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Abstract. Deployment of distributed component-based systems is quite impor-
tant stage in the system’s life-cycle since it may significantly influence its overall
performance and utilization of computers and the network. Thus, deployment of
the system has to be carefully planned. There exist algorithms for deployment of
component-based system; however they allow deployment of systems with a single
level of component composition; hierarchical systems have to be flattened before
deployment. However, such a flattening is not possible for component frameworks
where hierarchical components exist also at run-time. In this paper, we present an
algorithm for automated deployment planning of hierarchical component systems.
The algorithm incorporates component demands and machine resources in order to
maximize performance of deployed applications. We also present an implementa-
tion of the algorithm for the SOFA 2 component framework.

1 Introduction

Component-based development (CBD) [15] is currently well understood and widely
used technique for development of software systems in all kinds of domains rang-
ing from embedded to enterprise ones. Using it, systems are built by composition
of well-defined reusable pieces of software blocks, i.e. components. There exist a
number of component frameworks, which differ in understanding what a compo-
nent is, how they can be composed, deployed, etc. Each of the frameworks defines
its component model, which is a definition of components and all related abstrac-
tions. Nevertheless, a common consensus is that a component is a black-box entity
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with explicitly defined provided and required services and behavior. Composition is
done via binding the component interfaces together.

From the view of composition, component models can be divided into flat and
hierarchical ones. A flat model allows composition only on a single level while
a hierarchical one allows it on multiple levels of nesting, i.e. components can be
composed of other subcomponents.

Many component frameworks allow for transparently distributed applications
(e.g. SOFA 2 [5], Fractal [4]). It means that during development it does not mat-
ter where particular component will be deployed at run-time. The glue code for
component interconnections is automatically generated before execution based on
the deployment decisions – allocation particular components onto particular com-
puters in the network. Importantly, components of a single system can be deployed
differently every execution and thus allowing for optimal utilization of available
computer resources based on their current actual load.

The deployment of component-based system is standardized in the OMG De-
ployment and Configuration of Component-based Distributed Applications Specifi-
cation (OMG D&C) [11]. The specification defines all necessary meta-models for
deployment, however it does not prescribe any algorithm for actual deployment.
Even more, the specification assumes that hierarchical components exist only at
design time, while during deployment, the system is flattened. Nevertheless, such
flattening cannot be applied in those component frameworks in which hierarchical
components exist during their whole life-cycle, i.e. even at run-time (e.g. aforemen-
tioned SOFA 2 and Fractal).

In this paper we present an algorithm for automated deployment of hierarchical
component systems, in which hierarchical components exist at run-time. The algo-
rithm tries to find an optimal deployment with respect to the performance of the
deployed application and utilization of the computers. The structure of the paper is
as follows. Section 2 presents a basis for our work and requirements imposed on
the deployment algorithm. Section 3 describes the algorithm. Section 4 presents an
implementation of the proposed algorithm while Section 5 discusses related work,
and Section 6 concludes the paper.

2 Background

An optimal deployment of a component system is typically understood as an assign-
ment of the system’s components to particular computers (deployment nodes) such
that the system meets some criteria (typically that it has maximized performance).
To find out the optimal deployment is a complex problem. A naive solution is to
recursively try all possible assignments but such an algorithm has an exponential
complexity. There exist several works offering algorithms for finding optimal de-
ployment automatically, typically by applying heuristics to overcome complexity
of the problem (a downside is that obtaining the optimal deployment is not guar-
antied) [8, 6, 14]. Nevertheless all of them work for flat component models only.
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As a basis for our algorithm deploying hierarchical components, we have chosen
the algorithm in [14] as it seems to offer best results and also it is the most recent
one. Now we will briefly describe it.

2.1 Original Algorithm

The algorithm attempts to maximize performance of the system. As a metric for
evaluating the performance, it uses CPU time and disk usage time required by a
component per visit (a call of a provided method). Additionally, the algorithm as-
sumes that computers are interconnected via a high bandwidth network (i.e. it is
intended primarily for deployment at a local area network) and also it assumes that
each component of a system can be deployed to any computer. The algorithm as-
sumes the following definitions: (a) component makespan (makeC) is the value of
component’s CPU or disk demands per visit (whichever is greater), (b) machine
makespan (makeM) is the value of machine’s total CPU or disk execution times
(whichever is greater) calculated using data from the deployed components, and
(c) system makespan (makeS) is the maximum value of makeM in the network. To
reduce the complexity, the algorithm works without backtracking. In general, it se-
lects an ordering of components and then places components one by one onto the
computers in the network. In the paper with the original algorithm [14], there are
proposed several heuristics for selecting the order of components and also for se-
lecting a target computer for the particular component. Based on the evaluation,
the authors selected the best heuristic for each of them. They are as follows. As a
computer for deployment of a particular component the one with minimal makeM

is selected. The ordering of components is not precomputed but evaluated on the
fly – as a next component for deployment, the one having the highest demands per
execution in the dimension of the current highest makespan resource (CPU or disk)
is chosen. With the second heuristic, the problem of selecting the first component
to be deployed arises. It is solved by letting the heuristic start with each of the com-
ponents as the first component and thus generating n different orderings in total. At
the end the best ordering is chosen, i.e. the ordering with the smallest makeS.

2.2 Additional Requirements

The algorithm above does not deal with hierarchical components and thus cannot
be directly used in the frameworks such as SOFA 2 and Fractal. Additionally, it as-
sumes that components have only a single input point, which does not hold for most
of the contemporary component frameworks where components can have multi-
ple interfaces, each with several methods. Finally, the algorithm assumes that each
component can deployed to any computer in the network, which is typically not
true; components can require particular services available and/or they can require
that several interconnected components are deployed at the same computer.
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Thus, the additional requirements laid on the algorithm for automated deploy-
ment of component-based systems (apart from being fast and finding an optimal
solution that maximizes the performance) are support for: (1) hierarchical compo-
nents, (2) multiple component interfaces and multiple methods per interface, and
(3) additional deployment location constraints.

3 Automated Deployment of Hierarchical Components

As already mentioned, we use the algorithm briefly described in Sect. 2.1 as a basis
and extend it to also support the requirements defined in Sect. 2.2.

To support hierarchical components and location constraints, our algorithm does
not work directly with components but with deployment units. A deployment unit is
either: (1) a primitive component, or (2) a composite component (without its sub-
components), or (3) a group of interconnected primitive components that have to be
deployed on the same computer plus all composite components that participate on
delegation of method calls between these primitive components.

In SOFA 2, Fractal, and other frameworks with hierarchical composition, com-
posite components do not contain any functional code; they only delegate method
calls on their interfaces to interfaces of their sub-components. If a composite com-
ponent and its sub-components with a delegated interface are deployed to different
computers, this delegation consumes additional resources (unlike when deployed
to the same computer). Thus, it is desirable to deploy such components to a single
computer.

In the original algorithm, the resource demands are simplified (CPU and disk)
and specified ‘per visit’. However, in the case a component interface has multiple
methods, it is not sufficient, since a call to each method can result in different de-
mands. Thus resource demands have to be specified per method; for the deployment
algorithm, total resource demands of each component have to be computed from
the – see Sect. 3.2. Additionally, our algorithm deals with additional component re-
quirements, such as presence of a particular service on the computer (e.g. version of
the Java platform or ability to show graphical UI). A difference between resource
demands and component requirements is that the demands “consumes” particular
capabilities of a computer (i.e. CPU usage, disk usage, etc.) while component re-
quirements does not “consume” a capability (i.e. for example in the case of ability
to show GUI it does not matter whether there is deployed single component or five).

For describing the component requirements of components and capabilities of
computers, we use the corresponding part of the OMG Deployment and Configura-
tion of Component-based Distributed Applications Specification (OMG D&C) spec-
ification. Requirements and capabilities are specified by the following attributes:
name, value, and kind. The kind classifies the requirement/capability and based on
it, the requirements are matched against capabilities. There are following kinds: at-
tribute, maximum, minimum, and capacity.
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3.1 Deployment Algorithm

Now, we can describe the deployment algorithm we propose in this paper (Alg. 1).
The algorithm assumes that each component has already its total resource demands
described.

Algorithm 1: Deployment planning
Input: Set of components
Result: All components are deployed

deplUnits← GetDeploymentUnits(input set of components);
compositeComponents← ExtractCompositeComponents(deplUnits);
orderedDeplUnits← Get order of deplUnits using Algorithm 3;
Deploy orderedDeplUnits using Algorithm 2;
Order compositeComponents according to a nesting level such that components with
higher nesting level are put ahead;
Deploy compositeComponents using Algorithm 4;

The algorithm works in several steps. First, deployment units are identified. Re-
source demands and requirements are calculated from all of the components in the
unit. Then, a set of the units composed of composite components only is extracted
from the complete set of the units. Next, the deployment units in deplUnits are or-
dered using Alg. 3 and deployed using Alg. 2. Finally, the composite components in
compositeComponents order based on the decreasing level of nesting in the sys-
tem architecture are subsequently deployed via Alg. 4. The chosen ordering ensures
that whenever a component is to be deployed, all of its sub-components have been
already deployed.

Algorithms 2 and 3 are just minor modifications of the algorithms from [14].

Algorithm 2: Deployment of deployment units in the given ordering
Input: List of deployment units in the given ordering
Result: All deployment units are deployed

foreach Deployment unit Ui do
foreach Computer D j do

Mock-deploy the deployment unit Ui on the computer D j;
Note the value of makeM ;
Cancel the mock-deployment;

end
Choose the computer D with the minimum value of makeM ;
Deploy the deployment unit Ui on the computer D and update the system;

end

The original algorithm always produces a solution. However, since we suppose
additional restrictions and requirements put on deployment, our algorithm does not
guarantee to always produce a solution (in the cases when no solution exists).
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Algorithm 3: Selecting the ordering of deployment units for deployment
Input: Set of deployment units
Output: Ordering of the deployment units

foreach Deployment unit Ustart do
Ucurrent ←Ustart ;
while exists a deployment unit that is not deployed do

Deploy Ucurrent using Algorithm 2;
Find the most loaded resource in the system;
Ucurrent ← Deployment unit with the highest demand in the dimension of the
most loaded resource;

end
Save the ordering along with the resulting system makespan;
Reset the deployment;

end
Output the ordering which results in the least system makespan;

Algorithm 4 deploys composite components. First it attempts to deploy a com-
posite component to the same computer as sub-components with delegated inter-
faces are deployed. If it is not possible, Alg. 2 is employed.

Algorithm 4: Deployment of composite components in the given ordering
Input: List of composite components in the given ordering
Result: All composite components are deployed

foreach Composite component Ci do
computers← Get set of computers where sub-components of Ci should be
deployed;
foreach Computer D j in computers do

Deploy the composite component Ci on the computer D j and update the
system;
if the deployment is successful then

break;
end

end
if the composite component Ci is NOT yet deployed then

U ← Create a deployment unit from the composite component Ci;
Deploy U using Algorithm 2;

end
end

3.2 Resource Demands

As aforementioned, resource demands for our algorithm are defined per method.
As resource demands, the time necessary for execution of a method and disk us-
age of a method (i.e. the same resources as in the original algorithm) are taken into
account. However, specifying resource demands per method is not sufficient since
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most contemporary component frameworks allows active components, i.e. those that
feature their own threads. Thus resource demands have to defined per active thread,
too.

Also, a question is which units should be used for specifying resource demands.
Intuitively, they can be specified in time units (e.g. seconds), which for disk usage
are fine, but for CPU usage it would cause problems, since it depends on the speed
of the particular CPU used. A better solution (inspired by [3]) is to use general units
such as the number of CPU operations per second and to calculate the actual time
from them and from the description of the particular hardware.

For automated deployment, resource demands specified per method/thread are
still not enough and resource demands have to be calculated per whole components.
However, it cannot be done as a simple summarization of all method/thread de-
mands as it depends on the actual usage of the component in a system (i.e. a single
component can have different demands when it is used in different systems). To
overcome this we need to know behavior of all of the components. By behavior
we mean which methods are called (and how many times) by a component on its
required interfaces as a reaction to a received call on its provided interface. And
similarly for active threads, i.e. which methods are called by a component on its
required interfaces during execution of a thread.

A suitable formalism for such a behavior description are behavior protocols [12].
They capture a component behavior in the sense of received calls and reactions
to these received calls, however they do not contain information on the frequency
particular methods are called. Thus we have created an extension of the behavior
protocols to capture such information. We have extended definition of the alterna-
tive operator (which allows specification that from a list of methods a single one
is called) by numbers capturing probability of a method call (from the given list).
Also, we have extended definition of the repetition operator (which allows specifi-
cation that a method is called in a cycle) by the most probable number of repetitions.
Both of these extensions are optional – an alternative without specified probabilities
presumes that the probability of calls are equally divided, and a repetition without a
number is the same as a repetition with 1.

With the total component resource demands computed, the automated deploy-
ment algorithm has enough information and can be applied.

4 Implementation for SOFA 2

To evaluate it, we have implemented the algorithm for the SOFA 2 component
framework 1. The SOFA 2 deployment environment consists of a set of distributed
containers and components deployed to them. The whole deployment infrastructure
is quite similar to the OMG D&C specification; the components requirements and
container capabilities are described exactly according to the specification.

1 The implementation of the SOFA 2 framework is available at http://sofa.ow2.org/.
The complete framework is open-source distributed under the LGPL license.

http://sofa.ow2.org/
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The only downside of using our proposed deployment algorithm is that behavior
with the probabilities has to exist for all of the components to be deployed. And to
specify it manually can be quite complicated even for authors of the particular com-
ponent as the probabilities can depend for example on sizes of method parameters,
etc. On the other hand, behavior can be “observed” from the executed system. Thus
we have implemented a “logging mode”, in which a system can be executed and
all information about method calls among components are logged. After the sys-
tem execution finishes, logged calls are automatically processed and the behavior
protocols of the particular components updated with the probabilities. The “logging
mode” was easily implemented thanks to the SOFA 2 extensible component struc-
ture by aspects applied at deployment time [10].

Now in SOFA 2, a user can decide whether he/she either deploys components of
a system manually or uses the automated deployment. In the second case, he/she
can just launch the system immediately or can review the created deployment and
then launch it (Figure 1 shows a tool for reviewing and launching the created
deployment).

Fig. 1 SOFA 2 deployment tool
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We tested our deployment algorithm and tools on several non-trivial examples,
the most interesting one has been the CoCoME system [13], which is a real-life-like
component application intended for comparison of component models and frame-
works. The application models a system for a chain of stores with cash-desks, stor-
age, etc. (the tool in Figure 1 shows the deployment). We performed a number of
deployments with differently set of available computers with different setting. The
algorithm always produced expected (i.e. optimal) deployment.

5 Related Work

As far as we know there is no actual implementation of an automated deployment
algorithm for hierarchical component systems.

The already mentioned Fractal component model, which is similar to SOFA 2 and
in which composite components at run-time also exist, does not directly address de-
ployment at all. However, there exists the Fractal Deployment Framework (FDF)2.
FDF defines the necessary deployment infrastructure and tools. Also it introduces
a high-level description language for specifying deployment (i.e. assigning compo-
nents to computers, etc.) according to the infrastructure which deploys applications.
Nevertheless, a description in this language has to be prepared manually by a user;
there is no automated creation of it.

FDF could be rather straightforwardly extended with our automated deployment,
since there also exists an implementation of the behavior protocols for Fractal and
“logging mode” can be implemented via component aspects, too.

There exist several implementations of automated deployment for flat compo-
nent models (or technologies close to components, e.g. services – several of them
already mentioned in Sect. 2). In [6], the authors construct a deployment planner
for composition of web services, which are treated as software components. The
composition of web services is done by Reo circuits [1]. A specification of the dis-
tributed environment is given by a description of computers and their capabilities.
The capabilities are meant to be software capabilities (e.g. which implementations
of the Reo channels the computer can support). Hardware capabilities such as CPU
and disk speed, memory size, etc. are regarded as not important (the authors claim
they focus on software abstraction only). However, the offered deployment planning
is thus rather limited, especially in a heterogeneous deployment environment where
each computer can have different capabilities.

Another interesting approach of automated deployment is used in the Sekitei
planner [8]. The Sekitei planner uses an AI (artificial intelligence) planning algo-
rithms. It is implemented as a pluggable module for Java component-based frame-
works and used in the Smock framework [7] that serves as a run-time environment
of the Partitionable Services Framework [7]. In the framework, services can be

2 http://fdf.gforge.inria.fr/

http://fdf.gforge.inria.fr/
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composed of several components. Also, the framework allows transparent migra-
tion and replication of the components. The main purpose of the migration is to
bring services closer to a client. In comparison to our method, the Sekitei planner
solves more general problem than we consider. During the deployment planning of
an application, the planner also decides, which particular set of components (from
compatible ones) will be deployed (in our method the set of components to be de-
ployed is given). Depending on the network and capabilities of the computers and
network connections the planner may introduce some auxiliary components – ei-
ther new ones or already available components could be reused. As the planner also
considers capabilities of network interconnections, it can be used in a non-local net-
work environment also. A downside is that due to its generality, the planning can
consume a considerable amount of time.

Another solution for automated deployment is used in the ProActive frame-
work [2]. ProActive is a Java open source framework for parallel, distributed, grid,
and cloud computing. The framework is divided into several parts; the most impor-
tant one from the view of this paper is Scheduling. ProActive Scheduling provides
a framework for a job definition and execution. A job consists of tasks (which can
be, e.g. Java or native applications, scripts) and dependencies among the tasks. The
Scheduler then assigns tasks to the resources, i.e. Java virtual machines, that are
managed by a Resource manager. Information for the Resource manager are sup-
plied be an agent (a program implemented for a particular operating system allow-
ing to launch the Java virtual machine and provide information about utilization).
The Resource manager allows dynamic addition and removal of the resources. The
scheduling algorithm simply deploys tasks of a job one by one (based on the task de-
pendencies) on available resources provided by the resource manager. One resource
may process only one task at a time – until the task is processed the resource is un-
available. This differs from our approach where more components may be deployed
to the same container.

ProActive also defines a hierarchical component model for developing applica-
tions, which is in fact the Fractal component model. The deployment descriptor
assigning components to containers has to be prepared manually.

A work related to the proposed approach from the specification point of view
is the Palladio Component System (PCM) [9]. Here, finite state machines enriched
by probabilities of transitions and information on resource consumption are used to
compute the extra-functional properties, such as the response time of a service (pro-
vided method) and resource consumption. Resource consumption (CPU, disk, time,
memory) can be either specified by a constant or a distribution function depending
on an input parameter (e.g., the size of the array to be processed by the service). The
information is, however, not used for computing a suitable deployment; PCM does
not focus on particular runtime configurations, the hierarchical component models
exist just at the design time. Although the information contained in PCM models
could be used in our approach, they are too detailed and using them as an input for
our deployment algorithm would make the user specify a lot of unused information.
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6 Conclusion

In this paper, we have proposed an algorithm for automated deployment for com-
ponent models with hierarchical components, where hierarchical components exist
also at runtime. The proposed algorithm is based on a deployment algorithm [14] for
flat component systems. The algorithm considers requirements of individual compo-
nents to be deployed and also provided capabilities of the deployment environment.
To be fast enough, the algorithm uses several heuristics.

To evaluate the algorithm we have implemented it for the SOFA 2 component
framework. Application can be executed in a logging mode, which collects infor-
mation about usage of individual components and then the information is used by
the deployer tool for automated deployment.

Currently we are continuing with the implementation of additional tools in or-
der to make deployment and general usage of the SOFA 2 framework more user-
friendly. Also we are working on dynamic migration of running components to
allow load-balancing based on components’ resources consumption and provided
capabilities of the run-time environment.
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