guistic Evolution Through Language Acquisition: Formal and Computational Models, pp.
53–73. Cambdrige University Press, Cambridge (2002)

36. Lin, T., Xie, Y., Wasilewska, A., Liau, C.J. (eds.): Data Mining: Foundations and Practice.
SCI, vol. 118. Springer, New York (2008)

37. Bigus, J.P., Bigus, J.: Constructing Intelligent Agents Using Java. Professional Developer’s
Guide Series. John Wiley & Sons, Inc., New York (2001)

38. Urlings, P.: Teaming Human and Machine: A conceptual framework for automation from an
aeronautical perspective. PhD thesis, University of South Australia, School of Electrical and
Information Engineering (2004)

39. Wooldridge, M., Jennings, N.R.: Theories, Architectures, and Languages: A Survey. In:
Wooldridge, M.J., Jennings, N.R. (eds.) ECAI 1994 and ATAL 1994. LNCS (LNAI),
vol. 890, pp. 1–39. Springer, Heidelberg (1995)



I. Jordanov and L.C. Jain (Eds.): Innovations in Intelligent Machines -3, SCI 442, pp. 15–36. 
springerlink.com                                                     © Springer-Verlag Berlin Heidelberg 2013 

Chapter 2 
Market Power Assessment Using Hybrid Fuzzy 
Neural Network 

Kirti Pal1, Manjaree Pandit2, and Laxmi Srivastava2 

1  Department of Electrical Engineering, RGGI, Meerut 
   kirtiglory@yahoo.co.in 
2 Department of Electrical Engineering, MITS, Gwalior, India 
  {manjaree_p,srivastaval}@hotmail.com  

Abstract. Market power assessment is an important aspect of electric market analysis 
and operation. Market power problems are more complicated in an electric market than 
those in other markets due to the specific properties of electricity. A comprehensive 
and dynamic market power assessment has been proposed in this paper to protect and 
improve the open electricity market. This paper proposes a multi output fuzzy neural 
network (FNN) for market power assessment and for finding the on line market power 
ranking status of GENCOS in a competitive power system using a fuzzy composite 
market index (FCMI). This index is formulated by combining (i) Lerner Index, (ii) 
Relative market power and (iii) Nodal Cost. In the proposed FNN a trained multi-
output neural network is being used as a fuzzy inference engine. The input of FNN 
consists of real loads and a bipolar code to represent a trading interval while the output 
consists of the fuzzy values of FCMI. To train the FNN a number of training patterns, 
covering the full operating range of the power system, are generated using the system 
data such as offer prices and operating constraints. OPF results are used to compute the 
above three market power indices and the corresponding FCMI. Once the network is 
trained it is capable of predicting the FCMI values in five fuzzy classes (GENCO 
ranking) for any given operating scenario, on line, instantaneously, without bothering 
about the computational burden of OPF. The computational effort is required only for 
training the network which is an off line process. Since the training of ANN is 
extremely fast and test results are accurate, they can be directly floated to OASIS (open 
access same time information system) and any other web site. An Independent system 
operator(ISO) and customers can access this information instantly. The performance of 
the proposed method has been tested on an IEEE 14 bus system.   

Index Terms: Generator Market Share (GMS), Lerner Index (LI), market power, 
Must Run Ratio (MRR), open electricity market, Relative Market Power (RMP), 
transmission congestion. 

1   Nomenclature 

FNN  Fuzzy neural network 
ISO  Independent system operator 
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GENCO  Generating Company 
LI    Lerner index 
MRR   Must run ratio 
MRS   Must run share 
RMP   Relative market power 
NC    Nodal cost 
FCMI   Fuzzy composite market index 
OPF    Optimal power flow 
GMS   Generator market share 
µ            Membership value of the class to which GENCO belongs 
W    Weighting factor 

ix
    

Input variable 

ikφ
   

Input variable fuzzy membership function for ix  corresponding to  
    the data point k.

 
OASIS   Open access same time information system 
ANN   Artificial neural network 

2   Introduction 

Market power is defined as the ability to alter profitably prices away from competitive 
level. Market power can be exercised either by withholding the quantity of 
commodity or by raising the asking price  above the competitive price level without 
affecting the demand of the commodity. In power systems, transmission network 
provides the infrastructure to support a competitive electricity market, but congestion 
occurs frequently in weakly connected networks. In a competitive electricity market, 
the oligopoly structure of the market and the network constraints may produce results 
far from the perfect competition. 

One of the main objectives in the market monitoring process is the analysis of 
market power issues. The path toward liberalization has been under taken under the 
belief that the competition would strive for market efficiency [1] and price reduction 
resembling to the microeconomic model of perfect competition in which the social 
welfare would be the highest possible and the price will be the lowest. Unfortunately, 
different reasons may lead the market far from this desirable result. Some papers 
focus on the congestion impacts also in presence of the demand elasticity 
representation and the reactive load modeling [2], [3], [4], and provide methods to 
alleviate congestion impacts. In [5], the transmission congestion cost and locational 
marginal prices are considered, while in [6], thermal voltage and stability limits are 
considered to represent the feasibility region for the system. Strategic bidding has 
been extensively considered according to different approaches such as statically 
approaches [7], [8], parametric dynamic programming [9], Lagrange relaxation [10], 
genetic algorithm [11], stochastic procedure [12], fuzzy set theory [13], and game 
theory [14], [15]. In [16], the oligopolistic competition is examined in the submarkets 
that are isolated by constrained transmission lines. 

The primary objective of this paper is to explore the potential for using an 
engineering approach to measure the existence of market power in the real time 
operations of a power grid.  
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An ISO requires the bid prices of GENCOS to run the OPF. For measuring market 
power an ISO solves an Optimal Power Flow (OPF) to determine the least cost 
pattern of dispatch based on the available offers in a uniform price auction. The OPF 
is determined subject to physical constraints on the power grid, such as thermal limits 
on transmission lines, and operating constraints, such as maintaining voltage levels. 

This chapterproposes a multi output fuzzy neural network (FNN) for market power 
assessment and for finding the on line market power ranking status of GENCOS in a 
competitive power system using a fuzzy composite market index (FCMI). This index 
is formulated by combining (i) Lerner Index, (ii) Relative market power and (iii) 
Nodal Cost.  In the proposed FNN a trained multi-output neural network is being used 
as a fuzzy inference engine. The input of FNN consists of real loads and a bipolar 
code to represent a trading interval while the output consists of the fuzzy values of 
FCMI. To train the FNN a number of training patterns, covering the full operating 
range of the power system, are generated using the system data such as offer prices 
and operating constraints. OPF results are used to compute the above three market 
power indices and the corresponding FCMI. Once the network is trained it is capable 
of predicting the FCMI values in five fuzzy classes (GENCO ranking) for any given 
operating scenario, on line, instantaneously, without bothering about the 
computational burden of OPF. The computational effort is required only for training 
the network which is an off line process. Since the training of ANN is extremely fast 
and test results are accurate, they can be directly floated to OASIS (open access same 
time information system) and any other web site. The ISO and customers can access 
this information instantly. 

The main advantage of this approach is that it requires only the current load 
information for computing the FCMI and corresponding GENCO ranking without 
having to run the full OPF for every load variation. The FCMI will be used to analyze 
the GENCOS behavior in power market for any particular trading interval for any 
given loading conditions. 

The membership values of loads to linguistic classes of low, medium, high, etc. 
constitute the input vector while the output vector presents the operator with the 
probability of a GENCO belonging to different market power class. Therefore, the 
proposed method can accept and analyze data in linguistic as well as in quantitative 
form. The fuzzy load modeling enables the handling of the uncertainty associated 
with power system loads and a whole set of scenarios is analyzed at one time. 

This chapter is organized as follows. Study on market power is presented in section 
3. FNN approach for open electricity market is produced in section 4. Power market 
assessment based on hybrid FNN is done in section 5. Training and testing detail of 
proposed FNN used for ranking of GENCOS for power market assessment is 
described in section 6. Section 7 is the conclusion. 

3   Market Power 

There are two main reasons why the potential of market power is brought to the 
electricity market. First there is market dominance and then there are transmission 
constraints [9]. Market power due to market dominance is a scenario that applies for 
every imperfect market and not only for the electricity market. On the electricity 
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market, a supplier that is large enough to affect price can exploit market power by 
either economical withholding or physical withholding. When dealing with 
economical withholding a seller keeps bidding above the marginal cost of production 
and thereby driving up the price. Physical withholding simply means that a seller 
withholds some of its available capacity. 

Market power due to transmission constraints makes it necessary to get a full 
understanding of the topology of the transmission system before starting any plan of 
detecting the potential for market power [10]. 

If a supplier is placed within a so called load pocket, this participant will have a 
local market power. A supplier in this case can find himself in a position of monopoly 
by intentionally create congestion and limit access of competitors. This means that by 
getting dispatched at strategic points in the network, a supplier in a load pocket can 
gain profit even by increasing its generation rather than by withholding its 
generationcapacity [11]. Conclusively, transmission constraints in the electricity 
market make it possible even for a small supplier to exploit market power. 

In a network loads cannot be accurately forecasted and energy cannot be stored 
economically. Demand and supply must be balance all the time in order to maintain 
the system frequency, voltage, stabilization standards; Kirchhoff’s laws and 
impedance of the whole network which determine the power flows in the system [12]. 
In the congested area generation capacity will be relative scarcity, so congestion 
results in locational market power and causes invalidation of the optimization of 
generating resources in the whole network. 

Zonal market power has been recognized and analyzed in [17]. The Must-run ratio 
has been proposed to consider the transmission constraints. The MRR for Group A in 
a transmission zone is defined [18] as follows: 
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Where Pl is the import limit of the zone, max,gkP  is the output limit of Generator k in 

the zone, gN  is the number of Generators in the zone, and gAN
 
is the number of 

Generators owned by Group A in the zone and Pd is the total load of the zone. 
The MRR represents the capacity that must be provided by a generation company 

(GENCO) to supply a given load in a congestion zone as the percentage of the 
maximum available capacity of the GENCO. Theoretically, if the MRR of a seller is 
large than zero the seller is said to have market power. The MRR can provide useful 
market power signals in a congestion zone, which refers to a simple configuration in 
which one transmission line (or a set of lines in a “corridor”) can be filled to its limit 
by exporting generation from a low-cost region to a high-cost region. However, the 
MRR does not clearly indicate the controllability of a GENCO over market price 
which usually depends on the market share owned by a GENCO to supply a given 
load in a congestion zone. This can be explained using a specific GENCO with 300 
MW installed capacity in the following two different congestion zones. Congestion 
zone 1: the total load is 3000MW, the maximum import from other part of the system 
is 1000MW, the available generation capacity from other GENCOs in the zone is 
1700 MW, and the capacity must be supplied by the specific GENCO is 300 MW.  
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In this case, the GENCO holds 300/3000=10% Generator market share (GMS) and 
the MRR=300/300=100 %. Congestion zone 2: the total load is 1000MW, the 
maximum import from other part of the system is 200 MW, the available generation 
capacity from other GENCOs in the zone is 500MW, and the capacity must be 
supplied by the specific GENCO is 300 MW. In this case, the GENCO holds 
300/1000=30 % GMS and the MRR=300/300=100 %. Obviously, the specific 
GENCO in both cases has the same MRR but different market power due to different 
market shares. 

Market participants may exercise their market power under certain system 
operating conditions through financial withholding and quantity withholding. 
Exercising market power by a supplier can expose customers to the risk of paying 
high price. Market power may appear in a deregulated power system under 
contingency states caused by random failures. For example, a random failure in a 
transmission line may results in network congestion and a generating unit failure may 
cause inadequate system generation capacity. Network congestion and generation 
inadequacy may result in local and system market powers. Although the probability of 
a contingency state is small and the state duration is short (usually from a few minutes 
to a few hours), the market power possessed by suppliers due to random failure may 
be quite larger than that in the normal state. If market participants exercise their 
market power under contingency conditions, the price can be extremely high (price 
spike). Customers usually use the hedging tools such as long term bilateral contracts, 
futures and options as risk management instruments to reduce the risk of their paying 
high prices. A customer has to know the possible risk of paying high price before 
making the decision to select a suitable hedging tool. It is therefore necessary to 
evaluate the risk of a customer being exposed to price spikes caused by exercising 
market power. Market powers caused by random failures and the associated 
probabilities are rarely considered currently in power market analysis.   

4   FNN Approach for Open Electricity Market 

A fuzzy neural network is employed for monitoring the power market and ranking the 
GENCOS. Load uncertainty is dealt with by representing loads as fuzzy variables in 
different linguistic categories. A fuzzy composite market index is proposed to screen 
market power and rank the GENCOS on line. This index is fuzzified in different 
severity classes to get a more informative ranking compared to conventional crisp 
approaches. The excellent non linear mapping characteristics of an efficient high 
performance neural network are utilized to map inputs with the expected outputs. 
Fuzziness incorporated at the input as well as at the output level provides flexibility 
and insight into the ranking process and a whole set of load scenarios are analyzed at 
one time. The application of an efficient neural network as a fuzzy inference engine 
eliminates the complicated process of fuzzy if then rule extraction. Once the fuzzy 
neural network is properly trained, GENCOS are ranked on the basis of the class 
membership values of FCMI. It is assumed that the index belongs to the severity class 
having highest value of membership. Due to the fuzzy approach, its probability of 
belonging to other classes is also available in the form of membership to other classes.  
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a. Fuzzy composite market index (FCMI) 
A new fuzzy composite index is proposed by [31] for contingency ranking. In this 
paper same approach is used for screening of market power used by GENCOS in 
power system. The index is based on combining (i) Lerner Index, (ii) Relative market 
power (iii) Nodal cost. By including the effect of all three indicators it is ensured that 
the screening achieved will be more realistic and accurate.  
 
(i) Lerner index 
The Lerner index is used to measure the proportional deviation of price at the firm’s 
profit-maximizing output from the firms marginal cost at that output. It is defined as 
the following: 

d
ii

ii
i P

mcP
LI

ε
1=−=

                                        
 (2) 

Where iLI  is the Lerner index for firm i, ip and imc  are price and marginal cost at 

the firms profit-maximizing output, respectively, and d
iε  is the elasticity of demand 

seen by the firm. The Lerner index takes into the consideration of the effect of 
demand elasticity on market power. The Lerner index includes the effect of other 
fringe firm’s elasticity of supply in the form of the market clearing price. 
Theoretically, if the LI of a company in a power system is large than zero it possesses 
the market power. 

(ii) Relative Market Power 
In general, one would expect the degree of substitutability between two Generators to 
be inversely related to how far apart they are on the network. Some Generators have 
market power in the Actual Experiments. These are the cases that an ISO would 
observe. Hence, the next question is whether or not Generators are using their market 
power effectively to raise prices. Seeing prices for Generators substantially higher 
than the prices paid to other Generators may raise suspicions, but, this situation is 
neither sufficient nor necessary for exploiting market power. Combining the results 
for the observed OPF with the high offer and the low offer by the Generators, 
respectively, it is possible to calculate the following measure of relative market power 
(RMP): 

 
RMP=100[Competitive price-Low offer price/High offer price-Low offer price]   (3) 
 

High values of RMP close to the maximum of 100 indicate that market power has 
been exploited successfully. Although the RMP works quite well for our examples, it 
is still not an ideal measure. Developing better measures of the exploitation of market 
power is one of the ongoing objectives of our current research. It should be noted, 
however, that the main limitation of the RMP is the inability to discover the true 
costs. This is a deficiency on the supply side. From the perspective of customers, the 
prices paid are more important than measuring profits. Hence, the RMP, or, as an 
alternative, the ratio [Competitive price/Low offer price], provides a reasonably good 
measure of how well the power system is working for customers in a load pocket. 
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(iii) Nodal cost 
Nodal prices are the price of power, which the supplier are paid and the price which 
consumers are billed. In order to compute these prices the Pool Operator receives bid 
plots from market participants for both supply and demand. Fig.1 shows bid plots for 
both demand and supply. Gm and Hmare market clearing price and market clearing 
volume of electric power respectively in $/MWh and in MW. The prices shown on y- 
axis are in $/MWh.The supply bid plot shows the minimum price at which a generator 
is willing to produce a certain amount of power, while demand bid plot shows the 
maximum price, which is accepted by customers to buy a certain amount of power. 
For, the sake of simplicity it is assumed here that supply and demand bid is a single 
price not complete plot. 

 

 

Fig. 1. Supply and Demand Bid Plot 

In power market security pricing field, OPF-based approach is basically a non-
linear constrained optimization problem. One crucial outcome of this optimization 
procedure can be nodal congestion prices. This outcome in pool-market operation is 
achieved through objective-function as Maximization of social welfare i.e. 
maximizing the generator's income for their power production and simultaneously 
ensuring that consumers pay cheapest price for their power purchase. 

To combine the effect of all three, a composite index is proposed in (31) for 
contingency ranking the same approach is used here for GENCO assessment. The 
normalized values of LI, RMP and NC are fuzzified in different classes. Then the 
proposed index is computed as  

 

)()()()()()( ''''''
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where LIμ , RMPμ  and NCμ  are the memberships (highest value) of the class to 

which the market power of GENCOS belongs on the basis of FCMI value, i.e. on the 
basis of the combined effect of  LI,RMP and NC. The memberships of the adjoining 

severity class (next highest value) are '
LIμ , '

RMPμ  and '
NCμ  

and 

LIW , '
LIW ,

RMPW , '
RMPW ,

NCW  and '
NCW  are the weighing factors. 
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b. Fuzzy modeling of power system loads 
Load uncertainty is modeled by representing it as a fuzzy variable in the range (0–1) 
with memberships in different linguistic categories, such as, very small (VS), small 
(S), medium (M), large (L) and very large (VL). The membership value of ith 

linguistic category ( iμ ) is calculated as [19]: 
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where iμ  is the membership value in ith linguistic category, X is the crisp value to 

be fuzified, ia  and ib  are parameters corresponding to linguistic category i such as 

ia  determines the center value of the corresponding category, where the membership 

value is equal to 1.0 and ib  controls the width of the corresponding category. These 

parameters can be determined by carrying out simulations off-line under various 
operating conditions covering the possible range of variation. Past experience or 
operator judgment can also prove effective in setting these values. Non-linear 
membership functions are found to be most suitable to fuzzify power system variables 
(loads and FCMI) as they represent a more practical transition of loads from one 
category to the other compared to the common triangular or trapezoidal functions 
[19]. 

For each input variable xi, the m data points in the xi-y space are available. For 

every point in the xi-y space, a fuzzy membership function ikφ can be found, defined 

by [20] 

( ) ( )( ),/exp 2bxxx iikiik −−=φ (k=1, 2, m)          (6) 

c. Data normalization 
During training of a neural network, the higher valued input variables may tend to 
suppress the influence of smaller ones. Also the network does not produce outputs 
close to 1 or 0, as the neural network output governed by the activation or threshold 
function practically never realizes these values. To overcome this problem the 
input/output variables (x) are scaled in the range of 0.1–0.9. The normalized value xn 
presented to the neural network as the input or target output is calculated using the 
equation: 

( )
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xx
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x n                                (7) 

Where x , maxx  and minx  are the actual, maximum and minimum values of the 

variable which is to be normalized. 
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5   Hybrid Fuzzy Neural Network Based Power Market Assessment 

The steps followed for power market assessment are: 

(i)   A large number of load patterns are generated randomly by perturbing the 
real loads at all the buses to cover the complete operating range of the power 
system under study. 

(ii)   For each pattern the values of LI, RMP and NC are calculated for each 
GENCO for each trading period using OPF solution and the offer prices of 
each GENCO.  

(iii)   The obtained indices are normalized between 0.1 and 0.9 for each load 
pattern using expression (7) and then fuzzified for computing the fuzzy 
composite market index (FCMI) using eq. (4). 

(iv)   The normalized loads at all buses are fuzzified into different linguistic 
categories and along with line codes (bi-polar digits used to represent the 
trading period) are fed to the fuzzy-neural network as training inputs. The first 
trading period is represented as (0 0 01) and so on.  

(v)   Computed FCMI in step three is then normalized and fuzzified into different 
linguistic categories. The membership values of FCMI of each GENCO form 
the desired output vector.  

(vi)   A one hidden layer neural network is trained with Levenberg– Marquardt 
back-propagation algorithm for input–output mapping. Once the network is 
properly trained, it is subjected to unseen patterns, for testing its performance. 

(vii)   During testing, a GENCO is assigned to the market power class for which it 
has highest value of membership. 

a. Description of the test system 
The hybrid fuzzy neural network was tested for measuring the existence of market 
power in the real-time operations of a power grid. An IEEE 14 bus system is used for 
testing and training the hybrid fuzzy neural network. The indices LI, RMP and NC are 
calculated from OPF solution obtained by MATPOWER [32] which simulate the full 
AC network, by using equ.(2) and (3). The weighing factors for computing FCMI in 
equ. (4) were taken equal to 1,2,3,4 and 5 for severity classes I, II, II, IV and V 
respectively for LI, RMP and NC. The weights were selected in this manner to assign 
highest weight to the most severe class (i.e. class V) and least weight to the least 
severe class (class I). Full AC, OPF solution  were run for all load scenarios to obtain 
LI,RMP and NC for each trading period of an IEEE 14 bus system. The normalized 
LI, RMP and NC values were fuzzified using data given in Tables 1, 2 and 3 
respectively. The graphical representation is given in figs 2, 3 and 4 respectively. 

The value of FCMI of individual generator for each trading period was computed 
using membership values of the indices LI, RMP and NC. Table 4 presents the 
computation of FCMI of individual generator for 10 trading period each period has 
different load condition. The overall rank (last column) is found using fuzzy values of 
computed FCMI .Out of the 220 patterns generated 200 (20x10) were used for  
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Table 1. Fuzzy representation of LI 

Linguistic 
Category for LI 

Class V Class IV Class III Class II Class I 

A 0.2 0.35 0.55 0.75 0.9 

B 0.2 0.10 0.15 0.10 0.15 

Table 2. Fuzzy representation of RMP 

Linguistic 
Category for 

RMP 

Class V Class IV Class III Class II Class I 

A 0.2 0.45 0.65 0.8 0.9 

B 0.3 0.15 0.2 0.10 0.2 

Table 3. Fuzzy representation of NC 

 
training the neural network while remaining 20 (2x10) unseen patterns were used to 
test its performance. Utility derived load compositions may also be employed to train 
the fuzzy-neural network instead of theoretically generated data. The obtained value 
of FCMI is normalized in the range of 0.1–0.9. Pattern wise normalization of FCMI 
ensures accurate ranking under peak as well as off-peak times of the day, because the 
generators are ranked for the current load based on their relative severity. Table 5  
data was used to fuzzify normalized FCMI values into five fuzzy classes. The 
graphical representation is given in Fig. 5. The flexibility in ranking due to the fuzzy 
representation can be clearly seen. The operators and planners can set the different 
parameters to suit their system (as low, medium, high, etc. would have different 
numerical significance for different systems/variables) and thus flexibility is 
incorporated in the model. 

b. Effectiveness of FCMI 

The ranking of GENCOS on the basis of LI, RMP, NC and FCMI is compared in 
table 4 for 10 trading period. The significance of using FCMI for GENCOS 
classification becomes clear from table 4 which lists the values of the constituent  
 

 

Linguistic 
Category for NC 

Class V Class IV Class III Class II Class I 

  A 0.15 0.35 0.58 0.70 0.9 

B 0.10 0.15 0.10 0.15 0.2 
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Table 4. FCMI and its Constituents LI, RMP, NC for IEEE 14 bus system 
 

 
Trading 
period 

G 
E 
N 
C 
O 

LI values R 
a 
n 
k 

RMP Values R 
a 
n 
k 

N.C. Values R 
a 
n 
k 

FCMI 
(normalized) 

Over
all 

Rank 
Highest 

LIμ  

Next 

'
LIμ  

Highest 

RMPμ
Next 

'
RMPμ

Highest 

NCμ
Next 

'
NCμ

 
 
1 

1 1.0 ,I 0.025,I
I 

I 1.0 ,I 0.025,II I 1.0 ,I 0.025,II I 3.15 (0.1) V 

2 0.93,III 0.30,II III 0.85,III 0.47,II III 0.91,III 0.35,II III 10.31 (0.39) IV 

3 0.83,IV 0.61,III IV 0.73,III 0.68,IV III 0.97,IV 0.79,V IV 17.89 (0.71) II 

4 1.0,V 0.16,IV V 1,V 0.16,IV V 1,V 0.16,IV V 16.92 (0.67) III 

5 0.97,V 0.62,IV V 0.96,V 0.69,IV V 0.99,V 0.67,IV V 22.2 (0.89) I 

 
 
2 
 

1 1.0 ,I 0.025,I
I 

I 1.0 ,I 0.025,II I 1.0 ,I 0.025,II I 3.15 (0.1) V 

2 0.96,III 0.24,II III 0.9,III 0.37,II III 0.92,III 0.33,II III 10.22 (0.39) IV 

3 0.99,IV 0.70,V IV 0.99,IV 0.63,V IV 0.99,IV 0.39,III IV 19.7 (0.78) II 

4 0.98,V 0.57,IV V 0.97,V 0.63,IV V 1,V 0.16,IV V 20.19 (0.80) II 

5 1,V 0.16,IV V 1,V 0.16,IV V 0.93,V 0.78,IV V 19.05 (0.76) II 

 
 
3 

1 1.0 ,I 0.025,I
I 

I 1.0 ,I 0.025,II I 1.0 ,I 0.025,II I 3.15 (0.1) V 

2 0.97,III 0.22,II III 0.92,III 0.34,II III 0.73,III 0.68,II III 10.34 (0.39) IV 

3 0.99,IV 0.61,V IV 1,IV 0.54,V IV 1,IV 0.45,V IV 19.96 (0.79) II 

4 1,V 0.16,IV V 1,V 0.16,IV V 1,V 0.16,IV V 16.92 (0.67) III 

5 0.98,V 0.53,IV V 0.98,V 0.57,IV V 1,V 0.24,IV V 20.16 (0.80) II 

 
 
4 

1 1.0 ,I 0.025,I
I 

I 1.0 ,I 0.025,II I 1.0 ,I 0.025,II I 3.15 (0.10) V 

2 0.99,II 0.19,III II 0.87,II 0.09,III II 0.84,II 0.61,III II 8.07 (0.30) IV 

3 0.74,III 0.67,II III 0.99,II 0.36,III II 0.99,III 0.38,II II 11.72 (0.45) III 

4 1,V 0.16,IV V 1,V 0.16,IV V 1,V 0.16,IV V 16.92(0.67) III 

5 0.9,III 0.38,II III 0.91,II 0.54,III II 0.89,II 0.88,III II 14.87 (0.58) III 

 
 
5 

1 1.0 ,I 0.025,I
I 

I 1.0 ,I 0.025,II I 1.0 ,I 0.025,II I 3.15 (0.1) V 

2 0.84,II 0.61,III II 0.95,II 0.48,III II 0.9,II 0.37,II II 10.29 (0.39) IV 

3 0.87,IV 0.58,III IV 0.73,IV 0.69,III IV 1,IV 0.49,V IV 17.66 (0.70) II 

4 1,V 0.16,IV V 1,V 0.16,IV V 0.57,IV 0.98,V V 18.46 (0.73) II 

5 0.91,V 0.85,IV V 0.9,IV 0.87,V IV 1,V 0.16,IV V 21.54 (0.86) I 

 
 
6 

1 1.0 ,I 0.025,I
I 

I 1.0 ,I 0.025,II I 1.0 ,I 0.025,II I 3.15 (0.1) V 

2 0.97,III 0.23,II III 0.91,III 0.35,II III 0.85,III 0.47,II III 10.29 (0.39) IV 

3 0.94,IV 0.83,V IV 0.97,IV 0.79,V IV 0.73,IV 0.68,V IV 20.65 (0.82) I 

4 1,V 0.16,IV V 1,V 0.16,IV V 1,V 0.16,IV V 16.92 (0.67) III 

5 0.99,V 0.73,V IV 0.99,IV 0.67,V IV 0.96,IV 0.69,V IV 22.48(0.9) I 

 
 
7 

1 1.0 ,I 0.025,I
I 

I 1.0 ,I 0.025,II I 1.0 ,I 0.025,II I 3.15 (0.10) V 

2 0.97,III 0.21,II III 0.92,III 0.33,II III 0.90,III 0.37,II III 10.19 (0.39) IV 

3 0.99,IV 0.38,V IV 0.99,IV 0.39,III IV 0.99,IV 0.63,V IV 18.1 (0.72) II 

4 1,V 0.16,IV V 1,V 0.16,IV V 0.97,V 0.63,IV V 18.65 (0.74) II 

5 0.95,V 0.72,IV V 0.93,V 0.78,IV V 1,V 0.16,IV V 21.04 (0.84) I 

 
 
8 

1 1.0 ,I 0.025,I
I 

I 1.0 ,I 0.025,II I 1.0 ,I 0.025,II I 3.15 (0.1) V 

2 0.85,III 0.47,II III 0.73,III 0.68,II III 0.92,III 0.34,II III 10.48 (0.40) IV 

3 1,IV 0.53,V IV 1,IV 0.45,V IV 1,IV 0.54,V IV 19.6 (0.78) II 

4 1,V 0.16,IV V 1,V 0.16,IV V 1,V 0.16,IV V 16.92 (0.67) III 

5 1,V 0.23,IV V 1,V 0.24,IV V 0.98,V 0.57,IV V 19.06 (0.76) II 

 
 
9 
 

1 1.0 ,I 0.025,I
I 

I 1.0 ,I 0.025,II I 1.0 ,I 0.025,II I 3.15 (0.1) V 

2 0.76,III 0.63,II III 0.84,II 0.61,III II 0.87,III 0.09,II III 9.06 (0.34) IV 

3 0.99,IV 0.40,V IV 0.99,IV 0.38,III IV 0.99,IV 0.36,III IV 14.12 (0.55) III 

4 1,V 0.16,IV V 1,V 0.16,IV V 1,V 0.16,IV V 16.92 (0.67) III 

5 0.92,V 0.81,IV V 0.89,V 0.88,IV V 0.91,V 0.54,III V 19.25 (0.77) II 

 
 

10 

1 1.0 ,I 0.025,I
I 

I 1.0 ,I 0.025,II I 1.0 ,I 0.025,II I 3.15 (0.1) V 

2 0.96,III 0.24,II III 0.90,III 0.37,II III 0.95,III 0.48,II III 10.14 (0.39) IV 

3 1,IV 0.57,V IV 1,IV 0.50,V IV 0.73,IV 0.69,III IV 18.34 (0.73) II 

4 0.98,V 0.52,IV V 0.98,V 0.57,IV V 1,V 0.16,IV V 19.8 (0.79) II 

5 1,V 0.16,IV V 1,V 0.16,IV V 0.9,IV 0.87,V V 19.23 (0.76) II 
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Table 5. Fuzzy representation of FCMI 

Linguistic 
Category for FCMI 

Class V Class IV Class III Class II Class I 

A 0.2 0.35 0.45 0.6 0.9 
B 0.3 0.15 0.2 0.15 0.2 

 
Normalized value of LI 

Fig. 2. Fuzzy representation of the LI index 

 
Normalized value of RMP 

 
Fig. 3. Fuzzy representation of the RMP index 

 
indices for 10 trading period. It can be observed that for a few trading period the 
classification remain same for all three indices but in other cases the ranking based on 
indices LI, RMP and NC is different. The composite index FCMI is hence very useful 
for ranking of GENCOS as it includes combined effect of all three individual indices. 
By using a composite index the effect of all three individual indices was effectively 
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Normalized value of NC 

Fig. 4. Fuzzy representation of the NC index 

 
Fig. 5. Fuzzy representation of the FCMI index 

included for market power assessment. The FCMI will be used to analyze the 
GENCOS behavior in power market for any particular trading interval for any given 
loading conditions. 

6   Training and Testing Detail 

The Levenberg– Marquardt algorithm [21, 22] was used for training the neural 
network. It is a variation of Newton’s method. The conventional multi-layer 
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perceptron (MLP) networks are usually trained using gradient descent based on back-
propagation (BP) algorithm, which is too slow for practical problems. Recently, 
several high performance algorithms have been developed to train MLP models that 
converge 10 to 100 times faster than the BP algorithm. These algorithms are based on 
numerical optimization techniques like conjugate gradient, quasi-Newton and 
Levenberg–Marquardt algorithms. Out of these, Levenberg–Marquardt (LM) 
algorithm is found to be the fastest method for training moderate size feed forward 
neural networks [30]. It also has very efficient Matlab implementation. The proposed 
fuzzy-neural network is very advantageous as: 

(i)    No rule formation required and  
(ii)   Misranking is eliminated. 

Hybridization of fuzzy logic with neural network has eliminated the need for deriving 
complex if-then rules by directly computing the membership values of composite 
performance index in all five severity classes. The proposed FNN-based method has 
an edge over conventional methods [23, 24, 25, 26, 27, and 28] that rank a pattern to a 
particular class based on its severity index because here any possibility of misranking 
is avoided by giving increased information in the form of membership values to 
neighboring classes. Simulations were carried out using MATLAB 7.0.1 on a Pentium 
IV processor, 2.8 GHz with 512GB RAM. The performance of the trained network 
was tested for 20 unseen trading periods. Market summary for 20 trading period are 
presented in Table 6. 

The GMS represents the capacity that must be provided by a generation company 
to supply a given load in a congestion zone as the percentage of total load of the 
congested zone. The MRR represents the capacity that must be provided by a 
generation company (GENCO) to supply a given load in a congestion zone as the 
percentage of the maximum available capacity of the GENCO. Theoretically, if the 
MRR of a seller is large than zero the seller is said to have market power. Table 6 
show the GMS and MRR for 20trading period respectively. For increased load 
demand, at trading period 4, MRR of GENCO 4 is 100% which indicate that 
GENCO4 used its maximum capacity. From table it can be easily concluded that as 
the demand is increased GENCO 4 and 5 offer high nodal costs with lowest MRR and 
GMS values try to exploit the market.   

a. Architecture of the FNN for testing 
The membership values of loads at all 14 buses along with a four digit topology number 
representing 20 trading period were used as inputs to the fuzzy-neural network making 
the number of neurons in the input layer equal to 59 (11X5+4). The first trading period 
is represented as (0001) and so on. There were five output layer neurons corresponding 
to the five membership classes of FCMI which reflect the market power assessment for 
each GENCO. Fuzzy rules for FCMI for five classes are given in table 7. GENCOS 
belonging to class 1 and 2 represent that they do not use market power. GENCOS 
belonging to class 3 represent that they partially utilize the market power to make their 
own profit, but do not exploit the market. GENCOS belonging to class 4 represent that 
GENCOS create a local market to maximize their profit, but still do not exploit the 
market. GENCOS belonging to class 5 represent that GENCOS fully utilize the market 
power to maximize their profit and fully exploit the market.  
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Table 6. Market summary for 20 testing pattern 

Trading Period  GENCO1 GENCO2 GENCO3 GENCO4 GENCO5 
1 

(Pd=314.2) 
MRR 60.34 27.04 00 51.81 35.91 
GMS 63.83 12.05 00 16.49 11.43 

Price ($/MWh) 37.26 38.93 39.94 41.04 40.72 
2 

(Pd=330.04) 
MRR 60.41 27.11 18.96 35.14 49.30 
GMS 60.84 11.49 5.740 10.65 14.94 

Price ($/MWh) 37.28 38.97 40.38 40.70 40.99 
3 

(Pd=241.89) 
MRR 58.81 26.33 00 15.78 3.34 
GMS 80.81 15.24 00 6.52 1.38 

Price ($/MWh) 36.82 38.43 39.69 40.32 40.07 
4 

(Pd=424.85) 
MRR 57.62 27.81 44.62 100 66.74 
GMS 45.08 9.16 10.50 23.54 15.71 

Price ($/MWh) 36.48 39.47 40.89 49.19 41.33 
5 

(Pd=411.99) 
MRR 60.66 27.12 16.19 71.65 48.81 
GMS 55.62 10.47 4.46 19.76 13.46 

Price ($/MWh) 37.53 38.98 40.32 41.43 40.98 
6 

(Pd=254.81) 
MRR 59.18 26.56 2.94 27.57 00 
GMS 77.21 14.59 1.15 10.82 00 

Price ($/MWh) 36.93 38.59 40.06 40.55 39.98 
7 

(Pd=330.78) 
MRR 60.7401 27.28 11.91 54.89 36.70 
GMS 61.04 11.55 3.60 16.59 11.09 

Price ($/MWh) 37.37 39.09 40.24 41.09 40.73 
8 

(Pd=367.25) 
MRR 60.28 26.97 20.09 58.30 54.50 

GMS 55.99 10.55 5.61 16.29 15.23 
Price ($/MWh) 37.25 38.88 40.40 41.17 41.09 

9 
(Pd=359.69) 

MRR 60.01 26.91 22.18 69.88 45.90 

GMS 55.46 10.47 6.17 19.43 12.76 
Price ($/MWh) 37.17 38.84 40.44 41.39 40.92 

10 
(Pd=331.87) 

MRR 60.32 27.11 16.58 38.72 52.06 

GMS 60.42 11.43 4.99 11.67 15.69 
Price ($/MWh) 37.26 38.98 40.33 40.77 41.04 

11 
(Pd=386.23) 

MRR 61.16 27.45 13.21 83.07 63.77 

GMS 52.64 9.95 3.42 21.51 16.51 
Price ($/MWh) 37.50 39.21 40.26 41.66 41.27 

12 
(Pd=278.48) 

MRR 58.66 26.14 00 37.46 22.25 

GMS 70.02 13.14 00 13.45 7.99 
Price ($/MWh) 36.78 38.30 39.49 40.75 40.44 

13 
(Pd=250.18) 

MRR 58.20 25.91 00 12.49 19.11 

GMS 77.3292 14.50 00 4.99 7.64 
Price ($/MWh) 36.65 38.14 39.45 40.25 40.38 

14 
(Pd=392.38) 

MRR 60.50 27.17 29.93 85.02 55.30 

GMS 51.26 9.69 7.63 21.67 14.09 
Price ($/MWh) 37.31 39.02 40.60 41.70 41.10 

15 
(Pd=194.29) 

MRR 51.83 23.00 00 00 00 

GMS 88.68 16.57 00 00 00 
Price ($/MWh) 34.83 36.09 37.42 37.31 38.49 

16 
(Pd=277.78) 

MRR 58.59 26.06 00 37.16 22.15 

GMS 70.11 13.14 00 13.38 7.97 
Price ($/MWh) 36.76 38.25 39.65 40.74 40.44 

17 
(Pd=362.04) 

MRR 60.87 27.40 23.93 50.56 62.16 

GMS 55.89 10.59 6.61 13.96 17.17 
Price ($/MWh) 37.41 39.18 40.48 41.01 41.24 

18 
(Pd=155.91) 

MRR 40.73 17.96 00 00 00 

GMS 86.84 16.13 00 00 00 
Price ($/MWh) 31.65 32.58 33.28 33.58 33.65 

19 
(Pd=188.51) 

MRR 49.70 22.03 00 00 00 

GMS 87.63 16.36 00 00 00 
Price ($/MWh) 34.22 35.42 36.16 37.18 36.81 

20 
(Pd=200.48) 

MRR 52.95 23.58 00 00 00 

GMS 87.79 16.46 00 00 00 
Price ($/MWh) 35.15 36.50 37.15 38.03 38.12 
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Table 7. Fuzzy rules for FCMI 

Class1 Class2 Class3 Class4 Class5 
(NMP) GENCOS do 
not use market power 

(NMP) GENCOS do 
not use market power 

(PMP) GENCOS partially 
utilize the market power 

(LMP) GENCOS create 
the local market 

(FMP) 
GENCOS Fully utilize 

the market power 
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        Fig. 6. Testing performance of FNN for               Fig. 7. Testing performance of FNN 
        Membership value of class 1                                 for Membership value of class2  
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        Fig. 8. Testing performance of FNN for                Fig. 9. Testing performance of FNN 
        Membership value of class 3                                  for Membership value of class4  

 
Test results for all the 20 trading period are presented in Figs. 6–10 and it can be 

seen that fuzzy-neural network is capable of producing membership values of all the 
classes quite accurately. A GENCO belongs to the class for which it has highest 
membership. 

Ranking of GENCOS for 20 testing trading period is shown in table 5. For each 
trading period GENCOS are ranked according to their FCMI values. For trading 
period 1 load is 314.2MW, the total load is shared by each GENCOS expect 
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GENCO3, which is clearly indicated by ranking as it belong to class1. However 
GENCO5 share the least load but exploit the market by offering high nodal cost and 
maximize the profit which is clearly indicated by ranking and from market summary 
table. For trading period 15,18,19 and 20 any GENCOS do not use market power as 
the load is low no congestion will occur and total load is shared by GENCO1 and 2 
which is clearly indicated by ranking of GENCOS and also the ranking can be 
checked from market summary table. For trading period 2, 4, 5, 7, 8, 9, 10, 11, 14 and 
17 demand is high congestion will occur, all GENCOS share the load, by offering 
high cost maximize their profit and exploit the market. It can be easily concluded that 
as the demand is increased GENCOS MRR will increase and they offer high cost to 
see the demand and exploit the market. The ranking of GENCO can be easily checked 
by market summary table which clearly indicate marginal cost, MRR and GMS values 
for each GENCO for each trading period. 
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     Fig. 10. Testing performance of FNN for         Fig. 11. Convergence characteristic for FNN 
Membership value of class 5  
 

b. Market power assessment for each GENCO 
The market power assessment of each GENCO for the proposed trading market is 
shown in figs 12-16. Out of the five GENCOS, GENCO1 always belong to class1 show 
that GENCO1 never use market power. GENCO2 belong to class2 and 3 show that 
GENCO2 partially try to utilize the market power but does not exploit the market. 
GENCO3, 4 and 5 belong to all classes clearly indicate that they use the market power 
to maximize their profit as per demand. GENCO 4 and 5 always try to use their market 
power as the demand is increased just because of their location in the system and also 
without their contribution demand cannot be fulfilled. Hence they raise their prices 
above the marginal cost. The proposed hybrid Fuzzy-neural network trained with LM 
algorithm is a model free estimator and its mapping accuracy is dependent on how 
closely the training patterns resemble the actual operating conditions. Being an 
intelligent system, it however has considerable fault tolerance and therefore can produce 
accurate results even for previously unseen operating conditions as long as they are 
within the same range. The computational time and complexity of conventional  
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Fig. 16. Classes belonging to Genco5 
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approaches increase when all AC limits and load compositions are incorporated in the 
model, but in case of the proposed approach there will be no such effect as once it is 
trained off-line using data obtained from conventional methods, the results will be 
produced instantaneously, during the on-line application.  

 
Discussion: 

In this paper a multi output fuzzy neural network (FNN) is trained for market power 
assessment and for finding the on line market power ranking status of GENCOS in a 
competitive power system using a fuzzy composite market index (FCMI). This index 
is formulated by combining (i) Lerner Index, (ii) Relative market power and (iii) 
Nodal Cost.  In the proposed FNN a trained multi-output neural network is being used 
as a fuzzy inference engine. The input of FNN consists of real loads and a bipolar 
code to represent a trading interval while the output consists of the fuzzy values of 
FCMI. To train the FNN a number of training patterns, covering the full operating 
range of the power system, are generated using the system data such as offer prices 
and operating constraints. OPF results are used to compute the above three market 
power indices and the corresponding FCMI. Once the network is trained it is capable  
 

Table 8. Ranking of GENCOS for each Trading Period based on FNN 

Trading 
Period 

FCMI (Normalized, Rank) 

GENCO1 GENCO2 GENCO3 GENCO4 GENCO5 
1 0.1,I 0.4,II 0.1,I 0.68,IV 0.9,V 

2 0.1,I 0.43,III 0.88,V 0.9,V 0.85,V 

3 0.1,I 0.44,III 0.1,I 0.75,IV 0.9,V 

4 0.1,I 0.38,II 0.59,III 0.9,V 0.78,IV 

5 0.1,I 0.41,II 0.73,IV 0.77,IV 0.9,V 

6 0.1,I 0.39,II 0.82,V 0.67,III 0.1,I 

7 0.1,I 0.40,II 0.77,IV 0.79,IV 0.9,V 

8 0.1,I 0.46,III 0.9,V 0.77,IV 0.87,V 

9 0.1,I 0.39,II 0.64,III 0.78,IV 0.9,V 

10 0.1,I 0.45,III 0.85,V 0.88,V 0.9,V 

11 0.1,I 0.4,II 0.49,III 0.65,III 0.9,V 

12 0.1,I 0.41,II 0.1,I 0.69,IV 0.9,V 

13 0.1,I 0.49,III 0.1,I 0.9,V 0.82,V 

14 0.1,I 0.39,II 0.59,III 0.64,IV 0.9,V 

15 0.1,I 0.46,III 0.1,I 0.1,I 0.1,I 

16 0.1,I 0.4,II 0.1,I 0.69,IV 0.9,V 

17 0.1,I 0.42,II 0.83,V 0.9,V 0.74,IV 

18 0.1,I 0.50,III 0.1,I 0.1,I 0.1,I 

19 0.1,I 0.39,II 0.1,I 0.1,I 0.1,I 

20 0.1,I 0.47,III 0.1,I 0.1,I 0.1,I 
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of predicting the FCMI values in five fuzzy classes (GENCO ranking) for any  
given operating scenario, on line, instantaneously, without bothering about the 
computational burden of OPF. The computational effort is required only for training 
the network which is an off line process.  

This proposed technique is applied on an IEEE 14 bus system. All load buses with 
their demand is taken as input to FNN and FCMI computed after running OPF 
program is taken as output to FNN. Firstly we train the FNN and then testing is done 
with unseen load patterns. After testing and training it can be easily analyzed that at 
low demand GENCOS do not use market power means they do not raise their prices 
above the marginal price. As the demand is increased due to some reasons some 
GENCOSin this case GENCO 4 and 5 raise their prices above the marginal price just 
because of their location in the system. Without their contribution demand cannot be 
supplied hence they use their market power. By calculating FCMI we can easily 
identify which GENCO uses their market power and after identification they can be 
ranked. 

Once we train FNN it requires only the current load information for computing the 
FCMI and provide GENCO ranking without having to run the full OPF for every load 
variation. The FCMI will be used to analyze the GENCOS behavior in power market 
for any particular trading interval for any given loading conditions. Since the training 
of ANN is extremely fast and test results are accurate, in future they can be directly 
floated to OASIS (open access same time information system) and any other web site. 
The ISO and customers can access this information instantly. 

7   Conclusion 

A comprehensive and dynamic market monitoring system has been proposed in this 
chapter to protect and improve the open electricity markets. Several important indices 
have been proposed as part of the market monitoring system, such as GMS, MRR, LI, 
RMP and NC all are combined together to give the single index FCMI. With this 
proposed market monitoring system handy, all participants will be able to have a 
better understanding of their markets and the policy makers will have a better gauge 
to measure the market behavior. It is also expected that this analysis will help make 
better market policies and find more incentives for everybody within the power 
system to improve the overall system operation and reliability as well as the market 
performance. It is strongly recommended that market participants and policy makers 
use this conundrums measurement and indices to locate and mitigate their market 
problems so that the power system is treated as a whole, not just as generation, 
transmission, load or other individual components. 

In this paper a hybrid fuzzy neural network is developed for online ranking of 
GENCOS for each trading period. The proposed combined index developed using the 
effect of individual indexes is found to be very efficient for ranking GENCOS 
compare to methods which use only one index. Loads are modeled as fuzzy variables 
in contrast to the conventional deterministic approaches. The complicated task of 
fuzzy rule framing is not required here because a trained neural network serves as an 
inference engine. It has been demonstrated that the proposed method is particularly 
suitable for ranking of GENCOS lying on class boundaries because the fuzzy 
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environment increases amount of information available and provides ranking within a 
severity class. The main advantage of this approach is that it requires only the current 
load information for computing the FCMI and corresponding GENCO ranking 
without having to run the full OPF for every load variation. The FCMI will be used to 
analyze the GENCOS behavior in power market for any particular trading interval for 
any given loading conditions. 
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Abstract. This chapter describes a novel methodology for behavior learning of an 
agent, called Coaching. The proposed method is an interactive and iterative learning 
method which allows a human trainer to give a subjective evaluation to the robotic 
agent in real time, and the agent can update the reward function dynamically based on 
this evaluation simultaneously. We demonstrated that the agent is capable of learning 
the desired behavior by receiving simple and subjective instructions such as positive 
and negative. The proposed approach is also effective when it is difficult to determine a 
suitable reward function for the learning situation in advance. We have conducted 
several experiments with a simulated and a real robot arm system, and the advantage of 
the proposed method is verified throughout those experiments. 

1   Introduction 

In general, most of the methodologies for behavior learning consist of the following 
steps: Performing an action, evaluating the result of the action and modifying the 
learning parameters accordingly. The evaluation step is important in order to modify 
each parameter. Although the best way to achieve learning is to design an evaluation 
function which immediately gives the correct evaluation for every action, it is often not 
practical to design an evaluation function in advance due to the necessity of covering 
the whole state space. Autonomous machine learning methods, for example 
reinforcement learning (RL), have attracted attention for many years [12]. In RL, the 
agent updates the expected reward, called the state-value, according to a simple 
evaluation function, called the reward function, and acquires the action rules to 
maximize the summation of rewards. Therefore, RL can be applied to an environment 
even with delayed rewards. For this reason, RL can help to acquire a desired behavior 
in a real environment. Most conventional methodologies based on RL are based on the 
assumption that the agent will be able to get its first reward in a reasonable time. At the 
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beginning of learning, the agent explores the state space randomly until it discovers the 
first reward, and then it starts learning based on that reward. Therefore, if the possibility 
of discovering a reward within the explorable area with respect to the initial state is low, 
the agent will not learn for a considerable period of time. Moreover, this problem 
cannot be solved by learning methodologies that focus on improving the learning 
efficiency based on rewards. To avoid this problem, we should design the reward 
function carefully. Although the learning efficiency is strongly affected by the reward 
function, methodologies to design the reward function are still not available. 
Consequently, it is required to design the reward function depending on the task and the 
environment according to our own experience. As mentioned above, although there are 
many techniques available to improve the learning efficiency based on the reward, we 
still need human knowledge to design the reward function. Especially when the agent 
tries to learn a complicated task in a real environment, the suitable reward function is 
very difficult to be created in advance. In such cases, it is necessary to find the optimal 
reward function for the learning algorithm used through trial and error, and this is 
usually very hard. 

Several works have been done in order to involve human trainers in the online 
behavior learning of an agent. Thomaz et.al have proposed a learning framework called 
Socially Guided Machine Learning [14][15]. In their work, the agent had a learning 
mechanism based on RL and also had a channel to interact with a human trainer while 
learning. Thus, they developed an interactive learning agent, and it was verified that the 
learning performance is improved by getting feedback from the human trainer. Several 
intuitive ways which reduce the load on humans' instruction and acquire complex and 
diverse behaviors through the interaction with the trainer, such as Imitation learning 
(IL)[11] and Programming by demonstration (PbD)[3], attracted considerable attention 
in the past few decades. Although several studies have shown that those techniques are 
effective for real environments, there are still some problems. For instance, Inamura et 
al [5] and Jakel et al [6] have proved that a humanoid or anthropomorphic robot could 
generate its behavior by imitation. Atkenson et al [1][2] have introduced a method for 
behavior learning from demonstration using RL, and verified the effectiveness of their 
proposed method through the pendulum swing up task. Also if we do not know the 
exact goal of the task until we observe the movement, we cannot define the evaluation 
function nor the reward function in advance. For example, if we consider intuitive 
instructions such as ``walk well" or ``dance beautifully," it is not easy to design a task 
and define the evaluation function. In these tasks, only human decision based on 
subjective view of human is a cue for the learning agent. Moreover, it is also necessary 
to prepare different interfaces between the trainer and the agent for demonstrations in 
different environments. These issues are further hampered by the necessity of detailed 
information, for example the trajectory of the joint movement from the trainer 
regarding the desired behavior, because IL and PbD focus on how to imitate the 
trainer's behavior correctly. 

On the other hand, the requirement for RL to learn is the reward function which can 
be defined in every task as a specific function. We assume that RL is useful for behavior 
learning, but the question of designing the reward function remains unanswered. 
Learning through interaction with a human trainer can realize action acquisition without 
a reward function, but giving too much concrete information regarding each task and its 
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environment decreases its general versatility. Thus, the teaching signals from the trainer 
to the agent should be as simple and intuitive as possible. We propose a new learning 
framework which allows human trainers to give subjective and simple feedback to the 
agent asynchronously and in real time, to lead the agent towards learning the desired 
behavior. Since this framework is inspired by human-to-human skill transfer process, it 
is intuitive for human trainers, and we define this framework as Coaching a robot, 
opposed to Teaching a robot. The biggest difference between Teaching and Coaching is: 
conventional Teaching methodologies require adequate evaluation function in advance, 
while Coaching, as indicated in Fig. 1, allows the agent to learn not only the desired 
behavior but also the adequate evaluation function as an internal model of human 
trainer, simultaneously. In this paper, we introduce how to achieve the implementation 
of the Coaching framework on a typical RL agent. 

In the typical RL method, designing the reward function and running learning 
algorithms are separated processes, but the proposed method aims to achieve both 
processes in parallel. By using this method, the human trainer can support the agent's 
learning and reduce the load of designing a reward function. Moreover, we use abstract 
and primitive binary values as the evaluation quantity of Coaching, namely positive or 
negative. Thus, the purpose of this study is to realize interactive and intuitive behavior 
learning without any technical knowledge about machine learning or the use of special 
interfaces. 

 

 

Fig. 1. Coaching is an interactive learning methodology in which a human trainer can assist the 
agent in an intuitive manner by giving subjective feedback in real time in addition to the learning 
mechanism implemented in the agent 

2   Methodology 

2.1   Coaching 

In the conventional method for controlling a robotic system, it is essential to build a 
model of the plant that includes its dynamic specifications. The process is usually hard 
and time-consuming in a machine with a complicated structure. Machine learning 
methodologies have been proposed to reduce the load of such processes. However, as 
we described in the previous section, human effort is still needed to design the 
evaluation function. 
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On the other hand, Coaching aims to achieve behavior acquisition without a 
mathematical model or prior design of the evaluation function, which is achieved by 
implementing a mechanism to infer the subjective evaluation given by a trainer 
interactively and learning the behavior based on that evaluation. In addition, Coaching 
allows the emergence of different results of behavior learning. This means, even for the 
same task, there is a possibility of a different result emerging depending on the trainer. 
We have proposed the original idea of Coaching [10] and have demonstrated that a biped 
robot can adjust its own parameters for balancing and walking based on the human 
subjective evaluation. Riley et al. have developed a system which can refine the motion 
of a humanoid by subjective evaluations from a human [8]. In the above studies, the 
agent can modify its own parameters based on the evaluation given by the trainer, but the 
agent does not have the ability to learn automatically by the internal value like RL. 

In contrast, the proposed method aims to implement Coaching using an agent that has a 
learning ability based on its own internal values. As shown in Fig. 2, the trainer observes 
the agent's behavior and gives feedbacks at random times, and the agent interprets it in 
order to modify its evaluation or reward function. In the meantime, the robot agent 
continues not only to estimate the trainer's internal evaluation function by considering the 
causality and consistency of given feedback but also to learn from interaction with the 
surrounding environment. Moreover, this method can be applied to other autonomous 
machine learning methods, for example RL, as an extrapolating algorithm. 

To learn the reward function from such simple and abstract feedback, the agent 
needs to interpret the given feedback in order to modify the reward function as intended 
by the human trainer. Fig.3 shows the basic idea of interpretation method, consisting  
of two processes which are Causality Detection and Error Detection of the given 
feedback. Causality Detection is the process in which the agent determines specific 
states that motivated the trainer to give the feedback. 

 

 

Fig. 2. Learning model of the proposed method. Human trainer can intervene the learning 
process of the agent by updating the reward function based on Coaching as a learning assistance. 
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Fig. 3. “Causality Detection” means the determination of target behavior according to 
characteristics of human evaluation. “Error Detection” means the verification of feasibility of 
human feedback. 

 
Fig. 4 illustrates an example of a time series of state variable ݔ௜. As shown in this 

figure, when the trainer's feedback indicated by Coaching is given to the agent, the 
target behavior of that evaluation is considered in a time-range from the minimum 
delay ଵܶ  to the maximum delay ଶܶ . This is a characteristic of human trainer and 
subjective feedback. Since this time delay( ଵܶ, ଶܶ) depends on the task or the robot's 
hardware, we need to conduct a preliminary experiment, described in Sec 3.2, to 
investigate the time delay for a given task.  

In addition, the consistency of human's feedback signal plays an important role. 
While Coaching, it can happen that the human trainer sometimes gives inconsistent 
feedbacks to the agent, in other words, different feedbacks to the same robot behavior is 
given occasionally. In this case, the agent carefully observes the consistency of the 
human evaluation, by comparing it to current and previous feedbacks to a similar 
behavior. If the feedback is inconsistent, it will not be accounted for, and the update of 
reward function does not occur. This mechanism is also included in the interpretation 
module as Error Detection (Fig.3). 

 

Fig. 4. Target Time-Range: Although the human trainer gives feedbacks to the agent soon after 
observing the agent's behavior, there is a certain time delay. The agent needs to interpret that the 
feedback could be given to a specific past series of actions. 
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2.2   Reinforcement Learning in Continuous State-Action Space 

This study attempts to achieve behavior learning in a real environment. Thus, we must 
deal with an agent operating in a continuous state-action space. In this study, the 
approximated expression of continuous state-action space by using a Radial Basis 
Function (RBF) network, with reference to the following works [9][4][7][13], is used.  

 Sሺ࢞௧ሻ ൌ ෍ ௧ሻ௞࢞௞ܾ௞ሺݓ  ,ሻ is the basis function unit number k࢞௧ is the observed state variable at time t, ܾ௞ሺ࢞ (1) 
and ݓ௞ is a weight variable for k. The basis function is given by the Gaussian function, 

 ܾ௞ሺ࢞ሻ ൌ ݌ݔ݁ ቆെ ԡ࢞ െ ௞ଶߪߩ௞ԡߤ ቇ (2) 

where ߤ௞  and ߪ௞  correspond to the center and standard deviation of the Gaussian 
function. ρ denotes the stretch of each units, and it is fixed as a constant number in this 
paper. The state value ܸሺ࢞௧ሻ and the action output ݑሺ࢞௧ሻ can be expressed as: 

 ܸሺ࢞௧ሻ ൌ ෍ ௧ሻ௞࢞௞ܾ௞ሺݓ  (3) 

௧ሻ࢞ሺݑ  ൌ ෍ ௧ሻ࢞௞ܾ௞ሺݒ ൅ ݊௧௞  ௞ are weight variables, and ݊௧ is a random number aiming at exploring theݒ ௞ andݓ (4) 
state space. The agent updates its own state value and action output by repeating the 
following steps. 

 

ߜ  ൌ ௧ሻ࢞ሺݎ ൅ γܸሺ࢞௧ሻ െ ܸሺ࢞௧ିଵሻ (5) 

௞ݓ  ՚ ௞ݓ ൅  ሻ (6)࢞௞ሺܾߜߙ

௞ݒ  ՚ ௞ݒ ൅  ሻ (7)࢞ሻܾ௞ሺ࢞ሺݑߜߚ

 are ߚ and ߙ is the discount rate and ߛ ,௧ሻ is a reward function࢞ሺݎ ,is a TD error ߜ 

learning coefficients. 

2.3   Implementation of Coaching 

To implement Coaching on the above mentioned RL agent, the agent must interpret the 
human subjective feedback for updating the reward function, and this is done in 
account of a target behavior which is defined as a series of states and actions ݑሺ࢞௧ሻ in 
the past between ݐ െ ଵܶ and ݐ െ ଶܶ. The reward function should also be expressed as a 
continuous formula. In the same way, using an RBF network, we defined the reward 
function as: 
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௧ሻ࢞ሺݎ  ൌ ௜௡௜௧ݎ ൅ ෍ ௧ሻ௞࢞௞ܾ௞ሺݓ  (8) 

The first term, ݎ௜௡௜௧, refers to the initial reward function, which defines the goal state of 
the task given at the beginning of the learning algorithm, and the second term means the 
dynamic reward which is updated by Coaching during learning. 

When the human trainer noticed the target behavior, and gave the evaluation at 
time ݐ. Using ଵܶ and ଶܶ, the state variable ܺ is defined as: 

 

 ܺ ൌ ൛࢞௧ି మ், ௧ି࢞ మ்ାଵ, ڮ , ௧ି࢞ భ்ൟ (9) 

ؠ  ሼ࢞ଵ, ,ଶ࢞ ڮ .  ௡ሽ (10)࢞

 

It is assumed that the target behavior happens during ܺ. If the evaluation is “positive”, 
it is appropriate to increase the reward around the state set ܺ . Thus, the weight 
parameters of the RBF network are updated in a similar way to RL: 

௜ߜ  ൌ ௡ି௜ܴߣ ൅ ௜ሻ࢞ሺݎߛ െ  ௜ିଵሻ (11)࢞ሺݎ

௞ݓ  ՚ ௞ݓ ൅  ௜ሻ (12)࢞௜ܾ௞ሺߜߙ

 

Where R is the immediate reward of Coaching and ߣ  > 0) ߣ ൑ 1) is a discount rate. By 
iterating i from n to 1, a gradually decreasing gradient from the state ࢞ሺ݊ሻ to ࢞ሺ1ሻ is 
generated on the reward function with consideration for the consistency of the history 
of human feedback. For example, if ݎሺ࢞௜ሻ is bigger than ݎሺ࢞௜ିଵሻ before updating, the 
agent had already learned the transition of state form ࢞௜ିଵ to ࢞௜ is helpful to get more 
reward. In addition to the use of the discounted reward, ߣ௡ି௜ܴ the modifying signal ߜ௜ 
is enhanced. In contrast, if the subtraction derives negative value (ݎሺ࢞௜ሻ െ  > ௜ିଵሻ࢞ሺݎ 
0), the agent had learned that the transition will not be helpful to the task, the latest 
feedback will make conflict with the past feedbacks, so the modifying signal will be 
restricted. It can be considered that this updating method, showed as Eq.11,12, 
generates the reward function based on the consistency of human feedback. 

On the other hand, if the evaluation is “negative”, by applying the following process 
to ݎሺܺሻ: 

 

 
݂݅ ԡ࢞௜ െ ௜ԡߤ ൑ ௞ݓ݀ ൌ 0 

(13) 

 

The agent will quickly forget its mistaking knowledge about that area of the state space 
around X, and restart learning, where $d$ is determined as a threshold of the distance to 
determine if ߤ௞ is enough close to ݔ௜, d is set same as the standard deviation of RBF 
unit ߪ. 

2.4   The Basic Problem and the Solution Approach 

In this section, we define the basic problem which should be solved by the proposed 
method (Fig.5). The upper row of Fig.5 shows a situation in which a simple reward 



44 M. Hirkoawa and K. Suzuki 

function can be defined only around the target state in advance, due to the lack of 
information about the environment or difficulty of the task. As stated in the 
introduction, from a reward accessibility point of view, it is clear that this situation is 
difficult for conventional reward-based learning methods. 

By using the proposed method, we consider that updating the reward function 
according to the progress of the agent in incremental steps is effective in improving the 
learning efficiency, as shown in the lower row of Fig.5. 

Furthermore, this approach is an attempt to integrate the prior design of the reward 
function into the learning mechanism. 

 

 

Fig. 5. The basic problem of Coaching. The upper row shows difficult situation for conventional 
reward-based learning method, and the lower row shows the solution approach by Coaching 
against this problem. 

3   Reward Function and Its Learning Efficiency 

In this section, we discuss the learning efficiency according to different reward 
functions. As described in the previous section, it is difficult to design the reward 
function in advance because the method for guiding the agent to accomplish the given 
task is not known. Several methodologies to determine the appropriate reward function 
have been proposed, but none of them significantly guarantees the task accomplish- 
ment even if the robot could theoretically achieve it. 
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Fig. 6. Experiment setup: 6 DOF Robot Arm Platform. This setup is for both of simulation and 
real robot experiment. 

 
In order to clarify the learning efficiency of different reward functions, we conduct a 

simple learning task to swing up and keep balance of an inverted pendulum by 6 DOF 
robot arm, as shown in Fig.6, in a simulated environment. As a learning agent, 
conventional RL agent (actor-critic) was implemented in the robot with three different 
reward functions as illustrated in the upper graph of Fig. 7. 

In this experiment, the state space is defined as a 2 dimensional continuous space in 
terms of pendulum angle ߠ  and angular velocity  ߱ , and the agent can add a 
bidirectional force to the root of the pendulum as an action output ݑሺݐሻ. The experiment 
procedure is as follows: 

 

1. Set the initial posture of the pendulum as vertically downward. 
2. Start the action and measure the total time which the inverted pendulum spends 

within the target posture range of π േ ε[rad], where ε is a small value. 
3. Repeat the above steps for 100 iterations. 

 

The subsequent experiments described in Sec. 4 have been conducted by the same RL 
agent with the same state-action space.  

Three typical examples of reward functions are considered from the view point of 
different opportunities for obtaining the reward while learning. 

 

1. Reward is given all over the state space (ݎଵ) 
2. Reward is given at a part of the state space (ݎଶ) 
3. Reward is given solely at a part of the goal state (ݎଷ) 
 

ଵݎ  ሺߠሻ ൌ ሺ1 ൅ cos ሺߠ െ  ሻሻ/2 (14)ߨ

ሻߠଶሺݎ  ൌ ቄሺ1 ൅ cos ሺ2ߠ െ ሻሻ/2ߨ ሺ|ߠ| ൐ 2ሻ0/ߨ  (15) 
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ଷݎ  ሺߠሻ ൌ ൜1     ݁ݎ݄݁ݓ ሺห|ߠ| െ หߨ ൏ ݁ݏ݈݁               ሻ0ߝ  (16) 

 

The lower figure of Fig.7 shows the experimental results with a simulated environment. 
The x-axis represents the number of episode in learning, and y-axis represents the task 
accomplishment, which is regarded as the total period where the tip of the inverted 
pendulum stays at the target angle with േ5[deg]. The target angle is set to the top, and 
configurations of the simulated robot such as its state-action space and the task are 
defined same as the experiment in Sec.3. 

The number of successful trials increases by using the reward function ݎଵ, but it 
could not achieve the task at all with the reward function ݎଷ. In the conventional policy 
of behavior learning, the agent continues to explore over the state space in a random 
manner until a reward is found. Although this is not a difficult task but it is necessary to 
find an appropriate reward function such as ݎଵ. The reward function is designed by the 
system designer, but an appropriate reward function, which helps successful learning, 
is not always known in advance. The easiness of design and the learning efficiency is a 
trade-off, and the system designer must carefully determine it for a complicated task. In 
the Coaching framework, the human trainer is involved in assisting the learning of 
agent, by observing the agent behavior in order to modify the reward function while the 
agent learns through a trial-and-error procedure. 

 

Fig. 7. Three different reward functions  ࢘૚ሺࣂሻ, ,ሻࣂ૛ሺ࢘  ሻ used in the learning task of anࣂ૜ሺ࢘
inverted pendulum (Upper figure), and simulation results (Lower figures) 
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4   Evaluation of Behavior Learning 

4.1   Characteristics of Human Evaluation 

When a human trainer gives an evaluation in real time, there will be a time delay 
between the evaluation timing and the target behavior. Thus, to determine the target 
behavior of that evaluation, the time delay as a characteristic of human evaluation must 
be measured. The result of an experiment aiming at measuring the time delay by several 
subjects is shown in Fig.8. 

From Fig.8, we can see that the difference of the average between subjects is only 
about 100[ms], and the deviation within each subject is small. It is, thus, possible to 
narrow down the time delay to a constant range of time. Consequently, we defined two 
kinds of time constants ( ଵܶ, ଶܶ) that correspond to the minimum and maximum delay 
time as below. 

 

 ଵܶ ൌ 300ሾmsሿ, ଶܶ ൌ 800ሾmsሿ (17) 
 

By introducing these time constants, searching all the action history in an episode for 
coaching feedback is avoided. In this study, the time delay is obtained in advance 
through a preliminary experiment. However, it is possible to embed it in the process in 
order to obtain the time delay at the initial stage of learning. 

In both simulation and real robot experiments, RL agent observed the state and 
performed its actions with a frequency of 10[Hz]. Therefore, around 5 states are 
contained in the time range, and the amount of calculation is small enough for online 
learning. 

 

Fig. 8. Result of the experiment to measure the time delay of human evaluation. The procedure is 
a measurement of the reaction time where the subjects selectively did 2 kinds of reactions for 10 
times against 2 kinds of stimulation. Average and standard deviation were calculated for 5 
subjects. 
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4.2   Experiment with a Simulated Robotic Agent 

We evaluate the performance of the proposed method through a learning experiment in 
simulated environment similar to the one used in Sec.3.1. Three subjects participated to 
this experiment as trainers. The instructions given to the subjects were as follows: 

 

 The purpose of this task is to make the agent learn to keep the balance of the 
inverted pendulum. 

 Give a “positive” or “negative” evaluation if you think that the agent did or didn't 
do an action that brings it closer to achieving this task. 

The initial reward function, denoted ݎ௜௡௜௧ at Eq.8, is given as: 

 rሺθሻ ൌ ቄ1 ݁ݎ݄݁ݓ |ߠ| ൌ 0ߨ ݁ݏ݈݁  (18) 

This reward function allows the agent to obtain the reward only at the target state. 
Moreover, it is necessary to move the robotic arm to right and left in synchronization 
with the oscillation of the tip of the pendulum to explore this state space widely. The 
probability that such a movement is generated from a random output is very low. Thus, 
this learning environment is included in the type of the problem described previously 
(Sec.2.3). 

4.3   Results 

Fig.9 shows the results of the experiment. The graph, Fig.9(a), corresponds to the case 
of learning without Coaching. In this case the agent could not learn the desired 
behavior. On the other hand, when Coaching was used, Fig.9(b,c,d), the agent acquired 
the knowledge of how to keep balancing the pendulum only when the trainer was 
subject #1 and #3. The reason why the subject #2 could not make the agent acquire the 
behavior was that the subject gave too many “negative” evaluation compared to 
“positive” evaluation. In the proposed algorithm, “negative” evaluation reset the 
knowledge, hence does not give any information for further learning. This problem is 
one of the considerations for future work. However, the proposed method successfully 
improved the learning ability in overall, even when the reward function could only be 
defined out of the area explorable by the agent.  

To evaluate the feasibility of our approach in the simulation experiment, we verified 
the transition of the reward function modified by subject #3 whose performance was 
best. Fig.10 shows the reward function at the end of episodes 0, 6, 23 and 64. We can 
see that the peak of the reward function has been moving from the initial state 
(indicated by black line in the top-left figure) towards the goal state (indicated by black 
lines). Consequently, the solution approach we described shown in Fig.5 was achieved. 
However, Coaching in some cases may not help the robot, as shown by the results of 
subject #2. It can be said that this is because the robot reflected the difference of the 
Coaching strategies of trainers. However, regarding the reward function and the state 
value, it can be said that the proposed method is an effective behavior acquisition 
method in situations where the conventional methodologies are not very effective. 
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Fig. 9. Results of simulation experiment. The horizontal axis is the number of episodes and the 
vertical axis is the time the agent could keep balancing. 

 

 

Fig. 10. The transition of the reward function updated by subject #3 
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4.4   Experiment with a Real Robotic Agent 

Finally, an experiment on the same task by using a real robot arm was conducted. The 
robot arm with 6 degrees of freedom shown in Fig.6 was used. In this study, we 
controlled only the upper arm joint, which is shown shaded in the figure, to swing the 
inverted pendulum. The result of this experiment is shown in Fig.11. The proposed 
method has shown significant improvement compared to the conventional RL with the 
same reward function, as the latter, completely failed to achieve the task. 

We could see the results are similar to those discussed in the previous simulation 
experiment, in particular, the non-monotonous nature seen during the learning process. 
In this experiment, the total time in which the agent were able to keep the pendulum 
upright was less than 1 second due to several limitations of the robot, such as sensors, 
actuator torque and sampling rate. Note that, we did not attempt to estimate these robot 
parameters, but just like in the simulation, the agent was able to find a solution to the 
task. Therefore, it can be said that the proposed method potentially has the capability to 
accelerate the learning efficiency of RL agent, in particular, in the early stage of 
learning. 

 

 

Fig. 11. An example of the experimental results 

5   Conclusions 

In this chapter, we proposed a novel methodology for behavior learning, called 
Coaching. This method allows a human trainer to intervene in the learning process of 
an agent by giving subjective evaluations such as positive and negative. The agent 
updates its own reward function based on the evaluation which is enhanced by 
considering the characteristics of human evaluation. Then, we confirmed the 
effectiveness of the proposed method using both simulated and a real robot.  



 Coaching Robots: Online Behavior Learning from Human Subjective Feedback 51 

The learning task which we used for the experiment, inverted pendulum, had been 
studied well, and various methodologies to achieve the task have been proposed. 
However, generally, these methodologies include an element of heuristics for 
customization to each task. In particular, our method has an advantage in designing the 
reward function, which allows users to modify the function during the learning phase. 

Currently, we are working towards the development of a universal interface device 
for Coaching an agent having real body in a real environment. For future works, we will 
address the refinement of the learning algorithm to utilize negative evaluations and to 
verify the robustness with respect to learning parameters. 
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Chapter 4 
Persian Vowel Recognition Using the Combination 
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Abstract. lips movement is an important parameter in speech recognition. The Lip 
image segmentation has a significant role in lips movement analysis.  Major problems 
that any vowel recognition (especially Persian) method is faced are low chromatic in 
lip region, low contrast luminance, overlap between the lip and facial skin color, and 
similarity between lips movement in some vowels after detecting lips. In this paper, a 
new automatic and quick approach for the lip extraction based on using the Haar 
wavelet is proposed. The output of this proposed approach is used as a feature vector 
for a hybrid neural network. The proposed algorithm for lip image segmentation uses 
the color space CIE L*U*V* and CIE L*a*b* in order to improve the contrast 
between the lip and the other face regions. After this step, the lips are modeled and a 
feature vector with longitudinal and angular parameters is extracted from the 
proposed lips model.  

This feature vector has been used as an input for a feedforward backpropagation 
hybrid neural network. The proposed method has been applied to 2200 tested images 
and the accuracy is about 79% that shows about 15% enhancement in compare with 
similar methods. 

Keywords: Haar wavelet, lip reading, neural network, vowel recognition, segmentation. 

1   Introduction 

Both lips localization and segmentation are important steps in various applications 
such as automatic speech reading, MPEG-4 compression, special effects, facial 
analysis and emotion recognition. In this context, lip analysis is useful for verifying 
speech and lip synchronization in order to minimize the scope for fraudulent access to 
services controlled by multimodal biometric personal-identity-verification systems. In 
addition, it has been shown that the lip image analysis can provide a control 
mechanism for selecting the most appropriate face model (e.g. open mouth or closed 
mouth) whenever the aim is either face verification or face recognition. However, the 
lip localization and segmentation in images or videos is a challenging problem 
owning to unknown face poses, varying lighting conditions, low image qualities, and 
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background clutters. Thereby, extracting lip gesture from the above referred lip image 
sequence is so important. Various techniques have been developed to achieve a good 
and robust segmentation. Zhang used hue and edge features to achieve mouth 
localization and segmentation [1]. Eveno et al [2] detected characteristic points in the 
mouth region and then used a parametric model to fit the lip. In their study, they 
proposed preprocessing algorithm for the lip segmentation. They transformed the 
RGB color space onto the YUV color space at first and used just the "V" component 
for segmentation. Although they could reduce the processing time, their method is 
sensitive to the color contrast and the noise. Caplier [3] proposed a method which 
employed the edge direction for the lip segmentation. He used the active shape model 
to describe the mouth. Both detecting and tracking the lip contour are important in 
speech reading. Tracking the lip contour can be done well if the contour initialization 
has been adjusted correctly at the first frame of the image. Nowadays, the contour 
initialization at the first frame has been done manually.  Therefore, this method has 
been failed whenever it applied on the real world mouth images [3]. 

Recently, the statistical methods have been developed to extract face features  
and particularly the mouth. Coots et al. [4] introduced active shape model (ASM) and 
active appearance model (AAM). Wang [5] and Liew [6] proposed FCMS1 and 
SFCM2 algorithms for the lip extraction. Both methods integrate the color information 
along with different kind of spatial information into a fuzzy clustering structure. 
However, the above methods should be used in indoor situations with controllable 
lighting condition. 

Different methods have been developed to recognize vowels according to the audio 
and visual features.  Neural network has widely been used in many of these methods. 
Shinchi has used a simple neural network for lip reading [7]. Matthews and Stork 
have used time delay neural network (TDNN) and recursive neural network for lip 
reading [8, 9]. Although the wavelet transform has been successfully applied in edge 
detection, there are few reports on using this method for lip segmentation. The 
problem arises because the outer labial contour of the mouth has very poor color 
distinction in compare to its skin background. In this paper, the authors proposed the 
automatic lip localization and segmentation algorithm based on the captured full-
frontal faces with perfect quality. The Lip features extraction has done by Haar 
Wavelet as input parameters to a neural network system for vowel recognition. The 
suggested algorithm is based on the Wavelet transform, while the color space, 
CIEL*U*V* and CIEL*a*b* are used in conjunction with Wavelet transform. 

2   Proposed Method  

2.1   Lip Localization  

The lip localization is performed in two steps. The first step is face detection and the 
second step is extraction of the lip Region-Of-Interest (ROI) from the image.  

                                                           
1 Spatial Fuzzy C-Means Clustering. 
2 Fuzzy C-means With Shape Function. 
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2.1.1   Face Detection 
In this study, the developed method by Bayesteh is used for face detection [10]. The 
proposed algorithm includes two stages and according to color segmentation, the 
algorithm finds possible areas for face region. Then, it involves face verification by 
using a cascade classifier. Thereby the face is determined as a rectangle with width W 
and height H, Fig1. 

 

  

                              (I)                                 (II) 

Fig. 1. (I) input image (II) face detector outputs 

2.1.2   Lip Region of Interest 
After face detection step, the following steps are followed for lip extraction: 

- The face is divided into two equal halves, up half and down half. In this step, 
pupils are located in up half and lip is located in down half. 
- The up half is divided to two equal regions, left and right respectively. After that, 
by using horizontal and vertical histograms, pupils' position can be obtained. The 
distance between pupils is named ED. 
- From the middle part of pupils, a length of 1.2× ED is selected downward, then, 
with this center a rectangle of length ED and width of 0.7× ED is plotted, Fig2.This 
method can correct image tilt by using pupil positions and rotating image but any 
image rotate can be reduced efficiency. 
 

  
(I) (II) 

(III) 

Fig. 2. I) step 1 and 2 II) step 3  III) lip region 
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2.2   Lip Segmentation 

After finding the lip location, the lip segmentation algorithm in five steps is applied, 
Fig3. 

2.2.1   Pre Processing 
The lightning condition is changed to normalize the Luminance level in original 
image by using the following log-function [10]: 

log( ( , ) 1)
( , )

log( )

f x y
g x y k

d t

+
= +

×  
(1) 

Where ( , )f x y  is the original and ( , )g x y  is the pre-processed image. The set 

parameters (K, d, t) are adjusted to control the location and the shape of the curve. In 
this study, (K, d, t) are evaluated as (12, 0.5, 2) respectively. 

2.2.2   Color Transform 
The colors of the lip and the skin region usually overlap therefore; an especial color 
space should be chosen to show the small variations. The distance between any two 
points in color space is proportional to the perceived color difference; therefore, a 
uniform color space is required. After this step, the RGB image is transformed to the 
 

 

 

Fig. 3. Block diagram of the lip segmentation algorithm 
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CIEL*U*V* and CIEL*a*b color space. The vector color  for any 

image can be determined by using the following equations [11]: 

(1-1) 
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Where X଴ ,Y଴ , Z଴ , u଴ and v଴  are the values of X, Y, Z, u and v for the reference 
white, respectively. The reference white in the transformation is defined as

{R G B 255}= = = . The color vector * * * * *, , , ,L a b v u   is adopted to represent the 

color information; Parameters { , }a u∗ ∗ are used in this study. 

* * *{ , , , , }L a b u v∗ ∗
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(I) 

(II) 

(III) 

 

(IV) 

 
 

Fig. 4. I) picture of the lips  II) vector color aכ III) vector color uכ IV) output of sum aכ and uכ 
 
Although in that case there will be more statistical dependence between two 

vectors{ , }a u∗ ∗ , the main difference between lip and face area is the reddish lip color 
of all races and in the two selected vectors this color is the most effective. Other 
vectors usually vary in different races because color of face is different. This 
assumption is tested in different images and in various scenarios and the selected 
vectors showed better results. As a result, the other remained parameters are being 
waived, fig 4. 

2.2.3   Wavelet 
Unlike the Fourier transform that basic functions are sinusoids and redundant, the 
wavelet transform is based on short-duration waves, called wavelets, of different 
frequency and restricted duration. Wavelet is also named multi-resolution transform. 
This characteristic makes the wavelet transform suitable for joint time-frequency 
analysis in comparison with the Fourier transform [12]. In this case, the main 
advantage of using the wavelet is detecting the feature that might not be recognized in 
the beginning. The two dimensional fast wavelet transform (2-D FWT) can be used 
for image analysis. In this case, there are four sub-band images in each level. They are 
referred to dA, dH, dV and dD where, dA, dH, dV, and dD denote the coefficients 
matrix, horizontal detail, vertical detail, and diagonal detail of a sub-band image, 
respectively. Please note that the size of every subband images is equal to the half of 
the input image. 

2.2.4   Lip Segmentation 
After pre-processing and transforming the image to the CIEL*U*V* and CIEL*a*b 
color space, the lip segmentation procedure is done as follows: 

- The two vector components { , }a u∗ ∗ are added to each other and obtained image is 

resized to be matched with the original image. In the first analysis, a∗  and u ∗ is used 
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separately but the result was so poor. In the second examination, a∗  and u ∗ is used in 
parallel way, the result of this test was better than the first analysis. Overall, summing 

a∗  and u ∗ had shown the best result between the above methods. 

- The 2-D Haar wavelet transform and product is performed and four different 
matrixes, (dA, dH, dV, dD), are determined. The dA matrix is sufficient for the lip 
region extraction, therefore, three other matrixes, i.e. dH, dV, dD, are discarded. After 
this stage, the morphological filtering and the post processing are employed to 
increase the accuracy. 

2.2.5   Morphological Filtering 
In this stage, the Grayscale morphological closing and opening with an 8-neighborhood 
rectangular structuring element is used to smooth membership map and eliminate small 
erroneous blobs and holes. 

 

  
 (I)  

  
 (II)  

Fig. 5. (I) original lip image (II) extracted lip region 

2.2.6   Post Processing 
In this stage the output of previous step should be converted to a binary image. First 
of all, all image pixels are scanned and preliminary labels are assigned to nonzero 
pixels and recording label equivalence is restored in a union-find table. Note that 
resolving the equivalence classes has done by using the union-find algorithm in which 
reliable pixels are based on the resolved equivalence classes. After this step, a 
Gaussian filter is used to smooth the image and eliminate some under size points. The 
final result is shown in fig 5 for different cases. 

3   Vowel Recognition 

Vowels and consonants are the basic elements of each language. In Persian, there are 
6 distinct vowels demonstrated as " ي اَ، اِ ، اُ ، آ ، او، ا"  which are fairly similar to English 
vowels ״ a, e, o, â, i and u ״. In this study, a new method is proposed for the vowel 
recognition. In this method, some lip features that have been extracted in former 
sections are applied to an appropriate neural network.  

3.1   Feature Vector 

To describe the shape of lips, two groups of features can be used. The first group is 
the features which describe the mouth by using the size of some physical quantities or 
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geometrical concepts that are named as linear parameters. The second group of 
characteristic is an angular feature that is used in the recognition process. Based on a 
segmented lip image, the key feature points of the lips are extracted as follow: 

- Normalized width (mouth opening in horizontal direction).  
- Height (mouth opening in vertical direction). 
-Average vertical distance of points 5-3 and 5-9. 
- Angle between points corner left and right lips.  

Fig. 6 shows the selected feature points in a lip contour. 
 

Fig. 6. Mouth feature point 

3.2   Neural Network 

The neural networks have been widely used as a solution for various problems such as 
speech classification and recognition [13]. Some neural networks such as Radial basis 
functions network and feed forward backpropagation network have been tested as 
classifiers. Several experiments showed that a feed forward backpropagation network 
that used in binary mode had better performance. Some of RBF limitations in this 
work in compare with feedforward backpropagation network are as follow:  

• RBF networks are local approximators, whereas multilayer perceptrons such 
as feedforward backpropagation networks are global approximators.  

• RBF networks have a single hidden layer, whereas multilayer perceptrons 
can have any number of hidden layers.  

• The output layer of a RBF network is always linear; whereas in a multilayer 
perceptron it can be linear or nonlinear (this is noticeable in proposed 
classifier).  

• The activation function of the hidden layer in an RBF network computes the 
Euclidean distance between the input signal vector and parameter vector of 
the network, whereas the activation function of a multilayer perceptron 
computes the inner product between the input signal vector and the pertinent 
synaptic weight vector. 

A feed-forward network has a layered structure. Each layer consists of units which 
receive their input from units of a layer directly below and then send their output to 
units in a layer directly above the unit. There are no connections within a layer. The 
Ni inputs are fed into the first layer of Nh hidden units. The input units are merely 
'fan-out' units and no processing has been done in these units. The activation of a 
hidden unit is a function Fi of the weighted inputs plus a bias, as given in the 
following equation: 
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( 1) ( ) ( ) ( )k k jk j k
j

y t F w t y t tθ+ = +
 
 
 
 (1-11) 

The output of the hidden units is distributed over the next layer of hidden units, until 
the last layer of hidden units, of which the outputs are fed into a layer of No output 
units. 

The backpropagation algorithm has emerged as the workhorse for the design of a 
special class of layered feedforward networks known as multilayer perceptrons 
(MLP). A multilayer perceptron has an input layer of source nodes and an output 
layer of neurons (i.e., computation nodes).  These two layers connect the network to 
the outside world. In addition to these two layers, the multilayer perceptron usually 
has one or more layers of hidden neurons (in this case one). This is because these 
neurons are not directly accessible. The hidden neurons extract important features that 
are contained in the input data. 

Backpropagation algorithm involves two phases: 

1- Forward Phase: During this phase the free parameters of the network are 
fixed, and the input signal is propagated through the network layer by layer. 
The forward phase finishes with the computation of an error signal 

i i ie   d   y= −  

Where di is the desired response and yi is the actual output produced by the network in 
response to the input xi.  

2- Backward Phase: During this phase, the error signal ei is propagated through 
the network in the backward direction. During this phase adjustments are 
applied to the free parameters of the network in order to minimize the error ei 
in a statistical sense.  

Backpropagation learning may be implemented in one of two basic ways: 

1- Sequential mode (also referred to as the on-line mode or stochastic mode): In 
this mode of BP learning, adjustments are made to the free parameters of the 
network on an example-by example basis. The sequential mode is best suited 
for pattern classification such as the proposed work.  

2- Batch mode: In this mode of BP learning, adjustments are made to the free 
parameters of the network on an epoch by- epoch basis, where each epoch 
consists of the entire set of training examples. The batch mode is best suited 
for nonlinear regression.  

Some methods are used to make backpropagation learning performance better such 
as: 

a- Use of neurons with anti symmetric activation functions (e.g., hyperbolic 
tangent function) in preference to non symmetric activation functions (e.g., 
logistic function).  

b- Shuffle the training examples after the presentation of each epoch; an epoch 
involves the presentation of the entire set of training examples to the 
network.  
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c- Follow an easy-to-learn example with a difficult one.  
d- Preprocess the input data to remove the mean and decorrelate the data.  
e- Arrange for the neurons in the different layers to learn at the same rate. This 

method is implemented by assigning a learning rate parameter to neurons in 
the last layer that is smaller than those at the front end.  

The problem is a multiclass classification, so the one-vs-all method is used in this 
study. This kind of strategy has been used in machine learning widely with named the 
entity recognition. A classifier for each character has been assigned in a way that the 
network has six classifiers. The input of these classifiers is feature vector and the 
maximum output of these classifiers has been selected as the result. 

The chosen network is a two layer neural network with 20 inputs, 25 hidden layer 
neurons, 6 outputs (corresponding to 6 Persian vowels) and tan-sigmoid activation 
function. This network had better results than other conditions. Fig.7 shows the neural 
network structure. 

4   Material and Methods 

In this work, a suitable data base has been prepared in normal lightning condition and 
frontal view without any rotation or tilt. 22 persons with different ages between 22 to 
45 and usual skin color were asked to utter Persian words in which, each word 
contained a single vowel. Fig. 7 shows a single frame of each vowel for three 
different persons. Subsets of 2200 image sequences from the database are used. This 
includes the 40 monosyllabic Persian words for each speaker. The sizes of image 
sequences for the frontal views are 512× 384 pixel. The two, three and four layer 
neural network with 20 inputs, 1 output and a different number of hidden layer 
neurons in range of 10 to 35 is tested as classifier. Two types of networks has been 
implemented, feedforward backpropagation structure and redial basis function 
structure. All conditions such as train and test data and other network parameters are 
the same. For all networks 80 percent of data is assigned as training and 20 percent as 
testing. For choosing this data, cross validation algorithm is used. After this step, all 
networks are tested by a new data set with 45 random image sequences selected from 
original database. Persian language had 6 classes of vowels, for this reason 6 parallel 
neural networks is used (for each vowel a different neural network is trained). All 
networks have similar structure and nodes but the activation functions can be 
different. At the end, the chosen network is a two layer neural network with 20 inputs, 
25 hidden layer neurons, 1 output (at final step the system selected maximum output 
of 6 networks corresponding to 6 Persian vowels) and tan-sigmoid activation 
function. This structure had better results than other conditions. Fig.8 shows the 
selected neural network structure. 

It should be notified that the speed of the proposed algorithm and accuracy of the 
results are better than other methods because classifiers do not conflict with each 
other and each classifier train immediately in the training process.  
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Fig. 7. Single frames of each vowel for three different persons 
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o 

u 

Fig. 7. (continued) 
 

 
Fig. 8. Structure Neural Network used for Classification 
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5   Results 

The proposed network has been trained and tested in three different conditions. In the 
first condition, the longitudinal parameters are used as input vectors to determine 
vowels. In the second stage, a combination of longitudinal and angular parameters are 
used as input vectors and in the third stage, a combination of  two above network 
outputs are used for determining each class.  

Obtained Results from these structures are shown in table 1, 2, 3. Results in table 1 
are poorer in compare with other tables because visual characteristics in this table are 
involved simultaneously in vowel formation. The results in table 2 show higher 
accuracy.  

By examining the results in Tables 1 and 2, it can be seen that high accuracy of 
vowel  " اِ   (e) , ُا (o) , اَ   ( a ), ای ( i ) "  is  obtained  by using simultaneously longitudinal 
and angular parameters while the status of the remaining vowel recognition ("  آ  (   )â  " 
and " او   ( u) ") is more appropriate by using only the longitudinal parameters. This 
problem can be attributed to the type of boundary changes that is made by mouth 
during the vowel Pronunciation. To increase accuracy and reduce false results, above 
networks are merged as one network that works with two different modes. The first 
mode only uses longitudinal features and second mode uses longitudinal and angular 
features simultaneously. The output of these modes combined as the result. Figure 9 
shows the block diagram of implemented model. 

As it can be seen in table 3, by using proposed method the accuracy increases in 
vowel recognition. The total accuracy in the proposed method is 79% . In addition, It 
can be seen that the best results of vowel recognition corresponded to  "  َا  ( a ) "and " 
وا  ( u) " is because these vowels make the most visual changes on the mouth. The 

worst results are corresponded to the vowel of " اِ   (e)" and  " ای   ( i ) " and that is 
 

Table 1. The input vowel and number of vowel recognitions when longitudinal parameters are 
used 

          Input 

 
  اَ
)a(  ِا)e(  ُا)o(  آ)â(  ای)i( 

  او
 )u( 

 a(  70 2 1 22 0 5(اَ 

 e( 2 61 27 0 1 9(اِ 

 o( 3 5 72 2 0 18(اُ 

 â( 0 0 25 70 0 5(آ 

 i( 0 4 30 0 65 1(ای 

 u( 3 0 13 4 0 80(او 

 

Vowel 
Recognition 
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because of least visual changes. Sadeghi [14] has done similar work for Persian 
vowels and obtained accuracy of about 64.4%. Their proposed algorithm was 
evaluated by employing it in recognition of 6 main Persian vowels. Shinchi [7] has 
done works with accuracy of 70% in Japanese vowels. He has classified 5 Japanese 
vowels uttered by 2 persons. While the process burden in our method is not changed 
significantly in comparison with referred methods, the performance in the proposed 
method is improved.  
 

Table 2. The input vowel and number of vowel recognitions when longitudinal and angular 
parameters are used simultaneously 

         Input 

 
  اَ
)a(  ِا)e(  ُا)o(  آ)â(  ای)i( 

  او
 )u( 

 a(  85 0 0 10 0 5(اَ 

 e( 4 67 22 0 0 6(اِ 

 o(  1 5 64 0 0 30(اُ 

 â(  0 0 22 78 0 0(آ 

 i( 0 2 28 0 70 0(ای 

 u( 2 0 22 3 0 73(او 

 

Table 3. Experiment for classes 
 

   Input 

 
  اَ
)a(  ِا)e(  ُا)o(  آ)â(  ای)i( 

  او
 )u( 

 a( 89 0 0 11 0 0(اَ 

 e( 0 70 21 0 0 9(اِ 

 o( 0 0 79 0 0 21(اُ 

 â( 0 0 20 80 0 0(آ 

 i( 0 0 28 0 72 0(ای 

 u(  0 0 15 0 0 85(او 
 

Vowel 
Recognition 

Vowel 
Recognition 
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6   Conclusion 
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Chapter 5 
The Reproduction of the Physiological Behaviour 
of the Axon of Nervous Cells by Means of Finite 
Element Models 
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Abstract. This paper describes 3D Finite Element modelling solutions for a segment 
of a nervous cell axon, which take into account the non linear and time varying 
dynamics of the membrane surrounding it in order to reproduce its physiological 
behaviour, in terms of Action Potentials (AP) elicitation and its temperature 
dependence. The axial-symmetry of the system is exploited in order to conduct a 
more efficient analysis. A combination of the so called Hodgkin-Huxley equations 
modelling the dynamics of the membrane voltage-controlled ionic channels, together 
with the Maxwell equations in Electro Quasi-Static approximation, describing the 
electromagnetic behaviour of each medium, is tackled in a numerical procedure 
implemented in a commercial Finite Elements multiphysical environment. The 
usefulness of Finite Elements in order to have interesting quantitative responses (field 
shape and axon physiological behaviour) is investigated. Two different models are 
presented here. One exploits the typical thin layer approximation for the axon 
membrane, proving to be useful when the field solution inside the membrane domain 
is not a matter of interest. Its performances are compared with the other model, which 
is introduced in order to obtain a more realistic representation of the studied system: 
the axon membrane is here realized with a non-linear active medium (exploiting its 
equivalent electric conductivity) allowing the reproduction of the electric potential 
also inside the membrane. The passive electrotonic nature of the membrane and the 
elicitation of an AP in presence of different stimuli are computed and the results are in 
keeping with the predicted ones. Finally the AP temperature dependences and the 
propagation effect are reproduced by using the corresponding “best” numerical 
model, i.e. the coarse one without membrane for the temperature, the more detailed 
with membrane for the propagation, leading to a trade off between the computational 
effort and the objective of the analysis. The models open a wide range of applications 
and extensions in order to understand the true behaviour of a complete neuron. 

Keywords: Axon, Neuron, Hodgkin-Huxley equations, FEM. 

Introduction 

Computational modelling and analysis in biology and medicine have received major 
attention in recent years in order to understand, analyze and predict the complex 
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mechanisms of biological systems [1]-[3]. Neural prosthetics can considerably widen 
the lifespan and health quality of people and thus the mechanisms of neuron firing 
and transmission of signals are increasingly investigated [1]. In order to study the 
influence of electrical signals on the nervous cells for setting appropriate stimulation 
protocols and to design efficient equipment, proper models are needed, capable of 
describing the phenomena occurring at the interface between neural cells and 
stimulating electrodes [4]-[7].  

In order to obtain a model able to predict cell response phenomena the nearest 
possible to the reality when they are “artificially” induced by external stresses, the 
first step is to test its capability to reproduce the “natural” phenomena. i.e. the 
physiological behaviour of the axon. In this paper a realistic cylindrical shaped 
segment of a nervous cell axon (the neuronal structure carrying nervous signals) is 
considered. Its electromagnetic physiological behaviour, at different temperatures, is 
studied by using two alternative 3D models, both implemented exploiting the Finite 
Element Method (FEM) in axial-symmetry for the solution of the Maxwell Equation 
in its Electro Quasi Static (EQS) formulation, coupled with the so called Hodgkin-
Huxley (HH) equations [8]. This problem is typically studied by using compartmental 
models for the axon behaviour ([9]-[11]) and solved by means of the cable theory that 
doesn’t furnish the shape of the electromagnetic field around and inside the axon. As 
a consequence a direct quantitative study of the interaction of the neuron with the 
applied electric stimulus, the dependences of the responses on the geometric features 
of the electrode and the influence of the electromagnetic characteristics of the external 
medium are not easy to obtain or also sometimes even impossible to achieve. Vice 
versa a “field solution” of the problem leads to the availability, for example, of the 
voltage profile inside all the modelled domain [12]. Therefore it can be useful, in 
order to understand the interaction of the axon with other neighbouring structures, 
such as another neuron. In that case some interesting results can be obtained, capable 
to take in to account, for example, the ephaptic effect among axon fibers or between 
them and somas or dendrites [13]. To this aim, the lumped-circuit quantities of the 
HH electrophysiological model can be transformed into parameters adapt to an 
electromagnetic field solution study, as in [14]. Thus here, the EQS formulation of the 
Maxwell equations, describing the relevant phenomena, is faced and the non linear 
differential equations describing the membrane behaviour are efficiently and 
accurately combined with the FEM solution in a numerical procedure performed by 
using a commercial software (COMSOL Multiphysics®), implementing their effects 
by means of opportune outward normal current densities on the boundary. This 
approach leads to a coarse FEM model of the axon that, by exploiting the concept of 
thin-layer approximation, is useful and computationally efficient when the field 
solution inside the membrane domain is not matter of interest. Moreover the 
possibility to model the axon membrane is also considered here: the axon membrane 
domain is instead realized with a non-linear active medium (exploiting its equivalent 
electric conductivity) in order to obtain a more realistic model of the axon. This 
approach leads to a different FEM model of the axon allowing the reproduction of the 
electric potential also inside the membrane. This way, the electric potential and its 
variation along all the modelled region is given with a corresponding computational 
cost, lower for the first model, higher for the second one. A comparison of the two 
models is performed in order to assure their coherence with literature specific 
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behaviour as it concerns the correct reproduction of the passive membrane 
electrotonic response and the elicitation of APs in presence of different stimuli. In this 
paper, to assure the solution the ability to reproduce the physiological behaviour at 
different environmental conditions, as experimentally found by HH, the temperature-
dependency of the voltage-controlled ionic channels is also introduced in our FEM 
models, as reported by HH [15]-[17], to accurately describe channels activation/ 
inactivation properties. The efficiency of the FEM approach with respect to variation 
in the quality of the numerical solution is performed by comparing the predicted 
behaviour with respect to the experimental one given in [17]. Finally the AP 
temperature dependences and the propagation effect are reproduced by using the 
corresponding “best” numerical model, i.e. the coarse one without membrane domain 
analysis in temperature, the more detailed with membrane for the reproducing 
propagation phenomenon, leading to a trade off between the computational effort and 
the objective of the analysis. Due to their simple implementation, the proposed 
models can be easily used to simulate the behaviour of more complex nervous 
structures. The paper is organized as follows: in Section 1 the two alternative model 
are introduced starting from the more realistic one (Model A), that reproduces the 
presence of the membrane; it is, then, followed by the introduction of the coarse one 
(Model B), that is obtained by considering the thin-layer approximation of the 
membrane domain. Here a comparison between the two models is conduced with 
respect to assigned input current, leading to assure the capability of both models to 
reproduce the electrotonic behaviour and the AP elicitation. The Section 2 is 
dedicated to the introduction of the temperature dependency in the physics of the 
membrane and used to test the capability of a FEM approach to predict the behaviour 
with respect to variation in its “numerical” quality. Finally in the Section 3 the AP 
temperature dependences and the propagation effect are reproduced by using the 
corresponding “best” numerical model, leading to the conclusion reported at the end 
of the paper and opening a wide range of future work, there indicated too. 

1   Proposed FEM Axon Models 

The schematic structure of an axon segment of nerve cell surrounded by its membrane 
(or axolemma) is pictured in Figure 1.  

It is a tubular shaped structure, delimited by three cylindrical surfaces, to delimitate 
three different domains: the axoplasm, the axolemma and the extracellular domain. 
The first one is the internal part of the neuron consisting of cytosol, the second one, 
which is representative of the membrane of the axon, is the domain in which the 
exchange of ionic charges (Na+, K+ and leakage) determines the active 
electromagnetic behaviour of the neuron and it is delimited between the two first 
coaxial cylindrical surfaces with a very thin thickness (∼nm); in the end, the third 
domain, representing the external medium in which the neuron is immersed, 
characterized by electromagnetic properties similar to the first domain, is delimited by 
the second and third coaxial cylindrical surfaces, with a thickness of the order of the 
micron. Due to the evident axial symmetry, the three dimensional axon segment of the 
nerve cell can be studied by considering only the pink-highlighted two dimensional 
section in Figure 1 and by modelling the system in a cylindrical coordinates system. It 
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is thus possible to pass from the three 3D domains represented in Figure 1 to the three 
2D rectangular domains in the more realistic model (i.e. Model A, reported in Figure 
2a) or the two 2D rectangular domains divided by a discontinuity boundary in the 
computationally-reduced model (i.e. Model B, reported in Figure 2b), in which the 
thin layer approximation of the membrane domain is used [18]. 

 

Fig. 1. The axon slice under analysis (3D sketch). The section in r-z plane is highlighted in 
pink. 

a)  

 
b) 

 
Fig. 2. Axial-symmetric 2D section in r-z plane, with boundary conditions chosen: a) Model A; 
b) Model 



 The Reproduction of the Physiological Behaviour of the Axon of Nervous Cells 73 

1.1   Model A – Axon with Membrane Domain 

The basic geometry used to model the axon, in this case, is reported in Figure 2a. In 
particular, we model a section of 1.505×0.5μm2 (0.5μm×0.5μm for the axon domain, 
Da, 5nm×0.5μm for the membrane domain, Dm, and 1μm×0.5μm for the external 
medium represented by De). The small size of the system with respect to the 
characteristic wavelength of the typical electromagnetic fields over the whole 
structure and the low contribution of the energy associated to the magnetic field 
compared to that stored in the electric field allow the adoption of the Electro 
QuasiStatic (EQS) approximation of Maxwell equations. Therefore on this geometry 
the physiological behaviour of the whole system is obtained by using the 2D axial 
symmetric transient analysis set of equation of the Quasi-Static Electric AC/DC 
module, the time dependent analysis of the Partial Differential Equation (PDE) mode 
and the extrusion tool, offered by the adopted software environment: COMSOL 
Multiphysics. Sub-domains Da and De are implemented as linear, homogeneous and 
isotropic dielectric materials, described by their constant electric conductivity, σa and 
σe, and dielectric permeability, εa and εe respectively. The corresponding values are 
reported in Table 1. On Dm, besides a constant permittivity εm, a non linear equivalent 
conductivity σm defined by (2) and an external current density depending on the 
voltage across the membrane are used in order to approximate the nonlinear 
behaviour of the medium with respect to the imposed electric field (according to the 
HH model of the membrane). In particular, HH circuit-equations must be “converted” 
to obtain their electromagnetic field equivalent [19]. 

First of all, since membrane thickness is very small, it can be looked at as a parallel 
plate capacitor. Therefore its dielectric and equivalent conductivity can be derived 
from values found in literature [8]. In particular, once defined all the constant 
parameters as in Table 1, the dielectric constant per unit area is 

0ε
ε mm

m

dC=  (1) 

whereas membrane equivalent conductivity σm can be derived by HH overall 
membrane conductance, Gm, defined as a function of the Sodium (Na), Potassium (K) 
and Leakage conductances (l) [16] and depending on transmembrane voltage (TMV) 
through the so called channel activation variables. Then, σm becomes: 

mmm dG ⋅=σ  (2) 

where 
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i

im ∈=   with   
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Table 1. Parameters appearing in the model 

Parameter Value Description 
εm 5.65 Membrane relative dielectric constant 

Cm [μF/cm2] 1 Membrane capacitance per unit area  

dm [nm] 5 Membrane thickness  

GNamax [mS/cm2] 120 Conductance per unit area of the Na channel 

GKmax [mS/cm2] 36 Conductance per unit area of the K channel  

Gl [mS/cm2] 0.3 Conductance per unit area of the leakage channels 

ENa [mV] 55 Nernst voltage due the Na concentration  

EK [mV] -72 Nernst voltage due the K concentration  

El [mV] -49.38 Nernst voltage due other ionic concentrations  

σAx [S/m] 0.5 Axoplasm conductivity 

εAx 80 Axoplasm dielectric constant 

σExt [S/m] 1 External medium conductivity. 

εExt 80 External medium dielectric constant 

 
The expressions of ionic channel conductances, reported in (4.a) and (4.b) show 

their connection with the activation/inactivation variables m, n and h, implicitly 
defined by the differential equations set (5): 

hmGG NaNa
3

max=  (4.a) 

4
maxKK nGG =

 
(4.b) 

( ) xx
dt

dx
xx ⋅−−⋅= βα 1  (5) 

where x∈{m,n,h}.  
The transfer rate coefficients αx, βx, in (5), are not constant numbers but, as shown 

in Table 2, depend on the value of the voltage across the axon membrane – the so-
called transmembrane voltage, TMV here defined as Vm(x,y,z,t)=Vm(r,φ,z,t) = Vm(r,z,t) 
– through V’, which represents the TMV deviation from the resting value Vstat=-
60mV. 

Table 2. Expressions of the transfer rate coefficients and corresponding initial values [1/s] 
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The HH trans-membrane current density equation for a unit area patch of 
membrane can be expressed as: 

       

( ) { }l,K,NaiGEV
dt

dV
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i

iim
m

mm ∈−+=    with   
(6a) 

Separating the term depending on Vm and the one depending on the Nernst potentials, 
Im becomes 

      
      emm

m
m

i i
iiim

m
mm JGV

dt

dV
CGEGV

dt

dV
CI −+=−+=    (6b) 

with i∈{Na,K,l}. Je is modeled as an externally impressed current, taking into account 
the Nernst potential, and is defined as 
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Furthermore, the equation of continuity implemented everywhere over the FEM 
model can be written as 
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The continuity equation (8) must be implemented on the whole model, whereas the 
HH equations system is associated only to the membrane domain Dm. As the three 
voltage-controlled conductances GNa, GK and Gl are meaningful only on membrane 
domain and not externally, they require to be only locally defined. The flexibility of 
COMSOL Multiphysics® proves useful in handling variables, as well as in the post-
processing phase. In the simulation session a set of PDEs is coupled to the 
Electrostatic module: the first one is employed in order to solve equation (8) with 
respect to the so-called dependent variable (in this case electric potential, V), whereas 
the second one is introduced to solve the three differential equations in m, n, h 
(dependent variables), representing channel activation variables according to the HH 
model ([8]), as shown in the equations reported in system (5).  

In order to obtain the voltage values along both sides of membrane, point by point 
along the z coordinate, the “extrusion” feature is conveniently employed. n fact, the 
equations implemented there, explicitly depend on TMV, Vm(r,z t): 

              ),,(),,(),,( tzrVtzrVtzrV oim −=  (10) 

where Vi and Vo are the voltage across the boundaries 4 and 6, respectively (Figure 
2a). This way the HH lumped-circuit quantities are “translated” into parameters adapt 
to a field solution study, as previously highlighted. It must also be noticed that, while 
εm obtained is a constant, σm depends on Vm (r,z,t). 
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1.2   Model B – Axon with Thin Layer Approximation 

The basic geometry used to model the axon in this case is reported in Figure 2b. In 
particular, we model a section of 1.5×0.5μm2 (0.5μm×0.5μm for the axon domain, Da, 
and 1μm×0.5μm for the external medium represented by De). Also in this case, the 
physiological behaviour of the whole system is obtained by using the 2D axial 
symmetric transient analysis packet of the Quasi-Static Electric AC/DC module 
whereas the time dependent analysis of the PDE mode packet adopted is in weak form 
and the possibility to perform a thin layer approximation ([18]) is exploited in order to 
have a computationally less costly model, as in [14]. In fact, the cell membrane is an 
extremely thin structure that increases the simulation time and memory request in 
FEM. This applies to the short axon segment under analysis and it is especially true in 
the perspective of a generalization of the model to a whole axon. Indeed, if it were 
necessary to simulate the behaviour of a very long neuron (i.e. a motoneuron), this 
would result in a form factor (length of the axon divided by membrane thickness) that 
could also be of the order of 109. In order to simplify meshing and to greatly reduce 
simulation time and memory request it is useful to employ a thin layer approximation 
for the membrane. It is, thus, possible to completely avoid the physical realization of 
the corresponding thin domain, by substituting it, with an interface surface. This leads 
to an alternative model, B (Figure 2b), that completely satisfies the hypotheses of 
applicability of the approximation: 

1) there is a substantial difference between membrane domain conductivity and 
those of the other two domains; 

2) lateral boundaries are insulated (null net flux); 
3) current density components along φ and z are negligible with respect to that 

along r-axis.  
In particular, it is possible to approximate the potential distribution along the 

membrane thickness as being linearly varying from Vo to Vi. Thus, by using the 
continuity equation for the current, it is easy to derive the expression for an equivalent 
current density Jeq [14]: 
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where V1 and V2 represent the voltage values along the membrane boundaries 4 and 7 
of Figure 2, respectively. This equation can be implemented by using two different 
Electrostatics packets in order to allow the solver to “see” interface surface 
(substituting the membrane domain of the model A) once as belonging to axoplasm 
Da and once to the external medium domain De. It is clearly expectable that voltage on 
that boundary will have a discontinuity (V2-V1) almost equal to the value that the 
TMV would have reached, if the membrane were really implemented in the model as 
a 2D domain. Thus, V1 is set as an active variable only in the axoplasm domain, V2 
only on the external medium domain, while both are defined on their interface. Jeq is 
imposed as an input current density on this boundary, as in [14]. In addition, an 
alternative formulation of the three non linear differential equations reported in (5) 
must be provided on this surface where all expressions are locally defined. The idea is 
to substitute the PDEs formulation, adopted in the version A of the model, with its 
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weak formulation (for boundaries). This choice allows to handle all the equations in 
the integral form, multiplying both sides of each equation by a test function and then 
integrating. 

1.3   Model A vs. Model B  

In order to make a fair comparison between the two modelling solutions, some FEM 
common parameters are adopted as reported in Table 3. 

Table 3. Parameters used for comparing the two models 

Calculus and mesh parameters Value
Simulation times [s] 0:10-4:0.02

Relative tolerance 10-4 

Absolute tolerance 10-8 

Max. element size scaling factor 1 

Element growth rate 1.3 

Mesh curvature factor 0.3 

Mesh curvature cut off 0.001 

 
The same initial and boundary conditions are fixed everywhere, exception made 

for the various settings related to membrane domain, since it is not present in the 
Model B. This settings induce the meshes pictured in Figure 3 in which the increase is 
evident in the number of elements due to the presence of a thin structure, represented 
by the membrane domain in the Model A (Figure 3a), if compared with the Model B 
(Figure 3b). 

 
a) 

 
b) 

 

Fig. 3. Meshed 2D geometry: a) model A with membrane, b) Model B without membrane 
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The simulation is carried out, by fixing all initial conditions from nominal resting 
values. The iterative procedure is stopped when the numerical variations are 
sufficiently negligible leading to the “equilibrium” steady state conditions. This 
condition is adopted as a starting point for studying the cellular responses elicitation 
by applying a square window current density stimuli of different amplitude and 
duration to boundary 1 (Figure 2). In Table 4 the degrees of freedom and the number 
of elements for the two different models are reported together with the simulation 
duration, necessary to achieve equilibrium (the stable stationary condition for the 
neuron at rest). 

Table 4. Figures of merit concerning the two FEM models and corresponding simulation time 

PARAMETER/MODEL A B 
Degrees of freedom 7086 685 
Number of elements 2378 300 
Simulation duration  
for the equilibrium state 

13.00 s 2.63 s 

 
By looking at the Table 4, the difference is evident of almost one order of 

magnitude for the considered figures of merit, concerning the more detailed FEM 
Model A with respect to the coarse one (Model B), leading to a five times larger 
simulation time for the reproduction of the axon behaviour for the adoption of the first 
model. In Table 5, instead, the case of 20ms of membrane behaviour simulation is 
reported when it undergoes a stimulus-induced response. The considered current 
stimulus is given by 4 rectangular shape obtained by combining a short-d (2ms) or 
long-D (19ms) duration and low-m (0.03A/m2) or high-M (0.3 A/m2) magnitude. 

Table 5. Simulation times (in [s]) for the computation of 20ms of membrane behaviour 

 d/m d/M D/m D/M 
Model A 83.64 185.59 119.31 183.71 
Model B  19.79 48.96 26.89 42.70 

 
 
In this case an appropriate current density (Jin, the square window shown in the 

Inset of Figure 4a) is applied at r=r1=1nm, very close to the symmetry axis, in order 
to trigger the excitable membrane (if current density stimulus where injected exactly 
at r=0μm, current density would have been undefined). A great advantage is offered 
by Model B in the dynamic case too, as far as stimulation length is concerned. Indeed, 
for all the considered stimuli, in order to obtain the time shape of the TMV in a time 
window of 20ms, a simulation time is found of also more then 3’ for the Model A, 
with respect to almost 40 s for the Model B, as reported in Table V. In Figure 4, the 
membrane responses obtained at r=0.6μm z=0.2μm for the Model A (blue curves) and 
Model B (red curves) for each considered case are depicted. 
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Fig. 4. Membrane response in terms of Vm(0.6μm,0.2μm,t): a) dm, b) dM, c) Dm, d) DM. Inset: 
Input stimulus parameters 

In order to compare the two models, the relative difference between the maximum 
value reached by the AP, obtained by means of Model A with respect to that of Model 
B is used (the value calculated with Model A is considered as reference value due to 
the fact that it comes from the more realistic model). The behaviours obtained with 
both the models are totally in accordance with theoretical expectations [20]. As 
reported in Figure 4a, in the first case (dm) the stimulus is not sufficient to elicit any 
AP (sub-threshold behaviour, whose parameters, rise time and amplitude, are those 
expected) showing a passive electrotonic nature of the membrane, being it 
approachable (at least in first approximation) as an R-C circuit. The relative error 
between the two models is computed as 0.04%. In the second and in the third cases 
(see Figures 4b and 4c), an AP is observed (relative error 0.01% and 0.05% 
respectively), while in the fourth one, since both strength and duration of the stimulus 
pulse are high (see [7],[20]), two APs are excited, the second of which is lower than 
the other, because refractory period is not respected. In this last case, depicted in 
Figure 4d, the relative error is the same as in the case a), i.e. 0.01%, as it is expected 
due to the fact that the input is the same at the time instant in which the maximum 
TMV value is reached. It is interesting to observe how membrane responses, in the 
four corresponding cases almost coincide in the two modelling approaches, with a  
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relative variation not higher then 0.05%. Therefore the coarse Model B seems to be a 
very good representation of the reality if compared with the fine Model A and the best 
choice in terms of computational effort. Actually the Model A furnishes the voltage 
profile along the r direction all over the structure considered for the 3D axon sketch 
(Figure 1), whereas in the Model B no information is available for the axolemma 
membrane. Therefore, in presence of a lower computational effort, the adoption of the 
Model B can be conveniently considered in order to evaluate phenomena external to 
the membrane domain, otherwise the “more realistic” Model A must be adopted. 

2   AP Temperature Dependence and Feature of a FEM Approach 

The simulations described in the previous section are carried out supposing an 
operation temperature of 6.3°C, such as the one used by HH in their measurement 
phase [8] and simulated in [20], with respect to the same current input stresses. 
Moreover, the channels conductances exhibit a time behaviour that is described by an 
opportune time constant and that is governed by the activation/inactivation of the 
corresponding ionic species. The temperature dependency of the gating process, 
according to [15], can be described by: 
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leading the original rate coefficients reported in Table 2 to change into α’x and β’x 
thanks to the introduction of the temperature-dependent factor 3(0.1T-0.63). The time 
constant τx of the “channel-gating” processes results scaled of the same factor leading 
to a faster dynamic: 
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Adding also temperature dependence to the model, i.e. using the new transfer rate 
coefficients in the FEM Model A and B, it is easy to obtain the TMV for temperatures 
within the theoretical validity range of the HH model ([11],[21]). Nevertheless, as far 
as the interest is on the capability of the FEM approach to reproduce the temperature 
dependency not necessary in the membrane domain, the behaviour of the TMV with 
respect to that for only the coarse model (Model B) is performed. In particular, by 
considering the same temperature experiment performed and theoretically predicted 
by HH in [17], the obtained time shape of the TMV is reported in Figure 5, showing a 
good reproduction of the results. 
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Fig. 5. Simulated TMV behaviour as in [17], obtained with the FEM-Model A 

In order to assure the reliability of the FEM solution in terms of the quality of the 
numerical approximation of the “actual behaviour”, i.e. the experimental one, in Table 
6 a comparison is reported on the TMV maximum value estimation between a base 
meshing of the geometry and a more refined one. 

Table 6. Comparison of the mesh-cost vs accuracy of the predicted data 

PARAMETER/MODEL  Base Mesh Refined Mesh 
Degrees of freedom 7086 27280 
Number of elements 2378 9512 
Simulation duration 13.00 s 133s 
Relative error @T=6.3°C -1.4312% -1.4313% 
Relative error @ T=18.5°C -1.6730% -1.6735% 
Relative error @ T=28.9°C -10.4043% -10.4045% 

 
 
In particular, by increasing the approximation of the geometry with a mesh-

refinement, an increase on the computational cost in terms of simulation times of a 
factor ten is found (i.e. a simulation time from 13s to 133s), due to an increase of 
approximately 3.5 times for the figure of merit of the FEM model (i.e. degrees of 
freedom and number of elements). Furthermore the improvement on the estimation of 
the experimental data derived from a more discretized model is negligible, i.e. the 
difference is only on the fourth digit of the relative error. This low difference is 
obtained also in correspondence of the higher temperature, where it is known that the 
temperature dependency of the HH model itself starts to be less realistic [17]. As a 
consequence it is possible to assume that also a “soft” discretization of each region is 
necessary and that a “light” simulation is enough in order to perform a satisfactory 
study of the phenomenon. 
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3   Best Numerical Model with Respect to the Objective of the 
Analysis 

In order to study two different problems, we need to select the best numerical model, 
ensuring the desired analysis without introducing a not necessary hard computational 
effort. In particular, if we are interested, for example, in the reproduction of the 
spiking effect due to an increase in temperature or to a study finalized to quantitative 
interpreting the number of APs or, in the end, to determining the maximum TMV 
value assumed along the longitudinal extension of the axon, the Model B can be 
adopted. Whereas, if we are interested on the visualization of the behaviour inside the 
membrane during AP propagation, and its effect around the external medium, the 
Model A with membrane can be more conveniently adopted. In the two following 
subsections the results are reported and some comments are indicated. 

3.1   Temperature Dependence of the Firing Effect 

A parametric study of the TMV with respect to the temperature is made by 
performing numerical simulation on the Model B, which leads to the time behaviours 
depicted in Figure 6.  

In particular the range [9-21]°C is considered with a step of 3°C for each case. This 
picture shows how, as theoretically expected [17], the spiking of the neuron is 
affected by a change in the temperature. Moreover, it can be observed, in Figure 6 
and, particularly, in Fig 6 a and b) (zooming on the first AP) that the maximum value 
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Fig. 6. Temperature dependency of the AP behaviour: a) number of APs in the same time 
window; b) first AP peak; c) TMV behaviour at a particular temperature (T=18.3°C) 
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c) 

Fig. 6. (continued) 

assumed by the Vm(t) gets lower and lower increasing the value of the ambient 
temperature, while the duration of the spikes gets minor in contrast with the number 
of them ( three spikes for the case at T=9°C and seven for T=21°C). 

In particular, as a particular exemplification case in Fig 5c) we have chosen to 
show when the temperature assumes a particular value of 18.5°C. In this case the 
membrane response results in a sequence of six APs, shorter than the two observed at 
lower temperature reported in Figure 4d). In particular we also check the temperature 
effects on channels gating process by observing that in turn, channels time constants 
affect membrane dynamics, which can be represented by the time dependences of the 
channels conductances ([22]-[23]), reported in Figure 7. 
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a) 

b) 

Fig. 7. Temporal dynamic shapes for GNa, GK, Gl at different temperatures: a) T= 6.3°C; b) 
T=18.3°C 

The maximum of the conductance for each channel is reached faster at higher 
temperature - case reported in Figure 7b) with T=18.3°C -whereas the duration of the 
opening of the channel, i.e. a significant value for each conductance, is longer at 
lower temperature - case depicted in Figure 6a- with T=6.3°C) as confirmed by 
equation (14). 

3.2   The Propagation of the AP along the Membrane Domain 

In order to obtain the visualization of the AP propagation inside the membrane, and 
its effect around the external space, the Model A with membrane is here conveniently 
adopted. Specifically, in accord to HH experimental setup, once the resting state 
conditions have been achieved all over the structures, a potential difference, beyond 
the natural excitement threshold [24], can be fixed across membrane at any 
transversal section (in this case at z = 0) of the model to elicit a local action potential. 
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This propagates along the considered axon segment, thanks to the well-known 
physiological mechanisms of non-myelinated fibres, whose reproduction was the 
objective of this simulation phase. In particular, this is achieved by fixing a 15mV 
voltage difference across axon membrane at z=0, thus obtaining the propagation 
effect shown in Figure 8. 

 
a) Electric potential colour map 

    
b) Local current vector map c) Contour plot of the electric potential 

 
 

Fig. 8. a) Propagation phenomenon: the moving active zone (z∈ [0.02,0.3]μm and r 
[0.25,0.75] μm). Potential map at three different times of pulse conduction. b) Simulation results 
for local currents in an activated zone. c) Zoom in an active zone: electric potential lines inside 
and outside membrane (z∈ [0.09, 0.13]μm and r [0.45,0.54] μm). 

The explanation of these results is the presence in a certain instant of an AP in an 
area (the active zone, emulated constraining the value of TMV at z=0). This implies 
that the inner side of the membrane is electrically “more positive” with respect to the 
outer one. The charge distribution non-homogeneity, thus created, induces 
longitudinal potential gradients; these in turn generate electric currents (known as 
local currents) in both intra and extra-cellular media, whose lines merge into the 
active zone (Figure 8b and 8c). All this process results, as expected theoretically, in 
the activation of the other near areas interested by these charge fluxes. Simulation 
results for model A are reported to show equipotential lines distribution within an 
activated section of membrane domain (Figure 8c).  

Conclusions and Future Work 

It is shown that the two FEM models, here described, allow to simulate the 
electrophysiological behaviour of a portion of nervous cell axon, to carry out the 
simulation of the static, underthreshold and active dynamic behaviour, to reproduce 
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action potentials. The maximum deviation in the prediction of the two models in 
correspondence of the TMV peak-value has proved to be almost 0.05% with respect 
to an increase in the computational cost of a factor five. It is also shown that the 
quality of the FEM discretization is not relevant with respect to the capability of the 
solution method in order to reproduce the expected behaviour. In particular the 
capability of the FEM solution to reproduce the temperature dependency of the TMV 
is investigated leading to assume that also a “soft” discretization of each region is 
sufficient and that a “light” simulation is enough in order to perform a satisfactory 
study of the phenomenon. Both the proposed models grant the calculation of the 
electric potential distribution in the space. The Model A, with the direct 
representation of the axolemma, is unavoidable if the behaviour of the 
electromagnetic characteristic inside the membrane is matter of interest, whereas the 
second coarser one (Model B) is computationally more efficient in all the other cases. 
Therefore, the AP temperature dependences and the propagation effects are 
reproduced by using the corresponding “best” numerical models, i.e. the coarse one 
without membrane for the temperature, the more detailed with membrane for the 
propagation, leading to a trade off between the computational effort and the objective 
of the analysis. The models are a very useful starting point for a wide range of future 
works for different application and extension in order to understand, for example, the 
true behaviour of a complete neuron. It is now possible, without dealing with 
enormous form factors, to simulate a whole non-myelinated fibre, to introduce more 
detailed geometry in the structure such as soma and dendrites, implementing their 
behaviour simply considering locally differentiated channel densities and translating 
them into opportune conductances per unit area. Also for this topics opportune 
considerations on the computational cost must be taken into account: when a lower 
computation effort is required, the adoption of the Model B can be conveniently 
considered in order to evaluate phenomena external to the membrane domain, 
otherwise the “more realistic” Model A should be adopted. 
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Abstract. This chapter presents a single multiplicative neuron model for predicting 
software failure has been proposed. Standard back propagation and real coded genetic 
algorithm with mean squarer error as a fitness function are used for optimizing the 
parameters. The performance of the proposed model is validated using some real 
software failure data. A comparative study between some existing software reliability 
models and the proposed model is presented using different comparison criteria. 

Keywords: Single Multiplicative Neuron (SMN), Back Propagation, Genetic 
Algorithm, Software Reliability Growth Model (SRGM), Fault, Time Between 
Failures (TBFs).  

1   Introduction 

Computers play a very important role in modern civilization as these are being used in 
many areas like bank, defense, medical science, and other safety critical systems. The 
work performed by the computer is solely carried out by software. A software failure 
can lead to economic loss and some times may even cause loss of human lives. 
Therefore, the demand of highly reliable software is increasing day by day. Hence, 
study of software reliability has become a very crucial issue. Software reliability is 
defined as the probability of failure free operation of a software in a specified 
environment for a specified period of time. Software reliability technique is a tool for 
reducing or eliminating failures of software system. Since 1970's many software 
reliability growth models (SRGMs) have been proposed to estimate reliability, cost 
and release time etc. of software system. Some important SRGMs have been 
considered in [1,2,3]. Most of these SRGMs use system test data to predict the 
number of defects remaining in the software. In general the utility of SRGM is related 
to its predictive ability, i.e., the number of remaining faults predicted by the model 
should be close to the number of faults present in the software. Most of the existing 
SRGMs in the literature follow non homogeneous poisson process (NHPP) with 
different mean value functions and they are based on different assumptions. Some of 
them are immediate fault correction, perfect debugging, uncorrelated failures, etc. 
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These are not true in real testing environment. Also, due to various assumptions these 
models are capable of analysing some particular software failure data only. As a result 
many SRGMs have been developed with different predictive performance. 
Considering these facts, Karunanithi et al. [4, 5] first proposed neural network based 
SRGMs as an alternative to parametric SRGMs. In recent years artificial neural 
network (ANN) approach has proven to be a universal approximator for any non 
linear continuous function with an arbitrary accuracy. Consequently it has become an 
alternative method in software reliability modeling, evaluation and prediction [6, 7, 
8]. In [4, 5] Karunanithi et al. have taken execution time as input and predicted the 
cumulative number of faults. Later many authors Cai et al.[6], Tian and Noore [7, 8], 
Khoshgoftar and Szabo [9], Park et al.[10], Adnan et al.[11], Aljahadali et al.[12], Ho 
et al.[13], Sherer [14], Hu et al.[15], Su et al.[16], Zheng [17] have also applied neural 
network approach in software reliability modeling and found better results over 
parametric SRGMs. Some existing ANN based SRGMs have used single-input and 
single output neural network architecture [4, 5, 10] whereas some authors have used 
multiple delayed input and single output architecture [7, 8, 11, 12].  

Generally in ANN models, inputs are combined using the summing operations. 
Multiplication plays an important role in between neural modeling of biological 
behavior and computing and learning with artificial neural networks [18]. Michel 
Shmitt [19] used the concept of the multiplicative neural network which contains 
units that multiply their inputs instead of summing them and the complexity of 
computing and learning for multiplicative neural networks has been discussed. In [20] 
Yadav et al. has proposed a single multiplicative neuron (SMN) model inspired from 
single neuron computation in neuroscience [21, 22]. This model is based on 
polynomial architecture. They have used it for time series prediction and function 
approximation. Later Zhao et al. [23] proposed a particle swarm optimization based 
single multiplicative neuron model and predict some well known time series.   

In this chapter a multiple delayed input SMN model has been proposed for 
prediction of software fault using historical software failure data. First time the 
application of SMN in the area of software reliability has been studied. The proposed 
SMN is a neural network comprising of simple structure and less parameters as 
compared to traditional ANN based SRGMs. The proposed SMN network does not 
contain any hidden layer and one does not need to determine the monomial structure 
in the sense of number of hidden layer prior to training of neuron model. Mostly 
traditional SRGMs based on neural network have relationship between failure 
sequence number and failure time data. Here the interrelationship among the failure 
sequence number is considered, i.e., inputs and outputs both are the cumulative failure 
number. A standard back propagation (BP) and a real coded genetic algorithms 
(RCGA) have been used to optimize the parameter, i.e., weight and biases of network 
and the results have been shown separately.  

Rest of the chapter is organized as follows: In section 2 SMN has been described. 
In section 3 the standard back propagation and genetic algorithm have been provided 
for optimization of network parameters. Section 4 represents results and discussion. 
Section 5 describes comparison with some existing parametric SRGMs. Finally 
section 6 contains the concluding remark. 
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2   The Single Multiplicative Neuron Model 

The structure of a generalized SMN model with learning algorithm is given in Figure 1.  

 

Fig. 1. The structure of generalized SMN 
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here u is equal to Ω  

3   Learning Rule for the Single Multiplicative Neuron Model  

This section describes an application of Back Propagation and a real coded Genetic 
Algorithm in optimizing weights and biases of SMN model during its learning. The 
learning algorithm has been used to minimize the error between the original and 
predicted values. 

3.1   Back Propagation (BP) Learning Algorithm  

The standard BP algorithm based on steepest descent gradient approach has been 
adopted to train the proposed SMN model and minimize the error function E defined 
as 
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input pattern. Using the steepest descent gradient approach and the chain rules for the 
partial derivative, the update rules for the weight and biases of the model can be 
obtained from the following equations: 
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and h is the learning rate parameter that controls the convergent speed. The above 

process is iterative until predefined error goal is reached. 

3.2   The Genetic Algorithm 

Genetic algorithm (GA) is a directed random search technique that is widely applied 
in optimization problem [24, 25, 26]. In general, genetic algorithm is used in the area 
of neural network for designing the structure and optimizing the neural network 
parameters. In ANN based SRGMs genetic algorithm has been applied successfully 
for optimizing the network architecture [7, 8, 27] and the parameters, i.e., the weight 
and biases [28] to predict the cumulative faults as well as TBFs of software. GA is a 
optimization technique in which the solution space is searched by generating a 
population of candidate individuals. Each individual is called a chromosome which 
represents a configuration of a solution. A general procedure of standard GA is as 
follows: (i) create an initial population of chromosomes (initial set of solution) at 
random, (ii) the chromosomes are computed by a defined fitness function, (iii) select 
subpopulation for next generation reproduction, (iv) generate a new population by 
applying the genetic operators of crossover and mutation to this selected 
subpopulation. Normally the new population has a greater average fitness than 
preceding population and the above process is repeated until a predefined criterion is 
reached.   

The most common representation of traditional GA is binary, i.e., the chromosome 
consist of a set of genes which are characters belonging to an alphabet {0,1}. RCGA 
is an alternative of the representation issue, which is particularly natural when 
tackling optimization problems of parameters with variables in continuous or 
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discontinuous domains. In the RCGA, a chromosome is a vector of floating point 
numbers corresponding to design variables. The RCGA is more efficient because the 
real number representation is conceptually close to real design space and length of the 
chromosome becomes shorter. In [26] it has been shown that for real valued 
numerical optimization problems, real number  representations outperforms binary 
representation because they are more consistent, precise and lead to faster execution. 

The combination of genetic algorithm and SMN network for training consists of 
three phases: (i) In the first phase the representation of connection weights and biases 
is decided, i.e., whether to use a binary string form or directly use a real number form. 
Since in this work RCGA has been used, the weights and biases will be real number 
in chromosome. (ii) In the second phase the evaluation on the fitness of these 
connection weights are made. The mean square error criterion has been used as a 
fitness function defined in equation (9). (iii) In the third phase the evolutionary 
process such as selection, crossover and mutation operations by genetic algorithm 
according to its fitness has been applied. 

A chromosome consists of all network weight and biases. One gene of 
chromosome represents a single weight value. Suppose there are two input neurons in 
the network so the chromosome consists of four genes, i.e., two weights and two 

biases, i.e., 
1 2 1 2

( , , , )c w w b b=  

The stepwise procedure for the training of SMN network using RCGA is as 
follows: 

Step 1. A population of chromosome is created. 
Step 2. Evaluate the fitness function (given in equation 9) for each chromosome in 

the population. 
Step 3. Create an intermediate population by extracting members from the current 

population using a selection operator. 
Step 4. Create a new population by applying the genetic operator of crossover and 

mutation to this intermediate population. 
Step 5. Repeat the above steps until a given condition is attained. 

Fitness Function: Fitness function 1/(1+E) has been chosen, where E is the mean 
square error 

(MSE) defined as  
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Selection Mechanism: The roulette wheel selection is used to create the intermediate 

population. The selection can be done by assigning the probability ( )s ip c to the 

chromosome ic  defined as  
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4   Results and Discussion 

The performance of proposed SMN model has been tested using two real software 
failure data. The proposed ANN based SRGM has been used to predict cumulative 
number of faults. Here, the cumulative number of faults at current stage of testing has 
been predicted using cumulative number of faults of previous stage of testing. Hence, 
the output of the proposed model becomes the function of pervious cumulative faults, 
i. e., 

1 1
, , ...,
i i i k
x x x+ + - ( 1,2,...i = ) are used to predict the value i k

x
+ , where k 

is the number of delayed input node and 
i
x  is the cumulative fault at thi  time point.  

i.e. 1 1( , ,..., )i k i i i kx f x x x+ + + −=        1, 2,...i =           (11) 

Here k input delay means k number of past input used to deliver the current output, 
e.g., suppose the number of the delays in input node is 2, i.e., the value of 2k =  

then the values of 1 2,x x  are used to predict 3x (for 1i = ). The number of delayed 

input nodes have been determined by trial and error. In this paper initially two 
delayed inputs has been considered and then increased one by one up to 5. The 
number of delayed input has been increased from two to five for the selection of 
training data set and delay. The optimal values of training data set and a delay has 
been selected based on the performance of the network. The performance has been 
measured on the basis of fitness function (MSE) value for specific dataset. The data 
set has been split in two sets: one for training and one for testing. All the inputs are 
normalized to values in the range of 0.1 to 0.9. The MATLAB 7.6 Neural Network 
Tool Box and Genetic Algorithm Tool Box have been used for computation. The 
learning rate h  of BP Algorithm set as 0.6 and the maximum iterating epoch as 5000. 

Population size of GA is set as 20, the maximum generation is set as 500 and other 
parameters are set as default values.   

Result Using Data Set 1: The effectiveness of proposed model has been tested on a 
Real-Time Control Systems data given in [1]. The software for monitor and real-time 
control systems consists of about 200 modules and each module has, an average, 1000 
lines of a high-level language code like FORTRAN. This data set records the software 
failure detected during the 111-day testing period. Initially the entire data set is 
divided in various segments like 50, 70, 90 and 100 percent respectively, then the 
MSE values have been calculated for all the segments of the available data with 
different values of input nodes. The computed values of MSE have been given in 
Table 1. Table 1 show that the 70% of the data with three number of delayed input 
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nodes has a minimum MSE value. Therefore, the first 70% has been used to train the 
network and estimate the network parameter. The remaining 30% has been used for 
testing the performance of the model. The corresponding graph has been shown in 
Fig.2. Fig. 2 shows that, the predictive accuracy of the proposed model is good. It also 
shows that, prediction is good for both the training algorithm: BP as well as GA.   

Table 1. Different set of training data with corresponding MSE values corresponding to various 
delays for Data Set 1 

DATA2 2 input delay   3 input delay 
 

4 input delay 5 input delay  

50% 2637.10 1528.10 1724.80 1757.20 
70% 226.5400 169.9646 188.0801 190.9004 
90% 266.6707 180.5346 200.4515 204.4155 
100% 250.4367 183.4476 208.6639 208.8315 
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Fig. 2. Prediction of cumulative faults vs. testing time for DATA2 

Results Using Date Set 2: A real time control application software failure Data 7 
given in the CD ROM attached with the book published by Lyu [3] has also been 
examined by proposed model. The software consists 870,000 lines of code. The test 
time reported in days and the cumulative faults captured corresponding to each day. 
This data set contains 109 observations. This data set records the software failure 
detected during the 111-days of testing period. Here also the data set is divided in 
various segments like: 50, 70, 90 and 100 percent. Then the MSE values have been 
calculated  for all the segment with different number of input nodes. The computed 
values of MSE have been shown in Table 2. Table 2 shows that 70% data with three 
numbers of delayed inputs has a minimum MSE value. Therefore, the first 70% has 
been used to train the network and estimate the network parameters. The remaining 
30% data have been used for testing. Corresponding graph has been given in Fig 3. 
Fig 3 illustrates the predictive accuracy of model for both the training algorithm: BP 
as well as GA.                  
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Table 2. Different set of training data with corresponding MSE values corresponding to various 
delays for Data Set 2 

DATA7 2 input delay  3 input delay  4 input delay  5 input delay  
50% 985.5196 572.7014 588.5983 576.4567 
70% 229.9461 191.5603 205.6274 199.1753 
90% 240.3755 208.4754 224.4585 219.1785 
100% 237.8068 205.7068 220.0236 216.4302 
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Fig. 3. Prediction of cumulative faults vs. testing time for DATA7 

5   Comparison 

In this section a comparative study of the proposed SMN model with some important 
existing parametric SRGMs [29, 30, 31] and feed forward neural network  based  
SRGMs[ 4, 5] has been carried out. Here feed forward neural network with 3 input 
delays has been considered.  The comparison has been made by evaluating some 
performance criteria like root mean square error (RMSE), coefficient of multiple 

determination ( )2R  and u-plot. Above mentioned criterions have been defined as 

follows: 

(i) Root Mean Square Error (RMSE): ( )2

1

1
,

n

i i
i

RMSE y y
n =

= −       (12) 

where iy  and iy


 are the observed and predicted faults respectively and n is the total 

number of observations. The minimum RMSE represents less fitting error and better 
performance. 
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(ii) Coefficient of Multiple Determination ( 2R ): 2 1
yy

SSE
R

SS
= − ,        (13) 

Where SSE= ( )2

1

n

i i
i

y y
=

−  . SSE measures the deviation of the observation from their 

predicted values and ( )2

1

n

yy i
i

SS y y
=

= − ( y  is the mean of the observation). 

yySS measures the deviations of the observations from their mean. 2R  measures the 

percentage of the total variation about the mean accounted for the fitted curve, its  
range is 0 to 1. Small value indicates that the model does not fit the data well and the 

larger 2R  value is, the better the model explains the variation in data [2]. 
(iii) u- plot: The general technique for detecting systematic objective difference 

between predicted and observed failure behavior is called u-plot [3, 16]. The purpose 
of u-plot is to determine if the predictions are on the average close to true distribution 
or not. If the prediction is perfect, then the u-plot looks like the line of unit slope. A 
common way to test the significant difference between prediction and actual value is 
Kolmogorove Distance (KD). The KD is the maximum vertical distance between u-
plot and the line of unit slope [3, 16]. 

The mean value functions and calculated parameter values of parametric SRGMs 
for both datasets has been tabulated in Table 3. 

Table 3. Mean value functions and estimated parameters 

 

For the Data Set 1, u-plot has been shown in Figure 4 and the SSE, RMSE, 2R and 
KD of u-plot values have been computed for SMN model and compiled in Table 4.     

 

 

Model Mean Value Function     Estimated Parameters 
 
Goel-
Okumoto 

 

( ) (1 )b tm t a e-= -  

497.282,  =0.0308 (Data Set 1)

557.6004,  =0.0209 (data Set 2)

a b

a b

=

=
 

 
Delay  
S Shaped 

 

( ) (1 (1 ) )btm t a bt e-= - +  

483.039 =0.06866 (Data Set1)

543.2680,  =0.0522 (Data Set 2)

a b

a b

=

=
 

 
Quasi -
renewal 
Time-
delay 
model 
based on 
G-O 
model 

 
1 2 1 2

1 1 1
1 0 0 0

2 2

1 1
0 0

( ) . ( )

              +  . [ ]

n k k k
j j j

k j j j

n n
j j

j j

m t ab bm s s s

ab bms t s

a a a

a a

- - - -

= = = =

- -

= =

æ öæ ö÷ ÷ç ç÷ ÷ç ç= - -÷ ÷ç ç÷ ÷÷ ÷ç çè øè ø
æ öæ ö÷ ÷ç ç÷ ÷ç ç- -÷ ÷ç ç÷ ÷÷ ÷ç çè øè ø

å å å å

å å
 

1

1

490.31, =0.0187, =0.93, =45 (Data Set 1)

540.2593, =0.01780, =0.94, =47 (Data Set 2)

a b s

a b s

a

a

=

=

 



98 S. Chatterjee et al. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

GA

BP

Goel-Okumoto

Unit Slope
Delay-S

Quasi-Delay

Input Delay FeedForward NN

 

Fig. 4. u-plot of Data Set 1 

 

Table 4. SSE, RMSE, 2R  and KD values for Data Set 1 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Models RMSE R square KD Values 
Goel-

Okumotto 
31.6736 0.9484 0.4482 

Delay 
S Shaped 

18.6170 0.9822 0.4205 

Quasi -
renewal 

Time-delay 
model 

based on 
G-O model 

 

18.7153   0.9820 0.5303 

Single 
Neuron 

GA 

11.5097 0.9932 0.3093 

Single 
Neuron 
Back P 

13.0370 0.9913 0.3674 

Input Delay 
Feed 

Forward  
NN 

14.9367 0.9885 0.3707 
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For the Data Set 2, u-plot has been shown in Figure 5 and the SSE, RMSE, 2R  and 
KD of u-plot values have been computed for SMN model and compiled in Table 5. 
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Fig. 5. u-plot of Data Set 2 

Table 5. SSE, RMSE, 2R  and KD values for Data Set 2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Models RMSE R square  KD Values 
Goel-

Okumotto 
47.8074 0.9167 0.7008 

Delay S 
Shaped 

17.3946 0.9890 0.5687 

Quasi -
renewal 

Time-delay 
model 

based on 
G-O model 

 

37.6687   0.9483 0.6191 

Single 
Neuron 

GA 

9.3132 0.9968 0.4860 

Single 
Neuron 
Back P 

13.8405 0.9930 0.4888 

Input Delay 
Feed 

Forward 
NN 

14.4888 0.9923 0.4926 
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Tables 4 and 5 clearly demonstrate that all the computed values for proposed SMN 
model are obtained using BP and RCGA are minimum. The computed value for GA is 
better than BP algorithm also. Hence, it can be concluded that the proposed model 
perform well compared to model given in [4, 5, 29, 30, 31]. 

6   Concluding Remark 

In this chapter the use of single multiplicative neuron model for prediction of 
cumulative faults of software has been explored. Back propagation and genetic 
algorithm have been used to train the network and estimate the model parameters for 
the prediction of cumulative number of faults during testing. The performance of this 
model has been studied by using two real data sets. The computed result shows that 
there is a significant better performance by the proposed SMN model as compared to 
the existing parametric software reliability models for both training BP algorithm and 
GA. Genetic algorithm is better than BP. It is interesting to note that the proposed 
method has advantage in handling any software failure data set since the previous data 
is required. The significant advantage of the proposed model is that it is assumption 
free, applicable to any software failure data and gives better prediction. Also, in SMN 
model as there is no hidden layer, the proposed model is computationally more 
efficient than other ANN model. 
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Abstract. In this chapter, a new stochastic numerical treatment is presented for 
solving Painlevé I equation. The mathematical model of the equation is formulated 
with feed-forward artificial neural networks. Linear combination of the networks 
defines the unsupervised error for the equation. The error is reduced subject to the 
availability of appropriate weights of networks. Training of weights is done with 
genetic algorithm, simulating annealing and pattern search algorithms hybridized with 
interior point algorithm for rapid local search. The reliability and effectiveness is 
validated with the help of statistical analysis. Comparison of results is made with 
standard approximate analytic solvers of the equation. It is found that the proposed 
results are in a good agreement with their corresponding numerical solutions.  

1   Introduction  

The Painlevé transcendents are of special interest in the research community due to its 
nature of singularity. The solution of Painlevé equations arises in both pure [1] and 
applied mathematics [2], along with theoretical physics [3]. These transcendents have 
numerous applications in applied sciences and engineering [4]. A number of 
researchers have investigated the numerical solution of Painlevé I using several 
methods, which attracts the authors to find the approximate solution of this non-linear 
initial value problem. We have considered the following form  

,)(6
)( 2

2

2

tty
dt

tyd +=  (1) 

using the following initial conditions 

.1
)0(

,0)0( ==
dt

dy
y  (2) 
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The exact solution of (1) is not known, however the approximate analytic solution has 
been worked out by various authors. The solution of Painlevé is achieved by the 
reduction of Korteweg-de Vries (KdV) and cylindrical KdV equation [5]. The state of 
art analytic solvers like Adomian decomposition method, variation iteration method 
and Homotopy perturbation method are well known methods to find the solution of 
these kinds of non-linear problems [6-10]. In above mentioned methods the solution is 
provided in the form of infinite series. The accuracy of the results of these solvers 
depends upon number of the terms used to approximate the solution. The existence, 
uniqueness and convergence of the solution are the criteria for a good numerical 
method.  

In this regard, artificial neural networks are the candidates for approximating the 
solutions for the same criteria. They are applicable for the problems involving non-
linearity along with singularity [11-12]. Recently, neural networks mathematical 
models are used to solve not only ordinary differential equations but also fractional 
differential equations [13-16]. This is the motivation to investigate for the solution of 
Painleve equation with the help of neural networks modeling. The real strength of 
such model can be seen by the use of modern stochastic solvers for training of their 
weights.  

In this paper, the neural networks supported with computational intelligence 
algorithms are used to solve Painlevé equation. To the best of author’s knowledge, 
such techniques have yet not applied to solve this equation. The mathematical model 
of the equation is developed by using the feed-forward artificial neural networks that 
defines an unsupervised error. The availability of weights to optimize such error is 
highly stochastic in nature. So, the training of weights is carried out by Genetic 
algorithm (GA) used as a global optimizer hybridized with interior point algorithm 
(IPA), which is a tool for rapid local search. The simulating annealing and pattern 
search techniques hybridized with IPA are also used for learning of weights. The 
reliability and effectiveness of the schemes are analyzed through statistical analysis. 
Moreover, the comparison of the results is made with standard analytic solvers. 

The organization of the paper is as follows. The neural network mathematical 
modeling along with the formulation of the fitness function and the learning 
procedure of the neural networks is introduced in 2nd section. A brief introduction to 
genetic algorithm, simulating annealing, pattern search and interior point algorithm is 
revealed in section 3. A detailed application of the designed scheme along with 
discussion on the results is presented in section 4. The last section concludes the 
findings along with some directions for future research. 

2   Neural Network Mathematical Model 

In this section, mathematical model for Painlevé I is developed with feed-forward 
artificial neural networks (ANN). The neural network architecture uses log-sigmoid as 
an activation function. 

It is well known that feed-forward NN have been extensively used as an universal 
approximating function, because any continuous function along with its derivative of 
any order on a compact set can be approximated well by the basic architecture of 
feed-forward neural networks. In case of this equation, following continuous mapping 
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is employed in neural network methodology for the solution y(t), its first 

derivative ( )dtdy  and second derivative ( )22 dtyd , respectively [12], [17]. 
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where αi, wi and βi are real-valued bounded adaptive parameters, m  is constant 

giving number of neurons and f being the activation function taken as log sigmoid 

for hidden layers. 

.
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=  (6) 

The linear combination of the networks represented by (3), (4) and (5) can arbitrarily 
model the equation (1). It is named as differential equation neural network (DENN) of 
the equation and its architecture is shown in Fig. 1.  
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Fig. 1. DENN architecture for Painlevé I 
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The fitness function ej is formulated as: 

,3,2,1,21 =+= jeee
jj  (7) 

where j is the generation number, and e1 is the error associated with the equation (1) 

that is represented by (3) to (5) and is given as 


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where ,shT = s is the total number of equally spaced steps and h defines the size of 
step, t is taken in the interval (0,T). By increasing the value of s , the accuracy of the 
modeling is enhanced but at the cost of more computations. 

Similarly 2e is linked with initial conditions and is written as, 

]}1
)0(ˆ

{)}0(ˆ[{
2

1 22
2 −+=

dt

yd
ye  (9) 

It is quite evident that the unknown weights for which the fitness function ej 
approaches zero, the solution y(t) of the equation can be approximated by the model 
of ŷ(t) given in (3).  

3   Stochastic Solvers   

In this section, a brief introduction has been presented for different stochastic solvers 
used in the article.  

Simulating annealing is kind of probabilistic computational method used for local 
and global optimization problems in applied sciences and engineering. It is a 
technique inspired from material heating and controlled cooling characteristics. Its 
aim is to find efficiently and effectively the required objective parameters in fixed 
amount of time instead of the best solutions. This method is still widely used by 
research community for optimization since its introduction in 1983 [18-19]. 

Pattern search (PS) belongs to the numerical optimization methods that do not 
require the gradient of the problem under consideration. The capabilities of the PS are 
also on the functions which are not continuous or differentiable. Hooke and Jeeves are 
the researchers who invented PS and applied it in the statistical problems [20]. Pattern 
search computes a sequence of points that approach an optimal point. At each step, 
the algorithm searches a set of points, called a mesh, around the point computed at the 
previous step of the algorithm. The mesh is formed by adding the current point to a 
scalar multiple of a set of vectors called a pattern [21]. If the pattern search algorithm 
finds a point in the mesh that improves the objective function at the current point, the 
new point becomes the current point at the next step of the algorithm. Pattern search 
is very handy for the optimization problems as well as parallel computing [22].    
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Interior point methods also referred to as barrier methods are a certain class of 
algorithms to solve the linear and nonlinear convex optimization problems. These 
algorithms have been inspired by Karmarkar's algorithm, developed by Narendra 
Karmarkar in 1984 for linear programming [23]. IPA is a constraint minimization 
problem solving method. The basic elements of the method consist of a self-
concordant barrier function used to encode the convex set. Contrary to the simplex 
method, it reaches an optimal solution by traversing the interior of the feasible region 
[24]. To solve the approximate problem, the algorithm uses either a Newton step via a 
linear programming or conjugate gradient step using a trust region during the each 
iteration [25]. 

Evolutionary computational intelligence based on Genetic algorithm is inspired by 
natural evolution. It is an optimization mechanism successfully applied for solving 
various problems. The main aim of the algorithm is to have good solution to the 
problem in a large search space of candidate solutions. It is well known that GA 
algorithms are best in controlling the robustness; avoid local minima, free from 
divergence, viable as compared with other heuristic mathematical solvers [26-27]. 
The generic flow diagram of evolutionary algorithm is given in Fig. 2. 

In this article, our intent is to use GA, SA and PS techniques hybridized with IPA 
algorithm for learning of weights. MATLAB GA and Direct search tool box is used 
for GA, PS and SA algorithms. Moreover, the evolutionary algorithm based on GA 
algorithm is given in the following steps: 

Step 1: Initialized Population: Randomly generated initial population with bounded 
real values represented Chromosomes or individuals. Each individual 
contains as many elements as the number of weights in neural network. 
Enough spread is made in the initial population for better search space of 
algorithm. 

Step 2: Initialization: The parameters setting are initialized before algorithm 
execution. Set the number of variable, the number of generations, the fitness 
limit, elite count and value of crossover fraction as 0.80 for reproduction. Set 
also Migration in both directions. Start generation count, etc. 

Step 3: Fitness Evaluation: Calculate the fitness for each individual using the 
expressions like (7), (8) and (9).  

Step 4: Ranking: Each individual in the populations is ranked on the basis of fitness 
values.  

Step 5: Termination Criteria: Terminate the algorithm for predefined fitness value 
i.e. MSE 10-09 is achieved or number of generation is complete. If 
termination criterion meets, then go to step 8 else continue 

Step 6: Reproduction: To reproduces the next generation by  

Crossover: Call for Heuristic function, Mutation: Call for Adaptive 
Feasible function, Selection: Call for Stochastic Uniform function, and 
Elitism. 

Repeat the procedure from step 3 to step 6 until total number of 
generations are complete 
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Step 7: Storage: Store the global best individual of this run. Repeat the step 2 to 6 to 
have sufficient numbers of independent runs of the algorithm for better 
statistical analysis.   

Step 8: Refinement: Interior point algorithm is used for further refinement of results. 
Take the best individual of GAs as starting point for the algorithm. 
MATLAB optimization tool box is used for Interior point algorithm. Store 
also the refined global best individual.  

 

 

Fig. 2. Evolutionary Computation Algorithm Flowchart 

The parameter setting used in this paper for GA and IPA algorithms are given in 
Table 1, while for SA and PS techniques is shown in Table 2. 
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Table 1. Parameters Setting for GA and IPA Algorithms 

GA  IPA 

Parameters Setting  Parameters Setting 

Population 
Creation 

Constrain 
dependant 

 Start Point Randomly between 
(-1,1) 

Scaling faction Rank Derivative Approximate by 
solver 

Selection 
function 

Stochastic 
Uniform 

Sub-problem 
algorithm

IDI factorization 

Crossover 
fraction 

0.80 Scaling Objective and 
constraints 

Crossover  
function 

Heuristic Maximum 
Perturbation

0.1

Mutation Adaptive 
feasible 

Finite Difference 
types

Forward 
Differences  

Elite count 3 Hessian BFGS
Initial Penalty 10 Minimum 

Perturbation
10-08

Penalty factor 100 X-Tolerance 10-10

Migration 
fraction 

0.2 Max Iteration 2000

Migration 
interval 

20 Max. function 
evolutions 

25000

Table 2. Parameters Setting for SA and PS Algorithms 

SA  PS 

Parameters Setting  Parameters Setting 

Start Point Randomly 
between (0, 1) 

 Start Point Randomly 
between (0, 1) 

Annealing Function Fast Annealing  Polling order Consecutive 
Reannealing 
Interval 

100  Mesh Accelerator Off 

Temperature 
Update Function 

Exponential  Mesh Rotae/Scale  On 

Acceptance Criteria Simulating 
annealing 
acceptance 

 Poll method GPS Positive  
basis 2N 

Stall Iteration 15000  Mesh expansion 
factor  

2.0 

Initial Temperature 100  Mesh Contraction 
factor 

0.5l  

Maximum Iteration 30000  Maximum Iteration 3000 
Maximum Function 
Evolutions 

90000  Maximum function 
evolutions 

100000 
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4   Simulation and Results 

In this section, results of the detailed simulations have been presented for Painlevé 
equation I. The exact solution of this nonlinear ordinary differential equation is not 
known; therefore, its comparative studies are presented only with other stochastic as 
well as approximate analytic numerical techniques. 

Mathematical modeling of the equation is formulated with DENN networks 
represented by expression (3) and (5) by taking 10 number of neurons, which result 
into 30 number of unknown weights of the networks. These weights are bounded real 
numbers between -10 to 10. The initial population consists of a set of 240 individuals, 
which is divided into 8 subpopulations each with 30 individuals. Each individual has 
30 elements, which is equivalent to number of unknown parameters of DENN 
networks. Input of the training set is taken as t ∈ (0, 1) with a step of 0.1. Therefore, 
the fitness function as given in equation (7) in this case can be formulated as 
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where, j is the number of generations, ŷ and d2ŷ/dt2 are networks provided in 
equations (3), and (5), respectively. The proposed scheme runs iteratively in order to 
compute the minimum of fitness function with a termination criteria as 1600 number 
of generations or the value of the fitness function  ej ≤ 10-09  whichever comes earlier. 
The best individual found by GA technique is passed to IPA algorithm as a start point 
for rapid local search. Optimization of the fitness function (10) is also done with SA 
and PS techniques by using the parameter setting used given in Table 2. One of the 
best set of weights to DENN learned stochastically by GA hybrid with IPA (GA-IPA) 
and PS hybrid with IPA (PS-IPA) are given in Table 3, while for SA hybrid with IPA 
(SA-IPA) and IPA algorithm alone is shown in Fig. 3(a) and Fig. 3(b), respectively. 
These weights can be used in (3) to obtain the solution of Painlevé I for any input 
time t between 0 and 1.  
 

Table 3. Weights Trained by GA-IPA and PS-IPA Algorithms 

i 

GA-IPA PS-IPA 

wi
 αi

 
        βi wi αi         βi

 

1 -0.09419252 4.40969456 0.71523375 -1.78933408 -1.12659854 1.16741047 
2 -7.74586194 -6.53184804 9.91763408 6.81748687 9.85249048 -8.84014695 
3 -0.49586318 1.78392014 2.06442263 -3.59430726 1.04319752 1.88017204 
4 -4.72851231 -0.43163723 2.74248908 -0.43443994 0.69086185 2.60000911 
5 -0.61856008 -0.15933885 -2.33076773 -2.13391965 -0.74371424 -0.33900757 
6 1.70851031 1.82676926 1.58142028 -8.66716665 1.60682702 9.86368403 
7 8.68663701 -0.95884483 -6.99811597 -3.28087403 0.81147957 0.35898406 
8 8.00958999 1.58562081 -6.57768753 -1.75825624 -1.28078620 -0.05537760 
9 -0.16835997 1.61553058 2.12009645 -2.96689160 -1.09785526 2.12656963 

10 -2.21614693 -1.13364609 -0.05052634 -2.28235189 -1.12692452 1.18012342 
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(a) 

 
(b) 

Fig. 3. The weights trained for DENN networks (a) for SA-IPA, (b) for IPA algorithm 

Table 4. Summary of the results for Painlevé I 

 
 

Ў(t) ŷ(t)

VIM HPM GA-IPA PS-IPA SA-IPA IPA 

0.0 0.00000000 0.00000000 -0.00039196 -0.00009893 -0.00028524 -0.00019076 
0.1 0.10021675 0.10021675 0.09980365 0.10011231 0.09991484 0.10001106 
0.2 0.20213945 0.20213945 0.20170181 0.20203160 0.20181712 0.20190915 
0.3 0.30863075 0.30863075 0.30815596 0.30851505 0.30828301 0.30837833 
0.4 0.42398628 0.42398629 0.42345876 0.42385344 0.42359728 0.42370064 
0.5 0.55433991 0.55434012 0.55372347 0.55418851 0.55388222 0.55399693 
0.6 0.70845966 0.70846209 0.70772733 0.70828524 0.70792054 0.70805274 
0.7 0.89922969 0.89924992 0.89831646 0.89901945 0.89855904 0.89872394 
0.8 1.14639825 1.14653134 1.14532872 1.14623689 1.14563612 1.14584789 
0.9 1.48177895 1.48251774 1.48078306 1.48210078 1.48124971 1.48154291 
1.0 1.95942104 1.96303937 1.96099008 1.96263649 1.96147223 1.96190600 
1.1 2.67624476 2.69235969 2.68210924 2.68863694 2.68619845 2.68651955 
1.2 3.81549745 3.88205938 3.72145787 3.78667552 3.78268911 3.77519443 
1.3 5.74150466 5.99957450 4.97894878 5.24591958 5.28519638 5.23208793 
1.4 9.21266839 10.15837961 6.15133119 6.78950450 6.97977217 6.80867366 
1.5 15.87246747 19.16051447 6.99170361 8.08090883 8.48183210 8.13726415 
1.6 29.40316664 40.27336198 7.48178522 8.98117383 9.54431170 9.02949288 
1.7 58.27239041 92.49760981 7.72898187 9.54051283 10.17677508 9.53261660 
1.8 122.32053949 225.09720711 7.83899494 9.86881508 10.51077040 9.78093116 
1.9 268.59971659 563.40155337 7.87872259 10.05879080 10.67133968 9.88817221 
2.0 609.39725329 1418.35049652 7.88382437 10.17037746 10.74012436 9.92470932 

 
The solutions obtained from the individuals in Table 3, Fig 3(a) and Fig 3(b) are 

given in Table 4 for inputs between 0 and 2 with step of 0.1. It also includes the 
results of 3rd iterate variational iteration method (VIM) and Homotopy perturbation 
method (HPM) for the same inputs [28-29]. It is further elaborated that VIM method, 
based on a polynomial of 38 degree with 34 terms, while the solution for HPM 
method is represented by 20 terms based on a polynomial of 22 degree. It can be seen 
from the results given in Table 4 that solution provided by our scheme is in good 
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agreement with VIM and HPM methods for inputs between 0 and 1. However, for the 
values greater than ‘1’ the analytical methods diverge while the results by stochastic 
solvers are still convergent. It is interesting to see the differences in the results near t 
= 2 are very large while the difference of the results for stochastic solvers is very 
small.  

As the exact solution for Painlevé I is unknown, so the following criteria is made 
for the comparison of our proposed solution ŷ(t) and approximate analytical solvers 
Ў(t).   

22
2

2

])}({6
)(

[)( tty
dt

tyd
t −−=ε  (11) 

It means that the solution that provides the minimum of expression (11) will lead to 
the accurate solution of Painleve I. The results are determined between the time 0 to 2 
with a step of 0.1 for stochastic and analytical solvers and is given in the Table 5. It 
can be found that the results for input less than 0.8, the VIM and HPM techniques are 
remarkable, while the results by proposed scheme remain consistent with an accuracy 
of 10-06 to 10-08 between 0 and 1. It can also be seen that for t ϵ (1, 2) the error of the 
given proposed scheme is much less than that of VIM and HPM techniques. It is 
difficult to compare analytical solvers like VIM and HPM with the stochastic solvers, 
however, one has to go through the complex mathematical procedures to obtain the 
results for such analytical solvers, whereas such issues are not dealt with stochastic 
solvers. Beside this, the advantages of the stochastic schemes are robustness, 
simplicity of the concept, ease in implementation and broader application domain. 

Table 5. Comparison of the results for Painlevé I based on function )(tε  

t 
Ў(t) 

 

ŷ(t) 

DENN trained for (0, 1) & step 0.1 
 

DENN trained for (0, 2) & step 0.2 

HPM VIM GA-IPA PS-IPA SA-IPA IPA GA-IPA IPA 

0.0 0 0  3.22E-08 3.88E-08 1.79E-08 6.75E-08  2.81E-08 1.04E-08 
0.1 1.93E-34 5.28E-24  1.80E-08 1.93E-07 2.62E-08 1.10E-06  2.36E+02 2.29E+02 
0.2 4.93E-32 2.29E-17  1.15E-07 3.34E-08 1.66E-07 1.36E-06  2.74E-07 4.21E-08 
0.3 5.80E-26 1.84E-13  2.97E-07 4.53E-07 3.40E-08 1.60E-08  8.68E+01 8.92E+01 
0.4 1.04E-20 1.16E-10  2.05E-06 3.94E-07 1.72E-06 2.35E-06  5.54E-07 4.89E-08 
0.5 1.41E-16 1.88E-08  2.95E-06 4.40E-07 6.30E-06 5.30E-06  8.69E-02 7.73E-02 
0.6 3.65E-13 1.32E-06  2.10E-06 3.66E-06 6.60E-06 4.45E-06  6.91E-06 3.11E-07 
0.7 3.03E-10 5.37E-05  7.28E-07 3.41E-06 3.03E-06 1.83E-06  1.74E-03 1.07E-03 
0.8 1.10E-07 1.51E-03  2.42E-07 9.59E-07 9.57E-07 4.60E-07  1.22E-05 1.19E-07 
0.9 2.13E-05 3.32E-02  5.70E-08 8.42E-08 1.62E-07 6.13E-08  1.52E-04 4.90E-05 
1.0 2.54E-03 6.18E-01  6.59E-09 2.11E-09 1.03E-08 3.56E-09  7.34E-05 1.17E-06 
1.1 2.10E-01 1.04E+01  1.17E+02 3.8.1E+01 4.28E+01 5.04E+01  6.25E-06 3.23E-07 
1.2 1.30E+01 1.65E+02  3.64E+03 2.34E+03 1.94E+03 2.25E+03  4.43E-06 2.87E-06 
1.3 6.53E+02 2.63E+03  2.53E+04 2.48E+04 2.19E+04 2.32E+04  4.91E-05 6.16E-07 
1.4 2.86E+04 4.29E+04  6.97E+04 9.32E+04 9.89E+04 9.38E+04  8.90E-05 1.84E-05 
1.5 1.17E+06 7.43E+05  1.09E+05 1.88E+05 2.30E+05 1.98E+05  5.42E-06 3.03E-05 
1.6 4.69E+07 1.40E+07  1.31E+05 2.70 E+05 3.50E+05 2.81E+05  2.34E-04 2.63E-05 
1.7 1.92E+09 2.91E+08  1.39E+05 3.26 E+05 4.26E+05 3.27E+05  6.28E-04 3.24E-04 
1.8 8.11E+10 6.73E+09  1.42E+05 3.60 E+05 4.65E+05 3.48E+05  6.69E-05 6.06E-06 
1.9 3.45E+12 1.72E+11  1.43E+05 3.80 E+05 4.82E+05 3.54E+05  6.38E-03 4.71E-03 
2.0 1.43E+14 4.77E+12  1.42E+05 3.93 E+05 4.88E+05 3.55E+05  5.67E-06 5.44E-07 
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Furthermore, the accuracy of the proposed methods can be increased further by 
training of the weights for the larger intervals. In this regard, DENN networks are 
optimized with GA-IPA and IPA algorithms for interval (0, 2) with a step of 0.2. The 
weights obtained by learning are given in Fig.4. These weights are used in expression 
(3) for finding the solution of the equation in the interval 0 to 2. The results are also 
given in Table 5. It is quite evident from the table that the error for IPA and GA-IPA 
are in acceptable range. Moreover it is noted that on the points where we have not 
performed learning the value of the error is large. Such error can be reduced by the 
proposed scheme but at the cost of much greater computational budget. 

 

(IPA) 
 

(GA-IPA) 

Fig. 4. The weights trained for DENN networks (a) for IPA, (b) for GA-IPA algorithms 

In order to see the behavior of the proposed schemes on the intermediate points, we 
have trained DENN networks using IPA and GA-IPA on interval (0, 2) with a step of 
0.1. In this case, the values of weights are restricted between (-100, 100). One of the 
weights trained stochastically using IPA and GA-IPA are presented in Table 6. The 
value of the function ε(t) as given in equation (11) is determined using the values of 
weights given in Table 6. The results are provided in Table 7 for t ϵ (0, 2) with a step 
of 0.05. It can be seen from the table the accuracy of the results increases by using the 
small step in training of the DENN networks. Comparing the results given in Table 5 
and Table 7, it can be inferred that the values of ε(t) at intermediate points is 
significantly reduced. For example, the maximum and minimum values of ε(t) for 
GA-IPA from Table 5 are 2.36×10+02 and 2.81×10-08, respectively, while from Table 7 
the maximum and minimum values are reduced to 5.68×10-02 and 2.97×10-14, 
respectively.  

The proposed schemes are based on stochastic solvers, so their reliability and 
effectiveness can only be validated through detailed statistical analysis. In this regard, 
75 numbers of independent runs for IPA, SA-IPA, PS-IPA, and GA-IPA algorithms 
are executed for finding the appropriate DENN weights. The best and worst are 
defined as the minimum and maximum value of function ej as given in equation (7), 
respectively. Moreover, the statistical parameter of mean and standard deviation 
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(STD) are also estimated to check the scatterness of the results. The results of 
statistical analysis are provided in Table 8 for inputs t between 0 and 1 with a step of 
0.2. It can be seen from the table that the best value at given input points is not 
consistent for a specific algorithm. Whereas, the values for the worst, mean and  
STD are consistently lowest for GA-IPA algorithm as compared to the values 
obtained for IPA, SA-IPA, and PS-IPA algorithms. Therefore, the GA-IPA 
demonstrates its supremacy on other stated stochastic algorithms. 

Table 6. DENN Weights Trained by GA-IPA and IPA Algorithms for t ϵ (0, 2) with step 0.1 

i 
GA-IPA  PS-IPA 

wi
 

i
 

i
  wi

 
i
 

i
 

1 1.6277311735 -1.9640565815 -0.8308272114  20.7071003034 -4.3220074424 1.8575418198 
2 0.9940224901 31.6451659694 -3.4626214760  -1.5264427244 5.8057402316 1.3458613318 
3 -2.1476011252 2.8630336114 4.4785310648  6.2901282731 24.7072473708 -18.5003559282 
4 22.2687477933 -5.7347562305 1.7021049359  1.6256389001 5.9421024089 -2.0060440152 
5 24.7127339783 23.4462894840 0.5126163015  -1.7082648989 3.8677694367 5.3506636949 
6 0.4637975905 -11.1647128580 -3.2030010653  26.2564250904 8.2052029101 0.3111031742 
7 -25.0026019350 19.6095358672 -0.4027976287  22.9254315835 2.8896848305 0.5142521509 
8 -0.7723237910 4.1733994626 1.8066328239  -2.8327763585 4.4550452365 11.1157520327 
9 -6.1282451011 -39.2172826259 18.2566230435  26.0776834920 -8.7031590254 0.1980018290 

10 0.0652423477 15.9679030529 2.9883904823  -2.3825613370 -11.6487695882 7.2010539798 
 

Table 7. Comparison of the Results based on value of Function )(tε  

t ϵ (0, 1)  t ϵ (1, 2) 

T IPA GA-IPA t IPA GA-IPA 

0.00 8.93138905E-15 2.96786048E-14  1.05 6.87284565E-09 2.82837938E-09 
0.10 7.64293387E-13 1.14700655E-12  1.10 5.29072203E-11 2.17723047E-09 
0.15 8.04058697E-02 5.68451868E-02  1.15 3.27985472E-09 1.67912064E-08 
0.20 9.17657716E-11 3.96855328E-12  1.20 8.30889828E-09 2.77909622E-08 
0.25 1.34199584E-04 9.26695097E-05  1.25 7.41833106E-09 2.04858379E-08 
0.30 9.93722701E-09 4.02880669E-10  1.30 2.24501736E-09 4.04241353E-09 
0.35 3.17074099E-06 2.13702657E-06  1.35 6.37618280E-11 2.19347491E-09 
0.40 1.89576156E-07 9.27401210E-08  1.40 3.14669944E-09 2.19496228E-08 
0.45 2.54817898E-07 2.21201379E-07  1.45 5.53076252E-09 3.89668392E-08 
0.50 3.69339842E-07 2.87815947E-07  1.50 2.58086613E-09 2.72008859E-08 
0.55 8.90738070E-08 6.72326886E-08  1.55 6.77226162E-11 2.61125061E-09 
0.60 2.36862171E-09 2.28745281E-09  1.60 5.65943902E-09 1.06854328E-08 
0.65 6.78727097E-08 5.63774307E-08  1.65 1.16398922E-08 4.92622905E-08 
0.70 9.49389552E-08 7.87542587E-08  1.70 4.57663966E-09 4.83100461E-08 
0.75 5.44449495E-08 4.41008028E-08  1.75 2.45555186E-09 3.28013602E-09 
0.80 9.94492350E-09 6.57809884E-09  1.80 3.19837612E-08 3.68076772E-08 
0.85 1.18614278E-09 2.54814926E-09  1.85 3.04899533E-08 9.01184546E-08 
0.90 1.65841203E-08 2.02236284E-08  1.90 1.34180367E-08 4.73597042E-10 
0.95 2.71195877E-08 2.93014949E-08  1.95 3.14913209E-07 4.69653377E-07 
1.00 2.06676906E-08 1.84347082E-08  2.00 6.28509811E-10 1.60490096E-10 
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Table 8. Statistical Analysis for Stochastic Solvers 

T Algorithm Best ej Worst ej  
Mean STD 

ŷ(t) ej ŷ(t) ej 

0.2 IPA 6.95E-09 0.000197 0.199095 1.67E-05 0.005190 2.75E-05 
SA-IPA 3.40E-08 0.000109 0.199647 1.58E-05 0.002284 1.99E-05 
PS-IPA 3.34E-08 0.063693 0.192070 0.001395 0.042241 0.00862 
GA-IPA 4.57E-08 2.19E-05 0.201029 6.36E-06 0.001133 5.80E-06 

0.4 IPA 7.53E-08 0.000953 0.420263 3.76E-05 0.006325 0.000118 
SA-IPA 2.85E-09 0.000126 0.420921 2.12E-05 0.002823 2.40E-05 
PS-IPA 3.49E-08 0.055404 0.406569 0.000866 0.082342 0.006446 
GA-IPA 8.43E-08 6.15E-05 0.422626 1.08E-05 0.001381 1.02E-05 

0.6 IPA 4.10E-08 0.001425 0.703277 8.77E-05 0.008859 0.000172 
SA-IPA 5.01E-07 0.000327 0.704203 8.87E-05 0.003947 7.12E-05 
PS-IPA 7.49E-07 0.179667 0.681390 0.003056 0.131618 0.021278 
GA-IPA 2.10E-06 0.000159 0.706578 4.06E-05 0.001941 3.85E-05 

0.8 IPA 4.60E-07 0.004384 1.137980 0.000129 0.014466 0.000524 
SA-IPA 8.18E-07 0.000261 1.139475 3.82E-05 0.006535 5.08E-05 
PS-IPA 6.95E-08 0.035404 1.104146 0.000603 0.203184 0.004101 
GA-IPA 1.89E-07 0.000661 1.143407 2.12E-05 0.003202 7.62E-05 

 

 

Fig. 5. Comparisons of different stochastic numerical solvers 
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Moreover, the behavior of the algorithms must be investigated on the basis of 
fitness achieved on the training interval instead of value for fitness at specific point. 
The values of the fitness function ej are determined on interval (0, 1) with a step of 0.1 
for 75 independent runs of IPA, PS-IPA, SA-IPA and GA-IPA algorithms. The values 
of fitness function ej are plotted against independent runs in Fig 5. These runs are 
arranged by descending order of the fitness values. It can be seen from the figure that 
for IPA and PS-IPA about 5% to 10% of the independent runs are failed to provide 
convergence up to a reliable accuracy, while SA-IPA and GA-IPA are 100% 
consistent in providing the convergent results. Comparing the results obtained from 
GA-IPA and SA-IPA, it is observed that GA-IPA provides consistently the lowest 
value of the fitness than that of SA-IPA.   

5   Conclusion 

On the basis of the simulations and results, it can be concluded that Painlevé I can be 
solved by the designed computational intelligence algorithm. The DENN networks of 
the equation trained by GA-IPA algorithm is the best stochastic optimizer as 
compared to PS-IPA, SA-IPA and IPA algorithms. On the basis of the statistical 
analysis, it can be inferred that the proposed computational approaches are reliable 
and effective. For smaller inputs the methods like VIM and HPM are better while for 
larger inputs the stochastic solvers are much better. In our future work, we intend to 
use other computational intelligence algorithms to solve other Painlevé transcendents.   
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Abstract. The characteristic feature of any intelligent system is its ability to 
appropriately adjust its behaviour in response to a change of the environment and/or 
change in the structure of the system. Such a feature or behaviour of a system is 
termed as “adaptive behaviour”, which is a measure of the learning ability of a 
system. Feed-forward neural networks have commonly been used to model such 
behaviours. However the weights of feed-forward neural networks remain static once 
strained and so can hardly be categorised as adaptive. On the contrary, recurrent 
networks have the capability to exhibit dynamic behaviour. In general, the feedback 
connections in a recurrent network are made after the non-linear activation function. 
In this chapter we investigated network architectures with different feedback 
connections made before and after the non-linear activation function to observe 
adaptive capability of these networks. Backpropagation training algorithms are 
applied to these networks with a minimum number of recurrent neurons at which 
adaptive behaviour is attainable. Three benchmark problems are chosen to investigate 
the performances on learning ability of the proposed architectures and results are 
presented and analysed.  

Keywords: Recurrent network, Learning capacity, Adaptive behaviour, Back 
propagation algorithm. 

1   Introduction 

All forms of multilayer perceptron networks (MLP), radial basis functions networks 
(RBF), generalised regression networks (GRN) and probabilistic networks (PN) are 
classified as feedforward networks. They are typically used as static networks in such 
varied applications like identification, control, prediction, speech generation and 
pattern recognition [1]-[7]. Research interest in recurrent neural networks (RNN) has 
grown over the years because of their capability of exhibiting dynamic behaviour and 
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computational power [8]. RNNs have empirically shown the ability to perform 
inference in problems as diverse as grammar induction, demonstrated potential for 
applications such as time series prediction, process modelling, and process control 
[9]-[14]. These networks can be trained, depending on their architecture and weights, 
as oscillators, as associative memories and also as in finite automata. Generally, 
training of this class of neural networks has been difficult due to the excessive time 
required to converge [15], [16]. Stability issues of training in recurrent neural 
networks are addressed in [17], [18]. Some researchers have suggested improvements 
that can be made to well known algorithms, which can improve the training of 
recurrent networks. Practical problems during the learning process of recurrent 
networks are mainly due to the presence of local minima in the cost function [19]. 
The adaptation of recurrent neural networks with fixed weights has been investigated 
by many researchers. It has been demonstrated that dynamic networks can learn 
without changing their synaptic weights [20]-[24]. Bengio et al. showed that gradient-
based learning algorithms face an increasingly difficult problem as the duration of the 
dependencies to be captured increases [25]. De Jesus et al. demonstrated that spurious 
minima are introduced into the error surface due to characteristics in the input 
sequence that make the training more difficult for gradient descent algorithms in 
recurrent network [15]. Other early results on recurrent training algorithms have been 
reported in [26]-[28]. 

In this chapter we investigated the RNN architectures with different feedback 
connections, mainly, before and after the application of the non-linear activation 
function to observe the adaptive capability of these networks with varying weights for 
the feed forward connections and fixed weights for the recurrent connections. 
Therefore, traditional backpropagation (BP) training algorithms can be applied to 
networks with minimum number of recurrent neurons at which adaptive behaviour  
is attainable. Three different benchmark problems were chosen to verify the 
performances of the proposed architectures of the recurrent neural networks. 

The rest of the chapter is organised as follows. Section 2 presents an overview of 
different RNN architectures; the proposed architectures and their block diagrams are 
described in section 3. The training algorithm for the proposed RNN is presented in 
section 4. The benchmark problems, experimentation and analysis of results are 
presented in section 5. Finally the chapter concludes with some remarks in section 6.    

2   Overview of Recurrent Architectures 

In the past few decades several recurrent neural network models have been proposed 
[9], [10], [14], [29]-[36]. These recurrent architectures can be classified into three 
broad categories where feedback connections are taken from three locations in the 
feedback loop: synapse feedback, feedback from the neuron output before non-
linearity and output feedback after non-linearity proposed by different researchers [9], 
[10], [13], [14], [37]. All of these architectures reported in the literature are 
summarised according to their feedback connectivity in Table 1. 
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Table 1. Summary of architectures 

Architecture Synapse 
feedback 

Output feedback 
before nonlinearity 

( ).f  
after nonlinearity 

( ).f   

Hopfield   yes 
Elman  
(uses  context units) 

- - yes 

Jordan 
(uses context units) 

- - yes 

William-Zipser 
(allows any neuron) 

- - yes 

Frasconi-Gori-Soda - yes yes 
De Vries-Principe yes - - 
Poddar- Unnikrishnan - - yes 
Back-Tsoi yes - - 

 
The structure of the original Jordan network has three layers, with the main feedback 

connections taken from the output layer to the context layer. It has been theoretically 
shown that the original Jordan network [32] is not capable of representing arbitrary 
dynamic systems. However, by adding the feedback connections from the hidden layer 
to the context layer, (similar to the case of the Elman network [9]) a modified Jordan 
network is obtained. The modified Jordan network can be trained using the standard BP 
algorithm to model different dynamic systems. The values of the feedback connection 
weights have to be fixed by the user if the standard BP algorithm is employed.  

The Elman architecture differs from the above in that it uses an extra layer of 
context neurons to copy hidden layer outputs and after delaying these values for one 
time unit, feeds them back as additional inputs to hidden layer neurons [9]. The idea 
of introducing self-feedback connections for the context units was borrowed from 
Jordan [32]. The standard BP algorithm is employed to Elman networks.  

The William-Zipser architecture allows any neuron in the network to be connected 
to any other neuron in the network [14]. The William-Zipser architecture typically 
suffers from a lack of stability, i.e., for a given set of initial values, activations of 
linear output units may grow without limit and it has a slow convergence [13]. 
Frasconi et al. experimented with a slightly different architecture where they 
introduced local activation feedback and output feedback taken from hidden layer 
neurons after it has passed through the non-linearity and weighted by a constant value 
[10]. Their architecture is represented by the following equation: 







 ++−= 

=

n

i
ii bxwtykfty

1
1 )1()(                                               (1) 

Where ix , ni ,...,2,1= are the inputs, iw is the weight, b is the bias, )1( −ty is the 

output delayed by one time unit and 1k is the weighting factor of the output.  
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The Back-Tsoi architecture is different from Frasconi et al. architecture in that the 
feedback is taken at the synapse output [13]. They introduced a synapse with a linear 
transfer function instead of a synapse with a constant weight. Poddar-Unikrishnan 
[33] introduced a memory neuron which remembers the past output values. This 
architecture has a feedback transfer function with one pole only. A critical review of 
the various feedback architectures that appeared in the literature can be found in [13].  

The Hopfield network consists of a set of neurons and a corresponding set of unit 
delays, where the output of each neuron is fed back to each of the other neurons 
except itself via the delay units [38]. The number of feedback connections is equal to 
the number of neurons. It consists of n neurons. The discrete Hopfield network is 
described in discrete time as  

niijforbxtywty
n

j
iijiji ,,2,1,)1()(

1

=≠









−+−Γ= 

=
         (2) 

Where ()Γ  is the activation function defined as sgn(.) , ix  is the external input to 

ith neuron and ib is the bias. The feedback input to the ith neuron is equal to the 

weighted sum of neuron outputs jy , where nj ,,2,1 = . The matrix of synaptic 

weights W in the Hopfield model is an nn ×  symmetric matrix i.e. jiij ww =  and 

the diagonal elements are zero i.e. 0=ijw  for ji =∀   and defined as  
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Hence no connection exists from any neuron back to itself. Though the difference 
equation in (2) is highly coupled and nonlinear, the solution of the Hopfield model is 
stable when the weight matrix in (3) is symmetric and the biases are zero. This yields 
a non-increasing energy function for Hopfield network defined as  

−=
i j

jiij yywyH
2

1
)(                                           (4) 

3   Proposed Network Architecture 

The architecture considered in this study is a combination of Elman and Frasconi-
Gori-Soda architecture with three layers of neurons in that it does not use any context 
layer and has a single unit time delay. Two types of feedback connections are 
investigated in this study: (i) output feedback before the activation function (non-
linearity) and (ii) output feedback after the activation function (non-linearity). The 
two architectures can be described mathematically in the following equations. The 
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recurrent architecture with feedback connections before nonlinearity is described by 
the equations (5)-(7).    
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The architecture with feedback connections after nonlinearity can be described by the 
equations (5)-(6) and (8).  
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where ni ,,3,2,1 = , mj ,,3,2,1 =  and lk ,,3,2,1 = . n , m  and  

l  represent the maximum number of neurons in the input, hidden and output  

layer respectively. [ ]T
lk yyyyy ,,,, 321 = are the outputs of the output- 

layer, [ ])(,),(),(),()( 321 tytytytyty h
m

hhhh
j =  are the outputs of the  

hidden neurons after the nonlinear activation function, 

[ ]T
mj tnettnettnettnettnet )(,),(),(),()( 321 =  are the outputs of the hidden 

neurons, [ ]T
ni xxxxx ,,,, 321 =  are the inputs, kjw is the weight matrix of 

ml ×  dimension representing connectivity from hidden layer neurons to output layer 

neurons, jiw  is the weight matrix of nm × dimension representing connectivity 

from input layer to hidden layer neurons, [ ]T
klkkkk θθθθθ ,,,, 321 = and 

[ ]Tjmjjjj θθθθθ ,,,, 321 =  are biases of the output layer and the hidden layer 

neurons respectively. jjw is the weight matrix of mm×  dimension represents the 

recurrent connectivity between neurons in the hidden layer. The scaling factor sK  

scales the feedback variables to neurons. The matrix jjw  can take the form of a full, 

symmetric, upper diagonal, lower diagonal, diagonal or a null matrix, which 
represents different connectivity between hidden-layer neurons. The two architectures 
proposed in this section, described by the equations (5)-(8), can be written in the 
following form, which will help understanding the block structure of the two 
networks.  
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( ) kkk ItnetFty )()( =                                                          (9) 

k
h

kk tyAtnet Θ+= )()(                                                       (10) 

( ) jj
h ItnetFty )()( =                                                       (11) 

( ) ( ))1()( −+Θ+= tnetKBxAtnet jsjjj                                       (12) 

( ) ( ))1()( −+Θ+= tyKBxAtnet h
sjjj                                       (13) 

The equations (9)-(11) and (12) represent the recurrent architecture with feedback 
connections before non-linearity and the equations (9)-(11) and (13) represent the 

recurrent architecture with feedback connections after non-linearity. jij wA = , 

kjk wA =  and jjwB = are connection matrices, [ ]T
mj θθθθ ,,,, 321 =Θ and 

[ ]T
lk θθθθ ,,,, 321 =Θ are vectors of biases. [ ]T

jI 111 = and 

[ ]T
kI 111 = are vectors of 1×m  and 1×l  dimensions respectively. jF

and kF are diagonal matrices of non-linear activation functions of hidden layer and 

output layer  defined as  
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Thus, the equations (9)-(13) along with the definitions of the non-linear activation 
matrices defined by equations (14)-(15) can be described by the block notation form 

of the networks shown in Figures (1) and (2). While  represents one unit of time 
delay element in the feedback path resulting in a recurrent network. The block 
notation, first used by Santini et al. [39] derived from Narendra’s [2], are developed 
for the two network architectures to provide a clearer representation of the 
feedforward and feedback connectivity.  

 

1−z
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Fig. 1. Block diagram of the recurrent network with feedback before activation function 
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Fig. 2. Block diagram of the recurrent network with feedback after activation function 

jjwB =  in Figure 1 and Figure 2 represents the feedback connection matrix 

describing the feedback connectivity between hidden neurons and can take various 
forms depending on the connectivity described by the equations (16)-(26). The 
feedback connection matrix can be a full-matrix shown in equation (16), where the 

elements { } ℜ∈mmbbb ,,, 1211   are real values. The full-matrix implies that all 

neurons in the hidden layer are connected to each other in all possible ways, which 

yields a connection matrix ( )FB  of the form   
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When the connectivity matrix is a full matrix ( FB ), it can be seen as a special case of 

the Williams-Zipser architecture and its performance is well-known for its slow 
convergence [14].  

The connectivity matrix between hidden neurons can be symmetric, which means 
that the outputs are fed back to other neurons except themselves. Such feedback 

connectivity can be described by the matrix ( )SB  given by equation (22) with 

diagonal elements zero.  
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The feedback connection matrix can be an upper diagonal matrix ( )UB  shown in 

equation (18) where neurons are connected to the next neuron in the layer. For 
example, neuron 1 is connected to neurons 2 to n, neuron 2 is connected to 3 to n, and 
neuron n does not have any connections.    
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The connectivity matrix can be a lower diagonal matrix ( )LB as shown in equation 

(19). The connections are just reversed to connections in matrix ( )UB .   



















=

0

00

000

21

21







mm

L

bb

b
B                                               (19) 

The outputs of the hidden neurons can be fed back only to the neuron itself. In this 

case the weight matrix will be a diagonal matrix ( )DB  described by equation (20). 

The connectivity is shown in Figure 3. The connectivity before non-linearity is shown 
in Figure 3(a) and after non-linearity is shown in the Figure 3(b). 
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(a) Feedback connection before nonlinearity. 
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(b) Feedback connection after nonlinearity. 

Fig. 3. Feedback connections to neurons themselves 

If there are no feedback connections, it implies a feedforward network and yields a 

null matrix ( )NB in equation (21). In this case, the network is simply a feedforward 

network.  
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The symmetric matrix SB , upper diagonal UB and lower diagonal matrix LB cases 

are abandoned for computational simplicity. The diagonal matrix DB  is chosen for 

detailed investigation in this chapter.  

4   Training Algorithm of the RNN 

Generally the training of RNNs have been difficult due to the time dependencies 
present in the architecture and difficulties in gradient descent algorithms. The most 
common error (criterion) function E  for the training of dynamic neural networks is 
given by  
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Where T is the maximum training time at which error function E  approaches very 
close to zero i.e. for 0, →∞→ ET . η  is a fixed positive learning rate. A varying 

feedback connection weights may produce better results but for simplicity feedback 

connection weights ( )B  are considered fixed in the both cases. Therefore, B∂ is 

constant and hence the learning of the weights does not occur.  Since the weights of 
the feedback connections are considered fixed, the weight update rule for B  is 

0=
∂
∂−=Δ

B

E
B η                                                  (25) 

From the derivations above, the recurrent network can be considered as a feedforward 
network and by using the weight-update rules in (23)-(25) the network can be trained 
with standard BP algorithm.   

To apply the BP procedure to RNNs, the ordered list of dependencies for the 
recurrent topologies needs to be adjusted. The present value of the activation of the 
state denoted as )(ty  depends on the previous value )1( −ty . The sensitivity of the 

present state also depends on the previous sensitivities.  
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5   Experimentation and Analysis of Results 

The recurrent network architectures and training procedures described in Section 3 
were trained using the BP algorithm to demonstrate the capabilities of the networks. 
Three well-known benchmark problems were chosen for this task:  

(i) Two-input XOR,  
(ii) Three-input XOR, and  
(iii) Shape eight  

The XOR problem has historically been considered a good test of a network model 
and its associated learning algorithm. There are many reasons for this choice. Firstly, 
the XOR problem is one of the simplest problems, which is not linearly separable and 
complex enough for BP algorithm to be trapped in local minima without reaching the 
global optimum. Secondly, there has been a significant number of research work 
which claimed that the XOR problem exhibits local minima, a view that is widely 
accepted in neural network literature [40]-[42]. The configuration of the network and 
the truth table for the two-input XOR are shown in Figure 4 and Table 2 respectively. 
Only the symbolic representations of the networks are produced here. 
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Fig. 4. Neural network for two-input XOR problem 

Table 2. Truth-table for two-input XOR 

inputs output 
x1 x2 y 
0 
1 
0 
1 

0 
0 
1 
1 

0 
1 
1 
0 
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The parity problem can be considered as a generalised XOR. The generalised XOR 
problem is good test for computer simulation, because we can systematically vary the 
mismatch between the degrees of freedom for the problem (number of weights in an 
unconstrained network). The configurations of the network and truth tables for the 
three-input generalised XOR is shown in Figure 5 and Table 3. 
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Fig. 5. Neural network for three-input generalised XOR problem 

Table 3. Truth-table for three-input generalised XOR 

inputs output 
x1 x2 x3 y 
0 
1 
0 
1 
0 
1 
0 
1 

0 
0 
1 
1 
0 
0 
1 
1 

0 
0 
0 
0 
1 
1 
1 
1 

0 
1 
1 
0 
1 
0 
0 
1 

 
A continuous target trajectory like shape eight is also used as benchmark problem 

by many researchers [43], [44]. The analytical equations of the corresponding target 
trajectory of figure eight are given by equations (26)-(27). 

))*2sin(*9.01(*5.0)(1 ttr +=                                               (26) 

))sin(*9.01(*5.0)(2 ttr +=                                                  (27) 

where ℜ∈t and chosen between [ ]8,1 . The network configuration and the target 

trajectory are shown in Figure 6 and Figure 7 respectively.   
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For the figure-eight problem with feedback after non-linearity, a 2-7R-2 RNN 
achieved an error goal of 0.00899 at 3339 epochs.  For the case of feedback before 
non-linearity, a 2-4R-2 RNN achieved an error goal of 0.01562 at 25000 epochs with 

a scaling factor of 2.0=sK . Training parameters were kept same in the both cases. 

The weight matrices jA and kA were initialised within the range of [-1, 1]. The 

learning profiles for the shape-eight problem are shown in Figure 10. The learning 
profile for feedback after non-linearity shows local minima. Training could be easily 
trapped for incorrect choice of parameters where as the learning profile for feedback 
before non-linearity shows smoother training and much better performance with a 
smaller number of hidden neurons, i.e. 4 hidden neurons.  Investigations show that 
odd number of hidden neurons produced better results in the case of feedback after 
non-linearity and even number produced better result in the case of feedback before 
non-linearity. It is found that such architectures of RNN can follow a continuous 
trajectory as shown in Figure 11.  

A summary of network training parameters used for the three benchmark problems 
are shown in Table 4 and Table 5. 

Table 4. Feedback after non-linearity 

 Learning  
rate 

Momentum Acceleration Hidden 
neuron 

sK  Epochs Error 

2XOR .04 .8 -0.1 12 1 25000 .1955 
3XOR .04 .8 -0.1 6 1 8792 .0089 
Fig8 1.2 .7 -0.7 7 1 3339 .0089 

Table 5. Feedback before non-linearity 

 Learning  
rate 

Momentum Acceleration Hidden 
neuron 

sK  Epochs Error 

2XOR .04 .8 -0.1 4 .2 25000 .0517 
3XOR .04 .8 -0.1 4 .2 8080 .0089 
Fig8 1.2 .7 -0.7 4 .2 25000 .0156 

 
 

As can be seen from Table 5 that feedback connection before non-linearity is more 
stable than that of feedback connection after non-linearity, require less hidden layer 
neurons, and achieve better error goal within fewer epochs.   

6   Conclusion 

The adaptive capacity of the RNN was investigated on two different neural 
architectures. The three benchmark problems have been used to investigate the 
performance of the proposed RNN architectures. Improved performances have been 
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demonstrated by RNN architectures with feedback connections before the application 
of the non-linear function when compared with RNN architectures with feedback 
connection applied after the non-linear function. The experiments have shown that the 
RNN can be trained with a reduced risk of the stability, which is mainly caused by 
recurrent connection after non-linearity. The results from this investigation will thus 
be useful in designing future applications that incorporates RNNs.  
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Abstract. This chapter considers a recent algorithm to add broader diversity at the 
beginning of the evolutionary process and extends it to sigmoidal neural networks. A 
simultaneous evolution of architectures and weights is performed with a two-stage 
evolutionary algorithm. The methodology operates with two initial populations, each 
one containing individuals with different topologies which are evolved for a small 
number of generations, selecting the half best individuals from each population and 
combining them to constitute a single population. At this point, the whole 
evolutionary cycle is applied to the new population. This idea was previously 
proposed by us for product unit neural networks, and we now extend to sigmoidal 
neural networks. The experimentation has been carried out on twelve data sets from 
the UCI repository and two complex real-world problems which differ in their 
number of instances, features and classes. The results have been contrasted with 
nonparametric statistical tests and show that our proposal significantly improves the 
test accuracy of the models with respect to the obtained ones with a standard 
methodology based on a single population. Moreover, the new proposal is much more 
efficient than other methods developed previously by us. 

Keywords: Artificial neural networks, Sigmoidal units, Product units, Evolutionary 
algorithms, Classification, Population diversity. 

1   Introduction 

The diversity issue is very important to avoid a premature convergence of 
evolutionary algorithms (EAs) and to reach solutions with good quality. At the 
beginning of the algorithm is suitable a diverse population and a more condensed one 
at the end of the search [1]. In this way, the algorithm combines the two key ideas 
exploration and exploitation. The matter of generating various populations is related 
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with the diversity throughout the evolutionary process and has been also discussed 
previously (for instance in [2]). The number of populations may vary and there is not 
a common accepted value. A common view of the evolutionary cycle is that diversity 
enhances the performance of a population by providing more chances for evolution. A 
homogeneous population offers no advantage for improvement as the entire 
population is focused in a particular portion of the search space. High diversity does 
not imply better genetic algorithm performance; this is closely related to the question 
of exploration versus exploitation, but enforcing diversity in the early phases of 
evolution ensures a broad exploration of the search space [3]. 

Briefly, the main approach considered in this chapter diversifies the architecture  
of the neural network (NN) for classification problems at the beginning of the 
evolutionary process. Our previous methodology [4], which operates with 
evolutionary artificial neural networks (EANNs) based on product units [5] in a two-
stage EA (TSEA) is extended in the current chapter in order to consider EANNs with 
sigmoidal units. Our objective is to compare the improved methodology -based on 
two stages- to the standard one -composed of a single stage with a population- 
employing sigmoidal units in both cases and also to the previous TSEA methodology 
that have been employed to date by us for product unit neural networks (PUNNs). A 
computational cost analysis is performed to determine the efficiency of the standard 
and improved methodologies that have been applied first time both for sigmoidal 
neural networks in the current chapter. Also, an efficiency report between product and 
sigmoidal units applying the improved methodology is presented. 

The chapter is organized as follows: Sect. 2 describes some concepts about 
evolutionary sigmoidal and product unit neural networks, the base EA and TSEA; 
Sect. 3 introduces our proposal; Sect. 4 details the experimentation; then Sect. 5 
shows and analyzes the results obtained; finally, Sect. 6 states the concluding 
remarks. 

2   Methodology 

2.1   Evolutionary Artificial Neural Networks Based on Sigmoidal and Product 
Units 

EANNs offer a platform to optimize network performance and architecture 
simultaneously. Miller et al. [6] proposed that evolutionary computation was a very 
good candidate to search the space of architectures. Since then, many methods have 
been developed to evolve artificial neural networks (ANNs), for instance, [7, 8]. Next, 
we describe EANNs based on sigmoidal and product units. The methodology 
employed here uses an EA as a tool for simultaneous learning the architecture and 
weights of the ANN. Other authors have also considered this idea [9, 10]. In previous 
works we have trained PUNNs [4, 11], but in the current chapter we experiment, 
moreover, with sigmoidal units.  

Fig. 1 shows the scheme of two ANN models for a bi-classification problem with 
sigmoidal (at part a)) and product units (at part b)). Each one is a k:m:1 three-layer 
architecture, that is, k nodes in the input layer, m ones and a bias one in the hidden 
layer and one node in the output layer. 
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Fig. 1. Scheme of two ANN models with sigmoidal (a) and product (b) units for a bi-
classification problem 

The transfer function of each node in the hidden and output layers is the identity 
function. Thus, the functional model obtained by each of the nodes in the output layer 
with J classes is given by Eq. 1. 
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2.2   Two-Stage Evolutionary Algorithm 

We have used a base EA to design the structure and learn the weights of ANN as in 
[11]. The followed base algorithm in the current chapter, that has also several 
common points with the EA described in [12], is exactly equal to those described in 
our previous work [4] for classification tasks. However, it has been generalized to any 
type of ANNs. We have followed the same guidelines given in our previous work; a 
detailed explanation can be read in Sect. 2.2 of [4]. 
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Program: Two-Stage Evolutionary Algorithm 
Data: Training set 
Input parameters: gen, neu 
Output: Best ANN model 
1:    // First Stage 
2:   t  0 
3:     // Population P1 
4:   P1(t)  {ind1, …, ind10000}         // Individuals of P1 have neu nodes in the hidden layer 
5:   f1 (P1(t) {ind1, …, ind10000})  fitness (P1(t) {ind1, …, ind10000})  // Calculate fitness 
6:   P1(t)  P1(t) {ind1, …, ind10000}  // Sort individuals 
7:   P1(t)  P1(t) {ind1,… ind1000}   // Retain the 1000 best ones 
8:    // Population P2 
9:   P2(t)  {ind1, …, ind10000}     // Individuals of P2 have neu+1 nodes in the hidden layer 
10: f2 (P2(t) {ind1, …, ind10000})  fitness (P2(t) {ind1, …, ind10000})  // Calculate fitness 
11: P2(t)  P2(t) {ind1, …, ind10000}  // Sort individuals 
12: P2(t)  P2(t) {ind1,… ind1000}   // Retain the 1000 best ones   
13: for each Pi               // Evolution of populations P1 and P2 until 0.1*gen generations 
14:   current_generation  0 
15:   t  0 
16:      while current_generation < 0.1*gen not met do  
17:           Pi(t) {ind901,…ind1000}  Pi(t) {ind1, …, ind100} // Best 10% replace the worst 10% 
18:          Pi(t+1)  Pi(t) {ind1, …, ind900} 
19:          Pi(t+1)  pm (Pi(t+1) {ind1, …, ind90})      // Parametric mutation (10% Pi (t+1)) 
20:           Pi(t+1)  sm (Pi(t+1) {ind91, …, ind900})     // Structural mutation (90% Pi (t+1)) 
21:          fi(Pi(t+1) {ind1, .. ind900})  fitness (Pi(t+1) {ind1, …, ind900})  // Evaluate 
22:          Pi(t+1)  Pi(t+1) (ind1, …, ind900)   Pi(t){ind901, …, ind1000}  
23:          Pi(t+1)  Pi(t+1){ind1, …, ind1000}   // Sort individuals 
24:          current_generation  current_generation + 1 
25:          t  t + 1 
26:      end while 
27: end for 
28: P(0)  P1{ind1, …, ind500}   P2{ind1, …, ind500}   // Individuals of P has [neu, neu+1]  
29:       // nodes in the hidden layer 
30:  P(0)  P(0) {ind1, …, ind1000}   // Sort individuals by fitness: indi > indi+1 

31:     // Second Stage 
32:                                                   // Input: gen, neu+1 
33:   t  0 
34:   while stop criterion not met do    // main loop 
35:         P(t) {ind901,…ind1000}  P(t) {ind1, …, ind100} // Best 10% replace the worst 10% 
36:         P(t+1)  P(t) {ind1, …, ind900} 
37:         P(t+1)  pm (P(t+1) {ind1, …, ind90})       // Parametric mutation (10% P(t+1)) 
38:         P(t+1)  sm (P(t+1) {ind91, …, ind900})     // Structural mutation (90% P(t+1)) 
39:         f(P(t+1) {ind1, .. ind900})  fitness (P(t+1) {ind1, …, ind900})        // Evaluate 
40:         P(t+1)  P(t+1) (ind1, …, ind900)   P(t) {ind901, …, ind1000}  
41:         P(t+1)  P(t+1){ind1, …, ind1000}      // Sort individuals 
42:         last_generation  t 
43:         t  t+1 
44:  end while 
45:  return best (P(last_generation) {ind1}) 

 

Fig. 2. Pseudo-code of the TSEA for classification 
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A specialization of the previous algorithm called TSEA has been introduced in 
[4] for product units. Basically, the two-stage EA operates with two initial 
populations, each of one containing individuals with different topologies, evolving 
them for a small number of generations, selecting the best individuals from each 
population in the same proportion and combining them to constitute a single 
population. At this point, the whole evolutionary cycle is applied to the new 
population. The pseudo-code of the TSEA appears in Fig. 2. The individuals are 
subjected to the operations of replication and mutation, thus the algorithm falls into 
the class of evolutionary programming. We do not use the crossover operator due to 
the permutation problem [7]. 

3   Proposal Description 

The current chapter presents an extended methodology called TSEASig (Two-Stage 
Evolutionary Algorithm for neural networks with Sigmoidal units) that is derived 
from TSEA [4]. The number of neurons in the input layer is equal to the number of 
variables in the problem; a hidden layer with a number of nodes that depends on  
the data set to be classified; and the number of nodes in the output layer equal to the 
number of classes minus one because a softmax-type probabilistic approach has 
been used. The first stage consists of creating two populations, each one with 
individuals that present different maximum number of nodes, neu and neu+1, in the 
hidden layer, evolving them with equal settings of the remaining parameters of the 
EA for a small number of generations, 0.1*gen, selecting the half best individuals 
from each population and unifying them to constitute a single population. In the 
second stage, the full evolutionary process is applied to the population. The initial 
short training improves random individuals and let to explore possible promising 
areas in two directions, since there are two different populations. After that, 
individuals with different topologies coexist and the more adapted ones will remain. 
The parameters are defined as gen, the maximum number of generations; and neu, 
the maximum number of nodes in the hidden layer. In the recently cited work, we 
proposed a TSEA for EANNs with product units. TSEASig is an extension of 
TSEA that operates with NNs based on sigmoidal units. Fig. 3 depicts the structure 
of TSEASig. 

EDD (experimental design distribution) methodology has been launched by us in 
[13]. It distributes some parameters of the network topology or of the base EA over 
some computing nodes. An initial configuration, called base configuration, is defined 
and it is modified with a new value for one parameter in each of the nodes. The idea is 
to run the base EA with different configurations. Up to date, EDD has been applied 
with NNs based on product units. Now, we try out it first time with sigmoidal units 
and the resulting methodology is named EDDSig, another original contribution of this 
chapter.  
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Population    1
Size:  N

Kind    of    unit:  sigmoidal
Hidden    nodes:  neu

Short    evolution:  0.1*gen

Ne w     popula tion
Si ze :   N

K i n d     o f     un i t :   si gm o i da l
Hi d d e n     no d e s:   ne u     a n d     ne u +1

Fu l l     e vo l u t i on :   gen

Popula tion    2
Si ze :   N

Ki n d     o f     u n i t :   si g m o i d a l
Hi d d e n     n od e s:   neu+1

Sh o rt     e vo l u t i o n :   0 .1 *g e n
Best    individuals

1 / 2,  ...,  Ni i
Best    individuals

1 / 2,  ...,  Ni i

Stage    2

Stage    1 Stage    1

Stage    2

 

Fig. 3. TSEASig structure 

Table 1 presents the description of the TSEA, EDDSig and TSEASig con-
figurations. The neu and gen and parameters take the values indicated as input to the 
program. 2α  is associated with the residual of the updating expression of the output-
layer weights and the initial value is fixed. For EDDSig, we have considered two 
configurations that can be compared to the equivalent one of TSEASig. Related to 
TSEA, we have taken into account the configuration 1*. It is noticeable that TSEA 
works with PUNNs and the remaining methodologies with sigmoidal units. 

Table 1. Description of the TSEA, EDDSig and TSEASig configurations 

Methodology Configuration Num. of 
neurons

Num. of  
neurons in  
each 
population 

Max.  
Num. of  
generations

Max. Num.  
of generations 
in each 
population 

α2 

TSEA 1* - neu and neu+1 - 0.1*gen 1 
EDDSig 1S neu - gen - 0.5 
EDDSig 2S neu+1 - gen - 0.5 
TSEASig 1S* - neu and neu+1 - 0.1*gen 0.5 

4   Experimentation  

4.1   Data Sets and Validation Technique 

Table 2 summarizes the data sets employed. Most of them are publicly available at the 
UCI repository [14] and the last two concern complex real-world problems. The 
following fourteen ones have been used: Statlog (Australian credit approval), Balance 
scale, breast Cancer Wisconsin, Heart disease (Cleveland), HeartY, Hepatitis, Horse 
colic, Thyroid disease (allhypo, Hypothyroid), Thyroid disease (Newthyroid), Pima  
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Indians diabetes, Waveform database generator (version 2) and Yeast regarding the 
UCI data sets, and BTX and Listeria monocytogenes as complex real-world problems. 
BTX is a multi-class classification environment problem for different types of 
drinking waters [15]. Listeria monocytogenes is a bi-class problem in predictive 
microbiology [16].  

All nominal variables have been converted to binary ones. Also, the missing values 
have been replaced in the case of nominal variables by the mode or, when concerning 
continuous variables, by the mean, considering the full data set. The experimental 
design uses the cross validation technique called stratified hold-out that consists of 
splitting the data into two sets: training and test set, maintaining the class distribution 
of the samples in each set approximately equal as in the original data set. Their sizes 
are approximately 3N/4 and N/4, being N the number of patterns in the problem. The 
proportions do not match in BTX [15] and Listeria [17] because the data is 
prearranged in two sets due to their specific features. 

Table 2. Summary of the data sets used 

Data set Total Patterns Training Patterns Test Patterns Features Inputs Classes 

Australian 690 517 173 14 51 2 

Balance 625 469 156 4 4 3 

Cancer 699 525 174 10 9 2 

Heart 303 227 76 13 26 2 

HeartY 270 202 68 13 13 2 

Hepatitis 155 117 38 19 19 2 

Horse 368 276 92 27 83 2 

Hypothyroid 3772 2829 943 29 29 4 

Newthyroid 215 161 54 5 5 3 

Pima 768 576 192 8 8 2 

Waveform 5000 3750 1250 40 40 3 

Yeast 1484 1112 372 8 8 10 

BTX 63 42 21 3 3 7 

Listeria 539 305 234 4 4 2 

4.2   Common Parameters of the Different Methodologies and Specific 
Parameters Depending on the Dataset 

Table 3 introduces the common parameters for all datasets related to TSEASig, 
EDDSig and TSEA methodologies. All values are according with our previous works 
[4, 18]. In the case of TSEA, since PUNNs are used, data is normalized to avoid input 
values near to 0, which can produce very large values of the outputs for negative 
exponents.  
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Table 3. Common parameters for TSEASig, EDDSig and TSEA 

Parameter/Feature Value   

 TSEASig/EDDSig  TSEA 

Population size (N) 1000  1000 

gen-without-improving 20  20 

Interval for the terms/exponents jiw  [-5, 5]  [-5, 5] 

Interval for the coefficients l
jβ  [-10, 10]  [-5, 5] 

Initial value of 1α  0.5  0.5 

Initial value of 2α  0.5  1 

Normalization of the input data [0.1, 0.9]  [1, 2] 

Number of nodes in node addition and node deletion operators [1, 2]  [1, 2] 

 
The values of the neu and gen parameters depend on the data set and are shown in 

Table 4. The decision about the number of neurons is a very difficult task in the scope 
of NNs, but determining the optimal values is a challenge. With respect to the number 
of generations, we have defined three kinds of values: small (100-150), medium 
(300), large (500) and very large (1000). Again, the optimal number is unknown; 
however the algorithm has a stop criterion to avoid evolving up to the maximum 
number of generations if there is no improvement. We have given values of our 
choice to the two parameters depending on the complexity of the data set (number of 
 

Table 4. Values of TSEA/EDDSig/TSEASig parameters depending on the data set 

Data set TSEA  EDDSig  TSEASig  
Num. of 
neurons 
in each 
population  
(neu and 
neu+1) 

Max. Num.  
of 
generations 
in each 
population 

Num. of  
neurons 
(neu) 

Max. Num. 
of  
generations 
(gen) 

Num. of 
neurons 
in each 
population 
(neu and 
neu+1) 

Max. Num.  
of 
generations 
in each 
population 

Australian 4 and 5 100 4 100 4 and 5 100 
Balance 5 and 6 150 4 300 4 and 5 300 
Cancer 2 and 3 100 2 100 2 and 3 100 
Heart 3 and 4 300 3 300 3 and 4 300 
HeartY 4 and 5 100 4 100 4 and 5 100 
Hepatitis 3 and 4 100 3 100 3 and 4 100 
Horse 4 and 5 300 4 300 4 and 5 300 
Hypothyroid 3 and 4 500 3 500 3 and 4 500 
Newthyroid 3 and 4 300 3 300 3 and 4 300 
Pima 3 and 4 120 3 100 3 and 4 100 
Waveform 3 and 4 500 3 500 3 and 4 500 
Yeast 11 and 12 1000 11 1000 11 and 12 1000 
BTX 5 and 6 500 5 500 5 and 6 500 
Listeria 4 and 5 300 4 300 4 and 5 300 
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classes, inputs, instances,…). Other times the values are based on previous works [4, 
18]. EDDSig and TSEASig values are in concordance to compare the performance of 
both methodologies. Sometimes, the values differ between methodologies. The initial 
tests with sigmoidal units for Balance dataset sheds light on that a high number of 
neurons provokes overfitting. 

4.3   Nonparametric Statistical Analysis 

We follow the recommendations pointed out by J. Demšar [19] to perform 
nonparametric statistical tests to determine the statistical significance of the 
differences in rank observed for each method with all data sets. There are two 
methods, Friedman and Iman-Davenport tests. The former test is based in 2

Fχ  

statistic; the null hypothesis states that all algorithms perform equal. The latter test is 
based of FF  which is a better statistic, derived from 2

Fχ . FF  is distributed according 

to the F-distribution with ( 1)k −  and ( 1)( 1)k N− − degrees of freedom with k 

algorithms and N datasets. If the null-hypothesis is rejected, we can proceed with a 
post-hoc test. Nemenyi test has been performed to compare all classifiers to each 
other. The critical difference (CD) can be computed from critical values, k and N. The 
considered significance levels have been 0.05 for Iman-Davenport test, and 0.05 and 
0.10 for the post-hoc method. 

5   Results 

First of all, this section presents the results obtained related to the Correct 
Classification Ratio (CCR) in the test set with TSEA, EDDSig and TSEASig 
methodologies. After that, a nonparametric statistical analysis compares all of them. 
Next, an analysis of the computational cost is performed. Finally, we report a 
summary of the results obtained with a good number of classifiers, from the scope of 
NNs or classical/modern machine learning.  

5.1   Results Applying TSEA, EDDSig and TSEASig 

The results obtained by applying TSEA [4] are presented, along with those obtained 
with EDDSig and TSEASig. In the case of EDDSig two configurations have been 
considered (1S and 2S). In TSEA, there were two configurations 1* and 2*; however, 
only one (1*) is considered to make a fair comparison with the remaining 
methodologies. In TSEASig, the single configuration is 1S*. EDDSig configurations 
are equivalent to 1S*. 

Table 5 shows the mean and standard deviation (SD) of the CCR and the topology 
for each data set and configuration for a total of 30 runs or iterations. By rows, the 
best result appears in boldface. The value obtained with TSEASig is in italics if it is 
better than the two values related to EDDSig. The descriptive analysis of the data 
reveals that the TSEA methodology obtains best results for eight data sets and 
TSEASig six times. Usually, TSEASig has lower SD than EDDSig and it expresses 
more homogeneous results of the former methodology. 
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Table 5. Results obtained in fourteen data sets with the different configurations related to 
TSEA, EDDSig and TSEASig methodologies 

Data set Methodologies       
 TSEA EDDSig TSEASig  
 1* 1S  2S  1S*  
 Mean±SD Top. Mean±SD Top. Mean±SD Top. Mean±SD Top. 
Australian 88.11±1.56 51:[4,5]:1 87.12±1.45 51:4:1 87.46±1.18 51:5:1 86.55±1.43 51:[4,5]:1 
Balance 96.20±1.06 4:[5,6]:2 94.14±1.87 4:4:2 95.08±1.27 4:5:2 93.93±2.21 4:[4,5]:2 
Cancer 98.74±0.61 9:[2,3]:1 98.39±0.74 9: 2:1 98.69±0.54 9:3:1 98.31±0.69 9:[2,3]:1 
Heart 83.68±2.57 26:[3,4]:1 82.89±2.46 26:3:1 83.02±2.59 26:4:1 83.85±2.65 26:[3,4]:1 
HeartY 84.01±3.05 13:[4,5]:1 83.28±2.92 13:4:1 83.18±2.61 13:5:1 83.87±2.66 13:[4,5]:1 
Hepatitis 85.26±4,34 19:[3,4]:1 86.22±4.77 19:3:1 85.78±4.12 19:4:1 86.75±3.41 19:[3,4]:1 
Horse 85.50±2.97 83:[4,5]:1 85.21±2.98 83:4:1 85.40±2.69 83:5:1 88.04±2.19 83:[4,5]:1 
Hypothyroid 95.37±0.40 29:[3,4]:3 94.69±0.39 29:3:3 94.94±0.35 29:4:3 95.15±0.18 29:[3,4]:3 
Newthyroid 94.81±0.89 5:[3,4]:3 94.07±0.75 5:3:3 94.25±1.01 5:4:3 94.38±0.59 5:[3,4]:3 
Pima 78.63±1.33 8:[3,4]:1 77.62±1.62 8:3:1 78.14±1.60 8:4:1 78.76±1.39 8:[3,4]:1 
Waveform 84.46±0.92 40:[3,4]:2 85.35±1.45 40:3:2 85.96±1.22 40:4:2 86.58±1.18 40:[3,4]:2 
Yeast 60.05±1.10 8:[11,12]:9 58.96±1.27 8:11:9 59.24±1.20 8:12:9 60.33±0.61 8:[11,12]:9 
BTX 79.68±7.39 3:[5,6]:6 72.85±7.41 3:5:6 73.01±4.89 3:6:6 76.34±5.65 3:[5,6]:6 
Listeria 86.54±1.67 4:[4,5]:1 85.06±1.13 4:4:1 85.43±0.97 4:5:1 85.75±0.66 4:[4,5]:1 

5.1.1   Statistical Analysis 
Now, we compare TSEA, EDDSig and TSEASig methodologies by means of 
nonparametric statistical tests. To determine whether there are significant 
differences we apply an Iman-Davenport test. Since two configurations were run 
for EDDSig, now we consider the best value of the two mean ones reported in Table 
5. The average ranks of the different methodologies are 2.64, 1.78 and 1.57 
respectively for EDDSig, TSEASig and TSEA. According to Iman-Davenport test 
results, since the statistic 6.16FF =  is higher than the critical value (2, 26) 3.37F =  

at 0.05α =  the null-hypothesis is rejected. Therefore, we proceed with post-hoc 
Nemenyi test. The performance of two classifiers is significantly different if the 
corresponding average ranks differ by at least the CD. Table 6 shows the Nemenyi 
test results where the ranking difference between each different pair and the detected 
significant difference level have been indicated for more clarity. In a single row, the 
CD (at 0.05α =  and 0.10α = ) is shown. 

Table 6. Pairwise comparisons of the TSEA, EDDSig and TSEASig methodologies by means 
of a Nemenyi test 

 EDDSig TSEASig TSEA 
EDDSig  0.86º  1.07 *  
TSEASig   0.21  

 ( 0.05 ) ( 0.10 )0.89;  0.78CD CDα α= == =  
Each filled cell contains the ranking difference between the methods in the row  
and the column. Also, it is specified if the former method outperforms  
the latter one at a significance level of 0.05 (*) or 0.10 (º)
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An analysis based upon the results Nemenyi test allow us to state the following. 
There are significant differences between the TSEASig and EDDSig at 0.10α = . 
Consequently, TSEASig is better than EDDSig. In other words, regarding to ANNs 
with sigmoidal units, the methodology based in the two-stage algorithm outperforms 
the standard one based in EDD. Comparing TSEA and TSEASig there are not 
significant differences. It means that the new approach is competitive with respect to 
TSEA. We can conclude that the methodology based on the two-stage algorithm is 
suitable both for sigmoidal and product units. Finally, TSEA is significantly better 
than EDDSig at 0.05α = . 

5.1.2   Analysis of Computational Cost 
The comparison between TSEA, EDDSig and TSEASig methodologies is completed  
by means of a computational cost analysis. Experiments have been run in a desktop 
computer with an Intel Core 2 Quad processor at 2.4GHz and 2GB RAM of physical 
memory. The acceleration rate of the i method with respect to j method is given by  
Eq. 4. 

( )
_ ( , )

( )

time j
Acceleration Rate i j

time i
=                                    (4) 

Table 7 reports the time results concerning to the computational cost per iteration 
measured in seconds (s). The first column specifies the data set name. From second to 
fifth columns are showed the elapsed time of an iteration with each configuration of 
the different methodologies. Two last columns depicted the accelerate rates for 
TSEASig regards to EDDSig and TSEA. Last row contains the average of the values 
in the column. Since two configurations of EDDSig are equivalent to one of 
 

Table 7. Computational cost and acceleration rates of TSEA, EDDSig and TSEASig 

Data set Computational cost (s) Acceleration rate 
 Methodologies (TSEASig, 

EDDSig) 
(TSEASig,  
TSEA) 

 TSEA  EDDSig  TSEASig   
 1*  1S 2S 1S*   
Australian 303  126 155 191 1.47 1.59 
Balance 287  317 370 382 1.80 0.75 
Cancer 98  40 51 61 1.49 1.61 
Heart 207  114 133 134 1.84 1.54 
HeartY 62  34 37 51 1.39 1.22 
Hepatitis 36  19 22 25 1.64 1.44 
Horse 817  304 378 344 1.98 2.38 
Hypothyroid 6503  4525 6090 6694 1.59 0.97 
Newthyroid 122  83 101 116 1.59 1.05 
Pima 105  63 73 88 1.55 1.19 
Waveform 9213  5217 6412 7155 1.63 1.29 
Yeast 49320  21983 30349 28538 1.83 1.73 
BTX 256  158 174 190 1.75 1.35 
Listeria 231  168 198 216 1.69 1.07 
Average 4825.71  2367.93 3181.64 3156.07 1.66 1.37 
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TSEASig, the acceleration rate (TSEASig, EDDSig) is calculated as the sum of the 
times of 1S and 2S divided by the time of 1S*. 

Having a look at the Table 7, we conclude that regarding to sigmoidal units, 
TSEASig is 1.66 times faster than EDDSig. In the comparison between TSEASig and 
TSEA, the former is 1.37 times faster than the latter. The empirical times give notice 
that the proposed methodology, TSEASig, is much more efficient than the previous 
methodology, TSEA. Moreover TSEASig is faster than EDDSig. The efficiency 
measures are based on the computation time of an iteration of the whole population 
throughout the EA running. The speed depends on the own evolutionary process and 
the number of mathematical operations that are involved to calculate the NN output. 

5.2   Results Obtained with a Good Number of Classifiers  

Now, a general review is made about the results obtained with another kind of NNs 
and other machine learning algorithms. In the literature, a huge amount of tests has 
been carried out with some of the data sets here considered. Our purpose is to view 
some of the methods that have been tested with some of the data sets dealt with in the 
current chapter. 

Related to NNs, we have reported TSEASig, TSEA, the traditional MLP model 
[20] with a learning Back-Propagation method (BP); the RBF model [21] with a 
normalized Gaussian, HMOEN_L2 [22], SONG [23] and CC-EBFNN [24]. As 
classical or modern machine learning algorithms have been included: C4.5, k-nearest 
neighbours (k-NN) -with the best accuracy for k in {1, 3, 5, 7, 9}-, PART and SVM 
[25]. Since, MLP, RBF, C4.5, k-NN, PART and SVM are implemented in Weka tool 
[26], we have conduced the experiments. The parameters have been set to the default 
values with the exceptions that we describe; for BP were the following: learning rate 

0.3η = , momentum 0.2α =  and the number of epochs was adjusted in each data set. 

To determine the learning and the momentum we try out a grid search algorithm with 
values in the range [0, 1] in 0.1 steps. Regarding the topology of the models in the 
case of MLP and RBF we have considered the default one.  

Table 8 includes the results of all classifiers, averaged for 30 runs in non-
deterministic algorithms, with each of the data set; the best ones in boldface and in 
italics the second best ones, as well as the averages of the methods run by us with all 
data sets. From a purely descriptive analysis of the results, it can be concluded that 
SVM and RBF obtain the best result for three data sets, TSEASig, MLP, C4.5 and 
PART for two data sets, and TSEA and k-NN once. There is not one method that 
performs really well with all data sets; depending on the data set, the best classifier 
belongs to either the neural networks approach or to the classical/modern machine 
learning. Furthermore, the TSEA method achieves the highest mean accuracy 
( 85.79CCR = ), followed by the TSEASig ( 85.61CCR = ) and RBF ( 84.42CCR = ). 

The previous statements point out that methodology based on two stages is proper 
with product or sigmoidal units. 
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Table 8. Summary of the results in fourteen data sets comparing TSEASig to other methods 
related to neural networks or classical/modern machine learning approaches 

Method Australian Balance Cancer Heart HeartY Hepatitis Horse 
TSEASig 86.55 93.93 98.31 83.85 83.87 86.75 88.04 
TSEA 88.11 96.20 98.74 83.68 84.01 85.26 85.50 
HMOEN_L2 - - 96.30 - - 80.30 - 
MLP 84.10 93.78 97.81 84.82 84.29 84.73 88.51 
RBF 75.84 88.27 97.20 86.75 83.79 89.30 80.47 
SONG - 87.80 97.40 - - - - 
CC-EBFNN - - 96.67 82.45 - - - 
C4.5 86.71 83.33 97.13 75.00 84.21 84.21 88.04 
k-NN 85.55 91.67 98.85 82.89 83.70 86.84 88.04 
PART 84.97 85.26 97.13 80.26 82.12 81.58 85.87 
SVM 88.44 88.46 98.28 82.89 80.37 89.47 88.04 

Method Hypothyroid Newthyroid Pima Waveform Yeast BTX Listeria 
TSEASig 95.15 94.38 78.76 86.58 60.33 76.34 85.75 
TSEA 95.37 94.81 78.63 84.46 60.05 79.68 86.54 
HMOEN_L2 - - 78.50 - - - - 
MLP 94.39 97.08 75.94 84.85 60.11 54.12 84.49 
RBF 92.83 98.27 77.34 87.29 59.83 80.95 83.70 
SONG - 97.20 76.40 - - - - 
CC-EBFNN - - 76.04 - - - - 
C4.5 99.15 96.30 74.48 76.40 54.84 80.95 85.93 
k-NN 94.06 94.44 75.00 81.12 48.39 76.19 85.93 
PART 98.83 92.59 74.48 78.16 56.72 80.95 86.67 
SVM 93.85 88.89 78.13 88.80 55.91 61.90 80.74 

 

 ( ) 85.61CCR TSEASig = ; ( ) 85.79CCR TSEA = ; ( ) 83.50CCR MLP = ;

 ( ) 84.42CCR RBF =  

 

 ( 4.5) 83.22CCR C = ; ( ) 83.76CCR k NN− = ; ( ) 83.26CCR PART = ;

 ( ) 83.16CCR SVM =  

6   Conclusions 

This chapter aims to tackle multi-classification problems using evolutionary artificial 
neural networks based on sigmoidal units. We have extended to sigmoidal units a 
previous methodology for neural networks based on product units based with an EA 
divided in two phases. The new approach has been called TSEASig. Our basic 
assumption is that it is convenient to employ a methodology based on a population 
with more diverse models in terms network architectures and this produces an 
improvement in efficiency and accuracy.  

The TSEASig methodology is applied to solve fourteen classification problems, 
twelve from the UCI repository and two real-world problems, with a great deal of 
variety in the number of instances, features and classes. The test results confirm that 
our approach obtains promising results, achieving a high classification rate level in 
the data sets at a lower computational cost than EDDSig.  
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A comparison between TSEASig, EDDSig and TSEA has been carried out by 
means of nonparametric tests. The test results reveal that there are significant 
differences between TSEASig and EDDSig. However, significant differences are not 
present between TSEASig and TSEA; this fact indicates that the methodology in two 
stages is also suitable for sigmoidal units. According to the above results, our new 
learning methodology of neural networks, TSEASig, based on sigmoidal units is 
competitive in accuracy and more efficient than the remaining methodologies. The 
empirical times give notice that TSEASig is 1.37 times faster than TSEA. 

We have also summarized the results obtained with other kinds of neural networks 
and classical/modern machine learning algorithms. From the analysis of the results we 
can observe the good performance of our new approach.  
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