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Preface

This volume contains the papers presented at the 5th International Conference
on Similarity Search and Applications (SISAP 2012), which took place during
August 9–10, 2012, at the Fields Institute for Research in Mathematical Sciences,
Toronto, Ontario, Canada.

SISAP is a conference devoted to similarity searching, with emphasis on met-
ric space searching. It aims to fill in the gap left by the various scientific venues
devoted to similarity searching in spaces with coordinates, by providing a com-
mon forum for theoreticians and practitioners around the problem of similarity
searching in general spaces (metric and non-metric) or using distance-based (as
opposed to coordinate-based) techniques in general. Four types of contributions
are welcome: (1) fundamental techniques to handle general similarity search
problems, (2) applied techniques to solve particular similarity search problems
of wide interest, (3) new similarity search problems, where their features and
challenges are studied, and (4) actual systems for similarity search, in the form
of demos. SISAP is seen as a forum for not only exchanging new indexing tech-
niques and real-world applications, but also common testbeds and benchmarks,
and source code. Authors are expected to use the testbeds and code from the
SISAP website (www.sisap.org) for comparing new applications, databases, in-
dexes, and algorithms.

This year we received 19 full-paper and two demo submissions, from Ar-
gentina, Chile, Czech Republic, France, Japan, Mexico, Norway, Russia, Spain,
Switzerland, UK, and USA. Each submission was assigned, in double-blind mode,
to three Program Committee (PC) members, who reviewed them themselves
and/or supervised subreviews. Submissions received two to five reviews (3.14
on average). Then the PC Chairs and involved members discussed the articles
where no obvious agreement had been reached. The final decisions of acceptance
or rejection were made by the PC Chairs. Finally, 14 full papers and the two
demos were selected to be presented at the conference and to appear in the
proceedings.

Of the full papers accepted, nine refer to techniques to handle general sim-
ilarity search problems, improving upon the state of the art on topics like par-
allelism, dynamism, secondary memory, approximation techniques, optimized
construction, combinations of data structures, and novel scenarios, such as
streams of related searches and inferring factual space properties from the data.
Further, two accepted papers refer to applied techniques, to similarity searching
in string dictionaries and in images. The other three papers study the properties
of specific spaces such as sequences under time-warping distance and factorized
tensors, and propose and study new distances for vector spaces based on entropy
correlations. Of the two demos, one presents an image meta-search engine, and
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the other introduces a tool for identifying protein and peptide sequences from
tandem mass spectra.

Overall, the articles formed an extremely stimulating set of contributions to
many of the most relevant aspects of similarity searching. Two invited presenta-
tions and papers from prominent researchers further enriched this year’s SISAP.
The first one, “Effective Principal Component Analysis,” by Santosh Vempala,
is about the success and challenges around this technique, of wide relevance
in similarity search and various other fields. The second one, “Future Trends
in Similarity Searching,” by Pavel Zezula, is a revealing survey and analysis of
where the discipline is expected to head in the forthcoming years.

This year the proceedings of SISAP were published by Springer-Verlag, in
the Lecture Notes in Computer Science series. A selection of the best papers was
recommended for inclusion in a special issue of the Information Systems journal
dedicated to this conference. These were chosen by the PC Chairs based on the
original reviews of the articles and their oral presentation during the conference,
as well as appropriateness to the journal.

The subject matter of the SISAP conferences, although primarily a com-
puter science topic, uses a great deal of advanced mathematical methods, such
as those of geometric functional analysis and statistical machine learning. The
conference is a perfect platform for interactions between computer scientists and
mathematicians, and the stimulating research ambiance of the Fields Institute
gave fresh impetus to such interactions. We thank the Fields Institute for the
hosting of SISAP 2012 conference.

Last, but not least, we acknowledge the generous financial support from
(again) the Fields Institute for Research in Mathematical Sciences, Canada;
the Canadian Network of Excellence in Mathematics of Information Technology
and Complex Systems (MITACS); and the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) research grant “New Set-Theoretic Tools for
Statistical Learning.” All the submission, reviewing, and proceedings generation
processes were handled through the EasyChair platform.

August 2012 Gonzalo Navarro
Vladimir Pestov
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Effective Principal Component Analysis

Santosh S. Vempala�

School of CS and Algorithms and Randomness Center,
Georgia Tech

Atlanta, GA, USA
vempala@gatech.edu

Abstract. Principal Component Analysis (PCA) is one of the most
widely used algorithmic techniques. When is PCA provably effective?
What are its main limitations and how can we get around them? In this
note, we discuss three specific challenges.

1 Introduction

Algorithms for processing large, high-dimensional data sets are of increasing
importance. The field of sublinear algorithms is motivated by the abundance
of data and the practical infeasibility of running algorithms even with (large)
polynomial time complexity on such inputs.

In this endeavor, some classical approaches have flourished. Notable among
them is Principal Component Analysis, a widely-used, general purpose method
for summarizing data, compactly representing it, clustering, finding near(est)-
neighbors, and many other applications that can be classified as finding patterns
or data mining. It serves as a ubiquitous pre-processing step.

What is PCA? Given an m×n real matrix A, with rows interpreted as points
and columns as coordinates, standard PCA attempts to find the most important
combinations of coordinates, i.e., the subspace that best approximates the data
upon projection. More precisely, we first shift the matrix so that the average of
the rows is zero, then the top principal component is the unit vector v1 which
maximizes ‖Av‖2, i.e.,

v1 = arg max
v:‖v‖=1

‖Av‖.

Similarly the top k principal components span a subspace V of dimension k that
maximizes the norm of the projection of the points to it. In particular, if the
data were inherently k-dimensional, then PCA would preserve the points and
recover the entire norm of the original matrix.

PCA is usually implemented by the Singular Value Decomposition (SVD)
applied to a centered (mean zero) matrix. For an m×n real matrix A, the SVD
is defined as follows:

A = UDV T

� This work was partially supported by the NSF.

G. Navarro and V. Pestov (Eds.): SISAP 2012, LNCS 7404, pp. 1–7, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 S.S. Vempala

where U ∈ Rm×r and V ∈ Rn×r are column-orthonormal matrices, with the
columns ui of U being left singular vectors and the columns vi of V being right
singular vectors; the matrix D = diag(σ1, . . . , σr) is a positive diagonal matrix
and by convention, the diagonal entries in D, the singular values σi, are non-
increasing. The top k principal components of A as defined above are simply
the first k columns of V . The top left and right singular vectors u1, v1, the first
columns of U and V respectively, are given by

(u1, v1) = arg max
‖u‖=‖v‖=1

uTAv.

The next such pair maximizes the same function among vectors orthogonal to
u1 and v1.

PCA/SVD readily give a rank-k representation of A, namely,

Ak =
∑
i=k

σiu
i(vi)T = AVkV

T
k

where Vk is the submatrix of the first k columns of V . This representation gives
a least-squares approximation as shown by Eckart and Young [11].

Theorem 1. [11] For any m× n matrix A, and any integer 1 ≤ k ≤ n, among
all matrices of rank at most k, we have

Ak = arg min
D:rank(D)≤k

‖A−D‖F = arg min
D:rank(D)≤k

‖A−D‖2.

Thus, PCA can be used to obtain a low-dimensional representation of data, an
important pre-processing step for many applications. There is considerable work
on making the PCA algorithm efficient, both in numerical linear algebra where
the focus is more on the convergence rate of algorithms as a function of the error
bound, and in algorithmic complexity theory, where the focus has been to find
algorithms with bounded error whose complexity is sublinear in the size of the
matrix. For further reading, the reader is referred to [16].

2 One Success and Three Challenges

The impact of PCA in practice is hard to exaggerate. In many empirical studies,
PCA or PCA-based algorithms match or outperform other methods. In spite of a
plethora of such results (many quite striking), it is not hard to see that PCA can
fail. For example, if one is interested in reducing dimensionality to make nearest
neighbor search more efficient, then PCA can easily destroy the neighborhood
structure of a subset of the data. Similarly, if one is interesting in recovering a
clustering of an unlabeled data set, even a set with a clustering defined by a
simple rule (e.g., a halfspace), PCA can collapse the clusters together.

In light of these examples, it is natural to wonder when PCA is provably
effective and what aspects of a problem or data set can render it ineffective. While
we are far from a satisfactory answer to these questions, in this note we illustrate
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ongoing research in this direction and highlight three challenges for PCA via one
important problem. The challenges are: (1) PCA is not affine-invariant (2) PCA
takes into account only pairwise relationships (matrices, second moments) and
thus is a crude approximation for tensor data (multidimensional arrays, higher
moments) and (3) PCA is not noise-tolerant.

The problem is unsupervised clustering. Many special cases of this problem
are widely studied, including (1) unraveling a mixture of Gaussians given i.i.d.
samples from the mixture and (2) detecting a planted clique in a random graph.
We note that both problems fit under the framework of inferring a mixture model
from samples: in one case the components of the mixture are Gaussians, while
in the other case the components are distributions on binary hypercube.

One approach to understanding high-dimensional data is to model it as a
distribution that is itself a mixture (a convex combination) of a small number of
“simple” distributions. The most common variant of such a mixture model is to
assume that the component distributions are unknown Gaussians. The problem
is thus to find the component Gaussians (their means and covariances) and the
mixing weights from samples. There is a large literature on this problem and
there has been much progress on understanding its complexity over the past 15
years [9, 2, 10, 19, 15, 1, 7, 6, 5, 14, 4, 18, 3].

The current state of the art is that under some assumptions on the probabilis-
tic separability of the components, the mixture can be learned in time polynomial
in both n and k [6]. Alternatively, under no separability assumptions, a mixture
of k Gaussians can be learned in time exponential in k [14, 4, 18, 3].

An important step in the line of work on polynomial-time algorithms is PCA.
In [19], the following algorithm to learn a k-component mixture is analyzed.

Basic Spectral Algorithm

1. Apply PCA to project data to a k-dimensional subspace.
2. Partition samples into k components using only their pairwise Euclidean

distance in the k-dimensional space.
3. Using the samples of each cluster, estimate the mean and covariance of

each component.

The following guarantee holds for this algorithm. Here wi are the mixing
weights, with wmin being the smallest, and the i’th component is N(μi, σ

2
i In).

Theorem 2. [19] Let F be a mixture of k spherical Gaussians with the property
that for any pair of components i, j,

‖μi − μj‖ ≥ Cmax{σi, σj}(k log(n/wmin))
1/4.

Then given at least poly(n, 1/wmin) i.i.d. samples from the mixture, with high
probability the sample is correctly classified by the Basic Spectral Algorithm.

(for more explicit bounds on the number of samples and the failure probability,
we refer to [19]).
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This result remains the best known for unraveling a mixture of spherical
Gaussians. Information-theoretically, a separation that grows with log k rather
than poly(k) is possible, but no efficient method is known, and PCA does not
work. When we consider the algorithm for a general (nonspherical) Gaussian
mixture, this failure is magnified. For PCA to work, one has to assume that the
component means are separated by a distance that grows with both

√
k and

the largest standard deviation of the components. To see this, if one considers
a mixture of two Gaussians that are spherical in n− 1 directions and very thin
in one direction arranged to look like two parallel “pancakes”, then unless the
two Gaussians are separated by a distance proportional to the larger standard
deviation, PCA will collapse them.

This brings us to our first challenge, namely PCA is not affine-invariant. The
separability of two Gaussians is an affine-invariant property (if two Gaussians
have small overlap, any affine transformation of them has the same overlap). For
the two pancake example, if one were to stretch space along the thin direction
of the pancakes, then a significantly smaller separation suffices.

At first glance, an affine-invariant version of PCA sounds self-contradictory.
After all, PCA is designed to pick up the most significant directions of a data
set, as measured by the second moment. What if all second moments are equal,
i.e., the distribution is isotropic? An immediate possibility is to consider higher
moments. Namely, find directions that maximize higher moments. This natural
generalization runs into several difficulties. First, the maximization problem is
NP-hard. Second, there can be an exponential number of local maxima and there
is little structure to them unlike in the case of the second moment when they
are pairwise orthogonal.

In spite of these difficulties, in [6], an affine-invariant method is given that can
be viewed as an efficient algorithm for maximizing a certain linear combination of
higher moments. It is used to unravel a mixture of arbitrary Gaussians assuming
only that each Gaussian is separated from the rest of the mixture by a hyperplane
(this separation condition is itself affine-invariant). It remains open to solve the
problem under the weakest assumption of probabilistic separability. We describe
the algorithm below and refer the reader to [6] for details on its guarantees.

Isotropic PCA

1. Apply an isotropic transformation to the input data, so that the mean of
the resulting data is zero and its covariance matrix is the identity.

2. Give a weight to each point using the density of a spherically symmetric
weight function centered at zero, e.g., a spherical Gaussian.

3. Perform PCA on the weighted data.

Another approach to dealing with this issue is the one taken by Independent
Component Analysis (ICA) [13], where data is assumed to be generated by
applying an arbitrary affine transformation to a product distribution, and the
goal is to recover the basis of the underlying product distribution. It is shown in
the literature that finding local optima of higher moments allows one to solve this
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problem under rather mild assumptions (specifically that the one-dimensional
distributions are not too close to Gaussian) [8, 17, 12]. In recent work [20],
this was extended to factoring a distribution that is a product of its marginals
on orthogonal subspaces (not necessarily one-dimensional). The approach is to
find directions that maximize higher moments. We note that the direction that
maximizes the r’th moment is equivalent to the vector (principal component)
that achieves the norm of an r-dimensional array defined by the expectations of
products of k-subsets of coordinates, i.e., local maxima of the function∑

i1,...,ir

Ai1,...,irv
1
i1v

2
i2 . . . v

r
ir .

In the case of ICA, the entries of A are defined as Ai1,...,ir = E(x1x2 . . . xr).
While this approach has already lead to some interesting results already, it has
the promise of wider applicability and has not been thoroughly understood.

Our final challenge is noise-tolerance. PCA is rather brittle in that adding a
single point sufficiently far from the mean can change the top principal com-
ponent arbitrarily (and adding k points can similarly affect the top k pirncipal
components). So if the mixture is modified by a small amount of arbitrary noise
then PCA could give very different results. How can we address this? In the
context of Gaussian mixtures, or unsupervised clustering, it is very natural (and
probably essential in any practical setting) that there is some amount of noise
that does not fit the model. All known algorithms for mixture models are unable
to handle noise, with one exception.

The exception is Brubaker’s noise tolerant unsupervised clustering algorithm
[5]. He was able to show that his algorithm works for a mixture of separable
logconcave component distributions (significantly more general than Gaussian
components), with inter-mean separation only a logarithmic factor higher than
the known bound for PCA for the perfect mixture setting with no noise. Under
this stronger separation, the algorithm works for a small amount of arbitrary
noise. It is not known whether this method can also be used to make other
algorithms agnostic, e.g., the current best results for spherical Gaussian mix-
tures (Theorem 2) or the affine-invariant separation results, or the exponential
algorithms that make no separability assumptions.

The most interesting part of the algorithm is the robust variant of PCA in-
troduced in Brubaker’s paper.

Robust PCA

1. Given distribution F in Rn, set current dimension d = n.
2. While d > k,

(a) Make F isotropic.
(b) Restrict F to points within a ball of radius C

√
d (where C is a fixed

constant).
(c) Project F to span of its top �(d− k)/2�+ k principal components.

3. Output current subspace of dimension k.
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Thus the algorithm alternates between removing outliers and reducing the
dimension. The important thing to note is that in both phases it is conservative,
choosing only to remove extreme outliers and reducing dimension by discard-
ing roughly the bottom half of the principal components. Brubaker showed this
algorithm gives an agnostic clustering method for mixtures of logconcave distri-
butions, but it remains open to fully understand this robust PCA algorithm. In
particular, is the subspace output by the algorithm nearly invariant under small
changes to the data set?
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Abstract. Similarity searching has been a research issue for many years,
and searching has probably become the most important web application
today. As the complexity of data objects grows, it is more and more dif-
ficult to reason about digital objects otherwise than through the similar-
ity. In this article, we first discuss concepts of similarity and searching in
light of future perspectives before a concise history of similarity searching
technology is presented. We use the historical knowledge to extend the
trends to future. We analyze the bottlenecks of application development
and discuss perspectives of search computing for future applications.
We also present a model of search technology and its position in com-
puter clouds for application development. Finally, execution platforms
for multi-modal findability and security issues for outsourced similarity
searching environments are suggested as important research challenges.

1 Introduction

A wide range of data processing applications need to access data through simi-
larity. Search is also one of the fundamental topics in computer science. Given
a set of points from a universe and a distance measure, it is possible to pose
similarity search queries on a sample point. It is an important operation in
multimedia databases, information retrieval, biological databases, CAD parts in
engineering environments, and many other database applications involving com-
plex objects. Besides being used directly, it is also applied as a basic operation of
more complex applications, such as data mining, decision making, event detec-
tion, or augmented reality. Similarity search no doubt already witnessed a great
commercial success, but we believe that many others are to follow. However,
the new possibilities are also posing new research challenges. Some of them are
outlined in this paper.

In the following, we first discuss in Section 2 importance and future of similar-
ity and search in our lives. In Section 3, we present a concise history of similarity
searching technology and try to extend past trends to future. Suggested objec-
tives of a better similarity search technology start in Section 4 with analyzing
the state of the art and end with a definition of a generic model of similarity
searching for cloud services. Finally, the problems of findability and security in
such environments are discussed in Section 5 as important research challenges.

G. Navarro and V. Pestov (Eds.): SISAP 2012, LNCS 7404, pp. 8–24, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 On the Importance of Similarity and Searching

2.1 Similarity

According to the WordNet1 (a semantic lexicon of the English language):

Similar real world entities are marked by correspondence or resem-
blance, have the same or close characteristics, express closely related
meanings, or are capable of replacing or changing places with something
else. The noun ”similarity” has one meaning, which is the quality of
being similar.

Because no situation, object, nor event is the same in all respects to any previous
encountered situation, object, or event, using past experience to guide future be-
havior requires generalizing from previous to new instances. It is widely assumed,
in behaviorist as well as cognitive theories of learning, that this generalization
is based, to some degree at least, on similarity. Similarity appears also to have
an important role to play in problem solving, inference and scientific reasoning,
especially if analogy is viewed as a special case of similarity.

Similarity is a central notion throughout cognitive sciences [1]. In perception,
the similarity between sets of visual or auditory stimuli influences the way in
which they are grouped. In speech recognition, the similarity between different
phonemes determines how easily confused they are. In classification, the category
assignment to an instance may be influenced by the similarity of the new instance
to past instances or a stored prototype. In memory, it has been suggested that
retrieval from a cue depends on the similarity of past memory traces to the
representation of the cue. Similarity also appears fundamental to learning and
development.

However, not all application areas use the term similarity in exactly the same
meaning. Consider the following examples. In the geometry, the similarity is seen
as the relationship between two- or three-dimensional figures having the same
shape but not necessarily the same size. The angles of two similar polygons or
solids are equal, but the lengths of their sides are only proportional. Observe
that given a specific polygon, any other possible polygon is either similar or it
is not similar at all.

On the other hand, in order to assess the similarity between two molecules,
say A and B, we need to first describe the molecules according to some scheme
and then choose an appropriate measure to compare the descriptions of the
molecules. A common method is to create a binary string where a bit or a set
of bits being set on implies the presence of a particular feature. This process is
independent of the measure we may use to associate or compare these binary
strings, but in general, it is based on a gradual comparison of pairs of molecules.
Given a molecule A and specific similarity measure, any other molecule B is in a
relation with A, where the degree of similarity determines a ranking or closeness
of B with respect to A. If we repeat this process for a large number of molecules,

1 http://wordnet.princeton.edu/

http://wordnet.princeton.edu/
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we introduce another independent process of classification, categorization, or
clustering.

Consider a simple and appealing idea about the way people decide whether
an object belongs to a category, [2]: the object is a member of specific category if
it is sufficiently similar to known category members. To put it in more cognitive
terms, if you want to know whether an object is a category member, start with
a representation of the object and a representation of the potential category.
Then, determine the similarity value of the object representation to the category
representation. If this similarity value is high enough, then the object belongs
to the category; otherwise, it does not.

For example, suppose you come across a white three-dimensional object with
an elliptic profile – or suppose you read or hear a description like this. You can
calculate a measure of the similarity between your mental representation of this
object and your prior representation of categories it might fit into. Depending
on the outcome of this calculation, you might decide that similarity warrants
calling the object an egg, perhaps, or a turnip, or a Christmas ornament.

In social psychology, similarity refers to how closely attitudes, values, interests,
and personality match between people – the study of interpersonal attractions
[3] is a major area of study in social psychology. Research has consistently shown
that similarity leads to interpersonal attraction, that is the attraction between
people which leads to friendships and romantic relationships. Many forms of
similarity have been shown to increase liking. Similarities in opinions, interper-
sonal styles, amount of communication skills, demographics, and values have
all been shown in experiments to increase liking. Of all the decisions people
make that affect their environment, choosing friends and spouses are among
the most important. For humans, both spouses and best friends are most simi-
lar on socio-demographic variables, such as age, ethnicity and educational level,
next most on opinions and attitudes, then on cognitive ability, and least, but
still significantly, on personality and physical traits. Having relationships with
similar people helps to validate the values held in common. At the same time,
people tend to make negative assumptions about those who disagree with them
on fundamental issues, and hence feel repulsion.

The ability to perceive similarities is one of the most fundamental aspects
of human cognition. Besides being crucial for recognition, classification, and
learning and it plays an important role in scientific discovery and creativity.
In recent years, similarity and analogy have received increasing attention from
cognitive scientists. This growth of interest is related to the realization that
human reasoning does not always operate on the basis of content-free general
inference rules but, rather, is often tied to particular bodies of knowledge and
is greatly influenced by the context in which it occurs. In a reasoning system
of this kind, learning does not get accomplished by merely adding new facts
and applying the same inference rules to them. Rather, successful learning often
depends on the ability to identify the most relevant bodies of knowledge that
already exist in memory so that this knowledge can be used as the starting point
for learning something new.
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Similarity may seem to be an irreducible psychological primitive, like the con-
cept of ”red” in the context of colors, but various theorists have tried to show
how it relates to other fundamental considerations. For example, the representa-
tion of red varies widely across categories such as apple, brick, face, hair, light,
soil, wine, and so forth. One could argue that red is stable only within particular
categories rather than across all categories.

In summary, similarity has many faces even for the same object. It is sub-
jective and depends on context, which is obviously changing in time. On the
theoretical level, it is generally assumed that stimulus features are internally
represented and that similarity between objects comes from some sort of com-
parison between their representations. Then, several interlocking questions may
occur: What information is carried in the stimulus representations? How is this
information combined or structured within the representation? How are repre-
sentations compared in arriving at a ”similarity”? Given a set of stimuli, how
are their similarities determined and best represented?

2.2 Searching

An activity of looking thoroughly in order to find something or some-
one, an investigation seeking answers, an operation that determines whether
one or more of a set of items has a specified property, the examination
of alternative hypotheses, and even the boarding and inspecting a ship on
the high seas,

are designated by WordNet as search. In the contemporary digital world, search
tools are designed to help us ask, browse, learn, share, visualize, and under-
stand the vast collection of sundry facts, nowadays available in digital form. As
observed in [4], almost everything that we see, read, hear, write, measure, or
otherwise observe can now be digital.

Research reports in management indicate that employees spend roughly 25
to 35 percent of their time searching for information they need to do their jobs.
That’s approximately one week of each month spent looking for data, which
translates into billions of dollars in lost productivity time for employers. Search
tools should help customers manage and utilize their existing business informa-
tion – from e-mails and documents to scanned images, audio and video – to help
them become more efficient, respond faster to suppliers and customers and tap
into new markets, and make their operations more cost-effective.

According to [5], search is motivated by the need to find objects and answers.
For example, we seek to find a web page with specific content, workshops able to
repair our cars, holidays to relax, posters to decorate our rooms, or facts about
earthquakes and tsunami. It is a process that leads from a query to desired
results. Obviously, search is not the only way we find. We can ask professionals,
friends, acquaintances, or colleges – family members are usually the first to ask.
In any case, when we ask and search, our goal is to find. Our strategies for asking
are often stimulated by place and time, that is the context, in general. Different
questions are asked during university course exams, banquets with friends, and
when finding our way to a museum in a foreign city.
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But sometimes, we get an answer even without asking. This typically comes
from once established relationships, memberships, location or identity, which
can be seen as an ongoing query over universal data-set. We also browse to find,
but it takes time and to find good things, you need a good luck. In fact, the
process of finding is continuously and repeatedly changing the modes of asking,
browsing, filtering and searching to achieve the goal. Finding strategies should
consider all of these modes. We must aim for searcher’s intent, we must respect
what they want and need.

According to [6], search is not only about finding. Search at its best is about
conversation. It is an interactive and iterative process where we find and learn.
The answer changes the question. The process moves the goal. Search has the
power to suggest, define, refine, cross-sell, relate, and educate. In fact, search
has already registered enormous commercial success and it is among the most
influential ways we learn. It is trusted and relied upon by millions of people a
day. Searching on servers like Google, Yahoo, or Bing is the world’s most popular
teacher.

However, search is a difficult problem of terrific consequences, and it is not a
solved problem. It changes the way we find everything from answerers, articles,
and advertising to products, people, and places. It shapes how we learn and what
we believe. It informs and influences our decisions. It thrives with and across
myriad objectives and contexts, which is the promise for future applications.

According to recent studies [7], we are increasingly handing off the job of re-
membering to search engines. Specifically, assuming information continually and
instantaneously available on the web, our cognitive habits change. Experiments
showed that when we do not know an answer to a question, our first reaction
is to quickly find the nearest Web connection, rather than actively elaborate on
the problem. Another important revelation is that when we expect to be able to
find information again later on, we do not remember it as well as when we think
it might become unavailable. Since search engines are continually available to us,
we often feel we do not need to encode the information internally. Consequently,
it changes our original memory of facts to a memory of ways to find the facts –
we are learning what the computer knows and where to go to find information.
Undoubtedly, future search tools should consider all of these effects.

3 Landmarks in Similarity Search Technology

3.1 Vector-Space Model

The elaboration of similarity search problems started in the information retrieval
community, which has produced numerous concepts and technologies nowadays
used in practical search engines, mostly processing text documents. Excellent
textbook [8] provides a thorough and updated introduction to the key Infor-
mation Retrieval principles behind search engines. It carefully surveys problems
from parsing to indexing, from clustering to classification, from retrieval to rank-
ing, and from user feedback to retrieval evaluation. All important concepts are
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carefully introduced and exemplified, slides for teaching are also available at the
home-page2 of the book.

However, the core of its success is the vector-space model with the cosine
similarity to assess closeness of documents containing words. This certainly is
a mature technology, based on efficient implementation through inverted files,
and Google, Yahoo, and Microsoft (as well as several others) have proved its
validity by enormous commercial success. This is also an excellent validation of
the importance and usefulness of similarity in searching, though it only solves a
specific, undoubtedly very important, form of similarity.

3.2 Metric Model

Probably the main stream of research towards a more generic and extensible form
of similarity searching has, in the last 20 years, been developing around the con-
cept of mathematical metric space [9]. Though the origins of the topic are older,
the boom started in the 1990s with a sharp increase in number of publications
and mainly citations to key scientific and technological achievements.

The metric space paradigm extends the range of possible similarity measures
but at the same time loses the possible advantage of coordinate systems to
define partitioning of search space. Since the similarity is in fact measured as
dissimilarity, specifically a distance, the applied techniques are often designated
as distance searching.

Several key publications summarize achievements in this area. The first survey
[10] includes results till the year 2000. It presents known approaches in original
taxonomy with the objective to discover core properties that would allow com-
bination of existing principles to form future better proposals. An important
contribution is a quantitative definition of the intrinsic dimensionality of metric
data sets, which is strictly related to search complexity.

The second survey [11] divides existing methods for handling similarity search
into two classes. The first class directly indexes objects based on distances
(distance-based indexing), while the second is based on mapping to a vector
space (mapping-based approach). However, the main part of this article is ded-
icated to a survey of distance-based indexing methods, and the mapping-based
methods are only outlined. An important contribution is a presentation of a gen-
eral framework for the execution of search operations, based on distances. The
suggested algorithms for common types of queries – similarity range and nearest
neighbors queries – operate on a generalized search hierarchy. Such algorithm
finds a lot of applications in techniques used on hierarchical partitioning of data.

In 2006, a book named Similarity Search: The Metric Space Approach [12] pre-
sented the state-of-the-art in developing index structures and supporting tech-
nologies for searching complex data modeled as instances of a metric space. In
Part I, the problem of metric searching is introduced and its importance with
respect to other approaches is justified. It also presents examples of distance
measures used for searching in diverse data collections. After defining similarity

2 http://www.mir2ed.org/

http://www.mir2ed.org/
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queries, the basic partitioning principles are discussed in light of query execution.
The rest of the introductory material is devoted to performance related issues,
specifically techniques aimed at reducing the number of distance computations,
metric space transformations, and concepts of approximate similarity search. Fi-
nally, a collection of analytic tools and methodologies specifically developed for
metric index structures is discussed. The survey of existing search techniques
in Part II is divided into three groups. In the first group, numerous proposals,
prevalently suitable for searching in main memory, are systematically discussed,
classified on applied partitioning paradigms. The second group of index struc-
tures assumes data to be stored on disc-like memories, so the input and output
access costs are also considered. The third group of techniques surveys indexes
able to trade some search precision, i.e. effectiveness, for substantial improve-
ments in performance, i.e. efficiency. Finally, the parallel and distribute indexes,
capable of inter, as well as the intra, query parallel execution are discussed.

At the home-page3 of the book, you can also find a three-hour tutorial as well
as a large collection of slides, covering the whole topic of the book – convenient
as a teaching material. The metric searching problems are also considered in the
last edition of the encyclopedic book by Hanan Samet [13] called Foundations
of Multidimensional and Metric Data Structures.

3.3 Non-metric Models

It is obvious that the constraints of distance symmetry and triangle inequal-
ity of metric spaces are far too restrictive for many distance measures needed
to model user perceived similarity in practice. An extensive recent survey [14]
describes domains employing nonmetric functions for effective similarity search
and methods for efficient non-metric similarity search. It is in agreement with
psychological models of similarity, but the resulting measures are complex and
fail to posses suitable geometric properties needed for partitioning and search-
ing. Though the review gives many pointers to the state-of-the-art techniques for
efficient (fast) non-metric similarity search, concerning both exact and approxi-
mate search, the issue is still a big open problem especially from the performance
point of view. For this reason, the promising applications seem to be those not
requiring online query response time.

3.4 Extending the History to Future

As pertinent to all complex systems, the future search must be born on the
divergence of the scale and determinism. In particular, a more and more desir-
able property of any search system will be its ability to either handle growing
amounts of work in a graceful manner, or to be readily enlarged. That means
the scalability, in general, is going to be a more and more important issue. At
the same time, the necessity of search processes being determined by an unbroken

3 http://www.nmis.isti.cnr.it/amato/similarity-search-book/

http://www.nmis.isti.cnr.it/amato/similarity-search-book/
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chain of pre-defined steps – that is the determinism – is going to be less and less
important in information seeking, sometimes even counterproductive. The effects
of divergence of scale and determinism on the background of search structures
development are illustrated in Fig. 1. The development starts with the well
established centralized and parallel organizations, continues through the cutting-
edge distributed and peer-to-peer approaches, and aims towards self-organizing
search architectures.
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Fig. 1. Development trends in search structures

For example, current trends in a growing range of scale dimensions can be
characterized by:

– exponential growth in data volume,
– number of users (queries) increasing fast,
– variety of data types, and emergence of various digital databases and li-

braries,
– multi-aspect (lingual, feature, modal) queries,

whereas the forms of softening effects of determinism can be exemplified by shifts
from:

– exact match to similarity reasoning,
– precise query evaluation to approximate evaluation,
– unvaried answer to satisfactory answer,
– fixed search to personalized, context aware, and affective-based search,
– dedicated hardware to dynamic hardware mapping.

4 Towards a Better Similarity Search Technology

4.1 Why So Few Applications

Though a lot of progress has been done, the fact still is that the only success-
ful application of similarity searching is the text similarity search through the



16 P. Zezula

vector-space model. Surprisingly, the attractive extensibility property – one sys-
tem used for many applications – of the metric space approach to similarity
searching, has not yet been fully exploited. There are examples of applications
in image search, audio (music) processing, and several others, but significance,
measured by commercial success, is marginal. Obviously, the technology is still
developing and no doubt, better theories, paradigms, and technological propos-
als will appear in future. But the speed of spreading the more general similarity
search technology by new applications – even with promising business models
– is slow. We believe that such situation is mainly due to the following three
reasons:

– Applications are implemented as complex software projects which is always
a costly process as it requires highly qualified specialists;

– Running an application and especially building supporting indices need mas-
sive infrastructure fitfully for extracting features and executing queries;

– applications are very complex, with the actual search being applied only as
an important supporting service.

In other words, we believe that the future is in complex applications, where the
elementary search becomes a part of much more complex mechanisms. It need
to be studied in its entirety, so we speak about search computing, rather that
only search. Search applications must also become much more easier to develop
and run. To this end, a new way of computing must be applied to searching, and
the project-like approach substituted by the cloud computing paradigm. In the
following, we elaborate more on these issues.

4.2 Search Computing

Searching is perhaps one of the oldest research topics of computer science. At
the same time, search for information is among the most important applications
of today’s computing systems – second probably only to e-mails. However, in
the future, searching will more and more frequently be integrated in complex
applications and will slowly be disappearing as a stand-alone application.

The recent and prestigious Search Computing4 project (SeCo) aims at build-
ing concepts, algorithms, tools, and technologies to support complexWeb queries.
It proposes a new paradigm for solving complex queries based on combining data
extractions from distinct sources and data integration by means of specialized
integration engines. Data extraction retrieves data from different sources, or-
dered based on local rankings, and data integration merges such inputs into
result combinations, with an associated global ranking, such that combinations
with the highest ranking are produced as fast as possible – a result combination
represents the solution of a complex search problem. Thus, the search computing
project has the ambitious goal of lowering the technological barrier required for
building complex search applications, thereby enabling the development of many
new applications which will cover relevant search needs.

4 http://www.search-computing.it/

http://www.search-computing.it/
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Business areas, research, and socio-economic challenges of search computing
are discussed in the EC Multimedia Search Cluster White Paper5. For efficient
and human-centric search, they suggest the following topics to be more closely
explored:

– Multi-modal search enabling queries and interaction independently of the
form in which the content is available;

– affective-based search taking into account both the users emotional state and
the sentiment contained in multimedia documents;

– event-based representation and analysis as an efficient and user-centric ap-
proach for the annotation and retrieval of content;

– user experience aspects, including new generations of search interfaces (e.g.,
visual search interfaces, augmented reality, 3D browsing in virtual places) to
enable novel forms of search input;

– content-aware network nodes extending search in the network with challenges
related to discovery in the network;

– real-time approaches and architectures enabling to push information to users
as fast as it is available, and at the same time maintaining the balance
between quality, authority, relevance and timeliness of the content;

– content diversity in knowledge, providing the ability to identify and exploit
the aspects that differentiate a piece of information from another;

– aggregation, mining, and data analysis enabling new forms of data process-
ing for social network resources through interlinking data chunks under the
Linked Open Data principles.

In addition to the research challenges, new business models are needed in appli-
cations where user-generated content plays an important role in order to allow
both commercial exploitation and protection of user rights. In the classical In-
tangible Benefits models, free services are provided to users in exchange for their
attention, loyalty, and information – then it is indirectly used in exchange for
money. Profit does not derive directly from the use of the searching functionality
but from attracting more customers to use a paid service that incorporates this
functionality as an additional feature. On the other hand the Monetary Benefits
model comes up in the majority of relationships where a transaction or a sub-
scription process takes place and customers are required to pay in exchange of
services or goods. This model is usually implemented through fixed transaction
fees, referral fees, etc. It is generally believed that these models are not sufficient
to cover all aspects of Search Computing and new ideas are expected to appear.

The future of similarity search is in applications, but at the same time, it is the
applications which shape the problem of similarity searching. Besides the tradi-
tional web search, the following three business areas are promising for searching:

Enterprise Search - given the diversity of repositories present in enterprises,
search engines became a unified method for accessing all corporate informa-
tion, irrespective of the original repository. Current evolution of search-based
applications recognizes the benefit of this approach and develops it further;

5 http://avmediasearch.eu/white_paper_Search_computing

http://avmediasearch.eu/white_paper_Search_computing
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Mobile Search - the primary objective of mobile search is to enable people find
either generic web or location-based information and services by entering a
word phrase, preferably by voice, or an image from their phone;

Social Search - on top of the massive digital outcome produced by social me-
dia like Flickr, Facebook, or YouTube, social search takes a radically new
shape. The traditional search areas are now extended by new modalities,
such as time-stamps and geo-locations, but even tag co-occurrence or friend-
ship links. The fact that users annotate and comment on the content in form
of tags, ratings, preferences, etc. on daily bases, gives this data source an ex-
tremely dynamic nature that reflects events and the evolution of community
focus.

4.3 Generic Model

Implementation of search applications is very sensitive to details and a weakness
of one aspect results in failure of the whole system. In short, the system must
not only be relevant, but mainly fast and simple to use. But these properties do
not came easy, and a holistic approach is needed – the whole is more than a sum
of its parts. To better understand the problem and the relationships between
individual components of similarity search computing, consider the scheme in
Fig. 2.

Application

findability Cloud
Services

Areas
web
enterprise

bil

stimuli

mobile
social

Similarity
Search

Computing
effectiveness efficiency

operators

retrieval

Fig. 2. Similarity search computing services
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In principle, there are two primary axes. The horizontal one represents the
conceptual view with effectiveness and efficiency properties on its extremes. The
vertical axis constitutes the implementation view with stimuli and operations as
extremes. In the following, we discuss these properties in more details.

Effectiveness represents abstract (possibly psychological) models of similarity;
it concerns methods, methodologies, and models of similarity perception as well
as techniques to assess their quality and user (application) satisfaction. On the
other hand, efficiency represents generic infrastructures for high-performance
similarity management. Specifically, it concerns architectures, models, comput-
ing infrastructures, and other software and hardware mechanisms able to sup-
port fast execution of computational intensive tasks. For example, efficiency
includes parallelism, scalable and distributed architectures, self-organizing prin-
ciples, fault tolerance, but also multi-processor systems, GPU’s, etc.

Stimuli are representations of raw digital data and retain specific content.
They are purpose-built representations of raw (complex digital) data objects
encapsulating specific knowledge about the content of these objects. The rep-
resentation of the knowledge should be maximally precise, but at the same
time economic in space for storage purposes. Operations represent basic simi-
larity search primitives, which typically come in several forms, such as the range
search, nearest neighbor search, reverse nearest neighbor search, similarity joins,
etc. But many other operations can be defined as well, for example a similarity
ranking, classification, or merging. The objective is to develop similarity algebra
of operations over digital data.

Developing a technology for similarity searching concerns generally four broad
areas of extraction, matching, evaluation, and execution. They are conveniently
located in Fig. 2 between extremes of the principle axes.

Extraction mainly concerns harvesting of stimuli, that is the computational
methods of stimuli extraction, respecting specific types of raw data and stim-
uli. Depending on the volume of data, such process can be enormously time-
consuming, therefore a special care must be taken from the efficiency point of
view. For example, provided a feature extraction from an image takes half a
second, it would take one year to finish this job for 60 million images – such
number of images (or even more) is uploaded on Facebook just in one day.

Matching is a semantic specification of similarity measures and their assess-
ment. It concerns the way how, given specific stimuli, required effectiveness is
quantified. Obviously, given specific sets of stimuli, there are several ways of
comparing them. For example, collections of numbers can be compared by the
Euclidean distance on numeric vectors, the edit distance can be applied on num-
bers forming strings, and the Jaccard’s Coefficient on sets.

Evaluation process aims at implementation of similarity models by means of
available operations. The problem starts from users, their needs, unique attitude
or context and requirements expressed through a specific model of similarity. It
concerns a requirement specification tool (a language) to express needs as well
as a communication environment, or interface, able to report results.
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Execution should guarantee a performance-oriented evaluation of similarity
operation transactions. It concerns a platform-dependent implementation tech-
niques to achieve required performance. Recent studies confirm that users more
and more emphasize the speed of search execution – recall falls dramatically as
the searched collection increases in size, but the speed is important.

Considering the lower part of Fig. 2 again – that is the effectiveness, evalua-
tion, operators, execution, and efficiency aspects – we have a search technology
for retrieval. If we consider the upper part of the figure – that is the effectiveness,
matching, stimuli, extraction, and efficiency – we have a technology which aims
at findability, that is the ease with which information contained in complex data
can be found.

In the past, most effort spent while building the similarity search technology
concentrated on retrieval and the problems of findability were rather neglected.
We consider this situation as one of the main reasons for the current similarity
search problems. For this reason, we especially concentrate in the next section
on the findability problems, that is the degree or quality to which a particular
object is easy to discover by searching. We discuss these problems in context of
cloud computing [15], which is a quite new communication paradigm especially
promising for similarity searching. But it is also posing new research challenges,
mainly for security of outsourced data in computer clouds.

5 Findability and Security in Similarity Cloud Services

A cloud is a platform or infrastructure that enables execution of code, services,
or applications in a managed and elastic fashion. Cloud systems are not to be
misunderstood as just another form of resource provisioning infrastructure. Mul-
tiple opportunities arise from principles of cloud infrastructures that will enable
further types of applications and reduce development and provisioning time of
different similarity search services. In general, cloud computing has particular
characteristics that distinguish it from classical resource and service enabling
environments, specifically:

Scalability - to support huge databases and very high request rates. Cloud
systems are designed to scale-out, so that large scale is achieved by using
large number of commodity servers, running in parallel. An effective scale-
out system must balance load across servers and avoid bottlenecks;

Elasticity - to allow adding more capacity to a running system by deploying
additional instances of each component, and shifting load to them. The ca-
pacity can also be reduced by analogy;

Availability - to provide high levels of useability and fault tolerance. In par-
ticular, cloud systems are often multi-tenant systems, which mean that a
possible outage may affect many different applications, so the system must
be very robust;

Privacy - outsourcing based on cloud computing is attractive as it offers pay-as-
you-go low storage and processing costs as well as easy data access. However,
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care needs to be taken to safeguard data that is valuable or sensitive against
unauthorized access.

Cloud computing poses a variety of challenges to conventional advanced simi-
larity search technology. It is mostly due to the fact of the unprecedented scale
and heterogeneity of forms of similarity and dramatically changing demands for
infrastructure. It is a well known fact that multimedia objects, even such basic
ones as images, can be accessible through many different content descriptors –
if no descriptors are available, the complex Binary Large Object (BLOB) with
no stimuli interpretations is not accessible (findable) and actually lost in the
database.

Besides possible text or key-word annotations, numerous global and local
descriptors can be extracted, creating a variety of domains for content-based
retrieval through similarity. However, the feature extraction process is time con-
suming and requires not-trivial computational resources. On the other hand, to
maximize the retrieval possibilities, to increase the object findability, many dif-
ferent descriptors should be extracted – the more descriptors extracted, the more
infrastructure you need. Obviously the problem is even more complex (more de-
manding) when streams of objects, for example a sequence of images (video),
are considered.

Cloud resources are potentially shared between multiple tenants. On the other
hand, data might be sensitive, for example medical data, and cloud providers as
well as users cannot always be trusted. Therefore, privacy and security becomes
an important matter of concern with data outsourcing. All these aspects ask for
rethinking of even current advanced search technology solutions.

In the following, we shortly discuss two selected problems associated with
developing similarity searching services for clouds. In particular, we concentrate
on execution platforms and architectures for multi-modal object findability and
security issues in similarity search outsourcing.

5.1 Execution Platforms and Architectures for Multi-modal Object
Findability

Findability of objects and the process of their retrieval are closely related. They
are both dependent on defined object representation features, which make them
distinct from and related to others according to a certain, possibly combined,
criteria. In a physical environment, it is the size, shape, color, and location
which set objects apart. In relational databases, we rely on attributes, while
words as labels, links, or simply keywords have dominated the web search of
text documents.

Findability is not a Search Engine Optimization (SEO) – SEO is only an as-
pect of findability and makes a BLOB findable for search engines, provided its
features are extracted. Multimedia content should take advantage of descriptive
meta-data, because it is the way objects can be found. Automated content tag-
ging, annotation, classification, or simply content extraction is a difficult and
time consuming process, because there are many (possibly complex) features,
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huge data repositories, and even continuous streams of data, that all require
online processing. In this respect, MapReduce [16] like approaches should be
considered and explored for possible application.

In general, such situation asks for new architectures of feature extraction for
searching, dynamically exploiting powerful computational cloud platforms to
support high availability of complex information needs over multimedia data.

5.2 Security Issues in Similarity Search Outsourcing

Strictly related to the issues of findability and elasticity is the concern of data
protection and other potential security leaks arising from the fact that the re-
sources are shared between multiple tenants and the location of the resources is
potentially unknown. In particular, sensitive data or protected applications are
critical for outsourcing approaches and need special treatment.

While essential security aspects are addressed by most existing multimedia
processing tools, additional issues arise due to the specifics of cloud systems.
They are in particular related to the complex management of the raw and ex-
tracted data, as well as the replication and distribution of the data in potentially
worldwide resource infrastructures. The data should be protected in a form that
addresses legislative issues with respect to data location, but at the same time,
it should still be manageable by the system with minimum data transfers, which
is very important for efficiency reasons.

In addition, the many usages of cloud systems and the variety of cloud types
imply different security models and requirements of the user. As such, classical
authentication models may be insufficient to distinguish between the aggrega-
tors/vendors and actual users. In similarity searching services, the data is to be
revealed only to trusted users – not even to the service providers. Outsourcing
should offer scalability and low initial investment for the data owner, while still
providing the essential service, that is fast retrieving most similar data objects
to a query reference.

In any case, the privacy of sensitive or otherwise confidential data must be
guaranteed. A possible solution might be to find transformations that would
change the data prior to submitting to a service provider. Search might then be
performed on the changed data, having actually a wrong or even no meaning
without knowing the (owner-defined) transformation key.

In summary, new security governance models and processes are required that
cater for specific issues of similarity computing arising from the cloud model. A
pioneering work in this direction is [17].

6 Conclusions

Similarity search in collections of complex objects has proved useful, but stays
prevalently on the level of the text search. Though several other applications
are also already operational [18] through projects like MUFIN [4], there are still
problems which prevent faster development.
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First, the similarity search is still expensive considering both the processing
time and the storage costs, thus better paradigms and techniques for feature ex-
traction and query execution, properly exploiting up-to-date computing infras-
tructures, are still needed. Second, existing software is typically not available
in a form of simple and ready-to-use packages and developing of applications
requires project-like approaches. These are costly, consuming extensive human
and infrastructure resources, which are scarce and not always available.

A promising alternative to be exploited in the future is to develop similarity
search services based on the cloud computing paradigm. The expected positive
properties can mainly be attributed to the specific characteristics of cloud com-
puting systems. In theory, these are practically infinitely scalable. They provide
infrastructures for platforms, a platform for applications, or directly applications
themselves as services. Clouds can be seen as a generalized platform of a fully
outsourced ICT service for an organization. Clouds also shift the costs for a
business and avoid costly asset acquisitions.

However, such approach poses new research challenges, some of which have
been outlined in this paper.
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Abstract. We present the Snake Table, an index structure designed for
supporting streams of k-NN searches within a content-based similarity
search framework. The index is created and updated in the online phase
while resolving the queries, thus it does not need a preprocessing step.
This index is intended to be used when the stream of query objects fits
a snake distribution, that is, when the distance between two consecutive
query objects is small. In particular, this kind of distribution is present in
content-based video retrieval systems, when the set of query objects are
consecutive frames from a query video. We show that the Snake Table
improves the efficiency of k-NN searches in these systems, avoiding the
building of a static index in the offline phase.

Keywords: Similarity Search, Metric Indexing, Multimedia Informa-
tion Retrieval, Content-Based Video Retrieval.

1 Introduction

In this paper we present the Snake Table, which is an indexing structure designed
for supporting streams of k-NN searches. The index is intended to be used when
the stream of query objects fits a “snake distribution”, which we define for-
mally in this work. This kind of distribution is usually present in content-based
video retrieval systems, when the set of query objects corresponds to consecu-
tive frames from a query video. In particular, we evaluate the Snake Table on
a Content-based Video Copy Detection (CBVCD) system where the query ob-
jects present a snake distribution. Unlike most of the index structures, the Snake
Table is a session-oriented and short-lived index.

An existing indexing structure with similar objectives and properties is called
the D-cache [9]. In this work, we show that the D-cache suffers from high internal
realtime complexity making it unviable to use in a CBVCD system or other
systems with computationally inexpensive (i.e., fast) distance functions (like
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Manhattan distance or Euclidean distance). Also, we compare the Snake Table
with D-cache and LAESA index, and we show that Snake Table achieves the
best performance.

The structure of the paper is as follows. Section 2 gives a background of metric
spaces and efficiency issues. Section 3 reviews the related work. Section 4 gives
the definition of the Snake Table and snake distribution. Section 5 presents the
experimental results. Finally, Section 6 concludes the paper and outlines some
future work.

2 Background

LetM = (D, d) be a metric space [11]. Given a collection R ⊆ D, and a query
object q ∈ D, a range search returns all the objects in R that are closer than a
distance threshold ε to q, and a nearest neighbor search (k-NN) returns the k
closest objects to q in R.

For improving efficiency in metric spaces, Metric Access Methods (MAMs) [3]
are index structures designed to efficiently perform similarity search queries.
MAMs avoid a linear scan over the whole database by using the metric properties
to save distance evaluations. Given the metric spaceM, the object-pivot distance
constraint [11] guarantees that:

∀a, b, p ∈ D, |d(a, p)− d(p, b)| ≤ d(a, b) ≤ d(a, p) + d(p, b) (1)

One index structure that uses pivots for indexing is the Approximating and Elim-
inating Search Algorithm (AESA) [10]. It first computes a matrix of distances
between every pair of objects x, y ∈ R. The structure is simply an |R|×|R| ma-
trix holding the distances between every pair (due to the symmetry property of
d only a half of the matrix needs to be stored). The main drawback of the AESA
approach is the quadratic space of the matrix. Linear AESA (LAESA) [8] gets
around this problem by selecting a set of pivots P ⊆ R. The distance between
each pivot to every object is calculated and stored in a |R|×|P| distance matrix,
also known as the pivot table. LAESA reduces the required space compared to
AESA, however an algorithm for selecting a good set of pivots is required [2].

Given a query object q (not necessarily in R), the similarity search algorithm
first evaluates the distance d(q, p) for each pivot p ∈ P , then scans R and for
each r ∈ R it evaluates the lower bound function LBP :

LBP(q, r) = max
p∈P
{|d(q, p)− d(r, p)|} (2)

Note that LBP can be evaluated efficiently because d(q, p) is already calculated
and d(r, p) resides in the pivot table. In the case of range searches, if LBP(q, r) >
ε then r can be safely discarded because r cannot be part of the search result. In
the case of k-NN searches, if LBP(q, r) ≥ d(q, ok) then r can be safely discarded,
where ok is the current kth nearest neighbor candidate to q. If r could not be
discarded, then the actual distance d(q, r) must be evaluated to decide whether
or not r is part of the search result.
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The efficiency of some MAM in M is related to: 1) the number of distance
evaluations that are discarded when it performs a similarity search; and 2) the
internal cost for deciding whether some distance can be discarded or not. A
similarity search using any MAM will be faster than a linear scan when the
time saved due to the discarded distances is greater than the time spent due
to the internal cost. For example, in the case of LAESA, the internal cost for a
similarity search comprises the evaluation of d(q, p) for each pivot p in P , and the
evaluation of LBP(q, r) for each object r in R, thus it increases linearly with |P|.
The amount of distances discarded by LAESA depends on the size and quality
of P and on the metric space itself.

In order to analyze the efficiency that any MAM can achieve in a collection
R ⊆ D for some metric spaceM = (R, d), Chávez et al. [3] propose to analyze
the histogram of distances of d. A histogram of distances is constructed by
evaluating d(a, b) for a random sample of objects a, b ∈ R. The histogram of
distances reveals information about the distribution of objects in M. Given a
histogram of distances forM, the intrinsic dimensionality ρ is defined as ρ(M) =
μ2

2σ2 , where μ and σ2 are the mean and the variance of histogram of distances
forM. The intrinsic dimensionality estimates the efficiency that any MAM can
achieve in M, therefore it tries to quantify the difficulty in indexing a metric
space. A histogram of distances with small variance (i.e., a high value of ρ) means
that the distance between any two objects d(a, b) with high probability will be
near μ, thus the difference between any two distances with high probability will
be a small value. In that case, for most of the pivots the lower bound from Eq. 1
will probably become useless at discarding objects. Increasing the number of
pivots will improve the value of the lower bounds, however the internal cost of
the MAM will also increase.

3 Streams of k-NN Searches

MAMs can be classified as static or dynamic depending on how they manage the
insertion or deletion of objects in R during the online phase. A dynamic MAM
can update its structures to add or remove any object, hence it can remain online
even for growing collections. Usually, the tree-based MAMs, like the M-Tree, are
dynamic. A static MAM cannot manage large updates in its structures, thus
after many modifications of R the whole indexing structure must be rebuilt.
LAESA can manage the insertion or deletion of objects and pivots [7] by adding
or removing rows or columns from the pivot table. However, depending on its
actual implementation, LAESA is usually a static index, mainly because the
pivot table might not support to dynamically modify its structure. In that case, a
new table is required, copying values from the old table to the new one, evaluating
the distances for new objects or pivots, and discarding the old table. Also, after
many modifications in R the set of pivots can begin to perform poorly and a
new set of pivots should be selected.

Most of the MAMs are designed to be created during the offline phase, that is,
a time-expensive process creates the index structure prior to resolve any search.
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It is expected that the MAM will resolve many similarity searches, amortizing its
creation time, but no information is a priori known about the query objects that
will be resolved afterwards. In the online phase, the MAM efficiently receives
and resolves any similarity search that may proceed from different sources and
users. All the searches share the same MAM, and the MAM should achieve good
performance for any search.

However, depending on the domain, the query objects may have some special
properties that can be exploited to improve the performance of the MAM. In
particular, frame-based CBVCD systems usually divide a query video into shots
and many keyframes are extracted. A similarity search is then performed for
consecutive keyframes, thus it can be expected that two consecutive keyframes
will frequently be similar. In the case of interactive Content-based Multimedia
Information Retrieval (CBMIR) systems, a user starts a search with some exam-
ple or some tags, a k-NN search is performed and the answers are shown, then
iteratively the user selects a new query object among those shown, and a new
search is performed refining the results. Because the new queries are selected
from the answers of a previous search, it can be expected that two consecutive
query objects will be similar.

3.1 Related Work – D-Cache and D-File

To take advantage of the online indexing process and a stream of correlated
queries, there is a recently proposed structure called D-file [9]. The D-file is
the database file itself accompanied by a main-memory structure, called the
D-cache. The D-cache stores the evaluated distances d(qi, oj) while processing
queries in the stream. When the nth query in the stream is processed, the D-
cache calculates a lower-bound distance for d(qn, oj) evaluating the distance
from qn to previous qi and treating the previous queries as pivots. Hence, if the
calculated lower bound is large enough, oj can be discarded without evaluating
the actual distance to qn. D-cache content is modeled as a sparse dynamic pivot
table, where each table row is constructed with the stored distances. If there are
not enough distances stored in the D-cache, some rows are incomplete, resulting
in zeros on some cells. Using the reconstructed rows, the D-cache tries to filter
out each database object using the same approach as a regular pivot table.
The D-file does not need an offline indexing step, as the D-cache is being built
during query processing. As the D-cache uses the previously processed queries
as dynamic pivots, the authors recommend that previous queries should be as
close to the current query as possible.

The D-cache is implemented with: 1) a fixed-size hash table that stores triplets
(qi, oj , d(qi, oj)); 2) a hash function h(qi, oj) for accessing the bucket where a
triplet is stored; 3) a collision interval, for searching a near available bucket
when some triplet is mapped into an already used bucket; and 4) a replacement
policy, that decides whether or not a new triplet should replace an old triplet
when a collision occurs and there is not an available bucket in the collision
interval.
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In CBVCD systems, a similarity search is performed for consecutive keyframes,
thus it can be expected that the D-cache will achieve high performance. However,
as we show in the experimental section, the D-cache suffers from high internal
realtime complexity rendering it unviable to use in a CBVCD system. The main
problem arises when the distance function is not time-expensive. In that case,
the internal complexity associated with the hash function and collision resolu-
tion dominates the search times. In order to solve this problem, we introduce
the Snake Table that preserves the idea and advantages of D-file and D-cache,
but exhibits lower internal complexity.

4 Snake Table

In this work we propose a new dynamic indexing structure, called a Snake Table,
which is designed to: 1) improve the search time for streams of queries where
consecutive query objects are similar; and 2) keep its internal complexity low to
be applied in systems that use fast distance functions, like CBVCD systems and
interactive CBMIR that use global descriptors and Minkowski distances.

The life cycle of the Snake Table is as follows: First, when a new session is
created, an empty Snake Table is created and associated with it. When a query
object q1 is received, a k-NN search is performed. The distances between q1 and
the objects in the collection are added to the Snake Table, and the result is
returned. Then, when a new query object qi is received, a k-NN is performed
using the previous query objects q1, ..., qi−1 as pivots to accelerate the search.
Finally, when the session ends, the Snake Table is discarded. Therefore, like
D-cache and unlike most of MAMs, the Snake Table is a session-oriented and
short-lived MAM.

The Snake Table is implemented with a fixed-size |R|×p matrix used as a
dynamic pivot table. As in LAESA, the jth row in the dynamic pivot table
represents the object oj in R and contains the distances between oj and up to p
previously processed query objects. However, each cell in the jth row of the table
contains a pair (q, d(q, oj)) for some query object q (not necessarily in order).
When processing a new query object qi, the lower bound LBP(qi, oj) for the
distance d(qi, oj) is calculated (see Eq. 2), with P dynamically determined by
the query objects and distances in the jth row. The object oj is discarded when
LBP(qi, oj) is greater than the distance between qi and its current kth nearest
neighbor candidate (obtained between o1 and oj−1). If oj is not discarded, the
actual distance d(qi, oj) is evaluated, added to some cell in the jth row, and the
NN candidates are updated when oj is closer than the current kth NN to qi.

We present three different replacement strategies to assign a distance d(qi, oj)
to one of the p cells in the jth row:

1. Each query qi picks a column in round-robin mode, i.e., the distance d(qi, oj)
is stored in the (i mod p) column of jth row, eventually replacing the stored
distance d(qi−p, oj). If the distance was not evaluated because it was dis-
carded by LBP(qi, oj) there are two options: 1) its corresponding cell is
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either updated with an ∞ distance; 2) the cell is left unmodified but before
any read the query stored in the cell is matched with the last query for
that column (the experimental section uses the latter). With this strategy,
each row is sparse, containing at most p distances between d(qi−p, oj) and
d(qi, oj).

2. The distance d(qi, oj) is compared to every distance in jth row and the
highest distance in the row is replaced. With this strategy, each row stores
p unsorted distances between d(q1, oj) and d(qi, oj).

3. Each distance d(qi, oj) is stored in a cell chosen in an independent round-
robin for every row. With this strategy, every row compactly stores the last
p evaluated distances for oj replacing the old ones. LBP starts its evaluation
from the last stored distance and goes backwards, therefore favoring the
most recent stored distances.

D-cache uses a combination of strategies 1 and 2. It always replaces an old
distance (older than qi−p), but if there is not an old distance in the collision
interval, then it replaces the worst distance, defined as the distance closer to the
median (or to some predefined percentile of distances). Note that a very high
distance can achieve better discarding performance than a medium distance
(as used in D-cache strategy), however they are unlikely to appear in a snake
distribution. In order to reduce the internal complexity of strategy 2 this case is
not considered.

For strategy 1, distances d(qi, qj) with j ∈ {i − p, ..., i − 1} are calculated
and stored in memory at the beginning of every search. For strategies 2 and
3, distances d(qi, qj) with j ∈ {1, ..., i − 1} are calculated on-demand by LBP .
Note that the internal complexity of strategy 3 is slightly higher than strategy
1, because it needs to manage an independent index for each row to mark the
position of the last stored distance.

The performance achieved by these three replacement strategies are compared
in the experimental section. However, despite the replacement strategy used by
the Snake Table, the overall performance of the Snake Table mainly depends on
the distribution of the query objects.

4.1 Snake Distribution

The Snake Table is intended to be used when the query objects in a stream fit
a “snake distribution”. Intuitively, we define that a set of objects fits a snake
distribution when the distance between two consecutive objects in the stream is
small compared to the average distance between any two objects (see Fig. 1).
To measure and compare this fit, we define an indicator using the histogram of
distances of d for Q and R.

Because the area of the histogram of distances is normalized to 1, the his-
togram can be seen as a probability distribution of the distances calculated by
d. Then, we define the cumulative distribution in a similar way as in probabilities:
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Fig. 1. Stream of queries Q={q1, ..., q12} with a snake distribution: most of distances
d(qi, qi+1) are smaller than d(x, y) for randomly selected pairs x,y in R

Definition 1. (Cumulative Distribution) Let H be a normalized histogram of
distances, the Cumulative Distribution of Distances F : R+ → [0, 1] is defined
as:

F (x) =

∫ x

0

H(t) dt

For comparing the distribution of distances of two sets of objects, we compare
their cumulative distributions:

Definition 2. (Difference Δ) Let F1 and F2 be two cumulative distributions,
the difference Δ between F1 and F2 is defined as:

Δ(F1, F2) =

∫ ∞

0

F1(t)− F2(t) dt

The Difference Δ is meaningful only when both F1 and F2 originate from the
same metric space. Δ(F1, F2) is greater than zero when the distances in F1 are
smaller than the distances in F2.

Definition 3. (Snake Distribution) LetM = (D, d) be a metric space, let R ⊂
D be the collection of objects, and let Q ⊂ D be a set of m query objects Q =
{q1, ..., qm}. Let F be the cumulative distribution of d(x, y) with random pairs
x, y ∈ Q ∪ R, p be a number between 1 and m-1, and F p

Q be the cumulative
distribution of d(qi, qi−p) ∀ i ∈ {p+1, ...,m}. Q fits a snake distribution of order
p if Δ(F p

Q, F ) > s, for some threshold value s ∈ R+.

Note that when both Q and R are random samples of D without any spe-
cial ordering (i.e., the ith sample does not depend on previous samples), then
Δ(F p

Q, F ) ≈ 0. When a distribution fits a Snake Distribution of order 1 to p then
a Snake Table can be created with a sliding window containing up to p query
objects.

5 Experimental Evaluation

In this section we evaluate the performance of the Snake Table with the three
presented strategies, and we compare them with the performance achieved by
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D-cache and LAESA. The comparison is performed under six different metric
spaces, with a stream of queries with a snake distribution.

5.1 Preliminaries

Dataset. We tested the Snake Table on our frame-based CBVCD system [1] us-
ing different configurations over the MUSCLE-VCD-2007 dataset [5]. MUSCLE-
VCD-2007 is a publicly available and widely-used video copy database, and it
was the corpus used at the CIVR 2007 video copy detection evaluation. The ref-
erence collection is composed of 101 videos, 59 hours total length, and the query
videos are divided into collections called ST1 and ST2. ST2 has three videos
with a total length of 45 minutes. The ST2 collection contains 21 video excerpts
copied from a video in the reference collection. Each copied excerpt may have
some transformations like blur, flip, subtitles, zoom, insertion of logo, noise, etc.
Every video in the dataset has 25 fps.

For the present evaluation, each reference video and each video in ST2 is
partitioned into short fixed-length segments of 1 second. For each segment, four
global descriptors are calculated: the Edge Histogram (EH), captures the spatial
distribution of edges in a frame [6]. We used 10 orientations and 8-bits linear
quantization, producing a vector of 160 bytes. The Ordinal Measurement (OM),
captures the spatial distribution of intensities in a frame [4]. We used 9 × 9
blocks, producing a vector of 81 bytes. The Color Histogram (CH), divides a
frame into 4 horizontal slices. Each slice calculates a histogram of 16 bins for
R, G, and B channels, and each bin with 8-bits linear quantization, producing a
vector of 192 bytes. The Keyframe (KF), reduces the frame to 11×9 pixels and
uses the value for each pixel, producing a vector of 99 bytes. These descriptors
are calculated for all the frames in a segment and then averaged.
R is the set of reference segments (|R|=211,479 segments), and Q is the set of

query segments (|Q|=2,692 segments). The correct answer for a segment q ∈ Q
is the reference segment rq ∈ R for which q is a copy. Because we stated that
there is only one correct answer, the mean average precision (MAP) corresponds
to the average of the inverse of the ranks of rq, for all copied segment in Q.

Configurations. We test six configurations, each one defining a distance func-
tion d(r, s) between the video segments r and s. The distances are based on
linear combinations of L1 (Manhattan) distance between descriptors, where
L1(x,y) =

∑n
i=1 |xi − yi| for n-dimensional vectors x and y:

1. OM: compares OM descriptors d(r, s)=L1(OM(r),OM(s)).
2. KF: compares KF descriptors d(r, s)=L1(KF(r),KF(s)).
3. EH: compares EH descriptors d(r, s)=L1(EH(r),EH(s)).
4. CH: compares CH descriptors d(r, s)=L1(CH(r),CH(s)).
5. ECK: weighted combination of EH, CH, and KF descriptors:
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d(r, s) = 0.6× L1(EH(r),EH(s))× 1

7996

+ 0.2× L1(CH(r),CH(s))× 1

6219

+ 0.2× L1(KF(r),KF(s))× 1

24721

Each left factor (0.6, 0.2, 0.2) is the weight in the combination, and each
normalization factor (7996, 6219, 24721) is the maximum distance value for
the respective distance.

6. EK3: temporal combination of EH and KF descriptors:

g(r, s) = 0.5× L1(EH(r),EH(s))× 1

7996

+ 0.5× L1(KF(r),KF(s))× 1

24721

d(ri, sj) =
1

3
[g(ri−1, sj−1) + g(ri, sj) + g(ri+1, sj+1)]

Where ri−1 and ri+1 are the previous and the next segments of ri in a video.

Indexes. We compare the efficiency of six indexes with p pivots (either static
pivots for LAESA or dynamic pivots for D-cache and the Snake Table), where p
varies between 1 and 20:

1. D-cache: It uses a hash table with fixed size |R|∗p, the collision interval
to the minimum (1), and the hash function is h(qi, oj)=(rndi ∗ rndj) mod
(|R|∗p), where rndi and rndj are unique random IDs assigned to each object.
We checked that the hash function generates a uniform distribution through
the whole table, producing almost no collisions.

2. LAESA: Following its definition, LAESA does not require any information
of the query objects, but for a fair comparison, we allow LAESA to use Q in
the selection process. LaesaR chooses p static pivots from R, and LaesaQ
chooses p static pivots from Q. Both selections are performed using the SSS
algorithm [2]. Four different sets are selected and the average value of LBP is
calculated for each one by sampling pairs from Q×R. The set of pivots with
higher average LBP is finally selected while the other sets are discarded.

3. Snake Table: We test the three strategies depicted in Section 4. SnakeV1
uses a sparse row with the last p queries, SnakeV2 uses an unsorted row
discarding the highest distance, and SnakeV3 uses a compact row with the
last p evaluated distances.

5.2 Experiments

Table 1 shows for the different configurations the total time spent by a linear scan
(in seconds), the achieved MAP, and some indicators for the metric space. The
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Table 1. Effectiveness and efficiency for the base configurations

Time MAP max μ σ ρ Hd

Group 1

OM 282 s. 0.125 3285 1489 416 6.4

KF 304 s. 0.509 24721 7264 2636 3.8

Group 2

EH 541 s. 0.639 7996 3198 751 9.1

CH 501 s. 0.482 6219 3661 970 7.1

Group 3

ECK 1258 s. 0.646 0.888 0.416 0.09 11.4

EK3 2214 s. 0.732 0.870 0.347 0.08 10.2
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Fig. 2. Snake distribution of order p ∈ {1, ..., 20} for the six configurations

histogram of distances was created by evaluating d(x, y) with pairs x, y sampled
from Q ∪R. The configurations are split into three groups. Group 1 (OM and
KF) contains the configurations where the linear scan takes less amount of
time. Group 2 (EH and CH) contains the configurations where linear scan
takes about twice as much time as Group 1. Group 3 (ECK and EK3) contains
the configurations in which the linear scan is slower by one order of magnitude.
In the following experiments, the performance of each index is presented as a
ratio with the performance of the linear scan for that configuration. The MAP
achieved by each configuration is also shown in the table. The configuration
with best detection effectiveness is EK3 followed by ECK. Also, KF shows a
promising tradeoff between effectiveness and efficiency.
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Fig. 3. Search time and distance evaluations for OM and KF (Group 1)

Snake Distribution. Figure 2 depicts the snake distribution of order p for the
six configurations. The value of difference Δ(F p

Q, F ) for p ∈ {1, ..., 20} is shown.
The six configurations present a difference Δ higher than zero, hence the streams
of queries have a snake distribution (distances between qi and qi−p are smaller
than distances between random sampled pairs). The first orders show good a
fit for the six configurations, but as p increases, the snake distributions tend to
disappear. As shown in the following experiments, the different configurations
present satisfactory results for roughly between 1 and 5 pivots.

Group 1. Figure 3 shows the efficiency achieved by the six indexes for the OM
and KF configurations varying the number of pivots from 1 to 20. It shows the
amount of distances evaluations as a proportion of the evaluations required by
the linear scan (i.e., a fraction of |Q|∗|R|). This value includes the distances
between query and pivots but does not include the distance required for pivot
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Fig. 4. Search time and distance evaluations for EH and CH (Group 2)

selection in LAESA. It also shows the search time as a proportion of the time
spent by a linear scan. The instability in LAESA indexes for consecutive p is
due to the random-base pivot selection. To reduce this issue we calculate three
different sets of pivots with SSS and the average value for evaluated distances
and search time is presented.

The disparity between saved distances and saved time reveals that D-cache
suffers from high internal complexity at these two configurations: while most of
the distance computations are discarded, the search time increases even beyond
the time required by a linear scan inOM. Both LaesaR and LaesaQ (i.e., static
pivots) perform better thanD-cache. On average,LaesaQ performs slightly bet-
ter than LaesaR in both experiments. The Snake Table achieves the best perfor-
mance by its combination of good pivot selection (due to the snake distribution)
and its low internal complexity. Between the different strategies, the SnakeV2
(i.e., replacement of the highest distance) achieves the best performance.
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Fig. 5. Search time and distance evaluations for ECK and EK3 (Group 3)

Group 2. Figure 4 shows the efficiency achieved by the six indexes for the EH
and CH configuration varying the number of pivots. D-cache again suffers from
high internal complexity, reducing the linear scan time by 10% for 20 pivots atEH,
even though it can save more than 50% of distance evaluations. Both LaesaR and
LaesaQ starts slightly better than linear scan, but then their internal complex-
ity dominates the search-time. This behavior might be due to the high intrinsic
dimensionality that EH presents implying that any static selection of pivots will
achieve bad performance.However, becauseEH fits a snake distribution, with just
a few dynamic pivotsD-cache and the Snake Table can discard more than 50% of
distance evaluations. For a few pivots, SnakeV3 achieves the best performance,
however as the number pivots increases, the SnakeV1 improves, mainly due to
its lower internal complexity. As a summary for this experiment, the Snake Table
achieves the best performance, enabling the indexing of metric spaces with high
intrinsic dimensionality if they present a snake distribution.
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Group 3. Figure 5 shows the efficiency achieved by the six indexes for the
ECK and EK3 configurations varying the number of pivots. In these configu-
rations, D-cache starts to show better results, outperforming LAESA, because
the saved distance computations pay for the internal complexity. However, with
more than 10 pivots, D-cache begins to increase its search times. In this case,
the exploitation of snake distribution becomes a remarkable approach for im-
proving efficiency. While LaesaQ and LaesaR can discard 20% distances, the
Snake Table can discard more than 50% of distances. In particular, SnakeV3
(i.e., to store the last p pivots by object) shows the fastest search times.

6 Conclusions and Future Work

In this work we presented the Snake Table, which achieves high performance
for processing streams of queries with snake distribution. This satisfactory per-
formance is due to its properties of dynamic selection of good pivots and low
internal complexity. The Snake Table is able to reduce the search time for both
fast and time-expensive distances, even in spaces with high intrinsic dimension-
ality. In particular, the Snake Table is a better alternative than D-cache in the
tested scenarios.

The Snake Table presents an approach to index spaces when consecutive
queries are similar among them. This behavior usually appears in content-based
video retrieval (when the queries are consecutive keyframes), and it also may
appears in interactive multimedia retrieval systems (when the user selects a new
query object from the answers of a previous query). In a more general domain,
given an unsorted set of queries, the test of snake distribution presented in
this work may be useful to determine an optimal ordering of queries which will
achieve a high performance in the Snake Table.

One usage of the Snake Table is to create an index for each stream of queries.
When a user connects to the database, an empty Snake Table may be associated
with the session. As the user performs queries with snake distribution, the Snake
Table improves its performance because it will contain pivots close to the next
queries. However, the Snake table is not memory efficient, because it requires
space proportional to the size of the dataset and to the number of sessions
connected. This approach is more suitable for medium-sized databases with long
k-NN streams. Moreover, because it does not need to use a central shared index
structure, it is also suitable for highly dynamic datasets.

On the one hand, pivots in a sliding window with snake distribution satisfy
one desirable property: they should be close to either the query or the collection
objects. On the other hand, those pivots do not satisfy other desirable property:
they should be far away from each other. Hence, using a Snake Table with many
pivots will only increase the internal complexity without increasing the efficiency
because pivots will be mostly redundant. One approach to overcome this issue
is to combine dynamic pivots with static pivots while resolving the stream. As
it is shown in the experimental section, static pivots in the queries (LaesaQ)
perform almost identically (sometimes even better) that static pivots in the
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reference objects (LaesaR). An improvement may be a combination between
the SSS algorithm and the Snake Table. The Snake Table may chose to fix one
of the dynamic pivots (i.e., to not remove it from the table) when it is far away
from all the previous pivots, thus when the sliding window moves away, the
fixed pivots will start to behave as static pivots complementary to the dynamic
ones. Finally, LAESA can benefit of multi-core architectures by sharing the pivot
table and resolving each query in different threads. However, it is not evident
how to efficiently resolve parallel queries in the Snake Table due to the dynamic
nature of its structure. Every thread should lock the pivot table to add the new
distances, but this will interfere with other threads reading the table. A possible
solution for this issue is to partition the queries into independent subsets, and
each subset is resolved in an independent thread using its own Snake Table. We
plan to address these issues in the future.
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Abstract. Similarity search is becoming popular in even more disci-
plines, such as multimedia databases, bioinformatics, social networks, to
name a few. The existing indexing techniques often assume the metric
space model that could be too restrictive from the domain point of view.
Hence, many modern applications that involve complex similarities do
not use any indexing and use just sequential search, so they are applicable
only to small databases. In this paper we revisit the assumptions which
persist in the mainstream research of content-based retrieval. Leaving
the traditional indexing paradigms such as the metric space model, our
goal is to propose alternative methods for indexing that shall lead to
high-performance similarity search. We introduce the design of the al-
gorithmic framework SIMDEX for exploration of analytical properties
(axioms) useful for indexing that hold in a given complex similarity space
but were not discovered so far. Consequently, the known axioms will be
localized as a subset within the universe of all axioms suitable for index-
ing. Speaking in a hyperbole, for database research the discovery of new
axioms valid in some similarity space might have an impact comparable
to the discovery of new laws of physics holding in parallel universes.

1 Introduction

For a long time, the database-oriented research of similarity search employed
the definition of similarity restricted to the metric space model. Due to the fixed
properties of identity, positivity, symmetry, and especially triangle inequality,
metric distances enable to index a database for efficient querying using metric in-
dexes [4,19,15], preventing thus from searching the whole database sequentially.
Together with the increasing complexity of data types across various domains,
recently there also appeared many nonmetric similarity functions [17].

Nowadays, we identify two types of research groups concerned with different
aspects of similarity search – database experts and domain experts. The database
experts deal with performance issues of similarity search and (mostly) do not
care of particular domain applications. They just assume a similarity model
that is constrained by some properties useful for database indexing, such as the
metric space axioms. On the other hand, the domain experts (e.g., computational
biologists) model similarities for specific practically oriented applications, while
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(a) Image similarity (b) Protein similarity

Fig. 1. Sample similarity models

they do not (like to) care of any database-specific requirements, as this is outside
their job area. As the result, only the simplest similarity models comply with
the objectives of both groups. For example, various histogram representations of
image features are largely measured using the Euclidean distance (or generally
metric Minkowski Lp distances, p ≥ 1).

Besides simple models, domain experts often develop similarity models in-
volving more sophisticated features or complex similarity functions. Such models
better reflect the desired concept of similarities and lead to more effective/precise
retrieval (see Fig. 1a for a sketch of robust matching using local image features).
Naturally, the more complex similarity function the domain experts come with,
the lower the likelihood is that it will be a metric distance. The problem of
”nonmetricity” is not limited just to complex algorithms because even a slight
change of a well-known metric distance could lead to a nonmetric, e.g., Lp dis-
tances (0 < p < 1) that are used for robust matching of histograms [9]. More
complex nonmetric similarities include various alignment algorithms for measur-
ing functional similarity of protein sequences [18] or structures [6] (see Fig. 1b).

In summary, because of the not really integrated research efforts, both groups
(database experts and domain experts) head into trouble in the near future.

� Database research – Current efficient solutions for constrained similarity
models (e.g., based on the metric space model) might not be applicable to
the future state-of-the-art similarity search problems. Simply, the database
technology might provide only solutions for trivial or obsolete models.

� Research in various domains – assumes the sequential search as sufficient.
As the models become so complex and/or the databases become so large-
scale, an efficient database solution would become a critical requirement.

Based on this negative perspective, the major challenge and the main goal of our
research is to find a complex solution that provides the various domain experts
with database techniques that speedup similarity search yet that do not require
any database-specific intervention to the similarity models. Before we outline our
idea and the ground-breaking nature of the proposed algorithmic framework (see
Section 5), we shortly summarize the state of the art and the previous attempts
to unconstrained similarity search.
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2 State of the Art

Instead of expensively computing all distances δ(q, oi) to filter out database ob-
jects oi irrelevant to a given query q, the so-called metric indexes [4,19,15] use
cheap lowerbound distances LB(δ(q, oi)). These lowerbound distances are com-
puted using the triangle inequality and the precomputed distance to a reference
object (pivot) p as

LB�(δ(q, oi)) = |δ(q, p)− δ(p, oi)|. (1)

Naturally, having multiple pivots pj , the particular lowerbounds (Eq. 1) could
be combined in order to obtain tighter or better distance approximation. When
using the pivot table [12] as the metric index, the lowerbound inequalities can be
used directly, while other metric indexes require additional aggregation, metric
region construction, etc. In Fig. 2a we can see the lowerbound distance and an
object o outside the query ball being filtered out from search without actually
needing to compute δ(q, o).

As we mentioned earlier, there constantly appear nonmetric (unconstrained,
respectively) similarity models [17]. The trend towards nonmetric models is not
a marginal experience but rather a rule because effective applications usually re-
quire complex unconstrained similarity models. The response of the database re-
search to this trend is, however, inappropriate. Almost all of the general-purpose
database techniques that were designed to support nonmetric similarity models
map the problem to the metric one and use metric or spatial access methods. In
particular, the TriGen algorithm [16] applies a system of concave functions to
the nonmetric distance to obtain an approximately metric behavior.

Older approaches directly map the data into some Lp space while it suffers
from an unpleasant trade-off. If the mapping preserves the similarity orderings,
i.e., provides query results exactly the same as the nonmetric version, then it
usually suffers from high intrinsic dimensionality [4]. Or, the mapping is only ap-
proximate and the search is fast but simultaneously introducing a retrieval error.
In some cases, as in multimedia retrieval, the trade-off could provide satisfactory
results. In many other situations, however, any loss in retrieval precision is un-
acceptable. For example, in biological, medical, or biometric applications every
percent of precision counts heavily. For these critical applications the database
research has no general solution so far.

3 Research Motivation

The motivation for our framework comes from an alternative approach to sim-
ilarity indexing. Instead of ”forcing” the distance and/or data to comply with
the metric space model, for some data spaces it could be more advantageous to
employ completely different indexing model that provides cheap construction of
lowerbounds. The recently introduced ptolemaic indexing [7] could serve as an
example for this conceptual shift.
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(a) Triangle inequality and a single
pivot.

(b) Triangle/Ptolemy’s inequality
and two pivots

Fig. 2. Computing lowerbound distances using different approaches

3.1 Ptolemaic Indexing

In metric lowerbounding, the triangle inequality is used to construct lowerbounds
for the distance. Analogously, in Ptolemaic indexing [7,11], Ptolemy’s inequality
is used to construct such lowerbounds. A distance function is called a Ptolemaic
distance if it holds the properties of identity, positivity, symmetry, and satisfies
Ptolemy’s inequality. If a Ptolemaic distance also satisfies the triangle inequality,
it is a Ptolemaic metric.

Ptolemy’s inequality states that for any quadrilateral, the pairwise products
of opposing sides sum to more than the product of the diagonals. In other words,
for any four database objects x, y, u, v ∈ D, we have the following:

δ(x, v) · δ(y, u) ≤ δ(x, y) · δ(u, v) + δ(x, u) · δ(y, v) (2)

One of the ways the inequality can be used for indexing is in constructing the
pivot-based lower bound. For a query q, object o, and pivots p and s, we get the
candidate bound :

δC(q, o, p, s) =
|δ(q, p) · δ(o, s)− δ(q, s) · δ(o, p)|

δ(p, s)
(3)

For simplicity, we let δC(q, o, p, s) = 0 if δ(p, s) = 0. As for triangular lower-
bounding, one would normally have a set of pivots P, and the bound can then be
maximized over all (ordered) pairs of distinct pivots drawn from this set, giving
us the final Ptolemaic bound [7,11]:

δ(q, o) ≥ LBptol(δ(q, o)) = max
p,s∈ P

δC(q, o, p, s) (4)

As for the metric case, the Ptolemaic lowerbound could be used to filter objects
oi not contained in the query ball with radius r: LBptol(δ(q, oi)) > r.

In Fig. 2b we can see a real example (in two-dimensional Euclidean space)
which shows that ptolemaic lowerbounding could provide tighter distance esti-
mates than the metric one. Any of the lowerbounds constructed using the triangle
inequality and two pivots p, s would not filter the object o, as the value is lower
than a radius of the range query. On the other hand, the ptolemaic lowerbound
leads to a better distance approximation, and so the object o is filtered out.
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The ptolemaic indexing was successfully used with signature quadratic form
distance [11] that was proved to be ptolemaic metric which is suitable for effective
matching of image signatures [2]. In experiments the ptolemaic indexing applied
to pivot table outperformed the corresponding metric variant four times in real-
time cost.

3.2 Can We Automate the Axiom Exploration?

The idea of ptolemaic indexing shows that finding new axioms suitable for index-
ing could be a solution to speeding up (exact) similarity search in other way than
mapping the problem to the metric space model. On the other hand, doing so
manually would be even harder than forcing a domain expert to implant the met-
ric axioms into her/his nonmetric distance. Note that even proving the ”simple”
triangle inequality axiom in the ”simple” Euclidean distance is quite a compli-
cated task, let alone proving the complex Ptolemy’s inequality in a nonmetric
distance implemented by a complex heuristic algorithm. Hence, the challenging
question is whether we can automate the process of axiom exploration.

4 Framework Objectives and Main Goals

The main goal of our work is to develop an algorithmic framework for automatic
exploration of axiom spaces for efficient similarity search at large scale. This
framework, we call it SIMDEX, offers a complex solution that provides the
various domain experts with database techniques that speedup similarity search
yet do not require any database-specific intervention to the similarity models.

As the main input, we consider a particular similarity space described by (1)
a black-box distance function and (2) a database sample. The ”mining field” is a
set of distances (or the corresponding distance matrix) obtained by computing
the distances between pairs of objects in the database sample.

The basic idea of our framework is very straightforward – an iteratively con-
structed universe of expressions in their lowerbound forms is tested against the
distance matrix by multiple evaluations. If all interpretations pass the test, the
expression is declared as an axiom valid in the given similarity model.

Using this simple idea, we are able to algorithmically explore axiom spaces
specified in a syntactic way – that is, we are not using a single canonized form
and a tuning parameter (as the TriGen or other mapping approaches do). Con-
sequently, the lowerbounding forms of triangle inequality (Eq. 1) and Ptolemy’s
inequality (Eq. 3) could be rediscovered as two instances in the axiom universe.
Since the resulting set of analytical properties (axioms) will be obtained in the
form of lowerbounding filters, it can be immediately used for indexing in the
pivot table the same way as ptolemaic indexing was implemented [11].

Note that empirical testing of the expressions using multiple interpretations
of δ(x, y) on the distance matrix leads just to the empirical evidence that an
expression holds for the given model. However, this cannot be replaced by an
analytical resolution that absolutely confirms the evidence, although in our case,
a large number of positive tests could be treated as a sufficient confirmation.
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4.1 Breaking the Metric Paradigm

The idea of our framework is based on a ground-breaking fundamental research –
at least within the scope of data engineering and database systems. To the best
of our knowledge, there has never been proposed such a complex framework
for mining properties from similarity data as in this case. Although there have
been many proposals introducing alternative perspectives on data indexing and
mining, they were always based on a single mathematical model (such as the
metric space model, ptolemaic indexing, fuzzy logic, multidimensional scaling,
neural networks, etc.). In our framework, we do not a priori select a particular
mathematical foundation, as we analytically discover the foundation itself.

Hence, the impact of the proposed framework is two-fold. From the techni-
cal point of view, the discovery of new axioms will enable large-scale similarity
search in many applications where content-based retrieval is the essential compo-
nent, e.g., multimedia retrieval, time series databases, biometric databases, etc.
Since applications come from different domains outside the computer science,
the contribution of our outcomes is truly multi-disciplinary.

From the philosophical point of view, the newly discovered expressions (or
axioms) will contribute to the theoretic foundations of data engineering, data
mining and disciplines beyond, such as computational geometry, geometric topol-
ogy, and related disciplines. If a discovered axiom is general enough, it could open
new horizons or research interests in many disciplines related to data engineering,
similarity search, data mining, etc. and so the framework exhibits substantial
inter-disciplinary nature.

5 Framework Methodology

In this section we formalize and describe into more details the methodology of
the proposed algorithmic framework SIMDEX. We outline general requirements
together with specific options applicable to our prototyped implementation of
the framework. Note that we give the step-by-step tutorial of how to create and
use the framework in different environments as the methodology is generally
applicable regardless of the selected programming language or platform because
it forms the theoretical basis and foundation. Furthermore, the framework might
be modified, customized, or extended for specific purposes if necessary.

As we mentioned in the previous section, the input for the framework consists
of a database sample S ⊆ D, |S| = n, and a black-box distance function δ.
We want to obtain a set of expressions (axioms) EX that are valid in the given
model.

In order to proceed with methodology and the framework structure, we need
to properly define the commonly used terms expression and axiom. Other terms
and symbols that we use in the text are described in Table 1.

Definition 1. An expression Ei (or a candidate expression E∗
i ) is a boolean

expression that will be evaluated for any selection of k objects from a database
sample S:

Ei : S
k −→ {TRUE, FALSE} (5)
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Table 1. Basic notation

Symbol Description

D, S ⊆ D database D, a sample of database S

δ(x, y) distance between objects x and y (δ : D ×D → R)

Mδ,S
distance matrix for sample S and δ
Mij = δ(oi, oj) where oi, oj ∈ S

M the universe of distance matrices Mδ,S

Ei, E
∗
i , E expression Ei, candidate expression E∗

i , set of all expressions E
Ai, A axiom Ai, set of all axioms A valid for a given model

where Sk =

k︷ ︸︸ ︷
S × S × . . .× S stands for k-tuple of different objects from S and the

number k determines the cardinality of the expression Ei which depends on the
number of different variables used in the expression. The inequality always in-
cludes at least two objects from the sample database (query object q and database
object o), therefore k ≥ 2.

For clarity, we require a standardized lowerbound form of the expression Ei:

Ei ≡
[
δ(q, o) ≥ LB

]
(6)

where δ(q, o) is the real distance between the given query object q and a database
object o, and the right-hand side (LB) is a non-terminal which is additionally
expanded (see Section 5.2).

Definition 2. If an expression Ei with cardinality k is TRUE for any k-tuple
objects from the database sample S, we say that Ei is an axiom (Ai).

More precisely, Ai is an empirical axiom for the given model as it holds within
the database sample S only and probably in D. In order for Ai to become
a ”real” axiom, it must be theoretically proved which is out-of-scope for this
paper. Nevertheless, we will primarily focus on finding axioms.

Now and then, it might be useful to obtain expressions that are not always
true, but are valid for majority of k-tuples, to enable fast but approximate values.
For this purpose, we define the probability values Pi (for expressions Ei).

Definition 3. The probability value Pi for the given expression Ei (with cardi-
nality k) determines the ratio of positive occurrences of Ei to all results:

Pi = Prob
(
Ei(S

k) = TRUE
)
=

|Ei(S
k) returns TRUE|

|Ei(Sk) returns any value| (7)

The resulting value of Pi depends purely on the number of times the expression
Ei is evaluated with a k-tuple. For optimization purposes, we could skip some of
the nk tuples and get only the partial probability value P •

i (but evaluated fast).
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Definition 4. The general algorithmic framework (SIMDEX) is defined as a
tuple F(G,C, T ) where G is a grammar definition, C is a set of conditions
for generating expressions, and T is a threshold probability value. Then, for a
universe M of distance matrices Mδ,S, the framework acts as a function:

F(G,C, T ) : M −→ {(E ,R[0,1])} (8)

where E is a set of all expressions valid for a given model and R[0,1] covers real
numbers within the interval [0, 1]. The result is a set of pairs (Ei, Pi) where each
expression from the resulting set Ei ∈ EX is valid for the sample S with the
corresponding probability Pi (∀i : Pi ∈ [0, 1], Pi ≥ T ). The set of all resulting
expressions EX is a subset of E: EX = {Ei} ⊆ E.

If the threshold probability value T = 1, we can omit all probabilities Pi and
simplify the framework definition to

F(G,C) : M −→ {A} (9)

where A is a set of all axioms valid for the given model. Then, the result will be
a set of axioms EX = {Ai} ⊆ A.

5.1 SIMDEX Framework Overview

In order to turn the framework into a practical and applicable tool, we divide the
structure technically into several stages that need to be addressed as summarized
in the text below. The complete overview of stages is depicted in Fig. 3.

� (S1) Grammar Definition. We create a grammar definition G for gener-
ating expressions in the standardized form that meet specific requirements.

� (S2) Expression Generation. Because the grammar-based generation of
expressions leads to an infinite universe, the set of tested inequalities needs
to be optimized in order to discover the most promising expressions first.

� (S3) Expression Testing. Once a candidate expression is generated, it
must be tested against the given matrix of distances Mδ,S. Only such can-
didate expressions E∗

i pass, for which their probability value Pi in the given
model is higher than the required threshold probability value T .

� (S4*) Expression Reduction. As an optional step, we could investigate
and apply heuristic techniques of expression combination and pruning.

� (S5*) Indexing Structures. This step directly verifies the feasibility of the
obtained indexing model according to the result set of expressions/axioms
with an appropriate indexing structure (e.g., a pivot table).

� (S6) Parallelization. As the universe to explore is extensive, we demand
parallelization to get satisfactory results within reasonable time period.

In the following sections, we describe all stages into more details and we better
clarify and explain the framework definition. Also we outline the way of how we
applied the general methodology when we created our prototype that covered
stages S1–S3 and S6. The two remaining stages marked with an asterisk (S4*
and S5*) are planned to be included in our prototype in the near future.
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Fig. 3. SIMDEX Framework high-level schema

5.2 Grammar Definition (S1)

As the first step, we create or load a grammar definition G. We use the grammar
theory specifically modified for the purpose of expression generation. Here, we
need to define a grammar that will generate appropriate expressions Ei that will
become good candidates (E∗

i ). The language defined by the grammar contains:

1. a reasonable number of terminals, such as
(a) object descriptor variables (q, o, p1, p2 . . .) and constants (ci) where some

of them are fixed and act as global reference points (such as pivots pj);
while others could stand for any object

(b) functions fj modifying not only the particular distances (as the trian-
gle generating (TG) and triangle violating (TV ) modifiers in TriGen
algorithm [16]), but also whole expressions.

(c) standard arithmetic operators (+, ∗,−, /), numeric constants, etc.

2. a limited number of their combinations

Speaking in precise terms, we refer but do not limit to regular languages or
L3/Type-3 grammar in Chomsky hierarchy [13] which is sufficient for our pur-
poses. These languages are basically handled by a finite state automaton.

At the grammar level we need to guarantee that each generated expression Ei

is in the standardized form as outlined in Eq. 6 and would not be computationally
too expensive compared to the direct distance computation between two objects
δ(x, y). This means that the time complexity of computing a lowerbound value
OLB is more effective than the one of the whole distance Oδ: OLB � Oδ.

To mention other intuitive constraints, the expanded LB form cannot include
δ(q, o), while it should include combinations of δ(q, pj) and δ(pj , o), where pj
stands for a reference object for which the distances might be pre-computed.

5.3 Expression Generation (S2)

Even if the language and expansion recursion is limited, grammar-based gen-
eration is an exponential problem. Thus, the main objective is to guide the
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exploration to the most promising candidate expressions first, so that early ter-
mination of the exploration will end up with nonempty expression set. This
discards inappropriate expression classes at early stage and saves time.

To achieve this, we will use a finite set of conditions for generating expressions
C = {c1, c2, . . . , cm} where each ci stands for a specific condition (e.g., discarding
expressions x

x ). Another specific criterion is fingerprints which are signatures
of expressions that allow us to divide expressions into equivalent classes. For
example, expressions δ(p1, p2) and δ(p3, p4), where pi is a variable, are equivalent
for testing, so we test only one of them as the second one gives the same results.

To apply such conditions, we need a corresponding validating function that
for a given expression Ei returns TRUE to consider it further for testing or to
refine it later, and FALSE otherwise. More precisely:

validateC : EG −→ {TRUE, FALSE} (10)

where validateC is a validation function for the given set of conditions C and
EG is a set of expressions generated from the grammar G. The best situation is
if the validating function reduces the set EG to a large extent. At the same time,
we try to maximize EG∩A, so we find all appropriate axioms. We mark the set of
successfully validated expressions as E∗V = {Ei|Ei ∈ EG : validateC(Ei) = TRUE}
while E∗V = {E∗

j }j ⊆ E . We want to minimize the set difference between sets
(E∗V \ E) or ideally (E∗V \ A), so the number of candidates to be tested does not
exceed too much all the expressions/axioms valid in the given model.

5.4 Expression Testing (S3)

Each validated candidate expression E∗
i ∈ E∗V is tested against the input matrix

of distances Mδ,S. Suppose the cardinality of the candidate expression E∗
i is k

and |S| = n, we need to test the given expression for up to nk k-tuples. That is,
all different terms in the inequality are interpreted multiple times using different
sets of values from the matrix Mδ,S. Based on variable names, the selection of
distance values must be consistent (equally named variables get the same values).

Formally, we define the expression testing function E test as

E test : (E∗V ,M) −→ R[0,1]

where E∗V is a set of candidate expressions to be tested, M is the universe of input
distance matrices Mδ,S. The resulting real number determines the probability
value Pi with which the candidate expression holds in the specified model. If the
probability value Pi is greater than the threshold probability value T (Pi ≥ T ),
we mark the candidate expression E∗

i as valid and add it to the result set of
successfully tested expressions ET . If Pi = 1, then the candidate expression E∗

i

is an axiom Ai.
In stages Expression Generation (S2) and Expression Testing (S3), where the

hierarchy of expressions is generated and tested, we are utilizing combinatorial
grammar coverage [10] and modern techniques from the constraint logic program-
ming [1] that help with the reduction of the exponential size of the hierarchy
using the standard expansion, inference, and pruning.
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5.5 Expression Reduction (S4*)

To further condense the number of expressions we can refine the result by dis-
carding weaker expressions, so only the best expressions/axioms will remain. For
this, we define corresponding comparison criteria (such as applicability in the
indexing structure; see Section 5.6).

Optionally (in this step) we try to combine the expressions E∗
i ∈ ET into

a compound expression that would exhibit the tightest possible values for the
smallest cost (the smallest size of the compound expression, number of reference
objects used, etc.) We can obtain the compound expression E� as

E� ≡
[
δ(q, o) ≥ MaxLBEi∈ET (Ei)

]
where ET is a set of successfully tested expressions and the function MaxLB re-
turns the right hand side of an expression Ej which equals to expanded non-
terminal LB that gives the maximal numeric value of the lower bounds for all Ei.
Moreover, MaxLB function might select different Ej for different values of δ(q, o)
which improves its filtering power but at the same time increases the complexity.

5.6 Indexing Structures (S5*)

This step verifies the resulting set of expressions/axioms EX = ET ∪ {E�
k }k in

practice within sample indexing tasks and validates the filtering power of each
expression Ei ∈ EX . Some of the existing indexing structures such as the pivot
table [4,19] could be immediately used as an indexing structure for any kind
of lowerbound expression Ei that involves reference objects. As we require all
expressions/axioms to be in the standardized form, they could be immediately
included in the pivot table filtering options.

Nevertheless, it might happen that a particular expression/axiom enables the
design of an advanced indexing structure based on the hierarchical decomposition
of the database. Unlike pivot tables, such an index could also improve other costs
than distance computations, such as I/Os or space complexity. The main benefit
of direct applicability of obtained expressions within indexing structures is that
we can easily and instantly use it to solve real-world problems and situations.
This gives us even better feasibility study of the conducted research.

5.7 Parallelization (S6)

Despite the optimizations in stages S1–S4, we still have to assume the explored
universe will be huge. Therefore, a massive parallelization of the exploration
process must be taken into account from the very beginning. For this purpose,
we consider and propose three parallel architectures to implement. For the pre-
liminary experimentation we leverage (1) classic multi-core CPU systems with
multi-threading. For future evaluations, we consider (2) vector parallelism based
on multiple many-core GPU systems, (3) Map-Reduce technique [5] applied to
a powerful CPU farm (ideally with the peer-to-peer distributed architecture), or
to the supercomputer architecture with lots of cores.
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Algorithm 1. SIMDEX (G,C, T, S, δ)

Require: Grammar definition G, validation conditions C, threshold probability value
T , database sample S, distance function δ

1: Mδ,S ← new distance matrix (δ, S)
2: expressions ← ExpressionGeneration(G, C)
3: for all Ei in expressions do
4: if validateC(Ei) equals false then
5: expressions.Remove(Ei) {validity check fails}
6: continue {skip further testing of the expression Ei}
7: end if
8: if E test(Ei,Mδ,S) < T then
9: expressions.Remove(Ei) {probability test fails}
10: end if
11: end for
12: return expressions {remaining expressions compose the result set}

6 Experimental Evaluations

To validate the potential of the proposed theoretical algorithmic framework
SIMDEX, we developed a prototype that covers stages S1–S3 and S6. We
present an algorithm that gives an overview of the whole expression generat-
ing/validating/testing process (see Algorithm 1). All steps are straightforward
and correspond to stages S1 through S3 as we presented in previous sections.

6.1 Experiments

We took five different datasets, each comprised of a distance matrix computed for
20 random database objects. For the grammar G, we used standard arithmetic
operators +, ∗,−, / together with three pivots.

We tested 25,000 expressions and for each expression we evaluated all possible
variable assignments from the datasets‘ objects. During the tests, we looked for
lowerbound tightness – min/max/avg difference between the real distance value
compared to lowerbound value. The results are shown in Table 2 and for better
transparency, we omit the left-hand sides, δ(q, o), of the resulting expressions
and show only the expanded LB non-terminals. We evaluated these datasets:

� Corel Image Features [8]. We used non-metric Lp distance (p = 0.5).

� CoPhIR [3]. For simplicity, we also used Lp distance (p = 0.5).

� Movie ratings.1 We took movie ratings as sets and used Jaccard coefficients
to model similarities between them

� Listeria.2 For exploration, we applied Levenshtein (edit) distance.

� Spectrometry. In this case, we applied the parameterized Hausdorff dis-
tance to the corresponding dataset [14].

1 http://www.grouplens.org/node/73
2 SISAP Metric Library, www.sisap.org

http://www.grouplens.org/node/73
www.sisap.org
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Table 2. Expression Evaluation results

Dataset Expression
Success

MIN MAX AVG
Ratio

Corel

triangle inequality 99 % 0.0034 0.9983 0.3764
|δ(q, p) · δ(o, p) · (δ(o, p)− δ(q, p))| 100 % 0.1059 0.9991 0.5020

(δ(q, p)− δ(o, p))2 100 % 0.1352 0.9999 0.5054
|(δ(q, p1)− δ(o, p1))(δ(q, p1)− δ(o, p2))| 100 % 0.0420 0.9999 0.5161

CoPhIR
triangle inequality 97.5 % 0.0021 0.9736 0.2696
(δ(q, p)− δ(o, p))2 100 % 0.0718 0.9979 0.3808

|(δ(q, p1)− δ(o, p1))(δ(q, p2)− δ(o, p2))| 100 % 0.0845 0.9969 0.3935

Ratings
triangle inequality 100 % 0.6067 1.0 0.9037

1
2·δ(o,p) 100 % 0.0119 0.5 0.4254

(δ(q, p1) + δ(o, p1)) · δ(q,p1)
δ(p1,p2)

100 % 0.0103 0.5845 0.4254

Listeria

triangle inequality 99 % 0 0.9559 0.1388
δ(p1, p2) · 1

δ(p1,p2)+δ(o,p2)
100 % 0.0075 0.9994 0.2393

δ(q, p1)
2 · 1

δ(o,p2)·δ(q,p2) 100 % 0.0008 0.9985 0.2401

(δ(q, p1) + δ(o, p1))
δ(q,p1)
δ(p1,p2)

100 % 0.0032 0.9970 0.2555

Spectrometry
triangle inequality 100 % 0.1823 0.93 0.7329
δ(o, p)− δ(o, p)2 100 % 0.0009 0.8758 0.6638

|(δ(q, p1) · δ(o, p2))− δ(q, p2)
2| 100 % 0.0148 0.9399 0.7054

6.2 Summary

We explored several expressions for different datasets and found axioms that
might be directly used for indexing purposes. However, we still need to evaluate
the quality of the obtained expressions compared to existing models based on
triangle/ptolemaic inequalities. Then, we detect which axioms are applicable and
could become efficient variants for real-world situations. These steps remain as
our future work.

7 Conclusions

We proposed the algorithmic framework SIMDEX for indexing any similarity
model that leaves the restrictive paradigm of the metric space model and we
verified the feasibility of the framework through the implemented prototype. We
developed more generic approach to indexing by introducing this algorithmic
framework for exploration of axioms (analytical properties) that hold in a given
complex similarity space but were not discovered so far. Consequently, the pre-
viously known axioms will be localized as a subset within the universe of all
axioms suitable for indexing. The primary goal of SIMDEX framework is to
enable the complex similarity models to enter the competitive arena of industrial
practices in content-based retrieval that demand uncompromising performance.

In the future we plan to intensively elaborate and include all remaining stages
into our prototype while enhancing the existing ones. Our objective is to create
end-to-end framework implementation which will be suitable for any research
community and test it extensively for various different data models.
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dem Mass Spectra Including Posttranslational Modifications. Journal of Discrete
Algorithms 13 (2012)

15. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann Publishers Inc., San Francisco (2005)

16. Skopal, T.: Unified framework for fast exact and approximate search in dissimilarity
spaces. ACM Transactions on Database Systems 32(4), 1–46 (2007)

17. Skopal, T., Bustos, B.: On nonmetric similarity search problems in complex do-
mains. ACM Comput. Surv. 43, 34:1–34:50 (2011)

18. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
Journal of Molecular Biology 147(1), 195–197 (1981)

19. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach (Advances in Database Systems). Springer-Verlag New York, Inc., Se-
caucus (2005)

http://kdd.ics.uci.edu


Polyphasic Metric Index: Reaching the Practical Limits
of Proximity Searching

Eric Sadit Tellez, Edgar Chavez, and Karina Figueroa

Universidad Michoacana de San Nicolás de Hidalgo, México
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Abstract. Some metric indexes, like the pivot based family, can natively trade
space for query time. Other indexes may have a small memory footprint and
still outperform the pivot based approach; but are unable to increase the memory
usage to boost the query time. In this paper we propose a new metric indexing
technique with an algorithmic mechanism to lift the performance of otherwise
rigid metric indexes.

We selected the well known List of Clusters (LC) as the base data structure,
obtaining an index which is orders of magnitude faster to build, with memory us-
age adaptable to the intrinsic dimension of the data, and faster at query time than
the original LC. We also present a nearest neighbor algorithm, of independent
interest, which is optimal in the sense that requires the same number of distance
computations as a range query with the radius of the nearest neighbor.

We present exhaustive experimental evidence supporting our claims, for both
synthetic and real world datasets.

1 Introduction

The metric indexing machinery can be used in diverse fields, such as pattern recogni-
tion, textual and multimedia information retrieval, machine learning, streaming com-
pression, lossless and lossy compression, biometric identification and authentification,
bioinformatics, among others [1]. However, proximity searching is a challenging prob-
lem since exact indexes (those returning exactly the objects contained in a range or near-
est neighbor query, defined below) have a linear worst case on the size of the database,
even when the query output set has O(1) size. This behavior is thoroughly documented
in the literature by Samet [2], Chavez et al. [3], Böhm et al. [4], Zezula et .al [5], and
Pestov [6–8].

To cope with this intrinsic high dimensional case, the metric indexes should be
tweaked to support approximate searches, as described in [9–11], and imply loosing
some relevant answers to speed up the query time. Other relaxations include allow-
ing reporting false positives, some examples are [12–18]. While the above relaxed ap-
proaches can be used in many application scenarios, the exact indexing problem is
interesting by its own side.

In this work we introduce a new metric index very robust to the intrinsic dimension
increase, with very good tradeoffs among memory, real searching time, and number

G. Navarro and V. Pestov (Eds.): SISAP 2012, LNCS 7404, pp. 54–69, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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of computed distances. Moreover, our index can be engineered to allow the approxi-
mate and probabilistic relaxations cited above, broadening the usage spectrum of our
technique.

Before discussing our framework in more detail, let us present some definitions and
notation. A general metric space (U, d) is composed by an universe of objects U , and
a distance function d : U × U → �, such that for any u, v, w ∈ U , d(u, v) > 0
or d(u, v) = 0 ⇐⇒ u = v, d(u, v) = d(v, u), and d(u,w) + d(w, v) ≥ d(u, v).
These properties are known as strict positiveness, symmetry, and the triangle inequality,
respectively. The last property, is the main tool to filter candidates from a result set using
the general metric space model.

Let S be a database S ⊆ U , of size n = |S|, we considere two possible operations:

– k nearest neighbor query. Retrieve the k closer elements of a query q in S, formally
k-nnd(q, S) = {u | d(u, q) ≤ d(v, q) ∀u, v ∈ S} where | k-nnd(q, S)| = k, or
simply k-nn(q, S) if the context provides enough information to avoid confusion.

– range query. Searching all objects around q within a range r. It is defined as
(q, r)d = {u ∈ S | d(q, u) ≤ r}, or simply (q, r) if it is clear in the context.

There exists two main families of indexes tackling the proximity search problem using
only information obtained by precomputed distances: pivot based indexes and compact
partition indexes.

1.1 Pivot Index

The filtering with a set of pivots can be regarded as a contractive mapping from the
original space U to the vector space where the coordinates are the distances to the
pivots. In other words, if P = {p1, p2, · · · , pm} ⊆ U is the set of pivots, for u, v ∈ S
we define D(u, v) = max1≤i≤m |d(u, pi) − d(v, pi)|. Using the triangle inequality, it
is clear that D(u, v) ≤ d(u, v) and hence it is also clear that (q, r)d ⊆ (q, r)D .

1.2 Compact Partitions

A compact partition index creates regions where items are spatially close to each other.
A tree based index selects a set of centers per node c1, c2, · · · , cm ∈ S, such that ci is the
center of the subtreeTi. The set of centers induces a partition of the dataset such that each
Ti is spatially compact; for example, u ∈ Ti if d(ci, u) = argmin1≤j≤m d(cj , u). The
covering radius cov(ci) = maxu∈Ti d(ci, v) is stored for each node. This construction
is applied recursively. A query (q, r)d is solved recursively starting from the root node.
If d(q, ci) ≤ r then ci ∈ (q, r)d, and Ti must be explored if |d(q, ci)− cov(ci)| ≤ r.

The List of Clusters. The List of Clusters (LC) is a surprising data structure. With a
fixed memory usage the LC outperforms all other indexes computing a smaller number
of distances per query, specially when the data is high dimensional. A drawback of the
LC is the high cost of construction, requiring a quadratic number of distances. This cost
has the same origin of its unmatched performance.
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Let us explore with some detail the construction and the searching algorithm for the
LC, as described by Chávez and Navarro [19]. Define IS,c,cov(c) = {u ∈ S \ {c} |
d(c, u) ≤ cov(c)} as the bucket of internal elements, which lie inside center ball of c,
and ES,c,cov(c) = {u ∈ S | d(c, u) > cov(c)} as the rest of the elements (the external
ones). Now the process is repeated recursively inside E. The construction procedure
returns a list of triples (ci, ri, Ii) (center,radius,bucket).

Please note that the number of centers is unknown beforehand. There are two pos-
sible parameters, the number of objects inside a ball and the radius of the ball. This
intrinsically defines the number of centers. As suggested in the original paper we select
the number of centers m, by selecting instead n/m and avoid a complex parametriza-
tion of the algorithm.

When the intrinsic dimensionality of the data is high, then most of the clusters need to
be reviewed. In [19] the authors used probabilistic arguments to bound the complexity
of the searching to O(nα) distance computations, for some α ≤ 1 which depend on the
intrinsic dimension of the data.

1.3 Other Composite Indexes

There exists some indexes in the literature being composed of several other indexes.
Below, we list some methods using this scheme.

Gionis et al. [17] introduces a new approximate technique for similarity searching
in high dimensional datasets. It is called as Locality Sensitive Hashing (LSH). These
indexes are typically organized as hashing tables, such that objects in the same bucket
are closer under a distance function d with high probability [18, 17]. LSH offers distance
based probabilistic guarantees, but the recall is low as compared with other approaches.
Also, there exist a limit on the guarantees that can be ensured with a sigle instance of
LSH. So, if results with higher quality are required as set of LSH instances should be
used.

Kyselak et al. [20] observed in the literature that approximate methods optimize the
average accuracy of the indexes. However, it is common to find very bad performances
on individual queries, and consequently, an excel performance on others. So, they pro-
pose a simple solution to stabilize the accuracy. The idea is to reduce the probability of
a poor-quality result using multiple independent indexes solving the same query, such
that at least one index achieves good quality on a result.

One important point, to put our work in perspective, is to notice that in the literature,
assembling multiple indexes happen only in the context of approximate techniques. The
focus is on increasing the recall (or the quality of the result, in general). And that comes
at the price of increase both searching and preprocessing time. In contrast our solution
decrease both searching and preprocessing times.

In a slightly related paper [21], author Yianilos introduced the Vantage Point For-
est (VPF). Here the idea is to have a single index composed by a collection of trees.
The idea is to exclude in each tree those objects near the frontier of the left and right
branches, at every node. Each tree will index only a portion of the database. In exchange
each tree will avoid backtracking, hence speeding up the search. There is a delicate bal-
ance between backtracking and searching sequentially in a collection of trees. Addition-
ally, the searching radius to avoid backtracking is way too small for most applications.
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In paper [22], Skopal introduced the PM-Tree. This is a peculiar index mixing pivot
based and compact partition indexes. The PM-Tree base-algorithm is the secondary
memory index M-Tree (Ciaccia et al. [23]) enriched with global scope pivots on top of
the local compact partitions of the M-Tree. We will show that our approach can mimic
this mixed type of indexes, while reducing the complexity and being less cumbersome
than the PM-tree.

1.4 Our Contribution

A basic view of a metric index is to regard it as a partition of the space. The index
then guide the search by filtering some parts for each particular query. The parts not
filtered are then exhaustively checked. Our algorithmic idea is to use several indexes,
several partitions, applying the corresponding filters and then search in the intersection
of all the non-filtered parts. One key aspect of the above idea is to efficiently implement
union/intersection operations to quickly obtain the answer.

We propose novel algorithms for proximity searching, based on fast union-intersection
operations. Specifically, we introduce algorithms to solve range and k-nn searches. Our
algorithm is optimal in the same sense given by Samet et al [2], where the necessary
number of computed distances to solve k-nn queries is the same than a range search
with the proper searching radius.

Since our index is composed of several underlaying indexes one requirement should
be to build on the better brick. We have to select the better index, appropriate for in-
trinsically high dimensional data. Unfortunately the options are scarce. The most robust
indexes are expensive either in memory usage or preprocessing time, as detailed below:

– AESA [24] stores O(n2) distances, and the cost of construction is of the same
order. Moreover, it requires a quadratic number of arithmetic and logical operations
at query time. However it requires (experimentally, on average) a fixed number of
distance computations to solve a query, on a dataset with fixed intrinsic dimension.

– The list of clusters (LC) [19] uses O(n) integers for the index, and O(m) distances,
with m the number of centers. The construction cost is roughly mn/2 distance
computations, O(mn). However, as explained by Chavez and Navarro [19], high
intrinsic dimensional datasets require n/m = O(1) to be useful, implying O(n2)
distances on the preprocessing step.

The above costs are even worst for our case, since we need many indexes to be built and
queried. In practical terms this restrict us to low-cost indexes, in both space and prepro-
cessing time. Neither AESA nor the LC (for high dimensional datasets) are suitable (as
is) for the task for the prohibitive construction time and/or storage costs.

To be able to use the LC, keeping the construction time bounded, we used a subopti-
mal selection of the governing parameter m/n in each one of the indexes. This implies
a not so large number of centers, as m = O(nβ) for β < 1. We will use λ randomized
instances of the LC to boost the filtering. We bet on the fact that the probability of being
discarded by at least one index increases with the number of indexes. The price to pay
is an increase on the storage in a small factor λ. We will provide a probabilistic model
of the search performance of our composite index and will verify it experimentally.
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Summarizing, we obtain a powerful metric index with O(λn1+β) preprocessing
time, O(nα) search time. With α, β < 1 and λ is a small integer number. Also, our
index requiresO(λn) identifiers. Our algorithmic proposal is general enough to support
any mixture of indexes, beyond our proposed modifications of the LC. Furthermore, the
discarding rule is arbitrary and this imply it may not be based of the triangle inequality.
This sole feature have not been proposed before in the literature, up to the best of our
knowledge.

2 The Polyphasic Metric Index (PMI)

Let Λ = {Ti} be a collection of metric indexes, λ = |Λ|. Each T ∈ Λ induces a
partition ΠT of the database, as it is standard for metric indexes. Lj ∈ ΠT denotes
the j-th part of ΠT . Most metric indexes fall on this categorization, since all of them
are based on equivalence classes as described by Chavez et al. [3]. Some indexes have
complex decision rules and it is difficult to take advantage of the implicit partition. One
notable exception is the LC. The implicit partition of the DB coincides with an explicit
partition very easy to handle. Each bucket Ici is a part. Moreover, the set of centers C
in the LC is itself a part (see section 1.2).

Below we describe with detail the basic algorithms for the generic index.

3 Range Search

For a query (q, r)d, define CΛ the set of elements not filtered by any of the indexes in Λ.
To avoid cumbersome notation, we do not include the explicit dependence on (q, r)d in
CΛ.

Solving (q, r)d imply computing the distance between the query and every element
in CΛ and reporting only those with distance less than r to the query.
CΛ is the intersection of all CT , i.e. the candidate set for T ∈ Λ. CT is computed

retrieving all lists not being discarded by the triangle inequality, and then joining them.
Algorithmically speaking, the range search is a set union-intersection algorithm. For-
mally, we must compute CT =

⋃
L∈LT,(q,r)

L. Where LT,(q,r) is the set of all parts in
ΠT such that the discarding rule of the incumbent index cannot filter. To fix ideas think
in this rule as the triangle inequality. Finally, the complete candidate list is computed as
CΛ =

⋂
T∈Λ CT . Notice that the intersection CΛ is the set of objects not filtered by the

discarding rules (triangle inequality) using all indexes in Λ.
Please notice that a center can be shared by some backend indexes, specially when m

is large, such that we might be duplicating distance evaluations against some centers.
We can select centers to be disjoint at construction time. Our implementation uses a
simpler solution, we add a cache of distances per query q such that a d(q, ci) is evaluated
once in the solving process. The same strategy would be applied to nn searching (see
section 4).

There are several optimal (on the size of the sets being intersected) union and inter-
section algorithms using sorted lists as abstractions of sets. Some examples are
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presented by Hwang and Lin [25], and Baeza-Yates [26]. Furthermore, beyond the op-
timality on the size, there are several instance optimal algorithms, like those presented
by Demaine et al. [27], and Barbay and Kenyon [28]. Since our parts are of fixed size
(we are using LC to partition the dataset), and we cannot ensure easy instances for in-
stance optimal algorithms, we focus on producing a fast worst case union-intersection
algorithm not in the comparison model. Additionally, the structure of our algorithm is
used to solve the k-nn searching with dynamic programing, producing the algorithm of
the next section.

The algorithm 1 shows a fast Θ(
∑

T∈Λ |CT |) union and intersection algorithm. In the
algorithm, the array A is explicitly stored because n is not so large in practice (a few
millions at most). If the plain storage of A in memory is not feasible, it can be easily
replaced by a hash table, the complexity holds on average.

Algorithm 1. Union-intersection algorithm

Input: LT,(q,r) for all T ∈ Λ.
Output: The candidate set CΛ, i.e., the set of buckets that cannot be discarded using the triangle
inequality.

1: Let A[1, n] be an array of integers initialized to zero, each item has �log (λ− 1)� bits
2: Let CΛ = ∅
3: for T ∈ Λ do
4: for L ∈ LT,(q,r) do
5: for u ∈ L do
6: if A[u] + 1 = λ then
7: CΛ ← CΛ ∪ {u}
8: else
9: A[u] ← A[u] + 1

10: end if
11: end for
12: end for
13: end for

4 Nearest Neighbor Search

Even when we focus on the nearest neighbor search, the procedure is trivially extended
to solve k-nn queries. Our nearest neighbor search algorithm is based on the best first
strategy described by Samet [2] and our union-intersection algorithm (alg. 1).

The nearest neighbor searching is solved in algorithm 2. In this procedure there are
three special variables, r∗	, r∗⊥ and q∗. r∗	 is the best upper bound of the covering radius
for our query at any moment, r∗⊥ the best known lower bound, and q∗ is the best known
candidate to be nn(q). At the beginning, r∗	 = ∞, r∗⊥ = 0, and q∗ = undefined; at
the end of the procedure, r∗	 = r∗⊥ = d(q, nn(q)),1 d(q, q∗) = d(q, nn(q)), and q∗ is
nn(q).

1 Ideally, r∗⊥ will stop in r∗�, but it could overrun r∗� since it advance in ranges.
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Algorithm 2. Best first nearest neighbor search

Input: A query object q.
Output: r∗� = d(q, nn(q)) and q∗ = nn(q).
1: Let A[1, n] be an array of integers initialized to zero, each item has �log (λ− 1)� bits.
2: Let q∗ be the best candidate at any moment of the nearest neighbor, q∗ ← undefined.
3: Let r∗⊥ = 0
4: Let r∗� be the best guest at any moment of d(q, nn(q)), r∗� ← ∞.
5: while r∗⊥ ≤ r∗� do
6: advance bottom ← true
7: for T ∈ Λ do
8: {Inside next best both r∗� and q∗ should be adjusted if it is necessary.}
9: L ← next best(T )

10: for u ∈ L do
11: advance bottom ← false
12: if A[u] + 1 = λ then
13: if d(q, u) ≤ r∗� then
14: r∗� ← d(q, u)
15: q∗ ← u
16: end if
17: else
18: A[u] ← A[u] + 1
19: end if
20: end for
21: if advance bottom then
22: Increase r∗⊥ to the minimum radius such that at least another candidate (in any

T ∈ Λ) list will be available.
23: end if
24: end for
25: end while

The objective is to convert the nn search in a sequence of range searches. In each
internal range search the covering radius r∗	 can be reduced, while r∗⊥ is increased.
The algorithms follows the constraint r∗⊥ ≤ r∗	. The main problem is that we require
several times to perform union-intersection operations over the same parts, as required
by the algorithm of range search. More detailed, let r∗⊥ be decomposed in its steps in the
algorithm, thus let r∗h⊥ be h-th value of r∗⊥ at the h step. Since r∗1⊥ ≤ r∗2⊥ ≤ · · · ≤ r∗s⊥ ,
after s steps, then follows that (q, r∗1⊥ )d ⊆ (q, r∗2⊥ )d ⊆ · · · ⊆ (q, r∗s⊥ )d. Fortunately,
range searches can be decomposed in terms of the previous ones, hence we can use our
union-intersection (algorithm 1) since it stores in A the cardinality of the intersection
of previous steps.

Let us define next best(T ) as the procedure returning at each call a list not yet vis-
ited, such that this list intersects the current query ball, i.e. (q, r∗⊥). It is necessary to re-
mark that next best(T ) can adjust r∗	 and q∗ as needed. The idea behind next best(T )
is to access each L ∈ ΠT in the order that it should be accessed by consecutive range
searches (q, r∗⊥). In each step r∗⊥ is increased (line 22 in algorithm 2) to the minimum
necessary to obtain another L.
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Algorithm 3. Global view of the next best(T ) procedure

Initialize: Let LT,(q,r∗⊥) be the set of lists intersecting the minimum radius ball containing
(q, r∗⊥).
Input: Let r∗⊥ ← 0.
Output: A set (list) containing objects intersecting the current query ball.
Procedure: At each call it proceeds as follows:

1: if r∗⊥ > r∗� then
2: return ∅
3: else
4: if r∗⊥ was incremented then
5: Retrieve the necessary lists to complete LT,(q,r∗⊥)

6: end if
7: if LT,(q,r∗⊥) has not visited lists then
8: Let L be a not visited lists from LT,(q,r∗⊥)

9: Mark L as visited
10: return L
11: else
12: return ∅
13: end if
14: end if
Note 1: At any moment, if it is possible (e.g. at line 5), r∗� is updated to a tighter bound, in such
case q∗ must be updated too.

Please notice that the efficiency of next best(T ) is tied to the particular implemen-
tations. For example, when T is a tree, next best(T ) procedure can be implemented
using a stack to emulate recursive calls.

Example 1 (next best(T ) over a single pivot). Consider a pivot P ∈ S, inducing a
partition ΠP , using a discretizing function g(d(P, u)) for each u ∈ S. In the figure 1
exemplifies this with |ΠP | = 8.

The first step is to find the list which may contain q with radius zero, i.e. |g(d(q, P ))−
g(d(u, P ))| ≤ g(r∗⊥) = 0. Then, we must increase r∗⊥ such that we advance in to the
next promising list, e.g. g(r∗⊥) = 1. In the process both r∗	 and r∗⊥ are adjusted. The pro-
cess is repeated until both bounds meet. Figure 1 depicts the advance of next best(T ).
Please notice that this procedure is the one used by any pivot based index.

Example 2 (next best(T ) for the LC). We start the procedure by determining the order
to review the lists. In the process, r∗	 bound is improved. This step evaluates d(q, ci)
for all ci ∈ C, sorting ci’s in ascending order of |d(q, ci)− cov(ci)|, because this is the
reviewing order induced as r∗⊥ increases. Section 1.2 shows the details of searching in
an LC.

In general, k-nn searching is implemented replacing q∗ as a priority queue of fixed
cardinality k. In this variation, both r∗⊥ and r∗	 bound the covering radius of the k
nearest neighbor.
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Fig. 1. Next best procedure for a single pivot P

4.1 Expected Performance

The cost of solving a query, the size of the candidate list, is closely related to the ex-
pected performance of the internal indexes. A rule of thumb is that every index must
provide a diverse (low correlated) set of candidates, such that

⋂
T∈Λ CT is close to the

query answer, i.e. items not being in the result set should be discarded by at least one
index in Λ.

Let PT,u be the probability that a random object u needs to be reviewed for some
query (q, r)d in the metric index T . Similarly, let us define PΛ,u for the set of indexes
in Λ as the probability that u cannot be discarded by an index Λ. Assume all PT,u for
T ∈ Λ are independent probabilities, then PΛ,u =

∏
T∈Λ PT,u. If each T has been

constructed ensuring that Px,u � Py,u for all x, y ∈ Λ then PΛ,u = Pλ
x,u. This suggest

that we can improve our search simply adding (independent) indexes to Λ, arbitrarily
decreasing PΛ,u. This simplification can be seen as a probabilistic lower bound in the
computing of the probability PΛ,u.

Since PΛ,u = |⋂T∈Λ CT |/n, the probability is not lower bounded, because the inter-
section could be empty. On the other hand, the upper bound is Pλ,u = minT∈Λ |CT |/n.
The probabilistic lower bound is found for independent probabilities under some proba-
bility distribution. A more precise model may consider the dependency between objects
and the characteristics of the indexes. As a formative example let Ti and Tj be LC in-
dexes in the collection, then one of the following cases may arise:

– u is a center on Ti and v ∈ Iu, then if v is a center on Tj it is possible that u ∈ Iv .
– u, v ∈ Ic for a center c on Ti, then if c′ is a center on Tj , it is possible that u, v ∈ Ic′ .
– the most common case is that a query ball intersects with centers and buckets such

that the previous cases are extended to set of centers and buckets.

With the searching algorithms described, we need to speed up the LC construction.
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4.2 Revisiting the LC

The LC is an efficient metric index, but it has an expensive preprocessing time complex-
ity for high intrinsic dimensional datasets. One observation is that the original algorithm
do not fix the order in which centers are selected. In other words, center selection do
not make sense because the centers are selected sequentially starting from a seed cen-
ter. In the original paper the authors propose four heuristics for iteratively selecting the
centers.

One of the requirements of the PMI is to have the partitions selected independently,
see section 4.1. For this reason we introduce a new randomized construction of the
LC. This serve two goals. Firstly, the construction is faster, and on the other hand the
diversity on the partitions (as required by PMI) is achieved.

As explained in section 4.1, our method requires a high diversity in the partitions
of the underlying indexes, hence we must promote this behavior. In this sense, please
notice that the original LC does not necessarily select c randomly.

Our contribution replace the deterministic selection of the center by a random selec-
tion of c ∈ S. This modification is implemented applying Knuth’s Fisher-Yates shuffle
to the set of identifiers. The complexity remains the same.

The recipe for high dimensional datasets needs n/m = O(1), that is prohibitive
for many real world applications since the preprocessing time of LC, O(nm), becomes
O(n2). An alternative strategy is to produce non optimal LCs, such that its prepro-
cessing step would be cheaper. As we will show experimentally, this non optimal con-
struction does not affect our index since the combination of several suboptimal LC’s
produces a faster index than a single optimal LC.

Let m = O(logb n) for some b ≥ 1. Under this approach, we require close to
nm/2 = O(n logb n) distance computations. If b = 1 then we obtain O(n logn) time,
similarly to VPT or BKT [3].

Another possible approach is to define m = O(nβ), resulting in a preprocessing step
of O(n1+β), and n/m = O(n1−β).

Example 3 (Gaining three orders of magnitude). Let n = 106, suppose that m =
O(logb n), specifically b = 2, and an involved constant of 2.52, thus m ∼ 1000. Finally,
nm/2 becomes 5× 108, which is much smaller than 5× 1011.

The same preprocessing cost for this example configuration is found fixing m =
n1/2, such that n/m � O(

√
n).

Using these configurations, the number of distances needed to search are, a priori,
larger than the required by an optimal LC if using a single index. When using several
indexes our PMI reduces the number of distance computations over the optimal LC.
In the following sections we experimentally verify our claims, and obtain very good
tradeoffs among space, search time, and preprocessing time.

5 Experimental Results

We conducted experiments over synthetic and real-world datasets. Synthetic data are
randomly generated vectors in the unitary cube, these datasets are used to describe
the characteristics of the LC varying the intrinsic dimension. Real-world datasets are
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used to show the performance as will be found in databases obtained from real-world
processes.

5.1 Description of Datasets

– Random vectors (RVEC). Six randomly generated sets of vectors in the unitary
cube with dimensions 4, 8, 12, 16, 20, and 24 and fixed size of n = 106. Two hun-
dred nearest neighbor queries form our query sets. Each query object is a randomly
generated vector of the dimension of the dataset.

– Colors. A real world benchmark of 112682 color histograms (vectors of 112 co-
ordinates) with L2 as distance. The source of this database is the sisap project
(http://www.sisap.org). Each query q is composed of two random objects u, v
in the dataset, such that qi = (ui + vi)/2. Queries are also for nearest neighbor.

– CoPhIR-1M. This database consists of 1 million of objects selected from the
CoPhIR project [29]. Each object is a 208-dimensional vector and we use the L1

distance. Each vector was created as a linear combination of five different MPEG7
vectors as described in [29]. We selected 200 vectors (they were not indexed) as
queries. Queries are also for nearest neighbors.

All the algorithms were written in C#, with the Mono framework (http://www.mono-
project.org). Algorithms and indexes are available as open source software in the
natix library (http://www.natix.org). The experimentation was carried in a four
quad-core Intel Xeon 2.40 GHz workstation with 32 GiB of RAM, running CentOS
Linux. The entire databases and indexes are maintained in main memory and without
exploiting any parallel capabilities of the workstation.

Please notice that the build time is critical for the LC, since it requires O(nm) dis-
tance computations, and high dimensional datasets require n/m = O(1), we got a
O(n2) distance computations. Under this perspective LC is limited to lightweight dis-
tances or small databases. Our approach is based on exploiting configurations m =
o(n), such as m = O(nβ) with some 0 < β < 1, and to take advantage of several
indexes and the diversity found in their partitions.

We provide an extensive comparison against the original List of Clusters, however
we avoid a larger comparison against other structures since LC is a typical baseline for
metric indexes. Also, we avoid disk based indexes like M-Tree or PM-Tree since they
are commonly worried about I/O efficiency, which is not directly comparable with our
approach.

5.2 Build Time

In order to discover the gain in the preprocessing time, table 1 shows the real time to
build a single instance of an index for RVEC-4, n = 106. In this setup, the distance
function has a low-cost.

It is interesting to notice the preprocessing speedup achieved by simply increasing
n/m. The preprocessing time for n/m = 1024 is 6.2 times faster than the LC with
n/m = 128, and 48.8 times than n/m = 16. This relation from 128 to 16 is 7.9. This
implies that creating several λ indexes is even cheaper than create a single optimal LC.

http://www.sisap.org
http://www.mono-project.org
http://www.mono-project.org
http://www.natix.org
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Table 1. Preprocessing time for RVEC-4 and n = 106

method n/m m preprocessing time
seconds human readable

LC 1024 976 331.13 5 min 31.13 sec.
LC 128 7812 2056.5 34 min 16.52 sec.
LC 16 62500 16163.16 4 hours 29 min.

Furthermore, as indexes are independently created, they can be built in parallel, such
that the required time is close to the built time of a single instance plus the time to put
them together. This later time is negligible.

5.3 Searching Performance

The complexity measured as number of computed distances is useful to extrapolate to
other kind of distances; independently of the tested hardware, and of the database. On
the other hand, the real time is necessary to measure the method to be used in practical
applications. We are interested in both parameters.

Figure 2, depicts both the average computed distances and the required time for a
single nearest neighbor query in the RVEC set of databases. The curves with λ = 1 are
equivalent to the performance of the LC in the specified configuration. In these series
of plots, there are three variables: n/m (a pair of plots per row), λ (a curve per value),
and the dimension (the horizontal axis). The first column shows the cost presented as
number of computed distances, figures 2(a), 2(c), and 2(e) respectively for n/m of 16,
128, and 1024. We can observe that for large dimensionality (dimension 24), the PMI is
unbeatable, particularly for n/m = 128, where we need to review 20% of the database,
compared against 38% of the best configuration achieved with the LC (n/m = 16).
For lower dimensions, it is natural to select large n/m, for example, the PMI requires
λ = 2 and n/m = 1024 to review 0.3% of the database for dimension 4 (figure 2(e))
while the same λ review 10% of the database for n/m = 16. A similar proportion is
found for the plain LC (λ = 1). In general, we always can construct several indexes
with large n/m and increase λ as required by the expected performance, obtaining
that performance increase as λ growth as observed in the left column of figure 2. The
real search times (right column figure 2) are not showing the same dramatic variations,
since they reflect the cost of the union-intersection algorithms and some effects of the
cache. Nevertheless, the speed up introduced by the PMI is noticiable, as shown by
figures 2(d) and 2(f).

Figure 3 shows performances for our real world databases, Colors and CoPhIR-
1M. The experiment shows the dependency of the performance with n/m, i.e. the main
parameter of the practical List of Clusters, and both average total (internal + external)
number of distances and real time (figures 3(a) and 3(b)) required to solve a nearest
neighbor query. As in previous figures, the left column show the number of distance
computations, and the right one is showing the real time. Here the performance boost
occurs varying n/m and λ, for the fixed dimension.
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(a) Distances computed. n/m = 16
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(b) Search time. n/m = 16
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(c) Distances computed. n/m = 128
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(d) Search time. n/m = 128
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(e) Distances computed. n/m = 1024
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(f) Search time. n/m = 1024

Fig. 2. Behavior of the PMI using LC searching for the nearest neighbor with a varying increasing
intrinsic dimension over RVEC databases

The number of distance computations is optimized for LC on Colors at n/m =
32, and until this bucket size, the plain LC is the best option. For larger n/m values,
there exists a speed up (distance computations and real time) for all λ values, with
special remark on n/m larger than 128 and λ ≥ 4. On these setups the cost is half of
the best LC. Furthermore, they have smaller preprocessing time. On CoPhIR-1M, the
performance is quite similar, but we must remark that the preprocessing time imply an
enormous difference since n = 106 and each vector contains 208 coordinates, which is
very costly as preprocessing time. The LC (λ = 1) is optimized at n/m = 128 after
this value, all setups are better than the single LC, in both the distance computations
and the real time, see figures 3(c) and 3(d). We must remark that we found similar cost
for n/m = 64, but we do not show such smaller values since preprocessing time is
much larger and it does not improves neither LC nor PMI.
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Fig. 3. Performance of the PMI on real world datasets

6 Conclusions and Future Work

We presented a new metric index for general metric spaces called the Polyphasic Metric
Index (PMI) that is more robust to the dimension that the well known List of Clusters
(LC), one of the most robust indexes with small memory requirements. The central
idea of our index is the usage of several backend indexes, where each one respond
with a set of candidates containing the exact result set of the proximity query. The
final set of candidates is obtained by intersecting all individual sets. We choose the List
of Cluster index as backend index. This selection is driven by the fact that the LC is
a fast, and small metric index. Those properties are inherited by our index, and even
when our index is composed of several LC backend indexes, their configuration allows
a very fast preprocessing time, far from the O(n2) time required by the original version
of the algorithm. For example, we obtain faster searches than the LC with O(n1.5)
preprocessing time. Due to the compound functionality of our index, it is possible to
adjust the number of indexes at searching time. Such that hard queries are solved with
a complex machinery (several indexes), and easy ones with a simpler setup (few or one
index).

The above scheme is easily adapted to discover the better PMI configuration for
the (unknown) intrinsic dimension of the datasets. Based in our experimental evidence,
configurations with large n/m are quite good for small dimensions, and several backed
indexes with this setup are useful for high intrinsic dimensions. We conjecture that λ
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for a fixed index setup (LC with fixed n/m) is a function of the intrinsic dimension,
and there exists a maximum λ that improve the index performance.

In general, the number of indexes can be unbounded and dynamic and can be ad-
justed at query time. Discussing the adaptive selection of indexes for a particular query
is beyond the scope of this paper, and will be explored in a separate manuscript.

We presented algorithms for range and nearest neighbor searches, which are new.
Both algorithms are based on set union and set intersection operations and can be im-
plemented with fast union-intersection algorithms. Our framework can be improved us-
ing better set union-intersection algorithms reducing the overhead introduced by these
operations in the PMI. However it should be noticed that those algorithms must support
partial intersections, since they are the core of our iterative, optimal nearest neighbor
algorithm.

The major drawback of the PMI approach is the required space, which is a multiple
ofλ, even when the LC is a light weight index and λ seems to be O(1) for a fixed
dataset. This drawback opens the possibility of applying compression techniques to the
representation of the LC and the entire PMI.
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12. Tellez, E.S., Chávez, E., Navarro, G.: Succinct nearest neighbor search. In: Proc. 4th Inter-
national Workshop on Similarity Search and Applications (SISAP). ACM Press (2011)



Polyphasic Metric Index: Reaching the Practical Limits of Proximity Searching 69

13. Tellez, E.S., Chavez, E., Graff, M.: Scalable Pattern Search Analysis. In: Martı́nez-Trinidad,
J.F., Carrasco-Ochoa, J.A., Ben-Youssef Brants, C., Hancock, E.R. (eds.) MCPR 2011.
LNCS, vol. 6718, pp. 75–84. Springer, Heidelberg (2011)

14. Chavez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering permuta-
tions. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(9), 1647–1658
(2008)

15. Amato, G., Savino, P.: Approximate similarity search in metric spaces using inverted files.
In: InfoScale 2008: Proceedings of the 3rd International Conference on Scalable Information
Systems, ICST, Brussels, Belgium, pp. 1–10. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering) (2008)

16. Esuli, A.: Pp-index: Using permutation prefixes for efficient and scalable approximate sim-
ilarity search. In: Proceedings of the 7th Workshop on Large-Scale Distributed Systems for
Information Retrieval (LSDS-IR 2009), Boston, USA, pp. 17–24 (2009)

17. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In:
VLDB 1999: Proceedings of the 25th International Conference on Very Large Data Bases,
pp. 518–529. Morgan Kaufmann Publishers Inc., San Francisco (1999)

18. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in
high dimensions. Communications ACM 51(1), 117–122 (2008)
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24. Micó, M.L., Oncina, J., Vidal, E.: A new version of the nearest-neighbour approximating
and eliminating search algorithm (aesa) with linear preprocessing time and memory require-
ments. Pattern Recogn. Lett. 15, 9–17 (1994)

25. Hwang, F.K., Lin, S.: A simple algorithm for merging two disjoint linearly ordered sets.
SIAM Journal Computing 1(1), 31–40 (1972)

26. Baeza-Yates, R.A.: A fast set intersection algorithm for sorted sequences. In: CPM, pp. 400–
408 (2004)
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Abstract. Clustering-based methods for searching in metric spaces par-
tition the space into a set of disjoint clusters. When solving a query, some
clusters are discarded without comparing them with the query object,
and clusters that can not be discarded are searched exhaustively. In this
paper we propose a new strategy and algorithms for clustering-based
methods that avoid the exhaustive search within clusters that can not
be discarded, at the cost of some extra information in the index. This
new strategy is based on progressively reducing the cluster until it can be
discarded from the result. We refer to this approach as cluster reduction.
We present the algorithms for range and kNN search. The results ob-
tained in an experimental evaluation with synthetic and real collections
show that the search cost can be reduced by a 13% - 25% approximately
with respect to existing methods.

Keywords: similarity search, metric spaces, cluster reduction.

1 Introduction

Similarity search is a typical operation in many areas of computer science, such
as pattern recognition, computational biology, multimedia information retrieval,
or recommender systems, to name a few. Given a collection of objects and a
function measuring the distance or dissimilarity between any two of them, sim-
ilarity search finds the most similar objects to another one given as a query.
The comparison of two objects is supposed to be computationally costly, so the
goal of metric access methods (MAMs) is to solve the queries with the minimum
number of distance evaluations.

Similarity search can be formalized through the mathematical concept of met-
ric space. A metric space is composed by an universe of objects and a metric
that determines the distance or dissimilarity between any two objects of that
universe. Methods for searching in metric spaces preprocess the collection and
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build indexes that store precomputed information about the objects in collec-
tion. This information is used during the search together with the properties
of metric spaces to prune the search space and thus compare the query with a
small portion of the objects in the collection [1–3].

The most studied types of query in metric spaces are range search and kNN
search. Range search, R(q, r), obtains all the objects up to a distance r from
the query object q. Near neighbor search, kNN(q), retrieves the k most similar
objects to the query.

Methods for searching in metric spaces can be classified in pivot-based meth-
ods and clustering-based methods [1]. Pivot-based methods select a subset of
objects from the collection to be used as pivots, and the index stores the dis-
tances from the pivots to the rest of objects. Given a query, the query object
is compared with the pivots, and these distances are used to discard as many
objects as possible without comparing them with the query.

Clustering-based methods partition the space into a set of disjoint clusters.
Each cluster is represented by an object used as the cluster center. Each object in
the collection belongs to the cluster corresponding to its closest center. The index
maintains the information of each cluster, typically its center and its covering
radius, that is, the distance from the cluster center to its furthest object in the
cluster. Given a query, the query object is compared with the center of each
cluster, and complete clusters are discarded if the information provided by the
index determines that they can not contain objects in the result set. If a cluster
can not be discarded, it is searched exhaustively, that is, the query object is
compared with all the objects that belong to that cluster.

In this paper we present a new strategy and algorithms for precise metric-
based search that avoid the exhaustive search within a cluster that can not
be discarded by the index. Our proposal is based on the idea of defining re-
gions within each cluster with respect to its center, in such a way that when
we search within the cluster, it can be progressively reduced by discarding some
of its regions, until the rest of the cluster is completely discarded. We refer to
this strategy as cluster reduction, and it can be applied in any method using
the covering-radius pruning criteria for discarding objects. Although we need to
store more information in the index to maintain the regions within each cluster,
we show that the space complexity of the index remains O(n). We present the al-
gorithms for range search and kNN search, and an experimental evaluation with
real and synthetic collections of different nature that shows that this approach
can improve the search performance by a 13% - 25% approximately with respect
to existing methods. The results presented in the experimental evaluation also
consider the effect of cluster reduction on the size of the index, and the trade-off
between search cost improvement and space requirements.

The rest of the paper is structured as follows. Next Section briefly reviews
related work on clustering-based methods for metric spaces. Section 3 presents
cluster reduction and the algorithms for range and kNN search. In Section 4
we present the results we obtained from the experimental evaluation. Finally,
Section 5 summarizes the conclusions of the paper and lines for future work.
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2 Related Work

A metric space is a pair (X, d), where X is an universe of objects, and the
function d : X × X −→ R+ is a metric measuring the dissimilarity d(x, y)
between any two objects x, y ∈ X . The metric holds the properties of positiveness
(d(x, y) ≥ 0), symmetry (d(x, y) = d(y, x)), and the triangle inequality (d(x, y) ≤
d(x, z) + d(z, y)). The database or collection of objects is a finite subset S ⊆ X
of size |S| = n.

Clustering-based methods partition the space into a set of disjoint clusters,
and the index stores the information about this partition. The information
for cluster Ci includes at least the object used as the center of the cluster,
ci, the set of objects that belong to that cluster, and the covering radius,
cri = max{d(ci, x)/x ∈ Ci}, that is, the distance from the center to its fur-
thest object in the cluster. For each cluster Ci, its center and its covering radius
define a ball in the space, (ci, cri), containing all the objects that belong to the
cluster.

Given a range query R(q, r), the query object is compared with each cluster
center ci, obtaining the distances d(q, ci). A range query defines a ball in the
space, (q, r). For each cluster Ci, the cluster can be discarded without comparing
the query with its objects if d(q, ci) − cri > r, that is, if the ball (ci, cri) does
not intersect the ball (q, r).

In the case of kNN queries, the distance d(q, ci)− cri gives us a lower bound
on the distance from q to any of the objects that belong to the cluster Ci, that is,
∀x ∈ Ci, d(q, x) ≥ d(q, ci)−cri (if the query object q falls within the ball defined
by the cluster, (ci, cri), the lower bound is negative, so it does not give us useful
information). This lower bound gives us a hint of which clusters we should visit
first and when to stop the search, that is, when none of the remaining clusters
contains objects closer to q than its current kth nearest neighbor.

The search complexity is given by the sum of the internal and external com-
plexities. The internal complexity is the number of distance evaluations needed
to compare the query object with the cluster centers. The external complexity
is the number of distance evaluations needed to compare the query object with
the objects in the clusters that could not be discarded.

Clustering-based methods build smaller indexes and behave better in high-
dimensional spaces with respect to pivot-based methods. Existing clustering-
based methods differ in how they partition the space, how that partitioning is
reflected in the index structure, and on the criteria used for pruning the search
space. Most methods partition the space in a recursive way and create a tree
index that reflects that partition.

BST [4] recursively partitions each cluster into two clusters, and creates a tree
index that maintains the information of the partition. In a first level, two ob-
jects are selected as cluster centers. The root of the index stores the center and
covering radius of each cluster, and each cluster is then recursively partitioned
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following the same schema. GHT [5] partitions the space following the same
schema, but changes the criteria to prune the tree during the search. In this case,
the left subtree at each node is searched if d(q, cl) − r ≤ d(q, cr) + r, and the
right subtree is searched if d(q, cr)−r ≤ d(q, cl)+r. GNAT [6] is a generalization
of GHT in which more than two clusters are created at each node. In addition,
each node stores the distances between the centers of the clusters, so some of
them can be discarded without comparing them with the query object. VT [7]
improves BST by using two or three centers in each node and storing in each new
node the closest object from the parent node. SAT [8] creates a tree structure
that approximates the Delaunay graph of the partition, and the search traverses
the tree discarding complete clusters when possible.

The M-Tree [9] recursively partitions the space trying to obtain clusters as
compact as possible to improve the search cost. This method established an
important landmark since it supports the dynamics of a real database system.
Its structure is suitable for efficient secondary memory storage, and it supports
dynamic insertions and deletions of objects in the database without degrading
the index performance, by rearranging the index on such operations, and adapt-
ing it to the new content of the database. The Slim-Tree [10] is a well-known
modification of the M-Tree that reduces the overlap between the clusters.

All the methods described above create a recursive partition that generates
a tree-like index. List of Clusters [11] follows a different approach and organizes
the index as a list instead of as a tree. A first object is used as a cluster center
for the first cluster. Once this cluster is full, the rest of the collection is processed
in the same way. The size of the cluster is determined either by a fixed covering
radius or by a fixed number of objects. The search traverses the list discarding
the clusters when possible, and exhaustively searching non-discarded clusters.

3 Similarity Search with Cluster Reduction

In this Section we present the idea of cluster reduction, and the corresponding
algorithms for range search and kNN search. The goal of cluster reduction is to
decrease the external complexity of the search by avoiding the exhaustive search
within clusters that could not be discarded with the information of the index.

We present the algorithms for the particular case of List of Clusters, although
this approach could be extended to other clustering-based methods using the
covering radius pruning criteria.

3.1 Defining Intermediate Regions

Let Ci be a cluster with center ci and covering radius cri, and let {xi1, . . . , xim}
be the set of objects that belong to Ci (where m is the size of the cluster).
These objects define a set of distances with respect to the center of the cluster,
{d(ci, xi1), . . . , d(ci, xim)}. We select some of these distances to define interme-
diate regions within the cluster Ci, in such a way that each selected distance
acts like an additional internal covering radius. If we want to define β regions



74 L.G. Ares et al.

c

cr

(a) Cluster divided in regions

c

cr

q′
r′

q

r

(b) Example of range search

Fig. 1. Range search with cluster reduction

within each cluster, we have to select β− 1 distances. We select the distances in
such a way that each region contains the same number of objects. If the number
of regions, β, does not divide the number of objects in the cluster, one of the
regions will have fewer objects than the others.

Figure 1(a) shows an example in which a cluster is divided into five internal
regions. Each internal region contains four objects. The reason for selecting re-
gions that contain the same number of objects is that in this way they adapt
better to the distribution of the objects within the cluster. As previously stated
in [1, 11], the distribution of the objects with respect to the center of the cluster
is not uniform. Choosing regions with the same “width” could led to a region
that contains almost all the objects in the cluster, which would be useless for
the algorithms we present in this section.

The smallest number of regions we can define within a cluster is two, and, at
most, we could define as many regions as objects in the cluster. In the first case,
we have the chance of discarding half of the cluster without comparing it with
the query. In the second case, each comparison of q with an object of the cluster
gives us a chance of discarding the rest of the cluster without comparing it with
the query. Therefore, the more the regions we define within clusters, the more
chances of reducing the search cost.

However, the number of regions also affects the space requirements of the in-
dex. If we define as many regions as objects in the cluster, the space requirements
would be almost the double, although the space complexity would still be O(n).
Therefore, there is a trade-off between the search cost and space requirements in
terms of the number of regions. As we will see in the experimental evaluation, a
small number of regions leads to a search cost that is very close to that obtained
when the number of regions equals the number of objects.
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3.2 Additional Considerations

Cluster reduction can be viewed as a generalization of the range-pivot distance
constraint policy for discarding objects [2] if we consider the limit of each internal
region as an additional covering radius. Similarly, cluster reduction can be viewed
as a generalization of the object-pivot distance constraint for discarding objects
[2], since the center of the cluster assumes a role similar to that of a pivot for the
objects of that cluster. By knowing to which region each object in the cluster
belongs, and the limits of that region, we have a range bounding the distance
from the cluster center to each object, which is a case of range coarsening [1].

The idea of defining regions within clusters has already appeared in previous
work. All methods that recursively partition the space divide each cluster into
smaller clusters, although the leaf nodes have to be searched exhaustively. VPT
[5] and MVPT [12] recursively partition each cluster into regions of the same size,
which are further partitioned using the same schema. M-Index [13] assigns to
each object a key that combines the identifier of the cluster to which it belongs,
and its distance to the center of the cluster. This can be seen as a particular
case of cluster reduction in which the distances from all the objects to the cluster
center are stored. The PM-Tree [14] is an extension of the M-Tree in which each
cluster is divided into hyper-rings with respect to a set of pivots.

The main differences of our proposal with previous approaches are: (i) we
divide the cluster into several concentric regions with respect to the center (that
is, without using other cluster centers or pivots) in an onion-like style, that is,
each region is contained by another region; (ii) as we will see in the description
of the algorithms for range search and kNN search, this allows us to process each
cluster one region at a time until one of them allows us to discard the rest of the
cluster; (iii) the results of our experimental evaluation show that using a small
number of regions within each cluster leads to a search cost very close to that
obtained when using as many regions as objects in the cluster.

Applying the cluster reduction strategy to an existing method modifies the
structure of the index, since we need to store, for each cluster, which objects
belong to each region, and also the distances from the center to the objects that
define the limit of each region. These features of the index allow us to imple-
ment it using different data structures. Dynamic capabilities are also supported,
allowing deletions (in general, logical deletions), and insertion of new objects. If
the number of modifications in a cluster is high, restructuring the regions of the
cluster in the index is necessary to maintain its search performance.

3.3 Range Search

The algorithm for range search proceeds initially in the same way as the original
algorithm, only changing how clusters that can not be discarded are searched.
Given a range query R(q, r), the query object is compared with all the clus-
ter centers ci, obtaining the distances d(q, ci). For each cluster, we have three
possibilities:
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(a) d(q, ci)− cri > r: in this case, the ball (ci, cri) defined by the cluster Ci does
not intersect the ball (q, r) defined by the query, so the whole cluster Ci is
discarded from the result without comparing it with the query object.

(b) d(q, ci) − cri ≤ r, and not d(q, ci) + r ≤ cri: the ball (ci, cri) defined by Ci
intersects the ball (q, r) defined by the query. In this case, we can not discard
the cluster. Instead of comparing the query object with all the objects in the
cluster, we start the comparison at the outermost region of the cluster. In
each region, we compare the query object with all the objects in that region.
As we process each region, the cluster is being progressively reduced. The
search within the cluster stops when the limit of the next region does not
intersect the query ball. That is, we use the limit of each region as the
covering radius of the cluster as we reduce it.

(c) d(q, ci) − cri ≤ r, and d(q, ci) + r ≤ cri: the ball defined by the cluster not
only intersects the query ball, but it contains it. In this case, the rest of the
clusters do not have to be explored. The search within the cluster starts at
the outermost region that intersects the query ball, and continues until we
reach a region that does not intersect it.

Figure 1 shows an example of range search with cluster reduction. The left part
of the figure shows a cluster containing 20 objects, that has been divided into 5
regions, each of them containing 4 objects. The arrows that start at the center
of the cluster point to the objects that define the limit of each region. The right
part of the figure shows two range queries.

In the first case, R(q, r), the query ball intersects the cluster but is not con-
tained within it. Therefore, the search compares the query with the objects in
the outermost region of the cluster. Once we have processed this region and
therefore reduced the cluster, the next region does not intersect the query ball,
so the rest of the cluster can be discarded. In this example, the cost of searching
within the cluster is reduced to a 20% of its objects.

In the second case, R(q′, r′), the ball defined by the cluster contains the query
ball. Since the query ball only intersects the second and third regions of the
cluster (counting from the outermost one), the search can be reduced to those
regions. The search within the cluster is solved comparing only the query object
with two of the five regions. In this case, the search stops because we do not
need to explore any other cluster.

3.4 kNN Search

In the case of kNN search, the algorithm proceeds by visiting the most promising
clusters first, as in the original algorithm. The difference is that in each step of
the search we do not process the whole cluster, but only its closest region to
q that has not still been processed. After processing that region, this cluster is
reduced and the search continues with the next most promising cluster, including
the cluster we have just processed and modified.
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1 kNNSearch(q)

2 foreach cluster Ci do
3 di ← d(q, ci)
4 Insert(clustersQueue, Ci, di − cri)

5 end

6 Ci ← pull(clustersQueue)
7 while d(q, ci)− cri < radius(neighborsQueue) do
8 Reduce(q, Ci, neighborsQueue)
9 Insert(clustersQueue,Ci, di − cri)

10 Ci ← pull(clustersQueue)

11 end

Algorithm 1. Pseudocode for kNN search with cluster reduction

For each cluster Ci, the distance d(q, ci) − cri gives us a lower bound on the
distance from q to any object in Ci, that is:

∀x ∈ Ci, d(q, x) ≥ d(q, ci)− cri (1)

Given two clusters Ci and Cj, the cluster Ci is more promising than Cj if:

d(q, ci)− cri < d(q, cj)− crj (2)

Given a kNN query, the query object is compared with all the cluster centers,
and the clusters are arranged into a priority queue, in such a way that the
most promising clusters are processed first. In each step of the search, the most
promising cluster is pulled from the queue, and the query is compared only
with the objects in its closest region still not processed, updating the list of k
candidate nearest neighbors as necessary. The cluster is reduced since we have
processed one of its regions, and it is reinserted again in the queue with a new
priority, resulting from the reduction of the cluster. This procedure is repeated
until the lower bound of the distance from q to the next cluster to be processed
is greater than the distance from q to its current kth candidate neighbor.

Pseudocode 1 summarizes the algorithm for near neighbor search with cluster
reduction. The algorithm uses two priority queues: clustersQueue stores the
clusters according to how promising they are for the search, and neighborsQueue
maintains in each step of the algorithm the k nearest neighbors of q among
the objects that have already been processed (neighborsQueue has a limited
capacity of k objects). The function Reduce (line 8) compares q with the objects
in its closest region still not processed of Ci, and sets the covering radius of Ci
to the limit of its next region.

Figure 2 shows an example of 2NN search with two clusters. As we can see in
the figure, the distance from q to C1, d1, is smaller than the distance from q to
C2, d2, so C1 is more promising and it is processed first. The query is compared
with the objects in the first region of C1, and the cluster is reduced and inserted
again into the priority queue. Now, the distance from q to C1, d3, is larger than
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Fig. 2. kNN search with cluster reduction

the distance from q to C2, d2. In this point, the search stops processing C1 and
jumps to C2, since it is more promising at this moment. After processing the first
region of C2, the distance from q to C2, now d4, is smaller than the distance to
C1, d3, so we process the next region of C2. After processing the second region of
C2, the search stops, since d3 and d5 are greater than the distance from q to its
second nearest neighbor (distance represented by the ball in dotted line). Note
that the search has finished without having searched exhaustively within either
C1 or C2, but only within one region of C1, and two regions of C2.

4 Experimental Evaluation

In this Section we present the results we obtained in the experimental evaluation
of the new algorithms for range search and kNN search, considering both the
effect of cluster reduction on the search cost and on the space requirements of
the index.

We have implemented the new algorithms on a List of Clusters, under the
framework provided by the SISAP Library 1. In our experiments we used six
datasets from the library:

– English: a collection of 69, 069 words from the English dictionary.
– German: a collection of 75, 086 words from the German dictionary.
– Nasa: contains 40, 150 images from NASA archives represented by feature

vectors of dimension 20.

1 http://sisap.org/Metric_Space_Library.html

http://sisap.org/Metric_Space_Library.html
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– Colors: contains 112, 544 color histograms, represented by feature vectors
of dimension 112.

– Uniform-10, Uniform-12: collections of 100, 000 vectors of dimensions 10
and 12 respectively, with uniform distribution in the unitary cube.

We have chosen two collections of each type (words, images, and uniformly dis-
tributed vectors) since they contain objects of the same nature but present differ-
ent complexities for the search. For each dataset, 90% of the objects were used as
the collection to be indexed, and the remaining 10% were used as query objects.
In the case of word datasets, objects were compared using the edit distance. In
the case of vector datasets, we used the Euclidean distance.

4.1 Range Search

In order to evaluate the search cost obtained with cluster reduction for range
search, we used cluster sizes {10, 20, 40, 60, 80, 100}, and values of β (number of
regions) of 2, 5, 10, and 20 regions within each cluster, as well as the case in
which we used all possible regions within each cluster. The search radius was
adjusted to retrieve an average of 0.01% of the database for each query. Figure 3
shows the mean number of distance computations for processing all the queries
(10% of the dataset) for each collection and method. In the figure, “LC” stands
for List of Clusters without applying cluster reduction, “LC CR-i” stands for list
of clusters applying cluster reduction with β = i regions within each cluster. “LC
CR-all” stands for List of Clusters using as many internal regions as objects in
each cluster.

As we can see in the results, the application of cluster reduction produces
a significant improvement on the search cost. The higher cost improvement is
obtained when we use all the objects in the cluster to define a region. However,
the results obtained when using a smaller number of regions are very close to
the best result. An important result is that a significant part of the search cost
improvement is obtained when using just 5 regions within each cluster. Adding
more regions within each cluster reduces the search cost even more, but from the
results we can see that when using 10 or 20 regions within each cluster, adding
more regions does not improve significantly. Note also that this behavior holds
for all the cluster sizes we have considered and for all collections, no matter their
size or complexity.

4.2 kNN Search

In order to evaluate the performance obtained with cluster reduction for kNN
search, we used values of k ranging from 1 to 10, and values of β of 2, 5, 10
and 20 regions. We also considered the case in which each object in the cluster
defines an internal region. In these experiments, the cluster size was fixed to 40,
which produced good results in the previous set of experiments for all collections.
Figure 4 shows the results we obtained. The legend of the figures follows the
nomenclature we used in the experiments for range search.
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As we can see in the results, the behavior of the search cost for different values
of β is similar to that obtained in the case of range search. The most significant
improvement in the search cost is obtained when using just 5 regions within each
cluster. When using 10 regions within each cluster, the search cost is very close
to that obtained when maintaining the distances from the cluster center to all
the objects in the cluster. The results are homogeneous for all values of k in all
collections.

4.3 Search Cost and Space Requirements

As we explained in Section 3, the number of regions defined within each cluster
produces a trade-off between the improvement in search cost and the increment
in the space requirements of the index. We obtain the best result in terms of
search cost when all the objects in the cluster are used to define a region within
the cluster, but this almost doubles the space requirements of the index. However,
as we have already seen, when using a smaller number of regions within each
cluster, the search cost is very close to the best result, with a very reduced
increment in the space requirements.

Table 1 shows for each collection the size of the index obtained when using 2,
5, 10, 20, and all possible regions within each cluster (in Kbytes). The column
“Relative” shows the relative value of the size of the index with respect to the list
of clusters without cluster reduction (shown in first row, LC). The increments
in the size of the index range from a 2% to a 20% when the number of regions
is between 2 and 10. When each object of the cluster is used to define a region
in the cluster, the space overhead reaches a 89%. Although in the case of using
all possible regions the space of the index is almost doubled, cluster reduction
preserves the O(n) space complexity of the index, an important property of
clustering-based methods when compared with pivot-based methods.

Figure 5 shows results on the trade-off between the search cost improvement
and the increment of the index size for range search queries. The improvement
of search cost and the increment of the size of the index are expressed as relative
values (in %) with respect to the search cost and index size of the original list
of clusters (as in Table 1). The figure considers all collections and values of β
in {2, 5, 10, 20, all}. When we define 2 regions within each cluster, the search
cost is reduced a 10% approximately, with a space overhead of only a 2%. Using
5 regions produces a space overhead of 9%, while the search cost improvement
ranges between 13% - 24% approximately with respect to list of clusters without
cluster reduction, depending on the collection. When the number of regions is
10, the search cost improves slightly. From this point, using more regions within
each cluster increments the size of the index but does not affect significantly
to the search cost. This result is important since it shows that we only need to
define a small number of regions within each cluster, independently of the size
of the cluster.
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Fig. 3. Search performance in range search. Each figure shows the mean number of
distance computations (in thousands of distances) in terms of the size of the clusters.
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Fig. 4. Search performance in kNN search. Each figure shows the mean number of dis-
tance computations (in thousands of distances) in terms of k, the number of neighbors
searched for each query object.
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Table 1. Effect on space requirements (Kbytes)

β English German Nasa Colors Relative

LC 260.65 283.34 151.53 424.66 1.00

2 266.57 289.79 154.97 434.31 1.02
5 284.34 309.10 165.29 463.26 1.09
10 313.95 341.29 182.50 511.50 1.20
20 373.17 405.66 216.92 607.99 1.43
all 491.60 534.41 285.74 800.96 1.89

5 Conclusions

In this paper we have presented a new strategy, namely cluster reduction, and
new algorithms that avoid the exhaustive comparison of the query with the
objects in clusters that can not be discarded with the information in the index,
thus reducing the external complexity. We have presented the algorithms for the
particular case of List of Clusters, but this approach could be extended to other
clustering-based methods using the covering radius pruning criteria.

We define internal regions within each cluster, in such a way that all regions
contain approximately the same number of objects. When searching within a
non-discarded cluster, the cluster is processed one region at a time, in order of
proximity to the query. This allows us to progressively reduce the cluster until we
can discard the rest of its regions. The definition of a reduced number of regions
within each cluster reduces significantly the search cost, with a small increment
in the size of the index, and maintaining the space complexity as O(n).

We have presented an experimental evaluation with both real and synthetic
collections from the SISAP Metric Spaces Library. Our results show that the
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improvement in search cost ranges between a 13% - 25% approximately depend-
ing on the collection and on the number of regions defined within the clusters.
The results also show that the search cost when using a small number of regions
is very close to that obtained when using all the possible regions.

Some aspects of this work remain as lines for future work. The most imme-
diate, to test the strategy of cluster reduction with other methods using the
covering radius pruning criteria, to compare it with other traditional MAMs,
and to evaluate its scalability with massive data sets. We are also exploring how
to extend this strategy to other similarity queries, such as the similarity join.
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Abstract. With the emerging applications dealing with complex multi-
media retrieval, such as the multimedia exploration, appropriate indexing
structures need to be designed. A formalism for compact metric region
description can significantly simplify the design of algorithms for such
indexes, thus more complex and efficient metric indexes can be devel-
oped. In this paper, we introduce the cut-regions that are suitable for
compact metric region description and we discuss their basic operations.
To demonstrate the power of cut-regions, we redefine the PM-Tree using
the cut-region formalism and, moreover, we use the formalism to describe
our new improvements of the PM-Tree construction techniques. We have
experimentally evaluated that the improved construction techniques lead
to query performance originally obtained just using expensive construc-
tion techniques. Also in comparison with other metric and spatial access
methods, the revisited PM-Tree proved its benefits.

1 Introduction

Although there have been many metric access methods (MAMs) [4,19,13,8] de-
veloped in the past decades, there still emerge new MAM designs and other ap-
proaches addressing the problem of efficient processing of similarity queries. In the
last years we observe a trend towards even more complex MAM structures, e.g.,
M-index [12], pivot table (and all its variants) [11], permutation indexes [5], and
others, that are often based on transformation of the metric space into another
geometric model. The ”good old” hierarchical structures that directly partition
the metric space, e.g., M-tree, (m)vp-tree, GNAT, etc., are often outperformed
by the new MAMs. From this perspective, it might seem that hierarchical MAMs
relying on direct partitioning of the metric space bring an unnecessary overhead
and so they should be abandoned. However, although the hierarchical MAMs ex-
hibit worse performance in traditional queries, such as the range query or the k
nearest neighbor query, for modern retrieval modalities the hierarchies of metric
regions could perform much better. For instance, various iterative queries within
themultimedia exploration area [2] could benefit from the native hierarchy of met-
ric regions where a continuous traversal in the metric space is required.

In this paper, we define a new formalism for construction of compact metric
regions – the cut-regions. The cut-regions allow to simplify the development of
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sophisticated algorithms for construction of a hierarchical MAM. We show how
the formalism can be used for re-definition of the PM-tree structure and the
construction algorithms. Based on the cut-regions we introduce new PM-tree
construction algorithm that leads to more compact PM-tree hierarchies (and so
faster similarity search). Note that compact hierarchy of metric regions is not
only beneficial for efficiency of traditional queries (range or kNN), but it can also
better serve as a hierarchy of clusters that can be used in exploration queries,
data mining, and other tasks.

1.1 Paper Contributions

The paper contributions can be summarized into three main points:

– The new cut-region formalism, that is suitable for simplified description of
compact metric regions. Cut-regions can be utilized in new or existing metric
indexing structures and algorithms, as demonstrated on the PM-Tree.

– New cheap dynamic construction techniques for the PM-Tree, that can com-
pete with expensive multi-way leaf selection strategies.

– Thorough experimental evaluation including also comparison with the state-
of-the-art MAMs and comparison with the spatial indexing structure R-Tree.

Since the idea of cut-region is the key concept used in this paper, we first define
the cut-region and basic operations on them in the following Section 2. Then we
recall and redefine the PM-Tree using the cut-regions in Section 3. In Section
4, we present our new dynamic PM-Tree construction techniques and provide
thorough experimental evaluation in Section 5. Finally, we conclude the paper
and describe our future work in Section 6.

2 Cut-Regions

The popular simple ball-regions, defined only by the center object and the cov-
ering radius, have one main drawback – they cannot tightly describe a cluster
of similar objects in a sparse metric space (see the sparse query ball-region in
Figure 1). Moreover, for metric spaces suffering from higher intrinsic dimension-
ality, the ball-regions become useless. The reason is simple – since only the center
object is considered as a pivot, there is no additional information describing re-
lations between the remaining objects in the region. However, if a static set of
k global pivots is employed, the remaining objects can be ordered to each pivot
separately and the original ball-region can be further cut off by rings (where a
ring is an annulus centered in pivot). In other words, the ring for a particular
global pivot is determined by the distances to the closest and the farthest object
to the pivot. The definition can be further extended to support list of rings for
each pivot. An example of the difference between cut-region and the ball-region
is depicted in Figure 1. The idea of cut-regions was first used in the PM-Tree
[14,18], though here it was not described as a standalone formalism but as a part
of the PM-Tree itself. Since cut-regions with their operations can be utilized also
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in other metric indexes, we have decided to separate this compact metric unit
from the PM-Tree into the following definition.

Definition 1 (Cut-Region). Let (U, δ) be a metric space, Ball(o, ro) be a sub-
set in a database S ⊂ U delimited by a ball (o, ro), pi ∈ P ⊂ U be k global
pivots in a pivot set P, and hr set of k intervals where hri = 〈hrmin

i , hrmax
i 〉,

hrmin
i = minj{δ(pi, oj)}, hrmax

i = maxj{δ(pi, oj)}, ∀oj ∈ Ball(o, ro), then triplet
CR(o, ro, hr) is called the cut-region. If ro = 0 then all the intervals hr are set
to hrmin

i = hrmax
i = δ(pi, o) and the cut-region represents only a simple point.

Such cut-region is denoted as CR(o, 0, hro).

The cut-region in combination with an appropriate set of global pivots is sup-
posed to be a core representation of a metric space region. First, the cut-region
allows to determine a center of the cluster o and controls the proximity of the
objects via the radius ro. Second, the cut-region utilizes the rings to cut off
the ”empty space” of the original ball-region. In the task of the metric space
clustering and indexing, the cut-region is a suitable unit for a compact cluster
description and representation. It is comparable to permutation-based regions,
where the proximity of two objects is approximated by the similarity of their
permutations, however, the cut-region further controls the object locality via the
ball-region center o and radius ro.

 

 

 

 
   

 

 

 

 

 

 

  

 

 

Fig. 1. Cut-region and a query ball-region

In the following paragraphs, we propose few definitions and lemmas enabling
simpler definition and description of index operations employing cut-regions. The
proofs are omitted for the lack of the space, however, they are either trivial or
they can be simply derived from lemmas in Section 7 of [19]. For correct filtering
during range or kNN query processing, we propose the following lemma.

Lemma 1. Let CR = Cut(o, ro, hr) be a cut-region and B = Ball(q, rq) be a
ball-region, if δ(o, q) > ro + rq or for some interval hri it holds hri ∩ 〈δ(pi, q)−
rq, δ(pi, q) + rq〉 = ∅ then CR and B do not share any object.
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During indexing, new objects could be inserted into existing cut-regions. Since a
new object represents a trivial cut-region, the following definition formalizing the
inclusion of two cut-regions is proposed. Let us also denote, that the inclusion
test (or a weaker form of the test) can be requested for two nontrivial cut-regions
(r > 0) in hierarchically organized indexing structures.

Definition 2 (Cut-regions inclusion). The cut-region CRA = Cut(oA, rA,
hrA) includes a cut-region CRB = Cut(oB, rB , hr

B) if δ(oA, oB) + rB ≤ rA and
also for each interval hrBi holds hrBi ⊆ hrAi . Formally we write CRB ⊆ CRA.

The cut-region inclusion is a geometric relation between two cut-regions CRA

and CRB .

2.1 Operations on Cut-Regions

In this subsection we defined two operations, the cut-region extension and the
cut-region reduction that are supposed to be frequently employed operations in
the dynamic indexing techniques.

At some point of indexing it is impossible to fit the new object into an existing
cut-region. Then some suitable cut-region has to be selected and extended by the
new inserted object (again treated as the cut-region) or even by a new inserted
cut-region in the case of a bulk-loading operation. For such reasons, we define
the cut-region extension (the left arrow in Figure 2) as follows.

Definition 3 (Cut-region extension). Let CRA = Cut(oA, rA, hr
A) and

CRB = Cut(oB, rB , hr
B) be two cut-regions, the regionCRE = Cut(oA, rE , hr

E),
where rE = max{δ(oA, oB) + rB , rA} and hrEi = hrAi ∪′ hrBi , represents the ex-
tension of the cut-region CRA by the cut-region CRB. Formally we write CRE =
CRA ← CRB .

Note 1. The cut-region extension is not a commutative operation, because we
expect that the first operand CRA represents an index node, while the second
CRB is always somehow absorbed by the first one.

Since the holes in the intervals are not allowed in our strict cut-region definition,
the slightly modified operation ∪′ for two intervals, removing potential holes,
has to be utilized. Then, the cut-region extension satisfies also the cut-region
definition as stated in the following lemma.

Lemma 2. Let i1, i2 be two intervals, the cut-region extension utilizing opera-
tion ∪′ for intervals, defined as i1 ∪′ i2 = 〈min{imin

1 , imin
2 },max{imax

1 , imax
2 }〉, is

cut-region.

The dynamic rearrangements of the objects within an index can significantly
improve the index performance. For such reasons, some objects from a cut-region
can be removed from their former locations and reinserted into the new ones and
thus we discuss also a cut-region reduction operation (the right arrow in Figure
2). For simplicity, we consider only removal of a trivial cut-region with the zero
radius and we also disable removal of oA from Cut(oA, rA, hr

A).
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Definition 4 (Cut-region reduction). Let CRA = Cut(oA, rA, hr
A) and

CRB = Cut(oB, 0, hr
oB ) be cut-regions, oA �= oB and oB ∈ Ball(oA, rA),

then CRR = Cut(oA, 0, hr
oA) ← Cut(oi, 0, hr

oi), ∀oi ∈ Ball(oA, rA), oi �= oB,
is called the cut-region reduction. Formally we write CRR = CRA − CRB .

Using Cut(oA, 0, hr
oA) ← Cut(oi, 0, hr

oi), ∀oi ∈ Ball(oA, rA), oi �= oB, the re-
duction operation creates constructively the reduced cut-region from the scratch.
In the following definition we describe vectors that store information useful for
indexing algorithms (Figure 3), that need to select cut-regions based on some
criteria. The criteria are often based on an aggregation of the vector components.

 
  

 

 

 

 
 

  
 

 

 

 

 
 

 

 

Fig. 2. Cut-region reduction

Definition 5 (Change vector of cut-region extension and reduction).
Let CRA = Cut(oA, rA, hr

A) and CRB = Cut(oB , rB, hr
B) be two cut-regions,

the k + 1 dimensional change vector cve for extension CRA ← CRB is defined
as {max(δ(oA, oB) + rB − rA, 0), max(hrAmin

1 − hrB min
1 , 0) + max(hrB max

1 −
hrAmax

1 , 0), . . . , max(hrAmin
k −hrBmin

k , 0)+max(hrB max
k −hrAmax

k , 0}. If CRB =
Cut(oB, 0, hr

oB ), oA �= oB and oB ∈ Ball(oA, rA), then the change vector cvr
for cut-region reduction CRR = CRA −CRB is defined using the change vector
for the cut-region extension CRR ← CRB.

In the following section we re-define the PM-Tree using the cut-regions, including
both the PM-tree structure and algorithms.

3 PM-Tree Revisited

The PM-Tree [14,18] is a metric index that conceptually merges the pivot ta-
ble [11] with the M-Tree [6]. More specifically, the PM-Tree enhances the original
M-tree hierarchy by an information related to the static set of k global pivots
pi ∈ P ⊂ U. Thus, the ground entries (representing data) contain also distances
to the global pivots, while the original M-Tree-inherited ball region is further
cut off by a set of rings (centered in the global pivots), so the region ”volume”
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Fig. 3. Change vector of the cut-region extension CRA ← CRB

becomes more compact (see Figure 4a). If we look thoroughly on the defini-
tion of the PM-Tree routing item [14,18], we observe the PM-Tree has already
informally introduced (and inspired) the cut-regions.

In the following subsections we quickly review the basic PM-Tree principles
and slightly redefine the structure of the PM-Tree routing and ground entries,
because we want to adapt the PM-Tree structure to use the cut-region formalism.
The data structure representing the cut-region is defined as:

CR(y) = [y, ry, hr
min, hrmax],

where y is the center of the cut-region, ry is the maximal distance δ(y, oi), ∀oi ∈
CR(y) and hrmin/hrmax are k-dimensional arrays of (min/max) distances to k
global pivots.

3.1 PM-Tree Structure

The PM-Tree consists of inner nodes with routing entries and leaf nodes with
ground entries. A routing entry in a PM-Tree inner node is defined as:

routPM (y) = [CR(y), δ(y,Par(y)), ptr(T (y))],

where CR(y) is a cut-region, δ(y,Par(y)) is the distance from y to the parent
routing object, and ptr(T (y)) is a pointer to the child node. A ground entry in
a PM-Tree leaf node is defined as:

grndPM (z) = [CR(z), id(z), δ(z,Par(z))],
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Fig. 4. (a) PM-Tree with 2 pivots (p1, p2). (b) Projection of PM-Tree in pivot space.

where CR(z) is a cut-region1, δ(y,Par(y)) is the distance from y to the parent
routing object, and id(z) is a unique identifier of object z.

The combination of all the k entries’ ranges (stored in the cut-regions) pro-
duces a k-dimensional minimum bounding rectangle (MBR), and hence the
global pivots actually map the metric regions/data into a pivot space of di-
mensionality k (see Figure 4b). The number of pivots can be defined separately
for routing and ground entries—we typically choose fewer pivots for ground en-
tries to reduce storage cost (i.e., k = kinnerNode > kleafNode). The pivot space
mapping abstraction is much like that one used in pivot tables; however, in
the PM-Tree case the pivot space also includes the hierarchy of MBRs (and so
resembles R-tree partitioning to some extent).

3.2 PM-Tree Querying and Construction

When issuing a range or kNN query, the query object is mapped into the global
pivot space—this requires p extra distance computations δ(q, pi), ∀pi ∈ P. The
query processing starts in the root node and checks all routing entries’ cut-
regions for overlap with the query ball applying Lemma 1. If a cut-region cannot
be filtered, the child node of the corresponding routing entry is visited. If a leaf
node is reached, all stored cut-regions are checked using Lemma 1 and all non-
filtered objects are included in the (candidate) result set. Besides the Lemma 1,
also the parent filtering rule [6] can be utilized to improve the filtering power
of the PM-Tree. Note that applying Lemma 1 does not require many explicit
distance computations, so the PM-Tree usually achieves significantly lower query
cost when compared with the M-Tree [14,18,15,17].

The PM-Tree construction algorithm is very simple extension of the original
M-Tree construction algorithm. The only difference is the maintenance of the
hrmin/hrmax arrays stored in the cut-regions.

1 In the leaf node, the radius is set to zero and hrmin/hrmax refer to the same array.
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4 Improving the PM-Tree Construction

In this section, we present algorithms for the basic cut-region operations used
almost in all new techniques – the cut-region inclusion, cut-region extension and
how to determine the change vector of the cut-region extension (all defined in
Section 2). Then we consecutively introduce our new dynamic PM-Tree con-
struction techniques (leaf selection strategies, splitting and forced reinserting)
that are based on the cut-regions. Let us also emphasize, that we can consider
the new inserted object as a cut-region. For the lack of the space we do not
provide pseudo-codes for all the new algorithms, although they would make the
techniques more clear.

4.1 Cut-Region Operations

The implementationof cut-regionoperationsCutRegionInclusion(CRA,CRB,
numberOfPivots) or CutRegionExtension(CRA, CRB , numberOfPivots)
consists of one simple loop, where the hrmin and hrmax are employed/updated.

In the Algorithm 4.1 we demonstrate how to determine and aggregate the
change vector of the cut-region extension. The result serves as a criterion in the
leaf selection strategies or the node split function using cut-regions.

The LossOfCutRegionReduction(CRA, CRB, numberOfPivots,
bestResultSoFar, agr) algorithm used for example in the new forced rein-
serting algorithm can be implemented using CutRegionReduction(...) and
GrowthOfCutRegionExtension(...) algorithms.

Algorithm 4.1. GrowthOfCutRegionExtension(
CRA, CRB, numberOfPivots, bestResultSoFar, agr) �→ Result

1: Let ChV ector be a (numberOfPivots +1) dimensional vector of zeros
2: if CRA.ry < δ(CRA.y, CRB .y) + CRB .ry then
3: ChV ector[0] = δ(CRA.y, CRB .y) + CRB .ry −CRA.ry
4: for (i = 1; i < numberOfP ivots+ 1; i++) do
5: if CRA.hr

min[i] > CRB .hrmin[i] then
6: ChV ector[i] += CRA.hr

min[i] −CRB.hr
min[i]

7: if CRA.hr
max[i] < CRB .hrmax[i] then

8: ChV ector[i] += CRB .hrmax[i] −CRA.hr
max[i]

9: Result = agr(ChV ector) // aggregate values of ChV ector
10: if Result > bestResultSoFar then // impossible to get better result
11: break

12: return Result

In this subsection we have introduced basic cut-region algorithms that are
used as puzzle pieces in the new PM-Tree construction techniques in the following
subsections.
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4.2 Leaf Selection Strategies Using Cut-Regions

The PM-Tree [18] is generally built in the bottom-up manner so a suitable leaf
selection strategy has a crucial impact on the quality of the resulting hierarchy as
has been shown for its predecessor M-Tree in [10] and [16]. The original PM-Tree
construction technique is very simple – as in the original M-Tree construction
technique, the PM-Tree employs only the ball regions determined by its routing
entries. In fact, the PM-Tree construction algorithms ignore the rings used to
cut empty space in the covering ball regions, thus a newly inserted object can
drastically increase the volume of the corresponding cut-regions. Therefore, our
new leaf selection strategy considers also the rings delimiting the borders of the
cut-regions. In other aspects, the new leaf selection strategy follows the necessary
rules that preserve the original PM-Tree invariants [18].

More specifically, the new technique utilizing the cut-regions changes the no-
tion of the ’good’ candidate node for all variants of the leaf selection strategies
(single/multi/hybrid-way). For the single-way leaf selection strategy, such node
becomes the best candidate, the parent routing cut-region of which covers the
newly inserted object (wrapped in the cut-region) and its routing object is as
close to the new object as possible. All covering child nodes of the best candidate
node are then followed down to the next PM-Tree level, while, again, only the
best one is selected as the candidate node, and so on. After the pre-leaf level
is reached, the candidate pre-leaves are checked for the best routing entry and
the respective leaf is returned as the finally selected leaf. In the situation when
no candidate node can be selected at a level (i.e., the new object is not covered
by any node’s cut-region), the technique selects such node that guarantees the
minimal growth of its cut-region (for more details see Algorithm 4.2). For the
multi-way leaf selection strategy, more nodes can become good candidates (cut-
regions of their parent routing items cover the newly inserted object) and all
covering child nodes of the candidate nodes are then followed down to the next
PM-tree level. The multi-leaf selection leads to the optimal leaf node, however,
for much higher construction costs. For more details about the multi/hybrid-way
leaf node selection techniques see [16].

4.3 Node Splitting Using Cut-Regions

The new node split algorithm is based on the original (P)M-Tree splitting – the
distance matrix is evaluated, two new routing items are selected from the overfull
node and all the remaining entries are distributed between them. Similarly as
in the leaf selection strategy, the original (P)M-Tree split algorithm considering
only ball regions deteriorates the newly created cut-regions in the PM-Tree.
Hence, our new split algorithm focuses on the ”volume” of candidate cut-regions.
However, to create the candidate cut-regions and check their properties is much
more time consuming task. Therefore, instead of all possible pairs of candidates
only a fraction of all possible pairs is checked.

When assigning an entry ek from the overfull node to a candidate routing
item cri, a growth score function GS(cri, ek) = GrowthOfCutRegionEx-

tension(cri, ek, numberOfPivots, MAX V alue, SUM) is utilized. Checking
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Algorithm 4.2. SingleWayForCutRegions(
PMTreeInnerNode, NewPointCR, numberOfPivots) �→ Leaf

1: candidate = null
//first try to find node containing new region - change vector of the extension = 0

2: for each routingEntry in PMTreeInnerNode do
3: if CutRegionInclusion(routingEntry.CR,NewPointCR, numberOfP ivots)

and δ(routingEntry.CR.y,NewPointCR.y) is minimal then
4: candidate = routingEntry

5: if candidate is null then //we haven’t found perfect candidate yet
6: bestResultSoFar = MAX VALUE
7: for each routingEntry in PMTreeInnerNode do
8: result = GrowthOfCutRegionExtension(routingEntry.CR,

NewPointCR, numberOfP ivots, bestResultSoFar, SUM)
9: if result < bestResultSoFar then
10: candidate = routingEntry
11: bestResultSoFar = result

12: CutRegionExtension(candidate.CR, NewPointCR)

13: if candidate.P tr(T (y)) is leaf then
14: return candidate.P tr(T (y))

15: return SingleWayForCutRegions(candidate.P tr(T (y)), NewPointCR,
numberOfP ivots)

one candidate pair consists of two steps, both employing the CutRegionEx-

tension(...) operation. First, until the minimal utilization is reached, the en-
tries ek with minimal GS(cri, ek) and GS(crj , ek) are alternatively distributed
between the two candidates cri and crj (cut-region extension operation is per-
formed after each assignment). When the minimal utilization is reached, the
entry ek is assigned to cri if GS(cri, ek) < GS(crj , ek), otherwise the entry ek is
assigned to crj .

Finally, we select such candidate pair the greater cut-region of which is mini-
mal among all candidate pairs (analogy to mMaxRad heuristic from the (P)M-
Tree). The size of the cut-region is measured as sum of all ring widths. We denote
this split heuristics as the mCutReg.

4.4 Reinsertion Using Cut-Regions

When redesigning forced reinsertion for cut-regions, the most important question
is – which objects are optimal for forced reinserting from an overfull node?
Instead of considering only the most distant objects from the parent routing
entry, the hrmin and hrmax distances to global pivots also have to be taken into
account. Trivially, for k reinserted objects, all possible k-tuple candidates can
be checked (i.e., subtracted from the cut-region while the resulting cut-region is
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Fig. 5. Forced reinsertion from a cut-region

scored). To reduce an indisputable overhead of the trivial solution, we propose a
simple heuristics selecting sub-optimal candidate tuple of objects for reinserting.
Let pinnerDif

i /pouterDif
i be the absolute value of difference of two closest/farthest

objects from pivot pi (see Figure 5). Then, each object oj closest/farthest from

pivot pi can be assigned a value pinnerDif
i /pouterDif

i (see the table in Figure 5).
Such value can be utilized as a criterion for reinserting – the value determines
how much the cut-region is reduced (according to the pivot pi). Moreover, if an

object oj has assigned more pinnerDif
i /pouterDif

i values, their sum determines the
overall reduction of the cut-region. Hence, we use this sum as a score function
when determining a k-tuple of objects that should be reinserted – we reinsert k
objects with the highest score. To the resulting score function, we include also
youterDif that represents the reduction of the cut-region radius ry (y is a local
pivot). The subsequent reinsertion processing is the same as used in [10] and [16]
for forced reinserts in the M-Tree.

5 Experimental Evaluation

5.1 The Testbed

We made use of the ALOI database [7] comprising 72,000 images extracted in
the same way as in [1], the CoPhIR subset [3] comprising 641,000 76-dimensional
feature vectors (12-dimensional color layout and 64-dimensional color structure),
ColorHistograms (subset of Corel [9]) comprising 68,000 color histograms, and
synthetic dataset Synthetic comprising 250,000 10-dimensional points randomly
generated from unit hypercube. To compare two feature signatures from the
ALOI dataset, the Signature Quadratic Form Distance using Gaussian Simi-
larity Function was employed (particular alpha is always denoted in graphs).
The other datasets were vectorial and the Euclidean distance was employed. In
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the experiments, we have focused on both real time and distances computations
spent during the construction and query processing. The query costs were al-
ways averaged for 200 uniformly distributed query objects (only 100 for ALOI
dataset). The tests ran on Intel Core i7 920 3.4 GHz, 9 GB RAM, Win 7 x64.

5.2 The Results

First, we have investigated combinations of the new proposed construction tech-
niques and compared them with the original PM-Tree construction techniques.
Second, we have compared the improved PM-Tree with several state-of-the-art
metric and spatial access methods. For better orientation we use only abbrevia-
tions for all the methods based on PM-Tree (see Table 1).

Table 1. Abbreviations of the presented methods based on PM-Tree

Method Description

SW BR single-way leaf selection using ball regions
SW BR RI single-way leaf selection using ball regions and reinserting
MW BR multi-way leaf selection using ball regions
MW BR RI multi-way leaf selection using ball regions and reinserting

SW CR single-way leaf selection using cut-regions
SW CR RI single-way leaf selection using cut-regions and reinserting
MW CR multi-way leaf selection using cut-regions
MW CR RI multi-way leaf selection using cut-regions and reinserting

All the methods using ball-regions (marked with BR) employ the mMaxRad
node splitting strategy, while all methods using cut-regions (marked with CR)
employ the mCutReg node splitting strategy described in Section 4. We have
set the capacity of the PM-Tree nodes to 20 entries and the minimal utilization
of the node to 40%. We have used the same number of pivots both for ground
and routing entries.

5.3 Comparison with the Original PM-Tree Construction
Techniques

First we have focused on the overall comparison of all new proposed construc-
tion techniques based on cut-regions with the original PM-Tree construction
techniques based on ball-regions. In the top two graphs in Figure 6 the query
and indexing costs are presented for the growing number of global pivots. As
you can see, the best method for fast query processing is still the original
MW BR RI, but it has also very high indexing cost. However, for a sufficient
number of pivots all the methods based on cut-regions are getting really close
to MW BR RI query performance, but with significantly lower indexing cost.
Especially, cheap SW CR and SW CR RI become promising methods both in
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Fig. 6. Indexing and querying costs depending on the growing number of global pivots.
The top legend is the same for both graphs in the top part. The bottom part shows
indexing vs. query cost and the effect of the number of sampled pairs during mCutReg
splitting heuristic.

querying and indexing aspects. Let us also emphasize that the cut-region meth-
ods based on the expensive multi-way strategy are worse than the cheap single-
way approaches.

In the left-bottom graph in Figure 6, a connection between indexing and query
cost of all methods is depicted. The original methods (SW BR, SW BR RI,
MW BR, MW BR RI) suffer from the classic trade-off problem – lower query
cost is paid by expensive indexing, and vice versa. The methods utilizing the
cut-regions are exhibit better trade-off – especially SW CR and SW CR RI can
be considered as cheap variants of the expensive multi-way techniques. In the
right-bottom graph in Figure 6 the effect of the sample size used duringmCutReg
splitting is investigated. As you can see, if all possible pairs are used the indexing
is really expensive, while the query time is the same as for much smaller sample
sets. Hence, we fixed the sample size to 20% of all possible pairs. With this
setting, indexing and querying are relatively balanced. Of course, the results
also depend on the selected dataset and on distance employed. When using an
expensive metric (such as SQFD), the sample set size can be larger (25%) because
the distance matrix evaluation cost becomes dominant during node splitting.

In Figure 7, we have focused on cheap single-way indexing methods employing
reinserting (i.e., the practical ones) and compared them on two different datasets
under varying number of pivots and database sizes. On both datasets, the query
and indexing costs of the SW CR RI were lower than for SW BR RI. For 20-40
pivots on the ALOI dataset, the query cost of the SW CR RI was reduced down
to 60% of the SW BR RI cost.
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and for varying database sizes
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count equals to the corresponding dimension.

5.4 Comparison with other Metric and Spatial Indexes

In the last set of experiments, the competitiveness of the improved PM-Tree was
validated by inter-MAM comparison and even by comparison with the spatial
access method R-Tree. In the top part of Figure 8, we may observe that the
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PM-Tree SW CR RI outperforms the other MAMs especially for lower query
selectivities (i.e., larger query radius). The good performance for larger query
radius is caused by the use of many local pivots dynamically created during PM-
Tree construction. Hence, the PM-Tree is a good choice for applications where
larger query results are expected.

In the bottom part of Figure 8, the PM-Tree and the R-Tree are compared on
the low-dimensional synthetic spatial data (the domain of the R-Tree). In the
left-bottom graph, we may observe the indexing time, where from dimension five
the PM-Tree indexing becomes cheaper. In the right bottom part, both similarity
and window queries were investigated, however, only tentatively – we have to
emphasize, that the range/kNN query for the R-Tree and the window query for
the PM-Tree are not natively supported, and thus were just simply simulated2.
As expected, the R-Tree works better with window queries, while the PM-tree
works better with similarity queries. However, in the case both query types are
requested, the PM-Tree can be a good single-index compromise.

6 Conclusions and Future Work

In this paper, we have defined the cut-regions enabling construction of compact
metric regions. The formalism was used to re-define the PM-Tree and also used
to improve the PM-Tree indexing techniques, which resulted in both cheaper and
more compact hierarchies. The proposed new techniques are applicable in prac-
tice (cheap indexing) and, at the same time, the techniques can even compete
in the query performance with order-of-magnitude more expensive multi-way
strategies. The PM-Tree also demonstrated its competitiveness in comparison
with other indexing structures. In the inter-MAM comparison (including Pivot
Tables and M-Index) the PM-Tree proved best performance for queries with
larger radius. Finally, the PM-Tree can be used as a spatial access method pro-
viding good performance for similarity queries and not so bad performance for
window queries. In the future, we plan to investigate batch loading strategies
using cut-regions, that will make the PM-Tree indexing even cheaper. We also
plan a more sophisticated window query algorithm in the PM-Tree.
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Abstract. In this paper, we study the well-known algorithm of Bentley
and Saxe in the context of similarity search in metric spaces. We apply
the algorithm to existing static metric index structures, obtaining dy-
namic ones. We show that the overhead of the Bentley-Saxe method is
quite low, and because it facilitates the dynamic use of any state-of-the-
art static index method, we can achieve results comparable to, or even
surpassing, existing dynamic methods. Another important contribution
of our approach is that it is very simple—an important practical con-
sideration. Rather than dealing with the complexities of dynamic tree
structures, for example, the core index can be built statically, with full
knowledge of its data set.

1 Introduction

Many modern applications require efficient similarity retrieval, including applica-
tions in multimedia (to find similar images, audio in digital-repositories), pattern
recognition (to identify finger-prints, face images in image databases), and string
searching (to find words in a dictionary while permitting spelling errors). In such
applications, the search problem is often stated in terms of distance-search in a
metric space. That is, given a metric d over a universe U, and a data set D ⊂ U,
find the objects in D that are closest to some query q ∈ D (either all within a
search radius r, or the k nearest neighbors, k-NN).

Rather than performing a linear scan of the full data set, it is common to
preprocess the data set by building an index structure by exploiting the met-
ric axioms (the triangular inequality in particular). Most existing such index
structures are static.1 That is, the index is built with access to the full data set,
and if an object is to be added or deleted, a full rebuild of the entire index is
required. This is, of course, time consuming and computationally intensive. To
accommodate these operations, some special-purpose dynamic index structures,
supporting additions and deletions at low cost, have been proposed. Maintaining

1 Based on an analysis of the proceedings of the International Workshop on Similarity
Search and Applications.
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the integrity and performance of such a structure over time, with only incremen-
tal information, can be challenging; such structures can be more complicated, as
well as less able to utilize global information about the data set.

In this paper, we study the Bentley-Saxe (BS) [1] algorithm in the context
of similarity search in metric spaces. BS is a tool that allows us to transform a
static data structure into a dynamic one for any decomposable search problem
(as explained in Section 3). This means that we can still use the state of the
art in static indexing, even if we need the functionality of a dynamic indexing
method, without losing the ability to globally analyze the data set, and without
adding any appreciable complexity. In fact, the Bentley-Saxe method can use
the indexing methods as black-box modules, permitting a clean separation of
the (static) indexing and the dynamism.

This paper is organized as follows. Section 2 describes some related work. The
Bentley-Saxe method is explained in Section 3. Section 4 provides our experi-
mental results. Some concluding remarks are given in section 5.

2 Related Work

In this section we briefly overview some relevant static and dynamic metric
indexing structures. For further details, refer to the tutorial by Hetland [7] and
book by Zezula et al. [13]. We consider two well-known static methods (the VP-
tree and the SSS-tree) as well as two dynamic ones (EGNAT and the DSA-tree).

The vantage point (VP) tree [12] is a static balanced binary tree. During con-
struction, the VP-tree first selects a representative object p (a so-called vantage
point) from the dataset D and computes the medianm of the distances between p
and the other objects in the dataset. Then it divides the dataset into two subsets
D1 and D2 such that D1 = {x ∈ D | x �= p, d(p, x) ≤ m} and D2 = D\ (D1∪{p}).
The algorithm recursively builds left and right subtrees for D1 and D2, if they are
not empty. A range query q with radius r is performed by recursively traversing
the tree from the root to leaves. For each visited node, d(q, p) is computed and
p is reported if d(q, p) ≤ r. It is necessary to visit in the left subtree only if
d(q, p)− r ≤ m, and similarly, for the right subtree only if d(q, p) + r ≥ m.

There exists a dynamic version of the VP-tree [6]. However, it is not at all
straightforward to implement correctly, and in some cases it is still unable to
avoid periodic reconstruction of subtrees or even of the entire tree.

Brisaboa et al. have proposed a static index structure so called the Sparse
Spatial Selection (SSS) tree [3], in which the first object in a dataset is selected
as the first cluster center and then the rest of the objects become new cluster
centers if they are far enough away (i.e., the minimum distance between the
object and current cluster centers is greater than αM , where α is an user-defined
parameter and M is the maximum distance between any two objects) from all
current centers; otherwise, they are assigned to the cluster associated with the
nearest center. The process is recursively applied to those clusters that have not
yet fallen below a given size threshold.



Static-to-Dynamic Transformation for Metric Indexing Structures 103

The Geometric Near-neighbor Access Tree (GNAT) [2] is a multiway static
tree and is built as follows. First, a set of pivots are selected at random and
then the rest of the objects are assigned to a region associated with the closest
pivot. Examples of a GNAT are shown in Figure 1a, 1b. For each region, the
minimum and maximum distances to the other regions’ objects are kept for
efficiently filtering out non-promising regions in the search, meaning that a region
is discarded if the query ball does not intersects with this distance interval. The
subtrees are recursively built for all regions associated with the pivots.

The Evolutionary GNAT (EGNAT) [11] is a dynamic version of GNAT. The
root is initially created as a leaf node. The insertion algorithm traverses the
index structure by choosing the subtree associated with the closest pivot until
a leaf node is reached. If the leaf node has a room for the new object, it is
added there. Otherwise, the leaf node is transformed into an internal node by
selecting pivots and distributing its objects into new child (leaf) nodes. The leaf
nodes also keep information about distances to their parent objects. During the
search this information is used to establish lower bounds to the actual distances
between the query and objects.
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Fig. 1. Examples of (a) a GNAT space decomposition with hyperplanes between O8,
O11, O13 and O16, (b) the corresponding GNAT tree, and (c) a SA-tree with the root
O6

The spatial approximation (SA) tree [8] is based on an approach that is com-
pletely different from the hierarchical space decomposition of the other trees.
First an arbitrary object is selected as the root of the tree and a set of its neigh-
bors is selected as follows. An object is inserted in the neighbor list if it is closer
to the root than all current neighbors. Otherwise, the object is assigned to a
subset associated with its closest neighbor. Then, for each subset the procedure
is applied recursively. Figure 1c shows an example of a SA-tree. The search al-
gorithm uses a best-first branch-and-bound approach, like most metric search
algorithms.

Navarro et al. [9] have shown that the SA-tree can be built dynamically, and
they call the resulting structure the dynamic SA (DSA) tree. They manage to
preserve the semantics of the SA-tree by introducing a time-stamp for every
object. These time-stamps are then used during search, to ensure that only



104 B. Naidan and M.L. Hetland

distance relationships that were known at the time of insertion are used when
filtering out objects, to avoid false dismissals.

3 The Bentley and Saxe Algorithm

The main data structure of BS is a set of m = �log2 n�+ 1 buckets2 B0, B1, ...,
Bm−1 and each bucket Bi is either empty or a static data structure that con-
tains a collection of objects with size 2i. To insert a new object into the index,
the algorithm follows the same principle that is used for incrementing a binary
counter, where the i-th bit denotes the absence or presence of a static index
structure in the bucket Bi. The search is performed by accessing non-empty
buckets and combining the results. The pseudo-code is sketched in Algorithm 1.
We note that the search starts from Bm−1 to B0. This may affect to the efficiency
of k -NN search (by shrinking the covering radius of the current k-NN candidate
set as much as possible early on).

Algorithm 1. Static to dynamic transformation

1: function Init():
2: B0 ← null ;m = 0

3: function Insert(x):
4: D ← {x}
5: Find minimum k such that Bk = null
6: for i ← 0 to k − 1:
7: D ← D ∪ Unbuild(Bi)
8: Bi ← null

9: Bk ← Build(D)
10: if k = m:
11: Bm+1 ← null ;m ← m + 1

12: function Query(q):
13: ans ← ∅
14: for i ← m − 1 downto 0:
15: if Bi �= null :
16: Search using q in Bi and update ans with results

17: return ans

Let us consider an example of the insertion of a new object into the existing
data structure. The example is illustrated in Figure 2.

Let the buckets B0, B1, . . . , Bk+2 be non-empty. Thus, the first empty bucket
is Bk+3. We build an index structure for bucket Bk+3 containing the new ob-
ject and all the objects stored in buckets B0, B1, . . . , Bk+2. After building this
structure, buckets B0, B1, . . . , Bk+2 are nulled. Buckets Bk+4 and upward are
unchanged.

Now consider the asymptotic running time and space requirements of this
approach. Let T be a static metric index structure with size ST (n) that can be

2 For a dynamic index, the number of buckets is, of course, unknown at the outset.
The problem size n is the number of objects added so far.
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Fig. 2. Illustrations of an index structure before the insertion of a new object (left)
and after the insertion (right)

built in time CT (n) and perform a query in time QT (n). Under some natural
assumptions3 BS gives us a dynamic metric index structure T ′ based on T that
requires the storage ST ′(n) = O(ST (n)), construction time CT ′ (n) = O(CT (n)),
query time QT ′(n) = O(log n · QT (n)) and an amortized insertion time for n
elements of IT ′(n) = O(log n · CT (n)/n).

The original version of BS method was not designed to handle deletions effi-
ciently. Consider, for example, the scenario where we have a single non-empty
bucket Bk, containing 2k objects. To delete an object now, we have to split
Bk into B0, B1, . . . , Bk−1. This entails building k index structures, might be
computationally expensive. To address this, Overmars et al. [10] weakened the
condition of the BS method so that every bucket Bk can be either empty or a
static data structure which stores at least 2k−2 and at most 2k objects. With
this new condition, our deletion would affect only on Bk−2, Bk−1 and Bk. The
approach of Overmars et al. is shown in Algorithm 2.

In line 7, we mark o as deleted in Bk. The bucket Bk might not be rebuilt
until its total number of objects becomes 2k−2. That would, of course, affect
the search performance. In order to decrease this effect, we introduce parameter
tuning option in between lines 8 and 9. There are a lot of possibilities for the
parameter tuning. For instance, the bucket Bk is rebuilt each time when 2k−3

objects have been deleted from that bucket. This strategy will be tested in our
experiments.

4 Experiments

In this section we present our experimental evaluation of two new dynamic trees
based on BS, comparing them against two existing dynamic trees. As the per-
formance measure we used the number of distance computations required to
construct index structures and to answer similarity queries. We have also inves-
tigated the overhead of the BS method, by comparing the build and search times
of the static indexes to those of their transformed, dynamic counterparts. We
have provided performance comparisons of range and k -NN queries, as well as
deletion costs per object and search performances after deletions.

3 For example, that ST and CT are polynomial and that QT is at worst linear.
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Algorithm 2. Overmars and Leeuwen

1: function Insert(x):
2: Replace line 9 of Insert function of Algorithm 1 with the following

if |D| > 2k−1: Bk ← Build(D)

else: Bk−1 ← Build(D) 	 |D| > 2k−2

3: function Remove(o):
4: Perform a range search in Bk to find k such that o ∈ Bk 	 k from m − 1 downto 0
5: if not found o:
6: return false

7: Delete o from Bk 	 |Bk| is decremented by 1

8: if |Bk| > 2k−2:
9: return true
10: elif |Bk| = 2k−2 and k ≥ 2:
11: if Bk−1 �= null :
12: D ← Unbuild(Bk) ∪ Unbuild(Bk−1)

13: if |Bk−1| > 2k−2:
14: Bk−1 ← null
15: Bk ← Build(D)
16: else:
17: Bk ← null
18: Bk−1 ← Build(D)

19: elif Bk−1 = null and Bk−2 �= null :

20: D ← Unbuild(Bk) ∪ Unbuild(Bk−2) 	 |Bk| + |Bk−2| > 2k−2

21: Bk ← null ;Bk−2 ← null
22: Bk−1 ← Build(D)
23: elif Bk−1 = null and Bk−2 = null :
24: D ← Unbuild(Bk);Bk ← null
25: Bk−2 ← Build(D)

26: return true

4.1 The Testbed

We performed experiments using both synthetic data sets, generated by us, and
real-world datasets obtained from the SISAP metric space library [5]. For all
vectors we use the Euclidean distance, unless otherwise stated.

– Uniform 10: Synthetic. 100 000 uniformly generated 10-dimensional vectors
(synthetic).

– Clusters 10: Synthetic. 100 000 clustered 10-dimensional vectors with 10 clus-
ter centers. The centers were randomly chosen from a uniform distribution
and objects in the clusters were generated from the multivariate normal
distribution around each of the cluster centers with a variance of 0.1.

– Uniform 20: Synthetic. 100 000 uniformly generated 20-dimensional vectors.
– Clusters 20: Synthetic. 100 000 clustered 20-dimensional vectors with 100

cluster centers. We followed the same procedure as in Clusters 10 to generate
the cluster centers.

– NASA: 40 150 feature vectors with 20 dimensions extracted from NASA im-
ages.

– Dictionary: a dictionary of 69 069 English words. We use the edit distance (or
Levenstein distance), that is, the minimum number of insertions, deletions,
and substitutions needed to transform one string into another.

– Histogram: a collection of 112 682 color histograms (112-dimensional vectors)
from an image database.
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Table 1. idims of the datasets

Uniform 10 Clusters 10 Uniform 20 Clusters 20 NASA Dictionary Histogram

13.36 9.24 27.64 20.44 5.18 8.49 2.74
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Fig. 3. Distance distribution histograms

Table 1 shows the intrinsic dimensionalities (idims) [4] of the datasets. The
distance histograms of the data sets are shown in Figure 3.

4.2 Experiment Settings

We have applied the BS method to VP- and SSS-trees and call the resulting dy-
namic structures the BS-VP-tree and BS-SSS-tree, respectively. We have com-
pared their performances to two dynamic metric index structures, the DSA-
tree and EGNAT. We set the maximum node fanout of the BS-SSS-tree to 5,
10, 20, 40 and 80. The parameter α was 0.45 for the 20-dimensional and 0.40
for the remaining of the datasets. The value of M is estimated before every
(re)construction of bucket as follows. An arbitrary object in the bucket is se-
lected as the boundary object. Then, the distances between the boundary and
all objects in the bucket are computed 10 times by maximizing the value of M
and renewing the boundary object from current one. The cost of this estimation
is also included in the construction and deletion costs. We used the SISAP imple-
mentation [5] of DSA-tree with time-stamping and bounded arity. The original
authors [9, §5.8] suggested this version of DSA-tree that would give the best
results in terms of construction cost and search efficiency. The maximum arities
of DSA-tree were set to 2, 4, 8, 16 and 32, as in their experiments. For EGNAT,
we set the parameters by trial and error. We used internal node sizes of 4, 8, 12,
16 and 20 and maximum leaf node arities of 5, 10, 20, 40 and 80. In total, we
performed 18 (5+4+3*3) runs (with several) queries.4

We randomly shuffled the order of all objects in each dataset 10 times, obtain-
ing 10 versions of the dataset and the results were averaged over 10 runs using
these versions. For each run, a query set consists of 1000 queries which were
selected from the respective dataset and the remaining objects in the dataset
used for indexing. We selected search radii for range queries so that we cap-
ture on average 0.01%, 0.1% and 1% of the vectors. The search radii were in

4 Note that leaf node size should be greater than or equal to internal node size.
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the range from 1 to 4 for the dictionary, capturing on average 0.003%, 0.042%,
0.361%, and 1.946% of the dataset, respectively. For k -NN search, we compared
the search efficiency of four structures by varying the result size thresholds, using
the values 1, 5, 10, 20, 40 and 80. We report only best results in terms of search
efficiency from the results obtained with different parameters use on every query
set.

For deletions, the deletion costs include both costs of locating the object
that to be deleted (this is usually done with range search with radius 0) and
rebuilding of buckets. First, we constructed the BS-VP-tree and BS-SSS-tree on
the datasets. Then, we deleted every 10% of the corresponding datasets from
BS indexes and obtained the ratio between the number of distance computations
required to answer a query set in the deleted BS indexes and in newly built BS
indexes for the remaining objects in the datasets after deletions.5

We have implemented our experimental framework in C++, which was com-
piled in gcc 4.6.2 with the option -O3. All experiments are performed on a PC
with a 3.3GHz Intel Core i5-2500 processor and 8GiB RAM. We did not use
any caching of distances during the construction of index and query processing.

4.3 The Overhead of BS Index

First, let us consider the construction cost overhead of BS-based index struc-
tures. We constructed the VP-tree, SSS-tree (with maximum node fanout 5),
BS-VP-tree and BS-SSS-tree (with maximum node fanout 5) 10 times on every
10% of various datasets and obtained the ratio between the number of distance
computations that required to build the BS index and static index with the
same settings, with the BS index built incrementally. The mean of ratio was
3.23 (standard deviation 0.61), with minimum and maximum values of 1.69 and
4.27. So in our experiments, the BS index is at most 4.27 times as costly to build
as the corresponding static index. Figure 4 shows the construction cost overhead
of the BS-based index structures using the box plots that display the minimum,
the 25% quantile, the median, the 75% quantile and the maximum value.

The figures show that the average ratio for VP-tree is much higher than the
SSS-tree, and the values for VP-tree are distributed almost evenly. The values for
SSS-tree are positively skewed in general, i.e., it has relatively few high values,
and performed well on the dictionary.

Now let us consider the ratio for index construction time and query set execu-
tion time with all k and search radii. We followed the same principle previously
used for the construction cost ratio to obtain these ratios with 2m−1 objects for
each dataset. The reason is that all the buckets in BS will be non-empty so we
intentionally increase the overhead of BS-based index structures, intending to
elicit the worst-case search performance. The ratios are shown in Figure 5. For
the construction time ratio, the maximum value for BS-VP-tree was 3.62 (with

5 The experiments of deletions with DSA-tree were not performed due to a bug in the
SISAP metric space library. We contacted one of the original authors of DSA-tree
and it became clear that the bug can not be fixed before the conference’s deadline.
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Fig. 4. Construction cost ratio of BS index to static index with same settings

construction time 1.23 s) on the dictionary (Figure 5a) while the maximum value
for BS-SSS-tree was 3.80 (with construction time 11.09 s) on Uniform 20 (Fig-
ure 5d). In Figure 5b, 5c, 5e and 5f, we see that there is almost no search time
difference between static and BS-based index structures on the 20-dimensional
synthetic vectors due to high idims. In all of our experiments, the maximum
value of query set execution time for the static index structures was 19.87 s
while for the BS-based index structures the maximum value was 20.97 s.

4.4 Comparison of Construction Costs

All index structures were built in an incremental fashion, i.e., initially all of the
index structures were empty and then all objects in the datasets were added into
the index one by one. The construction costs are shown in Table 2.

Table 2. Construction costs of index structures on various datasets

Dataset BS-VP-tree BS-SSS-tree EGNAT DSA-tree

Uniform 10 5762240 59199773 3451333 3126671

Clusters 10 5762240 38317600 5327960 3298234

Uniform 20 5762240 208912258 7582301 8631551

Clusters 20 5762240 96468450 8876612 8857394

NASA 1952946 13619821 1646678 1219949

Dictionary 4676487 90720799 4820213 5531384

Histogram 6246315 45558887 9688228 4124772

As the idim of the synthetic datasets increases we see that the datasets become
difficult to index. This increase clearly affects the construction cost of the SSS-
tree. This effect may be due to the fact that every object tends to become a
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Fig. 5. Construction time and query set execution time ratio of BS index to static
index with same settings

cluster center of the tree because all objects are approximately equidistant from
each other in high-dimensional spaces. It should also be noted that the clustering
cost of the SSS-tree is high also in the static case, so this is not an artifact of
our approach.

When considering any overhead in construction, it is important to note that
our method is quite amenable to bulk loading: If a given data set is available at
the outset, or if a large number of objects are added, there is no need to build
the structure incrementally, by adding individual objects. Instead, which buckets
need to be filled can be easily calculated from the total data size, and the objects
can be partitioned among these (e.g., randomly), and the static structures built.
This would mean that there would be no need for multiple rebuilds, and the
overhead would be much lower. For example, if the data size were a power of 2,
there would be no overhead whatsoever. The resulting data structure would still
retain all its dynamic properties. (The overhead in general will, of course, vary
with how close the data size is to a power of 2, either above or below.)

4.5 Query Performance, with and without Deletions

Figure 6 shows the search results over the synthetic datasets and the impact of
dimensionality. The performance of all of the index structures degrades when
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Fig. 6. Performance evaluations on the synthetic datasets
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Fig. 7. Performance evaluations on the real-world datasets
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Fig. 8. Deletion costs and distance computation ratios of deleted BS index to newly
built BS index
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the dimensionality increases, specially for EGNAT and BS-VP-tree. In Figure 7
the search results over the real-world datasets are shown. The BS-VP-tree out-
performs EGNAT for the real-world datasets and is comparable to DSA-tree for
range queries with low selectivity. For the dictionary, the BS-SSS-tree outper-
forms the DSA-tree, achieving up to twice the search efficiency. In all of the
experiments, the BS-SSS-tree outperforms all of the index structures that are
involved in the experiments, a result almost certainly due to the efficiency of the
SSS-tree itself, which comes at the price of a higher building cost. The contri-
bution of our method in this case is that such a tradeoff between build cost and
search efficiency can be made in the first place, by providing a dynamic version
of the SSS-tree.

Deletions were performed on various datasets. We measured the all distance
computation ratios (explained in Section 4.2) for all k and search radii over vari-
ous data sets. The results are shown in Figure 8. Each point in the figures shows
the average of those ratios, while error bar shows standard error. The highest
ratio of search costs is 1.52, and occurs after deleting 70% of the Histogram data
set. The deletion cost of the BS-VP-tree is quite low in all of our experiments.
The highest deletion cost for the BS-SSS-tree was 3129, which resulted from
deleting 40% of the dictionary.

5 Conclusions

We studied the Bentley-Saxe algorithm for static-to-dynamic data structure
transformations and how it can be applied to in similarity search, yielding a
simple method for transforming of static index structures to dynamic ones. We
have also empirically demonstrated that the method has a reasonably low over-
head, both in terms of building and search cost. In fact, this overhead is low
enough that when adapting a particularly efficient static data structure such as
the SSS-tree, we can still achieve search times lower than comparable custom-
designed dynamic data structures. In addition to this increased performance, the
dynamic structures resulting from using the Bentley-Saxe method can be con-
siderably simpler than other dynamic indexes, given that it is simply an isolated
add-on to existing (usually simpler) static indexes.
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Abstract. Metric space searching is an emerging technique to address
the problem of efficient similarity searching in many applications, in-
cluding multimedia databases and other repositories handling complex
objects. Although promising, the metric space approach is still immature
in several aspects that are well established in traditional databases. In
particular, most indexing schemes are not dynamic. From the few dy-
namic indexes, even fewer work well in secondary memory. That is, most
of them need the index in main memory in order to operate efficiently. In
this paper we introduce two different secondary-memory versions of the
Dynamic Spatial Approximation Tree with Clusters (DSACL-tree from
Barroso et al.) which has shown to be competitive in main memory. These
two indexes handle well the secondary memory scenario and are competi-
tive with the state of the art. But in particular the innovations proposed
by the version DSACL+-tree lead to significant performance improve-
ments.The resulting data structures can be useful in a wide range of
database application.

Keywords: dynamic metric indexes, secondary memory.

1 Introduction

As the growth of digital data accelerates in variety and extend, the contempo-
rary databases are bulkier and more complex in nature. To manage this bulk
and complexity increasing new techniques are employed, with the multimedia
data for example, the standard approach is to search not at the level of the
actual multimedia objects, but rather using characteristics extracted from these
objects. In such environments, an exact match has little meaning, a very use-
ful search paradigm is to quantify the proximity, similarity, or dissimilarity of
a query object versus the objects stored in a database to be searched. Simi-
larity or proximity searching have became a fundamental computational tasks
with application in many areas as non-traditional databases, data mining, ma-
chine learning, data compression; and so on. A useful abstraction for nearness is
provided by the mathematical notion of metric space.

In a metric space, there is a universe U of objects and a nonnegative function
d : U × U → R

+ defined among them, that will denote a measure of “distance”

G. Navarro and V. Pestov (Eds.): SISAP 2012, LNCS 7404, pp. 116–131, 2012.
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between objects. This distance function satisfies the three axioms that make
(U, d) a metric space: strict positiveness (d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x =
y), symmetry(d(x, y) = d(y, x)), and triangle inequality ((d(x, z) ≤ d(x, y) +
d(y, z))). The smaller the distance between two objects, the more “similar” they
are. A finite subset X ⊆ U with size n =| X |, is called database and represents
the collection of objects. We are interested to answer similarity queries posed to
this database. That is, given a new object from the universe (a query) q ∈ U ,
we must retrieve all the elements similar enough to the query in the database.
The database is preprocessed so as to build an index that reduces query time.
There are two typical queries of this kind:

Range Query: Retrieve all elements within distance r to q in S. This is, the
set {x ∈ S, d(x, q) ≤ r}.

Nearest Neighbor Query (k-NN): Retrieve the k closest elements to q ∈ S.
That is, a set A ⊆ S : |A| = k and ∀ x ∈ A, y ∈ S −A, d(x, q) ≤ d(y, q).

In this paper we are devoted to range queries. Nearest neighbor queries can
be rewritten as range queries in an optimal way [9], so we can restrict our
attention to range queries. In order to answer queries efficiently the database
is preprocessed so as to build an index that reduces query time. This metric
space approach to similarity search is becoming widely popular [17, 22] and a
large number of indexing methods have flourished [4, 10, 8], but mature solutions
from the database viewpoint are a long way off.

Most of the existing indexes are static: Once they are built for a given dataset,
adding more elements, or removing an element from it, requires an expensive
updating of the index [13]. Some indexes tolerate insertions in principle, but
their quality degrades and require periodic rebuildings, [19–21] among others.
There are some structure parameters that may depend on n and thus require
periodical structural reorganization (e.g., adding or removing pivots is gener-
ally problematic). Others tolerate deletions with the same quality degradation
problem, [3, 6, 2, 20, 21] to name a few. Thus there are few dynamic indexes.

There are also many interesting databases for similarity searching where the
objects are so large that they must stay on disk; or the objects are so many that
the index itself cannot fit in main memory. The total time to evaluate a query,
as it is explained in [4], can be split as: T = distance evaluations ∗ complexity of
d() + extra CPU time + I/O time, and we would like to minimize T . In many
applications, however, evaluating d() is so costly that the other components of
the cost can be neglected. In this case, although the similarity computation can
be expensive (e.g., taking milliseconds of CPU time) we cannot disregard disk
costs. Therefore, we use this model in this article, and hence the number of
distance evaluations performed jointly with the number of I/O operations are
the measure of the complexity of the algorithms.

Algorithms to search in general metric spaces can be divided into two large
areas: pivot-based algorithms and compact partition-based ones. Pivot-based al-
gorithms are better suited for low dimensional metric spaces, while compact
partitions ones deal better with high dimensional metric spaces. Although the
former can improve by using more memory, they need more and more memory
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to beat the latter as dimension grows. On the other hand, indices based on com-
pact partitions use a fixed amount of memory and cannot be improved by giving
them more space. However, there are algorithms that combine ideas from both
areas. For lack of space, we do not cite all the previous works, however complete
surveys about existing methods can be found in [17, 22, 4, 10, 8].

From the few existing dynamic indexes, even fewer work well in secondary
memory. That is, most of them need the data structure in main memory in or-
der to operate efficiently. Although for some applications a static scheme may
be acceptable, many relevant ones do require dynamic capabilities. Actually, in
many cases it is sufficient to support insertions, such as in digital libraries and
archival systems, versioned and historical databases, and several other scenarios
where objects are never updated or deleted. There are some index specifically de-
signed for secondary memory and with dynamic capabilities, such as the famous
M-tree [5], the D-index [7], the PM-tree [18, 12], and EGNAT [16].

In this paper we introduce a new dynamic index aimed at secondary memory.
We base our work on that of Barroso et al, called Dynamic Spatial Approxima-
tion Tree with Clusters (DSACL-tree) [1]. They have shown that the DSACL-tree
gives an attractive tradeoff between memory usage, construction time, and search
performance. Our secondary memory versions, retains these good features, and
in addition perform well in secondary memory. We focus on handling insertions
and searches in this paper, leaving deletions for future works.

2 Dynamic Spatial Approximation Trees

In this section we will describe briefly the Dynamic Spatial Approximation Tree
(DSA-tree), in particular the version called timestamp with bounded arity (re-
ported in [14] as one of the better options for this dynamic tree), on top of which
DSACL-tree [1] was built. The DSA-tree is a data structure to answer similarity
queries in metric spaces based on the concept to approach the query spatially,
getting closer and closer to it, so when we look for an element from the uni-
verse (a query q ∈ U) and being in some element a belonging to the database
S (S ⊆ U), the goal is to move to another object of S spatially closer of q than
a. When it is not possible to do this move anymore, we are positioned on the
element closest to q from S.

The DSA-tree is built incrementally via insertions. The tree has a maximum
arity A. Each tree node a stores a timestamp of its insertion time, time(a), its
covering radius, R(a), and its set of children N(a) (the neighbors of a). To insert
a new element x, its point of insertion is sought starting at the tree root and
moving to the neighbor closest to x, updating R(a) in the way. We finally insert
x as a new (leaf) child of a if (1) x is closer to a than to any b ∈ N(a), and
(2) the arity of a, |N(a)|, is not already maximal. In other case, we insert x in
the subtree of the closest element b ∈ N(a). Neighbors are stored left to right
in increasing timestamp order. Note that each element is older than its children
and than its next sibling.

The idea for range searching is to replicate the insertion process of relevant
elements. That is, we act as if we wanted to insert q but keep in mind that
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relevant elements may be at distance up to r from q. So in each decision for
simulating the insertion of q we permit a tolerance of ±r, so that it may be that
relevant elements were inserted in different children of the current node, and
backtracking is necessary.

We have to consider two facts, at the time an element x was inserted. The first
is that, a node a in its path may not have been chosen as its parent because its
arity was already maximal. So, at query time, instead of choosing the closest to
x among {a}∪N(a), we may have chosen only among N(a). Hence, we perform
the minimization only among elements in N(a). The second fact is that, elements
with higher timestamp were not yet present in the tree, so x could choose its
closest neighbor only among elements older than itself.

Hence, we consider the neighbors {b1, . . . , bk} of a from oldest to newest,
disregarding a, and perform the minimization as we traverse the list. This means
that we enter into the subtree of bi if d(q, bi) ≤ min{d(q, b1), . . . , d(q, bi−1)}+2r.

Up to now we do not really need the exact timestamps but just to keep
the neighbors sorted by timestamp. We make better use of the timestamp in-
formation in order to reduce the work done inside older neighbors. Say that
d(q, bi) > d(q, bi+j)+2r. We have to enter into the subtree of bi anyway because
bi is older. However, only the elements with timestamp smaller than that of bi+j

should be considered when searching inside bi; younger elements have seen bi+j

and they cannot be interesting for the search if they are inside bi. As parent
nodes are older than their descendants, as soon as we find a node inside the
subtree of bi with timestamp larger than that of bi+j we can stop the search in
that branch, because all its subtree is even younger.

3 Dynamic Spatial Approximation Trees between
Clusters

In this section we will describe briefly the Dynamic Spatial Approximation Trees
between Clusters (DSACL-tree) [1]. The DSACL-tree performs the spatial ap-
proximation on groups or clusters of objects that are very close to each other,
rather than individual objects. By this way it can reduce search costs, because it
has to do less backtracking. Therefore, in the DSACL-tree each node represents
a cluster of very similar objects, for short we refer to it simply as cluster. Thus,
we relate the clusters by their proximity in the metric space. So, each node of
the tree would be able to store multiple database objects, reducing the number
of nodes with respect to the original DSA-tree.

As in the DSA-tree we build the tree incrementally, considering a maximum
arity and maintaining information of the timestamp (time of insertion of each
element). We also register the timestamp time(c) of each node c in the tree, that
is the time when this node was created. Each node c keeps an object center(c)
as the center of the cluster and the k nearest objects (cluster(c)) seen in its
subtree, and is connected with their clusters-neighbors N(c). The cluster also
has a cluster radius rc(c), that is considering the objects in increasing order to
the center(c) the distance of the k-th object in the cluster(c). Any object further
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away from the center than rc(c) would become part of another tree node, which
could be a new neighbor in some cases, since the arity is bounded in the same
way as DSA-tree. Each node c also stores the maximum distance between the
center(c) and the farthest object in its subtree R(c) (as DSA-tree does), called
covering radius of the subtree of c. Figure 1(b) shows some details of an example
of DSACL-tree in the subspace of R2, in order to illustrate the concepts of the
covering radius R(c) of a node c, the cluster radius rc(c), and the cluster of each
object cluster(c), the neighbors of a node c are the other nodes pointed from c.
For this example the maximum arity is 3 and maximum cluster size is 2.

Since each node c represents a cluster centered in center(c) with at most k
objects within cluster(c), we maintain the distances between center(c) and all
the objects in cluster(c) ordered by increasing distance to the center. At search
time, we can use these stored distances in order to minimize the number of
distance computations using the triangle inequality. Besides, if x1, . . . , xk are
the objects in cluster(c) sorted by distances, the covering radius of the cluster
will be rc(c) = d(center(c), xk). Therefore, for each object xi inside the cluster,
we stored its insertion moment time(xi) and the distance d(center(c), xi). It is
clear that it is not necessary to really register rc(c) because it can be obtained
from the stored distances inside the node. During searches, both radios rc(c) and
R(c) are used to rule out entire areas of space containing non relevant elements.

Because of the spatial approximation, to insert a new element x, we should
go down the tree until found the node c such that x is closer to center(c) than
the centers of neighbors in N(c). If in cluster(c) there is room for one more
element, then it will be inserted along with its distance. If there is no room, we
must choose the most distant element b among the k elements in cluster(c) and
x (k + 1-th in distance order from center(c)). We have two possible cases:

1. if b is x, then x must be added like center of a new neighbor node of c, if the
arity allows it, otherwise it must choose the node among all the neighbors
in N(c) whose center is the nearest and keep the insertion from there.

2. If b is not x, then b must choose the nearest center a among center(c) and
the center of all nodes neighbors in N(c) that are newer than b because when
b was inserted, it wasn’t compared with them. Later, if a is center(c), the
process followed is the same as when b is x; otherwise, if a is not center(c),
then continues with the insertion of b from the node with center a.

Algorithm 1 illustrates the whole insertion process. The function is invoked as
InsertCl(a, x), where a is the root node and x is the element to be inserted.

When performing a range query, we proceed in a similar way as DSA-tree, that
is we perform the spatial approximation to the query via the centers of nodes. As
we mentioned previously, the idea for range searching is to replicate the insertion
process of the relevant elements to the query. That is, we act as if we wanted to
insert q but keeping in mind that relevant elements may be at distance up to r
from q, so in each decision we simulate the insertion of q permitting a tolerance
of ±r. So that it may be that relevant elements were inserted in a cluster, in
different children of the current node, and backtracking is necessary.
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Algorithm 1. Insertion algorithm of a new element x in a DSACL-tree with
root node a

InsertCl (Node a, Element x)
1. R(a) ← max(R(a), d(center(a), x))
2. If ((|cluster(a)| < k) ∨ (d(center(a), x) < rc(a))) Then

3. cluster(a) ← cluster(a) ∪ {x}
4. d′(x) ← d(center(a), x)
5. timestamp(x)← CurrentT ime
6. If (|cluster(a)| = k + 1) Then

7. y ← argmax z ∈ cluster(a)d
′(z)

8. cluster(a) ← cluster(a)− {y}
9. InsertCl(a,y)

10. Else

11. c ← argminb∈N(a)d(center(b), x)

12. If d(center(a), x) < d(center(c), x) ∧ |N(a)| < MaxArity
Then /* b is a new node, neighbor of a, with center(b) = x */

13. N(a) ← N(a) ∪ {b}
14. center(b) ← x
15. N(b) ← ∅, R(b) ← 0
16. cluster(b) ← ∅
17. timestamp(x) ← CurrentT ime
18. time(b) ← CurrentT ime
19. Else

20. InsertCl (c,x)

In principle, at search time for q with radius r, one should report the root a if
d(a, q) ≤ r, then find the closest element b ∈ {center(c)}∪N(a). Yet, because of
the timestamped insertion process, we have to consider the neighbors b1, hdots, bk
of a from oldest to newest. This is because, between the insertion of bi and bi+j ,
there may have appeared new elements that preferred to be inserted lower index
in bi is missing because bi+j was not yet a neighbor, so we may miss an element
if we do not enter bi because of the existence of bi+j . Only the elements with
timestamp smaller than that of bi+j should be considered when searching inside
bi; younger elements have seen bi+j and they cannot be interesting for the search
if they chose bi. As parent nodes are older than their descendants, as soon as we
find a node inside the subtree of bi with timestamp larger than that of bi+j we
can stop the search in that branch, because its subtree is even younger.

4 Secondary Memory

The distance is assumed to be expensive to compute. However, when we work in
secondary memory, the complexity of the search must consider both the num-
ber of distance evaluations performed and the number of I/O operations; other
components such as CPU time for side computations can usually be disregarded.
Given a dataset of |S| = n objects of total size N and disk page size B, queries
can be trivially answered by performing n distance evaluations and N/B I/Os.
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Algorithm 2. Range query algorithm on a DSACL-tree with root node a

RangeSearchCl (Node a, Query q, Radius r, Timestamp t)
1. If time(a) < t ∧ d(center(a), q) ≤ R(a) + r Then

2. If d(center(a), q) ≤ r Then Report a
3. If (d(center(a), q)− r ≤ rc(a)) ∨ (d(center(a), q) + r ≤ rc(a)) Then

4. For ci ∈ cluster(a) Do

5. If |(d(center(a), q)− d(ci)| ≤ r Then

6. If d(ci, q) ≤ r Then Report ci
7. If d(center(a), q) + r < rc(a) Then Return

8. dmin ← ∞
9. For bi ∈ N(a) in increasing order of timestamp Do

10. If d(center(bi), q) ≤ dmin + 2r Then

11. k ← min{j > i, d(center(bi), q) > d(center(bj), q) + 2r}
12. RangeSearchCl (bi,q,r,time(bk))
13. dmin ← min{dmin, d(center(bi), q)}

The goal of an index is to preprocess the dataset so as to answer queries with
as few distance evaluations and I/O operations as possible. We show only the
number of I/O operations, even if we are aware that a large number of factors
affecting the final speed, because we have limited access to high speed architec-
tures, operating systems and modern hardware.

In DSACL-tree each node has a fixed size, because of this, the structure
seems to be naturally adequate for secondary memory. In this paper, we pro-
pose two different implementations of DSACL-tree having as goal achieve good
performance in secondary memory without compromise the good features of the
original structure. As it can be seen, the main difference between both imple-
mentations is the way it manages and stores the neighbors set N(a) in the disk.

These two implementations make also a partition of the searching space con-
sidering spatial proximity, grouping the closest elements, relating complete clus-
ters by its proximity in the space. This permits that each node of the structure
is capable of storing multiple elements from the database. Also, to avoid disk
underutilization, we will fix the size of clusters and also the maximum arity in
function to the page size available, therefore, each node takes exactly one page
in disk, simplifying the administration of nodes.

4.1 DSACL*-tree and DSACL+-tree

The first version which we call the DSACL*-tree is a direct implementation of
DSACL-tree, this means that the nodes will have exactly the same estructure
of its version in primary memory (to see Figures 1(a), 1(b), and 1(c)). The
DSACL*-tree implements N(a) as a linked list (using the binary tree represen-
tation [11]), thus, each node contains two pointers, the first pointer to the first
neighbors and the second pointer to the rest of the neighbors of the set.

To insert an element x into the DSACL*-tree structure we find the insertion
point in the tree, following a unique path, so that when we determine that x
should be added to a node a because x is closer to a than to any neighbor in
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N(a), already have loaded the page corresponding to a. If a already have its
k elements then it must choose the element furthest from the center from its
k + 1 elements and then choose if x must to be inserted like center of a new
neighbor, if the arity allows it, otherwise the insertion must to continue forcing
x to choose the closest neighbor from N(a) and keeping going down on the tree
recursively. This implementation saves space, since booking room only for two
pointers can completely recover the set N(a) making it possible to accommodate
more objects in each cluster.

The second version which we call DSACL+-tree introduces changes to the
structure of the node with the aim of decrease the number of I/O in the processes
of construction and search (to see Figure 1(d)).
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Fig. 1. Example of a DSACL-tree and corresponding DSACL*-tree and DSACL+-tree

In DSACL*-tree, when the algorithm needs to access to the node a and its
neighbors N(a), it takes |N(a) + 1| inputs. To avoid some I/O operations when
the element to insert must to decide which element is closer the center of the
node or some neighbor, in the DSACL+-tree for each neighbor of a node a, we
will save its object center, its location on the file and its insertion time.
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Note that during an insertion operation, in both versions, the involved pages
are accessed with a disk read operation. The pages that need to upgrade a
coverage radius by inserting the new object, must also to perform a disk write
operation. However, during the search process, the pages are accessible only to
be read, since the search can not change anything in the tree. Searches in both
proposals are performed as in DSACL-tree, which was shown in Algorithm 2.

Because we need to set the size of a node as a size of a page disk, considering
the size needed to represent an element we must to fix the maximum arity and
the cluster size of each node. If the elements are big it is possible to notice that
the arity and the cluster size will be small. However, as it has been demonstrated
in [14, 15], it is not a drawback because small arities were a key factor, for the
DSA-tree, to reduce construction and search costs in several metric spaces.

5 Experimental Results

In order to give a broad picture of the performance of our indexes, we had
selected four widely different metric spaces, all from the SISAP Metric Space
Library (www.sisap.org). The metric spaces considered were:

– WORDS: a dictionary of 69,069 English words. The distance is the edit
distance, that is, the minimum number of character insertions, deletions and
substitutions needed to make two strings equal.

– DOCUMENTS: 1,265 documents under the Cosine similarity, from TREC-3
collection. In this model the space has one coordinate per term and docu-
ments are seen as vectors in this space. The distance we use is the angle
among the vectors.

– IMAGES: 40,700 20-dimensional feature vectors, generated from NASA im-
ages, using Euclidean distance.

– HISTOGRAMS: 112,682 8-D color histograms(112 - dimensional vectors)
from an image database. Euclidean distance is used.

For search experiments, we built the indexes with 90% of the objects and used
the other 10% (randomly chosen) as queries. All our results are averaged over 10
index constructions using different database permutations. We have considered
range queries retrieving on average 0.01%, 0.1% and 1% of the dataset. This
corresponds to radii 0.14, 0.15 and 0.195 for DOCUMENTS, 0.12, 0.285 and
0.53 for IMAGES, and 0.051768, 0.082514 and 0.131163 for HISTOGRAMS.
WORDS have a discrete distance, so we used radii 1 to 4. The same queries were
used for all the experiments on the same datasets.

In order to compare fairly the two versions of DSACL-tree, for each metric
space considered, we need to select the best maximum arity. However, for lack of
space we do not show here the comparison of behaviors for the different arities
used, for search and construction costs. As we mention previously, the maximum
arity allowed also affects the cluster size, that is there exists a tradeoff between
maximum arity and cluster size and this tradeoff affects the number of I/O
operations performed: if the arity was small, the cluster can increase its size,
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and it has showed to be good to minimize the I/O operations. Moreover, for
the same arity the cluster size of DSACL+-tree can be smaller than that of
DSACL*-tree, because DSACL+-tree also stores the centers of its neighbors.

The construction and query costs are compared regarding the number of dis-
tance evaluations and the number of I/O operations because they are the most
expensive operations involved, and they are representative of real costs. Besides,
we can infer the approximate costs regardless of the computer used.

The best arity is determined mainly by its search performance considering
both the number of distance calculations and the number of I/O operations
required, but if the search performances were similar we select the arity that
obtains better construction cost. The best arities obtained for DSACL*-tree, for
each metric space considered, are: arity 2 in WORDS, 8 in DOCUMENTS, 4 in
IMAGES and 2 in HISTOGRAMS. The best arity obtained for DSACL+-tree,
for each metric space considered, are: arity 4 in WORDS, 4 in DOCUMENTS,
4 in IMAGES and 2 in HISTOGRAMS.

Comparing vs other Structures

In this section we compare our structures with some structures representatives
of state of art, they are DSA*-tree and DSA+-tree [15], and M-tree [5], whose
codes are available. For a fair comparison, we have chosen the parameters that

Fig. 2. Construction costs, for all indexes, comparing distance evaluations
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Fig. 3. Construction costs, for all indexes, comparing the number of I/O operations

Table 1. Fill ratio for the different datasets

Fill ratio
Dataset DSA*-tree DSA+-tree DSACL*-tree DSACL+-tree

WORDS 83% 66% 69% 70%
DOCUMENTS 84% 68% 68% 69%
IMAGES 80% 67% 72% 73%
HISTOGRAMS 75% 67% 66% 91%

Table 2. Total pages used for the different datasets

Total pages used
Dataset DSA*-tree DSA+-tree M-tree DSACL*-tree DSACL+-tree

WORDS 904 1,536 1,608 885 901
DOCUMENTS 12 22 31 9 9
IMAGES 1,271 1,726 1,973 1,310 1,366
HISTOGRAMS 18,781 21,136 31,791 18,827 24,827

showed the best performance of the structures with which we compare against,
and experiments have exactly the same characteristics as those explained in
the previous section for experimentation performed on the DSACL*-tree and
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Fig. 4. Search costs, for all indexes, comparing the number of distance evaluations

DSACL+-tree. We built the DSA*-tree and DSA+-tree by successive insertions
using a 4-arity for all spaces except for the WORDS space where we use a 32-
arity. Searches were used for the same radii as those used for DSACL*-tree and
DSACL+-tree. The M-tree construction is performed on the same way, through
successive insertions, and used the following values for the parameters: Split
Function: Generalized Hyperplane, part Promote Function: MIN RAD, Sec-
ondary part Function: MIN RAD Radius Function: LB and Min Util: 0.2. In
all cases we use the same page size of 4KB.

Figure 2 and Figure 3 show the comparison between all the alternative indexes
considering construction costs, for all metric spaces, but Figure 2 comparing dis-
tance computations and Figure 3 number of I/O operations. It can be noticed that
ourproposals outperformtheothers indexes regardingdistance evaluations, inmost
of the metric space considered. However, despite of our data structures have the
higher number of read/write operations, they have to read/write in more compact
files. Therefore, this behavior do not affect so much the construction performance.

Figure 4 and Figure 5 depict the comparison between search costs of all the
alternative indexes and for all metric spaces, but Figure 4 compares distance
computations and Figure 5 the number of page read, because at search time
there is no write operation. As regarding the number of distance evaluations our
indexes outperform the others one in only two of the metric spaces considered,
but the best option is our DSACL+-tree in the case of the number of read/write
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Fig. 5. Search costs, for all indexes, comparing the number of pages read

operations because it beats all indexes. Therefore, our DSACL+-tree can be a
very good index compared against the other competitive indexes.

Other important aspect to analyze is that the file that holds the index was
as compact as possible; i.e. having a high occupancy rate (not having too empty
pages). As it can be noticed that our structures have a good fill ratio, in all cases
over 65%. Table 1 and Table 2 show the average disk page occupancy achieved
for all metric spaces. We compare the fill ratio and the total number of pages
used by DSA*-tree, DSA+-tree and M-tree against our results. Our structure
DSACL+-tree obtains a good fill ratio and uses, in general, fewer disk pages
than some of the other indexes designed for secondary memory, while maintains
a good search performance.

Following with the experimental evaluation of our proposals, we consider two
bigger metric spaces:

– VOCABS: the subset of 494,048 terms of a documents collection belonging
to Wall Street Journal. The distance is the edit distance.

– GAUSS: a synthetic metric space that contains 1,000,000 vectors of 50 real
coordinates, created by using a Gaussian distribution with different mean
values and a variance equal to 0.1, and grouped in 10,000 clusters. We use in
this case Euclidean Distance. This space was generated with the codes avail-
able at SISAP, from the Development Guide of the Sixth Annual DIMACS
Implementation Challenge: Near Neighbor Searches.



DSACL+-tree: A Dynamic Data Structure for Similarity Search 129

(a) Number of Distance Evaluations

(b) Number of Read Operations

Fig. 6. Search costs, for DSACL*-tree, DSACL+-tree, and DSA+-tree

We only show the search experiments. As before, we built the indexes with
90% of the objects and used the other 10% (randomly chosen) as queries and
our results are averaged over 10 index constructions using different database
permutations. We have considered range queries retrieving on average 0.00001%,
0.0001%, 0.001%, and 0.01% of the dataset. This corresponds to radii for GAUSS
of 2.77, 3.7, 6.9, and 56. VOCABS have a discrete distance, so we used radii 1
to 4. The same queries were used for all the experiments on the same datasets.

In the Figure 6 we illustrate the searches behavior only for DSACL*-tree,
DSACL+-tree, and DSA+-tree. Figure 6(a) depicts the number of distance eval-
uations and Figure 6(b) the number of read operations, performed for the three
methods. We select for these indexes the best value of their parameters. For
GAUSS metric space DSACL*-tree and DSACL+-tree both use arity 2, and
DSA+-tree uses arity 4, while for VOCABS DSACL*-tree, DSACL+-tree, and
DSA+-tree uses arity 16, arity 2, and arity 32 respectively. We do not evaluate
the other indexes here for lack of time.

For GAUSS space, it can be observed that for small query radii all structures
shows similar results, but as radii grows it can be better appreciated that our
structures outperform DSA+-tree as much in distance evaluations and number
of pages read. Clearly our both structures show a better behavior when they
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are compared against DSA+-tree and particularly DSACL+-tree obtains values
very low for both distances and pages read. This behavior is not surprising for
us, because in this metric space its objects are clustered and our structures take
advantage of this fact. The results obtained in VOCABS space are still better,
our proposals beat significantly the DSA+-tree, in all the radii used. Between
DSACL*-tree and DSACL+-tree the number of distance evaluations performed
is similar, but the number of pages read in the DSACL+-tree is lower.

6 Conclusions and Future Works

In this work we present the DSACL*-tree and the DSACL+-tree both indexes
for searching metric spaces for secondary memory. These new indexes enhance
the good features of the DSACL-tree (spatial approximation, dynamism, and
clustering), and also take into account the I/O operations costs. In fact, each
node of our structures corresponds to a page. By this way, we try to get the
most advantage in each read or write operation into the disk, locating similar
objects together. Therefore, we reduce the backtracking at searches improving
the cost, in distance evaluations, at the same time we make few I/O operations
during the retrieval of relevant elements.

We compared experimentally our indexes against other existing structures,
whose codes are available, for searching metric spaces especially designed for
achieve a good behavior in secondary memory. The results are very encouraging,
they show that both structures are very competitive in distance computations
and in the number of I/O operations. In particular DSACL+-tree, for all spaces,
gets the least amount of I/O operations, in addition, gets the least number of dis-
tance evaluations in three of the six spaces considered (WORDS, HISTOGRAM
and GAUSS). Then, the DSACL+-tree stands out as a practical and efficient
data structure that can be used in a wide range of applications,while retaining
the good features of the original data structure, specially thinking in secondary
memory. The most important remaining work is to handle deletions. Besides, an-
other interesting problem to address is the design of bulk-loading mechanisms.

Moreover, for future works, we plan to deeply analyze the scalability of these
methods, by complementing our experimentation with new massive metric spaces
in addition to considering the variation of other parameters sensitive to the
problem, as is the size of the disk page.
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Abstract. We propose a novel approach for solving the approximate nearest 
neighbor search problem in arbitrary metric spaces. The distinctive feature of 
our approach is that we can incrementally build a non-hierarchical distributed 
structure for given metric space data with a logarithmic complexity scaling on 
the size of the structure and adjustable accuracy probabilistic nearest neighbor 
queries. The structure is based on a small world graph with vertices correspond-
ing to the stored elements, edges for links between them and the greedy  
algorithm as base algorithm for searching. Both search and addition algorithms 
require only local information from the structure. The performed simulation for 
data in the Euclidian space shows that the structure built using the proposed  
algorithm has navigable small world properties with logarithmic search  
complexity at fixed accuracy and has weak (power law) scalability with the di-
mensionality of the stored data. 

Keywords: Similarity Search, Nearest Neighbor, Approximate Nearest Neigh-
bor, Small World, Distributed Data Structure, Metric space. 

1 Introduction 

The scalability of any software system is limited by the scalability of its data struc-
tures. Massively distributed systems like BitTorrent or Skype are based on the distri-
buted hash tables. While the latter have good scalability, their search functionality is 
limited to the exact element hash value matching. This limitation arises because small 
changes in an element value lead to large and chaotic changes in the hash value, mak-
ing the hash-based approach inapplicable to the range search and the similarity search 
problems.  

However, there are many applications (such as pattern recognition and classifica-
tion [1], content-based image retrieval [2], machine learning [3], recommendation 
systems [4], searching similar DNA sequence [5], semantic document retrieval [6]) 
that require the similarity search rather than just exact matching. The nearest neighbor 
search (NNS) problem is a mathematical formalization for the similarity search. It is 
defined as follows: we need to find the closest object p X∈  from a finite set of ob-

jects X ⊆  to a given query q ∈ , where   is a set of all possible objects (the 
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data domain). Closeness or proximity of two objects ' '',o o ∈  is defined as a dis-

tance function '( , '')o oσ . 

A naïve solution for the NNS problem is to calculate the distance function σ   
between q and every element from X. This leads to linear search time complexity 
scalability with the number of elements which is much worse than the scalability of 
structures with the exact value search and makes it almost impossible to use the NNS 
for extreme size datasets.  

We suggest a solution for the nearest neighbor search problem, a data structure 

with a small world network topology represented by a graph ( ),G V E , where every 

object io  from X  is uniquely associated with a vertex iv  from V .  Searching for 

the closest element to the query q  from the data set X  takes a form of searching for 

a vertex in the graph G . 
We chose this approach based on the following: 

• There are many existing well-developed algorithms for building small world net-
works for some special cases [7]. 

• Small world networks principally have no root element. 
• All operations (addition and search) use only local information and can be initiated 

from any element that was previously added to the structure. 

This gives an opportunity for building decentralized similarity search oriented storage 
systems where physical data location doesn’t depend on the content because every 
data object can be placed on an arbitrary physical machine and can be connected with 
others by links like in p2p systems. Such storage systems can provide a simultaneous 
access to large numbers of users performing data search and addition, have good fault 
tolerance and are highly scalable in terms of performance and capacity.  

One of the basic vertex search algorithms in graphs with metric objects is the gree-
dy search algorithm. It has a simple implementation and can be initiated from any 
vertex. In order for a result of the algorithm to be always the exact nearest neighbor to 
any query, the network must contain the Delaunay graph as its subgraph, which is 
dual to the Voronoi tessellation [8]. However, there are major drawbacks associated 
with the Delaunay graph, it requires some knowledge of metric space internal struc-
tures [9] and it suffers from the curse of dimensionality [8]. Moreover the requirement 
of the search for the exact nearest neighbor can be not necessary (optional) for the 
applications described above. So the problem of finding the exact nearest neighbor 
can be substituted by the approximate nearest neighbor search, and thus we don’t 
need to support the whole/exact Delaunay graph. 

For the greedy search algorithm to be logarithmically scalable, the small world 
network should have the navigation property [7]. 

In this paper we present a very simple algorithm for the data structure construction 
based on a small world network topology with a graph  ( , )G V E  which uses the 

greedy search algorithm for the approximate nearest neighbor search problem. The 

graph ( ),G V E  contains an approximation of the Delaunay graph and has long-range 
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links together with the small-world navigation property. The search algorithm has an 
ability to adjust the accuracy of search without modification of the structure. Pre-
sented algorithms do not use the coordinate representation and do not presume the 
properties of linear spaces, because they are based only on the metric computation 
between the objects, and therefore are applicable to data from general metric spaces. 
It is shown experimentally that the dimensionality dependence is polynomial for a 
vector data. 

2 Related Works 

All papers that are dedicated to the nearest neighbor search problem can be divided 
into four categories: centralized nearest neighbor search structures;  centralized ap-
proximate exact nearest neighbor search structures, distributed exact nearest neighbor 
search structures and distributed approximate nearest neighbor search structures. 

2.1 Centralized Exact Nearest Neighbor Search Structures 

Kd-tree[10] and quadra trees[11] were among the first works on the NNS problem. 
They perform well in 2-3 dimensions (search complexity is close to (log )O n ), but 

the analysis of the worst case for that structures[12] indicates 1 1/( * )dO d N −  search 

complexity, where  d  is the dimensionality. 
Other structures which have a tree topology such as variants of kd-trees, R-trees 

and structures based on space-filling curves are surveyed in [13]. They also have good 
performance when searching in a low-dimension ( 4d < ) metric space, but they 
quickly lose their effectiveness with the increasing number of dimensions [14].  

In general, presently there are no methods for effective exact NNS in  
high-dimensionality metric space. The reason behind this lies in the "curse" of dimen-
sionality [15]. To avoid the curse of dimensionality while retaining the logarithmic 
scaling on the number of elements, it was proposed to reduce the requirements for the 
NNS problem solution, making it approximate (ANN). 

2.2 Centralized Approximate Nearest Neighbor Search Structures 

Thus a large number of papers appeared which proposed to search for the nearest 
neighbor with predefined accuracy ε (ε-NNS). For example, Arya and Mount pro-

posed methods with search complexity 3(log )O n , but preprocessing requires 2( )O n  

and the algorithm was applicable only to data from Ed [16] . 
Kleinberg proposed two methods [17] for solving ε-NNS. First method requires 

2(n log ) dO d  preprocessing time and query time polynomial in , d ε  , and log n . 

The other method with preprocessing time polynomial in d, ε , and n, but with query 

time 3( log )O n d n+ . Also both methods are applicable only to data from Ed. 
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The first algorithms with search complexity polynomial in d , log n , ε-1 and po-

lynomial preprocessing time for fixed ε were proposed  by Indyk and Motwani in 
[18] and Kushilevitz, Ostrovsky and Rabani in [19]. Indyk and Motwani were the first 
ones to relax ε-ANN problem to approximate point location in equal balls (ε-PLEB). 
For the formulation of the problem in ε-PLEB points in metric space expand to the 
balls with center at this point and radius (1+ ε)r, it is necessary to determine which 
ball belongs to the query q . Also in [18] proposed a second method, which uses the 

concept of locality-sensitive hashing in regard to formulation of the problem ε-PLEB, 

with search time 1/(1 ε)O(n )+ . This method however requires near quadratic memory 

(for small ε). In addition, the first method is applicable only for dE , and the second 
for the Hamming space. 

In general, the concept of locality-sensitive hashing has become popular in the last 
decade to solve the ANN problem. Other works using the concept of locality-sensitive 
hashing are [20], [21]. But they all have the same major drawback: each algorithm is 
focused on a narrow class of metrics such as Hamming distance, Jakarta or sl  norms 

for Euclidean space. 
In [22,23] there were proposed non-distributed algorithms for the approximate k-

NN problem suitable in general spaces performing well even in case of high dimen-
sionality. The drawback for the ordering permutations index [23]  is that it has a part 
of search algorithm with a CPU time linear dataset size scaling, and [22] is an essen-
tially static index. 

2.3 Distributed Exact Nearest Neighbor Search Structures 

There are a number of distributed structures that doesn’t support nearest neighbor 
search in general metric spaces but provide search for interval queries in attribute-
based (vector) data or simple Euclidian space. MAAN [24], SCRAP[25] , Mercury 
[26] support multi-dimensional range queries and Voronet [27] is p2p network 
oriented to search nearest neighbor in E2 based on Voronoi tessellation [8]. Every 
peer has coordinates in E2 and has links to all neighbors of its Voronoi region. For the 
logarithmic navigation Voronet supports long-range links.  

The only metric-based distributed structures are M-Chord [28], GHT [29] and 
MCAN[25]. MCAN uses a pivot-based technique to map the high dimensional metric 
data to an N-dimensional vector space, and then uses CAN protocol as its underlying 
structured P2P system, however they all suffer from the curse of dimensionality. 

2.4 Distributed Approximate Nearest Neighbor Search Structures 

Authors in [30] explain how to use locality-sensitive hashing scheme for building the 
structure in a distributed environment. They suggest using a two-level mapping from 
a d-dimensional space to the peer identifier space. However the lack of versatility 
inherent to all LSH schemes remains as its main drawback. 
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Kleinberg’s work [7] has shown the possibility of using navigable small world 
networks for finding the nearest neighbor with the greedy search algorithm. The  
algorithm relied on long-range links following power-law length distribution for na-
vigation and 2-dimensional lattice for correctness of the results. In Voronet[27] the 
approach was extended to arbitrary 2-dimensional data by building a two dimensional 
Delaunay tessellation instead of a regular lattice. In their next work [31] they have 
weakened the requirements on the exactness of the search in order to avoid the curse 
of dimensionality for the d-dimension Euclidian space. The algorithm approximates 
the Delaunay graph by selecting 2 1d +  neighbors that minimize the volume of the 
corresponding Voronoi cell. The algorithm is rather complicated; it relies heavily on 
the quality of the Delaunay graph approximation, it has to be repeated iteratively to 
reach acceptable accuracy and in principle works only in the Euclidian space. The 
work also presented some sophisticated algorithms for managing the long range links. 

3 Structure Definition 

The structure  S  is constructed as a small world network represented by a graph 
( , )G V E , where objects from the set X  are uniquely mapped to vertices from the set 

V . The set of edges E  is determined by the structure construction algorithm. Since 
each vertex is uniquely mapped to an element from the set X , we will use the terms 
"vertex", "element" and "object" interchangeably. We will use the term “friends” for 
vertices that share an edge. The list of vertices that share a common edge with the 
vertex iv  is called the friend list of the vertex iv . 

We use a variant of the greedy search algorithm as a base algorithm for the NNS. It 
traverses the graph from an element to an element each time selecting the friend clos-
est to the query until it reaches a local minimum.  See a detailed description of the 
algorithm in the section 4.  

Links (edges) in the graph serve two distinct purposes. There is a subset of short-
range links, which are used as an approximation of the Delaunay graph[8] required by 
the Greedy Search algorithm. Another subset is the long-range links, which are used 
for logarithmic scaling of the Greedy Search, they are responsible for the navigation 
small world properties of the constructed graph similar to the ones in Kleinberg’s [7]  
work. The structure is illustrated on the Fig. 1. 

In our work we focus on the approximation of the Delaunay graph and ways to nul-
lify the errors rising from of the approximation. It can be studied independently be-
cause there is a very simple and strict way to create long range links for a predefined 
data set (see the section 5). 

All queries in the structure are independent, they can be done in parallel and if the 
elements are placed randomly on physical computer nodes the processing query load 
is shared evenly across physical nodes. And the performance of the system (parallel 
queries per second) is limited only by the number of the nodes. 
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Fig. 1. Graph representation of the structure. Circles (vertices) are the data in metric space, 
black edges are the approximation of the Delaunay graph, and red edges are long range links 
for logarithmic scaling. Arrows show a sample path of the greedy algorithm from an enter point 
to a query (shown green). 

4 Search Algorithm 

4.1 Greedy Search 

The basic search algorithm traverses the edges of the graph ( , )G V E  from one vertex 

to another. The algorithm takes two parameters: query and the vertex  

_ [ ]enter pointV V G∈  which is the starting point of a search (the entry point). Starting 

from the entry point at each vertex the algorithm computes a metric value from the 
query q to each vertex from the friend list of the current vertex and then selects a ver-
tex with the minimal metric value. If the metric value between the query and the se-
lected vertex is smaller than the one between the query and the current element, then 
the algorithm moves to that (new) vertex. The algorithm stops when it reaches a local 
minimum, a vertex whose friend list doesn’t contain a vertex that is closer to the 
query than the vertex itself. The algorithm: 

Greedy_Search(q: object, venter_point: object) 

1  vcurr ← venter_point;  
2  σmin ← σ(q, vcurr); vnext ← NIL; 
3  foreach vfriend ∈ vcurr.getFriends() do 

4     if σfr ← σ(query, vfriend) < σmin then 

5        σmin ← σfr; 

6        vnext ← vfriend; 
7  if vnext = Nil then return vcurr; 

8  else return Greedy_Search(q, vnext); 

The element which is a local minimum with respect to the query q ∈ can be either 

the true closest element to the query q  from the entire set of elements of X , or a 

false closest.  



138 Y. Malkov et al. 

If every element in the structure had in their friend list all of its Voronoi neighbors, 
then this would preclude the existence of false local minima. Maintaining this condi-
tion is equivalent to constructing the Delaunay graph, which is dual to the Voronoi 
diagram. 

It turns out that it is impossible to determine exact Delaunay graph for an unknown 
metric space [9] (excluding the variant of the complete graph) so we cannot avoid  
the existence of local minima. For the problem of approximate searching as  
defined above it is not an obstacle since approximate search does not require the en-
tire Delaunay graph [31].  

Note that there is a distinction from the ANN problem defined in the works [16], 
[17] where it is expressed in terms of ε-neighborhood for which if there are several 
elements within the ε of the true nearest neighbor the result of the query can be any of 
these elements with comparable probabilities. There are no constrains on an absolute 
value of the distance between the false NN result and true NN result in our structure. 
Inaccuracy of the algorithm is «topological» in our case, meaning that the most likely 
result (e.g. with probability 0.95) is the true nearest neighbor, if not, the most likely it 
will be the second closest and so on with sharply decreasing probability. It may be 
more convenient to use such definition when the data distribution is highly skewed 
and it is hard to define one ε for all regions at the same time. 

4.2 Multi-search  

In order to diminish search errors arising in a network with local minima, we propose 
a following modification of the search algorithm. We use a series of m searches in-
itiated from random vertices and choose a result element that is closest to the query 
from the set of found elements. Since the greedy search Greedy_Search(q, venter-
Point ϵ V)is unambiguous, for each entry point venterPoint ϵ V it either results in a 
success, finding the true nearest neighbor, or in a failure, finding an element that is 
not the nearest neighbor of q. 

Thus a search of the closest element to a fixed query q  may result in finding the 

true nearest neighbor (a global minimum) or a false nearest neighbor  depending on 
the entry point from which the search algorithm started (see Fig. 2).  

Since we can choose an entry point at random, there is a probability p  of finding 

the true closest element to a particular element q. Moreover, this probability is always 
nonzero, because it is always possible to choose the exact nearest neighbor as an entry 
point, which subsequently will be returned by the greedy search algorithm. As an 
example the probability of finding query element in Fig. 2 is about 73% since there 
are 8 elements for which taken as the entry point the algorithm will succeed and 3 
elements for which he will not (3/8 results in 73%). 

If for a fixed query element probability of finding the true closest in a single search 
attempt is p  then probability of finding the true closest element in at least one of m 

attempts is 1 (1 )mp− − , thus failure probability decreases exponentially with the  
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number of search attempts. Thus we can improve the search precision, increasing the 
parameter m - the number of searches from random entry points. For example in the 
Fig. 2 for m =5 the result probability is 99.985%, which is more than sufficient for the 
most applications. 

The modified greedy search algorithm: 

Multi_Search(object q, integer: m) 

1  results: SET[objects]; 
2  for (i ← 0; i < m; i++) do 
3    entry_point ← getRandomEntryPoint(); 
4    local_min ← Greedy_Search(query, entry_point) 
5    if local_min ∉ results then 

6       results.add(result); 
7  return results; 

By selecting the closest element from the results we get an answer to the query. 
If m is comparable to the number of elements in the structure, the algorithm be-

comes an exhaustive search, assuming that entry points are never reused. If the graph 
of the network has the small-world properties, then it is possible to choose a random 
vertex in a number of random steps proportional to log n , which doesn’t affect the 

overall logarithmic search complexity. Therefore the overall complexity of a search 
will increase in no more than m times. 

Fig. 2. An illustration of the multisearch approach. Blue circles represent metric space elements 
for which taken as entry points for the greedy algorithm it will succeed finding the true NN for 
a query (green circle). Red circles represent elements for which taken as entry points the algo-
rithm will stuck in a local minimum. Arrows represent gradients direction of the greedy search 
algorithm. The probability of finding the query in a single search is about 73%. For the multi-
search algorithm with m =5 it is 99.985%. 
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5 Data Addition Algorithm 

Since we build an approximation of the Delaunay graph, there is a great freedom of 
choice of the construction algorithm. The main goal of all the works is to minimize 
the probability of the false local minima while the keeping number of links small.  
Some approaches are based on knowledge of topology of a metric space being used. 
For example in [31]  it is proposed to build an approximate Delaunay graph which 
would minimize a volume of a Voronoi region (computed by the Monte-Carlo me-
thod) for a fixed number of edges for each vertex in the graph, this was done by iterat-
ing a selection of neighbors of every node in the graph several times. We propose to 
assemble the structure by adding elements one by one and connecting them on each 
step with the k closest objects which are already in the structure. It is based on the 
idea that intersection of the set of elements which are Voronoi neighbors and the k 
closest elements should be large. Another advantage of this approach was shown em-
pirically in for one-dimensional data[32]. A graph created by such algorithm with data 
arriving in random order has small world navigation properties without any additional 
algorithms. That allows us to fully concentrate on the short-range links which approx-
imate the Delaunay graph. 

In this work we use a variant of the algorithm which is distinguished by the fact 
that the search for the k nearest elements uses a series of searches (an analogy to the 
multi-search, see 4.2).The algorithm takes three parameters: an object to be added to 
the structure and two positive integer numbers k and w. First, the algorithm deter-
mines a set of local minima using the procedure Multi_Search (see 4.2), which 
produces a series of w searches using random enter points. After that the algorithm 
determines a neighborhood u which contains all neighbors of the each found local 
minima. The set u is sorted in ascending order by distance from the object 
new_object to be added. After that new_object is connected with first k nearest 
elements from the set u. 

Nearest_Neighbor_Add(object: new_object, integer: k, integer: w) 

1  SET[object]: localMins ← Multi_Search (new_object, w); 
2  SET[object]: u ←∅ ; //neighborhood; 

3  foreach object: local_min ∈ localMins do 

4    u ← u ∪ local_min.getFriends(); 

6  sort the set u so to satisfy the condition σ (u[i], 
new_object) < σ (u[i+1], new_object) 
7  for (I ← 0; i < k; i++) do 
8    u[i].connect(new_object); 

9    new_object.connect(u[i]); 

The choice of the parameter k is not clear, it depends on the space, but it can be eva-
luated automatically for an unknown space with a distributed algorithm; we are plan-
ning to describe it in our next works. Note that as in 4.2 setting w to a big number is 
equivalent to an exhaustive search of the closest elements in the structure. More on 
the choice of w and k see in the next section. 
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6 Test Results and Discussion 

Test Data  
We have implemented the algorithms presented above in order to validate our as-
sumptions about the scalability of the structure and to evaluate its performance. For a 
test dataset we have used: 

• Uniformly distributed random points with a L2 (Euclidean distance) proximity 
function (up to 106 elements). 

• To test our algorithm in a general metric space we have used a database of chemi-
cal compounds [33] with a Tanimoto [34] distance function. We have randomly se-
lected 105 elements from the database to test the algorithm. 

• A subset of the TREC-3 documents collection containing 24276 documents[23] for 
comparison with other works. 

Small World  
To verify the small world properties of the proposed structure we have measured the 
average path length induced by the greedy search algorithm for the vectors and chem-
ical compounds (see Fig. 3). The plot clearly shows a logarithmic dependence on the 
dataset size proving it is a navigable small world. Thus the complexity of a single 
search scales logarithmically. It can be shown that the small world properties retain at 
any size (we are going to focus on it in one of our next works). Note that for bigger 
dimensionalities dependence is weaker due to smaller diameter of a set at a fixed 
number of elements. 

Construction Parameters  
We adjusted the number of search attempts m, so that the probability of finding the 
true closest element to the query was not less than a fixed value (we took 95% as a 
reference). 

To test the scaling of the search algorithm with the number of elements n we have 
plotted (see Fig. 4) the number of multi-searches m required to get the 95% true near-
est neighbor rate versus the size of the dataset for d=10 and different w parameters of 
the construction algorithm. For w=20 the dependence is clearly logarithmic up to 106 
elements. For low values of w the algorithm complexity dependence deviates from the 
expected. Arrows denote the point where the dependence deviates from the logarith-
mic for w=1..4.  One can see that the points are almost equidistant in the logarithmic 
scale.  

So, if we need to get the logarithmic scaling up to n  elements we have to have  

w ( )log ;(6.1)A n> × , where A is a constant value. And the overall complexity of both 

the search and the construction algorithms can be made logarithmic at the same time. 
Such dependence on the construction parameters can be easily understood. For the 
low w parameters the probability of finding the true nearest neighbor to a new element 
is low and the algorithm cannot choose the closest neighbors links correctly. The 
number of searches required to get P  close to unity scales logarithmically with the 
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size of the dataset, leading to equation (6.1). We can set w high enough for any rea-
sonable size of the dataset (like 10100) while keeping acceptable construction com-
plexity or if the size of the dataset is known (or evaluated dynamically) we can always 
set the parameters optimal and maintain an overall logarithmic scaling. 

Fig. 3. The average hop count induced by a 
greedy search algorithm for different dimen-
sionality Euclid data and for a chemical com-
pounds dataset (k=10, w=20). The navigable 
small world properties are evident from the 
logarithmic scaling.  

Fig. 4. The number of multi-searches 
required to get the 95% true nearest neigh-
bor rate versus the size of the dataset for 
different w parameters of the construction 
algorithm. Arrows denote points where the 
dependence deviates from the logarithmic.  
The points are almost equidistant in the log 
scale. 

Fig. 5 presents the number of multi-searches m for the same parameters as in Fig. 4 

setting w= ( )logA n c× −    for A=1.5, 2, 2.5, 3.  For any value of A the scaling stays 

logarithmic but at expense of worse complexities for the small values of A. Setting A 
higher than 2.5 does not affect the complexity of the search.  

To define the best choice of the parameter k we have plotted the probability of fail-
ing finding the true nearest neighbor versus the fraction of visited elements (metric 
calculations) for d=10 and different parameters k (see Fig. 6). For k smaller than 
2...3 d⋅ there is a significant fall of performance, while for bigger values of k there is 
a very slow decay with the rise of the parameter. For d=2…50 it was verified that the 
optimal value for k is close to 3 d⋅ . Also one can see that the probability of a wrong 
NN result falls exponentially with the fraction of visited elements confirming assump-
tions from section 4. 

The bottom line is that the optimal value for k is 3 d⋅ ; the value of w has to be dy-

namically changed ( )log currentA n×  with a constant A or set fixed to ( )logA n× , 

where n is the maximum database size. 
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Fig. 5. The number of multi-searches required 
to get the 95% true nearest neighbor rate versus 
the size of the dataset for a logarithmic scaling 
of w (A=1.5, 2, 2.5, 3) 

Fig. 6. Probability of failing finding the true 
nearest neighbor versus fraction of visited 
elements for d=10, 52.6 10n = ⋅  

Absolute Speedup and Scaling  
The graph (Fig. 7) shows the percent of visited (extracted) elements (vertical) versus 
the dataset size (horizontal) in a log-log scale for different dimensionalities. k was 
fixed to 3 d⋅  for all trials and w was fixed to a big number. The plot shows that with 
the increase of the number of elements in the structure, the percentage of visited ele-
ments decreases, and the curves become close to straight lines with an angle of 45 
degrees (corresponding to the 1 / n  law of decay). This means that the single search 
complexity does not change significantly with the size of the dataset. From the graphs 
the overall scaling for complexity of the search can be extracted. It turns out that it 

scales as 2log ( )n , just as it might be expected. One “log” coming from the average 

path length and the other is from the number of multi-searches. 

We have also plotted the average fraction of visited elements for n= 52.6 10⋅  in a 
log-log scale to check the dimensionality dependence (see Fig. 8), it can be approx-

imated by a 1.7d  power law. Judging on the Fig. 7 it seems that for low d with rise of 
n at some size the difference in performance between the dimensionalities diminishes. 
It might be suspected that such behavior will be the same for bigger dimensionalities 
but it requires further study. 

Overall, the measured search complexity scaling for n>105 and d = 5..100 is not 

worse than 1.7 2ln ( ) ln(1/ )faild n P× × and the construction complexity (deduced from 

the search complexity) is 1.7 2ln ( )×d n n , where failP  is an acceptable probability of 

failing finding the true nearest neighbor. 
To get an idea about how the algorithm performs compared to the other k-NN  

algorithms we have run a test from [23], a subset of collection TREC-3 documents 
containing 24276 documents. For a k-NN algorithm we have used a part of the con-
struction algorithm from section 5. To get the averaged 90% recall of 9 documents 
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from the database it required visiting 5% of the database compared to about 2% from 
the [23]. We believe it is a good result for such a simplified algorithm. We have also 
made a slight modification of the k-NN search algorithm, changing the stop condition 
(the algorithm continues to travel the graph while it can improve distance for the k-th 
element) yielding about 2.5% extraction of the database at the same recall, very close 
to the state of art. 

 

 

Fig. 7. Average fraction of visited elements 
within a single NN-search versus the size of 
the dataset for different dimensionality and 
data types 

Fig. 8. Average fraction of visited elements 
within a single Nearest Neighbor search 
versus the dimensionality of the dataset for n 
= 262k with a power-law fit 

7 Conclusions and Future Work 

We have proposed a method of organizing data into a distributed small world graph 
structure suited for the distributed approximate nearest neighbor search in a metric 
space. The algorithm uses no information about inner topology of the data and space, 
thus it is applicable to arbitrary metric data. The algorithm is very simple and easy to 
understand. All elements in the structure are of the same type, there is no central or 
root element. There is no dedicated algorithm for managing the small world proper-
ties, they arise automatically. The algorithm uses only local information on each step 
and can be initiated from any vertex. The search is approximate from the topological 
point of view. An unsuccessful Nearest Neighbor query typically results in the second 
nearest element. 

Accuracy of the approximate search can be tuned by using multiple searches with a 
random initial vertex and the probability of finding a false nearest neighbor decreases 
exponentially with the number of multi-searches.  

The performed simulation for data in the Euclidian space shows that the structure 
built using the proposed algorithm has the navigable small world property. Both loga-
rithmic search and construction complexity at fixed accuracy can be achieved with 
appropriate algorithm parameters. There are reasons to believe such behavior will be 
retained for any dataset size. The algorithm also shows a power law scalability  
of metric calculation count with dimensionality of the stored data. Simulations for 
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chemical compounds and documents have shown the effectiveness of the approach for 
non-Euclidian spaces comparable to best algorithms.  

The proposed structure was intentionally slimmed-down to demonstrate its scala-
bility over the dataset size and dimensionality. There are several ways to optimize the 
structure in order to get lower complexity or/and better accuracy constants, such as: 

• More complicated algorithms for node friends selection (see sec. 5). It is obvious 
that selecting nearest neighbors as friends is not the best way to approximate De-
launay graph since it takes into account only distances between the new element 
and candidates and neglects distances between the candidates. Knowledge of inter-
nal structure of the metric space can boost up search performance. In [31] is was 
shown that for Euclidean space the accuracy of a single search can be significantly 
increase while keeping the number of friends per node fixed. 

• More complicated search algorithms can be used. Excluding already visited ele-
ments in consequent searches or/and changing the stop parameters in search algo-
rithm can potentially reduce the number of metric computations several times at 
the same accuracy. 

• More complicated algorithms for navigable small world creation suitable for corre-
lated (non-random) data. 

As a future work, we are going to enhance the performance of the structure while 
keeping good scalability and distributed nature and to make a detail comparison with 
the state of art algorithms from the area. 

Summing up, simplicity, high scalability both with size and data dimensionality 
and the distributed nature of the algorithm are a good base for building many real-
world extreme dataset size high dimensionality similarity search applications. 
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Hisham Mohamed and Stéphane Marchand-Maillet
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Abstract. We present parallel strategies for indexing and searching permutation-
based indexes for high dimensional data using inverted files. In this paper, three
strategies for parallelization are discussed; posting lists decomposition, reference
points decomposition, and multiple independent inverted files. We study perfor-
mance, efficiency, and effectiveness of our strategies on high dimensional datasets
of millions of images. Experimental results show a good performance compared
to the sequential version with the same efficiency and effectiveness.

Keywords: Approximate similarity search, Large scale distributed indexing, Per-
mutation based indexes, Parallel metric inverted files.

1 Introduction

The way of answering users’ queries depends on the search scenario. The ”exact match”
scenario is commonly used, where the system retrieves all matches to a given query
from the database. Nowadays, this way of answering the query is not the most useful
for some applications such as text plagiarism to track the similarity between an arti-
cle against a database of texts, multiple genome comparison to find all the similarities
between one or more genes, and multimedia retrieval to find the most similar picture
or video to a given example. The similarity search paradigm [1] is more applicable on
these models.

For a query q and a data collection D, similarity search sorts all the data items by
similarity to the given query according to a given distance function d : D ×D −→ �.
The most relevant objects to the query are the k-top ranked objects (k-NN query) or
the objects located within a distance range ρ from the query (range query). Several
techniques have been developed for improving the performance of the similarity search
problem [2]. One of the research topics still attracting interest is the scalability of sim-
ilarity search for high-dimensional data. Different approaches have been proposed to
attack the curse of dimensionality [3]. One of the most promising routes is the approx-
imate similarity search [4,5]. It proposes solutions to improve the performance when
handling high dimensional data at the price of effectiveness.

Permutation-based indexes are the most recent technique for approximate similar-
ity search [6,7]. In this work, we propose several distributed algorithms for handling
permutation-based indexes using inverted files. We describe our ideas through three
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levels of parallelization and have tested them on high dimensional datasets, which con-
sist of 4,594,734 million objects. The rest of the paper is organized as follows. In the
next section, a brief background about permutation-based indexes is given. Section 3
gives a review of the related work. In section 4, we detail the main ideas about our
parallel strategies. Then, we present our results in section 5 and conclude in section 6.

2 Basic Notations and Definitions

The intuition behind the permutation-based indexes is based on ”predicting closeness
between elements according to how they order their distances towards a distinguished
set of anchor objects” [6,7]. Given a collection of N objects oi in a domain D =
{o1 . . . oN}, and a distance function d : D ×D → � between the objects. We assume
that the distance function d(., .) follows the metric space postulates [2] ∀oi, oj , ok ∈ D:

– oi = oj ⇐⇒ d(oi, oj) = 0 identity,
– d(oi, oj) ≥ 0 non-negativity,
– d(oi, oj) = d(oj , oi) symmetry and
– d(oi, ok) ≤ d(oi, oj) + d(oj , ok) triangle inequality.

A set of n reference objects R = {r0, r1, . . . rn−1} ⊂ D is randomly selected from
D. Each object oi ∈ D is represented by an ordered list Loi . The ordered list for
each object contains the reference points set sorted by their distance d to the object oi.
More formally, Loi is the permutation of (0, . . . , j, . . . , n−1) according to the distance
function d. P (Loi , rj) returns the position of the reference object rj within the ordered
list Loi of object oi. For example, P (Loi , rj) = 5 means that rj is the 5th nearest
reference point to the object oi. Figures 1a and 1b show a group of objects and their
ordered list respectively.

The permutation lists for all object are saved in the main memory. For a given query
q, an ordered list Lq is computed as for the database objects with respect to the same
reference points. The similarity between the query and database objects is measured by
comparing the permutation lists using Spearman Footrule Distance(SFD)[2].

SFD(oi, q) =
∑
r∈R

|P (Loi , r)− P (Lq, r)| (1)

3 Related Work

Several works were proposed to speed up permutation-based indexes using various
techniques. Amato and Savino [7] proposed an algorithm to store the permutations us-
ing inverted files. Figuerroa et al. [8] speeded up the distance calculation between the
objects by indexing the permutation relative to their distance from the reference points.
In [9], authors proposed the brief permutation index which is a technique to reduce
memory usage and speed up the distance calculation. The main idea is to encode the
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q

Fig. 1. Example of Metric inverted files a) Black dots are reference objects; white dots are data
objects; the grey dots is query object b) ordered lists for all data objects oi. c)Inverted index;
the vocabulary are the reference points and the posting lists are pairs of data objects and their
positions.

permutation as a binary vector and to compare these vectors using Hamming distance.
The most recent work which is based on permutation-based indexes is the prefix per-
mutation index (PP-Index) [10,11]. The PP-Index stores the prefix of the permutations
only and measure the similarity between objects based on the length of its shared prefix.
Some techniques for parallelization are also proposed for speeding up the PP-Index.

Other work which is based on measuring similarity based on number reference points
is the work done in [12]. Novak and Batko [12] proposed the M-Index algorithm. M-
Index maps the objects to a numeric domain. This is done by selecting number of pivots;
reference points, which represent the object then the distance functions d(., .) between
the objects and the reference points is normalized by a constant value which is greater
than the maximum distance d between any two objects in the data domain. The M-Index
data structure provides exact and approximate similarity search.

3.1 Metric Inverted Files

Our work is based on the metric inverted files (MIF) which were proposed by Amato
and Savino [7]. Inverted files[13,14] are mainly used for text indexing. An inverted file
consists of two parts, the vocabulary and the posting list. The vocabulary is the list of
all unique terms and the posting list is associated to every vocabulary words and stores
all the locations of the vocabulary word in the corpus. In MIF, the vocabulary is the
set of reference points and the posting list for a reference point rj contains a list of
pairs (oi, P (Loi , rj))∀oi ∈ D. Figure 1c shows an example of MIF. Algorithm 1 [7]
explains the main idea for searching for a given query q. An accumulator is assigned to
each object oi ∈ D and initialized to zero. The posting list for each reference point is
accessed and the accumulator is updated by adding the difference between the position
of the current reference object rj in the ordered list of the query and the P (Loi , rj) of
the objects in the posting list, using equation (1). After checking the posting lists of all
the reference points, the objects are sorted based on their accumulator value. Objects
with small accumulator value are more similar to the query object.
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Algorithm 1
IN: Query: q,

Reference Object list of n elements: R,
Posting lists assigned to each reference object for N objects;

OUT: Sorted Objects list: out
1. Create a list of accumulators A[1 . . . N ]
2. Set accumulators values to 0
3. For each r ∈ R
4. Let Δ be the posting list for the reference object r
5. Set i ←− 0
6. For each pair (o, P (Lo, r)) ∈ Δ
7. Set A[i] = A[i] + |P (Lo, r)− P (Lq , r)|
8. i ←− i+ 1
9. Sort(A)
10. out ← A

In [7], authors have improved the performance of the algorithm by indexing the
objects with respect to some nearest reference objects only and perform the search using
these nearest reference objects. They experimentally proved that the nearest reference
objects are the most relevant ones. The complexity of this basic algorithm is O(nN),
where n is the number of reference objects and N is the number of objects. Our parallel
algorithm is based on this basic algorithm and the modification which was proposed in
[7] can be applied easily to our parallel models. We present our parallel strategy through
three levels of parallelization as shown in the next section. Our first and second parallel
strategies follow the parallel inverted files for text indexing in [15], but we apply it for
approximate similarity metric searching.

4 Parallel Metric Inverted Files

Our parallelization strategy works on different levels of decreasing complexity and in-
creasing throughput: 1) posting lists decomposition, 2) reference points decomposition,
and 3) multiple independent inverted files.

4.1 Posting Lists Decomposition (PLD)

We first present the basic way of parallelization, which is based on posting lists decom-
position. We partition the data equally and build the inverted files with global reference
points.

Indexing. The data domain D of N objects is randomly divided into sub-domains of
equal sizes D0 . . . Dp, where p is the number of parallel processes. Hence, every pro-
cess i nominates ni reference points from its partial data. Since the data is divided,
the nominated reference points for each process are unique and not known by the other
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Fig. 2. a) Posting lists decomposition algorithm. b) Data clustering: The data within the same
circle are more related to each other. Each cluster has center, radius ρ and two reference points
which are the black dots. c) Reference points decomposition algorithm.

processes. Then, all to all communication is done between the processes to share the
reference points information. Each process then starts to build its own inverted file
data structure based on the global reference points and the partial data it has access to.
Accordingly, each process is responsible for all the references with partial posting list.
Figure 2a shows posting list decomposition. For example, the posting list for reference
point 1 in figure 1c is divided into two partial lists. Each partial list is processed by a
different process.

Searching. The inverted file is partitioned. Therefore, to answer a query q, all par-
tial inverted files need to be scanned. A broker process accepts query requests. These
queries are then broadcasted to all other processes. After receiving, each process starts
to index the query and apply the search on its local inverted file. Once done, every pro-
cess sends its local accumulators to the broker process. The broker concatenates the
accumulators and sorts the objects based on their accumulator values. More formally,
in Algorithm 1, the for loop in lines 6-8 can run in parallel over the different partial do-
mains D0, D1, . . .Dp. Thus, theoretically the memory usage is reduced from O(nN)
to O(nN

p ) and the complexity leads to O(nN
p ) + ts, where n is the number of the

reference points and ts is the time needed to receive the accumulators of the partial
ranked objects. In this algorithm, all the reference points need to be checked and all
the processes have to participate to answer a query. To improve this, we introduce two
additional strategies for parallelization.

4.2 Reference Points Decomposition (RPD)

Amato et al. in [7] experimentally proved that a high number of reference points does
not really improve the accuracy of the method and have suggested to apply search using
the nearest objects only. We use this evidence in order to improve our parallel strategy.
In this strategy, the inverted index is divided based on the number of reference points.
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Indexing. Similarly to section 4.1, the data domain is divided into partial domains, but
not randomly. We cluster that data into p clusters, based on the number of processes. For
a cluster i a center ci and a radius ρi are to be determined. The center ci is an average
object from other objects in the cluster and its radius ρi is the distance from the center
to the farthest object in the cluster. Then, each process i nominates a fixed number np

of reference points from its cluster and share it with all other processes. Each process
indexes its data based on these reference points. Hence, we obtain the same inverted file
distribution as in section 4.1. Afterwards, each process asks all other processes about its
partial posting list which is related to its local reference points. The processes combine
the partial received posting lists. When exchanging is done, each process deletes the
other reference points with their partial posting lists as there is no more need for them.
Now, every process i is responsible for np reference points with their posting lists,
which is related to the whole dataset. Only the broker process needs to know the total
reference lists without the posting lists for searching as explained next. Figures 2b and
2c show examples of clustered data and the reference points decomposition structure.

Searching. Before accepting queries, each process i sends the center point ci and the
radius ρi of its cluster to the broker process. Once a query q is sent to the broker pro-
cess, it computes the distance between the query and the centers of the clusters. If the
query is located within the region of a certain cluster, then this cluster is considered
as a searching region. If not, the cluster is neglected. This can be calculated using this
equation:

d(q, ci) < ρi (2)

The broker generates the ordered list of the query object Lq with respect to the nearest
reference points defined by the cluster within which the query is located. For example,
in figure 2b, query point q1 is within cluster 1, so the ordered list is created with respect
to the reference points of cluster 1 and the ordered list is (1, 2). For query point q2, it is
located between the two clusters, so the ordered list is (3, 2, 4, 1).

Once the ordered list Lq is created, the broker sends it to the responsible processes
p. Each process ranks the local objects exactly like algorithm 1, but with respect to
their local reference points. The broker then gathers all the accumulator lists from the
responsible processes and sum the accumulators for the same objects. Finally it sorts
the accumulator list and sends the ordered object to the user. Algorithm 2 shows the
searching process for reference points decomposition algorithm. Lines 2-4 are executed
by the broker process to define the active clusters and to generate the query ordered list.
Lines 6-12 are similar to algorithm 1, but each active process checks its local reference
points only instead of checking all the reference points. Lines 14-21 are executed by
the broker process to gather, sum and sort the accumulators. Theoretically the memory
usage becomes O(npN), where N is the number of objects. The complexity becomes
O(npN) + tr, where tr is the time required to receive pN lists. At the same time,
we have increased the throughput of the system since more than one query can be
answered simultaneously if they are located in different clusters. The main drawback of
this algorithm is the increase of the complexity in the construction of the inverted files
as the data needs to be exchanged between all the processes.
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Algorithm 2
IN: Query: q,

Global reference objects list of n objects: globalR,
Local reference objects list on np elements: localR,
Posting lists assigned to each local reference object for N objects,
Cluster list: CL;

OUT: Sorted Objects list: out
1. if(broker)
2. Search for responsible clusters(q,CL)
3. Create empty ordered list for q: Lq ← φ
4. Generate query ordered list(CL,globalR,Lq)
5. if(active)
6. Create l accumulators lists based on the number of active processes: al ← 0
7. For each r ∈ localR
8. Let Δ be the posting list for the reference object r
9. Set i ←− 0
10. For each pair (o, P (Lo, r)) ∈ Δ
11. Set al[i] = al[i] + |P (Lo, r)− P (Lq, r)|
12. i ←− i+ 1
13. if(broker)
14. Create accumulator list of N : A
15. For each partial al in CL
16. Set i ←− 0
17. For each object o in al

18. A[i]=A[i]+al[i]
19. i ←− i+ 1
20. Sort(A)
21. out ← A
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Fig. 3. Multiple inverted files: p independent inverted files are created. Each inverted file repre-
sents a cluster and is assigned to a certain process.

4.3 Multiple Independent Inverted Files (MIIF)

In [7], authors used ki nearest reference points to index the data. We map this technique
onto our parallel algorithm. Thus, we reduce the range of the search using partial data
with partial reference points.
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Indexing. Similar to section 4.2, the data domain is clustered based on the number of
processes. Every cluster nominates a number of reference points near to its center, but
in this algorithm, clusters do not share the reference points with other clusters. Each
process builds its own inverted file, hence there are p + 1 inverted files Π0, . . . Πp.
Each inverted file represents different data with respect to different reference points.
Processes only share the information about their centers and their radiuses. Figure 3
shows example of multiple inverted files.

Searching. By sharing the centers and radiuses information between all the processes,
the query can be submitted to any process (any process becomes a broker). Once a
query is submitted to a process i, the process recognizes the responsible clusters simi-
lar to 4.2 using equation 2 and sends the query point information to the corresponding
responsible processes. Each process indexes the data based on its local reference points
and ranks the objects similar to algorithm 1. Hence, we have l output lists for different
objects sorted based on different reference points. To combine and rank them, each pro-
cess computes the distance between top ranked 2K-points and the query. Then, these
distances are sent to the process which received the query. Finally, the process ranks
these objects based on their distances and sends the results back to the user. For exam-
ple, for NNquery(q,30) the algorithm returns the most similar K = 30 objects to the
query. Each process searches within its local inverted index data structure and sends
to the master process the distance between the query and the first 2K = 60 objects.
So, if the query is located within 2 clusters, the master node receives 2 × 2K = 120
distances. These 120 distances are sorted and the top 30 objects are sent back to the
user. We empirically choose the first 2K in order to improve the results of the system.
Algorithm 3 shows the search process for MIIF algorithm. Lines 2-3 are executed by
the process which receives the query (master). Lines 5-12 compute the accumulators
with respect to the local data and calculate the distance between the query and the top
2K objects. Lines 14-16 are used to combine the result lists. This theoretically leads to
O(npNp) + tm query time and the memory usage becomes O(npNp), where Np is the
maximum number of objects located within a cluster with respect to all other clusters,
np is the number of reference objects within a cluster and tm is time needed to receive
2K calculated distances from p processes where p is the number of clusters intersecting
with the query(number of active processes). In summary, table 1 shows the complexity
and the memory occupation of the three algorithms.

Table 1. Complexity and searching time for the sequential and parallel algorithms. n: Number
of reference points. np: Number of reference points per process p. N : Number of objects. Np:
Maximum number of objects within a cluster with respect to other clusters. ts: Communication
time to receive N objects. tr: Communication time to receive pN objects. tm: Communication
time to receive 2Kp distances.

Algorithm Memory occupation Complexity
Sequential MIF O(nN) O(nN)

PLD O(nN
p
) O(nN

p
) + ts

RPD O(npN) O(npN) + tr
MIIF O(npNp) O(npNp) + tm
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Algorithm 3
IN: Query: q,

Number of top ranked queries K,
Local reference objects list on n elements: localR,
Posting lists assigned to each local reference object for Np objects,
Cluster list: CL;

OUT: Sorted Objects list: out
1. if(master)
2. Search for responsible clusters(q,CL)
3. Create l accumulators lists based on the number of active processes: al ← 0
4. if(active)
5. For each r ∈ localR
6. Let Δ be the posting list for the reference object r
7. Set i ←− 0
8. For each pair (o, P (Lo, r)) ∈ Δ
9. Set al[i] = al[i] + |P (Lo, r)− P (Lq, r)|
10. i ←− i+ 1
11. Create l distance lists: dl ← 0
12. Calculate distance(q,2k,Al,dl)
13. if(master)
14. Combine the partial distance lists into D
15. Sort(D)
16. out ← D

5 Experimental Results

We have conducted large-scale experiments to test the validity of our models. We have
implemented the sequential and the three parallel algorithms using C++ and MPICH2.
For data clustering, we used the k-means algorithm presented in [16]. Then, we used our
implementation to index 4,594,734 (84-dimensional) color features related to 4,594,734
images from the 12-million ImageNet corpus [17]. MPICH2 is installed on a Linux
cluster of 20 DualCore computers (40 cores in total) holding each 8Gb of memory and
512Gb of local disk storage, led by a master 8-core computer holding 32Gb of memory
and a TeraByte storage capacity.

We measured the running time and the effect of increasing the number of cores. Also,
we measure both the recall and the position error [2] for each algorithm. Given a query
q the recall is defined as:

Recall =
|S⋂SA|
|S| (3)

and the position error is defined as:

Position Error =

∑
o∈SA

|P (X, o)− P (SA, o)|
|SA|.|D| (4)
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where S and SA are the ordering of K top ranked objects to q for exact similarity search
and approximate similarity search respectively. X is the ordering of dataset D with
respect to their distance from q and P is defined in section 2. In all of our experiments,
we measure the average value based on 10 different queries from the datasets.

5.1 Indexing

Due to memory limitations, the sequential algorithm can not handle this data. We have
4,594,734 objects and each pair in the posting list needs about 8 bytes. For 1,000 refer-
ence objects we need about 34GB of memory, which cannot be supported individually
by any of our machines.

Figures 4a, 4b and 5 show the indexing time for algorithms presented in sections 4.1,
4.2 and 4.3 respectively. The x-axis shows the number of cores used for indexing and
the y-axis shows the running time in seconds. The running time for the clustering of
the RPD and the MIIF algorithms are not included in the figures. The clustering time
varies from 5 to 7 hours according to the number of clusters. For the three algorithms,
when the number of cores increases, the indexing time decreases. As we can see, RPD
takes more time than PLD, due to the communication required between the nodes in
order to build the inverted files. For both strategies, when the number of reference ob-
jects increases the running time increases. Memory overload can happen and stop the
indexing process. In our computer cluster, every 2 cores share 8GB of memory. For
PLD the data is equally divided, so if overload happens at one process, it will happen
for all other processes. For RPD, this can be done by any process irrespective of the
number of reference points as the data are clustered. So, some clusters may have more
data than others. The organization of the clusters should be done, so as to avoid large
clusters to be located within the same node. In our experiments, this happened with
4,000 reference points as one of the processes had a lot of data in its cluster, and started
to write in the swap and affected the indexing time.

For MIIF, the data is totally independent, there is no need for exchanging data and
the number of reference points does not have a significant effect on the memory usage.
Even if the data and the reference points are independent, the memory overload effect
can still happen so that careful data organization is required in order not to allocate large
clusters together in the same machine.
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5.2 Searching

Figures 6a, 6b and 7 show the searching time for algorithms PLD, RPD and MIIF
respectively. The x-axis shows the number of cores and the y-axis shows the running
time in seconds. Similar to indexing when the number of cores increases the average
response time decreases. We found that the average searching time using PLD is much
faster than RPD. The main reason is the communication time needed to gather the
results. If the query is located in the range of more than one cluster, pN pairs need
to be sent back to the broker process, where p is the number of assigned clusters. For
example, if we have 40 clusters and the query is located with in these clusters. Each
process sends N pairs to the broker. So, the broker receives 40N pairs, which affects
the running time, but for PLD the broker receives only N pairs. Then, it is normal that
the average time of searching using posting lists decompositions is much faster than
the reference points decompositions, due to the communication overhead. In MIIF, the
data received by the broker is 2Kp, but it is not faster than RPD due to the distance
calculation between the top 2K retrieved points and the query.
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5.3 Recall and Position Error

Figures 8a and 8b show the average recall and the average position error for algorithms
PLD and RPD relative to 1, 10 , 30, 50 K points. The average recall and the average
position error for both of our algorithms is similar to those obtained using the sequential
implementation [7] with better computing performance, as we have the same inverted
files but distributed on multiple nodes with different techniques. Figures 9a and 9b show
the average recall and the average position error for algorithm MIIF relative to 1, 10 ,
30, 50 K points. For high number of reference points, the recall and position error are
improved due to the direct distance calculation between the top 2pK objects and the
query object. For low number of reference points, the effectiveness is degraded because
these points are distributed on the clusters and they are independent. For example, for
100 reference points on 40 cores, every process generates 2 reference points related to
its data. These numbers of reference points are not enough to distribute the data. The
recall is then 0 and position error is 1.8. For 20,000 reference points, each core has 500
reference points and this improve the recall and the position error.
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6 Conclusion

We have presented three parallel algorithms to index and search permutation-based in-
dexes using inverted files. For the three algorithms, when the number of cores increases,
the indexing and searching time decreases. The posting lists decompositions and the ref-
erence points decompositions are the same but with different distribution of the data.
Both of the algorithms give good recall and position error values with respect to the
same number of nodes, but the reference points decomposition algorithm is slower in
searching as the broker node needs to gather pN lists in order to rank the objects. The
multiple independent inverted files algorithm requires a high number of reference points
in order to increase its performance, because the data and the references are indepen-
dently distributed on the processes. The direct distance calculation is useful to improve
the recall and the point error, but it affects the running time.

For future work, we will study how the choice of the references points can affect the
results of our parallel models. Also, we will further combine the techniques proposed in
[7] to each process independently in parallel to improve the running time. Also, we will
study the effect of changing number of distance calculations for multiple independent
inverted files algorithm.
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Abstract. We present experimental analysis of approximate search al-
gorithms that involve indexing of deletion neighborhoods. These methods
require huge indices whose sizes grow exponentially with respect to the
maximum allowable number of errors k. Despite extraordinary space re-
quirements, the super-linear indices are of great interest, because they
provide some of the shortest retrieval times.

A straightforward implementation that creates a hash index directly
over residual strings (obtained by deletions from dictionary words) is
not space efficient. Rather than memorizing complete residual strings,
we record only deleted characters and their respective positions. These
data are indexed using a perfect hash function computed for a set of
residual dictionary strings [2].

We carry out an experimental evaluation of this approach against
several well-known benchmarks (including FastSS, which stores residual
strings directly [3]). Experiments show that our implementation has a
comparable or superior performance to that of the fastest benchmarks.
At the same time, our implementation requires 4-8 times less space as
compared to FastSS.

Keywords: wildcard neighborhood generation, reduced alphabet neigh-
borhood generation, Mor-Fraenkel method, perfect hashing, FastSS.

1 Introduction

Approximate string searching is ubiquitous in information retrieval, spellcheck-
ing, computational biology, speech recognition, and security software (e.g., for
detection of weak passwords). This problem is twofold: finding the locations of
a pattern inside a given text, and finding matching strings in a set, i.e., in a
dictionary. In both cases, the pattern needs to match data only approximately.
A degree of closeness is determined by a distance function. We restrict our atten-
tion to the case of lossless methods which guarantee retrieval of all words within
the Levenshtein distance k from the search pattern [15]. This distance function
is equal to the minimum number of basic edit operations (insertions, deletions,
and substitutions) required to convert one string into another. Note that we are
primarily interested in practical aspects of this problem and evaluate only those
methods that are capable of tolerating more than one error (i.e., support k > 1).
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We focus on the methods with super-linear indices, which rely on generation of
deletion neighborhoods and/or reduced alphabet neighborhoods. In particular,
deletion neighborhoods are memorized in the index. The redundancy in storage
allows us to achieve very short retrieval times. It is also noteworthy that these
methods involve neither direct computation of the Levenshtein distance nor ex-
plicit verification if the distance between the pattern and dictionary words is at
most k.

The rest of the paper is organized as follows. Prior art is described in Subsec-
tion 1.1. In Subsection 1.2, we introduce notation and formalize the problem. The
implemented methods are described in Section 2, which starts with a discussion
on the concepts of full and wildcard neighborhood generation. The experiments
are presented in Section 3. Section 4 concludes the paper.

1.1 Related Work

Damerau [8] presented misspelling statistics and described one of the first meth-
ods of approximate dictionary searching. This method could tolerate only a sin-
gle error. Levenshtein proposed a string similarity function that is equal to the
minimal number of insertions, deletions, and substitutions necessary to make
strings equal. A dynamic programming algorithm to efficiently compute Lev-
enshtein distance was independently discovered by several scientists [20]. This
classic algorithm has a quadratic complexity and a number of improvements
were suggested [18].

To further reduce retrieval time, it is necessary to index the data. There are
a lot of indexing techniques for approximate dictionary searching, which rely,
among other methods, on generating neighborhoods, indexing of contiguous and
gapped string subsequences, as well as on organizing a dictionary in the form of a
trie (a prefix tree). Details of the methods for approximate dictionary searching
can be found in the surveys on this topic [11,14,19,5].

A common approach to approximate dictionary searching involves generation
of a pattern full k-neighborhood: strings obtainable from the pattern by at most
k edit operations. Then, elements of the full neighborhood are searched in the
dictionary for an exact match. This method is not efficient for large k and/or
large alphabets, because the size of the full neighborhood is O

(
nk|Σ|k) (where

n and |Σ| is the size of the pattern and the alphabet, respectively) [21].
Much shorter retrieval times can be achieved through indexing of residual

strings, i.e., strings obtainable by deletions from dictionary words. Along with
residual strings, it is necessary to memorize deleted characters and their positions
in the original dictionary words. We call these data deletion lists. A special case
of this method for k = 1 was described by Mor and Fraenkel in 1982 [17]. A
generalization of the Mor-Fraenkel method for k > 1 was independently proposed
by Bocek et al. [3] and Boytsov [5]. Both Bocek et al. and Boytsov suggested
to index residual strings and positions of deleted characters directly (via a hash
index), which is not space efficient. For k = 1, there are methods that have better
space requirements. Mihov and Schulz [16] store one-deletion neighborhoods in
the form of finite transducers. In the algorithm by Belazzougui [2], all residual
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words are enumerated using a minimal perfect hash function. Then, only deleted
characters instead of original dictionary strings are memorized. We are not aware
of any attempts to utilize compact deletion indices for k > 1.

An intermediate approach between the full neighborhood generation and the
generation of deletion neighborhoods is a reduced alphabet neighborhood gen-
eration. In this approach, the strings over the original alphabet are mapped into
strings over a smaller, i.e., reduced, alphabet. An experimental evaluation of
the reduced alphabet neighborhood generation was carried out by Boytsov [5].
It is possible to combine the reduced alphabet neighborhood generation with
the Mor-Fraenkel method, but we have not seen an implementation of this idea
before.

All described modifications of the Mor-Fraenkel algorithm do not entail com-
putation of the Levenshtein distance or explicit verification if the distance be-
tween the pattern and dictionary words is at most k. In the lossy version of the
Mor-Fraenkel method descried by Karch et al. [12], deletion indices are used only
as a filtering step. Instead of memorizing residual strings, deleted characters, and
their positions, Karch et al. propose to keep only identifiers of original dictio-
nary words. Consequently, at the verification step, a list of candidates should be
compared directly against a search pattern through computing the Levenshtein
distance. Karch et al. combine this approach with pattern partitioning: most dic-
tionary words are divided into halves and each half is indexed separately (this
approach was known already in the seventies [13,9]).

There were also attempts to blend partial neighborhood generation with tries.
Cole et al. [7] introduced a k-errata tree, where errors are treated by recursively
creating insertion, substitution, and deletion subtrees. The k-errata tree has a

super-linear index whose size is upper bounded by O
(
λN +N (5 log2 N)k

k!

)
, where

N is the number of dictionary strings. Boytsov [5] conducted an experimental
evaluation of this method, which showed that the k-errata tree was impractical
for k > 1.

1.2 Notation and Problem Formalization

We consider algorithms that operate on strings, i.e., sequences of characters over
an ordered finite alphabet Σ (|Σ| is the size of the alphabet). The i-th character
of the string s is denoted by s[i]. The string obtained from s by deletion of the i-th
character is denoted by Δi(s). A reverse operation consists in inserting character
c into position i, which introduces c before the character s[i]. We assume that
the reader is familiar with notions of a substring as well with the concepts of a
prefix, a suffix, and, a q-gram (a substring of the fixed length q).

Several implemented algorithms rely on mapping the original alphabet Σ to
a smaller alphabet σ, which is called a reduced alphabet. A projection is done
using a hash function h(c), which induces a character-wise projection from the
set of strings over the original alphabet Σ to the set of strings over the reduced
alphabet σ in a straightforward way.
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The similarity between functions u and v is measured via the Levenshtein
distance, which is denoted by ED(u, v). It is equal to the minimum number of
basic edits (insertions, deletions, and substitutions) required to convert u into v
(and vice versa). Knowledge of algorithms to compute the Levenshtein distance
is not required for understanding this paper.

Assume that W = (s1, s2, . . . , sN ) is an ordered set of strings, called dictio-
nary. The search pattern and its length are denoted by p and n, respectively.
The maximum allowed edit distance is represented by k. The problem of approx-
imate dictionary searching consists in retrieval of all dictionary strings si such
that ED(p, si) ≤ k. In the associative version of this problem, it is necessary to
find all strings si within distance k from the pattern as well as data associated
with strings si (also called satellite data). A string identifier is one well-known
example of satellite data.

2 Method Descriptions

2.1 Full, Reduced, and Deletion Neighborhood

A neighborhood generation is a classic search method [10]. The full neighborhood
generation entails computation of all strings within the Levenshtein distance k
from the search pattern p. These strings comprise a full k-neighborhood. Each
element of the full k-neighborhood is searched for in the dictionary exactly.
Because the size of the neighborhood is O

(
nk|Σ|k) [21], this algorithm is only

practical when neither of the following parameters are large: the size of the
alphabet, the maximum allowed Levenshtein distance, and the pattern length.

Consider an example of the string find. The full one-neighborhood contains
the following strings:

– the original string find;

– 4 strings obtained by applying a single deletion;

– 5× 26 strings obtained by applying a single insertion;

– 4× 25 strings obtained by applying a single substitution.

In total, the one-neighborhood contains 231 unique strings. However, the two-
and the three-neighborhood of the string find contain about 20K and 1.5M
unique strings, respectively.

One approach to compress the full neighborhood is to replace some characters
with wildcards. Let us extend the alphabet with a wildcard pseudo-character ?
that matches any alphabet character. Then, the full wildcard one-neighborhood
of the word find may contain the following strings:

– the original string find;

– 4 strings obtained by a single deletion;

– 5 strings obtained by one insertion: ?find, f?ind, fi?nd, fin?d, find?;

– 4 strings obtained by one substitution: ?ind, f?nd, fi?d, fin?.
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The wildcard one-neighborhood comprises only 13 strings as compared to 231
strings of the full one-neighborhood. In general, the size of the wildcard
k-neighborhood is smaller than the size of the full k-neighborhood by a factor
of |Σ|k.

Another approach to compress the neighborhood is to decrease the size of the
alphabet. This can be achieved through mapping of the original alphabet Σ to a
smaller (reduced) alphabet σ via a hash function h(c). Assume that σ = {0, 1};
h(c) is equal to 0 for English letters from a to m, and is 1 for letters from n to
z. Note that characters 0 and 1 can be considered as special wildcard characters
that represent regular expressions [a-m] and [n-z], respectively.

In our example, the reduced string h(find) is equal to 0010. The full neighbor-
hood of the string 0010 has 14 unique elements, which is much smaller than the
full neighborhood of the original string find. One should now be convinced that
generating a wildcard/reduced alphabet neighborhood entails significant perfor-
mance improvements, if we can devise algorithms to satisfy wildcard queries
efficiently. In the following subsections, we discuss such algorithms.

2.2 A Generalization of the Mor-Fraenkel Method

In the Mor-Fraenkel method, wildcard queries are answered with a help of dele-
tion indices. Deletion indices store deletion neighborhoods generated at index
time. Consider an example, where find is a pattern string, mind is a dictionary
string, and k = 1. Strings find and mind differ by one substitution. Further-
more, the string ?ind from the wildcard one-neighborhood of the pattern find

matches the dictionary string mind.
To find all dictionary words that differ from find only in the first letter, it

is sufficient to memorize all strings obtained by deletion of the first character
in a special index. At search time, we simply remove the first character of the
pattern string p and retrieve all strings from the special index that match the
shortened pattern exactly. In what follows, we describe a generalization of this
idea. Note that Bocek et al. [3] provide an alternative description of the same
approach as well as its efficient implementation (FastSS).

The indexing algorithm of the generalized Mor-Fraenkel method iterates over
dictionary strings and generates their k-deletion neighborhoods, i.e., all strings
obtainable from dictionary strings through k deletions. Consider a residual string
s′ = Δτ1(Δτ2(. . . (Δτls) . . .) = Δτl+l−1(. . . (Δτ2−1(Δτ1s)) . . .) obtained from a
dictionary string s through deleting characters s[τ1], s[τ2], . . . , s[τl] in positions
τ1 ≤ τ2 ≤ . . . ≤ τl (l ≤ k). For each residual string s′, we memorize a triple
(s′, Ds, Cs), where Cs = (s[τ1], s[τ2], . . . , s[τl]) stands for deleted characters and
Ds = (τ1, τ2 − 1, . . . , τl − l + 1) represents their positions in the original string
s. These triples, called deletion lists, are kept in an index. This index allows us
to search for triples by their first elements, i.e., by residual strings.

We note the following:

– Given a triple (s′, Ds, Cs), the original string s can be reconstructed by
inserting characters Cs

i at positions Ds
i into the string s′ in the decreasing

order of i.



Super-Linear Indices Approximate Dictionary Searching 167

– Ds is a multiset, i.e., a set that may contain repeated elements. A multiset
is characterized by its indicator function. The value of the multiset indicator
function 1A(e) is equal to the number of times the element e repeats in A.
All multiset operations can be expressed in terms of indicator functions. In
particular, the indicator of the intersection is equal to min(1A(e),1B(e)) and
|A| (the cardinality of A) is equal to

∑
e∈A 1A(e).

At search time, we generate the k-deletion neighborhood of the pattern string
p. Thus, we obtain pairs (p′, Dp), where p′ is a residual string obtained from p
by deleting characters p[ρ1], p[ρ2], . . . p[ρm] in positions ρ1 < ρ2 < . . . < ρm and
Dp = (ρ1, ρ2 − 1, . . . , ρm −m+ 1) is a multiset that represents ρi.

Next, we retrieve all dictionary triples (s′, Ds, Cs) (using the exact-search
index) that satisfy the conditions:

p′ = s′

|Ds|+ |Dp| − |Ds ∩Dp| ≤ k (1)

Finally, dictionary strings are reconstructed from triples satisfying Condition (1).

2.3 A Compact Version of the Mor-Fraenkel Method

Explicit indexing of triples (s′, Ds, Cs) – defined in Subsection 2.2 – requires a
lot of RAM. A more space efficient version was proposed by Belazzougui for the
case k = 1. He suggested to enumerate all residual strings s′ using a minimal
perfect hash function [2]. The minimal perfect hash function f(s) mapsm strings
to integer values from 1 to m without collisions. During indexing, we convert
triples (s′, Ds, Cs) into triples (f(s′), Ds, Cs) and index the latter using first
elements (i.e., values of the perfect hash function) as keys.

The retrieval algorithm is almost identical to that described in Subsection
2.2. At search time, we compute all pairs (p′, Dp), where p′ is a residual string
obtained from p by deleting up to k characters. Positions of deleted characters are
defined by the multisetDp. Then, we retrieve all dictionary triples (f(s′), Ds, Cs)
such that:

f(s′) = f(p′)

|Ds|+ |Dp| − |Ds ∩Dp| ≤ k. (2)

Note that the first element of the triple is the hash value of the unknown string
s′. If s′ = p′, the triple represents a dictionary string s such that ED(p, s) ≤ k.
In this case, s can be obtained by inserting Cs

i into p′ at positions Ds
i (in the

decreasing order of i). However, if s′ �= p′, the triple represents a false positive.
Two cases are to be considered. In the first case, the residual pattern string

belongs to the set of residual dictionary strings computed during indexing. By
the definition of the perfect hash function, f(s′) = f(p′) implies s′ = p′. Thus,
the retrieved triple represents the dictionary string s such that ED(p, s) ≤ k.
The string s can be recovered from the residual pattern string p′, the multiset
Ds, and the vector Cs as described previously.
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In the second case, p′ is not a residual dictionary string. Thus, p′ �= s′. This
case signifies a false positive. As noted by Belazzougui, it can be detected by
constructing the string s′′ from {p′,Ds, Cs} as described previously and checking
whether the constructed string belongs to the dictionary.

If s′′ is a dictionary string, then all the triples satisfying Condition (2) define
dictionary strings s such that ED(p, s) ≤ k. If the constructed string does not
belong to the dictionary, none of the triples satisfying Condition (2) represent
a dictionary string s such that ED(p, s) ≤ k. Thus, checking whether a recon-
structed string s′′ belongs to the dictionary has to be done only once for every
residual pattern string p′.

To obtain a compact index of deletion lists, Belazzougui recommends to store
triples in the increasing order of hash values f(s′). For each hash value i, the
offset of the first triple (f(s′), Ds, Cs) such that f(s′) = i is stored in the offset
table T (i). Because the offsets in T (i) is a sequence of non-decreasing integer
values, one can efficiently compress T (i). An experimental survey of methods for
compact representation of directly addressable ordered sets is given by Brisaboa
et al. [6]. In our work, we rely on a simple folklore sampling method, which
allows us to compress the offset table T (i) to about 30-50% of its original size.

To conclude this subsection, we note that in our implementation the perfect
hash functions are computed using the CMPH library [4].1 For our data, CMPH
fails to generate a perfect hash function when the number of residual strings
is large (approximately 100M). To overcome this difficulty, we employ a two-
level scheme, where residual strings are divided into shards using a regular hash
function. Then, we create a perfect hash function separately for each shard. It is
noteworthy, that this approach allows one to construct a perfect hash function
for arbitrarily large sets of strings. In addition, dividing the index into shards
simplifies updates.

2.4 Reduced Alphabet Neighborhood Generation

The indexing algorithm of the reduced alphabet neighborhood generation em-
ploys a hash function h(c) to convert original dictionary strings si into their
projections h(si), which are strings in the reduced alphabet. Then, dictionary
strings are organized into buckets based on the values of h(si) so that each bucket
contains strings with same values of h(si). This allows us to efficiently retrieve
original strings si using their projections h(si) as search patterns.

At search time, the pattern p is converted into r = h(p). Then, we create a
full k-neighborhood of the reduced pattern r (using characters from the reduced
alphabet σ). All dictionary strings s such that ED(p, s) ≤ k are contained in
buckets corresponding to strings from the generated neighborhood. This step
provides a list of candidate strings. Because the size of the reduced alphabet is
(much) smaller than that of the original alphabet, computation of the reduced
alphabet requires little time.

1 It can be downloaded from http://cmph.sourceforge.net/

http://cmph.sourceforge.net/
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In the second step, the candidate strings are compared with the original pat-
tern. A naive implementation of the verification step involves computation of
the Levenshtein distance. A more efficient approach is to generate an additional
wildcard neighborhood, i.e., the wildcard neighborhood of the original pattern.

The generation of two neighborhoods is synchronized in the following manner:

– If we substitute the i-th character of the reduced pattern r, we replace the
i-th character of the original pattern p with the wildcard symbol ?;

– Similarly, if we insert a character at position i of r, we insert the wildcard ?

at position i of p;
– If we delete the i-th character of r, we also delete the i-th character of the

original pattern p.

Note that this procedure generates pairs of patterns that have same lengths.
Consider the binary reduced alphabet and the hash function h(c) defined

in Subsection 2.1. Assume that the pattern p = ind is a misspelled version
of the dictionary string find. Then, r = h(ind) = 010 and h(find) = 0010.
The reduced-alphabet one-neighborhood of r contains the string 0010, which
is obtained by inserting 0 into the first position of the reduced pattern. The
respective element from the “parallel” neighborhood is equal to ?ind. We use
0010 to identify a bucket that contains the string find. Then, the element ?ind
of the second neighborhood is used to compare ind with find. For this purpose,
we treat ?ind as a simple regular expression where ? matches any alphabet
character. Whenever a dictionary string in the bucket matches p within k =
1 errors, it should match such regular expression exactly. This match can be
verified efficiently (in time proportional to the length of s) without computing
the Levenshtein distance.

2.5 A Hybrid of the Mor-Fraenkel Method and the Reduced
Alphabet Neighborhood Generation

The Mor-Fraenkel method can be blended with the reduced alphabet neigh-
borhood generation. The indexing process of this hybrid algorithm starts with
creating a reduced alphabet index outlined in Subsection 2.4: The dictionary
strings si are divided into buckets based on their projections h(si) (to the set
of reduced alphabet strings). Projections h(si) are stored in the form of a dic-
tionary. In the second indexing step, this dictionary is indexed using a compact
version of the Mor-Fraenkel method (see Subsection 2.3). One advantage of this
approach is that triples (f(s′), Ds, Cs) can be readily compressed. For example,
in our experiments we use |σ| = 8. Thus, each element of Cs can be encoded
with 3 bits.

The search algorithm is divided into two steps and involves the parallel gen-
eration of two wildcard neighborhoods. This first step of the search algorithm is
a modification of the Mor-Fraenkel search method. As described in Subsection
2.2, we create residual patterns {p′} by applying up to k deletions. Positions of
deleted characters associated with {p′} are defined by multisets {Dp}. In addi-
tion, we create residual patterns {r′} by deleting characters from the reduced
pattern r = h(p) in the same positions as in {p}.
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For each r′, we retrieve memorized triples (f(s′), Ds, Cs) such that f(r′) =
f(s′) and |Ds|+ |Dr′ | − |Ds ∩Dr′ | ≤ k (s′ is a string in the reduced alphabet).
Then, we construct a string s′′ by inserting characters Cs into the residual string
r′ in positions Ds

i in the decreasing order of i. The result is a string r′′. We also
modify the residual string p′, obtained from the non-reduced pattern p. To this
end, wildcard character ? is inserted into positions Ds

i in the decreasing order of
i. The result is the pattern p′′ that contains zero or more wildcards. The string
r′′ defines a bucket with candidate strings, which are exhaustively compared
with the simple regular expression defined by p′′.

2.6 Associativity Consideration

It can be seen that methods defined in Subsections 2.4-2.5 can handle associated
data by simply storing it in the buckets (or pointers thereto). Because both
methods involve full scanning of the buckets with candidate strings, retrieval of
associated data does not have a performance penalty.

However, the compact version of the Mor-Fraenkel method that uses perfect
hashing is capable of retrieving only strings themselves. Retrieval of associated
data can be supported in two ways. In a more space efficient approach, associated
data (or pointers thereto) are stored in the dictionary. Then, for every string
generated during the verification step, we have to search the dictionary for an
exact match, even though we already know that the generated string must belong
to the dictionary. According to our experiments, these additional lookups almost
double retrieval time. In a second approach, compressed string identifiers are kept
in the deletion lists. This requires an approximately two times larger index, but
retrieval time will remain the same.

3 Experiments

3.1 Experimental Setup

Experiments are carried out on a laptop with a 2 Ghz Dual Core Intel Processor,
3 Gb of RAM, and 1 Mb of L2 cache. This laptop is running a 32-bit Linux (kernel
version 2.6.x).

We use some of the data sets published by Boytsov [5]: synthetic English
dictionaries, frequent words from the ClueWeb09 collection, and DNA sequences
extracted from the human genome (of length 11). Each type of the data set has
5 dictionaries with 0.2M, 0.4M, 0.8M, 1.6M, and 3.2M strings. We created new
sets of search patterns containing up to 10K, by applying up to k random edits to
dictionary strings. These larger test sets allow us to reduce sampling uncertainty
in calculating average retrieval times.

All search methods are implemented in C/C++ with correctness of implemen-
tation verified by black-box testing. We index a small dictionary and generate a
set of strings by applying i ≤ k random edits to dictionary words. Then, we check
if the algorithm is capable of finding original dictionary words using modified
strings as search patterns.
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In our experiments, we determine how the following performance character-
istics depend on k: the average in-memory retrieval time and the index size. To
estimate index memory requirements, we measure the amount of space occupied
by a serialized version of the index. For FastSS this method produces a biased es-
timate: we correct it through multiplying by 2, which is a coefficient empirically
determined using the Unix utility top.

3.2 Evaluated Methods

We compared the performance of super-linear indices with several methods, in
particular with the fastest methods evaluated by Boytsov [5]. We benchmarked
the following algorithms:2

– FastSS [3], which is straightforward generalization of the Mor-Fraenkel
method (see Subsection 2.2). Deletion lists are not compressed.

– A new implementation of the Mor-Fraenkel method with compact indices
(see Subsection 2.3). It employs the perfect hash library CMPH [4].3 We
compress deletion lists as follows: for natural language data, each deleted
character as well as its position is encoded using 6 bits. For DNA-data, a
deleted character together with its position occupy 8 bit.

– The reduced alphabet neighborhood generation implemented by Boytsov [5]
(see Subsection 2.4). In the case of ClueWeb09 data, we use |Σ| = 5 and
|Σ| = 3, otherwise. This method works well only for large and medium
alphabets and is not used for the DNA data set.

– The full neighborhood generation (see Subsection 2.1), which is used only
for the DNA data set.

– The hybrid of the reduced alphabet neighborhood generation and the Mor-
Fraenkel method with |Σ| = 8 (see Subsection 2.5). Characters and their
positions in deletion lists are encoded using 3 and 5 bits, respectively. For a
few patterns longer than 31−k character, we resort to the reduced alphabet
neighborhood generation.

– The FB-trie proposed by Mihov and Schulz [16] (Boytsov’s implementation
[5]). It employs a pair of tries: a regular one and a trie built over reversed
strings. At search time, the method looks for the original pattern in the reg-
ular trie, and for the reversed pattern in the trie built over reversed strings.
A first part of either the original or the reversed pattern should match a
trie prefix with at most �k/2� < k errors. This is a well-known pattern
partitioning approach [13,9].

– Two modifications of q-gram methods. One is implemented by Boytsov [5]
and another is provided with the Flamingo package written by Behm et al.
[1]. For brevity, we report only the best time achieved by one of the q-gram
methods.

2 The source files are available at: http://boytsov.info/src/.
3 http://cmph.sourceforge.net/

http://boytsov.info/src/
http://cmph.sourceforge.net/
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Fig. 1. Relationship between the average retrieval time and the index size (log-scale
on both axes). Each series of connected dots represents results for dictionaries of at
most five sizes: 0.2M, 0.4M, 0.8M, 1.6M, and 3.2M (from left to right).

3.3 Experimental Results

Figures 1 and 2 shows the relationship between the average retrieval time and the
index size. Each series of connected dots represents results for a set of dictionaries
of increasing size. In most cases, the dots from left to right correspond to the
dictionaries of five sizes: 0.2M, 0.4M, 0.8M, 1.6M, and 3.2M. Some connected
series contain fewer dots, because larger indices do not fit into RAM. Note that
in the case of associative searching, either the average retrieval time or the index
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size of the Mor-Fraenkel method based on perfect hashing would be twice of that
presented in Figures 1-2. The other methods can support associative searching
without a penalty in performance or memory requirements (see Subsection 2.6).
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Fig. 2. Relationship between the average retrieval time and the index size (log-scale
on both axes). Each series of connected dots represents results for dictionaries of at
most five sizes: 0.2M, 0.4M, 0.8M, 1.6M, and 3.2M (from left to right).

One can immediately see that all three modifications of the Mor-Fraenkel
method (which includes FastSS) are more efficient than other methods in almost
all cases. In particular, they are:

– about two orders of magnitude faster than q-gram based methods, which are
often considered as good benchmarks;

– up to an order of magnitude faster than the FB-trie.

This efficiency comes at the price of huge indices and long indexing times (up
to one hour for the variant based on perfect hashing). Consider the panel in
Figure 1 corresponding to the case of k = 1. The second dot in the FastSS
series represents the index for the second largest dictionary (0.4M strings). It
has the size 100MB, which is larger than a q-gram index built for the dictionary
with 3.2M strings. However, the index size of the Mor-Fraenkel method based
on perfect hashing is only 8MB, or about 1/10 of the FastSS index. Taking into
account that about 25% reduction is achieved through lightweight compression
of deletion lists (both characters and positions occupy 6 bits each), we obtain
that the use of perfect hashing alone lead to about 8-fold reduction in index
sizes as compared to straightforward memorization of deletion neighborhoods.
For larger k the difference is approximately 4-fold.
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One can also see that the hybrid of the Mor-Fraenkel method and the reduced
alphabet neighborhood generation is not a very practical method. Even though
the hybrid method significantly improves over the reduced alphabet neighbor-
hood generation (especially for larger k), it is up to an order of magnitude slower
than the Mor-Fraenkel method based on perfect hashing (see k = 4, ClueWeb09
data). In that, the hybrid method has equivalent space requirements to those of
the Mor-Fraenkel method.

Mor−Fraenkel method (perfect hash)
Hybrid of Mor−Fraenkel method and reduced alphabet neighborhood generation
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Fig. 3. Relationship between the average retrieval time and pattern length (log-scale
on time axis)

Consider the case of DNA data. For small dictionaries, the variants of Mor-
Fraenkel methods are among the fastest algorithms. As the number of dictionary
strings grows, performance of these methods deteriorates. For k ≤ 2, it becomes
equivalent to that of full neighborhood generation. We believe that this fact can
be explained by a density effect (see Section C.3.3 in the paper by Boytsov [5]).
In our case, the number of unique 11-character DNA sequences is about 4M. The
largest dictionarywith 3.2M entries containsmost of them and, thus, is very dense.
Consequently, the algorithm has a low filtering efficiency. Note that for k ≥ 3 and
DNA data, the Mor-Fraenkel method outperforms the full neighborhood genera-
tion, but it has the equivalent performance to that of the FB-trie.

We conducted an additional experiment to study the relationship between the
average retrieval time and the pattern length. To this end, we use the smallest
ClueWeb09 dictionary (0.2M strings) and patterns with length from 4 to 15.
According to Figure 3, the average retrieval time of all Mor-Fraenkel methods
first decreases until n ≈ 8. Afterwards, it increases monotonically. The FB-trie
utilizes pattern partitioning, which is essentially filtering by word halves. The
longer is the pattern, the better is filtering efficiency. Consequently, the average
retrieval time of the FB-trie decreases monotonically with n. For long patterns,
k = 1, and k = 3, performance of Mor-Fraenkel methods is equivalent to that
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of the FB-trie. Thus, Mor-Fraenkel methods would be most useful for short and
medium-size patterns.

4 Conclusions

Mor-Fraenkel methods have tremendous space requirements: The index size
grows exponentially with k. This also applies to FastSS, which belongs to the
family of Mor-Fraenkel methods. We have empirically confirmed that space re-
quirements can be 4-8 times lower if perfect hashing is employed (the idea pro-
posed by Belazzougui [2]). Given that typical servers are now equipped with
8-32 Gb of memory, this method is applicable to natural language dictionar-
ies containing several million entries. At the same time, the efficiency of the
Mor-Fraenkel method based on perfect hashing is similar to that of the straight-
forward implementation of the Mor-Fraenkel method, which indexes deletion
neighborhoods directly. Both the straightforward and perfect-hash implementa-
tions outperform our fastest benchmarks in most cases.

Mor-Fraenkel methods work best for small and medium patterns (at most 10
characters). For longer search strings one should employ a pattern partitioning
strategy similar to the one used by Karch et al. [12]. However, it remains to be
determined which pattern partitioning strategy would be most efficient. Another
open question is whether (and to what extent) one can improve performance of a
trie-based method through precomputing wildcard neighborhoods at index time.
One such algorithm was proposed by Cole et al. [7], but we are unaware of any
space efficient implementation of this (or similar) method.

Acknowledgments. I am very grateful to my wife Anna for editorial assistance.
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Abstract. The success of content-based retrieval systems stands or falls
with the quality of the utilized similarity model. In the case of having no
additional keywords or annotations provided with the multimedia data,
the hard task is to guarantee the highest possible retrieval precision us-
ing only content-based retrieval techniques. In this paper we push the
visual image search a step further by testing effective combination of two
orthogonal approaches – the MPEG-7 global visual descriptors and the
feature signatures equipped by the Signature Quadratic Form Distance.
We investigate various ways of descriptor combinations and evaluate the
overall effectiveness of the search on three different image collections.
Moreover, we introduce a new image collection, TWIC, designed as a
larger realistic image collection providing ground truth. In all the exper-
iments, the combination of descriptors proved its superior performance
on all tested collections. Furthermore, we propose a re-ranking variant
guaranteeing efficient yet effective image retrieval.

1 Introduction

With the increasing volumes of multimedia data available over the internet, the
Content-based Image Retrieval Systems (CBIR) [10,11] steadily become more
and more important. Even though for some of the data an annotation is avail-
able, the content-based paradigm (possibly combined with the keyword search)
might provide more precise retrieval than the keyword search alone. This fact
was recently confirmed by Google that added content-based image search to the
classic keyword image search engine. However, unlike keyword search, the tech-
nology of content-based image retrieval is extremely diverse as there have been
thousands models proposed and even more studies performed [10]. The differ-
ences reflect various demands, such as general image-matching technologies and
applications vs. very specialized systems tuned for a specific application, use
various feature extraction types designed for measuring global or local similar-
ity, and so on. The image descriptors span from image fingerprints (hashes) for
near-duplicate search, over local image features, to descriptors of global features.
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In this paper, we deal with MPEG-7 global visual descriptors and so-called
image feature signatures. The MPEG-7 visual descriptors use standardized de-
scription of image content that proved to provide good retrieval effectiveness in
image retrieval applications. Their main property is they describe global image
features, such as color, texture or shape distribution, among others. On the other
hand, the recently proposed feature signatures allow to aggregate local features
into a compact form. It has been shown that feature signatures provide more
flexible similarity search than MPEG-7 descriptors, while they offer less complex
matching than local features developed for image classification, e.g., SIFTs.

Paper Contribution
Both MPEG-7 descriptors and feature signatures have their strong and weak
points. In this paper we compare and synergistically combine MPEG-7 descrip-
tors with image feature signatures in order to reach ultimate effectiveness. In
particular, we

– evaluate on three different image collections the effectiveness of standard
global visual descriptors (and their combinations) and complex feature sig-
natures used with the signature quadratic form distance (SQFD),

– combine the MPEG-7 global descriptors with the feature signatures in vari-
ous ways which improves the overall effectiveness of the search on all tested
collections,

– employ the re-ranking concept, such that the MPEG-7 descriptors are used
for “cheap” pre-selection of image candidates and then the (rather small)
result is re-ranked using the time-consuming SQFD based on feature signa-
tures, resulting thus in a very efficient search mechanism,

– and introduce a new image collection for CBIR effectiveness evaluation.

2 Preliminaries and Related Work

When searching multimedia databases in a content-based way, users issue simi-
larity queries by selecting multimedia objects or by sketching the intended ob-
ject contents. Given an example multimedia object or sketch q, the multimedia
database S ⊂ U (where U is the object universe) is searched for the most related
objects with respect to the query by measuring the similarity between the query
and each database object by means of a distance function δ. As a result, the
multimedia objects with the lowest distance to the query are returned to the
user. In particular, a range query (q, r), q ∈ U, r ∈ R+, reports all objects in
S that are within a distance r to q, that is, (q, r) = {x ∈ S | δ(x, q) ≤ r}. The
subspace defined by q and r is called the query ball. Another popular similar-
ity query is the k nearest neighbors query (k-NN(q)). It reports the k objects
from S closest to q. That is, it returns the set C ⊆ S such that |C| = k and
∀x ∈ C, y ∈ S − C, δ(x, q) ≤ δ(y, q). The k-NN query also defines a query ball
(q, r), but the distance r to the kth NN is not known beforehand. In the following
paragraphs, we describe two different model representations used in this paper.



Visual Image Search: Feature Signatures or/and Global Descriptors 179

2.1 MPEG-7 Global Visual Descriptors

The global visual descriptors are the fundamental instruments to measure the
overall similarity of the digital images’ content. In this work, we use five well-
established descriptors from the MPEG-7 standard [24] that capture various
image characteristics. There is a function defined for each of the descriptors [21]
to measure the distance (dissimilarity) δ between two instances of that descrip-
tor.

Scalable Color is derived from a color histogram in the Hue-Saturation-Value
color space with fixed space quantization. We used the 64 coefficients ver-
sion of this descriptor. The distance between two scalable color instances is
measured by the L1 metric (sum of absolute differences).

Color Structure aims at identifying localized color distributions using a 8× 8
pixels structuring matrix that slides over the image. This descriptor can
distinguish between two images having similar amount of pixels of a specific
color, if structures of these pixels differ in these images. The L1 metric is
used to compute descriptors distances.

Color Layout descriptor is obtained by applying the Discrete cosine transform
on a 2-D array (usually 8 × 8 blocks) of local representative colors in three
color channels (Y, Cb, and Cr). The distance between two objects is com-
puted as a sum of L2 distances in each of the three color space components.

Edge Histogram represents the local-edge distribution in the image. The im-
age is subdivided into 4 × 4 sub-images and edges in each sub-image are
categorized into five types: vertical, horizontal, 45◦ diagonal, 135◦ diagonal,
and non-directional edges. This results in 80 coefficients (5 values for each
of the 16 sub-images) representing the local edge histograms. Further, the
semi-global and the global histograms can be computed based on the local
histogram and the distance is computed as a sum of weighted sub-sums of
absolute differences for the local, semi-global and global histograms.

Region Shape descriptor considers the whole region of the shapes on the im-
age. The descriptor works by “decomposing” the shape into a number of
orthogonal 2-D basis functions defined by the Angular Radial Transforma-
tion (ART) [24]. The descriptor is a vector of normalized magnitudes of the
ART coefficients and the distance is calculated using the L1 norm.

2.2 Descriptors Consisting of Local Features

The conventional feature descriptors, such as MPEG-7 visual descriptors, aggre-
gate and store these properties in feature histograms, which can be compared
by vectorial distances [17,26]. The problem is, that for both simple and complex
images there is the same number of bins, which does not reflect the complexity
of the images. From this point of view, the feature signatures are more flexible
choice to describe the image content.
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Feature Signatures. Unlike conventional feature histograms, feature signa-
tures are frequently obtained by clustering the objects’ properties, such as color,
position, texture, or other more complex features [12,23], within some feature
space and storing the cluster representatives and weights. Thus, given a feature
space F, the feature signature So of a multimedia object o is defined as a set of
tuples from F× R

+ consisting of representatives ro ∈ F and weights wo ∈ R
+.

Fig. 1. Three example images with their corresponding feature signature visualizations

We depict an example of image feature signatures according to a feature space
comprising position, color and texture information, i.e. F ⊆ R7, in Figure 1. For
this purpose, we applied a k-means clustering algorithm where each representa-

tive roi ∈ F corresponds to the centroid of the cluster Coi ⊆ F, i.e., roi =

∑
f∈Co

i
f

|Co
i |

,

with relative frequency wo
i =

|Co
i |∑

i |Co
i |
. We depict the feature signatures’ repre-

sentatives by circles in the corresponding color. The weights are reflected by the
diameter of the circles. As can be seen in this example, feature signatures ad-
just to individual image contents by aggregating the features according to their
appearance in the underlying feature space.

Signature Quadratic Form Distance. The Signature Quadratic Form Dis-
tance (SQFD) [6] is an adaptive distance-based similarity measure, generalizing
the classic vectorial Quadratic Form Distance (QFD) [16] for feature signatures.
It is defined as follows.

Definition 1 (SQFD). Given two feature signatures Sq = {〈rqi , wq
i 〉}ni=1 and

So = {〈roi , wo
i 〉}mi=1 and a similarity function fs : F×F→ R over a feature space

F, the signature quadratic form distance SQFDfs between Sq and So is defined
as:

SQFDfs(S
q, So) =

√
(wq | −wo) ·Afs · (wq | −wo)T ,
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where Afs ∈ R(n+m)×(n+m) is the similarity matrix arising from applying the
similarity function fs to the corresponding feature representatives, i.e., aij =
fs(ri, rj). Furthermore, wq = (wq

1 , . . . , w
q
n) and wo = (wo

1 , . . . , w
o
m) form weight

vectors, and (wq | −wo) = (wq
1 , . . . , w

q
n,−wo

1, . . . ,−wo
m) denotes the concatena-

tion of weights wq and −wo.
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Fig. 2. The impact of α on the mean average precision (MAP) and intrinsic dimen-
sionality (iDIM)

The similarity function fs is used to determine similarity values between all
pairs of representatives from the feature signatures. In our implementation, we
use the similarity function fs(ri, rj) = e−αL2(ri,rj)

2

, where α is a constant for
controlling the precision-indexability tradeoff, as investigated in previous works
[4,19], and L2 denotes the Euclidean distance. In particular, the lower values of
α lead to better indexability (allowing fast search), that is, to lower values of
so-called intrinsic dimensionality (iDIM) [8]. However, with lower values of the α
parameter also the mean average precision (MAP) decreases, see an example for
TWIC database in Figure 2. On the contrary, the best mean average precision
values can be reached for already high α (e.g., α > 0.5 in the figure), where the
SQFD space is no longer indexable. In such cases the parallel implementation
could be the only feasible way to significantly speedup the search, especially when
GPU processing is employed [18]. In the following section we briefly summarize
the indexing methods used for efficient retrieval.

2.3 Efficiency of the Retrieval

In this section, we briefly analyze how demanding is indexing and searching of
the above mentioned descriptors, while we mention ways of how to speed up the
search. Details can be found in the referenced literature.

MPEG-7 Visual Descriptors. The described MPEG-7 visual descriptors are
a standard means for measuring global visual similarity of images. Indexing and
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searching of such data can be relatively efficient because the representations of
the features is not very space demanding (all five mentioned descriptors together
require about 1 kB of memory) and all the respective distance functions are based
on Lp metrics. Individual descriptors can be combined by a (weighted) sum of
their respective distances and the result remains a metric space. On average, the
time of a single distance computation of this descriptor combination is about
0.01ms.

Number of recent works on metric-based indexing and searching presented
efficiency experiments on combination of several global features [2,14,25]. The
results indicate that evaluation of k-NN on such spaces is relatively efficient for
both precise and approximate similarity search: over 50% of the indexed data
can be pruned by sophisticated precise metric access methods and about 90%
of the precise k-NN answer can be obtained by accessing 5–10% of the indexed
data by sophisticated approximate techniques.

Indexing Feature Signatures with SQFD. When processing content-based
similarity queries by the näıve sequential search, the SQFD distance has to be
evaluated for each database object individually. Unlike the cheap Lp distances,
the SQFD is of more than quadratic time complexity, so the sequential search,
sometimes acceptable for Lp distances, is impractical for SQFD even on a mod-
erately sized database. Although it has been shown that the SQFD is a gener-
alization [7] of the well-known Quadratic Form Distance [16], recent approaches
indexing the data by a homeomorphic mapping into the Euclidean space [27] can-
not be applied to the SQFD, as the similarity matrix changes from computation
to computation.

Nevertheless, recent papers showed that SQFD can be indexed by metric
access methods [4] and ptolemaic indexing [19], achieving a speed-up of up to
two orders of magnitude with respect to the sequential scan.

2.4 Descriptor Effectiveness: Related Work

There are a number of works studying the effectiveness of global MPEG-7 de-
scriptors and their combination for both general visual image search [13,29,3,1]
and more specific application [9,28]. We can draw the following general con-
clusion from these studies: the descriptors can well serve for a relatively fast
global visual image search and they were successfully applied in a number of
applications. Specific selection or combination of descriptors depends on specific
characteristics of the dataset.

Visual feature signatures, especially in combination with the SQFD measure,
draw attention recently and effectiveness of this approach was tested on several
CBIR collections [7,5]. These works focus on comparison of various similarity
measures for this type of descriptors and they identified SQFD as superior. To
the best of our knowledge, there exists no work that would compare effectiveness
of feature signatures (with SQFD) and standard MPEG-7 descriptors for global
visual search or that would combine these two approaches.
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Fig. 3. The datasets used in the experiments, each dataset represented by two
classes/topics

3 Global Descriptors and Feature Signatures

The following section is the key part of the paper. First, we describe the exper-
iment settings, i.e., datasets, used descriptors and employed evaluation metrics.
Then we evaluate the effectiveness of the individual approaches, plus we evaluate
and describe various combinations of global descriptors and feature signatures.

3.1 Experiment Settings

Datasets. To conduct the experiments, first the ALOI dataset [15] comprising
72,000 images and the Corel Wang dataset [30] comprising 1,000 images were
considered. Both datasets provide the ground truth in the form of classes con-
taining particular images. The ALOI dataset consists of 1,000 classes where each
class represents one object captured under various viewing angles. Six example
images representing two classes in the ALOI dataset are depicted in the first col-
umn of Figure 3. Since all the images have black background which reduces the
noise information and the classes are very homogeneous, the similarity search
task in ALOI dataset is quite simple. The Corel Wang dataset consists of more
heterogeneous images selected from ten different topics (see the second column
of Figure 3). Such dataset can verify the proposed methods more thoroughly.

However, the Corel Wang dataset is quite small and not all images in partic-
ular topics are visually similar. Therefore, we have decided to create and intro-
duce a new dataset called Thematic Web Images Collection (TWIC) comprising
11,555 images divided among 200 classes [20]. The TWIC dataset is intended as
an alternative to ALOI – each class consists of visually similar objects but the
background is heterogeneous. Six images representing two classes in the TWIC
dataset are depicted in the third column of Figure 3. We may observe that in one
class there is one central object on various backgrounds, which more corresponds
to real requirements of the visual similarity search tasks.
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To create the TWIC dataset, we have first selected several domains (e.g.,
Buildings, Flags, Mammals, Ocean, etc.) and for each domain we have selected
around fifty keywords from that domain. Having these several hundreds of key-
words where each keyword represents one image class, we have started to query
the google images engine. Such keywords that created a homogeneous google
image search result1 were saved, i.e., the keyword and first two-hundred links
to the corresponding images. Then, we have manually filtered all images that
were not visually coherent from each image class and selected only the classes
containing more than fifty objects obtaining finally 11,555 images divided among
200 classes (keywords). For more details see [20].

Descriptors. In the experiments, we used the five MPEG-7 descriptors de-
scribed in Section 2.1 [24] together with the recommended distance measures.
Standard XM library was used for extraction [21].

To create feature signatures, we have extracted seven-dimensional features
(L, a, b, x, y, χ, ε) ∈ F including color (L, a, b), position (x, y), contrast χ, and
entropy ε information (as suggested in [5]). We obtained one feature signature for
every single image, where the signatures varied in size between 12 and 48 feature
representatives. On average, a feature signature consisted of 30 representatives
(i.e., 240 numbers per signature).

We combine individual descriptors by a (weighted) sum of their respective
distances. As the individual descriptors (including the feature signatures) with
the described distance functions form metric spaces, the combined space is also
metric, which is important for efficient indexing. Individual distance components
can be normalized and weighted as we will see further in Section 3.2.

Querying and Evaluation Metrics. Effectiveness of individual descriptors
and their combinations is evaluated by precision of query answers. An image
in the answer is considered part of precise answer, if it belongs to the same
image class as the query image. Namely, we executed: 1,000 queries for ALOI
dataset (each query from one image class), 100 queries for Corel Wang dataset
(ten from each of the ten topics) and 200 queries for TWIC dataset (each from
one image class). Within each dataset, we calculated mean average precision
(MAP) [22] over the set of queries and also average precision for k-NN results
with variable k. Further, we measured intrinsic dimensionality (iDIM) from the
distance distribution of respective descriptor space [8].

3.2 Effectiveness of Individual Approaches

In this section, we describe the effectiveness of individual descriptors on all three
datasets under test. Table 1 summarizes the results for all five global MPEG-7
descriptors individually and for the feature signatures with the SQFD distance.

As expected, the overall values ofMAP differ significantly for individual datasets:
ALOI is relatively uncomplicated dataset with MAP reaching values over 0.7 even

1 The result contained many visually similar images.
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Table 1. Mean Average Precision (MAP) of individual descriptors and their intrinsic
dimensionality (iDIM)

ALOI Corel Wang TWIC
Individual descriptors MAP iDIM MAP iDIM MAP iDIM

Color Layout 0.37 1.3 0.43 4.2 0.17 4

Color Structure 0.78 2 0.5 7.7 0.20 6

Edge Histogram 0.28 2 0.4 6.8 0.15 5

Region Shape 0.15 0.7 0.25 2.4 0.07 2.5

Scalable Color 0.70 2.7 0.48 9.2 0.15 7

SQFD 0.73 3.7 0.49 15 0.32 18.5

MPEG7 combination 0.78 3 0.57 13 0.30 13.7

for single descriptors; we can observe MAP up to 0.5 for Corel Wang; and TWIC
(as the most realistic dataset) has MAP values up to 0.2 for single global descrip-
tors and 0.32 for feature signatures with SQFD. The last row of the table shows
results for five combined MPEG-7 descriptors, each normalized by its maximum
distance and summarized. As expected, this measure outperforms individual de-
scriptors and, for ALOI and Corel Wang, it is better than SQFD.

The second columns for each dataset depict intrinsic dimensionality for the
respective descriptor spaces. We can see that ALOI descriptors have significantly
smaller iDIM which is caused by small actual visual difference between images
in the dataset (all images depict single object isolated on a black background).
Also, individual iDIM values often correspond with the effectiveness (MAP) of
respective descriptors. As the feature signatures with SQFD cover several low-
level features, the iDIM of this space is by far the highest.
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Fig. 4. MAP using global descriptor combination and SQFD with variable α

As discussed in Section 2.2, SQFD allows to control the precision-indexability
tradeoff by the parameter α used in the similarity function fs(ri, rj) = e−αL2(ri,rj)

2

.
In Figure 4, we can observe the MAP results for varying α in all three datasets.
The optimal value of all of them is around value 1, which is caused by the fact
that the feature extraction method was used with the same parameters. Too
small or too big α results in less diverse values in the similarity matrix2 and

2 In the limit case, the resulting similarity matrix can be either nearly diagonal or
unitary.
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thus in the loss of information useful for similarity. Setting α = 1 was used for
all other experiments in this section (also in Table 1). For comparison, the figure
also shows MAP of the combination of global MPEG-7 descriptors mentioned
above.

We can summarize these results as follows: Effectiveness of the feature signa-
tures with SQFD is mostly better than a single MPEG-7 global descriptor and
comparable with the MPEG-7 descriptor combination. The question remains,
whether better results can be reached by fusion of both approaches.

Table 2. Mean Average Precision (MAP) of various descriptor combinations: the dis-
tance measure of the combination is either (1) pure sum of its component sub-distances,
or (2) sum of these sub-distances weighted by the components iDIM

Effectiveness (MAP)

ALOI Corel Wang TWIC
Combination of descriptors sum iDIM sum iDIM sum iDIM

MPEG7 combination 0.78 0.80 0.57 0.58 0.30 0.30

Color Layout + SQFD 0.71 0.74 0.50 0.51 0.33 0.34

Color Structure + SQFD 0.82 0.80 0.56 0.55 0.34 0.34

Edge Histogram + SQFD 0.71 0.74 0.52 0.52 0.35 0.34

Region Shape + SQFD 0.70 0.73 0.45 0.49 0.29 0.32

Scalable Color + SQFD 0.83 0.83 0.55 0.54 0.33 0.34

MPEG7 combination + SQFD 0.81 0.83 0.58 0.59 0.37 0.38

3.3 Approach Combinations

The previous section showed that combination of MPEG-7 descriptors and fea-
ture signatures with SQFD exhibit relatively similar effectiveness and their com-
bination might be advantageous. All the descriptor spaces in question are metric
and it is important for indexing and searching that the combination space pre-
serve the metric properties. Therefore, we again decided to combine the spaces
by a (weighted) sum of their respective distances. The first row of Table 2 shows
again results of the MPEG-7 descriptor combination and then combinations with
SQFD are presented.

For each dataset, the first column always means the pure sum of respective
descriptors (normalized by maximum distances in each descriptor space), i.e.

δD1+···+Dn(X,Y ) =

n∑
i=1

δDi(XDi , YDi)

max distDi

, (1)

whereD1, . . . , Dn denote individual descriptors (e.g. Color Layout or feature sig-
natures with SQFD), XDi and YDi denote values of the Di descriptor of images
X and Y , respectively, and δDi is the distance function used with descriptor Di

(see Sections 2.1 and 2.2). When we compare MAP values from Tables 1 and 2,
practically any combination (Table 2) reached higher MAP than its components
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Fig. 5. Distance distribution of individual descriptors from TWIC: (a) normalized by
maximum distance, (b) normalized by β = 0.01

(Table 1); the exceptional combinations (that worsened the MAP) are empha-
sized by italic numbers in Table 2. These exceptions always involve descriptors
with extremely poor MAP (from Table 1).

A recent work [1] addressed the question of weight selection for combinations
of metric visual descriptors. The authors studied the distance distribution of
descriptor components normalized by the maximum distances to interval [0, 1]
– see distance histogram in Figure 5 (left). In general, descriptors with larger
average distances would influence the combination sum more significantly, which
might be a potential issue. We can try to overcome this by normalizing each
descriptor Di by a distance τDi smaller than maximum max distDi . Looking at
the distance histograms, the authors proposed to determine τ for each descriptor
so that it corresponds to a certain fixed percentage β of the smallest distances
in the histogram (see [1] for details). The effect of this normalization for β = 1%
is depicted in Figure 5 (right) – the beginnings of individual curves are very
close, which should improve the effectiveness of the combination 5. Following
this idea [1], we repeated all experiments with this normalization using β = 1%
and β = 1�, but the results were always slightly worse than with normalization
by maximum distance. We plan to investigate this area even deeper in the future.

Nevertheless, we successfully applied another weight-tuning technique to im-
prove the overall effectiveness of descriptor combination. As we mentioned al-
ready, we can observe a correlation between effectiveness of individual descriptors
and their intrinsic dimensionality iDIM (see Table 1). In general, the iDIM tries
to quantify the complexity of the data space and the difficulty to index such
dataset using a metric access method [8]. The observed iDIM-MAP correlation
can be naturally explained so that more complex descriptors have higher iDIM
and their search effectiveness is higher. Barrios et al. made similar observation
and they determine individual descriptor weights so that the iDIM of the com-
bined space is maximized (finding a local maxima) [1]. We propose an alternative
approach that builds directly on the observed correlation – we weight individual
descriptors in the combination (1) by the respective iDIM:

δiDIM
D1+···+Dn

(X,Y ) =

n∑
i=1

iDIMDi ·
δDi(XDi , YDi)

max distDi

. (2)
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The MAP for these experiments on all datasets are in the second columns in
Table 2 (denoted as iDIM weighted) and we can see that practically all the
MAP values improved – especially the overall maxima achieved by combination
of all global descriptors and feature signatures with SQFD (last row).

Comparing these values of MAP (printed in bold) with values of the MPEG-7
combination and values of pure signatures with SQFD, this best combination
resulted in improvement for all three datasets from 0.02 points (Corel Wang) to
0.08 points (TWIC). We consider these results as a success, because the MAP
measure is always very difficult to improve, especially when the ground truth for
each query forms only a small fraction of the whole collection (it is 0.5% for the
TWIC dataset, on average).

Table 3. Mean Average Precision (MAP) of searching k-NN using MPEG-7 desc.
combination and then re-ranking of the kNN results using combination of MPEG-7
descriptors and signatures with SQFD

Effectiveness (MAP) of SQFD re-ranking

ALOI Corel Wang TWIC
Combination of descriptors sum iDIM sum iDIM sum iDIM

MPEG7 100NN, re-rank MPEG7+SQFD 0.79 0.81 0.44 0.45 0.28 0.28

MPEG7 200NN, re-rank MPEG7+SQFD 0.80 0.82 0.52 0.53 0.32 0.32

MPEG7 300NN, re-rank MPEG7+SQFD 0.81 0.82 0.55 0.56 0.33 0.33

MPEG7 500NN, re-rank MPEG7+SQFD 0.81 0.83 0.57 0.58 0.35 0.35

MPEG7 1000NN, re-rank MPEG7+SQFD 0.81 0.83 – – 0.36 0.37

3.4 Re-Ranking by SQFD

As mentioned in Section 2.3, feature signatures with SQFD form a significantly
more difficult data space for indexing and searching than MPEG-7 global descrip-
tors accompanied with relatively cheap Lp-based distances. For larger datasets,
it could be very time consuming to index the collection according to our most
effective combination – MPEG-7 descriptors and feature signatures with SQFD.

This led us to the following schema: We index the data by the MPEG-7
descriptor combination, evaluate the k-NN(q) on such index, and re-rank these
k images according to distance “MPEG-7 combination + SQFD” evaluated with
respect to query image q. Results of this approach are summarized in Table 3
for k = 100, 200, 300, 500, and 1,000 – again for variants with individual weights
equal to 1 and to respective iDIM values.

When we compare these results with the last row of Table 2 (MPEG-7 com-
bination + SQFD), we can see that with growing k, the MAP gets very close to
these maximal values. We can conclude, that even re-ranking by combination of
MPEG-7 descriptors and feature signatures can improve the overall quality of
the visual search almost as doing the whole search directly by the combination.
However, the direct approach increases the search costs insignificantly.
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Fig. 6. ALOI and TWIC: Average precision of k-NN results for different approaches

The MAP is a very complex measure, but it does not necessarily give a good
intuition of how good would be results of a real k-NN for a reasonable k; espe-
cially for larger datasets, improving MAP can be difficult even though precision
of standard k-NN answers can be very high. Therefore, we measured also the
k-NN average precision for variable k and for the most important search ap-
proaches introduced above. See Figure 6 for these results on ALOI and TWIC
datasets. Always, we present results for the combination of MPEG-7 descrip-
tors, feature signatures with SQFD, the MPEG-7 combination + SQFD, and
MPEG-7 500-NN re-ranked by MPEG-7 combination + SQFD. We can see that
for ALOI, the precision is practically 100% for 10-NN and falls down only to
80% for 70-NN using the best approaches. Improvement of our combination
in comparison with pure SQFD is up to 10%. We can also see, that the aver-
age precision of the re-ranking approach is practically identical as the MPEG-
7+SQFD approach. Note that the x-axis ends at 70 because that is the size
of image classes for ALOI (analogously for other figures). For Corel Wang and
TWIC dataset, the average precision is between 80% and 50% and the im-
provement of the combinations with respect to individual approaches is also
about 10%.

4 Conclusions and Future Work

In this paper, we combined feature signatures with MPEG-7 global visual de-
scriptors to improve the performance of content-based image search engines. We
proposed several techniques on how to combine these two orthogonal approaches
and experimentally shown the positive synergistic effect of the combination.
Hence, we could conclude that it is profitable to utilize both, MPEG-7 descrip-
tors and feature signatures, because they complement each other and improve
the quality of the retrieval. We also introduced a new (and more realistic) test
image collection providing ground truth comprising images obtained via Google
image search. The collection was designed to fill the gap in the realistic multime-
dia test collections with ground truth. Finally, we proposed a re-ranking variant
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guaranteeing efficient yet effective image retrieval. In the future, we plan to inves-
tigate feature signature extraction that profits from the descriptor combination.
Also, we plan to compare our approach with the Bag-of-Words method as an-
other standard approach successfully applied in multimedia retrieval. Additional
experiments on larger datasets might show that MPEG-7 performance deteri-
orate faster than the performance of feature signatures. Hence, our re-ranking
approach could contribute to more robust behavior on large databases.

Another interesting theoretical problem to inspect is the SQFD behavior un-
der varying alpha parameter. It seems that there is an optimal value of alpha
parameter for the precision, while with lower alpha we get always lower intrinsic
dimensionality (iDIM is monotonously dependent on alpha). The relation be-
tween alpha parameter and the intrinsic dimensionality should be theoretically
explained to provide more clues for the design of the SQFD distance spaces.
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Abstract. The dynamic time warping (DTW) distance has been used
as a popular measure to compare similarities of numeric time series be-
cause it provides robust matching that recognizes warps in time, differ-
ent sampling rate, etc. Although DTW computation can be optimized
by dynamic programming, it is still expensive, so there have been many
attempts proposed to speedup DTW-based similarity search by distance
lowerbounding. Some approaches assume a constrained variant of DTW
(i.e., fixed dimensions, warping window constraint, ground distance),
while others do not. In this paper, we comprehensively revisit the prob-
lem of DTW lowerbounding, define a general form of DTW that fits all
the existing variants and goes even beyond. For the constrained variants
of general DTW we propose a lowerbound construction generalizing the
LB Keogh that for particular ground distances offers speedup by up to
two orders of magnitude. Furthermore, we apply metric and ptolemaic
lowerbounding on unconstrained variants of general DTW that beats the
few existing competitors up to two orders of magnitude.

1 Introduction

The similarity search in databases of time series is a popular technique used in
data mining, multimedia retrieval, and other domains. In fact, the time series
is a suitable content-based descriptor for data types where the extracted fea-
tures, i.e., the elements of time series, need to be treated in a certain order (not
necessarily interpreted as the time). Therefore, a robust similarity between time
series should take into account the order of time series elements, interpreting the
neighboring elements more or less similarly. Hence, vectorial distances, such as
Lp distances, are not appropriate in this case as they treat the time series ele-
ments (dimensions) independently. There have been many distances proposed in
the time series retrieval domain, while they all provide some alignment between
two time series based on an optimization criterion. One of the most popular
distances is the dynamic time warping distance (DTW).
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Fig. 1. Dynamic Time Warping distance

Despite the success of DTW demonstrated by applications in many domains,
we find a lot of inconsistencies over the available literature where efficient sim-
ilarity search under DTW by use of lowerbounding is discussed. The definition
of DTW problem itself varies substantially, so that individual contributions to
DTW-based similarity search are not always comparable. In particular, there are
different assumptions on the time series lengths (fixed or variable), the ground
distance used (specific or general), and the presence/type of warping constraints.

In this paper, we unify the mosaic of existing approaches to DTW lower-
bounding into a consistent framework that allows to recognize them in a fair
way. For this purpose, we define a general form of DTW that fits all the variants
used in the literature (constrained and unconstrained) and goes even beyond.
Moreover, for the constrained variants of general DTW we propose a new lower
bound construction generalizing LB Keogh method that for particular ground
distances offers speedup by an order of magnitude. Furthermore, we apply pivot-
based metric and ptolemaic lowerbounding on unconstrained variants of general
DTW, showing that this approach beats the existing competitors several times.

2 Dynamic Time Warping Distance

One of the very first definitions of Dynamic Time Warping distance [2] declares
DTW as a technique for aligning time series with a predefined word template.
It has been proposed primarily for speech recognition processes with the main
goal to minimize the dissimilarity between a speech sample and speech patterns
to find a ”perfect” match. Over time, DTW has become a popular technique for
measuring the similarity between general time series. In particular, DTW has
an ability to ”elastically” align two time series, which leads to robust matching
that recognizes warps in time, different sampling rate, etc.

Speaking more precisely, the initial definition of DTW distance function is as
follows: we take two time series Q (query object) and S (database object) of
lengths n and m each of which contains a number of inner elements

Q = q1, q2, . . . , qi, . . . , qn and S = s1, s2, . . . , sj , . . . , sm
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Then, an n-by-m cumulative matrix is created where each item (i, j) corresponds
to an alignment between elements qi and sj (Fig. 1a). We define a warping path

W = w1, w2, . . . , wX , (1)

as a mapping or an alignment between elements in time series Q and S where
the length of the alignment is limited to

max(n,m) ≤ X < n+m− 1 (2)

The warping path (see Fig. 1b) is a sequence of elements from the matrix where
each element wk = (i, j)k must meet several criteria, namely

– Boundary conditions to restrict the searching space for warping paths
– Monotonicity The element pairing is monotonous according to the time
– Continuity to ensure that neighboring elements in the warping path corre-

spond to adjacent cells within the matrix.

Finally, the DTW is defined as a minimized warping path from the universe of
all acceptable warping paths as

DTW (Q,S, δ) = minW

{ X∑
k=1

δ(wk)

}
(3)

where δ is a ground distance (the distance measure between two elements of
time series). Generally, this might be any distance but we suppose numeric time
series, so the commonly considered distance functions include δ1(i, j) = |qi− sj |
or δ2(i, j) = |qi − sj |2. These δp(·, ·) functions might be viewed as simplified Lp

distance measures where Lp stands for family of Minkowski distances [19].
Because there is an exponential number of possible warping paths, we employ

a method of dynamic programming which is often used for evaluating DTW [14].

2.1 Constrained DTW

Some domains such as speech recognition require alignments between time series
to have some additional constraints – to avoid warping paths with excessive time
stretch, to avoid sequence distortions, or to discard ”non-interesting” warping
paths [13]. These include

– Slope constraint is an example of a local constraint which restricts the
slope of warping paths in order to limit very large movements of the warp-
ing path in a single direction. In [14] authors suggest four types of such a
constraint.

– Warping window To define a warping window ω in which elements of the
warping path must fit. For a positive integer ω, values wk−1 = (a, b) and
wk = (a, b), we get the condition a − a ≤ ω. For our purposes, we focus on
Sakoe-Chiba band [14] and we will study the DTW indexability depending
on the different values of ω. In Fig. 1b see the warping window ω = 2 as the
light gray area.
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Table 1. Basic notation

Symbol Description

Q,S query and database time series
(e.g., numeric time series)

δp or δp(·, ·) simplified Lp distance between
two elements of time series

DTW (·,·,δ) dynamic time warping distance
with ground distance function δ

GDTW
(·,·,δ,ω,f)

generalized DTW(·,·,δ) with
warping window constraint ω
and a monotonic function f

LB {name} lowerbounding technique

LB Pivots

(Met)

pivot-based lowerbounding
(metric)

LB Pivots

(Pto)

pivot-based lowerbounding
(ptolemaic)

Table 2. Comparison of lowerbound-
ing techniques

Method
DTW DTW
fixed variable
length length

δ1 δ2 δp δLB δ1 δ2 δp δ

LB Keogh
√ √ √

n/a
LB Kim

√ √
LB Yi

√ √
LB Tight

√ √ √ √
LB Pivots(Met)

√ √ √ √ √ √ √ √
LB Pivots(Pto)

√ √ √ √ √ √ √ √

2.2 Generalized DTW

In the past, there appeared several publications with slightly different definitions
of DTW (e.g., [2,7,18]) in which authors stated their definition to be the (only)
one valid to fit their needs. To clarify and generalize all the mentioned definitions,
we define the generalized DTW distance for an arbitrary ground distance

GDTW (Q,S, δ, ω, f) = minW

{
f(

X∑
k=1

δ(wk,ω))

}
(4)

where wk,ω is kth item in the working path W with the corresponding warping
window constraint ω and f is a monotonic function. Some authors [7] use f =

√·
because if we take the zero warping window together with ground distance δ2,
the result distance corresponds to L2 (Euclidean) distance

GDTW (·, ·, δ2, 0,√) = L2(·, ·) (5)

For completeness, Table 1 displays the notation that we use in the following text.

3 Related Work

Even if we use the dynamic programming method [14], the time complexity of
a single DTW distance computation between arbitrary time series with lengths
n,m remains in O(n ·m). So, there have been many efforts spent on speeding the
similarity search under DTW, varying in the assumptions on the DTW variant
used (e.g., constrained or unconstrained). Generally, all the approaches utilize
the concept of lowerbounding – a ”cheaper” distance function that eliminates



196 T. Bartoš and T. Skopal

non-interesting objects to avoid as many ”expensive” DTW computations as
possible.

The lowerbounding concept works with an estimation of DTW distance which
always gives a value smaller or equal to a result of the DTW computation,
without the need of computing the DTW itself:

DTW (Q,S, δ) ≥ LowerBound(Q,S) (6)

If the lowerbounding considers δ, it usually gives tighter lowerbound values which
results in better object filtering for the most popular similarity queries such as
range or kNN queries. Table 2 displays the comparison between three selected
and existing lowerbounding schemes in the upper part, together with our three
proposed techniques that will be described in Section 4 in the lower part. The
table shows which techniques are applicable for time series of fixed or variable
lengths, and which support a particular ground distance δ.

3.1 Early Abandoning

The simplest idea of speeding up the DTW distance computations in the context
of similarity search is to use the early abandoning method. Given a radius rQ
of a query that is being evaluated1, we can stop the DTW computation if we
know that the final distance will be greater than rQ [6]. This eliminates further
computations of the DTW matrix, discards inappropriate objects early enough,
and provides not aproximate but exact results. In fact, the early abandoning
makes DTW a lowerbounding function to itself.

One suggested technique is to focus on dynamic programming, cumulative
distances γ(i, j), and their values [6]. We can eliminate further calculations when
either (a) all adjacent cells exceed rQ or (b) all cells in a row/column exceed rQ.

As this method gives faster yet still correct results and because its usage is
orthogonal to the other approaches, we further consider early abandoning in all
other lowerbounding methods (if not stated otherwise). For completeness, there
exists another orthogonal method (the ”anticipatory” pruning) that might be
further applicable [1] to improve efficiency of DTW computations.

3.2 Time Series-Specific Lowerbounding

In the following text, we will study several existing methods that introduce dif-
ferent concepts of how to obtain specific lowerbounds and name them according
to their authors as proposed in [7]. As we mentioned before, authors usually
do not take into account the same definitions of DTW, so we compare these
approaches between each other focusing on the GDTW definition (see Eq. 4).

LB Yi. In one of the first papers focusing on DTW lowerbounding the authors
suggested a technique known as LB Yi [18] that computes a lowerbound distance

1 Either the fixed radius of a range query, or the current radius of a kNN query.
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for two time series Q,S depending on the arrangements of their ranges defined
as [min(Q), max(Q)] and [min(S), max(S)]. If the lengths of time series are m
and n, respectively, we get the lowerbound in O(m+n). Moreover, the advantage
of this technique is its ability to treat time series of variable lengths.

Authors claim that this method works for DTW with ground distances δ1
and δ2 but, as we point out, this is not true for δ2 because of an incorrect
observation |max(Q)−max(S)| ≤ DTW (Q,S, δ2). The reason for this might be
the inconsistency in the definition of δ2 – although authors define it generally
as δp(x, y) =

∑n
i=1 |xi − yi|p (which for p = 2 is squared L2 distance), they call

it Euclidean distance. This results in the inapplicability of LB Yi as a method
for lowerbounding DTW(·, ·, δ2). For completeness, we also provide the counter
example of incorrect lowerbound.

Example 1. Suppose we have DTW(·, ·, δ2) and time series with two real numbers
Q = {-1,2} and S = {-1.1, 1.9}. The ranges overlap, so the lower bound is

LB Yi(Q,S) =
∑

qi>max(S)

|qi −max(S)|+
∑

sj<min(Q)

|sj −min(Q)| = 0.2

When we take these time series and compute DTW distance, we will see that
the best alignment is on the diagonal with the result of

DTW (Q,S, δ2) = | − 1− (−1.1)|2 + |2− 1.9|2 = 0.12 + 0.12 = 0.02

It is easy to see that the computed value of LB Yi is greater than the actual value
of DTW distance, so in this case LB Yi cannot be used as a valid lowerbound.

LB Kim. Another approach of estimating DTW is presented in the work [10].
According to authors, LB Kim guarantees the lower bounds when the ground dis-
tance is any Lp distance function which, in our terms, applies to any DTW(·, ·, δp).

The mechanism is based on extracting and using 4-tuple vectors consisting of
(1) first, (2) last, (3) smallest (min), and (4) largest (max) elements of two time
series Q, S. To compute the lower bound value, authors consider the maximum
value of all absolute values of differences

LB Kim(Q,S) = max(|q1 − s1|, |qlast − slast|, |qmin − smin|, |qmax − smax|)
It is a simple observation, that if the time series are long, this typically does not
give a very tight lowerbound. On the other hand, the method works with time
series with different lengths. But, as we show in the following example, if the
ground distance δ2 is used, the LB Kim is not a guaranteed lowerbound.

Example 2. Suppose we have DTW(·, ·, δ2) with two time series Q = {2, 1} and
S = {1.9, 1.1}. It is easy to verify that the resulting DTW distance is 0.02.
Having the previous lower bound definition, we get incorrect lower bound value

LB Kim(Q,S) = max(|2− 1.9|, |1− 1.1|, |1− 1.1|, |2− 1.9|) = 0.1
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LB Keogh. The best lowerbounding method for constrained DTW distance
and fixed-length time series so far is considered LB Keogh [7]. With warping
window constraint ω, this method encapsulates any input time series S of length
n into two additionally computed time series US and LS (upper and lower part):

ui = max(si−ω, . . . , si+ω), li = min(si−ω, . . . , si+ω)

Given a query object Q together with time series US , LS that correspond to
Keogh’s envelope for an input time series S (all with the same length n), the
proposed lower bound LB Keogh is defined as

LB Keogh(Q,S) =

√√√√√ n∑
i=1

⎧⎨
⎩

(qi − ui)
2 if qi > ui

(qi − li)
2 if qi < li

0 otherwise

Several experiments verified claims that this lowerbound is the tightest one com-
pared to other approaches [7]. Unfortunately, this is true only for the particular
definition of DTW distance given by the author (see Eq. 5). If we take the gen-
eralized DTW distance and replace the ground distance δ2 with other distance
such as δ1, we could find a tighter lowerbound. We will describe this situation
in more details in Section 4.

3.3 Pivot-Based Lowerbounding

If we consider DTW or GDTW (fixed or variable dimensionality, with or with-
out warping window) as a black-box distance function d that satisfies certain
topological properties, we could utilize pivot-based lowerbounding instead of the
time series-specific ones [12]. The pivot-based lowerbounding relies just on pre-
computed DTW distances from query/database objects to so-called pivots.

– Metric Lowerbounding. When a distance function used for creating a
pivot table obeys the metric postulates (i.e., identity, positivity, symmetry,
and triangle inequality), we could leverage metric pivot-based lowerbound-
ing, i.e., we could define a metric lowerbounding principle that is generally
used within the whole class of so-called metric access methods [4,19].

– Ptolemaic Lowerbounding. Analogously, in Ptolemaic indexing [5,11], we
construct lower bounds using Ptolemy’s inequality [5,11].

Is DTW metric or ptolemaic distance? Because the pivot-based lower-
bounding utilizes the pair-wise distances between individual objects, it could be
used with any black-box distance that satisfies metric and/or ptolemaic proper-
ties. However, neither DTW nor GDTW does satisfy the triangle or Ptolemy’s
inequality, thus the metric and ptolemaic lowerbounding cannot be used di-
rectly. Nevertheless, in Section 4.2 we discuss a simple modification of GDTW
that obeys the properties of metric and/or ptolemaic distance, enabling to use
pivot-based lowerbounding for efficient similarity search under GDTW.
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3.4 Advanced Indexing

There have also been proposed some advanced techniques for indexing DTW. In
[18] authors suggest using the FastMap index, that maps the DTW distances into
Euclidean space. This approach, however, leads to only approximate estimates
of DTW using Euclidean distance, so exact searching cannot be guaranteed.

An enormous effort in speeding DTW-based similarity search has been done
by Eamonn Keogh’s group. In famous papers [7,8] introducing LB Keogh, authors
consider additional dimensionality reduction of the time series using piecewise
aggregate approximation and indexing of the reduced envelopes by R-tree.

In this paper we revisit the ”lower level” of DTW indexing – the lowerbound-
ing techniques that determine the success of any advanced indexing techniques
based on lowerbounding. Hence, we do not consider high-level indexing solutions
such as iSAX framework [15,3]. Moreover, as LB Keogh-based solutions assume
only fixed lengths of time series, warping path constraints, and only δ2 ground
distance, they cover only a fraction of scenarios we consider here.

4 Lowerbounding of Generalized DTW

Previous sections revealed some issues if the DTW definition is not unified. As
we propose GDTW (see Eq. 4) as a generalized version of DTW, we also define
a general lowerbounding technique applicable for arbitrary ground distances.

One of our objectives is to create a lowerbounding technique that adjusts to
the ground distance used in GDTW in order to produce the best lowerbound
compared to other methods that are defined generally and remain unchanged for
different ground distances. If we restrict the type of ground distances in GDTW
to some extent, we can propose a modified version of LB Keogh that gives very
good results in terms of lowerbound tightness. We label it as LB Tight.

Definition 1. Given a query object Q together with time series US , LS that
correspond to Keogh’s envelope for an input time series S (all with the same
length n), using ω as the warping window parameter, the proposed lowerbound
LB Tight for GDTW(Q,S, δ, ω, f) is defined as

LB Tight(Q,S, δ, f) = f

⎛
⎝ n∑

i=1

⎧⎨
⎩

δ(qi, ui) if qi > ui

δ(qi, li) if qi < li
0 otherwise

⎞
⎠

The definition is based on the LB Keogh with very small modifications. If we
take square root (

√
) as the monotonic function f and the ground distance is δ2,

our lowerbound definition equals to LB Keogh. On the other hand, the proposed
definition gives better applicability as it serves as a correct lowerbound for DTW
with a wider range of ground distance functions than a single one such as δ2 as
we will see in the following text.
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4.1 LB Tight as a General Lowerbounding Function for GDTW

To verify the correctness of our proposed lower bound, we need to limit the
applicable ground distances that might be used to some extent - we denote
such functions as LB-compliant. Afterwards, we show that for these functions
LB Tight is correctly defined lowerbound for GDTW.

Definition 2. A distance function δ(x, y) is LB-compliant iff the inputs x, y
are real numbers and it fulfills the following requirements:

(a) δ(x, y) is non-negative: δ(x, y) ≥ 0

(b) δ(x, y) is symmetric: δ(x, y) = δ(y, x)

(c) for x, y ∈ R, ε ∈ R
+
0 such that x ≥ y + ε ≥ y the following inequalities hold

δ(x, y + ε) ≤ δ(x, y) (7)

δ(x+ ε, y) ≥ δ(x, y) (8)

Now, we can easily observe that besides other functions, any distance function
from the δp family fulfills the above criteria as stated in the Theorem 1. For
functions that are LB-compliant and are used as ground distances in GDTW,
our lowerbounding mechanism works as it is confirmed by Theorem 2.

Theorem 1. Any δp function with p ≥ 1 is LB-compliant.

Proof. See Appendix A.1.

Theorem 2. For any two time series Q and S of the same length n, for any
value of the warping window ω such that (j − ω) ≤ i ≤ (j + ω), and for any
ground distance δ that is LB-compliant, the following inequality holds:

LB Tight(Q,S, δ, f) ≤ GDTW (Q,S, δ, ω, f)

Proof. See Appendix A.2.

4.2 Pivot-Based Lowerbounding of Generalized DTW

As discussed in Section 3.3, a pivot-based lowerbounding cannot be directly
used with DTW or GDTW, because they do not satisfy the metric or ptolemaic
properties. In fact, they are semi-metrics, so they satisfy just identity, positivity,
and symmetry. To turn GDTW into a metric (or ptolemaic) distance, we need to
find a modification that generates the missing property yet preserves the original
GDTW semantics (the similarity ordering of objects w.r.t. any query).
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Making GDTW a Metric. The TriGen algorithm [16,17] was proposed to
keep a user-controlled amount of triangle inequality in a semi-metric distance.
Given a rate of non-triangular triplets (T-error tolerance), the TriGen algorithm
finds a T-modifier for which the intrinsic dimensionality ρ [4] is minimized, while
the T-error does not exceed the tolerance. The modified distance g(d) determined
by TriGen can be then employed by the pivot table for exact but slower (T-error
tolerance is zero, so ρ gets higher) or approximate but fast (T-error tolerance is
positive, so ρ gets smaller) similarity search. For our purposes, we utilize TriGen
to generate the full triangle inequality into GDTW (i.e., zero T-error tolerance)
while using Fractional-Power (FP) base as the so-called T-bases [16,17].

Making GDTW a Ptolemaic Metric. Securing the Ptolemy’s inequality
seems more complicated, however, we can use a simple trick. As shown in [5],
every metric d can be made also ptolemaic by applying the square root, i.e.,

√
d

is used instead of d. In the previous paragraph we utilized the TriGen algorithm
to turn GDTW into a metric distance, hence, a further application of square
root makes the GDTW a ptolemaic metric distance.

5 Experiments

In the previous text, we theoretically proved that not all existing lowerbounding
techniques are suitable for GDTW distance because some of them strictly depend
on the ground distance δ. We also stated that LB Keoghmight not be the tightest
lowerbound if the δ1 is used as the ground distance in DTW. To validate our
statements, we evaluated the lowerbounding approaches on selected datasets.

5.1 Datasets

We wanted to run the experiments on real-world data, so we selected well-known
UCR Time Series [9] collected by Keogh. In order to avoid cherry-picking but
still limit the number of datasets, we tested only datasets with more than 100,000
numbers (the number of time series multiplied by the number of their elements).
With this approach, we obtained 25 datasets of various types.

We added a dataset with time series of variable lengths that we obtained
from a set of 20,660 DNA sequences of genes of Listeria monocytogenes2. using
the technique suggested in [3]. Moreover, we created an additional dataset from
the stock market NASDAQ3 for which we took stock open and close prices
between years 1970 and 2010 and we divided them into time series with lengths
up to 1024. For better precision, we subtracted the mean value from each time
series.

2 For details see Metric Spaces Library at http://sisap.org/
3 http://www.infochimps.com/datasets/nasdaq-exchange-daily-1970-2010-open

-close-high-low-and-volume

http://www.infochimps.com/datasets/nasdaq-exchange-daily-1970-2010-open-close-high-low-and-volume
http://www.infochimps.com/datasets/nasdaq-exchange-daily-1970-2010-open-close-high-low-and-volume
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(b) All fixed-length datasets

Fig. 2. Average number of Distance Computations

5.2 Experimental Settings

For each dataset, we monitored how different lowerbounding methods behave for
a specific ground distance δ in terms of (1) Distance computations (DCs), (2)
Total query real time, and (3) Speedup in real time compared to the sequential

scan (
TimeSEQ

TimeLB
). For clarification, we observed also the (4) Real error to confirm

that some lowerbounding methods were not true lower bounds for all ground
distances. We averaged our experiments for 10NN queries over 100 random query
objects and tested ground distances δ1 and δ2 together with

√
as the function

f (see Eq. 4).
For the fixed-length time series, we used several values of the Sakoe-Chiba

band [14] which corresponds to warping window constraint ω . We tested 5
values of ω corresponding to 0%, 5%, 10%, 15%, and 20% of the query length
(similar to [7]) together with the unconstrained DTW (ω =∞).

For time series of variable lengths (Listeria and NASDAQ), we tested only
the unconstrained version of DTW. To apply both pivot-based lowerbounding
methods LB Pivots(Met) and LB Pivots(Pto), we obtained the corresponding
T-modifiers for a zero T-error tolerance using the TriGen algorithm with a sam-
ple database of 300 random objects from which we generated 100,000 triplets
(including 1% of anomalous triplets).

5.3 Results

The following figures depict the results we obtained through all experiments.
All lowerbounding methods use DTW with early abandoning (see Section 3.1)
for better real time responses. An exception is the sequential scan, where the
variant denoted as SEQ does not use early abandoning, while SEQ (EA) does.
For transparency, we divided the outcomes in three sections according to the
datasets – fixed-length time series, Listeria, and NASDAQ.

Fixed-Length Datasets. Tests confirmed that LB Tight outperforms all other
methods for ground distance δ1 in terms of the number of distance computations,
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Fig. 3. All fixed-length datasets

so it is the tightest lowerbound achieving up to two orders of magnitude speedup
over competitors (Fig. 2a, Fig. 2b).

For ground distance δ2, LB Keogh, which equals to LB Tight(·, ·, δ2), remains
the dominant lowerbounding mechanism. As the results were similar for most
datasets, we explicitly show 50words dataset (Fig. 2a) followed by average results
over all fixed-length datasets (Fig. 2b).

Although the computations of lowerbounds generate some overhead, the
combination with early abandon technique outperforms the sequential scan, yet
enabling the exact search (Fig. 3a). We show the real speedup compared to pure
sequential scanning in Fig. 3b. Here we see the speedup of up to 346% for LB Tight

with ground distance δ1 and up to 607% for LB Keogh with ground distance δ2.
Interestingly, as the warping window enlarges, the tightness of LB Tight lower-

bounding decreases while LB Yi lowerbounds improve. However, to be fair, we
have to admit that at the same time, the error rate of LB Yi increases (see Fig.
4a). LB Keogh is not included in Fig. 4a as it worked correctly (with no false
dismissals) for both ground distances.

Listeria Dataset. In case of Listeria, we compared our proposed methods
LB Pivots(Met), LB Pivots(Pto) only with LB Kim and LB Yi, as other lower-
bounding approaches were not valid for time series of variable lengths.
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Fig. 5. Listeria dataset

Here we show the dominance of our methods for lowerbounding DTW regard-
less of the ground distance function δ. We begin with the number of DCs (Fig.
5a) where ptolemaic approach LB Pivots(Pto) is slightly better than the metric
LB Pivots(Met). Yet both methods give a substantial decrease of DCs.

This results in the improvements of the total query time (Fig. 7a) also because
of employed early abandon technique. Last but not least, there is a tremendous
speedup of more than 6× for ground distance δ1 and up to 10.3× for ground
distance δ2 (Fig. 5b). Together with the zero real error, we confirmed the appli-
cability of suggested methods for lowerbounding the general DTW.

NASDAQ Dataset. NASDAQ dataset just confirms the previously achieved
results. The suggested pivot-based methods LB Pivots(Met) and LB Pivots(Pto)

give considerably good results for all monitored values such as DCs (Fig. 6a),
total query time (Fig. 7b), speedup (up to 4.1× for ground distance δ1 and more
than 8.7× for ground distance δ2; see Fig. 6b). Although LB Yi was better in
time efficiency, it turns out that the error rate was extremely high, up to 43%
(Fig. 4b) which yields in inapplicability for exact searching.

5.4 Summary

All experiments confirmed proposed methods for lowerbounding as the best-
of-breed techniques for exact similarity search under GDTW. The generalized
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Fig. 6. NASDAQ dataset
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Fig. 7. Total query time

LB Tight outperformed all other lowerbounding approaches in the area of fixed-
length datasets. In Listeria and NASDAQ datasets both lowerbounding meth-
ods, metric LB Pivots(Met) and ptolemaic LB Pivots(Pto), improved the speed
of SEQ scanning of up to 10.3× with no false dismissals.

6 Conclusions

In this paper we revisited the problem of DTW lowerbounding and defined a
general form of DTW that unified all the variants used in literature (including
even more general cases). For the constrained variants of general DTW we have
proposed a novel lowerbound construction generalizing the LB Keogh approach,
while in the experimental results it demonstrated a speedup by up to two orders
of magnitude (for particular ground distances). Furthermore, we proposed an
alternative approach of lowerbounding unconstrained variants of general DTW
based on pivot-based metric and ptolemaic lowerbounds, while these techniques
outperformed the few existing competitors by up to two orders of magnitude.
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A Appendix

A.1 Proof of Theorem 1

Proof. The validation of first two conditions is straightforward, while the last
one we need to prove by contradiction. We take Eq. 7 and for contradiction let
suppose

δp(x, y + ε) > δp(x, y)
|x− (y + ε)|p > |x− y|p

x− y − ε > x− y (x ≥ y + ε, x ≥ y)
0 > ε

The last step shows the contradiction we obtained as the definition assumed
ε ≥ 0. Similarly, the same principle applies for Eq. 8.

Therefore, we can conclude that any function from δp family is
LB-compliant. �

A.2 Proof of Theorem 2

Proof. The steps correspond to the proof of lowerbounding by LB Keogh [7].
Therefore we omit some steps and for details we refer the reader to this paper.

For contradiction, let suppose LB Tight(Q,S, δ, f) > GDTW (Q,S, δ, ω, f).
Then

f

⎛
⎝ n∑

i=1

⎧⎨
⎩

δ(qi, ui) if qi > ui

δ(qi, li) if qi < li
0 otherwise

⎞
⎠ > f

(
X∑

k=1

δ(wk)

)

The function f is monotonic and it applies to both sides, so we can discard it.
Because n ≤ X (from warping path definition; see Eq. 2), every term on the
left-hand side (LHS) will match a unique term on the right-hand side (RHS),
thus leaving X − n terms unmatched. So

X∑
k=1

δ(wk) =
∑

k∈matched

δ(wk) +
∑

k∈unmatched

δ(wk)

As we map every i-th term from LHS with exactly one of i-th terms on the RHS,
we will take the item on RHS with the lowest value of j (there might be several j
values for a single i). Other items wk remain in the unmatched part. If we ignore
the unmatched summation and take only the one with matched items, we will
have three types of relationships between matched terms and LHS to consider.
They all will lead to the conclusion that all matched terms are larger than their
corresponding counterparts.

1. qi > ui

In this situation we will observe the relationship between δ(qi, ui) and δ(wk),
particularly δ(qi, ui) and δ(qi, sj) as defined according to Eq.1.
As both time series Q, S have the same length, n = m, this means that

j − ω ≤ i ≤ j + ω
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which leads to limitation of j value

i − ω ≤ j ≤ i+ ω

and it gives us
sj ∈ {si−ω, . . . , si+ω}

As ui = max(si−ω , . . . , si+ω) is the definition of the upper envelope, we will
certainly have ui ≥ sj . Moreover, we define ε = ui − sj ≥ 0. To continue
with relationship checking, we get

δ(qi, ui) = δ(qi, sj + ε) ≤ δ(qi, sj)

because the distance function δ is LB-compliant and we apply Eq. 7.

2. qi < li
This case is handled similarly as the previous one, so we include only distinct
steps. We start with the relationship between δ(qi, li) and δ(wk) = δ(qi, sj).
With li = min(si−ω, . . . , si+ω) as the definition of the lower envelope, we
will have li ≤ sj . Now, we define ε = sj − li ≥ 0. This means that

δ(qi, sj) = δ(qi, li + ε) = δ(li + ε, qi) ≥ δ(li, qi)

because the distance function δ is LB-compliant and we used the third con-
dition (see Eq. 8). Additionally, the δ function must be symmetric, so we get
δ(qi, sj) ≥ δ(qi, li)

3. The last case confirms that 0 ≤ δ(qi, sj). This results directly from the
definition of function δ which must be non-negative (the first condition of
LB-compliant functions).

The above mentioned cases revealed that all matched terms in
∑

k∈matched

δ(wk)

are larger than their matching counterparts on LHS. As the distance function δ
is non-negative, the remaining summation

∑
k∈unmatched

δ(wk) cannot be negative.

So, we reached a contradiction as the summations on RHS are greater or equal
than the summation on LHS. Thus our assumption was incorrect, so the previous
statement holds:

LB Tight(Q,O, δ, f) ≤ GDTW (Q,O, δ, ω, f)

�
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Abstract. We investigate a distance metric, previously defined for the
measurement of structured data, in the more general context of vector
spaces. The metric has a basis in information theory and assesses the
distance between two vectors in terms of their relative information con-
tent. The resulting metric gives an outcome based on the dimensional
correlation, rather than magnitude, of the input vectors, in a manner
similar to Cosine Distance.

In this paper the metric is defined, and assessed, in comparison with
Cosine Distance, for its major properties: semantics, properties for use
within similarity search, and evaluation efficiency.

We find that it is fairly well correlated with Cosine Distance in dense
spaces, but its semantics are in some cases preferable. In a sparse space, it
significantly outperforms Cosine Distance over TREC data and queries,
the only large collection for which we have a human-ratified ground truth.
This result is backed up by another experiment over movielens data. In
dense Cartesian spaces it has better properties for use with similarity
indices than either Cosine or Euclidean Distance. In its definitional form
it is very expensive to evaluate for high-dimensional sparse vectors; to
counter this, we show an algebraic rewrite which allows its evaluation to
be performed more efficiently.

Overall, when a multivariate correlation metric is required over pos-
itive vectors, SED seems to be a better choice than Cosine Distance in
many circumstances.

Keywords: distance metric, multivariate correlation, vector space, co-
sine distance, similarity search.

1 Introduction

Structural Entropic Distance (SED) was developed as a distance metric over
unordered tree structures [1], and has been extended to handle a number of other
types of structured data [3]. The essence of the metric is to use a structured
object as a conceptual generator of events which are then represented in the
form of event ensembles, the type of event/probability map used by Shannon to
calculate entropy [12].
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In this paper, we consider the same function redefined as a vector distance
metric; in fact more accurately as a class of metrics over Rn for any n. For any
set of ensembles, an isomorphism to a set of vectors exists where each event is
assigned a unique number, and the probability of that event is assigned to the
scalar component of that dimension of the vector. Zeros are assigned for events
that do not occur. For example:

EA = {a : 0.3, b : 0.1, c : 0.6} ⇒ VA = [0.3, 0.1, 0.6, 0, 0]

EB = {a : 0.8, d : 0.6} ⇒ VB = [0.8, 0, 0, 0.6, 0]

EC = {b : 9, e : 1} ⇒ VC = [0, 9, 0, 0, 1]

Using such an isomorphism, it is straightforward to formulate a distance metric
DV over any positive vector space such that

DV (Vi, Vj) = DE(Ei, Ej)

where DE is the structural distance defined over ensembles in [2]. DV is formally
defined in Section 3 of this paper.

SED-vector is a distance metric suitable for magnitude-independent multi-
variate correlation; the only other proper metric that we know in this class is a
variant of Cosine Distance. In this paper we show properties of the metric with
respect to its semantics, its indexing properties, and its efficiency, as follows:

Semantics: Over dense spaces, it has a fairly tight correlation with Cosine
distance, but some different properties that may be more desirable.
Over sparse spaces, we explain a significant improvement over Cosine dis-
tance, evidenced by experiment with real-world data.

Indexing: Over dense spaces, SED-vector has lower intrinsic dimensionality
and better near-origin density than either Cosine or Euclidean distances.

Cost: The metric as defined appears to demand a costly complexity evaluation
to be made for each new comparison. We show an algebraic rewrite of the
original formula which allows a much more efficient evaluation.

Our conclusion is that where the semantics of a data collection dictate that
component correlation is more important than magnitude, SED will usually be
a better choice than Cosine distance for the application of similarity search.

2 Multivariate Correlation Distance

The vector is a convenient data structure to store multivariate data. For example,
the MPEG-7 standard [7] defines a set of scalar characteristics which can be
deduced from an image, including numeric classification of values such as colour
histograms and edge features. Each character is assigned a unique dimension
in a multi-dimensional vector space, and vectors used to represent the images.
Similarity search over images can then proceed using these vectors as proxies.

In many cases, the relative ratios of scalar values within dimensions is more
significant than the absolute magnitude of the scalar components. For example,
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during a currency crisis, every stock in a stock exchange may decrease in value
by exactly the same ratio; when looking for similarities in trading positions, a
vector representing stocks which have all decreased by the same ratio may be
more similar than one where most of the scalar values are the same, but a few are
relatively different. During the gathering of insects in a biodiversity investigation,
the absolute numbers gathered may depend on constant, external factors and
again the relative ratios among species are likely to be more important. The
best-known example where ratios are generally judged to be more important
than absolutes is in Information Retrieval, where documents of arbitrary size
are compared against each other by their term frequencies, rather than term
numbers [13].

There is surprisingly little work in the consideration of distance metrics in
this context. A bit vector form of Jaccard distance was noted by Tanimoto1 in
[11], where the Jaccard set distance is written as

DT (v, w) = 1− v · w
|v|2 + |w|2 − v · w

where v and w are bit vectors representing sets. There is a great deal of confusion
over this function, which is regularly cited as a proper distance metric over
vectors; however, it is not. It is a proper metric over sets, and over weighted sets,
when they are represented in vector form. [8] proves this property for weighted
sets only, and not vectors in general. In the context of weighted sets, it is very
commonly used as a proxy for molecule similarity by organic chemists.

Cosine distance has been used since the birth of Information Retrieval [9] [10]
for this purpose, and perhaps for this reason is almost the de facto multivariate
correlation function. However there is also significant confusion over this. Cosine
distance is most commonly defined as the convenient algebraic form:

DC(v, w) = 1− v · w
|v||w|

The key observation is that the outcome of this is independent of the magnitude
of the vectors, and is within the interval [0,1], giving zero for perfectly aligned
vectors and one for independent vectors2.

There are two problems, however. The first is that this is not a proper metric
as it does not have triangle inequality. Probably as a result of this, the term
“Cosine Distance” is also used to mean simply the angle between the vectors,
normalised into the range [0, 1] by division by π

2 for positive vectors, e.g. [4]. Both
functions give the same ordering over any set of comparisons, but the second also
gives triangle inequality. We therefore use the term “Cosine Distance” to mean

DCos(v, w) =
2 · cos−1

(
v·w
|v||w|

)
π

from this point onwards.

1 In fact, Tanimoto neither defined nor used this as a distance function, but was
interested in the function −log2(DT (A,B)).

2 Those with no common non-zero dimensions.
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The second problem, as will be elaborated, is that vector alignment does not
serve as a good proxy for multivariate correlation in a number of circumstances.
Singhal [13] states: “Typically, the angle between two vectors is used as a measure
of divergence between the vectors, and cosine of the angle is used as the numeric
similarity (since cosine has the nice property that it is 1.0 for identical vectors
and 0.0 for orthogonal vectors).” It would appear that cosine similarity has been
in use in this field for 50 years without much more attention than this being
paid to its efficacy.

We therefore introduce SED-vector as a competitor function which we claim
has, in general, better properties for similarity search.

3 Definition

We restrict the text here to a succinct definition of the SED metric within the
context of vectors and a short statement of intuition; [2] gives a full description
of its derivation and properties.

3.1 Domain Definitions

The domain is a set Vl of vectors where l denotes a fixed (arbitrary) number of
dimensions, with vectors v, w etc. drawn from Vl. The scalar component of the
ith dimension of a vector v is denoted vi. The domain is restricted to positive
vectors, i.e. ∀v ∈ Vl, ∀i ≤ l, vi ≥ 0.

3.2 Definition of SED over Vectors

The Structural Entropic Distance (SED) between two vectors is defined in terms
of a complexity function over vectors, based on their information content. For
this purpose we consider the normalised form of a vector v as v, which is scaled
so that v = αv for some α ∈ R, and

∑
i vi = 1. The information content of a

vector is defined using Shannon’s entropy function:

Hx(v) = −
∑
i

vi logx(vi)

noting that Hx(v) = Hx(v) in all cases.
The complexity function C removes the dependence on the logarithm base:

C(v) = xHx(v)

and the distance is defined in terms of the complexity of the two vectors, and
the complexity of the sum of the (normalised) vectors:

D(v, w) =
C(v + w)√
C(v) · C(w)

− 1 (1)
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3.3 Underlying Intuition

The function is based upon the comparison of the information content of the two
vectors under comparison, and a third vector which represents an information-
theoretic “merge”. The central term of Equation (1) gives the complexity ratio of
the “merge” to the geometric mean of its components. If the vectors are identical,
then this ratio is 1; if they are independent, then the ratio is 2.

By corollary, a vector formed through the merging of two others which have
no non-zero dimensions in common, and each of which has the same complexity,
contains twice the amount of information as each individual vector, which is
a reasonable intuition. Given our definition of complexity, that intuition holds
only when the complexity of each vector is the same, the geometric mean being
used to balance these terms when they are different.

4 Metric Properties

Proofs of the metric properties of this function defined ensembles are given in
[2]; most of these can be reapplied to the more general vector space considered
here, and are not repeated.

– SED is positive and symmetric.
– It is bounded in the interval [0, 1]. It returns 1 if and only if its input com-

prises two independent vectors, i.e. they have no non-zero terms in common.
It returns 0 if and only if its input comprises two vectors one of which is a
scalar multiple of the other. It thus has the pseudo-identity property.

– SED as defined so far is not a proper distance metric in generalised vector
space. There exist vector triples over which D does not preserve triangle
inequality, the simplest and worst case being the vectors [0, 1], [1, 0] and
[1,1], as D([0, 1], [1, 1]) = 0.24 and D([0, 1], [1, 0]) = 1.0.
D has previously been used as a distance metric over restricted subsets of
the vector domain where cases such as this do not occur. To achieve triangle
inequality in generalised vector space the requirement is to raise the numeric
outcome of D to the power 0.48.3

5 Semantic Properties

5.1 Analysis

Comparison of SED-Vector and Cosine Distance. SED-vector and Cosine
distances are highly correlated over many data sets. However there are two im-
portant circumstances where their outcomes of the two metrics are significantly
different:

Small Value Pairs: when there is a large relative difference in the magnitude
of one or more scalar component pairs, SED assigns much more significance
than Cosine to the differences between the smaller components; and

3 A conservative value of x where 0.24x ≥ 0.5; see [2] for details.
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Fig. 1. SED and Cosine Distance over Unit Vectors. The x-axis represents vectors of
the form [1− x, x] for values of x ranging from 0.0 to 1.0; the y-axis plots the distance
between these and the vector [1,0].

Fig. 2. SED and Cosine Distance over increasing length vectors. The graph shows the
distance between vectors of the form [1,0,...,0] and [1, 1

n−1
,..., 1

n−1
], where n is the length

of the vector. The distance is plotted against the number of independent dimensions.
These pairs each have the same information overlap, but with the independent terms
spread over increasingly many dimensions.

Sparse Vectors: when a significant proportion of one or both vectors is inde-
pendent, i.e. many dimensions are positive in one vector and zero (or very
small) in the other, then the outcome of Cosine distance is significantly af-
fected by the distribution of the values of these dimensions, whereas SED is
unaffected.

Figure 1 shows the vector [1,0] compared by both metrics against all other two-
dimensional vectors whose components sum to 1, from [1,0] to [0,1]. Both metrics
give distances starting at 0 for the identical vectors, increasing monotonically to
1 for the distance between [1,0] and [0,1]. However the notable difference between
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the two functions is how quickly SED increases for very small values in the first
dimension, illustrating the first difference highlighted above.

Which behaviour is more desirable depends deeply on the meaning of the
vectors under consideration. SED will be much more effective at highlighting
large relative differences in small values, which in Cosine distance will be masked
by much smaller relative differences in larger values.

Figure 2 shows an effect which, in terms of information overlap, shows an
objectively better behaviour for SED over Cosine. The graph plots distances for
a series of successively longer pairs of vectors, each with a 1 in the first dimension,
but where the first is padded out with zeros, and the second is padded out with
1

n−1 where n is the length of the vector. The point of the experiment is that each
pair of vectors has exactly the same information overlap, and the distribution of
the residue should not be significant in information-theoretic terms.

In this case it can be seen that Cosine distance drops quite sharply according
to this increase in dimension. This behaviour gives false results in these cases,
when the metric is being used as a measure of correlation - there is no intuitive
reason why an increase in the number of non-correlated dimensions should de-
crease the distance. As shown algebraically in Section 7, SED has the property
that the distribution of independent dimensions does not affect the outcome.

Both of these differences are a direct result of Cosine distance using vector
alignment as a proxy for correlation. We are not aware of any discussion on
the origins of this use, other than a purely pragmatic observation that the use
of vector alignment as a proxy for similarity removes any significance from the
magnitude of the vectors under comparison.

The first effect is intuitively fairly clear: when one dimension of a vector is
orders of magnitude larger than others, then the effect of the smaller dimensions
on the alignment of the vector is negligible. The increase in the information
content of an event stream caused by a new low frequency event is much greater.

The second effect is also clear as a consequence of vector geometry; as a
single scalar component is spread over multiple dimensions, the effect on the
alignment of the vector reduces until it is insignificant. This effect is probably
never an intention for Cosine distance, and in fact is documented as a problem
in the domain of Information Retrieval4 [14].

5.2 Experimental Evaluation

To establish that our theoretically-based observations are seen in practice, we
have performed experiments to measure SED against Cosine for a number of
data sets:

1. To observe the “small value” property, we compare the two metrics over
randomly generated vectors within a five-dimensional Cartesian space.

4 In the TF-IDF model, longer documents tend to have more terms each with lower
frequency, and Cosine distance gives smaller outcomes for longer documents with
the same ratio of search terms.
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Fig. 3. Correlation of SED against Cosine Distance

2. To show the “sparse vector” property, we show how the two metrics compare
against two real-world data collections: TREC [5] and movielens [15]. The
outcome over TREC is particularly significant, as it is the only large data
collection for which we have a ratified ground truth available. We show that
SED hugely outperforms Cosine distance.

5-Dimensional Cartesian Space. To establish the correlation and differences
between SED and Cosine Distance over dense vector spaces, we performed5

correlation analysis over a set of 109 distances evaluated from the comparison
of 14,143 randomly-generated 5-dimensional Cartesian vectors, each dimension
being generated within a Gaussian distribution with μ = 0.5 and σ = 0.2,
restricted to within [0,1]. As in this context we are interested particularly in
small distances that are likely to lie within a query threshold, we restrict our
presentation to the smallest 10−6 of distances observed for either metric.

Figure 3 shows a scatter-plot of SED against Cosine distance, while Figure 4
shows Cosine distance against SED. The general correlation is quite apparent,
and in particular it can be seen by comparing the two graphs that around 90% of
the same data points occur in both. It can also be seen that a consistent pattern
of outliers exists, which are points showing a (relative) closeness under Cosine
distance where that closeness is not reflected by SED.

From the above analysis, our hypothesis is that the outliers are likely to be
points where one or more of the component pairs are relatively small values which
are significantly different from each other. For the outlier distances highlighted
in both graphs, the underlying vectors pairs are shown in Tables 1a and 1b
respectively, the tables also including from each a “normal” point drawn from
the same x-coordinate as the worst outlier. From inspection of these and other
points it can be seen that this is indeed the reason why some points are deemed
to be relatively closer using Cosine distance. This effect turns out to underlie,
for each metric, the 10% of points not included by the other.

5 The Java source code for this and all other experiments is available from the authors.
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Fig. 4. Correlation of Cosine Distance against SED

Due to the use of Gaussian distributions within the vector components, these
points of disagreement are quite rare. When a flat distribution is used over 5
dimensions, the same effects are seen, but the percentage of points included by
both metrics drops to around 70% and the number of outliers increases corre-
spondingly.

Table 1. Outlier vector pairs highlighted

(a) Outlier vector pairs highlighted in
Figure 3

Distance

Outlier Vector 1 Vector 2 Cosine SED

Outlier 1

⎛
⎜⎜⎜⎝

0.512
0.44
0.429
0.696
0.016

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0.464
0.401
0.404
0.633
0.0

⎞
⎟⎟⎟⎠ 0.013 0.058

Outlier 2

⎛
⎜⎜⎜⎝

0.034
0.434
0.258
0.477
0.572

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0.063
0.619
0.382
0.689
0.807

⎞
⎟⎟⎟⎠ 0.0115 0.0175

“Normal”

⎛
⎜⎜⎜⎝

0.449
0.499
0.3

0.485
0.733

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0.392
0.433
0.259
0.426
0.662

⎞
⎟⎟⎟⎠ 0.0115 0.0075

(b) Outlier vector pairs highlighted in
Figure 4

Distance

Outlier Vector 1 Vector 2 Cosine SED

Outlier 1

⎛
⎜⎜⎜⎝

0.14
0.474
0.562
0.64
0.678

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0.137
0.43
0.523
0.588
0.617

⎞
⎟⎟⎟⎠ 0.0075 0.0077

Outlier 2

⎛
⎜⎜⎜⎝

0.438
0.426
0.1

0.371
0.587

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0.429
0.423
0.109
0.373
0.578

⎞
⎟⎟⎟⎠ 0.0088 0.01

“Normal”

⎛
⎜⎜⎜⎝

0.415
0.591
0.293
0.476
0.589

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0.423
0.618
0.32
0.505
0.639

⎞
⎟⎟⎟⎠ 0.0101 0.0142

TREC and TF/IDF. In Information Retrieval (IR), documents may be treated
as “bags of words” , represented by sparse vectors where each dimension cor-
responds to an individual term in the lexicon. The number of occurrences of a
term within a document is given by the corresponding dimension of the vector.
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Table 2. Improvement of SED over Cosine distance at Document 20 in rank order

(a) SED

Improvements Cosine Cosine/IDF

Precision 109% 28%
Recall 218% 15%

(b) SED/IDF

Improvements Cosine Cosine/IDF

Precision 157% 57%
Recall 282% 38%

Other state of the art techniques in IR include probabilistic language models
such as BM25. While probabilistic models outperform SED for the simple task
of document retrieval, there are other tasks for which they make no sense, or
for which vector space models remain the dominant technique; for example in
pseudo-relevance feedback and recommender systems, which try to make predic-
tions based on document similarity.

We use the Congressional Record of the 103rd Congress (1993 - Text Research
Collection Volume 4) and the Los Angeles Times (1989, 1990 - Text Research
Collection Volume 5) from the Text REtrieval Conference (TREC ) series test
collections. This comprises: a set of documents; a set of topics, and a correspond-
ing set of relevance judgments – a total of 500k documents, a vocabulary size of
525k words, and 170M word occurrences.

Topics 301-350 and 351-400 from the TREC 6 and 7 ’ad hoc’ collections re-
spectively, were used to compare Cosine distance with SED. For the 100 queries,
the distance between each document in the corpus and the query were taken.
The 20 nearest documents for each query were selected and compared to the
provided relevance judgements to determine whether it was a match. Relevance
is a judgement ratified by human readers [5].

As each returned document is assessed for relevance, two running scores are
kept: precision – the number of correctly identified relevant documents divided
by the number of documents assessed; and recall – the number of correctly
identified relevant documents divided by the number of documents that should
have been identified as relevant. For every query, the precision and recall were
calculated for each of the 20 ranks, then at each rank the mean precision and
recall across all queries for that rank were plotted.

SED has better precision and recall for every rank than Cosine distance, as
shown in Figure 5 and Table 2. Perhaps the most remarkable outcome is that
SED without IDF significantly outperforms Cosine with IDF; we believe this is
because of SED’s better performance over the independent dimensions of the
very large and sparse vectors.

User Rankings for Movies. A further semantic test was performed by exper-
iment over the movielens data collection [15].

This collection comprises a set of real users’ movie rankings. We interpret the
data as a collection of sparse vectors, with one vector for each user, and each di-
mension corresponding to a particular movie. Vector values are ratings given by
users to movies on a scale of 1 to 5, with a zero indicating that the movie has not
been rated.
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Fig. 5. TREC precision/recall diagram. In general, the quality of the retrieval tech-
nique is correlated with the area under the graph. SED can be seen to greatly outper-
form Cosine distance.

To use this collection for a semantic test, we use the underlying assumption
that significant correlations exist between like-minded users - this hypothesis has
been adequately tested by successful research on recommender systems [6]. We
partitioned the data into two collections of vectors, indexed by the same user
identities in both collections, with each collection containing half of the original
movies. For each user, we then used each distance function to find the closest
user within the first set, and compared this distance with the distance between
the same pair of users in the second set; for a perfect semantic distance, and a
perfect data set, these distances should be the same. We therefore used Pearson’s
product-moment coefficient over all the distance pairs obtained to give a score
to the distance metric.

The 1M data set was used, comprising just over one million ratings by six
thousand users for four thousand movies. To allow repetition over independent
data sets, the users were split into six different groups of a thousand users each;
each collection therefore contained one thousand sparse vectors, each of two
thousand dimensions. The correlations obtained for each pair of files, for each
distance metric, are shown in Table 3.

It can be seen that in all these cases, SED gave a better outcome than Cosine
Distance. The mean difference in outcome is 0.036, and the standard deviation of
the difference is 0.0088, making the mean just over 4 standard deviations above
zero. Using the null hypothesis that the choice of metric makes no difference to
the correlation of the outcome, this gives a p0 value of 10−5, strongly justifying
the hypothesis that SED is a better semantic similarity function.
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Table 3. Pearson correlations for pairs of distances taken from movielens data

Metric test1 test2 test3 test4 test5 test6 mean

SED 0.835 0.859 0.837 0.852 0.901 0.849 0.855

Cosine 0.784 0.823 0.796 0.827 0.876 0.810 0.819

Table 4. Key values for the Histograms of Figure 6, and for 10-dim Gaussian vectors

(a) 5-dim Gaussian

Metric μ σ IDIM μ-point

SED 0.20 0.08 3.0 0.006
Cosine 0.29 0.10 3.7 0.008
Euclidean 0.27 0.08 5.0 0.014

(b) 5-dim Non-Gaussian

Metric μ σ IDIM μ-point

SED 0.31 0.11 4.0 0.009
Cosine 0.42 0.14 4.3 0.011
Euclidean 0.39 0.11 6.3 0.021

(c) 10-dim Gaussian

Metric μ σ IDIM μ-point

SED 0.21 0.06 6.8 0.034
Cosine 0.31 0.08 8.7 0.051
Euclidean 0.27 0.06 10.3 0.052

6 Indexing Properties

Figure 6 shows histograms of SED, Cosine and Euclidean distances over ran-
domly generated 5-dimensional vectors, with both Gaussian and non-Gaussian
internal distributions. The key values summarising these are displayed in Table
4, giving values for median, standard deviation, intrinsic dimensionality (IDIM ),
and the upper bound of the smallest 10−6 of the distances measured (μ-point).

The latter two values are key for performance within similarity search. IDIM
has been shown to be a good predictor of performance for a given query thresh-
old, and the μ-point is an estimator useful for determining query thresholds. In
general, the lower these values, the better will be the performance of a similarity
search index using the metric.

As can be seen from Table 4, SED gives better properties for use in metric in-
dices than Cosine distance. We have observed this to be true over a range of dif-
ferent dimensions for dense spaces such as these. The comparison with Euclidean
space is included to give an idea of howmany dimensions might be tractable for in-
dexing purposes for strategies where this is already known for Euclidean distance.

7 Cost of Evaluation

The definition of SED as presented in terms of complexity requires significant
computation. In this section it is shown via algebraic manipulation how an alter-
native formulation with a lower computational cost can be achieved. The term:
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Fig. 6. 5-dimensional Histograms. The left-hand graphs shows histograms over 5-
dimensional Cartesian vectors each dimension of which has a Gaussian distribution, the
right-hand graphs shows 5-dim vectors each dimension of which has a flat distribution.
Euclidean distance is normalised into the interval [0,1].

C(v + w)√
C(v) · C(w)

is defined as

xHx(v+w)

√
xHx(v) · xHx(w)

and so can be rewritten as

xHx(v+w)− 1
2
(Hx(v)+Hx(w))

Substituting over the definition of Hx, this exponent of x, for any log base x,
can be written as6 ∑

i

(
vi + wi

2

)
logx

(
vi + wi

2

)
−

∑
i vilogx(vi) +

∑
iwilogx(wi)

2

or as a single summation:

1

2

∑
i

(
(vi + wi)logx

(vi + wi

2

)
−

vilogx(vi)− wilogx(wi))

)
(2)

6 To make the arithmetic clearer, negative expressions are rewritten using the notation
log(x) to denote − log(x); as arguments are less than one, all such terms are positive.
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From this form, it can be seen that, if the vectors are kept in normalised form,
then each of these terms can be calculated during a single linear scan over both
vectors and the value calculated by incremental summation.

For sparse vectors, a more efficient algorithm can be achieved, which relies
only upon the scalar components when both are non-zero allowing only the
dimensions in the non-zero intersection to be accessed.

If v and w are defined in terms of their dependent and independent compo-
nents, that is vectors a, b, c and d such that v = a + b and w = c + d, where
bi = vi iffwi = 0 and di = wi iff vi = 0, then the outcome of D(v, w) may be
calculated using only the vectors a and c.

The term (2) can be written in terms of the component vectors as

1

2

∑
i

((
ai + ci

)
logx

(ai + ci
2

)
−

ailogx(ai)− cilogx(ci)

)
+

1

2

∑
i

(
bi logx

(bi
2

)
− bilogx(bi)

)
+

1

2

∑
i

(
di logx

(di
2

)
− dilogx(di)

)

by noting that only one of these terms can be non-zero for each value of i. Now:

1

2

∑
i

(
bi logx

(bi
2

)
− bilogx(bi)

)

can be rewritten if we choose to use base 2 logarithms as:

1

2

∑
i

bi

The entire calculation can then be represented in terms of the component vectors,
only for base 2 logarithms, as

1

2

∑
i

(
(ai + ci) log2

(ai + ci
2

)
−

ai log2(ai)− ci log2(ci) + bi + di

)
(3)
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Fig. 7. Performance of two versions of SED, compared with Cosine and Euclidean
distances over the same data sets. A significant speedup according to the algebraic
rewrite (SED Defn. 2) can be observed over sparse vectors with small intersections.

Now noting that
∑

i bi = 1−∑i ai, and similarly for c and d:

1

2

∑
i

(
(ai + ci) log2

(ai + ci
2

)
−

ai log2(ai)− ci log2(ci)

)
+

(1
2
− 1

2

∑
i

ai

)
+
(1
2
− 1

2

∑
i

ci

)
which can itself be written as

1− 1

2

∑
i

(
(ai log2(ai) + ci log2(ci))

− (ai + ci) log2

(ai + ci
2

)
+ ai + ci

)
demonstrating how the calculation can be performed with regard only to the
dependent dimensions of the vector.

Figure 7 shows the resulting increase in efficiency, over sparse vectors in partic-
ular, and a general performance comparison with Cosine and Euclidean distance
calculations over some representative data sets.

The left-hand chart shows performance over randomly-generated vectors, the
right-hand chart shows performance over sparse vectors taken from the SISAP
colors data set [4], and two sets of vectors taken from the movielens 100k data
set detailed above. The details of these sparse data sets are given in Table 5; it
can be seen how both SED and Cosine start to outperform Euclidean distance
as the non-zero intersections become smaller. While SED is intrinsically a more
costly calculation than either Cosine or Euclidean distance, it can be seen that
the difference can be kept to within a small factor, and it may even be faster
than Euclidean distance for sparse vectors with small intersections.
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Table 5. Performance of Distance Calculations over Sparse Vectors. (Performance
figures are given as the number of calculations performed per millisecond.)

Collection Dimensions Mean non-zero Mean intersection SED Cos. Euc.n

movies (split) 800 53 9 1386 1900 1602

movies (all) 1600 106 19 704 1004 709

colors 120 40 31 810 2142 3463

Dense vectors were represented by arrays of doubles, sparse vectors by two
arrays, one of integers containing the non-zero indices, and one containing the
data. For all metrics, the calculations were optimised as far as possible by using
data objects to contain these arrays along with cached values for all calcula-
tions performed once per vector, such as complexity, magnitude, and component
log values. Performance was measured by Java implementations of the metrics
running on a 1.8 GHz Intel Core i7 with 4 GB 1333 MHz DDR3, enough to con-
tain the working set for the measurements. The time for one million randomly
selected distance calculations was repeatedly measured on an otherwise idle ma-
chine until the standard error of the mean was less than 0.5%, and median values
reported.

8 Conclusions

We have presented an investigation into a previously reported distance met-
ric, SED, applied as a multivariate correlation distance over generalised vector
spaces. We have shown that in terms of both semantics and indexing proper-
ties, it is often likely to be a better alternative than Cosine Distance, while its
cost has been shown to remain tractable in comparison. As Cosine Distance is
generally believed to be the state-of-the-art for such data, we believe this is a
significant contribution.
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Abstract. Low-rank factorizations of higher-order tensors have become
an invaluable tool for researchers from many scientific disciplines. Tensor
factorizations have been successfully applied for moderately sized multi-
modal data sets involving a small number of modes. However, a signifi-
cant hindrance to the full realization of the potential of tensor methods is
a lack of scalability on the client side: even when low-rank representations
are provided by an external agent possessing the necessary computational
resources, client applications are quickly rendered infeasible by the space
requirements for explicitly storing a (dense) low-rank representation of
the input tensor. We consider the problem of efficiently computing com-
mon similarity measures between entities expressed by fibers (vectors)
or slices (matrices) within a given factorized tensor. We show that after
appropriate preprocessing, inner products can be efficiently computed
independently of the dimensions of the input tensor.

Keywords: similarity computation, inner products, tensor factorization.

1 Introduction

Within many emerging areas of computing, such as data mining, recommenda-
tion systems, security, and multimedia, applications of similarity search natu-
rally arises in the context of such fundamental tasks as clustering, classification,
matching and detection. In each case, the data model must reflect the underlying
temporal, spatial, social, or other relationships that may be important for the
application at hand. In many instances, the complexity of the data relationships
precludes a simple attribute-vector representation. For example, a recommender
system for movies might involve several modes of information, each with their
own sets of attributes, in order to model the interactions among such entities as
users, movies, ratings, dates and times, and so on. Due to the complexity inher-
ent in managing multimodal data, effective and scalable strategies for similarity
search are crucial to the overall performance of the system.

G. Navarro and V. Pestov (Eds.): SISAP 2012, LNCS 7404, pp. 226–239, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Fast Similarity Computation in Factorized Tensors 227

Multimodal data can be naturally represented in the form of a tensor (also
known as a multiway array), a higher-dimensional extension of the matrix rep-
resentation. Tensor-based data modeling is particularly appealing whenever the
data dynamics can be captured by truncated (low-rank) representations, in terms
of a small number of latent variables. Such representations, obtained by means of
different tensor factorization models, have already become commonplace in ar-
eas including recommender systems [18], trend analysis [9], signal processing [8],
analytical chemistry [2], psychometrics [17], graph and network analysis [19,11]
and computer vision [30]. The popularity of tensor factorization in practice has
led to several surveys and books on the topic [20,27,28]. The development of ten-
sor factorization models can be dated back to Hitchcock in 1927 [16]; since then,
many models have been proposed, with significant contributions by Carroll and
Change [7], Harshman [15], Tucker [29] and Rendle and Schmidt-Thieme [26].

As tensors themselves constitute a structural generalization of matrices to
higher orders, we may consider matrix factorization models as the conceptual an-
cestor of their tensor-based counterparts. The undoubtedly most popular matrix
factorization model is the singular value decomposition (SVD), several implemen-
tations of which have appeared in recent years [23]. Applications of singular value
decomposition have become commonplace in such areas as pattern recognition,
security, recommender systems, text mining, and bioinformatics.

Recent attention has been given to the issue of efficiency and scalability of
the tensor factorization process itself [1,2], including memory efficiency [22] and
the efficiency of tensor arithmetic [22,3]. Tensor factorizations have been suc-
cessfully applied for moderately sized multimodal data sets involving a small
number of modes. However, relevant data sets in, for example, real-world recom-
mender system applications [6,5] are typically much larger, in both the number
of observations and the modality. One way in which practitioners solve the in-
herent problem of the space requirements associated with higher-order tensors is
by considering only a core group of relations so as to improve the tractability of
the tensor factorization processes. A core group would allow, for example, only
data from objects that have a sufficiently high number of interactions within a
system (such as among users, items, and a restricted set of tags).

Even though for applications such as recommender systems the observations
typically generate data that admit a sparse representation, the intermediate rep-
resentations used in processing the data are usually dense. In such situations,
even if a low-rank representation of a large input relation were to be provided by
an external agent possessing the necessary computational resources, client ap-
plications would nevertheless be rendered infeasible by the space requirements
for explicitly maintaining the dense tensors formed at intermediate steps of the
computation. This problem is usually addressed only by maintaining a low-rank
factorization of the input tensor itself. Depending on the model rank, this would
allow significant reductions in the storage requirements, but also incur a signif-
icant additional computational cost each time an individual tensor element is
reconstituted from the tensor factors.
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In this paper we consider the problem of efficiently computing similarity scores
for multimodal data represented as a tensor factorization, without the need
to explicitly reconstitute the individual elements of the input tensor. Here, we
assume that the similarity measures can be expressed in terms of inner products
between fibers (vectors) and slices (matrices) of a tensor that is maintained in
form of a factorization of low rank. Inner products constitute the building blocks
for many popular measures of similarity, such as the Euclidean distance or the
cosine similarity. For several popular tensor factorization models, we show how
data obtained in an additional preprocessing step can be utilized to efficiently
evaluate inner products, with a computational complexity that depends only
on the choice of model parameters, rather than on the dimensions of the input
tensor. By avoiding the explicit reconstruction of the original tensor values,
significant savings in both computational time and storage can be achieved.

The remainder of the paper is structured as follows. Section 2 briefly reviews
the notation and concepts needed for the discussion of tensors and inner prod-
ucts. In Section 3 we summarize three popular tensor factorization models, and
in Section 4 we propose our computation scheme for efficiently computing the
similarity between tensor substructures. An empirical evaluation of our method
appears in Section 5. The paper concludes in Section 6 with a discussion of
potential directions for future research.

2 Preliminaries

This section introduces the basic concepts and terminology used in this paper.
Where convenient, we adhere to the notation used in [20].

2.1 Vectors, Matrices and Tensors

An order-p tensor over a field R is the product of p individual R-vector spaces;
accordingly, an order-1 (first-order) tensor is a vector, and an order-2 (second-
order) tensor is a matrix. We denote vectors by bold lower-case letters, matrices
by bold capitals and order-p tensors (p > 2) using the Fraktur typeface. For any
matrix U, the vector uk refers to its k-th column vector, and uij refers to the
matrix coefficient located in row i and column j. Given an order-p tensor, fixing
all but the k-th index (1 ≤ k ≤ p) produces a mode-k fiber, a vector of length
equal to the k-th mode of the tensor. Given a tensor X = [xi1···ip ]n1×···×np , we
will denote individual mode-k fibers using notation of the form xi1···ik−1�ik+1···ip .
Analogously, one may denote higher-order subtensors by introducing additional
wild-card symbols (�) into the list of indices.

Given vectors ui ∈ Rni for 1 ≤ i ≤ p, the outer product u1 ◦ · · · ◦ up (see
Fig. 1) is an order-p tensor U ∈ Rn1×···×np whose elements are defined by

ui1···ip =

p∏
j=1

ujij , where 1 ≤ ij ≤ nj for 1 ≤ j ≤ p. (1)
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Fig. 1. The outer product of two vectors produces a second-order tensor (a matrix).
The matrix element at location (i, j) is the product of the i-th element of the first
vector with the j-th element of the second vector.

Given a pair of vectors u and v, one may simply write u ◦ v = uv	.
Any order-p tensor is said to be of rank one if and only if it may be expressed

as an outer product of the form u1 ◦ · · · ◦ up. More generally, the tensor rank
of an arbitrary order-p tensor X, rk(X), is defined as the minimum number of
rank-1 order-p tensors, such that their (element-wise) sum equals X. Note that
in the case p = 2, this definition of rank conforms to the usual notion of matrix
rank. Unfortunately, for p > 2, determining the tensor rank turns out to be
NP-hard [14].

2.2 Inner Products and Norms

Let u1, . . . ,up be vectors of length n over some field. The general inner product
Φ(u1, . . . ,up) is determined by

Φ(u1, . . . ,up) =

n∑
i=1

p∏
j=1

uji (2)

As with the outer product, for the special case when p = 2, one may abbreviate
Φ(u,v) by u	v whenever convenient. Inner products are particularly interest-
ing for similarity search applications, because they serve as the building blocks
from which one may construct popular distance measures, such as the Euclidean
distance

d2(u,v) =
√
Φ(u,u) + Φ(v,v) − 2 · Φ(u,v) (3)

or the cosine similarity

s(u,v) = (Φ(u,u) · Φ(v,v))− 1
2 · Φ(u,v) (4)

The Frobenius norm of a tensor X ∈ Rn1×···×np may be conveniently defined in
terms of its mode-k fibers, for any desirable choice of 1 ≤ k ≤ p:

‖X‖F =

√√√√ n1∑
i1=1

· · ·
nk−1∑

ik−1=1

nk+1∑
ik+1=1

· · ·
np∑

ip=1

Φ(xi1···ik−1�ik+1···ip ,xi1···ik−1�ik+1···ip) (5)
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Fig. 2. Depiction of a rank-3 CP decomposition of a second-order tensor. For conve-
nience, we assume that the weights wi are equal to 1. The circled entries illustrate the
decomposition of an individual tensor element.

3 Factorization Models

In this section we present three popular tensor factorization models: the canon-
ical polyadic (CP) decomposition, the Tucker factorization and the pairwise
interaction factorization (PITF) model. We provide short formal descriptions of
each model, briefly discuss their particular properties, and indicate their publicly
available implementations. We also discuss how individual tensor elements can
be reconstituted from a given factorization.

3.1 Canonical Polyadic Decomposition

The canonical polyadic (CP) decomposition model (also known as parallel fac-
torization) dates back to Hitchcock [16]. While it has initially been applied in
psychometrics and analytical chemistry [2,7,15], nowadays it is also an invaluable
tool in bioinformatics [24], signal processing [10] and web analysis [21]. A CP

factorization describes an arbitrary order-p tensor X as the conical combination
of rank-1 tensors X[1], . . . ,X[m]. As rank-1 tensors, the individual X[i] may be
expressed in terms of vector products (see Fig. 2):

X =
m∑
i=1

wiX
[i] =

m∑
i=1

wiu
[i]
1 ◦ · · · ◦ u[i]

p (6)

The factorization is parameterized by the model rank m, which is chosen by
the user. By definition it is not possible to decompose a tensor X using only
m < rk (X) terms; it is, however, possible to efficiently fit a rank deficient model

X̂ with respect to ‖X̂−X‖F , the Frobenius norm of the residual. Note that this
is equivalent to minimizing the element-wise mean squared error between X and
X̂. In the particular case of p = 2, this is equivalent to a truncated singular value
decomposition [12]. A generic implementation supporting both dense and sparse
higher-order tensors is available as part of the Tensor Toolbox for MatLab [4].
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C =
1

1

0

1
, U[1] =

1 2

0 1

2 1

, U[2] =

1 2

0 2

0 1

, X̂ =

5 2 1

1 0 0

7 4 2

x̂31 = c11u
[1]
31u

[2]
11

+ c12u
[1]
31u

[2]
12

+ c21u
[1]
32u

[2]
11

+ c22u
[1]
32u

[2]
12

Fig. 3. A Tucker decomposition of the second order tensor X̂ ∈ R
3×3. The enclos-

ing boxes indicate the decomposition of the tensor element x̂31. Unlike with the CP

decomposition, all factors of a Tucker decomposition interact with each other.

According to Equation 6, in any such rank-m decomposition of an order-
p tensor X̂, one may reconstitute an individual tensor element x̂i1···ip in time
Θ(pm) using the formula

x̂i1···ip =

m∑
j=1

wj

p∏
k=1

u
[j]
kik

. (7)

3.2 Tucker Decomposition

The Tucker factorization model (Tucker) was proposed by Ledyard Tucker as a
form of higher-order singular value decomposition [29]. In his model, an order-p
tensor in X ∈ Rn1×···×np is expressed as the ‘mode-wise’ product of an order-p
core tensor C with p individual factor matrices (see Fig. 3):

X = C×1 U
[1] ×2 · · · ×p U

[p] =

n1∑
i1=1

· · ·
np∑

ip=1

ci1···ipu
[1]
i1
◦ · · · ◦ u[p]

ip
, (8)

where C has the same dimensions as X, and the factor matrix U[i] has size
ni × ni for 1 ≤ i ≤ p. As with the (second-order) singular value decomposition,
the factor matrices are orthogonal. As with the CP model (see Section 3.1), it

is also possible to fit a truncated model X̂ using a user-provided core tensor size
m1 × · · · × mp satisfying mi < ni for at least one instance of 1 ≤ i ≤ p. We
refer to the model rank of a Tucker decomposition by the size of its core tensor.
An implementation of the Tucker model is available as part of the MatLab

Tensor Toolbox [4].
From Equation 8, we may reconstitute any tensor element from a given rank-

(m1, . . . ,mp) factorization of X̂ using

x̂i1···ip =

m1∑
j1=1

· · ·
mp∑
jp=1

cj1···jpu
[1]
j1i1
· · ·u[p]

jpip
(9)
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X̂ =

1

2

3 0

7 2

1 3 0

, U[1,2] =
1 2 1

0 1 0
, U[2,1] =

1 3 0

0 0 0

Fig. 4. A rank-2 PITF model of the second-order tensor X̂ ∈ R
3×3. The boxed elements

indicate the decomposition of an individual tensor element. Note that, for the special
case p = 2, the tensor X̂ is merely the product of the two factor matrices.

This process requires a number of steps proportional to the volume of the core
tensor: m1 · · ·mp. When assuming a hypercubic core tensor C ∈ Rm×···×m, the
total time required is in Θ(pmp).

The Tucker model may be seen as a generalization of the CP model (see
Section 3.1) in that it allows arbitrary interactions between individual columns
of the factor matrices. While this increases the expressiveness of the model, it
also significantly increases the complexity associated with accessing its elements
(as can be seen from Equation 9).

3.3 Pairwise Interaction Model

The pairwise interaction (PITF) model originates from a personalized tag rec-
ommendation system in which the relationships among users, items and tags are
modeled as a third-order tensor [26]. PITF may be seen as a special case of the
canonical polyadic model for third-order tensors, with the constraint that for
any given additive term, factor matrices from at most two different modes may
interact. In the original model, a tensor element ŷuit corresponding to a user u,
an item i and a tag t is produced by (see [26])

ŷuit =
∑
f

ûT
uf t̂

U
tf +

∑
f

îTif t̂
I
tf +

∑
f

ûI
uf î

U
if . (10)

The authors also provide BPR-Opt, an implementation of a sampling-based
gradient descent algorithm for efficiently learning the factor matrices [25].

We generalize this model to higher-order settings (p > 3) by computing
U[i,j] ∈ R

ni×m for each i, j ∈ {1, . . . , p} with i �= j (see Fig. 4). Extending
the model to account for all possible pairs of interaction yields a rather un-
wieldy expression for X̂. Fortunately, the formula according to which individual
tensor elements are computed is quite simple:

x̂i1···ip =

m∑
k=1

∑
1≤a<b≤p

u
[a,b]
kia

u
[b,a]
kjb

(11)

Note that the computation time required to reconstitute an element is propor-
tional to m

(
p
2

)
. Conveniently, due to the restricted interaction between factor

matrices, the computation of the ‘sample gradient’ in BPR-Opt can be triv-
ially extended to our higher-order interpretation of the model.
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Complexity Original Tucker CP PITF

Size
∏

i ni

∏
i mi +

∑
i mini m

∑
i ni mp

∑
i ni

Access 1 p
∏

i mi mp mp2

Preprocessing 1
∑

i m
2
i m2p m2p2

Näıve Inner Product nk nkp
∏

i mi nkmp nkmp2

Fast Inner Product — pmk

∏
i mi m2p m2p4

Fig. 5. Complexities of the different factorization models, as compared to operations on
the original unfactorized tensor. Size refers to the amount of memory required to store
the factorization. Access is the cost of computing a single tensor element (see Section 4).
The Preprocessing row refers to the additional storage requirements imposed by our
preprocessing step. Fast and Näıve Inner Product refer to the complexity of computing
inner products between fibers (vectors) with and without using information obtained
in our proposed preprocessing step.

4 Fast Similarity Computation

The previous section introduced popular factorization models for higher-order
tensors. As previously stated in [26], the model classes of the individual models
constitute a hierarchy, withTucker being the most general model and CP being
a special case of Tucker. While the PITF model in its previously proposed
(third-order) interpretation is a special case of the canonical polyadic model, its
higher-order interpretation does not fit into this hierarchy.

Each of these three models comes with an intrinsic complexity that can be
regarded as a baseline against which can be measured the complexity of tensor
operations involved in similarity search, in particular the costs associated with re-
constituting a single tensor element (see Fig. 5). This gives rise to an interesting
question: need the computational cost of evaluating the similarity of two substruc-
tures (such as fibers or slices) depend strongly on the number of tensor elements
accessed? In the remainder of this section we show how one can efficiently com-
pute such similarity values with cost independent of the size of the input tensor.

4.1 Fast Inner Product Computation

Whenever limited resources allow the storage of only a factorization of a tensor,
rather than an explicit tensor representation, any access to a tensor element
comes at a cost associated with that factorization model. The näıve approach to
compute the inner product of (say) two mode-k fibers is to first retrieve all 2 ·nk

elements within the fibers, and then to compute the product value. However, the
following preprocessing schemes allow a significant reduction in computational
cost to be traded against a small increase in storage requirements.

– Given a rank-m CP factorization of X̂ (see Equation 6), evaluate and store

the inner products Φ(u
[i]
k ,u

[j]
k ) of pairs of columns of the factor matrix as-

sociated with mode 1 ≤ k ≤ p, where 1 ≤ i ≤ j ≤ m. Fig. 6 shows how the
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ΦCP (x̂�i2···ip , x̂�j2···jp ) =

n1∑

k=1

x̂ki2···ip x̂kj2···jp

=

n1∑

k=1

(
m∑

a=1

wau
[a]
1ku

[a]
2i2

· · ·u[a]
pip

)(
m∑

b=1

wbu
[b]
1ku

[b]
2j2

· · ·u[b]
pjp

)

=

m∑

a,b=1

wawbu
[a]
2i2

· · ·u[a]
pip

u
[b]
2j2

· · ·u[b]
pjp

n1∑

k=1

u
[a]
1ku

[b]
1k

=
m∑

a,b=1

wawbu
[a]
2i2

· · ·u[a]
pip

u
[b]
2j2

· · ·u[b]
pjp

Φ(u
[a]
1 ,u

[b]
1 )

Fig. 6. Computation of the inner product of mode-1 fibers in a rank-m CP factoriza-
tion. The derivation shows how one can evaluate inner products in Θ(m2p) time (see
Fig. 5). This method generalizes to fibers of arbitrary modes simply by exchanging the
roles of the indices in the summation.

information generated during preprocessing can be used to accelerate the
computation of similarities.

– Similarly, for a given rank-(m1, . . . ,mp) Tucker factorization, compute and

store Φ(u
[k]
i ,u

[k]
j ) for each mode k ∈ {1, . . . , p} and 1 ≤ i ≤ j ≤ mk. The

derivations in Fig. 7 show how to use the information gained during prepro-
cessing to speed up the computation of inner products.

– Provided a generalized PITF factorization, create look-up tables for inner

products of the form Φ(u
[i,j]
a ) and Φ(u

[i,j]
a ,u

[i,k]
b ) for any choice of a, b ∈

{1, . . . ,m} and i, j, k ∈ {1, . . . , p}. Fig. 8 demonstrates how this additional
step can ease the evaluation of inner products of fibers.

The equations in Figs. 6–8 show that the dependency on the shape of the input
tensor can be moved into a model-specific preprocessing step. Hence, by paying
the relatively small cost associated with the proposed precomputation schemes,
the cost of evaluating inner products of fibers becomes independent of the di-
mensions of the input tensor. Furthermore, these results may be generalized to
higher-order substructures within the factorized tensor, such as (for example)
second-order slices (see Section 4.2). In addition, when assuming ni = nj for
some i �= j, we can also evaluate inner products of a mode-i and mode-j fiber
with some additional preprocessing. In fact, if we have prior knowledge of those
modes or combination of modes for which we wish to compute similarity scores,
we can reduce even the cost of the preprocessing steps by computing only the
relevant entries of the look-up tables.

4.2 Inner Products of Higher-Order Substructures

As described in Section 2, popular similarity measures such as the Euclidean
distance or the cosine similarity between two mode-k fibers u and v can be



Fast Similarity Computation in Factorized Tensors 235

ΦTucker(x̂�i2···ip , x̂�j2···jp)

=

n1∑

k=1

x̂ki2···ip x̂kj2···jp

=

n1∑

k=1

m1∑

k1=1

· · ·
mp∑

kp=1

ĉk1···kpu
[1]
kk1

u
[2]
i2k2

· · ·u[p]
ipkp

m1∑

h1=1

· · ·
mp∑

hp=1

ĉh1···hpu
[1]
kh1

u
[2]
j2h2

· · ·u[p]
jphp

=

m1∑

k1,h1=1

n1∑

k=1

u
[1]
kk1

u
[1]
kh1

m2∑

k2,h2=1

· · ·
mp∑

kp,hp=1

ĉk1···kpu
[2]
i2k2

· · ·u[p]
ipkp

ĉh1···hpu
[2]
j2h2

· · · u[p]
jphp

=

m1∑

k1,h1=1

Φ(u
[1]
k1
,u

[1]
h1
)

m2∑

k2=1

· · ·
mp∑

kp=1

ĉk1···kpu
[2]
i2k2

· · ·u[p]
ipkp

m2∑

h2=1

· · ·
mp∑

hp=1

ĉh1···hpu
[2]
j2h2

· · ·u[p]
jphp

Fig. 7. Computation of inner products of mode-1 fibers in a Tucker factorization.
The derivation shows how we can factor out the dependence on the shape of the input
tensor with minimal additional memory requirements. We can perform this operation
for a mode-k fiber by interchanging the roles of the indices in the equations.

expressed as functions in Φ(u,u), Φ(v,v) and Φ(u,v). In addition, we can gen-
eralize our results from the previous section to substructures of higher order. For
example, the following equation demonstrates how inner products of mode-(1, 2)
slices (matrices) in a canonical rank-m factorization can be efficiently computed.

Φ(x̂��i3···ip , x̂��j3···jp)

=

n1∑
k1=1

n2∑
k2=1

x̂k1k2i3···ip x̂k1k2j3···jp

=
m∑

a,b=1

Φ(u
[a]
1 )Φ(u

[a]
2 )Φ(u

[b]
1 )Φ(u

[b]
2 )

p∏
f,g=3

u
[a]
fif

u
[b]
gjg

This scheme can be employed to compute the Frobenius norm of two different
slices of a tensor, using the formulation of Equation 5. Note that we obtain
terms of the form Φ(u)Φ(v) rather than Φ(u,v), since the two modes of the slice
are independent. This process is equivalent to that of unfolding one mode of
the tensor, such that the involved slices of size ni × nj become vectors of length
ninj , and subsequently applying the previously-discussed techniques to compute
the Euclidean distance of the unfolded vectors. Again, the cost of that operation
depends on model parameters, rather than the number of coefficients in the
frontal slices. We must also account for the cost of computing the values of Φ(u);
for the CP and Tucker models, this introduces an additional precomputation
cost of Θ(pm).
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ΦPITF (x̂�i2···ip , x̂�j2···jp )
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⎝
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Fig. 8. Fast evaluation of inner products of mode-1 fibers in the generalized PITF

model. The equations show how we can move all dependencies on the dimensions of
the input tensor into the precomputation step. Again, mode-k fibers may be handled
by substituting indices.

5 Evaluation

We implemented a C++ framework for efficiently computing different similarity
measures on fibers and matrices, from Tucker, CP, or PITF tensor factoriza-
tions using the precomputation schemes presented earlier. We generate actual
factorizations using the MatLab Tensor Toolbox (for Tucker and CP), or a
generalization of the learning algorithm given in [26] (for the higher-order PITF

model). We measured and compared the time consumed when computing inner
products between pairs of fibers taken from different modes of an input ten-
sor. The differences in the complexities of the individual models across different
choices of model rank are shown in Fig. 9.

The time complexity of our computation scheme depends on the size of the
factorization, but not on the content of the factor matrices nor on the number
of entries of the input tensor. However, producing the factorizations themselves
takes considerable execution time. To reduce the time required for our experi-
mentation, we therefore analyzed our findings for only a subset of the Movielens
data set [13]. Here, we included up to 8 variables (such as users, movies, and
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Fig. 9. Computational cost of evaluating inner products of fibers in different types of
factorizations of order-p tensors (Figs. 9(a)–9(c)), and a comparison of näıve vs. fast
inner products for different choices of model rank m (Fig. 9(d)).

tags), and restricted the modes of the tensor to have size 1000, by greedily se-
lecting only the most dense regions of the data set.

In order to concisely present the experimental results, we chose the core tensor
of the Tucker factorization to be a cube (m = m1 = · · · = mp). For each choice
of p ∈ {2, 4, 8}, we factorized our input tensor with respect to all three models
using rank values ranging from 1 to 100. We limited the rank to a maximum
of 15 for the Tucker model as its complexity makes it prohibitively expensive
for larger model ranks (see Fig. 9(b)). Since the computation involves very little
overhead, the time complexities shown in Fig. 5 are reflected in the experimental
results in Figs. 9(a)–9(c). In addition, Fig. 9(d) shows the asymptotic trade-off
between the dependence on the tensor dimensions and the model rank. Note
that for most methods, the break-even points correspond to computation times
that are already far in excess of tolerable limits.

6 Conclusion

In this paper, we proposed a computation scheme to accelerate computation of
similarities between fibers and slices for low-rank representations of higher-order
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tensors. For theTucker, CP and the generalizedPITF factorization models, we
showed how the computation of inner products, Euclidean distances and cosine
similarity values of fibers, as well as the Frobenius norm of the difference of two
slices can be processed efficiently. Our approach provides exact similarity values
between fibers and slices, while trading dependence on the size of the input tensor
against a slightly larger dependence on the rank of the respective factorization
model. Even though the most meaningful model rank still is an application-
specific variable, our approach promises significant gains in scalability for many
applications in areas such as machine learning, recommender systems or data
warehousing. In fact, our experimental evaluation shows that our computation
scheme outperforms a straightforward computation of similarity values, even for
moderately large model ranks.
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Abstract. We present the Smart Image Retrieval meta-search engine
that allows content-based exploration of the results obtained from vari-
ous sources (mostly based on keyword query). The online feature extrac-
tion architecture and exploration models utilizing single-/multi-query
approaches are the two key features of our demo application that shows
very promising results.

1 Introduction

In the Smart Image Retrieval (SIR) [3] demo application, we develop techniques
contributing to visual exploration of results obtained by keyword image search,
and their subsequent implementation within a prototypical image meta-search
web engine. In our approach, the crawling, storage and persistent indexing is
not necessary, because the content-based similarity search techniques are eval-
uated only on the top results returned by keyword-based search engines. This
meta-search approach has been already investigated in the computer vision do-
main (e.g. in [2] or [4]), where the top results are filtered using content-based
methods and employed in automatic learning of visual models. The SIR engine
focuses on the image exploration, where a keyword meta-query is passed to im-
age search engines using full-text search, such as Google Images or Bing Images.
The obtained result (ranked images) is then processed to incorporate also a
content-based image retrieval (CBIR) semantics into the search process.

In order to re-rank the images based on visual content, a feature extraction
technique has to be used to obtain some visual information from the candidate
images. In case of a traditional CBIR engine, the feature extraction and content-
based indexing would be performed on usually large dataset in the offline phase,
that is, before queries are issued by users. On the other hand, in the meta-search
engine we do not maintain any content-based index and so we need to extract
the content features from relatively small dataset during the query processing
(i.e., online). In our approach we consider the MPEG-7 visual descriptors [5] and
so-called image feature signatures [1]. Once a ranking of images is returned from
the other search engines given a keyword query, a feature extraction on the top
images is executed. This allows utilization of various kinds of similarity models,
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that are not fixed to an extracted features or already built indexes. Because
of the online nature the feature extraction needs to perform very fast, so that
the user is not noticeably delayed. For example, a GPU parallelism is a suitable
platform for such an instant online feature extraction.

In Figure 1 see the basic exploration layout used in the SIR engine for the
presentation of the query result. The layout support various exploration capa-
bilities, such as zooming in/out, panning, multi-query refinement, etc.

Fig. 1. Exploration layout used in the SIR engine for keyword query ’Jaguar’
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Abstract. SimTandem is a tool for fast identification of protein and
peptide sequences from tandem mass spectra. The identification is based
on similarity search of spectra captured by a tandem mass spectrometer
in databases of theoretical mass spectra generated from databases of
known protein sequences. Since the number of protein sequences in the
databases grows rapidly and a sequential scan over the entire database of
spectra is time-consuming, the non-metric access methods are employed
as the database indexing techniques. SimTandem is based on a previously
proposed method and is freely available at http://www.simtandem.org
or http://www.siret.cz/simtandem .

Keywords: protein sequences identification, tandem mass spectrome-
try, similarity search, non-metric access methods, SimTandem.

1 Introduction

Proteins are the basis of all organisms securing almost every process on the cell
level. The protein function is determined by its 3D structure while the structure
is derived from the protein sequence. Tandem mass spectrometry (MS/MS) is a
method for protein or peptide (a short piece of protein) sequences identification
from an ”in vitro” sample. A mass spectrometer captures a set of peptide mass
spectra for a few proteins in the sample. Afterwards, the sequences must be
identified from the spectra, e.g., by means of the similarity search in a database
of theoretical spectra generated from a database of known protein sequences.

Although there are tools based on the similarity search in databases of protein
sequences like MASCOT, SEQUEST or OMSSA [3], the designing of new algo-
rithms for fast and accurate identification of sequences from the mass spectra is
still desirable because there are many inaccuracies in the spectra and because
the sizes of protein sequence databases grows rapidly.
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202/11/0968, 201/09/H057, by the Grant Agency of Charles University (GAUK)
project Nr. 430711 and by the grant SVV-2012-265312.

G. Navarro and V. Pestov (Eds.): SISAP 2012, LNCS 7404, pp. 242–243, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.simtandem.org
http://www.siret.cz/simtandem


SimTandem 243

One of the possibilities how to handle this growth is the application of vari-
ous database indexing techniques. A few approaches were proposed where met-
ric access methods were employed as the database indexing techniques and the
cosine similarity (angle distance) was used as the mass spectra similarity func-
tion [4], [1]. A disadvantage is that the search of spectra with posttranslational
modifications is not supported, even though the modifications are a common
problem when peptide sequences are identified from the spectra.

2 Methods and Implementation

We have proposed an approach based on the non-metric access methods which
enables fast and approximative identification of peptide sequences [3]. The pa-
rameterized Hausdorff distance is employed instead of the angle distance because
the number of identified peptide sequences is higher and because the indexability
by the non-metric access methods is better. Moreover, the approach supports
the identification of spectra with posttranslational modifications.

Since a mass spectrometer captures a set of mass spectra for a few proteins
in the sample, an extension of this approach was proposed for the identification
of protein sequences from a set of mass spectra instead of the identification of
peptide sequences from single spectra [2]. Since protein sequences contain more
peptide sequences and the search in the non-metric index is followed by a se-
quential scan of protein sequence candidates, the number of identified peptide
sequences is significantly increased.

SimTandem is an on-line tool for protein and peptide sequences identification
from tandem mass spectra which implements the non-metric access methods as
the database indexing techniques. The core of SimTandem is implemented in
C++ and it employs the Siret Object Library (SOL) – a framework for efficient
metric and non-metric similarity search which is currently being developed by
Siret Research Group (SRG – http://www.siret.cz). SimTandem uses Intel’s
Threading Building Blocks (TBB) to support the parallel processing of large
query sets of mass spectra. The web interface is implemented in Java based
Google Web Toolkit (GWT). The communication between the web interface
and the core is realized using Java RMI over IIOP and CORBA.
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In the original publication, the y-axes of figures 6a and 7 had been labeled incorrectly. 
This erratum shows the corrected figures.  
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Fig. 6. Searching times for posting list decomposition (a) and reference points decomposition 
(b) relative to 100, 500, 1000, 2000 and 3000 reference points (R) 
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