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Abstract. Most of clustering methods assume that each object must be
assigned to exactly one cluster, however, overlapping clustering is more
appropriate than crisp clustering in a variety of important applications
such as the network structure analysis and biological information. This
paper provides a three-way decision strategy for overlapping clustering
based on the decision-theoretic rough set model. Here, each cluster is
described by an interval set that is defined by a pair of sets called the
lower and upper bounds. Besides, a density-based clustering algorithm
is proposed using the new strategy, and the results of the experiments
show the strategy is effective to overlapping clustering.
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1 Introduction

In recent years, clustering has been widely used as a powerful tool to reveal un-
derlying patterns in many areas such as data mining, web mining, geographical
data processing, medicine and so on. Most of clustering methods assume that
each object must be assigned to exactly one cluster. However, in a variety of im-
portant applications such as network structure analysis, wireless sensor networks
and biological information, overlapping clustering is more appropriate[3].

Many researchers have proposed some overlapping clustering methods for dif-
ferent application background. For example, Takaki and Tamura et al. [10] pro-
pose a method of overlapping clustering for network structure analysis, Aydin
and Näıt-Abdesselam et al. [1] propose an overlapping clusters algorithm used
in the mobile Ad hoc networks. Lingras and Bhalchandra et al. [5] compare crisp
and fuzzy clustering in the mobile phone call dataset. Obadi and Dráždilová et
al. [8] propose an overlapping clustering method for DBLP datasets based on
rough set theory.

The rough set theory [9] approximates a concept by three regions, namely, the
positive, boundary and negative regions, which immediately leads to the notion
of three-way decision clustering approach. Three-way decisions constructed from
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the three regions are associated with different actions and decisions. In fact, the
three-way decision approach has been achieved in some areas as the email spam
filtering [15], three-way investment decisions [6], and so on [4] [12].

To combat the overlapping clustering, this paper proposes a new three-way
decision clustering strategy based on the decision-theoretic rough set model [13].
Yao and Lingras et al. [14] had represented each cluster by an interval set in-
stead of a single set as the representation of a cluster. Chen and Miao [2] study
the clustering method represented as interval sets, wherein the rough k-means
clustering method is combined. Inspired by the representation, the cluster in our
strategy is also represented by an interval set, which is defined by a pair of sets
called the lower and upper bounds. Objects in the lower bound are typical ele-
ments of the cluster and objects between the upper and lower bounds are fringe
elements of the cluster.

Furthermore, the solutions to obtain the lower and upper bounds are for-
mulated based on the three-way decisions in this paper. Then, a density-based
clustering algorithm is proposed, and we demonstrate the effectiveness of the
algorithm through experiments.

2 Formulation of Clustering

2.1 Decision-Theoretic Rough Set Model

The decision-theoretic rough set model [13], DTRS shorted, applies the Bayesian
decision procedure for the construction of probabilistic approximations.

Let Ω = {A,Ac} denote the set of states indicating that an object is in A and
not in A, respectively. Let Action = {aP , aN , aB} be the set of actions, where aP ,
aN , and aB represent the three actions in classifying an object, deciding POS(A),
deciding NEG(A) and deciding BND(A), respectively. Let i = P,N,B, and
λiP (ai|A) and λiN (ai|Ac) denote the loss (cost) for taking the action ai when the
state is A, Ac, respectively. For an object with description [x], suppose an action
ai is taken. The expected loss R(ai|[x]) associated with taking the individual
actions can be expressed as:

R(aP |[x]) = λPPP (A|[x]) + λPNP (Ac|[x]),
R(aN |[x]) = λNPP (A|[x]) + λNNP (Ac|[x]),
R(aB|[x]) = λBPP (A|[x]) + λBNP (Ac|[x]).

where the probabilities P (A|[x]) and P (Ac|[x]) are the probabilities that an
object in the equivalence class [x] belongs to A and Ac, respectively.

2.2 Extend DTRS for Clustering

To define our framework, we will assume C = {C1, · · · , Ck, · · · , CK}, where
Ck ⊆ U , is a family of clusters of a universe U = {x1, · · · , xn}.

In order to interpret clustering, let’s extend the DTRS model firstly. The set
of states is given by Ω = {C,¬C}, the two complement states indicate that an
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object is in a cluster C and not in a cluster C, respectively. The set of action is
given by A = {aP , aB, aN}, where aP , aB and aN represent the three actions in
classifying an object, aP represents that we will take the description of an object
x into the domain of the cluster C; aB represents that we will take the description
of an object x into the boundary domain of the cluster C; aN represents that
we will take the description of an object x into the negative domain of the C.

Let λPP ,λBP , λNP , λPN , λBN , λNN denote the loss (cost) for taking the
action aP , aB and aN when the state is C, ¬C, respectively. For an object x
with description [x], suppose an action ai is taken. According to Subsection 2.1,
the expected loss associated with taking the actions can be expressed as:

Risk(aP |[x]) = λPPPr(C|[x]) + λPNPr(¬C|[x]);
Risk(aB|[x]) = λBPPr(C|[x]) + λBNPr(¬C|[x]);
Risk(aN |[x]) = λNPPr(C|[x]) + λNNPr(¬C|[x]).

(1)

Where Pr(C|[x]) represents the probability that an object x in the description
[x] belongs to the cluster C, and Pr(C|[x]) + Pr(¬C|[x]) = 1. The Bayesian
decision procedure leads to the following minimum-risk decision:

(P )If Risk(aP |[x]) ≤ Risk(aN |[x]) and Risk(aP |[x]) ≤ Risk(aB|[x]),
decide POS(C);
(B)If Risk(aB|[x]) < Risk(aP |[x]) and Risk(aB|[x]) < Risk(aN |[x]),
decide BND(C);
(N)If Risk(aN |[x]) ≤ Risk(aP |[x]) and Risk(aN |[x]) ≤ Risk(aB|[x],
decide NEG(C);

(2)

Consider a special kind of loss functions with λPP ≤ λBP < λNP and λNN ≤
λBN < λPN . That is, the loss of classifying an object x belonging to C into the
positive region POS(C) is less than or equal to the loss of classifying x into the
boundary region BND(C), and both of these losses are strictly less than the loss
of classifying x into the negative region NEG(C). The reverse order of losses is
used for classifying an object x that does not belong to C, namely the object x is
a negative instance of C. For this type of loss function, the above minimum-risk
decision rules can be written as:

(P )If Pr(C|[x]) ≥ α and Pr(C|[x]) ≥ γ, decide POS(C);
(B)If Pr(C|[x]) < α and Pr(C|[x]) > β, decide BND(C);
(N)If Pr(C|[x]) ≤ β and Pr(C|[x]) ≤ γ, decide NEG(C);

(3)

Where:
α = (λPN−λBN )

(λPN−λBN )+(λBP−λPP ) = (1 + (λBP−λPP )
(λPN−λBN ) )

−1

γ = (λPN−λNN)
(λPN−λNN )+(λNP−λPP ) = (1 + (λNP−λPP )

(λPN−λNN ) )
−1

β = (λBN−λNN )
(λBN−λNN )+(λNP−λBP ) = (1 + (λNP−λBP )

(λBN−λNN ) )
−1

(4)

In this paper, we consider that the cluster have the boundary, so we just discuss
the relationship between thresholds α and β as α > β. According to Eq.(4), it
follows that α > γ > β. After tie-breaking, the following simplified rules (P)-(N)
are obtained:
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(P ) If Pr(C|[x]) ≥ α, decide POS(C);
(B) If β < Pr(C|[x])) < α, decide BND(C);
(N) If Pr(C|[x]) ≤ β, decide NEG(C).

(5)

Obviously, rules (P)-(N) give a three-way decision method for clustering. That
is, an object belongs to a cluster definitely if it is in POS(C) based on the
available information; an object may be a fringe member if it is in BND(C),
we can decide whether it is in a cluster through further information. Clustering
algorithms can be devised according to the rules (P)-(N).

On the other hand, according to the rough set theory [9] and the rules (P)-
(N), for a subset C ⊆ U , we can define its lower and upper approximations as
follows.

apr(C) = POS(C) = {x|Pr(C|[x]) ≥ α};
apr(C) = POS(C) ∪BND(C) = {x|Pr(C|[x]) > β}. (6)

2.3 Re-formulation of Clustering Using Interval Set

Yao and Lingras et al.[14] had formulated the clustering using the form of interval
sets. It is naturally that the region between the lower and upper bound of an
interval set means the overlapping region.

Assume C = {C1, · · · , Ck, · · · , CK} is a family of clusters of a universe U =
{x1, · · · , xn}. Formally, we can define a clustering by the properties:

(i) Ck �= ∅, 0 ≤ k ≤ K; (ii)
⋃

Ck∈C

Ck = U.

Property (i) requires that each cluster cannot be empty. Property (ii) states that
every x ∈ U belongs to at least one cluster. Furthermore, if Ci ∩ Cj = ∅, i �= j,
it is a crisp clustering, otherwise it is an overlapping clustering.

As we have discussed, we may use an interval set to represent the cluster in C,
namely, Ck is represented by an interval set [Cl

k, C
u
k ]. Combine the conclusion in

the above subsection, we can represent the lower and upper bound of the interval
set as the lower and upper approximate, that is, Ck is represented by an interval
set [apr(Ck), apr(Ck)].

Any set in the family [apr(Ck), apr(Ck)] = {X |apr(Ck) ⊆ X ⊆ apr(Ck)} may
be the actual cluster Ck. The objects in apr(Ck) may represent typical objects
of the cluster Ck, objects in apr(Ck) − apr(Ck) may represent fringe objects,
and objects in U − apr(Ck) may represent the negative objects. With respect to
the family of clusters C = {C1, · · · , Ck, · · · , CK}, we have the following family
of interval set clusters:

C = [apr(C1), apr(C1)], . . . , [apr(Ck), apr(Ck)], . . . , [apr(CK), apr(CK)].

Corresponding to Property (i) and (ii), we adopt the following properties for a
clustering in the form of interval set:

(i) apr(Ck) �= ∅, 0 ≤ k ≤ K; (ii)
⋃

apr(Ck) = U.
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Property (i) requires that the lower approximate must not be empty. It implies
that the upper approximate is not empty. It is reasonable to assume that each
cluster must contain at least one typical object and hence its lower bound is not
empty. In order to make sure that a clustering is physically meaningful, Property
(ii) states that any object of U belongs to the upper approximate of a cluster,
which ensures that every object is properly clustered.

According to Eq.(6), the family of clusters C give a three-way decision clus-
tering. Namely, objects in apr(Ck) are decided definitely to belong to the cluster
Ck, objects in U − apr(Ck) can be decided not to belong to the cluster Ck. Set
BND(Ck) = apr(Ck)−apr(Ck). Objects in the region BND(Ck) may be belong
to the cluster or not.

There exists k �= t, it is possible that apr(Ck) ∩ apr(Ct) �= ∅, or BND(Ck) ∩
BND(Ct) �= ∅. In other words, it is possible that an object belongs to more than
one cluster.

3 Clustering Algorithm Using Three-Way Decision

Density-based clustering analysis is one kind of clustering analysis methods that
can discover clusters with arbitrary shape and is insensitive to noise data. There-
fore, according to the three-way decision rules (P)-(N) in Subsection 2.2, a
density-based clustering algorithm will be proposed in this section to combat
the overlapping clustering.

Considering the discovery area, set the center is p and Rth is the radius, the
number of points in the area is called the density of p relative to Rth, denoted
by Density(p,Rth). The concepts are defined as follows [7].

Reference points: For any node p, distance Rth and threshold mth in the
space, if Density(p,Rth) ≤ mth, then p is a reference point and mth is the
density threshold value.

The reference points are fictional points, not the points in the dataset. Thresh-
old value mth represents a reference number. When the density of p greater than
mth, p is an intensive point, otherwise it is a sparse point.

Representing Region: Every reference point p is the representative of a cir-
cular area where the point is the center of the area and the radius is Rth, and
the region is the representing region of the reference point p.

All points(objects) in the representing region of a reference point p are seen
as an equivalence class. In order to cluster objects(points) in the space, we need
to give the method to calculate the probability in Eq.(6).

Probability: [x] is a description of an object x, the Pr(C|[x]) is:

Pr(C|[x]) = |C ∩ [x]|
|[x]| . (7)

General speaking, the equivalence class [x] of an object x can be used as a
description of the object. That is, Eq.(7) gives a computing method for the
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Algorithm 1. Density-based Clustering Algorithm Using Three-way
Decision
Input : a universe U = {x1, · · · , xn}.
Output: the clustering result C.
begin

Step 1. Initial: Set UN = ∅, RF = ∅, the possibility Pr(Ck|RFt) = 0.
Step 2. Find all candidate reference points:
RF1 ← x1; RF = RF ∪ {RF1};
for every xi do

temp = min
RFt

|RFt − xi|; k = arg(min
RFt

|RFt − xi|);
If temp > Rth then { RFT+1 ← xi; RF = RF ∪RFT+1;}
Else alter RFk based on object xi;

end
Step 3. Choice the reference points and the noise points from the candidates:
for every RFt ∈ RF do

For (every xi) do { If |RFt − xi| < Rth then RFt = RFt ∪ xi; }
If |RFt| < mth then { UN = UN ∪RFt; RF = RF −RFt; }

end
Step 4. Clustering the reference points according to three-way rules (P)-(N):
for every apr(Ck) do

apr(Ck) = RFk; apr(Ck) = RFk;

for every RFt do

Pr(Ck|RFt) =
|Ck∩RFt|

|RFt| // Eq.(7)

If Pr(Ck|RFt) ≥ α then
apr(Ck) = apr(Ck) ∪RFt; apr(Ck) = apr(Ck) ∪ RFt;
If β < Pr(Ck|RFt) < α then apr(Ck) = apr(Ck) ∪RFt,

end

end
C = [apr(C1), apr(C1)], . . . , [apr(Ck), apr(Ck)], . . . , [apr(CK), apr(CK)].

for every apr(Ck) do
If apr(Ck) ⊇ apr(Cj) then apr(Ck) = apr(Ck) ∪ apr(Cj); C = C−Cj ;

end
Step 5. Clustering the noise points.
for every apr(Ck) do

for every UNs do
If UNs ⊆ apr(Ck) then
apr(Ck) = apr(Ck) ∪ UNs; apr(Ck) = apr(Ck) ∪ UNs;
Else {C = C ∪ UNS ;}

end

end
end

probability, then we can devise the algorithm based on three-way decision. In
other words, the different algorithms can be developed based on the different
approaches of computing probability.

In this paper, a density-based clustering algorithm using three-way decision
is proposed as follows. Here, UN and RF = {RF1, · · · , RFt, · · · , RFT } means
the noise data set and the family of reference points sets, respectively.
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In the above algorithm, Step 1 to Step 3 obtain an initial clustering result by
choosing the reference points and representing regions according to the relative
concepts. Step 4 modifies the clusters according to three-way decision rules (P)
to (N).

4 Experiments

The new algorithm is performed by Visual C++. Firstly, some UCI datasets
[11] are used to test the different thresholds such as the distance threshold value
Rth, density threshold mth, α and β. Obviously, Rth and mth are decided by
the characteristics of the dataset. However, there is an interesting result that the
clustering result seems good when α = 0.8 and β = 0.4 in most cases. Thus, the
result is accepted in the later experiments. On the other hand, it enlightens us
we should think a formal way to define the α and β in the further work.

4.1 Synthetic Data Set

The synthetic data set is tested to illustrate the ideas presented in the previous
section. The two dimensions data set is depicted in Fig.1, which have 374 points,
and Fig.2 gives the clustering result. Here, the thresholds are Rth = 1.75, mth =
10, α = 0.8 and β = 0.4.

Fig. 1. A synthetic data set Fig. 2. The clustering result of the data set

From Fig.2, we can see that these points are clustered into three clusters. That
is, the cross points means the lower and bounder regions of C1, respectively; the
circular points and tangle points means the lower and bounder regions of C2,
respectively; the dots means the lower regions of C3. Here, the boundary of C3

is empty.
Observe Fig.2, the lower approximations of cluster C2 and C3 are overlapping,

and the number of the overlapping objects(points) is 6, which can be denoted
by apr(C2) ∩ apr(C3) �= ∅, and |apr(C2) ∩ apr(C3)| = 6. In addition, apr(C1) ∩
apr(C3) = ∅, |apr(C1) ∩ apr(C2)| = 66, and apr(C1) �= apr(C2).

The conclusions from Fig.2 are positive to clustering. For example, when the
dataset represents the network structure, where the C1 and C2 have so many
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overlapping users. Obviously, it looks reasonable to build a new cluster composed
by the uniting apr(C1)∪apr(C2). Otherwise, since the number of the overlapping
objects between C2 and C3 is 6, we needn’t to unite the two clusters. How to
formal the idea is our further work.

4.2 UCI Data Set

More experiments on some standard data sets from UCI repository [11] are tested
in this subsection, and results are shown in Table 1. In order to measure the test’s
accuracy, both the precision and the recall of the test are considered, and the
F-measure is extended as follows.

Assume there is a data set U = {x1, . . . , xi, . . . , xn}, and the objects in
U are clustered into T = {T1, . . . , Tm, . . . , TM}. On the other hand, the re-
sult of clustering by the clustering algorithm based on three-way decision is:
C = {[apr(C1), apr(C1)], . . . , [apr(Ck), apr(Ck)], . . . , [apr(CK), apr(CK)]}.

Table 1. The CPU time and Results of the Algorithm

Database |U| |A| distance Thresholds Results
α, β Rth mth F −measure CPU(S)

iris 150 4 2.53 0.8,0.4 1.53 30 0.778 0.015

Letter1 1655 16 11.3 0.8,0.4 10 200 0.609 0.5

Poker1 199 10 11.2 0.8,0.4 11 80 0.595 0.078

Poker2 1188 10 12 0.8,0.4 11 900 0.503 1.296

White 4535 11 53 0.8,0.4 52 500 0.601 2.734

Precision is the number of correct upper approximate results divided by
the number of all returned upper approximate results. Recall is the number of
correct lower approximate results divided by the number of results that should
have been returned. The F − measure can be interpreted as a weighted as a
weighted as a weighted average of the precision and recall, where an F-measure
reaches its best value at 1 and worst value at 0. That is, the F −measure can
be denoted as the following equation.

F −measure = 2 × Precision × Recall

Precision + Recall
(8)

In Table 1, the |U| and |A| are the number of objects and the number of attributes
in the data set, respectively. distance means the average distance among objects
in the data set.

Here, we choose some clusters from Letter and Porker datasets in UCI repos-
itory to generate some datasets used in Tabel 1.

Letter1 Dataset, which is composed of 1665 objects from Letter data set.
There are 567 objects belong to decision attribute ‘A’, 570 objects belong to
decision attribute ‘E’, and 528 objects belong to decision attribute ‘O’.

Poker1 Dataset, which has 199 objects from Poker-hand-training-true data
set. There are 93 objects belong to decision attribute ‘4’, 54 objects belong to



Three-Way Decisions Method for Overlapping Clustering 285

decision attribute ‘5’, 36 objects belong to decision attribute ‘6’, 6 objects belong
to ‘7’, 5 objects belong to ‘8’, and 4 objects belong to ‘9’.

Poker2 Dataset, which concludes 1188 objects from Poker-hand-training-true.
There are 403 objects belong to decision attribute ‘0’, 568 objects belong to ‘1’,
165 objects belong to ‘3’, 36 objects belong to ‘6’, 6 objects belong to ‘7’, 5
objects belong to ‘8’, and 4 objects belong to ‘9’.

From Table 1, we can see that the CPU runtime and the F-measure are ac-
credited. Actually, the results of clustering are changed with the change of the
parameters such as α, β, Rth and mth. Through the experiments, we find out
that the result would be better when the value of Rth close to the average
distance. However, the accuracy of the algorithm need to improve.

5 Conclusion

In many applications such as network structure analysis, wireless sensor networks
and biological information, an object should belong to more than one cluster,
and as a result, cluster boundaries necessarily overlap. Three-way decisions rules
constructed from the decision-theoretic rough set model are associated with dif-
ferent regions. This paper provides a three-way decision strategy for overlapping
clustering. Here, each cluster is described by an interval set that is defined by a
pair of sets called the lower and upper bounds. In addition, a density-based clus-
tering algorithm is proposed and tested by using the new strategy. The analysis
of the example indicates the strategy is effective to overlapping clustering. How
to use less parameters and improve the accuracy of the algorithm is the further
work.
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