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Abstract. The main objective of our research was to test whether the
probabilistic approximations should be used in rule induction from in-
complete data. Probabilistic approximations, well known for many years,
are used in variable precision rough set models and similar approaches
to uncertainty.

For our experiments we used five standard data sets. Three data sets
were incomplete to begin with and two data sets had missing attribute
values that were randomly inserted. We used two interpretations of miss-
ing attribute values: lost values and “do not care” conditions. Among
these ten combinations of a data set and a type of missing attribute
values, in one combination the error rate (the result of ten-fold cross
validation) was smaller than for ordinary approximations; for other two
combinations, the error rate was larger than for ordinary approximations.

1 Introduction

One of the fundamental concepts of rough set theory is an idea of lower and
upper approximations. A generalization of such approximations, a probabilistic
approximation, introduced in [1], was applied in variable precision rough set
models, Bayesian rough sets and decision-theoretic rough set models [2–10]. The
probabilistic approximation is associated with some parameter α (interpreted
as a probability). If α is very small, say 0.001 (this number depends on the
size of the data set), the probabilistic approximation is reduced to the upper
approximation; if α is equal to 1.0, the probabilistic approximation becomes
the lower approximation. The problem is how useful are proper probabilistic
approximations (with α larger than 0.001 but smaller than 1.0). We studied
usefulness of proper probabilistic approximations for inconsistent data sets [11],
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where we concluded that proper probabilistic approximations are not frequently
better than ordinary lower and upper approximations.

In this paper we study usefulness of the proper probabilistic approximations
applied for rule induction from incomplete data. We will use two interpretations
of missing attribute values, as lost values (the original attribute values are not
longer accessible, for details see [12, 13]) and as “do not care” conditions (the
original values were irrelevant, see [14, 15]).

For data sets with missing attribute values there exist many definitions of ap-
proximations [16], we use one of the most successful options (from the view point
of rule induction) called concept approximations [16]. Concept approximations
were generalized to concept probabilistic approximations in [17].

Our experiments on five data sets with two types of missing attribute values
(altogether ten combinations) show that the proper concept probabilistic ap-
proximations are not very useful for rule induction from incomplete data sets:
for one combination the error rate (result of ten-fold cross validation) was smaller
than for ordinary concept approximations, for two combinations such error rate
was larger than for ordinary concept approximations, for remaining seven com-
binations the error rate was neither smaller nor larger.

2 Incomplete Data Sets

The data sets are presented in the form of a decision table. Rows of the decision
table represent cases, while columns are labeled by variables. The set of all cases
will be denoted by U . In Table 1, U = {1, 2, 3, 4, 5, 6, 7, 8}. Independent
variables are called attributes and a dependent variable is called a decision and
is denoted by d. The set of all attributes will be denoted by A. In Table 1, A =
{Wind, Humidity, Temperature}. The value for a case x and an attribute a will
be denoted by a(x).

In this paper we distinguish between two interpretations of missing attribute
values: lost values, denoted by “?”, and “do not care” conditions, denoted by
“*”. Table 1 present an incomplete data set affected by both lost values and “do
not care” conditions.

One of the most important ideas of rough set theory [18, 19] is an indiscerni-
bility relation, defined for complete data sets. Let B be a nonempty subset of
A. The indiscernibility relation R(B) is a relation on U defined for x, y ∈ U as
follows:

(x, y) ∈ R(B) if and only if ∀a ∈ B (a(x) = a(y)).

The indiscernibility relation R(B) is an equivalence relation. Equivalence classes
of R(B) are called elementary sets of B and are denoted by [x]B . A subset of U
is called A-definable if it is a union of elementary sets.

The set X of all cases defined by the same value of the decision d is called
a concept. For example, a concept associated with the value no of the decision
Trip is the set {1, 3, 5, 7}. The largest B-definable set contained in X is called
the B-lower approximation of X , denoted by appr

B
(X), and defined as follows

∪{[x]B | [x]B ⊆ X}
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Table 1. A decision table

Attributes Decision

Case Wind Humidity Temperature Trip

1 ? high high no

2 low low high yes

3 low * low no

4 * low low yes

5 high high ? no

6 low ? * yes

7 high high low no

8 high low low yes

while the smallest B-definable set containing X , denoted by apprB(X) is called
the B-upper approximation of X , and is defined as follows

∪{[x]B | [x]B ∩X �= ∅}.

For a variable a and its value v, (a, v) is called a variable-value pair. A block of
(a, v), denoted by [(a, v)], is the set {x ∈ U | a(x) = v} [20].

For incomplete decision tables the definition of a block of an attribute-value
pair is modified in the following way.

– If for an attribute a there exists a case x such that a(x) = ?, i.e., the
corresponding value is lost, then the case x should not be included in any
blocks [(a, v)] for all values v of attribute a,

– If for an attribute a there exists a case x such that the corresponding value is
a “do not care” condition, i.e., a(x) = ∗, then the case x should be included
in blocks [(a, v)] for all specified values v of attribute a.

For the data set from Table 1 the blocks of attribute-value pairs are:

[(Wind, low)] = {2, 3, 4, 6},
[(Wind, high)] = {4, 5, 7, 8},
[(Humidity, high)] = {1, 3, 5, 7},
[(Humidity, low)] = {2, 3, 4, 8},
[(Temperature, high)] = {1, 2, 6},
[(Temperature, low)] = {3, 4, 6, 7, 8}.

For a case x ∈ U and B ⊆ A, the characteristic set KB(x) is defined as the
intersection of the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in
the following way:

– If a(x) is specified, then K(x, a) is the block [(a, a(x))] of attribute a and its
value a(x),
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– If a(x) =? or a(x) = ∗ then the set K(x, a) = U , where U is the set of all
cases.

For Table 1 and B = A,

KA(1) = {1}, KA(5) = {5, 7},
KA(2) = {2}, KA(6) = {2, 3, 4, 6},
KA(3) = {3, 4, 6}, KA(7) = {7},
KA(4) = {3, 4, 8}, KA(8) = {4, 8}.
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Fig. 1. Error rates for data sets Echocardiogram, Hepatitis, and House of representatives
with lost values

Note that for incomplete data there is a few possible ways to define approxima-
tions [16], we use concept approximations [17]. A B-concept lower approximation
of the concept X is defined as follows:

BX = ∪{KB(x) | x ∈ X,KB(x) ⊆ X}.
A B-concept upper approximation of the concept X is defined as follows:

BX = ∪{KB(x) | x ∈ X,KB(x) ∩X �= ∅} =

= ∪{KB(x) | x ∈ X}.
For Table 1, A-concept lower and A-concept upper approximations of the two
concepts: {1, 3, 5, 7} and {2, 4, 6, 8} are:

A{1, 3, 5, 7} = {1, 5, 7}, A{1, 3, 5, 7} = {1, 3, 4, 5, 6, 7},
A{2, 4, 6, 8} = {2, 4, 8}, A{2, 4, 6, 8} = {2, 3, 4, 6, 8}.
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Fig. 2. Error rates for data sets Echocardiogram, Hepatitis, and House of representatives
with “do not care” conditions

3 Probabilistic Approximations

In this paper we explore all probabilistic approximations that can be defined for a
given concept X . For completely specified data sets a probabilistic approximation
is defined as follows

apprα(X) = ∪{[x] | x ∈ U, P (X | [x]) ≥ α},
where [x] is [x]A and α is a parameter, 0 < α ≤ 1, see [17]. For discussion on how
this definition is related to the value precision asymmetric rough sets see [11, 17].

Note that if α = 1, the probabilistic approximation becomes the standard
lower approximation and if α is small, close to 0, in our experiments it was
0.001, the same definition describes the standard upper approximation.

For incomplete data sets, a B-concept probabilistic approximation is defined
by the following formula [17]

∪{KB(x) | x ∈ X, Pr(X |KB(x)) ≥ α}.
For simplicity, we will denote KA(x) by K(x) and the A-concept probabilistic
approximation will be called a probabilistic approximation.

For Table 1 and the concept X = [(Trip, no)] = {1, 3, 5, 7}, for any charac-
teristic set K(x), x ∈ U , conditional probabilities P (X |K(x)) are presented in
Table 2.

Thus, for the concept {1, 3, 5, 7} we may define only two distinct probabilistic
approximations:

appr1.0({1, 3, 5, 7}) = {1, 5, 7} and appr0.333({1, 3, 5, 7}) = {1, 3, 4, 5, 6, 7}.
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Table 2. Conditional probabilities

K(x) {1} {5, 7} {7} {3, 4, 6} {3, 4, 8} {2, 3, 4, 6} {2} {4, 8}

P ({1, 3, 5, 7} | K(x)) 1.0 1.0 1.0 0.333 0.333 0.25 0 0

Table 3. Data sets used for experiments

Data set Number of Percentage of

cases attributes concepts missing attribute values

Echocardiogram 74 7 2 4.05

Hepatitis 155 19 2 5.67

House of Representatives 434 16 2 5.40

Image segmentation 210 19 7 70

Lymphography 148 18 4 70

4 Experiments

For our experiments we used five real-life data sets that are available on the
University of California at Irvine Machine Learning Repository. Two of these
data sets (Image segmentation and Lymphography were originally completely
specified, i.e., they did not contain any missing attribute values. However, we
replaced, randomly, 70% of existing attribute values by signs of missing attribute
values, first by lost values and then we converted lost values to “do not care”
conditions, see Table 3.

For rule induction we used the MLEM2 (Modified Learning from Examples
Module version 2) rule induction algorithm, a component of the LERS (Learning
from Examples based on Rough Sets) data mining system [20, 21].

The main objective of our research was to test whether proper probabilistic
approximations are better than concept lower and upper approximations. We
conducted experiments of a single ten-fold cross validation starting with 0.001
and then increasing the parameter α by 0.1 until reaching 1.0. For a given data
set, in all of these eleven experiments we used identical ten pairs of larger (90%)
and smaller (10%) data sets. Results of our experiments are shown in Figures
1–4. If during such a sequence of eleven experiments, the error rate was smaller
than the minimum of the error rates for lower and upper approximations or
larger than maximum of the error rated for lower and upper approximations, we
selected more precise values of the parameter α and we conducted additional 30
experiments of ten-fold cross validation.

For example, for the Echocardiogram data set, affected by lost values, denoted
by “?”, the error rate was constant, so there is no need for additional 30 exper-
iments, see Figure 1. Similarly, for the Hepatitis data set, also affected by lost
values. But for the House of representative data set, affected by lost values, it is
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Fig. 3. Error rates for data sets Image segmentation and Lymphography

clear that we should look more closely at the parameter α around the values 0.65
and 0.85. Results are presented in Table 4. Using the standard statistical test for
the difference between two averages (two tails and the significance level of 5%)
we may conclude that there is no statistically significant difference between the
probabilistic approximation associated with α = 0.65 and the upper approxima-
tion (α = 0.001). The same test indicates that the probabilistic approximation,
associated with α = 0.85 is worse than the upper approximation (α = 0.001),
as well as the lower approximation (α = 1.0). Results of all remaining 30 exper-
iments of ten-fold cross validation are presented in Tables 5–8.

In particular, for the House of representatives data set with “do not car”
conditions as missing attribute values, for α = 0.65, the corresponding proba-
bilistic approximation is worse than both lower (α = 1.0) and upper (α = 0.001)
approximations. On the other hand, for the Image segmentation data set with
“do not care” conditions, for α = 0.2, the error rate is significantly better than
for both lower and upper approximations. In experiments reported in this paper
this is the only situation of this type. For remaining data sets, no matter with
lost values or “do not care” conditions, probabilistic approximations for α be-
tween 0.1 and 0.9 are neither worse than the worst for the two: lower and upper
approximations nor better than the best of the two.
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Table 4. Results of 30 experiments of ten-fold cross validation for House of represen-
tatives, lost values

α Error rate Standard deviation

0.001 6.59 0.6159

0.65 6.42 0.6396

0.85 7.31 0.7055

1.0 5.44 0.5885

Table 5. Results of 30 experiments of ten-fold cross validation for House of represen-
tatives, “do not care” conditions

α Error rate Standard deviation

0.001 5.97 0.5147

0.65 10.14 0.6819

1.0 9.72 0.7584

Table 6. Results of 30 experiments of ten-fold cross validation for Image segmentation,
lost values

α Error rate Standard deviation

0.3 65.56 2.6567

1.0 63.44 2.5982

Table 7. Results of 30 experiments of ten-fold cross validation for Image segmentation,
“do not care” conditions

α Error rate Standard deviation

0.001 85.20 1.1525

0.2 84.20 1.1191

Table 8. Results of 30 experiments of ten-fold cross validation for Lymphography, lost
values

α Error rate Standard deviation

0.001 44.84 2.1767

0.3 44.64 2.4647

0.4 41.24 2.1031

1.0 37.61 2.2227
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5 Conclusions

As follows from our experiments, the proper probabilistic approximations (ones
with α between 0.1 and 0.9) were neither better nor worse than ordinary lower
(α = 1.0) and upper (α = 0.001) approximations, except for three situations. In
one of them (the Image segmentation data set with “do not care” conditions was
better than ordinary approximations, in other two situations (both for the House
of representatives data set, with lost values and “do not care” conditions) the
proper probabilistic approximations were worse than ordinary approximations.
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