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Multimodal Medical Image Fusion in Extended 
Contourlet Transform Domain 

Seiichi Serikawa, Huimin Lu, Yujie Li, Lifeng Zhang, Shiyuan Yang,  
Akira Yamawaki, Shota Nakashima, and Yuhki Kitazono* 

Abstract. As a novel of multi-resolution analysis tool, the modified sharp frequency 
localized contourlet transforms (MSFLCT) provides flexible multiresolution, 
anisotropy, and directional expansion for medical images. In this paper, we proposed 
a new fusion rule for multimodal medical images based on MSFLCT. The 
multimodal medical images are decomposed by MSFLCT. For the high-pass 
subband, the weighted sum modified laplacian (WSML) method is used for choose 
the high frequency coefficients. For the lowpass subband, the maximum local 
energy (MLE) method is combined with “region” idea for low frequency coefficient 
selection. The final fusion image is obtained by applying inverse MSFLCT to fused 
lowpass and highpass subbands. Abundant experiments have been made on groups 
of multimodality datasets, both human visual and quantitative analysis show that the 
new strategy for attaining image fusion with satisfactory performance. 
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1   Introduction 

The important of image processing and fusion has been investigated for diagnostic 
and healthcare [1]. Registration and fusion of radiological images is by no means a 
new post processing technique. Technological advances in medical imaging in the 
past three decades have enable radiologists to create images of the human body 
with unprecedented resolution. 

The medical equipment companies like GE, Siemens, Hitachi et al. build the 
imaging devices (such as CT, PET and MRI scanners), which quickly acquire the 
body’s 3D images. Such images provide different and often complementary 
contents, e.g. CT images supply anatomical information, PET images deliver 
functional information, and MR images are better in present the normal and 
pathological soft tissue. That is to say, imaging sensors provide a system with 
useful information regarding some features of interest in the system environment. 
However, a single sensor cannot provide a complete view of the scene in many 
applications. The fused images, if suitably obtained from a set of source sensor 
images, can provide a better view than that provided by any of the individual 
source images. In recent decades, growing interest has focused on the use of 
multiple sensors to increase the capabilities of intelligent machines and systems. 
As a result, multi-sensor fusion has become an area of intense research and 
development in the past few years. 

The literature has published on data fusion in many fields, such as computer 
vision, machine intelligence and medical imaging, this paper is focused on multi-
sensor data fusion in the multimodal medical images field.Multimodal medical 
image fusion is the process of extracting significant information from multiple 
images and synthesizing them in an image. In literature, it is well established that 
the multi-resolution analysis is the approach that best suits image fusion.  

Some Multi-resolution Analysis (MRA) based fusion multimodal medical 
methods [2], such as wavelets [3], Laplacian pyramids [4], wedgelets [5], 
bandelets [6,24], curvelets [7,25], contourlets [8], have been recognized as one of 
the most methods to obtain a fine fusion images at different resolutions. As we 
fully and comprehensively elaborate the advantages and disadvantages of various 
X-lets transform in our previous work [9,23,26]. Here, we consider using a 
contourlet transform-based method for multimodal medical image fusion.  

In this paper, we propose an image fusion method for multimodal medical 
images fusion, which operates in the modified sharp frequency localized 
contourlet transform (MSFLCT). We apply maximum local energy method (MLE) 
and weighted sum-modified Laplacian (WSML) in this work. Particularly, for 
multimodal images fusion, we selected the low frequency coefficients by the 
proposed maximum local energy (MLE) method, and introduced weighted sum 
modified Laplacian (WSML) to calculate the high frequency coefficients. The 
structure of the following is: In Section 2, we briefly introduce the modified sharp 
frequency localization contourlet transform in this work. As a solution, we  
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propose in Section 3 a new fusion method, named maximum local energy method 
and weighted sum modified Laplacian method. Numerical experiments are 
presented in Section 4 to confirm our method. Finally, we conclude the paper in 
Section 5. 

2   Modefied Sharp Frequency Localized Contourlet Transform 

Do and Vetterli [8] proposed an efficient directional multi-resolution image 
representation called contourlet transform in 2002. Contourlet is a “true” two-
dimensional transform that can capture the intrinsic geometrical structure, and has 
been applied to several tasks in image processing. Contourlet transform (CT) 
better represents the salient features of the image such as edges, lines, curves, and 
contours, than wavelet transform because of its anisotropy and directionality. Two 
steps are involved in CT, which are subband decomposition and the directional 
transform. CT uses the Laplacian pyramid (LP) transform to decompose the image 
in multiscale form before adopting the directional filter banks (DFB) to 
decompose the high frequency coefficients and obtain details with different 
directions of the directional subband. CT can accurately express directions. 
However, because of the non-subsampled process in LP and DFB, it causes 
frequency aliasing, which creates larger changes in decomposition coefficient 
distribution with a small shift in the input image. However, if we fuse the 
decomposition coefficients, the process results in edge aliasing or the pseudo-
Gibbs phenomena. Therefore, non-subsampled contourlet transform (NSCT) was 
created simply by turning the downsampler units in the subsampled contourlet by 
considering some aliasing issues. But the NSCT has the weakness of high 
redundancy and long run time. As a solution, Y. Lu proposed a new construction 
of a sharp frequency localization contourlet transform (SFLCT) [10]. 

Sharp Frequency Localized Contourlet Transform (SFLCT) is a new 
construction contourlet which succeed in solving the pseudo-Gibbs phenomena 
around singularities procuced by the Laplacian pyramid stage. The difference 
between SFLCT and Contourlet transform (CT) is that, SFLCT use the new 
multiscale pyramid and can employ a different set of lowpass and highpass filters 
for the levels. Suppose lowpass filters Li(ω) (i = 0,1) in the frequency domain as 
Li(ω) = Li

ld(ω1)·Li
ld(ω2), and Li

ld(ω) is a one-dimensional lowpass filter with 
passband frequency ωp,i and stopband frequency ωs,i and a smooth transition band, 
defined as 
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where |ω| ≤ π and i =0,or 1.  The Figure 1 shows the new pyramid structure of 
SFLCT, instead of using the Laplacian pyramid. 
 



218 S. Serikawa et al.
 

 

Fig. 1 The block diagram of Sharp Frequency Localized Contourlet Transform 

SFLCT succeeded solve the pseudo-Gibbs phenomena, but it was not solved 
the shift variant, due to the downsampling of Laplacian pyramid and DFB stages. 
Hence, we use cycle spinning [11] for shift invariant denoising.  

Suppose f1, f2 are source images and F is the fused image, C-1,C are the inverse 
MSFLCT and forward MSFLCT, Sx,y is the cycle spinning method and x,y are the 
shift arranges in horizontal and vertical directions. Cycle spinning fusion rule is  

F=S-x,-y{h[C( Sx,y(f1) ), C( Sx,y(f2) )]}   (2)

where, h is the function process in SFLCT domain. x∈X and y∈Y is the shift 
arranges, X={x1,x2,…,xm}, Y={y1,y2,…,yn}. Therefore, cycle spinning averages the 
dependence of directional filter banks of SFLCT. It can be defined as 
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3   The Proposed Fusion Algorithm 

In this section, we propose a new multimodal medical image fusion method. 
Figure 2 shows the flowchart of a MSFLCT-based scheme suitable for fuse the 
multimodal medical images, whose scale is an integer p=3. Let f(P)(i,j) be the 
dataset constituted by modal 2 image with smaller scale, and size is MP×NP. Let 
also f(l)(i,j) be the dataset made up of an Modal 1 image. The enhancement of each 
band to yield the spatial resolution of Modal 1 image is synthesized from the layer 
c1 (middle layer) and c2 (high layer) of the MSFLCT.  

Firstly, obtain f(l)(i,j) of Modal 1 with the same spatial resolution as Modal 2 
image. The constitution of low-resolution component of Modal 2 image and 
Modal 1 image are processed by maximum local energy (MLE) rule. In the level i1 
of resolved Modal 2 image and Modal 1 image, the local energy components are 
obtained by 3×3 sliding window. Then, output the maximum component of two 
source images. In the layer c1 (middle layer) and c2 (high layer), we use a spatial 
domain measurement, the weighted sum modified Laplacian (WSML), as a high-
resolution fusion rule. The modified Laplacian takes the absolute values of the 
second derivatives in the Laplacian to avoid the cancellation of the second 
derivatives in the horizontal and vertical directions that have opposite signs. At the 
same time, MLE rule can adaptive to adjust WSML rule. Finally, by means of the 
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inverse MSFLCT, two images of zero-mean spatial edges and textures that are 
added to the corresponding frames. The final medical fused image f(l)(i,j) is 
received by summing the approximations and enhanced detail frames of each band 
in MSFLCT synthesis. 

 

 

Fig. 2 The flowchart of our fusion rules 

3.1   Lowpass Subband Fusion Rule 

This paper proposes the maximum local energy (MLE) as a measurement for low 
frequency selection. Due to the incompleteness of multiscale decomposition, 
image details are mainly retained in the low frequency. Therefore, proposed some 
edge filters to get a good result. But because of the edge filter coefficients 
distribute as non-Gaussian distribution, so, combine with local energy, can solve 
this problem well. Select the maximum energy of two low layer i1 images as 
output. Due to the partial human visual perception characteristics and the 
relationship of decomposition about local correlation coefficients, the statistical 
characteristics of neighbor should be considered. Therefore, the statistic algorithm 
is based on the 3×3 sliding window. The algorithm is described as follows: 
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where p is the local filtering operator. M, N is the scope of local window. ξ∈A or 
B (A, B is the window for scanning two images). ),()0( jifξ is low frequency 

coefficients, and i, j are variables.  So, the Maximum Local Contourlet Energy 
(MLCE) are defined as 
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where E1,E2,…, EK-1 and EK are the filter operators in K different directions. l is 
the scale layer.  
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The principle of the MLE method can be elaborated by Figure 3. In the scale J 
matrix in MSFLCT domain, use (4) to convert the coefficients values to energy 
values. A sliding window, with 3 directions, is moving through the energy matrix, 
and output the maximum coefficient as the fuse coefficients. 
 

 

Fig. 3 The principle of Maximum Local Energy rule 

Suppose IA
l,k(i,j), IB

l,k(i,j) and IF
l,k(i,j) denote the coefficients of source images 

and fused images. The proposed MLCE-based low frequency coefficients fusion 
rule can be described as follows 
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3.2   Highpass Subband Fusion Rule 

Assuming that the image details are contained in the high-frequency subbands in 
the multiscale domain, the typical fusion rule is a maximum-based rule, which 
selects high-frequency coefficients with the maximum absolute value. Recently, 
measurements such as, energy of gradient (EOG) [12], spatial frequency (SF)[13], 
Tenengrad[14], energy of Laplace (EOL)[15], and sum modified Laplacian (SML) 
[16] have been used. In this paper, In Ref. [17], the authors declaimed that SML 
has a better performance than the others. However in this paper, we propose a new 
type of SML, called Weighted SML (WSML). We use WSML to choose the high 
frequency coefficients in MSFLCT domain. The WSML is more reasonable to 
employ the features of coefficients, which considering the relationship between 
the neighbor coefficients. 
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A focus measure is defined in a maximum for the multimodal medical images. 
Therefore, for multimodal image fusion, the focused image areas of the source 
images must produce maximum focus measures. Set f(x,y) as the gray level 
intensity of pixel (x,y). Defined modified Laplacian (ML) is 

2 ( , ) | 2 ( , ) ( , ) ( , ) |

| 2 ( , ) ( , ) ( , ) | .
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In this paper, “step” is always equals to 1. We use a city-block distance matrix to 
modify the traditional SML formulation as 
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where l and k are the scale and the direction of transform respectively. x ∈ A or B 
are the source images. T is a discrimination threshold value. M and N determine 
the window with a size of (2M + 1) × (2N + 1), and p, q are variables. The city-
block distance matrix is 
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Suppose CA
l,k(i,j), CB

l,k(i,j), and CF
l,k(i,j) denote the coefficients of the source and 

fused images. The proposed WSML-based high frequency coefficients fusion rule 
can be described as follows: 
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4   Experimental Results and Discussions 

To evaluate the performance of the proposed approach, we present with dataset is 
CT and MR images.  The images are registered images, which are with the same 
size of 256×256 pixel and with 256-level grayscale. The average pixel value 
method provides a baseline result, while the PCA fusion method givers an 
equivalent but a slightly better result. However, both of the methods have poor 
results compared to the others by human vision. Because of both of them do not 
consider the scale selectivity. Through the results in multiscale methods, which 
present in Figure 4, we found that the details of Figure 4(e), (f) and (g) are blurred. 
This is very bad for doctor’s diagnosis.  

Back to review the reason of the blurring in the principle level. We found that 
although the themes of classical wavelets are compression and efficient in signal 
representation. The important features in the analysis of functions in two variables are 
dilation, translation, spatial and frequency localization, and singularity orientation. 
For one dimension, important singularities are simply points. But the one-
dimensional singularities are important in two-dimensional signal or higher. Smooth 
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singularities in two-dimensional images often occur as boundaries of physical objects. 
Efficient representation in two dimensions is a hard problem in wavelet 
representation. That’s why the wavelet transform limited in medical image fusion. 
Using curvelet transform, blocks must be overlapped together to avoid the boundary 
effect. Therefore, redundancy is higher in this implementation algorithm. The other 
reason is that the key step in curvelet transform, Cartesian to polar conversion, cause 
mistakes in the fused results. In section 2, we elaborated the drawbacks of traditional 
contourlet transform. Generally speaking, the proposed method achieves the best 
overall performance. We also test the proposed method in 100 clinic medical sample 
images, the PSNR value of the results are also shows that the proposed method is 
well in processing the multimodal medical images. 

 
 

      
              (a)                        (b)                         (c)   
 

         
              (d)                         (e)                         (f)   
 

  
(g)                           (h) 

Fig. 4 Test CT/MR images fused results with different method. (a) CT image. (b) MR image. 
(c) Average method. (d) PCA. (e) Wavelet. (f) Curvelet. (g) Contourlet. (h) Proposed method. 
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In addition to the visual analysis of these figures, we conducted quantitative 
analysis, mainly from the perspective of mathematical statistics and the statistical 
parameters of the images. These include entropy (EN), [18]  average gradient 
(AG)[19] Peak Signal to Noise Ratio (PSNR) [20], fusion quality index (Q) [21], 
Structural SIMilarity (SSIM) [22]. 

Entropy of image reflects the amount of its carried information. The more 
information it carried, the larger its value. The computational formula is given by 
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where, l∈{0,1,2,…,L-1}, pF(l) is the probability of fused image F at gray-level l. 
The average gradient reflects the small details of the image, texture variation 

and clarity. If this value is larger, the fused image better. It is defined by 
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Let xi and yi be the i-th pixel in the original image x and the distorted image y, 
respectively. The MSE and PSNR between the two images are given by 
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In [22], the authors use a sliding window, from the top-left of the two images A, B. 
The sliding window is with a fixed size. For each window w, the local quality 
index Q0(A, B| w) is computed for the values A(i, j) and B(i, j), where pixels (i, j) 
lies in the sliding window w. 
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where W is the family of all windows and |W| is the cardinality of W. In practice, 
the Q0 index also defined as 
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where, σAB denotes the covariance between A and B, A
－

 and B
－

 are the means, σ2
A 

and σ2
B are the variances of A and B, respectively. 
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Piella et al. [21] redefined the useful quality index Q0 as Q(A, B, F) for image 
fusion assessment. Here A, B are two input images and F is the fused image. They 
denoted by s(A|w) some saliency of image A in window w. This index may depend 
on contrast, sharpness, or entropy. The local weight λ(w) is defined as 
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where s(A|w) and s(B|w) are the local saliencies of input images A and B, λ∈[0,1]. 
The fusion quality index Q (A,B.F) as 

( )
∈

−+=
Ww

wFBQwwFAQw
W

FBAQ )|,())(1()|,()(
||

1
),,( 00 λλ

     

(19)

In [22], a multi-scale SSIM method for image quality assessment is proposed. 
Input to signal A and B, let μA, σA and σAB respectively as the mean of A, the 
variance of A, the covariance of A and B. The parameters of relative importance α, 
β, γ are equal to 1. The SSIM is given as follow: 
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where C1, C2 are small constants. From the Table 1, the proposed method is better 
than the other multi-resolution analysis methods in multimodal medical images 
fusion. From the below three image sets, the value of Q and SSIM is higher than 
the others, which is the higher the better. 

Table 1 Conparation of different multimodal medical image fusion methods  

Algorithms EN AG PSNR Q SSIM 

Average 5.9152 3.6606 15.657 0.6613 0.74338 

PCA 6.5814 5.0795 17.691 0.8521 0.85590 

Wavelet 5.9727 6.4312 17.126 0.5262 0.58745 

Curvelet 7.1056 4.3369 20.269 0.5913 0.82041 

Contourlet 6.6061 6.9663 18.261 0.5825 0.72138 

Proposed 4.0455 4.8149 24.011 0.6073 0.90545 

5   Conclusions 

In this paper, we proposed a new multimodal medical image fusion method, based 
on modified sharp frequency localized contourlet transform (MSFLCT). The novel 
approach is applied on larger number of dataset of category and simulation results 
are found with superior visual quality compared to other stand-of-art image fusion 
methods. We respectively applied two different rules in lowpass subband and 
highpass subband. The proposed algorithm can be extended further by applying it  
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for different categories of images like remote sensing images. Visual and 
statistical comparisons demonstrate that the fusion results of the new algorithm 
contain more detail information than others. In future, complex fusion rules and 
their combinations can be explored to improve robustness of proposed multimodal 
medical image fusion approach. 
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