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Abstract. We present the Snake Table, an index structure designed for
supporting streams of k-NN searches within a content-based similarity
search framework. The index is created and updated in the online phase
while resolving the queries, thus it does not need a preprocessing step.
This index is intended to be used when the stream of query objects fits
a snake distribution, that is, when the distance between two consecutive
query objects is small. In particular, this kind of distribution is present in
content-based video retrieval systems, when the set of query objects are
consecutive frames from a query video. We show that the Snake Table
improves the efficiency of k-NN searches in these systems, avoiding the
building of a static index in the offline phase.

Keywords: Similarity Search, Metric Indexing, Multimedia Informa-
tion Retrieval, Content-Based Video Retrieval.

1 Introduction

In this paper we present the Snake Table, which is an indexing structure designed
for supporting streams of k-NN searches. The index is intended to be used when
the stream of query objects fits a “snake distribution”, which we define for-
mally in this work. This kind of distribution is usually present in content-based
video retrieval systems, when the set of query objects corresponds to consecu-
tive frames from a query video. In particular, we evaluate the Snake Table on
a Content-based Video Copy Detection (CBVCD) system where the query ob-
jects present a snake distribution. Unlike most of the index structures, the Snake
Table is a session-oriented and short-lived index.

An existing indexing structure with similar objectives and properties is called
the D-cache [9]. In this work, we show that the D-cache suffers from high internal
realtime complexity making it unviable to use in a CBVCD system or other
systems with computationally inexpensive (i.e., fast) distance functions (like
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Manhattan distance or Euclidean distance). Also, we compare the Snake Table
with D-cache and LAESA index, and we show that Snake Table achieves the
best performance.

The structure of the paper is as follows. Section 2 gives a background of metric
spaces and efficiency issues. Section 3 reviews the related work. Section 4 gives
the definition of the Snake Table and snake distribution. Section 5 presents the
experimental results. Finally, Section 6 concludes the paper and outlines some
future work.

2 Background

Let M = (D, d) be a metric space [11]. Given a collection R ⊆ D, and a query
object q ∈ D, a range search returns all the objects in R that are closer than a
distance threshold ε to q, and a nearest neighbor search (k-NN) returns the k
closest objects to q in R.

For improving efficiency in metric spaces, Metric Access Methods (MAMs) [3]
are index structures designed to efficiently perform similarity search queries.
MAMs avoid a linear scan over the whole database by using the metric properties
to save distance evaluations. Given the metric spaceM, the object-pivot distance
constraint [11] guarantees that:

∀a, b, p ∈ D, |d(a, p)− d(p, b)| ≤ d(a, b) ≤ d(a, p) + d(p, b) (1)

One index structure that uses pivots for indexing is the Approximating and Elim-
inating Search Algorithm (AESA) [10]. It first computes a matrix of distances
between every pair of objects x, y ∈ R. The structure is simply an |R|×|R| ma-
trix holding the distances between every pair (due to the symmetry property of
d only a half of the matrix needs to be stored). The main drawback of the AESA
approach is the quadratic space of the matrix. Linear AESA (LAESA) [8] gets
around this problem by selecting a set of pivots P ⊆ R. The distance between
each pivot to every object is calculated and stored in a |R|×|P| distance matrix,
also known as the pivot table. LAESA reduces the required space compared to
AESA, however an algorithm for selecting a good set of pivots is required [2].

Given a query object q (not necessarily in R), the similarity search algorithm
first evaluates the distance d(q, p) for each pivot p ∈ P , then scans R and for
each r ∈ R it evaluates the lower bound function LBP :

LBP(q, r) = max
p∈P

{|d(q, p)− d(r, p)|} (2)

Note that LBP can be evaluated efficiently because d(q, p) is already calculated
and d(r, p) resides in the pivot table. In the case of range searches, if LBP(q, r) >
ε then r can be safely discarded because r cannot be part of the search result. In
the case of k-NN searches, if LBP(q, r) ≥ d(q, ok) then r can be safely discarded,
where ok is the current kth nearest neighbor candidate to q. If r could not be
discarded, then the actual distance d(q, r) must be evaluated to decide whether
or not r is part of the search result.
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The efficiency of some MAM in M is related to: 1) the number of distance
evaluations that are discarded when it performs a similarity search; and 2) the
internal cost for deciding whether some distance can be discarded or not. A
similarity search using any MAM will be faster than a linear scan when the
time saved due to the discarded distances is greater than the time spent due
to the internal cost. For example, in the case of LAESA, the internal cost for a
similarity search comprises the evaluation of d(q, p) for each pivot p in P , and the
evaluation of LBP(q, r) for each object r in R, thus it increases linearly with |P|.
The amount of distances discarded by LAESA depends on the size and quality
of P and on the metric space itself.

In order to analyze the efficiency that any MAM can achieve in a collection
R ⊆ D for some metric space M = (R, d), Chávez et al. [3] propose to analyze
the histogram of distances of d. A histogram of distances is constructed by
evaluating d(a, b) for a random sample of objects a, b ∈ R. The histogram of
distances reveals information about the distribution of objects in M. Given a
histogram of distances forM, the intrinsic dimensionality ρ is defined as ρ(M) =
μ2

2σ2 , where μ and σ2 are the mean and the variance of histogram of distances
for M. The intrinsic dimensionality estimates the efficiency that any MAM can
achieve in M, therefore it tries to quantify the difficulty in indexing a metric
space. A histogram of distances with small variance (i.e., a high value of ρ) means
that the distance between any two objects d(a, b) with high probability will be
near μ, thus the difference between any two distances with high probability will
be a small value. In that case, for most of the pivots the lower bound from Eq. 1
will probably become useless at discarding objects. Increasing the number of
pivots will improve the value of the lower bounds, however the internal cost of
the MAM will also increase.

3 Streams of k-NN Searches

MAMs can be classified as static or dynamic depending on how they manage the
insertion or deletion of objects in R during the online phase. A dynamic MAM
can update its structures to add or remove any object, hence it can remain online
even for growing collections. Usually, the tree-based MAMs, like the M-Tree, are
dynamic. A static MAM cannot manage large updates in its structures, thus
after many modifications of R the whole indexing structure must be rebuilt.
LAESA can manage the insertion or deletion of objects and pivots [7] by adding
or removing rows or columns from the pivot table. However, depending on its
actual implementation, LAESA is usually a static index, mainly because the
pivot table might not support to dynamically modify its structure. In that case, a
new table is required, copying values from the old table to the new one, evaluating
the distances for new objects or pivots, and discarding the old table. Also, after
many modifications in R the set of pivots can begin to perform poorly and a
new set of pivots should be selected.

Most of the MAMs are designed to be created during the offline phase, that is,
a time-expensive process creates the index structure prior to resolve any search.
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It is expected that the MAM will resolve many similarity searches, amortizing its
creation time, but no information is a priori known about the query objects that
will be resolved afterwards. In the online phase, the MAM efficiently receives
and resolves any similarity search that may proceed from different sources and
users. All the searches share the same MAM, and the MAM should achieve good
performance for any search.

However, depending on the domain, the query objects may have some special
properties that can be exploited to improve the performance of the MAM. In
particular, frame-based CBVCD systems usually divide a query video into shots
and many keyframes are extracted. A similarity search is then performed for
consecutive keyframes, thus it can be expected that two consecutive keyframes
will frequently be similar. In the case of interactive Content-based Multimedia
Information Retrieval (CBMIR) systems, a user starts a search with some exam-
ple or some tags, a k-NN search is performed and the answers are shown, then
iteratively the user selects a new query object among those shown, and a new
search is performed refining the results. Because the new queries are selected
from the answers of a previous search, it can be expected that two consecutive
query objects will be similar.

3.1 Related Work – D-Cache and D-File

To take advantage of the online indexing process and a stream of correlated
queries, there is a recently proposed structure called D-file [9]. The D-file is
the database file itself accompanied by a main-memory structure, called the
D-cache. The D-cache stores the evaluated distances d(qi, oj) while processing
queries in the stream. When the nth query in the stream is processed, the D-
cache calculates a lower-bound distance for d(qn, oj) evaluating the distance
from qn to previous qi and treating the previous queries as pivots. Hence, if the
calculated lower bound is large enough, oj can be discarded without evaluating
the actual distance to qn. D-cache content is modeled as a sparse dynamic pivot
table, where each table row is constructed with the stored distances. If there are
not enough distances stored in the D-cache, some rows are incomplete, resulting
in zeros on some cells. Using the reconstructed rows, the D-cache tries to filter
out each database object using the same approach as a regular pivot table.
The D-file does not need an offline indexing step, as the D-cache is being built
during query processing. As the D-cache uses the previously processed queries
as dynamic pivots, the authors recommend that previous queries should be as
close to the current query as possible.

The D-cache is implemented with: 1) a fixed-size hash table that stores triplets
(qi, oj , d(qi, oj)); 2) a hash function h(qi, oj) for accessing the bucket where a
triplet is stored; 3) a collision interval, for searching a near available bucket
when some triplet is mapped into an already used bucket; and 4) a replacement
policy, that decides whether or not a new triplet should replace an old triplet
when a collision occurs and there is not an available bucket in the collision
interval.
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In CBVCD systems, a similarity search is performed for consecutive keyframes,
thus it can be expected that the D-cache will achieve high performance. However,
as we show in the experimental section, the D-cache suffers from high internal
realtime complexity rendering it unviable to use in a CBVCD system. The main
problem arises when the distance function is not time-expensive. In that case,
the internal complexity associated with the hash function and collision resolu-
tion dominates the search times. In order to solve this problem, we introduce
the Snake Table that preserves the idea and advantages of D-file and D-cache,
but exhibits lower internal complexity.

4 Snake Table

In this work we propose a new dynamic indexing structure, called a Snake Table,
which is designed to: 1) improve the search time for streams of queries where
consecutive query objects are similar; and 2) keep its internal complexity low to
be applied in systems that use fast distance functions, like CBVCD systems and
interactive CBMIR that use global descriptors and Minkowski distances.

The life cycle of the Snake Table is as follows: First, when a new session is
created, an empty Snake Table is created and associated with it. When a query
object q1 is received, a k-NN search is performed. The distances between q1 and
the objects in the collection are added to the Snake Table, and the result is
returned. Then, when a new query object qi is received, a k-NN is performed
using the previous query objects q1, ..., qi−1 as pivots to accelerate the search.
Finally, when the session ends, the Snake Table is discarded. Therefore, like
D-cache and unlike most of MAMs, the Snake Table is a session-oriented and
short-lived MAM.

The Snake Table is implemented with a fixed-size |R|×p matrix used as a
dynamic pivot table. As in LAESA, the jth row in the dynamic pivot table
represents the object oj in R and contains the distances between oj and up to p
previously processed query objects. However, each cell in the jth row of the table
contains a pair (q, d(q, oj)) for some query object q (not necessarily in order).
When processing a new query object qi, the lower bound LBP(qi, oj) for the
distance d(qi, oj) is calculated (see Eq. 2), with P dynamically determined by
the query objects and distances in the jth row. The object oj is discarded when
LBP(qi, oj) is greater than the distance between qi and its current kth nearest
neighbor candidate (obtained between o1 and oj−1). If oj is not discarded, the
actual distance d(qi, oj) is evaluated, added to some cell in the jth row, and the
NN candidates are updated when oj is closer than the current kth NN to qi.

We present three different replacement strategies to assign a distance d(qi, oj)
to one of the p cells in the jth row:

1. Each query qi picks a column in round-robin mode, i.e., the distance d(qi, oj)
is stored in the (i mod p) column of jth row, eventually replacing the stored
distance d(qi−p, oj). If the distance was not evaluated because it was dis-
carded by LBP(qi, oj) there are two options: 1) its corresponding cell is
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either updated with an ∞ distance; 2) the cell is left unmodified but before
any read the query stored in the cell is matched with the last query for
that column (the experimental section uses the latter). With this strategy,
each row is sparse, containing at most p distances between d(qi−p, oj) and
d(qi, oj).

2. The distance d(qi, oj) is compared to every distance in jth row and the
highest distance in the row is replaced. With this strategy, each row stores
p unsorted distances between d(q1, oj) and d(qi, oj).

3. Each distance d(qi, oj) is stored in a cell chosen in an independent round-
robin for every row. With this strategy, every row compactly stores the last
p evaluated distances for oj replacing the old ones. LBP starts its evaluation
from the last stored distance and goes backwards, therefore favoring the
most recent stored distances.

D-cache uses a combination of strategies 1 and 2. It always replaces an old
distance (older than qi−p), but if there is not an old distance in the collision
interval, then it replaces the worst distance, defined as the distance closer to the
median (or to some predefined percentile of distances). Note that a very high
distance can achieve better discarding performance than a medium distance
(as used in D-cache strategy), however they are unlikely to appear in a snake
distribution. In order to reduce the internal complexity of strategy 2 this case is
not considered.

For strategy 1, distances d(qi, qj) with j ∈ {i − p, ..., i − 1} are calculated
and stored in memory at the beginning of every search. For strategies 2 and
3, distances d(qi, qj) with j ∈ {1, ..., i − 1} are calculated on-demand by LBP .
Note that the internal complexity of strategy 3 is slightly higher than strategy
1, because it needs to manage an independent index for each row to mark the
position of the last stored distance.

The performance achieved by these three replacement strategies are compared
in the experimental section. However, despite the replacement strategy used by
the Snake Table, the overall performance of the Snake Table mainly depends on
the distribution of the query objects.

4.1 Snake Distribution

The Snake Table is intended to be used when the query objects in a stream fit
a “snake distribution”. Intuitively, we define that a set of objects fits a snake
distribution when the distance between two consecutive objects in the stream is
small compared to the average distance between any two objects (see Fig. 1).
To measure and compare this fit, we define an indicator using the histogram of
distances of d for Q and R.

Because the area of the histogram of distances is normalized to 1, the his-
togram can be seen as a probability distribution of the distances calculated by
d. Then, we define the cumulative distribution in a similar way as in probabilities:
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Fig. 1. Stream of queries Q={q1, ..., q12} with a snake distribution: most of distances
d(qi, qi+1) are smaller than d(x, y) for randomly selected pairs x,y in R

Definition 1. (Cumulative Distribution) Let H be a normalized histogram of
distances, the Cumulative Distribution of Distances F : R+ → [0, 1] is defined
as:

F (x) =

∫ x

0

H(t) dt

For comparing the distribution of distances of two sets of objects, we compare
their cumulative distributions:

Definition 2. (Difference Δ) Let F1 and F2 be two cumulative distributions,
the difference Δ between F1 and F2 is defined as:

Δ(F1, F2) =

∫ ∞

0

F1(t)− F2(t) dt

The Difference Δ is meaningful only when both F1 and F2 originate from the
same metric space. Δ(F1, F2) is greater than zero when the distances in F1 are
smaller than the distances in F2.

Definition 3. (Snake Distribution) Let M = (D, d) be a metric space, let R ⊂
D be the collection of objects, and let Q ⊂ D be a set of m query objects Q =
{q1, ..., qm}. Let F be the cumulative distribution of d(x, y) with random pairs
x, y ∈ Q ∪ R, p be a number between 1 and m-1, and F p

Q be the cumulative
distribution of d(qi, qi−p) ∀ i ∈ {p+1, ...,m}. Q fits a snake distribution of order
p if Δ(F p

Q, F ) > s, for some threshold value s ∈ R
+.

Note that when both Q and R are random samples of D without any spe-
cial ordering (i.e., the ith sample does not depend on previous samples), then
Δ(F p

Q, F ) ≈ 0. When a distribution fits a Snake Distribution of order 1 to p then
a Snake Table can be created with a sliding window containing up to p query
objects.

5 Experimental Evaluation

In this section we evaluate the performance of the Snake Table with the three
presented strategies, and we compare them with the performance achieved by
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D-cache and LAESA. The comparison is performed under six different metric
spaces, with a stream of queries with a snake distribution.

5.1 Preliminaries

Dataset. We tested the Snake Table on our frame-based CBVCD system [1] us-
ing different configurations over the MUSCLE-VCD-2007 dataset [5]. MUSCLE-
VCD-2007 is a publicly available and widely-used video copy database, and it
was the corpus used at the CIVR 2007 video copy detection evaluation. The ref-
erence collection is composed of 101 videos, 59 hours total length, and the query
videos are divided into collections called ST1 and ST2. ST2 has three videos
with a total length of 45 minutes. The ST2 collection contains 21 video excerpts
copied from a video in the reference collection. Each copied excerpt may have
some transformations like blur, flip, subtitles, zoom, insertion of logo, noise, etc.
Every video in the dataset has 25 fps.

For the present evaluation, each reference video and each video in ST2 is
partitioned into short fixed-length segments of 1 second. For each segment, four
global descriptors are calculated: the Edge Histogram (EH), captures the spatial
distribution of edges in a frame [6]. We used 10 orientations and 8-bits linear
quantization, producing a vector of 160 bytes. The Ordinal Measurement (OM),
captures the spatial distribution of intensities in a frame [4]. We used 9 × 9
blocks, producing a vector of 81 bytes. The Color Histogram (CH), divides a
frame into 4 horizontal slices. Each slice calculates a histogram of 16 bins for
R, G, and B channels, and each bin with 8-bits linear quantization, producing a
vector of 192 bytes. The Keyframe (KF), reduces the frame to 11×9 pixels and
uses the value for each pixel, producing a vector of 99 bytes. These descriptors
are calculated for all the frames in a segment and then averaged.

R is the set of reference segments (|R|=211,479 segments), and Q is the set of
query segments (|Q|=2,692 segments). The correct answer for a segment q ∈ Q
is the reference segment rq ∈ R for which q is a copy. Because we stated that
there is only one correct answer, the mean average precision (MAP) corresponds
to the average of the inverse of the ranks of rq, for all copied segment in Q.

Configurations. We test six configurations, each one defining a distance func-
tion d(r, s) between the video segments r and s. The distances are based on
linear combinations of L1 (Manhattan) distance between descriptors, where
L1(x,y) =

∑n
i=1 |xi − yi| for n-dimensional vectors x and y:

1. OM: compares OM descriptors d(r, s)=L1(OM(r),OM(s)).
2. KF: compares KF descriptors d(r, s)=L1(KF(r),KF(s)).
3. EH: compares EH descriptors d(r, s)=L1(EH(r),EH(s)).
4. CH: compares CH descriptors d(r, s)=L1(CH(r),CH(s)).
5. ECK: weighted combination of EH, CH, and KF descriptors:
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d(r, s) = 0.6× L1(EH(r),EH(s))× 1

7996

+ 0.2× L1(CH(r),CH(s))× 1

6219

+ 0.2× L1(KF(r),KF(s))× 1

24721

Each left factor (0.6, 0.2, 0.2) is the weight in the combination, and each
normalization factor (7996, 6219, 24721) is the maximum distance value for
the respective distance.

6. EK3: temporal combination of EH and KF descriptors:

g(r, s) = 0.5× L1(EH(r),EH(s))× 1

7996

+ 0.5× L1(KF(r),KF(s))× 1

24721

d(ri, sj) =
1

3
[g(ri−1, sj−1) + g(ri, sj) + g(ri+1, sj+1)]

Where ri−1 and ri+1 are the previous and the next segments of ri in a video.

Indexes. We compare the efficiency of six indexes with p pivots (either static
pivots for LAESA or dynamic pivots for D-cache and the Snake Table), where p
varies between 1 and 20:

1. D-cache: It uses a hash table with fixed size |R|∗p, the collision interval
to the minimum (1), and the hash function is h(qi, oj)=(rndi ∗ rndj) mod
(|R|∗p), where rndi and rndj are unique random IDs assigned to each object.
We checked that the hash function generates a uniform distribution through
the whole table, producing almost no collisions.

2. LAESA: Following its definition, LAESA does not require any information
of the query objects, but for a fair comparison, we allow LAESA to use Q in
the selection process. LaesaR chooses p static pivots from R, and LaesaQ
chooses p static pivots from Q. Both selections are performed using the SSS
algorithm [2]. Four different sets are selected and the average value of LBP is
calculated for each one by sampling pairs from Q×R. The set of pivots with
higher average LBP is finally selected while the other sets are discarded.

3. Snake Table: We test the three strategies depicted in Section 4. SnakeV1
uses a sparse row with the last p queries, SnakeV2 uses an unsorted row
discarding the highest distance, and SnakeV3 uses a compact row with the
last p evaluated distances.

5.2 Experiments

Table 1 shows for the different configurations the total time spent by a linear scan
(in seconds), the achieved MAP, and some indicators for the metric space. The
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Table 1. Effectiveness and efficiency for the base configurations

Time MAP max μ σ ρ Hd

Group 1

OM 282 s. 0.125 3285 1489 416 6.4

KF 304 s. 0.509 24721 7264 2636 3.8

Group 2

EH 541 s. 0.639 7996 3198 751 9.1

CH 501 s. 0.482 6219 3661 970 7.1

Group 3

ECK 1258 s. 0.646 0.888 0.416 0.09 11.4

EK3 2214 s. 0.732 0.870 0.347 0.08 10.2
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Fig. 2. Snake distribution of order p ∈ {1, ..., 20} for the six configurations

histogram of distances was created by evaluating d(x, y) with pairs x, y sampled
from Q ∪R. The configurations are split into three groups. Group 1 (OM and
KF) contains the configurations where the linear scan takes less amount of
time. Group 2 (EH and CH) contains the configurations where linear scan
takes about twice as much time as Group 1. Group 3 (ECK and EK3) contains
the configurations in which the linear scan is slower by one order of magnitude.
In the following experiments, the performance of each index is presented as a
ratio with the performance of the linear scan for that configuration. The MAP
achieved by each configuration is also shown in the table. The configuration
with best detection effectiveness is EK3 followed by ECK. Also, KF shows a
promising tradeoff between effectiveness and efficiency.
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Fig. 3. Search time and distance evaluations for OM and KF (Group 1)

Snake Distribution. Figure 2 depicts the snake distribution of order p for the
six configurations. The value of difference Δ(F p

Q, F ) for p ∈ {1, ..., 20} is shown.
The six configurations present a difference Δ higher than zero, hence the streams
of queries have a snake distribution (distances between qi and qi−p are smaller
than distances between random sampled pairs). The first orders show good a
fit for the six configurations, but as p increases, the snake distributions tend to
disappear. As shown in the following experiments, the different configurations
present satisfactory results for roughly between 1 and 5 pivots.

Group 1. Figure 3 shows the efficiency achieved by the six indexes for the OM
and KF configurations varying the number of pivots from 1 to 20. It shows the
amount of distances evaluations as a proportion of the evaluations required by
the linear scan (i.e., a fraction of |Q|∗|R|). This value includes the distances
between query and pivots but does not include the distance required for pivot
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Fig. 4. Search time and distance evaluations for EH and CH (Group 2)

selection in LAESA. It also shows the search time as a proportion of the time
spent by a linear scan. The instability in LAESA indexes for consecutive p is
due to the random-base pivot selection. To reduce this issue we calculate three
different sets of pivots with SSS and the average value for evaluated distances
and search time is presented.

The disparity between saved distances and saved time reveals that D-cache
suffers from high internal complexity at these two configurations: while most of
the distance computations are discarded, the search time increases even beyond
the time required by a linear scan inOM. Both LaesaR and LaesaQ (i.e., static
pivots) perform better thanD-cache. On average,LaesaQ performs slightly bet-
ter than LaesaR in both experiments. The Snake Table achieves the best perfor-
mance by its combination of good pivot selection (due to the snake distribution)
and its low internal complexity. Between the different strategies, the SnakeV2
(i.e., replacement of the highest distance) achieves the best performance.
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Fig. 5. Search time and distance evaluations for ECK and EK3 (Group 3)

Group 2. Figure 4 shows the efficiency achieved by the six indexes for the EH
and CH configuration varying the number of pivots. D-cache again suffers from
high internal complexity, reducing the linear scan time by 10% for 20 pivots atEH,
even though it can save more than 50% of distance evaluations. Both LaesaR and
LaesaQ starts slightly better than linear scan, but then their internal complex-
ity dominates the search-time. This behavior might be due to the high intrinsic
dimensionality that EH presents implying that any static selection of pivots will
achieve bad performance.However, becauseEH fits a snake distribution, with just
a few dynamic pivotsD-cache and the Snake Table can discard more than 50% of
distance evaluations. For a few pivots, SnakeV3 achieves the best performance,
however as the number pivots increases, the SnakeV1 improves, mainly due to
its lower internal complexity. As a summary for this experiment, the Snake Table
achieves the best performance, enabling the indexing of metric spaces with high
intrinsic dimensionality if they present a snake distribution.
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Group 3. Figure 5 shows the efficiency achieved by the six indexes for the
ECK and EK3 configurations varying the number of pivots. In these configu-
rations, D-cache starts to show better results, outperforming LAESA, because
the saved distance computations pay for the internal complexity. However, with
more than 10 pivots, D-cache begins to increase its search times. In this case,
the exploitation of snake distribution becomes a remarkable approach for im-
proving efficiency. While LaesaQ and LaesaR can discard 20% distances, the
Snake Table can discard more than 50% of distances. In particular, SnakeV3
(i.e., to store the last p pivots by object) shows the fastest search times.

6 Conclusions and Future Work

In this work we presented the Snake Table, which achieves high performance
for processing streams of queries with snake distribution. This satisfactory per-
formance is due to its properties of dynamic selection of good pivots and low
internal complexity. The Snake Table is able to reduce the search time for both
fast and time-expensive distances, even in spaces with high intrinsic dimension-
ality. In particular, the Snake Table is a better alternative than D-cache in the
tested scenarios.

The Snake Table presents an approach to index spaces when consecutive
queries are similar among them. This behavior usually appears in content-based
video retrieval (when the queries are consecutive keyframes), and it also may
appears in interactive multimedia retrieval systems (when the user selects a new
query object from the answers of a previous query). In a more general domain,
given an unsorted set of queries, the test of snake distribution presented in
this work may be useful to determine an optimal ordering of queries which will
achieve a high performance in the Snake Table.

One usage of the Snake Table is to create an index for each stream of queries.
When a user connects to the database, an empty Snake Table may be associated
with the session. As the user performs queries with snake distribution, the Snake
Table improves its performance because it will contain pivots close to the next
queries. However, the Snake table is not memory efficient, because it requires
space proportional to the size of the dataset and to the number of sessions
connected. This approach is more suitable for medium-sized databases with long
k-NN streams. Moreover, because it does not need to use a central shared index
structure, it is also suitable for highly dynamic datasets.

On the one hand, pivots in a sliding window with snake distribution satisfy
one desirable property: they should be close to either the query or the collection
objects. On the other hand, those pivots do not satisfy other desirable property:
they should be far away from each other. Hence, using a Snake Table with many
pivots will only increase the internal complexity without increasing the efficiency
because pivots will be mostly redundant. One approach to overcome this issue
is to combine dynamic pivots with static pivots while resolving the stream. As
it is shown in the experimental section, static pivots in the queries (LaesaQ)
perform almost identically (sometimes even better) that static pivots in the
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reference objects (LaesaR). An improvement may be a combination between
the SSS algorithm and the Snake Table. The Snake Table may chose to fix one
of the dynamic pivots (i.e., to not remove it from the table) when it is far away
from all the previous pivots, thus when the sliding window moves away, the
fixed pivots will start to behave as static pivots complementary to the dynamic
ones. Finally, LAESA can benefit of multi-core architectures by sharing the pivot
table and resolving each query in different threads. However, it is not evident
how to efficiently resolve parallel queries in the Snake Table due to the dynamic
nature of its structure. Every thread should lock the pivot table to add the new
distances, but this will interfere with other threads reading the table. A possible
solution for this issue is to partition the queries into independent subsets, and
each subset is resolved in an independent thread using its own Snake Table. We
plan to address these issues in the future.
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