
G. Navarro and V. Pestov (Eds.): SISAP 2012, LNCS 7404, pp. 132–147, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Scalable Distributed Algorithm for Approximate Nearest
Neighbor Search Problem in High Dimensional General

Metric Spaces

Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov

MERA Labs LLC, Nizhny Novgorod, Russia
{ymalkov,aponom,alogvinov,vkrylov}@meralabs.com

Abstract. We propose a novel approach for solving the approximate nearest
neighbor search problem in arbitrary metric spaces. The distinctive feature of
our approach is that we can incrementally build a non-hierarchical distributed
structure for given metric space data with a logarithmic complexity scaling on
the size of the structure and adjustable accuracy probabilistic nearest neighbor
queries. The structure is based on a small world graph with vertices correspond-
ing to the stored elements, edges for links between them and the greedy
algorithm as base algorithm for searching. Both search and addition algorithms
require only local information from the structure. The performed simulation for
data in the Euclidian space shows that the structure built using the proposed
algorithm has navigable small world properties with logarithmic search
complexity at fixed accuracy and has weak (power law) scalability with the di-
mensionality of the stored data.

Keywords: Similarity Search, Nearest Neighbor, Approximate Nearest Neigh-
bor, Small World, Distributed Data Structure, Metric space.

1 Introduction

The scalability of any software system is limited by the scalability of its data struc-
tures. Massively distributed systems like BitTorrent or Skype are based on the distri-
buted hash tables. While the latter have good scalability, their search functionality is
limited to the exact element hash value matching. This limitation arises because small
changes in an element value lead to large and chaotic changes in the hash value, mak-
ing the hash-based approach inapplicable to the range search and the similarity search
problems.

However, there are many applications (such as pattern recognition and classifica-
tion [1], content-based image retrieval [2], machine learning [3], recommendation
systems [4], searching similar DNA sequence [5], semantic document retrieval [6])
that require the similarity search rather than just exact matching. The nearest neighbor
search (NNS) problem is a mathematical formalization for the similarity search. It is
defined as follows: we need to find the closest object p X∈ from a finite set of ob-

jects X ⊆  to a given query q ∈ , where  is a set of all possible objects (the

 Scalable Distributed Algorithm for Approximate Nearest Neighbor Search Problem 133

data domain). Closeness or proximity of two objects ' '',o o ∈ is defined as a dis-

tance function '(, '')o oσ .

A naïve solution for the NNS problem is to calculate the distance function σ
between q and every element from X. This leads to linear search time complexity
scalability with the number of elements which is much worse than the scalability of
structures with the exact value search and makes it almost impossible to use the NNS
for extreme size datasets.

We suggest a solution for the nearest neighbor search problem, a data structure

with a small world network topology represented by a graph (),G V E , where every

object io from X is uniquely associated with a vertex iv from V . Searching for

the closest element to the query q from the data set X takes a form of searching for

a vertex in the graph G .
We chose this approach based on the following:

• There are many existing well-developed algorithms for building small world net-
works for some special cases [7].

• Small world networks principally have no root element.
• All operations (addition and search) use only local information and can be initiated

from any element that was previously added to the structure.

This gives an opportunity for building decentralized similarity search oriented storage
systems where physical data location doesn’t depend on the content because every
data object can be placed on an arbitrary physical machine and can be connected with
others by links like in p2p systems. Such storage systems can provide a simultaneous
access to large numbers of users performing data search and addition, have good fault
tolerance and are highly scalable in terms of performance and capacity.

One of the basic vertex search algorithms in graphs with metric objects is the gree-
dy search algorithm. It has a simple implementation and can be initiated from any
vertex. In order for a result of the algorithm to be always the exact nearest neighbor to
any query, the network must contain the Delaunay graph as its subgraph, which is
dual to the Voronoi tessellation [8]. However, there are major drawbacks associated
with the Delaunay graph, it requires some knowledge of metric space internal struc-
tures [9] and it suffers from the curse of dimensionality [8]. Moreover the requirement
of the search for the exact nearest neighbor can be not necessary (optional) for the
applications described above. So the problem of finding the exact nearest neighbor
can be substituted by the approximate nearest neighbor search, and thus we don’t
need to support the whole/exact Delaunay graph.

For the greedy search algorithm to be logarithmically scalable, the small world
network should have the navigation property [7].

In this paper we present a very simple algorithm for the data structure construction
based on a small world network topology with a graph (,)G V E which uses the

greedy search algorithm for the approximate nearest neighbor search problem. The

graph (),G V E contains an approximation of the Delaunay graph and has long-range

134 Y. Malkov et al.

links together with the small-world navigation property. The search algorithm has an
ability to adjust the accuracy of search without modification of the structure. Pre-
sented algorithms do not use the coordinate representation and do not presume the
properties of linear spaces, because they are based only on the metric computation
between the objects, and therefore are applicable to data from general metric spaces.
It is shown experimentally that the dimensionality dependence is polynomial for a
vector data.

2 Related Works

All papers that are dedicated to the nearest neighbor search problem can be divided
into four categories: centralized nearest neighbor search structures; centralized ap-
proximate exact nearest neighbor search structures, distributed exact nearest neighbor
search structures and distributed approximate nearest neighbor search structures.

2.1 Centralized Exact Nearest Neighbor Search Structures

Kd-tree[10] and quadra trees[11] were among the first works on the NNS problem.
They perform well in 2-3 dimensions (search complexity is close to (log)O n), but

the analysis of the worst case for that structures[12] indicates 1 1/(*)dO d N − search

complexity, where d is the dimensionality.
Other structures which have a tree topology such as variants of kd-trees, R-trees

and structures based on space-filling curves are surveyed in [13]. They also have good
performance when searching in a low-dimension (4d <) metric space, but they
quickly lose their effectiveness with the increasing number of dimensions [14].

In general, presently there are no methods for effective exact NNS in
high-dimensionality metric space. The reason behind this lies in the "curse" of dimen-
sionality [15]. To avoid the curse of dimensionality while retaining the logarithmic
scaling on the number of elements, it was proposed to reduce the requirements for the
NNS problem solution, making it approximate (ANN).

2.2 Centralized Approximate Nearest Neighbor Search Structures

Thus a large number of papers appeared which proposed to search for the nearest
neighbor with predefined accuracy ε (ε-NNS). For example, Arya and Mount pro-

posed methods with search complexity 3(log)O n , but preprocessing requires 2()O n

and the algorithm was applicable only to data from Ed [16] .
Kleinberg proposed two methods [17] for solving ε-NNS. First method requires

2(n log) dO d preprocessing time and query time polynomial in , d ε , and log n .

The other method with preprocessing time polynomial in d, ε , and n, but with query

time 3(log)O n d n+ . Also both methods are applicable only to data from Ed.

 Scalable Distributed Algorithm for Approximate Nearest Neighbor Search Problem 135

The first algorithms with search complexity polynomial in d , log n , ε-1 and po-

lynomial preprocessing time for fixed ε were proposed by Indyk and Motwani in
[18] and Kushilevitz, Ostrovsky and Rabani in [19]. Indyk and Motwani were the first
ones to relax ε-ANN problem to approximate point location in equal balls (ε-PLEB).
For the formulation of the problem in ε-PLEB points in metric space expand to the
balls with center at this point and radius (1+ ε)r, it is necessary to determine which
ball belongs to the query q . Also in [18] proposed a second method, which uses the

concept of locality-sensitive hashing in regard to formulation of the problem ε-PLEB,

with search time 1/(1 ε)O(n)+ . This method however requires near quadratic memory

(for small ε). In addition, the first method is applicable only for dE , and the second
for the Hamming space.

In general, the concept of locality-sensitive hashing has become popular in the last
decade to solve the ANN problem. Other works using the concept of locality-sensitive
hashing are [20], [21]. But they all have the same major drawback: each algorithm is
focused on a narrow class of metrics such as Hamming distance, Jakarta or sl norms

for Euclidean space.
In [22,23] there were proposed non-distributed algorithms for the approximate k-

NN problem suitable in general spaces performing well even in case of high dimen-
sionality. The drawback for the ordering permutations index [23] is that it has a part
of search algorithm with a CPU time linear dataset size scaling, and [22] is an essen-
tially static index.

2.3 Distributed Exact Nearest Neighbor Search Structures

There are a number of distributed structures that doesn’t support nearest neighbor
search in general metric spaces but provide search for interval queries in attribute-
based (vector) data or simple Euclidian space. MAAN [24], SCRAP[25] , Mercury
[26] support multi-dimensional range queries and Voronet [27] is p2p network
oriented to search nearest neighbor in E2 based on Voronoi tessellation [8]. Every
peer has coordinates in E2 and has links to all neighbors of its Voronoi region. For the
logarithmic navigation Voronet supports long-range links.

The only metric-based distributed structures are M-Chord [28], GHT [29] and
MCAN[25]. MCAN uses a pivot-based technique to map the high dimensional metric
data to an N-dimensional vector space, and then uses CAN protocol as its underlying
structured P2P system, however they all suffer from the curse of dimensionality.

2.4 Distributed Approximate Nearest Neighbor Search Structures

Authors in [30] explain how to use locality-sensitive hashing scheme for building the
structure in a distributed environment. They suggest using a two-level mapping from
a d-dimensional space to the peer identifier space. However the lack of versatility
inherent to all LSH schemes remains as its main drawback.

136 Y. Malkov et al.

Kleinberg’s work [7] has shown the possibility of using navigable small world
networks for finding the nearest neighbor with the greedy search algorithm. The
algorithm relied on long-range links following power-law length distribution for na-
vigation and 2-dimensional lattice for correctness of the results. In Voronet[27] the
approach was extended to arbitrary 2-dimensional data by building a two dimensional
Delaunay tessellation instead of a regular lattice. In their next work [31] they have
weakened the requirements on the exactness of the search in order to avoid the curse
of dimensionality for the d-dimension Euclidian space. The algorithm approximates
the Delaunay graph by selecting 2 1d + neighbors that minimize the volume of the
corresponding Voronoi cell. The algorithm is rather complicated; it relies heavily on
the quality of the Delaunay graph approximation, it has to be repeated iteratively to
reach acceptable accuracy and in principle works only in the Euclidian space. The
work also presented some sophisticated algorithms for managing the long range links.

3 Structure Definition

The structure S is constructed as a small world network represented by a graph
(,)G V E , where objects from the set X are uniquely mapped to vertices from the set

V . The set of edges E is determined by the structure construction algorithm. Since
each vertex is uniquely mapped to an element from the set X , we will use the terms
"vertex", "element" and "object" interchangeably. We will use the term “friends” for
vertices that share an edge. The list of vertices that share a common edge with the
vertex iv is called the friend list of the vertex iv .

We use a variant of the greedy search algorithm as a base algorithm for the NNS. It
traverses the graph from an element to an element each time selecting the friend clos-
est to the query until it reaches a local minimum. See a detailed description of the
algorithm in the section 4.

Links (edges) in the graph serve two distinct purposes. There is a subset of short-
range links, which are used as an approximation of the Delaunay graph[8] required by
the Greedy Search algorithm. Another subset is the long-range links, which are used
for logarithmic scaling of the Greedy Search, they are responsible for the navigation
small world properties of the constructed graph similar to the ones in Kleinberg’s [7]
work. The structure is illustrated on the Fig. 1.

In our work we focus on the approximation of the Delaunay graph and ways to nul-
lify the errors rising from of the approximation. It can be studied independently be-
cause there is a very simple and strict way to create long range links for a predefined
data set (see the section 5).

All queries in the structure are independent, they can be done in parallel and if the
elements are placed randomly on physical computer nodes the processing query load
is shared evenly across physical nodes. And the performance of the system (parallel
queries per second) is limited only by the number of the nodes.

 Scalable Distributed Algorithm for Approximate Nearest Neighbor Search Problem 137

Fig. 1. Graph representation of the structure. Circles (vertices) are the data in metric space,
black edges are the approximation of the Delaunay graph, and red edges are long range links
for logarithmic scaling. Arrows show a sample path of the greedy algorithm from an enter point
to a query (shown green).

4 Search Algorithm

4.1 Greedy Search

The basic search algorithm traverses the edges of the graph (,)G V E from one vertex

to another. The algorithm takes two parameters: query and the vertex

_ []enter pointV V G∈ which is the starting point of a search (the entry point). Starting

from the entry point at each vertex the algorithm computes a metric value from the
query q to each vertex from the friend list of the current vertex and then selects a ver-
tex with the minimal metric value. If the metric value between the query and the se-
lected vertex is smaller than the one between the query and the current element, then
the algorithm moves to that (new) vertex. The algorithm stops when it reaches a local
minimum, a vertex whose friend list doesn’t contain a vertex that is closer to the
query than the vertex itself. The algorithm:

Greedy_Search(q: object, venter_point: object)

1 vcurr ← venter_point;
2 σmin ← σ(q, vcurr); vnext ← NIL;
3 foreach vfriend ∈ vcurr.getFriends() do

4 if σfr ← σ(query, vfriend) < σmin then

5 σmin ← σfr;

6 vnext ← vfriend;
7 if vnext = Nil then return vcurr;

8 else return Greedy_Search(q, vnext);

The element which is a local minimum with respect to the query q ∈ can be either

the true closest element to the query q from the entire set of elements of X , or a

false closest.

138 Y. Malkov et al.

If every element in the structure had in their friend list all of its Voronoi neighbors,
then this would preclude the existence of false local minima. Maintaining this condi-
tion is equivalent to constructing the Delaunay graph, which is dual to the Voronoi
diagram.

It turns out that it is impossible to determine exact Delaunay graph for an unknown
metric space [9] (excluding the variant of the complete graph) so we cannot avoid
the existence of local minima. For the problem of approximate searching as
defined above it is not an obstacle since approximate search does not require the en-
tire Delaunay graph [31].

Note that there is a distinction from the ANN problem defined in the works [16],
[17] where it is expressed in terms of ε-neighborhood for which if there are several
elements within the ε of the true nearest neighbor the result of the query can be any of
these elements with comparable probabilities. There are no constrains on an absolute
value of the distance between the false NN result and true NN result in our structure.
Inaccuracy of the algorithm is «topological» in our case, meaning that the most likely
result (e.g. with probability 0.95) is the true nearest neighbor, if not, the most likely it
will be the second closest and so on with sharply decreasing probability. It may be
more convenient to use such definition when the data distribution is highly skewed
and it is hard to define one ε for all regions at the same time.

4.2 Multi-search

In order to diminish search errors arising in a network with local minima, we propose
a following modification of the search algorithm. We use a series of m searches in-
itiated from random vertices and choose a result element that is closest to the query
from the set of found elements. Since the greedy search Greedy_Search(q, venter-
Point ϵ V)is unambiguous, for each entry point venterPoint ϵ V it either results in a
success, finding the true nearest neighbor, or in a failure, finding an element that is
not the nearest neighbor of q.

Thus a search of the closest element to a fixed query q may result in finding the

true nearest neighbor (a global minimum) or a false nearest neighbor depending on
the entry point from which the search algorithm started (see Fig. 2).

Since we can choose an entry point at random, there is a probability p of finding

the true closest element to a particular element q. Moreover, this probability is always
nonzero, because it is always possible to choose the exact nearest neighbor as an entry
point, which subsequently will be returned by the greedy search algorithm. As an
example the probability of finding query element in Fig. 2 is about 73% since there
are 8 elements for which taken as the entry point the algorithm will succeed and 3
elements for which he will not (3/8 results in 73%).

If for a fixed query element probability of finding the true closest in a single search
attempt is p then probability of finding the true closest element in at least one of m

attempts is 1 (1)mp− − , thus failure probability decreases exponentially with the

 Scalable Distributed Algorithm for Approximate Nearest Neighbor Search Problem 139

number of search attempts. Thus we can improve the search precision, increasing the
parameter m - the number of searches from random entry points. For example in the
Fig. 2 for m =5 the result probability is 99.985%, which is more than sufficient for the
most applications.

The modified greedy search algorithm:

Multi_Search(object q, integer: m)

1 results: SET[objects];
2 for (i ← 0; i < m; i++) do
3 entry_point ← getRandomEntryPoint();
4 local_min ← Greedy_Search(query, entry_point)
5 if local_min ∉ results then

6 results.add(result);
7 return results;

By selecting the closest element from the results we get an answer to the query.
If m is comparable to the number of elements in the structure, the algorithm be-

comes an exhaustive search, assuming that entry points are never reused. If the graph
of the network has the small-world properties, then it is possible to choose a random
vertex in a number of random steps proportional to log n , which doesn’t affect the

overall logarithmic search complexity. Therefore the overall complexity of a search
will increase in no more than m times.

Fig. 2. An illustration of the multisearch approach. Blue circles represent metric space elements
for which taken as entry points for the greedy algorithm it will succeed finding the true NN for
a query (green circle). Red circles represent elements for which taken as entry points the algo-
rithm will stuck in a local minimum. Arrows represent gradients direction of the greedy search
algorithm. The probability of finding the query in a single search is about 73%. For the multi-
search algorithm with m =5 it is 99.985%.

140 Y. Malkov et al.

5 Data Addition Algorithm

Since we build an approximation of the Delaunay graph, there is a great freedom of
choice of the construction algorithm. The main goal of all the works is to minimize
the probability of the false local minima while the keeping number of links small.
Some approaches are based on knowledge of topology of a metric space being used.
For example in [31] it is proposed to build an approximate Delaunay graph which
would minimize a volume of a Voronoi region (computed by the Monte-Carlo me-
thod) for a fixed number of edges for each vertex in the graph, this was done by iterat-
ing a selection of neighbors of every node in the graph several times. We propose to
assemble the structure by adding elements one by one and connecting them on each
step with the k closest objects which are already in the structure. It is based on the
idea that intersection of the set of elements which are Voronoi neighbors and the k
closest elements should be large. Another advantage of this approach was shown em-
pirically in for one-dimensional data[32]. A graph created by such algorithm with data
arriving in random order has small world navigation properties without any additional
algorithms. That allows us to fully concentrate on the short-range links which approx-
imate the Delaunay graph.

In this work we use a variant of the algorithm which is distinguished by the fact
that the search for the k nearest elements uses a series of searches (an analogy to the
multi-search, see 4.2).The algorithm takes three parameters: an object to be added to
the structure and two positive integer numbers k and w. First, the algorithm deter-
mines a set of local minima using the procedure Multi_Search (see 4.2), which
produces a series of w searches using random enter points. After that the algorithm
determines a neighborhood u which contains all neighbors of the each found local
minima. The set u is sorted in ascending order by distance from the object
new_object to be added. After that new_object is connected with first k nearest
elements from the set u.

Nearest_Neighbor_Add(object: new_object, integer: k, integer: w)

1 SET[object]: localMins ← Multi_Search (new_object, w);
2 SET[object]: u ←∅ ; //neighborhood;

3 foreach object: local_min ∈ localMins do

4 u ← u ∪ local_min.getFriends();

6 sort the set u so to satisfy the condition σ (u[i],
new_object) < σ (u[i+1], new_object)
7 for (I ← 0; i < k; i++) do
8 u[i].connect(new_object);

9 new_object.connect(u[i]);

The choice of the parameter k is not clear, it depends on the space, but it can be eva-
luated automatically for an unknown space with a distributed algorithm; we are plan-
ning to describe it in our next works. Note that as in 4.2 setting w to a big number is
equivalent to an exhaustive search of the closest elements in the structure. More on
the choice of w and k see in the next section.

 Scalable Distributed Algorithm for Approximate Nearest Neighbor Search Problem 141

6 Test Results and Discussion

Test Data
We have implemented the algorithms presented above in order to validate our as-
sumptions about the scalability of the structure and to evaluate its performance. For a
test dataset we have used:

• Uniformly distributed random points with a L2 (Euclidean distance) proximity
function (up to 106 elements).

• To test our algorithm in a general metric space we have used a database of chemi-
cal compounds [33] with a Tanimoto [34] distance function. We have randomly se-
lected 105 elements from the database to test the algorithm.

• A subset of the TREC-3 documents collection containing 24276 documents[23] for
comparison with other works.

Small World
To verify the small world properties of the proposed structure we have measured the
average path length induced by the greedy search algorithm for the vectors and chem-
ical compounds (see Fig. 3). The plot clearly shows a logarithmic dependence on the
dataset size proving it is a navigable small world. Thus the complexity of a single
search scales logarithmically. It can be shown that the small world properties retain at
any size (we are going to focus on it in one of our next works). Note that for bigger
dimensionalities dependence is weaker due to smaller diameter of a set at a fixed
number of elements.

Construction Parameters
We adjusted the number of search attempts m, so that the probability of finding the
true closest element to the query was not less than a fixed value (we took 95% as a
reference).

To test the scaling of the search algorithm with the number of elements n we have
plotted (see Fig. 4) the number of multi-searches m required to get the 95% true near-
est neighbor rate versus the size of the dataset for d=10 and different w parameters of
the construction algorithm. For w=20 the dependence is clearly logarithmic up to 106
elements. For low values of w the algorithm complexity dependence deviates from the
expected. Arrows denote the point where the dependence deviates from the logarith-
mic for w=1..4. One can see that the points are almost equidistant in the logarithmic
scale.

So, if we need to get the logarithmic scaling up to n elements we have to have

w ()log ;(6.1)A n> × , where A is a constant value. And the overall complexity of both

the search and the construction algorithms can be made logarithmic at the same time.
Such dependence on the construction parameters can be easily understood. For the
low w parameters the probability of finding the true nearest neighbor to a new element
is low and the algorithm cannot choose the closest neighbors links correctly. The
number of searches required to get P close to unity scales logarithmically with the

142 Y. Malkov et al.

size of the dataset, leading to equation (6.1). We can set w high enough for any rea-
sonable size of the dataset (like 10100) while keeping acceptable construction com-
plexity or if the size of the dataset is known (or evaluated dynamically) we can always
set the parameters optimal and maintain an overall logarithmic scaling.

Fig. 3. The average hop count induced by a
greedy search algorithm for different dimen-
sionality Euclid data and for a chemical com-
pounds dataset (k=10, w=20). The navigable
small world properties are evident from the
logarithmic scaling.

Fig. 4. The number of multi-searches
required to get the 95% true nearest neigh-
bor rate versus the size of the dataset for
different w parameters of the construction
algorithm. Arrows denote points where the
dependence deviates from the logarithmic.
The points are almost equidistant in the log
scale.

Fig. 5 presents the number of multi-searches m for the same parameters as in Fig. 4

setting w= ()logA n c× −   for A=1.5, 2, 2.5, 3. For any value of A the scaling stays

logarithmic but at expense of worse complexities for the small values of A. Setting A
higher than 2.5 does not affect the complexity of the search.

To define the best choice of the parameter k we have plotted the probability of fail-
ing finding the true nearest neighbor versus the fraction of visited elements (metric
calculations) for d=10 and different parameters k (see Fig. 6). For k smaller than
2...3 d⋅ there is a significant fall of performance, while for bigger values of k there is
a very slow decay with the rise of the parameter. For d=2…50 it was verified that the
optimal value for k is close to 3 d⋅ . Also one can see that the probability of a wrong
NN result falls exponentially with the fraction of visited elements confirming assump-
tions from section 4.

The bottom line is that the optimal value for k is 3 d⋅ ; the value of w has to be dy-

namically changed ()log currentA n× with a constant A or set fixed to ()logA n× ,

where n is the maximum database size.

100 1000 10000 100000 1000000

2

4

6

8

10

12

14

16

 d=1

 d=10

 d=20

 d=100

 Tanimoto

A
v
e
ra
g
e
 p
a
th
 l
e
n
g
th

Items count

100 1000 10000 100000

0

5

10

15

20

25

30

Parameters:

d = 10, k= 7

 w=1

 w=2

 w=3

 w=4

 w=20

 Line fit

M
u
lt
i-
s
e
a
rc
h
e
s
 r
e
q
u
ri
e
d
 t
o
 g
e
t
9
5
%
 a
c
c
u
ra
c
y

Items count

 Scalable Distributed Algorithm for Approximate Nearest Neighbor Search Problem 143

Fig. 5. The number of multi-searches required
to get the 95% true nearest neighbor rate versus
the size of the dataset for a logarithmic scaling
of w (A=1.5, 2, 2.5, 3)

Fig. 6. Probability of failing finding the true
nearest neighbor versus fraction of visited
elements for d=10, 52.6 10n = ⋅

Absolute Speedup and Scaling
The graph (Fig. 7) shows the percent of visited (extracted) elements (vertical) versus
the dataset size (horizontal) in a log-log scale for different dimensionalities. k was
fixed to 3 d⋅ for all trials and w was fixed to a big number. The plot shows that with
the increase of the number of elements in the structure, the percentage of visited ele-
ments decreases, and the curves become close to straight lines with an angle of 45
degrees (corresponding to the 1 / n law of decay). This means that the single search
complexity does not change significantly with the size of the dataset. From the graphs
the overall scaling for complexity of the search can be extracted. It turns out that it

scales as 2log ()n , just as it might be expected. One “log” coming from the average

path length and the other is from the number of multi-searches.

We have also plotted the average fraction of visited elements for n= 52.6 10⋅ in a
log-log scale to check the dimensionality dependence (see Fig. 8), it can be approx-

imated by a 1.7d power law. Judging on the Fig. 7 it seems that for low d with rise of
n at some size the difference in performance between the dimensionalities diminishes.
It might be suspected that such behavior will be the same for bigger dimensionalities
but it requires further study.

Overall, the measured search complexity scaling for n>105 and d = 5..100 is not

worse than 1.7 2ln () ln(1/)faild n P× × and the construction complexity (deduced from

the search complexity) is 1.7 2ln ()×d n n , where failP is an acceptable probability of

failing finding the true nearest neighbor.
To get an idea about how the algorithm performs compared to the other k-NN

algorithms we have run a test from [23], a subset of collection TREC-3 documents
containing 24276 documents. For a k-NN algorithm we have used a part of the con-
struction algorithm from section 5. To get the averaged 90% recall of 9 documents

100 1000 10000 100000

5

10

15

20

25

M
u
lt
is
e
a
rc
h
e
s
 r
e
q
u
ir
e
d
 t
o
 g
e
t
9
5
%
 a
c
c
u
ra
c
y

Items count

Parameters:

d = 10, k=7

 A = 1.5

 A = 2

 A = 2.5

 A = 3

0,000 0,005 0,010 0,015 0,020

0,01

0,1

1

P
r
o
b
a
b
il
it
y
 o
f
fa
il
in
g
 f
in
d
in
g
 t
h
e
 t
r
u
e
 n
e
a
r
e
s
t
n
e
ig
h
b
o
r

Fraction of visited elements

n = 260k, d=10

 k=240

 k=60

 k=30

 k=20

 k=10

 k=3

144 Y. Malkov et al.

from the database it required visiting 5% of the database compared to about 2% from
the [23]. We believe it is a good result for such a simplified algorithm. We have also
made a slight modification of the k-NN search algorithm, changing the stop condition
(the algorithm continues to travel the graph while it can improve distance for the k-th
element) yielding about 2.5% extraction of the database at the same recall, very close
to the state of art.

Fig. 7. Average fraction of visited elements
within a single NN-search versus the size of
the dataset for different dimensionality and
data types

Fig. 8. Average fraction of visited elements
within a single Nearest Neighbor search
versus the dimensionality of the dataset for n
= 262k with a power-law fit

7 Conclusions and Future Work

We have proposed a method of organizing data into a distributed small world graph
structure suited for the distributed approximate nearest neighbor search in a metric
space. The algorithm uses no information about inner topology of the data and space,
thus it is applicable to arbitrary metric data. The algorithm is very simple and easy to
understand. All elements in the structure are of the same type, there is no central or
root element. There is no dedicated algorithm for managing the small world proper-
ties, they arise automatically. The algorithm uses only local information on each step
and can be initiated from any vertex. The search is approximate from the topological
point of view. An unsuccessful Nearest Neighbor query typically results in the second
nearest element.

Accuracy of the approximate search can be tuned by using multiple searches with a
random initial vertex and the probability of finding a false nearest neighbor decreases
exponentially with the number of multi-searches.

The performed simulation for data in the Euclidian space shows that the structure
built using the proposed algorithm has the navigable small world property. Both loga-
rithmic search and construction complexity at fixed accuracy can be achieved with
appropriate algorithm parameters. There are reasons to believe such behavior will be
retained for any dataset size. The algorithm also shows a power law scalability
of metric calculation count with dimensionality of the stored data. Simulations for

10 100 1000 10000 100000 1000000

1E-3

0,01

0,1

1

 d = 3

 d = 5

 d = 10

 d = 30

 d = 50

 d = 60

 d = 100

 Tanimoto

F
ra
c
ti
o
n
 o
f
v
is
it
e
d
 e
le
m
e
n
ts

Dataset size

10 100

1E-3

0,01

0,1
 Algorithm performance

 ~d
 1.7

F
ra
c
ti
o
n
 o
f
v
is
it
e
d
 e
le
m
e
n
ts

Dimensionality

 Scalable Distributed Algorithm for Approximate Nearest Neighbor Search Problem 145

chemical compounds and documents have shown the effectiveness of the approach for
non-Euclidian spaces comparable to best algorithms.

The proposed structure was intentionally slimmed-down to demonstrate its scala-
bility over the dataset size and dimensionality. There are several ways to optimize the
structure in order to get lower complexity or/and better accuracy constants, such as:

• More complicated algorithms for node friends selection (see sec. 5). It is obvious
that selecting nearest neighbors as friends is not the best way to approximate De-
launay graph since it takes into account only distances between the new element
and candidates and neglects distances between the candidates. Knowledge of inter-
nal structure of the metric space can boost up search performance. In [31] is was
shown that for Euclidean space the accuracy of a single search can be significantly
increase while keeping the number of friends per node fixed.

• More complicated search algorithms can be used. Excluding already visited ele-
ments in consequent searches or/and changing the stop parameters in search algo-
rithm can potentially reduce the number of metric computations several times at
the same accuracy.

• More complicated algorithms for navigable small world creation suitable for corre-
lated (non-random) data.

As a future work, we are going to enhance the performance of the structure while
keeping good scalability and distributed nature and to make a detail comparison with
the state of art algorithms from the area.

Summing up, simplicity, high scalability both with size and data dimensionality
and the distributed nature of the algorithm are a good base for building many real-
world extreme dataset size high dimensionality similarity search applications.

References

1. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Transactions on In-
formation Theory 13(1), 21–27 (1967)

2. Flickner, M., et al.: Query by image and video content: the QBIC system. Computer 28(9),
23–32 (1995)

3. Cost, S., Salzberg, S.: A Weighted Nearest Neighbor Algorithm for Learning with Sym-
bolic Features. Machine Learning 10(1), 57–78 (1993)

4. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recom-
mendation algorithms. In: Proceedings of the 10th International Conference on World
Wide Web, New York, USA, pp. 285–295 (2001)

5. Rhoads, R., Rychlik, W.: A computer program for choosing optimal oligonudeotides for
filter hybridization, sequencing and in vitro amplification of DNA. Nucletic Acids Re-
search 17(21), 8543–8551 (1989)

6. Deerwester, S., et al.: Indexing by Latent Semantic Analysis. J. Amer. Soc. Inform.
Sci. 41, 391–407 (1990)

7. Kleinberg, J.: The Small-World Phenomenon: An Algorithmic Perspective. In: Annual
ACM Symposium on Theory of Computing, vol. 32, pp. 163–170 (2000)

146 Y. Malkov et al.

8. Aurenhammer, F.: Voronoi diagrams — a survey of a fundamental geometric data struc-
ture. ACM Computing Surveys (CSUR) 23(3), 345–405 (1991)

9. Navarro, G.: Searching in metric spaces by spatial approximation. Paper Presented at the
String Processing and Information Retrieval Symposium, Cancun, Mexico

10. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Com-
munications of the ACM 18(9), 509–517 (1975)

11. Finkel, R.A., Bentley, J.L.: Quad Trees: A Data Structure for Retrieval on Composite
Keys. Acta Informatica 4(1), 1–9 (1974)

12. Lee, D.T., Wong, C.K.: Worst-case analysis for region and partial region searches in mul-
tidimensional binary search trees and balanced quad trees. Acta Informatica 9(1), 23–29
(1977)

13. Samet, H.: The design and analysis of spatial data structures. Addison-Wesley Pub. (1989)
14. Arya, S.: Accounting for boundary effects in nearest-neighbor searching. Discrete & Com-

putational Geometry 16(2), 155–176 (1996)
15. Chávez, E., et al.: Searching in metric space. Journal ACM Computing Surveys

(CSUR) 33(3), 273–321 (2001)
16. Arya, S., Mount, D.: Approximate nearest neighbor queries in fixed dimensions. In: SODA

1993 Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
Philadelphia, PA, USA, pp. 271–280 (1993)

17. Kleinberg, J.: Two algorithms for nearest-neighbor search in high dimensions. In: Proceed-
ings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC 1997,
New York, USA, pp. 599–608 (1997)

18. Indyk, P., Motwani, R.: Approximate Nearest Neighbors: Towards Removing the Curse of
Dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing, STOC 1998, New York, USA, pp. 604–613 (1998)

19. Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient search for approximate nearest neigh-
bor in high dimensional spaces. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, STOC 1998, New York, USA, pp. 614–623 (1998)

20. Gionis, A., Indyk, P., Motwani, R.: Similarity Search in High Dimensions via Hashing. In:
Proceedings of the 25th International Conference on Very Large Data Bases, VLDB 1999,
San Francisco, USA, pp. 518–529 (1999)

21. Andoni, A., Indyk, P.: Near-Optimal Hashing Algorithms for Approximate Nearest Neigh-
bor in High Dimensions. In: Proceedings of 47th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS 2006), Berkeley, USA, pp. 459–468 (2006)

22. Houle, M.E., Sakuma, J.: Fast Approximate Similarity Search in Extremely High-
Dimensional Data Sets. In: ICDE 2005 (2005)

23. Chávez, E., Figueroa, K., Navarro, G.: Effective Proximity Retrieval by Ordering Permuta-
tions. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(9), 1647–1658
(2008)

24. Cai, M., Frank, M., Chen, J., Szekely, P.: MAAN: A Multi-Attribute Addressable Network
for Grid Information Services. Journal of Grid Computing 2(1), 3–14 (2004)

25. Ganesan, P., Yang, B., Garcia-Molina, H.: One torus to rule them all: multi-dimensional
queries in P2P systems. In: Proceedings of the 7th International Workshop on the Web and
Databases, New York, USA, pp. 19–24 (2004)

26. Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting scalable multi-attribute
range queries. In: Proceedings of Applications, Technologies, Architectures, and Protocols
for Computer Communication, New York, USA, pp. 353–366 (2004)

 Scalable Distributed Algorithm for Approximate Nearest Neighbor Search Problem 147

27. Beaumont, O., Kermarrec, A.-M., Marchal, L., Riviere, E.: VoroNet: A scalable object
network based on Voronoi tessellations. In: Proceedings of International Parallel and Dis-
tributed Processing Symposium, Long Beach, US, p. 20 (2007)

28. Novak, D., Zezula, P.: M-Chord: A Scalable Distributed Similarity Search Structure. In:
Proceedings of the 2001 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, San Diego, pp. 149–160 (2001)

29. Batko, M., Gennaro, C., Zezula, P.: Similarity Grid for Searching in Metric Spaces. In:
Türker, C., Agosti, M., Schek, H.-J. (eds.) Peer-to-Peer, Grid, and Service-Orientation in
Digital Library Architectures. LNCS, vol. 3664, pp. 25–44. Springer, Heidelberg (2005)

30. Haghani, P., Michel, S., Aberer, K.: Distributed similarity search in high dimensions using
locality sensitive hashing. Paper presented at the 12th International Conference on Extend-
ing Database Technology: Advances in Database Technology, New York, USA

31. Beaumont, O., Kermarrec, A.-M., Rivière, É.: Peer to peer multidimensional overlays: ap-
proximating complex structures. In: Proceedings of the 11th International Conference on
Principles of Distributed Systems, Berlin, Heidelberg (2007)

32. Krylov, V., Ponomarenko, A., Logvinov, A., Ponomarev, D.: Single-attribute Distributed
Metrized Small World Data Structure. Paper Presented at the IEEE International Confe-
rence on Intelligent Computing and Intelligent Systems (CAS)

33. Wang, Y., Xiao, J., Suzek, T.O., Zhang, J., Wang, J., Bryant, S.H.: PubChem: a public in-
formation system for analyzing bioactivities of small molecules. Nucl. Acids Res. 37,
W623–W633 (2009)

34. James, C.A., Weininger, D., Delaney, J.: Fingerprints-Screening and Similarity (1997),
http://www.daylight.com/dayhtml/doc/theory/theory.toc.html

	Scalable Distributed Algorithm for Approximate Nearest
Neighbor Search Problem in High Dimensional General Metric Spaces
	Introduction
	Related Works
	Centralized Exact Nearest Neighbor Search Structures
	Centralized Approximate Nearest Neighbor Search Structures
	Distributed Exact Nearest Neighbor Search Structures
	Distributed Approximate Nearest Neighbor Search Structures

	Structure Definition
	Search Algorithm
	Greedy Search
	Multi-search

	Data Addition Algorithm
	Test Results and Discussion
	Conclusions and Future Work
	References

