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Preface

This volume contains the papers selected for presentation at RSCTC 2012: The
8th International Conference on Rough Sets and Current Trends in Computing
(RSCTC) held during August 17–20, 2012, in Chengdu, China, one of the co-
located conferences of the 2012 Joint Rough Set Symposium (JRS 2012). JRS
2012 consists of RSCTC 2012 and the 7th International Conference on Rough
Sets and Knowledge Technology (RSKT 2012).

RSCTC has been held biannually since 1998. It aims to present the state of
the art in rough set theory, current computing methods and their applications.
It intends to bring together researchers and practitioners from universities, lab-
oratories, and industry, to facilitate dialogue and cooperation. The first RSCTC
was held in 1998 in Warsaw, Poland, followed by RSCTC 2000 in Banff, Canada,
RSCTC 2002 in Malvern, USA, RSCTC 2004 in Uppsala, Sweden, RSCTC 2006
in Kobe, Japan, RSCTC 2008 in Akron, USA, and RSCTC 2010 in Warsaw,
Poland.

JRS 2012 received 292 papers and competition submissions from 56 coun-
tries and regions, including Afghanistan, Antarctica, Antigua and Barbuda,
Argentina, Australia, Austria, Bangladesh, Belgium, Brazil, Canada, China,
Colombia, Croatia, Cuba, Denmark, Egypt, Finland, France, Germany, Ghana,
Greece, Hong Kong, Hungary, India, Indonesia, Iran, Israel, Italy, Japan,
Jordan, Korea, Lebanon, Mexico, The Netherlands, New Zealand, Pakistan,
Poland, Portugal, Reunion, Romania, Russian Federation, Rwanda, Saudi
Arabia, Serbia and Montenegro, Singapore, Slovenia, Spain, Sweden,
Switzerland, Taiwan, Tunisia, Ukraine, UK, USA, Venezuela, and Vietnam.

Following the tradition of the previous RSCTC and RSKT conferences, all
submissions underwent a very rigorous reviewing process. Every submission was
reviewed by at least two Program Committee(PC) members and at least one ex-
ternal domain expert. On average, each submission received 3.6 reviews. About
ten papers received more than six reviews each. Finally, the PC selected 55 pa-
pers (including 34 regular papers and 21 short papers), based on their originality,
significance, correctness, relevance, and clarity of presentation, to be included in
this volume of the proceedings. Revised camera-ready submissions were further
reviewed by PC Chairs. Some authors were requested to make additional revi-
sions. We would like to thank all the authors for submitting their papers for
consideration for presentation at the conference. We also wish to congratulate
those authors whose papers were selected for presentation and publication in the
proceedings. Their contribution was crucial for the quality of this conference.

The JRS 2012 program was further enriched by four keynote speeches. We
are grateful to RSKT keynote speakers, Andrzej Skowron and Zhi-Hua Zhou, as
well as RSCTC keynote speakers, Yiyu Yao and Bo Zhang, for their inspiring
talks on rough sets, knowledge technology, and current trends in computing.
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The JRS 2012 program included one workshop, Advances in Granular Com-
puting 2012, and five Special Sessions, Decision-Theoretic Rough Set Model
and Applications, Intelligent Decision-Making and Granular Computing, Mining
Complex Data with Granular Computing, Formal Concept Analysis and Gran-
ular Computing, and Rough Set Foundations. In addition, we selected papers
written by the winners of the JRS 2012 Data Mining Competition: Topical Clas-
sification of Biomedical Research Papers.

This data mining competition was a special event associated with the JRS
2012 conference. It was organized by a research team from the University of
Warsaw and co-funded by organizers of JRS 2012, Southwest Jiaotong Uni-
versity, and the SYNAT project. A task in this challenge was related to the
problem of predicting topical classification of scientific publications in the field
of biomedicine. It was an interactive on-line competition, hosted on the TunedIT
platform (http://tunedit.org). The JRS 2012 Data Mining Competition attracted
participants from 50 different countries across six continents. There were 126 ac-
tive teams who submitted at least one solution to the leaderboard. Apart from
submitting solutions, participants were asked to deliver short descriptions of their
approaches. The most interesting of these reports were extended to conference
papers and included in the RSCTC proceedings.

JRS 2012 would not have been successful without the support of many people
and organizations. We wish to thank the members of the Steering Committee for
their invaluable suggestions and support throughout the organization process.
We are indebted to the PC members and external reviewers for their effort and
engagement in providing a rich and rigorous scientific program. We express our
gratitude to the Special Session Chairs (Mihir Kr. Chakraborty, Degang Chen,
Davide Ciucci, Qinghua Hu, Andrzej Janusz, Xiuyi Jia, Adam Krasuski, Huax-
iong Li, Jiye Liang, Tsau Young Lin, Dun Liu, Xiaodong Liu, Fan Min, Hung Son
Nguyen, Jianjun Qi, Dominik Slezak, Sebastian Stawicki, Lidong Wang, Xizhao
Wang, Ling Wei, JingTao Yao, Yiyu Yao, and Hong Yu) for selecting and coor-
dinating the sessions on very interesting topics. Thanks also go to the Tutorial
Chairs (Chris Cornelis and Qinghua Hu), Special Session/Workshop Chairs (Da-
vide Ciucci and Wei-Zhi Wu), Publicity Chairs (Jianchao Han, Pawan Lingras,
Dun Liu, Duoqian Miao, Mikhail Moshkov, Shusaku Tsumoto), and Organizing
Chairs (Hongmei Chen, Yan Yang and Qinghua Zhang).

We are also grateful to Anping Zeng, Chuan Luo, Shaoyong Li, Jie Hu,
Shengjiu Liu, and Junbo Zhang from Southwest Jiaotong University, whose
great effort ensured the success of the conference. We greatly appreciate the
co-operation, support, and sponsorship of various institutions, companies, and
organizations, including Southwest Jiaotong University, the University of Regina,
the University of Warsaw, the International Rough Set Society, the Rough Sets
and Soft Computation Society, the Chinese Association for Artificial Intelligence,
Infobright, the Chongqing Institute of Green and Intelligent Technology, the Chi-
nese Academy of Sciences, Section of Intelligent Decision Support Systems and



Preface VII

Granular Computing of the Computer Science Committee of the Polish Academy
of Sciences. In addition, we would like to give special thanks for the support of the
National Science Foundation of China (Funding Numbers: 61175047, 61170111,
61100117 and 61073146).

We acknowledge the use of the EasyChair conference system for paper sub-
mission, review, and editing of the proceedings. Its new feature of editing LNCS
volumes is especially useful. We are thankful to Alfred Hofmann and the excel-
lent LNCS team at Springer for their support and cooperation in publishing the
proceedings as a volume of the Lecture Notes in Computer Science.

May 2012 JingTao Yao
Yan Yang

Roman Slowinski
Salvatore Greco

Huaxiong Li
Sushmita Mitra
Lech Polkowski
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Abstract. A theory of three-way decisions is constructed based on the
notions of acceptance, rejection and noncommitment. It is an extension
of the commonly used binary-decision model with an added third option.
Three-way decisions play a key role in everyday decision-making and have
been widely used in many fields and disciplines. An outline of a theory
of three-way decisions is presented by examining its basic ingredients,
interpretations, and relationships to other theories.

1 Introduction

The concept of three-way decisions was recently proposed and used to interpret
rough set three regions [52, 54, 55]. More specifically, the positive, negative and
boundary regions are viewed, respectively, as the regions of acceptance, rejec-
tion, and noncommitment in a ternary classification. The positive and negative
regions can be used to induce rules of acceptance and rejection; whenever it
is impossible to make an acceptance or a rejection decision, the third noncom-
mitement decision is made [54]. It can be shown that, under certain conditions,
probabilistic three-way decisions are superior to both Palwak three-way decisions
and two-way (i.e., binary) decisions [55]. Many recent studies further investigated
extensions and applications of three-way decisions [1, 7–10, 12, 13, 17–21, 23–
29, 31, 45, 46, 56, 60–62, 64–66].

The essential ideas of three-way decisions are commonly used in everyday
life [32] and widely applied in many fields and disciplines, including, for exam-
ple, medical decision-making [30, 37, 38], social judgement theory [39], hypoth-
esis testing in statistics [42], management sciences [5, 44], and peering review
process [43]. However, a close examination surprisingly reveals that there still
does not exist a unified formal description. To extend the concept of three-way
decisions of rough sets to a much wider context, this paper outlines a theory of
three-way decisions.

2 A Description of Three-Way Decisions

The essential ideas of three-way decisions are described in terms of a ternary
classification according to evaluations of a set of criteria.

Suppose U is a finite nonempty set of objects or decision alternatives and C is
a finite set of conditions. Each condition in C may be a criterion, an objective, or
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a constraint. For simplicity, in this paper we refer to conditions in C as criteria.
Our decision task is to classify objects of U according to whether they satisfy
the set of criteria. In widely used two-way decision models, it is assumed that
an object either satisfies the criteria or does not satisfy the criteria. The set U
is divided into two disjoint regions, namely, the positive region POS for objects
satisfying the criteria and the negative region NEG for objects not satisfying
the criteria. There are usually some classification errors associated with such a
binary classification. Two main difficulties with two-way approaches are their
stringent binary assumption of the satisfiability of objects and the requirement
of a dichotomous classification.

In many situations, it may happen that an object only satisfies the set of
criteria to some degree. Even if an object may actually either satisfy or not
satisfy the criteria, we may not be able to identify without uncertainty the subset
of objects that satisfy the criteria due to uncertain or incomplete information.
Consequently, we are only able to search for an approximate solution. Instead
of making a binary decision, we use thresholds on the degrees of satisfiability
to make one of three decisions: (a) accept an object as satisfying the set of
criteria if its degree of satisfiability is at or above a certain level; (b) reject the
object by treating it as not satisfying the criteria if its degree of satisfiability is
at or below another level; and (c) neither accept nor reject the object but opt
for a noncommitment. The third option may also be referred to as a deferment
decision that requires further information or investigation. From the informal
description, we give a formal definition.

The Problem of Three-Way Decisions. Suppose U is a finite
nonempty set and C is a finite set of criteria. The problem of three-
way decisions is to divide, based on the set of criteria C, U into three
pair-wise disjoint regions, POS,NEG, and BND, called the positive, neg-
ative, and boundary regions, respectively.

Corresponding to the three regions, one may construct rules for three-way de-
cisions. In our previous studies [52, 54], we used three types of rules, namely,
rules for acceptance, rejection, and noncommitment, respectively. It now ap-
pears to us that only rules for acceptance and rules for rejection are meaningful
and sufficient. That is, the noncommitment set is formed by those objects to
which neither a rule for acceptance nor a rule for rejection applies. It is not
necessary to have, and in many cases may be impossible to construct, rules for
noncommitement.

To formally describe the satisfiability of objects, rules for acceptance and rules
for rejection, we need to introduce the notion of evaluations of objects and desig-
nated values for acceptance and designated values for rejection. Evaluations pro-
vide the degrees of satisfiability, designated values for acceptance are acceptable
degrees of satisfiability, and designated valued for rejection are acceptable degrees
of non-satisfiability. They provide a basis for a theory of three-way decisions.

A theory of three-way decisions must consider at least the following three
issues regarding evaluations and designated values:
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1. Construction and interpretation of a set of values for measuring sat-
isfiability and a set of values for measuring non-satisfiability. The
former is used by an evaluation for acceptance and the latter is used
by an evaluation for rejection. In many cases, a single set may be used
by both. It is assumed that the set of evaluation values is equipped
with an ordering relation so that we can compare at least some ob-
jects according to their degrees of satisfiability or non-satisfiability.
Examples of a set evaluation values are a poset, a lattice, a set of a
finite numbers of grades, the set of integers, the unit interval, and
the set of reals. Social judgement theory uses latitudes of acceptance,
rejection, and noncommitment [6, 39], which is closely related to our
formulation of three-way decisions.

2. Construction and interpretation of evaluations. An evaluation de-
pends on the set of criteria and characterizes either satisfiability or
non-satisfiability of objects in U . Evaluations for the purposes of ac-
ceptance and rejection may be either independent or the same. De-
pending on particular applications, evaluations may be constructed
and interpreted in terms of more intuitive and practically operable
notions, including costs, risks, errors, profits, benefits, user satisfac-
tion, committee voting, and so on. Based on the values of an evalu-
ation, one can at least compare some objects.

3. Determination and interpretation of designated values for acceptance
and designated values for rejection. The sets of designated values
must meaningfully reflect an intuitive understanding of acceptance
and rejection. For example, we can not accept and reject an object
simultaneously. This requires that the set of designated values for
acceptance and the set of designated value for rejection are disjoint.
The designated values for acceptance should lead to monotonic deci-
sions; if we accept an object x then we should accept all those objects
that have the same or larger degrees of satisfiability than x. It is also
desirable if we can systematically determine the sets of designated
values on a semantically sound basis.

By focusing on these issues, we examine three classes of evaluations. Evaluations
are treated as a primitive notion for characterizing the satisfiability or desir-
ability of objects. Their concrete physical interpretations are left to particular
applications.

3 Evaluation-Based Three-Way Decisions

We assume that evaluations for acceptance and rejection can be constructed
based on the set of criteria. This enables us to focus mainly on how to obtain
three-way decisions according to evaluations. The problem of constructing and
interpreting evaluations is left to further studies and specific applications. A
framework of evaluation-based three-way decisions is proposed and three models
are introduced and studied.
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3.1 Three-Way Decisions with a Pair of Poset-Based Evaluations

For the most general case, we consider a pair of (may be independent) evalua-
tions, one for the purpose of acceptance and the other for rejection.

Definition 1. Suppose U is a finite nonempty set and (La,�a) (Lr,�r) are
two posets. A pair of functions va : U −→ La and vr : U −→ Lr is called an
acceptance evaluation and a rejection evaluation, respectively. For x ∈ U , va(x)
and vr(x) are called the acceptance and rejection values of x, respectively.

In real applications, the set of possible values of acceptance may be interpreted
based on more operational notions such as our confidence of an object satisfying
the given set of criteria, or cost, benefit, and value induced by the object. For two
objects x, y ∈ U , if va(x) �a va(y), we say that x is less acceptable than y. By
adopting a poset (La,�a), we assume that some objects in U are incomparable.
Similar interpretation can be said about the possible values of an evaluation for
rejection. In general, acceptance and rejection evaluations may be independent.

To accept an object, its value va(x) must be in a certain subset of La repre-
senting the acceptance region of La. Similarly, we need to define the rejection
region of Lr. By adopting a similar terminology of designated values in many-
valued logics [4], these values are called designated values for acceptance and
designated values for rejection, respectively. Based on the two sets of designated
values, one can easily obtain three regions for three-way decisions.

Definition 2. Let ∅ �= L+
a ⊆ La be a subset of La called the designated values

for acceptance, and ∅ �= L−
r ⊆ Lr be a subset of Lr called the designated values

for rejection. The positive, negative, and boundary regions of three-way decisions
induced by (va, vr) are defined by:

POS(L+
a ,L−

r )(va, vr) = {x ∈ U | va(x) ∈ L+
a ∧ vr(x) �∈ L−

r },
NEG(L+

a ,L−
r )(va, vr) = {x ∈ U | va(x) �∈ L+

a ∧ vr(x) ∈ L−
r },

BND(L+
a ,L−

r )(va, vr) = (POS(L+
a ,L−

r )(va, vr) ∪ NEG(L+
a ,L−

r )(va, vr))
c

= {x ∈ U | (va(x) �∈ L+
a ∧ vr(x) �∈ L−

r ) ∨
(va(x) ∈ L+

a ∧ vr(x) ∈ L−
r )}. (1)

The boundary region is defined as the complement of the union of positive and
negative regions. The conditions in the definition of the positive and negative
regions make sure that they are disjoint. Therefore, the three regions are pair-
wise disjoint. The three regions do not necessarily form a partition of U , as some
of them may be empty. In fact, two-way decisions may be viewed as a special
case of three-way decisions in which the boundary region is always empty.

By the interpretation of the orderings �a and �r, the designated values L+
a

for acceptance and the designated values L−
r for rejection must satisfy certain

properties. If La has the largest element 1, then 1 ∈ L+
a . If w �a u and w ∈ L+

a ,
then u ∈ L+

a . That is, if va(x) �a va(y) and we accept x, then we must accept y.
Similarly, if Lr has the largest element 1, then 1 ∈ L−

r . If w �r u and w ∈ L−
r ,

then u ∈ L−
r .
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3.2 Three-Way Decisions with One Poset-Based Evaluation

In some situations, it may be more convenient to combine the two evaluation into
a single acceptance-rejection evaluation. In this case, one poset (L,�) is used
and two subsets of the poset are used as the designated values for acceptance
and rejection, respectively.

Definition 3. Suppose (L,�) is a poset. A function v : U −→ L is called
an acceptance-rejection evaluation. Let L+, L− ⊆ L be two subsets of L with
L+ ∩ L− = ∅, called the designated values for acceptance and the designated
values for rejection, rspectively. The positive, negative, and boundary regions of
three-way decisions induced by v is defined by:

POS(L+,L−)(v) = {x ∈ U | v(x) ∈ L+},
NEG(L+,L−)(v) = {x ∈ U | v(x) ∈ L−},
BND(L+,L−)(v) = {x ∈ U | v(x) �∈ L+ ∧ v(x) �∈ L−}. (2)

The condition L+ ∩L− = ∅ ensures that the three regions are pair-wise disjoint.
A single evaluation v may be viewed as a special case of two evaluations in which
�a = � and �r = �. In this way, acceptance is related to rejection in the sense
that the reverse ordering of acceptance is the ordering for rejection. To ensure
the meaningfulness of L+ and L−, it is required that ¬(w � u) for all w ∈ L+

and u ∈ L−. In other words, L+ contains larger elements of L and L− contains
smaller elements of L.

3.3 Three-Way Decisions with an Evaluation Using a Totally
Ordered Set

Consider now an evaluation based on a totally ordered set (L,�) where � is a
total order. That is, � is a partial order and any two elements of L are compa-
rable. This is in fact a widely used approach. For example, L is either the set of
real numbers or the unit interval [0, 1] and � is the less-than-or-equal relation
≤. For a total order, it is possible to define the sets of designated values for
acceptance and rejection by a pair of thresholds.

Definition 4. Suppose (L,�) is a totally ordered set, that is, � is a total order.
For two elements α, β with β ≺ α (i.e., β � α ∧ ¬(α � β)), suppose that the set
of designated values for acceptance is given by L+ = {t ∈ L | t � α} and the
set of designated values for rejection is given by L− = {b ∈ L | b � β}. For an
evaluation function v : U −→ L, its three regions are defined by:

POS(α,β)(v) = {x ∈ U | v(x) � α},
NEG(α,β)(v) = {x ∈ U | v(x) � β},
BND(α,β)(v) = {x ∈ U | β ≺ v(x) ≺ α}. (3)

Although evaluations based on a total order are restrictive, they have a compu-
tational advantage. One can obtain the three regions by simply comparing the
evaluation value with a pair of thresholds. It is therefore not surprising to find
that many studies in fact use a total order.
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3.4 Comments on Evaluations and Designated Values

Construction and interpretation of evaluations and designated values are vital
for practical applications of three-way decisions. At a theoretical level, it may be
only possible to discuss required properties of evaluations. It is assumed that an
evaluation is determined by a set of criteria, representing costs, benefits, degrees
of desirability, objectives, constraints, and so on. Further studies on evaluations
may be a fruitful research direction.

As an illustration, consider a simple linear model for constructing an evalua-
tion. Suppose C = {c1, c2, . . . , cm} are a set of m criteria. Suppose vci : U −→ �
denotes an evaluation based on criterion vi, 1 ≤ i ≤ m. An overall evaluation
function v : U −→ �may be simply defined by a linear combination of individual
evaluations:

v(x) = vc1(x) + vc2(x) + . . . + vcm(x). (4)

Details of this linear utility model and other models can be found in literature
of multi-crieria and multi-objective decision making [14].

Construction and interpretation of designated values may be explained in
terms of benefits or risks of the resulting three regions of three-way decisions.
For example, consider the model that uses a total order. Let RP (α, β), RN (α, β)
and RB(α, β) denote the risks of the positive, negative, and boundary regions,
respectively. It is reasonable to require that the sets of designated values are
chosen to minimize the following overall risks:

R(α, β) = RP (α, β) +RN (α, β) +RB(α, β). (5)

That is, finding a pair of thresholds can be formulated as the following optimiza-
tion problem:

arg min
(α,β)

R(α, β). (6)

As a concerte example, R may be understood as uncertainty associated with
three regions, by minimizing the overall uncertainty one can obtain the set of
designed values in a probabilistic rough set model [2]. Two additional examples
will be given in the next section when reviewing decision-theoretic rough sets [50,
57, 58] and shadowed sets [34, 35].

4 Models of Three-Way Decisions

We show that many studies on three-way decisions can be formulated within the
framework proposed in the last section. For simplicity and as examples, we focus
on the concept of concepts in a set-theoretical setting. In the classical view of
concepts [40, 41], every concept is understood as a unit of thought consisting of
two parts, the intension and the extension of the concept. Due to uncertain or
insufficient information, it is not always possible to precisely have a set of objects
as the extension of a concept. Consequently, many generalizations of sets have
been proposed and studied.
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4.1 Interval Sets and Three-Valued Logic

Interval sets provide a means to describe partially known concepts [47, 53]. On
the one hand, it is assumed that an object may actually be either an instance
or not an instance of a concept. On the other hand, due to a lack of information
and knowledge, one can only express the state of instance and non-instance for
some objects, instead of all objects. That is, one has a partially known concept
defined by a lower bound and upper bound of its extension.

Formally, a closed interval set is a subset of 2U of the form,

[Al, Au] = {A ∈ 2U | Al ⊆ A ⊆ Au}, (7)

where it is assumed that Al ⊆ Au, and Al and Au are called the lower and upper
bound, respectively. Any set X ∈ [Al, Au] may be the actual extension of the
partially known concept. Constructive methods for defining interval sets can be
formulated within an incomplete information table [16, 22].

An interval set is an interval of the power set lattice 2U ; it is also a lattice,
with the minimum element Al, the maximum element Au, and the standard
set-theoretic operations.

Interval-set algebra is related to Kleene’s three-valued logic [15, 36], in which
a third truth value is added to the standard two-valued logic. The third value
may be interpreted as unknown or undeterminable. Let L = {F, I, T } denote
the set of truth values with a total order F � I � T . An interval set [Al, Au]
can be equivalently defined by an acceptance-rejection evaluation as,

v[Al,Au](x) =

⎧⎨⎩F, x ∈ (Au)
c,

I, x ∈ Au −Al,
T, x ∈ Al.

(8)

Suppose the sets of designated values for acceptance and rejection are defined
by a pair of thresholds (T, F ), namely, L+ = {a ∈ L | T � a} = {T } and
L− = {b ∈ L | b � F} = {F}. According to Definition 4, an interval set provides
the following three-way decisions:

POS(T,F )([Al, Au]) = {x ∈ U | v[Al,Au](x) � T } = Al,

NEG(T,F )([Al, Au]) = {x ∈ U | v[Al,Au](x) � F} = (Au)
c,

BND(T,F )([Al, Au]) = {x ∈ U | F ≺ v[Al,Au](x) ≺ T } = Au −Al. (9)

Although the re-expression of an interval set in terms of three-way decisions is
somewhat trivial, it does provide a new view to look at interval sets.

4.2 Pawlak Rough Sets

Pawlak rough set theory deals with approximations of a concept based on a
family of definable concepts [33].

Let E ⊆ U × U denote an equivalence relation on U , that is, E is reflex-
ive, symmetric, and transitive. The equivalence class containing x is defined by
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[x]E = [x] = {y ∈ U | xEy}, which is a set of objects equivalent to x. The family
of all equivalence classes of E is called the quotient set induced by E, denoted
as U/E. In an information table, an equivalence class is a definable set that can
be defined by the conjunction of a family of attribute-value pairs [49].

For a subset A ⊆ U , the Pawlak rough set lower and upper approximations
of A are defined by:

apr(A) = {x ∈ U | [x] ⊆ A},
apr(A) = {x ∈ U | [x] ∩ A �= ∅}

= {x ∈ U | ¬([x] ⊆ Ac)}. (10)

In the definition, we use an equivalent condition ¬([x] ⊆ Ac) so that both lower
and upper approximations are defined uniformly by using set inclusion ⊆. Ac-
cording to the pair of approximations, the Pawlak positive, negative and bound-
ary regions are defined by:

POS(A) = apr(A),

= {x ∈ U | [x] ⊆ A};
NEG(A) = U − apr(A),

= {x ∈ U | [x] ⊆ Ac};
BND(A) = apr(A)− apr(A),

= {x ∈ U | ¬([x] ⊆ Ac) ∧ ¬([x] ⊆ A)}
= (POS(A) ∪ NEG(A))c. (11)

Again, these regions are defined uniformly by using set inclusion. The three
regions are pair-wise disjoint. Conversely, from the three regions, we can compute
the pair of approximations by:

apr(A) = POS(A)

apr(A) = POS(A) ∪ BND(A).

Therefore, rough set theory can be formulated by either a pair of approximations
or three regions.

Three-way decisions with rough sets can be formulated as follows. Let La =
Lr = {F, T } with F � T , and let L+

a = L−
r = {T }. All objects in the same

equivalence class have the same description. Based on descriptions of objects,
we have a pair of an acceptance evaluation and a rejection evaluation:

v(a,A)(x) =

⎧⎨⎩T, [x] ⊆ A,

F, ¬([x] ⊆ A);
v(r,A)(x) =

⎧⎨⎩T, [x] ⊆ Ac,

F, ¬([x] ⊆ Ac).
(12)

According to Definition 2, for a set A ⊆ U , we can make the following three-way
decisions:

POS({T},{T})(A) = {x ∈ U | v(a,A)(x) ∈ {T } ∧ v(r,A)(x) �∈ {T }}
= {x ∈ U | v(a,A)(x) = T }
= {x ∈ U | [x] ⊆ A},
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NEG({T},{T})(A) = {x ∈ U | v(a,A)(x) �∈ {T } ∧ v(r,A)(x) ∈ {T }},
= {x ∈ U | v(r,A)(x) = T }
= {x ∈ U | [x] ⊆ Ac},

BND({T},{T})(A) = (POS(va, vr) ∪ NEG(va, vr))
c

= {x ∈ U | ¬([x] ⊆ A) ∧ ¬([x] ⊆ Ac)}. (13)

The reformulation of rough set three regions based uniformly on set inclusion
provides additional insights into rough set approximations. It explicitly shows
that acceptance is based on an evaluation of the condition [x] ⊆ A and rejection
is based on an evaluation of the condition [x] ⊆ Ac. By those two conditions,
both decisions of acceptance and rejection are made without any error.Whenever
there is any doubt, namely, ¬([x] ⊆ A) ∧ ¬([x] ⊆ Ac), a decision of noncommit-
ment is made.

4.3 Decision-Theoretic Rough Sets

Decision-theoretic rough sets (DTRS) [48, 50, 51, 57, 58] are a quantitative
generalization of Pawlak rough sets by considering the degree of inclusion of an
equivalence class in a set.

The acceptance-rejection evaluation used by a DTRS model is the condi-
tional probability vA(x) = Pr(A|[x]), with values from the totally ordered set
([0, 1],≤). Given a pair of thresholds (α, β) with 0 ≤ β < α ≤ 1, the sets of
designated values for acceptance and rejections are L+ = {a ∈ [0, 1] | α ≤ a}
and L− = {b ∈ [0, 1] | b ≤ β}. According to Definition 4, a DTRS model makes
the following three-way decisions: for A ⊆ U ,

POS(α,β)(A) = {x ∈ U | vA(x) � α}
= {x ∈ U | Pr(A|[x]) ≥ α},

NEG(α,β)(A) = {x ∈ U | vA(x) � β}
= {x ∈ U | Pr(A|[x]) ≤ β},

BND(α,β)(A) = {x ∈ U | β ≺ vA(x) ≺ α}
= {x ∈ U | β < Pr(A|[x]) < α}. (14)

Three-way decision-making in DTRS can be easily related to incorrect accep-
tance error and incorrect rejection error [55]. Specifically, incorrect acceptance
error is given by Pr(Ac|[x]) = 1−Pr(A|[x]) ≤ 1−α, which is bounded by 1−α.
Likewise, incorrect rejection error is given by Pr(A|[x]) ≤ β, which is bounded
by β. Therefore, the pair of thresholds can be interpreted as defining tolerance
levels of errors.

A main advantage of a DTRS model is its solid foundation based on Bayesian
decision theory. In addition, the pair of thresholds can be systematically com-
puted by minimizing overall ternary classification cost [55].

Bayesian decision theory [3] can be applied to the derivation of DTRS as
follows. We have a set of 2 states and a set of 3 actions for each state. The set
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of states is given by Ω = {A,Ac} indicating that an object is in A and not in
A, respectively. For simplicity, we use the same symbol to denote both a subset
A and the corresponding state. With respect to the three regions, the set of
actions with respect to a state is given by A = {aP , aN , aB}, where aP , aN ,
and aB represent the three actions in classifying an object x, namely, deciding
x ∈ POS(A), deciding x ∈ NEG(A), and deciding x ∈ BND(A), respectively.
The losses regarding the risk or cost of those classification actions with respect
to different states are given by the 3× 2 matrix:

A (P ) Ac (N)
aP λPP λPN

aN λNP λNN

aB λBP λBN

In the matrix, λPP , λNP and λBP denote the losses incurred for taking actions
aP , aN and aB, respectively, when an object belongs to A, and λPN , λNN and
λBN denote the losses incurred for taking the same actions when the object does
not belong to A

To determine a pair of thresholds for three-way decisions, one can minimize
the following overall risk [12, 55]:

R(α, β) = RP (α, β) +RN (α, β) +RB(α, β), (15)

where

RP (α, β) =
∑

Pr(A|[x])≥α

[λPPPr(A|[x]) + λPNPr(Ac|[x])]Pr([x]),

RN (α, β) =
∑

Pr(A|[x])≤β

[λNPPr(A|[x]) + λNNPr(Ac|[x])]Pr([x]),

RB(α, β) =
∑

β<Pr(A|[x])<α

[λBPPr(A|[x]) + λBNPr(Ac|[x])]Pr([x]), (16)

represent, risks incurred by acceptance, rejection, and noncommitment, and the
summation is over all equivalence classes. It can be shown [50, 55] that under
the following conditions,

(c1) λPP < λBP < λNP , λNN < λBN < λPN ,

(c2) (λPN − λBN )(λNP − λBP ) > (λBN − λNN )(λBP − λPP ), (17)

a pair of threshold (α, β) with 0 ≤ β < α ≤ 1 that minimizes R is given by:

α =
(λPN − λBN )

(λPN − λBN ) + (λBP − λPP )
,

β =
(λBN − λNN )

(λBN − λNN ) + (λNP − λBP )
. (18)

That is, the pair of thresholds can be computed from the loss function.
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Other models for determining the pair of thresholds include a game-theoretic
framework [1, 9, 11], a multi-view decision model [17, 66], and the minimization
of uncertainty of the three regions [2]. The conditional probability required by
DTRS can be estimated based on a naive Bayesian rough set model [59] or a
regression model [25].

4.4 Three-Valued Approximations in Many-Valued Logic and Fuzzy
Sets

Three-valued approximations in many-valued logics are formulated based on
the discussion given by Gottwald [4] on positively designated truth degrees and
negatively designated truth degrees.

In many-valued logic, the set of truth degrees or values is normally an ordered
set (L,�) and contains the classical truth values F and T (often coded by 0 and
1) as its minimum and maximum elements, namely, {F, T } ⊆ L and for any
u ∈ L, F � u � T . It is also a common practice to use a subset L+ of positively
designated truth degrees to code the intuitive notion of truth and to use another
subset L− of negatively designated truth degrees to code the opposite. For the
two sets to be meaningful, the following conditions are normally assumed [4]:

(i) T ∈ L+,

F ∈ L−,

(ii) L+ ∪ L− ⊆ L,

L+ ∩ L− = ∅,
(iii) w � u ∧ w ∈ L+ =⇒ u ∈ L+,

w � u ∧ u ∈ L− =⇒ w ∈ L−.

Three-valued approximations of a many-valued logic derive from three-way deci-
sions based on the two designated sets. We accept a truth degree as being true if
it is in the positively designated set, reject it as being true if it is the negatively
designated set, and neither accept nor reject if it is not in any of the two sets.
By so doing, we can have a new three-valued logic with the set of truth values
L3 = {L−, L− (L−∪L+), L+} under the ordering L− �3 L− (L−∪L+) �3 L+,
which is an approximation of the many-valued logic.

To a large extent, our formulation of three-way decisions, as given in the
last section, draws mainly from such a consideration. Specifically, we borrowed
the notions of designated truth degrees from studies of many-valued logic to
introduce the notions of designated values for acceptance and rejection in the
theory of three-way decisions.

A fuzzy set A is characterized by a mapping from U to the unit interval,
namely, μA : U −→ [0, 1]. The value μA(x) is called the degree of membership of
the object x ∈ U . Fuzzy sets may be interpreted in terms of a many-valued logic
with the unit interval as its set of truth degrees. According to the three-valued
approximations of a many-valued logic, one can similarly formulate three-valued
approximations of a fuzzy set. This formulation was in fact given by Zadeh [63]
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in his seminal paper on fuzzy sets and was shown to be related to Kleene’s
three-valued logic.

Given a pair of thresholds (α, β) with 0 ≤ β < α ≤ 1, one can define the
designated sets of values for acceptance and rejection as L+ = {a ∈ [0, 1] | α ≤ a}
and L− = {b ∈ [0, 1] | b ≤ β}. According to Definition 4, if a fuzzy membership
function μA is used as an acceptance-rejection evaluation, namely, vμA = μA,
we have the following three-way decisions,

POS(α,β)(μA) = {x ∈ U | vμA(x) � α}
= {x ∈ U | μA(x) ≥ α},

NEG(α,β)(μA) = {x ∈ U | vμA(x) � β}
= {x ∈ U | μA(x) ≤ β},

BND(α,β)(μA) = {x ∈ U | β ≺ vμA(x) ≺ α}
= {x ∈ U | β < μA(x) < α}. (19)

Zadeh [63] provided an interpretation of this three-valued approximations of a
fuzzy set: one may say that (1) x belongs to A if μA(x) ≥ α; (2) x does not
belong to A if μA(x) ≤ β; and (3) x has an indeterminate status relative to A
if β < μA(x) < α. This interpretation explicitly uses the notions of acceptance
and rejection and is consistent with our three-way decisions.

4.5 Shadowed Sets

In contrast to decision-theoretic rough sets in which the pair of thresholds can be
interpreted by classification errors, there is a difficulty in interpreting thresholds
in three-valued approximations of a fuzzy sets. The introduction of a shadowed
set induced by a fuzzy set attempts to address this problem [34, 35].

A shadowed set A is defined as a mapping, SA : U −→ {0, [0, 1], 1}, from U
to a set of three truth values. It is assumed that the three values are ordered
by 0 � [0, 1] � 1. The value [0, 1] represents the membership of objects in the
shadows of a shadowed set. Like the interval-set algebra, shadowed-set algebra is
also related to Kleene’s three-valed logic. Shadowed sets provide another model
of three-way decisions.

Unlike an interval set, a shadowed set is constructed from a fuzzy set μA :
U −→ [0, 1] as follows:

SA(x) =

⎧⎨⎩ 0, μA(x) ≤ τ,
[0, 1], τ < μA(x) < 1− τ,
1, μA(x) ≥ 1− τ,

(20)

where 0 ≤ τ < 0.5 is a threshold. Given a pair of thresholds (1, 0) for the set of
truth values {0, [0, 1], 1}, by Definition 4 and equations (19) and (20), we have
the following three-way decision for a shadowed set:

POS(1,0)(SA) = {x ∈ U | vSA
(x) � 1}

= {x ∈ U | μA(x) ≥ 1− τ}
= POS(1−τ,τ)(μA),
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NEG(1,0)(SA) = {x ∈ U | vSA
(x) � 0}

= {x ∈ U | μA(x) ≤ τ},
= NEG(1−τ,τ)(μA),

BND(1,0)(SA) = {x ∈ U | 0 ≺ vSA
(x) ≺ 1}

= {x ∈ U | τ < μA(x) < 1− τ}
= BND(1−τ,τ)(μA). (21)

That is, a shadowed set is a three-valued approximation of a fuzzy set with
(α, β) = (1 − τ, τ). In general, one can also consider shadowed set by a pair of
thresholds (α, β) with 0 ≤ β < α ≤ 1 on a fuzzy set μA.

As shown in [34, 35], the threshold τ for constructing a shadowed set can be
determined by minimizing the following function,

Ω(τ) = abs(Ωr(τ) +Ωe(τ)−Ωs(τ)), (22)

where abs(·) stands for the absolute value and

Ωr(τ) =
∑

{x∈U|μA(x)≤τ}
μA(x),

Ωe(τ) =
∑

{y∈U|μA(y)≥1−τ}
(1− μA(y)),

Ωs(τ) = card({z ∈ U | τ < μA(z) < 1− τ}), (23)

are, respectively, the total of reduced membership values from μA(x) in the
fuzzy set to 0 in the shadowed set (i.e., μA(x)−0 = μA(x)), the total of elevated
membership values from μA(y) in the fuzzy set to 1 in the shadowed set (i.e., 1−
μA(y)), and the cardinality of the shadows of the shadowed set. The minimization
of Ω(τ) may be equivalently formulated as finding a solution to the equation,

Ωr(τ) +Ωe(τ) = Ωs(τ), (24)

if it has a solution. Although the problem of finding the threshold τ is formu-
lated precisely, the meaning of the objective function Ω(τ) still needs further
investigation. It is interesting to note that the objective function Ω(τ) shares
some similarity to the objective function R(α, β) of a DTRS model, which may
shed some light on the problem of determining the threshold in shadowed sets.

5 Conclusions

The concept of three-way decisions provides an appealing interpretation of three
regions in probabilistic rough sets. The positive and negative regions are sets of
accepted objects and rejected objects, respectively. The boundary region is the
set of objects for which neither acceptance nor rejection is possible, due to uncer-
tain or incomplete information. A close examination of studies and applications
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of three-way decisions shows that (a) essential ideas of three-way decisions are
general applicable to a wide range of decision-making problems; (b) we routinely
make three-way decisions in everyday life; (c) three-way decisions appear across
many fields and disciplines; and (d) there is a lack of formal theory for three-way
decisions. These findings motivate a study of a theory of three-way decisions in
its own right.

We outline a theory of three-way decisions based on the notions of evalu-
ations for acceptance and evaluations for rejection. One accepts or rejects an
object when its values from evaluations fall into some designated areas; oth-
erwise, one makes a decision of noncommitment. We propose and study three
classes of evaluations. We demonstrate that the proposed theory can describe
and explain three-way decisions in many-valued logics and generalizations of set
theory, including interval sets, rough sets, decision-theoretic rough sets, fuzzy
sets, and shadowed sets. As future research, we plan to investigate three-way
decisions in other settings.

Acknowledgements. This work is partially supported by a Discovery Grant
from NSERC Canada.
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Abstract. Multi-granulation rough set is a generalization of Rough Set
Theory (RST) in order to adapt to cases that there are multiple relations
in the universe. To allow Dominance-based Rough Set Approach (DRSA)
being applied in multiple relations cases, we propose a multi-granulation
model based on DRSA. A numerical example is employed to validate the
rationality and feasibility of our model.
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1 Introduction

In many cases, the experts deal with problems based on imperfect information
systems. These information are often incomplete, inconsistence and uncertain. To
obtain right decision making from these information, people always concentrate
their attention on exploring new techniques to come their aims true. Of course,
people have obtained some expertise from their untiring study. Rough Set Theory
(RST) proposed by Pawlak is one of these brilliant achievements [1]. It is an
excellent mathematical tool for processing imperfect information systems and
has been applied widely in artificial intelligence, data mining [2, 4] and so on.

Qian et al. noticed that RST and it’s generalization make information granu-
lated based on a binary relation [5–8]. They believed that there may exist many
different viewpoints to a decision problem. Thus, in the universe, information
may be granulated by many kinds of relations into some different families of
granules. Hence, they built a multi-granulation model based on RST to adapt
to multiple relations environments.

Dominance-based Rough Set Approach (DRSA) proposed by Greco et al. is
one of RST’s generalization [9–11]. The main feature of DRSA different to RST
is the substitution of the indiscernibility relation by a dominance relation. It is a
powerful tool to process information with preference-ordered attribute domains.

In this paper, we aim to build a multi-granulation model based on DRSA.
Following Qian et al.’s idea, we also will take into account several families of
granules in the process of calculating upper and lower approximations of unions
of decision classes in DRSA. Furthermore, we will use a support ratio α to gener-
alize Qian et al.’s two standpoints in their multi-granulation model: Optimistic
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standpoint and pessimistic standpoint [5, 6]. α belongs to a range from 1
m to 1,

where m is the number of decision-makers. m also means the number of domi-
nance relations adopted by decision-makers in decision making. The case α = 1

m
is similar to Qian et al.’s optimistic standpoint and the case α = 1 is similar to
their pessimistic standpoint. When 1

m < α < 1, this case presents the standpoint
that are lower than pessimistic standpoint but higher than optimistic standpoint.

The remainder of this paper is organized as follows. We present basic no-
tions of DRSA and multi-granulation rough sets in Section 2. We introduce a
multi-granulation model based on DRSA in Section 3. In Section 4, we give an
illustrative example to validate our approach. This paper ends with conclusions
and further research topics in Section 5.

2 Preliminaries

In this section, we briefly review some concepts, notations and results of DRSA
[9–11] and multi-granulation rough sets [5–8].

A decision information system is a 4-tuple S = (U,C ∪ {d}, V, f), where U
is a non-empty finite set of objects, called as the universe; C is a non-empty
finite set of condition attributes, d is the decision attribute; V is regarded as the
domain of all attributes; f : U × C ∪ {d} → V is an information function such
that f(x, a) ∈ Va, ∀a ∈ C ∪ {d} and x ∈ U , where Va is a domain of attribute a.
∀a ∈ C, there is a preference relation on the set of objects with respect to

attribute a, denoted by �a. ∀x, y ∈ U , x �a y means “ x is at least as good as
y with respect to attribute a ”. For a nonempty finite attribute set P , P ⊆ C, if
x �a y for all a ∈ P , we say that x dominates y with respect to P , denoted by
xDP y. Therefore, there are the following two sets:

– A set of objects dominating x, called P -dominating set, D+
P (x) = {y ∈ U :

yDPx};
– A set of objects dominated by x, called P -dominated set, D−

P (x) = {y ∈ U :
xDP y}.

Decision attribute d makes a partition of U into a finite number of classes. Let
Cl = {Clt, t ∈ T }, T = {1, · · · , n}, be a set of these classes that are ordered.
∀r, s ∈ T such that r > s, the objects from Clr are preferred to the objects from
Cls. The sets to be approximated are an upward union and a downward union
of classes such that

Cl≥t =
⋃
t′≥t

Clt′ , Cl≤t =
⋃
t′≤t

Clt′ , ∀t, t′ ∈ T.

Here, x ∈ Cl≥t means “x belongs to at least class Clt”, and x ∈ Cl≤t means “x
belongs to at most class Clt”.

Let S be a decision information system, P ⊆ C, t ∈ T . The lower and upper
approximations of Cl≥t are defined respectively as:

P (Cl≥t ) = {x ∈ U : D+
P (x) ⊆ Cl≥t },

P (Cl≥t ) = {x ∈ U : D−
P (x) ∩ Cl≥t �= ∅}.
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The lower and upper approximations of Cl≤t are defined respectively as:

P (Cl≤t ) = {x ∈ U : D−
P (x) ⊆ Cl≤t },

P (Cl≤t ) = {x ∈ U : D+
P (x) ∩Cl≤t �= ∅}.

The upper and lower approximations of upward and downward unions of decision
classes have a complementarity property,

P (Cl≥t ) = U − P (Cl≤n−1) and P (Cl≥t ) = U − P (Cl≤n−1), t = 2, · · · , n
P (Cl≤t ) = U − P (Cl≥n+1) and P (Cl≤t ) = U − P (Cl≥n+1), t = 1, · · · , n− 1

All the objects belonging to Cl≥t and Cl≤t with some ambiguity constitute the P -

boundary of Cl≥t and Cl≤t , denoted by BnP (Cl≥t ) and BnP (Cl≤t ), respectively.
They can be represented in terms of upper and lower approximations as follows:

BnP (Cl≥t ) = P (Cl≥t )− P (Cl≥t )

BnP (Cl≤t ) = P (Cl≤t )− P (Cl≤t )
Qian et al. proposed two different multi-granulation rough set models from two
different standpoints: Optimistic multi-granulation rough set model and pes-
simistic multi-granulation rough set model. They introduced definitions of these
two models as follows: S = (U,AT, f) is an information system, A1, · · · , Am ⊆
AT , X ⊆ U . With respect to attribute sets A1, · · · , Am, optimistic lower and

upper approximations of X are denoted by
∑m

i=1 Ai
O
(X) and

∑m
i=1 Ai

O
(X),

respectively, where

m∑
i=1

Ai

O

(X) =
m⋃
i=1

{x ∈ U |[x]Ai ⊆ X}

m∑
i=1

Ai

O

(X) = ∼
m∑
i=1

Ai

O

(∼ X)

and optimistic boundary region is

BnO∑m
i=1 Ai

(X) =

m∑
i=1

Ai

O

(X) \
m∑
i=1

Ai

O

(X)

With respect to attribute sets A1, · · · , Am, pessimistic lower and upper approx-

imations of X are denoted by
∑m

i=1 Ai
P
(X) and

∑m
i=1 Ai

P
(X), respectively,

where
m∑
i=1

Ai

P

(X) = {x ∈ U |[x]A1 ⊆ X ∧ [x]A2 ⊆ X ∧ · · · ∧ [x]Am ⊆ X}

m∑
i=1

Ai

P

(X) = ∼
m∑
i=1

Ai

P

(∼ X)

and pessimistic boundary region is
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BnP∑m
i=1 Ai

(X) =

m∑
i=1

Ai

P

(X) \
m∑
i=1

Ai

P

(X)

3 A Multi-granulation Model Based on DRSA

We assume that there are several decision-makers who have different viewpoints
on selecting attributes (criteria) to make decisions according to a decision table.
Thus it may lead to the existence of several dominance relations in the universe.
Based on these different dominance relations, the information system will be
granulated into different families of granules. Since decision making is based on
different families of granules, results from decision-makers may be different. For
an overall estimation, people used to summarize all results according to a kind
of special requirements and make a conclusion. In the following, we present a
definition of the multi-granulation model based on DRSA according to the above
process of decision making.

Definition 1. S = (U,C∪{d}, V, f) is a decision system. Let P = {P1, · · · , Pm}
be a family of attribute sets, where Pi ⊆ C, i ∈ {1, · · · ,m}. For a support ratio

α, α ∈ [ 1m , 1], we have α−lower and α−upper approximations of Cl≥t . They are

denoted by
∑m

i=1 Pi
α
(Cl≥t ) and

∑m
i=1 Pi

α
(Cl≥t ), respectively, where

m∑
i=1

Pi

α

(Cl≥t ) = {x ∈ U :
|P (x,Cl≥t )|

m
≥ α} (1)

m∑
i=1

Pi

α

(Cl≥t ) = ∼
m∑
i=1

Pi

α

(∼ Cl≥t ) (2)

α−boundary region of Cl≥t is

Bnα∑m
i=1 Pi

(Cl≥t ) =
m∑
i=1

Pi

α

(Cl≥t ) \
m∑
i=1

Pi

α

(Cl≥t ) (3)

α−lower and α−upper approximations of Cl≤t are denoted by
∑m

i=1 Pi
α
(Cl≤t )

and
∑m

i=1 Pi

α
(Cl≤t ), respectively, where

m∑
i=1

Pi

α

(Cl≤t ) = {x ∈ U :
|P (x,Cl≤t )|

m
≥ α} (4)

m∑
i=1

Pi

α

(Cl≤t ) = ∼
m∑
i=1

Pi

α

(∼ Cl≤t ) (5)
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α−boundary region of Cl≤t is

Bnα∑
m
i=1 Pi

(Cl≤t ) =
m∑
i=1

Pi

α

(Cl≤t ) \
m∑
i=1

Pi

α

(Cl≤t ) (6)

where P (x,Cl≥t ) = {Pi ∈ P|D+
Pi
(x) ⊆ Cl≥t }, P (x,Cl≤t ) = {Pi ∈ P|D−

Pi
(x) ⊆

Cl≤t } and | · | indicates the cardinality.

When α = 1
m , the model will be an optimistic standpoint model according to

Qian et al.’s viewpoint. Of course, it will be an pessimistic standpoint model
when α = 1.

α−upper approximations of decision classes union may also be obtained by
another way as the following Proposition 1.

Proposition 1

m∑
i=1

Pi

α

(Cl≥t ) = {x ∈ U :
|Q(x,Cl≥t )|

m
> α} (7)

m∑
i=1

Pi

α

(Cl≤t ) = {x ∈ U :
|Q(x,Cl≤t )|

m
> α} (8)

where Q(x,Cl≥t ) = {Pi ∈ P|D−
Pi
(x) ∩ Cl≥t �= ∅}, Q(x,Cl≤t ) = {Pi ∈ P|D+

Pi
(x) ∩

Cl≤t �= ∅}.
Proof: According to equation (2), we have∑m

i=1 Pi

α
(Cl≥t ) =∼ ∑m

i=1 Pi
α
(∼ Cl≥t ) =∼ ∑m

i=1 Pi
α
(Cl≤t−1) =∼ {x ∈ U :

|P (x,Cl≤t−1)|
m ≥ α} = {x ∈ U :

|P (x,Cl≤t−1)|
m < α}.

As we known
∑m

i=1 Pi

α
(Cl≥t ) = U for t = 1. Hence we do not care about the

case t = 1. If D−
Pi
(x) � Cl≤t−1, then D−

Pi
(x) ∩ Cl≥t �= ∅. Therefore, {x ∈ U :

|P (x,Cl≤t−1)|
m < α} = {x ∈ U :

|Q(x,Cl≥t )|
m > α}. Hence, ∑m

i=1 Pi

α
(Cl≥t ) = {x ∈ U :

|Q(x,Cl≥t )|
m > α}.

Similarly, equation (8) holds.

4 A Numerical Example

Given a decision system S = (U,C∪{d}, V, f) in Table 1, where U = {x1, x2, · · · ,
x10}, C = {a1, a2, a3, a4}, Va1 = Va2 = Va3 = Va4 = Vd = {1, 2, 3}, P1 =
{a1, a2}, P2 = {a2, a3}, P3 = {a1, a4}. Let α = 2

3 . Decision classes are Cl1 =
{x1, x4, x5}, Cl2 = {x2, x3, x6, x8} and Cl3 = {x7, x9, x10}. Upward unions of

decision classes are Cl≥1 = U , Cl≥2 = {x2, x3, x6, x7, x8, x9, x10} and Cl≥3 =

{x7, x9, x10}. Downward unions of decision classes are Cl≤3 = U , Cl≤2 = {x1, x2,

x3, x4, x5, x6, x8} and Cl≤1 = {x1, x4, x5}.
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Table 1. A decision table

object a1 a2 a3 a4 d

x 1 2 2 1 3 1
x 2 3 2 1 2 2
x 3 2 3 1 1 2
x 4 1 2 3 1 1
x 5 1 1 2 3 1
x 6 1 2 2 1 2
x 7 3 3 1 2 3
x 8 3 2 2 2 2
x 9 2 2 3 1 3
x 10 3 2 3 3 3

We calculate Pi-dominating and Pi-dominated sets according to the attribute
set Pi, where i = 1, 2, 3, respectively.

(1) P1−dominating and P1−dominated sets

D+
P1
(x1) = {x1, x2, x3, x7, x8, x9, x10}, D−

P1
(x1) = {x1, x4, x5, x6, x9};

D+
P1
(x2) = {x2, x7, x8, x10}, D−

P1
(x2) = {x1, x2, x4, x5, x6, x8, x9, x10};

D+
P1
(x3) = {x3, x7}, D−

P1
(x3) = {x1, x3, x4, x5, x6, x9};

D+
P1
(x4) = {x1, x2, x3, x4, x6, x7, x8, x9, x10}, D−

P1
(x4) = {x4, x5, x6};

D+
P1
(x5) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}, D−

P1
(x5) = {x5};

D+
P1
(x6) = {x1, x2, x3, x4, x6, x7, x8, x9, x10}, D−

P1
(x6) = {x4, x5, x6};

D+
P1
(x7) = {x7}, D−

P1
(x7) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10};

D+
P1
(x8) = {x2, x7, x8, x10}, D−

P1
(x8) = {x1, x2, x4, x5, x6, x8, x9, x10};

D+
P1
(x9) = {x1, x2, x3, x7, x8, x9, x10}, D−

P1
(x9) = {x1, x4, x5, x6, x9};

D+
P1
(x10) = {x2, x7, x8, x10}, D−

P1
(x10) = {x1, x2, x4, x5, x6, x8, x9, x10}.

(2) P2-dominating and P2-dominated sets

D+
P2
(x1) = {x1, x2, x3, x4, x6, x7, x8, x9, x10}, D−

P2
(x1) = {x1, x2};

D+
P2
(x2) = {x1, x2, x3, x4, x6, x7, x8, x9, x10}, D−

P2
(x2) = {x1, x2};

D+
P2
(x3) = {x3, x7}, D−

P2
(x3) = {x1, x2, x3, x7};

D+
P2
(x4) = {x4, x9, x10}, D−

P2
(x4) = {x1, x2, x4, x5, x6, x8, x9, x10};

D+
P2
(x5) = {x4, x5, x6, x8, x9, x10}, D−

P2
(x5) = {x5};

D+
P2
(x6) = {x4, x6, x8, x9, x10}, D−

P2
(x6) = {x1, x2, x5, x6, x8};

D+
P2
(x7) = {x2, x7}, D−

P2
(x7) = {x1, x2, x3, x7};

D+
P2
(x8) = {x4, x6, x8, x9, x10}, D−

P2
(x8) = {x1, x2, x5, x6, x8};

D+
P2
(x9) = {x4, x9, x10}, D−

P2
(x9) = {x1, x2, x4, x5, x6, x8, x9, x10};

D+
P2
(x10) = {x4, x9, x10}, D−

P2
(x10) = {x1, x2, x4, x5, x6, x8, x9, x10}.

(3) P3-dominating and P3-dominated sets

D+
P3
(x1) = {x1, x10}, D−

P3
(x1) = {x1, x3, x4, x5, x6, x9};

D+
P3
(x2) = {x2, x7, x8, x10}, D−

P3
(x2) = {x2, x3, x4, x6, x7, x8, x9};
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D+
P3
(x3) = {x1, x2, x3, x7, x8, x9, x10}, D−

P3
(x3) = {x3, x4, x6, x9};

D+
P3
(x4) = U , D−

P3
(x4) = {x4, x6};

D+
P3
(x5) = {x1, x5, x10}, D−

P3
(x5) = {x4, x5, x6};

D+
P3
(x6) = U , D−

P3
(x6) = {x4, x6};

D+
P3
(x7) = D+

P3
(x8) = {x2, x7, x8, x10},

D−
P3
(x7) = D−

P3
(x8) = {x2, x3, x4, x6, x7, x8, x9};

D+
P3
(x9) = {x1, x2, x3, x7, x8, x9, x10}, D−

P3
(x9) = {x3, x4, x6, x9};

D+
P3
(x10) = {x10}, D−

P3
(x10) = U .

(4) α−lower approximations, α−upper approximations and α−boundary regions
of decision classes unions.∑4

i=1 Pi
α
(Cl≥1 ) = U ,

∑4
i=1 Pi

α

(Cl≥1 ) = U , Bnα∑4
i=1 Pi

(Cl≥1 ) = ∅;∑4
i=1 Pi

α
(Cl≥2 ) = {x2, x3, x7, x8, x10},∑4

i=1 Pi

α

(Cl≥2 ) = {x1, x2, x3, x4, x6, x7, x8, x9, x10},
Bnα∑4

i=1 Pi
(Cl≥2 ) = {x1, x4, x6, x9};∑4

i=1 Pi
α
(Cl≥3 ) = ∅,

∑4
i=1 Pi

α

(Cl≥3 ) = {x1, x2, x3, x7, x8, x9, x10},
Bnα∑

4
i=1 Pi

(Cl≥3 ) = {x1, x2, x3, x7, x8, x9, x10};∑4
i=1 Pi

α
(Cl≤1 ) = {x5},

∑4
i=1 Pi

α

(Cl≤1 ) = {x1, x4, x5, x6, x9},
Bnα∑

4
i=1 Pi

(Cl≤1 ) = {x1, x4, x6, x9};∑4
i=1 Pi

α
(Cl≤2 ) = {x4, x5},

∑4
i=1 Pi

α

(Cl≤2 ) = U ,

Bnα∑4
i=1 Pi

(Cl≤2 ) = {x1, x2, x3, x6, x7, x8, x9, x10};∑4
i=1 Pi

α
(Cl≤3 ) = U ,

∑4
i=1 Pi

α

(Cl≤3 ) = U .

Bnα∑4
i=1 Pi

(Cl≤3 ) = ∅;

5 Conclusions

In this paper, we built a multi-granulation model based on DRSA according to
the principles adopted by people in decision making. It allows DRSA to be ap-
plied to situations that many kinds of relations exist in the universe. A numerical
example validated the rationality and feasibility of our model. In the future, we
will continue to discuss properties of the proposed model and study approaches
for updating approximations of this model in the dynamic environment.
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Abstract. In this paper, we propose a new type of adaptive weight
based on the definiteness of rough clusters and a hybrid threshold by com-
bining the difference and distance threshold. And then, we refine the algo-
rithm for assigning objects based on the hybrid thresholds
to ensure that the outliers in inline positions and rectangle positions
to be represented reasonably. At last, some experiments are provided to
compare this refined RCM with the original RCM.

Keywords: Rough sets, Clustering, Approximation Accuracy, Hybrid
Threshold.

1 Introduction

Clustering is an unsupervised pattern classification algorithm which can be con-
sidered as a task of dividing a finite data set into several subgroups so that the
objects in the same subgroup are as similar as possible, while the objects in
different subgroups are as dissimilar as possible.

K-means [1] clustering is an important partitive clustering algorithms in which
each object must be assigned to exactly one subgroup. However, in a real-life
data set, there often exist some objects which cannot be assigned into any sub-
group certainly. For dealing with the clusters without crisp boundaries, some
fuzzy clustering algorithms based on the fuzzy sets theory [2], including proba-
bilistic fuzzy c-means clustering (FCM) [3], [4], [5] and possibilistic fuzzy c-means
clustering (PCM), were proposed [6], [7].

The rough sets theory proposed by Palawk [8], [9] is another approach to han-
dle vagueness, uncertainty and inconsistency in data. Lingras, et al. integrated
the rough sets theory and classical k-means clustering algorithm and proposed
the rough c-means clustering (RCM) [12], in which the boundary regions of clus-
ters are introduced to describe the overlapping areas. Later, Peters discussed the
handling of outliers in RCM [18], and evaluated the Lingras RCM with respect
to the objective function, numerical stability, the stability of the clusters and
others, and then suggested some refinements to Lingras RCM algorithm [19].

Recently, some extensions to the original RCM are proposed. In [11], Zhou,
et al. substitute the distances of objects to centers with kernel functions. In [10],

J.T. Yao et al. (Eds.): RSCTC 2012, LNAI 7413, pp. 26–35, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Mitraa, et al. proposed the shadowed c-means clustering. In [13], [14], the rough
sets and fuzzy sets have been integrated with the classical k-means clustering
algorithm. In [15], Maji and Pal proposed a generalized hybrid clustering algo-
rithm termed as rough-fuzzy PCM (RFPCM) by combining the k-means clus-
tering, rough sets, and probabilistic and possibilistic memberships of fuzzy sets.
Furthermore, Yao, et al. pointed out that, strictly speaking, the Lingras RCM
is not part of classical rough sets theory but a two-layer interval clustering ap-
proach [16].

In RCM, some parameters are required, including the threshold for partition-
ing objects and the weights for calculating the centroid of a cluster. Several
resolutions to select these parameters have been proposed. In [17], Zhou, et al.
proposed a RCM algorithm with adaptive parameters. Ma�lyszko and Stepaniuk
introduced the rough entropy, which is proposed in [21] to quantify the roughness
of rough sets, to estimate these parameters during the process of clustering [22].
Mitra proposed the evolutionary RCM algorithm in which a genetic algorithm
is employed to optimize these parameters [20].

However, there are still some problems about the RCM algorithm that have
not been resolved very well. First, the weights of lower and upper approximations
are same for all rough clusters. The properties of different clusters have not been
taken into account. Second, the outliers in data set have not been appropriate
described. In this paper, we propose a refined RCM algorithm with the relative
weights and hybrid threshold.

The remainder of this paper is structured as follows: section 2 summarizes the
basic conceptions of RCM; section 3 proposes the relative weights and hybrid
thresholds and presents the rule for partitioning objects by using the hybrid
threshold. Experiments are given in section 4, and this paper is concluded with
section 5.

2 Rough c-Means Clustering Algorithm

2.1 The Lingras Rough c-Means Clustering

RCM proposed by Lingras et al. is an integration of rough sets theory and
classical k-means algorithm [12]. In RCM, a rough cluster Ci is described as a
lower approximation Ci, which contains the objects definitively belonging to Ci,
and an upper approximation Ci, which contains the objects probably belonging
to Ci. Objects in RCM have the properties as follows:

• An object x can be part of exactly one lower approximation;
• If x ∈ Ci, then x ∈ Ci;

• If object x is not part of any lower approximation, then x belongs to at least
two upper approximations.

A pair of weights wl and wu are introduced to describe the different effects to
cluster centers of the objects in lower and upper approximations respectively.
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The mean function of RCM is as that in Eq.(1):

mj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
wl

∑
x∈Cj

x

|Cj |
+ wu

∑
x∈(Cj−Cj)

x

|Cj − Cj |
Cj − Cj �= ∅

wl

∑
x∈Cj

x

|Cj |
otherwise

(1)

where the wl and wu have wl + wu = 1.
Given threshold ε and object xi, if there exist tow different clusters Cl and

Cm, which have |d(xi, Cl)− d(xi, Cm)| < ε, where the d(xi, Cm) is the distance
from xi to the centroid of cluster Cm, then xi should be assigned to the upper
approximations of both clusters Cl and Cm. Otherwise, xi should be assigned to
the lower approximation of the closest cluster.

As the threshold ε is compared with the difference values between the dis-
tances to different centers, it is also refereed as a difference threshold.

2.2 The Peters Rough C-Means Clustering

In [19], Peters evaluated the Lingras RCM and refined it in several aspects:

• Modify the mean function

Peters suggested to calculate the center of a cluster as follow:

mj = wl

∑
x∈Cj

x

|Cj |
+ wu

∑
x∈Cj

x

|Cj |
(2)

where wl + wu = 1.
When the lower and upper approximations of a cluster are identical, Eq.(2)

boils down to the classical k-means.

• Refine the rule of assigning objects

The algorithm is refined to ensure that each cluster has at least one representative
member.

• Substitute the absolute threshold with a relative threshold

Peters suggested to substitute the absolute threshold with a relative threshold
defined as follow:

T ′ =
{
t :

d(Xn,mk)

d(Xn,mh)
≤ ζ ∧ h �= k

}
(3)
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2.3 The Selection of Parameters

Because RCM heavily depends on the threshold and weights, it is important
to select appropriate values for them. An intuitive approach is to repeat run-
ning RCM on the same data set with different parameters and then compare
the results. In [12], the authors ran RCM with various weights (wl, wu) rang-
ing from (0.95, 0.05) to (0.55, 0.45), and found out that when (wl, wu) was set
to (0.75, 0.25), the result is better than that of other weights. Ma�lyszko and
Stepaniuk introduced rough entropy to select weights [22]. In [17], Zhou, et al.
proposed adaptive weights and threshold calculated as follows:

wl = cos2

(
wl

times
1
n

)
, wu = 1− wl (4)

where times is the iterative numbers and n is the attenuation coefficient. Gen-
erally, n = 2.

ε = ε +
1

timesn
(5)

where n is the attenuation coefficient. Generally, n = 2.

3 The Proposed Rough c-Means Clustering

3.1 The Adaptive Weights Based on Approximation Accuracy

Obviously, a good rough clustering should assign as many as possible objects
into lower approximations. Consider a rough cluster Cj , if most of the objects
in Cj are assigned to the lower approximation Cj , the position of centroid of Cj

should be hold on in the next iteration. At this time, the objects in Cj should
take more important. The more objects are set to Cj , the more important the
Cj should take.

Specially, if all the objects belonging to Cj are assigned to the Cj , the rough
cluster Cj becomes a crisp cluster and the centroid of Cj should be calculated
absolutely depending on the objects in Cj . In this case, the weight for the lower
approximation Cj should be set to 1, and the weight for the upper approximation

Cj should be set to 0.
In other words, for a rough cluster, the more definitive it is, the more im-

portant the lower approximation should take. Accuracy of approximation is an
extensively used measure to describe the certainty of a rough set [9]. So, we
propose a new type of adaptive weights based on the accuracy of rough clusters.

Furthermore, we extend the weights {wl, wu} to vectors−→wl = {w1
l , w

2
l , · · · , wk

l }
and −→wu = {w1

u, w
2
u, · · · , wk

u} relating to the properties of different clusters, where
wj

l + wj
u = 1, i = {1, 2, · · · , k}, and k is the number of clusters.

For a rough cluster Cj = [Cj , Cj ], the accuracy of approximation is calculated
as:

αj =
|C(j)|
|C(j)| (6)
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The lower weight of rough cluster Cj is calculated as:

wj
l = α

1
m
j =

(
|Cj |
|Cj |

) 1
m

(7)

where the m is a constant greater than 1. Generally, m = 2.
The weight of upper approximation Cj is calculated as: wj

u = 1 − wj
l . Obvi-

ously, when Cj = Cj �= ∅, wj
l = 1 and wj

u = 0; when Cj �= ∅ and Cj = ∅, wj
l = 0

and wj
u = 1.

The centroid of cluster Cj is calculated as:

mj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
wj

l

∑
x∈Cj

x

|Cj |
+ wj

u

∑
x∈(Cj−Cj)

x

|Cj − Cj |
Cj − Cj �= ∅

wj
l

∑
x∈Cj

x

|Cj |
otherwise

(8)

The relative importance of the objects in lower approximations increases with
the increasing of m. When m→ +∞, the wj

l → 1. At this time, only the objects
in lower approximations are considered when calculating the centers of clusters.

On the other hand, if m is set to 1, the centroid of cluster Cj is calculated as:

mj =
|Cj |
|Cj |

·

∑
x∈Cj

x

|Cj |
+
|Cj | − |Cj |
|Cj |

·

∑
x∈(Cj−Cj)

x

|Cj | − |Cj |
=

∑
x∈Cj

x

|Cj |
+

∑
x∈(Cj−Cj)

x

|Cj|
=

∑
x∈Cj

x

|Cj |
In this case, the objects in lower approximations take the same importance as the
objects in upper approximations. The Eq. (8) boils down to the mean function
of classical k-means.

3.2 The Hybrid Threshold

In original RCM, an object is assigned to exactly one lower approximation or at
least two upper approximations. However, in some situations, it is more reason-
able to assign an object to only one upper approximation.

Consider the following two-dimensional data set X which has an outlier in
the inline position:

X =

(−1.1 1.0 0.8 0.9 2.2 3.0 2.9 3.2
−1.2 1.2 1.1 1.0 2.3 3.1 3.0 3.1

)
Amuse X is required to be divided into two parts, and the initial centers are set
as follows:

M =

(
1.0 3.0
1.0 3.0

)
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For the absolute difference threshold, we set ε = 1 to ensure that x2, x3, x4 are
assigned into C1, x6, x7, x8 are assigned into C2 and x5 is assigned into C1 and
C2. At this time, x1 is assigned into C1. The result is shown in Fig. 1.

For the relative difference threshold, when ζ = 1.8, we will get the same result
as that shown in Fig. 1. But, if ζ is set to 2.0, x1 will be assigned into C1 and
C2. The result with ζ = 2.00 is shown in Fig. 2.
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Fig. 1. The result for the absolute differ-
ence threshold on X with ε = 1
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Fig. 2. The result for the relative differ-
ence threshold on X with ζ = 2.00

However, as x1 is significantly further from the centers of C1 and C2 than
other objects in C1 and C2, it is more reasonable to assign x1 only to C1.

In this study, we propose a new type of hybrid threshold by integrating the
relative difference and distance thresholds. The steps of assigning objects are as
follows:

Given an object xi, set it to the upper approximation of the closest cluster
Cl. Then, compare the different distance |d(xi, Cl)−|d(xi, Cm)|(l �= m) with the
relative difference threshold ζdiff to determine whether xi should be set to the
upper approximations of any other clusters. If xi only belongs to C l, compare
the distance d(xi, Cl) with the relative distance threshold ζdis to determine if xi

should be assigned into Cl. The detailed process for the relative hybrid threshold
is shown in algorithm 1.

We find that the following relative difference and distance threshold work well.

• The relative difference threshold:

ζdiff =
α

n

n∑
i=1

|d(xi, Cl)− d(xi, Cm)|, l �= m (9)

• The relative distance threshold:

ζdis =
1− α

k

k∑
m=1

d(xi, Cm) (10)
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Input: data set X = {x1, x2, . . . , xn}, prototype of cluster
C = {C1, C2, · · · , Ck}, relative threshold α

Output: interval sets [Cj , Cj ] of each cluster

foreach object xi in the object set X do
Determine the closest cluster Cl to xi

Set xi to the upper approximation Cl

Calculate the relative difference threshold ζdiff as that in Eq.(9)
foreach cluster Cm �= Cl do

if |d(xi, Cm) − d(xi, Cl)| <= ζdiff then

Set xi to the upper approximation Cm

end

end

if xi is not assigned to any other upper approximation except Cl then
Calculate the relative distance threshold ζdis as that in Eq.(10)
if |d(xi, Cl)| <= ζdis then

Set xi to lower approximation Cl

end

end

end

Algorithm 1. The algorithm of assigning objects according to the relative
hybrid threshold

The parameter α lying in [0, 1] denotes the bandwidth of boundary regions
between different clusters. The greater the alpha is, the more objects are assigned
to the boundary regions.

Finally, an example is provided to illustrate how to use this new threshold.
Consider the data set X , x1 is assigned to C1, because C1 is the closest cluster

to x1. Then the relative difference threshold for x1 to C1 is calculated as: ζdiff =
0.5
8
∑8

i=1 |d(xi, C1) − d(xi, C2)| = 1.24, and the relative distance threshold for

x1 to C1 is calculated as: ζdis = 0.5
2
∑2

l=1 d(x1, Cl) = 2.23. So, x1 should be

only assigned to C1 because |d(x1, C1) − d(x1, C2)| = 2.83 > ζdiff = 1.24 and
d(x1, C1) = 3.04 > ζdis = 2.23. This result is shown in Fig. 3. Obviously, it is
more reasonable than those showed in Fig. 1 and Fig. 2.

Furthermore, we can get similar results for the outliers in rectangle positions.
Consider the following two-dimensional data set X ′:

X ′ =
(−1.1 1.0 0.8 0.9 2.2 3.0 2.9 3.2

3.2 1.2 1.1 1.0 2.3 3.1 3.0 3.1

)
We partition the data set X ′ into two rough clusters, and the initial centers of
these clusters are set as:

M ′ =
(
1.0 3.0
1.0 3.0

)
If the relative threshold α is set to 0.5, the result for the relative hybrid thresholds
is shown in Fig. 4.
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Fig. 3. The result for the hybrid threshold
on X with α = 0.5
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Fig. 4. Fig. 4. The result for the hybrid
threshold on X ′ with α = 0.5

4 Experiments

In this section, we compare the proposed RCMwith the Lingras and Peters RCM.
The following experiments are carried out on the same benchmark data sets like
Wine recognition, Iris plants, and Ionosphere. All of them are downloaded from
the UCI machine learning repository http://archive.ics.uci.edu/ml/.

The experimental results are compared in the terms of correctness and accu-
racy. The correctness of rough clustering is defined as the correct rate of lower
approximations, because the objects in the lower approximation of a rough clus-
ter are the representative members of this cluster.

• The correctness of rough clustering:

r =

k∑
j=1

|Cj ∩C∗
j |

k∑
j=1

|Cj |
(11)

Here, Cj is the lower approximation of cluster j, and C∗
j is the set of objects

labeled as class j.
On the other hand, the accuracy describe the classification ability of rough

clustering. A rough clustering with higher correctness and accuracy is better
than that with lower values.
• The accuracy of rough clustering:

a =

k∑
j=1

|Cj |

k∑
j=1

|Cj |
(12)

http://archive.ics.uci.edu/ml/
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As the RCM algorithm run into local optimums, the experiments are repeated 20
times with random initial centers and then calculate the average of correctness
and accuracy to exclude any influence of different selections of the initial centers.

For the Lingras RCM, the parameters are selected as: wl = 0.7, wu = 0.3, and
ε = 0.3. For the Peters RCM, the parameters are selected as: wl = 0.7, wu = 0.3,
and ↪êI= 1.3. For the proposed RCM, the parameters are selected as: ζ = 0.3.
The correctness and accuracy are shown in Table 1.

Table 1. The results for various RCM

Wine Iris Ionosphere

r a r a r a

Lingras RCM 0.7816 0.1453 0.8601 0.2423 0.7314 0.1197
Peters RCM 0.6288 0.7676 0.8771 0.7876 0.6803 0.6373
Proposed RCM 0.7011 0.7701 0.9494 0.7971 0.8340 0.6098

The result shows that the accuracy of Lingras RCM is low. This means that
only a few objects are assigned to lower approximations. As mentioned above,
a good rough clustering should assign as many as possible objects into lower
approximations. So the result for Lingras RCM is worse than other two kinds of
RCM.

Moreover, the comparison between the Peters RCM and the proposed RCM
shows that the RCM with hybrid threshold is better than Peters RCM in all
the three data set only except the accuracy on Ionosphere. This experiment
proves that the proposed RCM is better than Lingras and Peters RCM in most
situations

5 Conclusions

In this paper, we propose a new type of adaptive weights based on the rough
accuracy relating to different rough clusters and a new hybrid threshold by com-
bining the difference and distance thresholds, refine the algorithm for assigning
objects into lower and upper approximations. In this new algorithm, it is possible
to assign an outlier to only one upper approximation which is more reasonable
in some special conditions.

Moreover, some experiments are performed on the same benchmark data sets
to compare the proposed RCM with the Lingras RCM and RCM. The results
prove that it is better than Lingras and Peters RCM in most situations.
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Abstract. The lower and upper approximations are basic concepts in
rough set theory, and the approximations will change dynamically over
time. Incremental methods for updating approximations in rough set
theory and its extension has been received much attention recently. This
paper presents an approach for incrementally updating approximations
of fuzzy rough sets in dynamic fuzzy decision systems when a single
object immigrating and emigrating. Examples are employed to illustrate
the proposed approach.
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1 Introduction

The theory of rough sets was introduced by Pawlak [1] as an extension of set
theory for the study of intelligent systems characterized by insufficient and in-
complete information. In Pawlak’s Rough Set Theory (RST), the values of de-
cision attributes are assumed to be determinate. However, this model fails to
deal with the case that the values of the decision attributes are fuzzy in prac-
tical databases. Therefore, an extended model of RST, rough fuzzy sets, was
proposed to deal with fuzzy values in the information systems [2, 3].

In real-life applications, information systems often vary with time in most
cases. Some researchers have paid attention to the problem of how to handle
updating approximations of RST and its extension incrementally in dynamic
information systems [4–18]. For example, Li et al. proposed approaches for in-
cremental updating approximations and extracting rules when attributes vary in
the information system [4–6]. In rough fuzzy sets, Cheng proposed approaches
for incremental updating approximations when the attribute set evolves over
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time [8]. As for the variation of the object set, some incremental approaches
have been proposed in RST and its extension [9–12]. In addition, Wang et al.
proposed an incremental rule acquisition algorithm based on variable precision
rough set model while inserting new objects into the information system [13].
Zhang et al. proposed an incremental rule acquisition algorithm based on neigh-
borhood rough sets when the object set evolves over time [14]. However, the
incremental approach for updating approximations based on rough fuzzy set
under the variation of objects has not been taken into account until now.

The paper is organized as follows. In Section 2, some basic concepts of RST
and rough fuzzy sets. In Section 3, the updating principles for upper and lower
approximations are also analyzed when object immigrating or emigrating. In
Section 4, some examples are used to illustrate the proposed approach. In Section
5, the paper conclusion and the future research directions are presented.

2 Preliminaries

In this section, we briefly introduce basic concepts of rough sets and rough fuzzy
sets [1, 3].

Definition 1. [1] Let (U,R) be a Pawlak approximation space. The universe
U �= ∅. R ⊆ U × U is an equivalence relation on U . U/R denotes the family of
all equivalence classes R, and [x]R denotes an equivalence class of R containing
an element x ∈ U . For any X ⊆ U , the lower approximation and the upper
approximation of X are defined respectively as follows:

RX = {x ∈ U |[x]R ⊆ X};
RX = {x ∈ U |[x]R ∩X �= ∅}. (1)

In order to describe a fuzzy concept in a crisp approximation space, Dubois and
Prade introduced an extended model of RST, called as rough fuzzy sets [2, 3].

Definition 2. [3] Let (U,R) be a Pawlak approximation space, and R be an
equivalence relation on U . If X is a fuzzy set on U , X(x) denotes the degree
of membership of x in U . The lower and upper approximations of X are a pair
fuzzy sets in U , and their membership functions are defined as follows:

(RX)(x) = inf{X(y)|y ∈ [x]R};
(RX)(x) = sup{X(y)|y ∈ [x]R}. (2)

Example 1. Table 1 is a decision table with condition attributes a, b, c and a
fuzzy decision attribute d. The partitions generated by the attribute a are:

U/a = {E1, E2, E3} = {{x1, x2}, {x3, x4, x5}, {x6, x7, x8}}.
Let X be a fuzzy set on U . X = {x1/0.7, x3/0.7, x4/0.8, x6/0.5, x7/0.2, x8/0.6}.

According to Definiton 1, without considering the degrees of membership, the
lower and upper approximations of X on R = {a} can be obtained.
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Table 1. Decision table with a fuzzy decision attribute

U a b c fuzzy attribute d
x1 2 2 1 0.7
x2 2 2 1 1
x3 3 3 1 0.7
x4 3 3 2 0.8
x5 3 2 2 0
x6 1 1 4 0.5
x7 1 2 3 0.2
x8 1 1 3 0.6

RX = {x6, x7, x8};
RX = {x1, x2, x3, x4, x5, x6, x7, x8}.

According to Definiton 2, the degrees of membership are calculated as follows.

(RX)(x6) = inf{X(y)|y ∈ [x6]R} = 0.5 ∧ 0.2 ∧ 0.6 = 0.2;

(RX)(x7) = (RX)(x8) = (RX)(x6);

(RX)(x1) = (RX)(x2) = sup{X(y)|y ∈ [x1]R} = 0.7 ∨ 1 = 1;

(RX)(x3) = (RX)(x5) = (RX)(x4) = 0.7 ∨ 0.8 ∨ 0 = 0.8;

(RX)(x6) = (RX)(x7) = (RX)(x8) = 0.5 ∨ 0.2 ∨ 0.6 = 0.6.

Therefore, the lower and upper approximations of X on R = {a} are as follows.

RX = {x6/0.2, x7/0.2, x8/0.2};
RX = {x1/1, x2/1, x3/0.8, x4/0.8, x5/0.8, x6/0.6, x7/0.6, x8/0.6}.

3 Incremental Methods for Updating Approximations of
Rough Fuzzy Sets under the Variation of Objects

Wediscuss the variation of approximations in FuzzyDecision Systems (FDS) when
the object set evolves over time. Given a FDS = (U,C ∪D,V, f) at time t, U �= ∅
andC∩D = ∅. For each fuzzy setX ⊆ U , the lower and upper approximations are
denoted byRC(X) and RC(X), respectively. Let x denote the object immigrating

into U at time t+1, E be the partition which x immigrates to and E
′
= E ∪{x}.

Let x̃ be the object emigrating out U , Ẽ be the partition which x̃ emigrate from
and Ẽ

′
= Ẽ − {x̃}. After immigrating and emigrating objects, the FDS will be

changed into FDS′=(U
′
, C

′ ∪ D
′
, V

′
, f

′
). For each fuzzy set X ⊆ U

′
, the lower

and upper approximations are denoted by R
′
CX and R

′
CX , respectively.

3.1 The Immigration of a New Object

Suppose one object x enters into the FDS at time t + 1. So U
′
= U ∪ {x}.

Proposition 1. When a new object x enters into FDS = (U,C∪D,V, f), c ∈ C.
One of the following results holds:
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(1) If ∃x ∈ U, f(x, c) = f(x, c), x cannot form a new equivalence class;
(2) If ∀x ∈ U, f(x, c) �= f(x, c), x can form a new equivalence class.

Proposition 2. For R
′
CX, if x cannot form a new class, x ∈ E, then

R
′
CX =

⎧⎪⎨⎪⎩
RCX ∪ x : E

′
⊆ X

RCX − E : E ⊆ X and E
′
� X

RCX : otherwise

where (R
′
CX)(xi) =

{
(RCX)(xi) ∧X(x) : xi ∈ E

′

(RCX)(xi) : otherwise
(3)

Proposition 3. For R
′
CX, if x cannot form a new class, then

R
′
CX =

{
RCX ∪E

′
: E

′
∩X �= ∅

RCX : otherwise

where (R
′
CX)(xi) =

{
(RCX)(E) ∨X(x) : xi ∈ E

′

(RCX)(xi) : otherwise
(4)

Proposition 4. For R
′
CX and R

′
CX, if x form a new class, then

R
′
CX =

{
RCX ∪ {x} : x ∈ X
RCX : otherwise

,R
′
CX =

{
RCX ∪ {x} : x ∈ X
RCX : otherwise

where (RCX)(x) = (RCX)(x) = X(x), ifx ∈ X. (5)

The detailed process for updating approximations of a fuzzy concept when a
single object immigrating is outlined in Algorithm 1.

3.2 The Emigration of One Object

Suppose there is one object x̃ that gets out the FDS at time t+1. So U
′
= U−{x̃}.

Proposition 5. When one object x̃ gets out of FDS = (U,C ∪D,V, f), c ∈ C.
One of the following results holds:

(1) If v = f(x̃, c), |Ẽ| = 1, x̃ can eliminate an equivalence class with v;

(2) If v = f(x̃, c), |Ẽ| > 1, x̃ can not eliminate an equivalence class.

Proposition 6. For R
′
CX, if x̃ cannot eliminate an equivalence class, then

R
′
CX =

{
RCX ∪ Ẽ

′
: Ẽ

′ ⊆ X and Ẽ � X
RCX : otherwise

where,

(R
′
CX)(xi) =

{
inf{X(y)|y ∈ Ẽ

′} : xi ∈ Ẽ
′
and X(x̃) ≤ (RCX)(xi)

(RCX)(xi) : otherwise
(6)
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Algorithm 1. The Algorithm for Updating Approximations of a Fuzzy
Concept when a Single Object Immigrating

Input:
(1) FDS=(U,C ∪D,V, f) at time t.
(2) x is the immigrating object.
(3) RCX,RCX .

Output:

R
′
CX,R

′
CX at time t + 1.

Method:
01 Find the class E which x will immigrate to. If not find, E = null;

02 E
′
= E ∪ {x};

03 if (E = null and x ∈ X)

04 R
′
CX = RC(X) ∪ {x}, R′

CX = RC(X) ∪ {x};
05 else if (E = null)

06 R
′
CX = RC(X), R

′
CX = RC(X);

07 else

08 if (E
′
⊆ X)

09 R
′
CX = RC(X) ∪ {x};

10 else if (E ⊆ X)
11 R

′
CX = RC(X)− E;

12 else R
′
CX = RC(X);

13 if (E
′
∩X �= ∅)

14 R
′
CX = RC(X) ∪ E

′
;

15 else R
′
CX = RCX ;

16 end if

17 for each xi ∈ E
′

18 (R
′
CX)(xi) = (RCX)(E) ∧X(x);

19 (R
′
CX)(xi) = (RCX)(E) ∨X(x);

20 end for

21 for each xi /∈ E
′

22 (R
′
CX)(xi) = (RCX)(xi);

23 (R
′
CX)(xi) = (RCX)(xi);

24 end for
25 output R

′
CX,R

′
CX ;

Proposition 7. For R
′
CX, if x̃ cannot eliminate an equivalence class, then

R
′
CX =

⎧⎨⎩
RCX − Ẽ : x̃ ∈ X and Ẽ

′ ∩X = ∅
RCX − {x̃} : Ẽ′ ∩X �= ∅
RCX : otherwise

, where

(R
′
CX)(xi) =

{
sup{X(y)|y ∈ Ẽ

′} : xi ∈ Ẽ
′
and X(x̃) ≥ (RCX)(xi)

(RCX)(xi) : otherwise
(7)
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Proposition 8. For R
′
CX and R

′
CX, if x̃ can eliminate an equivalence class,

then

R
′
CX =

{
RCX − {x̃} : x̃ ∈ X
RCX : otherwise

, R
′
CX =

{
RCX − {x̃} : x̃ ∈ X
RCX : otherwise

(8)

The detailed process for updating approximations of a fuzzy concept when a
single object emigrating is outlined in Algorithm 2.

4 Illustrations

(1) First, we consider the case when a single object immigrates into FDS.

Example 2. In Table 1, a new object x = (x9, 1, 1, 4, 0.7) immigrates into
the FDS, shown as Table 2. U

′
/a = {E′

1, E
′
2, E

′
3} = {E1, E2, E3 ∪ {x9}} =

{{x1, x2}, {x3, x4, x5}, {x6, x7, x8, x9}}. Hence, x cannot form a new class.

Table 2. The immigration of a single object

U a b c fuzzy attribute d
x1 2 2 1 0.7
x2 2 2 1 1
x3 3 3 1 0.7
x4 3 3 2 0.8
x5 3 2 2 0
x6 1 1 4 0.5
x7 1 2 3 0.2
x8 1 1 3 0.6

−− > x9 1 1 4 0.7

According to Proposition 2,

(R
′
CX)(x9) = (RC(X))(E3) ∧X(x9) = 0.2 ∧ 0.7 = 0.2;

(R
′
CX)(x6) = (R

′
CX)(x7) = (R

′
CX)(x8) = (R

′
CX)(x9).

(R
′
CX)(x9) = (RC(X))(E3) ∨X(x9) = 0.6 ∨ 0.7 = 0.7;

(R
′
CX)(x6) = (R

′
CX)(x7) = (R

′
CX)(x8) = (R

′
CX)(x9).

Therefore,

(R
′
CX) = {x6/0.2, x7/0.2, x8/0.2, x9/0.2};

(R
′
CX) = {x1/1, x2/1, x3/0.8, x4/0.8, x5/0.8, x6/0.7, x7/0.7, x8/0.7, x9/0.7}.

Example 3. Shown as Table 3, another new object x = (x10, 4, 1, 4, 0.7) immi-
grates into the FDS based on Example 2.

U
′
/a = {E1, E2, E3, E

′
4} = {{x1, x2}, {x3, x4, x5}, {x6, x7, x8, x9}, {x10}}. x

forms a new class E
′
4. Let x10 ∈ X .
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Algorithm 2. the Algorithm for Updating Approximations of a Fuzzy
Concept when a Single Object Emigrating

Input:
(1) FDS = (U,C ∪D,V, f) at time t.
(2) x̃ is the object that gets out the FDS.
(3) RC(X), RC(X).

Output:

R
′
CX,R

′
CX at time t + 1

Method:
01 Obtain the class Ẽ which x̃ emigrates from, Ẽ

′
= Ẽ − {x̃};

02 if (Ẽ
′
= null and x̃ ∈ X)

03 R
′
CX = RC(X)− {x̃}, R

′
CX = RC(X)− {x̃};

04 else if (Ẽ
′
= null)

05 R
′
CX = RC(X), R

′
CX = RC(X);

06 else
07 if (Ẽ

′ ⊆ X and Ẽ � X)

08 R
′
CX = RC(X) ∪ Ẽ

′
;

09 if (X(x̃) ≤ RCX(Ẽ))

10 R
′
CX(Ẽ

′
) = inf{X(y)|y ∈ Ẽ

′};
11 else
12 R

′
CX(Ẽ

′
) = RCX(Ẽ);

13 else R
′
CX = RC(X);

14 end if
15 else
16 if (x̃ ∈ X and Ẽ

′ ∩X = ∅)
17 R

′
CX = RC(X)− Ẽ;

18 else if (Ẽ
′ ∩X �= ∅)

19 R
′
CX = RC(X)− {x̃};

20 if (X(x̃) ≥ RCX(Ẽ))

21 R
′
CX(Ẽ

′
) = sup{X(y)|y ∈ Ẽ

′};
22 else
23 R

′
CX(Ẽ

′
) = RCX(Ẽ);

24 else R
′
CX = RCX

25 end if
26 end if
27 output R

′
CX,R

′
CX ;

According to Proposition 4,

(R
′
CX)(x10) = X(x10) = 0.7, (R

′
CX)(x10) = X(x10) = 0.7.
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Table 3. The immigration of a single object

U a b c fuzzy attribute d
x1 2 2 1 0.7
x2 2 2 1 1
x3 3 3 1 0.7
x4 3 3 2 0.8
x5 3 2 2 0
x6 1 1 4 0.5
x7 1 2 3 0.2
x8 1 1 3 0.6
x9 1 1 4 0.7

−− > x10 4 1 4 0.7

Therefore,

(R
′
CX) = {x6/0.2, x7/0.2, x8/0.2, x9/0.2, x10/0.7};

(R
′
CX) = {x1/1, x2/1, x3/0.8, x4/0.8, x5/0.8, x6/0.7, x7/0.7, x8/0.7, x9/0.7,

x10/0.7}.
(2) We illustrate the phase of a single object emigrating from the FDS.

Example 4. In Table 1, an object x̃ = x1 emigrates from the FDS, shown as Ta-
ble 4. U

′
/a = {E′

1, E
′
2, E

′
3} = {E1 − {x1}, E2, E3} = {{x2}, {x3, x4, x5}, {x6, x7,

x8}}. x̃ can not eliminate a class.

Table 4. The emigration can not eliminate a class

U a b c fuzzy attribute d
x1 2 2 1 0.7
x2 2 2 1 1
x3 3 3 1 0.7
x4 3 3 2 0.8
x5 3 2 2 0
x6 1 1 4 0.5
x7 1 2 3 0.2
x8 1 1 3 0.6

According to Proposition 6, Because x1 ∈ X,E1 � X,R
′
CX = RCX, and {E1 −

x1} ∩X = ∅, R′
CX = RCX − E1. We have,

R
′
CX = {x6/0.2, x7/0.2, x8/0.2};

R
′
CX = {x3/0.8, x4/0.8, x5/0.8, x6/0.6, x7/0.6, x8/0.6}.

Example 5. Shown as Table 5, another object x̃ = x2 emigrates from the FDS
based on Example 4. We have, U

′
/a = {E′

2, E
′
3} = {E2, E3} = {{x3, x4, x5},

{x6, x7, x8}}. x̃ eliminates class E1.
According to Proposition 8, we have

(R
′
CX) = {x6/0.2, x7/0.2, x8/0.2};

(R
′
CX) = {x3/0.8, x4/0.8, x5/0.8, x6/0.6, x7/0.6, x8/0.6}.
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Table 5. The emigration can not eliminate a class

U a b c fuzzy attribute d
x2 2 2 1 1
x3 3 3 1 0.7
x4 3 3 2 0.8
x5 3 2 2 0
x6 1 1 4 0.5
x7 1 2 3 0.2
x8 1 1 3 0.6

5 Conclusions

In the FDS, the objects generally need to be immigrated or emigrated. Updating
principles of upper and lower approximations of fuzzy rough sets in the dynamic
FDS were discussed in this paper. The corresponding algorithms for updating
approximations incrementally were then presented. Several examples are used to
illustrates the propose methods. Our future research work will focus on the case
of the variation of multiple objects and validation of the proposed algorithms in
real data sets.
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Abstract. The main objective of our research was to test whether the
probabilistic approximations should be used in rule induction from in-
complete data. Probabilistic approximations, well known for many years,
are used in variable precision rough set models and similar approaches
to uncertainty.

For our experiments we used five standard data sets. Three data sets
were incomplete to begin with and two data sets had missing attribute
values that were randomly inserted. We used two interpretations of miss-
ing attribute values: lost values and “do not care” conditions. Among
these ten combinations of a data set and a type of missing attribute
values, in one combination the error rate (the result of ten-fold cross
validation) was smaller than for ordinary approximations; for other two
combinations, the error rate was larger than for ordinary approximations.

1 Introduction

One of the fundamental concepts of rough set theory is an idea of lower and
upper approximations. A generalization of such approximations, a probabilistic
approximation, introduced in [1], was applied in variable precision rough set
models, Bayesian rough sets and decision-theoretic rough set models [2–10]. The
probabilistic approximation is associated with some parameter α (interpreted
as a probability). If α is very small, say 0.001 (this number depends on the
size of the data set), the probabilistic approximation is reduced to the upper
approximation; if α is equal to 1.0, the probabilistic approximation becomes
the lower approximation. The problem is how useful are proper probabilistic
approximations (with α larger than 0.001 but smaller than 1.0). We studied
usefulness of proper probabilistic approximations for inconsistent data sets [11],
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where we concluded that proper probabilistic approximations are not frequently
better than ordinary lower and upper approximations.

In this paper we study usefulness of the proper probabilistic approximations
applied for rule induction from incomplete data. We will use two interpretations
of missing attribute values, as lost values (the original attribute values are not
longer accessible, for details see [12, 13]) and as “do not care” conditions (the
original values were irrelevant, see [14, 15]).

For data sets with missing attribute values there exist many definitions of ap-
proximations [16], we use one of the most successful options (from the view point
of rule induction) called concept approximations [16]. Concept approximations
were generalized to concept probabilistic approximations in [17].

Our experiments on five data sets with two types of missing attribute values
(altogether ten combinations) show that the proper concept probabilistic ap-
proximations are not very useful for rule induction from incomplete data sets:
for one combination the error rate (result of ten-fold cross validation) was smaller
than for ordinary concept approximations, for two combinations such error rate
was larger than for ordinary concept approximations, for remaining seven com-
binations the error rate was neither smaller nor larger.

2 Incomplete Data Sets

The data sets are presented in the form of a decision table. Rows of the decision
table represent cases, while columns are labeled by variables. The set of all cases
will be denoted by U . In Table 1, U = {1, 2, 3, 4, 5, 6, 7, 8}. Independent
variables are called attributes and a dependent variable is called a decision and
is denoted by d. The set of all attributes will be denoted by A. In Table 1, A =
{Wind, Humidity, Temperature}. The value for a case x and an attribute a will
be denoted by a(x).

In this paper we distinguish between two interpretations of missing attribute
values: lost values, denoted by “?”, and “do not care” conditions, denoted by
“*”. Table 1 present an incomplete data set affected by both lost values and “do
not care” conditions.

One of the most important ideas of rough set theory [18, 19] is an indiscerni-
bility relation, defined for complete data sets. Let B be a nonempty subset of
A. The indiscernibility relation R(B) is a relation on U defined for x, y ∈ U as
follows:

(x, y) ∈ R(B) if and only if ∀a ∈ B (a(x) = a(y)).

The indiscernibility relation R(B) is an equivalence relation. Equivalence classes
of R(B) are called elementary sets of B and are denoted by [x]B . A subset of U
is called A-definable if it is a union of elementary sets.

The set X of all cases defined by the same value of the decision d is called
a concept. For example, a concept associated with the value no of the decision
Trip is the set {1, 3, 5, 7}. The largest B-definable set contained in X is called
the B-lower approximation of X , denoted by appr

B
(X), and defined as follows

∪{[x]B | [x]B ⊆ X}
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Table 1. A decision table

Attributes Decision

Case Wind Humidity Temperature Trip

1 ? high high no

2 low low high yes

3 low * low no

4 * low low yes

5 high high ? no

6 low ? * yes

7 high high low no

8 high low low yes

while the smallest B-definable set containing X , denoted by apprB(X) is called
the B-upper approximation of X , and is defined as follows

∪{[x]B | [x]B ∩X �= ∅}.

For a variable a and its value v, (a, v) is called a variable-value pair. A block of
(a, v), denoted by [(a, v)], is the set {x ∈ U | a(x) = v} [20].

For incomplete decision tables the definition of a block of an attribute-value
pair is modified in the following way.

– If for an attribute a there exists a case x such that a(x) = ?, i.e., the
corresponding value is lost, then the case x should not be included in any
blocks [(a, v)] for all values v of attribute a,

– If for an attribute a there exists a case x such that the corresponding value is
a “do not care” condition, i.e., a(x) = ∗, then the case x should be included
in blocks [(a, v)] for all specified values v of attribute a.

For the data set from Table 1 the blocks of attribute-value pairs are:

[(Wind, low)] = {2, 3, 4, 6},
[(Wind, high)] = {4, 5, 7, 8},
[(Humidity, high)] = {1, 3, 5, 7},
[(Humidity, low)] = {2, 3, 4, 8},
[(Temperature, high)] = {1, 2, 6},
[(Temperature, low)] = {3, 4, 6, 7, 8}.

For a case x ∈ U and B ⊆ A, the characteristic set KB(x) is defined as the
intersection of the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in
the following way:

– If a(x) is specified, then K(x, a) is the block [(a, a(x))] of attribute a and its
value a(x),
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– If a(x) =? or a(x) = ∗ then the set K(x, a) = U , where U is the set of all
cases.

For Table 1 and B = A,

KA(1) = {1}, KA(5) = {5, 7},
KA(2) = {2}, KA(6) = {2, 3, 4, 6},
KA(3) = {3, 4, 6}, KA(7) = {7},
KA(4) = {3, 4, 8}, KA(8) = {4, 8}.
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Fig. 1. Error rates for data sets Echocardiogram, Hepatitis, and House of representatives
with lost values

Note that for incomplete data there is a few possible ways to define approxima-
tions [16], we use concept approximations [17]. A B-concept lower approximation
of the concept X is defined as follows:

BX = ∪{KB(x) | x ∈ X,KB(x) ⊆ X}.
A B-concept upper approximation of the concept X is defined as follows:

BX = ∪{KB(x) | x ∈ X,KB(x) ∩X �= ∅} =
= ∪{KB(x) | x ∈ X}.

For Table 1, A-concept lower and A-concept upper approximations of the two
concepts: {1, 3, 5, 7} and {2, 4, 6, 8} are:
A{1, 3, 5, 7} = {1, 5, 7}, A{1, 3, 5, 7} = {1, 3, 4, 5, 6, 7},
A{2, 4, 6, 8} = {2, 4, 8}, A{2, 4, 6, 8} = {2, 3, 4, 6, 8}.
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Fig. 2. Error rates for data sets Echocardiogram, Hepatitis, and House of representatives
with “do not care” conditions

3 Probabilistic Approximations

In this paper we explore all probabilistic approximations that can be defined for a
given concept X . For completely specified data sets a probabilistic approximation
is defined as follows

apprα(X) = ∪{[x] | x ∈ U, P (X | [x]) ≥ α},
where [x] is [x]A and α is a parameter, 0 < α ≤ 1, see [17]. For discussion on how
this definition is related to the value precision asymmetric rough sets see [11, 17].

Note that if α = 1, the probabilistic approximation becomes the standard
lower approximation and if α is small, close to 0, in our experiments it was
0.001, the same definition describes the standard upper approximation.

For incomplete data sets, a B-concept probabilistic approximation is defined
by the following formula [17]

∪{KB(x) | x ∈ X, Pr(X |KB(x)) ≥ α}.
For simplicity, we will denote KA(x) by K(x) and the A-concept probabilistic
approximation will be called a probabilistic approximation.

For Table 1 and the concept X = [(Trip, no)] = {1, 3, 5, 7}, for any charac-
teristic set K(x), x ∈ U , conditional probabilities P (X |K(x)) are presented in
Table 2.

Thus, for the concept {1, 3, 5, 7} we may define only two distinct probabilistic
approximations:

appr1.0({1, 3, 5, 7}) = {1, 5, 7} and appr0.333({1, 3, 5, 7}) = {1, 3, 4, 5, 6, 7}.
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Table 2. Conditional probabilities

K(x) {1} {5, 7} {7} {3, 4, 6} {3, 4, 8} {2, 3, 4, 6} {2} {4, 8}

P ({1, 3, 5, 7} | K(x)) 1.0 1.0 1.0 0.333 0.333 0.25 0 0

Table 3. Data sets used for experiments

Data set Number of Percentage of

cases attributes concepts missing attribute values

Echocardiogram 74 7 2 4.05

Hepatitis 155 19 2 5.67

House of Representatives 434 16 2 5.40

Image segmentation 210 19 7 70

Lymphography 148 18 4 70

4 Experiments

For our experiments we used five real-life data sets that are available on the
University of California at Irvine Machine Learning Repository. Two of these
data sets (Image segmentation and Lymphography were originally completely
specified, i.e., they did not contain any missing attribute values. However, we
replaced, randomly, 70% of existing attribute values by signs of missing attribute
values, first by lost values and then we converted lost values to “do not care”
conditions, see Table 3.

For rule induction we used the MLEM2 (Modified Learning from Examples
Module version 2) rule induction algorithm, a component of the LERS (Learning
from Examples based on Rough Sets) data mining system [20, 21].

The main objective of our research was to test whether proper probabilistic
approximations are better than concept lower and upper approximations. We
conducted experiments of a single ten-fold cross validation starting with 0.001
and then increasing the parameter α by 0.1 until reaching 1.0. For a given data
set, in all of these eleven experiments we used identical ten pairs of larger (90%)
and smaller (10%) data sets. Results of our experiments are shown in Figures
1–4. If during such a sequence of eleven experiments, the error rate was smaller
than the minimum of the error rates for lower and upper approximations or
larger than maximum of the error rated for lower and upper approximations, we
selected more precise values of the parameter α and we conducted additional 30
experiments of ten-fold cross validation.

For example, for the Echocardiogram data set, affected by lost values, denoted
by “?”, the error rate was constant, so there is no need for additional 30 exper-
iments, see Figure 1. Similarly, for the Hepatitis data set, also affected by lost
values. But for the House of representative data set, affected by lost values, it is
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clear that we should look more closely at the parameter α around the values 0.65
and 0.85. Results are presented in Table 4. Using the standard statistical test for
the difference between two averages (two tails and the significance level of 5%)
we may conclude that there is no statistically significant difference between the
probabilistic approximation associated with α = 0.65 and the upper approxima-
tion (α = 0.001). The same test indicates that the probabilistic approximation,
associated with α = 0.85 is worse than the upper approximation (α = 0.001),
as well as the lower approximation (α = 1.0). Results of all remaining 30 exper-
iments of ten-fold cross validation are presented in Tables 5–8.

In particular, for the House of representatives data set with “do not car”
conditions as missing attribute values, for α = 0.65, the corresponding proba-
bilistic approximation is worse than both lower (α = 1.0) and upper (α = 0.001)
approximations. On the other hand, for the Image segmentation data set with
“do not care” conditions, for α = 0.2, the error rate is significantly better than
for both lower and upper approximations. In experiments reported in this paper
this is the only situation of this type. For remaining data sets, no matter with
lost values or “do not care” conditions, probabilistic approximations for α be-
tween 0.1 and 0.9 are neither worse than the worst for the two: lower and upper
approximations nor better than the best of the two.
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Table 4. Results of 30 experiments of ten-fold cross validation for House of represen-
tatives, lost values

α Error rate Standard deviation

0.001 6.59 0.6159

0.65 6.42 0.6396

0.85 7.31 0.7055

1.0 5.44 0.5885

Table 5. Results of 30 experiments of ten-fold cross validation for House of represen-
tatives, “do not care” conditions

α Error rate Standard deviation

0.001 5.97 0.5147

0.65 10.14 0.6819

1.0 9.72 0.7584

Table 6. Results of 30 experiments of ten-fold cross validation for Image segmentation,
lost values

α Error rate Standard deviation

0.3 65.56 2.6567

1.0 63.44 2.5982

Table 7. Results of 30 experiments of ten-fold cross validation for Image segmentation,
“do not care” conditions

α Error rate Standard deviation

0.001 85.20 1.1525

0.2 84.20 1.1191

Table 8. Results of 30 experiments of ten-fold cross validation for Lymphography, lost
values

α Error rate Standard deviation

0.001 44.84 2.1767

0.3 44.64 2.4647

0.4 41.24 2.1031

1.0 37.61 2.2227
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5 Conclusions

As follows from our experiments, the proper probabilistic approximations (ones
with α between 0.1 and 0.9) were neither better nor worse than ordinary lower
(α = 1.0) and upper (α = 0.001) approximations, except for three situations. In
one of them (the Image segmentation data set with “do not care” conditions was
better than ordinary approximations, in other two situations (both for the House
of representatives data set, with lost values and “do not care” conditions) the
proper probabilistic approximations were worse than ordinary approximations.
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Abstract. In this paper, we consider different ways of handling missing
values in ordinal classification problems with monotonicity constraints
within Dominance-based Rough Set Approach (DRSA). We show how
to induce classification rules in a way that has desirable properties. Our
considerations are extended to an experimental comparison of the pos-
tulated rule classifier with other ordinal and non-ordinal classifiers.
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1 Introduction

In data mining concerning classification problems, it is quite common to have
missing values for attributes describing objects [15]. Thus, different ways of han-
dling missing values, or more generally, incomplete data, have been proposed.
The usual approach is to assume that some value(s) can represent correctly the
missing one. Then, the missing values are replaced in some way by so-called rep-
resentative values. In this case, the question is how to avoid data distortion [15].

Rough set approach to handling missing values avoids making changes in
the data. The problem is addressed by a proper definition of the relation em-
ployed to form granules of knowledge. Extensions of the rough set model [18],
that introduce relations forming granules of indiscernible or similar objects, in-
clude [14,13,17,20].

In this work, we focus on extensions of the Dominance-based Rough Set Ap-
proach (DRSA) [11,19] to handling missing values in ordinal classification prob-
lems. In these problems, decision classes are ordered. Then, it is often meaningful
to consider monotonicity constraints (monotonic relationships) between ordered
class labels and values of attributes expressed on ordinal or cardinal (numeri-
cal) scales [11,19]. The constraints result from background knowledge, e.g., “the
higher the service quality and the lower the price, the higher the customer sat-
isfaction” [12]. Objects violating such constraints are called inconsistent.

Some propositions of handling missing values in DRSA were given in [7,9,10].
We review these approaches and consider some new ones. Then, we present an
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experimental validation of a classifier that employs the approach considered to
be the best with respect to (w.r.t.) some desirable properties.

The rest of this paper is structured as follows. In Section 2, we present ways of
handling missing values in DRSA. Section 3 explains how decision rules can be
induced and applied in the presence of missing values. In Section 4, we present
results of the experimental validation, and discussion of these results.

2 Different Ways of Handling Missing Values in DRSA

In this section, we briefly remind basics of DRSA [11,19], and then, we discuss
some alternative ways of extending this approach to handle missing values.

2.1 Basics of DRSA

Data analyzed by DRSA concern a finite universe U of objects described by
ordinal attributes from a finite set A. Moreover, A is divided into disjoint sets of
condition attributes C and decision attributes Dec. The value set of q ∈ C∪Dec

is denoted by Vq, and VP =
|P |∏
q=1

Vq is called P -evaluation space, where P ⊆ C.

For simplicity, we assume that Dec = {d}. Values of d are ordered class labels.
We consider a given set P ⊆ C of attributes. To simplify notation, where

possible, we will skip P in all expressions valid for any P ⊆ C. Moreover, for
any qi ∈ P , we denote by qi(y) the evaluation of object y ∈ U on attribute qi,
and we denote by �qi the weak preference relation over U confined to qi.

Decision attribute d makes a partition of set U into n disjoint sets of objects,
called decision classes. We denote this partition by X = {X1, . . . , Xn}.

When there exists a monotonic relationship between evaluation of objects on
condition attributes and their class labels, then, in order to make a meaning-
ful representation of classification decisions, one has to consider the dominance
relation D in the evaluation space. Given y, z ∈ U , object y dominates object
z (and z is dominated by y), denoted by yDz, if and only if (iff) y �qi z, for
each qi ∈ P . For any object y ∈ U , two dominance cones can be calculated in
the P -evaluation space: positive dominance cone D+(y) = {z ∈ U : zDy}, and
negative dominance cone D−(y) = {z ∈ U : yDz}.

The class labels are ordered, such that if i < j, then class Xi is considered to
be worse than Xj. Moreover, rough approximations concern unions of decision
classes: upward unions X≥

i =
⋃

t≥i Xt, and downward unions X≤
i =

⋃
t≤i Xt,

where i = 1, . . . , n (technically, X≥
1 , X≤

n are not considered as X≥
1 = X≤

n = U).
To simplify notation, where possible, we use a symbol X to denote a set of

objects from X≥
i or X≤

i (when both unions of classes are considered jointly).
We denote by ¬X the set U \ X . Moreover, we denote by E(y) the dominance
cone “concordant” with X , and by E−1(y) the dominance cone “discordant” with
X . Precisely, if in a given equation X≥

i is substituted for X , then D+(y) should
be substituted for E(y), and D−(y) should be substituted for E−1(y); if in the
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same equation X≤
i is substituted for X , then D−(y) should be substituted for

E(y), and D+(y) should be substituted for E−1(y). Finally, a missing attribute
value is denoted by ∗.

In the classical DRSA, the lower approximation of set X is defined using strict
inclusion relation between dominance cone E(y) and approximated set X :

X = {y ∈ U : E(y) ⊆ X}. (1)

Moreover, the upper approximation of set X is defined as X = {y ∈ U :
E−1(y) ∩X �= ∅}. Definition (1) appears to be too restrictive in practical appli-
cations. It often leads to empty lower approximations of X≥

i and X≤
i , preventing

generalization of data in terms of decision rules. Therefore, we employ Variable
Consistency DRSA (VC-DRSA) [4] which is a probabilistic extension of the clas-
sical DRSA. We use object consistency measure εX : U → [0, 1], introduced in
[4], defined as:

εX(y) =
|E(y) ∩ ¬X |

|¬X | . (2)

Value εX(y) reflects the consistency of object y w.r.t. X (or, the evidence for
the membership of y to X). εX is a cost-type measure, which means that value
zero denotes full consistency and the greater the value, the less consistent is a
given object. Then, the probabilistic lower approximation of set X is defined as:

X = {y ∈ X : εX(y) ≤ θX}, (3)

where threshold θX ∈ [0, 1). When θX = 0, approximation (3) boils down to
approximation (1). Probabilistic upper approximation of X is defined using com-
plementarity: X = U \ ¬X. In the following, we drop the word “probabilistic”.

In [4], we introduced four monotonicity properties required from an object con-
sistency measure: (m1) – monotonicity w.r.t. growing set of attributes, (m2) –
monotonicity w.r.t. growing union of classes, (m3) – monotonicity w.r.t. super-
union of classes, and (m4) – monotonicity w.r.t. dominance relation. We also
proved that εX has properties (m1), (m2), and (m4), sufficient in practical ap-
plications.

2.2 Extensions of DRSA to Handle Missing Values

The presence of missing values requires a proper adaptation of DRSA by redef-
inition of the dominance relation D. Once we fix this definition, we can proceed
in a “usual” way by calculating approximations of unions of classes, and by in-
duction of decision rules from these approximations [5,11,19]. We review some
of the redefinitions of the dominance relation which are known from literature
and we discuss a few other possibilities.

In the literature concerning rough set approaches to handling missing at-
tribute values in classification data (see, e.g., [14,13]), one can find a proposal
of a semantic distinction of missing values into “lost” and “do not care” values.
The corresponding semantics is then used to define indiscernibility or similarity
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relation that is used to compare objects. Although it would be possible to adapt
this distinction to the case of ordinal classification problems with monotonicity
constraints, this would require additional knowledge about the nature of miss-
ing values in each particular problem. In this paper, instead of distinguishing a
priori the semantics of the missing values, we propose to consider some desirable
properties that dominance-based rough set approaches should have when han-
dling missing values of any origins. Some of these properties involve, however,
one of the two semantics, and this will be specified when characterizing par-
ticular approaches. These approaches, resulting from different definitions of the
dominance relation, are denoted by DRSA-mvi (where i stands for the version
id). The considered properties are:

1. Property S (reflecting a specific kind of symmetry): DRSA-mvi has property
S iff z ∈ D+(y) ⇔ y ∈ D−(z), for any y, z ∈ U .

2. Property R (reflecting reflexivity of dominance relation): DRSA-mvi has
property R iff yDy, for any y ∈ U .

3. Property T (reflecting transitivity of dominance relation): DRSA-mvi has
property T iff wDy ∧ yDz ⇒ wDz, for any w, y, z ∈ U .

4. Property P (reflecting precisiation of data): DRSA-mvi has property P iff
the lower approximations of unions X≥

i , X≤
i , i = 1, . . . n, do not shrink when

any missing attribute value is substituted by some not missing value.
5. Property RI (rough inclusion): DRSA-mvi has property R iff

X ⊆ X ⊆ X, for any X ⊆ U .
6. Property C (complementarity): DRSA-mvi has property C iff

X = U \ ¬X, for any X ⊆ U .
7. Property M1 (monotonicity w.r.t. growing set of attributes): DRSA-mvi has

property M1 iff the lower approximations of unions X≥
i , X≤

i , i = 1, . . . , n,
do not shrink when set P is extended by new attributes.

8. Property M2 (monotonicity w.r.t. growing union of classes): DRSA-mvi has
property M2 iff for any set X ⊆ U , the lower approximation of X does not
shrink when this set is augmented by new objects.

9. Property M3 (monotonicity w.r.t. super-union of classes): DRSA-mvi has
property M3 iff given any two upward union of classes X≥

i , X≥
j , with 1 ≤

i < j ≤ n, there is X≥
i ⊇ X≥

j , and, moreover, given any two downward

union of classes X≤
i , X≤

j , with 1 ≤ i < j ≤ n, there is X≤
i ⊆ X≤

j .
10. Property M4 (monotonicity w.r.t. dominance relation): DRSA-mvi has prop-

erty M4 iff for any upward and downward unions of classes X≥
i , X≤

j , with
i, j ∈ {1, . . . , n}, and for any y, z ∈ U such that yDz, it is true that(
(z ∈ X≥

i ∧ y ∈ X≥
i ⇒ y ∈ X≥

i ) and (y ∈ X≤
j ∧ z ∈ X≤

j ⇒ z ∈ X≤
j )
)
.

Note that there is a relationship between properties M1, M2, M3, and M4, con-
cerning lower approximations of unions of classes, and properties (m1), (m2),
(m3), and (m4), concerning object consistency measures used in VC-DRSA.
However, when the dominance relation of VC-DRSA is redefined, this relation-
ship is no longer one to one – for some i ∈ {1, . . . , 4}, (mi) may be satisfied while
Mi is not satisfied.
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DRSA-mv1 [9,10] considers dominance relation to be a directional statement
where a subject is compared to a referent which cannot have missing values.
Object y dominates referent z iff for each qi ∈ P , y �qi z or qi(y) = ∗; y is
dominated by referent z iff for each qi ∈ P , z �qi y or qi(y) = ∗. Note that
DRSA-mv1 fails when all (or most of the) objects have a missing value. More-
over, dominance cones are defined only for objects without missing values. Thus,
approximations of unions of classes do not contain objects with missing values.

DRSA-mv2 was first proposed in [9,10], and then extended in [7] to handle
imprecise evaluations on attributes and imprecise assignments to decision classes,
both modeled by intervals. When considering missing values only, each y ∈ U is
assigned to a single decision class, and each missing attribute value corresponds
to the interval spanning entire value set of this attribute. This results in the
following definition of so-called possible dominance relation D: yDz iff for each
qi ∈ P , y �qi z, or qi(y) = ∗, or qi(z) = ∗.

In DRSA-mv3, object y dominates object z iff for each qi ∈ P such that
qi(z) �= ∗, we have qi(y) �= ∗ and y �qi z. Object y is dominated by object z iff
for each qi ∈ P such that qi(z) �= ∗, we have qi(y) �= ∗ and z �qi y.

DRSA-mv4 (DRSA-mv5) uses the lower(upper)-end dominance relation intro-
duced in [7]. It boils down to treating each missing attribute value as the worst
(best) value in the value set of this attribute. Then, the definition of dominance
relation D is the same as in the case without missing values.

The properties of DRSA-mvi, i = 1, . . . , 5, are summarized in Table 1, where
T and F denote presence and absence of a given property, respectively. Moreover,
in case of two symbols ·/·, the first (resp. second) one reflects only regular DRSA
(resp. only VC-DRSA).

According to Table 1, DRSA-mv1 is the less attractive due to lack of many
important properties (like, e.g., RI and M1). DRSA-mv3 is dominated by DRSA-
mv4, and by DRSA-mv5. However, the choice from among DRSA-mv2, DRSA-
mv4, and DRSA-mv5, depends on a particular application. Due to limited scope
of this paper, we decided to apply in the experiment (Section 4) only DRSA-mv2

since it has property P . This property guarantees that induced rules remain true
when some of missing values become known. Thus, taking into account the seman-
tics of missing values considered in [14,13], it can be said that DRSA-mv2 treats
missing values as “do not care” values. Moreover, the lack of property M4, caused
by the lack of property T , can be handled during induction of decision rules.

Table 1. Properties of DRSA-mvi, i = 1, . . . , 5

Property / Approach DRSA-mv1 DRSA-mv2 DRSA-mv3 DRSA-mv4 DRSA-mv5

S F T F T T
R F T T T T
T T F T T T
P T T F F F
RI F T T T T
C F T F/T T T
M1 F T T T T
M2 T T T T T
M3 T/F T/F T/F T/F T/F
M4 T F T T T
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3 Induction and Application of Decision Rules

In VC-DRSA, decision rules are induced from lower approximations (3). In the
experiment (Section 4), we employ to this end a two-fold adaptation of VC-
DomLEM algorithm [5]. First, to handle the lack of property M4 of DRSA-mv2,
we introduce cost-type rule consistency measure [5] ε̂X : RX → [0, 1], where RX

is the set of rules suggesting assignment to set X . Let us denote by Φ(rX) and
‖Φ(rX)‖, condition part of rule rX ∈ RX , and the set of objects covered by the
rule, respectively. Then, measure ε̂X is defined as:

ε̂X(rX) =

∣∣‖Φ(rX)‖ ∩ ¬X
∣∣

|¬X | . (4)

Each rule rX has to satisfy the same constraints on consistency as objects from X
which serves as a basis for rule induction. Precisely, it is required that ε̂X(rX) ≤
θX . Moreover, ε̂X derives monotonicity properties from εX (2).

The second adaptation of VC-DomLEM concerns treatment of missing values
in the context of elementary conditions. For each qi ∈ P , only non-missing values
can be used to create elementary conditions. Moreover, any elementary condition
on qi covers each y ∈ U such that qi(y) = ∗.

It is worth noting that the proposed adaptation of VC-DomLEM does not
decrease its efficiency as measure ε̂X has monotonicity property (m4). This fact
can be used to reduce the search space of elementary conditions that can be
created for each attribute [5].

Induced rules can be applied on a new set of objects. In such case, a rule covers
every object that for each attribute qi ∈ P considered in the rule, either satisfies
an elementary condition on qi, or has missing value. Ambiguity of classification
suggestions given by covering rules is resolved by the strategy described in [3].

4 Results of Computational Experiment and Discussion

The aim of the experiment was to compare the classifier that employs DRSA-
mv2 with other classifiers. The comparison was performed on 14 ordinal data
sets characterized in Table 2 (most of the data sets were already used in [5]).

Data sets: ERA, ESL, LEV, and SWD come from [1]. Data sets: denbosch and
windsorwere taken from [6] and [16], respectively. Remaining data sets were taken
from the UCI repository1 and other public repositories (fame). For windsor, cpu,
and housing data sets, decision attribute was discretized into four levels, contain-
ing equal number of objects. Each data set was transformed by uniform random
introduction of a specified percentage of missing values, ranging from 5% to 50%.

Presented results were derived from 10-fold cross validation, repeated 5 times
to get a better reproducibility. We compared the following classifiers. First one,
VC-DomLEM-mv2, employs VC-DomLEM adapted to induce rules in DRSA-
mv2 coupled with VC-DRSA (Section 3), implemented in jRS and jMAF
1 See http://www.ics.uci.edu/~mlearn/MLRepository.html

http://www.ics.uci.edu/~mlearn/MLRepository.html
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Table 2. Characteristics of data sets

Data set #Objects #Condition attributes #Classes
australian 690 14 2

balance 625 4 3
breast-cancer 286 7 2

breast-w 699 9 2
car 1296 6 4
cpu 209 6 4
fame 1328 10 5

denbosch 119 8 2
ERA 1000 4 9
ESL 488 4 9

housing 506 13 4
LEV 1000 4 5
SWD 1000 10 4

windsor 546 10 4

frameworks2. Another classifier, VC-DomLEM-smv, employs a non-invasive
transformation of data (similar to the one presented in [2]) that substitutes
missing values, followed by application of VC-DRSA, and induction of rules by
the original VC-DomLEM [5]. In the transformation, each qi ∈ P with missing
values is substituted by four attributes – q1

i , q2
i , for which an “increasing” mono-

tonic relationship between evaluations of objects on a condition attribute and
their class labels is assumed (i.e., the greater the attribute value, the better the
class label is expected to be), and q3

i , q4
i , for which a “decreasing” monotonic

relationship between evaluations of objects on a condition attribute and their
class labels is assumed (i.e., the smaller the attribute value, the better the class
label is expected to be). Then, for each y ∈ U : qi(y) �= ∗, evaluation qj

i (y),
j = 1, . . . , 4, is taken to be equal to qi(y), and for each z ∈ U : qi(z) = ∗,
evaluations q1

i (y), q4
i (y) are taken to be equal to the maximum value in Vqi ,

while evaluations q2
i (y), q3

i (y) are taken to be equal to the minimum value in Vqi .
Moreover, we considered two other ordinal classifiers that preserve monotonicity
constraints: Ordinal Learning Model (OLM), and Ordinal Stochastic Dominance
Learner (OSDL). As they cannot handle missing values directly, we substituted
missing values by means or modes. In general, it is not always the case that
ordinal classifiers have better predictive accuracy than non-ordinal ones (as the
former are biased by monotonicity constraints). Therefore, we also used some
non-ordinal classifiers: Naive Bayes, Support Vector Machine (SVM) with lin-
ear kernel and default complexity. Additionally, Ripper and C4.5 classifiers were
used with default settings. Each of the non-ordinal classifiers was able to handle
missing values directly.

Table 3 contains values of Mean Absolute Error (MAE) and its standard
deviation for data sets with 5% of missing values. For each data set we calculated
ranks of MAE (presented in brackets; the smaller the rank, the better). Last row
of Table 3 shows average ranks obtained by the classifiers.

We applied Friedman test [8] to compare the classifiers. The null-hypothesis
was that all of them perform equally well. The result of test (p-value below
0.0001) and differences in average ranks allow us to conclude that there is a

2 See http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html

http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html
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Table 3. MAE resulting from repeated 10-fold cross validation for 5% of missing values

Data set VC-DomLEM VC-DomLEM Naive SVM Ripper C4.5 OLM OSDL
-mv2 -smv Bayes

australian
0.1962 (4.5) 0.1962 (4.5) 0.2252 (6) 0.1704 (3) 0.1632 (2) 0.151 (1) 0.3783 (8) 0.3609 (7)
+
−0.001966 +

−0.001966 +
−0.002688 +

−0.003735 +
−0.004815 +

−0.004798 +
−0.00698 +

−0.00485

balance
0.2698 (3.5) 0.2698 (3.5) 0.1674 (1) 0.2205 (2) 0.3408 (5) 0.3558 (6) 0.6966 (7) 0.7427 (8)
+
−0.007409 +

−0.007409 +
−0.007409 +

−0.01468 +
−0.01127 +

−0.01097 +
−0.02344 +

−0.005935

breast-cancer
0.2552 (1.5) 0.3028 (7) 0.2664 (3) 0.3294 (8) 0.2972 (6) 0.2552 (1.5) 0.2944 (5) 0.2713 (4)
+
−0.006255 +

−0.01119 +
−0.009486 +

−0.01334 +
−0.00383 +

−0.007334 +
−0.001399 +

−0.006485

breast-w
0.05179 (5) 0.05293 (7) 0.04006 (2) 0.03262 (1) 0.04578 (4) 0.05207 (6) 0.1854 (8) 0.04177 (3)
+
−0.003186 +

−0.002023 +
−0 +

−0.001668 +
−0.003731 +

−0.002803 +
−0.007919 +

−0.001071

car
0.1426 (2) 0.1685 (4) 0.1997 (7) 0.1437 (3) 0.2514 (8) 0.1701 (5) 0.1801 (6) 0.1418 (1)
+
−0.002036 +

−0.006594 +
−0.006716 +

−0.004065 +
−0.006591 +

−0.002105 +
−0.005909 +

−0.006977

cpu
0.1158 (1.5) 0.1158 (1.5) 0.1837 (4) 0.4459 (7) 0.2727 (5) 0.1349 (3) 0.5971 (8) 0.3885 (6)
+
−0.01108 +

−0.01108 +
−0.02021 +

−0.01613 +
−0.04312 +

−0.01022 +
−0.02484 +

−0.01108

fame
0.4178 (3) 0.4849 (6) 0.4821 (5) 0.3696 (1) 0.4318 (4) 0.4054 (2) 1.707 (7) 1.741 (8)
+
−0.00924 +

−0.003898 +
−0.003414 +

−0.003064 +
−0.01078 +

−0.003551 +
−0.01062 +

−0.004354

denbosch
0.1513 (3) 0.1714 (4) 0.1361 (1) 0.2084 (7) 0.1815 (5) 0.1849 (6) 0.3126 (8) 0.1479 (2)
+
−0.01406 +

−0.01465 +
−0.01946 +

−0.01794 +
−0.02636 +

−0.01188 +
−0.008234 +

−0.004117

ERA
1.367 (2) 1.482 (5) 1.409 (3) 1.365 (1) 1.66 (7) 1.412 (4) 1.690 (8) 1.594 (6)
+
−0.01209 +

−0.005528 +
−0.006693 +

−0.01174 +
−0.006841 +

−0.01976 +
−0.01695 +

−0.01465

ESL
0.4484 (3.5) 0.4484 (3.5) 0.3754 (1) 0.4639 (5) 0.5008 (6) 0.3939 (2) 1.084 (8) 0.566 (7)
+
−0.009904 +

−0.009904 +
−0.008636 +

−0.002780 +
−0.01663 +

−0.007601 +
−0.01404 +

−0.008923

housing
0.3585 (1) 0.4194 (4) 0.5091 (6) 0.3708 (2) 0.4486 (5) 0.4047 (3) 0.9166 (7) 1.062 (8)
+
−0.01177 +

−0.01826 +
−0.002015 +

−0.006324 +
−0.02781 +

−0.01337 +
−0.01307 +

−0.009952

LEV
0.538 (6) 0.5568 (7) 0.4834 (4) 0.4762 (3) 0.4586 (2) 0.4434 (1) 0.707 (8) 0.5116 (5)
+
−0.001414 +

−0.005269 +
−0.002653 +

−0.004622 +
−0.00826 +

−0.00857 +
−0.002366 +

−0.005276

SWD
0.4702 (3) 0.502 (6) 0.4864 (5) 0.4506 (1) 0.476 (4) 0.458 (2) 0.7708 (8) 0.506 (7)
+
−0.01007 +

−0.007376 +
−0.002417 +

−0.003382 +
−0.007563 +

−0.007376 +
−0.01165 +

−0.00827

windsor
0.5473 (1) 0.6714 (5) 0.5579 (2) 0.6048 (4) 0.7278 (8) 0.6912 (7) 0.6894 (6) 0.5916 (3)
+
−0.005838 +

−0.01261 +
−0.003397 +

−0.01244 +
−0.02491 +

−0.02045 +
−0.008715 +

−0.004486

average rank 2.89 4.86 3.57 3.43 5.07 3.54 7.29 5.36

significant difference between the classifiers. VC-DomLEM-mv2 is the best one,
followed by SVM, C4.5, and Naive Bayes. Other ordinal classifiers and Rip-
per perform significantly worse. However, VC-DomLEM-smv outperforms OLM,
OSDL, and Ripper.

In Figure 1, we present average ranks of MAE for different percentages of
missing values (for each percentage, the differences between average ranks were
significant). The best methods to handle missing values are: VC-DomLEM-mv2,
SVM, Naive Bayes, and – for lower amounts of missing values – also C4.5. VC-
DomLEM-mv2 and SVM obtain rather stable ranks regardless of the amount of
missing values. VC-DomLEM-mv2 performs best for smaller amounts of missing
values. SVM is better for higher amounts. However, Naive Bayes is the best
classifier when the amount of introduced missing values is 20% or higher. OLM,
OSDL, and Ripper are clearly worse than the other compared methods.

We recommend to use VC-DomLEM-mv2 when dealing with ordinal classifica-
tion problems with monotonicity constraints that include low amount of missing
values. For problems characterized by larger amount of missing values (≥ 20%),
one could consider Naive Bayes or SVM.
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Fig. 1. Avg. rank of MAE for different percentages of missing values
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Abstract. Based on the interval valued fuzzy compatible relation, the
interval valued fuzzy rough set model on two different universes is pre-
sented. Some properties of the interval valued fuzzy rough set model are
discussed. Finally, an example is applied to illustrate the application of
the interval valued fuzzy rough set model presented in this paper.

Keywords: Interval valued fuzzy sets, Rough sets, Interval valued fuzzy
compatible relations, Interval valued fuzzy rough sets.

1 Introduction

Rough set theory developed by Pawlak [1], is a formal tool for representing and
processing information in database. In the classical Pawlak rough set model [1],
an equivalence relation is a key and primitive notion in the construction of an
approximation space. This equivalence relation, however, seems to be a very
restrictive condition that may limit the application domain of the rough set
model. Many proposals have been put forward for generalizing and interpreting
rough sets. Dubois and Prade [2] first introduced the concepts of rough fuzzy
set and fuzzy rough set by combining fuzzy sets [3] and rough sets. Majority of
researches about rough sets are based on one universe [4]. Nowadays, more and
more efforts have been made [5-12] based on two different universes.

Recently, in [4], Sun and Ma studied the fuzzy rough set on two different uni-
verses based on a fuzzy compatible relation. Sun and Ma illustrated the applica-
tion of the fuzzy rough set model on two different universes in clinical diagnosis
systems [13]. However, in cases where the degrees of membership are interval
values rather that single values, we need to use the interval valued fuzzy rough
set model to make decision. The purpose of the present paper is to establish
the interval valued fuzzy rough set model based on the interval valued fuzzy
compatible relation and apply this model to clinical diagnosis systems.

2 Preliminaries

2.1 Interval Valued Fuzzy Sets

Definition 2.1 [14]. An interval valued fuzzy set A on a universe U is a mapping
A : U −→ Int([0, 1]), where Int([0, 1]) stands for the set of all closed subintervals
of [0, 1], the set of all interval valued fuzzy sets on U is denoted by IV F (U).

J.T. Yao et al. (Eds.): RSCTC 2012, LNAI 7413, pp. 66–72, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Suppose that A ∈ IV F (U), ∀x ∈ U , A(x) = [μ−
A(x), μ

+
A(x)] is called the degree

of membership an element x to A. μ−
A(x) and μ+

A(x) are referred to as the lower
and upper degrees of membership x to A where 0 ≤ μ−

A(x) ≤ μ+
A(x) ≤ 1. We

can also denote A by A = {[x, μ−
A(x), μ

+
A(x)] | x ∈ U}.

Definition 2.2 [15]. An interval valued fuzzy subset R of U × V is called an
interval valued fuzzy relation from U to V , We call R an interval valued fuzzy
relation on U if U = V . We denote the family of all interval valued fuzzy relations
from U to V by

IV F (U × V ).
∀R,S ∈ IV F (U × V ),
R ⊆ S iff μ−

R(x, y) ≤ μ−
S (x, y) and μ+

R(x, y) ≤ μ+
S (x, y) for all x, y ∈ U ;

R ⊇ S iff S ⊆ R;
R = S iff R ⊆ S and S ⊆ R;
R∪S = {(x, y), [max (μ−

R(x, y), μ
−
S (x, y)), max (μ+

R(x, y), μ
+
S (x, y))] | (x, y) ∈

U × V };
R ∩ S = {(x, y), [min (μ−

R(x, y), μ
−
S (x, y)), min (μ+

R(x, y), μ
+
S (x, y))] | (x, y) ∈

U × V }.
Definition 2.3 [15]. Let R ∈ IV F (U × U), then

(1) R is reflexive, if μ−
R(u, u) = 1 and μ+

R(u, u) = 1 for any u ∈ U ;
(2) R is symmetric, if μ−

R(u1, u2) = μ−
R(u2, u1) and μ+

R(u1, u2) = μ+
R(u2, u1) for

any u1, u2 ∈ U ;
(3) R is transitive, if

∨
y∈U (R(x, y) ∧R(y, z)) ≤ R(x, z) for any x, y, z ∈ U .

∀R ∈ IV F (U × U), if R is reflexive and symmetric, then R is called an interval
valued fuzzy similarity relation on U ; if R is reflexive, symmetric, and transitive,
then R is called an interval valued fuzzy equivalence relation on U .

2.2 Rough Sets

Let U be a non-empty finite universe, R be an equivalence relation on U . We
use U/R to denote the family of all equivalence classes of R (or classifications of
U), and [x]R to denote an equivalence class of R containing the element x ∈ U .
The pair (U,R) is called an approximation space. For any X ⊆ U , we can define
the lower and upper approximations of X [1] as follows:

R(X) = {x ∈ U | [x]R ⊆ X}, R(X) = {x ∈ U | [x]R ∩X �= ∅}.

The pair (RX,RX) is referred to as the rough set of X . The rough set (RX,RX)
gives rise to a description ofX under the present knowledge, i.e., the classification
of U .

Furthermore, the positive region, negative region, and boundary region of X
about the approximation space (U,R) are defined as follows, respectively:

pos(X) = R(X), neg(X) =∼ R(X), bn(X) = R(X)−R(X),
where ∼ X stands for the complementation of the set X , i.e., U −X .



68 H.-L. Yang

3 Interval Valued Fuzzy Rough Set Model on Two
Different Universes

First we present some basic notions.

Definition 3.1. Let U, V be two non-empty finite universes. R is an interval
valued fuzzy relation from U to V , ∀α, β ∈ (0, 1], we define the interval valued
fuzzy compatible relation R(α,β) from U to V as follows:

R(α,β)(u) = {v ∈ V | μ−
R(u, v) ≥ α and μ+

R(u, v) ≥ β}, (3.1)

i.e., R(α,β) = {(u, v) ∈ U×V | v ∈ R(α,β)(u)}. (3.2)

Obviously, Definition 3.1 is an interval valued fuzzy extension of the fuzzy com-
patible relation (see Definition 3.3 in [4]). α and β can be viewed as the given
least thresholds on the lower level values and the upper level values, respectively.
For real-life applications of decision making, the thresholds α and β are usually
in advance chosen by decision makers.

Definition 3.2. Let U, V be two non-empty finite universes,R(α,β) be an interval
valued fuzzy compatible relation from U to V , where α, β ∈ (0, 1]. For any X
(X ⊆ V ), we define the lower and upper approximations of X w.r.t. R(α,β) as:

R(α,β)(X) = {u ∈ U | R(α,β)(u) ⊆ X}, (3.3)

R(α,β)(X) = {u ∈ U | R(α,β)(u)∩X �= ∅}. (3.4)

The pair (R(α,β)(X), R(α,β)(X)) is called the interval valued fuzzy rough set of

X based on the interval valued fuzzy compatible relation R(α,β).
Furthermore, the positive region posR(α,β)

(X), negative region negR(α,β)
(X),

and boundary region bnR(α,β)
(X) of X w.r.t. R(α,β) are define as: posR(α,β)

(X) =

R(α,β)(X), negR(α,β)
(X) = U−R(α,β)(X), bnR(α,β)

(X) = R(α,β)(X)−R(α,β)(X).

Remark 3.1. If R is a fuzzy relation from U to V and β = α, then the interval
valued fuzzy rough set is degenerated to be the fuzzy rough set in [4].

Remark 3.2. If U = V , then R(α,β) is a crisp binary relation on U . Therefore,
R(α,β) will be a crisp similarity relation on U if R is an interval valued fuzzy
similarity relation U , and R(α,β) will be an equivalence relation on U if R is an
interval valued fuzzy equivalence relation on U . Thus, if R is an interval valued
fuzzy equivalence relation on U , then the interval valued fuzzy rough set will be
degenerated to be the classical Pawlak rough set.

Theorem 3.1. Let U, V be two non-empty finite universes and R(α,β) be an
interval valued fuzzy compatible relation from U to V , where α, β ∈ (0, 1]. For
any X,Y ⊆ V . Then the lower approximation operator R(α,β) and the upper

approximation operator R(α,β) have the following properties:
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(1) R(α,β)(X) ⊆ R(α,β)(X), R(α,β)(∅) = ∅, R(α,β)(V ) = U ;

(2) R(α,β)(X ∩ Y ) = R(α,β)(X) ∩ R(α,β)(Y ), R(α,β)(X ∪ Y ) = R(α,β)(X) ∪
R(α,β)(Y );

(3) R(α,β)(X ∪ Y ) ⊇ R(α,β)(X) ∪ R(α,β)(Y ), R(α,β)(X ∩ Y ) ⊆ R(α,β)(X) ∩
R(α,β)(Y );

(4) If X ⊆ Y , then R(α,β)(X) ⊆ R(α,β)(Y ) and R(α,β)(X) ⊆ R(α,β)(Y );

(5) R(α,β)(X) =∼ R(α,β)(∼ X), R(α,β)(X) =∼ R(α,β)(∼ X).

Proof. The proof is straightforward from Definition 3.2.

Remark 3.3. In general,R(α,β)(∅) �= ∅ andR(α,β)(V ) �= U . For example, let U =

{u1, u2}, V = {v1, v2}, the interval valued fuzzy relationR from U to V is defined
as R = {[(u1, v1), 0.2, 0.6], [(u1, v2), 0.4, 0.5], [(u2, v1), 0.5, 0.8], [(u2, v2), 0.1, 0.1]}.
Take α = 0.5 and β = 0.7, then we have R(α,β)(∅) = {u1} �= ∅ and R(α,β)(V ) =

{u2} �= U .

Theorem 3.2. Let U, V be two non-empty finite universes, R(α1,β1) and R(α2,β2)

be two interval valued fuzzy compatible relations from U to V , where α1, β1,
α2, β2 ∈ (0, 1]. If α1 ≤ α2 and β1 ≤ β2, then we have

(1) R(α1,β1)(X) ⊆ R(α2,β2)(X);

(2) R(α2,β2)(X) ⊆ R(α1,β1)(X).

Proof. The proof is analogous to Theorem 3.2 in [8].

Theorem 3.3. Let R,S be two interval valued fuzzy relations from U to V . For
any X ⊆ V , α, β ∈ (0, 1]. If R ⊆ S, then

(1) S(α,β)(X) ⊆ R(α,β)(X);

(2) R(α,β)(X) ⊆ S(α,β)(X).

Proof. The proof is analogous to Theorem 3.4 in [8].

Theorem 3.4. Let U, V be two non-empty finite universes, where U = {u1, u2, ··
·, un}, and R be a interval valued fuzzy relation from U to V . If the inter-
val valued fuzzy compatible relation R(α,β) satisfies the included relation of
R(α,β)(u1) ⊆ R(α,β)(u2) ⊆ · · · ⊆ R(α,β)(un), where α, β ∈ (0, 1]. Then for
any X ⊆ V , we have the following:

(1) If ui ∈ R(α,β)(X), then u1, u2, · · ·, ui−1 ∈ R(α,β)(X) (i ∈ {2, 3, · · ·, n});
(2) If ui ∈ R(α,β)(X), then u2, u3, · · ·, ui+1 ∈ R(α,β)(X) (i ∈ {1, 2, · · ·, n− 1}).
Proof. The proof is similar to Theorem 3.5 in [4].

Definition 3.3. Let U, V be two non-empty finite universes,R(α,β) be an interval
valued fuzzy compatible relation from U to V , where α, β ∈ (0, 1]. For any X ⊆ V
(X �= ∅), the approximate precision ρR(α,β)

(X) of X w.r.t. R(α,β) is defined as:
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ρR(α,β)
(X) =

|R(α,β)(X)|
|R(α,β)(X)| , (3.5)

where |X | denotes the cardinality of the set X . Let μR(α,β)
(X) = 1−ρR(α,β)

(X),
and μR(α,β)

(X) is called the rough degree of X w.r.t. R(α,β).

Theorem 3.5. Let U, V be two non-empty finite universes and R(α,β) be an
interval valued fuzzy compatible relation from U to V , where α, β ∈ (0, 1]. For
any X,Y ⊆ V (X �= ∅, Y �= ∅). Then the rough degree and the approximate
precision of the sets X , Y , X∪Y , and X∩Y are satisfied the following relations:

(1) μR(α,β)
(X ∪Y )|R(α,β)(X)∪R(α,β)(Y )| ≤ μR(α,β)

(X)|R(α,β)(X)|+μR(α,β)
(Y )

|R(α,β)(Y )| − μR(α,β)
(X ∩ Y )|R(α,β)(X) ∩R(α,β)(Y )|;

(2) ρR(α,β)
(X ∪ Y )|R(α,β)(X)∪R(α,β)(Y )| ≥ ρR(α,β)

(X)|R(α,β)(X)|+ ρR(α,β)
(Y )

|R(α,β)(Y )| − ρR(α,β)
(X ∩ Y )|R(α,β)(X) ∩R(α,β)(Y )|.

Proof. The proof is analogous to Theorem 3.3 in [4].

Remark 3.4. The approximate precision and the rough degree of X may be
used to help decision-makers to make decision.

4 The Application of the Interval Valued Fuzzy Rough
Set Model on Two Different Universes

Let U and V denote the set of sufferers and the set of symptoms, respectively.
The thresholds α and β are in advance chosen by decision-makers. In general, one
disease always has several basic symptoms. For any subset X of V , X denotes a
certain disease which has basic symptoms {vi} (vi ∈ V ). Given a certain sufferer
u, if he belongs to the set R(α,β)(X) and R(α,β)(u) �= ∅, i.e., he must suffer the

disease X , then the sufferer need remedy immediately. If he belongs to the set
R(α,β)(X)−R(α,β)(X), i.e., the set bnR(α,β)

(X), then he may suffer the disease

X or not, and he will be on the second choice by the doctor since he is not
diagnosed according to these symptoms. If he belongs to the set negR(α,β)

(X),
then he does not suffer the disease X and he does not need the treatment.

Example 4.1. Let U = {u1, u2, u3, u4} be the set of sufferers. V = {v1, v2, v3, v4}
is the set of symptoms. Suppose that the degrees of membership for every sufferer
ui ∈ U w.r.t. the symptom vj ∈ V are given in the following table:

Table 1. Tabular representation of R ∈ IV F (U × V )

U�V v1 v2 v3 v4
u1 [0.74, 0.90] [0.25, 0.57] [0.17, 0.36] [1, 1]

u2 [0.62, 0.80] [0.45, 0.68] [0.87, 0.95] [0.45, 0.55]

u3 [0.53, 0.66] [1, 1] [0.24, 0.77] [0.18, 0.75]

u4 [0.12, 0.29] [0.77, 0.90] [0.43, 0.49] [0.69, 1]
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Let X = {v1, v2} ⊆ V denote a certain disease.

Case 1. Take α = 0.5 and β = 0.8. By Definition 3.1, we can obtain

R(0.5,0.8)(u1) = {v1, v4}, R(0.5,0.8)(u2) = {v1, v3}, R(0.5,0.8)(u3) = {v2},
R(0.5,0.8)(u4) = {v2, v4}.
Then, we can calculate the lower approximation, the upper approximation, and
the negative region of X as follows, respectively:

R(0.5,0.8)(X) = {u3}, R(0.5,0.8)(X) = U , negR(0.5,0.8)
(X) = ∅.

By Definition 3.3, we have ρR(0.5,0.8)
(X) = 1

4 , μR(0.5,0.8)
(X) = 3

4 .
Based on the above analysis, we can obtain the following conclusions:

(1) The sufferer u3 must suffer the disease X and he needs the treatment im-
mediately.

(2) We do not assure if the sufferers u1, u2, and u4 suffer the disease X according
to these symptoms. And the decision of the doctor will be on second choice
for them.

(3) None of the sufferers does not suffer the disease X .

Case 2. Take α = 0.7 and β = 0.9. By Definition 3.1, we can obtain

R(0.7,0.9)(u1) = {v1, v4}, R(0.7,0.9)(u2) = {v3}, R(0.7,0.9)(u3) = {v2},
R(0.7,0.9)(u4) = {v2}.
Then, we have

R(0.7,0.9)(X) = {u3, u4}, R(0.7,0.9)(X) = {u1, u3, u4}, negR(0.7,0.9)
(X) = {u2}.

By Definition 3.3, ρR(0.7,0.9)
(X) = 2

3 , μR(0.7,0.9)
(X) = 1

3 .
Based on the above analysis, we can obtain the following conclusions:

(1) The sufferers u3 and u4 must suffer the disease X and they need the treat-
ment immediately.

(2) We do not assure if the sufferer u1 suffers the disease X according to these
symptoms. And the decision of the doctor will be on second choice for him.

(3) The sufferer u2 does not suffer the disease X .

Remark 4.1. By Example 4.1, the method above is actually an adjustable
method. Many decision making problems are essentially humanistic and thus
subjective in nature; hence for decision making there actually does not exist a
unique or uniform criterion. Thus, the adjustable feature makes the model more
appropriate for many real world applications. Besides, the model presented in
this paper also permits to control the risk of the misdiagnose in practice.
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Abstract. Data with missing values are represented as incomplete in-
formation systems in rough sets approaches. There are two possible in-
terpretations of missing values as “do not care” or “lost” values. Many
existing works considered only the former case. The use of characteristic
sets to deal with both cases was first introduced by Grzymala-Busse. In
this paper, we introduce a refinement of characteristic set approach to
incomplete information systems, and we show that it can improve ap-
proximation accuracy similar to the improvement obtained by applying
the techniques of maximal consistent blocks and binary neighborhood
systems approaches to dealing with “do not care” missing values. Ad-
ditionally, subset and concept based approximations are introduced for
binary neighborhood systems in order to preserve upper approximations.

Keywords: Rough sets, Incomplete information systems, Characteristic
sets, Maximal characteristic sets, Binary neighborhood systems.

1 Introduction

Extensions to the classical rough set theory [1-3] have been introduced for pro-
cessing data with missing values represented as incomplete information systems
[4-9]. It has been pointed out in [6] that missing values can be interpreted as
“lost values” or “do not care”. Many works considered only the “do not care”
missing value [4], [5], [10].

For the case of “do not care” missing values, it has been shown that better
approximation accuracy can be obtained by representing incomplete information
systems using the technique of maximal consistent blocks [5], which could further
be refined by using binary neighborhood systems [10]. However, these results are
not applicable for the case of “lost” missing values. An approach to deal with
both cases was introduced in [6] based on the concept of characteristic sets.

In this paper, we introduce the concept of maximal characteristic sets and
binary neighborhood systems consisting of these sets as elementary sets for in-
complete information systems. The maximal consistent blocks approach is based
on similarity relations that are reflexive and symmetric. The maximal charac-
teristic sets are derived from reflexive characteristic relations. The refinement
of one characteristic set into a family of maximal characteristic sets are rep-
resented as a binary neighborhood system. As indicated in [6], [11], there are
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three different ways to define approximations, namely, singleton, subset or con-
cept based approximations. Additionally, it has been shown that upper approx-
imations obtained by singleton approximations may not be definable [6]. Since
approximations of binary neighborhood systems as defined in [10], [11] are sin-
gleton based approximations, we introduce the use of subset and concept based
approximations for binary neighborhood systems in order to preserve the upper
approximations, which is similar to the concept of global approximations for
incomplete data introduced in [8].

The paper is organized as follows. In section two, we review the related con-
cepts of representing incomplete information systems. Section three introduces
the concept of maximal characteristic sets and shows how to derive binary neigh-
borhood systems. Examples are used to show that better approximation accuracy
can be obtained by the use of maximal characteristic sets. Finally, we present
our concluding remarks in section four.

2 Related Concepts

In rough set theory, information of objects is represented by an information sys-
tem S = (U,A), where U is a nonempty finite set of objects and A is a nonempty
finite set of attributes such that a : U → Va, for any attribute a ∈ A with Va

as the domain of a. Each nonempty subset B ⊆ A defines an indiscernibility
relation IND(B) on U as follows. For any x, y ∈ U , (x, y) ∈ IND(B) if and
only if a(x) = a(y) for all a ∈ B. The indiscernibility relation IND(B) is an
equivalence relation, and equivalence classes of IND(B) are called elementary
sets of B, denoted by [x]B . Elementary sets can be computed as intersections of
blocks of attribute-value pairs. For any x ∈ U , we have [x]B = ∩{[(a, v)] : a ∈
B, a(x) = v}.

Let X ⊆ U and B ⊆ A, the B-lower and B-upper approximations of X by
elementary sets of IND(B) are defined as BX = {x ∈ U : [x]B ⊆ X} = ∪{[x]B :
x ∈ U and [x]B ⊆ X} and BX = {x ∈ U : [x]B ∩ X �= ∅} = ∪{[x]B : x ∈ U
and [x]B ∩ X �= ∅}. The accuracy of approximation of X by B is defined as
|BX |/|BX | , where |Y | denotes the cardinality of set Y .

When objects of an information system with all attribute values specified,
it is called a complete information system; otherwise, it is called an incomplete
information system. There are two interpretations of missing attribute values in
incomplete information systems [6]: (1) when a missing value could be any value
of the domain, hence irrelevant, it is called “do not care” missing value and is
denoted by ’*’; (2) when a missing value is some specific value, but it is lost. It
is called a “lost” value and denoted by ’?’.

Decision tables are special cases of information systems applied in many ap-
plications where the attribute set is A ∪ {d}, the attribute d is called decision
attribute, and other attributes are called condition attributes. A decision table
with missing values is called incomplete decision table. An example of incomplete
decision table is shown in Table 1 where cases in U = {1, 2, 3, 4, 5, 6, 7}, the set
of condition attributes is A = {PACKER, KEYS ADDED, API CALLS, DLLs,
UNIQUE STRINGS}, and the set of decision attribute is d = {Malware}.
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Table 1. An incomplete decision table with “do not care” and “lost” missing values

Case PACKER KEYS ADDED API CALLS DLLs UNIQUE STRINGS Maleware

1 yes 2 2 1 yes no

2 yes 2 1 2 yes no

3 no 2 1 2 no no

4 * 2 1 2 no yes

5 yes 1 1 2 no yes

6 yes 2 1 2 * yes

7 ? 2 1 2 no yes

2.1 Similarity Relations, Similarity Classes, and Maximal
Consistent Blocks

To deal with “do not care” missing values, one way is to extend an equivalence
relation to a similarity relation [4]. Let IS = (U,A) be an incomplete information
system and B ⊆ A, the similarity relation defined on U by B is given as

SIM(B) = {(x, y) ∈ U × U : a ∈ B, a(x) = a(y)ora(x) =′ ∗′ora(y) =′ ∗′}. (1)

For x ∈ U , the similarity class SB(x) of SIM(B) containing x is defined as

SB(x) = {y ∈ U : (x, y) ∈ SIM(B)}. (2)

Similarity classes are elementary sets. The similarity relation SIM(B) is reflexive
and symmetric, and it is a tolerance relation. Let X ⊆ U and B ⊆ A , the B-
lower and B-upper approximations of X are defined as

TB(X) = {x ∈ U : SB(x) ⊆ X} = {x ∈ X : SB(x) ⊆ X} (3)

and
TB(X) = {x ∈ U : SB(x) ∩X �= ∅} = ∪{SB(x) : x ∈ X}. (4)

The similarity class SB(x) of SIM(B) can be further refined by the concept
of maximal consistent blocks introduced in [5]. A subset Y ⊆ U is a consistent
block of B, if the similarity relation SIM(B) restricted to Y is transitive, i.e.,
any two objects in Y are similar. A subset Y ⊆ U is a maximal consistent block
when all its proper subsets are not consistent blocks.

Let M(B) denote the set of all maximal consistent blocks determined by B.
Let X ⊆ U and B ⊆ A, the B-lower and B-upper approximations of X are
defined as

MB(X) = ∪{Y ∈M(B) : Y ⊆ X} (5)

and
MB(X) = ∪{Y ∈M(B) : Y ∩X �= ∅}. (6)

It has been shown in [5] that maximal consistent blocks can improve approxi-
mation accuracy, since TB(X) ⊆MB(X) and TB(X) = MB(X).



76 C.-C. Chan

Table 2. An incomplete decision table with do not care missing values only

Car Price Mileage Size MaxSpeed d

1 high low full low good

2 low * full low good

3 * * compact high poor

4 high * full high good

5 * * full high excellent

6 low high full * good

Example 1. Let us consider the incomplete decision table shown in Table 2. For
simplicity and comparison purpose, it is taken from [5]. Let B = A be the set of
all condition attributes {Price, Mileage, Size, MaxSpeed}, and d is the decision
attribute. Follow the idea introduced in [6], let objects with attribute value ’*’
be included in all blocks. Then, we have the following blocks of attribute-value
pairs:

[(Price, high)] = {1, 3, 4, 5},
[(Price, low)] = {2, 3, 5, 6},
[(Mileage, high)] = {2, 3, 4, 5, 6},
[(Mileage, low)] = {1, 2, 3, 4, 5},
[(Size, full)] = {1, 2, 4, 5, 6},
[(Size, compact)] = {3},
[(MaxSpeed, high)] = {3, 4, 5, 6},
[(MaxSpeed, low)] = {1, 2, 6}.
We have the following similarity classes

SB(1) = [(Price, high)] ∩ [(Mileage, low)] ∩ [(Size, full)]∩ [(MaxSpeed, low)]
= {1, 3, 4, 5} ∩ {1, 2, 3, 4, 5}∩ {1, 2, 4, 5, 6} ∩ {1, 2, 6}
= {1},
SB(2) = [(Price, low)] ∩ [(Mileage, ∗)]∩ [(Size, full)]∩ [(MaxSpeed, low)]
= {2, 3, 5, 6} ∩ {1, 2, 3, 4, 5, 6}∩ {1, 2, 4, 5, 6} ∩ {1, 2, 6}
= {2, 6},
SB(3) = [(Price, ∗)] ∩ [(Mileage, ∗)]∩ [(Size, compact)]∩ [(MaxSpeed, high)]
= {1, 2, 3, 4, 5, 6} ∩ {1, 2, 3, 4, 5, 6}∩ {3} ∩ {3, 4, 5, 6}
= {3},
SB(4) = [(Price, high)] ∩ [(Mileage, ∗)]∩ [(Size, full)]∩ [(MaxSpeed, high)]
= {1, 3, 4, 5} ∩ {1, 2, 3, 4, 5, 6}∩ {1, 2, 4, 5, 6} ∩ {3, 4, 5, 6}
= {4, 5},
SB(5) = [(Price, ∗)] ∩ [(Mileage, ∗)]∩ [(Size, full)]∩ [(MaxSpeed, high)]
= {1, 2, 3, 4, 5, 6} ∩ {1, 2, 3, 4, 5, 6}∩ {1, 2, 4, 5, 6} ∩ {3, 4, 5, 6}
= {4, 5, 6},
SB(6) = [(Price, low)] ∩ [(Mileage, high)]∩ [(Size, full)]∩ [(MaxSpeed, ∗)]
= {2, 3, 5, 6} ∩ {2, 3, 4, 5, 6}∩ {1, 2, 4, 5, 6} ∩ {1, 2, 3, 4, 5, 6}
= {2, 5, 6}.
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The similarity class SB(5) = {4, 5, 6} is not a maximal consistent block, since the
pair (4, 6) is not in SIM(B). The subsets {5, 6} and {4, 5} of SB(5) are maximal
consistent blocks. Similarly, SB(6) = {2, 5, 6} is not maximal, since the pair (2,
5) is not in SIM(B), but its subsets {2, 6} and {5, 6} are maximal. Therefore,
from Table 2, the set M(B) of all maximal consistent blocks determined by B
is {{1}, {2, 6}, {3}, {4, 5}, {5, 6}}.

For the decision class X = [(d, good)] = {1, 2, 4, 6}, the B-lower and B-upper
approximations of X based on the similarity classes are

TB(X) = {1, 2} and TB(X) = {1, 2, 4, 5, 6}.
The B-lower and B-upper approximations of X based on the maximal consistent
blocks are

MB(X) = {1, 2, 6} and MB(X) = {1, 2, 4, 5, 6}.
It is clear that maximal consistent block based approximation has better ap-
proximation accuracy based on Table 2.

2.2 Binary Neighborhood Systems, Maximal Consistent Block
Neighborhoods

The use of binary neighborhood systems to study approximations of database
and knowledge-based systems was introduced in [12]. A binary neighborhood
system is a Binary Granular Data Model, also referred as the 4th Grc Model,
which is a pair (U, β) where β = {R1, R2, . . .} is a family of binary relations
on U [13]. For each x ∈ U , the binary neighborhoods of x are derived from
β = {R1, R2, . . .} as

Ni(x) = {y ∈ U : (x, y) ∈ Ri}, i = 1, 2, . . . (7)

The binary neighborhood system of x is the collection of binary neighborhoods
of x:

NS(x) = {N1(x), N2(x), . . .}. (8)

The binary neighborhood system of U is

NS(U) = {NS(x) : x ∈ U}. (9)

Let X ⊆ U , the lower and upper approximations of X are defined as [13]:

NS(X) = {x ∈ U : ∃N(x) ∈ NS(x)s.t.N(x) �= ∅andN(x) ⊆ X} (10)

and

NS(X) = {x ∈ U : ∀N(x) ∈ NS(x)s.t.N(x) ∩X �= ∅}. (11)

The representation of maximal consistent blocks as binary neighborhood system
was shown in [10]. Let M(B) be a set of all maximal consistent blocks determined
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by B, the corresponding neighborhoods of x ∈ U , calledmaximal consistent block
neighborhoods, is defined as

MNSB(x) = {Y ∈M(B) : x ∈ Y }. (12)

For X ⊆ U , the B-lower and B-upper approximations of X in a maximal con-
sistent blocks neighborhood system are defined as [9]:

MNSB(X) = {x ∈ U : ∃Y ∈MNSB(x)s.t.Y �= ∅andY ⊆ X}and (13)

MNSB(X) = {x ∈ U : ∀Y ∈MNSB(x)s.t.Y ∩X �= ∅}. (14)

It is shown that MNSB(X) = MB(X) and MNSB(X) ⊆ MB(X), thus max-
imal consistent blocks neighborhood systems provide better approximation ac-
curacy than maximal consistent blocks of similarity classes [10].

Example 2. Consider Table 2 used in Example 1. For each x ∈ U , we have
the following binary neighborhood systems derived from the set of all maximal
consistent blocks M(B) = {{1}, {2, 6}, {3}, {4, 5}, {5, 6}}.
MNSB(1) = {{1}},
MNSB(2) = {{2, 6}},
MNSB(3) = {{3}},
MNSB(4) = {{4, 5}},
MNSB(5) = {{4, 5}, {5, 6}},
MNSB(6) = {{2, 6}, {5, 6}}.
For the decision class X = [(d, good)] = {1, 2, 4, 6}, the B-lower and B-upper
approximations of X based on the binary neighborhood systems are

MNSB(X) = {1, 2, 6} = MB(X) and MNSB(X) = {1, 2, 4, 5, 6} = MB(X).

For the decision class X = [(d, excellent)] = {5}, the B-lower and B-upper
approximations of X based on maximal consistent blocks are

MB(X) = ∅ and MB = {4, 5, 6}.
The B-lower and B-upper approximations of X based on the binary neighbor-
hood systems are

MNSB(X) = ∅ and MNSB(X) = {4, 5}.
Thus, the binary neighborhood systems provide a smaller B-upper approxima-
tion of X .

2.3 Characteristic Relations and Characteristic Sets

Incomplete information systems with both “do not care” and “lost” missing
values were first considered in [6] where elementary sets are represented by char-
acteristic sets computed from intersections of blocks of attribute-value pairs.
The basic idea is that objects with “do not care” missing value denoted by ’*’



Maximal Characteristic Sets and Neighborhoods Approach 79

are included in all blocks for every possible value of an attribute and objects
with “lost” missing value denoted by ’?’ are excluded in all blocks. It is further
assumed that at least one attribute-value pair is specified for each object.

For x ∈ U , the characteristic set of x is defined as

KB(x) = ∩{[x]a : a ∈ B}
where [x]a = {y ∈ U : a(x) = a(y) �=′?′ora(y) =′ ∗′}.

The characteristic relation K(B) is a reflexive relation on U defined for x, y ∈
U as:

(x, y) ∈ K(B) if and only if y ∈ KB(x).

Example 3. Let us consider the incomplete decision table shown in Table 1, and
let B = A be the set of all condition attributes. Then, we have the following
blocks of attribute-value pairs:

[(PACKER, yes)] = {1, 2, 4, 5, 6},
[(PACKER, no)] = {3, 4},
[(PACKER, ∗)] = {1, 2, 3, 4, 5, 6},
[(KEY SADDED, 1)] = {5},
[(KEY SADDED, 2)] = {1, 2, 3, 4, 6, 7},
[(APICALLS, 1)] = {1},
[(APICALLS, 2)] = {2, 3, 4, 5, 6, 7},
[(DLLs, 1)] = {1},
[(DLLs, 2)] = {2, 3, 4, 5, 6, 7},
[(UNIQUESTRINGS, yes)] = {1, 2, 6},
[(UNIQUESTRINGS, no)] = {3, 4, 5, 6, 7},
[(UNIQUESTRINGS, ∗)] = {1, 2, 3, 4, 5, 6, 7}.
We have the following characteristic sets computed from Table 1:

KB(1) = {1, 2, 4, 5, 6} ∩ {1, 2, 3, 4, 6, 7}∩ {1} ∩ {1} ∩ {1, 2, 6} = {1},
KB(2) = {2, 6},
KB(3) = {3, 4},
KB(4) = {3, 4, 6},
KB(5) = {5},
KB(6) = {2, 4, 6},
KB(7) = {3, 4, 6, 7}.

3 Neighborhood Systems of Maximal Characteristic Sets

In the following, we introduce the representation of characteristic sets as neighbor-
hood systems of maximal characteristic sets. Additionally, we introduce a mod-
ified definition for approximations of sets based on neighborhood systems. As
pointed out in [6], there are three different ways to define approximations of sets
based on singleton, subset, or concept. As shown in [6] that upper approxima-
tions of singleton-based approximations may not be B-definable. The maximal
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consistent block binary neighborhood systems given in Section 2.1 use singleton
based approximations, and they need to be modified. Lower and upper approx-
imations that are globally definable were introduced in [8], where a union of
characteristic sets KB(x), for x ∈ X ⊆ U is called a B-globally definable set. For
a concept X , the B-global lower approximation of X is defined as

GBX = ∪{KB(x) : x ∈ XandKB(x) ⊆ X}, (15)

and the B-global upper approximation of X is a set with the minimal cardinality
containing X and is defined as

GBX = ∪{KB(x) : ∃Y ⊆ U, x ∈ Y andKB(x) ∩X �= ∅}. (16)

3.1 Maximal Characteristic Sets and Neighborhoods

Let K(B) be a characteristic relation and KB(x) be a characteristic set derived
from K(B). We say that Y ⊆ KB(x) is a maximal characteristic set if and only if
Y is a maximal subset of KB(x) such that for any x, y ∈ Y, (x, y)or(y, x) ∈ K(B)
. For x ∈ U , we derive a maximal characteristic neighborhood system from each
characteristic set KB(x) consisting of its maximal characteristic subsets, and it
is defined as:

NS(KB(x)) = {Y ⊆ KB(x) : Y is a maximal characteristic set of KB(x)}.
Example 4. From Example 3, each characteristic set is represented as a neigh-
borhood system of maximal characteristic sets as follows.

KA(1) = {1}, NS((K)A(1)) = {{1}},
KA(2) = {2, 6}, NS((K)A(2)) = {{2, 6}},
KA(3) = {3, 4}, NS((K)A(3)) = {{3, 4}},
KA(4) = {3, 4, 6}, NS((K)A(4)) = {{3, 4}, {4, 6}},
KA(5) = {5}, NS((K)A(5)) = {{5}},
KA(6) = {2, 4, 6}, NS((K)A(6)) = {{2, 6}, {4, 6}},
KA(7) = {3, 4, 6, 7} NS((K)A(7)) = {{3, 4, 7}, {4, 6, 7}}.

3.2 Approximations Based on Maximal Characteristic
Neighborhoods

Follow the singleton B-lower and B-upper approximations of X introduced in
[10], [13], we have the B-lower and B-upper approximations of X ⊆ U , in a
maximal characteristic neighborhood system as

BX = {x ∈ U : ∃Y ∈ NS((KB(x))s.t.Y �= ∅andY ⊆ X} and
BX = {x ∈ U : ∀Y ∈ NS((KB(x))s.t.Y ∩X �= ∅}.

In general, the upper approximations of singleton based approximations are not
B-definable as shown in the following. For the decision in Table 1, apply the
singleton A-lower and A-upper approximations of [(d, no)] = {1, 2, 3}, we have
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A{1, 2, 3} = {1} and A{1, 2, 3} = {1, 2, 3}.
Note that A{1, 2, 3} = {1, 2, 3} is not A-definable based on definitions (10) and
(11) given in Section 2.2.

Let X ⊆ U , we define the subset B-lower and B-upper approximations of X
as

BX = ∪{Y ∈ NS((KB(x)) : x ∈ U, Y ⊆ X} (17)

and
BX = ∪{Y ∈ NS((KB(x)) : x ∈ U, Y ∩X �= ∅}. (18)

We define the concept B-lower and B-upper approximations of X as

BX = ∪{Y ∈ NS((KB(x)) : x ∈ X,Y ⊆ X} (19)

and
BX = ∪{Y ∈ NS((KB(x)) : x ∈ X,Y ∩X �= ∅}. (20)

Apply the subset A-lower and A-upper approximations for the decision in Table
1, we have

A{1, 2, 3} = {1},
A{1, 2, 3} = {1, 2, 3, 4, 6, 7},

A{4, 5, 6, 7} = {4, 5, 6},
A{4, 5, 6, 7} = {2, 3, 4, 5, 6, 7}.

The concept A-lower and A-upper approximations are

A{1, 2, 3} = {1},
A{1, 2, 3} = {1, 2, 3, 4, 6},
A{4, 5, 6, 7} = {4, 5, 6},

A{4, 5, 6, 7} = {2, 3, 4, 5, 6, 7}.
If we use the characteristic sets instead of maximal characteristic set neighbor-
hoods to compute the approximations. The subset A-lower and A-upper approx-
imations are

A{1, 2, 3} = {1},
A{1, 2, 3} = {1, 2, 3, 4, 6, 7},

A{4, 5, 6, 7} = {5},
A{4, 5, 6, 7} = {2, 3, 4, 5, 6, 7}.

The concept A-lower and A-upper approximations are

A{1, 2, 3} = {1},
A{1, 2, 3} = {1, 2, 3, 4, 6},

A{4, 5, 6, 7} = {5},
A{4, 5, 6, 7} = {2, 3, 4, 5, 6, 7}.

It shows that the use of maximal characteristic neighborhoods provides a better
approximation accuracy than using characteristic sets.
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4 Conclusions

We have introduced maximal characteristic neighborhood system representation
for incomplete decision tables containing both do not care and lost missing val-
ues. It is a refinement of characteristic sets, and hence, it improves approximation
accuracy as shown in our examples. Additionally, we refined the singleton ap-
proximations of neighborhood systems to subset and concept approximations,
which preserve the B-definability of upper approximations.

References

1. Pawlak, Z.: Rough sets: basic notion. International Journal of Computer and Infor-
mation Science 11(15), 344–356 (1982)

2. Pawlak, Z.: Rough Sets and Decision Tables. In: Skowron, A. (ed.) SCT 1984.
LNCS, vol. 208, pp. 186–196. Springer, Heidelberg (1985)

3. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishing (1991)

4. Kryszkiewicz, M.: Rough set approach to incomplete information systems. Infor-
mation Sciences 112, 39–49 (1998)

5. Leung, Y., Li, D.: Maximal consistent block techniques for rule acquisition in in-
complete information systems. Information Sciences 153, 85–106 (2003)

6. Grzyma�la-Busse, J.W.: Characteristic Relations for Incomplete Data: A General-
ization of the Indiscernibility Relation. In: Tsumoto, S., S�lowiński, R., Komorowski,
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Abstract. As a new generalization of Pawlak rough set, the theory and
applications of rough set over two universes has brought the attention by
many scholars in various areas. In this paper, we propose a new model of
probabilistic fuzzy rough set by introducing the probability measure to
the fuzzy compatibility approximation space over two universes. That is,
the model defined in this paper included both of probabilistic rough set
and fuzzy rough set over two universes. The probabilistic fuzzy rough
lower and upper approximation operators of any subset were defined
by the concept of the fuzzy compatible relation between two different
universes. Since there has two parameters in the lower and upper ap-
proximations, we also give other definitions for probabilistic fuzzy rough
set model under the framework of two universes with different combina-
tion of the parameters. Furthermore, we discuss the properties for the
established model in detail and present several valuable conclusions. The
results show that this model has more extensively applied fields.

Keywords: Probabilistic fuzzy rough set, fuzzy compatibility relation,
Two universes.

1 Introduction

Many our traditional tools for formal modeling, reasoning and computing are
crisp, deterministic and precise in character. However, most of practical problems
within fields as diverse as economics, engineering, environment, social science,
medical science involve data that contain uncertainties. We cannot successfully
use traditional mathematical tools because of various types of uncertainties ex-
isting in these problems. There have been a great amount of research and ap-
plications in the literature concerning some special tools such as probability
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theory [22], fuzzy set theory [25], rough set theory [6− 8], interval mathematics
[3, 11, 12, 17], and etc.

Rough set [6] theory is a new mathematical tool to deal with vagueness and
uncertainty. One of the main advantages of rough set theory is that it does not
need any preliminary or additional information about data, such as probability
distribution in statistics, basic probability assignment in the Dempster-Shafer
theory, or grade of membership or the value of possibility in fuzzy set theory [9].
The standard rough set model is a qualitative model that defines three regions for
approximating a subset of a universe of objects based on an equivalence relation
on the universe. A lack of consideration of the degree of overlap between an
equivalence class and the set motivates many researchers to study quantitative
rough set models [18, 26]. Therefore, probabilistic approaches to rough sets are
one of the most important and successful schools of quantitative rough sets [5].

As a non-numeric methods to represent and manage uncertainty contained in
various information systems, rough set theory also has been regarded as an inter-
val structures to manage uncertainty. In order to establish a unified framework
for treating uncertain information, a general notion of interval structure has al-
ready been proposed and discussed in detail [10, 15, 16, 21], and a generalized
rough set model on two universes was proposed based on the so-called compat-
ibility view. Subsequently, many results have been generated in the rough set
theory over two universes [4]. In [24], Zhang and Wu defined a rough set model
based on random set, in which, the lower approximation and the upper approxi-
mation were generalized to two universes. Subsequently, they proposed a general
model of the interval-valued fuzzy rough set on two universes by integrating the
rough set theory with the interval-valued fuzzy set theory according to the con-
structive and axiomatic approaches [23]. Based on the existed results, we present
a definition of fuzzy rough set by a fuzzy compatibility relation between two uni-
verses [13]. Moreover, we study the probabilistic rough set over two universes by
the constructive methods. We also study the relationship between probabilistic
rough set and Bayesian decision making over two universes [2, 4, 5]. In this paper,
we will present a new rough set model named probabilistic fuzzy rough set based
on probabilistic rough set and fuzzy rough set over two different universes. Both
of the models are our previous works. Though probabilistic fuzzy rough set over
two universes is a generalization of the existed work, there are many differences
among of the models.

In view of this opinion, the main objective of this paper was to study the basic
theory for probabilistic fuzzy rough set model over two universes. We present var-
ious definitions for the probabilistic fuzzy rough set over two universes according
to different parameters combination. Furthermore, we discuss the differences and
relationships between the proposed model and the other existed rough set mod-
els. Meantime, we also establish several important properties for probabilistic
fuzzy rough set model over two universes.

The remainder of this paper is organized as follows: Section 2 briefly introduces
the basic concept which is needed in this paper such as rough set over two
universes, fuzzy compatibility relation, probabilistic rough set over two universes.
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Section 3 establishes the probabilistic fuzzy rough set model and also give various
diversified definitions with the parameters combination. In section 4, we discuss
the basic properties for the proposed model in Section 3. At last we conclude
our research and set further research directions in Section 5.

2 Preliminaries

In this section, we review some basic concepts such as fuzzy compatibility rela-
tion, probabilistic rough set over two universes to be used in this paper.

2.1 Fuzzy Relation and Fuzzy Compatibility Relation

Throughout in this paper U, V denotes a non empty finite set unless stated
otherwise.

Firstly, we give the fuzzy relation on two universes.
Let U, V be non-empty finite universes. A fuzzy sets R̃ ∈ F (U × V ) of the

universe U × V (i.e., R̃ : U × V −→ [0, 1]) is called a fuzzy relation from U to V.

In general, for any u ∈ U, v ∈ V, the value R̃(u, v) denotes the related degree of
u and v [13].

If U = V, the fuzzy relation R̃ ∈ F (U × V ) will be called a fuzzy relation on U.

Definition 2.1 [13]. Let R̃ ∈ F (U × U), then

(1) R̃ is reflexive, if R̃(u, u) = 1, for any u ∈ U ;

(2) R̃ is symmetric, if R̃(u1, u2) = R̃(u1, u2), for any u1, u2 ∈ U,

(3) R̃ is transitive, if R̃ ◦ R̃ ≤ R̃.

Let R̃ ∈ F (U×U), if R̃ is reflexive, symmetric, then R̃ is called a fuzzy similarity

relation on U, if R̃ is reflexive, symmetric,and transitive, then R̃ is called a fuzzy
equivalence relation on U.

In the following, we present the fuzzy compatibility relation.

Definition 2.2 [13]. Let U, V be non-empty finite universes. R̃ be a fuzzy relation

from U to V, for any δ ∈ (0, 1], we define the fuzzy compatibility relation R̃δ

between the universe U and V as follows:

R̃δ(u) = {v ∈ V |R̃(u, v) ≥ δ, ∀ δ ∈ (0, 1], u ∈ U}.

If δ = 1, then R̃δ(u) = {v ∈ V |R̃(u, v) = 1, ∀ u ∈ U} = {v ∈ V |uRv, ∀ u ∈ U}
hold.

By the definition 2.2, we know that all the relationships of the elements be-
tween universe U and V are considered while the parameter δ takes all the
value of (0, 1]. As a result, we can obtain the expected aim of our by taking
the reasonable threshold values δ according to the demanding of the different
problems.
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2.2 Rough Set Models over Two Universes

In this section, we will review the basic rough set models over two universes with
some mainly results.

Definition 2.3 [10, 14]. Let U and V be two universes, and R be a binary
relation from U to V, i.e. a subset of U × V. R is said to be compatibility, or a
compatibility relation, if for any u ∈ U ; v ∈ V ; there exist t ∈ V ; s ∈ U such
that (u, t), (s, v) ∈ R.

Definition 2.4 [10, 14]. Let U and V be two universes, and R be a compatibility
relation from U to V. The mapping F : U → 2V , u �→ {v ∈ V |(u, v) ∈ R} is
called the mapping induced by R.

Obviously, the above-defined binary relation R can uniquely determine the map-
ping F, and vice versa. Then the rough set over two universes is defined as follows:

Let U and V be two universes, and R be a compatibility relation from U to V.
The ordered triple (U, V,R) is called a (two-universe) approximation space. The
lower and upper approximations of Y ⊆ V are, respectively, defined as follows
[10, 15, 16, 21]:

apr(Y ) = {x ∈ U |F (x) ⊆ Y };
apr(Y ) = {x ∈ U |F (x) ∩ Y �= ∅}.

The ordered set-pair (apr(Y ), apr(Y )) is called a generalized rough set, and the
ordered operator-pair (apr, apr) is an interval structure.

In the following, we present fuzzy compatibility relation-based fuzzy rough
set model and probabilistic rough set model over two universes [2, 4, 13].

Let U, V be two non-empty finite universes. R̃δ is the fuzzy compatibility
relation from universe U to V. Then, (U, V, R̃δ) is called fuzzy compatibility
approximation space over two universes.

Let U, V be non-empty finite universes, R̃δ be a fuzzy compatibility relation
of the universe U and V. For any X(X ⊆ V ), we define the lower and upper

approximations of X about R̃δ on the universe U and V as follows, respectively:

apr
R̃δ

(X) = {u ∈ U |R̃δ(u) ⊆ X},
aprR̃δ

(X) = {u ∈ U |R̃δ(u) ∩X �= ∅}.
Furthermore, we also define the positive region posR̃δ

(X), negative region

negR̃δ
(X) and boundary region bnR̃δ

(X) of X about R̃δ on the universe U and
V as follows, respectively:

posR̃δ
(X) = apr

R̃δ
(X); negR̃δ

(X) = U − aprR̃δ
(X),

bnR̃δ
(X) = aprR̃δ

(X)− apr
R̃δ

(X).

This is the fuzzy rough set over two universes defined in reference [13].
Let U, V be two non-empty finite universes. R ⊆ U × V is the set-valued

mapping from universe U to V. P is a probability measure defined on the σ
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algebra formed by the image( That is, the subset classes of the universe V ) of
element x(x ∈ U). Then, (U, V,R, P ) is called probabilistic approximation space
over two universes.

Let (U, V,R, P ) be probabilistic approximation space over two universes. For
any 0 ≤ β < α ≤ 1, X ∈ 2V . Then the lower and upper approximations of X
with parameter α and β as follows, respectively.

aprα
P
(X) = {x ∈ U |P (X |R(x)) ≥ α},

aprβP (X) = {x ∈ U |P (X |R(x)) > β}.
Meanwhile, the positive region, boundary region and negative region of X in
(U, V,R, P ) with parameter α and β could be given as follows, respectively.

pos(X,α) = {x ∈ U |P (X |R(x)) ≥ α},
bn(X,α, β) = {x ∈ U |β < P (X |R(x)) < α},

neg(X, β) = {x ∈ U |P (X |R(x)) ≤ β} = U − aprβP (X).

This is the probabilistic rough set over two universes defined in reference [2, 4].

3 Probabilistic Fuzzy Rough Set Model over Two
Universes

In this section, we establish the concept of probabilistic fuzzy approximation
operators based on the fuzzy compatible relation over two universes

First of all, we present the concept of probabilistic fuzzy compatibility ap-
proximation space over two universes.

Definition 3.1. Let U, V be two non-empty finite universes. R̃δ is the fuzzy
compatibility relation from universe U to V. P is a probability measure defined
on the σ algebra of the subset family of universe V. Then, (U, V, R̃δ, P ) is called
probabilistic fuzzy compatibility approximation space over two universes.

By the probabilistic fuzzy compatibility approximation space over two universes,
we give the lower and upper approximations for any subset of universe V as
follows.

Let (U, V, R̃δ, P ) be probabilistic fuzzy compatibility approximation space
over two universes. For any 0 ≤ β < α ≤ 1, X ∈ 2V . Then the lower and
upper approximations of X with parameters α and β are, respectively, defined
as follows:

Pα
R̃δ

(X) = {u ∈ U |P (X |R̃δ(u)) ≥ α},
P

β

R̃δ
(X) = {u ∈ U |P (X |R̃δ(u)) > β}.

The ordered set-pair (Pα
R̃δ

(X), P
α

R̃δ
(X)) is called probabilistic fuzzy rough set of

two universes, Pα
R̃δ

and P
α

R̃δ
are the approximate operators from P (V ) to P (U)

(P (•) denotes the subset family of universe). We also call ordered operator-
pair(Pα

R̃δ
, P

α

R̃δ
) is an interval structure.
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Meanwhile, the positive region, boundary region and negative region of X in
(U, V, R̃δ, P ) with parameter α and β could be given as follows, respectively.

pos(X,α) = {u ∈ U |P (X |R̃δ(u)) ≥ α},
bn(X,α, β) = {x ∈ U |β < P (X |R̃δ(u)) < α},

neg(X, β) = {x ∈ U |P (X |R̃δ(u)) ≤ β} = U − P
β

R̃δ
(X).

Remark 3.1. If we confine parameter α ∈ (0.5, 1] and omit the parameter β, and

re-define the lower and upper approximations of X(X ∈ 2V ) with (U, V, R̃δ, P )
are, respectively, as follows:

Pα
R̃δ

(X) = {u ∈ U |P (X |R̃δ(u)) ≥ α},
P

β

R̃δ
(X) = {u ∈ U |P (X |R̃δ(u)) > 1− α}.

Then we obtain the variable probabilistic fuzzy rough set model over two uni-
verses.

Remark 3.2. If δ = 1, since that R̃1(u) = {v ∈ V |R̃(u, v) = 1, ∀u ∈ U} ={v ∈
V |(u, v) ∈ R, ∀ u ∈ U} = F (u), so the fuzzy compatibility relation R̃δ is degen-
erated the ordinary compatibility F on the universe U and V. Then we have the
following relations:

Pα
R̃δ

(X) = aprα
P
(X) = {u ∈ U |P (X |F (u)) ≥ α},

P
β

R̃δ
(X) = aprβP (X) = {u ∈ U |P (X |F (u)) > β}.

This is the probabilistic rough set model between two different universes defined
by Gong and Sun [2].

Remark 3.3. If δ = 1 and α = 1, β = 0. By the Remark 3.2, we have the
following results:

Pα
R̃δ

(X) = apr(X) = {u ∈ U |F (u) ⊆ X},
P

β

R̃δ
(X) = apr(X) = {u ∈ U |F (u) ∩X �= ∅}.

This is the rough set model between two different universes proposed by Yao et
al. [21].

Remark 3.4. If U = V, it can be easily verified that R̃δ will be changed into a
general binary relation of universe U. Then, for any X ⊆ U, we have the following
results:

Pα
R̃δ

(X) = aprα
P
(X) = {u ∈ U |P (X |R(u)) ≥ α},

P
β

R̃δ
(X) = aprβP (X) = {u ∈ U |P (X |R(u)) > β}.

This is the probabilistic rough set based on general binary relation over the same
universe [4].

The above results show the relationship between probabilistic fuzzy rough set
over two universes and the existed rough set model. The results also illuminate
the model proposed in this paper is more widely and broader application filed.
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Actually, we also can obtain other generalized rough set model over two(one)

universes by discuss various cases for the fuzzy compatibility relation R̃δ. How-
ever, it does not deduce the fuzzy rough set over two universes from the definition
of probabilistic fuzzy rough set over two universes. So, it shows that the rough
set model proposed in this paper does not a directly generalization of the ex-
isted model but a new result. This could be the theory value that establishes the
probabilistic fuzzy rough set over two universes.

Similar to the classical Pawlak rough set, we also define the uncertainty mea-
sure of probabilistic fuzzy rough set over two universes as the way of the Pawlak
rough set in the following:

We call ρ(α,β)(X) =
|Pα

R̃δ
(X)|

|Pβ

R̃δ
(X)| the accuracy of approximation for subset X(X ⊆

V ) in probabilistic fuzzy compatibility approximation space.
Moreover, the approximated quality of lower and upper approximations are,

respectively, define as follows:

q(X) =
|Pα

R̃δ
(X)|

|U| = P (Pα
R̃δ

(X)), q(X) =
|Pβ

R̃δ
(X)|

|U| = P (P
β

R̃δ
(X)).

Furthermore, the relationship between the accuracy and quality of approxima-

tion can be expressed as follows: ρ(α,β)(X) =
q(X)

q(X) .

Then, we call σ(α,β)(X) = 1− ρ(α,β)(X) = |bn(X,α,β)|
|Pβ

R̃δ
(X)| the roughness for set X

in probabilistic fuzzy compatibility approximation space.
Actually, there have the similar properties for the accuracy of approximation

and roughness of the probabilistic fuzzy rough set and also can establish the re-
lationship between the accuracy of approximation and roughness like the existed
probabilistic rough set models over two universes [4].

Like the probabilistic rough set on the same universe, there are other forms
for the definition of lower and upper approximations since it includes two pa-
rameters. So is true for probabilistic fuzzy rough set over two universes. In the
following, we present the definitions for the probabilistic fuzzy rough lower and
upper approximations respectively.

Definition 3.2. Let (U, V, R̃δ, P ) be probabilistic fuzzy compatibility approxi-
mation space over two universes. For any 0 ≤ β < α ≤ 1, X ∈ 2V . Then the
other cases for lower and upper approximations of X with parameter α and β
are, respectively, defined as follows:

Case 1. Pα
R̃δ

(X) = {u ∈ U |P (X |R̃δ(u)) > α},
P

β

R̃δ
(X) = {u ∈ U |P (X |R̃δ(u)) ≥ β}.

Case 2. Pα
R̃δ

(X) = {u ∈ U |P (X |R̃δ(u)) > α},
P

β

R̃δ
(X) = {u ∈ U |P (X |R̃δ(u)) > β}.

Case 3. Pα
R̃δ

(X) = {u ∈ U |P (X |R̃δ(u)) ≥ α},
P

β

R̃δ
(X) = {u ∈ U |P (X |R̃δ(u)) ≥ β}.
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Though the above models have different definition form, all of them have simi-
lar properties. However, they could have different decision objects when it was
applied to the management decision in practice.

4 Properties for Probabilistic Fuzzy Rough Set over Two
Universes

In this section, we discuss the properties in detail for probabilistic fuzzy rough
set under the framework of two universes.

Theorem 4.1. Let (U, V, R̃δ, P ) be probabilistic fuzzy compatibility approxi-
mation space over two universes. For any 0 ≤ β < α < 1, X, Y ∈ 2V . The lower
and upper approximation operators satisfy the following properties.

(1) Pα
R̃δ

(∅) = P
β

R̃δ
(∅) = ∅, Pα

R̃δ
(V ) = P

β

R̃δ
(V ) = U,

(2) Pα
R̃δ

(X) =∼ P
(1−α)

R̃δ
(∼ X), P

β

R̃δ
(X) =∼ P

(1−β)

R̃δ
(∼ X),

(3) Pα
R̃δ

(X ∩ Y ) ⊆ Pα
R̃δ

(X) ∩ Pα
R̃δ

(Y ), P
β

R̃δ
(X ∪ Y ) ⊇ P

β

R̃δ
(X) ∪ P

β

R̃δ
(Y ),

(4) Pα
R̃δ

(X ∪ Y ) ⊇ Pα
R̃δ

(X) ∪ Pα
R̃δ

(Y ), P R̃δ
(X ∩ Y ) ⊆ P R̃δ

(X) ∩ P R̃δ
(Y ),

(5) If X ⊆ Y. Then Pα
R̃δ

(X) ⊆ Pα
R̃δ

(Y ), P
β

R̃δ
(X) ⊆ P

β

R̃δ
(Y ),

(6) If α1 ≤ α2, β1 ≤ β2. Then Pα2

R̃δ
(X) ⊆ Pα1

R̃δ
(x), P

β2

R̃δ
(X) ⊆ P

β1

R̃δ
(X).

Proof. Tt can be easily verified by the definition in Section 3.
By the relation (6) in Theorem 4.1, we know positive region will increase

with parameter α decrease but negative region will increase with parameter β
increase and boundary region will dwindle for two universes probability rough
set for given threshold δ.

Theorem 4.2. Let (U, V, R̃δ, P ) be probabilistic fuzzy compatibility approxi-
mation space over two universes. For any 0 < r < 1, X ∈ 2W . The following
relationships hold.

(1) lim
α→r+

Pα
R̃δ

(X) =
⋃
α>r

Pα
R̃δ

(X) = P
r

R̃δ
(X),

(2) lim
β→r−

P
β

R̃δ
(X) =

⋂
β<r

P
β

R̃δ
(X) = P r

R̃δ
(X).

Proof. Tt is similar to the Theorem 3.2 of Ref.[4].

Theorem 4.3. Let (U, V, R̃δ, P ) be probabilistic fuzzy compatibility approxi-
mation space over two universes. For any 0 < r < 1, X ∈ 2W . The following
relationships hold.

(1) lim
α→r−

Pα
R̃δ

(X) =
⋂
α<r

Pα
R̃δ

(X) = P r
R̃δ

(X),

(2) lim
β→r+

P
β

R̃δ
(X) =

⋃
β>r

P
β

R̃δ
(X) = P

r

R̃δ
(X).

Proof. Tt is similar to the Theorem 3.3 of Ref.[4].
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Theorem 4.2 and Theorem 4.3 show the continuous of the probabilistic fuzzy
lower and upper approximation operators with parameters for the given thresh-
old parameter δ. The results are similar to the probabilistic rough set over two
universes.

However, the following conclusions could not hold which are similar to the
fuzzy rough set over two universes [13] for the given parameters α and β.

Remark 4.1. Let (U, V, R̃δ, P ) be probabilistic fuzzy compatibility approxima-
tion space over two universes. For any δ1, δ2 ∈ (0, 1], and they are satisfied the
relation δ1 ≤ δ2. For any X(X ⊆ V ), the following relations

(1) Pα
R̃δ2

(X) ⊆ Pα
R̃δ1

(X),

(2) P
β

R̃δ2
(X) ⊆ P

β

R̃δ1
(X)).

could not hold.

Remark 4.2. Let (U, V, R̃δ, P ) be probabilistic fuzzy compatibility approxima-

tion space over two universes. Let R̃, S̃ be two fuzzy binary relation between U
and V and satisfy R̃ ⊆ S̃. For any X ⊆ V, the following relations

(1) Pα
S̃δ
(X) ⊆ Pα

R̃δ
(X),

(2) P
β

R̃δ
(X) ⊆ P

β

S̃δ
(X),

could not hold.

The above results with the properties illustrate the relationships and differences
between the model proposed in this paper and the existed rough set theory over
two universes.

5 Conclusions

In this paper, we have developed a new concept of probabilistic fuzzy rough set
over two universes by combing the fuzzy rough set with the probabilistic rough
set over two universes. It is also can be viewed as a generalization of probabilistic
rough set based on the fuzzy compatibility relation over two universes. The
relationship between the probabilistic fuzzy rough set with the existing rough set
over two universes were established. Furthermore, three interrelated definitions
of the probabilistic fuzzy rough set over two universes were established in detail.
In addition, we briefly discuss the properties for the proposed model and present
several important conclusions. It would enrich the basic theory of the rough set
over two universes and also provide a new model and tool to handle uncertainty
and fuzziness contained in management decision for practice.

In this paper, we focus on the basic definition and the related properties for the
probabilistic fuzzy rough set over two universes. Actually, the applications of any
new rough set model or generalized rough set model could be as important as the
theory research of themselves. So further work should consider the approaches
to the management decision with probabilistic fuzzy rough set model.
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Abstract. We discuss the importance of analytic SQL statements with complex
expressions in the business intelligence and knowledge discovery applications.
We report the recent improvements of the execution of complex expressions in
the Infobright’s RDBMS, which is based on the paradigms of columnar databases
and adaptive rough computations over the granulated metadata layer.

Keywords: RDBMS, Analytic SQL, Complex Expressions, Rough Computing.

1 Introduction

An important trend in the IT industry relates to the RDBMS solutions specialized in
database analytics, aimed at advanced reporting and ad-hoc querying against massive
amounts of data. Infobright’s technology1 is an example of such a solution, optimized
particularly with regard to the analysis and exploration of rapidly growing machine-
generated data sets2. Infobright’s approach to solving the underlying computational
scalability problems is based on a specific application of rough computing [1] in combi-
nation with the principles of columnar databases [2]. An important ingredient here is a
layer of fast heuristic algorithms that attempt to minimize and optimize the data access
during the query execution [3]. There is an ongoing process of improving this layer by
means of new ideas and implementations. This paper reports one of the areas of such
improvements, dedicated to SQL statements with complex expressions.

We concentrate on complex expressions that can be interpreted as dynamically de-
rived columns of the original or intermediately created tables involved into the analytic
SQL statement execution. Such expressions may occur in the conditions (e.g.: WHERE
expression = ...), aggregations (e.g.: SELECT SUM(expression)), group-
ings (e.g.: SELECT expression as A ... GROUP BY A) et cetera. They may
take a form of date functions, arithmetic operations, conditional expressions et cetera

1 www.infobright.org, www.infobright.com
2 en.wikipedia.org/wiki/machine-generated_data
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[4]. They may be also used to combine the results of the aggregate functions and they
may involve or be involved in the correlated subqueries [5].

The queries with expressions often occur in business intelligence and decision mak-
ing applications [6]. The string functions may be useful in the analysis of the above-
mentioned machine-generated data, where web logs, url addresses et cetera take a form
of long varchar columns [7]. Expressions are also important in the knowledge discovery
applications. Consider, e.g., the task of the feature extraction [8], where the SQL-based
scripts can derive new useful attributes from a relational database [9]. As another ex-
ample, consider the methods of SQL-based machine learning, such as the decision tree
construction proposed in [10], which can be further extended by searching for the cuts
on linear combinations of the original columns [11]. In all such cases, expressions rep-
resent the new dimensions of a decision model. The resulting model can be represented
by expressions too, e.g.: boolean expressions defining the root-to-leaf paths in a tree, or
arithmetic expressions defining the clusters of homogeneous rows.

In this paper, we show how to optimize the Infobright’s process of resolving the
analytic SQL statements with expressions. In Section 2, we recall the foundations of the
discussed database architecture, emphasizing its relationships to rough approximations.
In Section 3, we outline the drawbacks of our previous implementation of expressions.
We follow up with an overview of possible improvements and the solution introduced
in the latest version of our product. Section 4 concludes the paper.

2 Infobright’s Architecture

Infobright’s RDBMS is an example of a rough-columnar database engine. It combines
the columnar data storage/processing [2] with the metadata layer containing the gran-
ulated tables used to minimize the data access intensities, basing on the principles of
rough sets [1]. Rows of a granulated table (further called rough rows) correspond to
some partition blocks of the original data rows. Columns of a granulated table (fur-
ther called rough attributes) store statistics (further called rough values) describing the
original data columns within particular blocks of rows. The rough values may contain
information such as min/max values (interpreted specifically for different data types), a
sum of values (or, e.g., a total length of strings), a number of nulls et cetera.

New rough values are computed after receiving each block of 216 freshly loaded
rows. The gathered rows correspond to a new rough row in the granulated table. The
engine first decomposes rows onto particular columns’ values and creates data packs –
collections of 216 values of each column. In other words, each data pack corresponds
to a single block of rows and a single data column. Each data pack is represented by
a rough value summarizing its statistics at a metadata level. Last but not least, each of
data packs can be compressed independently. Figure 1 illustrates the overall framework
of loading, storing and querying the data. As displayed, rough values can be applied to
categorize some data packs as not requiring access with respect to the query conditions.
However, rough values can assist also in resolving other parts of SQL clauses, such as
aggregations, different forms of joins, correlated subqueries et cetera [3].

Sticking with the example of the WHERE clause, there are two cases when the given
portion of data can be categorized as not requiring further access. The first case is to
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Fig. 1. Loading, storing and querying in Infobright’s RDBMS. The metadata layer containing the
granulated tables is often called the Infobright’s knowledge grid. The contents of rough attributes
are stored in so called knowledge nodes. During the query execution, all applicable knowledge
nodes are put into memory. Rough values may be used, e.g., to qualify (disqualify) the blocks of
rows that satisfy (do not satisfy) the given WHERE clause. Only the borderline blocks (precisely,
their data packs corresponding to the columns used in the clause) need to be decompressed and
examined row by row. The filtering results obtained at the level of blocks and single rows are
passed as the arrays denoted by bf and f to the further stages of the query execution.

use rough values against WHERE clauses in order to eliminate the blocks that are for
sure out of the scope of a given query [12]. The second case occurs when it is enough
to use a given block’s statistics. It may happen, e.g., when we are sure that all rows in a
block satisfy query conditions and, therefore, some of its rough values can represent its
contribution into the final result. In our research, we noted an analogy between the two
above-discussed cases and the positive/negative regions defined within the theory of
rough sets [1]. It helped us to employ various AI-based heuristics aimed at minimizing
the amounts of data packs that need to be accessed, i.e., the data portions that cannot be
categorized as positive/negative by using their corresponding rough values.

Infobright’s performance depends on the quality of rough values and the algorithms
that use them. It is worth adding that we assign rough values not only to physical data
packs but also to intermediate structures generated during the query execution (e.g.:
hash tables used in aggregations). Also, we dynamically produce rough values applica-
ble at further execution stages. This will be better visible in the next section, where we
explain why it is worth computing such new rough values for expressions.
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3 New Implementation of Complex Expressions

The presented approach enables Infobright to gather positive feedback in the areas such
as online analytics, financial services and telecommunications, with the largest cus-
tomers approaching one petabyte of the processed data. Besides rough operations, the
speed of analytic queries is assured by the already-mentioned advantages of columnar
database design [2], as well as the adaptive query optimization [13] and parallel exe-
cution of data operations [14]. On the other hand, a challenge in front of technologies
combining many architectural aspects is to assure stable performance, i.e., comparable
execution speed of the SQL statements differing only in details.

One of our problems with regard to the above-mentioned performance stability used
to refer to the way of processing complex expressions when compared to the original
data columns. As already stated, expressions can occur in many places of the SQL syn-
tax, including filters, attributes to be aggregated et cetera. On the other hand, for the
users of the business intelligence and data mining tools, it is quite natural to expect
that the speed of execution of the analytic queries does not decrease significantly when
replacing a single column by an expression involving several columns. Using a sim-
ple example, the users realize that execution of the clause SELECT X+Y as A ...
GROUP BY A takes longer than SELECT X ... GROUP BY X, but they will not
accept an order of magnitude difference in the query execution time.

Prior to the recent 4.1 release of Infobright’s RDBMS, the default way of processing
expressions relied on the MySQL code. Basically, we treated expressions as additional
data columns with dynamically derivable values and we internally used the MySQL
structures to compute a given expression’s value for each particular row. Interpretation
of expressions as such additional columns may be actually compared to creation of fea-
tures of information systems corresponding to the physical data tables or intermediate
(although not necessarily materialized) tables resulting from joins, orderings, groupings
et cetera, treated as dynamically derived information systems [15].

Such a strategy enabled us to quickly extend the query functionality onto all expres-
sions implemented within MySQL. On the other hand, there were three issues: 1. Com-
putation based on MySQL structures was slightly slower than expected; 2. The MySQL
code turned out as not fully thread safe [16], which limited our abilities to parallelize
some steps of the execution of SQL statements with expressions [17]; 3. There was no
rough computation support for the dynamically derivable columns corresponding to ex-
pressions, i.e., using the above example of query SELECT X+Y as A ... GROUP
BY A, the rough values for A did not exist, so they could not help in optimizing the
access to data packs of the underlying data columns X and Y.

In order to solve the two first problems, we re-implemented the code for computing
complex expressions by ourselves. Although time consuming, this development project
was finished successfully, providing the functional coverage for a wide range of expres-
sions useful in the database analytics. However, addressing the challenges only at the
level of the row-by-row calculations was not sufficient to obtain the performance com-
parable to queries with no expressions. Therefore, some algorithms extracting rough
values of complex expressions for particular blocks of rows or, more generally, por-
tions of data involved in the query execution turned out to be necessary.
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Table 1. Functions & operators optimized at the rough level in Infobright 4.1

Logical
=
<>, ! =
<=
<
>
>=
BETWEEN
IN
NOT, !
AND, &&
OR
XOR
NOT BETWEEN
COALESCE
NOT IN
ISNULL
CASE
IF
IFNULL
NULLIF
IS NULL
IS NOT NULL

Numerical
+
−
∗
/
%
DIV
ABS
EXP
LOG10
LOG2
LOG
SQRT
FLOOR
BIN
OCT

String
LIKE
NOT LIKE
CONCAT
LENGTH
SUBSTR
SUBSTRING
INSTR
LOCATE
LEFT
MID
RIGHT
LOWER
LCASE
UPPER
UCASE

Others
INET_NTOA

Date/Time
CURDATE
CURRENT_DATE
CURRENT_TIME
DATE
DATEDIFF
DAY
HOUR
MONTH
YEAR
CURRENT_TIMESTAMP
CURTIME
DAYOFMONTH
DAYOFYEAR
LOCALTIME
LOCALTIMESTAMP
EXTRACT
MINUTE
NOW
QUARTER
SECOND
TIME
TO_DAYS

There are various potential ways of providing rough values of expressions to the
Infobright’s algorithms minimizing the data access. For instance, a popular research
trend in the database industry is to use the statistics of the occurrence of expressions in
the query logs. In our case, it would mean memorizing the knowledge nodes of some
of dynamically derived columns corresponding to the occurred expressions and reusing
them in the future queries. However, the question then arises how to maintain the right
expressions, so the overall size of the metadata layer does not grow in an uncontrolled
way. This is especially difficult to address in the case of ad-hoc query workloads, where
each next statement may contain slightly different expressions.

We chose another solution, which is implementing at the rough level the selected
group of popular types of expressions. Table 1 displays the functions and operators,
which are supported in this way in the Infobright 4.1 release. This means that for a given
block of rows or, in other words, its corresponding rough row in the granulated table
the rough value of a new attribute corresponding to the complex expression is computed
basing on the rough values of data columns involved in the expression’s definition. Such
dynamically created rough values are used by the query optimization and execution
algorithms exactly in the same way as the rough values of the original data columns.
The way of computing rough values for particular types of expressions turned out to
be an interesting research task, closely related to the principles of granular and interval
computing [18]. The tests conducted over real-world data sets prove that this strategy
allows us to achieve the wanted stability of the query performance.
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4 Conclusions

We presented the recently improved Infobright’s implementation of SQL statements
with expressions. It is based on computing the metadata statistics for attributes corre-
sponding to expressions, so they can be processed similarly to the data columns.
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Abstract. Traditional rule learners employ equality relations between
attributes and values to express decision rules. However, inequality re-
lationships, as supplementary relations to equation, can make up a new
function for complex knowledge acquisition. We firstly discuss an ex-
tended compensatory model of decision table, and examine how it can
simultaneously express both equality and inequality relationships of at-
tributes and values. In order to cope with large-scale compensatory de-
cision table, we propose a scalable inequality rule leaner, which initially
compresses the input spaces of attribute value pairs. Example and ex-
perimental results show that the proposed learner can generate compact
rule sets that maintain higher classification accuracies than equality rule
learners.

Keywords: Classification, machine learning, rough sets, rule induction,
inequality rule.

1 Introduction

Knowledge acquisition methods have caused widespread concerns [1]. Knowledge
discovered is often modeled by the relations between attributes and values. This
line of research ideas is closely related to rule learner [2]. In the classical rough
sets model, the upper or lower approximations are defined by elementary sets,
i.e., the collections of objects that are taken the same value with respect to a set
of attributes [3]. The relationship between attributes and values is equality. Both
certain rules and possible rules can be generated from lower and upper approxi-
mations. Within knowledge acquisition systems, knowledge is usually expressed
as IF-THEN production rule form. The conditional part of a rule is a conjunction
of equalities over conditional attributes. Rules with this form of representation
can be consequently embedded in classification module [4].

The main goal of rule learner is to improve the simplicity and prediction
accuracy of mined rules [5]. Rules that are expressed by complex forms are
hardly for people to comprehend. Therefore, it may lead to over-fit training data.
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In order to improve the efficiency, rule learners are designed by “simplicity first”
methodology to guarantee that the extracted rules are simple representation
and at the same time they can maintain comparable classification accuracy on
testing data [6]. Most of rule learners generate rules that express relationship
between attributes and values. Numerous types of relationship can be used to
expand rule form, such as equivalence relation, similarity relation and order
relations [7]. The common characteristics of these models are their expression
of the relationship between attributes and values. Therefore, these methods are
particularly important to mine domain knowledge [8].

In first order logic, antecedents of a IF-THEN implication is a conjunction of
positive or negative propositions. A negative proposition may require hundreds
of its complement positive propositions to express its meanings. Unless data
contains the complete information, mining only equality rule forms is hardly to
generate a complete set of rules. Therefore, the efficiency of classification module
will be affected negatively [2]. Cios et al. conducted exploratory rule induction
method that generates production rules that exclusively use inequalities in the
conditional part of generated rules, instead of the equalities generated by other
learners. But the extracted rules are still more complicated [9]. In [10], we builded
a series of extended models of decision table to express both equality and inequal-
ity relationships. Complexity analysis observed that the compensatory model
exhibits square space complexity, which is bottleneck for the classical rough sets
based rule learners. However, none of these works focuses on the framework of
design effective inequality involved rule induction method.

2 Compensatory Model for Expressing Inequality
Relations

The core task of knowledge acquisition is the expression of acquired knowledge.
Most approaches directly build relationships of attributes and values. Yao et al.
extended classical model for mining ordered relationships, i.e., <,>,�,� [11].
In practice, inequality plays a very important role in decision analysis. For ex-
ample, an image recognition task is to distinguish plates and non-plate problem.
For simplicity, we assume that plates are circular. The traditional rule learner
may produce rules represent the concept of non-plate as “IF Shape = rectangle
THEN is not a plate”, “IF shape = Star THEN is not a plate” and “IF shape
= Round THEN is a plate”. However, this learning procedure cannot learn the
nature of knowledge. If a new shape of object is added to system, the robot
will be difficult to recognize this object. Therefore, a classification rule contains
inequality can solve above problem, such as “IF Shape �= round THEN is not
a plate”. When a triangle object is added, the inequality rule can classify it to
a correct decision class. Therefore, inequality as a complement of equality can
help learning incomplete data sets.

Definition 1. Given a decision table S = (U,A = C ∪ {d}, {Va|a ∈ A}, {fa|a ∈
A}), its compensatory model is S∗ = (U,C∗∪{d}, {V ∗

pv
a
|pva ∈ C∗}∪{Vd}, {f∗

pv
a
|pva ∈

C∗} ∪ {fd)}, Where:
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C∗ = {pva|a ∈ C, v ∈ Va};
V ∗
pv
a
∈ {0, 1} for pva ∈ C∗;

f∗
pv
a
(x) =

{
1, if fa(x) = v,
0, otherwise.

By definition, the compensatory model of decision table is a binary valued deci-
sion table. Assume that m = |U | and n = |C|, i.e., the decision table contains m
objects and n conditional attributes. For any decision table, each grid can be con-
sidered as information content. As we know in fundamental information theory,
encoding complexity of information X is log2 |X | bits. Therefore, the encoding
complexity of extended model can be calculated by its grids.

Theorem 1. For any attribute a ∈ C, If |Va| is constant, then the asymptotic
encoding complexity of compensatory model S∗ is O(nm).

Proof. Because |Va| is constant, c = maxa∈C |Va| is also a constant. The compen-
satory model of decision table S∗ has at most m rows and nc columns, and for
each grid a bit of encoding complexity is needed. Therefore, encoding complexity
is O(nmc) = O(nm). �
Theorem 1 shows that when the range of attribute values is constant relative to
the size of objects, the compensatory model exhibits linear encoding complexity.

3 An Inequality Rule Learner

Let us denote B is the lower or upper approximation of a concept set from the
training data. Rule learner firstly uses a procedure to compress input set. The
reduced input set is used to mine rules so that it can reduce search space and
further improve its efficiency on large-scale data.

1) The compression procedure

The input sets are optimized by a data reduction method before searching for a
local covering. It is used the similar idea of [6]. The procedure is a data reduction
method with linear time complexity, which is used to reduce searching space in
the process of finding attribute-value pairs. The reduced set characterizes the
common attribute-value information in original input set, and it additionally
records the distribution of cases it generalized. Thus, the reduced set is called
as a generalized set and elements in this set are called as generalized cases.

2) Inequality rule learner

Rule learner uses a different heuristic method for selecting candidate attribute-
value pairs compared with algorithm LEM2. In order to check wether a specific
generalized case is included in original case space U , we introduce a consistent
check function, which is a boolean function that returns true if a given generalized
case is included in a given block set.
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Definition 2. Let T = {t|t = (a, v), a ∈ A, v ∈ V } be a set of attribute value
pairs, the block of T is [T ] = {x|f(x, a) = v, x ∈ U}, C is a conditional attributes
set, g ∈ G is a generalized case, the consistency check function is:

ConsC(g, T ) =

{
false if (∃x ∈ [T ])(∃c ∈ C)(xc �=? ∧ gc �=? ∧ xc �= gc),
true otherwise.

(1)

Definition 3. Given a ∈ C as a conditional attribute, v ∈ Va is a value of the
attribute, | Va | denotes the number of values of attribute a. The score function
of the attribute value pair relative to generalized set G is defined as:

ScoreG(a, v) =
∑

g∈G∧ga=v

gnum∗ | Va |. (2)

where gnum is the occurrence of the skeleton g in original case space U .

The pseudocode of proposed rule learner QLEM2 presents below.

Algorithm: QLEM2 Rule Learner
Input: A non-empty generalized set G, conditional attribute set C.
Output: A local covering set T.

1: T⇐ ∅;
2: while G �= ∅ do
3: T ⇐ ∅, TmpG⇐ G;
4: while (T = ∅) or ([T ] � B) do
5: t⇐ argmax(a,v)/∈T ScoreG(a, v);
6: T ⇐ T ∪ {t};
7: G⇐ {g ∈ G|ConsC(g, T )};
8: end while
9: for ∀t ∈ T do

10: if [T \ {t}] ⊆ B and T \ {t} �= ∅ then
11: T ⇐ T \ {t};
12: end if
13: end for
14: T⇐ T ∪ {T };
15: G⇐ TmpG \ {g ∈ TmpG|ConsC(g, T )};
16: end while
17: for ∀T ∈ T do
18: if ∪S∈T\{T}[S] = B then
19: T⇐ T \ {T };
20: end if
21: end for
22: return T;

AlgorithmQLEM2 uses one threshold to reinforce the stopping condition. QLEM2
uses default value for the threshold, which is set to zero, unless a user specifies
alternative value. The threshold is used to prune minimal complex for producing
very specific or complex rule forms.
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4 Experiment

Now we focus on comparing accuracy and rule complexity between equality rule
learner and inequality one on a variety of realistic datasets. A detailed description
of datasets is presented in Table 1. The datasets were obtained from the UCI
machine learning repository [12]. The continuous attributes are firstly discretized
by CAIM tool [13]. In the experiment, QLEM2 generates rules contain inequality
relations from compensatory model of decision table. The threshold parameter
is set to be 0.015. DataSqueezer [6] is a well-known equality based rule learner,
whose goal is to gradually add the candidate attribute-value pair of rules to
increase the generalization ability of rule sets.

Table 1. Description of data sets

Abbr. data set # cases # classes # attributes

tae TA Evaluation 151 3 5
hea StatLog heart disease 270 2 13
cle Cleve database 303 2 14
bos Boston hoursing 506 3 13
cra Credit approval 690 2 15
aca Australian credit approval 690 2 14
gec StatLog German credit data 1000 2 20
hyp Hypothyroid disease 3163 2 25

We repeat ten times 10-fold cross validation on each dataset. The results
of classification accuracy and rule complexity are shown in Table 2. We only
evaluate rules with confidence up to 0.01. In this table, “# rules” represents
the number of rules extracted, and “L/R” means the average length per rule.
The size of rule set and average length per rule are used as measurements of
rule complexity. To summarize, QLEM2 is characterized by achieving higher
classification accuracy than DataSqueezer, while it also generates smaller size of
compact rule set.

Table 2. Comparison results of QLEM2 and equality rule learner

data sets
DataSqueezer QLEM2

accuracy # rules L/R accuracy # rules L/R

tae 55 21 2.5 59 19 2.5
hea 79 7 3.2 82 14 2.4
cle 46 16 3.0 61 18 2.8
bos 70 22 5.2 73 21 4.3
cra 73 27 3.6 83 25 4.5
aca 62 20 2.5 76 14 3.3
gec 80 134 3.3 81 63 4.6
hyp 95 15 4.2 95 14 4.5

Mean 70.0 32.8 3.4 76.3 23.5 3.6
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5 Conclusion

This paper examines a compensatory model of decision table, which provide
rule leaner a function of mining rules with inequalities. While the rule learner in
LERS system generates rules directly from lower and upper approximations of
a concept, the proposed learner QLEM2 is based on a reduced set and searches
minimal complex from the optimized input set. Because the proposed learner
targets at finding rules in the form of both equality and inequality relations,
it is efficient to generate compact rule set. Experimental results show that the
proposed learner obtains more concise rule sets without sacrificing classification
accuracy than state of the art rule learner.
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Abstract. This article introduces a computer aided diagnosis scheme using sup-
port vector machine, in conjunction with moment-based feature extraction. An
application of ultrasound breast cancer imaging has been chosen and computer
aided diagnosis scheme have been applied to see their ability and accuracy to
classify the breast cancer images into two outcomes: cancer or non-cancer. The
introduced scheme starts with a preprocessing phase to enhance the quality of
the input breast ultrasound images and to reduce speckle without destroying the
important features of input ultrasound images for diagnosis. This is followed by
performing the seeded-threshold growing region algorithm in order to identify the
region of interest and to detect the boundary of the breast pattern. Then, moment-
based features are extracted. Finally, a support vector machine classifier were
employed to evaluate the ability of the lesion descriptors for discrimination of
different regions of interest to determine whether they represent cancer or not.
To evaluate the performance of presented scheme, we present tests on different
breast ultrasound images. The experimental results obtained, show that the over-
all accuracy offered by the employed support vector machine was 98.1%, whereas
classification ratio using neural network was 92.8%.

1 Introduction

The breast cancer screening tests performed on a regular basis play a crucial role
in reducing the rate of mortality, especially among women ages 50 and older [17].
The screening tests include digital mammography, clinical breast examination, breast
self-examination, or a combination of the above. Digital mammography refers to the
application of digital system techniques on digital Mammograms. Currently, digital
mammography is one of the most promising cancer control strategies since the cause
of breast cancer is still unknown. Computer-assisted reading of medical images is a
relatively new concept which has been developed during the last 10 years and which
is growing into diagnostic radiology. Especially in mammography, image processing
techniques and automated pattern recognition schemes is applied to assist radiologists
in the interpretation of mammogram.

However due to low contrast of breast cancer ultrasound imaging; the automatic can-
cer segmentation is still a challenging task. According to the National Cancer Institute,
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each year about 180,000 women in the United States develop breast cancer, and about
48,000 lose their lives to this disease. It is also reported that a woman’s lifetime risk of
developing breast cancer is 1 in 8 [10,3,17].

Ultrasound is a very useful complementary imaging technique which not only pro-
vides a different assessment of the lesion, but also allows detecting very small lesions
and analyze dense breasts, Many algorithm were used to detect breast cancer by know-
ing the region of cancer and classify it to which type will be and if it normal or up
normal [10,3,2]. However there are a lot of research works had been done for breast
cancer diagnosis.

Cheng et al. [3] introduced an extentive reveiw of the automated breast cancer detec-
tion and classification using ultrasound images analysis, and their advanteges and disad-
vanteges were discussed. Also, Saeys et al. [1] showed that feature selection techniques
had been applied in the feild of bioinformatics. Eadie et al. [2] presented a system-
atic reveiw of computer-assisted diagnosis in diagnostic cancer imaging; they disscused
some evidence relating to the use of CAD with various cancers and imaging modali-
ties, and investigates whether CAD provides a benefit to radiologists, with comparisons
made between radiologists diagnosing images alone and results from CAD systems.
Sree et al. [10] reveiwed various modalities used in breast cancer dediction includeing
mammography, breast ultrasound, thermography, magnetic resonance imaging (MRI),
positron emission tomography (PET), scintimammography, optical imaging, electrical
impedance based imaging, and computed tomography (CT). Shu-Ting et al. [11] in-
vestigated diagnosing breast masses in digital mammographyusing feature selection
and ensemble methods. They showed that the application of decision tree (DT), sup-
port vector machine(SVM) - sequential minimal optimization (SVM-SMO) and their
ensembles to solve the breast cancer diagnostic problem were preformed well.

In [4] a detection of HER2 breast cancer biomarker using the opto-fluidic ring res-
onator (OFRR) biosensor is proposed. The OFRR is utilized for the rapid detection of
breast cancer biomarker HER2 ECD. Their results showed that the OFRR is capable
of rapidly detecting HER2 ECD in human serum at clinically relevant concentrations
in approximately 30 min. An Automatic seeded region growing for color image seg-
mentation is proposed in [5]. Zaim in [6] proposed an automatic segmentation schema
of the prostate from ultrasound data using feature-based self organizing map. Kelly et
al. [8] proposed a breast cancer detection using automated whole breast ultrasound and
mammography in radiographically dense breast. And in [7] introduced a breast cancer
detection approch : radiologists’ performance using mammography with and without
automated whole-breast ultrasound . it provides a demonstration that experienced breast
radiologists can learn to interpret 2D AWBU quickly. So radiologists would signifi-
cantly improve their cancer detection rates in dense-breasted women by adding AWBU
to mammography. Tumen et al. [12] introduced components of the experimental frame-
work that we use to explore how recognition accuracy changes with respect to factors
including the choice of feature extraction parameters, feature selection, feature combi-
nation, and classifier fusion.Talebi et al. [13] developed a genetic active contour algo-
rithm for medical ultrasound image segmentation. In [14] Huang et al. proposed schema
for breast cancer dignoses and prediction that combine neural network classifier with
entropy based feature selection. Miguel et al.[15] proposed a filtering, segmentation and



108 O.S. Soliman and A.E. Hassanien

feature extraction methodology in ultrasound evaluation of breast lesions. Mancas et.
al. [16] applied a segmentation using a region-growing thresholding formedical image .
Mat-Isa et al. [17] improved screening for cervical cancer using seeded region growing
features extraction algorithm.

The aim of this paper is to develop a computer aided diagnosis system for breast
cancer based on ultrasound image analysis using support vector machine to classify the
suspicious regions of breast ultrasound images into different categories such as benign
findings and malignancy. The rest of the paper is organized as follows: The proposed
system including preprocessed, segmentation, feature extraction, classification phase
are introduced in section 2. In section 3, experimental results and analysis are pre-
sented. Where section 4 is devoted to conclusions and further research.

2 The Proposed Computer Aided Diagnosis System for Breast
Cancer

The computer aided diagnosis system for breast cancer proposed in this paper is com-
posed of the following four fundamental building phases:

– Pre-processing In the first phase of the investigation, a pre-processing algorithms
based on basics image processing filters are presented. It is adopted and used to im-
prove the quality of the images and to make the segmentation and feature extraction
phases more reliable.

– Segmentation phase In the second phase, seeded-threshold growing region algo-
rithm have been used to detect cavity contours region of breast cancer.

– Feature extraction based on moments In the third phase, features have been
extracted and represented in a database as vector values.

– Classification using support vector machine: The last phase is the classification
and prediction of new objects, it is dependent on the support vector machine.

The general architecture of the proposed system are depicted in Fig. 1 and these four
phases are described in detail in this section along with the steps involved and the char-
acteristics feature for each phase.

2.1 Preprocessing Phase

The aim of preprocessing phase is to enhance the quality of the input breast ultrasound
images, to reduce speckle without destroying the important features of input ultrasound
images for diagnosis. Preprocessing does not increase image information content, but its
main target is to improve images that contain an undesired distortions also it enhances
some image features which is very important for feature extraction and classification
process. The main steps of preprocessing algorithm is described in algorithm 1.
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Fig. 1. Main phases of the proposed breast cancer diagnoses system

Algorithm 1. Breast ultrasound image preprocessing algorithm
1: Input ultrasound breast cancer image.
2: for each image do
3: Calculate the average value of input image by dividing sum of all values of image on

number of pixels.
4: Set threshold equal to average value.
5: for each pixel do
6: if value of pixel < threshold then
7: Set its output pixel = 0
8: else
9: Set its output pixel = the value of pixel

10: end if
11: end for
12: end for
13: Obtain the enhanced binary ultrasound breast cancer image.

2.2 Segmentation Phase: Seeded-Threshold Growing Region Algorithm

In this phase, the seeded-threshold growing region (STGR) algorithm is employed to
detect cavity contours region of breast cancer by dividing the ultrasound breast image
into non-overlapping regions, and separating objects (lesions) from the background.
The boundaries of the lesions are delineated for feature extraction and make the region
that contains the cancer only in another image. After the threshold to segment the breast
image is determined, the region growing is started till detect all region of breast cancer
by doing a boundary around the region. In the region growing, the pixel direction is
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determined based on neighboring information include horizontal, vertical and all direc-
tional. If the value of the Horizontal edge is higher than the value of the vertical edge,
the pixel direction is Horizontal; if the value of the vertical edge is higher than the value
of the horizontal edge, the pixel direction is vertical; otherwise, the pixel direction is
all-directional. The main steps the STGR algorithm to segment breast ultrasound image
is described in algorithm 2.

Algorithm 2. Breast ultrasound image segmentation using STGR algorithm
1: Input preprocessed ultrasound breast cancer image.
2: for each image do
3: Calculate the average value of input image by dividing sum of all values of image on

number of pixels.
4: Set threshold (T) equal to average value.
5: Define seed point
6: for each pixel do
7: Start region growing algorithm using neighborhood information direction.
8: if (|seed point| − value of pixel) < T then
9: Put the value of pixel in a vector.

10: Detect the cancer part by doing boundary around this pixel.
11: end if
12: end for
13: Delete the other parts of the breast.
14: end for

2.3 Feature Extraction Phase: Moment Algorithm

The aim of this phase is to extract the feature vector of breast cancer lesions that can ac-
curately distinguish lesion, non-lesion, benign or malignant. The most effective features
should be selected since the feature space could be very large and complex. One set of
the useful object descriptors is based on the moments theory. The moment invariants
are moment-based descriptors of planar shapes, which are invariant under translational,
rotational, scaling, and reflection transformation [9]. The feature vector of each image is
extracted using moment algorithm as described in algorithm 3 and these feature vectors
are stored for purpose of classification.

2.4 Classification Phase: Support Vector Machine

In a last phase, the moment-based features were used for classification. These feature
vectors were used to obtain high classification precision using SVM, which seeks the
optimal separating hyperplane between two classes by focusing on the training sam-
ples that lie on the class boundaries while discarding other training samples effectively.
The simplest classification problem that SVM could deal with is the linearly separable
binary classification.
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Algorithm 3. Moment algorithm
1: Input ultrasound breast cancer image.
2: for each ultrasound image do
3: Compute the median of each image as:

Xm =
N

∑
i=1

N

∑
j=1

i∗X(i, j)/
N

∑
i=1

N

∑
j=1

X(i, j) (1)

Ym =
N

∑
i=1

N

∑
j=1

j ∗X(i, j)/
N

∑
i=1

N

∑
j=1

X(i, j) (2)

4: Assign each image a matrix A(p,q) .
5: Fill the matrix A(p,q) using the following equation:

A(p,q) =
N

∑
m=1

N

∑
n=1

X(m,n)∗ (m−Xm)
p ∗ (n−Xn)

q (3)

6: Compute feature matrix E(i, j) as:

E(i, j) = A(p,q)/A(1,1)M (4)

where M = (i+ j+2)∗ (1/2)
7: Convert the feature matrix E(i,j) into feature vector V.
8: Store the feature vector V.
9: end for

3 Experimental Results and Discussions

The proposed system is evaluated and tested using ultrasound of breast cancer images
data set. In the preprocessing phase of ultrasound image, is enhanced and the noisy
is removed and obtaining a smoothed ultrasound image. The input ultrasound breast
cancer image is enhanced without any destroying of its important features by applying
the preprocessing algorithm 1. Fig. 2 shows the original and preprocessed breast image.
The preprocessed retina image is used as an input image segmentation and detection
phases.

(a) Original breast cancer ultrasound image (b) Enhanced breast cancer ultrasound image

Fig. 2. Preprocessed breast cancer ultrasound image
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In the segmentation phase the ultrasound image is segmented using the seeded-
threshold growing region (STGR) algorithm, by dividing it into non-overlapping re-
gions, and it separates the objects (lesions) from the background. The boundaries of the
lesions are delineated for feature extraction and make the region that contain the cancer
only in another image. Fig. 3 shows the enhanced breast cancer ultrasound image and
the segmented image that contains only the region of lesions.

(a) Enhanced breast cancer ultrasound image (b) Segmented breast cancer ultrasound image

Fig. 3. Segmentation of breast cancer ultrasound image

The feature vectors of the segmented ultrasound breast cancer images with lesions
region are extracted using the moment algorithm and stored for classification phase.
In order to to classify the suspicious regions into different categories, such as benign
findings and malignancy. The SVM algorithm is implemented to classify suspicious re-
gions, and to detect weather these regions of ultrasound image benign or malignant can-
cers. The classification results of suspicious regions with malignant cancers are shown
in Fig. 6 and Fig. 5. Where the lesions region benign tumor is shown in Fig. 4.

(a) Original breast ultrasound image (b) Normal breast ultrasound images

Fig. 4. Classification results of Normal breast ultrasound image
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(a) Enhanced breast ultrasound images (b) Detected cancer in breast ultrasound images

Fig. 5. Classification results of detected breast cancer ultrasound image

Fig. 6. Classification results of detected breast cancer ultrasound image: The upper row represent
original while the lower represented the detected region

4 Conclusions and Further Research

This article introduces a computer aided diagnosis scheme using support vector
machine, in conjunction with moment-based feature extraction and seeded-threshold
growing region algorithm. An application of ultrasound breast cancer imaging has been
chosen and computer aided diagnosis scheme have been applied to see their ability and
accuracy to classify the breast cancer images into two outcomes: cancer or
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non-cancer. To evaluate the performance of our approach, we presented tests on dif-
ferent ultrasound breast images which show that the overall accuracy offered by the
employed support vector machine was 98.1%, whereas classification ratio using neural
network was 92.8%.

Our future work is to integrate the proposed system with resent advanced machine
learning techniques to extract an accurate features vectors and classification of breast
cancer diseases digeneses and identification as early as possible.

Acknowledgment. This work has been supported by Cairo University, project Bio-
inspired Technology in Women Breast Cancer Classification, Prediction and
Visualization.
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Abstract. Eye corner location is a hot research topic in recent years.
A novel eye corner Location method is proposed in the paper. Firstly, a
haar features face detection based on adaboost is used to detect the face
in an image. Secondly, a step of accurate eye corner location is proposed,
which consists of rough eye location, contour extraction ellipse fitting,
corner detection and eye corner location. Rough eye location is used for
reducing the search range in the image. Then contour extraction based
on ellipse fitting is taken. In the following, the curvature scale space(CSS)
corner detection operator is used for corners detection. At last, the inner
and outer eye corners can be determined according to statistics result
of frequency distribution of the corner points projection. The proposed
method is proved to be an effective and robust method according to the
result of comparative experiments.

Keywords: contour extraction, ellipse fitting, corner detection, eye cor-
ner location.

1 Introduction

Eyes are the most important characters in the face. Research on location of
eyes is a very hot issue in recent years. There are lots of applications related
with eye location. For example, it is very important part for monitoring fatigue
drivers based on eye location. Nowadays, the main approaches of eye location and
detection adopt the pupil and iris [1–6]. However, there is another method which
is more stable and based on eye location instead pupil and iris. It just because the
eye corner location is seldom affected by the direction of gaze and the eye states.
Furthermore, corner is a kind of significant local features of object in digital
image. It can be taken as a feature of image while it can decrease the amount of

� Part of this work is supported by National Natural Science Foundation of China (No.
61075019), Scientific Research Foundation of Chongqing Municipal Education Com-
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Foundation of Chongqing University of Posts and Telecommunications(No. A2009-
26, No. JK-Y-2010002).
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information of the image. Therefore, it is often used in pattern recognition and
image analysis. On the other hand, eye corner location is much more difficult
than iris location since it is located in skin and influenced by wrinkles, dark
circles, swells and cosmetic for eye corner location, and there is no such unique
gray scale character of iris.

There are lots of research works on eye location. J.Song used the binary edge
and intersity information to locate the eyes[7]. Zhang et al used the knowledge of
facial characteristics to extract the eye corners, which through the binarization
of the characteristic block[8]. Xu et al presented an angle model, in that model
an angle of the eyelid was made, which is based on the semantic features[9].

Based on the aforementioned methods, a new eye corner location method is
proposed to avoid the influence from the varying light, wrinkles, dark circles,
etc. The proposed method consists of two phases: face detection and accurate
eye corner location. Firstly, a haar features face detection based on adaboost
is used to detect the face in image. Secondly, a step of accurate eye corner
location is proposed, which consists of rough eye location, contour extraction
ellipse fitting, corner detection and eye corner location. Rough eye location is
used for reducing the search range in image. Then contour extraction based
on ellipse fitting is taken. In the following, the CSS corner detection operator
is used for corners detection. At last, the inner and outer eye corner can be
determined according to statistics result of frequency distribution of the corner
points projection. The proposed method is proved to be an effective and robust
method according to the result of comparative experiments. The structure of the
following paragraph is listed as follows. Face detection is introduced in section
2, proposed method of accurate eye corner location is introduced in section 3,
experiments and discussion is introduced in section 4. In the end, there is a
conclusion and future work.

2 Face Detection

It must be extensively and inaccurately if eye location is taken directly on a full
image. Therefore, a step of face detection should be taken to reduce the searching
range. It is shown that combing haar features and adaboost method would be
more efficiency and more accuracy compared with other face detection methods
[2]. The cascade haar classifier is a classical classifier for face detection, and it
is proved to be a good choice for frontal face detection [10]. In this paper, the
cascade haar classifier is used for detecting face, and developed based on VC6.0
and OpenCV.

The principle of face detection used in this work is described as follows. Firstly,
cascade haar classifier is used to search where the face rectangles are. A series
of rectangle regions would be returned. Based on multiple searching, the overlap
area on a different scale of sliding window would be detected. The overlap regions
which pass through the cascade classifier would be collected to combining a mean
rectangular.In the end, the face area can be gotten. It means that the final face
location is the average of the multiple detection results.



118 Y. Yang and Y. Lu

3 Accurate Eye Corner Location

3.1 Rough Eye Location

According to the cognitive principle of human face, geometric constraints are
applied to localize eyes. That is to say, that eyes are only searched in the top
half of a face. The eyes in frontal face is not less than 1/2 of the detection region
of face, therefore, the precise area of eye is restricted in 1/8 to 1/2 of upper part
of face and 1/8 to 7/8 of left part of face in order to reduce the unnecessary
interference detection and operation consumption. As shown in Fig. 1.

 
 

Fig. 1. The Process Schema for Rough Eye Location

3.2 Extraction Eye Contour Based on Ellipse Fitting

The eyelids of human are arcuate, and the veins of skin in eye corner are multi-
textures and density. It is a strong edge, and the contour points we obtained
from eye corner are closely spaced. Therefore, the ellipse fitting method can be
adopted here to match the eyes, and ensure outline points and elliptic curve are
roughly superposed. It will separate the outline points from some interferential
pouch or wrinkles. As a result, eye contour can be accurately described and the
eye corner can be orientated. Since this method is more accurate than hough
transform to represent eye corner and is used in this work.

The basic operation of ellipse fitting is described as follows.
Firstly, the outline of a binary image can be extracted and stored by cvFind-

Contours function of OpenCV. Secondly, position of a sequence of points can
be gotten from the curve. As for a curve containing a series of points, it can
be fit by ellipse fitting if it contains no less than 6 points. Because, there are 6
coefficients for complete binary indefinite quadratic equations, so the sequence
of points is no less than 6. The ellipse fitting used in this paper is based on
Euclidean distance and the least square method [11].

The principle of ellipse fitting is introduced as follows. An Orthogonal distance
di is defined as a distance between the random point Xi = (xi, yi) and the point
of tangency Xt = (xti, yti) on the ellipse Q(x, y) ( Fig. 2). The connection of two
points and the tangents which pass through the point Xt is orthogonal. Given
n points Xi (1, . . . , n, n ≥ 6), the minimum value of the following function (2) is
the ellipse fitting based on the least square method.
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F (p) =

n∑
i=1

d2i (1)

The ellipse equation is the following function.

Q(x, y) = A(x− x0)
2 +B(x− x0)(y − y0) + C(y − y0)

2 − 1 = 0 (2)

The point of Xt = (xti, yti) is satisfied with the following two requirements:

A(xt − x0)
2 +B(xt − x0)(yt − y0) + C(yt − y0)

2 − 1 = 0 (3)

(y − yt)
∂

∂x
Q(xt, yt) = (x− xt)

∂

∂y
Q(xt, yt) (4)

MakeΔx = xt − x0,Δy = yt − y0 through calculation and reduction we can get
the orthogonal distance as the following function expresses.

d =
√
(x− x0 −Δx)2 + (y − y0 −Δy)2 (5)

Complicated calculations have to be taken here, and four solutions can be ob-
tained. There is only one real solution satisfying F(p) to be minimum. Ellipse
obtained in this way is the best one.

(x0,y0)

(xi,yi)

(xti,yti)
di

Fig. 2. Orthogonal Distance of a Point to a Conic

3.3 Corner Detection and Eye Corner Location

The eye corner is the intersection area of the upper and lower eyelids [7] which is
usually influenced by furrow and cosmetic. The results would be some deviation
if detection method based on gray level projection is used directly. Usually, the
corner detection method based on the edge profile would be more accurate to
get the candidate corner points of eyes compared with method based on gray
level projection. In this paper, one of the methods, a corner detection method
based on the CSS [12] is used for detecting the corner of curve.

Firstly, from the CSS corner detection we get the the candidate points. Among
the candidate points, there are real eye corner points, eyebrows and other in-
terference corners. In order to find eye corner point accurately, a method based
on statistics result of frequency distribution of the corner points projection is
proposed in this paper. It is based on the distinguish ability of statistics result
of frequency distribution. (Fig. 3, Fig. 4) Then the eye corners can be gotten
according to the statistics result of frequency distribution of the corner points
projection. The basic operation is described as follows.
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Obtains these n candidate points through the CSS corner detection. Coor-
dinate these n candidate points on y axis (y1 ≤ y2 ≤ . . . ≤ yn), notes for
hk(x, y)(k = 1, 2, . . . , n), for each y definition h(x, y), a distribution function of
projection frequency is used to calculate the projection number N(Y = yj).

N(Y = yj) =
∑
i

|h(xi, yj)|, (i = 1, 2, · · ·l; j = 1, 2, · · ·d) (6)

Here, l and d is the length and width of image of accurate eye area.
For the purpose of separating the candidate points of eyes from eyebrows, a

new variable Δ is defined. Δ denotes pixels of width of template and can be used
to separat the candidate points of eyes from eyebrows. It is defined as follows.

Δ =

⌈
λ× d/l × d · l

s

⌉
=

⌈
λ · d

l

⌉
(7)

In (11), l, d and s are the length, width and area of accurate eye area image
respectively, and λ is the ratio of images in width and height. In this work,
λ is determined on 50 images with coarse position of eye and the image size
varying from 60 * 35 to 170 * 90 pixels in BioID[13]. It is determined based on
eyes corner accuracy varying with different Δ value (take 5, 6, 7... 20 pixels).
And that value is the Δ value when it got the highest accuracy in each of eye
corner point Locating image. The λ values in the eye area image are uniform
distribution in near function y = 7× log ((x− 25)× 2) while aspect ratio of the
image is a certain percentage. So λ = 7 × log((l − 25)× 2). When the image is
l × d = 120 × 60, λ = 30, the effect is the best, and Δ is 15, and the template
pixels for Positioning eyes and eyebrows width is 15. Along to the y axis, when
meeting the first corner point began to calculation with the templates width.
Corner for statistics in Δ is the following function.

NΔ =
∑
j

∑
i

|h(xi, yj)|, (i = 1, 2, · · ·l; j = k, · · ·k +Δ) (8)

The inner and outer human eyes are made up of four eye corners, so NΔ ≥ 4.
When NΔ < 4, the point k is defined as a interference point and so repetition of
an operation from k+1. Repetition of an operation formula (8) from k+1 only
after meeting NΔ ≥ 4. The final Δ area is the eyes corner area. (See Fig. 4)

In the fitting image corner area of Δ eye, since the two outer eye corners are
located in both ends of the x axis, the two outer eye corners are h(xmin, yΔeye)
and h(xmax, yΔeye).

Based on the morphological characteristics of eyes, two eye corners are located
in between two outer eye corners and near the center line Φ = (xmin,Δeye +
xmax,Δeye)/2 of the two outer eye corners, and the two outer corners located on
both sides of the Φ and the distance of the two to Φ almost equal.

xinner1 < Φ < xinner2 (9)∣∣∣∣xinner1 + xinner2

2
− Φ

∣∣∣∣ ≤ 5 (10)
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Began to calculation from the left Φ nearby, the two inner eye corners are first
points meet the conditions. That is to say the inner eye corners are h(xinner1,
yΔeye) and h(xinner2, yΔeye).

4 Experiments and Discussion

The wrinkle and pouch will influence the result of eye corner location when there
is a kind of expression. Furthermore, light will affect the result also. To test the
effectiveness of the proposed method, 100 images random selected respectively
from two datasets, JAFFE [14] and BioID, are used in the experiments. Based on
the method of rough eye location introduced in 3.1, image size between 100*50
to 130*75 pixels is gotten for the following experiments.

On the other hand, another two methods are selected for compared experi-
ments, the first is SNS (Structured Neighborhood Similarity) introduced in [9],
the second is eye corner detection based on the mean threshold segmentation of
binary features introduced in [8] (abbreviate as MTSBF in the following).

4.1 Comparative Experiment on Accuracy

The first experiment is for the purpose of testing the accuracy of the proposed
method compared with the other two methods in eye corner location. Here, the
same 100 images are used for the 3 methods, and location results can be gotten
automatically. On the other hand, another location result indicated the real eye
corner is also gotten by hand. It can be seen correct location if it is within 5
pixels when we compared the two results, otherwise, it is a wrong location [8].
A ratio indicated accuracy of each method can be gotten and listed as follows.

From table 1, we can find that the proposed method can get the highest lo-
cation rate. Therefore, the effectiveness of the proposed method can be proved.
Moreover, since light is varied in images of the BioID dataset, the proposed
method can get the highest location rate among the three methods, the robust-
ness of the proposed method can be shown. Furthermore, we found that location
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Table 1. The Detection Rate of Inner and Outer Eye Corners

SNS MTSBF Proposed Method
Inner eye
corners

Outer eye
corners

Inner eye
corners

Outer eye
corners

Inner eye
corners

Outer eye
corners

JAFFE 78% 89% 86% 92% 95% 99%

BioID 65% 81% 72% 84% 73% 92%

rate of outer eye corners are higher than inner eye corners in the three experi-
ments. That is to say, outer eye corners can be more accurate location compared
with inner eye corners. This phenomenon is due to the contour points (feature
point) of outer eye corners are more than the points of inner eye corners.

4.2 Case Study

To test the accuracy of the proposed method further, a case study is taken.
6 images among the 100 images in both datasets are randomly selected in the
compared experiments. the location result and a location ratio are be listed as
follows. Fig. 5, Fig. 6, Fig. 7, and Table 2 are results of JAFFE. Fig. 8, Fig. 9,

 

 

 

Fig. 5. Inner and Outer Eye Corners location of the Proposed Method

 

 

 

Fig. 6. Inner and Outer Eye Corners location of SNS

 

 

 

Fig. 7. Inner and Outer Eye Corners location of MTSBF
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Table 2. The Detection Rate of Eye Corners of Different Image in JAFFE

SNS MTSBF Proposed Method
JAFFE Inner eye

corners
Outer eye
corners

Inner eye
corners

Outer eye
corners

Inner eye
corners

Outer eye
corners

Img 1 100% 100% 100% 100% 100% 100%
Img 2 100% 50% 100% 50% 100% 100%
Img 3 50% 100% 100% 100% 100% 100%
Img 4 50% 50% 100% 0 100% 100%
Img 5 50% 50% 50% 50% 100% 100%
Img 6 50% 50% 100% 50% 100% 100%

 

 

 

Fig. 8. Inner and Outer eye Corners location of the Proposed Method

 

 

 Fig. 9. Inner and Outer Eye Corners location of SNS

 

 

 Fig. 10. Inner and Outer Eye Corners location of MTSBF
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Fig. 10, and Tab. 3 are results of BioID. When we compare the proposed method
with the other two methods, we can found that the proposed method is more
accurate. There are three cases. Firstly, all the three methods can correctly
location, such as inner eye corners in image No.1 of JAFFE. Although all the
three methods can correctly location, we can found the proposed method are
more accurate among the three results. Secondly, only the proposed method is
correctly location among the three methods, such as inner eye corners in image
No.2 of BioID. When we compared the three results, we can found the two
outer eye corners can be correctly located, whereas SNS miss the left side inner
eye corner, and MTSBF miss the right side inner eye corner. Thirdly, there are
wrong results in all the three methods, such as inner eye corners in image No.5 of
BioID. When we compare the three results, we can found the proposed method
miss the right eye corner, SNS miss the right eye corner also, and MTSBF miss
the two inner eye corners. Furthermore, we can found even though both the
proposed method and SNS miss the right side inner eye corner, but the result
of the proposed method approach to the correct result. Based on these in depth
analysis, we can found the proposed method is more accurate and robust.

Table 3. The Detection Rate of Eye Corners of Different Image in BioID

SNS MTSBF Proposed Method
BioID Inner eye

corners
Outer eye
corners

Inner eye
corners

Outer eye
corners

Inner eye
corners

Outer eye
corners

Img 1 100% 100% 50% 50% 100% 100%
Img 2 50% 100% 50% 100% 100% 100%
Img 3 0 50% 0 100% 100% 100%
Img 4 100% 50% 50% 0 100% 100%
Img 5 50% 100% 0 50% 50% 100%
Img 6 100% 50% 50% 100% 100% 100%

5 Conclusion

In the paper a novel eye corner location method based on the statistics result of
frequency distribution of the corner points projection is proposed. This method
takes advantage of contour extraction, ellipse fitting and corner detection to
extract candidate points of eye corners. The proposed method is proved to be an
accurate and robust method even if the proposed used in the images with varied
light and emotion. In the following, different face would be researched further,
such as side face.
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Abstract. The elicitation of preferences is the most costly process of
the ZAPROS III-i considering the human-computer interaction. We in-
tend to integrate the method and decision trees in order to improve this
process. As a study case, the data from a battery of tests of patients
with possible diagnosis of Alzheimer’s disease will be used to structure a
decision tree based on the characteristics that play the main role on the
diagnosis, and a preference’s scale will be establish through the analysis
of the resulting tree. Then, this scale will be loaded into the ZAPROS
method in order to rank-order the involved tests.

Keywords: Verbal Decision Analysis, ZAPROS III-i, Decision Trees,
Diagnosis of the Alzheimer’s Disease.

1 Introduction

The Verbal Decision Analysis (VDA), which is the focus of this work, is based on
the multi-criteria problem solving through its qualitative analysis. The ZAPROS
methodology, which belong to the VDA framework, aims at ranking multi-criteria
alternatives, and it needs the DecisionMaker (DM) to compare all the values of cri-
teria involved in the problem so that a decision rule can be structured. This makes
the stage the costliest process from the DM’s point of view. Thus, the aim of this
work is to integrate the ZAPROS III-i method and decision trees in order to min-
imize the human participation in the preferences elicitation process, and increase
the granularity of the problem without decreasing the method’s performance.

A hybrid model to determine which questionnaire from a battery of tests
would identify faster a possible case of the Alzheimer’s disease will be presented.
This way, the social contribution of this work is to determine which test from
a battery would present the highest probability of detecting the disease on its
early stages, evaluating the characteristics that play main role on the diagno-
sis. Some works involving multi-criteria and the early diagnosis of diseases have
already been developed as in: [3], which was developed based on previous mod-
els [2][9], applies multi-criteria in the health area and a model validated by the
data provided on the battery of CERAD [5]; and also in [10][11][12].

J.T. Yao et al. (Eds.): RSCTC 2012, LNAI 7413, pp. 126–131, 2012.
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2 ZAPROS III-i Method

The Verbal Decision Analysis (VDA) framework is structured on the acknowl-
edgment that most of the decision making problems can be verbally described.

The ZAPROS III-i method belongs to the VDA framework and it will be
used in this work. The method is structured in three well-defined main stages:
Problem Formulation, Elicitation of Preferences and Comparison of Alternatives,
as proposed in the main version of the ZAPROS method [7], and it aims at
ranking multi-criteria alternatives in scenarios involving a rather small set of
criteria and criteria values, and a great number of alternatives.

Regarding the Formal Statement of the Problem, the methodology follows the
same problem formulation proposed in [7]:

Given:

1) K=1, 2,..., N, representing a set of N criteria;

2) nq represents the number of possible values in the scale of q-th criterion,
(q ∈ K); for the ill-structured problems, as in this case, usually nq ≤ 4;

3) Xq = {xiq} represents a set of values to the q-th criterion, and this set is
the scale of this criterion; |Xq| = nq (q ∈ K);

4) Y = X1 ∗X2 ∗ ...∗XN represents a set of vectors yi, in such a way that: yi =

(yi1, yi2, ..., yiN ), and yi ∈ Y , yiq ∈ Xq and P = |Y |, where |Y | = ∏i=N
i=1 ni.

5) A = {ai} ∈ Y , i=1,2,...,t, where the set of t vectors represents the description
of the real alternatives.

Required: The ranks of set A alternatives based on the DM’s preferences.
In the Elicitation of Preferences stage, the scale of preferences for quality

variations (Joint Scale of Quality Variations - JSQV) is defined. The elicitation
of preferences follows the order of steps proposed in [13]. This structure is the
same proposed in [7], however, the substages that compare values of criteria
against the first and the second reference situations1 were put together in just
one substage. The consolidation of these substages reflects on an optimization
of the process, reducing the number of questions presented to the DM on 50%.

The Comparison of Alternatives process starts after the decision rule is ob-
tained. It follows same structure proposed in [7], with a modification in the
comparison of pairs of the alternatives’ substage according to the one proposed
in [8] aiming at reducing the number of incomparability cases. Fig. 1 shows the
structure of the comparison of the alternatives process. The complete function-
ing of the process is exposed in [13]. A tool was proposed in [14] in order to
facilitate the decision making process and perform it consistently, observing its
complexity and aiming at making it accessible.

1 The First Reference Situation is represented by an alternative that has the best
evaluations for each criterion of the problem. In the same way, the Second Reference
Situation can be defined as the alternative that has the worst evaluations for each
criterion of the problem.
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Fig. 1. Comparison of alternatives process

3 Decision Trees

The process of extracting knowledge of a bit amount of data, either automated
or semi-automated, is a great necessity nowadays [4]. The data mining task
represents one stage of this process. There are four types of machine learning [16]:
Classification Learning, Associative Learning, Clustering, Numerical Prediction.
Decision trees is a hierarchical model [1], based on the supervised classification
learning technique, and it aims at classifying a new sample based on a set of
classified samples. The final classification model is based on if-then structures,
starting from the most informative attribute to the less one.

The Waikato Environment for Knowledge Analysis (WEKA) [15] will be used
to structure the decision tree in this approach. Structured on Java, it contains
a collection machine learning algorithms for data mining tasks. Its first version
was created on 1993, and it is an open source software issued under the GNU
General Public License, thus, it is possible to study and modify the source code.

4 The Diagnosis of the Alzheimer’s Disease

Researchers agree that the advances in the medical area have significant impor-
tance on the increase of life expectancy. Along with this fact, there is a major
increase in the number of health problems among the elderly. The Alzheimer’s
disease is difficult to be diagnosed, since the initial symptoms are subtle and
they progress slowly until they are clear and irreversible. According to studies
conducted by the Alzheimer’s Association [6], the Alzheimer’s disease is one of
the costliest diseases, second only to cancer and cardiovascular diseases, and it
is expensive for the long-term care system [5], since a great part of the popula-
tion might suffer from dementia and, from this group, only a small number of
patients may be capable of affording their own care.

With the purpose simplifying the diagnosing process this disease, this study
aims at establishing an order of relevance of the tests to be applied to a patient
in order to get to the diagnosis faster. To do this, we sought to choose the most
important tests in the diagnosis of Alzheimer’s disease, using the battery of the
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Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) [5]. This
battery has been chosen because it encompasses all the steps of the diagnosis
and it is used all over the world.

5 A Hybrid Model to Determine the Main Characteristics
to Diagnose the Alzheimer’s Disease

With the aim of determining which questionnaire would analyze the most im-
portant indicators that a patient might have the Alzheimer’s disease, a hybrid
model was structured using decision trees and the ZAPROS III-i method. The
model is based on all the characteristics analyzed by two tests of the CERAD’s
neuropathological battery: Clinical History and Neuropathological Diagnosis.

The criteria established were defined based on each question from the ques-
tionnaires, so that we would have one criteria for each question on the test.
Regarding the CERAD data, only the results of the tests of patients that had
already died and on which the necropsy has been done were selected (122 cases),
because it is known that necropsy is essential for validating the clinical diag-
nosis of dementing diseases. After gathering the data from these patients, the
dataset was filtered so that the duplicated cases and the ones with a consider-
able amount of missing information would be removed. This way, the decision
tree was built considering 52 cases. The criteria selected were: A.Other Demen-
tia, B. Parkinson’s Disease, C.Heart Disease, D. Hypertension, E. Stroke or Def
TIA, F. Seizures, G.Thyroid, H.Diabetes, I. Alcoholism, J.Drug Intoxication,
K. Severe Head Injury, L. Byes2 Deficiency, M.Affective Disorder (Depression),
N.Hemorrhage, O. Infarct only. Fig. 2 shows the criteria considered on the eval-
uation and the resulting tree.

Based on the analysis of the decision tree, a scale of preferences was built,
such that the most informative criteria would be preferable to the others and the
ones that were not selected to be a decision tree node were considered irrelevant
based on the dataset provided. Thus, the preferences scale obtained was the
following: Seizures ≺ Hemorrhage ≺ Diabetes ≺ Parkinson’s Disease ≺ Affective
Disorder ≺ Other Dementia ≡ Heart Disease ≡ Hypertension ≡ Stroke of Def.
TIA ≡ Thyroid ≡ Alcoholism ≡ Drug Intoxication ≡ Severe Head Injury ≡
Byes2 Deficiency ≡ Infarct. Before, this analysis of the most informative criteria
would be made by a decision maker, and with the application of a decision tree
algorithm, we were able to automate and construct a preferences rule based on
the dataset provided.

Then, the alternatives were formulated identifying which facts would be identi-
fied by each questionnaire. The questionnaires were represented as criteria values
following the rule: if it considers the criteria on its questionings, then its criteria
value will be 1 for that characteristic, otherwise, it will be 2. Thus, the ques-
tionnaire Clinical History was be described as A1B1C1D1E1F1G1H1I1J1K1L1
M1N2O2, and, the questionnaire Neuropathological Diagnosis, as A1B1C2D2E1
F2G2H2I2J2K2L2M2N1O1. Then, the criteria set and their values, the prefer-
ences scale and the alternatives were loaded into the Aranaú Tool, and, after
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Fig. 2. Criteria analyzed and the resulting decision tree

it, it was shown that the Clinical History questionnaire is the more likely to
determine a diagnosis of the Alzheimer’s disease.

6 Conclusions, Future Works and Acknowledgments

With the aim of reducing the time demanded by the elicitation of preferences
process and in order to reduce the human participation in the process, this work
presented an hybrid model to support the decision making process using decision
trees and the ZAPROS III-i method. Since the human participation in the pref-
erences elicitation process was reduced when combining the two methodologies,
the amount of criteria and values of criteria of ZAPROS III-i method could be
increased: the preferences were learned by the decision tree algorithm and based
on a dataset from CERAD’s battery of tests. After the hierarchical structure was
built, we were able to determine which attributes had the greatest informative
index and these were selected as dominants against the others on the scale of
preferences. Then, this scale was used to determine which test from CERAD’s
battery would lead to an early diagnosis of the Alzheimer’s disease.

We intend to involve more questionnaires from the CERAD’s battery of tests
on the model, such that a complete analysis of the characteristics of each ques-
tionnaire would be made. Also, the interaction of the ZAPROS III-i method
with other machine learning techniques will be investigated.

The authors are thankful to the Consortium to Establish a Registry for
Alzheimer’s Disease for making available the data used in this study.
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Abstract. Cloud computing has been envisioned as the next-generation
architecture of IT enterprise. However the security problem of Cloud
computing hinder itself from large-scale application. One major challenge
is to verify the integrity of data at untrusted server under the condition
of supporting public auditability and dynamic data operation. This pa-
per analyzed the problems of existing schemes, introduced commutative
hash into Merkle hash tree, aggregated basic block into subblock and
block, constructed a kind of hierarchical Merkle hash tree by using the
concept of hierarchical structure in granular computing and proposed an
improved scheme to offer effective, multi-granular dynamic operation.
We analyzed the efficiency and security of the protocol. The analysis
result showed that the protocol is efficient and security.

Keywords: cloud storage, data integrity, commutative hash,
multi-granular.

1 Introduction

Cloud computing provides an extensible environment for growing requirement of
data storage and computing. Cloud computing relieves the burden of managing
and maintaining data. But, if such an important service is vulnerable to attack,
or the cloud storage service provider is untrusted, it will cause an irretrievable
loss to users. For example, the storage service provider experienced a data fail-
ure occasionally, they may hide the message of data error from the clients for
the benefit of their own. What is more, for saving money and storage space,
the service provider might neglect to keep or deliberately delete rarely accessed
data files which belong to an ordinary client [1]. In addition to this, considering
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the large volume of the outsourced data and the user’s constrained of comput-
ing resource and capability, it is different from concern on isolating errors and
efficiency of verification while directly verifying data integrity locally[2,3]. The
client will not keep any data copy, and the original data will not be processed
locally while executing integrity verification. From the above, the key issue of
the problem can be generalized as how the users can find an efficient way to
perform periodical integrity verifications without the local copy of data files [1].

However, tranditional data integrity verification schemes are based on hash
and signature, they can not verify outsourced data without a local copy. In
addition, it’s impractical to download the whole data for integrity verification,
for the huge I/O and communication cost, especially when data volume is big. So
it’s expensive to execute remote integrity verification, cloud storage users have
to resort to TPA(Third Party Auditor) who has professional knowledge and
capability for helping them to audit outsourced data periodically. Besides, for
protecting secret data from leaking to the third party, the process of verification
should have a capability of privacy-preserving.

1.1 Granular Computing

Granular computing includes all the theory, methods and techniques about gran-
ularity [4]. The two basic problem in Granular computing are granulation and the
computing of granules. Granulation involves the construction of the three basic
components, granules, granulated views and hierarchies[5]. Granular computing
emphasizes on the effective use of multiple levels of granularity. The granularity
of granules and levels enables us to construct a hierarchical structure called a
hierarchy. The three tasks of GrC are: constructing granular structures, working
within a particular level of the structure, and switching between levels [6].

1.2 Design Goals

This paper analyses the problem of [1], which we call it Wang’s integrity ver-
ification scheme, or Wang’s scheme for short. Inspired by Granular computing
theory, through aggregate basic block into subblock and block, and construct
a kind of hierarchical Merkle hash tree, we designed an integrity verification
scheme that it not only achieves Wang’s goal, but also achieves the following
purposes: (1)Multi-granular operation: to support different dynamic operation
on different granularity of file block; (2) Lightweight: to allow TPA to perform
verification with minimum communication overhead; (3) Privacy-preserving: to
ensure that TPA can’t derive user’s data content from the information collected
during the verification process.

2 Proposed Scheme

2.1 Notation and Preliminaries

Bilinear Map. A bilinear map is a map e : G × G → GT , where G is a Gap
Diffie-Hellman (GDH) group and GT is another multiplicative cyclic group of
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prime order p with the following properties: (1)Computable: there exists an
efficiently computable algorithm for computing e; (2)Bilinear: for all h1, h2 ∈ G
and a, b ∈ Zp, e(ha

1 , h
b
2) = e(h1, h2)

ab; (3) Non-degenerate: e(g, g) �= 1, where g
is a generator of G [7].

One-Way Accumulators. A hash function h is commutative if h(x, y) = h(y, x),
for all x and y. A hash function is collision-free if, given (a, b), it is difficult
to compute a pair (c, d) such that h(a, b) = h(c, d), while ((a, b) �= (c, d) and
(a, b) �= (d, c) [8]. A family of one-way accumulators is a family of one-way
hash functions each of which is quasi-commutative and collision-free. one-way
accumulators hA ensure that if one starts with an initial value x ∈ X , and a
set of values y1, y2, · · · , ym ∈ Y , then the accumulated hash z = hA(hA(hA(· · ·
hA(hA(hA(x, y1), y2), y3), · · · , ym−2), ym−1), ym) would be unchanged if the or-
der of the yi were permuted [9], and if a new element was added to one-way
accumulators, generate a new accumulated hash value, it is dependent with the
order of elements. We use h representative of cryptographic hash functions, hA

representative of commutative hash functions.
Merkle Tree(Merkle Hash Tree, MHT). A Merkle Hash Tree is a kind of tree

structure. The leaves of Merkle Tree are the hashes of authentic data values.
The inner nodes of MHT are the hashes of the data concatenation of their child
nodes. It is used to verify the integrity of one data block or a few data blocks
quickly. It is only need to process one or several paths from leaves to the root of
MHT while executing integrity verification. So it is intended to efficiently and
securely prove that a group of elements are unaltered and undamaged.

2.2 File Decomposition and Aggregation

In the view of granular computing, granulation is a process of constructing a
problem solving space, the method of granulation include decomposing rough
granules to fine granules or aggregating fine granules to rough granules. Wang’s
scheme decomposed a file into several basic block, each leave node in Merkle
Tree representive of one basic block, so the height of Wang’s Merkle Tree is too
high to manage data blocks. What’s worse, while executing dynamic operation,
it must operate basic blocks one by one.

In our scheme, the file is decomposed to I blocks, F = (m1,m2, · · · ,mI), then,
each block mi will be decomposed into J subblocks, F = (m1,1,m1,2, · · · , mI,J),
each subblock mi,j will continuously be decomposed into K basic blocks at the
last, so the file F can be represented as the collection of basic blocks, that is
F = (m1,1,1,m1,1,2, · · · ,m1,1,K ,m1,2,1, · · · ,mI,J,K). From the above three kinds
of definition of file F , the file could be considered as a 3-demension structure,
compared to Wang’s 1-demension file structrue. That is to say, our scheme de-
compose rough granules to fine granules in different granularity.

Hierarchical Merkle Hash Tree. The main target of granular computing model
is to solving problem in different level of granularity. Granulation is essentially
a hierarchical structure, the granules in the same level always have the same
properties and functions. In order to simplify the process of integrity verifica-
tion. We construct a hierarchical structure using granular computing method.
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Fig. 1. Structure of Hierarchical Merkle Hash Tree

Then we introduce commutative hash into Merkle Hash Tree. The structure of
Hierarchical Merkle Hash Tree is shown as Fig. 1, the tree has two level: I-level
and J-level. We use H(mi,j) as the tag for subblock mi,j (hash function H is
viewed as a random oracle [1]). One leaf node of J-level denote the hash of
H(mi,j), that is h(H(mi,j)). The number of leaf node in J-level cannot more
than J, J-level nodes are stored as a sequenced structure. hA(xi) denote the
accumulate hash of h(H(mi,j)) in i-th block, 1 ≤ j ≤ J , the leaf node of I-level
is hA(xi), the structure of I-level are similar to Wang’s scheme. As shown in
Fig. 1: hA(x5) = hA(x, h(H(m5,1)), h(H(m5,2)), · · · , h(H(m5,J))), x ∈ X . The
introduction of one-way accumulator (commutative hash) reduces the commu-
nication cost.

In our scheme, the prover sends auxiliary authenticate information (AAI) to
the auditor, we denote it by Ωi,j , (i ∈ I, j ∈ I2) or Ωi, (i ∈ I). We define Ωi as
the nodes those are the sibling on the path from the leaves h(H(mi)) in I-level
to the root node R. zi,j is the accumulated hash of all J-level leaf nodes except
h(H(mi,j)). Ωi,j includes both Ωi and zi,j .

2.3 Verification Protocol

The process of integrity verification is the process of computing on granules.
The procedure of our verification protocol is executed as follows: Setup: By
invoking KeyGen(), the client generates its public key and private key. The
data file F is pre-processed by running SigGen(), and produce the homomorphic
authenticators together with metadata. Let I1 = {1, 2, · · · , I}, I2 = {1, 2, · · · , J},
I3 = {1, 2, · · · ,K}.

KeyGen(): The client generates a random signing key pair {spk, ssk}, Choose
a random α from Zp, and compute v = gα, then, picks a random K-element
subset {uk}1≤k≤K , wk = uα

k , the private key sk = (α, ssk), the public key pk =
(ν, spk, {wk}k∈I3 , g, {uk}k∈I3).

SigGen(): for the given file F , firstly, compute the file tag for F , t =
name||u1||u2|| · · · ||uk||SSigssk(name||u1||u2|| · · · ||uk), then the client computes

signature σi,j for each subblock mi,j as σi,j = (ωi,j .
∏K

k=1 u
mi,j,k

k )α,
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ωi,j = h(H(mi,j)||f(j)), f(j) is a random function. We denote the set of sig-
nature by Φ = {σi,j}1≤i≤I,1≤j≤J . The client then generates a root R based on
the structure of our hierarchical Merkle Hash Tree. the client signs the root
R with the private key α: sigsk(H(R)) ← (H(R))α. At last, the client sends
{F, t, Φ, sigsk(H(R))} to the server and deletes {F,Φ, sigsk(H(R))} from its lo-
cal storage.

The TPA or client can verify the integrity of the outsourced data by challeng-
ing the server. First, the TPA use private key spk to verify the signature on t, if
the verification fails, return FALSE to reject; otherwise, recover uk. the TPA
(verifier) picks a random c-element subset Ic = {s1, s2, · · · , sc} from set I1, we
assume that s1 ≤ s2 ≤, · · · ,≤ sc, TPA uses element i in set Ic as the serial num-
ber of block, and randomly select element j as the serial number of subblock,
then, randomly select an element vi,j (i∈Ic,j∈I2) from Zp, thus, the message chal
is generated. The message chal specifies the positions of the blocks to be checked
in this challenge phase. Then, the verifier sends the chal to the prover(server).

GenProof(): After receiving the challenge chal{(i, j, vi,j)}s1≤i≤sc,j∈I2 , the
server will run GenProof() to generate response proof of the correctness of
stored data. In detail, the server randomly selects a element o from zp, and com-

putes Qk = (wk)
o = (uα

k )
o

, Qk ∈ G, k ∈ I3, computes μ′
k =

i=sc,j∈I2∑
i=s1,j∈I2

vi,jmi,j,k,

k ∈ I3, μk = μ′
k+oh(Qk) ∈ Zp, aggregation signatures will also be computed: σ =

i=sc,j∈I2∏
i=s1,j∈I2

(σi,j)
vi,j , the prover will also provides the verifier with a small amount

of auxiliary information AAI {Ωi,j}i∈Ic,j∈I2 or {Ωi}i∈Ic , at the last, the server re-
spond TPAwith proof P = {{μk}k∈{1,2,···,K}, σ, {Qk}k∈{1,2,···,K}, {H(mi,j), Ωi,j}
i∈Ic,j∈I2 , sigsk(H(R))}.

V erifyProof(): once receiving the response from the prover, TPA runs
V erifyProof(), generates root R using {H(mi,j), Ωi,j}s1≤i≤sc,j∈I2 , and verify
its integrity by checking e(sigsk(H(R)), g)?e(H(R), gα). If the verification fails,
the verifier rejects by return FALSE. Otherwise, the verifier checks if equation
1 holds:

e(σ ·
K∏

k=1

Q
h(Qk)
k , g)?e(

i=sc,j∈I2∏
i=s1,j∈I2

(ωi,j)
vi,j .

k∏
k=1

uμk

k , v) (1)

The correctness of the verification equation 1 can be elaborated as follows:

e(σ ·
K∏

k=1

Q
h(Qk)
k , g)

= e(
i=sc,j∈I2∏
i=s1,j∈I2

(σi,j)
vi,j ·

K∏
k=1

(uα·o
k )h(Qk), g)

= e(
i=sc,j∈I2∏
i=s1,j∈I2

((ωi,j).
K∏

k=1

u
mi,j,k

k )α)

vi,j

·
K∏

k=1

(uα·o
k )

h(Qk), g)
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= e([
i=sc,j∈I2∏
i=s1,j∈I2

(ωi,j)
vi,j .

i=sc,j∈I2∏
i=s1,j∈I2

K∏
k=1

(u
mi,j,k

k )

vi,j

]α · [
K∏

k=1

u
oh(Qk)
k ]α, g)

= e(
i=sc,j∈I2∏
i=s1,j∈I2

(ωi,j)
vi,j .

i=sc,j∈I2∏
i=s1,j∈I2

(ωi,j)
vi,j .

K∏
k=1

(u
μ′
k

k ) ·
K∏

k=1

u
oh(Qk)
k , gα)

= e(
i=sc,j∈I2∏
i=s1,j∈I2

(ωi,j)
vi,j .

K∏
k=1

uμk

k , v)

Apparently, Qk did not affect the result of integrity verification. If user don’t
worry about data leakage to a third party. Then, the prover (server) only need
to send {{μ′

k}k∈{1,2,···,K}, σ, {H(mi,j), Ωi,j}i∈Ic,j∈I2 , sigsk(H(R))} to the verifier
as the proof of the correctness and integrity of stored data, the communications
cost is reduced without privacy preserving.

3 Dynamic Operation

3.1 Data Modification

Firstly, we introduce the operation of data modification. Suppose the user want
to replace mi with m∗, according to different size of block granule, the protocol
will be introduced respectively:

(1)modify block: at first, the client compute corresponding signatures of the
new data block(compute signatures of its subblocks as a set), then, he sends an
update request update = (M, i,m∗, σ∗) to the server, where, M denote modifi-
cation operation, i denote the i-th block, while receiving the request, the server
executes ExecUpdate(F,Φ, update), the process is shown in detail as follows:
1) replaces the original block mi with the new one m∗; 2)replaces signature σ
with σ∗; 3) replace hash of tag of subblocks which contained by mi with hash
of tag of subblocks which contained by m∗, that is, replace h(H(mi,j)) with
h(H(mi,j

∗)), j ∈ I2; 4)computes the accumulated hash of h(H(mi,j
∗)), generate

hA(xi
∗), 5)replace hA(xi) with hA(xi

∗); 6)recomputes the MHT, generate a new
root node R∗, Finally, the server generates a proof of this operation and response
it to the client(TPA), Pupdate = (Ωi, hA(xi), Sigsk(H(R)), R∗), where Ωi is the
AAI for authentication of mi.

(2)modify subblock: at first, the client compute corresponding signatures of
the new data block σ∗, then, he sends an update request update = (M, i, j,m∗, σ∗)
to the server, j denote the j-th subblock in i-th block, upon receiving the request,
the server run ExecUpdate(F,Φ, update), replace h(H(mi,j)) with h(H(mi,j

∗)),
generate hA(xi

∗), replace hA(xi) with hA(xi
∗), recompute the MHT, generate

a new root node R∗, Finally, the server generate a proof of this operation and
response it to the client(TPA), Pupdate = (Ωi,j , h(H(mi,j)), Sigsk(H(R)), R∗),
where Ωi,j is the AAI for authentication of mi,j , and zi,j is included.

Then the server send the proof to the client. After receiving the proof of
modification operation from server. the client execute integrity verification for
dynamic operation. First, The client check if the node is trusted, if not, out-
put FALSE, else generate the root R using {Ωi, hA(xi)} or {Ωi,j , h(H(mi,j))}
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and authentic R by check e(sigsk(H(R)), g)?e(H(R), gα), if the equation is not
true, then return FALSE, otherwise the client can compute new root Rnew by
{Ωi,j , hA(xi

∗)} or {Ωi,j , h(H(mi,j
∗
))}, and authenticate server complete Modi-

fication operation by check whether Rnew equals to R∗, if it is not true, return
FALSE, otherwise, return TURE, then client signs the new root R∗, and send it
to the server. In the end, executes the default integrity verification. if its output
is TURE, Modification operation is completed, deletes sigsk(H(R∗)), Pupdate

and m∗ from its local storage.

3.2 Data Insertion

insert block: Suppose user want to insert m∗ after mi, the procedure of protocol
is similar to that of data modification operation. At the first, the client compute
corresponding signatures of the new data block σ∗(compute signatures of its
subblocks as a set), then, he sends an update request update = (I, i,m∗, σ∗)
to the server, where, I denotes insertion operation. After receiving the request,
the server executes ExecUpdate(F,Φ, update), the process is shown in detail
as follows: stores m∗ and its signature, compute hash value of tag of subblocks
which contained by mi, that is h(H(mi,j)), adds leaf nodes h(H(mi,j)) to J-level
of MHT, compute the accumulated hash hA(xi

∗), find hA(xi) in I-level, insert
hA(xi

∗) after I-level leaf node hA(xi), add an internal node C to the original tree
in I-level, where hC = h(h(H(mi))||h(H(m∗))), recomputed the hash of nodes
related to the path, generates a new root node R∗. After generates a new root
node R∗, the server generates a proof of this operation and response it to the
client(TPA), Pupdate = (Ωi, hA(xi), sigsk(H(R)), R∗). After receiving the proof
of modification operation from server, the client audit the proof, the procedure
is similar to modification operation.

This scheme does not support dynamic operation of inserting subblock. And
data deletion is the opposite of data insertion. there is something special that
if there is not any J-level node in i-th block, then deletes the i-th block. The
details of the protocol procedures are thus omitted here.

4 Security Analysis

We mainly evaluate the storage correctness and privacy-preserving. All proofs
are derived based on probabilistic, it could be envision as security if it has a high
probability security assurance.

(1) Storage Correctness Guarantee: the cloud servers can not offer valid response
if they are not faithfully storing the data. If the cloud server passes the in-
tegrity verification, then it must indeed possess of the specified data. The
procedure of proof consists of three steps: Firstly, we show that there is no
such a malicious server that can forge a valid response {{μk}k∈{1,2,···,K}, σ,
{Qk}k∈{1,2,···,K}, {H(mi,j), Ωi,j}i∈Ic,j∈I2 , sigsk(H(R))} to pass the verifica-
tion equation 1. Value Qk, which was used for privacy-preserving, will not af-
fect the result of the equation, because of the hardness of discrete-log and the
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commutativity of modular exponentiation in pairing. Next, if the response
{{μk}k∈{1,2,...,K}, σ, {Qk} k∈{1,2,···,K}, {h(H(mi,j)), Ωi,j}i∈Ic,j∈I2 , sigsk
(H(R))} is valid, where μk = μ′

k + oh(Qk) ∈ Zp, Qk = (wk)
o = (uα

k )
o

,
then μ′

k must also be valid. it can be deduced from the determinism of dis-
crete exponentiation and the collision-free property of hash function. In the
end, the validity of μ′

k implies the correctness of {mi,j,k}i∈Ic,j∈I2,k∈I3 where

μ′
k =

i=sc,j∈I2∑
i=s1,j∈I2

vi,jmi,j,k. Therefore, the correctness of those specific blocks is

ensured. In conclusion, the storage correctness of our scheme is guaranteed.
(2) Privacy Preserving Guarantee: We must make sure that TPA can’t derive

users’ data content by collecting information during verifying process. If TPA
can derive μ′

k, then {mi,j,k}i∈Ic,j∈I2,k∈I3 can be easily computed by solving
a group of linear equations when TPA have collected enough combinations
of the same blocks. we will prove the Privacy-Preserving Guaranting in two
steps: Firstly, there is not any information on μ′

k can be derived from μk,
for μk is blinded by o as μk = μ′

k + oh(Qk) ∈ ZpQk = (wk)
o = (uα

k )
o

,
where o is a random value selected by cloud server and it is unknown to
TPA, because of the hardness of discrete-log assumption, the value o is still
hidden against TPA, so, μk guarantees the privacy of μ′

k. Secondly, there isn’t
any information about μ′

k can be derived from σ, therefore, the correctness
of specific sampled blocks are ensured. All above sums up to guarantee the
privacy of user’s data. In conclusion, the privacy of user’s data in our scheme
is guaranteed.

5 Performance Analysis

We assume that if 1% basic block errored, and the probability of detect errors is
99%, we need to authenticate 460 data blocks. In our experiment, we select 1GB
file as experiment data, select 460 sample data blocks. First, we respectively
computed and analysed the communication cost of different size of blocks, we
respectively compared and analysed the experiment result of different size of data
blocks and subblocks, at the last on condition of a set of optimum parameters,
we done experiment on different size of files, and compare our experiment result
with Wang’s scheme.

Fig. 2 shows the communication cost at different granularity of file block
in our scheme, one curve denote a block contain 8, 16, 32, 64, 128 subblock,
respectively. Fig. 3 show when one block contains 64 subblocks, namely J=64, the
comparison of communication cost at different block size between our scheme and
Wang’s(based on RSA), From Fig. 3, it can be observed that the communication
cost of our scheme is better than Wang’s, especially with the growing of block,
it’s more obvious that our scheme is better in communication cost. while 512KB
as the block size(contain 64 subblocks), our scheme achieve the optimal value in
communication cost. Fig. 4 shows that, at the above-mentioned optimal value,
for different size of file, the communication of our scheme is obviously better
than Wang’s. What’s more, with the grown of file size, our scheme is still better.
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Fig. 2. the comparison of communication cost at different granularity of file block

0

200

400

600

800

1000

4 8 16 32 64 128 256 512 1024 2048

Block size(KB)

Co
mm

un
ica

tio
n c

ost
(K

B)

Wang's RSA scheme

BLS scheme-64

 

Fig. 3. the comparison of communication cost at different block size between our
scheme and Wang’s
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Fig. 4. the comparison of communication cost at different file size between our scheme
and Wang’s

6 Conclusion

This paper proposes a remote data integrity verification scheme on the basis of
Wang’s scheme. Compared to the state-of-the-art, our scheme supports dynamic
operation at block and subblock, reduces the communication cost and achieves
privacy-preserving.
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Abstract. In this paper the topic of clustering and visualization of the
data structure is discussed. Authors review currently found in literature
algorithmic solutions ([3], [5]) that deal with clustering large volumes
of data, focusing on their disadvantages and problems. What is more
the authors introduce and analyze a density-based algorithm OPTICS
(Ordering Points To Identify the Clustering Structure) as a method for
clustering a real-world dataset about the functioning of transceivers of
a cellular phone operator located in Poland. This algorithm is also pre-
sented as an relatively easy way for visualization of the data’s inner
structure, relationships and hierarchies. The whole analysis is performed
as a comparison to the well-known and described DBSCAN algorithm.

Keywords: cluster visualization, clustering, OPTICS, DBSCAN.

1 Introduction

The problem of choosing the proper clustering algorithm with regard to com-
plex data is not a trivial task [10]. Such an algorithm should have the smallest
possible computational complexity, high resistance to the presence of noise in
data and allow to discover clusters of arbitrary shapes. As shown in [8], [9],
most of these requirements are fulfilled by a density DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) algorithm. Its strength lies in the
naturally perceived definition of a cluster as a densely-packed area containing
similar objects. Unfortunately, although this assumption seems logical and al-
lowing for a clear definition of the boundaries of groups, in practice it may be
also responsible for one of two main disadvantages of the algorithm – it is not
able to detect a cluster hierarchy if such naturally exists in the source data.
Furthermore, results of this algorithm (quality of the created clusters) depend
on the proper selection of initial parameters (Eps – radius of the considered
neighborhood and MinPts – the number of objects in a group). The choice of
these parameters (such as presented in [8]), which consists of carrying out at
least a few clusterings and selecting the best one (and its initial parameters),
is time consuming and therefore not always possible to apply, especially in the
context of analysis of large and complex databases. That is why the authors
decided to investigate and implement a different algorithm based on the idea of
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density – OPTICS (Ordering Points To Identify the Clustering Structure) [1].
In contrast to its original, it does not generate a clustering of objects, but only
an ordering based on the reachability-distance. However, the generated ordering
can be used to partition the dataset into groups (for any fixed neighborhood
radius) [1]. In addition, the obtained ordering of objects allows the identification
and visualization of the internal structure and relationships in data.

2 Approaches Used to Cluster Large Volumes of Data

The amount of collected data is constantly growing, and hence the term "large
datasets" also changes its meaning – until recently it referred to several thousand
samples, but today there are processed millions or even billions of data. In the
domain literature [3], [5], [7] there are found six main approaches to the problem
of clustering large volumes of complex data.

The first of them – data sampling – involves selecting a random sample of
objects from the dataset and using a cluster analysis’ algorithm only on the se-
lected sample. Then it is possible to assign the remaining objects to the already
generated representative clusters. This method is the essence of the popular
partitional algorithm called CLARA (Clustering for Large Applications). Unfor-
tunately, using only selected samples instead of the entire dataset often results
in a clustering which is far from optimal [6]. What is more, the final effect can
be different each time the algorithm is run, depending on the methodology of
choosing samples.

Another technique used to reduce memory consumption is the discretization
of data. Generally, two types of discretization are used: static – where the set
of rules and classes to which one should assign data objects is apriori known,
and dynamic – where a clustering algorithm is applied taking into account only
one attribute and then classes are determined on the basis of the created groups.
The biggest problem connected with data discretization is to determine the opti-
mal number of intervals. Even when using dynamic discretization the generated
division may be far from ideal.

Some scientific publications [3], [5] describe the divide and conquer method.
The whole dataset is stored in a larger auxiliary memory (e.g. on the hard disk)
and it is divided into smaller portions. Each of these portions are being sub-
jected to the process of cluster analysis separately. At the end of this method,
the aggregate results from all clusterings are presented to the user. The CURE
(Clustering Using Representatives) algorithm is a popular representative of the
divide and conquer approach. It operates on a random sample of data, which is
further divided into smaller portions. Then, each portion is subjected to a hierar-
chical algorithm, to determine the representatives of the clusters. Other objects
of the dataset are assigned to clusters based on their degree of correlation with
the formed representatives. Unfortunately, it is not possible to apply the di-
vide and conquer method in all cases – some algorithms (such as Hierarchical
Agglomerative Clustering) need to operate on the whole dataset. In addition,
depending on how much and what portions of the data will be chosen, the final
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clustering can be of better or worse quality. Not without significance is also the
homogeneity of the dataset – it should be uniform to get the best results.

Another solution to the problem of clustering large, complex volumes of data
is to use an incremental algorithm (if such an implementation is available). The
basic assumption used in this approach is the ability to analyze each object
from the set independently. In the main memory there are usually stored only
the representatives of clusters, and each object is correlated with the existing rep-
resentatives, to determine its belonging to a group. BIRCH (Balanced Iterative
Reducing and Clustering Using Hierarchies) is an incremental, hierarchical algo-
rithm, often used in the clustering task. It gives good results when discovering
spherical clusters of similar size, but such a situation (in the context of complex
data analysis) rarely takes place. It is also an example of an algorithm (called
order-dependent) in which the processing sequence of objects has a huge impact
on the final results. Unfortunately, a large group of incremental algorithms can
be characterized by this feature [5].

If the main problem is the high computational complexity of an algorithm,
parallelism can be used. There are generally two ways to do this: through the
use of multiple central processing units (usually multi-core) or by taking advan-
tage of the power of a graphics processing unit (GPU), which is specialized in
performing floating point operations. However, this implies the need for defining
and allocating tasks to individual computing units. This could include a division
of the dataset into parts (as in the divide and conquer method), so that each
unit carries out a clustering of its data portion, or the allocation of tasks result-
ing from the construction of the cluster analysis’ algorithm. Parallelization of
the algorithm is unfortunately not always possible. Furthermore, there are some
speed considerations, which have to be taken into account when dealing with
parallelization. If one uses mainly the CPU for this task, then the greatest im-
pact on the calculation speed will have the number of available processors (and
cores) as well as the frequency and method of communication between threads.
Using the computational units included on the graphics card, one can get much
higher speeds (e.g. in [4] there was achieved an acceleration of 10 – 200), but
the process of optimizing code for a given family of graphics cards is much more
complicated than for the CPU. Moreover, if the algorithm requires frequent data
exchange between computational units, then the benefit from its parallelization
is usually restricted. It is also worth mentioning that graphics cards (from dif-
ferent companies) have their own unique programming libraries, which leads to
a large attachment to a particular hardware platform [4].

3 Comparison of OPTICS and DBSCAN

During the process of clustering complex data, apart from problems related
to the processing of large amounts of data, one must also take into account
its internal structure. Relationships contained in real, multidimensional data
can create hierarchies and have a heterogeneous nature. That is why the ap-
proach to cluster data regarding cellular telephony with the use of the DBSCAN
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algorithm (described by authors in [8], [9]) highlighted two major problems of
this technique.

The first problem is the selection of appropriate initial parameters (Eps,
MinPts). Too large values of the neighborhood radius (Eps), may cause that
two naturally existing small clusters could be interpreted by the algorithm as
one bigger. Small values of this parameter will not be good, if the dataset will
consist of sparsely located objects. The second input parameter (MinPts) has
the greatest impact on the number of objects in groups, and thus the size of
the outliers’ group – the greater its value, the potentially more objects can be
classified as informational noise. The simplest approach to solving this problem,
is to perform a number of clusterings with different values of initial parameters,
assess their quality, and select the best result. Unfortunately, just the clustering
process by itself is a time-consuming task.

Fig. 1. The presence of a hierarchy of clusters

Another disadvantage of the DBSCAN algorithm (directly related to the way
it works) is the inability to detect a cluster hierarchy. This situation is shown in
figure 1. For the presented dataset it is not possible to detect all four clusters
(labeled A, B, C1, C2), using a constant value for the neighborhood radius. The
DBSCAN algorithm would generate a partitioning, consisting of groups A, B, C
or groups C1, C2, depending on the chosen parameters values. In the latter case,
the actual clusters A and B would be treated as informational noise. Using this
fact, one could modify the DBSCAN algorithm, to create clusters of different
densities at the same time – it would use different values for the neighborhood
radius. However, to obtain a consistent result, it would be necessary to maintain
a certain order in which objects would be processed. One should always choose
the object, which is density-reachable at the smallest possible neighborhood
radius (Eps), so that clusters with the highest density were discovered first.
The OPTICS algorithm works in a similar way (taking into account all possible
values of the neighborhood radius to a set limit), except that it does not assign
labels to objects belonging to a specific group. Instead, it stores the order in
which objects were processed, and information that can be used to identify
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individual objects belonging to a specific group. This information consists of two
parameters (calculated for each object from the set) – a so-called core-distance
and a reachability-distance.

The core-distance (of an object p from the dataset) is the smallest distance
between p and an object within its Eps-neighborhood1, such that p would be
classified as a core object. Otherwise (if p can not be regarded as a core object),
the core-distance is undefined. The reachability-distance of an object p (with
regard to object q) is the smallest distance, such that p is directly density-
reachable from q, if q is a core object. In that case, the reachability-distance of p
can not be smaller than the core-distance of q, because for smaller values p is
not density-reachable from q. However, if q is not a core object, the reachability-
distance of p (with regard to q) is undefined.

Taking into account the presented definitions, one can specify a simplified
flowchart of the OPTICS algorithm. It is as follows:

1. Select an object from the dataset.
2. Determine the Eps-neighborhood of the currently analyzed object.
3. Calculate the core-distance of the analyzed object.
4. If the core-distance is undefined, go to step one.
5. Calculate the reachability-distances of objects contained in the neighborhood

of the currently analyzed (relative to this object), and then sort the objects
in ascending order according to their reachability-distance.

6. Continue this process (from the first point) until all of the objects from the
dataset have been analyzed.

7. Print or store the order in which objects were processed in a dataset, together
with the values of core and reachability-distances.

Based on the presented flowchart, one can see strong similarities to the DBSCAN
algorithm. For both methods the most important element is to determine the
Eps-neighborhood. The DBSCAN algorithm on its basis, determines the mem-
bership of each object to a particular cluster, while OPTICS generates a specific
arrangement of objects. This arrangement can be used not only to assign object
to groups, but also to visualize the data’s structure. Considering the similarities
between these algorithms, it can be stated, that the execution time of OPTICS
(and in consequence also its computational complexity) does not differ drasti-
cally from its original execution time. Experiments conducted in [1] have shown,
that the execution time of the OPTICS algorithm is equal to 1.6 times of DB-
SCAN’s execution time. This is not a surprising result because, as noted earlier,
the computational complexity of both methods is highly dependent on the pro-
cess of determining the Eps-neighborhood, which must be performed for each
object from the dataset. If there are no data indexes used, to obtain the answer
to a query regarding the neighborhood of an object, a scan through the entire
database would have to be performed. In that case, the computational com-
plexity of the OPTICS algorithm would be O(n2). The situation is considerably
1 Detailed definitions of Eps-neighborhood, density-reachability and related terms are

described in [1], [2], [7].
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improved, if one uses an index based on tree structures (called an tree-based
spatial index), because the average computational complexity of the whole algo-
rithm is reduced to O(n log n) [1].

4 OPTICS as a Visualization Method

Visualization of the dataset’s structure can be very useful, if the analyst wants
to know the general outline of the data at a high level of abstraction. Then,
attention is paid to the presence of a hierarchy, or the level of consistency be-
tween the created groups. Important may be also the fact, if there exist certain
dominant groups (of very high cardinality in relation to the entire dataset), or
if the nature of this structure is more homogeneous. Very often, based only on
the generated clustering, an analyst (especially in the context of large, complex
datasets) may not be able to explain or interpret correctly the obtained results.
That is why more and more emphasis is placed on visualization tools to assist
in the process of analysis and interpretation of clustering results.

Fig. 2. Example of a reachability plot

To see the detailed structure of the dataset, one has to create a plot of the
reachability-distance of every object, according to the ordering generated by
the OPTICS algorithm. This bar plot is called a reachability-plot. A sample
reachability-plot for artificially generated two-dimensional data is presented in
figure 2. Clusters on the plot are represented by valleys. The more narrow the
valley is, the less objects are included in a particular cluster. However, the smaller
the reachability-distance value, the more dense the cluster is (more coherent).

Based on the reachability-plot, one can easily detect the existence of a clus-
ter hierarchy. Such hierarchy is presented in the plot (figure 2) as a series of
small valleys contained in one deeper. When identifying potential cases of clus-
ter containment, one should pay particular attention that the valley should be
very shallow. The low value of the reachability-distance means that another ob-
ject is very close to the previous one in a given order, which for shallow valleys
implies that, two clusters are located very near. In addition, if these shallow
valleys are located within another very deep, with a high degree of probability
we are dealing with a situation, where a number of small, cohesive clusters, is
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contained in one bigger (of a much smaller density). Unfortunately for the real-
world complex datasets, the identification of a hierarchy of clusters based only
on the reachability-plot is far more difficult. Figure 3 shows the reachability-plot
for real-world complex data, regarding the operation of one of cellular network’s
transceivers2. This plot however is truncated to the first 32000 objects (struc-
tured according to the result of the OPTICS algorithm), due to the readability
aspects and limitations of the MS Excel software, which does not allow to vi-
sualize a greater number of two-dimensional data in a bar plot (in one serie).

Fig. 3. Reachability plot for real-world data

The presented in figure 3 plot shows that already in its initial areas (between
objects numbered 8000 to about 10,000), one can observe the presence of a hier-
archy of clusters – several smaller clusters are potentially contained in a bigger
one. These relationships are not as easily identifiable as for the artificial dataset
(shown in figure 2).

Moreover, despite of a significant reduction in the number of objects shown
in the plot – the entire dataset consists of about 143000 objects – its overall
readability is not high. It is therefore necessary, to develop other ways to create
a reachability-plot, in order to present the entire dataset in an understandable
and human readable form. The used measure of similarity (distance) between
objects has also a big impact on the readability of the generated plot. In this
case, the measure of similarity was defined as the number of common features.
This implies that, if objects close to each other differ only in the values of two
features, it is seen as a relatively large change on the plot. For this reason, in
the future there should be performed tests using other distance measures.

2 The analyzed dataset is described in detail in [9].
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5 Summary

The aim of this paper was to present currently found in literature solutions for
clustering large volumes of data, with particular emphasis on their shortcomings
and problems. Another key objective of this study was to analyze and discuss
the OPTICS algorithm, as a method of visualizing the structure of large complex
datasets. A particular aspect of this analysis was to compare the density-based
DBSCAN algorithm with OPTICS. This comparison showed that the analyzed
algorithms have many similarities with each other, even though they may be used
in completely different purposes. The theoretical considerations are supported
by applying the OPTICS algorithm to a real-world dataset concerning cellular
telephony, in order to visualize and interpret the structure of this set.
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Abstract. The authors propose to use cluster analysis techniques (par-
ticularly clustering) to speed-up the process of finding rules to be acti-
vated in complex decision support systems with incomplete knowledge.
The authors also wish to inference within such decision support systems
using rules, of which premises are not fully covered by the facts. The
AHC or mAHC algorithm is used. The authors adapted Salton’s most
promising path method with own modifications for a fast look-up of the
rules.

Keywords: knowledge bases, cluster analysis, clustering, decision sup-
port systems, incomplete knowledge, inference, AHC.

1 Introduction

Currently developed knowledge bases try to support human experts in the pro-
cess of solving decision problems. The complexity of these bases rapidly increases,
the best example here would be medical data and knowledge bases. The infer-
ence within these is completely non-trivial, because modern knowledge bases
often consist of thousands of rules.

Under the classical definition of Decision Support System the authors mean
the combination of knowledge base and inference algorithms. Both rely on rules,
in which every one of it consists of two parts: decisional and conditional. For-
mally, the Decision Support System with structures added by the authors is
given by:

DSS =< R, A, V, Fsim, T ree > where:
R = {r1, · · · , rn} − set of rules with Horn’s forms,
A = {a1, · · · , am} − where A = C ∪ D (condition and decision attributes),
V − nonempty, finite set of values of attributes; V = ∪a∈AVa

Va − the domain of attribute a; Fsim : X × X → R|[0 · · · 1],
dec : R → Vdec, where Vdec = {d1, · · · , dm},
T ree = {w1, · · · , w2n−1} = ∪2n−1

i=1 wi (or Tree = {w1, · · · , wk} = ∪k
i=1wi

where k ≤ 2n − 1).

Using these, it can be said that each rule r ∈ R (set of rules in DSS) is considered
to be an conjunction of attribute-value pairs (noted further as descriptors). Addi-
tionally, each rule is marked with specific value of decision attribute (d ∈ Vdec).
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To sum things up: ri = (a1 = v1) · (a2 = v2) · . . . · (am = vm) ⇒ dj , where
m ≤ card(A). The increasing number of attributes, connected with the rapid
increase of the number of samples on basis of which rules are generated, makes
efficient inference algorithms in complex data structures essential to the quality
of results.

However, the number of rules and the size of attribute set are not the only as-
pects of proper inference. In real life situations, it is hardly possible to obtain full
consistency of knowledge base. The inconsistency is understood by the authors
both as the situation, where the same conjunction of conditional attributes and
their respective values lead to different decisions1 and when at least one rule’s
in knowledge base condition’s are not fully satisfied by the facts.

In order to address this problem, various methods can be used. The authors
of this paper propose the cluster analysis approach to cluster similar rules and
to identify those which can be activated during the inference process.

Let us consider the following example:

R1: (attr4=8600) & (attr8=177) & (attr1=152) =>(class=2)
R2: (attr4=8600) & (attr1=151) =>(class=2)
R3: (attr4=8600) & (attr7=30) =>(class=2)
Facts:
(attr4=8600), (attr7=40), (attr1=152)

The classical decision support system will not activate any of the rules because in
neither of them the conditions are fully satisfied. The closest to be fully satisfied
is R1 rule, therefore proposed system will activate it, but flags it as uncertain.
This methods allows the user to fine-tune the precision of inference process: to
balance between accurate but limited inference and approximate but giving more
potentially useful information.

1.1 Search Using Hierarchy Structure

The AHC algorithm generates the complete rules’ tree[1]. On the other hand,
the mAHC algorithm stops completing the process (the difference can be seen
on Figure 1). This property can be used to speed-up the process of searching
relevant rules by comparing user’s query to the representatives of clusters, rather
than to the rules themselves. On each level, one must compare the query to the
left and right branch and choose the path, which is more promising. Formally, by
di authors mean the descriptors set, f is the similarity function between two rules
and ki, li are the nodes being merged. Using these notations each cluster wi can
be defined as: wi = (di, f, ki, li), where di = {d1, . . . , dm}, f : R×R → R|[0 · · · 1].

The idea of the most promising path was firstly stated in Salton’s SMART
system[2], which was the great inspiration for the authors when creating the
proposed system. This approach starts the look-up process from the root of the
structure comparing the left and right branch using the f function to determine
1 Where ((a1 = v1) · (a2 = v2) · · · · · (an = vn) ⇒ d1)∧ ((a1 = v1) · (a2 = v2) · · · · · (am =

vm) ⇒ d2).
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which one is the most probable to have relevant rules. The operation progresses
until the leaves level is reached.

In order to implement the most promising path method, the authors must
have also taken into consideration the method of computing the similarity of
the query to particular nodes (the f function). The preliminary research about
representatives was published in previous works [3], therefore here we are going
to discuss only the differences and improvements which evolved from then.

The first method which comes in mind, so-called descriptors coverage, com-
putes the number of descriptors occurring both in the question, as well as in
the individual nodes according to the formula: fd(k, l) = card(dk ∩ dl) where
dk and dl are the sets consisting of descriptors of nodes l and k respectively.
Unfortunately, this method boosts the value of those nodes, which have a large
number of repeating descriptors, often common for a vast majority of rules in
the system. However, when one has to deal with the incomplete knowledge, the
information about common attributes can be vital for proper distinguishing the
clusters.

The second approach, called attributes coverage, takes into consideration only
the number of common attributes, regardless of their values: fa(k, l) = card(ak∩
al) where ak and al denotes the attributes’ set of the k − th and l − th cluster
respectively. As it was stated before, this approach addresses the problem of
multiple, common descriptors which disturb the proper similarity computing.
In another words the situation when clusters’ representatives consist of many
commonly occurring descriptors is undesirable because of the lack of proper
distinction between them.

During the preliminary studies, authors combined the above methods into one
called hybrid coverage: fh(k, l) = card(dk∩dl)·C1+card(ak∩al)·C2; (C1+C2 =
1) ∧ C1 > 0, C2 > 0.

The authors suggest that the hybrid coverage will benefit both from the ad-
vantages of attribute and descriptors coverages. The scaling factors C1 and C2

are used to fine-tune the influence of both of the mentioned coverages. During
the experiments two opposite set of values were chosen: one which greatly favors
the descriptors part, and the other boosts the attribute part.

To clear things up, the authors propose the following example. Given two
nodes: k : dk = {(A = 1), (A = 1), (A = 2), (B = 1), (B = 1), (C = 1)}
l : dl = {(A = 2), (A = 2), (B = 1), (B = 1), (B = 1), (C = 1)} and a query:
Q : (A = 2) · (C = 1) the following factors can be computed:

– fd(k, Q) = 2; fd(l, Q) = 3 fa(k, Q) = 4; fa(l, Q) = 3
– If C1 = 0, 75 and C2 = 0, 25, then fh1(k, Q) = 2, 5; fh1(l, Q) = 3
– If C1 = 0, 25 and C2 = 0, 75, then fh2(k, Q) = 3, 5; fh2(l, Q) = 3

2 Computational Experiments

In order to compare the proposed solutions, the authors implemented two hier-
archical clustering algorithms: AHC (which uses the complete hierarchical tree
of rules) and mAHC (using the authors’ method of choosing the optimal number
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of clusters). The difference can be schematically seen on Figure 1. The results of
these experiments are shown in Figure 2. For four databases from Machine Learn-
ing Repository (Wine, Lymphography, Spect, Balance) the authors conducted
both clustering algorithms assuming every observation from those databases as
the rule in knowledge base. The process of preparing the data for the clustering
is explained in detail in authors’ previous paper [3]. On each case, 10 random
queries were chosen (the query was in fact one randomly chosen rule from knowl-
edge base). Recall and precision values were computed and the average from
those 10 queries was computed.

Fig. 1. Search using mAHC (left)
and AHC (right)

Fig. 2. The quality of hierarchical and structural
search

2.1 The Most Promising Path

In order to practically verify the results, the experiments were conducted (this
works are the basis of currently developed DSS to inference in complex knowl-
edge bases with uncertain knowledge). Firstly, it was assumed that currently
analyzed rule becomes the query to the system. To the complete system, com-
puted by different combinations of the most promising path method and cluster
joining criteria, query containing all of the descriptors of currently analyzed rule
was submitted. The answer given was saved as the goal answer. Following, that
particular rule was deleted from the knowledge base and the process of forming
clusters was repeated. Again, the system was queried and the given answer was
being analyzed along with the one saved in the previous step. Recall and preci-
sion was computed both to the goal answer (assumed to be the optimal answer)
and to the submitted query (if the system has found the proper answer).

Fig. 3. Experiments involving the most
promissing path

Fig. 4. The results of computational
experiments
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Fig. 5. The results of hybrid method for chosen
knowledge bases

Fig. 6. Chaining the clus-
ters in the AHC tree

Figures 3 and 4 share the same marks: SL - Single Linkage, CL - Complete
Linkage, AL - Average Linkage, HD - the hybrid version of the most promising
path coverage having the parameter C1 significantly smaller than C2 (descriptors
more important than the attributes), HA - the same, but C1 was far more greater
than C2 (on the contrary: attributes more important than descriptors), A -
attribute coverage, D - descriptor coverage.

It seems obvious, that the best results were achieved when using the CL
joining criterion. Both recall and precision to the goal answer values were more
or less on the same level with the slight favor of HA and A methods. It could
be believed to be the confirmation of the authors’ assumptions about a better
distinction of the clusters using the information about common attributes.

In the second part of the experiments precision and recall values to the sub-
mitted query were computed for the limited system. By doing this, the authors
wished to investigate if the proposed system is able to compensate the incom-
pleteness of the knowledge2.

The figure 4 clearly shows the superiority of the proposed hybrid coverage
method, especially the one with the significant boost for the descriptors. Re-
gardless of the method of joining the clusters, overall quality of the results was
a few times better than using other coverage methods.

For further investigations, the authors chose the complete linkage method
along with the hybrid coverage with descriptors’ boost. The same methodology
was used to the test on different knowledge bases. The results are shown on Fig-
ure 5. The preliminary results from the tuning parameters phase were confirmed
for all the databases analyzed by the authors.

3 The Conclusions

The authors of the study came across a serious problem with a tendency for the
clusters to chain (Figure 6). Due to the fact of a relatively brief description of
2 However, one has to keep in mind, that because of the removing of the rule, which is

the optimal answer for the query (limited system) the maximal values of the quality
parameters can not be achieved.
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each rule, and their small distinguishability between each other, often leads to
impaired uniformity dendrogram (during one of the experiments in one of the
subtrees at every level we had only one rule, and the second - others). After
analyzing the situation, the authors pointed out a disturbing fact of the poor
quality of the distinguishability matrix built at the beginning of the algorithm.
For example, in the Abalone base, there were 7138531 cells in the similarity ma-
trix, where the entire database had only 43 different values of similarity factors.
Further research will aim to eliminate this phenomenon.

The authors were able to improve Salton’s most promising path method of
searching the rules. In future works the authors will focus on further investigating
distance measures and other ways to further distinguish the rules in order to
create better quality clusters. The method of certainty factors CF[4] is also
considered as the next approach for the correct modeling of uncertainty and
inference.
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Abstract. In this article we propose a general framework incorporating
semantic indexing and search of texts within scientific document repos-
itories. In our approach, a semantic interpreter, which can be seen as a
tool for automatic tagging of textual data, is interactively updated based
on feedback from the users, in order to improve quality of the tags that
it produces. In our experiments, we index our document corpus using the
Explicit Semantic Analysis (ESA) method. In this algorithm, an external
knowledge base is used to measure relatedness between words and con-
cepts, and those assessments are utilized to assign meaningful concepts to
given texts. In the paper, we explain how the weights expressing relations
between particular words and concepts can be improved by interaction
with users or by employment of expert knowledge. We also present some
results of experiments on a document corpus acquired from the PubMed
Central repository to show feasibility of our approach.

Keywords: Semantic Search, Interactive Learning, Explicit Semantic
Analysis, PubMed, MeSH.

1 Introduction

The main idea of a keyword search is to look for texts (documents) that contain
one or more words specified by a user. Then, using a dedicated ranking algorithm,
relevance of the matching documents to the user query is predicted and the
results are served as an ordered list. In contrast, semantic search engines try to
improve the search accuracy by understanding both, the user’s information need
and the contextual meaning of texts, which are then intelligently associated.
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From the data processing point of view, the semantic search engine may be
divided into three main components: semantic text representation module, in-
terpretation and representation of the user query, and intelligent matching al-
gorithm. The scope of the first two modules may be categorized as a semantic
data representation. In opposite to the keyword search, the semantic data rep-
resentation, and thus the semantic indexes, can not be calculated once and then
utilized by intelligent matching algorithms. The text representation, as well as
a query interpretation should be assessed with respect to the type of the users’
group, a context of the words in the query and many others factors.

The better part of current search engines is based on a combination of tex-
tual keyword search and sophisticated document ranking methods. Only a few
processes search queries, analysing both, a query and documents’ content with
respect to their meaning, and return the semantically relevant search results [1].
However, even this approach becomes insufficient. The process of information
retrieval needs to be made intelligently in order to help users in relevant informa-
tion. The key role in this process is recognition of the users’ information needs
and collecting feedback about the search effectiveness. The gathered informa-
tion should be utilized to improve search algorithms and forge better responses
to user requirements. Those challenges are in the scope of studies on adaptive
search engines which interact with experts (users) and operate in a semantic
representation space.

SONCA (Search based on ONtologies and Compound Analytics) platform [2]
is developed at the Faculty of Mathematics, Informatics and Mechanics of Uni-
versity of Warsaw. It is a part of SYNAT project focusing on development of
Interdisciplinary System for Interactive Scientific and Scientific-Technical Infor-
mation (www.synat.pl). SONCA is a framework whose aim is to extend the
functionality of search engines by more efficient search of relevant documents,
intelligent extraction and synthesis of information, as well as more advanced
interaction between users and knowledge sources.

Within the SYNAT project, some successful methods for semantic text rep-
resentation and indexing have already been developed [3,4]. In this article we
present an adaptive semantic search model which can be treated as a step forward
a truly semantic search engine. The model interactively calculates the semantic
text representation with respect to the user feedback. At the current develop-
ment phase we utilize the user feedback explicitly, i.e. we work with a set of
documents labelled with concepts by experts. However, in the future we plane
to extend the use-case to interaction with implicit user feedback, such as user
navigation patterns or a specific query context.

The rest of the paper is structured as follows: Section 2 contains basic in-
formation about Explicit Semantic Analysis method and its applications in the
semantic indexing and semantic search. An interactive learning model and an
adaptive method for improving the semantic text representation is proposed in
Section 3. Section 4 describes an experiment conducted on a corpus of docu-
ments from PubMed Central Open Subset [5] and presents its result. Section 5
presents some concluding remarks and a plan for future works.

www.synat.pl
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2 Semantic Indexing and Searching Using ESA
Explicit Semantic Analysis (ESA) proposed in [6] is a method for automatic
tagging of textual data with predefined concepts. It utilizes natural language
definitions of concepts from an external knowledge base, such as an encyclopae-
dia or an ontology, which are matched against documents to find the best asso-
ciations. Such definitions are regarded as a regular collection of texts, with each
description treated as a separate document.

In ESA, the semantic relatedness between concepts and documents is com-
puted two-fold. First, after the initial processing (stemming, stop words removal,
identification of terms), the corpus and the concept definitions are converted to
the bag-of-words representation. Each of the unique terms in the texts is given
a weight expressing its association strength. Assume that after the initial pro-
cessing of a corpus consisting of M documents, D = {T1, . . . , TM }, there have
been identified N unique terms (e.g. words, stems, n-grams) w1, . . . , wN . Any
text Ti in the corpus D can be represented by a vector 〈v1, . . . , vN 〉 ∈ RN

+ , where
each coordinate vj expresses a value of some relatedness measure for j-th term
in vocabulary (wj), relative to this document. The most common measure used
to calculate vj is the tf-idf (term frequency-inverse document frequency) index
(see [7]) defined as:

vj = tfi,j × idfj = ni,j
∑N

k=1 ni,k

× log
(

M

|{i : ni,j �= 0}|
)

, (1)

where ni,j is the number of occurrences of the term wj in the document Ti.
Next, the bag-of-words representation of concept definitions is transformed

into an inverted index that maps words into lists of K concepts described in a
knowledge base. The inverted index is used as a semantic interpreter. Given a
text from a corpus, it iterates over words from the text, retrieves the correspond-
ing entries and merges them into a weighted vector of concepts that represents
the given text.

Let Wi = 〈v1, . . . , vj , . . . , vN 〉 be a bag-of-words representation of an input
text Ti, where vj is the tf-idf index of wj described in (1). Let invj,k be an
inverted index entry for wj . It quantifies the strength of association of the term
wj with a knowledge base concept ck, k ∈ {1, . . . , K}. For convenience, all the
weights invj,k can be arranged in a sparse matrix structure with N rows and K
columns, denoted by INV , such that INV [j, k] = invj,k for any pair (j, k). The
new vector representation of Ti will be denoted by Ui = 〈u1, . . . , uK〉 where:

uk =
∑

j:wj ∈Ti

vj × invj,k = Wi ∗ INV [·, k]. (2)

In the above equation ∗ is the standard dot product and INV [·, k] indicates
k-th column of the sparse matrix INV . This new representation will be called
a bag-of-concepts of a text Ti.

For practical reasons it may also be useful to represent documents only by
the most relevant concepts. In such a case, the association weights can be used
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to rank the concepts and to select only the top concepts from the ranked list.
One can also apply some more sophisticated methods that involve utilization of
internal relations in the knowledge base (e.g. for semantic clustering of concepts
and assigning only the most representative ones to the documents).

The original purpose of Explicit Semantic Analysis was to provide means for
computing semantic relatedness between texts. However, an intermediate result
– weighted assignments of concepts to documents (induced by the term-concept
weight matrix) may be naturally utilized in document retrieval as a semantic in-
dex [8,9]. A user (an expert) may query a document retrieval engine for documents
matching a given concept. If the concepts are already assigned to documents, this
problem is conceptually trivial. However such a situation is relatively rare, since
employment of experts who could manually labelled documents from a huge repos-
itory is expensive. On the other hand, utilization of an automatic tagging method,
such as ESA, allows to infer labelling of previously untagged documents.

In the presented study, our main goal is to balance these two approaches (man-
ually labelling and automatic tagging): we start with a default ESA method [6]
and we update weights incorporated by this model by considering expert feed-
back. We describe the model and the algorithm which updates weights provided
by ESA in an batch mode. We stress however, that essentially the same pro-
cedure can be used in an on-line fashion, analogically to stochastic updates in
neural networks: the algorithm would process a text repository document by
document and update underlying weights accordingly.

��� ����
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Fig. 1. A scheme of the interactive learning model

3 Learning Model

The model structure imposed by ESA can be interpreted as a one layer neu-
ral network [10] with N input nodes corresponding to terms and K output
nodes corresponding to concepts. Initially, weights invj,k for the j-th word
(j ∈ {1, . . . , N}) and the k-th concept (k ∈ {1, . . . , K}) are assigned based
on the bag-of-words representation of the k-th concept. A set of words occurring
in a definition of the concept ck will be denoted by MeSHk. In our case study,
this representation is computed using natural language annotations from the
MeSH ontology [11].
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We impose two constraints on the weight refinement procedure. The first one
is that the descriptions of concepts available in a knowledge base determine
the network structure (i.e. we restrict the weights invj,k equal zero to remain
zero throughout the updates – we do not construct any new connections in the
network). The second constraint is that the particular updates are multiplica-
tive rather than additive (thus, invj,k ≥ 0, which provides a more transparent
interpretation of weights that address several, otherwise unrelated topics).

For a document Ti, represented by a set of terms T ′
i , the network is initialized

with inputs equal to term frequency coefficients of the terms from T ′
i . Each raw

output produced by the network is interpreted as the vector of concept association
strengths to the document Ti (see equation 2). Next, the network selects a set of
C concepts with the highest association strengths, denoted by T opC(Ti). We as-
sume that an expert provides feedback for document Ti (i.e., labels it with a set of
concepts Exp(Ti) = {c1, . . . , cni } or marks whether this document was relevant to
his/her search), thus we are able to define a supervised learning problem.

Since the model resembles a neural network, we propose to adopt the idea of
weight propagation algorithm from multi-layer neural networks for the problem
at hand. For this purpose, we need to define a global model error and a local
error for each concept in the output layer.

For the document Ti we define a set of false positives FPi = T opC(Ti) \
Exp(Ti) and a set of false negatives FNi = Exp(Ti) \ T opC(Ti). Within the set
T opC(Ti) we also identify concepts which were truly relevant for experts, i.e. the
set of true positives T Pi = T opC(Ti) ∩ Exp(Ti). Our global error measures of
interest are measures appropriate for document retrieval – namely, recall1 and
F1-score2 (for the top C concepts) [12]. By analogy to the back-propagation
algorithm, in our preliminary experiments we utilized a very simple update rule,
namely back-propagating +1 (for false negatives) and −1 (for false positives)
proportionally to the inputs.

Figure 2 illustrates an exemplary output of the tagging algorithm. We sort
concepts indicated by experts according to ESA(Ti, ck) (i.e., their strength of
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Fig. 2. Illustration of the weight updating algorithm for a single document Ti

1 http://en.wikipedia.org/wiki/Precision_and_recall
2 http://en.wikipedia.org/wiki/F1_score

http://en.wikipedia.org/wiki/Precision_and_recall
http://en.wikipedia.org/wiki/F1_score
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association to the document computed using the ESA method). The false nega-
tives are those expert concepts that fall outside the top C concepts assigned by
ESA (i.e. c4 and c5). The set of false positives consists of non-expert concepts
returned within the top C by the indexer (they correspond to the blank boxes on
the illustration). The true positives are the expert concepts that are within the
set of top C concepts (i.e. c1, c2 and c3). While only the false positives and the
false negatives contribute to model error, our update procedure also reinforces
positive feedback for the true positives.

Sparse matrices ΔINVi for each document are averaged and applied to matrix
INV at the end of the loop over all documents, i.e., for each pair of a word and
a concept (j, k):

INV new[j, k] = INV old[j, k] ×
(

1 + 1
M [j, k]

×
M∑

i=1
ΔINVi[j, k]

)

Algorithm 1 shows the update procedure for a single document.

Algorithm 1. An algorithm for computing a sparse update matrix ΔINVi

for a single document.
begin1

Initiate an empty matrix ΔINVi with N rows and K columns2
for ck ∈ (T opC(Ti) ∪ Exp(Ti)) do3

tmpW ords = T ′
i ∩ MeSHk4

tmpNorm =
∑

wj ∈tmpW ords

tfdoc(j, i)
5

if ck ∈ F Pi then6
for wj ∈ tmpW ords do7

ΔINVi[j, k] = − tfdoc(j,i)
tmpNorm8

M [j, k] = M [j, k] + 19
end10

end11
else12

if ck ∈ F Ni ∪ T Pi then13
for wj ∈ tmpW ords do14

ΔINVi[j, k] = + tfdoc(j,i)
tmpNorm15

M [j, k] = M [j, k] + 116
end17

end18
end19

end20
return ΔINVi21

end22
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4 Experiments

We have conducted several experiments to verify feasibility of our approach. In
the experiments we utilized a text corpus consisting of roughly 38.000 documents
from the PubMed Central Open Subset repository [5].

As the external knowledge base we used the MeSH ontology [11], which is
also employed by PubMed to index articles and to facilitate search through its
resources. We adapted the ESA method to enable tagging documents from our
corpus with the MeSH concepts (also known in MeSH terminology as terms
or headings). In MeSH, each heading is accompanied by a natural language
description prepared by domain experts, which we first process using text mining
tools in order to determine the structure of our model (i.e. relations between
words and concepts) and the initial values of weights.

Additionally, each document in the corpus was labelled by experts from
PubMed with a set of MeSH concepts. We treat those tags as kind of user
feedback and we utilize it for improving the word-concept associations in the
learning model described in Section 3. We are also using the tags for the eval-
uation purpose. We split the corpus of documents into a training and a test
set. In the experiments, we train our model on the first one and then verify its
performance on the second. As the quality measures for each test document we
used the F1-score and recall for the top C = 30 concepts. In the following ex-
periments, we will report the averaged quality measures for all documents from
the test set.

We implemented and tested a prototype of our model in R System [13]. The
average results obtained when we were training the model on 20.000 randomly
selected documents (see Fig. 3) turned out to be very promising. On the test
set, we observed a significant, by ≈ 107%, improvement of performance over the
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Fig. 3. F1-score and recall curves for the training and test sets
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classical ESA (the iteration 0 in the both plots). The most notable is a very high
recall (≈ 0.54). This is a remarkable score, since the total number of possible
concepts in our experiment is ≈ 26.000 and only 30 of them were assigned to
any single document.

We also investigated stability of the weight updating procedure. The Figure
4a shows recall of the model for different sizes of the training set. It illustrates
the diminishing returns in terms of recall, resulting from using an increasing
number of observations. It suggests that using 20.000 documents for training
may be sufficient (i.e. the solution cannot be improved much within this model
merely by including additional observations). Moreover, it can be noticed that
the difference between the performance of the training and test sets decreases
with an increasing number of documents used for learning.

Figure 4b shows the average number of iterations required to train the model
for different sizes of the training corpus. It is interesting to observe, that if we
assume a reasonable stopping criterion, saying that we terminate learning when
the improvement on the training set does not exceed 0.001, then the learning
accuracy varies more or less at the same level regardless of the number of training
documents. Additionally, for such a simple stopping criterion, the results on the
test set consistently remains close to the maximum.
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Fig. 4. The recall of the model on the test set (Fig. 4a) and the number of iterations
required to train the model for different sizes of the training set (Fig. 4b)

5 Conclusions and Future Work

In this article we proposed a model which combines Explicit Semantic Analysis
and expert feedback. The presented preliminary results show that the proposed
approach significantly improves the baseline result provided by ESA.
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We have shown that the network structure imposed by ESA is sparse enough
to lead to convenient calculations, yet rich enough to further improve over the
baseline. Questions we wish to address in the future are how this particular net-
work structure compares to a randomly chosen structure of similar sparsity, and
how it can be further augmented. In our future research we also aim to explore
other weight update rules and other improvements to the proposed approach.
In particular, we wish to investigate the problem of online model updating that
utilizes user feedback in a form of click-through data.

Finally, in our research we are interested in methods that can utilize the
improved representation of documents in tasks such as unsupervised clustering
or topical classification of scientific articles. For instance, we have organized a
data mining competition3 whose aim was to verify whether the automatically
generated associations between investigated texts and concepts are useful for
predicting their topical classification [14]. Although the results of this challenge
are already encouraging, we want to check if the improved semantic tagging will
have a positive impact on the accuracy of predictions.

We are planning to design more efficient and scalable adaptive versions of
ESA that can be implemented in Semantic Search Engines like SONCA system.
The experimental results presented in Figure 4 are showing that the proposed
solution does not require a big number of annotated training samples and long
computation time to obtain a satisfactory accuracy.

Within the SONCA engine we are also developing interfaces which would fa-
cilitate search results visualization by grouping semantically similar documents.
In this task the enhanced document representation provided by ESA can be used
not only for construction of a appropriate similarity measure (as, for example,
in [15]), but also for labelling the resulting clusters. Such semantic labels are
meaningful for people and can make our system more comprehensive for future
users.
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Abstract. Microblogging is a recent social phenomenon of Web2.0 tech-
nology, having applications in many domains. It is another form of social
media, recognized as Real-Time Web Publishing, which has won an im-
pressive audience acceptance and surprisingly changed online expression
and interaction for millions of users.It is observed that clustering by
topic can be very helpful for the quick retrieval of desired information.
We propose a novel topic detection technique that permits to retrieve
in real-time the most emergent topics expressed by the community. Tra-
ditional text mining techniques have no special considerations for short
and sparse microblog data. Keeping in view these special characteris-
tics of data, we adopt Single-pass Clustering technique by using Latent
Dirichlet Allocation (LDA) Model in place of traditional VSM model, to
extract the hidden microblog topics information. Experiments on actual
dataset results showed that the proposed method decreased the probabil-
ities of miss and false alarm, as well as reduced the normalized detection
cost.

Keywords: Microblog,topic detection, LDA model,Single-pass
clustering.

1 Introduction

Microblogging has become a primary channel by which people not only share
information, but also search for information. It fills a gap between blogging and
instant messaging, allowing people to publish short messages on the web about
what they are currently doing. First Microblog was launched by Evan William in
2006. According to Twitter, there were 175 million registered users by the end
of 2010. This rapid adoption has generated interest in gathering information
from microblogging about real time news and opinions on specific topics. This
interest, in turn, has led to a proliferation of microblog search services from
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Central Universities (No. SWJTU11ZT08).
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both microblogging service providers (like Twitter) and general purpose search
engines (like Bing and Google).However compared with traditional document
retrieval and web search, microblog search is still in its infancy.

In a typical microblog search scenario using twitter, around 1500 tweets that
contains the query terms, will be returned, ranked by their creation time. Al-
though, other presentation formats are also available (e.g ordering results by
author popularity, or by hyperlinks referenced), presentation formats optimized
for topic monitoring are not yet widely available. The goal of this paper is to
explore the potential for topic organization of microblog search results.

This is a challenging problem because microblog posts are short and sparse,
so traditional topical clustering technique based on lexical overlap is necessarily
weak. We use single - pass clustering method with Latent Dirichlet Allocation
(LDA) Model instead of traditional VSM model[1]. The experimental results has
proved the effectiveness of LDA model over VSM.

The rest of this paper is organized as follows: Section 2 presents the current
state of topic detection. Section 3 explains the Latent Dirichlet Allocation (LDA)
model and the MCMC method with Gibbs sampling for LDA. Section 4 covers
the methodology of Single-pass clustering algorithm. Sectiona 5 describes the
experiments and analysis of results. Finally, section 6 discusses the conclusion
and future work.

2 Related Work

Yang et al. [2] investigates the use and extension of text retrieval and cluster-
ing techniques for event detection using hierarchical and non-hierarchical docu-
ment clustering algorithm. They found that resulting clustering hierarchies are
highly informative for retrospective detection of previously unidentified events.
Trieschnigg and Kraaij[3] proposed an incremental hierarchical clustering algo-
rithm. They take a sample from the corpus to build a hierarchical cluster struc-
ture, then optimize the resulting binary tree for the minimal cost metric, finally
assign the remaining documents from the corpus to clusters in the structure ob-
tained from the sample. Papka and Allen [4] detect topic by using a Single-pass
clustering algorithm and a novel thresholding model. This model incorporates
the properties of events as major component, but the priori report sparse will
lead to the topic model is not accurate. Finally, explored that the probabilities
of miss alarm and false alarm may increase with the Single-Pass Clustering.
Cataldi et al. [5] proposed the new hot topic detection methods based on the
relationship between the timing and the social evaluation Twitter. In an appro-
priate period of time, if a topic has been widely detected, but before this rarely
occurs, then you can think that this topic is the new hot topic at this particu-
lar moment. Phuvipadawat and Murate [6] put forward a collection of breaking
news on Twitter, He designed a program called ”Hotstream” to provide users
breaking news.

In the topic detection process, building Model is a basic challenge. The vec-
tor space model(VSM) is the most common model. For the short and sparse
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microbolgging text, VSM (using words or terms as characters) cannot perform
accurate calculation of the text Similarity. In order to reduce the date scarcity
and make it more topic-focused, we propose the LDA model [6] to the data
modeling, extracting the hidden microblog topics information. High-dimensional
sparse text vector is mapped to low-dimensional hidden topic space, combined
with the classic single-pass clustering algorithm for text clustering different topic.

3 The Method of Microblog Text Modeling

3.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA)[7] is a generative probabilistic model for a cor-
pus of discrete data. It models the words in documents under the “bag-of-words”
assumption, ignoring the orders of the words. Following this “exchangeability”,
the distribution of the words would be independent and identically distributed
under some given conditioned of parameters. This conditionally independence
allows us to build a hierarchical Bayesian model for a corpus of documents and
words. This process can be described graphically as shown in Fig.1.

Fig. 1. Graphical model representation of LDA

For each document d in the corpus, the LDA model first picks a multinomial
distribution θd = [θd1...θdk]

T from the Dirichlet distribution αd = [αd1...αdk]
T ,

and then the model assigns a topic zid = k to the ith word in the document
according to the multinomial distribution θd. Given the topic zid = k,the model
then pick a word wid from the vocabulary of V words according to the multi-
nomoial distribution [φk1...φkV ]

T which is generated from the Dirichlet distri-
bution [βk1...βkV ]

T for each topic k.
Markov Chain Monte Carlo (MCMC)[8] is a general method to obtain sam-

ples from complex distribution. We have to construct a Markov chain that is
irreducible, a periodic, and reversible in order to make the chain have a unique
stationary distribution. Such properties are guaranteed if we apply the Gibbs
sampling for the state transitions [9].The algorithm is detailed as follows:
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We first consider the joint distribution of z and w

p(w, z|α, β) =

∫
θ

∫
φ

p(w, z, θ, φ|α, β)dθdφ (1)

Given the joint distribution of w and z under LDA, we can compute the condi-
tional probability for the Gibbs sampler by

p(zid = k|z¬id, x, α, β) =
p(z¬id, zid = k|x, α, β)∑K

k‘=1 p(z¬id, zid = k‘|x, α, β)
(2)

After the Markov chain reach the stationary distribution, we can start drawing
samples from the chain. As shown in [8], given a sampled z, we can estimate the
values of the other latent variables by

θdk =
αk + ndk

α + nd
, φkv =

βkv + nkv

βk + nk
(3)

where the counts are obtained from the assignment z. The above two equations
are derived by computing the expectance of the Dirichlet distribution in the
posterior form.

4 Topic Detection by Single-Pass Clustering

As a result of Gibbs sampling for LDA, θ is a d ∗ k matrix,where d is the total
number of microblog texts, k is the number of latent topics. Matrix element
value indicates the probability of each text data set to generate implicit topic,
can also be seen as the document-topic vectors.

The proposed Single-pass clustering[3] algorithm is as following:
For each document d in the sequence loop;

Find a cluster c that maximizes cos(c, d);
If cos(c, d) > t then

Include d in c;
Else create a new cluster whose only document is d;

End loop.

5 Experiment and Results

5.1 Evaluation Criteria

Detection performance is characterized in terms of the probability of Miss and
False alarm errors (PMiss and PFA). These error probabilities are then combined
into a single detection cost CDet, by assigning costs to miss and false alarm
errors[10]:

(CDet) = CMiss · PMiss · Ptarget + CFA · PFA · Pnon−target (4)
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According to the TDT standards,we set CMiss = 1.0, CFA = 0.1, Ptarget = 0.02.
Because these values vary with the application, CDet will be normalized so

that (CDet)Norm can be no less than one without extracting information from
the source data. This is done as follows:

(CDet)Norm =
CDet

min(CMiss · Ptarget, CFA · Pnon−target)
(5)

The (CDet)Norm is smaller,the quality of topic detection is better.

5.2 Dataset

We collected 108122 texts of Sina-microblog August 2011 by Web crawler. All
data covering 957 topics discussed by the microbolg usrers. Before the experi-
ment, data preprocessed by ICTCLAS Segmentation system.

5.3 Results

After fixing different similarity threshold t, the Single-pass clustering based on
VSM model and the Single-Pass clustering based on LDA model are executed.
The corresponding experimental results are shown in Table 1 and 2. Followings
observations are found in the results:

1. With increasing similarity threshold t, the missing rate increases gradually,
and the fault detection rate decreases gradually, consuming function is down
then up.

2. The Single-pass Clustering based on LDA model can reduce the PMiss ,PFA

and(CDet)Norm to improve the topic detection accuracy.

Table 1. The results of Single-pass based on VSM model

t 0.001 0.002 0.003 0.005 0.008 0.01 0.02 0.05 0.08

PMiss 0.2145 0.2386 0.3258 0.3322 0.3664 0.4615 0.4962 0.5138 0.5567
PFA 0.3360 0.3196 0.2862 0.2635 0.1179 0.1128 0.1012 0.1073 0.0943
(CDet)Norm 0.0372 0.0361 0.0346 0.0325 0.0189 0.0203 0.0216 0.0249 0.0313

Table 2. The results of Single-pass based on LDA model

t 0.01 0.02 0.03 0.05 0.08 0.1 0.2 0.3 0.5

PMiss 0.0110 0.0126 0.0531 0.0639 0.1128 0.1532 0.2704 0.3001 0.3552
PFA 0.1538 0.1464 0.1052 0.0841 0.0533 0.0094 0.0002 0.0000 0.0000
(CDet)Norm 0.0152 0.0146 0.0133 0.0095 0.0074 0.0040 0.0054 0.0060 0.0071
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6 Conclusion

Considering the in-built characteristics of large-scale and high-sparse microblog
data, we purposed the Single-Pass Clustering algorithm based on LDA model
to solve the data sparseness problem faced by the traditional VSM. The experi-
mental results show that the algorithm could decrease the probabilities of Miss
Alarm and False Alarm, and finally reducing the normalized detection cost. Fu-
ture research will optimize the LDA model, and consider the real-time processing
of larger data.
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Abstract. We present a case study in approximate data matching for
a database system that contains information about scientific publica-
tions. The approximate matching process is meant to identify whether
several records in the database are in fact repeated instances of the same
real-world object. In our case study we are concerned with matching in-
stances of objects such as XML documents, persons’ names, affiliations,
journal names, and so on. The particular data we are dealing with is a
representation of the PubMed Central document corpus within the data
warehouse that is a part of the SONCA system. SONCA system is be-
ing developed as one of components of the general scientific information
platform SYNAT.

Keywords: Text mining, approximate matching, document grouping,
data cleaning, data matching, similarity function, record linkage, record
matching, duplicate detection, object matching, entity resolution, data
warehousing, granulation.

1 Introduction

Approximate data matching is a central problem in several data management
processes, such as data integration, data cleaning, approximate queries, faceted
search, similarity search and so on. As it is explained in the very useful sur-
vey [4], matching is the process of bringing together data from different, and
sometimes heterogeneous, data sources and comparing them in order to find out
whether they represent the same real-world object. Since data come from dif-
ferent sources, it is to be expected, that they differ from each other in the way
they are represented. This is a complex problem, since it is not trivial to assert
that two heterogeneous data instances represent the same object of the reality.
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Heterogeneity can happen in data structure as well as in data value. Therefore,
a data matching process must be able to analyze both structure and data value.

In our particular case study we are dealing with the problem of matching
so called named entities within a database (a data warehouse) derived from
the collection of scientific articles. These articles are a part of PubMed Central
(PMC) - the National Library of Medicine’s digital archive of full-text journal
literature (see [2]). The named entities in discourse are publications (documents),
persons (authors, editors, etc.), affiliations (institution names and locations),
publishers, journals, book series, to name just a few. The original documents
from PubMed Central are first converted to a dedicated XML format (nXML -
see [10]) and stored in the local repository. Then, each document is parsed and
loaded to a dedicated data warehouse - the SONCA Analytic Index Server. The
parser decomposes each document into meaningful parts and creates (loads) data
instances in the database. The important feature of the parser is that it processes
the references contained in each document and creates database instance for each
title, name, affiliation, journal name, etc. This process contributes to creation of
multiple instances for many named entities. One can say, that repeated instances
for a given object come from different data sources. In order to deal with this
situation it is necessary to perform matching procedure.

The problem of matching named entities of various kind in PubMed database
has been discussed before (see [7,15]). Our approach is different from previous ones
in the way we make use of PMC data. For us, the documents from PMC are just
one example of possible document sources (repositories). Hence, we do not have
PubMed database handy to verify the matching. All information we are given is
contained in the relational database structure that results from processing (pars-
ing) texts from PMC. In other words, even if a named entity (document, person,
institution) exists in the original PubMed database, wemay never be aware of it, if
it does not appear in any of the documents that our system has processed. This is
completely understandable, given the fact that our overall goal is not to re-create
PubMed from a sample of documents, but to devise a method that deals with var-
ious types of document corpora that we may encounter in the future.

The fact that we derive both instances and (matched) objects directly from
scientific texts creates some problems that are not common to other publication
databases. In particular, the problem of matching persons’ names in databases
such as DBLP [13] or Arnetminer [16] has been discussed before. However, the
problem we are tackling in our matching attempts is somewhat different. Since
our instances come from processing of documents, the vast majority of names
that we encounter is derived from citations. Therefore, most of authors only have
initials of given name(s). That creates mach higher inconsistency in data. There-
fore, we cannot rely on the name only and have to use secondary (constructed)
features to perform matching.

The article is organizedas follows. Section 2 describes the frameworkwework in,
the SONCA system. Then we describe how our data set is represented in SONCA
data warehouse (Section 2.1) and what the matching process entails in this case.
Section 3 contains description of the actual state of the data warehouse we are
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dealingwith and explanation of results of initial matching attempts.We finishwith
conclusions and directions for further work in Section 4.

2 SYNAT Platform and SONCA System

The SYNAT project (abbreviation of Polish“SYstemNAuki iTechniki”, see [3])
is a large, national R&D program of Polish government aimed at establishment of
a unified network platform for storing and serving digital information in widely
understood areas of science and technology. The project is composed of nearly
50 modules developed by research teams at 16 leading research institutions in
Poland.1
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Fig. 1. The overview of SONCA

Within the framework of a larger (SYNAT) project we want to design and
implement a solution that will make it possible for a user to search within repos-
itories of scientific information (articles, patents, biographical notes, etc.) using
their semantic content. Our prospective system for doing that is called SONCA
(abbreviation for Search based on ONtologies and Compound Analytics, see
[8,11,12]).

1 http://www.synat.pl

http://www.synat.pl
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Ultimately, SONCA should be capable of answering the user query by listing
and presenting the resources (documents, Web pages, et cetera) that correspond
to it semantically. In other words, the system should have some understanding
of the intention of the query and of the contents of documents stored in the
repository as well as the ability to retrieve relevant information with high effi-
cacy. The system should be able to use various knowledge bases related to the
investigated areas of science. It should also allow for independent sources of in-
formation about the analyzed objects, such as, e.g., information about scientists
who may be identified as the stored articles’ authors.

The requirement for matching in SONCA warehouse model emerges quite nat-
urally when we proceed with construction of the relational data schema aimed
at efficient storage and querying of parsed scientific articles, as well as entities
corresponding to authors, institutions, references, scientific concepts, and so on
(see upper-right part of Figure 1). Another important requirement for the pro-
posed model is the ability to answer a query about all possible entities that may
be interesting for users in a well organized and efficient manner. To achieve that
the process of instance matching, tantamount to generation of objects, has to be
performed.

2.1 SONCA Analytic Data Warehouse

For the purpose of this study we will describe the structure of SONCA Analytic
Index Server (data warehouse) only briefly. For details one may refer to [8]. The
internal architecture of the database is implemented with use of EAV/CR (Entity-
Attribute-Value with Classes and Relationships - see [9]) model. SONCA’s ware-
house structure is organized into three layers, of whichwe are concernedwith upper
two: instance and object. In order to keep the size of database at bay and execute
the queries efficiently we have employed the Infobrigt’s RDBMS engine [6].

The parser, which processes the documents from local repository, creates an
instance (record) in the generic (instance related) part of the database for every
type of entity that was identified within document. Entities (instances) are stored
in the data table(s) with preservation of information about structure of they
relations in the original document. The instances may be either very simple,
like a single word or a number, or quite complex, like an instance representing
a publication with all the underlying sub-instances like: title, publication year,
publisher etc.

The result of matching is stored in special table on the database server. This
table stores the binding information for instances (records in original data) and
objects. In the particular case of matching instances to create objects in the
SONCA data warehouse we sometimes have to perform two steps:

1. Instance matching. We have to decide if the two or more instances are in
fact representing the very same object. Then we decide whether this object
is already in the database or not. In the former case a new object is being
created, in the latter we add information about new matching instances and
modify object properties, if necessary (see point 2 below).
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2. Object creation/modification. If the just matched instance(s) require cre-
ation of new object or if an instance matched with existing object carries new,
previously unavailable piece of information, then we need to create/modify
the objects. In the EAV/CR model that we use this is equivalent to creat-
ing and/or modifying the values of object’s properties (attributes). This is
sometimes a complicated task in itself.

The two steps mentioned above can be represented in the framework of Granular
Computing. They correspond to creation of granules and derivation of granule
representations. For more on that see [14].

3 Matching of PubMed Papers in SONCA Database

In the actual R&D work with matching in SONCA we have already progressed
beyond what is described below. The case study explains the finished part of
our investigations and presents those results that have already been positively
verified. In order to preserve clarity and to save some space we present some key
numbers about our experiments in the Table 1 below.

Table 1. Key information about matching experiment in SONCA

Feature Value

No. of PMC documents processed 75,844

No. of instances of all types 433,597,303

No. of instances of type ’publication’ 2,623,849

No. and percentage of ’publication’ instances from citations 2,547,870 (97%)

No. of created objects of type ’publication’ 1,195,878

No. and percentage of matched instances of type ’publication’ 1,874,816 (71%)

No. and percentage of ’publication’ objects matching one instance 884,858 (74%)

Highest number of instances matching a single ’publication’ object 243

Average consistency for properties of ’publication’ object (excl. title) 97.78%

Initial percentage of objects with inconsistency for property title 0.02%

Number of unique <name,surname> pairs 1,814,071

Number of unique instances of type ’affiliation’ 387,602

The first matching process that we have launched was aimed at identifying and
grouping together instances that represent the same publication. Following the
categorization defined in [4], this step entails both content-based and structure-
based matching. In case of matching documents for which at least one instance
corresponds to the document that was originally stored in the local repository
the task becomes a relatively easy one. Not only are the property values for this
instance highly consistent across all instances, but we also have detailed infor-
mation how they were created, as we possess the full technical specification of
the algorithms used by parser/loader during their creation. The only noticeable
problems we had with instances representing “real” documents occurred when
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the document they originated from was damaged or violated formatting rules.
This, however was just a handful of cases (below 0.5%).

For the vast majority (97%) of instances of type ’publication’ we had to pro-
cess (match) them using the little information that was contained in references
found in full-text documents. For these instances we needed to first check if
something that matches instance have been already assigned an object and then
match property values, if they existed, or create new ones. With ’publication’
instances derived (parsed) from references we usually started from checking if
any of the highly discriminative (unique) properties, such as: PubMed ID [10],
DOI2 or ISBN/ISSN3. Then we used such property value to check if it has
already been associated with any object existing in our database. If no unique
number was present we moved to secondary, less reliable properties. Fortunately,
out of 16 properties that we have considered only three – title, lastpage and
publish_year – showed significant inconsistency. As it turned out, most of in-
consistencies in publish_year (year of publication) and lastpage fields were
easy to identify and correct. Thanks to that parser/loader algorithm has sub-
sequently been improved and the current version produces no inconsistencies in
publish_year. To compare tiles we have used methods and experience from [5].
It was no longer possible to establish similarity of texts (titles) using only SQL
queries. We had to extract data from the database and process using NLP meth-
ods. As it is quite common for references, the extracted titles were modifications,
sometimes quite extensive, of the original full titles. We had to account for com-
mon practices such as shortening, usage of abbreviations, omission of parts of
sentences and so on. The methods we have used made it possible to assign a
unique and correct title to nearly all objects of type ’publication’.

Albeit the “success rate” in case of matching publications is just 71% we
consider it a success, given how little useful and consistent information can be
retrieved from some references. Unfortunately, when it comes to matching other
types of named entities, especially persons and institutions (affiliations), we find
ourselves in dire straits. In case of matching persons’ names we are faced with
difficult task resulting for the way these names enter our database. As vast ma-
jority of persons are identified as authors or editors mentioned in references,
we usually do not have their full given names. Just a quick look at any list of
references, even the one at the end of this paper, reveals the severity of the prob-
lem. In fact, as we have found out, the content based matching in this case is
inefficient. There is simply not enough information in two or three words that
constitute person’s name, especially when only initials of given names are avail-
able. Therefore, we want construct additional attributes that make it possible
to either discern or group names. The first step is to use the co-author rela-
tionship graph, a bit like it was done in DBLP [13] and Arnetminer [16]. By
comparing co-author graphs for two instances we can decide if they represent
the same named entity (object) or not. Also, we can make use of the valuable
information contained in the citation graph. As we have large part of citation

2 http://www.doi.org/
3 http://www.isbn-international.org/

http://www.doi.org/
http://www.isbn-international.org/
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graph for matched publications stored in our data warehouse, we can use this
graph to construct a filter that will eliminate the instances that are irrelevant
for a current object and leave for further, more detailed examination only the
instances that have some relationship to the object in discourse.

4 Conclusions and Further Work

Matching in the analytical part of SONCA database architecture is the
work-in-progress. We constantly improve all aspects of the entire system, match-
ing included. This case study spins around experiments made with relatively
early version of SONCA components (local repository, data warehouse
and parser/loader). The current experimental environment has been much im-
proved, partly thanks to observations and conclusions drawn from the initial
matching attempts.

As mentioned in Section 3 matching of named entities other than publica-
tions (documents) in the SONCA data warehouse is at early stage. The level of
complication of matching task in case of objects such as persons, institutions,
conferences, and so on, is not yet fully recognized. We will face this task in
the immediate future. We expect that a significant involvement of text mining
tools that make use of intelligent methods such as inductive learning, approxi-
mate reasoning, granular computing, as well as rough-set-based approaches, will
make it possible to achieve observable improvement. We hope that use of intel-
ligent methods for finding (constructing) secondary feature using citation and
co-author graphs will bring the breakthrough on this front. At the same time we
strive to keep the highest possible portion of computations within the SQL-based
database. Since the data we are dealing with is massive, most of typical tools
that work on ”flat” data table is only capable to work on tiny samples of the
entire data collection. Taking the data out of RDBMS is frequently too costly.
on the other hand, the SQL and its extensions provide a fairly limited arsenal
of text processing/mining methods.

As stated in the introduction, our approach differs from typical ones in the
way we use our information (document) source. Inasmuch as we expect the data
in the final SYNAT platform to be heterogenous and quite varied, we have to
prepare for (almost) everything. In order to field test all methods (including
matching) in SONCA we have already started initial works with another large
source of publication data - the ACM’s Digital Library [1]. We also expect to
be able to use catalogs and selected resources of the Polish National Library4,
which will add another facet to the project, as we will have to develop methods
to cope with texts in Polish.
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Abstract. Ensembles are often capable of greater prediction accuracy
than any of their individual members. As a consequence of the diver-
sity between individual base-learners, an ensemble will not suffer from
overfitting. On the other hand, in many cases we are dealing with imbal-
anced data and a classifier which was built using all data has tendency
to ignore minority class. As a solution to the problem, we propose to
consider a large number of relatively small and balanced subsets where
representatives from the both patterns are to be selected randomly. Using
different pre-processing technique combined with available background
knowledge, which may have subjective treatment, we can generate many
secondary databases for training. The relevance of those databases maybe
tested with five folds cross-validation (CV5). Further, we can use CV5-
results to optimise blending structure. Note that it is appropriate to use
different software for CV5 evaluation and for the computation of the final
solution. Our model was tested online during an International Carvana
data mining Contest on the Kaggle platform. This Contest was highly
popular and attracted 582 actively participating teams, where our team
was awarded 2nd prize.

Keywords: ensembling, blending, decision trees, boosting, neural nets,
cross validation, classification.

1 Introduction

In line with an ensembling theory, we are interested to generate a variety of
high quality solutions for the problem, and there are two main directions how
to do that. One very popular way is associated with 1) the usage of the different
software in application to the same database, or 2) we can apply the same
software (named classifier C1) to different databases. Based on our experience,
the second direction is a more preferable in the case of Carvana data.

The next fundamental question is how to link (or how to blend) many different
solutions in a most optimal way [1]. The answer is a quite straightforward: it
appears to be natural to use cross-validation (CV) with fixed design matrix as a
criterion for blending, where the number of 5 folds seems to be quite sufficient.
However, implementation of the CV5 may represent significant computational
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problem, particularly, in the case if we are dealing with imbalanced data, and
have to construct the final solution as a homogeneous ensemble of many base
learners, each of which is a function of the randomly selected balanced subset.
Note that the main target of the CV is to compare different databases, where
the quality of any particular solution may not necessarily be high.

We can implement here very important principle of invariance, which maybe
described very briefly as follows. Suppose, we have another classifier, named C2,
which is much faster compared to the C1. Note that the quality of the classification
(or quality of the patterns separation) by the C2 maybe much poorer compared
to the C1, but it is not essential here. Validity of the hypothesis of invariance is a
subject of the fundamental importance. According to this hypothesis, the scaling
in the quality of performance between C1 and C2 is about the same around all the
secondary databases. Based on our experience with Carvana data, the hypothesis
of invariance is true. Therefore, we can use C2 to conduct all the necessary exper-
iments with CV5 in application to 10-20 secondary databases. After collection of
the CV5 experimental results with fixed design matrix, we can optimise weighting
coefficients for blending. Then, we can recompute solutions for the selected sec-
ondary databases with C1, and apply blending coefficients in order to calculate
the final solution. In this particular project we used GBM in R as C1, and Neural
Nets (NNs) in CLOP, Matlab, as C2.

2 Data Pre-processing

Carvana database1 includes two parts 1) training with 72983 samples, where 8976
are positive (that means problematic), and all the other samples are negative
(that means normal); 2) testing with 48707 samples (unlabelled).

The list of 36 original features is given in Table 1, where 3 features (index=0)
were excluded from further consideration. Remaining 33 features were divided
into 4 parts:

1) numerical (15 features in total including target variable);
2) textual (14 features in total);
3) categorical (3 features in total);
4) PurchDate.

Remark 1. Any missing values were replaced by “-1”. “PurchDate” values were
transferred to four integer values: 1) year (2009 or 2010); 2) month; 3) day of
the week; and 4) day of the month.

2.1 Textual data

Using special software, written in Perl, we created list of all text-units for any
feature, and counted the numbers of their occurrences in the training database.

1 http://www.kaggle.com

http://www.kaggle.com


182 V. Nikulin

Subject to the sufficient level (see, column Δ in Table 1) any particular text-
unit was given sequential positive index, or zero index, which means infrequent
(insignificant) value.

Table 1. List of 36 original features, where index=0 means that the feature was ex-
cluded from modelling (3 in total); index=1 - numerical feature (15 in total including
target variable); index=2 - date (one feature); index=3 - textual features (14 features
in total); index=4 - categorical features (3 features in total)

N Field Name Type Index Δ

1 RefID NA 0
2 IsBadBuy target 1
3 PurchDate date 2
4 Auction txt 3 100
5 VehYear year 1
6 VehicleAge num 1
7 Make txt 3 20
8 Model txt 3 40
9 Trim txt 3 39
10 SubModel txt 3 20
11 Color txt 3 50
12 Transmission txt 3 100
13 WheelTypeID cat 4
14 WheelType txt 3 100
15 VehOdo num 1
16 Nationality txt 3 100
17 Size txt 3 100
18 TopThreeAmericanName txt 3 100
19 MMRAcquisitionAuctionAveragePrice num 1
20 MMRAcquisitionAuctionCleanPrice num 1
21 MMRAcquisitionRetailAveragePrice num 1
22 MMRAcquisitonRetailCleanPrice num 1
23 MMRCurrentAuctionAveragePrice num 1
24 MMRCurrentAuctionCleanPrice num 1
25 MMRCurrentRetailAveragePrice num 1
26 MMRCurrentRetailCleanPrice num 1
27 PRIMEUNIT txt 3 50
28 AcquisitionType NA 0
29 AUCGUART txt 3 50
30 KickDate NA 0
31 BYRNO cat 4
32 VNZIP cat 4
33 VNST txt 3 20
34 VehBCost num 1
35 IsOnlineSale num 1
36 WarrantyCost num 1
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As a consequence of the above pre-processing transformation/treatment, we
produced two completely numerical matrices (for training and for testing) with
35 features each and without any missing values.

3 Synthetic Features

Let us consider 4 features: VehicleAge, VehOdo, VehBCost and WarrantyCost,
where the first one is discrete, and the others are continuous.

Continuous features maybe investigated using method of the moving averages,
applied to the sorted (according to the selected feature) vector of the target vari-
able. We have found that the “get kicked” probability is an increasing function
of VehOdo (V15, see Table 1) and WarrantyCost (V36), and decreasing function
of VehBCost (or of any other Cost-related variable). Based on this observation,
we can consider the following structure for the new (synthetic) variable:

fnew =
V23

(1 + C1V36)(C2 + V15 + C3V6)
, (1)

where non-negative parameters Ci, i = 1, . . . , 3, were selected (optimised using
specially designed software written in Matlab) in order to maximise diversity of
the moving average corresponding to (1), see Figure 1(d).

Two sets of the coefficients C are given in Table 2. Additionally, we used third
synthetic variable:

f (3)
new =

V23 + C4V34

(C5 + V36)
, (2)

where C4 = 1.49, C5 = 173.

Table 2. Two sets of coefficients for synthetic variables

C1 C2 C3

0 267 14354
9.8 333 9229

Remark 2. Equation (1) represents just an example. In general terms, definition
of the new synthetic variable may include many multipliers. For example, in the
case of a very popular Credit Contest on the Kaggle platform we used 13 mul-
tipliers, corresponding to the different original variables. After optimisation of
the coefficients, we can split the whole new variable by considering sub-products
of 2, 3, 4,..., components. As a consequence, we shall create many new synthetic
variables, which cannot be replaced by only one variables as a product of all
components.
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Fig. 1. (a) Numbers of occurrences for VehicleAge; (b) empirical probabilities for Ve-
hicleAge (ten values in total); (c) moving averages for VehBCost; (d) moving averages
for the synthetic feature (see Section 3)

3.1 On the Comparison between Different Cost-Variables

In the most early stages of the Contest, we had noticed that the differences be-
tween Costs are much more informative compared to the Cost-variables them-
selves. Using database with 37 variables (=35-1+3), as described above, where
we excluded VehYear variable (as it replicates VehicleAge) and replaced Cost-
variables (NN19-26) by their differences with VehBCost (8 differences in total),
we were able to achieve public score on the LeaderBoard 0.26023 in the terms
of Gini Index.

As a next step, we decided to replace above 8 Cost-differences by all the 36
Cost-differences (the number of all combinations from 9 by 2):

1) for i = 1, . . . , 8,
2) for j = i+ 1, . . . , 9,
3) rij = 1− Xi+1

Xj+1

4) end;
5) end;

where by Xj , j = 1, . . . , 9, we denote Costs/Prices (see, features NN19-26, 34 in
Table 1).
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New database includes 65 features. With this database, we observed a very
significant improvement: public score on the LeaderBoard 0.26608.

4 Homogeneous Ensembling with Balances Random Sets

In many cases, ensembles have significantly better prediction accuracy compared
to their individual members [2]. As a consequence of the diversity between indi-
vidual base-learners, an ensemble will not suffer from overfitting. On the other
hand, in many cases we are dealing with imbalanced data and a classifier which
was built using all data has tendency to ignore minority class. As a solution
to the problem, we propose to consider a large number of relatively small and
balanced subsets where representatives from the both patterns are to be selected
randomly [3].

4.1 On the Boosting Principles Applied to the Selection of the
Balanced Subsets

In our previous publications [3], [4], we used a sequence of balanced subsets,
which were selected from the training set independently (one subset was com-
pletely independent from the next, and so on). However, it appears to be logical
if we shall apply here principles of boosting [5] based on the latest solution
(known, also, as base-learner).

Principle of Complexity in Application to the Labelled Data. Let us
describe the proposed boosting model in more details. Suppose that yt ∈ {0, 1}
is the target variable and s

(α)
t ∈ [0, . . . , 1] is the training solution corresponding

to the sample t, α is a sequential index of the balanced random subset. Then,
we shall select sample t as a prospective to be included in the following balanced
subset α + 1 subject to the following conditions

ξ ≤ ξ1 if yt = 1; (3a)

ξ ≤ ξ2, otherwise, (3b)

where

ξi = ci1 + (ci2 + ci3 · φ) · w(yt, s
(α)
t ), i = 1, . . . , 2, (4)

w(y, s) = |y − s|β , (5)

where ξ and φ ∈ [0, . . . , 1] are standard uniform random variables, β > 0 and
cij > 0, i = 1, . . . , 2, j = 1, . . . , 3, are regulation parameters. For example, we
can select β = 0.35, and the recommended values for coefficients c are given in
Table 3.
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Table 3. Recommended values for the matrix of coefficients cij > 0, i = 1, . . . , 2,
j = 1, . . . , 3.

0.25 0.4 0.35

0.12 0.08 0.06

Remark 3. We can see that values in the first row of Table 3, which correspond
to the minority class are much bigger compared to the second row, which corre-
sponds to the majority class. As a direct consequence, selection according to (3a)
and (3b) will create relatively balanced subset. However, we considered selection
in accordance with (3a) and (3b) as just a preliminary. After that, we conducted
final adjustment to ensure that the relation between positives and negatives is
exactly as required.

Remark 4. The function (5) in (4) represents a very important boosting multi-
plier to ensure that “difficult” samples will be given higher probability to be
selected.

Principle of Simplicity in Application to the Unlabelled Data. We
can extend selection (3a) and (3b) to the unlabelled test set. However, there is a
fundamental difference between treatment of labelled and unlabelled data. In the
case of labelled data, we shall be selecting more complex samples, but in the case
of unlabelled data, we shall be selecting simpler samples with stronger indication
regarding their classification in accordance with available training solution. We
used this semi-supervised approach in application to the Credit Challenge on
the Kaggle platform, where the data were stronger imbalanced and the quality
of classification according to the AUC was significantly higher compared to the
Carvana Challenge.

5 Some Other Ways to Construct Secondary Training
Datasets

In Section 3.1 we introduced 36 ratios rij , i = 1, . . . , 8, j = i + 1, . . . , 9. Clearly,
all those ratios have different importance, and we have found that the following
4 relations are the most influential: 1) {19, 23}; 2) {20, 24}; 3) {21, 25} and 4)
{22, 26}, where indexes of the involved features are given in Table 1. The next
in line were 8 pairs: NN19-26 against N34.

Firstly, we decided to apply another formula to compare different Costs:

qij = log
Xi +Δ

Xj +Δ
, (6)

where we used value Δ = 100 as a smoothing parameter.
Further, we added to the model all possible sums of the first 4 the most

influential relations, plus an indicator whether or not all 8 involved Costs are
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available. In total, we calculated the block B of C2
4 +C3

4 +C4
4 +1 = 12 additional

features compared to the previous database with 65 features, which is described
in Section 3.1.

With this database (77 features) we observed LeaderBoard public score of
0.26810.

5.1 The Best Single Model

Compared to the previous database with 77 features, we removed feature N35
(see Table 1), also, we removed the indicator of the presence of eight Cost fea-
tures.

As a very important innovation, we introduces a new definition, which repre-
sents a more advanced development compared to (6):

λij =
qi − qj
qi + qj

, (7)

where

qi = log
Xi +Δ

X0 +Δ
, i = 1, . . . , 8,

X0 is feature N34 (VehBCost).
Using above definition (7), we computed 4 new features corresponding to the

pairs: 1) {19, 23}; 2) {20, 24}; 3) {21, 25} and 4) {22, 26}. Plus, we re-computed
11 features from the block B. Consequently, new database included 79 features
(= 77-2+4), and we observed LeaderBoard score 0.26867.

Remark 5. In order to reduce overfitting, we are interested to increase random
factor in the model. It appears to be logical to split all the 79 features into 4-5
blocks, where importance of the features within any particular block is about the
same. As it was discussed in Section 4, the final classifier represents an average
of the base-learners, each of which is based on the randomly selected balanced
subset. Importantly to note that the features in the model were, also, selected
randomly from any particular block, based on our assessment of how important
this block is.

6 Blending of the Different Databases with Neural Nets

In the above section we described three secondary databases with 65, 77 and 79
features. In fact, we created about 20 databases with up to 142 features.

As a next step, we can test any particular database using cross-validation as a
standard tool for validation of the classification model, where five folds appears
to be quite sufficient. Suppose, we are using the same design (known, also, as
splitting) matrix for CV in application to all databases. Then, after computation
of the CV-solutions for different databases, we consider performance of the linear
combinations of those solutions (known, also, as blend).
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After optimisation of the non-negative weighting coefficients, we can compute
test-solutions for the selected datasets, which correspond to the sufficiently large
weighting coefficients, and compute blend of those particular solutions for a final
submission.

An implementation of the above scheme may require a lot of computational
time taking into account the fact that any single solution represents a homo-
geneous ensemble of 100-200 base-learners (each of which corresponds to the
randomly selected balanced subset).

6.1 Principle of Invariance

In order to reduce significantly the computational costs, we can implement a
principle of invariance. In accordance with this principle, the quality of the CV-
solutions are not important in an absolute scale. In contrast, important are
relations between different CV-solutions.

We conducted CV5 with Neural Nets function from the Matlab-based CLOP
package2, which is significantly faster compared to the GBM function in R. Eval-
uation of one particular database with 200 balanced random subsets took about
4 hours time. The following CV5 results were observed: 0.270632 (F79), 0.266423
(F77) and 0.26154 (F65), where numbers in the brackets indicate numbers of the
features in the corresponding database.

Remark 6. It is interesting to note that there were several other databases with
CV5 result better than 0.26154. However, inclusion of those databases in the
blend produced worse result.

The best solution (in both public and private) was a blend of F79, F77 and
F65 solutions (used GBM package in R) with the following weighting coeffi-
cients: { 100170 ,

55
170 ,

15
170}. It produces Gini score 0.26885 in public (4th out of 582

participating teams), and 0.26655 in private (3rd place in the Contest).

7 Concluding Remarks

Selection bias [6] or overfitting represents a very important and challenging prob-
lem. As it was noticed in [7], if the improvement of a quantitative criterion such
as the error rate is the main contribution of a paper, the superiority of a new
algorithms should always be demonstrated on independent validation data. In
this sense, an importance of the data mining contests is unquestionable. The
rapid popularity growth of the data mining challenges [8] demonstrates with
confidence that it is the best known way to evaluate different models and sys-
tems. Based on our own experience, cross-validation (CV) maybe easily overfit
as a consequence of the intensive experiments. Further developments such as
nested CV [9] are computationally too expensive [7], and should not be used

2 http://clopinet.com/CLOP/

http://clopinet.com/CLOP/
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until it is absolutely necessary, because nested CV may generate secondary se-
rious problems as a result of 1) the dealing with an intense computations, and
2) very complex software (and, consequently, high level of probability to make
some mistakes) used for the implementation of the nested CV. Moreover, we do
believe that in most of the cases scientific results produced with the nested CV
are not reproducible (in the sense of an absolutely fresh data, which were not
used prior).

Generally, we are satisfied with our results, and consider blending model ap-
plied to the different databases as a main innovation proposed in this paper.
Note, that using conceptually similar method as described in this paper, we
were able to achieve 9th place out of 970 actively participating teams in another
data mining Contest, named “Credit”, which was, also, based on the Kaggle
platform.
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Abstract. This paper describes a new tool for the study of relationships
between the cost (depth, average depth, number of nodes, etc.) and un-
certainty of decision trees, which is closely connected with accuracy of
trees. In addition to the algorithm the paper also presents the experi-
mental results of application of our algorithm on some of the datasets
acquired from UCI ML Repository [1].

Keywords: decision trees, cost functions, uncertainty measure.

1 Introduction

Decision trees are widely used as predictors, as a way of knowledge represen-
tation, and as algorithms for problem solving. There uses require optimizing
decision trees for certain cost functions such as the number of misclassifications,
depth/average depth, and number of nodes. That is minimizing one of these cost
functions yields more accurate, faster, or more understandable decision trees (re-
spectively).

We consider the concept of approximate decision trees using an uncertainty
measure. This uncertainty, R(T ), for a decision table T is equal to the number of
unordered pairs of rows in the decision table T , labeled with different decisions.
The uncertainty measure R(T ) allows us to define the notion of α-decision trees.
That is, for a fixed nonnegative integer α, an α-decision tree for T localizes a
given row in a subtable T ′ of T such that R(T ′) ≤ α. The value α can also be
considered as uncertainty of the this tree. The parameter α is also connected
with accuracy of trees.

The aim of this paper is to study the relationships between cost and un-
certainty of decision trees. For a given cost function ψ, decision table T , and a
nonnegative integer α, we find the minimum cost of α-decision tree for T relative
to ψ. To this end we have designed an algorithm based on dynamic programming
approach [2,3,4] and integrated into a software tool called Dagger [5]. We also
performed various experimental results to the datasets acquired from UCI ML
Repository [1] (we show results for three datasets for illustrations purposes).

The presented algorithm and its implementation in the software tool Dagger
together with similar algorithms devised by the authors (see for example [6]) can
be useful for investigations in Rough Sets [7,8] where decision trees are used as
classifiers [9].

J.T. Yao et al. (Eds.): RSCTC 2012, LNAI 7413, pp. 190–197, 2012.
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This paper is organized into five sections. In Sect. 2 basic notions are dis-
cussed. Section 3 is devoted to the consideration of relationships between cost
and uncertainty of decision trees. In Sect. 4, results of experiments are presented
followed by conclusions in Sect. 5.

2 Basic Notions

In this section, we consider main notions connected with decision tables and
decision trees.

2.1 Decision Tables and Decision Trees

A decision table T is a rectangular table with m columns labeled with conditional
attributes f1, . . . , fm. The entries of the table T are nonnegative integers as the
value of attributes f1, . . . , fm. Rows of the table are pairwise different and each
row is labeled with a nonnegative integer describing the value of the decision
attribute d. We denote by E(T ) the set of attributes (columns of the table T ),
each of which contains different values. For fi ∈ E(T ), let E(T, fi) be the set of
values from the column fi.

Let fi1 , . . . , fit ∈ {f1, . . . , fm} and a1, . . . , at be nonnegative integers. We
denote by T (fi1 , a1) . . . (fit , at) the subtable of the table T , which consists of
such and only such rows of T that at the intersection with columns fi1 , . . . , fit
have numbers a1, . . . , at, respectively. Such nonempty tables (including the table
T ) will be called separable subtables of the table T . For a subtable Θ of the table
T we will denote by R(Θ) the number of unordered pairs of rows that are labeled
with different decisions. Later we will interpret the value R(Θ) as the uncertainty
of the table Θ. A minimum decision value which is attached to the maximum
number of rows in a nonempty subtable Θ will be called the most common
decision for Θ.

A decision tree Γ over the table T is a finite directed tree with a root in which
each terminal node is labeled with a decision. Each nonterminal node is labeled
with a conditional attribute, and for each nonterminal node, the outgoing edges
are labeled with pairwise different nonnegative integers. Let v be an arbitrary
node of Γ . We now define a subtable T (v) of the table T . If v is the root then
T (v) = T . Let v be a node of Γ that is not the root, nodes in the path from
the root to v be labeled with attributes fi1 , . . . , fit , and edges in this path be
labeled with values a1, . . . , at, respectively. Then T (v) = T (fi1 , a1) . . . (fit , at).

Let α be a nonnegative integer. We will say that Γ is an α-decision tree for
T if any node v of Γ satisfies the following conditions:

– If R(T (v)) ≤ α then v is a terminal node labeled with the most common
decision for T (v).

– Otherwise, v is labeled with an attribute fi ∈ E(T (v)) and, if E(T (v), fi) =
{a1, . . . , at}, then t edges leave node v, and these edges are labeled with
a1, . . . , at respectively.

For any α, an α-decision tree for T is called a decision tree for T .
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2.2 Representation of Sets of Decision Trees

Consider an algorithm for construction of a graph Δ(T ), which represents the
set of all decision trees for the table T . Nodes of this graph are some separable
subtables of the table T . During each step we process one node and mark it with
the symbol *. We start with the graph that consists of one node T and finish
when all nodes of the graph are processed.

Let the algorithm has already performed p steps. We now describe the step
number (p + 1). If all nodes are processed then the work of the algorithm is
finished, and the resulting graph is Δ(T ). Otherwise, choose a node (table) Θ
that has not been processed yet. Let b be the most common decision for Θ.
If R(Θ) = 0, label the considered node with b, mark it with symbol * and
proceed to the step number (p + 2). If R(Θ) > 0, then for each fi ∈ E(Θ)
draw a bundle of edges from the node Θ (this bundle of edges will be called
fi-bundle). Let E(Θ, fi) = {a1, . . . , at}. Then draw t edges from Θ and label
these edges with pairs (fi, a1), . . . , (fi, at) respectively. These edges enter into
nodes Θ(fi, a1), . . . , Θ(fi, at). If some of the nodes Θ(fi, a1), . . . , Θ(fi, at) are
not present in the graph then add these nodes to the graph. Mark the node Θ
with the symbol * and proceed to the step number (p + 2).
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Fig. 2. Aggregated decision tree

Now for each node Θ of the graph Δ(T ), we describe the set of decision trees
corresponding to the nodeΘ. We will move from terminal nodes, which are labeled
with numbers, to the node T . Let Θ be a node, which is labeled with a number b.
Then the only trivial decision tree depicted in Fig. 1 corresponds to the node Θ.

Let Θ be a nonterminal node (table) then there is a number of bundles of edges
starting in Θ. We consider an arbitrary bundle and describe the set of decision
trees corresponding to this bundle. Let the considered bundle be an fi-bundle
where fi ∈ (Θ) and E(Θ, fi) = {a1, . . . , at}. Let Γ1, . . . , Γt be decision trees from
sets corresponding to the nodes Θ(fi, a1), . . . , Θ(fi, at). Then the decision tree
depicted in Fig. 2 belongs to the set of decision trees, which correspond to this
bundle. All such decision trees belong to the considered set, and this set does not
contain any other decision trees. Then the set of decision trees corresponding to
the node Θ coincides with the union of sets of decision trees corresponding to
the bundles starting in Θ and the set containing one decision tree depicted in
Fig. 1, where b is the most common decision for Θ. We denote by D(Θ) the set
of decision trees corresponding to the node Θ.



On Cost and Uncertainty of Decision Trees 193

The following proposition shows that the graphΔ(T ) can represent all decision
trees for the table T .

Proposition 1. Let T be a decision table and Θ a node in the graph Δ(T ).
Then the set D(Θ) coincides with the set of all decision trees for the table Θ.

2.3 Cost Functions

We will consider cost functions which are given in the following way: values
of considered cost function ψ, which are nonnegative numbers, are defined by
induction on pairs (T, Γ ), where T is a decision table and Γ is an α-decision
tree for T . Let Γ be an α-decision tree represented in Fig. 1. Then ψ(T, Γ ) =
ψ0, where ψ0 is a nonnegative number. Let Γ be an α-decision tree depicted
in Fig. 2. Then ψ(T, Γ ) = F (N(T ), ψ(T (fi, a1), Γ1), . . . , ψ(T (fi, at), Γt)). Here
N(T ) is the number of rows in the table T , and F (n, ψ1, ψ2, . . .) is an operator
which transforms the considered tuple of nonnegative numbers into a nonnegative
number. Note that the number of variables ψ1, ψ2, . . . is not bounded from above.

The considered cost function will be called monotone if for any natural t, any
nonnegative numbers a, c1, . . . , ct, d1, . . . , dt and the inequalities c1 ≤ d1, . . . , ct ≤
dt the inequality F (a, c1, . . . , ct) ≤ F (a, d1, . . . , dt) follows. We will say that ψ is
bounded from below if, ψ(T, Γ ) ≥ ψ0 for any decision table T and any α-decision
tree Γ for T .

Now we take a closer view of somemonotone cost functions, which are bounded
from below.

Number of nodes: ψ(T, Γ ) is the number of nodes in α-decision tree Γ . For
this cost function ψ0 = 1 and F (n, ψ1, ψ2, . . . , ψt) = 1 +

∑t
i=1 ψi.

Number of nonterminal nodes: ψ(T, Γ ) is the number of nonterminal nodes
in α-decision tree Γ . For this cost function ψ0 = 0 and F (n, ψ1, ψ2, . . . , ψt) =
1 +
∑t

i=1 ψi.
Number of terminal nodes: ψ(T, Γ ) is the number of terminal nodes in α-

decision tree Γ . For this cost function ψ0 = 1 and F (n, ψ1, ψ2, . . . , ψt) =∑t
i=1 ψi.

Depth: ψ(T, Γ ) is the maximum length of a path from the root to a terminal
node of Γ . For this cost function ψ0 = 0 and F (n, ψ1, ψ2, . . . , ψt) = 1 +
max{ψ1, . . . , ψt}.

Total path length: for an arbitrary row δ̄ of the table T we denote by l(δ̄) the
length of the path from the root to a terminal node v of Γ such that δ̄ is in
T (v). Then ψ(T, Γ ) =

∑
δ̄ l(δ̄), where we take the sum on all rows δ̄ of the

table T . For this cost function ψ0 = 0 and F (n, ψ1, ψ2, . . . , ψt) = n+
∑t

i=1 ψi.
Note that the average depth of Γ is equal to the total path length divided
by N(T ).
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3 Relationship between Cost and Uncertainty

Let T be a decision table with m columns labeled with f1, . . . , fm and ψ be a
monotone and bounded from below cost function. The main aim of this paper is
to provide an algorithm to compute the function Fψ,T , which is defined on the
set {0, . . . , R(T )}. For any α ∈ {0, . . . , R(T )}, the value of Fψ,T (α) is equal to
the minimum cost of an α-decision tree for T , relative to the cost function ψ.
This function can be represented by the tuple

(Fψ,T (0), . . . ,Fψ,T (R(T ))) .

3.1 Computing the Function Fψ,T
Now for each node Θ of the graph Δ(T ) we compute the function FΘ = Fψ,Θ

(we compute the R(Θ)-tuple describing this function).
A node of Δ(T ) is called terminal if there are no edges leaving this node.

We will move from the terminal nodes, which are labeled with numbers, to the
node T .

Let Θ be a terminal node of Δ(T ) which is labeled with a number b that is the
most common decision for Θ. We know that R(Θ) = 0. Therefore, b is a common
decision for Θ, and the decision tree depicted in Fig. 1 is the only 0-decision tree
for Θ. Since R(Θ) = 0, we should consider only one value of α – the value 0. It’s
clear that the minimum cost of 0-decision tree for Θ is equal to ψ0. Thus, the
function FΘ can be described by the tuple (ψ0).

Let Θ be a nonterminal node of Δ(T ) then it means that R(Θ) > 0. Let
α ∈ {0, . . . , R(Θ)}. We need to find the value FΘ(α), which is the minimum
cost relative to ψ of an α-decision tree for Θ. Since R(Θ) > 0, the root of any
α-decision tree for Θ is labeled with an attribute from E(Θ). For any fi ∈ E(Θ),
we denote by FΘ(α, fi) the minimum cost relative to ψ of an α-decision tree for
Θ such that the root of this tree is labeled with fi. It is clear that

FΘ(α) = min{FΘ(α, fi) : fi ∈ E(Θ)}. (1)

Let fi ∈ E(Θ) and E(Θ, fi) = {a1, . . . , at}. Then any α-decision tree Γ for Θ
with the attribute fi attached to the root can be represented in the form depicted
in Fig. 2, where Γ1, . . . , Γt are α-decision trees for Θ(fi, a1), . . . , Θ(fi, at). Since
ψ is a monotone cost function, the tree Γ will have the minimum cost if the costs
of trees Γ1, . . . , Γt are minimum. Therefore,

FΘ(α, fi) = F (N(Θ),FΘ(fi,a1)(α), . . . ,FΘ(fi,at)(α)). (2)

If for some j, 1 ≤ j ≤ t, we have α > R(Θ(fi, aj)) then FΘ(fi,aj)(α) = ψ0, since
the decision tree depicted in Fig. 1, where b is the most common decision for
Θ(fi, aj), is an α-decision tree for Θ(fi, aj). The cost of this tree is ψ0. Since ψ
is a cost function, which is bounded from below, the cost of any α-decision tree
for Θ(fi, aj) is at least ψ0.
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The formulas (1) and (2) allow us to find the value of FΘ(α) if we know the
values of FΘ(fi,aj)(α), where fi ∈ E(Θ) and aj ∈ E(Θ, fi). When we reach to
the node T we will obtain the function FT = Fψ,T .

Figure 3 is the directed acyclic graph (DAG) as an illustration of working of
the considered algorithm.
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Fig. 3. DAG with relationships between uncertainty and number of nodes

4 Experimental Results

We consider now results of some experiments with decision tables from UCI ML
Repository [1] based on software system Dagger [4,5]. The resulting plots are
depicted in Figs. 4, 5, and 6.
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Fig. 4. mushroom dataset (22 attributes and 8125 rows)
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5 Conclusion

This paper is devoted to the consideration of a new tool for decision tree study.
We present and explain in detail the algorithm to compute the relationships
between the uncertainty measure and one of the cost functions. That is for a
given uncertainty α of a decision tree, given cost function ψ, and decision table
T , the presented algorithm finds the minimum cost of an α-decision tree for T
relative to ψ.

Future studies will be connected with the consideration of new types of un-
certainty measures.
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Abstract. The quadtrees are a popular representation method for spatial data.
In 2009, a heuristic algorithm, called CORN (Choosing an Optimal Root Node),
for finding a root node of a region quadtree, has been proposed. It substantially
reduces the number of leaf nodes when compared with the standard quadtree de-
composition. In this paper, some approximation ideas are applied to improve the
CORN algorithm. The empirical results indicate that the new proposed algorithm
improves the quadtree representation and data compression.

1 Introduction

Due to an ever-increasing requirement for information storage, spatial data represen-
tation and compression have become one of the most popular and significant issues in
computer graphics and image processing applications.

Quadtrees, introduced in the early 1970s [1], allow recursive decomposition of space,
and have become a major representation method for spatial data. The scenario for a re-
gion quadtree is as follows: Given a window consisting of black cells situated in a fixed
image area A of dimension 2m× 2m. Area A is recursively partitioned into equal sized
quadrants until each quadrant consists entirely of unicolored cells. The process can be
represented by a tree each non-leaf node of which has four children, corresponding to
the four quadrants NW, NE, SW, and SE. Each descendant of a node g represents a
quadrant in the plane whose origin is g and which is bounded by the quadrant bound-
aries of the previous step.

The results of [8] have indicated that a good choice of the quadtree root node im-
proves substantially both the quadtree representation and the final image compression,
especially for large size images. To find such a ‘good’ root node, a heuristic algorithm,
called CORN (Choosing an Optimal Root Node), has been proposed and analyzed. It
reduces space greatly if compared with standard method based on quadtree concept [8].

In this paper, we will enhance CORN algorithm by applying quadtrees approxima-
tions techniques [2,6,7]. The result is a new algorithm, ACORN, and tests have shown
that ACORN can reduce space by 30− 40% when compared with CORN.

2 CORN Algorithm

It appears that the space cost of representing quadtrees is mainly measured by the num-
ber of their leaf nodes, as the number of nodes in a quadtree is directly proportional to
the number of its leaves (c.f. [3]).
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Essentially, the total number of leaf nodes of a quadtree mainly depends on two
factors: the size of the coordinate grid and the position of the image on the grid. Both
these two crucial factors are heavily dependent on the root node choice of the quadtree.

Standardly, the root node is always placed in the center of the chosen image area
[6,7] (We call it ‘Center’ algorithm). It provides a decent compression ratio [9], but
very often still uses more space than it should intuitively be required [8].

In [8], a heuristic algorithm (CORN) for selecting an optimal root node A has been
proposed. It is assumed that the cells of the bounding box are scanned from left to
right, row by row, starting at the upper left hand corner of the bounding box of I. The
pseudocode of the CORN algorithm looks as follows:

1. repeat
Progress to the next unvisited black cell bi and record its position.
Find a block si of maximal size (i.e., 2n×2n,n≥ 0) that contains bi, and maximizes
the number of unvisited cells.
Change black color of the cells of si into, say, red.
until all black cells have been visited.
{At this stage, we get sets B = {b1, . . . ,bn} and S = {s1, . . . ,sn}.}

2. Find the maximal blocks, say, s1, . . . ,sn corresponding to each cell bi (i = 0,1,2,
. . . ,n).

3. Find all maximal contact sets1 S1, . . . ,Sm from S containing at least one of s1, . . . ,sk

and for each S j the set Ci of points in the intersection.
4. Order the points in

⋃{Ci : 1≤ i≤ m} by their neighbor numbers in non-increasing
order, say A1,A2, . . . ,Ak such that nA1 ≥ nA2 ≥ . . .≥ nAk .

5. Let t be the smallest number such that n,m≤ 2t ; in other words, a block with side
length t is a smallest block that can contain I.

6. Let i = 0, j = t.
repeat

repeat Increase i by 1.
Decompose the image with Ai as a root node. If the resulting block has side
length 2 j then choose Ai as root node and stop.
until i = k.
{At this stage, none of the Ai will allow using 2 j as a side length, so we try
the next smallest block.}

Increase j by 1.
until FALSE

Its heuristics are based on the following three prioritizing criteria: (‘one’ is the highest
priority)

1. A block2 of maximal size will be one leaf node in the finale quadtree representation.
2. The size of neighbors3 of A which are blocks is maximized.

1 There are three types of contact: two blocks contain a common cell, or a common edge of a
cell, or a common corner point [8].

2 We call a (closed) square of size 2k×2k containing only black cells a block.
3 If A is a point (i.e., the intersection of two orthogonal edges), the neighbor number nA of A is

the sum of the size of all blocks of which A is a corner point.
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3. The choice of A minimizes the size of the image space 2t × 2t containing I.

It has been shown that minimizing the number of black leaf nodes4 results in a better
(lossless) compression of the original image. The CORN algorithm is in principle an
implementation of these three criteria.

3 Quadtree Approximation Methods

The CORN algorithm provides a kind of lossless representation [8]. No information
of original images is lost during the compression and decompression operations. But
simultaneously, more storage space is required than it might really be needed. One of
possible solutions is to use approximation instead of exact representation.

Approximations are often the only solutions when incompleteness or noise prevent
from getting exact representations, or when exact solutions are intractable. Even when
the exact solution or representation is available, an approximation may yield very close
results in much smaller time and using much less space. Moreover, in the image pro-
cessing field, we usually only attention to the global perception rather than each detail.

The left two images in Figure 1 displays two representations of the same image
called “Cloud” (from [9], p. 231). The first one uses the CORN algorithm, the second
one uses the new algorithm, ACORN, proposed in the next section. There is almost no
difference for us to understand them, while by using the new algorithm we get almost
40% reduction of memory space. Therefore, if we can tolerate losing some information,
an approximation may provide more efficient representation and compression.

Fig. 1. Binary images – Cloud & Taiwan. Left with CORN (or Center), right with ACORN.

The quadtree approach provides two different approximation techniques, one based
on hierarchy [6,7], and another based on forest decomposition [2]. We will embed both
techniques into the CORN algorithm of [8].

4 The images containing most black leaf nodes as samples were always used [8]. If an image
contains more white leaf nodes than black leaf nodes, we can switch to use white leaf nodes
as measurement criteria.
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• Hierarchical Approximation Method

In principle, the hierarchical approximation is a sequence of inner and outer approxima-
tions5 [6], where inner approximations consider grey nodes6 as white nodes, whereas
outer approximations treat them as black nodes. More precisely (Samet [7]):

“Given an image I, the inner approximation, IB(k) is a binary image defined
by the black nodes at levels ≥ k; the outer approximation, OB(k) is a binary
image defined by black nodes at levels ≥ k and the grey nodes at level k.”

For example, the left side image of Figure 2 shows the quadtree decomposition of image
I. Two left images in Figure 3 show IB(2) and OB(2), and the other two show IB(1)
and OB(1) for I of Figure 2.

Fig. 2. Quadtree decomposition and representation of image I

Fig. 3. IB(2), OB(2), IB(1) and OB(1) for image I

• Forest-Based Approximation Method

A forest of quadtrees is a decomposition of a quadtree into a collection of subquadtrees.
Each of subquadtree corresponds to a maximal square of an image I, and maximal
squares could be identified by refining classification of internal nodes.

5 Closely related to a sequence of α-lower and α-upper rough approximations proposed in [4],
special versions of Pawlak’s rough approximations [5].

6 In the quadtree representation, we regard all the non-leaf (internal) nodes as grey nodes.
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The forest of quadtrees could be seen as a refinement of quadtree data structure that
can help us to develop a proper sequence of binary image approximation and, at the end
provide space savings [2].

There are four important concepts in this approximation method: GB node, GW
node, black forest and white forest. A grey internal node is said to be of type GB node
if at least two of its sons are black nodes or of type GB nodes. Otherwise, the node is
said to be of type GW node.

For example, considering the right image of Figure 2, the nodes E , F , H, I, K, and
L are of type GB node and nodes G, J, M, and N are of type GW node. One can show
that each black node or an internal node with a label GB can be regarded as a maximal
square (c.f. [2]).

A tree of black forest (similarly for white forest) is defined as follows:

– It contains the minimal set of maximal squares.
– All black or GB nodes in each maximal square are not included in any other square.
– The squares in this minimal set would cover the whole black area of the image.
– The tree is identified by its root.

For example, the black forest of Figure 2 is the singleton set of nodes {A}7. An example
of a non-singleton black forest is in Figure 4.

Fig. 4. Non-singleton example: the back forest is the set {F,10,16,25,27,M,38}

4 Algorithm Design and Empirical Results

In this section we will present the main result of this paper, an algorithm called ACORN
(Approximations and CORN), followed by some supporting empirical data.

In principle we added the concepts of GB and GW nodes from the forest-based
approximation to the ideas of hierarchical approximation, and mixed the outcome with
the CORN algorithm of [8].

7 The grey node A is a GB node: node 1 is black, node B is GB node (since its sons E and F are
GB nodes). Similarly, nodes C and D are GB nodes too. Also any square with size less than
the size of A cannot cover the whole black area of the original image, i.e., {A} is the minimal
set of maximal squares.
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Fig. 5. Quadtree representation optimization

Following the definitions of GB and GW nodes, we say that a grey node is of type
GBO (GWO) node if three of its sons are either black (white) nodes or of type GBO
(GWO) nodes.

We now define the ACORN algorithm as follows:

1. Find the outer approximation OB(1) of the quadtree representation yielded by us-
ing the CORN algorithm. For each grey node in the OB(1), it contains two kind
of nodes: the black nodes of its sons and yellow nodes which correspond to the
“Maybe” region8 of the model used for CORN [8] (i.e., the white nodes of their
sons in the original quadtree representation). For example, the left image in Fig-
ure 5 (‘yellow’ represented by ‘light grey’) shows the outer approximation OB(1).

2. Check each grey node in the OB(1): If it is a type of GBO (GWO) node, then it will
turn to a black(white) node in the optimization of the final quadtree representation.
Otherwise, it will maintain the same format.

3. Merge the leaf nodes to simplify the quadtree structure and update the quadtree
representation. For the same example, the right image in Figure 5 shows the new
quadtree decomposition after optimization.

Our tests have shown that the ACORN algorithm can substantially reduce the space
needed for an image representation. One simple example is shown in Figure 5 where
the final number of black, white and all nodes is reduced to 12 from 18, 22 from 45,
and 34 from 63, respectively.

Clearly, the loss or alteration of spatial data is an inevitable problem. However, when
the size of image is large enough, the difference is negligible, which makes it useful in
such areas of applications as computer vision or graphics engine design. Among others
we applied the ACORN algorithm to two images analyzed in [9], “Cloud” and “Taiwan”
(Figure 1). In both cases the ACORN resulted in a substantial space reduction, with
almost no real quality loss. The comparison results are shown in Table 1.

Note that ACORN outperforms other algorithms more for more complex “Cloud”
than for simpler “TaiWan” (38.9% versus 31.7% when compared with CORN and
42.3% versus 33.1% when compared with Center). Our other experiments have shown
the similar results. In other words, the more sophisticated an image is, the more space
savings ACORN can provide.

8 It corresponds to the idea of “maybe” from Rough Sets [5].
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Table 1. Data compression rate comparison for binary images TaiWan and Cloud. Both Center
and CORN are lossless, ACORN is a an approximation. Cr is a compression ratio.

No. of bits needed No. of bits needed Space reduction when
Binary image Method for original image for compressed imageCr =

NBO
NBC using ACORN instead

(NBO) (NBC) of Center or CORN
Center 65536 3058 21.43 33.1%
CORN 65536 2997 21.88 31.7%TaiWan

ACORN 65536 2047 32.02 N/A
Center 65536 19024 3.44 42.3%
CORN 65536 17774 3.69 38.9%Cloud

ACORN 65536 10999 5.96 N/A

5 Conclusion and Future Research

ACORN is a mixture of quite old ([1,2,6,7], 1974-85) and rather new approximation and
representation ideas ([8], 2009). Even though it does not explicitly rely on the concept
of Rough Sets [5], the approximation parts of ACORN resemble sequences of α-lower
and α-upper rough approximations proposed in [4] for relations, but implicitly used for
quadtrees in ACORN.

The future research could go in two directions, the further refinement and improve-
ment of ACORN algorithm, and modifying ACORN to deal with color images.

The current version of ACORN considers only the data of OB(1). It really reduces a
great amount of space, but unfortunately, it also leads to the borders of main objects too
sharp compared with the original image. To improve this, we may try to use the data
of OB(2), or even OB(3). Another possible improvement is to refine the definitions of
GBO and GWO nodes. In the current version of ACORN, if a square of size 64 has
at least 48 black cells (or 48 white cells), then the whole square could be changed to
black (or white). We may try to refine the original definitions, so the number 48 might
be replaced by for example 56. Both changes will improve image quality but they might
slightly reduce space savings.

To extend ACORN for dealing with color images we first have to transform color im-
age into grey-scale image (many softwares can implement this process, such as GIMP,
MATLAB), and meanwhile record the coordinate and color information of each pixel
which might be needed in the image recovery phase. We may then transform grey-scale
image into black-white image by replacing all nodes in grey-scale 0− 127 with white
nodes and 128−255 with black nodes. After this we may apply the existing ACORN al-
gorithm. The last step will be recovering color information for all leaves of the quadtree
produced by ACORN. Some changes of colors might occur in this step.
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Abstract. The paper presents the problem of outlier detection in rule-
based knowledge bases. Unusual (rare) rules, regarded here as deviation,
should be the subject of experts’ and knowledge engineers’ analysis be-
cause they allow influencing on the efficiency of inference in decision
support systems. A different approaches to find outliers and the results
of the experiments are presented.
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1 Introduction

Data mining, in general, deals with the discovery of non-trivial, hidden and in-
teresting knowledge from different type of data. The results of such analysis
are then used for making a decision by a human or program. One of the basic
problems of data mining is the outlier detection. It can be seen that it found
practical application i.e. detection unusual signs of disease, unauthorised tam-
pering to servers, defective series production or even finding innovations in the
texts (e.g. new articles on the subject). Finding outliers too late can distort the
proper analysis of the domain and affect the errors in decision-making. An out-
lier is an observation of the data that deviates so much from other observations
that it arouses suspicions of being generated by a different mechanism [9].

1.1 Outliers in Rule Knowledge Bases

Outliers in rule knowledge bases (KB) are rules which don’t match to the rest
of the knowledge (rules) in a given KB. Such rules are rare and should be the
subject of deeper penetration and searching by experts, who should then work
harder to extend such KB. Only thanks to such work the efficiency of a given
decision support system may icreases. Lets take as an example the simple KB
consisting of 23 rules with a different number of premises:

r1:h # 4 if a # 1 & b # 1
r2:h # 4 if a # 1 & b # 1 & c # 2
r3:h # 4 if a # 1 & b # 2

r4:h # 4 if a # 1 & b # 3
r5:h # 3 if b # 3 & c # 2
r6:h # 3 if a # 1 & b # 4

J.T. Yao et al. (Eds.): RSCTC 2012, LNAI 7413, pp. 206–211, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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r7:h # 3 if a # 1 & c # 2
r8:h # 3 if a # 2 & c # 2
r9:h # 2 if a # 2 & b # 3
r10:h # 2 if a # 2 & b # 1
r11:h # 2 if b # 2 & c # 2
r12:h # 2 if a # 2 & b # 2
r13:h # 1 if a # 1 & c # 1
r14:h # 1 if a # 1 & c # 3
r15:h # 1 if a # 1 & c # 4

r16:h # 1 if a # 1 & c # 5
r17:h # 1 if a # 1 & c # 6
r18:h # 1 if a # 1 & c # 7
r19:h # 5 if a # 2 & c # 1
r20:h # 5 if a # 2 & c # 2
r21:h # 6 if d # 7
r22:h # 6 if d # 4 & e # 3
r23:h # 7 if f # 7 & g # 7

At first glance three last rules differ greatly from others. They are potential
outliers.

1.2 Why to Mine the Outliers in Rules ?

There are different reasons for existing the outliers in rules. Such rare (unusual)
rules may represent exceptional and specific cases or may be just the result
of a modification of KB which was thoughtless. Outliers affect the quality of
the decisions and therefore the efficiency of a decision support system. Finding
rules or groups in rules should arouse interest of knowledge engineer. Thanks to
contact with domain expert it will be possible to complement the areas that are
not discovered enough. The problem is much difficult if we try to find outliers
in complex KB[3–5]. In order to optimize the efficiency of inference processes
it is possible to cluster similar rules (with the same or at least similar enough
premises). It will help to make the inference process faster because instead of
searching KB we only need to find a proper rules cluster. Cluster analysis is
a data mining method which is very helpful when we want to find groups of
similar objects (rules) [1, 2]. It should be emphasized that finding outliers in
rules before clustering may increase the quality of representants of created rules
clusters. Thus, the overall efficiency will grow because the created clusters are
better separated what makes the process of searching such a structure easier and
faster.

2 Methods for Mining Outliers

In domain literature following methods of finding outliers are well known:
distribution-based, distance-based, density-based and clustering-based [6–8]. In
this section most representative methods from each group are presented with
their advantages and disadvantages.

2.1 Distribution-Based Method

This statistical approach to detect outliers in data works well for spaces with
small number of dimensions. Two techniques are most popular: based on mean
and standard deviation and based on interquartile range. Having the value of
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mean (x) and standard deviation of a given data (std dev), each object which
falls outside the range 〈x ± k ∗ std dev〉1 we may call an outlier. The second
method is based on values of first and third quartiles (Q1,Q3) for which we
calculate so called interquartile range (IQR = Q3 − Q1). Then, the outlier is
each data that falls outside the range 〈Q1− k ∗ IQR;Q3+ k ∗ IQR〉2. Of course
the higher the value of the k ratio is, the wider the range of so called normal
data is what makes difficult to find outliers. A serious problem appears when
we start to consider multi-dimensional data with various types. Very well known
Pawlak’s method of generalized components presented in [10] lets to convert the
multivalued representant of a given rule to one number (called rule value) with-
out loosing real relation in original data. If A = {a1, a2, . . . an} is a non-empty
finite set of conditional and decisional attributes, and for every a ∈ A the set
Va is called the set of values of attribute a: Va = {va1 , va2 , . . . , vam}, we enumerate
values of each attribute ai to natural numbers: 1 to m, where m is the number
of values of attribute a (0-attribute has not occurred in the rule). Thus each rule
(a1, v1) ∗ (a2, v2)∗, . . . , ∗(an, vn) is converted to the vector b1, b2, . . . , bn. Then
for each rule we assign the unique value called rule’s value using the formula:
b1, b2, ..., bn ⇒

∑n
i=1 bi ∗ Ui. The values Ui are called attributes’ weights and

should be as follows: U1 = m2 ∗m3∗ . . .∗mn, U2 = m3∗ . . .∗mn, . . ., Un−1 = mn,
Un = 1, where mi = cardVai . Thanks to this each rule in knowledge base has its
individual value. Taking into account the first rule: h#4ifa#1&b#1 and having
values of each conditional attribute (a : 823543, b : 117649), we can calculate the
value of such rule as r1 : 941192. In such case, rule r23 is noted as outlier because
it has a value (392) much less than the treshold calculated as i.e. 〈x±k∗std dev〉
with k = 2.

2.2 Distance Based Methods

The method distinguishes potential outliers from data by the analysis of dis-
tance d of a given object and objects from its neighborhood. Two techniques are
popular: Ramaswamy method3 and Angiulli & Pizzutti4.

2.3 Density Based Methods

Local Outlier Factor (LOF) method proposed by Breunig [11] finds local outliers
based on the local density of an object’s neighborhood. Small density provides
objects less similar what suggest that data don’t create a natural cluster so it
is rather possible that they are outlier like. In a multidimensional dataset it is

1 k the most often is equal to 2 or 3.
2 k the most often is equal to 1.5 or 3.
3 Based on distance d calculated for a given object and objects in its k-nearest neigh-

bourhood outliers are M % of objects with maximum distance.
4 Based on distance d calculated for a given object and objects in its k-nearest neigh-

bourhood we calculate sum of distances of a given object to the rest of objects and
then choose the first M maximal sums of distances as outliers [6–8].



Outlier Mining in Rule-Based Knowledge Bases 209

more meaningful to assign for each object a degree of being an outlier instead of
classifying object as a outlier or normal data. If the q is an object for which we
calculate the value of LOF , while p is each another object with the neighbour-
hood of q (Nk−distance), the algorithm of LOF goes according to the following
steps. First, for each object q define distance d to its k-nearest neighbours (k-
distance) and determine neighbourhood of such object(Nk−distance(q)(q)). Then,
so-called reachability distance (reach−dist) of each object according to its neigh-
borhood is defined. After that, so-called local reachability density (lrd) of each
object as inversion of average value of reachability distance is also defined. Fi-

nally, for each object q we calculate LOF (q): LOFk(q) =

∑
p∈Nk−distance(q)

lrdk(p)

lrdk(q)

|Nk−distance(q)|
As long as the LOF for a given object os is less than 1 it is not noted as outlier.

2.4 Clustering Based Methods

It is possible to find outliers in results of clustering data as a single rule or small
cluster. Of course the type of clustering algorithm (hierarchical or k-optimal)
brings different techniques to find outliers5. It would be much better to find
outliers before we start clustering data, because the clustering will be faster
(less number of iterations) and will built well separated clusters.

3 The Experiments

The experiments presented in this section are based on the example of rule
knowledge base presented in section 1. It should be emphasized that were done
on different (bigger) knowledge bases as well (the restrictions of the size of this
paper don’t let to include everything). The aim of the experiments were to find
outliers in such a knowledge base using methods presented in section (23 differ-
ent cases)2. Table 1 presents the results. The meanings of abbreviations used in
this table are as follows: R-rule, Ai-methods based on values of mean and stan-
dard deviation6 , Bi- method based on interquartile range7, Ci- Rammaswamy
method8, Di- Angiulli & Pizzuti9, Ei for LOF method10. As the abbreviations

5 If we used hierarchical clustering algorithm (AHC) as outlier we treat each object
or group of objects which are clustered in the last few steps. They are clustered
because the algorithm says that, not because they are similar enough. If we used
nonhierarchical algoritms like k-means outliers in data may distort the knowledge of
the dataset a lot. It means, that if we have at least one outlier in a given dataset, and
we choose this object as an initial cluster centre it is very possible to get unproper
results of such clustering.

6 Where in A1 we take a parameter equal to 1, in A2: 1.5, in A3: 2 and in A4: 3.
7 Where B1 means that we take a proper parameter equal to 1, B2: 1.5, B3: 2 and for
B4: 3.

8 Where C1 is for k = 4, C2 for k = 3 and C3 for k = 2.
9 Where D1 is for k = 2, D2 for k = 3, D3 for k = 4.

10 Where E1 is for k =
√
rules number, E2 for k = 2, E3 for k = 3, E4 for k = 4 and

E5 for k = 5.
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Table 1. The results of the experiments

rule A1 B1 A2 B2 A3 B3 A4 B4 C1 C2 C3 D1 D2 D3 E1 E2 E3 E4 E5 F1 F2 F3 F4

r0 + + + +

r1 + + + +

r2 + + + + +

r3 + + + + +

r4 + + + + + + + + +

r5 + + + + +

r6 +

r7 + + + + +

r8 + + + + + + + + + + +

r9 + + + + + + + +

r10 + + + + + + + +

r11 + + + + +

r12 + + + +

r13 + + + + +

r14 + +

r15 + +

r16 + +

r17 + + + + + + + +

r18 + + + + +

r19 + +

r20 + + + + + + + + + + + + + + + + + + +

r21 + + + + + + + + + + + + + + + + + +

r22 + + + + + + + + + + + + + + + + + + +

of Fi we mean the method based on percentages of objects with higher distance
value to all other objects in dataset11 In the table a symbol of + means that the
rule was considered as an outlier. Methods based on clustering were not analyzed
during the experiments. It is planed to present such results in future research.
Taking into account the results presented in the table it can be easily counted
how often a given rule is considered as outlier. For example, the number of cases
where the first rule (labeled as r0) is noted as outlier is equal to 4 which means
that the frequency of being outlier for this rules equals 17.39%. Respectively
for the other rules frequency shall be: “r1” : (4, 17.39%), “r2” : (5, 21.74%),
“r3” : (5, 21.74%), “r4” : (9, 39.13%),“r5” : (5, 21.74%), “r6” : (1), 4.35%),
“r7” : (5, 21.74%), “r8” : (11, 47.83%),“r9” : (8, 34.78%), “r10” : (8, 34.78%),
“r11” : (5, 21.74%), “r12” : (4), 17.39%), “r13” : (5, 21.74%), “r14” : (2, 8.70%),
“r15” : (2, 8.70%), “r16” : (2, 8.70%),“r17” : (8, 34.78%), “r18” : (5, 21.74%),
“r19” : (2, 8.70%), “r20” : (19, 82.61%), “r21” : (18, 78.26%), “r22” :
(19, 82.61%). If we treat as outlier each rule, which frequency of being outlier is
higher or equal to 80% in such a knowledge base, we will finally find three rules
r20, r21 and r22. If we decrease the threshold to 40% the number of rules noted
as outlier will increase to 5: r20, r21, r22 and also r4 as well as r8.

11 Here by F1 we mean parameter PCT = 5%, F2: PCT = 10%, F3: PCT = 15% and
F4: PCT = 20%.
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4 Summary

In large KB identification of rare cases or exceptions is increasingly needed.
Nowadays, so called outlier mining, becomes to be a separate method of data
mining. It is very crucial to find outliers in data. Maybe the data are real mis-
takes but maybe they are rare cases (very important kind of knowledge) which
should be discovered deeper. The problem is extremely difficult especially for
multidimensional data collections, because it requires taking into account many
aspects such as: a different type of data, missing values in the data, the fact
that data was wrong, the unique data and so on. Diversity problems related to
this problem is already reflected in a huge number of researches in this field.
The aim of this paper was to present a practical approach to discover outliers
in rule-based knowledge bases. It is very important to know which rules are rare
(and outlies from other rules) because it let the knowledge engineer to extend
knowledge by working with domain experts. Finding outliers in such datasets is
rather new. The very begining steps were done in this matter: introduce the con-
cept of the finding outliers in multidimensional data, describing some methods
of outlier detection, and a very first experiments on this subject.
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trees. In addition to the algorithm the paper also presents the results of
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1 Introduction

We have created a software system for decision trees (as well as decision rules)
called Dagger— a tool based on dynamic programming which allows us to
optimize decision trees (and decision rules) relative to various cost functions
such as depth (length), average depth (average length), total number of nodes,
and number of misclassifications sequentially [2]. In this paper, we consider a new
tool (an extension to our software) which allows us to study relationships between
the number of nodes and the number of misclassifications of a decision tree. We
consider the work of this tool on decision tables from UCI ML Repository [1].

The presented algorithm and its implementation in the software tool Dagger
together with similar algorithms devised by the authors (see for example [3]) can
be useful for investigations in Rough Sets [4,5] where decision trees are used as
classifiers [6].

2 Basic Notions

A decision table T is a rectangular table with m columns labeled with conditional
attributes f1, . . . , fm. The entries of the table T are nonnegative integers as the
value of attributes f1, . . . , fm. Rows of the table are pairwise different and each
row is labeled with a nonnegative integer describing the value of the decision
attribute d. We denote by E(T ) the set of attributes (columns of the table T ),
each of which contains different values. For fi ∈ E(T ), let E(T, fi) be the set of
values from the column fi.

J.T. Yao et al. (Eds.): RSCTC 2012, LNAI 7413, pp. 212–218, 2012.
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Let fi1 , . . . , fit ∈ {f1, . . . , fm} and a1, . . . , at be nonnegative integers. We
denote by T (fi1 , a1) . . . (fit , at) the subtable of the table T , which consists of such
and only such rows of T that at the intersection with columns fi1 , . . . , fit have
numbers a1, . . . , at respectively. Such nonempty tables (including the table T )
will be called separable subtables of the table T . For a subtable Θ of the table T ,
we will denote by R(Θ) the number of unordered pairs of rows that are labeled
with different decisions. A minimum decision value which is attached to the
maximum number of rows in a nonempty subtable Θ will be called the most
common decision for Θ.

A decision tree Γ over the table T is a finite directed tree with root in which
each terminal node is labeled with a decision. Each nonterminal node is labeled
with a conditional attribute, and for each nonterminal node the outgoing edges
are labeled with pairwise different nonnegative integers. Let v be an arbitrary
node of Γ . We now define a subtable T (v) of the table T . If v is the root then
T (v) = T . Let v be a node of Γ that is not the root, nodes in the path from
the root to v be labeled with attributes fi1 , . . . , fit , and edges in this path be
labeled with values a1, . . . , at respectively. Then T (v) = T (fi1 , a1), . . . , (fit , at).

Let Γ be a decision tree over T . We will say that Γ is a decision tree for T if
any node v of Γ satisfies the following conditions:

– If R(T (v)) = 0 then v is a terminal node labeled with the most common
decision for T (v);

– Otherwise, either v is a terminal node labeled with the most common decision
for T (v), or v is labeled with an attribute fi ∈ E(T (v)) and if E(T (v), fi) =
{a1, . . . , at}, then t edges leave node v, and these edges are labeled with
a1, . . . , at respectively.

Let Γ be a decision tree for T . For any row r of T , there exists exactly one
terminal node v of Γ such that r belongs to the table T (v). Let v be labeled
with the decision b. We will say about b as about the result of the work of decision
tree Γ on r.

3 Representation of Sets of Decision Trees

Consider an algorithm for construction of a graph Δ(T ), which represents the
set of all decision trees for the table T . Nodes of this graph are some separable
subtables of the table T . During each step we process one node and mark it with
the symbol *. We start with the graph that consists of one node T and finish
when all nodes of the graph are processed.

Let the algorithm have already performed p steps. We now describe the step
number (p + 1). If all nodes are processed then the work of the algorithm is
finished, and the resulting graph is Δ(T ). Otherwise, choose a node (table) Θ
that has not been processed yet. Let b be the most common decision for Θ.
If R(Θ) = 0, label the considered node with b, mark it with symbol * and
proceed to the step number (p + 2). If R(Θ) > 0, then for each fi ∈ E(Θ)
draw a bundle of edges from the node Θ (this bundle of edges will be called
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Fig. 2. Aggregated decision tree

fi-bundle). Let E(Θ, fi) = {a1, . . . , at}. Then draw t edges from Θ and label
these edges with pairs (fi, a1), . . . , (fi, at) respectively. These edges enter into
nodes Θ(fi, a1), . . . , Θ(fi, at). If some of the nodes Θ(fi, a1), . . . , Θ(fi, at) are
not present in the graph then add these nodes to the graph. Mark the node Θ
with the symbol * and proceed to the step number (p + 2).

Now for each node Θ of the graph Δ(T ), we describe the set of decision trees
corresponding to the node Θ. We will move from terminal nodes, which are
labeled with numbers, to the node T . Let Θ be a node, which is labeled with a
number b. Then the only trivial decision tree depicted in Fig. 1 corresponds to
the node Θ.

Let Θ be a nonterminal node (table) then there is a number of bundles of edges
starting in Θ. We consider an arbitrary bundle and describe the set of decision
trees corresponding to this bundle. Let the considered bundle be an fi-bundle
where fi ∈ (Θ) and E(Θ, fi) = {a1, . . . , at}. Let Γ1, . . . , Γt be decision trees from
sets corresponding to the nodes Θ(fi, a1), . . . , Θ(fi, at). Then the decision tree
depicted in Fig. 2 belongs to the set of decision trees, which correspond to this
bundle. All such decision trees belong to the considered set, and this set does not
contain any other decision trees. Then the set of decision trees corresponding to
the node Θ coincides with the union of sets of decision trees corresponding to
the bundles starting in Θ and the set containing one decision tree depicted in
Fig. 1, where b is the most common decision for Θ. We denote by D(Θ) the set
of decision trees corresponding to the node Θ.

The following proposition shows that the graphΔ(T ) can represent all decision
trees for the table T .

Proposition 1. Let T be a decision table and Θ a node in the graph Δ(T ).
Then the set D(Θ) coincides with the set of all decision trees for the table Θ.

4 Relationships

Let T be a decision table withN rows and m columns labeled with f1, . . . , fm and
D(T ) be the set of all decision trees for T . For a decision tree Γ ∈ D(T ) we denote
by L(Γ ) the total number of nodes of Γ and the number of misclassifications for
decision tree Γ for the table T , denoted as μ(Γ ) is the number of rows r in T
for which the result of the work of decision tree Γ on r does not equal to the
decision attached to the row r. It is clear that the minimum value of L and μ
on D(T ) are equal to one and zero, respectively, whereas 2N − 1 and N are the
respective upper bound on L and μ.
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We denote BL = {1, 2, . . . , 2N − 1} and Bμ = {0, 1, . . . , N}. We now define
two functions GT : BL → Bμ and FT : Bμ → BL as following:

GT (n) = min{μ(Γ ) : Γ ∈ D(T ), L(Γ ) ≤ n}, ∀n ∈ BL, and

FT (n) = min{L(Γ ) : Γ ∈ D(T ), μ(Γ ) ≤ n}, ∀n ∈ Bμ.

We now describe the algorithm to construct the function GΘ for every node
(subtable) Θ from the graph Δ(T ). For simplicity, we assume that GΘ is defined
on the set BL. We begin from the terminal nodes of Δ(T ) and move upward to
the root node T .

Let Θ be a terminal node. It means that all nodes of Θ are labeled with the
same decision b and the decision tree Γb as depicted in Fig. 1 belongs of D(Θ).
It is clear that L(Γb) = 1 and μ(Γb) = 0 for the table Θ. Therefore, GΘ(n) = 0
for any n ∈ BL.

Let us consider a nonterminal node Θ and a bundle of edges labeled with pairs
(fi, a1), . . . , (fi, at), which start from this node. Let these edges enter into nodes
Θ(fi, a1), . . . , Θ(fi, at), respectively, to which the functions GΘ(fi,a1), . . . ,GΘ(fi,at)

are already attached.
We correspond to this bundle (fi-bundle) the function Gfi

Θ , for any n ∈ BL,

n > t, Gfi
Θ (n) = min

∑t
j=1 GΘ(fi,aj)(nj) where the minimum is taken over all

n1, . . . , nt such that 1 ≤ nj ≤ 2N − 1 for j = 1, . . . , t and n1 + · · ·+ nt + 1 ≤ n.

[Computing Gfi
Θ is a nontrivial task. We describe the method in detail in the

following Sect. 4.1.] The minimum number of nodes for decision tree such that
fi is attached to the root is t + 1 therefore for n ∈ BL, such that 1 ≤ n ≤ t,
Gfi
Θ (n) = N(Θ)−Nmcd(Θ), where Nmcd(Θ) is the number of nodes in Θ labeled

with the most common decision for Θ.
It is not difficult to prove that for all n ∈ BL, n > t,

GΘ(n) = min
{
Gfi
Θ (n) : fi ∈ E(Θ)

}
.

We can use the following proposition to construct the function FT (we omit the
proof).

Proposition 2. For any n ∈ Bμ, FT (n) = min{p ∈ BL : GT (p) ≤ n}.
Note that to find the value FT (n) for some n ∈ Bμ it is enough to make
O(log|BL|) = O (log(2N − 1)) operations of comparisons.

4.1 Computing GfiΘ
Let Θ be a nonterminal node in Δ(T ), fi ∈ E(Θ), and E(Θ, fi) = {a1, . . . , at}.
Furthermore, we assume that the functions GΘ(fi,aj), j = 1, . . . , t, have al-
ready been computed. Let the values for GΘ(fi,aj) be given by the tuple of pairs(
(1, μj

1), (2, μ
j
2), . . . , (2N − 1, μj

2N−1)
)
. We need to compute Gfi

Θ for all n ∈ BL:

Gfi
Θ (n) = min

t∑
j=1

GΘ(fi,aj)(nj) for 1 ≤ nj ≤ 2N − 1, s.t.,
t∑

i=1

ni + 1 ≤ n.
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We construct a layered directed acyclic graph (DAG) δ(Θ, fi) to compute Gfi
Θ

as following.
The DAG δ(Θ, fi) contains nodes arranged in t+1 layers (l0, l1, . . . , lt). Each

node has a pair of labels and each layer lj (1 ≤ j ≤ t) contains at most
j(2N − 1) nodes. The first entry of labels for nodes in a layer lj is an inte-
ger from {1, 2, . . . , j(2N − 1)}. The layer l0 contains only one node labeled with
(0, 0).

Each node in a layer lj (0 ≤ j < t) has exactly 2N−1 outgoing edges to nodes
in layer lj+1. These edges are labeled with the corresponding pairs in GΘ(fi,aj+1).
A node with label x as a first entry in its label-pair in a layer lj connects to nodes
with labels x+1 to x+2N − 1 (as a first entry in their label-pairs) in layer lj+1,

with edges labeled as (1, μj+1
1 ), (2, μj+1

2 ), . . . , (2N − 1, μj+1
2N−1), respectively.

The function Gfi
Θ (n) for n ∈ BL can be easily computed using the DAG

δ(Θ, fi) for Θ ∈ Δ(T ) and for the considered bundle of edges for the attribute
fi ∈ E(Θ) as following:

Each node in layer l1 gets its second value copied from the corresponding
second value in incoming edge label to the node (since there is only one incoming
edge for each in layer l1). Let (k, μ) be a node in layer lj , 2 ≤ j ≤ t. Let
E = {(v1, μ1), (v2, μ2), . . . , (vr, μr)} be the set of incoming nodes to (k, μ) such
that (α1, β1), (α2, β2), . . . , (αr, βr) are the labels of these edges between the nodes
in E and (k, ·), respectively. It is clear that k = vi + αi, 1 ≤ i ≤ r. Then
μ = min1≤i≤r{μi +βi}. We do this for every node layer-by-layer till all nodes in
δ(Θ, fi) have received their second label.

Once we finish computing the second value of label pairs of layer lt, we can use
these labels to compute Gfi

Θ (n). It is clear that the nodes in layer lt have labels
as (t, μ(t)), . . . , (t(2N − 1), μ(t(2N − 1))), respectively. For n ∈ BL such that

1 ≤ n ≤ t, Gfi
Θ (n) = N(Θ) −Nmcd(Θ). For n ∈ BL, such that t < n ≤ 2N − 1,

Gfi
Θ (n) = mint<k≤n μ(k − 1).
Let us consider the time complexity of the considered algorithm. The DAG δ =

δ(Θ, fi) has t+1 layers and each layer lj has at most j(2N−1) nodes. Therefore
total number of nodes in δ is O(t2N). Since every node has 2N − 1 outgoing
edges (except the nodes in layer lt), the number of edges in δ is O(t2N2). So, to
build the graph δ, we need O(t2N2) time (proportional to the number of nodes
and edges in δ). To find the second labels we need a number of additions and
comparisons bounded from above by the number of edges – O(t2N2). Similarly,

to find values of Gfi
Θ we need O(N2) comparisons. Therefore, the total time is

O(t2N2).

5 Experimental Results

We performed several experiments on datasets (decision tables) acquired from
UCI ML Repository [1]. The resulting plots are depicted in Figs. 3 and 4.
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Fig. 3. Relationship plots for tic-tac-toe dataset (9 attributes and 959 rows)
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Fig. 4. Relationship plots for cars dataset (6 attributes and 1729 rows)

6 Conclusions

This paper presents a tool for studying the relationships between the number of
nodes and number of misclassifications for decision trees. Further studies will be
connected with the extensions of this tool to other cost functions such as average
depth and number of terminal nodes.
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Abstract. The explosive growth of web videos prompts an urgent de-
mand on efficient grasping the major events. Unfortunately, the unique
characteristics of web video scenario, such as the limited number of fea-
tures, the unavoidable errors of near-duplicate keyframe detection, the
noisy text information, make web video event mining a challenging task.
In this paper, we first explore the properties of textual feature trajectory
from title/tags and visual feature trajectory induced from near-duplicate
keyframes. Based on the study, we propose web video event mining solu-
tion by fusion of textual and visual feature trajectories, which takes into
account peak time difference, time span overlap, and trajectory distance.
Experiments on a large number of web videos from YouTube demon-
strate the proposed method achieves good performance for web video
event mining.

Keywords: Feature trajectory, near-duplicate keyframes, event mining,
web videos.

1 Introduction

Recently, feature trajectory has been demonstrated promising performance for
topic detection and tracking [4],[6], which is modeled as a burst of activities by
incorporating temporal information. The evolution of text is modeled as a bunch
of feature trajectories in a 2D space of time and frequency for event clustering.
Nevertheless, different from traditional text documents, the text information
(title and tags) of web videos is much less than documents. In addition, they are
usually noisy, ambiguous, incomplete and even misleading. Hot words also lead
to poor representation of web videos. Therefore, the textual feature trajectory
derived from limited title and tags of web videos may have different properties
from traditional documents.

On the contrary, important visual shots are frequently inserted into related
videos as a reminder or support of viewpoints, acting as hot terms in text field.
These near-duplicate shots/keyframes carry useful video content, and can be
used to group videos of similar theme into events. Although a trial of visual
feature trajectory based on near-duplicate keyframes has been explored in [12]
to mine the event structure of web videos, the feasibility and robustness of visual
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Fig. 1. Framework of web video event mining by textual and visual feature trajectories

feature trajectory hasn’t been fully analyzed. Moreover, the relationship between
textual and visual feature trajectories has not yet been researched.

In this paper, we analyze the characteristics of textual and visual feature
trajectories, explore their feasibilities for web video event mining, and finally
combine them to improve the performance. The framework of the proposed work
is shown in Fig. 1.

2 Related Work

2.1 Topic Detection and Tracking

Event mining belongs to the task of topic detection and tracking (TDT) in infor-
mation retrieval. The goal of TDT is to detect new topics and track known events
in text news streams. Many works have been done in text areas [2],[4],[5],[6],[11].
Recently, TDT research has been extended to multimedia area. Topics were
tracked with visual duplicates and semantic concepts [7]. With textual correla-
tion and keyframe matching, topic clusters were grouped in [3] and news stories
from different TV channels were linked in [6]. Topic discovery was deployed by
constructing the duality between stories and textual-visual concepts through bi-
partite graph [8],[14]. With the assistance of near-duplicate keyframe constraints,
news stories were clustered into topics by constraint based co-clustering [13].
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2.2 Feature Trajectory

Feature trajectory is an important feature in the text field. In [6], the charac-
teristics of word trajectory were analyzed to identify important and less-report,
periodic and aperiodic words, from the perspective of time-series word signal.
The idea of mining hot terms by timeline analysis was presented in [2]. Hot topics
were further extracted using multidimensional sentence modeling grounded on
hot terms. In a similar spirit, Google Trends was used to predict the milestone
events of a topic in [10]. A parameter free probabilistic model was proposed to
analyze time-varying features and detect bursty events from text streams [4].
However, these works are based on full-text analysis especially on news arti-
cles, in which the text articles are more informative and with less noise. For
the web video field, events were discovered by text co-occurrence and visual
near-duplicate feature trajectory in [12]. A trajectory-based approach was pre-
sented in [1] to discover, track, monitor and visualize web video topics. These
works focused on textual or visual feature trajectory separately. There is no a
comprehensive study on their properties and without an exploration about the
relationship between them.

3 Textual vs. Visual Feature Trajectory

Feature trajectory is modeled as the feature distribution along the timeline in
a two dimensional space with one dimension as time, and the other as feature
weight. The feature trajectory yf can be written as the sequence:

yf =< yf (ti), yf (ti+1), . . . , yf(ti+n) > (1)

where yf (ti) is a measure of feature f at time unit ti and n ≥ 0, a time unit is
set to a time span, such as one day, yf (ti) is calculated according to df -idf :

yf (ti) =
dff (ti)

N(ti)
× log

N

dff
(2)

where dff (ti) is the number of videos containing feature f at day ti, dff is the
total number of videos including feature f over all times, N(ti) is the number of
videos on day ti, and N is the total number of videos over all time.

Under the scenario of web videos, we will study the properties of textual
feature trajectory derived from text words and visual feature trajectory from
near-duplicate keyframes (NDKs) in the following sections.

3.1 Studies on Textual Feature Trajectory

Title and tags are the most direct and representative feature to briefly sum-
marize the content of a web video. An event can be concisely described by a
few representative words. For example, “last”, “rehearsal”, “London” and “con-
cert” could be the key terms of “Michael Jackson’s last rehearsal for London
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Fig. 2. Some examples of textual feature trajectories

concert” event. However, the text information of web videos is much less than
documents and they are usually noisy, ambiguous, and incomplete. The tex-
tual feature trajectory for web videos may demonstrate different characteristics.
Some observations are listed as follows:
• Closely related terms have similar feature trajectories
Some closely related terms are appeared frequently. For example, terms “Last”

and “Rehearsal” are commonly accompanied for videos related to the event
“Michael Jackson’s last rehearsal video was released”. As shown in Fig. 2(a),
we can see that their trajectories show a couple of bursts at several time units,
and are basically consistent. On the contrary, the trajectory of another theme
on “Memorial” has different patterns with “Last” and “Rehearsal”.
• The feature trajectories of related terms may demonstrate inconsistent

trends
For the landmark of Beijing Olympics Games, “Water Cube”, the terms “wa-

ter” and “cube” have close relationship. However, their feature trajectories are
totally different, as shown in Fig. 2(b). This building can be expressed in multi-
ple forms, such as water stadium, cube center, cube stadium, and so on, causing
disparate trajectories.
• Unrelated terms may have similar feature trajectories
There is the possibility that terms are completely irrelevant even though their

feature trajectories look similar, such as terms “news” and “thriller” shown in
Fig. 2(c).
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Fig. 3. Some examples of visual feature trajectory

3.2 Studies on Visual Feature Trajectory

In addition to title and tags, the essential part of web videos is the visual content
itself. However, there are three major differences between keyframes and tradi-
tional words: (1) the number of NDKs is significantly smaller than the number
of words in documents; (2) there exist a very large number of Non-NDK that
only appear once in the corpus; (3) due to the error caused by NDK detection,
some NDKs may be either missed or separated into several clusters, while others
may be falsely detected. The impact of these differences has not been studied
previously, which could cause the visual feature trajectory demonstrated certain
distinct properties. In this section, we will explore the characteristics of visual
feature trajectory.
• Relevant NDKs have similar visual feature trajectories
Different NDKs on a same event could have similar visual feature trajectories.

The keyframes of “Jackson is dancing in a MTV” and “Cover of MTV” share
similar visual feature trajectory distributions over time, as shown in Fig. 3(a).
They belong to the event “A tribute of Michael Jackson death”. In contrast,
the keyframe of “Jackson is praying” shows different feature distributions from
them, which belongs to the event “Sadness of Michael Jackson death”.
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• Similar trends represent different themes
Similar trends do not guarantee the closeness between two NDKs. The fea-

tures shown in Fig. 3(b) demonstrate somewhat consistent trends. However, they
belong to two themes.
• Similar scenes have multiple trajectories
Since NDK detection is still a challenging task, the detected NDK groups are

not perfect. In one hand, some NDKs belonging to one group may be falsely
detected to form several separated clusters. On the other hand, a few NDKs are
missed and falsely treated as Non-NDK. Fig. 3(c) shows an example of three
NDKs on “Jackson is dancing in the last rehearsal”. Unfortunately, they are
falsely treated as three NDK clusters after NDK detection, leading to three sep-
arated trajectories. It makes the current visual feature trajectories deviated from
the ideal one. Similarly, another example on “News press for London Concert”
is shown in Fig. 3(d).

We can see that either textual or visual information might not be sufficient
for web video event mining, because both of them display inconsistent character-
istics. These features make web video event mining a challenging task. A good
news is that the textual and visual feature trajectories could have good overlap
in terms of timeline and trajectory curves. For example, in Fig. 4, textual feature
trajectories “Last” and “Rehearsal” show similar trends with visual feature tra-
jectory (the scene of “Michael Jackson is dancing”). At the same time, textual
and visual information could complement each other. Robust and reasonable
approaches should combine both textual and visual features to mine the related
web videos into events.

4 Web Video Event Mining by Fusion of Feature
Trajectories

In this section, we explore the feasibility of mining events by combining both
textual and visual feature trajectories. A burst event is usually accompanied with
a burst of related web videos. Generally speaking, a burst feature will exhibit
peak-like trajectory, indicating a large number of hot terms or critical video
scenes appear. It is apparent that a feature becomes meaningful at special time
points, and grouping feature trajectories with similar distributions of feature
peaks gives clue to arising of events. Textual and visual feature trajectories
provide constructive hints, either overlap or complement, for event mining. In
this way, meaningful events could be identified by grouping textual and visual
feature trajectories.

To measure the similarity of two feature trajectories, three factors are taken
into consideration: peak time difference (ptd), time span overlap (tso), and tra-
jectory distance (td). The peak time of a feature trajectory potentially indicates
the time point that an event was broken out. The peak time difference should
be minor if two features are closely related, denoting that they are happened
at almost the same time. The time span overlap measures the time coverage of
feature trajectories, implying the degree of time co-occurrence for two features.
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Fig. 4. Textual and visual feature trajectories have good overlap

Representative terms and video shots of an event should have a good overlap
in timeline, since they appeared together. The trajectory distance evaluates the
overall difference of feature trajectories.

In this paper, textual and visual feature trajectories are treated equally. They
are combined to mine the web video events. The similarity of two feature tra-
jectories (either textual or visual) yfi and yfj is calculated as follows, which is
the product of the three factors:

S(yfi, yfj) = ptd(yfi, yfj)× tso(yfi, yfj)× td(yfi, yfj) (3)

S(yfi, yfj) = |Pfi − Pfj | × |yfi
⋂

yfj |
max(|yfi|, |yfj|) × td(yfi, yfj) (4)

td(yfi, yfj) =

√√√√ m∑
k=1

(yfi(tk)− yfj(tk))2 (5)

where Pfi and Pfj represent the peak time of feature trajectory yfi and yfj
respectively, that is the time point where the value of feature trajectory reaches
the maximum along the timeline. |yfi| is the number of days where feature
yfi > 0. |yfi

⋂
yfj | is the number of overlapped days containing both features.

td(yfi,yfj) is the trajectory distance of trajectories of yfi and yfj, which is
measured by the Euclidean distance. The value of yfi(tk) is a df -idf score.

According to the feature trajectory similarity calculated by the above formula,
K-means clustering algorithm is adopted to group feature trajectories into clus-
ters. The related videos corresponding to these clustered feature trajectories are
finally grouped into the events.

5 Experiment

5.1 Dataset

The dataset used in [12] is the dataset for evaluation, which consists of 19,972
web videos. We selected 10 topics from this dataset to evaluate the proposed
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approach. The videos were collected from YouTube by issuing multiple text
queries and removing repeated videos. Most videos were collected in May, 2009.
The dataset information is listed in Table 1.

To guarantee the good performance of near-duplicate keyframe detection, local
keypoint based detection solution was deployed. Local points were detected by
Harris-Laplace and described by SIFT [9]. Clustering was performed to quantize
the keypoints into a visual dictionary (20,000 clusters). Each keyframe was en-
coded as a bag of words. The public available tool proposed in [15] was adopted
to detect the NDKs. The detected NDKs were further grouped to form clus-
ters by transitive closure, which represent the same visual scene. Due to noisy
user-supplied tag information, text words were undergone a serial of data pre-
processing steps (such as word stemming, special character removal, and so on).
The words and NDKs with low frequency were removed since most of them are
noises or trivial ones.

We use Precision and Recall to evaluate the performance of event mining,
which is defined as:

Precision =
G+

i

Ci
, Recall =

G+
i

Gi
(6)

where G+
i is the number of correctly grouped positive videos for cluster Ci, and

Gi is the number of positive samples in ground truth.

5.2 Performance Evaluation

To evaluate the performance of web video event mining, a simplified version of
the proposed method in [6] is treated as the baseline. Word feature trajectories
are first extracted based on a normalized df -idf score. Highly correlated word
features are grouped to construct events by mapping word sets to video sets. We
also compare the performance of the approach in [12]. We test the performance
of event mining using only textual feature trajectory (TFT), visual feature tra-
jectory (VFT) and the combination (TFT+VFT). The clustering is performed
by K-means algorithm, where k is designed according to the number of events
in ground truth.

The performance comparison is listed in Table 1. We can see that the perfor-
mance of the baseline is poor, which indicates that text information alone is not
sufficient to mine events. Generally, the results based on visual feature trajectory
have a higher precision. A set of representative visual shots are often accompanied
with an important event. Therefore, the NDKs are good cues for grouping related
videos into events. On the contrary, approacheswith text feature trajectory have a
higher recall. Text words are relatively general, broad, and noisy. Clustering with
texts could bringmore related videos while inducing noises at the same time. It has
better recall. The baseline and TFT are both on textual feature trajectory. TFT
has better performance, since it takes into account peak time difference, time span
overlap and trajectory distance, which improves the performance, while baseline
only considers the trajectory distance. Overall, the combination of textual and vi-
sual feature trajectory outperforms the baseline and technique in [12]. The recall
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Table 1. Performance Evaluation

Topic Video
[6] [12] TFT VFT TFT+VFT

P R P R P R P R P R

Beijing Olympics 1,098 0.54 0.11 0.64 0.18 0.37 0.41 0.79 0.49 0.63 0.50

Mumbai terror attack 423 0.31 0.14 0.49 0.19 0.31 0.55 0.49 0.23 0.37 0.53

Russia Georgia war 749 0.58 0.11 0.72 0.15 0.53 0.32 0.65 0.14 0.60 0.35

Virginia tech massacre 683 0.76 0.05 0.73 0.33 0.76 0.32 0.82 0.23 0.75 0.53

Beijing Olympic torch relay 652 0.52 0.41 0.52 0.20 0.32 0.66 0.58 0.21 0.47 0.51

Sichuan earthquake 1,458 0.52 0.05 0.76 0.47 0.51 0.20 0.77 0.34 0.70 0.47

California wildfires 426 0.46 0.12 0.68 0.18 0.46 0.33 0.69 0.15 0.60 0.36

Kosovo independence 524 0.66 0.07 0.78 0.09 0.81 0.19 0.91 0.07 0.83 0.23

Iran nuclear program 1,056 0.60 0.07 0.83 0.10 0.62 0.41 0.66 0.07 0.63 0.47

Michael Jackson death 2,850 0.64 0.08 0.83 0.11 0.54 0.31 0.61 0.12 0.56 0.37

Average 0.56 0.12 0.70 0.20 0.52 0.37 0.70 0.21 0.61 0.43

has been apparently improved, though precision slightly drops. It proves that tex-
tual and visual information complement each other. The combination can group
more highly related videos together.

6 Conclusion

Due to the unique characteristics of web video scenario, such as the limited
number of features, the unavoidable error of near-duplicate keyframe detection,
the noisy text information, makes web video event mining a challenging task. At
the same time, these properties make the textual and visual feature trajectories
demonstrated different appearance with traditional documents. In this paper,
we study the textual and visual feature trajectories separately, and then explore
their combination for web video event mining. Experiments on a large scale web
video dataset from YouTube demonstrate the good potential of feature trajectory
for event mining.

While encouraging, we can see that the recall is still unsatisfactory, partially
because we ignore the features with relatively low frequency. In addition to the
limited and noisy text and visual resources from web videos themselves, we can
resort to external corpus, such as news websites for more useful information.
There are a couple of issues not being addressed in our current work and worth
for future consideration.
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Abstract. In many applications, objects are represented by
non-negative vectors and cosine similarity is used to measure their sim-
ilarity. It was shown recently that the determination of the cosine sim-
ilarity of two vectors can be transformed to the problem of determin-
ing the Euclidean distance of normalized forms of these vectors. This
equivalence allows applying the triangle inequality to determine cosine
similarity neighborhoods efficiently. Alternatively, one may apply the
projection onto a dimension to this end. In this paper, we prove that the
triangle inequality is guaranteed to be a pruning tool, which is not less ef-
ficient than the projection in determining neighborhoods of non-negative
vectors.

1 Introduction

In many applications, especially in text mining, biomedical engineering and
chemistry, cosine similarity is often used to find objects (nearest neighbors)
most similar to a given one. Objects themselves are frequently represented by
non-negative vectors. The determination of nearest neighbors is challenging if
analyzed vectors are high dimensional. In the case of distance metrics, one may
apply the triangle inequality to quickly prune large numbers of objects that cer-
tainly are not nearest neighbors of a given vector [1,3,4,5,6]. While the cosine
similarity does not preserve the triangle inequality, it was shown recently that the
problem of determining the cosine similarity of two vectors can be transformed
to the problem of determining the Euclidean distance of normalized forms of
these vectors [2]. This equivalence allows applying the triangle inequality to de-
termine cosine similarity neighborhoods efficiently. Alternatively, one may apply
the projection onto a dimension to this end. In this paper, we prove that the
triangle inequality is guaranteed to be a pruning tool, which is not less efficient
than the projection in determining neighborhoods of non-negative vectors.
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Our paper has the following layout. In Section 2, we recall basic notions and
the equation relating the Euclidean distance and the cosine similarity [2]. In Sec-
tion 3, we recall how the problem of determining a cosine similarity neighborhood
can be transformed to the problem of determining a neighborhood w.r.t the Eu-
clidean distance [2]. The usage of the triangle inequality for efficient pruning of
non-nearest neighbors is recalled in Section 4 [3,4]. In Section 5, we present an
analogous approach to pruning such vectors by using the projection of vectors
onto a dimension. Section 6 contains the main contribution of this paper, which
consists in showing that for any dimension one may apply pruning of non-nearest
neighbors in a set of non-negative normalized vectors by means of the triangle
inequality, which is not less efficient than the projection onto this dimension.
Section 7 summarizes our work.

2 The Euclidean Distance and the Cosine Similarity

In the paper, we consider vectors of the same dimensionality, say n. A vector u
will be also denoted as [u1, . . . , un], where ui is the value of the i-th dimension of
u, i = 1..n. A vector is called non-negative if all its dimensions are not negative.

The Euclidean distance between vectors u and v is denoted by Euclidean(u, v)
and is defined as

√∑
i=1..n(ui − vi)2. The Euclidean distance preserves

the triangle inequality; that is, for any vectors u, v, and r, Euclidean(u, r) ≤
Euclidean(u, v) + Euclidean(v, r) (or, alternatively Euclidean(u, v) ≥ Eu-
clidean(u, r) −Euclidean(v, r)).

The cosine similarity between vectors u and v is denoted by cosSim(u, v) and
is defined as the cosine of the angle between them; that is,

cosSim(u, v) =
u · v
| u ‖ v | ,where :

• u·v is the standard vector dot product of vectors u and v and equals
∑

i=1..n uivi;
• | u | is the length of vector u and equals

√
u · u.

In fact, the cosine similarity and Euclidean distance are related by an equation:

Lemma 1 [2]. Let u, v be non-zero vectors. Then:

cosSim(u, v) =
| u |2 + | v |2 −Euclidean2(u, v)

2 | u ‖ v | .

Clearly, the cosine similarity between any vectors u and v depends solely on
the angle between the vectors and does not depend on their lengths, hence the
calculation of the cosSim(u, v) may be carried out on their normalized forms:

A normalized form of a vector u is denoted by NF(u) and is defined as the
ratio of u to its length | u |. A vector u is defined as a normalized vector if u =
NF(u). Obviously, the length of a normalized vector equals 1.



The Triangle Inequality versus Projection onto a Dimension 231

Theorem 1 [2]. Let u, v be non-zero vectors. Then:

cosSim(u, v) = cosSim(NF(u), NF (v)) =
2− Euclidean2(NF(u),NF(v))

2
.

Theorem 1 allows deducing that checking whether the cosine similarity between
any two vectors exceeds a threshold ε, where ε ∈ [−1, 1], can be carried out as
checking if the Euclidean distance between the normalized forms of the vectors
is less than the associated threshold ε′ =

√
2− 2ε:

Corollary 1 [2]. Let u, v be vectors, ε ∈ [−1, 1] and ε′ =
√
2− 2ε. Then:

cosSim(u, v) ≥ ε iff Euclidean(NF(v), NF(u)) ≤ ε′.

3 Euclidean Distance Neighborhood and Cosine
Similarity Neighborhood

ε-Euclidean neighborhood of a vector p in D is denoted by ε-NBD
Euclidean(p) and

is defined as the set of all vectors in dataset D\{p} that are distant in the
Euclidean sense from p by no more than ε. ε-cosine similarity neighborhood of
a vector p in D is denoted by ε-SNBD

cosSim(p) and is defined as the set of all
vectors in dataset D\{p} that are cosine similar to p by no less than ε.

Corollary 1 allows transforming the problem of determining a cosine similar-
ity neighborhood of a given vector u within a set of vectors D to the problem
of determining an Euclidean neighborhood of NF(u) within the vector set D′

consisting of the normalized forms of the vectors from D.

Theorem 2 [2]. Let D be a set of m vectors {p(1), . . . , p(m)}, D′ be the set of
m vectors {u(1), . . . , u(m)} such that u(i) = NF(p(i)), i = 1..m, ε ∈ [−1, 1] and
ε′ =

√
2− 2ε. Then, ε-SNBD

cosSim(p(i)) = {p(j) ∈ D|u(j) ∈ ε′-NBD′
Euclidean(u(i))}.

Example 1. Let us consider the determination of ε-cosine similarity neighbor-
hood of any vector p(i) in datasetD = {p(1), . . . , p(8)} fromFigure 1 for ε = 0.9856

Fig. 1. Sample set D of vectors Fig. 2. Set D′ containing normalized forms
of vectors from D



232 M. Kryszkiewicz

(which roughly corresponds to the angle of 9.74o). This task can be transformed
to the task of determining ε′-Euclidean neighborhood of u(i) =NF(p(i)) in the set
D′ = {u(1), . . . , u(8)} containing normalized forms of the vectors fromD, provided

ε′ =
√
2− 2ε ≈ 0.17. Set D′ is presented in Figure 2. "#

4 The Triangle Inequality in Determining Euclidean
Distance Neighborhoods

We will recall now the method of determining ε-Euclidean neighborhoods as pro-
posed in [3]. We start with Lemma 2, which follows from the triangle inequality.

Lemma 2 [3]. Let D be a set of vectors. For any vectors u, v ∈ D and any
vector r: Euclidean(u, r)−Euclidean(v, r) > ε⇒ Euclidean(u, v) > ε⇒ v �∈ ε-
NBD

Euclidean(u) ∧ u �∈ ε-NBD
Euclidean(v).

Let us consider vector q such that Euclidean(q, r) > Euclidean(u, r). If
Euclidean(u, r)−Euclidean(v, r) > ε, then Euclidean(q, r)− Euclidean(v, r) >
ε, and thus one may conclude that v �∈ ε-NBD

Euclidean(q) and q �∈ ε-NBD
Euclidean(v)

without calculating the real distance between q and v. This observation provides
the intuition behind Theorem 3.

Theorem 3 [3]. Let r be any vector and D be a set of vectors ordered in a
non-decreasing way w.r.t their distances to r. Let u ∈ D, f be a vector following
vector u in D such that Euclidean(f, r)−Euclidean(u, r) > ε, and p be a vector
preceding vector u in D such that Euclidean(u, r)−Euclidean(p, r) > ε. Then:

a) f and all vectors following f in D do not belong to ε-NBD
Euclidean(u);

b) p and all vectors preceding p in D do not belong to ε-NBD
Euclidean(u).

The experiments reported in [3] showed that the determination of ε-Euclidean
neighborhoods by means of Theorem 3 was always faster than their determi-
nation by means of the R-Tree index, and in almost all cases speeded up the
clustering process by at least an order of magnitude, also for high dimensional
large vector sets consisting of hundreds of dimensions and tens of thousands of
vectors.

5 Vector Projection onto a Dimension in Determining
Euclidean Distance Neighborhoods

It is easy to observe that for any dimension l, l ∈ [1, . . . , n], and any two vectors
u and v, the following holds: | ul − vl |=

√
(ul − vl)2 ≤

√∑
i=1..n(ul − vl)2 =

Euclidean(u, v). Hence, if | ul−vl |> ε, then Euclidean(u, v) > ε; that is, u �∈ ε-
NBD

Euclidean(v) ∧ v �∈ ε-NBD
Euclidean(u). This observation implies Proposition 1.

Proposition 1. Let l be an index of a dimension l, where l ∈ [1, . . . , n], and D
be a set of vectors ordered in a non-decreasing way w.r.t the values of their l-th
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dimension. Let u ∈ D, f be a vector following vector u in D such that fl−ul > ε,
and p be a vector preceding vector u in D such that ul − pl > ε. Then:
a) f and all vectors following f in D do not belong to ε-NBD

Euclidean(u);
b) p and all vectors preceding p in D do not belong to ε-NBD

Euclidean(u).

6 The Triangle Inequality versus Projection onto a
Dimension for Non-negative Normalized Vectors

In this section, we will denote | ul − vl| by Δdim l(u, v) and | Euclidean(u, r)−
Euclidean(v, r) | by Δref r(u, v). Δdim l(u, v) can be perceived as a pessimistic
estimation of the Euclidean distance between u and v obtained by applying
the projection onto l-th dimension, whereas Δref r(u, v) can be perceived as a
pessimistic estimation of Euclidean(u, v) by means of the triangle inequality ap-
plied to reference vector r. In the following, we will focus on reference vectors of
a special type. A vector will be called an l(a)-vector if its l-th coordinate equals
a and all remaining coordinates equal 0. If r is an l(a)-vector, then Δref r(u, v)
will be also denoted as Δref l(a)(u, v).

Proposition 2. Let a ∈ R, r be an l(a)-vector, u and v be non-negative nor-
malized vectors. Then:

a) Euclidean(u, r) =
√
1 + a2 − 2aul.

b) If ul = vl, then Δref l(a)(u, v) = Δdim l(u, v) = 0.

c) Euclidean(u, r) = 0⇔ √
1 + a2 − 2aul = 0⇔ a = ul = 1.

Proof. Ad a) Euclidean(u, r) =
√∑

i=1..n,i
=l(ui − 0)2 + (ul − a)2 =√∑
i=1..n u2

i + a2 − 2aul =
√
1 + a2 − 2aul. Ad b, c) Follow from

Proposition 2a. "#

Lemma 3. Let a = 1, r be an l(a)-vector, u and v be non-negative normalized
vectors such that 0 ≤ ul ≤ vl = 1. Then, Δref l(a)(u, v) ≥ Δdim l(u, v).

Proof. Δref l(a)(u, v) ≥ Δdim l(u, v)⇔
√
1 + a2 − 2aul −

√
1 + a2 − 2avl ≥ vl −

ul ⇔
√
2− 2ul ≥ 1−ul ⇔

√
2(1− ul) ≥ 1−ul, which is fulfilled as 1−ul ∈ [0, 1]

and in such a case
√
1− ul ≥ 1− ul. "#

Lemma 4. Let a > 0, r be an l(a)-vector, u and v be non-negative normalized
vectors such that 0 < ul ≤ vl and either vl �= 1 or a �= 1. Then, Δref l(a)(u, v) ≥
Δdim l(u, v) for a ≥ 1/(2ul).

Proof. Δref l(a)(u, v) ≥ Δdim l(u, v)⇔
√
1 + a2 − 2aul −

√
1 + a2 − 2avl ≥ vl −

ul ⇔
√
1 + a2 − 2aul + ul ≥

√
1 + a2 − 2avl + vl. Let x ∈ (0, 1] and f(x) =√

1 + a2 − 2ax+x. Then, Δref l(a)(u, v) ≥ Δdim l(u, v)⇔ f(ul) ≥ f(vl). We will
prove now that f(ul) ≥ f(vl) if a > 1/(2ul), by investigating the monotonicity
of f(x). f ′(x) = −a√

1+a2−2ax
+ 1 (by Proposition 2c,

√
1 + a2 − 2ax �= 0). Hence,
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f ′(x) ≤ 0 (and so, f(x) is non-increasing) for x ≥ 1/(2a). Thus, f(ul) ≥ f(vl) if
min{ul, vl} ≥ 1/(2a). Therefore, Δref l(a)(u, v) ≥ Δdim l(u, v) if a ≥ 1/(2ul). "#

Lemma 5. Let a > 0, r be an l(a)-vector, u, v be non-negative normalized
vectors and 0 < ul ≤ vl. Then, Δref l(a)(u, v) ≥ Δdim l(u, v) for a ≥ 1/(2ul).

Proof. Follows from Lemma 3 and Lemma 4. "#

Theorem 4. Let a > 0, r be an l(a)-vector,D be a set of non-negative normalized
vectors none of which has dimension l equal to 0. Then for any u, v ∈ D:

Δref l(a)(u, v) ≥ Δdim l(u, v) for a ≥ 1

2μ
, where μ = min{ul|u ∈ D}.

Proof. Follows from Lemma 5 and the fact that Δref l(a)(v, u) = Δref l(a)(u, v)
and Δdim l(v, u) = Δdim l(u, v). "#

Theorem 4 tells us that for a ≥ 1/(2μ), where μ = min{ul|u ∈ D}, the pes-
simistic estimation of the Euclidean distance between two vectors by means of
the triangle inequality applied to l(a)-reference vector is not less accurate than
the pessimistic estimation of their Euclidean distance by means of the projection
onto dimension l, provided the distance is calculated only among non-negative
normalized vectors none of which has l-th dimension equal to 0.

Lemma 6. Let a > 0, r be an l(a)-vector, u, v be non-negative normalized
vectors and 0 = ul < vl. Then, Δref l(a)(u, v) ≥ Δdim l(u, v) for a ≥ 1/vl − vl/4.

Proof. Δref l(a)(u, v) ≥ Δdim l(u, v)⇔
√
1 + a2 − 2aul −

√
1 + a2 − 2avl ≥ vl −

ul ⇔
√
1 + a2−vl ≥

√
1 + a2 − 2avl ⇔ 1+a2+v2l −2vl

√
1 + a2 ≥ 1+a2−2avl ⇔√

1 + a2 ≤ vl/2 + a⇔ 1 + a2 ≤ v2l /4 + a2 + avl ⇔ a ≥ 1/vl − vl/4. "#

Lemma 7. Let μ ∈ (0, 1). Then 1/μ− μ/4 ≥ 1/(2μ).

Proof. 4 ≥ 2μ2. Hence, 1/(2μ) ≥ μ/4. Thus, 1/μ− μ/4 ≥ 1/(2μ). "#

Theorem 5. Let a > 0, r be an l(a)-vector, D be a set of non-negative normal-
ized vectors. Then for any vectors u, v in D:

Δref l(a)(u, v) ≥ Δdim l(u, v) for a ≥ 1

μ
− μ

4
, where μ = min{ul|u ∈ D∧ul �= 0}.

Proof. Follows from Theorem 4, Lemma 6, Lemma 7, Proposition 2b and the
fact that Δref l(a)(v, u) = Δref l(a)(u, v) and Δdim l(v, u) = Δdim l(u, v). "#

Theorem 5 tells us that for a ≥ 1/μ−μ/4, where μ = min{ul | u ∈ D ∧ ul �= 0},
the pessimistic estimation of the Euclidean distance between two vectors by
means of the triangle inequality applied to l(a)-reference vector is not less accu-
rate than the pessimistic estimation of this distance by means of the projection
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onto dimension l, provided the distance is calculated only among non-negative
normalized vectors.

Example 2. Let us consider the set D of vectors from Example 1 and the set
D′ = {u(1), . . . , u(8)} of their normalized forms. In Table 1, we present the values
of the vectors in D′. Let us compare the results of using the projection of vectors
onto dimension 1 and of using reference vector r0 = [1, 0] (i.e., 1(1.00)-reference
vector). We can see that Δref r0(u(i), u(3)) is greater than Δdim 1(u(i), u(3)) in
the case of vectors u(i) = u(7), u(2), u(6), u(1), identical for vectors u(i) = u(3),
u(8), u(4), and less for vector u(i) = u(5) (please see Table 1).

Let μ = min{u(i)1|u(i) ∈ D ∧ u(i)1 �= 0} = 0.34. Then 1/(2μ) ≈ 1.470588 <
1.48. Let r1 be 1(1.48)-reference vector. By Theorem 4, Δref r1(u(i), u(3)) ≥
Δdim 1(u(i), u(3)) for all vectors in D′ that have non-zero dimension 1.

Now, 1/μ − μ/4 ≈ 2.856176 < 2.86. Let r2 be 1(2.86)-reference vector. By
Theorem 5, Δref r2(u(i), u(3)) ≥ Δdim 1(u(i), u(3)) for all vectors u(i) in D′. "#

Table 1. Normalized vectors in set D′ = {u(1), . . . , u(8)} and pessimistic estimations
of distances between u(3) and vectors in D′ by means of the projection onto dimension
1 and the triangle inequality w.r.t reference vectors: r0 = [1, 0], r1 = [1.48, 0], r2 =
[2.86, 0]

Vector Euclidean Δref r0 Δref r1 Δref r2 Δdim 1

u(i) u(i)1 u(i)2 (u(i), r0) (u(i), u(3)) (u(i), u(3)) (u(i), u(3)) (u(i), u(3))

u(7) 0.95 0.32 0.32 0.55 0.54 0.44 0.33

u(2) 0.83 0.55 0.58 0.29 0.31 0.27 0.21

u(6) 0.77 0.64 0.68 0.19 0.21 0.19 0.15

u(1) 0.72 0.69 0.74 0.13 0.13 0.12 0.01

u(3) 0.62 0.78 0.87 0.00 0.00 0.00 0.00

u(8) 0.55 0.83 0.94 0.07 0.09 0.08 0.07

u(4) 0.34 0.94 1.15 0.28 0.32 0.32 0.28

u(5) 0.00 1.00 1.41 0.54 0.63 0.66 0.62

7 Summary

The problem of determining a cosine similarity neighborhood of a given vector
u within a set of vectors D can be transformed to an equivalent problem of
determining an Euclidean neighborhood of the normalized form of u within the
vector set D′ consisting of vectors of length 1 being the normalized forms of the
vectors from D [2]. The triangle inequality applied to an arbitrary (reference)
vector can be used for pruning when looking for an Euclidean neighborhood
[3,4]. The projection onto an arbitrary dimension can be also used to this end.
We proved that for any dimension l and for any set of non-negative normalized
vectors, one may always determine a reference vector that guarantees not worse
pruning efficiency when looking for an Euclidean neighborhood by means of the
triangle inequality than the efficiency achievable by using the projection onto l.
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Abstract. Particle Swarm Optimization (PSO) and Genetic Algorithms
(GA) are population based heuristic search techniques which can be used
to solve the optimization problems modeled on the concept of evolution-
ary approach. In this paper we incorporate PSO with GA in hybrid
technique called GPSO. This paper proposes the use of GPSO in design-
ing an adaptive medical watermarking algorithm. Such algorithm aim
to enhance the security, confidentiality , and integrity of medical images
transmitted through the Internet. The experimental results show that
the proposed algorithm yields a watermark which is invisible to human
eyes and is robust against a wide variety of common attacks.

1 Introduction

Genetic algorithms (GAs) developed by Holland [1] are a family of computational
models who is inspired by evolution. These algorithms encode a potential solution
to a specific problem on a simple chromosome like data structure and apply
recombination operators to these structures so as to preserve critical information.

Particle swarm optimization (PSO) is also an evolutionary technique intro-
duced by Kennedy and Eberhart [2]. In PSO, each potential solution is assigned
a randomized velocity, and the potential solutions, called particles, fly through
the problem space by following the current best particles. As a relatively new
evolutionary algorithm, PSO has been successfully applied to unconstrained and
constrained optimization, artificial neural network training, parameter optimiza-
tion, and feature selection [3].

Inspired by PSO and GA, we introduce a hybrid Genetic Particle Swarm Op-
timization (GPSO) technique by combining the advantages of both PSO and
GA. The algorithm starts by applying PSO procedure in the search space and
allow particles to adjust their velocity and position according to PSO equations,
then in the next step we select a certain number of particles according to GA
selection methods. The particles are matched into couples. Each couple repro-
duces two children by crossover. Then some children are adjusted by applying
mutation process. These children are used to replace their parents of the previ-
ous particles to keep the number of particles unchanged. By combination of PSO
and GA, evolution process is accelerated by flying behaviour and the population
diversity is enhanced by genetic mechanism.

J.T. Yao et al. (Eds.): RSCTC 2012, LNAI 7413, pp. 237–242, 2012.
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The basic idea behind digital watermarking is to embed a watermark signal
into the host data with the purpose of copyright protection, access control, broad-
cast monitoring etc. Improvements in performance of watermarking schemes can
be obtained by several methods. One way is to make use of artificial intelligence
techniques by considering image watermarking problem as an optimization prob-
lem [4]. The proposed GPSO is modeled to solve such optimization problem of
medical image watermarking. This work is compared to our previous work in [5],
Which developed an adaptive watermarking procedure for medical images based
on swarm intelligence.

The remainder of this paper is organized as follows. Section (2) reviews the ge-
netic algorithm and swarm intelligence. Section (3) illustrate the hyprid (GPSO).
Section (4) discusses the proposed watermarking scheme using GPSO in details.
Section (5) shows the experimental results. Conclusions are discussed in
Section (6).

2 Preliminaries

2.1 Genetic Algorithm

In GA, a candidate solution for a specific problem is called an individual or a
chromosome and consists of a linear list of genes. Each individual represents
a point in the search space, and hence a possible solution to the problem. A
population consists of a finite number of individuals. Each individual is decided
by an evaluating mechanism to obtain its fitness value. Based on this fitness value
and undergoing genetic operators, a new population is generated iteratively with
each successive population referred to as a generation. The GAs use three basic
operators (reproduction, crossover, and mutation) to manipulate the genetic
composition of a population [6].

2.2 Swarm Intelligence

Kennedy and Eberhart [2], considering the behavior of swarms in the nature,
such as birds, fish, etc. developed the PSO algorithm. The PSO has particles
driven from natural swarms with communications based on evolutionary compu-
tations. PSO combines self-experiences with social experiences [7]. The position
of the particle i is represented with a position vector pi = (pi1, pi2,. . ., piD) and
a velocity vector vi = (vi1, vi2, . . . ,viD). In every time step t, particle i changes
its velocity and position according to the following equations [8]:

vi(t + 1) = wvi(t) + c1r1(pbesti − pi(t)) + c2r2(gbest− pi(t)) (1)

pi(t + 1) = pi(t) + vi(t + 1). (2)

where w is the inertial weight, and c1 and c2 are positive acceleration coefficients
used to scale the contribution of cognitive and social components, respectively. r1
and r2 are uniform random variables in range [0,1]. pbesti is the best personal po-
sition of particle i which has been visited during the lifetime of the particle. gbest
is the global best position that is the best position of all particles in the swarm.
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3 Hybrid Genetic Particle Swarm Optimization

To overcome the limitations of PSO, hybrid algorithms with GA are proposed.
The basis behind this is that such a hybrid approach is expected to have mer-
its of PSO with those of GA.The idea behind GA is using genetic operators:
crossover and mutation. By applying crossover operation, information can be
swapped between two particles to have the ability to fly to the new search area.
The purpose of applying mutation to PSO is to increase the diversity of the pop-
ulation and the ability to have the PSO avoid the local maxima [9]. In this work
we propose a hybrid algorithm based on work mentioned in [3], where evolution
process is divided into two stages: PSO-Algorithm followed by GA algorithm.
This hybrid algorithm is used to solve medical image watermarking problem as
a case-study. Fig.1 shows the GPSO algorithm based on combination of first and
second stages mentioned before.

Fig. 1. GPSO algorithm

4 An Adaptive Watermarking Approach for Medical
Imaging Using GPSO

In past years, a singular value decomposition SVD-based watermarking tech-
nique and its variations have been proposed [4]. Based on our work [5], The
watermark can be embedded into the host image by three steps. First, DWT is
performed on the host image. Second, the low performed on DCT. Then a set of
final quantization steps of each block is determined to ensure a high perceptual
quality of watermarked image and a low bit error rate of the detected water-
mark. Finally, watermark is embedded into the singular values vector of each
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block by adaptive and optimized quantization steps. Optimization algorithm
helps search proper basic step of each block in order to optimize watermark
embedding process. An efficient and optimal algorithm is required for achieving
both invisibility and robustness. Here we use GPSO to automatically determine
these values without making any assumption.

5 Experimental Results and Discussion

In our simulation study, we assume a group of five medical professionals,which
are x-ray images of size 512x512. The length of the watermark is 32x32 binary
bits set. The proposed algorithm is developed in MATLAB7.6 environment. In
order to resist the normal signal processing and other different attacks, we wish
the quantization step to be as high as possible. However, because the watermark
directly affects the host image, it is obvious that the higher the quantization
step, the lower the quality of the watermarked image will be. In other words,
the robustness and the imperceptibility of the watermark are contradictory to
each other. The results of our proposed watermarked method using hybrid GA
and PSO (GPSO) is compared to our pervious work that depend on using basic
PSO with time varying inertia weight (TPSO)[5].

The PSNR values used for quality comparison between the original and the
watermark images are utilized in Table 1.

Table 1. PSNR values

Image TPSO GPSO
Chest-1 51.606 51.667
Chest-2 52.268 52.298
Kidney 51.554 51.677
Skull 51.535 51.752
Liver 52.241 52.351

To investigate the robustness of watermark schemes, each watermarked im-
age is attacked using JPEG compression, Gaussian noise, Salt and Pepper noises,
Gaussian filter, median filter,and geometrical attacks like image cropping and
scaling. Normalized Correlation (NC) is adopted for the evaluating the robust-
ness of the watermarking scheme. Table 2,3 shows the detailed values of NC for
different types of attack that is performed on tested images, followed by Fig.2
which shows extracted watermarks after different types of attacks.

Table 2. Robustness against JPEG compression

Method QF Chest-1 Chest-2 Kidney Skull Liver
TPSO 0.999 0.939 0.999 0.999 0.884

GPSO
50

0.999 0.928 1.00 1.00 0.873
TPSO 0.999 0.929 0.999 0.999 0.868

GPSO
40

0.999 0.924 0.999 1.00 0.866
TPSO 0.994 0.912 0.9996 0.997 0.864

GPSO
30

0.996 0.921 0.998 0.0.998 0.876
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Table 3. Robustness for different noise attacks

Kind of attacks Method Chest-1 Chest-2 Kidney Skull Liver
Guassian
Var=0.001 0.995 0.844 0.998 0.997 0.815TPSO
Var=0.005 0.812 0.641 0.825 0.821 0.617
Var=0.001 0.996 0.842 0.997 0.996 0.805GPSO
Var=0.005 0.802 0.648 0.817 0.800 0.621

Salt and pepper
den=0.001 0.997 0.930 0.998 0.998 0.898TPSO
den=0.01 0.955 0.843 0.971 0.971 0.818
den=0.001 0.997 0.919 0.998 0.998 0.889GPSO
den=0.01 0.951 0.842 0.968 0.967 0.823

Guass Filter
5× 5 0.999 0.951 0.999 0.999 0.913TPSO
7× 7 0.999 0.997 0.999 0.999 0.913
5× 5 1.00 0.941 1.00 1.006 0.905GPSO
7× 7 1.00 0.940 1.00 1.00 0.906

Median Filter
3× 3 0.999 0.914 0.999 0.981 0.886TPSO
5× 5 0.941 0.763 0.993 0.927 0.748
3× 3 0.999 0.899 1.00 0.975 0.876GPSO
5× 5 0.938 0.963 0.992 0.922 0.742

Scaling
25% 0.999 0.834 0.999 0.971 0.692TPSO
50% 0.999 0.898 0.999 0.999 0.877

25% 0.999 0.826 0.999 0.966 0.681GPSO
50% 1.00 0.897 1.00 0.99 0.874

Cropping
25% 0.975 0.934 0.975 0.975 0.905TPSO
35% 0.914 0.868 0.905 0.913 0.837

25% 0.975 0.925 0.975 0.975 0.898GPSO
35% 0.908 0.858 0.905 0.908 0.930

Fig. 2. From left to right different types of attack (JPEG, Gnoise, SAPnoise, Gfilter,
Mfilter, Cropping, Scaling); from top to bottom attacked image ,extracted TPSO-WM,
extracted GPSO-WM



242 M.M. Soliman, A.E. Hassanien, and H.M. Onsi

6 Conclusions

This paper introduces a hybrid GPSO algorithm that is developed to design a
robust watermarking for protecting medical images . GPSO approach is used
to get basic quantization steps which are optimally varied to achieve the most
suitable locations for various images with different frequency characteristics.
The experimental results reveal that our method can improve the quality of
the watermarked image and increase the robustness of the embedded watermark
against various attacks.
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Abstract. In the paper, we try to incorporate ontologies into informa-
tion systems. In the classic information systems, there is a lack of seman-
tics explaining meaning of data. Semantics enables us to extract some
new and valuable knowledge which can be used in data analysis, rule gen-
eration, reasoning, etc. In order to cover the meaning of data, information
systems over ontological graphs are defined. Next, some important rela-
tions between attribute values in such systems are investigated and an
exemplary benefit of the proposed approach is briefly described.

Keywords: information systems, relation, ontological graph, semantics.

1 Introduction

For the whole decade, an increasing attention has been focused on ontologies and
ontological engineering [1]. Ontologies are widely used in knowledge engineering.
One of the first definitions of an ontology was given by Neches et al. [5]. They
defined the ontology as the basic terms and relations comprising the vocabulary
of a topic area, as well as the rules for combining terms and relations to define
extensions to the vocabulary. One can find a number of other definitions in [1].

Recent research in the area of data mining shows that, in many situations,
data alone are not sufficient. There is a need to add some expert knowledge
about relationships within data expressing the meaning of data. Such knowledge
is included in ontologies. Therefore, in this paper, we try to incorporate ontolo-
gies into information systems. In Section 2, we guide the readers from a classic
definition of an information (decision) system and some relations defined over
their sets of objects to new definitions of information systems over ontological
graphs enabling us to take into consideration the knowledge about the meaning
of data. In the new information systems, we can consider different interesting
types of relations between values of attributes. Such relations can support data
analysis, rule generation, reasoning, etc. In this case, attribute values are not
treated individually, but they are considered in terms of semantic spaces associ-
ated with attributes. A small example showing the simple benefit of the proposed
approach is presented in Section 3.

J.T. Yao et al. (Eds.): RSCTC 2012, LNAI 7413, pp. 243–248, 2012.
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2 Definitions

A series of definitions (from the known to the new ones) given in this section
explains our new approach to information systems.

Definition 1 (Information system). An information system IS is a quadru-
ple IS = (U,A, V, f), where U is a nonempty, finite set of objects, A is a
nonempty, finite set of attributes, V =

⋃
a∈A

Va, where Va is a set of values of the

attribute a, and f : U×A→ V is an information function such that f(u, a) ∈ Va

for each u ∈ U and a ∈ A.

In the classic approach, attribute values in information systems can be both cat-
egorical (e.g., nominal, binary, ordinal) and continuous (e.g., integer, interval-
scaled, ratio-scaled), representing measured, observed or specified properties
(features) of objects.

Definition 2 (Decision system). A decision system DS is a tuple DS =
(U,C,D, Vc, Vd, c, d), where U is a nonempty, finite set of objects, C is a
nonempty, finite set of condition attributes, D is a nonempty, finite set of de-
cision attributes, Vc =

⋃
a∈C

Va, where Va is a set of values of the condition at-

tribute a, Vd =
⋃

a∈D

Va, where Va is a set of values of the decision attribute a,

c : U ×C → Vc is an information function such that f(u, a) ∈ Va for each u ∈ U
and a ∈ C, and d : U ×D→ Vd is a decision function such that f(u, a) ∈ Va for
each u ∈ U and a ∈ D.

A set of attributes in an information system IS determines an equivalence rela-
tion on U , called an indiscernibility relation. An indiscernibility relation on U×U
is defined as IR(A) = {(u, v) ∈ U × U : ∀

a∈A
f(u, a) = f(v, a)}. For numerical

attribute values, we may define a distance (dissimilarity) measure d(u, v) ≥ 0
for two objects u, v ∈ U . In typical situations, we use several distance measures,
e.g., city, Euclidean, Tchebyschev, Minkowski. In many real-life problems, the
ordering properties of the considered attributes play an important role. In [2]
Greco, Matarazzo and S�lowiński proposed a generalization of the rough set ap-
proach to problems where ordering properties should be taken into account. In
that approach a dominance relation instead of an indiscernibility relation is used.
The approach presented in [2] is closely related to our approach.

In this paper, we propose to consider attribute values in the ontological (se-
mantic) space. Our approach is based on the definitions of ontology given by
Neches et al. [5] and Köhler [3]. That is, ontology is constructed on the basis
of a controlled vocabulary and the relationships of the concepts in the con-
trolled vocabulary. Formally, the ontology can be represented by means of graph
structures. Graphs are a powerful tool used in information processing. In our
approach, the graph representing the ontology O is called the ontological graph.
In such a graph, each node represents one concept from O, whereas each edge
represents a relation between two concepts from O.
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Definition 3 (Ontological graph). Let O be a given ontology. An ontological
graph is a quadruple OG = (C, E,R, ρ), where C is a nonempty, finite set of
nodes representing concepts in the ontology O, E ⊆ C × C is a finite set of
edges representing relations between concepts from C, R is a family of semantic
descriptions (in natural language) of types of relations (represented by edges)
between concepts, ρ : E → R is a function assigning a semantic description of
the relation to each edge.

Relations are very important components in ontology modeling as they describe
the relationships that can be established between concepts. In the proposed ap-
proach, we take into consideration the following family of semantic descriptions
of relations between concepts (cf. [6]):

R = {“is synonymous with”, “is generalized by”, “is specified by”,
“is generalized with devaluation by”, “is specified with revaluation by”}.

A special meaning of relations “is generalized with devaluation by” and “is spec-
ified with revaluation by” will be noted in Section 3. We will use the following
notation: R∼ - “is synonymous with”, R� - “is generalized by”, R� - “is spec-
ified by”, R�↓ - “is generalized with devaluation by”, R�↑ - “is specified with
revaluation by”.

We assume that the ontological graph OG = (C, E,R, ρ) represents the whole
domain D of a given attribute. The local ontological subgraph of OG represents
a segment of the domain D (a small piece of reality) connected with a given
attribute.

Definition 4 (Local ontological graph). Let OG = (C, E,R, ρ) be an on-
tological graph. A local ontological (sub)graph LOG of OG is a graph LOG =
(CL, EL,RL, ρL), where CL ⊆ C, EL ⊆ E, RL ⊆ R, and ρL is a function ρ
restricted to EL.

We can create information systems over the ontological graphs. It can be done in
different ways. In our investigation, we will focus on two approaches: (1) attribute
values of a given information system are concepts from ontologies assigned to
attributes - a simple information system over ontological graphs, (2) attribute
values of a given information system are local ontological graphs of ontologies
assigned to attributes - a complex information system over ontological graphs.

Definition 5 (Simple information system over ontological graphs). A
simple information system SISOG over ontological graphs is a quadruple SISOG

= (U,A, {OGa}a∈A, f), where U is a nonempty, finite set of objects, A is a
nonempty, finite set of attributes, {OGa}a∈A is a family of ontological graphs
associated with attributes from A, f : U × A → C, where C =

⋃
a∈A

Ca, is an

information function such that f(u, a) ∈ Ca for each u ∈ U and a ∈ A, where Ca
is a set of concepts from the graph OGa.

Definition 6 (Complex information system over ontological graphs)
A complex information system CISOG over ontological graphs is a quadruple
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CISOG = (U,A, {OGa}a∈A, f), where U is a nonempty, finite set of objects, A
is a nonempty, finite set of attributes, {OGa}a∈A is a family of ontological graphs
associated with attributes from A, f : U ×A→ LOG, where LOG =

⋃
a∈A

LOGa,

is an information function such that f(u, a) ∈ LOGa for each u ∈ U and a ∈ A,
where LOGa is a family of all local ontological graphs of the graph OGa.

We can extend definitions of information systems over ontological graphs to
decision systems over ontological graphs. In a simple case, decision attribute
values can be treated individually. Therefore, a decision function can be defined
as in Definition 2. In the remaining part of the paper, we will consider simple
information systems over ontological graphs. Complex information systems over
ontological graphs will be investigated in the future research. Many methods
are proposed to measure semantic similarity between concepts (e.g., [4], [8],
[9]). In our approach, we propose to consider some other relations defined over
sets of attribute values in simple information systems over ontological graphs. In
defined relations, we use some additional knowledge about relationships between
attribute values which is included in ontological graphs.

Let OG = (C, E,R, ρ) be an ontological graph. We will use the following
notation: [ci, cj ] is a simple path in OG between ci, cj ∈ C, E([ci, cj]) is a set of
edges from E belonging to the simple path [ci, cj ], P(OG) is a set of all simple
paths in OG. In the literature, there are different definitions for a simple path in
the graph. In this paper, we follow the definition in which a path is simple if no
node or edge is repeated, with the possible exception that the first node is the
same as the last. Therefore, the path [ci, cj ], where ci, cj ∈ C and ci = cj can be
also a simple path in OG.

Definition 7 (Relations over attribute value sets). Let an ontological graph
OGa = (Ca, Ea,R, ρa) be associated with the attribute a in a simple information
system, where R = {R∼, R�, R�, R�↓, R�↑}.
– An exact meaning relation between c1, c2 ∈ Ca is defined as EMR(a) =
{(c1, c2) ∈ Ca × Ca : c1 = c2}.

– A synonym meaning relation between c1, c2 ∈ Ca is defined as SMR(a) =
{(c1, c2) ∈ Ca × Ca : (c1, c2) ∈ Ea ∧ ρ((c1, c2)) = R∼}.

– A general meaning relation GMRk(a) of at most k-th order is a set of all
pairs (c1, c2) ∈ Ca × Ca satisfying the following condition. There exists c3 ∈
Ca for which the following holds: there exists [c1, c3] ∈ P(OGa) such that

∀
e∈E([c1,c3])

ρ(e) ∈ {R∼, R�} and card({e′ ∈ E([c1, c3]) : ρ(e′) = R�}) ≤ k as

well as there exists [c2, c3] ∈ P(OGa) such that ∀
e∈E([c2,c3])

ρ(e) ∈ {R∼, R�}
and card({e′ ∈ E([c2, c3]) : ρ(e′) = R�}) ≤ k.

– A proper generalization relation PGRk(a) of at most k-th order is a set of
all pairs (c1, c2) ∈ Ca × Ca satisfying the following condition: there exists
[c1, c2] ∈ P(OGa) such that ∀

e∈E([c1,c2])
ρa(e) = R� and card(E([c1, c2])) ≤ k.

– A generalization relation GRk(a) of at most k-th order is a set of all pairs
(c1, c2) ∈ Ca × Ca satisfying the following condition: there exists [c1, c2] ∈
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P(OGa) such that ∀
e∈E([c1,c2])

ρa(e) ∈ {R∼, R�} and card({e ∈ E([c1, c2]) :

ρa(e) = R�}) ≤ k.
– A proper specification relation PSRk(a) of at most k-th order is a set of

all pairs (c1, c2) ∈ Ca × Ca satisfying the following condition: there exists
[c1, c2] ∈ P(OGa) such that ∀

e∈E([c1,c2])
ρa(e) = R� and card(E([c1, c2])) ≤ k.

– A specification relation SRk(a) of at most k-th order is a set of all pairs
(c1, c2) ∈ Ca × Ca satisfying the following condition: there exists [c1, c2] ∈
P(OGa) such that ∀

e∈E([c1,c2])
ρa(e) ∈ {R∼, R�} and card({e ∈ E([c1, c2]) :

ρa(e) = R�}) ≤ k.

EMR, SMR, and GMRk are equivalence relations whereas PGRk, GRk, PSRk,
and SRk are reflexive and transitive relations.

3 An Exemplary Benefit

Due to restricted space, let us consider a simple example to show some benefit
of the proposed approach. Further papers will be devoted to discussion of the
problem in details. A decision system DS is given in Table 1a. Let us treat DS
as a classic decision system. In this system the following rules are valid: (1) IF
Belongings = SUV and Properties = House, THEN Credit = Issued, (2) IF
Belongings = Minivan, THEN Credit = Not issued. Now, let us treat DS as
a decision system over ontological graphs. Let us have in the ontological graph
associated with attribute Belongings that concept SUV is generalized directly
by concept Car. Analogously, concept Minivan is generalized directly by con-
cept Car. In this case (SUV,Minivan) ∈ GMR1(Belongings) (see Definition
7). Therefore, let us replace both attribute values SUV and Minivan in DS by
Car (see Table 1b). In this case rules presented earlier are transformed into: (1)
IF Belongings = Car and Properties = House, THEN Credit = Issued, (2) IF
Belongings = Car, THEN Credit = Not issued, and both rules are not valid.
In this example, an ontological graph delivers us some new knowledge about the
meaning of data and this knowledge can be used to verify our data base. In a sim-
ilar way, a synonym meaning relation can change a look at knowledge included
in a data base. At the same time, generalization made by us is sometimes not el-
igible, especially, in case of creditworthiness. Both concepts SUV and Minivan
are generalized with devaluation by concept Car. For example, one can possess a
cheap car and there is a difference (in terms of values) between this car and SUV

Table 1. (a) Original decision system, (b) Transformed decision system

a)

U/A Belongings Properties Credit

u1 SUV House Issued
u2 Minivan House Not issued
u3 SUV Flat Not issued
u4 Minivan Flat Not issued

b)

U/A Belongings Properties Credit

u1 Car House Issued
u2 Car House Not issued
u3 Car Flat Not issued
u4 Car Flat Not issued
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or Minivan. Hence, Car is specified with revaluation by SUV or Minivan, and
such more specific information is desired, for example, by the bank.

4 Conclusions

The approach presented in this paper constitutes the first attempt to use ontolo-
gies within information systems. We can distinguish the following main features
of this approach: five basic types of semantic relations between concepts are de-
termined, only relations between attribute values are considered, and only simple
information systems over ontological graphs are investigated. These features set
directions for further work. We will try to extend the approach presented here
to: relations between values of attributes in complex information systems over
ontological graphs, relations between objects (attribute value vectors) in simple
and complex information systems over ontological graphs, extraction of rules of
different types and reasoning in simple and complex information systems over
ontological graphs.
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Abstract. In order to filter noisy and redundant genes, this paper
presents a two-step gene feature selection algorithm based on permu-
tation Test. The proposed algorithm can select genes efficiently and pro-
cess large dataset quickly due to the permutation test technique. Twelve
datasets of RSCTC 2010 Discovery Challenge and two famous classifiers
SVM and PAM are adopted to evaluate the performance of the proposed
algorithm. The experiment results show that the small gene subset with
high discriminant and low redundancy can be selected efficiently by the
proposed algorithm.

Keywords: DNA Microarray, Feature Selection, Permutation Test.

1 Introduction

In recent years, the development of DNA microarray technology has made pos-
sible to analyze tens of thousands of genes simultaneously. However, when an-
alyzing DNA microarray data, researchers have to face the few-objects-many-
attributes problem. Many standard algorithms have difficulties in handling such
highly dimensional data, because there are not only noisy genes, but also re-
dundant genes. Moreover, usually only a small subset of genes is relevant in the
context of a given task, for example, there is study [2] suggesting that only a
few genes are usually sufficient. For these reasons, gene feature selection is a cru-
cial part in analyzing DNA microarray data. When a small number of genes are
selected, computation is reduced while prediction accuracy is increased. Their
biological relationship with the target diseases is more easily identified. These
marker genes thus provide additional scientific understanding of the problem.

There are two general approaches to gene feature selection: filter and wrapper.
Filter method is essentially data pre-processing. Features are selected based on
the intrinsic characteristics, which determine their relevance with regard to the
target classes. Simple methods based on statistical tests (T-test, F-test, Wilcoxon
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and Kruskal-Wallis) have been shown to be effective. In addition, many modified
methods are proposed, such as Significance Analysis of Microarray (SAM) [3],
Prediction Analysis for Microarrays (PAM) [4]. In wrapper methods, feature
selection is wrapped around a learning method and the feature set is directly
judged by the estimated accuracy of the learning method. One can often get a
feature set with a small number but non redundant features, which gives high
prediction accuracy. Wrapper methods typically require extensive computation
to search the best features.

However, one common practice of current methods is to simply select the top-
ranked genes. One deficiency of this approach is that the number of features,
K, retained in the feature set is set by human intuition with trial-and error.
Another one is that the features could be correlated among themselves lead-
ing redundancy. For these reasons, minimum redundancy maximum relevance
(MRMR) [5] framework have been proposed, which take into account removing
noisy and redundant genes at the same time. Moreover, Jaeger et al. [6] grouped
genes with fuzzy clustering, and subsequently redundant genes in each group
can be removed. Mitra et al [7] partitioned the original gene set into a number
of clusters with k-NN, and selected a representative one from each such cluster.

In this paper, we presented a two-steps gene feature selection algorithm based
on permutation test. The proposed algorithms consist of two steps, removing
noisy and redundancy, which is proved more efficient according to the experiment
results. The rest of this paper is organized as follows. In section 2, related works
of gene feature selection are reviewed. In section 3, a novel gene feature selection
algorithm is proposed. Experiments and analysis are introduced in section 4.
Finally, conclusion is drawn in section 5.

2 Related Works

In this section, related work named mRMR framework is reviewed in order to
compare to our work. Peng [5] proposed a minimal redundancy maximal rele-
vance feature selection framework, which two simply combination criteria are
considered as max(VS −WS) and max(VS/WS), where

VS = 1
|S|
∑
i∈S

φ(gi, h) and WS = 1
|S|2

∑
i,j∈S

ϕ(gi, gj)

φ(gi, h) denote the relevance between gene gi and class h , and ϕ(gi, gj) denote
the redundancy between gene gi and gj . Incremental search methods are used
to find the near-optimal features. Let G denote all gene set, S denote already-
selected gene subset. Then, for gene gi ∈ {G}−{S}, its weight can be measured
by the following two equations,

wi = φ(gi, h)− 1

|S|
∑
j∈S

ϕ(gi, gj) (1)

wi = φ(gi, h)/
1

|S|
∑
j∈S

ϕ(gi, gj) (2)
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This framework demonstrates that good feature subsets contain features both
highly correlated within the target class, yet uncorrelated with each other [8-
9]. However, mRMR require large time complexity by searching the candidate
gene subset. Moreover, it cannot remove redundancy exactly, see our experi-
ment. Then, in this paper, we separate the framework into two steps, and adopt
permutation test to determine the number of gene to select.

3 Gene Feature Selection Algorithm

3.1 Removing Noisy Gene

It is obvious that a gene is informative if it has smaller within-group variation as
well as larger between-groups diffidence. In other words, a good gene is strongly
different from different classes, while a noisy gene has expressions randomly or
uniformly distributed in different classes. Hence, a gene should be selected as a
feature as long as significant differences exist between different classes. The sig-
nificant differences can be measured by F-statistic, which has the following form,

F (gi) =

[∑
k

nk(ḡk − ḡ)/(K − 1)

]
/σ2 (3)

where ḡ is the mean value of gi in all samples, ḡk is the mean value of gi within
the k− th class, K is the number of classes, and σ2 is the pooled variance, which
is defined as following,

σ2 =
[∑

k
(nk − 1)σ2

k

]
/(n−K) (4)

where nk and σk are the size and the variance of the k class. It is obvious that
if a gene is better, it should have a larger F (gi).

3.2 Removing Redundant Gene

One important goal of gene feature selection is to select gene subset with the least
number and the most information. Moreover, the selected gene subset should
represent the characteristics of the whole relevant space. It is crucially important
since narrow regions of the relevant space will mean the information loosing
of special class type. For example, in order to illustrate the problem, 100 top
ranked genes of DCOG dataset (from EBI, E-GEOD-13351) are selected. They
are hierarchically clustered using Cluster and TreeView software. The results are
shown in Fig 1.

Fig. 1 indicates that a large number of similar genes are clustered together.
They have the same information and can identify only one class type. Obviously,
they are redundant since they are either positively related or negatively related.
In this context, only 4 genes are truly independent and representative, the 96
highly correlated genes can be deleted with keeping effectively the performance of
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Fig. 1. Hierarchical cluster result of DCOG dataset

the prediction. Moreover, Gene 228057 at, whose ranked number is 90, is the only
one that can identify Hyperdiploid. Thus, if the number of the selected genes is
less than 90, gene 228057 at will be ignored, which causes the information losing.
However, if the number of the chose genes is over than 100, the 96 redundant
ones will be remained, which causes classifiers over fitting. One possible solution
is to remove the 96 highly correlated genes and remain the 4 uncorrelated ones.

There are several criteria for measuring similarity between two genes [7], for
example, Correlation Coefficient, Least Square Regression Error, Maximal In-
formation Compression Index. It is known that if the data is linearly separable
in the original representation, the data is still linearly separable if all but one
of the linearly dependent features is removed. Then, in this paper, Correlation
Coefficient is adopted to remove noisy genes, which is defined as,

C(gi, gj) =
cov(gi, gj)√

var(gi) ∗ var(gj)
(5)

where var(gi) denotes the variance of gi and cov(gi, gj) the covariance between
gi and gj .

3.3 Permutation Test

F-Statistic and Correlation Coefficient require all samples following the normal
distribution. When using Lilliefors [10] test, we find that a large number of them
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disobey normal distribution, see Table 1. Hence, F-Statistic and Correlation
Coefficient cannot be used to determine the number of genes directly. However,
if a gene is noisy, it has expressions randomly or uniformly distributed, and the
values are exchangeable. In the same way, if two genes are uncorrelated, the
values of them are exchangeable too. Based on this idea, we adopt permutation
test [11] to determine the number of gene for every step.

Table 1. The rate of gene disobeying normal distribution

data1 data2 data3 data4 data5 data6 data7 data8 data9 data10 data11 data12

0.22 0.25 0.37 0.31 0.28 0.16 0.24 0.29 0.39 0.46 0.43 0.67

Def. 1. (p-value) Let Fobs and Cobs denote the observed value of F and C statistic
respectively. Let Fperm and Cperm denote the permuted value of F and C statistic
respectively. Let no. of perms denote the permuted times, which should be larger
than 1000, and 5000 is enough, see [11]. The p-value is defined as,

p−value(F )=
no. of Fperm ≥ Fobs

total no. of Fperm
(6)

p−value(C)=
no. of Cperm ≥ Cobs

total no. of Cperm
(7)

Def. 2. (critical value) Let Fperms and Fperms denote the arrays of Fperm and
Cperm in descending order. Give two significance level α and β, the critical value
is defined as,

Fcrit = Fperms[no. of perms ∗ α] (8)

Ccrit = Cperms[no. of perms ∗ β] (9)

It is obvious that, if a gene is noise, it follow random distribution. Then, in the
first step, we performs a permutation test of the default null hypothesis that gene
comes from a distribution in the random family, against the alternative that it
does not come from a random distribution. If p−value is less than 1%, we reject
the null hypothesis, and regard it as an informative gene. In the same way, we
also perform a permutation test to test whether two genes are corrected in the
second step. The algorithm is showing as following, which the time complexity is
O(knm). (n is the number of original genes; m is the original number of samples;
and k is the final number of gene to select).

4 Experiment Design and Analysis

4.1 Prediction Methods

Two classifiers are adopted to evaluate the performance of our algorithm, includ-
ing: SVM (Support Vector Machine) and PAM (Prediction Analysis for Microar-
rays) [4]. For SVM, we use LIBSVM (http://www.csie.ntu.edu.tw/ cjlin/libsvm/),
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Algorithm 1. Two-Step Gene Feature Selection.

Initialization:
Set FeatureSet = {g1, g2, · · · , gn}; α = 1%; β = 0.1%

Begin:
1: Computing Fcrit(α) by definition 2;
2: Computing Fobs(gi) by equation 3;
3: if Fobs(gi) < Fcrit(α) then
4: FeatureSet = FeatureSet− {gi}
5: end if
6: Sorting FeatureSet in descending order, and get FeatureSet = g

′
1, g

′
2, · · · , g

′
k

7: Computing Ccrit(β) by definition 2;
8: Computing Cobs(gi, gj) by equation 5;

9: if Cobs(g
′
i, g

′
j) ≥ Ccrit(β)&&rank(g

′
i) > rank(g

′
j) then

10: FeatureSet = FeatureSet− {g′
j}

11: end if
12: return FeatureSet

which all parameters are default, except linear kernel and C = 100. For PAM, we
sampled it as following,

f(g) = arg min
k

(

n∑
i=1

(gi − gik)
2

s2i
(10)

where s2i is the pooled variance s2i =
∑
k

∑
j∈Ck

(gij − gik)
2

4.2 DNA Microarray Datasets

We explore the performance of our algorithm on twelve DNAmicroarray datasets,
which are also used for RSCTC’2010 Discovery Challenge [1]. The twelve datasets
are described in Table 2.

4.3 Experiment Analysis

First, we focus on three statuses in our algorithm. Let Crr(S) denote the correct
recognition rate of gene subset S. Let Swfs, Sorn, and Srnr denote gene subset
of three statuses in our algorithm: without feature selection(wfs), only removed
noisy(orn), and removed noise and redundancy(rnr) respectively. From Figure 2,
it can be easily found that the correct recognition rate shows a ladder-upward
trend, with Crr(Swfs) ≤ Crr(Sorn) ≤ Crr(Srnr). That is because, when adding
informative genes, redundant genes are also added, leading classifiers over fitting.
Moreover, let Num(S) denote the number of gene subset S. From Table 3, our
algorithm removed large number of noise and redundant genes for each step,
and Num(Swfs) ≥ Num(Sorn) ≥ Num(Srnr). Li et al [2]. believe that ”due to
the small sample size and the presence of strong predictors, the number of genes
used in a discriminant analysis in gene data sets can be much smaller than 50”.
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Table 2. Gene Datasets

Data EBI Gene Sample Class

data1 E-GEOD-10334 54674 123 2

data2 E-GEOD-5406 22282 105 3

data3 E-GEOD-13425 22276 95 5

data4 E-GEOD-13904 54674 113 5

data5 E-GEOD-4290 54612 89 4

data6 E-GEOD-9635 59004 92 5

data7 E-GEOD-6861 61358 160 2

data8 E-GEOD-4475 22282 221 3

data9 E-GEOD-14323 22276 124 4

data10 E-TABM-310 45100 216 7

data11 E-GEOD-9891 54620 284 3

data12 E-MTAB-37 54674 773 9

Therefore, no matter how many genes the original gene date sets have, even five
thousands or fifty thousands, the number of remained genes by our algorithm is
eventually about 50-200 in the experiments.

Nikulin et al. [1] constructed an ensemble criterion using WXN and FDC. The
gene feature selection problem was conducted according to the ruleENS(WXN+
FDC) ≥ Δ. Then, PAM classifier and LOOCV test method are adopted to eval-
uate the performance of the proposed algorithm on the first six datasets. The
results are showed in table 4, which all data come from [1]. Moreover, Artiem-
jew et al. [12] proposed an algorithm based on experimental A Statistics, called
SAM5. They applied their classifier 8 v1.4, as well as LOOCV test method, on
the last six dataset. The results are showed in table 4, which all data come from
[10]. Tables 4 indicate that our algorithm can achieve better performances in
most cases. That is because Nikulin et al. and Artiemjew et al. only removed
noisy genes but redundant ones.

We also compared our algorithm with mRMR framework. Let φ(gi) = F (gi)
and ϕ(gi, gj) = C(gi, gj). First, we select 200 top ranked genes by mRMR using
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Fig. 2. The Crr(S) on SVM classifier
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Table 3. The number of genes of three statues

Methods data1 data2 data3 data4 data5 data6

All Gene 54675 22283 22277 54675 54613 59004

First Step 19737 1698 5226 5028 20396 19017

Second Step 76 57 276 57 222 102

Table 4. The Correct recognition rate on data1-data12

Method data1 data2 data3 data4 data5 data6 data7 data8 data9 data10 data11 data12

Others
P 90.88 82.73 97.75 54.33 74.32 71.27 86.6 93.2 91.0 58.1 91.3 87.6
N 171 44 1542 1031 123 679 500 500 500 500 500 500

Ours
P 96.75 88.57 98.95 76.99 97.75 90.22 88.68 94.09 93.50 81.31 97.88 89.03
N 76 57 276 57 222 102 47 70 70 97 125 130

Original 79.67 45.71 85.26 33.63 69.66 58.70 50.94 78.18 82.93 44.86 82.69 74.93

equation 1 on data1 (equation 2 got the same result). At the same time, 76 top
ranked genes are selected by our algorithm. Then, Relevance VS and redundancy
WS are computed, see fig 4. From fig 4, we find that the relevance and redun-
dancy decrease quickly; when 50 genes are selected, they do not change so much.
However, in fig 5, though mRMR selects relevance gene every time, it also se-
lects some redundancy. Relevance and redundancy decrease slowly. Moreover, we
also evaluate the performance of the proposed algorithm on the twelve datasets
with PAM classifier, using LOOCV test method. Their correct recognition rate
and computing time are shown in table 5. From table 5, we can find that our
algorithm not only get higher accuracy, but also lower time.
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Table 5. The Correct recognition rate on data1-data12

Method data1 data2 data3 data4 data5 data6 data7 data8 data9 data10 data11 data12

mRMR
P 93.50 91.43 97.89 69.03 80.90 83.70 71.70 94.09 89.43 65.89 91.17 85.73
T 1758 515 467 1467 1110 1236 19508 9745 4296 19943 42178 49666

Ours
P 96.75 88.57 98.95 76.99 97.75 93.22 88.68 94.09 93.50 81.31 97.88 89.03
T 8 3 3 6 6 5 9 5 4 11 17 34

5 Conclusion

In this paper, two-step gene feature selection and permutation test are studied.
An algorithm combining removing noisy gene and redundant gene is proposed.
An experiment analyzes the similarity between genes and verifies the correctness
of the proposed algorithm. Compared experiment results show that the effective-
ness and high efficiency of the proposed algorithm for large gene dataset. In the
future, gene feature selection based on statistic theory will be studied continually.
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Abstract. Test cost is often required to obtain feature values of an object. When
this issue is involved, people are often interested in schemes minimizing it. In
many data mining applications, due to economic, technological and legal rea-
sons, it is neither possible nor necessary to obtain a classifier with 100% accuracy.
There may be an industrial standard to indicate the accuracy of the classification.
In this paper, we consider such a situation and propose a new constraint satis-
faction problem to address it. The constraint is expressed by the positive region;
whereas the objective is to minimize the total test cost. The new problem is es-
sentially a dual of the test cost constraint attribute reduction problem, which has
been addressed recently. We propose a heuristic algorithm based on the infor-
mation gain, the test cost, and a user specified parameter λ to deal with the new
problem. Experimental results indicate the rational setting of λ is different among
datasets, and the algorithm is especially stable when the test cost is subject to the
Pareto distribution.

Keywords: cost-sensitive learning, positive region, test cost, constraint, heuristic
algorithm.

1 Introduction

When industrial products are manufactured, they must be inspected strictly before de-
livery. Testing equipments are needed to classify the product as qualified, unqualified,
etc. Each equipment costs money, which will be averaged on each product. Generally,
we should pay more to obtain better classification accuracy. However, in real world ap-
plications, due to economic, technological and legal reasons, it is neither possible nor
necessary to obtain a classifier with 100% accuracy. There may be an industrial standard
to indicate the accuracy of the classification, such as 95%. Consequently, we are inter-
ested in a set of equipments with minimal cost meeting the standard. In this scenario,
there are two issues: one is the equipment cost, and the other is the product classifica-
tion accuracy. They are called test cost and classification accuracy, respectively. Since
the classification accuracy only needs to meet the industrial standard, we can choose
some testing equipments to make the total cost minimal.
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Feature selection plays an important role in machine learning and pattern recognition
application [1]. It has been defined by many authors by booking at it from various
angles [11]. Minimal reducts have the best generalization ability, hence there are many
existing feature selection reduction algorithms based on rough set to deal with it, such
as [15,16,18,20,23] are devoted to find one of them.

The positive region is a widely used concept in rough set [12]. We use this concept
instead of the classification accuracy to specify the industrial standard. We formally
define this problem and call it the minimal test cost feature selection with positive region
constraint (MTPC) problem. The new problem is essentially a dual of the optimal sub-
reduct with test cost constraint (OSRT) problem, which has been defined in [7] and
studied in [7,8,9]. The OSRT problem considers the test cost constraint, while the new
problem considers the positive region constraint.

As will be discussed in the following text, the classical reduct problem can be viewed
as a special case of the MTPC problem. Since the classical reduct problem is NP-hard,
the new problem is at least NP-hard. Consequently, we propose a heuristic algorithm
to deal with it. The heuristic information function is based on both the information
gain and the test cost. This algorithm is tested on four UCI datasets with various test
cost settings. Experimental results indicate the rational setting of λ is different among
datasets, and the algorithm is especially stable when the test cost is subject to the Pareto
distribution.

The rest of this paper is structured as follows. Section 2 describes related concepts in
the rough set theory and defines the MTPC problem formally. In Section 3, a heuristic
algorithm based on λ-weighted information gain is presented. Section 4 illustrates some
results on four UCI datasets with detailed analysis. Finally, Section 5 concludes.

2 Preliminaries

In this section, we define the MTPC problem. First, we revisit the data model on which
the problem is defined. Then we review the concept of positive region. Finally we pro-
pose the minimal test cost feature selection with positive region constraint problem.

2.1 Test-Cost-Independent Decision Systems

Decision systems are fundamental in machine learning and data mining. A decision
system is often denoted as S = (U,C,D, {Va|a ∈ C ∪D}, {Ia|a ∈ C ∪D}), where U
is a finite set of objects called the universe, C is the set of conditional attributes, D is the
set of decision attributes, Va is the set of values for each a ∈ C ∪D, and Ia : U → Va

is an information function for each a ∈ C ∪ D. We often denote {Va|a ∈ C ∪ D}
and {Ia|a ∈ C ∪ D} by V and I , respectively. A decision system is often stored in a
relational database or a text file.

A test-cost-independent decision system (TCI-DS) [6] is a decision system with test
cost information represented by a vector. It is the most simple form of the test-cost-
sensitive decision system and defined as follows.

Definition 1. [6] A test-cost-independent decision system (TCI-DS) S is the 6-tuple:

S = (U,C,D, V, I, c), (1)
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where U,C,D, V and I have the same meanings as in a decision system, and c :
C → R+ ∪ {0} is the test cost function. It can easily be represented by a vector c=
[c(a1), c(a2), · · · , c(a|C|)]. Test costs are independent of one another, that is, c(B) =∑

a∈B c(a) for any B ⊂ C.

2.2 Positive region

Let S = (U,C,D, V, I) be a decision system. Any ∅ �= B ⊆ C ∪ D determines an
indiscernibility relation on U . A partition determined by B is denoted by U/B. Let
B(X) denote the B-lower approximation of X .

Definition 2. [13] Let S = (U,C,D, V, I) be a decision system, ∀B ⊂ C, the positive
region of D with respect to B is defined as

POSB(D) =
⋃

X∈U/D

B(X), (2)

where U,C,D, V and I have the same meanings as in a decision system.

In other words, D is totally (partially) dependent on B, if all (some) elements of the
universe U can be uniquely classified to blocks of the partition U/D, employing B [12].

2.3 Problem definition

Attribute reduction is the process of choosing an appropriate subset of attributes from
the original dataset [17]. There are numerous reduct problems which have been defined
on the classical [14], the covering-based [21,22,23], the decision-theoretical [19], and
the dominance-based [2] rough set models. Respective definitions of relative reducts
also have been studied in [3,15].

Definition 3. [13] Let S = (U,C,D, V, I) be a decision system. Any B ⊆ C is called
a decision relative reduct (or a relative reduct for brevity) of S iff:

(1) POSB(D) = POSC(D), and
(2) ∀a ∈ B,POSB−{a}(D) �= POSB(D).

Definition 3 implies two issues. One is that the reduct is jointly sufficient, the other is
that the reduct is individually necessary for preserving a particular property (positive
region in this context) of the decision systems [4]. The set of all relative reducts of
S is denoted by Red(S). The core of S is the intersection of these reducts, namely,
core(S) = ∩Red(S). Core attributes are of great importance to the decision system
and should never be removed, except when information loss is allowed [19].

In this paper, due to the positive region constraint, it is not necessary to construct
a reduct. On the other side, we never want to select any redundant test. Therefore we
propose the following concept.

Definition 4. Let S = (U,C,D, V, I) be a decision system. Any B ⊆ C is a positive
region sub-reduct of S iff ∀a ∈ B, POSB−{a}(D) �= POSB(D).
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According to the Definition 4, we observe the following:

(1) A reduct is also a sub-reduct, and
(2) A core attribute may not be included in a sub-reduct.

Here we are interested those feature subsets satisfying the positive region constraint,
and at the same time, with minimal possible test cost. We adopt the style of [5] and
propose the following problem.

Problem 1. The minimal test cost feature selection with positive region constraint
(MTPC) problem.
Input: S = (U,C, d, V, I, c), the positive region lower bound pl;
Output: B ⊆ C;
Constraint: |POSB(D)|/|POSC(D)| ≥ pl;
Optimization objective: min c(B).

In fact, the MTPC problem is more general than the minimal test cost reduct problem,
which is defined in [4]. In case where pl = 1, it coincides with the later. The mini-
mal test cost reduct problem is in turn more general than the classical reduct problem,
which is NP-hard. Therefore the MTPC problem is at least NP-hard, and heuristic al-
gorithms are needed to deal with it. Note that the MTPC is different with the variable
precision rough set model. The variable precision rough set model changes the lower
approximation by varying the accuracy, but in our problem definition, it is unchanged.

3 The Algorithm

Similar to the heuristic algorithm to the OSRT problem [7], we also design a heuristic
algorithm to deal with the new problem. We firstly analyze the heuristic function which
is the key issue in the algorithm. Let B ⊂ C and ai ∈ C − B, the information gain of
ai with respect to B is

fe(B, ai) = H({d}|B)−H({d}|B ∪ {ai}), (3)

where d ∈ D is a decision attribute. At the same time, the λ-weighted function is
defined as

f(B, ai, c, λ) = fe(B, ai)c
λ
i . (4)

where λ is a non-positive number.
Our algorithm is listed in Algorithm 1. It contains two main steps. The first step con-

tains lines 3 through 8. Attributes are added to B one by one according to the heuristic
function indicated in Equation (4). This step stops while the positive region reaches
the lower bound. The second step contains lines 9 through 15. Redundant attributes are
removed from B one by one until all redundant have been removed. As discussed in
Section 2.3, our algorithm has not a stage of core computing.
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Algorithm 1. A heuristic algorithm to the MTPC problem
Input: S = (U,C,D, V, I, c), pcon, λ
Output: A sub-reduct of S
Method: MTPC

1: B = ∅; //the sub-reduct
2: CA = C; //the unprocessed attributes
3: while (|POSB(D)| < pcon) do
4: For any a ∈ CA compute f(B, a, c, λ)

//Addition
5: Select a′ with maximal f(B, a, c, λ);
6: B = B ∪ {a′};
7: CA = CA− {a′};
8: end while

//Deletion, B must be a sub-reduct
9: CD = B; //sort attribute in CD according to respective test cost in a descending order

10: while CD �= ∅ do
11: CD = CD − {a′}; //where a′ is the first element in CD
12: if (POSB−{a′}(D) = POSB(D)) then
13: B = B − {a′};
14: end if
15: end while
16: return B

4 Experiments

To study the effectiveness of the algorithm, we have undertaken experiments using
our open source software Coser [10] on 4 different datasets from the UCI library. To
evaluate the performance of the algorithm, we need to study the quality of each sub-
reduct which it computes. This experiment should be undertaken by comparing each
sub-reduct to an optimal sub-reduct with the positive region constraint. Unfortunately,
the computation of an optimal sub-reduct with test positive region constraint is more
complex than that of a minimal reduct, or that of a minimal test cost reduct. In this
paper, we only study the influence of λ to the quality of the result.

Because of lacking the predefined test costs in the four artificial datasets, we spec-
ify them as the same setting as that of [4] to produce test costs within [1, 100]. Three
distributions, namely, Uniform, Normal, and bounded Pareto, are employed. In order
to control the shape of the Normal distribution and the bounded Pareto distribution re-
spectively, we must set the parameter α. In our experiment, for the Normal distribution,
α = 8, and test costs as high as 70 and as low as 30 are often generated. For the bounded
Pareto distribution, α = 2, and test costs higher than 50 are often generated.

We intentionally set pl = 0.8. This setting shows that we need a sub-reduct rather
than a reduct.

The experimental results of the 4 datasets are illustrated in Fig 1. By running our
program in different λ values, the 3 different test cost distributions are compared. We
can observe the following.
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(a)

(b)

(c)

(d)

Fig. 1. Optimal probability: (a) zoo; (b) iris; (c) voting; (d) tic-tac-toe
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(1) The result is influenced by the user-specified λ. The probability of obtained the best
results is different with different λ values, where the “best" means the best one over
the solutions we obtained, not the optimal one.

(2) The algorithm’s performance is related with the test cost distribution. It is best on
datasets with bounded Pareto distribution. At the same time, it is worst on datasets
with Normal distribution. Consequently, if the real data has test cost subject to the
Normal distribution, one may develop other heuristic algorithms to this problem.

(3) There is not a setting of λ such that the algorithm always can obtain the best result.

5 Conclusions

In this paper, we firstly proposed the MTPC problem. Then we designed a heuristic
algorithm to deal with it. Experimental results indicates that the optimal solution is not
easy to obtain. In the future, we will develop an exhaustive algorithm to evaluate the
performance of a heuristic algorithm. We will also develop more advanced heuristic
algorithms to obtain better performance.
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Abstract. The main objective of this paper is to propose an approach
to solve the multiple-category attribute reduct problem. The (α,β) lower
approximate and (α,β) upper approximate distribution reduct are in-
troduced into decision-theoretic rough set model. On the basis of this,
the judgement theorems and discernibility matrices associated with the
above two types of distribution reduct are examined as well, from which
we can obtain attribute reducts. Finally, an example is used to illustrate
the main ideas of the proposed approaches.

Keywords: Decision-theoretic rough set model, three-way decision, at-
tribute reduct, probabilistic rough set model, multiple-category.

1 Introduction

Rough set theory, introduced by Pawlak[8], has become a useful mathematical
tool for dealing with uncertain and inexact knowledge. One of the major lim-
itations of the classical rough set model is that it simply considers rough set
approximations as qualitative approximations of a set without considering the
extent of overlap between a set and an equivalence class. To resolve this prob-
lem, many probabilistic rough set models have been proposed and studied such
as the decision-theoretic rough set model(DTRS)[12] and the Bayesian rough set
model(BRS)[9].

An attribute reduct is a minimum of attributes that are jointly sufficient and
individually necessary for preserving a particular property of the given informa-
tion table[13]. In rough set models, many reduct construction methods have been
discussed. For example, Miao et al.[6] investigated three different classification
properties and discusses the definitions of relative reducts in both consistent and
inconsistent decision tables. Wang et al.[10] studied the relationship of the defi-
nitions of rough reduction in algebra view and information view, and developed
two novel heuristic knowledge reduction algorithms which are based on condi-
tional information entropy. Min et al.[7] posited a new research theme in regard
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to attribute reduct and formally defined the minimal test cost reduct problem,
which is to select a set of tests satisfying a minimal test cost criterion.

In practice, it seems much reasonable that admitting some level of uncer-
tainty in the reduction process may lead to a better utilization of properties
of the original data. For example, Li et al.[3] investigated the monotonicity of
positive region in DTRS, and presented a new definition of attribute reduct in
DTRS. Yao and Zhao[13] addressed attribute reduct in DTRS regarding differ-
ent classification properties such as decision-monotocity, confidence, coverage,
generality and cost. Zhao et al.[14] examined the definitions of attribute reduct
and pointed out three problems of the existing definition for attribute reduct.
Jia et al.[2] presented an optimization viewpoint on decision-theoretic rough set
model and defined an attribute reduct based on the optimization problem.

As we have discussed, however, all decision classes are treated as the same in
the interpretation and applications of approximations and three regions in the ex-
isting literatures. In other words, the same threshold or the same pair thresholds
are used to define the positive, negative and boundary regions. As a natural ex-
tension to these original studies, rough set approximations for multiple-category
reduct problems using different pairs of thresholds are discussed in this paper.

To combat the problem, a multiple-category attribute reduct approach using
DTRS is proposed, where each class has a different pair of threshold parameters.
The judgment theorems and discernibility matrices associated with these reducts
are also established, from which we can obtain the approaches to attribute reduct
in multiple-category classification model with DTRS.

The rest of this paper is structured as follows. In section 2, we briefly re-
viewed multiple-category classification model based on the three-way decision
approach of DTRS. In section 3, we provide practical approaches to multiple-
category attribute reduct based on DTRS and an illustration is used to show
the effectiveness of the presented approaches.

2 Multi-category Classification with DTRS

DTRS provides a systematic way to calculate the two probabilistic threshold
values based on the well established Bayesian decision theory[1], with the aid of
more practically operable notions such as cost, risk, benefit etc.[12]. Multiple-
category[4,15] classification model based on the three-way decision approach of
DTRS are briefly reviewed in this section.

In general, different categories have different losses, and different threshold val-
ues should be used for different categories in a model [4]. For each decision class,
the set of states is given by Ω = {D1, D2, · · · , Dm} indicating that an object is
in Dj(j = 1, 2, · · · ,m). The set of action is given by A = {aPj , aBj , aNj}, where
aPj , aBj , aNj represent the three actions to classify an object into POS(Dj),
BND(Dj)and NEG(Dj), respectively. The loss function regarding the cost of
actions in different states is given by the 3× 2 matrix:
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Dj Dj
c

aPj

⎡⎣ λPjDj λPj¬Dj

⎤⎦aBj λBjDj λBj¬Dj

aNj λNjDj λNj¬Dj

In the matrix, λPjDj denotes the losses incurred for classifying an object in
Dj into the positive region, λBjDj denotes the losses incurred for classifying
an object in Dj into the boundary region, λNjDj denotes the losses incurred for
classifying an object in Dj into the negative region. Similarly, λPj¬Dj , λBj¬Dj and
λNj¬Dj denote the losses incurred for taking the same actions when the object
does not belong to Dj . The expected cost R(a•|[xi]) associated with taking the
individual actions a•(• = Pj , Bj , Nj) can be expressed as:

R(aPj |[xi]) = λPjDjP (Dj |[xi]) + λPj¬DjP (¬Dj |[xi]),

R(aBj |[xi]) = λBjDjP (Dj |[xi]) + λBj¬DjP (¬Dj |[xi]),

R(aNj |[xi]) = λNjDjP (Dj|[xi]) + λNj¬DjP (¬Dj |[xi]). (1)

Since P (Dj |[xi]]) + P (¬Dj |[xi]) = 1, we can simplify the rules based only on
the probabilities P (Dj |[xi]) and the loss functions λ••. Then, we can easily
induce the three-way decision rules when λPjDj ≤ λBjDj < λNjDj and λNj¬Dj ≤
λBj¬Dj < λPj¬Dj by using the minimum overall risk criterion:

(P) If P (Dj |[xi]) ≥ αj and P (Dj |[xi]) ≥ γj , decide xi ∈ POS(Dj);

(B) If P (Dj |[xi]) ≤ αj and P (Dj |[xi]) ≥ βj, decide xi ∈ BND(Dj);

(N) If P (Dj|[xi]) ≤ βj and P (Dj |[xi]) ≤ γj , decide xi ∈ NEG(Dj).

where the parameter αj , βj and γj are defined as:

αj =
(λPj¬Dj − λBj¬Dj )

(λPj¬Dj − λBj¬Dj ) + (λBjDj − λPjDj )
;

βj =
(λBj¬Dj − λNj¬Dj )

(λNjDj − λBjDj ) + (λBj¬Dj − λNj¬Dj )
;

γj =
(λPj¬Dj − λNj¬Dj )

(λNjDj − λPjDj ) + (λPj¬Dj − λNj¬Dj )
. (2)

In other words, from a loss function one can systematically determine the re-
quired threshold values.

3 Approach of Multiple-Category Attribute Reduct
Based on DTRS

The concept of the lower and upper approximate distribution reduct was firstly
presented by Mi et al. in [5] based on VPRS. In this section, we will introduce
the concept of the lower and upper approximate distribution reduct into DTRS.
An illustration is analyzed to indicate the validity of the proposed approaches.
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3.1 Multiple-Category Attribute Reduct Method Using DTRS

Definition 1. Given an information table S = (U,At = C ∪ {D}, {Va|a ∈
At}, {Ia|a ∈ At}), B ⊆ C, U = {x1, x2, · · · , xn}, U/IND(B) = {[xi]B :
xi ∈ U, i = 1, 2, · · · , n}, the partition generated by IND(D) is denoted by
U/IND(D) = {D1, D2, · · · , Dm}, the membership matrix MB = (rij), 0 ≤
rij ≤ 1, is a |U | × |U/IND(D)| matrix, in which the element rij is defined by
P (Dj |[xi]B), where i = 1, 2, · · · , n and j = 1, 2, · · · ,m, that can be denoted by:

MB =

⎡⎢⎢⎢⎣
P (D1|[x1]B) P (D2|[x1]B) · · · P (Dm|[x1]B)
P (D1|[x2]B) P (D2|[x2]B) · · · P (Dm|[x2]B)

...
... · · · ...

P (D1|[xn]B) P (D2|[xn]B) · · · P (Dm|[xn]B)

⎤⎥⎥⎥⎦
The conditional probability[11] also be seen as rough membership value of an
element belonging to X , so the rough membership function is given by the condi-
tional probability as μB(X) = P (X |[x]B). With the probabilistic interpretation
of rough membership function, we indiscriminately use the rough membership
function and the conditional probability in the following discussions. The mem-
bership matrix is referred to as a fuzzy matrix. In the theory of fuzzy sets, cut set
and strong cut set are important notions. So, we have the following definition.

Definition 2. Given an information table S = (U,At = C ∪ {D}, {Va|a ∈
At}, {Ia|a ∈ At}), B ⊆ C, U = {x1, x2, · · · , xn}, the partition generated by
IND(D) is denoted by U/IND(D) = {D1, D2, · · · , Dm}, let δ = (δ1, δ2, · · ·, δm),
0 ≤ δi ≤ 1 the δ-cutting matrix of the membership matrix MB = (rij)n×m is
defined by (MB)δ = (rij(δj))n×m , where

rij(δj) =

{
1 rij ≥ δj
0 rij < δj

(3)

the strong δ-cutting matrix of the membership matrix MB = (rij)n×m is defined
by (MB)δ+ = (rij(δj))n×m, where

rij(δj) =

{
1 rij > δj
0 rij ≤ δj

(4)

The δ-cutting matrix of the membership matrix is Boolean matrix, it deter-
mines a general relation from U to U/IND(D). we can denote it rij(δj) =
(MB)δ(xi, Dj) for i = 1, 2, · · · , n and j = 1, 2, · · · ,m. Namely, (MB)δ(xi, Dj) =
1⇔MB(xi, Dj) ≥ δj .

Definition 3. Given an information table S = (U,At = C ∪ {D}, {Va|a ∈
At}, {Ia|a ∈ At}), B ⊆ C, U = {x1, x2, · · · , xn}, the partition generated by
IND(D) is denoted byU/IND(D) = {D1, D2, · · · , Dm}, let α = (α1, α2, · · · , αm)
and β = (β1, β2, · · · , βm), MB = (rij)n×m, we define:

(1) The (α, β) lower approximate distribution matrix M
apr

(α,β)

B = (MB)α =

(rij(αj))n×m denoted by M
apr

(α,β)

B = (r
a
ij)n×m,
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(2) The (α, β) upper approximate distribution matrix M
apr(α,β)

B = (MB)β+ =

(rij(βj))n×m denoted by M
apr(α,β)

B = (raij)n×m.

Definition 4. Given an information table S = (U,At = C ∪ {D}, {Va|a ∈
At}, {Ia|a ∈ At}), B ⊆ C, U = {x1, x2, · · · , xn}, let α = (α1, α2, · · · , αm)
and β = (β1, β2, · · · , βm). Then:

(1) B is a (α, β) lower approximate distribution consistent set iff M
apr

(α,β)

B =

M
apr

(α,β)

C , B is a (α, β) lower approximate distribution reduct iff M
apr

(α,β)

B =

M
apr

(α,β)

C and M
apr

(α,β)

A �= M
apr

(α,β)

C for ∀A ⊆ B.

(2) B is a (α, β) upper approximate distribution consistent set iff M
apr(α,β)

B =

M
apr(α,β)

C is a (α, β) upper approximate distribution reduct iff M
apr(α,β)

B =

M
apr(α,β)

C and M
apr(α,β)

A �= M
apr(α,β)

C for ∀A ⊆ B.

A (α, β) lower (upper) approximate distribution consistent set is a subset of
attribute set that preserves the (α, β) lower(upper) approximate of all decision
classes.

Definition 5. Given an information table S = (U,At = C ∪ {D}, {Va|a ∈
At}, {Ia|a ∈ At}), U = {x1, x2, · · · , xn}, B ⊆ C, the partition generated by
IND(D) is denoted byU/IND(D) = {D1, D2, · · · , Dm}, let α = (α1, α2, · · · , αm)
and β = (β1, β2, · · · , βm), let us denote:

A
(α,β)
B (xi) = {Dj|M

apr
(α,β)

B (xi, Dj) = 1}, i = 1, 2, · · · , n,
A

(α,β)

B (xi) = {Dj|Mapr(α,β)

B (xi, Dj) = 1}, i = 1, 2, · · · , n.

Define:

Dapr
(α,β)

([x], [y]) =

{
{a ∈ C : Ia([x]) �= Ia([y])}, A

(α,β)
B ([x]) �= A

(α,β)
B ([y])

C A
(α,β)
B ([x]) = A

(α,β)
B ([y])

,

Dapr(α,β)
([x], [y]) =

{
{a ∈ C : Ia([x]) �= Ia([y])}, A

(α,β)

B ([x]) �= A
(α,β)

B ([y])

C A
(α,β)

B ([x]) = A
(α,β)

B ([y])
.(5)

where x, y ∈ U .

Theorem 1. (Judgement Theorem of knowledge reduct) Given an information
table S = (U,At = C ∪ {D}, {Va|a ∈ At}, {Ia|a ∈ At}), B ⊆ C, let α =
(α1, α2, · · · , αm) and β = (β1, β2, · · · , βm). Then:

(1) B is a (α, β) lower approximate distribution consistent set iff B ∩Dapr
(α,β)

([x], [y]) �= ∅, for all A
(α,β)
B ([x]) �= A

(α,β)
B ([y]).

(2) B is a (α, β) upper approximate distribution consistent set iff B ∩Dapr(α,β)

([x], [y]) �= ∅, for all A
(α,β)
B ([x]) �= A

(α,β)
B ([y]).
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Definition 6. Given an information table S = (U,At = C ∪ {D}, {Va|a ∈
At}, {Ia|a ∈ At}), B ⊆ C, let α = (α1, α2, · · · , αm) and β = (β1, β2, · · · , βm),
the (α, β) lower approximate(upper approximate) distribution discernibility func-
tions are defined respectively:

∧{∨{a : a ∈ Dapr
(α,β)

([x], [y])} : A(α,β)
B ([x]) �= A

(α,β)
B ([y])},

∧{∨{a : a ∈ Dapr(α,β)
([x], [y])} : A(α,β)

B ([x]) �= A
(α,β)

B ([y])}. (6)

From the (α, β) lower approximate(upper approximate) distribution discerni-
bility function, the (α, β) lower approximate(upper approximate) distribution
reduct, which is a prime implicant of the reduced disjunctive form of the dis-
cernibility function, can be obtained.

3.2 An Example

Consider an information table S = (U,At = C ∪ {D}, {Va|a ∈ At}, {Ia|a ∈
At}) showed in Table 1, where U = {x1, x2, · · · , x12}, C = {a1, a2, a3, a4, a5},
D = {d}.

It can be easily calculated that the equivalence classes of condition attribute
and decision attribute are as follows:

U/IND(C) = {C1, C2, C3, C4, C5, C6},
where C1 = {x1, x2}, C2 = {x3, x8, x10}, C3 = {x5}, C4 = {x4, x6, x7, x12},

C5 = {x9}, C6 = {x11}.
U/IND(d) = {D1, D2, D3},
where D1 = {x1, x2, x8, x10}, D2 = {x3, x5, x12}, D3 = {x4, x6, x7, x9, x11}.
According to Definition 1, we have the membership matrix in Figure 1.
For simplicity, we suppose α = {0.6, 0.7, 0.7} and β = {0.3, 0.3, 0.5} for the

different categories, respectively. These coefficients can be computed from the
loss functions.

Table 1. An information table

U a1 a2 a3 a4 a5 d

x1 0 0 1 0 1 1
x2 0 0 1 0 1 1
x3 0 0 0 1 1 2
x4 0 1 1 0 1 3
x5 0 0 0 0 0 2
x6 0 1 1 0 1 3
x7 0 1 1 0 1 3
x8 0 0 0 1 1 1
x9 1 1 1 1 1 3
x10 0 0 0 1 1 1
x11 1 1 1 0 1 3
x12 0 1 1 0 1 2
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According to the definitions of the (α, β) lower approximate and (α, β) upper
approximate distribution matrix, we can obtain them in Figure 2.

In terms of the (α, β) lower approximate distribution matrix, we can obtain

A
(α,β)
B (x1) = A

(α,β)
B (x2) = A

(α,β)
B (x3) = A

(α,β)
B (x8) = A

(α,β)
B (x10) = {D1},

A
(α,β)
B (x5) = {D2},
A

(α,β)
B (x4) = A

(α,β)
B (x6) = A

(α,β)
B (x7) = A

(α,β)
B (x9) = A

(α,β)
B (x11) = A

(α,β)
B

(x12) = {D3}.

MC 

1 0 0

1 0 0
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Fig. 1. The membership matrix
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Fig. 2. The (α, β) lower approximate
and (α, β) upper approximate distribu-
tion matrix

By computation we have the following

Dapr
(α,β)

(C1, C3) = {a3, a5}, Dapr
(α,β)

(C1, C4) = {a2}, Dapr
(α,β)

(C1, C5) =

{a1, a2, a4},
Dapr

(α,β)
(C1, C6) = {a1, a2},Dapr

(α,β)
(C2, C3) = {a4, a5},Dapr

(α,β)
(C2, C4) =

{a2, a3, a4},
Dapr

(α,β)
(C2, C5) = {a1, a2, a3}, Dapr

(α,β)
(C2, C6) = {a1, a2, a3, a4},

Dapr
(α,β)

(C3, C4) = {a2, a3, a5}, Dapr
(α,β)

(C3, C5) = {a1, a2, a3, a4, a5},
Dapr

(α,β)
(C3, C6) = {a1, a2, a3, a5}.

From the (α, β) lower approximate distribution discernibility function, we con-
clude that {a2, a5} and {a2, a3, a4} are two (α, β) lower approximate distribution
reducts of S.

Similarly, we can also conclude that {a2, a3, a4}, {a2, a3, a5} and {a2, a4, a5}
are three (α, β) upper approximate distribution reducts of S.

4 Conclusion

The decision-theoretic rough set model provided a systematic way to calculate
the required probabilistic threshold values based on the well established Bayesian
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decision theory. In this paper, the (α, β) lower approximate and (α, β) upper
approximate distribution reduct are introduced into DTRS. The new approaches
to attribute reduct in multiple-category classification model with DTRS are
obtained as well, and the algorithm will be devised in the further work.

Acknowledgments. This work was supported in part by the China NNSFC
grant(No.61073146) and the Chongqing CSTC grant (No.KJ110522).
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Appendix: The Proof of Theorem 1

To prove Theorem 1 we need to prove the following two lemmas first.

Lemma 1. Given an information table S = (U,At = C ∪ {D}, {Va|a ∈ At},
{Ia|a ∈ At}), B ⊆ C, U = {x1, x2, · · · , xn}, the partition generated by IND(D)
is denoted by U/IND(D) = {D1, D2, · · · , Dm}, let α = (α1, α2, · · · , αm) and
β = (β1, β2, · · · , βm). denoted by:

A
(α,β)
B (xi) = {Dj|M

apr
(α,β)

B (xi, Dj) = 1}, i = 1, 2, · · · , n,
A

(α,β)

B (xi) = {Dj|Mapr(α,β)

B (xi, Dj) = 1}, i = 1, 2, · · · , n.

Then:

(1) B is a (α, β) lower approximate distribution consistent set iff A
(α,β)
B (xi) =

A
(α,β)
C (xi), i = 1, 2, · · · , n.

(2) B is a (α, β) upper approximate distribution consistent set iff A
(α,β)

B (xi) =

A
(α,β)

C (xi), i = 1, 2, · · · , n.

Proof. (1)”⇒”if B is a (α, β) lower approximate distribution consistent set, by

Definition 1, we have M
apr

(α,β)

B = M
apr

(α,β)

C , then M
apr

(α,β)

B (xi, Dj) = M
apr

(α,β)

C

(xi, Dj) for ∀j = 1, 2, · · · ,m and ∀i = 1, 2, · · · , n. When M
apr

(α,β)

B (xi, Dj) =

1, we have M
apr

C (xi, Dj) = 1, i.e., Dj ∈ A
(α,β)
B (xi) ⇔ Dj ∈ A

(α,β)
C (xi). So

A
(α,β)
B (xi) = A

(α,β)
C (xi) for i = 1, 2, · · · , n.

”⇐”since A
(α,β)
B (xi) = A

(α,β)
C (xi) for ∀i = 1, 2, · · · , n, then Dj ∈ A

(α,β)
B (xi)⇔

Dj ∈ A
(α,β)
C (xi) for 1 ≤ j ≤ m, i.e., M

apr
(α,β)

B (xi, Dj) = M
apr

(α,β)

C (xi, Dj) = 1.

Again, it follow that Dj /∈ A
(α,β)
B

(α,β)

B (xi)⇔ Dj /∈ A
(α,β)
C (xi) for 1 ≤ j ≤ m, i.e.,

M
apr

(α,β)

B (xi, Dj) = M
apr

(α,β)

C (xi, Dj) = 0, then we have M
apr

(α,β)

B = M
apr

(α,β)

C ,
according to Definition 4, B is a (α, β) lower approximate distribution consistent
set.

Lemma 2. Given an information table S = (U,At = C ∪ {D}, {Va|a ∈ At},
{Ia|a ∈ At}), B ⊆ C, U = {x1, x2, · · · , xn}, let α = (α1, α2, · · · , αm) and
β = (β1, β2, · · · , βm). Then:

(1) B is a (α, β) lower approximate distribution consistent set iff xi and xk

satisfy A
(α,β)
C (xi) = A

(α,β)
C (xk), then [xi]B ∩ [xk]B = ∅, where i = 1, 2, · · · , n

and k = 1, 2, · · · , n.
(2) B is a (α, β) upper approximate distribution consistent set iff xi and xk

satisfy A
(α,β)

C (xi) = A
(α,β)

C (xk), then [xi]B ∩ [xk]B = ∅, where i = 1, 2, · · · , n
and k = 1, 2, · · · , n.
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Proof. (1)”⇒” suppose that [xi]B ∩ [xk]B �= ∅ for i = 1, 2, · · · , n and k =

1, 2, · · · , n, then there must be [xi]B = [xk]B, thus M
apr

(α,β)

B (xi, Dj) = M
apr

(α,β)

B

(xk, Dj) hold, that is to say A
(α,β)
B (xi) = A

(α,β)
B (xk). Since B is a (α, β) lower

approximate distribution consistent set, by Lemma 1, we have the following

A
(α,β)
B (xi) = A

(α,β)
C (xi), A

(α,β)
B (xk) = A

(α,β)
C (xk), so A

(α,β)
C (xi) = A

(α,β)
C (xk),

this is contrary to the assumption.
”⇐” for i = 1, 2, · · · , n and k = 1, 2, · · · , n, if [xk]C ⊆ [xi]B, then [xi]B ∩

[xk]B �= ∅, namely [xi]B = [xk]B, in terms of the assumption, it follow that

A
(α,β)
C (xi) = A

(α,β)
C (xk). For ∀1 ≤ j ≤ m, if M

apr
(α,β)

B (xi, Dj) = 1, then for any

y ∈ [xi]B, we have M
apr

(α,β)

B (y,Dj) = 1, so for ∀1 ≤ k ≤ n, if [xk]C ⊆ [xi]B, then

M
apr

(α,β)

B (xk, Dj) = 1, by Lemma 1, Dj ∈ A
(α,β)
C (xk), i.e., M

apr
(α,β)

C (xi, Dj) = 1.

On the other hand, if M
apr

(α,β)

C (xi, Dj) = 1, then we have Dj ∈ A
(α,β)
C (xi),

so for ∀1 ≤ k ≤ n, if [xk]C ⊆ [xi]B, then there must be M
apr

(α,β)

C (xk, Dj) = 1,
namely, P (Dj |[xk]C) ≥ αj . Thus, we obtain that

P (Dj |[xi]B) =
∑
|[xk]C ∩Dj|/|[xi]B|

=
∑

P (Dj |[xk]C)
|[xk]C |
|[xi]B|

≥ αj

∑ |[xk]C |
|[xi]B|

= αj

Where [xk]C ⊆ [xi]B .

Finally, we have M
apr

(α,β)

B (xi, Dj) = 1, therefore we can conclude that

M
apr

(α,β)

B = M
apr

(α,β)

C , according to Definition 4, B is a (α, β) lower approxi-
mate distribution consistent set.

The proof of Theorem 1 is as follows.

Proof. (1)”⇒” suppose B is a (α, β) lower approximate distribution consistent

set. For any A
(α,β)
C (x) �= A

(α,β)
C (y). According to Lemma 2, we obtain that

[x]B ∩ [y]B �= ∅, that is to say, there exists a ∈ B such that Ia([x]) �= Ia([y]), so,
it follows that a ∈ Dapr

(α,β)
([x], [y]), i.e., B ∩Dapr

(α,β)
([x], [y]) �= ∅.

”⇐” Suppose A
(α,β)
C ([x]) = A

(α,β)
C ([y]). It should be noticed that A

(α,β)
C (x) �=

A
(α,β)
C (y). For any a ∈ B, when a /∈ Dapr

(α,β)
([x], [y]), we know Ia([x]) = Ia([y]).

Accordingly, Ia(x) = Ia(y) which implies [x]B = [y]B. In terms of Lemma 2, we
can conclude that B is not a (α, β) lower approximate distribution consistent

set. Thus, if B∩Dapr
(α,β)

([x], [y])) �= ∅ for all A(α,β)
C ([x]) = A

(α,β)
C ([y]), then B is

a (α, β) lower approximate distribution consistent set. This completes the proof.



Three-Way Decisions Method

for Overlapping Clustering

Hong Yu and Ying Wang

Chongqing Key Lab of Computational Intelligence,
Chongqing University of Posts and Telecommunications,

Chongqing, 400065, P.R. China
yuhong@cqupt.edu.cn

Abstract. Most of clustering methods assume that each object must be
assigned to exactly one cluster, however, overlapping clustering is more
appropriate than crisp clustering in a variety of important applications
such as the network structure analysis and biological information. This
paper provides a three-way decision strategy for overlapping clustering
based on the decision-theoretic rough set model. Here, each cluster is
described by an interval set that is defined by a pair of sets called the
lower and upper bounds. Besides, a density-based clustering algorithm
is proposed using the new strategy, and the results of the experiments
show the strategy is effective to overlapping clustering.

Keywords: overlapping clustering, three-way decision, decision-theoretic
rough set theory, data mining.

1 Introduction

In recent years, clustering has been widely used as a powerful tool to reveal un-
derlying patterns in many areas such as data mining, web mining, geographical
data processing, medicine and so on. Most of clustering methods assume that
each object must be assigned to exactly one cluster. However, in a variety of im-
portant applications such as network structure analysis, wireless sensor networks
and biological information, overlapping clustering is more appropriate[3].

Many researchers have proposed some overlapping clustering methods for dif-
ferent application background. For example, Takaki and Tamura et al. [10] pro-
pose a method of overlapping clustering for network structure analysis, Aydin
and Näıt-Abdesselam et al. [1] propose an overlapping clusters algorithm used
in the mobile Ad hoc networks. Lingras and Bhalchandra et al. [5] compare crisp
and fuzzy clustering in the mobile phone call dataset. Obadi and Dráždilová et
al. [8] propose an overlapping clustering method for DBLP datasets based on
rough set theory.

The rough set theory [9] approximates a concept by three regions, namely, the
positive, boundary and negative regions, which immediately leads to the notion
of three-way decision clustering approach. Three-way decisions constructed from

J.T. Yao et al. (Eds.): RSCTC 2012, LNAI 7413, pp. 277–286, 2012.
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the three regions are associated with different actions and decisions. In fact, the
three-way decision approach has been achieved in some areas as the email spam
filtering [15], three-way investment decisions [6], and so on [4] [12].

To combat the overlapping clustering, this paper proposes a new three-way
decision clustering strategy based on the decision-theoretic rough set model [13].
Yao and Lingras et al. [14] had represented each cluster by an interval set in-
stead of a single set as the representation of a cluster. Chen and Miao [2] study
the clustering method represented as interval sets, wherein the rough k-means
clustering method is combined. Inspired by the representation, the cluster in our
strategy is also represented by an interval set, which is defined by a pair of sets
called the lower and upper bounds. Objects in the lower bound are typical ele-
ments of the cluster and objects between the upper and lower bounds are fringe
elements of the cluster.

Furthermore, the solutions to obtain the lower and upper bounds are for-
mulated based on the three-way decisions in this paper. Then, a density-based
clustering algorithm is proposed, and we demonstrate the effectiveness of the
algorithm through experiments.

2 Formulation of Clustering

2.1 Decision-Theoretic Rough Set Model

The decision-theoretic rough set model [13], DTRS shorted, applies the Bayesian
decision procedure for the construction of probabilistic approximations.

Let Ω = {A,Ac} denote the set of states indicating that an object is in A and
not in A, respectively. Let Action = {aP , aN , aB} be the set of actions, where aP ,
aN , and aB represent the three actions in classifying an object, deciding POS(A),
deciding NEG(A) and deciding BND(A), respectively. Let i = P,N,B, and
λiP (ai|A) and λiN (ai|Ac) denote the loss (cost) for taking the action ai when the
state is A, Ac, respectively. For an object with description [x], suppose an action
ai is taken. The expected loss R(ai|[x]) associated with taking the individual
actions can be expressed as:

R(aP |[x]) = λPPP (A|[x]) + λPNP (Ac|[x]),
R(aN |[x]) = λNPP (A|[x]) + λNNP (Ac|[x]),
R(aB|[x]) = λBPP (A|[x]) + λBNP (Ac|[x]).

where the probabilities P (A|[x]) and P (Ac|[x]) are the probabilities that an
object in the equivalence class [x] belongs to A and Ac, respectively.

2.2 Extend DTRS for Clustering

To define our framework, we will assume C = {C1, · · · , Ck, · · · , CK}, where
Ck ⊆ U , is a family of clusters of a universe U = {x1, · · · , xn}.

In order to interpret clustering, let’s extend the DTRS model firstly. The set
of states is given by Ω = {C,¬C}, the two complement states indicate that an
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object is in a cluster C and not in a cluster C, respectively. The set of action is
given by A = {aP , aB, aN}, where aP , aB and aN represent the three actions in
classifying an object, aP represents that we will take the description of an object
x into the domain of the cluster C; aB represents that we will take the description
of an object x into the boundary domain of the cluster C; aN represents that
we will take the description of an object x into the negative domain of the C.

Let λPP ,λBP , λNP , λPN , λBN , λNN denote the loss (cost) for taking the
action aP , aB and aN when the state is C, ¬C, respectively. For an object x
with description [x], suppose an action ai is taken. According to Subsection 2.1,
the expected loss associated with taking the actions can be expressed as:

Risk(aP |[x]) = λPPPr(C|[x]) + λPNPr(¬C|[x]);
Risk(aB|[x]) = λBPPr(C|[x]) + λBNPr(¬C|[x]);
Risk(aN |[x]) = λNPPr(C|[x]) + λNNPr(¬C|[x]).

(1)

Where Pr(C|[x]) represents the probability that an object x in the description
[x] belongs to the cluster C, and Pr(C|[x]) + Pr(¬C|[x]) = 1. The Bayesian
decision procedure leads to the following minimum-risk decision:

(P )If Risk(aP |[x]) ≤ Risk(aN |[x]) and Risk(aP |[x]) ≤ Risk(aB|[x]),
decide POS(C);
(B)If Risk(aB|[x]) < Risk(aP |[x]) and Risk(aB|[x]) < Risk(aN |[x]),
decide BND(C);
(N)If Risk(aN |[x]) ≤ Risk(aP |[x]) and Risk(aN |[x]) ≤ Risk(aB|[x],
decide NEG(C);

(2)

Consider a special kind of loss functions with λPP ≤ λBP < λNP and λNN ≤
λBN < λPN . That is, the loss of classifying an object x belonging to C into the
positive region POS(C) is less than or equal to the loss of classifying x into the
boundary region BND(C), and both of these losses are strictly less than the loss
of classifying x into the negative region NEG(C). The reverse order of losses is
used for classifying an object x that does not belong to C, namely the object x is
a negative instance of C. For this type of loss function, the above minimum-risk
decision rules can be written as:

(P )If Pr(C|[x]) ≥ α and Pr(C|[x]) ≥ γ, decide POS(C);
(B)If Pr(C|[x]) < α and Pr(C|[x]) > β, decide BND(C);
(N)If Pr(C|[x]) ≤ β and Pr(C|[x]) ≤ γ, decide NEG(C);

(3)

Where:
α = (λPN−λBN )

(λPN−λBN )+(λBP−λPP ) = (1 + (λBP−λPP )
(λPN−λBN ) )

−1

γ = (λPN−λNN)
(λPN−λNN )+(λNP−λPP ) = (1 + (λNP−λPP )

(λPN−λNN ) )
−1

β = (λBN−λNN )
(λBN−λNN )+(λNP−λBP ) = (1 + (λNP−λBP )

(λBN−λNN ) )
−1

(4)

In this paper, we consider that the cluster have the boundary, so we just discuss
the relationship between thresholds α and β as α > β. According to Eq.(4), it
follows that α > γ > β. After tie-breaking, the following simplified rules (P)-(N)
are obtained:
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(P ) If Pr(C|[x]) ≥ α, decide POS(C);
(B) If β < Pr(C|[x])) < α, decide BND(C);
(N) If Pr(C|[x]) ≤ β, decide NEG(C).

(5)

Obviously, rules (P)-(N) give a three-way decision method for clustering. That
is, an object belongs to a cluster definitely if it is in POS(C) based on the
available information; an object may be a fringe member if it is in BND(C),
we can decide whether it is in a cluster through further information. Clustering
algorithms can be devised according to the rules (P)-(N).

On the other hand, according to the rough set theory [9] and the rules (P)-
(N), for a subset C ⊆ U , we can define its lower and upper approximations as
follows.

apr(C) = POS(C) = {x|Pr(C|[x]) ≥ α};
apr(C) = POS(C) ∪BND(C) = {x|Pr(C|[x]) > β}. (6)

2.3 Re-formulation of Clustering Using Interval Set

Yao and Lingras et al.[14] had formulated the clustering using the form of interval
sets. It is naturally that the region between the lower and upper bound of an
interval set means the overlapping region.

Assume C = {C1, · · · , Ck, · · · , CK} is a family of clusters of a universe U =
{x1, · · · , xn}. Formally, we can define a clustering by the properties:

(i) Ck �= ∅, 0 ≤ k ≤ K; (ii)
⋃

Ck∈C

Ck = U.

Property (i) requires that each cluster cannot be empty. Property (ii) states that
every x ∈ U belongs to at least one cluster. Furthermore, if Ci ∩ Cj = ∅, i �= j,
it is a crisp clustering, otherwise it is an overlapping clustering.

As we have discussed, we may use an interval set to represent the cluster in C,
namely, Ck is represented by an interval set [Cl

k, C
u
k ]. Combine the conclusion in

the above subsection, we can represent the lower and upper bound of the interval
set as the lower and upper approximate, that is, Ck is represented by an interval
set [apr(Ck), apr(Ck)].

Any set in the family [apr(Ck), apr(Ck)] = {X |apr(Ck) ⊆ X ⊆ apr(Ck)} may
be the actual cluster Ck. The objects in apr(Ck) may represent typical objects
of the cluster Ck, objects in apr(Ck) − apr(Ck) may represent fringe objects,
and objects in U − apr(Ck) may represent the negative objects. With respect to
the family of clusters C = {C1, · · · , Ck, · · · , CK}, we have the following family
of interval set clusters:

C = [apr(C1), apr(C1)], . . . , [apr(Ck), apr(Ck)], . . . , [apr(CK), apr(CK)].

Corresponding to Property (i) and (ii), we adopt the following properties for a
clustering in the form of interval set:

(i) apr(Ck) �= ∅, 0 ≤ k ≤ K; (ii)
⋃

apr(Ck) = U.
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Property (i) requires that the lower approximate must not be empty. It implies
that the upper approximate is not empty. It is reasonable to assume that each
cluster must contain at least one typical object and hence its lower bound is not
empty. In order to make sure that a clustering is physically meaningful, Property
(ii) states that any object of U belongs to the upper approximate of a cluster,
which ensures that every object is properly clustered.

According to Eq.(6), the family of clusters C give a three-way decision clus-
tering. Namely, objects in apr(Ck) are decided definitely to belong to the cluster
Ck, objects in U − apr(Ck) can be decided not to belong to the cluster Ck. Set
BND(Ck) = apr(Ck)−apr(Ck). Objects in the region BND(Ck) may be belong
to the cluster or not.

There exists k �= t, it is possible that apr(Ck) ∩ apr(Ct) �= ∅, or BND(Ck) ∩
BND(Ct) �= ∅. In other words, it is possible that an object belongs to more than
one cluster.

3 Clustering Algorithm Using Three-Way Decision

Density-based clustering analysis is one kind of clustering analysis methods that
can discover clusters with arbitrary shape and is insensitive to noise data. There-
fore, according to the three-way decision rules (P)-(N) in Subsection 2.2, a
density-based clustering algorithm will be proposed in this section to combat
the overlapping clustering.

Considering the discovery area, set the center is p and Rth is the radius, the
number of points in the area is called the density of p relative to Rth, denoted
by Density(p,Rth). The concepts are defined as follows [7].

Reference points: For any node p, distance Rth and threshold mth in the
space, if Density(p,Rth) ≤ mth, then p is a reference point and mth is the
density threshold value.

The reference points are fictional points, not the points in the dataset. Thresh-
old value mth represents a reference number. When the density of p greater than
mth, p is an intensive point, otherwise it is a sparse point.

Representing Region: Every reference point p is the representative of a cir-
cular area where the point is the center of the area and the radius is Rth, and
the region is the representing region of the reference point p.

All points(objects) in the representing region of a reference point p are seen
as an equivalence class. In order to cluster objects(points) in the space, we need
to give the method to calculate the probability in Eq.(6).

Probability: [x] is a description of an object x, the Pr(C|[x]) is:

Pr(C|[x]) = |C ∩ [x]|
|[x]| . (7)

General speaking, the equivalence class [x] of an object x can be used as a
description of the object. That is, Eq.(7) gives a computing method for the
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Algorithm 1. Density-based Clustering Algorithm Using Three-way
Decision
Input : a universe U = {x1, · · · , xn}.
Output: the clustering result C.
begin

Step 1. Initial: Set UN = ∅, RF = ∅, the possibility Pr(Ck|RFt) = 0.
Step 2. Find all candidate reference points:
RF1 ← x1; RF = RF ∪ {RF1};
for every xi do

temp = min
RFt

|RFt − xi|; k = arg(min
RFt

|RFt − xi|);
If temp > Rth then { RFT+1 ← xi; RF = RF ∪RFT+1;}
Else alter RFk based on object xi;

end
Step 3. Choice the reference points and the noise points from the candidates:
for every RFt ∈ RF do

For (every xi) do { If |RFt − xi| < Rth then RFt = RFt ∪ xi; }
If |RFt| < mth then { UN = UN ∪RFt; RF = RF −RFt; }

end
Step 4. Clustering the reference points according to three-way rules (P)-(N):
for every apr(Ck) do

apr(Ck) = RFk; apr(Ck) = RFk;

for every RFt do

Pr(Ck|RFt) = |Ck∩RFt|
|RFt| // Eq.(7)

If Pr(Ck|RFt) ≥ α then
apr(Ck) = apr(Ck) ∪RFt; apr(Ck) = apr(Ck) ∪ RFt;
If β < Pr(Ck|RFt) < α then apr(Ck) = apr(Ck) ∪RFt,

end

end
C = [apr(C1), apr(C1)], . . . , [apr(Ck), apr(Ck)], . . . , [apr(CK), apr(CK)].

for every apr(Ck) do
If apr(Ck) ⊇ apr(Cj) then apr(Ck) = apr(Ck) ∪ apr(Cj); C = C−Cj ;

end
Step 5. Clustering the noise points.
for every apr(Ck) do

for every UNs do
If UNs ⊆ apr(Ck) then
apr(Ck) = apr(Ck) ∪ UNs; apr(Ck) = apr(Ck) ∪ UNs;
Else {C = C ∪ UNS ;}

end

end
end

probability, then we can devise the algorithm based on three-way decision. In
other words, the different algorithms can be developed based on the different
approaches of computing probability.

In this paper, a density-based clustering algorithm using three-way decision
is proposed as follows. Here, UN and RF = {RF1, · · · , RFt, · · · , RFT } means
the noise data set and the family of reference points sets, respectively.
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In the above algorithm, Step 1 to Step 3 obtain an initial clustering result by
choosing the reference points and representing regions according to the relative
concepts. Step 4 modifies the clusters according to three-way decision rules (P)
to (N).

4 Experiments

The new algorithm is performed by Visual C++. Firstly, some UCI datasets
[11] are used to test the different thresholds such as the distance threshold value
Rth, density threshold mth, α and β. Obviously, Rth and mth are decided by
the characteristics of the dataset. However, there is an interesting result that the
clustering result seems good when α = 0.8 and β = 0.4 in most cases. Thus, the
result is accepted in the later experiments. On the other hand, it enlightens us
we should think a formal way to define the α and β in the further work.

4.1 Synthetic Data Set

The synthetic data set is tested to illustrate the ideas presented in the previous
section. The two dimensions data set is depicted in Fig.1, which have 374 points,
and Fig.2 gives the clustering result. Here, the thresholds are Rth = 1.75, mth =
10, α = 0.8 and β = 0.4.

Fig. 1. A synthetic data set Fig. 2. The clustering result of the data set

From Fig.2, we can see that these points are clustered into three clusters. That
is, the cross points means the lower and bounder regions of C1, respectively; the
circular points and tangle points means the lower and bounder regions of C2,
respectively; the dots means the lower regions of C3. Here, the boundary of C3

is empty.
Observe Fig.2, the lower approximations of cluster C2 and C3 are overlapping,

and the number of the overlapping objects(points) is 6, which can be denoted
by apr(C2) ∩ apr(C3) �= ∅, and |apr(C2) ∩ apr(C3)| = 6. In addition, apr(C1) ∩
apr(C3) = ∅, |apr(C1) ∩ apr(C2)| = 66, and apr(C1) �= apr(C2).

The conclusions from Fig.2 are positive to clustering. For example, when the
dataset represents the network structure, where the C1 and C2 have so many



284 H. Yu and Y. Wang

overlapping users. Obviously, it looks reasonable to build a new cluster composed
by the uniting apr(C1)∪apr(C2). Otherwise, since the number of the overlapping
objects between C2 and C3 is 6, we needn’t to unite the two clusters. How to
formal the idea is our further work.

4.2 UCI Data Set

More experiments on some standard data sets from UCI repository [11] are tested
in this subsection, and results are shown in Table 1. In order to measure the test’s
accuracy, both the precision and the recall of the test are considered, and the
F-measure is extended as follows.

Assume there is a data set U = {x1, . . . , xi, . . . , xn}, and the objects in
U are clustered into T = {T1, . . . , Tm, . . . , TM}. On the other hand, the re-
sult of clustering by the clustering algorithm based on three-way decision is:
C = {[apr(C1), apr(C1)], . . . , [apr(Ck), apr(Ck)], . . . , [apr(CK), apr(CK)]}.

Table 1. The CPU time and Results of the Algorithm

Database |U| |A| distance Thresholds Results
α, β Rth mth F −measure CPU(S)

iris 150 4 2.53 0.8,0.4 1.53 30 0.778 0.015

Letter1 1655 16 11.3 0.8,0.4 10 200 0.609 0.5

Poker1 199 10 11.2 0.8,0.4 11 80 0.595 0.078

Poker2 1188 10 12 0.8,0.4 11 900 0.503 1.296

White 4535 11 53 0.8,0.4 52 500 0.601 2.734

Precision is the number of correct upper approximate results divided by
the number of all returned upper approximate results. Recall is the number of
correct lower approximate results divided by the number of results that should
have been returned. The F − measure can be interpreted as a weighted as a
weighted as a weighted average of the precision and recall, where an F-measure
reaches its best value at 1 and worst value at 0. That is, the F −measure can
be denoted as the following equation.

F −measure = 2 × Precision × Recall

Precision + Recall
(8)

In Table 1, the |U| and |A| are the number of objects and the number of attributes
in the data set, respectively. distance means the average distance among objects
in the data set.

Here, we choose some clusters from Letter and Porker datasets in UCI repos-
itory to generate some datasets used in Tabel 1.

Letter1 Dataset, which is composed of 1665 objects from Letter data set.
There are 567 objects belong to decision attribute ‘A’, 570 objects belong to
decision attribute ‘E’, and 528 objects belong to decision attribute ‘O’.

Poker1 Dataset, which has 199 objects from Poker-hand-training-true data
set. There are 93 objects belong to decision attribute ‘4’, 54 objects belong to
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decision attribute ‘5’, 36 objects belong to decision attribute ‘6’, 6 objects belong
to ‘7’, 5 objects belong to ‘8’, and 4 objects belong to ‘9’.

Poker2 Dataset, which concludes 1188 objects from Poker-hand-training-true.
There are 403 objects belong to decision attribute ‘0’, 568 objects belong to ‘1’,
165 objects belong to ‘3’, 36 objects belong to ‘6’, 6 objects belong to ‘7’, 5
objects belong to ‘8’, and 4 objects belong to ‘9’.

From Table 1, we can see that the CPU runtime and the F-measure are ac-
credited. Actually, the results of clustering are changed with the change of the
parameters such as α, β, Rth and mth. Through the experiments, we find out
that the result would be better when the value of Rth close to the average
distance. However, the accuracy of the algorithm need to improve.

5 Conclusion

In many applications such as network structure analysis, wireless sensor networks
and biological information, an object should belong to more than one cluster,
and as a result, cluster boundaries necessarily overlap. Three-way decisions rules
constructed from the decision-theoretic rough set model are associated with dif-
ferent regions. This paper provides a three-way decision strategy for overlapping
clustering. Here, each cluster is described by an interval set that is defined by a
pair of sets called the lower and upper bounds. In addition, a density-based clus-
tering algorithm is proposed and tested by using the new strategy. The analysis
of the example indicates the strategy is effective to overlapping clustering. How
to use less parameters and improve the accuracy of the algorithm is the further
work.
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Abstract. A three-way decisions solution based on Bayesian decision
theory for filtering spam emails is examined in this paper. Compared
to existed filtering systems, the spam filtering is no longer viewed as
a binary classification problem. Each incoming email is accepted as a
legitimate or rejected as a spam or undecided as a further-exam email by
considering the misclassification cost. The three-way decisions solution
for spam filtering can reduce the error rate of classifying a legitimate
email to spam, and provide a more meaningful decision procedure for
users. The solution is not restricted to a specific classifier. Experimental
results on several corpus show that the three-way decisions solution can
get a better total cost ratio value and a lower weighted error.

Keywords: Decision-theoretic rough set model, spam filtering, three-
way decisions solution.

1 Introduction

Spam filtering is often considered as a binary classification problem. Many ma-
chine learning algorithms were employed in different filters to classify an incom-
ing email as a legitimate email or a spam, such as Naive bayesian classifier [11],
memory based classifier (k-nn) [1], SVM based classifier [5] and so on [2,12]. In
this paper, we will treat spam filtering as an optimum decision problem under
the framework of cost sensitive learning.

It is easy to understand that Spam filtering is a cost sensitive learning prob-
lem. The cost for misclassifying a legitimate email as spam far outweighs the
cost of marking a spam email as legitimate [11]. Many machine learning ap-
proaches to spam filtering papers considered the different costs of two types of
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misclassifications (legit→ spam and spam→ legit). In [11], 99.9% was used as
the certain threshold for classifying test email as spam to reflect the asymmetric
cost of errors. The threshold was set manually. In [1], three scenarios(λ = 1,
λ = 9, λ = 999) were discussed, while legit → spam is λ times costly than
spam → legit. These parameters were applied in the cost sensitive evaluation
procedure only, which can measure the efficiency of the learning algorithm, but
can not help learn a better result because they did not consider them in the
training procedure. In these papers, appropriate settings of parameters were not
discussed. We will discuss this point in this paper.

It is intuitively to treat spam filtering as a three-way decision problem [15].
Besides the usual decisions include accept an email as a legitimate one and re-
ject an email as a spam, the third type decision further-exam for those suspicious
spam emails is also considered in three-way decisions solution. The idea of three-
way decisions making can be found in many areas. In [3], an optimum rejection
scheme was derived to safeguard against excessive misclassification in pattern
recognition system. In clinical decision making for a certain disease, with options
of treating the conditional directly, not treating the condition, or performing a
diagnose test to decide whether or not to treat the condition [9]. Yao et al. [13,14]
introduced decision theoretic rough set model(DTRS) based on three-way de-
cisions, which considered the cost of each error and Bayesian decision theory.
Based on DTRS and Naive Bayesian classifier, a three-way decision approach
to email spam filtering was proposed recently [15]. Our work is continuation of
them. Different with their work, our three-way decision solution is not only suit
to Naive Bayesian classifier, but also k-nn, SVM and other classifiers.

The main advantage of three-way decisions solution is that it allows the possi-
bility of refusing to make a direct decision, which means it can convert some po-
tential misclassifications into rejections, and these emails will be further-examed
by users. Several cost functions are defined to state how costly each decision
is, and the final decision can make the overall cost minimal filtering. We apply
the three-way decisions solution on several classical classifiers which are used in
spam filtering, including Naive Bayesian classifier, k-nn classifier and SVM clas-
sifier. The tests on several benchmark corpus include Ling-Spam, PU-Corpora
and Enron-Spam1 show the efficiency of the three-way decisions solution. We
can get a lower weighted error and a better total cost ratio (TCR).

2 Three-Way Decisions Solution to Filter Spam

2.1 Decision-Theoretic Rough Set Model

Decision-theoretic rough set model was proposed by Yao et al. [13], which is based
on Bayesian decision theory. The basic ideas of the theory [14] are reviewed.

Let Ω = {ω1, . . . , ωs} be a finite set of s states and let A = {a1, . . . , am}
be a finite set of m possible actions. Let λ(ai|ωj) denote the cost, for taking

1 All corpus are available from
http://labs-repos.iit.demokritos.gr/skel/i-config/

http://labs-repos.iit.demokritos.gr/skel/i-config/
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action ai when the state is ωj . Let p(ωj |x) be the conditional probability of an
incoming email x being in state ωj, suppose action ai is taken. The expected
cost associated with taking action ai is given by:

R(ai|x) =
s∑

j=1

λ(ai|ωj) · p(ωj |x). (1)

In rough set theory [10], a set C is approximated by three regions, namely,
the positive region POS(C) includes the objects that are sure belong to C, the
boundary region BND(C) includes the objects that are possible belong to C, and
the negative region NEG(C) includes the objects that are not belong to C. In
spam filtering, we have a set of two states Ω = {C,Cc} indicating that an email
is in C (i.e., legitimate) or not in C (i.e., spam), respectively. The set of emails
can be divided into three regions, POS(C) includes emails that are legitimate
emails, BND(C) includes emails that need further-exam, and NEG(C) includes
emails that are spam. With respect to these three regions, the set of actions is
given by A = {aP , aB, aN}, where aP , aB and aN represent the three actions
in classifying an email x, namely, deciding x ∈ POS(C), deciding x ∈ BND(C),
and deciding x ∈ NEG(C). Six cost functions are imported, λPP , λBP and λNP

denote the costs incurred for taking actions aP , aB, aN , respectively, when an
email belongs to C, and λPN , λBN and λNN denote the costs incurred for taking
these actions when the email does not belong to C.

The expected costs associated with taking different actions for email x can be
expressed as:

R(aP |x) = λPP · p(C|x) + λPN · p(Cc|x),
R(aB|x) = λBP · p(C|x) + λBN · p(Cc|x),
R(aN |x) = λNP · p(C|x) + λNN · p(Cc|x). (2)

The Bayesian decision procedure suggests the following minimum-cost decision
rules:

(P) If R(aP |x) ≤ R(aB|x) and R(aP |x) ≤ R(aN |x), decide x ∈ POS(C);
(B) If R(aB|x) ≤ R(aP |x) and R(aB|x) ≤ R(aN |x), decide x ∈ BND(C);
(N) If R(aN |x) ≤ R(aP |x) and R(aN |x) ≤ R(aB|x), decide x ∈ NEG(C);

Consider a special kind of cost functions with:

λPP ≤ λBP < λNP ,

λNN ≤ λBN < λPN . (3)

That is, the cost of classifying an email x being in C into the positive region
POS(C) is less than or equal to the cost of classifying x into the boundary region
BND(C), and both of these costs are strictly less than the cost of classifying x
into the negative region NEG(C). The reverse order of costs is used for classifying
an email not in C. Since p(C|x) + p(Cc|x) = 1, under above condition, we can
simplify decision rules (P)-(N) as follows:
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(P) If p(C|x) ≥ α and p(C|x) ≥ γ, decide x ∈ POS(C);
(B) If p(C|x) ≤ α and p(C|x) ≥ β, decide x ∈ BND(C);
(N) If p(C|x) ≤ β and p(C|x) ≤ γ, decide x ∈ NEG(C).

Where

α =
(λPN − λBN )

(λPN − λBN ) + (λBP − λPP )
,

β =
(λBN − λNN )

(λBN − λNN ) + (λNP − λBP )
,

γ =
(λPN − λNN )

(λPN − λNN ) + (λNP − λPP )
. (4)

Each rule is defined by two out of the three parameters. The conditions of rule (B)
suggest that α > β may be a reasonable constraint; it will ensure a well-defined
boundary region. If we obtain the following condition on the cost functions [14]:

(λNP − λBP )

(λBN − λNN )
>

λBP − λPP

(λPN − λBN )
, (5)

then 0 ≤ β < γ < α ≤ 1. In this case, after tie-breaking, the following simplified
rules are obtained:

(P1) If p(C|x) ≥ α, decide x ∈ POS(C);
(B1) If β < p(C|x) < α, decide x ∈ BND(C);
(N1) If p(C|x) ≤ β, decide x ∈ NEG(C).

The threshold parameters can be systematically calculated from cost functions
based on the Bayesian decision theory.

2.2 Three-Way Decisions Solution

Given the cost functions, we can make the proper decisions for incoming emails
based on the parameters (α, β), which are computed by cost functions, and the
probability of each email being a legitimate one, which is provided by the running
classifier.

For an email x, if the probability of being a legitimate email is p(C|x), then
the three-way decisions solution is:

If p(C|x) ≥ α, then x is a legitimate email;
If p(C|x) ≤ β, then x is a spam;
If β < p(C|x) < α, then x needs further-exam.

3 Experiments on Several Benchmark Corpus

In this section, we will check the efficiency of the three-way decisions solution.
The followings are the detail of classifiers, corpus and the evaluation methods
used in our experiments.
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3.1 Classifiers

Three classical classifiers (Naive Bayesian classifier, k-nn classifier and SVM
classifier) are applied in the experiments.

The Naive Bayesian classifier can provide the probability of an incoming email
being a legitimate email. Suppose an email x is described by a feature vector
x = (x1,x2, . . . ,xn), where x1,x2, . . . ,xn are the values of attributes of the
email. Let C denote the legitimate class. Based on Bayes’ theorem and the
theorem of total probability, given the vector of an email, the probability of
being a legitimate one is:

p(C|x) = p(C) · p(x|C)

p(x)
, (6)

where p(x) = p(x|C) ·p(C)+p(x|Cc) ·p(Cc). Here p(C) is the prior probability of
an email being in the legitimate class. p(C) is commonly known as the likelihood
of an email being in the legitimate class with respect to x. The likelihood p(x|C)
is a joint probability of p(x1,x2, . . . ,xn|C).

The k-nearest neighbors algorithm(k-nn) classifier [8] predicts an email’s class
by a majority vote of its neighbors. Euclidean distance is usually used as the
distance metric. Let n(l) denote the legitimate emails’ number in the k nearest
neighbors, and n(s) denote the spam’s number. So n(l) + n(s) = k, then we use
sigmoid function to estimate the posterior probability of an email x being in the
legitimate class.

p(C|x) = 1

1 + exp(−a · (n(l)− n(s)))
. (7)

In our experiments, a = 1 and k = 17.
For SVM classifier, the sigmoid function also be used to estimate the posterior

probability:

p(C|x) = 1

1 + exp(−a · d(x)) . (8)

While d(x) = w.x+b
‖w‖ , where weighted vector w and threshold b are used to define

the hyperplane. a = 6 in our experiments.

3.2 Benchmark Corpus

Three benchmark corpus are used in this paper, called Ling-Spam, PU-Corpora
and Enron-Spam.

The corpus Ling-Spam was preprocessed as three different type of corpus,
named Ling-Spam-bare, Ling-Spam-lemm and Ling-Spam-stop, respectively.
Ling-Spam-bare is a kind of “words only” dataset, each attribute shows if a
particular word occurs in the email. For Ling-Spam-lemm, a lemmatizer was ap-
plied to Ling-Spam, which means each word was substituted by its base form(e.g.
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“earning” becomes “earn”). Ling-Spam-stop is a data set generated by consid-
ering stop-list based on Ling-Spam-lemm.

The corpus PU-Corpora contains PU1, PU2, PU3 and PUA corpora. All cor-
pus are only in “bare” form: tokens were separated by white characters, but no
lemmtizer or stop-list has been applied.

Another corpus Enron-Spam is divided to 6 datasets, each dataset contains
legitimate emails from a single user of the Enron corpus, to which fresh spam
emails with varying legit-spam ratios were added.

Since the corpus in Ling-Spam and PU-Corpora were divided into 10 datasets,
10-fold cross-validation is used in these corpus. Enron-Spam was divided into 6
datasets, 6-fold cross-validation is used in it’s experiment. Because we just want
to compare the three-way decisions solution with “two-way decisions” solution
based on the same classifiers and the same corpus, then it is non-necessary
to apply feature selection procedures in corpus, all attributes are used in the
experiments.

3.3 Measures to Evaluate Performance

As a cost sensitive learning problem, Androutsopoulos et al. [1] suggested that
using weighted accuracy(or weighted error rate) and total cost ratio to replace
the classical accuracy(or error rate) to measure the spam filter performance is
reasonable. Let Nlegit and Nspam be the total numbers of legitimate and spam
emails, to be classified by the filter, and nlegit→spam the number of emails belong-
ing to legitimate class that the filter classified as belonging to spam, nspam→legit ,
reversely. Then the classical accuracy and error rate are defined as:

Acc =
nlegit→legit + nspam→spam

Nlegit +Nspam
, (9)

Err =
nlegit→spam + nspam→legit

Nlegit +Nspam
. (10)

If legit → spam is λ times more costly than spam → legit, then weighted
accuracy(WAcc) and weighted error rate(WErr) are defined as:

WAcc =
λ · nlegit→legit + nspam→spam

λ ·Nlegit +Nspam
, (11)

WErr =
λ · nlegit→spam + nspam→legit

λ ·Nlegit +Nspam
. (12)

As the values of accuracy and error rate(or their weighted versions) are often
misleadingly high, another measure is defined to get a clear picture of a classifier’s
performance, the ratio of its error rate and that of a simplistic baseline approach.
The baseline approach is the filter that never blocks legitimate emails and always
passes spam emails. The weighted error rate of the baseline is:
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WErrb =
Nspam

λ ·Nlegit +Nspam
. (13)

The total cost ratio(TCR) is:

TCR =
WErrb

WErr
=

Nspam

λ · nlegit→spam + nspam→legit
. (14)

Greater TCR values indicate better performance. For TCR < 1, the baseline is
better. If cost is proportional to wasted time, an intuitive meaning for TCR is
the following: it measures how much time is wasted to delete manually all spam
emails when no filter is used, compared to the time wasted to delete manually
any spam emails that passed the filter plus the time needed to recover from
mistakenly blocked legitimate emails.

For our three-way decisions solution, weighted rejection rate(WRej) is defined
to indicate the weighted ratio of emails need further-exam.

WRej =
λ · nlegit→boundary + nspam→boundary

λ ·Nlegit +Nspam
, (15)

while nlegit→boundary and nspam→boundary mean the numbers of legitimate and
spam emails being classified to boundary(need further-exam), WRej = 1 −
WAcc−WErr, actually. For classical classifiers, WRej = 0.

3.4 Experimental Result

In our experiments, three different λ values(λ = 1,λ = 3, and λ = 9) are applied,
same values were considered in [15]. For three-way decisions solution, we set
α = 0.9 and β = 0.1 to make corresponding decisions.

From the results showed in the following 8 tables, we can see that the values of
WAcc in three-way decisions solution are lower than that in classical approaches.
It is the result of moving some emails into the boundary for further-exam. We
can also conclude that the three-way decisions solution decreases the values of
WErr and increases the values of TCR from the results, which means the three-
way decisions solution can reduce the number of “wrong classified” emails. For
those “suspicious spam” emails, it is a better choice to let users decide which is
a legitimate email or a spam. The increment of TCR shows that the three-way
decisions solution gives a better performance. There exists a kind of tradeoff
between the error rate and the rejection rate. Users can decrease the error rate
by increasing the rejection rate.

The most important conclusion we can get from the experiments result is that,
the three-way decisions solution can get a better performance than “two-way”
decision solution under the same situation, it does not depend on the parameter
λ or some special classifiers.
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Table 1. Comparison results on corpora
Ling-Spam-bare

NB WAcc WErr WRej TCR
NB 0.8989 0.1011 0.0000 1.6808

λ = 1 Three-way 0.8646 0.0693 0.0661 2.5115
NB 0.9512 0.0488 0.0000 1.3232

λ = 3 Three-way 0.9251 0.0320 0.0430 2.1034
NB 0.9716 0.0284 0.0000 0.8488

λ = 9 Three-way 0.9487 0.0174 0.0339 1.6006
k-nn

k-nn 0.8832 0.1168 0.0000 1.4963
λ = 1 Three-way 0.7863 0.0710 0.1427 2.9550

k-nn 0.9320 0.0680 0.0000 1.0979
λ = 3 Three-way 0.8419 0.0321 0.1260 2.2840

k-nn 0.9511 0.0489 0.0000 0.7853
λ = 9 Three-way 0.8636 0.0169 0.1195 1.7052
SVM

SVM 0.9393 0.0607 0.0000 9.8972
λ = 1 Three-way 0.8886 0.0272 0.0843 23.0962

SVM 0.9371 0.0629 0.0000 6.4686
λ = 3 Three-way 0.8932 0.0279 0.0790 13.7574

SVM 0.9321 0.0679 0.0000 4.4352
λ = 9 Three-way 0.8920 0.0300 0.0780 8.5106

Table 2. Comparison results on corpora
Ling-Spam-lemm

NB WAcc WErr WRej TCR
NB 0.9049 0.0951 0.0000 1.7984

λ = 1 Three-way 0.8706 0.0644 0.0651 2.6775
NB 0.9529 0.0471 0.0000 1.3821

λ = 3 Three-way 0.9289 0.0301 0.0410 2.1521
NB 0.9717 0.0283 0.0000 0.8479

λ = 9 Three-way 0.9517 0.0167 0.0316 1.4485
k-nn

k-nn 0.8889 0.1111 0.0000 1.5702
λ = 1 Three-way 0.7955 0.0696 0.1349 2.9454

k-nn 0.9375 0.0625 0.0000 1.1724
λ = 3 Three-way 0.8532 0.0308 0.1160 2.3681

k-nn 0.9566 0.0434 0.0000 0.8375
λ = 9 Three-way 0.8758 0.0156 0.1086 1.8028
SVM

SVM 0.9332 0.0668 0.0000 2.6733
λ = 1 Three-way 0.9000 0.0408 0.0592 4.2062

SVM 0.9591 0.0409 0.0000 1.7334
λ = 3 Three-way 0.9350 0.0226 0.0424 2.9567

SVM 0.9693 0.0307 0.0000 0.8859
λ = 9 Three-way 0.9487 0.0154 0.0359 1.6749

Table 3. Comparison results on corpora
Ling-Spam-stop

NB WAcc WErr WRej TCR
NB 0.8869 0.1131 0.0000 1.5081

λ = 1 Three-way 0.8426 0.0782 0.0793 2.2700
NB 0.9430 0.0570 0.0000 1.1375

λ = 3 Three-way 0.9124 0.0350 0.0526 1.9059
NB 0.9650 0.0350 0.0000 0.6772

λ = 9 Three-way 0.9398 0.0181 0.0421 1.3371
k-nn

k-nn 0.8338 0.1662 0.0000 1.1319
λ = 1 Three-way 0.6543 0.0568 0.2890 7.8151

k-nn 0.8374 0.1626 0.0000 0.5588
λ = 3 Three-way 0.6744 0.0537 0.2719 4.9959

k-nn 0.8389 0.1611 0.0000 0.2683
λ = 9 Three-way 0.6823 0.0525 0.2652 3.4376
SVM

SVM 0.9284 0.0716 0.0000 2.4032
λ = 1 Three-way 0.8861 0.0446 0.0692 3.9029

SVM 0.9584 0.0417 0.0000 1.6406
λ = 3 Three-way 0.9269 0.0217 0.0514 2.9681

SVM 0.9701 0.0299 0.0000 0.8998
λ = 9 Three-way 0.9429 0.0127 0.0444 1.9990

Table 4. Comparison results on corpora
PU1

NB WAcc WErr WRej TCR
NB 0.9174 0.0826 0.0000 5.9340

λ = 1 Three-way 0.9110 0.0761 0.0128 6.4019
NB 0.9558 0.0442 0.0000 5.3140

λ = 3 Three-way 0.9519 0.0411 0.0069 5.7487
NB 0.9769 0.0231 0.0000 4.4430

λ = 9 Three-way 0.9744 0.0219 0.0037 4.8404
k-nn

k-nn 0.8807 0.1193 0.0000 4.1672
λ = 1 Three-way 0.7661 0.0560 0.1780 8.9867

k-nn 0.8727 0.1273 0.0000 2.0298
λ = 3 Three-way 0.7468 0.0654 0.1879 3.9120

k-nn 0.8683 0.1317 0.0000 0.8361
λ = 9 Three-way 0.7362 0.0705 0.1933 1.5428
SVM

SVM 0.9789 0.0211 0.0000 22.4000
λ = 1 Three-way 0.9248 0.0055 0.0697 40.0000

SVM 0.9797 0.0203 0.0000 13.2656
λ = 3 Three-way 0.9342 0.0043 0.0615 24.0000

SVM 0.9801 0.0199 0.0000 9.0223
λ = 9 Three-way 0.9394 0.0037 0.0570 18.6667
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Table 5. Comparison results on corpora
PU2

NB WAcc WErr WRej TCR
NB 0.8423 0.1577 0.0000 1.3128

λ = 1 Three-way 0.8408 0.1577 0.0014 1.3128
NB 0.9135 0.0865 0.0000 1.0048

λ = 3 Three-way 0.9130 0.0865 0.0005 1.0048
NB 0.9423 0.0577 0.0000 0.6925

λ = 9 Three-way 0.9421 0.0577 0.0002 0.6925
k-nn

k-nn 0.8282 0.1718 0.0000 1.1586
λ = 1 Three-way 0.8239 0.1648 0.0113 1.2088

k-nn 0.9341 0.0659 0.0000 1.1586
λ = 3 Three-way 0.9324 0.0632 0.0043 1.2088

k-nn 0.9769 0.0231 0.0000 1.1586
λ = 9 Three-way 0.9763 0.0222 0.0015 1.2088
SVM

SVM 0.9521 0.0479 0.0000 6.1600
λ = 1 Three-way 0.9028 0.0169 0.0803 10.3333

SVM 0.9697 0.0303 0.0000 4.1600
λ = 3 Three-way 0.9335 0.0108 0.0557 9.1333

SVM 0.9768 0.0232 0.0000 3.2484
λ = 9 Three-way 0.9459 0.0083 0.0457 8.4747

Table 6. Comparison results on corpora
PU3

NB WAcc WErr WRej TCR
NB 0.9138 0.0862 0.0000 5.6911

λ = 1 Three-way 0.9107 0.0799 0.0094 6.1882
NB 0.9465 0.0535 0.0000 4.7892

λ = 3 Three-way 0.9446 0.0494 0.0061 5.2705
NB 0.9644 0.0356 0.0000 3.6175

λ = 9 Three-way 0.9632 0.0326 0.0042 4.0650
k-nn

k-nn 0.9048 0.0952 0.0000 4.8235
λ = 1 Three-way 0.8320 0.0484 0.1196 9.9110

k-nn 0.9359 0.0641 0.0000 3.4780
λ = 3 Three-way 0.8635 0.0336 0.1029 6.8689

k-nn 0.9529 0.0471 0.0000 2.0081
λ = 9 Three-way 0.8808 0.0255 0.0937 4.0087
SVM

SVM 0.9688 0.0312 0.0000 17.1363
λ = 1 Three-way 0.9334 0.0157 0.0508 37.9751

SVM 0.9702 0.0298 0.0000 10.1460
λ = 3 Three-way 0.9359 0.0145 0.0496 26.0547

SVM 0.9709 0.0291 0.0000 4.9085
λ = 9 Three-way 0.9372 0.0138 0.0489 18.6366

Table 7. Comparison results on corpora
PUA

NB WAcc WErr WRej TCR
NB 0.9570 0.0430 0.0000 19.8776

λ = 1 Three-way 0.9509 0.0377 0.0114 22.1418
NB 0.9575 0.0425 0.0000 17.2113

λ = 3 Three-way 0.9500 0.0382 0.0118 19.0486
NB 0.9577 0.0423 0.0000 16.0920

λ = 9 Three-way 0.9495 0.0384 0.0121 17.6724
k-nn

k-nn 0.7175 0.2825 0.0000 2.2809
λ = 1 Three-way 0.6237 0.2123 0.1632 4.0057

k-nn 0.5877 0.4123 0.0000 0.8063
λ = 3 Three-way 0.4671 0.3197 0.2132 1.3352

k-nn 0.5098 0.4902 0.0000 0.2745
λ = 9 Three-way 0.3732 0.3837 0.2432 0.4451
SVM

SVM 0.9316 0.0684 0.0000 11.7014
λ = 1 Three-way 0.8728 0.0272 0.1000 32.5111

SVM 0.9184 0.0816 0.0000 7.8165
λ = 3 Three-way 0.8548 0.0338 0.1114 23.8442

SVM 0.9105 0.0895 0.0000 5.9354
λ = 9 Three-way 0.8440 0.0377 0.1182 20.6893

Table 8. Comparison results on corpora
Enron-Spam

NB WAcc WErr WRej TCR
NB 0.8583 0.1417 0.0000 3.9030

λ = 1 Three-way 0.8447 0.1293 0.0260 4.5028
NB 0.8710 0.1290 0.0000 2.6236

λ = 3 Three-way 0.8589 0.1179 0.0232 3.0856
NB 0.8620 0.1380 0.0000 2.0322

λ = 9 Three-way 0.8503 0.1270 0.0227 2.4331
k-nn

k-nn 0.7726 0.2274 0.0000 37.9166
λ = 1 Three-way 0.7598 0.2143 0.0260 44.1145

k-nn 0.7531 0.2469 0.0000 17.7413
λ = 3 Three-way 0.7359 0.2316 0.0325 18.9961

k-nn 0.7137 0.2863 0.0000 7.0077
λ = 9 Three-way 0.6928 0.2688 0.0385 7.1975
SVM

SVM 0.9393 0.0607 0.0000 9.8972
λ = 1 Three-way 0.8886 0.0272 0.0843 23.0962

SVM 0.9371 0.0629 0.0000 6.4686
λ = 3 Three-way 0.8932 0.0279 0.0790 13.7574

SVM 0.9321 0.0679 0.0000 4.4352
λ = 9 Three-way 0.8920 0.0300 0.0780 8.5106

4 Conclusions

In this paper, email spam filtering is seen as a cost sensitive learning problem.
From the point of optimum decision view, we propose a three-way decisions
solution to filter spam email. For those suspicious emails, the three-way decisions
solution moves them to boundary for further-exam, which can covert potential
misclassification into rejections. The solution can be applied in any classifier only
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if the classifier can provide the probability of each mail being a legitimate. Naive
Bayesian classifier, k-nn and SVM classifiers by considering three-way decisions
solution are examined on several corpus, the result show the efficiency of the
solution. With considering the three-way decisions solution, we can get a lower
weighted error rate and a higher TCR.
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Abstract. This paper presents a GPGPU (General-purpose computing
on graphics processing units) implement of the concept lattice construc-
tion algorithm CloseByOne based on CUDA (Compute Unified Device
Architecture), and compares it with the corresponding single-threaded
and multi-threaded algorithms on the CPU by experiment. Experiment
results show that, GPGPU can be used to generate concept lattices, but
it has more restricts than CPU, the improvement of speed is not note-
worthy. In the future, with the progress of graphics hardware, especially
the improvement of memory capacity and branch prediction, the effi-
ciency of GPGPU-based algorithms for generating concept lattices may
be significantly increased.

Keywords: concept lattice, CloseByOne, GPGPU, CUDA.

1 Introduction

Concept lattice theory, also called formal concept analysis, was firstly proposed
by German mathematician Wille in 1982 [1]. It is a kind of applied mathematics
based on concepts and concept hierarchy, and provides strong support for data
analysis. The core data structure of concept lattice theory is concept lattices, so
a good algorithm of constructing concept lattices is necessary.

With the development of concept lattice theory, there are several algorithms
for generating concepts, and the algorithms can be basically divided into batch
algorithms and incremental algorithms [2, 3]. In recent years, with the develop-
ment of hardware, parallel algorithms are becoming a growing concern, and have
had some applications in concept lattice theory [4–6].

This paper focuses on generating formal concepts in a binary context. Close-
ByOne algorithm is designed respectively with CPU single-threaded programs,
CPUmulti-threaded programs and CUDA programs. The comparison in the run-
ning time shows that the speed of CloseByOne programs with CUDA is nearly
the same as CPU single-threaded programs, and is a little bit faster.

The experiments show that memory capacity and branch prediction of CUDA
need to be improved, but CUDA can be used to generate concepts. For example,
for a random context in the size of 100*100, CUDA programs can get the right
result and generate more than ten million concepts.
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2 Basic Knowledge of GPU and CUDA

CUDA is a parallel computing architecture developed by Nvidia. Because CUDA
is based on C language, most people who are familiar with C language can write
programs executed on the GPU easily by CUDA. GPU usually has high memory
bandwidth and a lot of execution units, and mostly the price is relatively cheap.

By CUDA, programs are divided into CPU part and GPU part. Firstly some
programs are executed on the CPU, then the data is copied to GPU and the pro-
grams go on computing on the GPU, finally the results are copied back to CPU.
GPU has much bigger ram delay, smaller cache and poorer branch prediction
than CPU, besides memory of GPU is rather limited. If the program doesn’t
have high concurrency degree, the effect of optimization is not good. Concrete
characteristics and programming principle can be found in the references [7, 8].

For generating concepts, there are a lot of circulations and judgements in
programs and programs need considerable memory to save variables and store
results, which are disadvantages. But GPU has a lot of cores, and its concurrency
degree is high, this is also the reason why we do experiments with CUDA.

3 CPU and CUDA Programs of CloseByOne Algorithm

3.1 CPU Single-Threaded and Multi-threaded Programs

CloseByOne algorithm [5] is based on closure. For a given intent of a concept, the
algorithm generates closure through adding an attribute that the concept does
not contain. For example, given a concept (A,B), add an attribute y ∈ M (M
is the set containing all attributes in the formal context (G,M, I)) and y �∈ B,
((B
⋃{y})′, (B⋃{y})′′) is the closure.

Single-threaded CloseByOne algorithm starts from the biggest concept (the
extent of the concept is G, G is the set containing all objects in the formal
context (G,M, I)), and then adds attribute in sequence for recursion, ultimately
generates all concepts. Given a concept (A,B), the algorithm adds a attribute
y ∈M(y �∈ B) to generate the concept (C,D). If (C,D) satisfies with dictionary
sequence, then the algorithm adds it to the result and goes on recursion, or
gives up. Dictionary sequence will not affect generation of all the concepts, but
guarantees that each concept is generated only once.

Because the support for recursion in CUDA is weak and only after 2.x com-
puting power and the efficiency is not high, this paper transforms the recursive
algorithm into non-recursive version. The non-recursive process is consistent with
the past recursion [5], part is used to keep status of recursion in the stack. The
extra variable y in the concept is used to identify the number of next attribute
which will be added.

The CPU multi-threaded programs are as same as that of reference [5]. Each
L-depth concept is stored as a starting point concept, assigned into a thread in
the way of Roulette. After division, each thread generates subsequent concepts of
each starting point concept. Finally the algorithm ensures all the threads finished
by synchronization whose function is WaitForMultipleObjects. Considering CPU
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memory is limited, the programs directly write the result to file. Mutual exclusion
is used to ensure valid storage in the programs.

3.2 CUDA Programs of CloseByOne Algorithm

Basically the CUDA algorithm is to use the characteristic of massive cores of
GPU. The core of the algorithm is to divide starting point concepts according
to the CUDA thread number, then generates in parallel. Considering overtime
problem of the system, it needs to record the recursive status and set maximal
number of generating concepts one time so that the result can be effectively
stored and the algorithm can generate all concepts by circularly solving.

void CUDAcomputestart()

1. divide starting point concepts by the count of blockx*gridx;

2. foreach i in the set of start numbering of each block do

3. copy the block of start numbering i to resultkc;

4. set all values of mkk -1 to initialize recursion position;

5. while do

6. generateFromcc<<<gridx, blockx>>>(resultkc, resultcc,

resultc, pcount-i, part, mkk);

7. Synchronize so that all threads are finished;

8. copy back the result to CPU;

9. write the generated concepts to the file;

10. judge whether the task of each thread is finished, if

each task of all threads is finished, goto line 2, or goto line 5;

11. end

12. end

The variables of the code are described below: resultkc stores L-depth concepts
as starting point concepts on the GPU. pcount records the total number of start-
ing point concepts. resultc stores the result generated on the GPU and ensures
each thread have space to store max every concepts. resultcc stores number of
generated concepts of each thread on the GPU.

Description of the Algorithm: Line 1 divides starting point concepts into parts
to run separately according to thread number. Line 6 executes on the GPU. Lines
5–11 generate all concepts of the block by circularly solving based on the kept
status of recursion.

__global__ void generateFromcc(resultkc, resultcc, resultc,

sum, part, mkk)

1. pk records the numbering of the thread;

2. if pk < sum then

3. set count and resultcc[pk] to 0;

4. declare local variable mk;

5. if mkk[pk] == -1 then

6. set part[pk][0] to resultkc[pk] and mk to 0;

7. else if mkk[pk] == -2 then

8. return;

9. else

10. set mk to mkk[pk];
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11. end

12. store part[pk][mk] in resultc;

13. while part[pk][0].y < n do

14. declare local variable j;

15. for j from part[pk][mk].y upto n do

16. if part[pk][mk].intent[j] == false then

17. set cd to computeClosurec(part[pk][mk], j);

18. judge whether the closure satisfy

dictionary sequence, if satisfy dictionary sequence then

19. set part[pk][mk].y to j+1, mk to mk+1,

cd.y to j+1, and part[pk][mk] to cd;

20. if count >= max_every then

21. set mkk[pk] to mk and resultcc[pk] to count;

22. return;

23. else

24. store cd in resultc;

25. end

26. break;

27. end

28. end

29. end

30. if j >= n then

31. set mk to mk-1;

32. if mk < 0 then

33. break;

34. end

35. end

36. end

37. set mkk[pk] to -2;

38. set resultcc[pk] to count;

39. end

The variables of generateFromcc are described below: count records the number-
ing of generated concept. resultcc records final number of generated concepts.
mk records the position of recursion.

Description of the Algorithm: Lines 5–6 deal with the condition that the
starting point concepts generate concepts firstly, line 7 recognizes the condition
that the starting point concepts has finish the work, and lines 9–11 are used to
identify the depth of recursion to continue last generating. Lines 12–38 generate
the branch concepts of starting point concepts. Line 20 judges whether generated
concept count of the thread reaches max every, if yes, record the status and
return. Lines 30–35 realize the function of backtracking. Line 37 marks that the
task has been completed.

The above generateFromcc differs from the original one in that, it needs to
mark the current position of the stack and whether or not the task of the thread
has been completed, and need to update the part which is the stack used to record
the generated way of next concept. The algorithm needs to judge whether the
generated concept count has reached max every, and accesses the result of each
thread according to pk.
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Here, we don’t store generated concepts using atomic operation, because it is
slower; on the other hand, it also needs to use max every, or overtime will have
a runtime error, the programs can’t get the result(see the experiment).

4 Experiment Comparison of CloseByOne Algorithms

The experiment is based on VC2008, CUDA with version 3.2, GPU with GeForce
GT 430, dual-core AMD Athlon II X2 250 Processor, and memory of 3.50 GB.

This paper adopts the non-recursive version of CloseByOne algorithm, and de-
signs CPU single-threaded programs, CPU multi-threaded programs, and CUDA
programs, respectively. For comparison, single-threaded programs are got by the
serialization of the multi-threaded programs so that the experiment can effec-
tively show difference of efficiency in the same structure.

Parameters are set as follows: thread count of multi-threaded programs is 3,
thread count of CUDA programs is 256*64, max every = 10, the value of depth
L in all algorithms is 3. In the CUDA programs, constant memory is used to
store the context in order to read it quickly. If the context is bigger, pitch-linear
memory should be used instead.

The data in Table 1 is based on the context that generated by random number,
whose density is 0.5 (the density of the context is defined with the proportion
of the value 1 in the context). The unit of time in the following table is s.

Table 1. Comparison of CloseByOne Algorithms

the size of context single-threaded multi-threaded CUDA

50*50 10.875 12.391 8.813

70*70 126.016 115.563 100.359

100*100 2478.36 1549.766 2182.407

Table 1 shows that CUDA programs is slightly better than CPU single-
threaded programs, but in the environment of dual-core processor it is not better
than CPU multi-threaded programs when the context is bigger. The reason may
be synchronization caused by max every. If GPU can support overtime, it will
be better. The GPU of the experiment does support overtime, you can check
the attribute by running deviceQuery.exe, in my environment it shows: Run
time limit on kernels:Yes, the endured time generally is five seconds, when
the kernel is run more than the limit, you will get errors and can not get fi-
nal result. Here max every is set to avoid overtime, but it results in the need
of synchronization which is rather slow. But to generate concepts, it is a kind
lift helplessly, otherwise the storage of the results will be another problem. In
sum, CloseByOne algorithm has many judgments and branches, memory is also
a problem, accessing global memory on the GPU is slow, but it needs to save the
stack (because the register is very limited, there is no enough memory to store
all generated concepts at a time and the kernel programs need to be run many
times), accessing global memory have bad influence on performance.
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5 Conclusions

This paper explores the feasibility and efficiency of generating concepts with
CUDA, and summarizes the limit of generating concepts with CUDA. The ex-
periments show that CUDA can be used to generate concepts, but there are
more restrictions than CPU, the improvement of the speed is not distinct while
the program complexity is higher, so it needs the improvement of CUDA and
further exploration.
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Abstract. Knowledge reduction is one of the key issues in real formal
concept analysis. This study investigates the issue of developing effi-
cient knowledge reduction methods for real decision formal contexts. A
corresponding heuristic algorithm is proposed and some numerical ex-
periments are conducted to assess its efficiency.

1 Introduction

Formal concept analysis (FCA), proposed by Wille [19], is an effective approach
for data analysis and knowledge processing. FCA starts with a formal context
formalized by a triple (U,A, I) where U is a set of objects, A is a set of attributes,
and I is a binary relation on U×A. From a formal context, some formal concepts
which are basic outputs of FCA can be derived, and the set of all the formal
concepts forms a complete lattice called the concept lattice of the formal con-
text. Concept lattice has been demonstrated to be a useful tool for conceptual
knowledge discovery and data analysis [6].

Knowledge reduction is one of the key issues in FCA and much attention
has been paid to this topic in recent years. For example, based on the prede-
fined arrow relations, an approach to knowledge reduction for formal contexts
was introduced in [6]. In [26], a novel reduction method was proposed for for-
mal contexts from the point of view of lattice isomorphism. Motivated by the
work in [26], the authors of [13] put forward two new reduction approaches
for formal contexts based on the object-oriented concept lattice [22,23] and the
property-oriented concept lattice [4]. This issue was also investigated in litera-
ture [1] and [14] from the perspectives of fuzzy K -means clustering and extension
equivalence, respectively. In addition, some knowledge reduction methods for de-
cision formal contexts [25], an extension of the formal contexts, were explored
in [8,9,10,17,18,20].

In the classical formal contexts, the relationship between the objects and the
attributes is described by a two-valued form that can only specify whether or
not an object has an attribute. In many real-world situations, however, the re-
lationship may be needed to be fuzzy-valued or interval-valued. Therefore, some
studies have recently been devoted to the generalized formal contexts or decision
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formal contexts such as fuzzy formal contexts [2,3,5,12,16,24], real formal con-
texts [7], fuzzy decision formal contexts [15] and real decision formal contexts
[11,21]. Knowledge reduction is still an important issue in the analysis of the
generalized decision formal contexts. For instance, an approach to knowledge
reduction for fuzzy decision formal contexts was proposed in [15]. By defining
an implication mapping between the conditional and the decision real concept
lattices, real decision formal contexts were classified in [21] into consistent and
inconsistent real decision formal contexts, and a knowledge reduction approach
was presented for the consistent real decision formal contexts. Since the decision
rules derived directly from a real decision formal context are in general not con-
cise or compact, we put forward a new knowledge reduction method in [11] for
real decision formal contexts to make the derived decision rules more compact.
Although some studies has been done on knowledge reduction in real decision
formal contexts, the existing reduction approaches are all based on the discerni-
bility matrix and Boolean function. That is to say, they are all computationally
expensive and are even impossible to implement for large real decision formal
contexts. Just as we pointed out in [11], efficient reduction algorithms for real
decision formal contexts are still needed to be further studied. This paper devel-
ops a heuristic knowledge reduction algorithm for real decision formal contexts
to speed up the implementation of the knowledge reduction.

In Section 2, we briefly recall some basic notions of real FCA and discuss
several properties related to the subcontexts and the real decision formal con-
texts. In Section 3, attribute characteristics of a real decision formal context are
investigated. In Section 4, we develop a heuristic reduction algorithm for real de-
cision formal contexts. In Section 5, some numerical experiments are conducted
to assess the efficiency of the proposed algorithm. The paper is then concluded
with a brief summary.

2 Real FCA

In this section, we briefly review some basic notions of real FCA and discuss some
properties related to the subcontexts and the real decision formal contexts.

2.1 Real Formal Contexts and Real Concept Lattices

Definition 1. [7] Let R be the set of real numbers. A real interval on R, denoted
by I = [u, v], u, v ∈ R, represents the set of the real numbers delimited by u and
v, where u and v are called the lower and the upper bounds of I, respectively. If
u > v, then I is said to be empty, denoted by [, ].

Let I1 = [u1, v1] and I2 = [u2, v2] be two real intervals. The intersection of I1
and I2 is defined by Inter(I1, I2) = [max(u1, u2),min(v1, v2)]. The closure of a
real interval set E = {I1, I2, · · · , In} is defined by

Closure({I1, I2, · · · , In}) = Closure(Closure({I1, I2}), I3, · · · , In}),
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where

Closure({I1, I2}) =
{
{ [min(u1, u2),max(v1, v2)]}, if Inter(I1, I2) �= [, ],
{I1, I2}, otherwise.

Let E = {I1, · · · , Is} and F = {I ′1, · · · , I ′t} be two sets of real intervals. The
intersection and the union of E and F are defined by

E ∩ F = Closure({Inter(Ii, I ′j) | i = 1, · · · , s; j = 1, · · · , t}),
E ∪ F = Closure({I1, · · · , Is, I ′1, · · · , I ′t}).

E is said to be largely less than F , denoted by E ≤L F , if for any [u, v] ∈ F ,
there exists [u′, v′] ∈ E such that u′ ≤ u and v′ ≥ v; E is said to be strictly less
than F , denoted by E ≤S F , if for any [u, v] ∈ F , there exists [u′, v′] ∈ E such
that u ≤ u′ and v ≥ v′.

Definition 2. [7] Let U = {x1, x2, · · · , xn} be a set of objects, V be the set of

all real intervals on R, and P (V ) be the power set of V . A real set X̃ of U is
defined by its characteristic function μX̃ : U → P (V ), where μX̃(x), a set of real

intervals, indicates the possible values that can be chosen for x in the real set X̃.
The real set X̃ is denoted by

X̃ =

{
μX̃(x1)

x1
,
μX̃(x2)

x2
, · · · , μX̃(xn)

xn

}
and the empty real set of U is denoted by ∅̃.
For brevity, we write μX̃(x) (x ∈ U) as X̃(x). The restriction of X̃ on a subset

X of U , denoted by X̃|X , is defined by X̃|X(x) = X̃(x) for all x ∈ X .

For two real sets X̃ and Ỹ of U , two kinds of intersection, union and inclusion
can be defined [7]. Concretely, if X̃(x) ≤L Ỹ (x) for all x ∈ U , then X̃ is said

to be largely included in Ỹ , denoted by X̃ ⊆L Ỹ ; the large intersection and
the large union of X̃ and Ỹ are defined by (X̃ ∩L Ỹ )(x) = X̃(x) ∪ Ỹ (x) and

(X̃ ∪L Ỹ )(x) = X̃(x) ∩ Ỹ (x), respectively. In addition, if X̃(x) ≤S Ỹ (x) for all

x ∈ U , then X̃ is said to be strictly included in Ỹ , denoted by X̃ ⊆S Ỹ ; the
strict intersection and the strict union of X̃ and Ỹ are defined by (X̃ ∩S Ỹ )(x) =

X̃(x) ∩ Ỹ (x) and (X̃ ∪S Ỹ )(x) = X̃(x) ∪ Ỹ (x), respectively.
Let U be a set of objects and A be a set of attributes. A real binary relation

Ĩ on U ×A is a mapping that takes each of its value to be a set of real intervals.
That is, for each (x, a) ∈ U ×A, Ĩ(x, a) is a set of real intervals.

Definition 3. [21] A real formal context is a triple (U,A, Ĩ), where U is a set

of objects, A is a set of attributes, and Ĩ is a real binary relation on U ×A.

Definition 4. [7] Let S = (U,A, Ĩ) be a real formal context, P(U) be the power

set of U and R(A) be the set of all real sets of A. For X ∈ P(U) and B̃ ∈ R(A),
four operators ↑,� : P(U)→R(A) and ↓,♦ : R(A)→ P(U) are defined by
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X↑ = { f(a)a | a ∈ A, f(a) =
⋃

x∈X

Ĩ(x, a)},
B̃↓ = {x ∈ U | ∀a ∈ A, B̃(a) ≤L Ĩ(x, a)},
X� = { g(a)a | a ∈ A, g(a) =

⋂
x∈X

Ĩ(x, a)},
B̃♦ = {x ∈ U | ∀a ∈ A, B̃(a) ≤S Ĩ(x, a)}.

Definition 5. [7] Let S = (U,A, Ĩ) be a real formal context, X ∈ P(U) and

B̃ ∈ R(A). The pair (X, B̃) is called a large real concept of S if X↑ = B̃ and

B̃↓ = X, and it is called a strict real concept of S if X� = B̃ and B̃♦ = X.
Here, X and B̃ are called the extension and the intension of the large (strict)

real concept (X, B̃), respectively.

According to [7], if large real concepts are ordered by (X1, B̃1) �L (X2, B̃2) ⇔
X1 ⊆ X2(⇔ B̃2 ⊆L B̃1), then the set BL(U,A, Ĩ) of all large real concepts of

S = (U,A, Ĩ) together with the order �L forms a complete lattice, called the
large real concept lattice of S. Similarly, if strict real concepts are ordered by
(X1, B̃1) �S (X2, B̃2) ⇔ X1 ⊆ X2(⇔ B̃2 ⊆S B̃1), then the set BS(U,A, Ĩ) of
all strict real concepts of S together with the order �S also forms a complete
lattice, called the strict real concept lattice of S.

Let S = (U,A, Ĩ) be a real formal context and E ⊆ A. The restriction of Ĩ on

U ×E, denoted by ĨE , is defined by ĨE(x, e) = Ĩ(x, e) for all (x, e) ∈ U ×E. The

real formal context (U,E, ĨE) is called a subcontext of (U,A, Ĩ) [11]. Let X↑E ,

B̃↓E , X�E and B̃♦E be the restriction of the four operators given in Definition
4 on the subcontext (U,E, ĨE). Then we can, similarly, define the large and the

strict real concepts in (U,E, ĨE). Clearly, the set BL(U,E, ĨE) of all the large

real concepts of (U,E, ĨE) together with the order �L also forms a complete

lattice as well as the set BS(U,E, ĨE) of all the strict real concepts of (U,E, ĨE)
together with the order �S .

Proposition 1. [11] Let S = (U,A, Ĩ) be a real formal context and E ⊆ A. Then

for both the large and the strict real concepts, each extension of (U,E, ĨE) is also
an extension of S.

Proposition 2. Let S = (U,A, Ĩ) be a real formal context and E ⊆ A. Then

BL(U,E, ĨE) = {((B̃|E)↓E , B̃|E) | (X, B̃) ∈ BL(U,A, Ĩ)} and BS(U,E, ĨE) =

{((B̃|E)♦E , B̃|E) | (X, B̃) ∈ BS(U,A, Ĩ)}.
Proof. The proof is similar to that in the classical formal contexts [9].

2.2 Real Decision Formal Contexts and Their Reduction

Definition 6. [21] A real decision formal context is a quintuple (U,A, Ĩ,D, J̃),

where (U,A, Ĩ) and (U,D, J̃) are two real formal contexts and A ∩ D = ∅.
The sets A and D are called the conditional and the decision attribute sets of
(U,A, Ĩ,D, J̃), respectively.
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Although two kinds of real concept lattices, i.e., the large real concept lattice and
the strict real concept lattice, have been introduced in Section 2.1, the knowledge
reduction frameworks based on them are similar to each other according to
[11,21]. Therefore, to achieve the task of developing efficient reduction algorithms
for real decision formal contexts, it is sufficient to consider one of them only. In
this paper, we would like to propose a corresponding heuristic algorithm based
on the large real concept lattice.

Let K = (U,A, Ĩ,D, J̃) be a real decision formal context. For a subset E of

A, we call (U,E, ĨE , D, J̃) a subcontext of K.

Definition 7. [11] Let K = (U,A, Ĩ,D, J̃) be a real decision formal context,

E ⊆ A, (X, B̃) ∈ BL(U,E, ĨE), and (Y, C̃) ∈ BL(U,D, J̃), where X �= ∅, Y �= ∅,
B̃ �= ∅̃ and C̃ �= ∅̃. If X ⊆ Y , then B̃ → C̃ is called an L decision rule. The real
sets B̃ and C̃ are called the premise and the conclusion of B̃ → C̃, respectively.

Hereinafter, we denote by RL(E,D) the set of all L decision rules derived from

the subcontext (U,E, ĨE , D, J̃). That is, RL(E,D) denotes the set of all the L

decision rules generated between the large real concepts in BL(U,E, ĨE) and

those in BL(U,D, J̃).

Definition 8. [11] Let K = (U,A, Ĩ,D, J̃) be a real decision formal context and

E ⊆ A. For B̃ → C̃ ∈ RL(E,D) and B̃′ → C̃′ ∈ RL(A,D), if B̃ ⊆L B̃′|E and

C̃′ ⊆L C̃, we say that B̃′ → C̃′ can be implied by B̃ → C̃. If each L decision
rule of RL(A,D) can be implied by an L decision rule of RL(E,D), we say that
RL(E,D) implies RL(A,D), denoted by RL(E,D)⇒L RL(A,D).

Definition 9. [11] For a real decision formal context K = (U,A, Ĩ,D, J̃), E ⊆ A
is called an L consistent set of K if RL(E,D) ⇒L RL(A,D); otherwise, E is
called an L inconsistent set of K. Furthermore, if E is an L consistent set of K
and any F ⊂ E is an L inconsistent set of K, then E is called an L reduct of
K. The intersection of all the L reducts of K is called the L core of K.

According to [11], the knowledge reduction of a real decision formal context

K = (U,A, Ĩ,D, J̃) is to find an L reduct of K, which can make the obtained L
decision rules more compact. In preparation for developing an efficient approach
to find an L reduct, we derive in the following a sufficient and necessary condition
of justifying whether or not a conditional attribute set is an L consistent set.

Definition 10. [11] Let K = (U,A, Ĩ,D, J̃) be a real decision formal context

and E ⊆ A. For B̃ → C̃ ∈ RL(E,D), if there exists another L decision rule

B̃0 → C̃0 in RL(E,D) such that B̃0 → C̃0 implies B̃ → C̃, then B̃ → C̃ is said

to be redundant in RL(E,D); otherwise, B̃ → C̃ is said to be non-redundant in
RL(E,D).

For convenience, we denote by R∗
L(E,D) the set of all the non-redundant L

decision rules of RL(E,D).
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Proposition 3. Let K = (U,A, Ĩ,D, J̃) be a real decision formal context. Then
E ⊆ A is an L consistent set of K if and only if R∗

L(E,D)⇒L R∗
L(A,D).

Proof. The proof is immediate from Definitions 9 and 10.

3 Attribute Characteristics of a Real Decision Formal
Context

Definition 11. Let K = (U,A, Ĩ,D, J̃) be a real decision formal context and
a ∈ A. If A − {a} is an L consistent set of K, then a is called an unnecessary
attribute of K; otherwise, it is called a necessary attribute of K.

That is, the conditional attributes of a real decision formal context are classified
into two categories: the necessary attributes and the unnecessary attributes.
It can be known from Definition 11 that to remove an unnecessary attribute
from a real decision formal context will not have any affect on the extraction of
the L decision rules. However, each necessary attribute is essential to the rule
acquisition.

In preparation for deriving in the next section a heuristic reduction algorithm
for real decision formal contexts, we formulate in this section a sufficient and
necessary condition of justifying whether or not an attribute is necessary with
respect to a given real decision formal context. Firstly, we put forward the notion
of an extension-preserved large real concept in real formal contexts.

Definition 12. Let S = (U,A, Ĩ) be a real formal context, a ∈ A and E =

A−{a}. For (X, B̃) ∈ BL(U,A, Ĩ), if there does not exist (X0, B̃0) ∈ BL(U,A, Ĩ)

such that X ⊂ X0 and B̃0|E = B̃|E, we say that (X, B̃) is an extension-preserved

large real concept with respect to (U,E, ĨE).

Proposition 4. Let S = (U,A, Ĩ) be a real formal context, a ∈ A and E =

A−{a}. Then (X, B̃) ∈ BL(U,A, Ĩ) is an extension-preserved large real concept

with respect to (U,E, ĨE) if and only if (X, B̃|E) ∈ BL(U,E, ĨE).

Proof. (⇒) By Proposition 2, we have ((B̃|E)↓E , B̃|E) ∈ BL(U,E, ĨE). If (B̃|E)↓E

�= X , then X ⊂ (B̃|E)↓E according to Definition 4. Based on Proposition 1, we

obtain ((B̃|E)↓E , (B̃|E)↓E↑) ∈ BL(U,A, Ĩ). Therefore, (B̃|E)↓E↑|E = (B̃|E)↓E↑E

= B̃|E . It follows from Definition 12 that (X, B̃) is not an extension-preserved

large real concept with respect to (U,E, ĨE), which is in contradiction with the

assumption. Thus, (B̃|E)↓E = X and consequently (X, B̃|E) ∈ BL(U,E, ĨE).

(⇐) If (X, B̃) is not an extension-preserved large real concept with respect to

(U,E, ĨE), then by Definition 12 there exists (X0, B̃0) ∈ BL(U,A, Ĩ) such that

X ⊂ X0 and B̃0|E = B̃|E . Therefore, ((B̃0|E)↓E , B̃|E) ∈ BL(U,E, ĨE) and X ⊂
X0 = B̃↓

0 ⊆ (B̃0|E)↓E which are in contradiction with (X, B̃|E) ∈ BL(U,E, ĨE).

In addition, we present the notion of a key large real concept in real decision
formal contexts.
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Definition 13. Let K = (U,A, Ĩ,D, J̃) be a real decision formal context, E ⊆ A

and (X, B̃) ∈ BL(U,E, ĨE). If there exists (Y, C̃) ∈ BL(U,D, J̃) such that the L

decision rule B̃ → C̃ is non-redundant in RL(E,D), then (X, B̃) is called a key

large real concept of BL(U,E, ĨE) with respect to BL(U,D, J̃).

Proposition 5. Let K = (U,A, Ĩ,D, J̃) be a real decision formal context. Then
E ⊆ A is an L consistent set of K if and only if the extensions of all the key
large real concepts of BL(U,E, ĨE) with respect to BL(U,D, J̃) are the same as

those of BL(U,A, Ĩ) with respect to BL(U,D, J̃).

Proof. The proof can easily be completed according to Definition 13 and Propo-
sitions 1, 2, and 3.

Theorem 1. Let K = (U,A, Ĩ,D, J̃) be a real decision formal context, a ∈ A and
E = A− {a}. Then a is an unnecessary attribute of K if and only if all the key

large real concepts of BL(U,E, ĨE) with respect to BL(U,D, J̃) are extension-

preserved large real concepts with respect to (U,E, ĨE).

Proof. The proof can easily be completed according to Definition 11 and Propo-
sitions 4 and 5.

Corollary 1. Let K = (U,A, Ĩ,D, J̃) be a real decision formal context, a ∈ A and
E = A−{a}. Then a is a necessary attribute of K if and only if there exists a key

large real concept (X, B̃) of BL(U,E, ĨE) with respect to BL(U,D, J̃) such that

(X, B̃) is not an extension-preserved large real concept with respect to (U,E, ĨE).

4 A Heuristic Reduction Algorithm for Real Decision
Formal Contexts

In this section, we propose a heuristic algorithm for computing an L reduct of a
real decision formal context.

Theorem 2. Let K = (U,A, Ĩ,D, J̃) be a real decision formal context and E ⊆
A. If E is an L consistent set of K and each e ∈ E is a necessary attribute of
(U,E, ĨE , D, J̃), then E is an L reduct of K.

Proof. It is immediate from Definitions 9 and 11.

For a real decision formal context K = (U,A, Ĩ,D, J̃), we can obtain an L reduct
of K by the following steps: If each a ∈ A is a necessary attribute of K, then
by Theorem 2 A is already an L reduct of K; otherwise, choose an unnecessary
attribute a1 from K and consider A − {a1} for finding an L reduct. If each at-

tribute of A−{a1} is a necessary attribute of (U,A−{a1}, ĨA−{a1}, D, J̃), then
A − {a1} is an L reduct of K since A − {a1} can easily be verified to be an
L consistent set of K according to Definitions 9 and 11; otherwise, choose an
unnecessary attribute a2 from (U,A− {a1}, ĨA−{a1}, D, J̃) and continue consid-
ering A−{a1, a2} for finding an L reduct. This process is performed repeatedly
and it will end in finite steps since A is a finite set of attributes. That is to say,
there must exist k < |A| such that A− {a1, · · · , ak} is an L reduct of K.
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Based on the above analysis, we are now ready to develop a heuristic algorithm
to compute an L reduct with its cardinality being as small as possible. The reason
for seeking the L reduct with small cardinality is that in general the smaller the
cardinality of the reduct is, the more compact the L decision rules derived from
the reduced real decision formal context are.

Algorithm 1. Computing an L reduct of a real decision formal context.

Input: A real decision formal context K = (U,A, Ĩ,D, J̃).
Output: An L reduct of K.

1) Initialize E = A.
2) If there does not exist e ∈ E such that e is an unnecessary attribute of

(U,E, ĨE , D, J̃), then go to step 4); otherwise, go to step 3).
3) Choose such an unnecessary attribute f from E that satisfies

||(U,E − {f}, ĨE−{f}, D, J̃)|| = max
e∈E

{
||(U,E − {e}, ĨE−{e}, D, J̃)||

}
,

where || • || denotes the number of all the unnecessary attributes of a real
decision formal context. Then, set E = E − {f} and go back to step 2).

4) Output E and end the algorithm.

By Theorem 2, it is easy to prove that the output set E in Algorithm 1 is an
L reduct of the input real decision formal context K. Moreover, it can easily be
verified that the time complexity of Algorithm 1 is polynomial (the number of

the real intervals in each value of the real binary relation Ĩ as well as J̃ is in
general supposed to be very small).

5 Numerical Experiments

In this section, we conduct some numerical experiments to assess the efficiency
of Algorithm 1.

The real decision formal context K = (U,A, Ĩ,D, J̃) in Table 1 is taken from
[11], where U = {x1, x2, x3, x4}, A = {a1, a2, a3, a4} and D = {d1, d2}. An
auxiliary real decision formal contextKL is constructed by replacing the values in
each row of Table 1 with {[5, 15]}, {[20, 30]}, {[9, 18]}, {[1, 7]}, {[2, 10]}, {[4, 13]}.
Data sets 1 and 2 are then obtained by ten times of vertical concatenation of such
two real decision formal contexts that are six and seven times of symmetrical
mergence of K with respect to KL (see [11] for the details of the symmetrical
mergence and vertical concatenation approaches). The running time for Data
sets 1 and 2 are reported in Table 2. It can be seen that Algorithm 1 is much
more efficient than the Boolean reasoning-based algorithm in [11] especially for
the large data set.
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Table 1. A real decision formal context K = (U,A, Ĩ, D, J̃)

U a1 a2 a3 a4 d1 d2
x1 {[8, 14]} {[27, 29]} {[9, 10], [14, 17]} {[3, 6]} {[4, 9]} {[9, 12]}
x2 {[5, 9]} {[20, 23], [25, 27]} {[10, 12], [13, 16]} {[1, 3]} {[2, 4]} {[4, 5], [6, 9]}
x3 {[7, 13]} {[23, 25]} {[12, 15]} {[2, 4]} {[3, 6]} {[5, 6]}
x4 {[8, 13]} {[20, 25]} {[11, 15]} {[3, 4]} {[4, 5]} {[4, 6]}

Table 2. Efficiency comparison between the algorithm in [11] and Algorithm 1

Data set |U | |A| |D| Running time (s)
The algorithm in [11] Algorithm 1

Data set 1 240 24 12 1998.856 704.441
Data set 2 280 28 14 24580.341 1025.728

6 Final Remarks

Knowledge reduction is one of the key issues in real FCA. In this paper, a heuris-
tic reduction algorithm for real decision formal contexts has been proposed to
speed up the implementation of the knowledge reduction. Some numerical ex-
periments have demonstrated that the proposed algorithm is much more efficient
than the Boolean reasoning-based algorithm [11] especially for large databases.

Acknowledgments. This work was supported by the National Natural Science
Foundation of China (Nos. 10971161 and 61005042).
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Abstract. Cloud model is an effective tool in uncertain transforming
between qualitative concepts and their quantitative expressions. Back-
ward cloud generator can transform quantitative values into qualitative
concepts. In this paper, based on the theory of probability statistics, the
authors make analysis of backward cloud algorithm, and construct a new
algorithm of backward cloud which is more precise than the old. Finally,
a simulation is given to compare the new algorithm with the old algo-
rithms, and the results show that the new algorithm has better stability
and adaptability.

Keywords: second-order normal cloud model, forward cloud generator,
backward cloud generator.

1 Introduction

Knowledge representation has been a bottleneck for years in artificial intelligence.
And the difficulty is uncertainty hidden in qualitative concepts, in particular,
randomness and fuzziness[1]. Fuzzy sets and Rough sets use sets to depict a
concept, which can be thought as the extension of a concept[2][3][4]. Considering
the randomness of membership degree, Prof. Deyi Li proposed cloud model[5] as
a cognitive model of uncertainty based on probability theory[6] and fuzzy sets
theory in 1995. The cloud model uses three numerical characters (expectation
Ex, entropy En and hyper entropy He) representing a qualitative concept to
characterize the randomness and the fuzziness of uncertainty, and it has been
realized the transformation between a qualitative concept and quantitative data
and reveals the uncertainty of knowledge representation profoundly. It is very
important meaning to understand connotation and extension of the qualitative
concept. From the viewpoint of fuzzy sets, Ex is the expected sample of a concept
with membership degree 1. En is used to depict the uncertainty of samples in
the concept, which can be used to calculate the membership degree. He is used
to depict the uncertainty of the membership degree.

J.T. Yao et al. (Eds.): RSCTC 2012, LNAI 7413, pp. 313–322, 2012.
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Normal distribution exists extensively in natural and social life, and it has
two parameters, expectation (Ex) and standard variance (En). Cloud model
adopts the third parameter—hyper entropy (He), the uncertainty measurement
of the standard variance (En), to depict the transition from normal distribution
to heavy-tailed distribution. Normal cloud model based on normal distribution
is an extremely important cloud model in the cloud model research. It has the
universality[7]. The normal cloud model has been successfully applied in many
fields, such as intelligent control, data mining, system evaluation, and image
segmentation[8][9][10][11], and so on.

Cloud models can represent the randomness, fuzziness and their relations of
uncertain concepts. The forward cloud generator(FCG) and the backward cloud
generator(BCG) are the two most basic and critical cloud model algorithm in
normal cloud model[1]. The former transforms a qualitative concept with three
numerical characters (Ex,En,He) into a number of cloud drops (xi) represent-
ing the quantitative description of the concept. In addition, it depicts the forward
and direct process from thought to practice; the latter is used to transform a
number of cloud drops into three numerical characters (Ex,En,He) represent-
ing a qualitative concept. It is a reversed and indirect process, and there will be
errors inevitably in this process. In this paper, the existed BCG algorithms are
analyzed firstly, and we find that the BCG algorithms proposed in [12][13] have
defects. A new BCG algorithm is proposed in the paper, and the effectiveness
of the new BCG are compared by experiments. The results show that the mean
of parameter entropy En and hyper entropy He will be close to the true value,
and the mean square error(MSE) of them will decrease and tend to zero with
the increase of sample size.

2 The Normal Cloud Model and Cloud Generator

2.1 Cloud Model and the Second-Order Normal Cloud Model

Cloud model is a cognition model to transform between quantitative data and
qualitative concepts, which can formalize a concept to three numbers. Consid-
ering the uncertainty and objectivity of the membership degree, Cloud model
automatically produces the membership degrees based on probability distribu-
tion to interpret the fuzziness of concepts, thereby disclosing the relationship
between randomness and fuzziness[1].

Definition 2.1. Let U be a universal set described by precise numbers, and C be
the qualitative concept related to U . If there is a number x ∈ U , which randomly
realizes the concept C, and the certainty degree of x for C, i.e. z(x) ∈ [0, 1], is
a random value with stabilization tendency:

z(x) : U → [0, 1] ∀x ∈ U x→ z(x),

then the distribution of x on U is defined as a cloud, and each x is defined as
a cloud drop, noted Drop(x, z).

Definition 2.2. Let U be a universal set described by precise numbers, and
C be the qualitative concept containing three numerical characters Ex,En,He
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related to U . If there is a number x ∈ U , which is a random realization of
the concept C and satisfies x = RN (Ex, y), where y = RN (En,He), and the
certainty degree of x on U is

z(x) = e
− (x−Ex)2

2y2

then the distribution of x on U is a second-order normal cloud. Where y =
RN (En,He) denoted a normally distributed random number with expectation
En and variance He2.

The key point in definition 2.2 is the second-order relationship, i.e. within the
two normal random numbers. If He = 0, then the distribution of x on U will
become a normal distribution. If He = 0, En = 0, then x will be a constant Ex
and z(x) ≡ 1. In other words, certainty is the special case of the uncertainty.
When He turns larger, the distribution of random variable X will show a heavier
tail, which can be used in economic and social researches.

As shown in Fig.1, different people have different understanding about “The
Young”, so it is very difficult to give a crisp membership degree. However, the
second-order normal cloud model can describe this uncertainty. Meanwhile, it
can also demonstrate the basic certainty of uncertainty.
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Fig. 1. Describe ”The Young” by the second-order normal cloud model

In cloud model, cloud generator, which is a basic tool to realize the trans-
formation between qualitative concepts and quantitative data, is composed of
forward cloud generator and backward cloud generator.

2.2 Forward Cloud Generator

Forward Cloud Generator (FCG) algorithm[1] transforms a qualitative concept
with three numerical characters (Ex,En,He) into a number of cloud drops (xi)
representing the quantitative description of the concept. It depicts the process
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from thought to practice. Because of the universality of normal distribution, we
mainly focus on second-order normal cloud model. According to the definition
2.2, FCG algorithm is as follows.

Algorithm Forward normal cloud generator—FCG(Ex,En,He)
Input: (Ex,En,He), and the number of cloud drops n;
Output: n cloud drops and their certainty degrees, i.e. Drop(xi, z(xi)), i =

1, 2, · · · , n;
Step 1: Generate a normally distributed random number yi with expectation

En and variance He2, i.e. yi = RN (En,He);
Step 2: Generate a normally distributed random number xi with expectation

Ex and variance y2i , i.e. xi = RN (Ex, yi);

Step 3: Calculate z(xi) = e
− (xi−Ex)2

2y2
i ;

Step 4: xi with certainty degree z(xi), Drop(xi, z(xi)) is a cloud drop in the
domain;

Step 5: Repeat the step 1 to step 4 until n cloud drops are generated.

2.3 The Backward Cloud Generator-1

Backward Cloud Generator (BCG) is an algorithm based on probability statis-
tics. It is used to transform a number of cloud drops (sample data) into three
numerical characters representing a concept. In 2004, Liu[12] proposed a back-
ward cloud generator algorithm based on the sample variance and the first-order
absolute central moment as following.

Algorithm Backward normal cloud generator—BCG1
Input: Drops(xi), i = 1, 2, · · · , n
Output: (Ex,En,He) representation of a qualitative concept.
Step 1: Calculate the sample mean, sample variance and the first-order sample

absolute central moment of cloud drops(x1), respectively, i.e.

Êx = X̄ =
1

n

n∑
i=1

xi, S
2 =

1

n− 1

n∑
i=1

(xi − X̄)2, E|X − Êx| = 1

n

n∑
i=1

∣∣xi − X̄
∣∣,

Step 2: According to the character of second-order normal cloud distribution,
Liu got the equations: {

S2 = En2 +He2,

E
∣∣∣X − Êx

∣∣∣ =√ 2
πEn.

(1)

Step 3: Calculate the estimates of En and He from (1), i.e.

Ên =

√
π

2
× 1

n

n∑
i=1

∣∣∣xi − Êx
∣∣∣, Ĥe =

√
S2 − Ên2.
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2.4 The Backward Cloud Generator-2

In addition to the BCG1 given by Liu, Wang[13] proposed another backward
cloud generator algorithm according to the sample variance and the fourth-order
sample central moment as following.

Algorithm Backward normal cloud generator—BCG2
Input: Drops(xi), i = 1, 2, · · · , n
Output: (Ex,En,He) representation of a qualitative concept.
Step 1: Calculate the sample mean, sample variance and the fourth-order

sample central moment of cloud drops(xi), respectively, i.e.

Êx = X̄ =
1

n

n∑
i=1

xi, S
2 =

1

n− 1

n∑
i=1

(xi − X̄)2, μ̄4 =
1

n− 1

n∑
i=1

(xi − X̄)4.

Step 2: According to the character of the second-order normal cloud distribu-
tion, Wang got the equations:{

S2 = En2 +He2,
μ̄4 = 3(3He4 + 6He2En2 + En4).

(2)

Step 3: Calculate the estimates of En and He from (2), i.e.

Ên =
4

√
9 (S2)2 − μ̄4

6
, Ĥe =

√
S2 − Ên2.

The two BCG algorithms are both based on the statistical principles, and there
will be errors for different cloud drops inevitably. Especially, calculate the es-
timate of hyper entropy He, if the sample standard deviation is less than the
estimate of entropy En, that is, S2− Ên2 < 0, then Ĥe is a imaginary number.
It shows that the two BCG algorithms have deficiency. In this paper, we pro-
pose a new BCG algorithm—a multi-step backward cloud generator algorithm,
denoted by BCG-new.

3 A Multi-step Backward Cloud Generator Algorithm

In FCG, the cloud drops are generated by two random numbers, that is, the
second-order relationship, and one is the input of the other in generation. The
FCG is a transformation process from qualitative concept to quantitative num-
ber. While the BCG is a reversed process from quantitative number to qualitative
concept, that is the restored process of numerical characters. So, using the sam-
ple data (cloud drops) to restore the three numerical characters Ex,En,He step
by step according to the statistical properties of normal cloud as following.

Algorithm Backward normal cloud generator—BCG-new
Input: Drops(xi), i = 1, 2, · · · , n
Output: (Ex,En,He) representation of a qualitative concept.
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Step 1: Calculate the sample mean Êx = X̄ = 1
n

n∑
k=1

xk from x1, x2, · · · , xn.

Step 2: Obtain the new sample from x1, x2, · · · , xn, that is, make the sample
data x1, x2, · · · , xn divide into m groups randomly, and each group will have r
samples (i.e. n = m · r and n,m, r are positive integers). Calculate the sample

variance ŷ2i = 1
r−1

r∑
j=1

(xij − Êxi)
2(i = 1, 2, · · · ,m) from each group, where,

Êxi = 1
r

r∑
j=1

xij(i = 1, 2, · · · ,m). So, y1, y2, · · · , ym are seen as a new random

sample from a N(En,He2) distribution.
Step 3: Calculate the estimates of En2 and He2 from the new sample y21 , y

2
2 ,

· · ·, y2m. We have

Ên2 = 1
2

√
4(ÊY 2)2 − 2D̂Y 2,

Ĥe2 = ÊY 2 − Ên2.
(3)

Where, ÊY 2 = 1
m

m∑
i=1

ŷ2i , D̂Y 2 = 1
m−1

m∑
i=1

(ŷ2i−ÊY 2)2.

The difference of the three BCGs is that BCG1 and BCG2 are to estimate En
and He from the sample x1, x2, · · · , xn directly, while the BCG-new is to estimate
them indirectly through multi-step reduction according to the mutually reversed
features of forward cloud generator and backward generator. At the same time,
Ĥe will not be a imaginary number in BCG-new. Correctness of the formula (3)
can be proved by Theorem 3.1.

Theorem 3.1 Let Y1, Y2, · · ·Ym be independent and identically distributed
random sample from normal distribution N(En,He2), then

Ên2 = 1
2

√
4(ÊY 2)2 − 2D̂Y 2,

Ĥe2 = ÊY 2 − Ên2.

Where, ÊY 2 = 1
m

m∑
i=1

ŷ2i , D̂Y 2 = 1
m−1

m∑
i=1

(ŷ2i−ÊY 2)2.

Proof: From the step 2 in BCG-new, if Y1, Y2, · · · , Ym are a random sample from
normal distribution N(En,He), we have

EY 2 =

∫ +∞

−∞
y2fY (y)dy = He2 + En2, (4)

and

EY 4 =

∫ +∞

−∞
y4fY (y)dy = 3He4 + 6En2He2 + En4, (5)

where,

fY (y) =
1√

2πHe
e−

(y−En)2

2He2 .
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Thus, from (4) and (5), we have,

DY 2 = EY 4 − (EY 2)2 = 2He4 + 4En2He2. (6)

From (4) and (6), we obtain

2He4 − 4EY 2He2 +DY 2 = 0, (7)

This is a quadratic equation about He2. We can get the discriminant of root
from (7), that is,

Δ = 16(EY 2)2 − 8DY 2 = 16En4 ≥ 0. (8)

Hence, from (4) and (7), we have

He21 =
2EY 2 −√4(EY 2)2 − 2DY 2

2
, He22 =

2EY 2 +
√
4(EY 2)2 − 2DY 2

2
,

and

En2
1 =

√
4(EY 2)2 − 2DY 2

2
, En2

2 =
−√4(EY 2)2 − 2DY 2

2
.

However,

En2
2 =

−√4(EY 2)2 − 2DY 2

2
< 0.

Thus, the estimates Ên2 and Ĥe2 are as follows,

Ên2 =

√
4(ÊY 2)2 − 2D̂Y 2

2
,

Ĥe2 =
2EY 2 −√4(EY 2)2 − 2DY 2

2
.

From (8), we know Ên2 ≥ 0 and Ĥe2 ≥ 0. So, the BCG-new algorithm can
ensure that Ên and Ĥe will not be a imaginary number in theory. Therefore,
Ên, Ĥe can be obtained (Ên > 0, Ĥe > 0) from the formula (3). We next analyze
and compare the errors of Ên and Ĥe in the three BCGs through experiments.
Since the three BCGs make use of the same method to estimate the expectation

Ex, that is, the sample mean Êx = 1
n

n∑
k=1

xk, there will be no comparison the

error of Êx in the paper.

4 Experiments and Analysis

The comparison of the three BCG algorithms illustrates the validity and advan-
tage of the BCG-new by experiments from two aspects: (I) when the sample size
is certain, execute the FCG(Ex,En,He) T times and generate n cloud drops
each time, and then using the obtained n cloud drops to calculate Êx, Ên, Ĥe,
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the mean and the MSE (T times) of them by the three BCGs, respectively; (II)
calculate and compare the changes of the mean and the MSE of Ên and Ĥe
under the different sample sizes.

(I) Calculate Êx, Ên, Ĥe when the sample size n is certain.
Let FCG(Ex,En,He, n) =FCG(25,3,0.1,5000), number of executions T = 20,

and determine the optimal values m = 10, r = 500. The results are shown in
Fig.2. The mean and the MSE of Êx, Ên and Ĥe are shown in Table 1.
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Fig. 2. The estimates of 20 times generated by the three algorithms about Ên and Ĥe

The results indicate that Ĥe is a imaginary number sometimes in BCG1 and
BCG2 when He = 0.1 (shown in Fig.2). These points appeared in the horizontal
axis are imaginary numbers for Ĥe in Fig.2, that is, Ĥe2 < 0. We can see that
the complex values of Ĥe have appeared 5 times and 7 times in 20 experiments
in BCG1 and BCG2, respectively. However, this situation can be avoided by the
BCG-new. In Table1, the mean and the MSE of Ĥe are obtained by excluding
the complex value of Ĥe. The MSE of Ĥe in BCG1 and BCG2 is larger than in
BCG-new obviously. The three BCG algorithms can make a good estimate for

Table 1. The mean and MSE of Ex = 25, En = 3, He = 0.1

Numerical characters Mean and MSE BCG1 BCG2 BCG-new

Ex Mean 25.0054 25.0054 25.0054
MSE 0.0025 0.0025 0.0025

En Mean 2.9976 2.9978 2.9984
MSE 0.0011 9.0095×10−4 7.5960 × 10−4

He Mean 0.2566 0.2037 0.0947
MSE 0.0311 0.0157 2.7497 × 10−4
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En. The means and the MSEs of the estimates Ên have only samll differences
in the three BCGs.

(II) Calculate the mean and the MSE(T times) of Ên, Ĥe under the different
sample sizes

Similar to (I), let FCG(Ex,En,He, n) =FCG(25, 3, 0.1), number of execu-
tions T = 20. Calculate the mean and the MSE of Ên, Ĥe under the different
sample sizes respectively. The results are shown in Fig.3.
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Fig. 3. The means and MSEs of Ên and Ĥe under the different sample sizes

From Fig.3, the mean of Ĥe is larger than 0.1 and its MSE is also larger with
the increase of the sample sizes in BCG1 and BCG2. But the mean of Ĥe is
very close to 0.1 and its MSE tends to zero obviously in BCG-new. There is no
significant differences on the mean and the MSE of Ên in three BCGs. The three
BCGs have the same time complexity, i.e. O(n).

5 Conclusions

In this paper, the backward cloud generator algorithm was studied. The limita-
tions of the backward cloud generators proposed in[12][13] were analyzed and a
new backward cloud generator (BCG-new) was proposed. The three BCGs were
compared by simulation experiments. The results show that the method was
able to obtain better estimates for the parameters (i.e. entropy En and hyper
entropy He).
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Abstract. AFS (Axiomatic Fuzzy Sets) -based formal concept is a gen-
eralization and development of classical concept lattice and monotone
concept, which can be applied to represent the logic operations of queries
in information retrieval. Granular computing is an emerging field of study
that attempts to formalize and explore methods and heuristics of human
problem solving with multiple levels of granularity and abstraction. The
main objective of this paper is to investigate and develop AFS-based
formal concept by using granule logics. Some generalized formulas of
granular computing are introduced, in which AFS-based formal concept
and AFS-based formal concept on multi-valued context are interpreted
from the point of granular computing, respectively.

Keywords: Formal concept, concept lattice, granular computing, AFS-
based formal concept.

1 Introduction

Formal concept analysis (FCA) proposed by Wille (1982) has been found useful
in conceptual data analysis and knowledge processing [14]. FCA starts with the
notion of a formal context consisting of a set of objects, a set of attributes,
and a binary relation between the object set and attribute set. Concept lattice,
or Galois lattice, forms the core of the mathematical theory of FCA, which
reflects the relationship of generalization and specialization among concepts.
Concept lattice is a form of concepts hierarchy, in which each node (formal
concept) represents a subset of objects (extent) with their common attributes
(intent). The characteristic of concept lattice theory lies in reasoning on the
possible attributes of data sets [24]. As a powerful methodology for data analysis,
FCA has been widely applied to machine learning, artificial intelligence, and
knowledge discovery.

For requirements of real world applications, a number of different extensions
of Wille’s concept lattice have been proposed by combining some soft computing
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methods, such as fuzzy sets, rough sets, AFS (Axiomatic Fuzzy Sets) theory, etc.
In [2], Deogun and Saquer discussed some of limitations of the Wille’s formal
concept and proposed a monotone concept. Monotone concept is a generaliza-
tion of Wille’s notion of concept where disjunctions are allowed in the intent
and set unions are allowed in the extent. This generalization allows an informa-
tion retrieval query containing disjunctions to be understood as the intent of a
monotone concept whose answer is the extent of that concept. In order to further
develop monotone concept, Wang and Liu proposed AFS-based formal concept
[11], which can be more conveniently applied to represent query than monotone
concept in information retrieval systems, and proved the set of all AFS-based
formal concepts forms a complete lattice.

Granular computing (GrC) is an emerging computing paradigm of informa-
tion processing [4,9,23]. The concept of granular computing was initially called
information granularity or information granulation [16,20,21,22]. The term gran-
ular computing first appeared in literature [22] as follows, “a subset of computing
with words is granular computing.” A central notion of granular computing is
multilevel granular structures consisting of a family of interrelated and interact-
ing granules. Granular computing focuses on problem solving by describing and
representing a problem and its solution in various levels of granularity so that
one can focus on things that serve a specific interest and ignore unimportant
and irrelevant details. Granular computing makes use of knowledge structures
and hence has a significant impact on the study of human intelligence and the
design of intelligent systems [19,25]. Granular computing has been studied un-
der various names in many different fields, such as concrete models of granular
computing [1,3,5,10,13,15,17,18].

Motivated by the works of Yao and Zhou [19,25], the main objective of the
paper is to make further contribution along this line by investigating AFS-based
formal concept within a granular logic approach. In Section 2, some notations
of AFS algebras are recalled. Some new logic formulas are introduced based on
AFS logics in Section 3. In Section 4, we investigate AFS-based formal concept
within the logics of granular computing, and extend AFS-based formal concept
in the multi-valued context. Finally, a conclusion is drawn in Section 5.

2 AFS Algebras

AFS (Axiomatic Fuzzy Sets) theory was firstly proposed by Liu in 1998 [6,7]. In
essence, AFS theory provides an effective tool to convert the information in the
training examples and databases into the membership functions and their fuzzy
logic operations. The following example, which employs the information table,
serves as an introductory illustration of the set EM∗ and EM∗/R.

Example 1. Let X = {x1, x2, ..., x5} be a set of five people with feature set
F = {f1, f2, ..., f8}, and which are described by real numbers (f1: age, f2:
height, f3: weight, f4: salary, f5: estate), Boolean values (f6: male, f7: female, f8:
MBA degree). Let M = {m1

1,m
1
2,m

2
1,m

2
2,m

3
1,m

3
2,m

4
1,m

4
2,m

5
1,m

5
2,m

6
1,m

7
1,m

8
1},

in which mi
j is the j-th assertion about fi, m

i
1=large,mi

2=small, (i = 1, 2, 3, 4, 5),
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Table 1. Descriptions of the information system [12]

appearance wealth gender degree
age height weight salary estate male female MBA

x1 21 1.69 50 1 0 1 0 0
x2 30 1.62 52 120 200 0 1 1
x3 20 1.80 53 100 40 1 0 1
x4 60 1.5 63 80 324 0 1 0
x5 45 1.71 54 145 940 1 0 1

m6
1=male, m7

1=female, m8
1=with MBA degree. Let Fi be the set of feature val-

ues on i-th feature fi, and φi be the partial function φi : X → Fi. For each
m ∈M is an assertion of a feature value about an object x of the form mi(x) =
‘φi(x) is some value’. For example, for object x1, put m1

1(x1) = ‘φ1(x1) is large’,
m2

1(x1) = ‘φ2(x1) is large’, and γ = m1
1m

4
1 +m1

1m
7
1 (the “+” denotes a disjunc-

tion of the assertion about features) is a complex assertion, γ(x) = ‘φ1(x) is large
and φ4(x) is large’ or ‘φ1(x) is large and φ7(x) is female’. For Ai ⊆ M, i ∈ I,∑

i∈I(
∏

m∈Ai
m) has a well-defined meaning such as the one we have discussed

above.

Let M be a nonempty set. The set EM∗ is defined by

EM∗ = {
∑
i∈I

(
∏

m∈Ai

m) | Ai ⊆M, i ∈ I, I is any nonempty indexing set}. (1)

In [6], Liu established the quotient set EM∗/R by introducing the binary relation
R on EM∗. Moreover, Liu established EI algebra (EM∗/R,∨,∧) by introducing
the algebra operations ∨ (“or”) and ∧ (“and”) on the set EM∗/R.

Theorem 1. [6] Let M be a non-empty set. Then (EM∗/R,∨,∧) forms a com-
plete distributive lattice under the binary compositions ∨ and ∧ defined as fol-
lows. For any

∑
i∈I(

∏
m∈Ai

m),
∑

j∈J (
∏

m∈Bj
m) ∈ EM∗/R,∑

i∈I

(
∏

m∈Ai

m) ∨
∑
j∈J

(
∏

m∈Bj

m) =
∑

k∈I�J

(
∏

m∈Ck

m), (2)

∑
i∈I

(
∏

m∈Ai

m) ∧
∑
j∈J

(
∏

m∈Bj

m) =
∑

i∈I,j∈J

(
∏

m∈Ai∪Bj

m), (3)

where for any k ∈ I #J (the disjoint union of I and J , i.e., an element in I and
an element in J are always regarded as different elements in I # J), Ck = Ak if
k ∈ I, and Ck = Bk if k ∈ J .

In what follows, we introduce another AFS algebra — E#I algebra over X ,
which will play the role of the extents of AFS-based formal concepts.

The set EX∗ is defined by EX∗ = {∑i∈I ai|ai ∈ 2X , I is any non-empty
indexing set}.
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In [7], Liu established the quotient set EM∗/R by introducing the binary rela-
tion R# on EX∗, and established E#I algebra (EX∗/R#, ∨, ∧) by introducing
the algebra operations ∨ and ∧ as follows:

Theorem 2. [6] For any
∑

i∈I ai,
∑

j∈J bj ∈ EX∗/R#, then (EX∗/R#, ∨, ∧)
forms a complete distributive lattice under the binary compositions ∨, ∧ defined
as follows∑

i∈I

ai ∨
∑
j∈J

bj =
∑

k∈I�J

ck,
∑
i∈I

ai ∧
∑
j∈J

bj =
∑

i∈I,j∈J

(ai ∩ bj), (4)

where for any k ∈ I #J (the disjoint union of I and J , i.e., an element in I and
an element in J are always regarded as different elements in I # J), ck = ak if
k ∈ I, and ck = bk if k ∈ J .

(EX∗/R#, ∨, ∧) is called E#I algebra over X .
For μ =

∑
i∈I ai, ν =

∑
j∈J bj ∈ EX∗/R#, μ ≤ ν ⇐⇒ μ ∨ ν = ν ⇔ ∀ai (i ∈

I), ∃bh (h ∈ J) such that ai ⊆ bh.
Just as the Example 1, EI algebra can be represented by the fuzzy terms, the

membership can be defined as follows:

Definition 1. [6] Let X and M be sets. If for any x ∈ X, then for the complex
assertion (feature) η =

∑
i∈I(

∏
m∈Ai

m) ∈ EM∗/R, the membership function of
η is defined as follows:

μη(x) = sup
i∈I

|A�
i (x)|
|X | (5)

where A�
i (x) = {y ∈ X |x �m y,m(y) ( 0, ∀m ∈ Ai}, x �m y means the degree

of x belonging to the assertion (feature) m is larger than or equal to that of y.

3 Granular Computing Based on AFS Logics

Assume that information about objects in a finite universe are given by an
information table, in which objects are described by their values (or assertions)
on a finite set of attributes. Formally, an information table can be expressed as:

Definition 2. [8] Information table S = (U,At, {La|a ∈ At}, {Vl|l ∈ La}, {ρl|l ∈
La}), where U is a finite nonempty set of objects, At is a finite nonempty
set of attributes, La is the set of fuzzy terms defined on attribute a ∈ At,
L = {La|a ∈ At} is called the elementary language, Vl is a nonempty set of
values for a ∈ At, ρl : U → Vl is an information function. Each ρl is a total
function that maps an object of U to exactly one value in Vl.

In the elementary language L, an atomic formula is given by l = v, where l ∈ La

and v ∈ Vl defined by Definition 2. The set of atomic formulas provides a basis
on which more complex knowledge can be represented. Compound formulas can
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be built recursively from atomic formulas by using logic connectives [19]. If φ
and ψ are formulas, then so are : ¬φ, φ ∨ ψ and φ ∧ ψ (φ → ψ, φ ↔ ψ not be
considered in this paper).

In order to deal with the formal context with real number attributes, Boolean
attributes and intuition order attributes, we take the generalized formula de-
scription of information table by using EI and E#I algebra. In the sequel, any
formula is always an element in EM∗/R. For each element in EM∗/R is a set
of fuzzy terms (or assertions) with the definite semantic interpretation.

Definition 3. Assume that the formulas ψ, φ ∈ EM∗/R. The satisfiability of
the formula ψ by an object x, written x |=S ψ or in short x |= ψ if S is under-
stood, is defined by the following conditions:
(1) x |= ¬ψ iff not x |= ψ;
(2) x |= ψ ∧ φ iff x |= ψ and x |= φ;
(3) x |= ψ ∨ φ iff x |= ψ or x |= φ.

Definition 4. Assume that the formulas ψ, φ ∈ EM∗/R. The satisfiability of a
formula ψ by an object x with confidence threshold δ, μψ(x) ≥ δ, written x |=δ ψ
or in short x |= ψ, is defined by the following conditions:
(1) x |= ψ ∈ L iff μψ(x) ≥ δ;
(2) x |= ¬ψ iff not x |= ψ, i.e., μψ(x) < δ;
(3) if x |= ψ and x |= φ, iff x |= ψ ∧ φ;
(4) x |= ψ ∨ φ iff x |= ψ or x |= φ.

Within the framework of AFS theory, the meaning of a formula ψ is therefore
the logical description of sets of all objects with the semantic expressed by the
formula ψ. In EI algebra, the meaning of a formula ψ ∈ EM∗/R is a element
in EX∗/R#, denoted as α(ψ) = {ν ∈ EX∗/R#|ν |= ψ}. In other words, ψ
can be viewed as the fuzzy description of the set of objects α(ψ). With the
introduction of generalized formulas, a formal description of concepts is much
richer than classical concept in semantic expressions. A concept definable in an
information table is a pair (ψ, α(ψ)), where ψ ∈ EM∗/R. More specifically, ψ is
a description of α(ψ) in S, the intension of concept (ψ, α(ψ)), and α(ψ) is the set
of objects satisfying ψ. Correspondingly, the extension of concept (ν, β(ν)), is the
logical description of sets of all attributes possed by the ν, where ν ∈ EX∗/R#,
β(ν) = {ϕ ∈ EM∗/R|ν |= ϕ}.
Theorem 3. [11] For the formulas ζ, η ∈ EM∗/R, then the following assertions
hold:

(1) α(ζ ∨ η) = α(ζ) ∨ α(η), α(ζ ∧ η) = α(ζ) ∧ α(η),

(2) ζ ≤ η ⇒ α(ζ) ≤ α(η).



328 L. Wang, X. Liu, and X. Wang

4 AFS-Based Formal Concept within the Logics of
Granular Computing

4.1 AFS-Based Formal Concept Analysis

In [11], we proposed AFS-based formal concept in which the Galois connection
“ ′” of context (X,M, I) can be extended to the connection between the EI
algebra (EM∗/R,∨,∧) and the E#I algebra (EX∗/R#,∨,∧). Notice that

A′
i = {x ∈ X |x |=

∏
m∈Ai

m}, a′j = {m ∈M |x |= m for all x ∈ aj},

we have

α(
∏

m∈Ai

m) =
⋂

m∈Ai

α(m) = A′
i ∈ EX∗/R# (6)

β(aj) =
∏

m∈α(aj)

m =
∏

m∈a′
j

m ∈ EM∗/R (7)

α(
∑
i∈I

(
∏

m∈Ai

m)) =
∑
i∈I

α(
∏

m∈Ai

m) =
∑
i∈I

⋂
m∈Ai

α(m) =
∑
i∈I

A′
i ∈ EX∗/R# (8)

β(
∑
j∈J

aj) =
∑
j∈J

(
∏

m∈α(aj)

m) =
∑
j∈J

(
∏

m∈a′
j

m) ∈ EM∗/R (9)

Definition 5. [11] Let (X,M, I) be a context, ζ =
∑

i∈I(
∏

m∈Ai
m) ∈ EM∗/R,

ν ∈ ∑j∈J aj ∈ EX∗/R#. (ν, ζ) is called an AFS-based formal concept of the
context (X,M, I), if α(ζ) = ν, β(ν) = ζ. ν is called the extent of the AFS-based
formal concept (ν, ζ) and ζ is called the intent of the AFS-based formal concept
(ν, ζ).

Theorem 4. [11] Let (X,M, I) be a context and B(EX∗/R#, EM∗/R, I) be the
set of all AFS-based formal concepts of the context (X,M, I). Then, for any
(ν, ζ) ∈ B(EX∗/R#, EM∗/R, I), ν and ζ are uniquely determined by each other.

4.2 AFS-Based Formal Concept Analysis on Multi-valued Context

In this part, we present the AFS-based formal concept analysis on multi-valued
context (X ×X,M, Iτ ), in which M is a set of fuzzy or crisp attributes (asser-
tions) on X .

Definition 6. Let X, M be two sets. A binary relation Iτ from X ×X to M is
defined as follows: for (x, y) ∈ X ×X,m ∈M ,

(x, y)Iτm⇔ 0 ≺ m(y) � m(x)⇔ y ∈ m�(x), (10)

we write (x, y) |= (m, Iτ ).
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Based on the above mentioned works, we propose AFS-based formal con-
cept on multi-valued context, in which the Galois connection “ ′” of the con-
text (X ×X,M, Iτ ) can be extended to the connection between the EI algebra
(EM∗/R,∨,∧) and the E#I algebra (E(X ×X)∗/R#,∨,∧). Notice that

α(
∏

m∈Ai

m) = {(x, y) ∈ X ×X |(x, y) |= (m, Iτ ) for all m ∈ Ai},

β(aj) = {m ∈M |(x, y) |= (m, Iτ ) for all (x, y) ∈ aj}.
So, for any

∑
i∈I(

∏
m∈Ai

m) ∈ EM∗/R,
∑

j∈J aj ∈ E(X ×X)∗/R#,

α(
∑
i∈I

(
∏

m∈Ai

m)) =
∑
i∈I

α(
∏

m∈Ai

m) =
∑
i∈I

A′
i ∈ E(X ×X)∗/R#, (11)

β(
∑
j∈J

aj) =
∑
j∈J

(
∏

m∈a′
j

m) ∈ EM∗/R, (12)

Definition 7. Let ζ =
∑

i∈I(
∏

m∈Ai
m) ∈ EM∗/R, ν ∈ ∑j∈J aj ∈ E(X ×

X)∗/R#. (ν, ζ) is called an AFS-based formal concept of the context (X ×
X,M, Iτ ), if α(ζ) = ν, β(ν) = ζ. Then ν is called the extent of the AFS-based
formal concept (ν, ζ), and ζ is called the intent of the AFS-based formal concept
(ν, ζ).

Theorem 5. Let (X × X,M, Iτ ) be the context defined by Definition 6 and
B(E(X×X)∗/R#, EM∗/R, Iτ ) be the set of all AFS-based formal concepts of the
context (X ×X,M, Iτ ). Then, for any (ν, ζ) ∈ B(E(X ×X)∗/R#, EM∗/R, Iτ ),
ν and ζ are uniquely determined by each other.

In Example 1,

γ = m1
1m

4
1 +m1

1m
6
1, ξ = m1

1m
3
1m

4
1 +m1

1m
6
1

are two fuzzy complex assertions in EM∗/R.

α(m1
1m

4
1) = {(x1, x1), (x2, x1), (x2, x2), (x3, x3), (x4, x1), (x4, x4),

(x5, x1), (x5, x2), (x5, x3), (x5, x5)}
α(m1

1m
1
6) = {(x1, x1), (x1, x3), (x3, x3), (x5, x1), (x5, x3), (x5, x5)}

β(α(m1
1m

4
1)) = {m1

1m
3
1m

4
1}, β(α(m1

1m
1
6)) = {m1

1m
1
6}

while

β(α(m1
1m

3
1m

4
1)) = m1

1m
3
1m

4
1.

So, (ν, ξ) is an AFS-based formal concept of the context (X ×X,M, Iτ ), where
ν = {(x1, x1), (x2, x1), (x2, x2), (x3, x3), (x4, x1), (x4, x4), (x5, x1), (x5, x2),
(x5, x3), (x5, x5)} + {(x1, x1), (x1, x3), (x3, x3), (x5, x1), (x5, x3), (x5, x5)}. From
(5), one can get μm1

1m
4
1
(x) = μm1

1m
3
1m

4
1
(x) for any x ∈ X . So, μζ(x) = μξ(x) for

any x ∈ X , the fuzzy complex assertion ζ is equivalent to ξ in Table 1.
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Definition 8. Let (ν1, ζ1), (ν2, ζ2) ∈ B(E(X × X)∗/R#, EM∗/R, Iτ ). Define
(ν1, ζ1) ≤ (ν2, ζ2) if and only if ν1 ≤ ν2 in lattice E(X×X)∗/R# (or equivalently
ζ1 ≤ ζ2 in lattice EM∗/R).

It is obvious that ≤ defined in Definition 8 is a partial order relation on
B(E(X × X)∗/R#, EM∗/R, Iτ ). The following theorem shows that B(E(X ×
X)∗/R#, EM∗/R, Iτ ) forms a complete lattice under the relation ≤.
Theorem 6. Let (X × X,M, Iτ ) be the context defined by Definition 6 and
B(E(X×X)∗/R#, EM∗/R, Iτ ) be the set of all AFS-based formal concepts of the
context (X×X,M, Iτ ). Then (B(E(X×X)∗/R#, EM∗/R, Iτ ),≤) is a complete
lattice, in which suprema and infima are given as follows: for any (νk, ζk) ∈
B(E(X ×X)∗/R#, EM∗/R, Iτ ),≤),

∨k∈K(νk, ζk) = (∨k∈Kα(ζk), β(∨k∈Kα(ζk))), (13)

∧k∈K(νk, ζk) = (∧k∈Kα(ζk), β(∧k∈Kα(ζk))). (14)

where k ∈ K, K is any non-empty indexing set.

5 Conclusions

In this paper, a generalized logic for granular computing is introduced by us-
ing AFS theory, which can be viewed as the elementary language L in the
multi-granular setting. Under the new formulas, AFS-based formal concept is
investigated, and further extended to AFS-based formal concept on multi-valued
context. These results are useful to study multi-granular formal concept model.
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Based on N-Scale Relation
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Abstract. To be an efficient tool for knowledge discovery, formal con-
cept analysis has been paid more attention to and applied to many
fields in recent years. Through studying the n-scale relation defined in
this paper based on the formal context, we obtain some knowledge: left
neighborhood sets and right neighborhood sets, which also belong to the
powerset of partition on the object set, like the set of extents. Especially,
when n is a special value, the corresponding left neighborhood approx-
imate concepts and right neighborhood approximate concepts are the
join-dense subsets of the property oriented concept lattice and the con-
cept lattice of a formal context, respectively. And then, the whole lattices
can be obtained.

Keywords: n-scale relation, left neighborhood set, right neighborhood
set, left neighborhood approximate concept, right neighborhood approx-
imate concept.

1 Introduction

Formal concept analysis (FCA) was proposed by German mathematician Wille
R. in 1982 [1, 2]. The foundation of FCA are formal contexts, formal concepts,
and the corresponding concept lattices, which depend on the binary relation
between an object set and an attribute set. FCA has been widely applied to
machine learning, artificial intelligence, knowledge discovery, and so on [3–7].

Rough set theory (RST) was proposed by Polish mathematician Pawlak Z.
also in 1982 [8]. The basic relation of RST is the equivalence relation defined
on the object set, it determines the partition of the universe, based on which,
lower and upper approximation of a set are proposed. For a set, if its lower
approximation and upper approximation are not equal, then it is a rough set.
RST has been successfully applied to many filed [9–12]. FCA and RST are related
and complementary. In recent years, many efforts have been made to compare
and combine the two theories [13–16]. Combination of FCA and RST provides
some new approaches for data analysis and knowledge discovery [17–22].

In a real world, people often can’t obtain their perfect expectation. So, they
need weaken their requirements, and select other choices, which is similar to
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choose a approximate value. Inspired by such real situation, we put this idea
into formal concept analysis. Based on the formal context, we define the n-scale
relation on the object set through considering the attributes owned by an object,
and obtain some approximate concepts. At the same time, when n is supposed
to be a special value, the approximate concepts have certain connections with
the property oriented concept lattice and the original concept lattice. Thus,
the join-dense subsets of the property oriented concept lattice and the concept
lattice of a formal context can be obtained. Therefore, all the concepts can be
obtained. Here, the n-scale relation weakens the equivalence relation in RST,
and it connects FCA and RST efficiently.

Basic definitions of formal contexts and property oriented concept lattices
are recalled in Section 2. Section 3 proposes the definition of n-scale relation,
and studies the left and right neighborhood approximate concepts, based on
which, the relations between left (right) neighborhood approximate concepts
and the property oriented concept lattice (concept lattice) are revealed. Section
4 concludes the paper.

2 Preliminaries

This section reviews some basic definitions in formal concept analysis.

Definition 1. [2]A formal context (G,M, I) consists of two sets G and M and
a relation I between G and M . The elements of G are called the objects and the
elements of M are called the attributes of the context. In order to express that
an object g is in a relation I with an attribute m, we write gIm or (g,m) ∈ I
and read it as ”the object g has the attribute m”.

For a formal context (G,M, I), Wille defined two operators on A ⊆ G,B ⊆ M
as follows:

A∗ = {m|m ∈M, ∀g ∈ A, (g,m) ∈ I},
B′ = {g|g ∈ G, ∀m ∈ B, (g,m) ∈ I}.

Then we call (A,B) is a formal concept, if and only if, A∗ = B,A = B′. All
the concepts of the context (G,M, I) is a lattice, called concept lattice, and is
denoted by L(G,M, I). Where, the infimum and the supremum are give by:

(A1, B1) ∧ (A2, B2) = (A1 ∩ A2, (B1 ∪B2)
′∗)

(A1, B1) ∨ (A2, B2) = ((A1 ∪ A2)
∗′, B1 ∩B2) .

For the convenience, ∀g ∈ G, ∀m ∈ M , g∗ and m′ denote {g}∗ and {m}′,
respectively. In this paper, the formal context is required to be regular and
finite.

The property oriented concept lattice was introduced by Duntsch and Gediga
[23]. A pair (A,B), A ⊆ G,B ⊆ M , is called a property oriented concept if
A♦ = B and B� = A. Here, two approximation operators ♦,� are defined as
follows:
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A♦ = {m ∈M |m′ ∩ A �= ∅},
B� = {g ∈ G|g∗ ⊆ B}.

All property oriented concepts of the context (G,M, I) is denoted byLP (G,M, I),
it is a lattice and is called property oriented concept lattice. Where, the infimum
and the supremum are respectively defined as follows:

(A1, B1) ∧ (A2, B2) = (A1 ∩ A2, (B1 ∩B2)
�♦)

(A1, B1) ∨ (A2, B2) = ((A1 ∪ A2)
♦�, B1 ∪B2).

For a binary relation I, its complement relation is define by: Ic = {(g,m)|¬(g,
m)}. The formal context (G,M, Ic) is referred to as the complement formal
context of (G,M, I)[13].

The partial orders define on L(G,M, I) and LP (G,M, I) are the same, they
are defined by:

(A1, B1) ≤ (A2, B2)⇐⇒ A1 ⊆ A2.

Definition 2. [2]Let (G,M, I) be a formal context, (g∗′, g∗) is called an object
concept.

Definition 3. [24]Let L be a lattice. An element x ∈ L is join-irreducible if
1. x �= 0(in case L has a zero);
2. x = a ∨ b implies x = a or x = b for all a, b ∈ L.

In this paper, the set of all the join-irreducible elements of a lattice L is denoted
by J(L).

Definition 4. [24]Let P be an ordered set and let Q ⊆ P . Then Q is called
join-dense in P if for every element a ∈ P there is a subset A of Q such that
a =
∨

P A.

Lemma 1. [24]Let L be a finite lattice. Every element is join of join-irreducible
elements.

3 Approximate Concepts Based on N-Scale Relation

This section mainly introduces n-scale relation, and left (right) neighborhood
approximate concepts. Furthermore, it presents the relation between left (right)
neighborhood approximate concepts and property oriented concept lattices (con-
cept lattices) when n is a special value.

3.1 N-Scale Relation and Approximate Concepts

Definition 5. Let (G,M, I) be a formal context, ∀B ⊂ M , we say binary rela-
tion Rn

B (0 ≤ n ≤ |B|) is a n-scale relation on G, if

Rn
B = {(gi, gj) ∈ G×G|g∗i ⊆ g∗j ⊆ B and |g∗j | − |g∗i | ≤ n}

Obviously, Rn
B has reflexivity. We also define



Approximate Concepts Based on N-Scale Relation 335

[g]n−B = {gi ∈ G | (gi, g) ∈ Rn
B},

[g]n+B = {gj ∈ G | (g, gj) ∈ Rn
B},

to be the n-left neighborhood and n-right neighborhood of the object g respectively.

Remark. It is easy to see that R0
M is an equivalence relation on G with respect to

M , which is just the equivalence relationR on G in rough set theory. Accordingly,
the corresponding [g]R is an equivalence class.

Property. Let (G,M, I) be a formal context. ∀g ∈ G, [g]n−B and [g]n+B satisfy the
following properties (0 ≤ n ≤ |B|):

(1) [g]
(n−1)−
B ⊆ [g]n−B , [g]

(n−1)+
B ⊆ [g]n+B (1 ≤ n ≤ |B|) for all g ∈ G;

(2) ∀gi, gj ∈ G, If gi ∈ [gj ]
k+
B , then gj ∈ [gi]

k−
B , where, k = 1, 2, ..., n;

(3) ∀gi, gj ∈ G, If [gi]R = [gj]R, then [gi]
n−
B = [gj]

n−
B , [gi]

n+
B = [gj ]

n+
B ;

(4) If g ∈ [gi]
n−
B , then [gj ]R ⊆ [gi]

n−
B for all g ∈ [gj ]R;

(5) If g ∈ [gi]
n+
B , then [gj ]R ⊆ [gi]

n+
B for all g ∈ [gj ]R;

(6) Suppose that (G,M, Ic) is the complement formal context of (G,M, I),
then [g]n−B = [gc]

n+
B , [g]n+B = [gc]

n−
B . Where, gc and g are the same object, using

gc is for emphasizing it is in the (G,M, Ic).

Proof. It is easy to prove (1), (2) and (3) from Definition 5.
Now, we prove (4). Let [gj]R = {g1, g2, . . . , gm}, then g∗1 = g∗2 = . . . = g∗m.

Assume g1 ∈ [gi]
n−
B , from Definition 5, we have g∗1 ⊆ g∗i . So, g∗t ⊆ g∗i , t =

1, 2, . . . ,m. Hence gt ∈ [gi]
n−
B , t = 1, 2, . . . ,m. We claim that [gj ]R ⊆ [gi]

n−
B .

Similarly, we can prove (5).
(6) can be proved from Definition 5 and definition of complement formal

context.

Example 1. Table 1 shows a formal context (G,M, I). In which, the object
set G = {1, 2, 3, 4, 5, 6} consists of 6 different buildings, the attributes in M
(|M | = 5) are a: price of the house, b: traffic situation, c: entertainment instru-
ment, d: estate management, e: architectural quality. This formal context is a
investigation result. × means the customer is satisfied with the item, and the
space means he is not. The corresponding concept lattice and the property ori-
ented concept lattice are shown in Fig.1 and Fig.2 respectively. In which, each
set is denoted directly by the string of its elements except G,M and ∅.

Table 1. A formal context (G,M, I)

a b c d e

1 × × × ×
2 × ×
3 × ×
4 × ×
5 ×
6 × × ×
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(G,Ø)

(1256,a) (1346,e)

(346,be)

(1,acde) (6,abe)

(Ø,M)

(16,ae)(12,ac)

Fig. 1. L(G,M, I)

(G,M)

(125,acde) (23456,abce)

(3456,abe)

(5,a) (34,be)

(Ø,Ø)

(25,ac)

Fig. 2. LP (G,M, I)

In Table 1, when B = {a, c, d}, n = 1, 2, 3, all the n-left neighborhoods of each
object are as follows:

n = 1 : [1]1−B = {1, 2}, [2]1−B = {2, 5, 6}, [3]1−B = [4]1−B = {3, 4}, [5]1−B = [6]1−B =
{3, 4, 5, 6}.

n = 2 : [1]2−B = {1, 2, 5, 6}, [2]2−B = {2, 3, 4, 5, 6}, [3]2−B = [4]2−B = {3, 4}, [5]2−B =
[6]2−B = {3, 4, 5, 6}.

n = 3 : [1]3−B = {1, 2, 3, 4, 5, 6}, [2]3−B = {2, 3, 4, 5, 6}, [3]3−B = [4]3−B = {3, 4},
[5]3−B = [6]3−B = {3, 4, 5, 6}.

all the n-right neighborhoods of each object are as follows:
n = 1 : [1]1+B = {1}, [2]1+B = {1, 2}, [3]1+B = [4]1+B = {3, 4, 5, 6}, [5]1+B = [6]1+B =

{2, 5, 6}.
n = 2 : [1]2+B = {1}, [2]2+B = {1, 2}, [3]2+B = [4]2+B = {2, 3, 4, 5, 6}, [5]2+B =

[6]2+B = {1, 2, 5, 6}.
n = 3 : [1]3+B = {1}, [2]3+B = {1, 2}, [3]3+B = [4]3+B = {1, 2, 3, 4, 5, 6}, [5]3+B =

[6]3+B = {1, 2, 5, 6}.
It should be noted that when B = M , we have 0 ≤ n ≤ |M |− 2 since the formal
context is required to be regular. Because the following content we discussed in
this paper under the condition that B = M , for the sake of convenience, [g]n−M
and [g]n+M are denoted by [g]n− and [g]n+ respectively.

Definition 6. Let (G,M, I) be a formal context. Denote Lk
O = {[g]k−|g ∈

G}, Uk
O = {[g]k+|g ∈ G}, where, k = 1, 2, . . . , n. Lk

O and Uk
O are the coverings of

G. We call Lk
O the k-left neighborhood set of G, and Uk

O the k-right neighborhood
set of G. All the left neighborhood sets and right neighborhood sets are denoted

by LO and UO respectively, that is, LO =

n⋃
k=1

Lk
O, UO =

n⋃
k=1

Uk
O.

We can see that |Lk
O| = |Uk

O| = |G/R|.
Definition 7. [21] Suppose L1, L2 are two families of sets, and |L1| = |L2|. If
∀X ∈ L1, there exists different Y ∈ L2 such that X ⊆ Y , we say L1 is included
by L2 component-wisely, and is denoted by L1 � L2.
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We can obtain the following theorem from Definition 7 and Property (1) natu-
rally.

Theorem 1. Let (G,M, I) be a formal context. Then,

L1
O � L2

O � . . . � L
|M|−2
O , U1

O � U2
O � . . . � U

|M|−2
O .

Theorem 2. Let (G,M, I) be a formal context. Then,
LO ⊆ σ(G/R), UO ⊆ σ(G/R).

Proof. Because Property (4), if g ∈ [gi]
n−
B , then [gj ]R ⊆ [gi]

n−
B for all g ∈ [gj]R,

so, [gi]
n−
B = {∪[g]B|g ∈ [gi]

n−
B }. Thus, from the definition of LO and power

set σ(G/R), we obtain LO ⊆ σ(G/R). Similarly, we have UO ⊆ σ(G/R) since
Property (5).

Definition 8. Let (G,M, I) be a formal context, ∀g ∈ G, we call ([g]n−, g∗) and
([g]n+, g∗) are n-left neighborhood approximate concept and n-right neighborhood
approximate concept; shortly, denoted by n-LNAC and n-RNAC.

Example 2. For the formal context (G,M, I) in Example 1, we have the following

results: G/R = {{1}, {2}, {3, 4}, {5}, {6}},

L1
O = {{1}, {2, 5}, {3, 4}, {5}, {3, 4, 6}},

L2
O = {{1, 2}, {2, 5}, {3, 4}, {5}, {3, 4, 5, 6}},

L3
O = {{1, 2, 5}, {2, 5}, {3, 4}, {5}, {3, 4, 5, 6}},

U1
O = {{1}, {2}, {3, 4, 6}, {2, 5}, {6}},

U2
O = {{1}, {1, 2}, {3, 4, 6}, {2, 5, 6}, {6}},

U3
O = {{1}, {1, 2}, {3, 4, 6}, {1, 2, 5, 6}, {6}},

LO = L1
O ∪ L2

O ∪ L3
O = {{1}, {1, 2}, {1, 2, 5}, {2, 5}, {3, 4}, {5}, {3, 4, 6}, {3, 4, 5, 6}},

UO = U1
O ∪ U2

O ∪ U3
O = {{1}, {2}, {1, 2}, {2, 5, 6}, {1, 2, 5, 6}, {3, 4, 6}, {6}, {2, 5}}.

It is easy to see that |Lk
O| = |Uk

O| = |G/R| = 5, k = 1, 2, 3; and
L1
O � L2

O � L3
O, U1

O � U2
O � U3

O; LO ⊆ σ(G/R), UO ⊆ σ(G/R).
Correspondingly, we can get all the neighborhood approximate concepts:

1-LNACs:(1, acde), (25, ac), (34, be), (5, a), (346, abe);
2-LNACs: (12, acde), (25, ac), (34, be), (5, a), (3456, abe);
3-LNACs: (125, acde), (25, ac), (34, be), (5, a), (3456, abe);
1-RNACs: (1, acde), (2, ac), (346, be), (25, a), (6, abe);
2-RNACs: (1, acde), (12, ac), (346, be), (256, a), (6, abe);
3-RNACs: (1, acde), (12, ac), (346, be), (1256, a), (6, abe).

We can explain the results detailedly.
The 1-LNAC of object No.6 is (346, abe), it means: the customer is satisfied

with the house price, traffic situation and architectural quality. However, under
these conditions, the choice is limited, there is only No.6 meets the demand. If
he does not care about the price and reduce the demands, he can select more,
that is, he can choose one from No.3, No.4 and No.6.

All the right neighborhood approximate concepts of object No.6 is (6, abe),
it means: the customer is satisfied with the house price, traffic situation and
architectural quality, and there is no other building which has more attributes.
So, the customer can but choose No.6.
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3.2 The Relation between Neighborhood Approximate Concepts
and Two Kinds of Concept Lattices

In the above Example, we can find that 3-LNACs and 3-RNACs are included
in property oriented concept lattice and concept lattice, respectively. In fact, we
have the following theorem.

Theorem 3. Let (G,M, I) be a formal context. If n = |M | − 2, then

[g]n+ = g∗′, [g]n− = g♦�.

Proof. 1)When n = |M | − 2, let [g]n+ = {g1, g2, . . . , gs}. If g = g1, then g∗1 ⊆
g∗l (l = 1, 2, . . . , s). ∀g0 ∈ g∗′1 , we have g∗1 ⊆ g∗0 , thus, g0 ∈ [g1]

n+, so g∗′1 ⊆ [g1]
n+,

that is, g∗′ ⊆ [g]n+ ; ∀g0 ∈ [g]n+, we have g∗ ⊆ g∗0 , so, g∗′ ⊇ g∗′0 , while, g0 ∈ g∗′0 ,
thus, g0 ∈ g∗′. So, [g]n+ ⊆ g∗′.

2)Since ∀g ∈ G, we have g∗ = g♦ such that g♦� = g∗�. So, similar to above
proof, we can obtain [g]n− = g∗� = g♦�.

This theorem shows that when n = |M | − 2, ([g]n+, g∗) is not only a formal
concept of the formal context (G,M, I) but also an object concept, and([g]n−, g∗)
is a property oriented concept.

Denote Q1 = {([g]n+, g∗)|g ∈ G,n = |M | − 2}, Q2 = {([g]n−, g∗)|g ∈ G,n =
|M | − 2}, then, Q1 is the set of object concepts, Q1 ⊆ L(G,M, I), Q2 ⊆
LP (G,M, I). From Definition 6, we have |Q1| = |Q2| = |G/R|.

Now, we will show that we can obtain concept lattice L(G,M, I) and property
oriented concept lattice LP (G,M, I) from Q1 and Q2.

Lemma 2. [24]Let (G,M, I) be a formal context, L is its concept lattice. Then
J(L) ⊆ Q1.

Combining Definition 4 and Lemma 1, this lemma shows the set of object con-
cepts Q1 is a join-dense subset in L.

Theorem 4. Let (G,M, I) be a formal context, LP is its property oriented con-
cept lattice. Then J(LP ) ⊆ Q2.

Proof. Let P2 = {([g]n−,∼ g∗)|g ∈ G,n = |M | − 2}. Since Lc(G,M, I) =
{(A,∼ B)|(A,B) ∈ LP (G,M, I)}, Q2 = {([g]n−, g∗)|g ∈ G,n = |M | − 2}, Q2 ⊆
LP (G,M, I), we have |P2| = |Q2|, P2 ⊆ Lc(G,M, I). Since ∼ g∗ = (gc)

∗,
[g]n− = [gc]

n+ by Property (6), so, we obtain that P2 = {([gc]n+, (gc)
∗)|g ∈

G,n = |M | − 2}. Then, from Theorem 3 and Lemma 2, we have J(Lc) ⊆ P2.
We know that Lc(G,M, I) ∼= LP (G,M, I). Suppose f : Lc(G,M, I) →

LP (G,M, I) is a bijection, f((A,∼ B)) = (A,B), Lc(G,M, I) and LP (G,M, I)
have the same partial relation: (A1, B1) ≤ (A2, B2)⇐⇒ A1 ⊆ A2, then, we have
|J(Lc)| = |J(LP )|, f(J(Lc)) = J(LP ); since |P2| = |Q2|, f(P2) = Q2, f is a
bijection, and J(Lc) ⊆ P2, we can obtain that J(LP ) ⊆ Q2.

Combining Definition 4 and Lemma 1, Theorem 4 shows that the subset Q2 of
property oriented concept lattice is also a join-dense subset in LP . Thus, we can
find all the concepts and property oriented concepts based on Q1 and Q2.
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Example 3. We consider the formal context showed in Example 1. When n =
|M | − 2, the join-dense subsets of L(G,M, I) and LP (G,M, I) are as follows:

3-RNACs:(1, acde),(12, ac), (346, be),(1256, a),(6, abe);
3-LNACs:(125, acde),(25, ac), (34, be),(5, a),(3456, abe).
That is: Q1 = {(1, acde), (12, ac), (346, be), (1256, a), (6, abe)};

Q2 = {(125, acde), (25, ac), (34, be), (5, a), (3456, abe)}.
From Q1, we can obtain all the concepts of L(G,M, I):
(1, acde), (12, ac), (346, be), (1256, a), (6, abe), (1346, e), (16, ae), (G, ∅), (∅,M);
From Q2, we can obtain all the property oriented concepts of LP (G,M, I):
(125, acde), (25, ac), (34, be), (5, a), (3456, abe), (23456, abce), (G,M), (∅, ∅).
Which are the same with the previous figures.

4 Conclusion

The n-scale relation Rn
B defined in this paper just has reflexivity, it is a weak-

ening of the equivalence relation. The knowledge discovered by which is not
concrete, however, it has real significance. Similar to our social life, sometimes,
too concrete means no answer. And, when n = |M |−2, the corresponding n-right
neighborhood approximate concepts and n-left neighborhood approximate con-
cepts are join-dense subsets of L(G,M, I) and LP (G,M, I) respectively. So, using
the property of join-irreducible elements, we can find all the formal concepts and
property oriented formal concepts. In fact, we can also define the n-scale relation
on the attribute set since duality between object set and attribute set, and when
n is supposed to be a special value, also through the method similar to that of
this paper, we can obtain object oriented concept lattice.
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Natural Science Foundation of China (No.11071281, No.60703117).
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Oriented Concept Lattices
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Abstract. Object oriented concept lattices and property oriented con-
cept lattices are two kinds of concept lattices and belong to formal
concept analysis. In the theory of formal concept analysis, attribute re-
duction is one of basic problems, it can make the discovery of implicit
knowledge in data easier and the representation simpler. Different at-
tributes play different roles in reduction theory. This paper studies the
attribute characteristics of object oriented concept lattices, and gives
equivalent conditions for each kind of attribute characteristics. Finally,
the paper shows that there are the same attribute characteristics for both
object oriented concept lattices and property oriented concept lattices,
so, study each one of them can obtain the other’s information.

Keywords: Formal context, attribute characteristics, object oriented
concept lattice, property oriented concept lattice.

1 Introduction

Formal concept analysis (FAC) was proposed by Wille R. in 1982 as an effective
method for data analysis to find, order and display concepts [1]. A concept lattice
shows the relationship of specialization and generalization among the formal
concepts. Nowadays, it has become an efficient methodology for data analysis
and knowledge discovery in various fields, such as machine learning, computer
network, data mining [2–6]. The reduction of the concept lattices is one of the
hot spots in recent years, which makes the discovery and expression of implied
knowledge in formal contexts clearer [7–10].

Rough set theory proposed by Pawlak also provided methods for data analysis
from another perspectives [11].

Duntsch and Gediga presented the property oriented concept lattice using a
pair of approximation operators inspired by Rough sets and modal logics[12,
13]. Yao introduced the object oriented concept lattice and proved that object
oriented concept lattice is isomorphic to the property oriented concept lattice
for a same formal context [14]. Liu discussed the reduction of object oriented
concept lattice and property oriented concept lattice using the lattice-preserving
reduction theory proposed in reference [7], and proposed judgment approaches
of consistent sets [9].
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The attribute set of an object (property) oriented concept lattice can be di-
vided into three parts: core attribute set, relatively necessary attribute set, and
absolutely unnecessary attribute set according to their importance to the reduc-
tion of the formal context. This paper studies the method which can distinguish
the attribute characteristics.

To make the paper self-contained, basic notions are introduced in Section 2.
Attribute characteristics of object oriented concept lattices and property oriented
concept lattices are discussed in Section 3 and 4 respectively. Finally, the paper
is concluded by Section 5.

2 Preliminaries

To facilitate our discussion, some basic notions and important propositions are
introduced in this section.

Definition 1. [15] A formal context (G,M, I) consists of two sets G and M and
a relation I between G and M . The elements of G are called the objects and the
elements of M are called the attributes of the context. In order to express that
an object g is in a relation I with an attribute m, we write gIm or (g,m) ∈ I
and read it as ”the object g has the attribute m”.

Wille defined operators ∗ and ′ for everyX ⊆ G, Y ⊆M :

X∗ = {m ∈M |(g,m) ∈ I for all g ∈ X} ,
Y ′ = {g ∈ G|(g,m) ∈ I for all m ∈ Y } .

∀x ∈ G, ∀y ∈ M , we denote xI = {y ∈ M |xIy} = {x}∗, Iy = {x ∈ G|xIy} =
{y}′. For simplicity, we write x∗ instead of {x}∗ and y′ instead of {y}′ in the
sequence.

In this paper, we assume that all the formal contexts are regular, that is, for
every x ∈ G, x∗ �= ∅, x∗ �= M , and for every y ∈M, y′ �= ∅, y′ �= G. And also, we
assume that all the formal contexts are finite, that is, G and M are finite sets.

With respect to a formal context (G,M, I), a pair of dual approximation
operators, ♦ : 2G → 2M and � : 2M → 2G, are defined as follows [12–14]:

Definition 2. With respect to a formal context (G,M, I), a pair of dual approx-
imation operators �, ♦: 2G → 2M are defined as follows for any X ⊆ G:

X� = {y ∈M | ∀x ∈ G(xIy ⇒ x ∈ X)} = {y ∈M |Iy ⊆ X},
X♦ = {a ∈M |∃x ∈ G(xIa∧x ∈ X)}= {a ∈M |Ia∩X �= ∅} = ⋃

x∈X

xI = XI.

Correspondingly, the dual approximation operators �, ♦: 2M → 2G for any
Y ⊆M are:

Y � = {x ∈ G| ∀y ∈M(xIy ⇒ y ∈ Y )} = {x ∈ G|xI ⊆ Y },
Y ♦ = {x ∈ G|∃y ∈M(xIy∧y ∈ Y )}= {x ∈ G|xI ∩Y �= ∅} = ⋃

y∈Y

Iy = IY .

It’s easy to see that, ∀x ∈ G, x♦ = x∗ = xI. ∀y ∈M , y♦ = y′ = Iy.
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The approximation operators have the following properties: ∀X,X1, X2 ⊆ G,
∀Y, Y1, Y2 ⊆M ,

1. X1 ⊆ X2 ⇒ X�
1 ⊆ X�

2 , X♦
1 ⊆ X♦

2 ; Y1 ⊆ Y2 ⇒ Y �
1 ⊆ Y �

2 , Y ♦
1 ⊆ Y ♦

2 .
2. X�♦ ⊆ X ⊆ X♦�; Y �♦ ⊆ Y ⊆ Y ♦�.
3. X�♦� = X�, X♦�♦ = X♦; Y �♦� = Y �, Y ♦�♦ = Y ♦.
4. (X1 ∩X2)

� = X�
1 ∩X�

2 , (X1 ∪X2)
♦ = X♦

1 ∪X♦
2 ;

(Y1 ∩ Y2)
� = Y �

1 ∩ Y �
2 , (Y1 ∪ Y2)

♦ = Y ♦
1 ∪ Y ♦

2 .

Definition 3. [14] Suppose (G,M, I) is a formal context. A pair (X,Y ), X ⊆
G, Y ⊆ M , is called a property oriented concept, if X = Y � and Y = X♦;
(X,Y ) is called an object oriented concept, if X = Y ♦ and Y = X�. The object
set X and the attribute set Y are called the extent and the intent of (X,Y )
respectively.

Denote all the object oriented concepts (property oriented concepts) of a formal
context (G,M, I) as LO(G,M, I) (LP (G,M, I)). Then, LO(G,M, I) is a lattice,
where, ∀(X1, Y1), (X2, Y2) ∈ LO(G,M, I),

(X1, Y1) ∧ (X2, Y2) = ((X1 ∩X2)
�♦, Y1 ∩ Y2),

(X1, Y1) ∨ (X2, Y2) = (X1 ∪X2, (Y1 ∪ Y2)
♦�).

And, LP (G,M, I) is also a lattice, where ∀(X1, Y1), (X2, Y2) ∈ LP (G,M, I),
(X1, Y1) ∧ (X2, Y2) = (X1 ∩X2, (Y1 ∩ Y2)

�♦),
(X1, Y1) ∨ (X2, Y2) = ((X1 ∪X2)

♦�, (Y1 ∪ Y2)).

Definition 4. [9] Let (G,M, I) be a formal context. ∀D ⊆ M , If
LO(G,D, ID) =G LO(G,M, I), then D is a consistent object oriented set; if
LP (G,D, ID) =G LP (G,M, I), then D is a consistent property oriented set.
Moreover, ∀d ∈ D, if LO(G,D − {d}, ID−{d}) �=G LO(G,M, I), we say D is a
reduct of LO(G,M, I); if LP (G,D − {d}, ID−{d}) �=G LP (G,M, I), we say D is
a reduct of LP (G,M, I). Where, ID = I ∩ (G × D), the denotation =G means
two lattices are equal with respect to extents.

Example 1. Table 1 shows a formal context (G,M, I). In which, G = {1, 2, 3, 4, 5}
is the object set, M = {a, b, c, d, e, f, g} is the attribute set.

Table 1. A formal context (G,M, I)

a b c d e f g

1 × × × ×
2 × × × ×
3 × ×
4 × ×
5 × × ×

The corresponding object oriented concept lattice LO(G,M, I) and property
oriented concept lattice LP (G,M, I) are shown as Fig.1 and Fig.2. Where, each
set is described by the series of its elements except G, M , and ∅.
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( , )G M

(1234, )cdef (125, )abdeg

(134, )cef (12, )de (25, )bdg

(1, )e (2, )d

( , )

Fig. 1. LO(G,M, I)

( , )G M

(1345, )abcefg (2345, )abcdfg

(134, )acef (345, )abcfg (25, )abdg

(34, )cf (5, )abg

( , )

Fig. 2. LP (G,M, I)

In the theory of concept lattice reduction [7], Zhang et al. has classified the
attributes into three kinds, which is cited as follows.

Definition 5. [7] Let (G,M, I) be a formal context, the set {Di|Di is a reduct,
i ∈ τ} (τ is an index set) includes all the reducts of (G,M, I). Then each element
in M is classified into one of the following three kinds:

1. Absolutely necessary attribute (core attribute) b : b ∈ ⋂
i∈τ

Di.

2. Relatively necessary attribute c : c ∈ ⋃
i∈τ

Di −
⋂
i∈τ

Di.

3. Absolutely unnecessary attribute d : d ∈M − ⋃
i∈τ

Di.

Accordingly, C = ∩
i∈τ

Di is called the core attribute set (also called the core of

(G,M, I)), S = ∪
i∈τ

Di − ∩
i∈τ

Di is named the relatively necessary attribute set,

and K = M − ∪
i∈τ

Di is called the absolutely unnecessary attribute set. The

elements not in core are called non-core elements.
Similarly, there are the same classification in the reduction theory of object

(property) oriented concept lattices. Reference [9] has given the judgment theo-
rems about the reduction theory.

Theorem 1.[9] Let (G,M, I) be a formal context, D ⊆M , D �= ∅, E = M−D.
Then, D is a consistent object oriented set ⇔ ∀e ∈ E, (e♦� − E)♦ = (e♦� ∩
D)♦ = e♦.

Theorem 2.[9] Let (G,M, I) be a formal context, D ⊆M , D �= ∅, E = M−D.
Then, D is a reduct of LO(G,M, I) ⇔∀e ∈ E, (e♦�−E)♦ = (e♦� ∩D)♦ = e♦,
and, ∀d ∈ D, (d♦� − (E ∪ {d}))♦ = (d♦� ∩ (D − {d}))♦ �= d♦.
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3 Attribute Characteristics of Object Oriented Concept
Lattices

This section analyzes the attribute characteristics of object oriented concept
lattices, and gives some judgment theorems.

Theorem 3. Let (G,M, I) be a formal context, core K ⊆ M , K �= ∅, ∀a ∈
M −K, if (a♦� ∩K)♦ = a♦, then, a is an absolutely unnecessary attribute.

Proof. Assume that a isn’t an absolutely unnecessary attribute, then, there
exists a reduct D such that a ∈ D.

Since a ∈ M − K, and K ⊆ D, we obtained that K ⊆ D − {a}. Then,
a♦� ∩K ⊆ a♦� ∩ (D − {a}), so, a♦ = (a♦� ∩K)♦ ⊆ (a♦� ∩ (D − {a}))♦. On
the other hand, a♦� ∩ (D−{a}) ⊆ a♦�, so, (a♦� ∩ (D−{a}))♦ ⊆ a♦�♦ = a♦.

Then, a♦ = (a♦� ∩ (D−{a}))♦. So, from Theorem 2, we know that D−{a}
is a reduct of LO(G,M, I), which contradicts to ”D is a reduct”. Therefore, the
result is proved.

Theorem 4. Let (G,M, I) be a formal context. Then, a ∈ M is a non-core
attribute ⇔ (a♦� − {a})♦ = a♦.

Proof. Since a is a non-core attribute⇔M−{a} is a consistent object oriented
set, according to Theorem 1, it is equivalent to ∀e ∈ E = M − (M −{a}) = {a},
(e♦� − E)♦ = e♦, that is, (a♦� − {a})♦ = a♦.

Theorem 5. Let (G,M, I) be a formal context, a be a relatively necessary
attribute. Then, there exists b ∈M , b �= a such that a♦ = b♦.

Proof. Since a ∈M is a relatively necessary attribute, we have (a♦�−{a})♦ =
a♦ from Theorem 4, and there must exist a reduct D such that a ∈ D. Assume
that for any b ∈ M , a �= b, there must be a♦ �= b♦; that is, for any b ∈
a♦� ∩ (M −D), b♦ �= a♦.

Combining with Theorem 1, we have b♦ = (b♦�∩D)♦ = (b♦�∩(D−{a}))♦ ⊂
(a♦�∩(D−{a}))♦, (a♦�∩(M−D))♦ = ∪

b∈a♦�∩(M−D)
b♦ ⊆ (a♦�∩(D−{a}))♦.

According to Theorem 2, (a♦� ∩ (D−{a}))♦ �= a♦. So, (a♦�−{a})♦ = (a♦� ∩
(A−D))♦ ∪ (a♦� ∩ (D − {a}))♦ = (a♦� ∩ (D − {a}))♦ �= a♦. Obviously, it’s a
contradiction to the fact ”(a♦� − {a})♦ = a♦”.

Therefore,there must exists b ∈M , b �= a such that a♦ = b♦.
Thus, we can obtain the following theorem to check the type of each attribute

in an object oriented concept lattice.

Theorem 6. Let (G,M, I) be a formal context, Ta = {b ∈ M | b♦ ⊂ a♦}.
Then, in an object oriented concept lattice, we have the following statements for
any a ∈M :
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1. a is a core attribute ⇔ (a♦� − {a})♦ �= a♦.

2. a is an absolutely unnecessary attribute ⇔ (a♦� − {a})♦ = a♦, and T♦
a =

a♦.

3. a is a relatively necessary attribute ⇔ (a♦� − {a})♦ = a♦, and T♦
a �= a♦.

Proof

1. It is a conversion-negative proposition of Theorem 4.

2. Necessity. Firstly, from statement 1, it’s easy to see that (a♦� − {a})♦ =
a♦. we only need to prove T♦

a = a♦. Firstly, definition of T♦
a shows that

T♦
a ⊆ a♦. Secondly, we can prove a♦ ⊆ T♦

a . In fact, since ∀b ∈ a♦� ∩ D,
b ∈ a♦� ⇒ b♦ ⊆ a♦, while, b ∈ D and D is a reduct mean that b �= a. Thus,
b♦ ⊂ a♦. That is, b ∈ Ta. Therefore, a♦� ∩ D ⊆ Ta, thus, (a

♦� ∩ D)♦ =
a♦ ⊆ (Ta)

♦.
Sufficiency. Assume that a isn’t an absolutely unnecessary attribute, then
there exists a reduct D such that a ∈ D, (a♦� ∩ (D − {a}))♦ �= a♦. Since
a♦� ∩ (D − {a}) ⊆ a♦� ⇒ (a♦� ∩ (D − {a}))♦ ⊆ a♦. Thus, (a♦� ∩ (D −
{a}))♦ ⊂ a♦. Since a /∈ Ta, then Ta can be described as Ta = (Ta ∩ (D −
{a})) ∪ (Ta ∩ (A −D)). Then, T♦

a = (Ta ∩ (D − {a}))♦ ∪ (Ta ∩ (A−D))♦.
We can show that T♦

a ⊂ a♦.
In fact, we can show it from two cases. Firstly, Ta = {b ∈ A | b♦ ⊂ a♦} =⇒
T♦
a ⊂ a♦, so, Ta ⊂ a♦�. Thus, (Ta∩(D−{a}))♦ ⊂ (a♦�∩(D−{a}))♦ ⊂ a♦.

Secondly, ∀e ∈ (Ta∩(A−D)), obviously, e ∈ Ta, so e♦� ⊂ a♦�, and, a /∈ e♦�.
At the same time, e ∈ (A−D) and D is consistent, so, e♦ = (e♦� ∩D)♦ =
(e♦� ∩ (D − {a}))♦ ⊆ (a♦� ∩ (D − {a}))♦. Moreover, (Ta ∩ (A −D))♦ =
( ∪
e∈Ta∩(A−D)

e)♦ = ∪
e∈Ta∩(A−D)

e♦ ⊆ (a♦� ∩ (D − {a}))♦.
Combining the above results, we have T♦

a = (Ta ∩ (D−{a}))♦ ∪ (Ta ∩ (A−
D))♦ ⊂ (a♦� ∩ (D − {a}))♦ ⊆ (a♦�)♦ = a♦. That is, T♦

a ⊂ a♦.
3. The proposition is obvious according to the statements 1 and 2.

Thus, we have obtained a series of theorems about attribute characteristics of
object oriented concept lattices.

Moreover, we study how to analyze the attribute characteristics of property
oriented concept lattices in the next part.

Example 2. Consider the formal context shown in Example 1. According to
Theorem 6, we analyze each attribute as follows:

(a♦� − {a})♦ = {b, d, e, g}♦ = {1, 2, 5} = a♦, and T♦
a = {b, d, e, g}♦ =

{1, 2, 5} = a♦. So, a is an absolutely unnecessary attribute.
(b♦� − {b})♦ = ({b, d, g} − {b})♦ = {d, g}♦ = {2, 5} = b♦, and T♦

b = d♦ =
{2} �= b♦. So, b is a relatively necessary attribute. Similarly, we can obtain that
c, f, g are also relatively necessary attributes.

(d♦� − {d})♦ = ∅♦ �= d♦. So, d is a core attribute. Similarly, we can obtain
that e is also a core attribute.
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4 Attribute Characteristics of Property Oriented
Concept Lattices

Y. Y. Yao has shown that the object oriented concept lattice is isomorphic to the
property oriented concept lattice since the duality of approximation operators
♦ and �, and (X,Y ) ∈ LO(G,M, I)⇔ (Xc, Y c) ∈ LP (G,M, I) [14].

Assume that D is a consistent object oriented set of (G,M, I).
We have:

LO(G,D, ID) ≤ LO(G,M, I)
⇔ ∀(X,Y ) ∈ LO(G,M, I), ∃(X,Y0) ∈ LO(G,D, ID)
⇔ ∀(Xc, Y c) ∈ LP (G,M, I), ∃(Xc, Y c

0 ) ∈ LP (G,D, ID)
⇔ LP (G,D, ID) ≤ LP (G,M, I).

It means D is also a consistent property oriented set of (G,M, I). Consequently,
according to Definition 5 and 6, we know that the object oriented concept lattice
and property oriented concept lattice have the same consistent sets, reduct sets
and attribute classification. That is, the theorems proposed in Section 3 are also
fit for the property oriented concept lattices.

5 Conclusion

Since attribute reduction theory is important in formal concept analysis, to dis-
cuss each attribute’s role in reduction is also interesting. The paper has discussed
the attribute characteristics of object oriented concept lattices and property ori-
ented concept lattices, and reveal each attribute’s importance in keeping lattice
structure. In the real world, we can distinguish attributes’ significance according
to their role, and obtain the wanted meaningful attributes.
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Abstract. This paper mainly studies a dependence space-based model
for constructing dual concept lattice in sub-formal context. Based on
the operators of a dual concept lattice , a ∩−congruence on the power
set of objects is defined, and ∩−dependence space is then obtained. By
the ∩−congruence, dual concept granules and an inner operator decided
by any subset of attributes are introduced. It is proved that each open
element of the inner operator is just the minimal element in an dual
concept granule. Furthermore, the open element is also the extension of
a dual concept lattice.

Keywords: Dual concept lattice, dependence space, ∩−congruence re-
lation, dual concept granular.

1 Introduction

Formal concept analysis (FCA), proposed by Wille in 1982 [17], is a mathemat-
ical framework for discovery and design of concept hierarchies from a formal
context. It is an embranchment of applied mathematics, which made it need
mathematical thinking for applying FCA to data analysis and knowledge pro-
cessing [2]. All formal concepts of a formal context with their specification and
generalization form a concept lattice [3]. And the concept lattice can be depicted
by a Hasse diagram, where each node expresses a formal concept. Concept lattice
is the core structure of data in FCA. In essence, a formal concept represents a
relationship between the extension of a set of objects and the intension of a set
of attributes, and the extension and the intension are uniquely determined each
other. Thus FCA is regarded as a power tool for learning problems [1,4,5,7,9].

Rough sets and formal concept analysis, two kinds of theories for knowledge
representation and data analysis, offer related and complementary approaches
for data analysis. Many efforts have been made to compare and combine the
two theories [2,4,8,10,12, 14-16,18-24]. Novotny [15] introduced the theory of
dependence space into information system, and discussed attribute reduction.
Jarvinen [6] studied dependence relation and dependence function. Li [10] defined
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the congruence on semi-lattice, and proposed classification and reduction in a
formal context. Then Ma [18] discussed object oriented concept lattice based
rough set, and showed approaches to obtain extensions (or intensions) of all
concepts of object-oriented concept lattice. This approach is extended to fuzzy
concept lattice and concept lattice based on two universe formal context [17,19].
Then reference [20] generalized these results, and constructed dependence space
model of concept lattice in a sub-formal context.

In this paper, a dependence space-based model for constructing dual concept
lattice is formed in a sub-formal context. A new ∩−congruence based on a subset
of attributes is defined. Then ∩−dependence space and dual concept granules
are obtained. By using dual concept granules, an inner operator is proposed,
and properties of the inner operator are also investigated. Last, approaches to
obtain extensions of all dual concepts in a sub-formal context are given which
guarantee the construction of dual concept lattice in a sub-formal context.

2 Preliminaries

In this section, basic notions and properties of a pair of dual concept lattices are
given. Some connections between this pair of dual concept lattices are investi-
gated.

A formal context is a triplet (U,A, I), where U = {x1, x2, · · · , xn} is a
nonempty finite set of objects called a universe of discourse, A = {a1, a2, · · · , am}
is a non-empty finite set of attributes, and I is a relation between U and A. For
any x ∈ U and a ∈ A, (x, a) ∈ I, also written as xIa, means that the object x
has the attribute a, or the attribute a is possessed by the object x, and (x, a) �∈ I
means that the object x has not the attribute a. If we denote (x, a) ∈ I by 1 and
(x, a) �∈ I by 0, a formal context can be denoted as a table with 0 and 1 [3,17].

Let (U,A, I) be a formal context, and P(U) be the power set of U . For any
X ∈ P(U) and B ∈ P(A), a pair data operators ∗ : P(U) → P(A) and ∗ :
P(A)→ P(U), called sufficiency operators [3,17], are defined by

X∗ = {a| a ∈ A, ∀x ∈ X, xIa} (1)

B∗ = {x| x ∈ U, ∀a ∈ B, xIa} (2)

where X∗ is the set of attributes shared by all objects in X , and B∗ is the
set of objects which possess all attributes in B. For simplicity, for any x ∈ U
and a ∈ A, we use x∗ and a∗ to denote the sets {x}∗ and {a}∗, respectively.
If ∀x ∈ U, x∗ �= ∅, x∗ �= A, and ∀a ∈ A, a∗ �= ∅, a∗ �= U , then a formal
context (U,A, I) is called regular. In this paper, we suppose all formal contexts
are regular.

It is obvious that for any x ∈ U and a ∈ A, x∗ = {a ∈ A : (x, a) ∈ I} and
a∗ = {x ∈ U : (x, a) ∈ I}. Then (x, a) ∈ I ⇔ x ∈ a∗ ⇔ a ∈ x∗.

Property 1 [3, 17]. Let (U,A, I) be a formal context, X,X1, X2 ∈ P(U) and
B,B1, B2 ∈ P(A). Then the following properties hold:
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(1) X1 ⊆ X2 ⇒ X∗
2 ⊆ X∗

1 , B1 ⊆ B2 ⇒ B∗
2 ⊆ B∗

1 ;
(2) X ⊆ X∗∗, B ⊆ B∗∗;
(3) X∗ = X∗∗∗, B∗ = B∗∗∗;
(4) (X1 ∪X2)

∗ = X∗
1 ∩X∗

2 , (B1 ∪B2)
∗ = B∗

1 ∩B∗
2 ;

(5) X ⊆ B∗ ⇔ B ⊆ X∗.

A pair (X,B) with X ⊆ U and B ⊆ A is called a formal concept if X∗ = B and
B∗ = X . X is called the extent of the concept and B is called its intent. The
set of all concepts of (U,A, I), denoted by L(U,A, I), forms a complete lattice
called concept lattice [3,17], where the partial order ≤ is defined as follows: for
any (X1, B1), (X2, B2) ∈ L(U,A, I),

(X1, B1) ≤ (X2, B2)⇔ X1 ⊆ X2.

And the meet and join are given as follows:

(X1, B1) ∧ (X2, B2) = (X1 ∩X2, (B1 ∪B2)
∗∗)

(X1, B1) ∨ (X2, B2) = ((X1 ∪X2)
∗∗, B1 ∩B2).

Consider now the dual operator � of ∗ defined by [21]:

X� = Xc∗c = [(Xc)∗]c

= {a ∈ A : ∃x ∈ U(x ∈ Xc ∧ (x, a) �∈ I)}. (2)

Similarly, we can get:

B� = Bc∗c = [(Bc)∗]c

= {x ∈ U : ∃a ∈ A(a ∈ Bc ∧ (x, a) �∈ I)}, (3)

where, Xc denotes the complement set of X . We call the pair data operators
� : P(U)→ P(A) and � : P(A)→ P(U) dual sufficiency operators.

Property 2 [21]. Let (U,A, I) be a formal context. Then for any X,X1, X2 ⊆ U
and B,B1, B2 ⊆ A, the following properties hold:

(1) X1 ⊆ X2 ⇒ X�
2 ⊆ X�

1, B1 ⊆ B2 ⇒ B�
2 ⊆ B�

1;
(2) X ⊇ X��, B ⊇ B��;
(3) X� = X���, B� = B���;

(4) (X1 ∩X2)
� = X�

1 ∪X�
2, (B1 ∩B2)

� = B�
1 ∪B�

2;
(5) X ⊇ B� ⇔ B ⊇ X�.

For any X ⊆ U,B ⊆ A, a pair (X,B) is called a dual formal concept if X =
B�, B = X�. Then for any X ⊆ U and B ⊆ A, (X��, X�) and (B�, B��) are dual
concepts. We denote by Ld(U,A, I) the set of all dual concepts of (U,A, I). For
any (X1, B1), (X2, B2) ∈ Ld(U,A, I), define a binary relation ≤d as follows:

(X1, B1) ≤d (X2, B2)⇔ X1 ⊆ X2.

Then ≤d is a partial order on Ld(U,A, I). And Ld(U,A, I) is a complete lattice,
called dual concept lattice [21], where the meet and join are given as follows:

(X1, B1) ∧d (X2, B2) = ((X1 ∩X2)
��, B1 ∪B2)

(X1, B1) ∨d (X2, B2) = (X1 ∪X2, (B1 ∩B2)
��).
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Since � is the dual operator of ∗, then we can get the relationship between concept
lattice and dual concept lattice.

Then for a formal context (U,A, I), we can obtain the following:

(X,B) ∈ L(U,A, I)⇔ (Xc, Bc) ∈ Ld(U,A, I).

That is
L(U,A, I) = {(Xc, Bc) : (X,B) ∈ Ld(U,A, I)}.

3 Dependence Space-Based Model of Dual Concept
Lattice Lattice in Sub-formal Context

Definition 1. Let U be a finite nonempty set, and R is an equivalence relation
on P(U).

(1) R is said to be a ∩−congruence relation on P(U), if for any (X1, Y1) ∈ R
and (X2, Y2) ∈ R, we have (X1 ∩X2, Y1 ∩ Y2) ∈ R.

(2) (U,R) is said to be a ∩−dependence space, if U is a finite nonempty set,
and R is a ∩−congruence relation on P(U).

Theorem 1. Let (U,A, I) be a formal context. It should be noted that

Rd
B = {(X,Y ) : X� ∩B = Y � ∩B}.

Then (U,Rd
B) is a ∩−dependence space.

Proof. It is easy to prove that Rd
B is an equivalence relation on P(U). Suppose

(Xi, Yi) ∈ Rd
B , then X�

i ∩ B = Y �
i ∩ B (i = 1, 2). By using Property 2(4) we

can obtain that, (X1 ∩ X2)
� ∩ B = (X�

1 ∪ X�
2) ∩ B = (X�

1 ∩ B) ∪ (X�
2 ∩ B) =

(Y �
1 ∩B) ∪ (Y �

2 ∩B) = (Y1 ∩ Y2)
� ∩ B. That is, (X1 ∩X2, Y1 ∩ Y2) ∈ Rd

B. Then
Rd

B is a ∩−congruence relation on P(U), and (U,Rd
B) is a ∩−dependence space

by Definition 1.
By Theorem 1 we know Rd

B is an equivalence relation on P(U), which gen-
erates a partition: P(U)/Rd

B = {[X ]B : X ∈ P(U)}, where [X ]B = {Y ⊆ U :
(X,Y ) ∈ Rd

B} is called a dual concept granule decided by B, for short, a dual
concept granule.

Definition 2 [6]. Let P = (P,≤) be a poset. If the mapping i : P → P satisfies:
(1) i(x) ≤ x (x ∈ P );
(2) x ≤ y ⇒ i(x) ≤ i(y) (x, y ∈ P );
(3) i(i(x)) = i(x) (x ∈ P ).

we call the operator i is an inner operator on P or a coclosure operator.

Theorem 2. Let (U,A, I) be a formal context. It should be noted that

I(Rd
B)(X) = ∩[X ]B = ∩{Y ⊆ U : (X,Y ) ∈ Rd

B}.
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Then the following statements hold:

(1) I(Rd
B)(X) ∈ [X ]B, and for any X ′ ∈ [X ]B, I(Rd(B))(X) ⊆ X ′;

(2) if X1 ⊆ X ′ ⊆ X2, and X1, X2 ∈ [X ]B, we have X ′ ∈ [X ]B.

Proof. (1) Take Y ∈ [X ]B. Then X� ∩ B = Y � ∩ B. By I(Rd
B)(X) = ∩[X ]B

and Property 2 we can get that

I(Rd
B)(X)� ∩B = (∩[X ]B)

� ∩B
= (∩{Y ⊆ U : (X,Y ) ∈ Rd

B})� ∩B
= (∪{Y � : (X,Y ) ∈ Rd

B}) ∩B
= ∪{Y � ∩B : (X,Y ) ∈ Rd

B})
= ∪{X� ∩B : (X,Y ) ∈ Rd

B}
= X� ∩B.

Therefore, I(Rd
B)(X) ∈ [X ]B. Then for any X ′ ∈ [X ]B, we cam easily get that

I(Rd
B)(X) ⊆ X ′.

(2) Suppose X1 ⊆ X ′ ⊆ X2, and X1, X2 ∈ [X ]B. Then X� ∩ B = X�
1 ∩ B =

X�
2 ∩ B and (X1, X2) ∈ Rd

B . Since Rd
B is a ∩−congruence relation firstly, we

have (X ′, X ′) ∈ Rd
B . Thus, (X1 ∩X ′, X2 ∩X ′) ∈ Rd

B. By X1 ⊆ X ′ ⊆ X2 we can
obtain that (X ′, X2) ∈ Rd

B. Then X ′ ∈ [X ]B.

Theorem 3. Let (U,A, I) be a formal context. Then the operator I(Rd
B) :

P(U)→ P(U) is an inner operator.

Proof. Since Rd
B is reflexive, we have (X,X) ∈ Rd

B . Then I(Rd
B)(X) ⊆ X by

Theorem 2.
For any X1 ⊆ X2 ⊆ U , by Theorem 2 we can obtain that (X1, I(Rd

B)(X1)) ∈
Rd

B and (X2, I(Rd
B)(X2)) ∈ Rd

B . Since Rd
B is a ∩−congruence relation, we

have (X1, I(Rd
B)(X1) ∩ I(Rd

B)(X2)) ∈ Rd
B. Thus, I(Rd

B)(X1) ⊆ I(Rd
B)(X1) ∩

I(Rd
B)(X2)). And then I(Rd

B)(X1) ⊆ I(Rd
B)(X2).

For any X ⊆ U , we can get that I(Rd
B)(X) ⊆ U . Then I(Rd

B)(I(Rd
B)(X)) ⊆

I(Rd
B)(X) by Theorem 2. On the other hand, since (X, I(Rd

B)(X)) ∈ Rd
B and

(I(Rd
B)(X), I(Rd

B)(I(Rd
B)(X))) ∈ Rd

B , we have (X, I(Rd
B)(I(Rd

B)(X))) ∈ Rd
B .

Again using Theorem 2 (1) we can obtain that I(Rd
B)(X) ⊆ I(Rd

B)(I(Rd
B)(X)).

Thus, I(Rd
B)(X) = I(Rd

B)(I(Rd
B)(X)).

According to Definition 2 we can get that Rd
B is an inner operator on P(U).

We denote by F (I(Rd
B)) = {X ⊆ U : I(Rd

B)(X) = X} the set of all fixed
points of the operator I(Rd

B). Each fixed point X in F (I(Rd
B)) is referred to be

a open element of I(Rd
B).

Theorem 4. Let (U,A, I) be a formal context. Then

F (I(Rd
B)) = {I(Rd

B)(X) : X ⊆ U}.

Proof. It should be noted that L = {I(Rd
B)(X) : X ⊆ U}. Take Y ∈

F (I(Rd
B)). Then I(Rd

B)(Y ) = Y and then Y ∈ L. Suppose Y ∈ L. Then
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there exists X ⊆ U such that Y = I(Rd
B)(X). By Theorem 3 we can get that

I(Rd
B)(Y ) = I(Rd

B)(I(Rd
B)(X)) = I(Rd

B)(X) = Y . So we have Y ∈ F (I(Rd
B)).

Therefore, we can obtain that F (I(Rd
B)) = L = {I(Rd

B)(X) : X ⊆ U}.
Theorem 4 shows that, for any X ⊆ U , I(Rd

B)(X) is a open element of the
operator I(Rd

B).

Lemma 1. Let (U,A, I) be a formal context and B ⊆ A. Then for any X ⊆ U ,

I(Rd
B)(X) = (X� ∩B)�.

Proof. Since (U,B, IB) is a sub-formal context, for any X ⊆ U , we can get
that X� ∩B = ((X� ∩B)�)� ∩B. So (X� ∩B)� ∈ [X ]B. By Theorem 2(1) we can
get that I(Rd

B)(X) ⊆ (X� ∩ B)�. Furthermore, take any a ∈ (X� ∩ B)�. Then
for any Y ⊆ U , Y � ∩ B = X� ∩ B, we have a ∈ (X� ∩ B)� = (Y � ∩ B)� ⊆ Y .
By the arbitrariness of Y we can obtain that a ∈ ∩{Y ⊆ U : Y � ∩ B =
X� ∩B} = I(Rd

B)(X). So we can obtain that (X� ∩B)� ⊆ I(Rd
B)(X). That is,

I(Rd
B)(X) = (X� ∩B)�.

Theorem 5. Let (U,A, I) be a formal context and B ⊆ A. Then

(X,D) ∈ Ld(U,B, IB)⇔ X ∈ F (I(Rd
B)).

Proof. “ ⇒ ” Take (X,D) ∈ Ld(U,B, IB). Then X� ∩ B = D and D� = X .
Thus, (D�)� ∩B = X . By Lemma 3.1 we can get that I(Rd

B)(X) = (X� ∩B)� =
X . Therefore, we can obtain that X ∈ F (I(Rd

B)).
“ ⇐ ” Suppose X ∈ F (I(Rd

B)). Then I(Rd
B)(X) = X . According to Lemma

1 we know that I(Rd
B)(X) = (X� ∩ B)� = X . Take D = X� ∩ B. We can get

that X� ∩B = D and D� = X . That is, (X,D) ∈ Ld(U,B, IB).
Theorem 5 shows an approach to obtain intensions of dual sub-formal concepts

for a dual sub-concept lattice Ld(U,B, IB):

4 Conclusions

This paper proposed a dependence space-based model for constructing dual con-
cept lattice in a sub-formal context. By defining a ∩−congruence on the power
set of objects, we can get a model of dependence space. Then a partition and
dual concept granules are also obtained. By the dual concept granules, an inner
operator on the power set of objects is given, and properties of the operator are
also examined. By the inner operator we can prove that the minimal element in
a dual concept granule is just the extension of a dual concept of concept lattice
in the sub-formal context, which guarantee the acquirement of the dual concept
lattice for the sub-formal context.
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Abstract. Formal Concept Analysis(FCA) is an effective knowledge
representation and discovery tool. Since FCA is proposed, lots of FCA
prototype systems were designed and implemented. However, none of
these prototype systems is relatively full-featured and strong scalability.
In this paper, we propose a new FCA prototype system named XD-
CKS, which is based on Eclipse Rich Client Platform(RCP) technology.
The system integrates functions of file parsing, concept lattice building,
concept lattice visualization, association rule mining and concept lattice
applying. In order to support the expansion of system functions, all of
the modules are developed based on Eclipse RCP plug-in technology and
thus realize the Plug-and-play modules.

Keywords: Formal Concept Analysis, Concept Lattice, RCP, FCA
System

1 Introduction

Formal Concept Analysis(FCA) is a mathematical representation theory about
concept and concept hierarchy proposed by Wille in 1982 [1,2]. Since FCA was
proposed, many domestic and overseas scholars make an intensive study of the
basic theory and applications of FCA, they have achieved substantial results.
Now FCA is crucial in knowledge representation and knowledge discovery, which
has been successfully used in many fields, such as information retrieval, data
mining, software engineering, semantic web, knowledge discovery and so on.

FCA prototype systems, mainly realize file parsing, concept lattices build-
ing and concept lattices visualization. And FCA also refers to association rule
mining, ontology construction, data mining and information retrieval. FCA pro-
totype systems are divided into two kinds, based on the basic theory and based
on the applications.

The focal point of FCA prototype systems is concentrated on the research of
basic theory, including the algorithms of concept lattices building and concept
lattices visualization. The representative systems are as follows: Galicia [3] is a
rich FCA integration system which contains all the key operations; FcaStone
[4], a command line system, achieves the transformation of file and enhances
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the interactional capabilities between FCA prototype system, graphic editing
software and vector drawing software. Conexp-clj [5] is a general FCA system,
which offers the basic operations and involves some fuzzy FCA theories. Lat-
tice Miner [6] supports concept lattices building, concept lattices visualization
and rule mining, It also integrates formal concept and association rule mining.
OpenFCA [7],an integration FCA prototype system, furnishes formal context
building, concept lattices visualization, attributes mining and so on.

The other kind of FCA prototype systems, based on the applications, is mainly
used in image retrieval, network service, and data mining. Camelis [8] achieves
the requirement of LIS (Logical Information Systems). It uses the FCA method
to describe and search objects and implements information retrieval through the
format of navigating. Camelis2 [9], based on Camelis, is a tool oriented towards
semantic network retrieval. Camelis2 can import and scan RDFS (Resource De-
scription Framework), which provides search, navigating, updating operations
to correspond with the rich data models of RDFS.

In order to compensate for lack of functionality and poor extended perfor-
mance in the existing FCA systems, this thesis proposes a new FCA prototype
system, XDCKS, which integrates file parsing, concept lattices building, concept
lattices visualization, association rule mining and concept lattices applications
into one system. Through using the technology of Eclipse RCP plug-in, this new
system can divide modules into separate plug-ins to achieve a ”Plug-and-play”
effect. The flexibility and extendibility is a great feature of XDCKS.

2 Basic Knowledge of Eclipse RCP

Eclipse is an integrated Development Environment developed by IBM, which
works on the mechanism of plug-in. Adopting the technology of microkernel
and the structure of extendible plug-in, all the plug-ins can run associated with
others.

Eclipse RCP is provided by Eclipse for building rich client application. Fig.1
shows the structure of Eclipse RCP. The OSGi runtime provides the framework
to run the modular application. Standard Widget Toolkit(SWT) is a library used
by Eclipse and JFace and provides some convenient Application Programming
Interface(API) on top of SWT. The workbench provides the framework for your
application. The workbench is responsible for displaying all other User Inter-
face(UI) components. For a headless Eclipse based applications (without UI),
only the runtime is necessary.

3 Prototype System

3.1 System Functions

The purpose of XDCKS is to provide a rich functionality and good expansibility
FCA prototype system, to achieve the main function of formal concept analysis
with good performance in expansibility.
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Fig. 1. The structure of RCP framework

In order to achieve this goal, the system should be designed to have the fol-
lowing main functions. First, file parsing function, which can resolve the formal
context from different file formats; second, multi-valued background conversion
function, which will transform a multi-valued background into a binary one for
further research; third, concept lattice building function that can construct con-
cept lattice through quick and effective algorithms; forth, graphic visualization
function, which can show concept lattice through the graphic intuitive; fifth,
some of the FCA functions expansion, such as ontology construction, mining
of association rules, etc; and the last, it has good expansibility, which provides
convenient to the following new functions for access to.

The system consists of file module, theoretical research module, application
module and system configuration module. The file module is made up of file read-
ing module and multi-valued background conversion module. Its main function
is to convert different types of data read from local, database or interface into
binary background or multi-valued background to other modules for later use.
The theoretical module is composed by concept lattice building module, graphic
visualization module and algorithm performance analysis module. This module’s
main function is to transform the binary background, in kernel, into the corre-
sponding concept lattice, and at the same time show some of the information of
algorithms, such as algorithm execution time and the concept of the algorithm
to get. The application module includes two modules: association rules mining
module and building ontology module. This module will realize FCA common
applications. And the last one, system configuration module, mainly completes
functions such as system function setting, algorithm configuration, module set-
ting, etc.

3.2 Design of the Structure

The RCP plug-in technology is used in the development of the XDCKS, by which
the system becomes a modular, dynamic management, Plug-and-play system.

There are three plug-in structures in this system– kernel level, module level
and algorithm level. First, the kernel level is the foundation of the whole sys-
tem, including the basic components of Eclipse RCP and run-time environment
of the plug-in, also defining some elements involved in FCA, for example, ob-
ject, attribute, concept and the partial order relationship between concepts, etc.
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Second, the module level connects kernel level and algorithm level, provides the
definition of extended point, and is the entrance of the algorithm level. Third, the
algorithm level as an extension, through the implementation of extension point,
realizes each function modules specifically. In this way, when new function mod-
ules or algorithms should be added, we can only extend the upper extension
point without modifying the upper codes.

The Fig.2 shows the data exchange between system layers. The file reading
module loads the data from local document, database or interface and analyzes
it into formal context, and then, inputs the formal context into the kernel plug-
in module. Theoretical research module takes formal context and lattice file
as input and provide users operations such as concept lattice building, graphic
visualization, algorithm performance analysis, etc. Application module has the
same way as the theoretical research module to get and deal with the data, but it
provides operations such as association rules mining, ontology building, etc. The
system configuration module, through exchanging data with the kernel module,
configures the system running state.

Fig. 2. Data exchange between system layers

3.3 Design of the Kernel

The kernel of XDCKS is the foundation of the entire system and the main func-
tion of the kernel includes defining the structure and detailed information of the
plug-in, maintaining the plug-in extensions and extension points, loading mod-
ules dynamically according to the registered information and then generating a
menu bar, a system bar, a view of the control module, etc. At the same time,
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some elements involved in FCA, e.g. object, attribute, concept, partial order
relation between concepts and so on, are defined in the layer of kernel.

It can be seen from the Fig. 3 that classes and interfaces involved in FCA sys-
tem can be divided into three parts. The basic element interface, IBasicElement,
is used to output characters and judge conceptual elements. The basic collection
interface, IBasicSet, is the most fundamental interface of collection, it inherits
the collection interface and the copy interface for adding and removing individ-
ual element, supporting the operators of intersection, union and complement,
judging the relationship between collections. The system is mainly related to
six classes, they are FormalConcept, Intent, Extent, FormalContext, FormalAt-
tribute and FormalObject. FormalConcept is used to represent concept, Intent
represents the collection of attributes, Extent represents the collection of ob-
jects, FormalContext represents formal context, FormalAttribute represents the
attribute of concept and FormalObject represents the object of concept.

Fig. 3. Class diagram of the system

In order to represent the partial order relation between concepts, the sys-
tem has defined classes and interfaces, they are IPartialOrder and Operator.
IPartialOrder is used to represent partial order relation between concepts and
Operator is used to capture the common attributes of an object collection or
capture the common objects of an attribute collection so that we can judge
whether the object collection and attribute collection form a concept.

4 Implementation of XDCKS

Based on plug-in mechanism and related classes defined in the kernel of FCA, we
have designed and completed modules of FCA and implemented some common
algorithms in the concept lattice building module and the association rule mining
module.
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XDCKS has implemented most of the main concept lattice building algorithms
including FindNeighbors Algorithm, CloseByOne Algorithm, Chein Algorithm,
ParallelRecursive Algorithm, Norris Algorithm, Bordat Algorithm, Lindig Algo-
rithm, NextClosure Algorithm, Intersection Algorithm, ParallelRecurAlgoarray
and Godin Algorithm.

XDCKS has implemented five main association rule mining algorithms, based
on plug-in mechanism, they are Apriori Algorithm, AprioriLCS Algorithm, Min-
ing Algorithm Based on Quantitative Concept Lattices, Apriori improved Algo-
rithm and Apriori RuleMining Algorithm based on concept lattices.

5 Conclusions

In this paper, we have proposed a FCA prototype system XDCKS which is
based on Eclipse RCP technology. The system integrates functions of file parsing,
concept lattice building, concept lattice visualization, association rule mining
and concept lattice applying. With the support of plug-in mechanism, we have
implemented the main concept lattice building algorithms and association rule
mining algorithms and analyzed the performance of the algorithms. In the future
work, we will add new algorithm and make analysis.
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Abstract. Incremental learning is an efficient technique for knowledge
discovery in a dynamic database. Rough set theory is an important math-
ematical tool for data mining and knowledge discovery in information
systems. The lower and upper approximations in the rough set theory
may change while data in the information system evolves with time.
In this paper, we focus on the incremental updating principle for com-
puting approximations in set-valued ordered information systems. The
approaches for updating approximations are proposed when the object
set varies over time.

Keywords: Rough set theory, approximations, incremental learning, in-
formation systems.

1 Introduction

Granular Computing (GrC), a new concept for information processing based on
Zadeh’s “information granularity”, is a term of theories, methodologies, tech-
niques, and tools that make use of granules in the process of problem solving
[1, 2]. With the development of artificial intelligence, the study on the theory
of GrC has aroused the concern of more and more researchers. Up to now, GrC
has been successfully applied to many branches of artificial intelligence. The
basic notions and principles of GrC have appeared in many related fields, such
as concept formation, data mining and knowledge discovery [3, 4]. Rough Set
Theory (RST) is a powerful mathematical tool for dealing with inexact, uncer-
tain or vague information [5]. It is also known as one of three primary models of
GrC [6].

In real-life applications, data in information systems is generated and collected
dynamically, which leads to knowledge discovered by RST needs updating [7].
The incremental technique is an effective method to update knowledge for deal-
ing with the new added-in data set without re-implementing the original data
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mining algorithm [8, 9]. A lot of works have been done towards the incremental
learning techniques under RST. Many incremental updating approaches in RST
have been developed for knowledge discovery [10–12]. For example, an efficient
incremental RST based approach was presented to maintain knowledge dynam-
ically [13]. The lower and upper approximations are the basic concepts of RST.
Since the calculation of approximations is an indispensable step for knowledge
representation and reduction in information systems, our focus here is to develop
the incremental methods for updating approximations under the variation of the
object set.

Set-valued information system is a generalization of a single-valued informa-
tion system, which is always used to characterize the incomplete information,
i.e., the values of some attributes are unknown or multi-values [14, 15]. On the
other hand, attributes in the set-valued information system sometimes are with
preference-ordered domains. The ordering of attributes’ values may play a cru-
cial role. Then a so-called Set-valued Ordered Information System (SOIS) was
introduced by Qian et al. to describe such situations [15]. For the problem of
incremental updating approximations in SOIS, Chen et al. discussed the updat-
ing principle in the case of attribute values’ coarsening and refining [16]. In this
paper, we study the incremental approaches for computing approximations of
SOIS while objects in the universe evolve over time.

The remainder of the paper is organized as follows. In Section 2, some basic
concepts of SOIS are introduced. In Section 3, the principle of incremental up-
dating approximations in SOIS when the object set varies with time is presented.
In Section 4, we concludes the research work of this paper.

2 Preliminaries

For convenience, some basic concepts of rough sets and SOIS are reviewed in
this section [11].

A set-valued information system is an ordered quadruple (U,AT, V, f), where
U = {x1, x2, . . . , xn} is a non-empty finite set of objects, called the universe.
AT = {a1, a2, . . . , al} is a non-empty finite set of attributes. AT = C ∪ {d},
where C is the set of condition attributes and d is a decision attribute with
C ∩ {d} = Ø; V = VC ∪ Vd, where VC is the set of condition attributes’ values
and Vd is the set of decision attributes’ values; f is a mapping from U×(C∪{d})
to V such that f : U ×{C} → 2Vc is a set-valued mapping and f : U ×{d} → Vd

is a single-valued mapping.
In a set-valued information system, if attribute values are ordered according

to a decreasing or increasing preference, then the attribute is a criterion.

Definition 1. A set-valued information system is called a SOIS if all the ele-
ments of condition attributes are criteria and the decision attribute is an overall
preference.

From [15], we know that the SOIS can be classified into conjunctive and dis-
junctive systems by the inclusion dominance relation and max-min dominance
relation, respectively.
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Definition 2. Let (U,AT, V, f) be a conjunctive SOIS and A ⊆ C. The inclu-
sion dominance relation in terms of A is defined as:

R∧≥
A = {(x, y) ∈ U × U | f(y, a) ⊇ f(x, a), ∀a ∈ A} (1)

Definition 3. Let (U,AT, V, f) be a disjunctive SOIS and A ⊆ C. The max-min
dominance relation in terms of A is defined as:

R∨≥
A = {(x, y) ∈ U × U | maxf(y, a) ≥ minf(x, a), ∀a ∈ A} (2)

For convenience, we denote R�≥
A (�∈ {∧,∨}) as the dominance relation in SOIS,

where ∧ represents the conjunctive one and ∨ represents the disjunctive one.
Furthermore, we denote the dominance class of an object x induced by the
dominance relation R�≥

A (�∈ {∧,∨}) as: [x]�≥
A = {y ∈ U | (x, y) ∈ R�≥

A ,�∈
{∧,∨}}.

Let D = {D1, D2, . . . , Dr} be a finite number of classes which is a partition

of U induced by the decision attribute d. We define D≥
i =

⋃
i<j

Dj , 1 ≤ i < j ≤ r.

The statement x ∈ D≥
i means “x belongs to at least class Di”.

The definitions of the lower and upper approximations of D≥
i (i ≤ r) with

respect to the dominance relation R�≥
A (�∈ {∧,∨}) in SOIS are as follows:

Definition 4. Let (U,AT, V, f) be a SOIS. A ⊆ C and D = {D1, D2, . . . , Dr}
is the decision classes induced by {d}. The lower and upper approximations of

D≥
i (i ≤ r) with respect to the dominance relation R�≥

A (�∈ {∧,∨}) are defined
respectively as follows.

R�≥
A (D≥

i ) = {x ∈ U | [x]�≥
A ⊆ D≥

i };R�≥
A (D≥

i ) =
⋃

x∈D≥
i

[x]�≥
A . (3)

3 Approaches for Incremental Updating Approximations
When Objects Varies with Time

In this section, we discuss the principle of incremental updating approximations

based on SOIS. For convenience, we let R�≥
A (D≥

i )
′
and R�≥

A (D≥
i )

′
denote the

lower and upper approximations, respectively, when the information system is
updated.

3.1 Deletion of an Object

When an object xi is deleted from the universe of SOIS, there are two cases may
happen:

Case 1: xi ∈ D≥
i .

Proposition 1. Let (U,AT, V, f) be a SOIS. Then we have the following

results for R�≥
A (D≥

i )
′
:
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(1) If xi ∈ R�≥
A (D≥

i ), then R�≥
A (D≥

i )
′
= R�≥

A (D≥
i )− {xi};

(2) Otherwise, R�≥
A (D≥

i )
′
= R�≥

A (D≥
i ).

Proposition 2. Let (U,AT, V, f) be a SOIS. Then R�≥
A (D≥

i )
′
= R�≥

A (D≥
i )−

R ∪ {xi}, where R = {x ∈ ((R�≥
A (D≥

i ) − D≥
i ) ∩ [xi]

�≥
A ) | x �∈ [xj ]

�≥
A , xj ∈

D≥
i − {xi}}.

Case2: xi �∈ D≥
i .

Proposition 3. Let (U,AT, V, f) be a SOIS. Then we have the following

results for R�≥
A (D≥

i )
′
:

(1) If R�≥
A (D≥

i )−D≥
i ⊇ xi, then

(a) If D≥
i ⊇ [xj ]

�≥
A − {xi}, xj ∈ D≥

i − R�≥
A (D≥

i ), then R�≥
A (D≥

i )
′
=

R�≥
A (D≥

i ) ∪ {xj};
(b) Otherwise, R�≥

A (D≥
i )

′
= R�≥

A (D≥
i ).

(2) Otherwise, R�≥
A (D≥

i )
′
= R�≥

A (D≥
i ).

Proposition 4. Let (U,AT, V, f) be a SOIS. Then we have the following

results for R�≥
A (D≥

i )
′
:

(1) If xi ∈ R�≥
A (D≥

i ), then R�≥
A (D≥

i )
′
= R�≥

A (D≥
i )− {xi};

(2) Otherwise, R�≥
A (D≥

i )
′
= R�≥

A (D≥
i ).

3.2 Insertion of a New Object

When a new object x is inserted into the universe of SOIS, there are two cases
may happen:

Case 1: x ∈ D≥
i , then D≥

i = D≥
i ∪ {x}.

Proposition 5. Let (U,AT, V, f) be a SOIS. Then we have the following

results for R�≥
A (D≥

i )
′
:

(1) If D≥
i ⊇ [x]�≥

A , then R�≥
A (D≥

i )
′
= R�≥

A (D≥
i ) ∪ {x};

(2) Otherwise, R�≥
A (D≥

i )
′
= R�≥

A (D≥
i ).

Proposition 6. Let (U,AT, V, f) be a SOIS. Then R�≥
A (D≥

i )
′
= R�≥

A (D≥
i )∪

[x]�≥
A .

Case 2: x �∈ D≥
i .

Proposition 7. Let (U,AT, V, f) be a SOIS. Then R�≥
A (D≥

i )
′
= R�≥

A (D≥
i )−

R, where R = {y ∈ R�≥
A (D≥

i ) | x ∈ [y]�≥′

A }.

Proposition 8. Let (U,AT, V, f) be a SOIS. Then R�≥
A (D≥

i )
′
= R�≥

A (D≥
i )∪

R, where R = {y ∈ D≥
i | x ∈ [y]�≥′

A }.
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4 An Illustrative Example

Let the SOIS S = (U,AT, V, f) be given in Table 1, where U = {x1, x2, x3,
x4, x5, x6, x7, x8, x9}, AT = C ∪ {d}, C = {a1, a2, a3, a4}, VC = {e, f, g}, Vd =
{G,M,P} = {Good,Medium,Poor}.

To demonstrate the validity of our method for updating approximations in
SOIS, we consider the two cases as follows:

(1) The object x9 is deleted from Table 1;
(2) The object x10 which shown in Table 2 is inserted into Table 1.

Table 1. A set-valued ordered decision information system

U a1 a2 a3 a4 d

x1 {e} {e} {f, g} {f, g} P
x2 {e, f, g} {e, f, g} {f, g} {e, f, g} G
x3 {e, g} {e, f} {f, g} {f, g} M
x4 {e, f} {e, g} {f, g} {f} M
x5 {f, g} {f, g} {f, g} {f} M
x6 {f} {f} {e, f} {e, f} P
x7 {e, f, g} {e, f, g} {e, g} {e, f, g} G
x8 {e, f} {f, g} {e, f, g} {e, g} G
x9 {f, g} {g} {f, g} {f, g} P

Table 2. The object inserted into Table 1

U a1 a2 a3 a4 d

x10 {e, f} {e, g} {f, g} {e, f} M

From Table 1, we have D = {D1, D2, D3}, where D1 = {x2, x7, x8}, D2 =
{x3, x4, x5}, D3 = {x1, x6, x9}. Here, we only consider the lower and upper

approximations of D≥
2 to the validate our method. We have the following results:

(a) D≥
2 =

⋃
j≤2

Dj = D1 ∪D2 = {x2, x3, x4, x5, x7, x8};
(b) [x1]

�≥
C = {x1, x2, x3}, [x2]

�≥
C = {x2}, [x3]

�≥
C = {x2, x3}, [x4]

�≥
C = {x2, x4},

[x5]
�≥
C = {x2, x5}, [x6]

�≥
C = {x6}, [x7]

�≥
C = {x7}, [x8]

�≥
C = {x8}, [x9]

�≥
C =

{x2, x9}.
Then, based on the definitions of the lower and upper approximations in SOIS,
we have:

(a) R�≥
C (D≥

2 ) = {x2, x3, x4, x5, x7, x8};
(b) R�≥

C (D≥
2 ) = {x2, x3, x4, x5, x7, x8}.

When the object x9 is deleted from Table 1, the lower and upper approximations
are updated as follows.
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(a) From Table 1, it clear that the object x9 satisfies: x9 �∈ D≥
2 ;

(b) Since x9 �∈ R�≥
C (D≥

2 )−D≥
2 = ∅, we have: R�≥

C (D≥
2 )

′
= R�≥

C (D≥
2 );

(c) Since x9 �∈ R�≥
C (D≥

2 ), we have: R�≥
C (D≥

2 )
′
= R�≥

C (D≥
2 ).

When the object x10 in Table 2 is inserted into Table 1, the lower and upper
approximations are updated as follows.

(a) From Table 1, it is clear that the object x10 satisfies: x10 ∈ D2. Then we have

D≥
2 = D≥

2 ∪ {x10} = {x2, x3, x4, x5, x7, x8, x10} and [x10]
�≥
C = {x2, x10};

(b) Since D≥
2 ⊇ [x10]

�≥
C , we have: R�≥

C (D≥
2 )

′
= R�≥

C (D≥
2 ) ∪ {x10};

(c) R�≥
C (D≥

2 )
′
= R�≥

C (D≥
2 ) ∪ {x10}.

5 Conclusions

The incremental technique is an effective way to maintain knowledge in the
dynamic environment. The SOIS is an important and common model of infor-
mation systems. In this paper, we proposed the principle of incremental updating
approximations based on SOIS when the objects in the information system vary
with time. An example was given to illustrate the proposed method. Our future
work will focus on the development of algorithms to validate the effectiveness of
the proposed methods.

Acknowledgements. This work is supported by the National Science Foun-
dation of China (Nos. 60873108, 61175047, 61100117), the Youth Social Sci-
ence Foundation of the Chinese Education Commission (No. 11YJC630127),
the Fundamental Research Funds for the Central Universities (SWJTU11ZT08,
SWJTU12CX117, SWJTU12CX091) and the Scientific Research Fund of Yibin
University (No. 2011Z15).

References

1. Zadeh, L.A.: Towards a Theory of Fuzzy Information Granulation and Its Central-
ity in Human Reasoning and Fuzzy Logic. Fuzzy Sets and Systems 90(2), 111–127
(1997)

2. Zadeh, L.A.: Fuzzy Logic=Computing with Words. IEEE Tran. On Fuzzy Sys-
tems 4(1), 103–111 (1996)

3. Yao, Y.Y., Zhong, N.: Potential Applications of Granular Computing in Knowl-
edge Discovery and Data Mining. In: Proc. World Multiconference on Systemics
Cybernetics and Informatics, pp. 573–580 (1999)

4. Yao, Y.Y.: Perspectives of Granular Computing. In: Proc. GrC, pp. 85–90 (2005)
5. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sci-

ences 11, 341–356 (1982)
6. Yao, Y.Y.: Granular Computing: Basic Issues and Possible Solutions. In: Proc. 5th

Joint Conference on Information Sciences, pp. 186–189 (2000)



An Incremental Approach for Updating Approximations Based on SOIS 369

7. Pedrycz, W., Weber, R.: Special Issue on Soft Computing for Dynamic Data Min-
ing. Applied Soft Computing 8(4), 1281–1282 (2008)

8. Shan, N., Ziarko, W.: Data-based acquisition and incremental modification of clas-
sification rules. Computational Intelligence 11(2), 357–370 (1995)

9. Liu, D., Li, T., Ruan, D., Zou, W.: An incremental approach for inducing knowl-
edge from dynamic information systems. Fundamenta Informaticae 94(2), 245–260
(2009)

10. Li, T.R., Ruan, D., Geert, W., et al.: A Rough Sets Based Characteristic Relation
Approach for Dynamic Attribute Generalization in Data Mining. Knowledge-Based
Systems 20, 485–494 (2007)

11. Li, T.R., Ruan, D., Song, J.: Dynamic Maintenance of Decision Rules with Rough
Set under Characteristic Relation. Wireless Communications Networking and Mo-
bile Computing, 3713–3716 (2007)

12. Chen, H.M., Li, T.R., Qiao, S.J., Ruan, D.: A Rough Set Based Dynamic Mainte-
nance Approach for Approximations in Coarsening and Refining Attribute Values.
International Journal of Intelligent Systems 25(10), 1005–1026 (2010)

13. Chen, Y.N., Tseng, T.L., Chen, C.C., Huang, C.C.: Rule Induction Based on an
Incremental Rough Set. Expert Systems with Applications 36(9), 11439–11450
(2009)

14. Guan, Y., Wang, H.: Set-valued information systems. Information Sciences 176(17),
2507–2525 (2006)

15. Qian, Y.H., Dang, C.Y., Liang, J.Y., Tang, D.W.: Set-valued ordered information
systems. Information Sciences 179(16), 2809–2832 (2009)

16. Chen, H.M., Li, T.R., Zhang, J.B.: A method for incremental updating approx-
imations based on variable precision set-valued ordered information systems. In:
Proc. GrC, pp. 96–101 (2010)



Comparative Analysis on Margin and Fuzzy Rough Sets
Based Feature Selection

Hong Shi and Xiaoyun Zhang

Tianjin University, Tianjin 300072, P.R. China
serena@tju.edu.cn

Abstract. Feature selection methods obtain their optimal feature subsets by a
strategy of weighting features according to their contribution to classification.
Margin and rough sets are widely discussed in feature evaluation these years.
However, no work has been contributed to compare their performance. In this pa-
per, we introduce four feature weighting algorithms. WDL-MFD and FD-ranking,
are designed based on fuzzy rough sets. They use fuzzy dependency as their fea-
ture evaluation criterion. While the other two, Simba and Relief, use margin to
measure the significance of the features. In our work, we give a theoretical and
empirical analysis and experimentally compare the two kinds of feature evalu-
ation techniques, and demonstrate their detailed difference and connection. The
experimental results show there is no significant difference among the perfor-
mance obtained with different techniques.

Keywords: Feature selection, feature evaluation, fuzzy dependency, margin, fea-
ture weights.

1 Introduction

Feature selection plays an increasingly important role in pattern recognition and ma-
chine learning. Overfitting may occur if we train a model with a small sample described
by lots of features. In fact, usually most of the features provide no useful information
for predicting the classes of samples. Moreover, feature selection becomes particularly
necessary in high-dimensional data analysis. Recently, Feature selection methods with
gene expression data have obtained intensive research [11,12,13].

In essential, Feature selection is a preprocessing issue of building a feature selec-
tion criterion and finding a search strategy in pattern recognition and machine learn-
ing. Researchers have proposed many effective search algorithms, for example, the
forward/backward greedy search algorithm, the branch-and-bound procedure, and the
floating search methods, they are feasible with many practical applications. But the
optimal feature subset cannot be found by each of them [3], yet it has been proved
that exhaustive search to discover the optimal solution is a NP-hard problem. For these
reasons, research works tend to feature weighting strategies to rank features by their
weights. Feature weight derives directly from a feature evaluation criterion or be learned
by optimizing a feature evaluation function, improvement of algorithm performance is
expected.

J.T. Yao et al. (Eds.): RSCTC 2012, LNAI 7413, pp. 370–379, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Anyway, choosing a proper evaluation function for feature selection is the core issue.
In our discussion, we concern on the feature selection criterion. Various of feature mea-
sures have been used or developed this years, such as distance measures [4], information
measures [7], correlation measures, consistency measures, dependency measures, etc.

Margin is a geometric measure with a distance perspective to evaluate the confidence
of a classifier to its decision, the simple and successful algorithm Relief weights a spec-
ified feature by the margin it induces. Simba is also a typical margin based method,
which constructs an optimization objective function to optimize feature weights by
maximizing the hypothesis margin.

With the successful application in handling the inconsistent problems based on rough
set theory, dependency, as one of the effective measures in feature reduction has aroused
widespread attention [8]. Dependency is defined as the ratio of positive region over the
universe, where positive region is the sample sets that can be determinate classified. For
further study to generalize with heterogenous data, numerical, fuzzy. Fuzzy dependency
has been proposed with an extensive notion: the proportion of fuzzy consistent ones
over the whole universe. As fuzzy dependency reflects the usefulness of features to
decisions, then obviously, more useful of a feature, much bigger weight it possess. We
will show detail strategies with FD-ranking and WDL-MFD algorithms in section 2.

In our work, we compare the margin principle-based and fuzzy dependency-based
feature selection algorithms with sophisticated classifier CART and RBF-SVM, we an-
alyze the variation of the trained feature weights by the different methods, as we all
know, a bigger feature weight indicates a better discriminating power. With the learned
weights, combining with filter and wrapper methods [2], we schedule our experiments,
we rank the features in a descending order of the weights, based on 10 − f old cross-
validation technique, we obtain the feature subset where the classification accuracy gets
the biggest value. We compare and analyze which algorithm selects a subset that makes
the best expression to decision as approximate as the original data does.

In the remaining parts of the paper, we will describe the principles of the four algo-
rithms in detail with Section 2, followed by the experiment results on performance of
these algorithms and comparative analysis in Section 3, finally, we give the conclusion
in Section 4.

2 Algorithm Review and Discussion

In this section, margin based and fuzzy dependency based methods are separately dis-
cussed, first, we present two different ideas of building evaluation functions with margin
principle, as called Relief and Simba. Similarly, two feature weighting methods with
fuzzy dependency have been created in FD-ranking and WDL-MFD.

2.1 Margin Based Algorithm Relief and Simba

The main idea of Relief is to iteratively learn feature weights by their distinguisha-
bility between self class of a randomly picked sample and other classes. The margin
expression |x − NM(x)| − |x − NH(x)| reflects the confidence of a classifier to predict
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sample x. When a sample point is far away from the heterogeneous classes and much
near to samples in the same class, the classification certainty gets high value, otherwise,
low. Algorithm description of Relief is shown in Table 1.

Table 1. Algorithm Relief

Initiate the weight vector: w = 0;
for j = 1 : T /*T is the iterative number*/

randomly choose a sample x;
find the nearest miss NM(x) and nearest hit NH(x);
for i = 1 : N /*N is the number of the features*/

wi = wi + |xi − NM(x)i| − |xi − NH(x)i|;
end

end

The novelty of the Simba algorithm [5] is that it extends the hypothesis-margin for-
mula as follows:

θwS =
1
2

(‖x − NM(x)‖w − ‖x − NH(x)‖w) . (1)

where S is a sample set, x is a point in it, near miss NM and near hit NH of x are both
found in S . w is the weight vector on the feature set, ‖z‖w = 1∑

i wi

√∑
i(wizi)2. Note that,

w takes a real value. Then the evaluation function is developed as:

e(w) =
∑

x∈U
θwU\x(x) . (2)

where U is the training set, other notations say definitions above.
Given a dataset, e(w) can be regarded as a single variable function with weight w,

then problem of finding the weight vector is changed into an optimization issue of max-
imizing e(w) , since e(w) is continuously differentiable at almost everywhere, gradient
ascent search strategy is used. Calculation formula of the gradient of e(w) is:

(∇e(w)
)
i =

1
2

∑

x∈U

(
(xi − NM(x)i)2

‖x − NM(x)‖w −
(xi − NH(x)i)2

‖x − NH(x)‖w
)

wi . (3)

In each iteration, every feature weight is updated by adding a variation �i to the original
weight with wi = wi + �i. Set the step size in the gradient ascent search to 1, then
�i = (∇e(w))i.

In algorithmic terms, Simba has the same computational complexity O(T NM) with
Relief, where T is the iteration number, N is the feature number, and M is sample
number of the dataset. In Simba, evaluation function also updates in every step with
the new learned weights, this is a superiority over Relief. Relief is a little blind to learn
weights on separated features, ignoring whether or not there will be a performance
improvement with the combined feature subset, things may be better with Simba, for
the evaluation function with the optimization technique may produce a global optimal
weight. Both of this two methods may yield with some redundant features.
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2.2 Fuzzy Dependency Based Algorithm FD-Ranking and WDL-MFD

Pawlak rough sets generate fundamental granules with a rigid equivalence relation
to handle classification-inconsistency problem this years, and show well performance
particularly with nominal data, with high demand of numerical or fuzzy information
processing, a set of fuzzy rough models with fuzzy similarity relations have been de-
veloped. At present, combining kernel methods with fuzzy rough sets is a hot topic,
for more information, interested readers can refer to [10]. The two algorithms we will
present are based on a generalized model of fuzzy rough sets [6] proposed by Yeung,
Chen, et al.

RS X(x) = inf
y∈U S

(
N(R(x, y)), X(y)

)
; RT X(x) = sup

y∈U
T
(
R(x, y), X(y)

)
. (4)

where R is a fuzzy equivalent relation defined on U. R(x, y) is the membership of y to
the fuzzy equivalent class of x, i.e. [x]R(y) = R(x, y). T is a triangular norm, and S is its
dual. The two terms RS X(x)\RT X(x) represent the membership of x to the fuzzy lower
approximation of X or to the fuzzy upper approximation of X.

Definition 1. given a classification learning issue, k is T− equivalence relation on U
computed with Gaussian function k(x, y) in feature space B ⊆ A. U is divided into
{d1, d2, · · · , dN} with the decision attribute. The fuzzy dependency of D(D =

⋃N
i=1 di) on

B is defined as

rB(D) =
|⋃N

i=1 kdi|
|U | . (5)

where |• | is the cardinality of a subset, applying the membership function of fuzzy lower
approximation in model (4), we get

rB(D) =
1
n

∑

x∈U
1 − exp

(

−‖x − NM(x)‖2
σ

)

. (6)

with kernel function k(x, y) being the fuzzy similarity relations, the membership of a
sample x to the fuzzy lower approximation of the same class can be interpreted as the
distance of x to the nearest sample NM(x) in other classes in kernel space, then, fuzzy
dependency is the average distance on total samples.

Fuzzy dependency reflects the ratio of fuzzy classification consistent samples over
the universe. It plays an increasingly important role in feature selection. Now we in-
troduce two methods using fuzzy dependency to weight features. First, FD-ranking, we
will give a brief illustration of the algorithm through figure 1 and compare it with Relief.

figure 1 describes a two-class problem in a 2-dimensional real space, suppose ′∗′
stands for the first class, and ′◦′ represent the second class. we use sample x to show
how FD-ranking learns feature weights.

– first, choose one feature, for example, f 1;
– find the nearest miss NM(x) of sample x in the second class;
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Fig. 1. diagram form for FD-ranking and Relief

– calculate 1− k(x1,NM(x)1) , this reflects how much does feature1 contribute to the
fuzzy dependency, the value is associated to k1;

– loop on the whole samples, accumulate the value of the above expression, assign it
to the weight of feature1 as w1.

– the same way for the weight of feature2 w2.

In weight learning mechanisms, FD-ranking and Relief are the same. But a small dif-
ference shown in figure 1: Relief find two samples: NM(x) and NH(x), directly use the
horizontal distance d1 as the increment of w1. In fact, the expression 1 − k(x1,NM(x)1)
in FD-ranking can be interpreted as a distance function in kernel space.

Fuzzy Dependency-ranking calculates the fuzzy dependency of decision to a certain
feature on the whole sample set, then directly uses this value as the feature’s weight,
and the next loop for the next feature, while Relief randomly picks one sample in each
iteration, with this sample, we get all weights’ increment for the next sample. in fact,
FD-ranking and Relief have similar learning mechanisms. Also, the computational com-
plexity of FD-ranking algorithm is O(NM2), equivalent to Relief.

Inspired by Simba, WDL-MFD, a weighted distance learning algorithm via maxi-
mizing fuzzy dependency between features and decision, proposed in previous work
[9], is a desirable method. Gradient ascent search strategy is introduced into this algo-
rithm for optimizing fuzzy dependency, with the optimized feature weight, an increase
of fuzzy dependency has been shown on every experimental dataset.

In each step of the optimization procedure, (∇e(w))i is the ith component in gradient
of fuzzy dependency rB(D) computed on one sample,

(∇e(w)
)
i =

2
σ

exp
(
−

(‖x − NM(x)‖w)2

σ × (
∑N

i=1 wi)2

)
×
⎛
⎜⎜⎜⎜⎜⎝

(
f (x, ai) − f (NM(x), ai)

)2

(
∑N

i=1 wi)2
wi −

(‖x − NM(x)‖w)2

(
∑N

i=1 wi)3

⎞
⎟⎟⎟⎟⎟⎠ (7)

σ is the kernel width, η is the step size in the gradient ascent search, we can easily get
their values given a dataset.
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Table 2. Algorithm WDL-MFD

Initiate the weight vector: w =< 1, 1, · · · , 1 >;
compute σ = 1

n

∑
x∈U ‖x − NM(x)‖;

for j = 1 : M /*M is the sample size*/
for i = 1 : N /*N is the number of the features*/

�i = η
2
σ

(∇e(w))i;
end

w = w + �;
end
wi =

wi∑
wi

;

2.3 Comparisons of WDL-MFD and Simba

WDL-MFD, based on fuzzy dependency, has taken fuzzy lower approximation into
consideration, without regarding the fuzzy upper approximation, that is to say, algo-
rithms of this kind concern only the samples with fuzzy consistent classification. While
Simba, based on margin theory, evaluate the goodness of a feature by comprehensive
analysis of both the nearest miss NM(x) and the nearest hit NH(x).

The two methods are similar in terms of algorithmic mechanism, but Simba need
to set a proper iterative number T , and randomly pick sample point for each itera-
tion, while in WDL-MFD, iterative number is controlled directly by the number of
samples. Every sample is involved in the procedure. There are two parameters in WDL-
MFD,σ and η, but not difficult to compute. In computational complexity, WDL-MFD is
O(NM2), equivalent with Simba if we set the iterative number T the same with sample
number M.

3 Experimental Analysis

In this section, we will illustrate the behavior of the four algorithms on 11 datasets from
UCI machine learning repository [1]. The datasets we prepared, wine and SRBCT are
multiclass tasks, others are all binary problems. sick has a large sample size of 2800,
while SRBCT is a high-dimensional data with 2308 features based on gene expression,
the remaining are normal datasets.

We choose two well-performance classifiers CART and RBF-SVM as training al-
gorithms and use classification accuracy as the metric to evaluate the performance of
different algorithms.

First, we focus on two data sets: sonar and SRBCT, we take further observation of
the learned feature weights of the four implementations. ( We make a preprocess to
normalize the max feature weight value to be 1 for facilitating observation. )

In Figure 2, there seems something in common with the four weight value curves on
sonar, especially between algorithms WDL-MFD and Relief, which implies that there
is no big difference on the feature estimation measures to learn weights. But in reality,
the order of features are not the same with different algorithms, this will affects clas-
sification behavior on ranking based feature selection algorithms, we will show some
details with two tables behind.
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Fig. 2. Feature weights learned with the different four algorithms on sonar
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Fig. 3. Feature weights learned with the different four algorithms on SRBCT

Feature weights have a consistent variation with WDL-MFD and Relief in figure 3,
only a small number of features gain big weight values, most of the values are sparse.
We can see a clearly weight attribution with Simba methods, it performs better than
others with SRBCT in our tests. In FD-ranking, feature weights wave a lot, it is odd that
it obtains the best performance with CART, while makes little difference with SVM.

As fair as possible, we rank feature weights in a descending order, then add features
to a subset one by one, a best feature, two best features, · · ·, k best features, at last,
we design the classification model through 10 − f old cross validation with CART and
RBF-SVM, we achieve the optimal number and subset of features where classification
accuracy gets the maximum value.

From the two tables below, classification accuracies gain increase after reduction on
almost every sample set, except for wine with SVM, classification accuracies have no
changes, but features have been reduced more than a half. This indicates effectiveness
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of all algorithms. Big accuracy improvement on SRBCT has been shown with relatively
few features being selected. On CART classifier, FD-ranking method wins Relief by 8
in 11, WDL-MFD equals with Simba and wins Relief, On RBF-SVM, WDL-MFD does
better than FD-ranking in 7 datasets and equals in 2 databets, does the same as Simba,
and slightly better than Relief. Relief wins FD-ranking this time.

Table 3. Comparison of the four algorithms by classification accuracy and the selected feature
number with CART

Data raw data WDL-MFD FD-ranking Simba Relief
Acc f Acc f Acc f Acc f Acc f

heart 73.7±6.40 13 82.22±7.37 5 82.96±7.65 5 81.85±8.63 6 81.48±6.05 5
hepatitis 91.00±5.45 19 91.00±5.45 18 92.33±4.98 6 91.00±4.46 17 91.00±5.45 15
horse 95.63±3.19 22 96.73±1.73 17 95.90±2.99 20 95.63±3.23 13 96.73±1.73 15
iono 86.45±7.26 3 88.99±7.04 24 89.52±6.90 16 90.35±3.72 20 89.26±5.52 4
sick 98.36±1.24 29 98.43±0.81 21 98.46±1.23 27 98.39±1.22 29 98.43±0.81 25
sonar 71.12±12.82 60 76.93±13.23 26 74.02±9.61 51 77.45±7.67 22 78.86±9.03 26
spam 90.22±3.41 57 90.59±3.81 48 90.57±3.52 39 90.61±3.25 51 90.55±3.81 45
SRBCT 70.17±18.9 2308 94.67±8.64 15 96.00±8.43 301 95.00±11.25 126 94.67±8.64 6
WDBC 90.85±4.59 30 94.74±3.20 5 93.67±3.02 19 93.85±3.98 6 94.56±3.64 5
wine 89.31±6.68 13 95.56±4.38 6 92.15±5.95 4 92.08±4.81 4 92.08±4.81 6
WPBC 69.13±8.56 33 74.16±6.47 4 73.16±7.45 8 77.24±5.10 10 73.16±8.16 8

Table 4. Comparison of the four algorithms by classification accuracy and the selected feature
number with RBF-SVM

Data raw data WDL-MFD FD-ranking Simba Relief
Acc f Acc f Acc f Acc f Acc f

heart 81.11±7.50 13 82.96±5.30 9 81.11±7.50 6 81.48±7.61 4 81.11±7.50 13
hepatitis 83.50±5.35 19 85.50±7.29 5 89.67±7.11 6 85.33±6.13 13 85.83±5.84 8
horse 72.30±3.62 22 88.84±4.19 5 86.71±5.26 3 91.04±5.22 4 88.84±4.19 5
iono 93.79±5.07 34 96.01±3.86 16 94.60±4.77 18 94.89±3.72 14 94.91±4.57 25
sick 93.82±0.24 29 93.93±0.29 22 93.89±0.11 1 93.89±0.11 1 93.89±0.11 1
sonar 85.10±9.48 60 88.45±5.62 50 87.45±5.75 38 88.40±8.93 27 88.95±5.98 57
spam 92.11±2.86 57 92.20±2.82 51 92.13±2.76 49 92.18±2.61 49 92.11±2.86 57
SRBCT 46.00±5.16 2308 81.50±14.83 1 51.00±14.99 2 91.67±14.16 2 81.50±14.83 1
WDBC 98.08±2.25 30 98.08±2.25 20 98.08±2.25 28 98.25±1.84 23 98.08±2.25 22
wine 98.89±2.34 13 98.89±2.34 11 98.89±2.34 9 98.89±2.34 12 98.89±2.34 9
WPBC 80.37±5.33 33 83.42±6.15 18 80.37±5.33 28 80.37±5.33 33 80.89±5.49 15

In order to observe a visualized variation of the classification accuracy performed by
the four different algorithms, we illustrate the classification accuracy results on datasets
iono and wine, shown in figure 4 and figure 5.

We easily find that classification accuracy doesn’t increase at any time, in the be-
ginning, it increases with the feature number and quickly climbing to a max value.
With features continuing added, classification accuracy will not grow anymore or even
decrease. This phenomenon is so called overfitting, a common problem in feature se-
lection, especialy with high-dimensional data.
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Fig. 4. Variation of classification performances with the number of selected features on iono
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Fig. 5. Variation of classification performances with the number of selected features on wine

4 Conclusion

In this paper, we compare four feature weighting algorithms, two are margin based, Re-
lief and Simba, and the other two are fuzzy dependency based, FD-ranking and WDL-
MFD. We give concrete demonstration in organizing a feature evaluation function and
feature weights learning strategies of all the algorithms. We arrange experiments on 11
data to test the performance of these algorithms using classification accuracy as the met-
ric. We show the results in visualized figures. We get a conclusion that both measures
based on margin and fuzzy dependency are effective and promising.

The essence of our work lies in weighing gains and losses with margin or fuzzy
dependency based feature measures, finding what kind of mechanism or strategy should
be combined with to achieve the optimal feature subset, and testing which result is the
best approximation of the expression ability on the original data. Our further study
will concentrates on eliminating redundant features in the selected subset and special
learning problems.
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Abstract. This paper presents an extended granule mining based
methodology, to effectively describe the relationships between granules
not only by traditional support and confidence, but by diversity and
condition diversity as well. Diversity measures how diverse of a granule
associated with the other granules, it provides a kind of novel knowledge
in databases. We also provide an algorithm to implement the proposed
methodology. The experiments conducted to characterize a real network
traffic data collection show that the proposed concepts and algorithm
are promising.

Keywords: Granule mining, Rough set, Decision rule, Association Rule.

1 Introduction

Rough set theory describes decision rules by decision table, which compresses
databases into granules and reveals the associations between granules [3,4]. The
advantage of using decision rules is to reduce the two-steps of association mining
into one process. However, it lacks accuracy and flexibility to deal with the
associations between data granules in databases [2].

Granule mining [1,2] is a novel theory that interprets decision rules in terms of
association rules. It formally describes the process of finding interesting granules,
as well as the corresponding associations between granules in a database. Granule
mining also proposes building association mappings for efficiently discovering the
interesting association rules in different size granules.

In this paper, we further extend granule mining to describe the relation-
ships between granules not only by traditional support and confidence, but by
diversity and condition diversity as well. Diversity measures how diverse of a
granule associated with the other granules, it provides a kind of novel knowl-
edge in databases. Condition diversity is to extract rules to interpret a granules’s
diversity. We also present an algorithm for efficiently implementing the proposed
concepts. We use the proposed methodology to describe the characteristics of
network traffic, with a promising result.

The remainder of the paper is structured as follows. Section 2 presents some
preliminary concepts. In section 3, we propose the new concepts of diversity and
condition diversity. The algorithm is presented in Section 4. The experimental
result is presented in Section 5. It is followed by conclusion in the last section.
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2 Preliminaries

In this section, we introduce some preliminary concepts such as granule, decision
table, decision rules, association mapping etc. [3,2].

2.1 Granule, Decision Table, Decision Rule

Formally, a transaction database can be described as an information table
(T, V T ), where T is the set of transactions in which each transaction is a set of
items, and V T = {a1, a2, . . . , an} is a set of attributes for all transactions in T .

Let B be a subset of V T . B determines a binary relation I(B) on T . The
family of all equivalence classes of I(B), that is denoted by T/B, are referred to
B − granules [3]. The class in T/B induced by t is denoted by B(t).

Definition 1. Let g = B(t) be a granule induced by t. Its covering set

coverset(g) = {t′|t′ ∈ T,B(t′) = B(t) = g}
The support or frequency of granule g is the cardinality of coverset(g) such
that sup(g) = |coverset(g)|.
Definition 2. Given two granules g1 ∈ T/B1, g2 ∈ T/B2, if B1 ⊂ B2 and
coverset(g1) ⊇ coverset(g2), we say g1 is a generalized granule of g2, and use
g1 ( g2 to denote the generalized relationship between g1 and g2.

The tuple (T, V T , C,D) is called a decision table if C ∩D = ∅ and C ∪D ⊆ V T ,
where C is a set of condition attributes and D is a set of decision attributes.
The granules determined by C,D and C ∪D are called C − granules(condition
granules), D − granules(decision granules), and basic granules, respectively.

A condition granule cg and a decision granule dg form a decision rule cg →
dg. Usually, a minimum support threshold min sup and a minimum confidence
threshold min conf are specified to select the interesting decision rules.

2.2 Association Mapping

The relationships between condition granules and decision granules can be de-
scribed as basic association mappings(BAMs).

Definition 3. Let (T, V T , C,D) be a decision table, T/C, T/D and T/(C ∪D)
are C− granules, D− granules and basic granules. For each condition granule
cg ∈ T/C, its basic association mapping is

ΓCD(cg) = {(dg, sup(cg ∧ dg))|(cg ∧ dg) ∈ T/(C ∪D)}
where sup(cg ∧ dg) is the support of granule cg ∧ dg.

ΓCD(cg) includes all the decision granules that have relationships with the con-
dition granule cg. Specially, ΓCD(cg) = ∅ if D = ∅.

The support of cg can be calculated from its association mapping

sup(cg) =
∑

(dgi,sup)∈ΓCD(cg)

sup(cg ∧ dgi)

We can set aminimumsupportmin sup to select the significant condition granules.
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For each (dg, sup(cg∧dg)) ∈ ΓCD(cg), cg and dg forms a decision rule cg → dg,

sup(cg → dg) = sup(cg ∧ dg) and conf(cg → dg) = sup(cg∧dg)
sup(cg) . We can set a

minimum confidence threshold min conf to select the interesting rules.

2.3 Generalized Association Mapping

Let Dh be a subset of D, T/Dh is an set of decision granules Dh−granules. The
relationships between C − granules, Dh − granules can be represented by high
level association mappings ΓCDh

. ΓCDh
can be derived from the basic association

mapping ΓCD. We call ΓCDh
generalized association mappings of ΓCD.

Lemma 1. Let ΓCDh
(cg) and ΓCD(cg) are two association mappings, cg ∈

T/C, Dh ⊂ D. For each element (dhg, sup(cg ∧ dhg)) ∈ ΓCDh
(cg),

sup(cg ∧ dhg) =
∑

(cg∧dhg)�(cg∧dgi)

sup(cg ∧ dgi) (1)

where (dgi, sup(cg∧dgi)) ∈ ΓCD(cg). From ΓCDh
, we can generate a set of rules,

which can reveal the knowledge of cg in a high level.

3 Diversity

In this section, we introduce the concept of diversity of a granule, we then
present the concept of diversity and condition diversity of a rule.

3.1 Diversity of Granule

Definition 4. Given a condition granule cg and its basic association mapping
ΓCD(cg), where cg ∈ T/C,C ∩D = ∅. The diversity of condition granule cg is
defined as the cardinality of set ΓCD(cg),

divs(cg) = |ΓCD(cg)|

The diversity measures how diverse is a condition granule connecting with its
decision granules. The higher the diversity value, the more diverse a condition
granule is, the more significant a condition granule is. Specially, divs(cg) = 1 if
ΓCD(cg) = ∅. In this situation, no granule has relationship with cg.

Note that we always calculate diversity value of a condition granule cg accord-
ing to its basic association mapping ΓCD(cg) since the cardinality of ΓCDh

(cg)
only reflect cg’s diversity in the generalized tier. Similarly, considering that gran-
ule cg ∧ dhg is a condition granule, (cg ∧ dhg) ∈ T/(C ∪ Dh), its diversity is
|Γ(C∪Dh)(D−Dh)(cg∧dhg)|. Specially, for a basic granule (cg∧dg) ∈ T/(C∪D), its
diversity divs(cg∧dg) = 1becauseΓ(C∪D)(∅)(cg∧dg) = ∅.Generally, the diversity
of a basic granule is 1 because no granule has relationship with a basic granule.

The diversity of a granule (cg∧dhg) ∈ T/(C∪Dh) can be calculated according
to the diversity of all its basic granules (cg ∧ dgi) ∈ T/(C ∪D).
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Lemma 2. Let ΓCDh
(cg) and ΓCD(cg) are two association mappings, ΓCD(cg)

is a basic association mapping, cg ∈ T/C, Dh ⊂ D. For each element
(dhg, sup(cg ∧ dhg)) ∈ ΓCDh

(cg),

divs(cg ∧ dhg) = |Γ(C∪Dh)(D−Dh)(cg ∧ dhg)|

=
∑

(cg∧dhg)�(cg∧dgi)

1 =
∑

(cg∧dhg)�(cg∧dgi)

divs(cg ∧ dgi) (2)

In Section 2.2 we set a minimum threshold min sup to select the interesting
granules. We can also set a minimum threshold min divs, to select the significant
condition granules. A condition granule is deemed significant if its support is
larger than min sup or its diversity is larger than min divs.

3.2 Condition Diversity of Rule

Definition 5. A condition granule cg and a decision granule dg form a rule
cg → dg. Its diversity is defined as

divs(cg → dg) = divs(cg ∧ dg).

Its condition diversity is defined as

cond divs(cg → dg) =
divs(cg ∧ dg)

divs(cg)
(3)

The cond divs(cg → dg) is a ratio of granule (cg ∧ dg)’s diversity and granule
cg’s diversity. The higher the cond divs, the more likely the decision granule
causes the condition granule behaving diverse. In Section 2.2, we set a min conf
to select the interesting rules. We also can set a minimum condition diversity
threshold, min conf , to select the rules that have strong contributions to the
condition granule’s diversity. In this context, minimum confidence and min-
imum condition diversity are set to the same value min conf . A rule is an
interesting rule if its cond divs or confidence is larger than min conf .

4 Algorithms for Granule Mining

In this section, we first introduce a new style association mapping to effectively
describe both support and diversity relationships between granules. We then
briefly introduce the algorithms for granule mining according to the new style
association mapping and the theory described in the above sections.

4.1 New Style Association Mapping

The support and diversity relationships between condition granules and decision
granules can be represented by a new style association mapping.

Basic Association Mapping. Let (T, V T , C,D) be a decision table. For each
condition granule cg ∈ T/C, its basic association mapping is



384 B. Liu, Y. Li, and Y.-C. Tian

ΓCD(cg) = {(dg, sup(cg ∧ dg), divs(cg ∧ dg))|(cg ∧ dg) ∈ T/(C ∪D)}
= {(dg, sup(cg ∧ dg), 1)|(cg ∧ dg) ∈ T/(C ∪D) (4)

where sup(cg∧dg) is the support of granule cg∧dg, divs(cg∧dg) is the diversity
of granule cg ∧ dg. The diversity of a basic granule cg ∧ dgi is 1.

DerivedGeneralizedAssociationMapping. FromtheLemma1andLemma2,
both the support and diversity of a generalized granule cg ∧ dhg can be calculated
from its basic association association mapping. Hence, let Dh ⊂ D, we have

ΓCDh
(cg) = {(dhg, sup(cg ∧ dhg), divs(cg ∧ dhg))|(cg ∧ dhg) ∈ T/(C ∪Dh)}

= {(dg,
∑

sup(cg ∧ dgi),
∑

divs(cg ∧ dgi))|(cg ∧ dgi) ∈ T/(C ∪D)} (5)

4.2 Algorithms for Granule Mining

Algorithm 1 outlines the major steps of our proposed method. The input is a set
of Data. The output is a set of significant condition granules and their interesting
rules Out CgsRules.

Algorithm 1. Granule mining: NetGmine(Data)

Input: A set of Data;
Output: A set of interesting condition granules and rules Out CgsRules;
Define attributes set C, D and decision multi-level attributes tree DMAT ;
Set threshold min sup, min divs, min conf ;
Out CgsRules = null;
BAMs = GenBAMs(Data, C,D); /* Generate the basic association mappings;*/
foreach ΓCD(cg) in BAMs do

if sup(cg) ≥ min sup or divs(cg) ≥ min divs then
/* Select the interesting rules in ΓCD(cg) whose conf or cond divs values*/
/* are larger than min conf and add them into CgRules; */
CgRules = Prune LessConfRules(ΓCD (cg),min conf);
/* Recursively discover interesting rules according to ΓCD(cg) and DMAT ;*/
CgRules = CgRules ∪ DecGM(ΓCD(cg), DMAT.child);
Out CgsRules = Out CgsRules + CgRules;

end

end
Output Out CgsRules;

In the algorithm, the decision multi-level attributes tree DMAT is designed
to recursively deriving generalized association mappings and interesting rules.
DMAT.child is a sub-tree of DMAT and DMAT.sibling is a sibling tree of
DMAT . DMAT.attributes represents a set of attribute names in that node.
The attributes set of root node of DMAT is set to D.

In the algorithm 1, function GenBasicAM(Data, C,D) generates basic associ-
ation mappings; function Prune LessConfRules(ΓCD(cg),min conf) extracts
the interesting rules in the association mapping. We do not present the details
of the two functions for saving the space. Function DecGM(ΓCD(cg), DMAT )
recursively derives different level generalized association mappings and rules, the
function is presented in algorithm 2.
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Algorithm 2. Recursively deriving generalized association mappings and rules:
DecGM(ΓCD(cg),DMAT )

Input: Association Mapping ΓCD(cg), Multi-level Attributes Tree DMAT ;
Output: A set of rules CgRules ;
CgRules = null;
while DMAT 
= null do

Dh = DMAT.attributes; /*Get a set of high level decision attributes;*/
ΓCDh

(cg) = null; /*Initialize this level association mapping;*/

foreach (dg, sup(cg ∧ dg), divs(cg ∧ dg)) in ΓCD(cg) do
dhg = GenGranule(dg, Dh); /*Generate a high level decision granule;*/
if (dhg, sup(cg ∧ dhg), divs(cg ∧ dhg)) 
∈ ΓCDh

(cg) then
ΓCDh

(cg) = ΓCDh
(cg) ∪ {(dhg, sup(cg ∧ dg), divs(cg ∧ dg))};

end
else

(dhg, sup(cg ∧ dhg), divs(cg ∧ dhg)) =
(dhg, sup(cg ∧ dhg) + sup(cg ∧ dg), divs(cg ∧ dhg) + divs(cg ∧ dg)) ;

end

end
CgRules = CgRules ∪ Prune LessConfRules(ΓCDh

(cg),min conf);

if DMAT.child 
= null then
/* Recursively generate next level association mappings and rules; */
CgRules = CgRules ∪ DecGM(ΓCDh

(cg), DMAT.child);

end
DMAT = DMAT.sibling; /*Move to the sibling node of the DMAT ;*/

end
return CgRules;

5 Experiments

There are several purposes of the experiments. The first is to evaluate the effect
of the thresholds to select the interesting condition granules and rules. Another is
to conduct a result case study to show the effectiveness of the proposed method.

The experimental datasets we used are MAWI data traces, which can be
downloaded from http://mawi.wide.ad.jp/mawi/samplepoint-B/20060303/. The
datasets are the four largest 15-minute data files on 03/03/2006. Table 1 lists
the characteristics of the datasets.

In the experiments, we select five attributes to represent the features of pack-
ets, which are source IP address(SrcIP), source port(SrcPrt), destination IP
address (DestIP), destination port(DestPrt) and protocol(Prot). We designate
SrcIP as condition attribute and the rest attributes as decision attributes, we
try to discover significant hosts from the traffic data and to extract interesting
rules for the significant hosts.

5.1 Number of Hosts and Rules

Table 2 and Table 3 list the number of significant hosts and interesting rules
discovered by the proposed method. The ‘Novel’ columns represent the novel
hosts or rules discovered after using the diversity measure. From the table we
can see, a large number of novel hosts and novel rules are discovered. Diversity
reveals a kind of novel knowledge.
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Table 1. Characteristics of the
selected datasets

ID
Time Packets SrcIP

Captured Number Number

A 19:45-20:00 12,938,715 76,734
B 20:00-20:15 10,874,733 79,287
C 22:00-22:15 10,444,069 81,395
D 22:15-22:30 11,552,731 89,495

Table 2. Number of
Hosts

min sup min divs
Novel

= 7000 = 400

A 152 147 103
B 161 138 94
C 174 150 111
D 168 159 118

Table 3. Number of
Rules(min conf = 0.3)

min sup min divs
Novel

= 7000 = 400

A 219 213 168
B 233 210 160
C 238 223 181
D 257 239 196

5.2 Case Study

Table 4 lists three results discovered from Dataset A. We briefly explain them
to show their effectiveness to understand the behaviors of network traffic.

Thefirsthost and its rule discover aDoSattack, thehost sent 5, 606, 840(support)
packets to host 19.51.190.128’s 64, 996(diversity) ports. The second host is a scan
host, it connects 58, 816(diversity) hosts’ port 1433, each packet for one host
(support/diversity). The third host and its rules show that rule that has high
confidence can has low condition diversity, and vice versa.Diversity helps to un-
derstand the behaviors of network traffic.

Table 4. Some interesting results

ID Condition support diversity Decision conf cond divs

1 srcIP=215.35.248.109; 5,606,931 64,996
srcPrt=2893;prot=UDP;

1.00 1.00
destIP=19.51.190.128;

2 srcIP=207.89.143.152; 58,816 58,816
srcPrt=6000;prot=tcp;

1.00 1.00
destPort=1433;

3 srcIP=137.32.36.66; 70,662 12,555
prot=UDP;destPrt=53; 0.12 0.67
srcPrt=25;prot=tcp; 0.84 0.29

6 Conclusion

This paper extends the theory of granule mining. It proposed to discover the
knowledge in databases not only according to support and confidence, but also
by diversity and condition diversity. An algorithm was also proposed to efficiently
implement the proposed methodology. Experiments performed in real network
traffic have shown that granule mining provides a promising methodology for
knowledge discovery in databases.
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Abstract. Feature selection is an important task in machine learning.
In this work, we design a robust algorithm for optimal feature subset
selection. We present a global optimization technique for feature weight-
ing. Margin induced loss functions are introduced to evaluate features,
and we employs linear programming to search the optimal solution. The
derived weights are combined with the nearest neighbor rule. The pro-
posed technique is tested on UCI data sets. Compared with Simba and
LMFW, the proposed technique is effective and efficient.

1 Introduction

Feature selection plays an important role in machine learning and pattern recog-
nition for reducing store space and computational complexity [1]. In recent years,
it is widely applied in the domains such as image categorization [2], character
recognition [3] and gene classification[4].

Generally speaking ,the feature selection method can be divided into the filter
mode [5]and wrapper mode[6] depending on constructed mode. In the wrapper
mode, the feature selection method evaluates the candidate features with a clas-
sification technique. However, the filter mode compute the quality of features
with an independent functions, including distances [1,7] and the mutual infor-
mation [8,9,10], and so on.

Margin is widely used to evaluate feature quality in the last decade. Margin
can be understood as a generalized distance measure between different classes.
We can get good classification models through maximizing margin and min-
imizing margin induced classification loss. As so far, there have been several
feature selection methods based on the margin, such as G-filp [1], Simba[1] [11],
Relief[12], and E-Relief[13]. G-filp minimizes margin-loss to maximize the margin
with greedy search. It can calculate both continuous and discrete loss functions.
Relief and its extended algorithms compute the margin in the feature space and
use the margin as the weights of features. Simba makes some improvements to
Relief. It calculates the weight of each feature with a gradient descent method,
and then iteratively updates weights by minimizing the loss. All these methods
evaluate features through Hypothesis-margin [1] which is computed with the dis-
tance from a random sample point x in sample set to a different class of sample
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point from x nearest to classification surface and the distance from x to the same
class of sample point as x nearest to classification surface.

However, there are two problems with the above algorithms. First, they con-
struct classification loss functions only by using the distance among different
class of sample points which near the decision boundary. Besides, only the enu-
meration method can obtain the optimal solution to a nonconvex function. Both
the gradient descent algorithm and the iteration process are approximate solu-
tions.

In order to solve these problems, Li proposed a feature selection algorithm
based on the nearest neighbor classification loss margin [11]in 2009, which used
Euclidean distance to calculate distances between samples. First, the algorithm
divides samples into several neighborhood. Then, it computes the classification
loss by using the distances between sample points within the same classes and
out of classes. This algorithm also calculates feature weights with a gradient
descent algorithm. Later, Weinberger proposed a new evaluation strategy, and
design the LMNN [14] algorithm. It constructs classification loss by using the
same idea as Li’s [11], but there are three pieces of differences. First, it uses Ma-
halanobis distance, instead of Euclidean distance, when calculating the margin.
Second, it uses a method named SDP to calculate the covariance matrix in Ma-
halanobis distance in acquiring the feature weights. Third, it removes the sample
that doesn’t obtain losses for reducing time complexity. Besides, Chen used an
expression by adding squares of sample distances with weight factors , which is
solved from the covariance matrix in Mahalanobis distance [15], and also uses it
to reconstruct classification loss functions used in [11,14], then calculate feature
weighting through linear programming.

Based on the work [14,15], the performance of nearest neighbor classification
is improved. But some drawbacks still exist. First they use hinge loss function,
which is sensitive to noises. Here we give a more effective expression of near-
est neighbor classification loss through geometric analysis to margin loss and
use soft margin Strategy, then we use this expression to reconstruction classi-
fication loss functions in [15], and transfer the classification loss function to a
linear programming issue. Then we calculate the optimal feature weights. Some
experiments are presented to compare the proposed technique with Simba and
LMFW [15].

2 Margin-Loss for Nearest Neighbor Classification

The initial idea of LMFW algorithm is to minimize the distance between sample
points in the same class and maximize the margins between different classes. In
order to describe LMFW algorithm, we review the classification loss function.

In the supervised learning, assume there’re N samples in training set S.
{xi , yi }Ni=1 ∈RN ; yi is the class label of xi. In S, yi ∈{ 1 , 2 , . . . , � } , so we
can express the M features of each sample xi as xi={xi1,xi2,. . . ,xiM }, and
use the element τij={0,1} in matrix Γ . If xi and xj belong to the same class
and τij=1; otherwise, τij=0.
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Definition 1. The objective neighborhood which contains random sample xi

and the samples with the same class label as xi.
So we can use a matrix C which defined as objective neighborhood matrix to

mark which samples are belonging to the same objective neighborhood. cij∈{0,1}
(i,j=1,2,. . . ,N)are elements in C and if xi and xj belong to the same objective
neighborhood then cij=1, otherwise cij=0.

Definition 2. Assume S is a training set, and xi and xj are samples in S, and
w is a weight vector of the feature. the distance from xi to xj is computed with

D2 = (xi−yj)
TQ(xi−yj) = (xi−yj)

TWT ·W(xi−yj) =

M∑
k=1

g2k(xik−xjk)
2. (1)

In the formula (1), Q is the covariance matrix of xi and xj , and Q=WT ·W,
W is an diagonal matrix, T is transposition, Wkk=gk ( k=1,2,. . . ,M ). gk is a
weighting factor.

By substituting g2k=wk , we can get the objective function of LMFW.

ε(w) =

N∑
ij

cij

M∑
k=1

wk(xik − xjk)
2 + κ

N∑
ijp

cij(1− τip)γijp (2)

γijp = h̄(1 +

M∑
k=1

wk[(xik − xjk)
2 − (xik − xpk)

2]) (3)

In the objective function, constant κ>0 is used to balance weights of different
terms. And cij is an element of C, τij is defined as an element of Γ , also we
define γijp as margin loss in formula (2), h̄(z)=max(z,0) is the standard Hinge
loss function in formula (3).

If we minimize ε(w), so that in (2), the first term minimizes difference sam-
ples in objective neighborhood using the sum of squares with weighting based
on neighborhood, and the second term maximizes losses in the objective neigh-
borhoods.

3 Soft-Margin-Loss Evaluate and Linear Programming

As the hinge loss is sensitive to noises, it cannot give the precise estimation of
classification confidence if the raw data are mixed up with noises. So soft-margin-
loss is introduced in support vector machine. Here we introduce soft-margin into
feature evaluation.

3.1 Evaluating Features with Soft-Margin-Loss

Hypothesis-margin is computed as the distance difference of a sample point x to
its x (nearmiss) and its x (nearhit). In Fig 1., we select 3 neighboring points as an
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nearhit

nearmiss

i

ix

Similarly labeled
Differently labeled

(a)  3NN before training

i
Similarly labeled
Differently labeled

ix

(b)  3NN after training

Fig. 1. Comparison of 3NN: illustration of one input’s neighborhood before training
(left) versus after training (right)

example to analyze the geometric meaning of h̄ which stands for the soft-margin-
loss. Before training, if there is no samples with different class label appearing in
the objective neighborhood of xi, h̄ means that the distance from sample with
different class label to xi should not exceed the sum between Hypothesis-margin
θi and the distance from xi to points in the objective neighborhood. Unfortu-
nately, it will cause deviation to classification when samples with different class
labels appear in the objective neighborhood of xi. But we can calculate the
nearmiss and nearhit of xi to avoid the deviations. If the distance between xi

and its nearmiss is less than the distance between and its nearhit, there are some
samples with different class labels appearing in the objective neighborhood of
xi in this case. Then, we can eliminate these samples and calculate from the
rest samples for obtaining a more precise θi. After training, as we can see in
subgraph (2) of Fig.1, the objective neighborhood of the 3 neighboring points is
narrow and samples with different class label are pushed away to the location
whose distance to the objective neighborhood is θi.

Definition 3. Assume S is a training set and xi{i=1,2,. . . ,N} is a sample in S.
So the classification loss function of xi is

ε(xi) =

N∑
j

cij

M∑
k=1

wk(xik − xjk)
2 + μ

N∑
jp

cij(1− τip)ξijp (4)

ξijp = h̄(θi +

M∑
k=1

wk[(xik − xjk)
2 − (xik − xpk)

2]) (5)

In the above function, constant μ is a balancing weight. cij is the element of C and
τip is defined as an element of τ . The difference is that we define ξ as soft-margin-
loss and h̄(z)=max(z,0) as hinge loss based on soft-margin-loss. Furthermore, θi
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is calculated as follows: θi=|(xi − nearmiss(xi))
2-(xi − nearhit(xi)

2)|, where
nearhit(xi) is the point with the same class label of xi and nearmiss(xi) is the
point with the different class label of xi. both of which are nearest to xi and can
be easily obtained from C and τ .

Definition 4. Assume there are N sample points in the training set S, the
classification loss function is defined as

ε(S) =

N∑
i=1

ε(xi) (6)

ε(S ) =

N∑
ij

cij

M∑
k=1

wk(xik − xjk)
2 + ν

N∑
ijp

cij(1 − τip)ξijp (7)

The classification loss function above contains two terms. The first is used to
punish the large distance between samples and its objective neighborhood, which
suggests that samples in the same neighborhood should be closer after training.
The second is used to punish small distance between samples and samples with
different classification labels, which suggests sample points with different clas-
sifications appearing in the neighborhood should not exceed the sum θi and
distances between sample points in the objective neighborhood.

3.2 Linear Programming Based on Soft-Margin-Loss

According to Formula (7), we can solve it by transferring the loss function to a
linear optimization problem with constraint conditions. Now we give the linear
programming model of the problem as following.

min

N∑
ij

cij

M∑
k=1

wk(xik − xjk)
2 + ν1

N∑
ijp

cij(1− τip)ξijp + ν2

M∑
k=1

wk (8)

e.t.

M∑
k=1

wk{(xik − xpk)
2 − (xik − xpk)

2} ≥ θi − ξijp, ξijp ≥ 0, wk ≥ 0. (9)

In Formula(8), ν1 and ν2 are positive constants used to control importance lev-
els of three terms and can be calculated through cross validation. ξijp is a loose
variable. The first term in the function is the sum of sample distance in the
neighborhood; the second is the margin-loss; the last is the nonnegative con-
straint.

Linear programming can efficiently solve convex optimization problems with
a large scale of variables and constraint conditions. And the computational com-
plexity of linear programming models is M+k·N2, where M is the feature di-
mensions, k is the number of neighboring samples with different class labels and
N is the number of training samples. In fact, most of loose variables ξijp can not
get positive values so that the hinge loss is zero. In addition, loose variables ξijp
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are sparse in linear programming. So we can significantly improve the speed. Fi-
nally, it is notable that we only have to compute those sample points which have
different classification tags appearing in objective neighborhoods. We can reduce
classification errors of these samples after the feature weights are optimized.

4 Experimental Analysis

We give a series of numerical experiments to compare the size of the selected
features, error rates before and after feature selection and running time of the
algorithms in order to check their efficiency. Eight datasets are downloaded from
UCI machine learning database [16] for testing Simba [1], LMFW [15].

The detailed information about data is listed in Table 1. In the following
table, there are some missing attribute values in Heart, Autos, Soybean, Spam
data sets which are replaced by average attribute values counted by values in the
same column as missing attribute values. Besides, we normalize the data before
experiments because of different dimensions of features. And in the experiment,
we use a linear programming toolbox in MATLAB to realize the MLLP and
LMFW algorithms, and our experiment platform includes a Window XP SP3
system, an AMD x4640 3.0G CPU, MATLAB2010, and memory size is 2G.

Table 1. Description of datasets

DataSet Samples Attributes Missing Classes

Wdbc 569 30 no 2
Wine 178 13 no 3

Soybean 683 34 yes 19
Iono 351 34 no 2
Heart 303 13 yes 5
Autos 204 23 yes 6
Spam 4601 57 yes 2
Mfeat 2000 649 no 10

We divide each data set into training set and test set, and then compute fea-
ture weights using Simba, LMFW, MLLP with the training set and also validate
the selected features based on KNN classifier and ten-fold cross validation. We
get the classification error rate of KNN.

Table 2 shows the size of the selected features and the MLLP feature subset
selected in the descending order in terms of weights acquired by MLLP, Simba
and LMFW. ν1 and ν2 take values in {0.0001, 0.001, 0.01, 0.1, 0.5, 1, 5, 10,
100, 1000, 10000}.

Besides, we give the classification error rates of KNN(k=1) in Table 3. the
performance of the raw data sets is listed in the first column of Table 3. Table
4 shows the CPU’s running time of the algorithms which are averaged by 100
times’ testing for each data set.
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Table 2. Comparison of feature reduction rate(%)

DataSet Attributes Simba LMFW MLLP

Wdbc 30 26.67 10 73.33
Wine 13 53.85 30.77 30.77

Soybean 34 5.88 58.2 55.88
Iono 34 35.29 76.47 88.24
Heart 13 7.69 15.38 23.08
Autos 23 82.61 73.91 91.3
Spam 57 14.04 61.4 61.4
Mfeat 649 78.27 83.98 86.13

Average – 38.04 51.34 63.77

Now we conclude the superiority compared with the other two algorithms.
First in Table 2, MLLP can select more effective feature subsets. The feature
dimensions decrease 63.77%, while the other two decrease 38.04% and 51.34%.
So the MLLP’s reduction rate of feature dimensions increase 12.5% and 25.7%,
respectively. Observing the results in Table 3, we can find that the MLLP’s
classification error rate decrease between 1% and 2.3%, which is not a significant
improvement comparing with the other two algorithms. Finally, in Table 4, it is
obvious that the running time of MLLP and LMFW is much less than Simba.

Table 3. Comparison of classification error rate(%)

DataSet Before Feature Selecting Simba LMFW MLLP

Wdbc 4.56 3.69 3.87 3.68
Wine 5.14 1.74 2.78 1.67

Soybean 8.92 8.92 5.6 5.17
Iono 13.6 9.95 7.9 7.38
Heart 24.44 23.33 22.22 19.26
Autos 39.38 35.2 29.28 28.01
Spam 11.43 11.56 12.08 11.39
Mfeat 1.9 2.75 2.3 1.62

Average 13.67 12.14 10.75 9.77

Figure 2 shows the performance curves when the selected features are added
one by one. We can see that all the features chosen by the three algorithms can
produce good performance. The features producing large weights can also obtain
good classification accuracy Also the 3 algorithms are able to catch important
features as we can see in Fig 2., which the classification precision enhance first,
and then it may decrease or be maintained according to the increasing attribute
values. But it is easily to find the superior of the algorithm we promote because
of using less number of features to acquire the same high level of classification
precision as the other two.
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Table 4. Comparison of Running Time(Seconds)

DataSet Simba LMFW MLLP

Wdbc 6.453 0.138 0.14
Wine 0.625 0.094 0.172

Soybean 10.594 0.437 0.297
Iono 2.391 0.063 0.109
Heart 1.344 0.11 0.094
Autos 0.891 0.187 0.531
Spam 440.236 2.031 5.011
Mfeat 325.782 0.475 0.312
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Fig. 2. Comparative of 1NN Classification accuracy

5 Conclusion

We give a method to calculate feature weights based on margin loss and linear
programming in this work. Tested with the numerical experiments, the proposed
MLLP algorithm exhibit some superiority including high efficiency and classifi-
cation accuracies and large reduction rate.
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Abstract. Fuzzy rough sets are widely studied and applied in the do-
main of machine learning and data mining these years. In this work,
this theory is used to design a fuzzy rough decision tree algorithm which
can be used to deal with the cognitive uncertainties such as vagueness
and ambiguity associated with human thinking and perception. In our
algorithm, both selecting nodes and splitting branches in constructing
the tree are based on fuzzy rough set theory. Especially, the current
branching point is determined by pureness of the two branches, where
the pureness is based on fuzzy lower approximation. The comparison
results show that our decision tree algorithm is equivalent to or outper-
forms some popular decision tree algorithms.

1 Introduction

Since the concept of fuzzy rough sets was originally introduced, fuzzy rough set
theory has been applied in many fields for handling fuzziness or uncertainty of
the real-valued or fuzzy data sets [7]. This theory is claimed to be an important
mathematical tool for granular computing and uncertainty reasoning in the past
decade [10,14,22].

Decision trees are one of the most popular studied methods in domains of ma-
chine learning, pattern recognition and data mining [16]. Decision tree method is
comprehensible and interpretable, and syncretizes feature-selection mechanism
[9]. The represented performance by decision trees is close to or even outper-
forming other state-of-the-art methods [8]. Decision tree algorithms have been
applied in classification and regression [2,17]. Classification trees are one of the
most wildly used methods, and its goal is to find an accurate mapping from
instance space to label space. ID3 is a typical algorithm for generating decision
trees for classification [16]. Cognitive uncertainties, such as vagueness and am-
biguity, have been incorporated into the knowledge induction process by using
fuzzy decision trees [25]. The fuzzy ID3 can generate fuzzy decision trees without
much computation [3]. It has the great matching speed and is especially suitable
for large-scale learning problems [9,25].

Many methods have been developed for constructing decision trees and these
methods are very useful in building knowledge-based expert systems [4,13,19,21].
For crisp classification problem, constructing a decision tree contains selecting
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nodes and pruning strategy, and the number of branches for a selected node
is decided by the number of the attribute values. For the data described by
real-valued or fuzzy attributes, selecting nodes, splitting branches and pruning
technique are three necessary factors in building a decision tree. In this work, a
fuzzy rough decision tree algorithm is generated by using fuzzy rough sets for
dealing with classification problem on real-valued or fuzzy data sets. Thereinto,
both selecting nodes and splitting branches are based on fuzzy lower approxi-
mation operator.

The architecture of the paper is shown as follows. Section 2 reviews the basic
theory of fuzzy rough sets. In Section 3, we introduce a fuzzy based on fuzzy
rough decision tree algorithm whose performance will be tested in Section 4.
Finally, Section 5 shows some conclusions.

2 Basic Notations of Fuzzy Rough Sets

Given a nonempty universe U, R is a fuzzy binary relation on U. If R satisfies
reflexivity (R(x, x) = 1), symmetry (R(x, y) = R(y, x)) and sup-min transitivity
(R(x, y) ≥ supminz∈U{R(x, z), R(z, y)}), we say R is a fuzzy equivalence relation
which can be used to measure the similarity between any two objects. The fuzzy
equivalence class [x]R = ri1/x1+ri2/x2+...+rin/xn is the fuzzy granule induced
by sample x and fuzzy equivalence relation R on U, where [x]R(y) = R(x, y)
for all y ∈ U . Based on fuzzy equivalence relations fuzzy rough sets were first
introduced by Dubois and Prade [7].

Definition 1. Let U be a nonempty universe, R be a fuzzy equivalence relation
on U and F(U) be the fuzzy power set of U. Given a fuzzy set F ∈ F (U), the
lower and upper approximations of F are defined as⎧⎨⎩

RF (x) = inf
y∈U

max{1−R(x, y), F (y)},
RF (x) = sup

y∈U
min{R(x, y), F (y)}. (1)

Later, some models of fuzzy rough sets were introduced based on fuzzy logic
operators which are summarized as follows [12,23,24,26,18,11].

(1)T-upper approximation operator : RTA(x) = sup
u∈U

T (R(x, u), A(u));

(2)S-lower approximation operator : RSA(x) = inf
u∈U

S(N(R(x, u), A(u));

(3)σ-upper approximation operator : RσA(x) = sup
u∈U

σ(N(R(x, u)), A(u));

(4)ϑ-lower approximation operator : RϑA(x) = inf
u∈U

ϑ(R(x, u), A(u)).

(2)

Although models of fuzzy rough sets were defined with different operators, the
essence of the lower and upper approximations are the same. If A is a crisp set,
RSA(x) and RϑA(x) can be used to measure memberships of objects belonging

to A definitely, and RTA(x) and RσA(x) can be used to measure memberships
of objects belonging to A probably.
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With the definition of fuzzy rough sets, the membership of a sample x ∈
U belonging to the positive region of the decision D in feature subset B is
defined as

POSB(D)(x) = sup
X∈U/D

RB(X)(x). (3)

And the fuzzy dependency of D on B with fuzzy rough sets, denoted by FDB(D),
is defined as

FDB(D) =

∑
x∈U POSRB(D)(x)

|U | . (4)

In Section 3, we select nodes and branch points of trees with the lower approxi-
mation and dependency function of fuzzy rough sets.

3 Constructing Decision Trees Based on Fuzzy Rough
Sets

Decision tree is one of the popular methods for data mining due to its com-
prehension and interpretability. It is an effective and efficient tool for building
classifiers, extracting rules and designing regression models from a set of objects
[2]. In classification learning, ID3 algorithm proposed by Quinlan [16] was used
to forecasting labels of objects described by symbolic data. In order to simu-
late the fuzzy reasoning, fuzzy decision trees regarded as a generalization of the
crisp case are studied in [15]. It first gets fuzzified data from original data set
by some methods, such as clustering, and then constructing decision trees on
the fuzzy information table. Fuzzy ID3 is the state-of-art method for making
fuzzy decision tree [3,25], whose architecture is similar to ID3. The advantage of
fuzzy decision trees is that they can naturally handle different types of attributes
(e.g., numerical and categorical), due to which many researchers were focusing
on constructing fuzzy decision trees.

In this paper, we propose a decision tree based on fuzzy rough set theory,
named fuzzy rough decision trees (FRDT). The architecture of our decision tree
has two advantages: one is that FRDT can be used to classification problems
with both symbolic and numerical data, and the other one is FRDT can make
trees on original data directly without the fuzzification process of data.

There are three basic issues in developing a greedy algorithm for learning
decision trees on the data set with continuous attributes: selecting nodes, deter-
mining branching criterion and pruning strategies, where selecting nodes play an
important roles in building effective and efficient decision trees. In prior decision
tree models, information gain is a good measure for selecting nodes, and Shan-
non’s information entropy is usually taken as a measure to compute information
gain brought by an attribute selected.

Our decision tree adopts dependency of fuzzy rough sets as the criterion of
selecting nodes. For data sets with continuous attributes, fuzzy decision tree first
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fuzzifies data into several semantic values, the number of which is the number
of branches. In this work, FRDT takes two-branch tree, and branching values
are also selected with fuzzy rough set theory. In the architecture of FRDT, we
set the stopping criterion by restricting the number of nodes and rate of the
most objects to avoid overfitting and growing a giant tree. The detail process of
constructing a fuzzy rough decision tree is described as follows.

Selecting nodes: Each attribute is evaluated by fuzzy dependency, and the at-
tribute with the maximal importance is selected as the current node (containing
root node) of tree.

Branching principle: Let it supposed that C1 is selected as the current node
N1. Given a attribute value C1(xi) (i=1,2,...,n, n is the number of samples on
the current node), which means the value of sample x1 on attribute C1, the
sample set on the current node is divided into two branches.

Table 1. Sample distribution on two branches

Class1 Class2
Branch1 |B1C1| |B1C2|
Branch2 |B2C1| |B2C2|

Table 1 illustrates the sample distribution on N1, where |BiCj | stands for the
number of samples on branchk from classj (k=1,2; j=1,2). For any C1(xi), we
use the following measure

2∑
j=1

∣∣∣∣∣∣
|BjC1|+|BjC2|∑

i=1

(−1)label(xi) · L APP MEM(xi)

∣∣∣∣∣∣ (5)

to evaluate the quality of branching off at C1(xi). L APP MEM(xi) is lower
approximation membership of sample xi belonging to its own class, and label(xi)
is the class label of sample xi.

The above formula (7) can be simplified as

2∑
j=1

∣∣∣∣∣∣
|BjC2|∑
p=1

L APP MEM(xp)−
|BjC1|∑
q=1

L APP MEM(xq)

∣∣∣∣∣∣ (6)

This is to compute the absolute error between sum of lower approximation mem-
bership of samples coming from one class and other classes. This strategy is to
find a value, about which most samples come from one class. And most sam-
ples with attribute values smaller than the selected value come from another
class. The value satisfies this condition is considered as a good branching point.
With a attribute value, we can gain a evaluation result. The branching value is
determined via the following formula.
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max
x∈X1

⎧⎨⎩
2∑

j=1

∣∣∣∣∣∣
|BjC2|∑
p=1

L APP MEM(xp)−
|BjC1|∑
q=1

L APP MEM(xq)

∣∣∣∣∣∣
⎫⎬⎭ . (7)

Here, X1 is the sample set on the current node.
Stopping criterion: Obviously, if all the samples in a node belong to the same

class, the tree should stop growing up; in order to avoid overfitting training
data, we also stop growing the tree if fuzzy dependency of the selected feature
is smaller than a threshold ε.

The pseudocode of the FRDT is shown as Algorithm 1.

Table 2. Algorithm Description

Tree Growing of Fuzzy Rough Decision Tree

Input: training set S described with m features i.e. {f1, f2, ..., fm}
Output: fuzzy rough decision tree T

TreeGrow(S ,δ)
Initialize (T ,S);
r = min(ClassRate(L),ClassRate(R));
if (r ≤ δ)

LeafNode(S); /*a leaf node is generated*/
/*S is the training set of current node*/

Return(T );
else

MarkTreeNode(S); /*CurrentNode= argmaxf(FD(fi))*/
/*FD(fi) is the fuzzy dependency of fi*/

FindBranchPoint(S); /*the branch point is selected with formula (7)*/
LeftBranch(T ) = TreeGrow(SL,δ); /*tree growing on the left branch*/
RightBranch(T ) = TreeGrow(SR,δ); /*tree growing on the right branch*/

end

4 Experimental Analysis

In this section, we perform experiments to test the performance of the fuzzy
rough decision tree. We first show the architecture of the FRDT on an artificial
data set containing 130 samples described by 13 features with 3 classes. We use
88 samples to construct a two branches fuzzy rough decision tree which is shown
as Fig 1, and test accuracy of left samples is 96.8%. In Fig 1, a13, a2, a1 and a4
are features, and numbers on each leaf nodes are the numbers of samples.

Next we conduct experiments on seven data sets from UCI [1] to test the
performance of FRDT. The description of data sets is shown as Table 3. The
experiment is performed by taking 10-fold cross-validation. In order to evaluate
the efficiency of FRDT, we compare the classification accuracies of data sets with
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NN [6,5], C4.5 [17], CART [2], fuzzy ID3 [3] and FDTBFRT (fuzzy decision tree
based on fuzzy rough sets) [21]. Comparison of classification performance of
different decision trees is shown in Table 4.

In Table 4, ’N’ is the number of rules and ’Acc’ is the average test accuracy.
It is shown that FRDT can produce the highest accuracy on WDBC, sonar,
diabetes and rice. FDTBFRT can produce the highest classification accuracy on
WPBC, ionosphere and lungcancer. As a whole, our new decision tree has the
highest average classification accuracy on all the data sets of all the trees.

a13

a2 a1

a2

>0.31384<=0.31384

<=0.10079>0.10079

<=0.53162 >0.53162

a4

<=0.35567 >0.35567

Leaf1(3) Leaf2(39)Leaf3(9)

Leaf5(1) Leaf6(6)

Leaf4(30)

<=0.37895 >0.37895

Fig. 1. FRDT

Table 3. Summaries of data sets

Data Samples Features Classes

WDBC 569 30 2
WPBC 198 33 2
sonar 208 60 2

ionosphere 351 34 2
diabetes 768 8 2

lungcancer 137 7 2
rice 105 5 2
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Table 4. Classification accuracies (%) of data sets

Data FRDT NN C4.5 CART FUZZYID3 FDTBFRT
Acc N Acc Acc N Acc N Acc N Acc N

WDBC 96.2 7 95.8 93.3 13 93.1 9 93.7 3 95.3 10
WPBC 78.3 9 66.2 73.2 16 70.6 1 76.0 4 83.5 7
sonar 87.1 8 87.1 75.9 18 74.0 10 71.9 6 78.1 10

ionosphere 84.7 16 86.4 91.5 18 87.3 3 66.4 4 88.6 109
diabetes 89.3 10 70.6 75.2 20 74.4 13 78.4 4 83.5 11

lungcancer 87.7 7 59.4 72.3 2 75.2 2 90.0 6 91.4 17
rice 89.6 8 80.0 76.9 3 80.8 2 82.7 3 83.3 6

AVG. 87.6 9 77.9 79.8 13 79.3 6 79.9 5 86.2 24

5 Conclusion

Fuzzy rough sets were introduced as a mathematical tool to deal with uncertainty
of continuous or fuzzy data sets. This theory has attracted much attention from
the various domains in recent years. In this work, we apply fuzzy rough sets to
design a decision tree called fuzzy rough decision tree which is generated to be
a classification tree for real-valued or fuzzy data sets.

Our tree is composed of three processes: selecting nodes, splitting branches
and pruning technique. The current node is selected to be the feature with
maximal fuzzy dependency. The branching point is determined with maximal
absolute error between the sum of lower approximation membership of samples
coming from one class and the other class. This strategy is to find a value, above
which most samples come from one class. And most samples with attribute values
smaller than the selected value come from another class. For a leaf node, if the
proportion of samples from some class less than a given threshold this leaf will
be pruned. Finally, we operate some experiments on seven data sets with two
classes to test the performance of the proposed fuzzy rough decision tree, and
the comparison analysis results show that our algorithm is outperform CART,
C4.5, fuzzy ID3 and FDTBFRT on a certain extent for classification problem.
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Abstract. In order to establish a better application platform for gran-
ular computing, a novel generalized granulation model based on charac-
teristic similarity is constructed in this paper. Considering that in the
real-world application, a decision table often contains large amount of
different types of complex data, we firstly reform these complex data
into unified mathematical descriptions under the probabilistic measures.
Then, characteristic similarity relation based on calculations of expec-
tation and variance values, is figured to measure the similarity of each
pair of objects with multi-complex attribute values. Lastly, we can get
granulation results for all objects in the decision table according to the
definition of characteristic similarity matrix. It has been proved that
the proposed granulation model is a reasonable extension of Pawlaks
equivalence partition model. Finally, examples are given to illustrate the
proposed granulation model, which is proved to be effective, feasible and
simple.

Keywords: Granular computing, Multi-complex data, Characteristic
similarity relation, Probabilistic distribution.

1 Introduction

Granular Computing (GrC) is a novel soft computing method for simulating
humans decision thought and problem solving approach, which can also be un-
derstood as a way of perception, understanding and representation real world
problem together with its solution at different levels of granularity. However,
granulation of a real universe of discourse is one of the important aspects whose
solution has significant influence to granular computing. Each granule is a clump
of objects which are drawn together by indistinguishability, similarity or func-
tionality. By virtue of granular thinking, information in the real world with
complexity and uncertainty can be well handled, and robustness analysis can be
also developed [1].

In granular computing models, granules are often described into two types:
crisp granule and fuzzy granule. Crisp granules are got from granulating a finite
universe of discourse through a family of pairwise disjoint subsets under crisp
equivalence relation. Such as in the classic Pawlak rough set model, suitable
discretization algorithm is commonly needed to partition the value domain of

J.T. Yao et al. (Eds.): RSCTC 2012, LNAI 7413, pp. 405–413, 2012.
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real-valued variable into several intervals, and the objects in the same interval
are assigned into the same crisp granule. However, this kind of sharp partition is
proved to bring information loss[2], and we seldom have a clear-cut partitioning
of space in the real world, a certain degree of overlapping among the partitions
is common in granulation. Currently, fuzzy granules are considered by extending
precise binary equivalence relations to common soft binary relations in most of
granular computing models. Ma[3] formulated a covering model by granulating
a finite set of a universe of discourse into a family of overlapping granules on
the basis of a reflexive relation. Bhatt[4] described fuzzy partitions based on a
fuzzy-rough hybrid method. A new granular structure was established based on
the definition of tolerance relation in tolerance rough set model, and William
discussed the covering based granule model in Ref[5].

However, in many real-world application fields, object under features usually
comes with complex formats, such as fuzzy type, literal type, interval type, ran-
dom type, etc. How to shape feasible size of granules for these complex valued
data is the key problem that we should to solve. In recent studies, Hedjazi[6]
defined a similarity margin for interval represented data, and classified interval
features dataset into granules in soft way. In order to describe proper shape of
granules for set-valued decision tables, Qian[7] presented a kind of dominance re-
lation. Wu[8] tried to propose an approach to derive interpretable granules from
stochastic data based on rough set model and D-S evidence theory. Furthering,
when decision table is given with mixed and multi-types of complex data, we
should consider defining proper granular structure to address this problem which
is rarely discussed in the past. Hu[9] analyzed granules in decision table with
hybrid data under definition of neighborhood relationship, which leads to the
limitation in handling two types of data: numerical one and categorical one. To
better model reality, Tan[10] considered the situation of decision table with mul-
tiple complex formats of data, and tried to depict information granules based
on similarity computation which has different formulas for the different types
of complex data values. On the basis of existing researches, we want to con-
sider a generalized approach to granulate objects with different complex types
of data values in a decision table. This paper is organized as follows: uniform
mathematical descriptions are given to describe uncertainties of three familiar
types of complex data in section 2. In section 3, the new granulation model is
discussed under the definition of characteristic similarity relation. Examples for
illustration are presented in section 4. Finally, conclusions come in section 5.

2 Unified Uncertainty Descriptions for Multi-complex
Valued Data

In real world applications, attribute values in a decision table are inevitably
described with multi-kinds of complex data, and the focus of this section is how
to make unified descriptions for these complex types of data, includes interval
data, stochastic data and literal data.
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Definition 1. Quintuple T = {U,C,D, V, f} is called a decision table, where
U = {o1, o2, ..., on} is a finite nonempty set of objects, set C = {c1, c2, ..., cn}
contains conditional attributes reflecting characteristics of objects, D denotes
the decision attribute,V =

⋃
a∈C∪D

Va is the domain of attributea, f is a function

such that f(o, a) ∈ Va for every a ∈ C ∪D and o ∈ U , called an information
function.

Next, uncertainty descriptions under the unified probabilistic distribution
framework will be given to different types of complex-data. 1)∀c ∈ C, o ∈ U ,
if f(o, c) takes numeric values in [v1, v2](v2 > v1), then it can be described as
random variable Vc having a uniform distribution in interval [v1, v2]. 2)∀c ∈ C,
o ∈ U , if f(o, c) takes random values, we can assign appropriate probability
distribution function to the random variable Vc, which can be distinguished
as discrete one or continuous one, based on the given discourse domain ac-
cording to the object o. 3)∀c ∈ C, o ∈ U , if f(o, c) takes literal value �k
(let L = { �k| k = 1, 2, ..., l} be the set contains linguistic scale sequences,
which represent literal values with increasing intensity, and l stands for quan-
tity of the scale sequences), the literal value �k can be treated as a fuzzy set
μ�k : Q → [0, 1] with membership function μ�k in the universe of discourse
Q = {h(�k) ∈ Z|h(�k) = k, �k ∈ L}. Thus, the literal value �k can be furthering
understood as discrete random variable Vchaving a probability distribution table
according to membership degree μ�k(h(�k))in the space Q.

Specially, if Vc takes fixed real value vc, we can regarded it as random variable
Vc obeys uniform distribution in interval [vc, vc].

3 Granulation of Objects with Multi-types of Complex
Data

We present below the similarity comparison between each object, which contains
different kinds of complex values under different conditional attributes. Thus, we
can get the feasible way to divide objects of the decision table into a series of
granules.

Based on analyses in Section 2, comparison between two objects in decision
table can be converted to comparison between two m-dimensional random vec-
tors. Due to the dependence among the m random variables(it’s means that the
m conditional attributes exhibit some degree of correlation with each other),
and the obedience of different random variable to different types of probabil-
ity distribution, the two objects should be compared under each random vari-
able(conditional attribute) one by one. Additionally, inspired by the fact that
expectation and variance are two important numerical characteristics for each
random variable, we can compare the m pairs of expectation and variance values
to assess similarities between two objects.

Given an object takes discrete value under conditional attribute c ∈ C,
we can make the assumption that random variable Vc takes value in the dis-
crete space {v1c , v2c , ..., vzc , ...}, and corresponding probability values are given by
{p1c, p2c , ..., pzc , ...}, then the expectation and variance can be calculated by:
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E(Vc) =
∑
z

vzc · pzc D(Vc) =
∑
z

[vzc − E(Vc)]
2pzc (1)

As to an object takes continuous value under conditional attribute c ∈ C, we can
make the assumption that continuous random variableVc takes value in [v1c , v

2
c ],

and corresponding probability density function is p(vc), then the expectation
and variance can be calculated by:

E(Vc) =

∫ v2
c

v1
c

vc · p(vc)dvc D(Vc) =

∫ v2
c

v1
c

[vc − E(Vc)]
2p(vc)dvc (2)

Given two objects oi and oj with multi-complex values (i, j = 1, 2, ..., n), then
the comparison between two objects under each conditional attribute ct ∈ C(t =
1, 2, ...,m) can be transferred to the comparison between (Ei(Vct), Di(Vct)) and
(Ej(Vct), Dj(Vct)). In the following, we will give a new similarity definition be-
tween two objects based on calculations of characteristic values.

Definition 2. Given decision table T , two objects oi, oj ∈ U are said to meet
relationship of characteristic similarity under conditional attribute ct ∈ C(noted
as oiSimctoj), if

1

2
[(Ei(Vct)− (Ei(Vct) + Ej(Vct))/2)

2 + (Ej(Vct)− (Ei(Vct) + Ej(Vct))/2)
2]

≤ max{Di(Vct), Dj(Vct)}
(3)

Def.2 shows the new similarity measure between two multi-complex valued ob-
jects under uncertainty. The basic starting point lies in keeping two uncertain
spaces overlapped according to the center of their expectation values. Also, their
expectation values are expected to be closer.

Property 1. ∀oi, oj ∈ U , ct ∈ C, characteristic similarity relation oiSimctoj
fulfils the properties of reflexivity and symmetry, but may not satisfy transitivity
property.

Proof. By the definition 2, we can easily get the conclusions.

Definition 3. Given decision table T , characteristic similarity relation under
conditional attribute set A ⊆ C can be defined as Sim(A) = {(oi, oj) ∈ U2|∀ct ∈
A, oiSimctoj}. U/Sim(A) = {[̃oi]A|oi ∈ U} is a granulated universe of discourse

with respect to U of conditional attribute set A, where[̃oi]A = {oj |(oi, oj) ∈
Sim(A)}.

From definition 3, we can write the characteristic similarity matrix S =
[sij ]n×n which describes similarity relationships among n objects based on con-
ditional attribute set A ⊆ C. sij denotes similarity value between object oi and
oj under conditional attribute set A, where sij = 1, if it meets criteria of the
characteristic similarity relation as described in definition 3, otherwise sij = 0.
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Theory 1. Pawlaks equality relation is the special case of characteristic simi-
larity relation, and characteristic similarity relation is the extension of equality
relation.

Proof. Given decision table T , ∀oi, oj ∈ U .
1) if the two objects take fixed real values underA ⊆ C, and hold Pawlaks equality
relation Ind(A), then ∀ct ∈ A, we have f(oi, ct) = f(oj , ct), Ei(Vct) = Ej(Vct),
Di(Vct) = Dj(Vct) = 0. Namely, the two objects meet relation oiSimctoj , ∀ct ∈
A. Furthering, according to definition 3, the two objects meet the characteristic
similarity relation Sim(A).
2) if the two objects take uncertainty values under A ⊆ C, Pawlaks equality
relation is no more valid. ∀ct ∈ A, let attribute values of objects oi and oj com-
plying with certain probability distributions, and the two expectation values can
be infintesimally approached with each. Thus, we can find the value of left side of
inequality 3 will infintesimally approach to 0, and the right side value of inequal-
ity 3 will be greater than the left side. Moreover, if two random variables take
their own expectation values respectively with probabilities approaching to 1.0
(objects oi and oj take their fixed values under attribute ct), then the inequality
3 will degenerate into an identity, and Pawlaks equality relation Ind(A) can be
satisfied.

Theory 1 declares that characteristic similarity relation is a more universal re-
lation to gain proper granular description. When data show different forms of
uncertainties in reality, binary equivalence relation will not be applicable, and
the characteristic similarity relation can build relaxed relationships for objects
described in uncertainty values. Thus, we get the new granular scheme to divide
objects with multi-complex data values.

Definition 4. Given decision table T , ∀Y ∈ U/Ind(D), the lower and upper
approximation of Y with regard to A ⊆ C in the characteristic similarity relation
induced granular space are

A(Y ) = {oi ∈ U |[̃oi]A ∩ Y �= φ} A(Y ) = {oi ∈ U |[̃oi]A ⊆ Y }

respectively.

Theory 2. Given decision table T , let A1 ⊆ A2 ⊆ C, we
have

⋃
Y∈U/IND(D)

A1(Y ) ⊆ ⋃
Y ∈U/IND(D)

A2(Y ) ⊆ ⋃
Y ∈U/IND(D)

A2(Y ) ⊆⋃
Y ∈U/IND(D)

A1(Y ).

Proof. From definition 3, let A1 ⊆ A2 ⊆ C and U/Sim(A2) = {X1, X2, ..., Xw},
we have U/Sim(A1) = {X1, ..., Xi ∪ Xj , ..., Xj−1, Xj , ..., Xw} , namely
U/Sim(A2) ⊆ U/Sim(A1) . From definition 4, ∀Y ∈ U/Ind(D), we have
A2(Y ) ⊆ A1(Y ) and A1(Y ) ⊆ A2(Y ). In addition,

⋃
Y ∈U/IND(D)

A1(Y ) ⊆
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Y ∈U/IND(D)

A2(Y ) and
⋃

Y ∈U/IND(D)

A2(Y ) ⊆ ⋃
Y ∈U/IND(D)

A1(Y ) will be satis-

fied. Furthering, based on concepts of the upper and lower approximations, we
can get the conclusions.

To sum up, granulation based on characteristic similarity relation is a kind of
soft partition which formulates a set of overlapping granules. Whats more, these
granules exhibit various kinds of sizes and shapes for different combinations of
conditional attributes. Thus, a reasonable approximation result can be obtained
to a given data set in practice.

4 Example Illustrations

To elucidate the proposed granulation model, example on real-world dataset
has been performed, in which data are represented by different types of un-
certainty values. Table1 shows the decision table of evaluating qualities of to-
bacco leaves[11]. According to different producing areas, 5 types of tobacco leaf
samples(o1 to o5) are showed in object set U . Conditional attributes c1 to c4,
which respectively represent chroma, aroma quality, puff number and tar content,
are some preliminary indexes to evaluate the quality of tobacco leaves. Decision
attribute D indicates quality degrees of tobacco leaf samples, are divided into
grades of top, middle and low. According to statistics of multi-batch tobacco
leaves in different producing areas, objects under attribute chroma are given lit-
eral values based on standard grading scalesdense, strong, moderate, weak, light;
objects under attribute aroma quality are given literal values based on standard
grading scales perfect, good, normal, poor; objects under attribute puff number
are given random values in a given interval within a normal distribution, whose
distribution parameters are obtained based on statistics of the various tobacco
leaves; and objects under attribute aroma quality are given interval values.

Table 1. A multi-complex valued decision table as an example

U C1 C2 C3 C4 D
O1 dense-∼dense good+∼perfect [10.1, 11.0]∼N(10.5, 0.09) [25.8, 31.5] top
O2 strong∼dense- perfect-∼perfect [9.8, 10.5]∼N(9.9, 0.64) [29.1, 30.0] middle
O3 moderate+∼strong- good [10.5, 11.8]∼N(10.7, 0.16) [28.8, 30.8] top
O4 strong good∼perfect- [11.2, 12.5]∼N(11.6, 0.36) [29.8, 30.1] top
O5 moderate∼strong- perfect [10.2, 12.0]∼N(11.0, 0.25) [29.5, 31.9] middle

When data in decision table exhibits various types of complex formats, unified
descriptions should be given based on their numerical characteristics.

Take object o1 in table1 for example, attribute value under chroma is dense-
dense. According to the five rank scales of attribute chroma, we can describe
this fuzzy literal valued data based on membership distribution 0.0

1 + 0.0
2 +

0.0
3 + 0.15

4 + 0.85
5 . Furthering, we can regard it as random variable Vc1 which
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takes discrete value in integer range [1,5] under the given probability values.
Thus, the corresponding expectation value E1(Vc1)=4.85 and variance value
D1(Vc1)=0.1275. In the same way, as to attribute aroma quality, its can be
described as 0.0

1 + 0.0
2 + 0.2

3 + 0.8
4 , and E1(Vc2)=3.8, D1(Vc2)=0.16. Based on

statistic data, tobacco sample o1 under attribute puff number takes random
value in [10.1, 11.0], and obeys normal distribution with N(10.5,0.09). So, we
can obtain E1(Vc3)=10.5 and D1(Vc3)=0.09. Under attribute tar content, inter-
val data [25.8, 31.5] can be treated as random variable Vc1 taken discrete value in
[25.8, 31.5] with a uniform distribution, then E1(Vc4)=28.65 and D1(Vc4)=0.475.

Therefore, we can transfer the decision table with multi-types of complex data
shown in table 1 to decision table described by data combinations {Ei(Vct),
Di(Vct)}, shown in table2. Next, we can start to make comparisons among 5
objects by definition 2. Take the example of comparison between o1and o2based
on attribute c1, we can get 1

2 [(E1(Vc1) − (E1(Vc1) + E2(Vc1))/2)
2 + (E2(Vc1) −

(E1(Vc1) + E2(Vc1))/2)
2] = 1

2 [(4.85− 9.05
2 )2 + (4.2− 9.05

2 )2]=0.1056. Meanwhile,
max{D1(Vc1), D2(Vc1)} = max{0.1275, 0.36}=0.36. Thus, we obtain the charac-
teristic similarity relation o1Simc1o2. Simultaneously, its easy to get o2Simc1o3.
However, theres no characteristic similarity relation between o1 and o3 based on
attribute c1, which indicates that transitivity property may not be satisfied in
characteristic similarity relation.

Table 2. Unified uncertainty descriptions for table1

U C1 C2 C3 C4 D
O1 {4.85,0.1275} {3.8, 0.16} {10.5, 0.09} {28.65,0.475} 1
O2 {4.2, 0.36} {3.9, 0.09} {9.9, 0.64} {29.55,0.092} 0
O3 {3.4, 0.16} {3.1, 0.15} {10.7, 0.16} {29.8,0.167} 1
O4 {4.0, 0.40} {3.3, 0.21} {11.6, 0.36} {29.95,0.025} 1
O5 {3.1, 0.29} {3.85,0.1275} {11.0, 0.25} {30.7, 0.20} 0

Let A = C −{c2}, through comparative calculations among objects based on
each conditional attribute, we can obtain the following characteristic similarity
matrices S1 and S2 with respect to C and A.

S1 =

⎡⎢⎢⎢⎢⎣
11010
11001
00111
10111
01111

⎤⎥⎥⎥⎥⎦ S2 =

⎡⎢⎢⎢⎢⎣
11010
11101
01111
10111
01111

⎤⎥⎥⎥⎥⎦
According to S1 and S2, we have granular divisions U/Sim(C) =
{{o1, o2}, {o1, o4}, {o2, o5}, {o3, o4, o5}} and U/Sim(A) = {{o1, o2}, {o1, o4},
{o2, o3, o5}, {o3, o4, o5}} respectively. Based on equivalence partitions for the de-
cision attribute D(U/Ind(D) = {{o1, o3, o4}, {o2, o5}}), and the definition 4, the
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lower and the upper approximations for C on equivalence partitions {o1, o3, o4}
and {o2, o5} are calculated as follows:

C({o1, o3, o4}) = {o1, o4}, C({o2, o5}) = {o2, o5}

C({o1, o3, o4}) = {o1, o2, o3, o4, o5}, C({o2, o5}) = {o1, o2, o3, o4, o5}
Also, the lower and the upper approximations for A on equivalence partitions
{o1, o3, o4} and {o2, o5} are calculated as follows:

A({o1, o3, o4}) = {o1, o4}, A({o2, o5}) = {φ}

A({o1, o3, o4}) = {o1, o2, o3, o4, o5}, A({o2, o5}) = {o1, o2, o3, o4, o5}
Apparently, the conclusion⋃
Y ∈U/IND(D)

A(Y ) ⊆ ⋃
Y ∈U/IND(D)

C(Y ) ⊆ ⋃
Y ∈U/IND(D)

C(Y ) ⊆ ⋃
Y ∈U/IND(D)

A(Y )

can be validated.

5 Summary and Conclusions

Data in decision table usually comes with different types of complex formats
in real-world applications, such as medical, marketing, economical. This means
that each object of decision table often takes different kinds of imprecise values
corresponding to different conditional attributes, which leads to the difficulties
of granulations in a unified form and the difficulties of subsequent computations
under the umbrella of granular computing. This paper intends to give a reason-
able and generalized granular description model for objects with different types
of complex data values. Firstly, unified mathematical descriptions have been
constructed for transforming three different types of complex data. Then, by
calculating characteristic values of these probabilistic description-oriented data,
the characteristic similarity relation among objects is built up. Finally, we got
the granulation results for objects under the definition of characteristic similar-
ity matrix. Further more, we discussed the properties and characteristics of this
granulation model, and proved that this new granulation model was a reasonable
extension of Pawlaks equivalence partition model. Further research will focus on
the studies of establishing reasonable granular computing models for practical
analyses based on this fundamental work.
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Abstract. Granular computing uses granules as basic units to compute
with. Granules can be formed by either information abstraction or infor-
mation decomposition. In this paper, we view information decomposition
as a paradigm for processing data with complex structures. More specif-
ically, we apply lossless information decomposition to protein sequence
analysis. By decomposing a protein sequence into a set of proper gran-
ules and applying dynamic programming to align the position sequences
of two corresponding granules, we are able to distribute the calculation
of pairwise similarity of protein sequences to multiple parallel processes,
each of which is less time consuming than the calculation based on an
alignment of original sequences.

1 Introduction

Granular computing can be viewed as a paradigm for information process-
ing, where granules with certain resolutions work as basic units to compute
with [1,2,3,4]. Many research works in the area of granular computing focus on
information granulation that forms granules from structured data such as in-
formation table [5,6,7,8,9]. Different theories and instruments, including fuzzy
set [2], rough set [6,7,8,9], quotient space theory [7], and neighborhood system [5],
have been applied to model the process of information granulation. Information
granulation can be viewed as a bottom-up approach to generate granules via
information abstraction or aggregation. In this paper, we focus on the other side
of granular computing, which is a top-down process that generates granules via
information extraction. More specifically, we are interested in decomposing un-
structured data or data with complex structures into granules, such that more
structures can be brought to the data or the processing of data can be carried
out in a parallel or distributed manner. We further propose a principle of loss-
less decomposition, which requires that the original data before decomposition
can be completely rebuilt from the granules decomposed from the data. In other

J.T. Yao et al. (Eds.): RSCTC 2012, LNAI 7413, pp. 414–421, 2012.
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words, granules decomposed from the data should maintain all information of
the original data by following the lossless decomposition principle.

In this paper, lossless decomposition is applied to protein sequence analysis.
We show that by decomposing a protein sequence into a set of proper granules
and applying dynamic programming to align the position sequences of two corre-
sponding granules, we are able to distribute the calculation of pairwise similarity
of protein sequences to multiple parallel processes, each of which is less time con-
suming than the calculation based on an alignments of original sequences.

2 Lossless Decomposition of a Protein Sequence into
Granules

The primary structure of a protein is a linear sequence of 20 amino acids, each of
which can be represented by a letter such as L or K. An example protein sequence
segment is shown as follows: “ · · · ILLNQNLVRSIKDSFVVTLISSEVLSF· · · ”.
Since amino acids are basic component of a protein sequence, an intuitive ap-
proach of decomposing a sequence is to view each amino acid as a granule. How-
ever, this approach loses the order information of the sequence. In other words,
the aggregation of all granules decomposed from a protein sequence is unable to
reconstruct the sequence. By following the lossless principle of decomposition,
we can view granules decomposed from a protein sequence as individual amino
acids plus the positions of the corresponding amino acid in the sequence. For
instance, the sequence of “ILLNQNLVRSI” can be decomposed into the follow-
ing 20 granules: <I>:{0, 10}, <L>:{1, 2, 6}, <N>:{3, 5}, <Q>:{4}, <V>:{ 7},
<R>:{8}, <S>:{9}; <A>:{-1}, <D>:{-1}, · · · , where -1 represents the corre-
sponding amino acid does not appear in the protein sequence.

More formally, given a protein sequence S and assuming A denoting a set
of 20 amino acids, we conduct lossless decomposition of S into a set of gran-
ules G = {gsx =< x > |x ∈ A : {pi: pi is ith position of x in S}}, such that
info(S ) = info(G). This decomposition generates a set of 20 granules. We can
further decompose each granule into 20 granules of finer resolution. For instance,
given the sequence of “ILLNQNLVRSI”, one of the granules <L>:{1, 2, 6} can
be further decomposed to the following 20 granules: <LL>:{2}, <LN>:{3},
<LV>:{6}, <LA>:{-1}, <LD>:{-1}, · · · . By this decomposition, the sequence
can be represented by a set of 400 granules. More formally, given a protein se-
quence S and assuming A denoting a set of 20 amino acids, we conduct lossless
decomposition of S into a set of granules G = {gsx1x2

=< x1x2 > |x1 ∈ A &&
x2 ∈ A : {pi: pi is ith position of x1x2 in S}}, such that info(S ) = info(G). If
decomposing a protein sequence based on positions of all possible combinations
of three consecutive amino acids, we get a set of 8000 granules for each protein
sequence; if based on positions of all possible combinations of four consecutive
amino acids, we get a set of 16000 granules; more generally, if based on positions
of all possible combinations of n consecutive amino acids, we get a set of 20n

granules.
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3 Protein Sequence Alignment Based on Granular
Representations of Sequences

Evaluating similarity relationship between two given protein sequences is one
of fundamental tasks in protein sequence analysis. Similarity in sequences may
indicate homology in protein structures or functions. The Needleman-Wunsch al-
gorithm [10] can be used to identify global optimal pairwise sequence alignment
by a dynamic programming process. A maximum similarity score can therefore
be derived from the optimal pairwise alignment. More specifically, given two pro-
tein sequences R = x1x2 · · ·xi · · ·xM and Q = y1y2 · · · yj · · · yN , the Needleman-
Wunsch algorithm calculate the maximum similarity score that is denoted as
H(M,N) by building a scoring matrix H using dynamical programming. The
scoring matrix H can be described as follows:

H(0, i) = 0
H(j, 0) = 0

H(i, j) = max

⎧⎪⎨⎪⎩
H(i− 1, j − 1) + w(xi, yj)

H(i− 1, j) + w(xi,−)
H(i, j − 1) + w(−, yj)

(1)

where w(xi, yj) is the reward(penalty) brought by match(mismatch) between
amino acids xi and yj ; w(xi,−)(w(−, yj)) is the penalty of deletion(insertion).

As a variation of Needleman-Wunsch algorithm, the Smith-Waterman algo-
rithm [11] uses dynamic programming to find the highest scoring local alignment
between two sequences. The scoring matrix of Smith-Waterman algorithm for
sequence R and Q can be described as follows:

H(0, i) = 0
H(j, 0) = 0

H(i, j) = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0

H(i− 1, j − 1) + w(xi, yj)

H(i− 1, j) + w(xi,−)
H(i, j − 1) + w(−, yj)

(2)

Although these two algorithms are guaranteed to obtain certain optimal align-
ments between two sequences, the time complexity of both algorithms is O(MN),
where M and N are the lengths of the two sequences. If we use either of these
two algorithms to search similar sequences for a query sequence in a protein se-
quence database with K records, the time complexity of the search is O(MNK).
In order to speed up the calculation of pairwise similarity/distance between pro-
tein sequences, we propose the following method that distributes the process
of pairwise sequence alignment to individual granules generated by a lossless
decomposition of protein sequences.

Given two protein sequences S1 and S2 , we conduct lossless decomposition
of S1 and S2 into sets of granules G1 and G2, such that info(S1 ) = info(G1)
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and info(S2 ) = info(G2). For illustration purpose, we further assume that both
decompositions are based on positions of all possible combinations of 2 consec-
utive amino acids. Therefore, we have

G1 = {gS1x1x2
=< x1x2 > |x1 ∈ A && x2 ∈ A : {pi: pi is ith position of

x1x2 in S1}}
G2 = {gS2x1x2

=< x1x2 > |x1 ∈ A && x2 ∈ A : {qj : qj is jth position of
x1x2 in S2}}
Now, for each possible combination of two amino acids x1 and x2, get the granule
gS1x1x2

from G1 and the granule gS2x1x2
from G2. The granule gS1x1x2

can be
represented as a position series p1, p2, · · · , pi, · · · , pm where pi is the ith starting
position that x1x2 appears in S1 ; and gS2x1x2

can be represented as a position
series q1, q2, · · · , qj , · · · , qn where qj is the jth starting position that x1x2 appears
in S2 .

We then define the distance between gS1x1x2
and gS2x1x2

, which is denoted as
dist(gS1x1x2

, gS2x1x2
), to be a minimal cumulative distance 	(pm, qn) calculated

basedonanoptimalwarpingpathbetween theposition seriesp1, p2, · · · , pi, · · · , pm
and the position series q1, q2, · · · , qj , · · · , qn. The optimal warping path can be
computed by the dynamic programming process, where the minimal cumulative
distance 	(pi, qj) is recursively defined as:

	(pi, qj) = d(pi, qj) +min(	(pi−1, qj−1),	(pi−1, qj),	(pi, qj−1)) (3)

For example, assume the position sequence of gS1LN is {0, 5, 9, 121, 130}, and
the position sequence of gS2LN is {4, 11, 100}. Then, by dynamic programming,
the optimal alignment of these two position sequences can be illustrated in the
following figure:

Fig. 1. Alignment between position sequences of two granules

Then the distance between gS1LN and gS2LN can be calculated according to
the optimal alignment as (4−0)+(5−4)+(11−9)+(121−100)+(130−100) = 58.

Given that the position sequence of a granule is much shorter than the origi-
nal protein sequence, the alignment between position sequences of two granules
by dynamic programming should be much more efficient than the alignment be-
tween the original protein sequences. Hence, the calculation of similarity between
two protein sequences by pairwise alignment can be distributed to individual
granules. For this purpose, we define the distance between the sequence S1 and
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the sequence S2 as the aggregation of the distances between granules, which is
shown as follows:

dist(S1, S2) =
∑

x1∈A,x2∈A

dist(gS1x1x2
, gS2x1x2

) (4)

From this definition we can see that the calculation of the distance between two
sequences can be distributed to 400 parallel calculations of distances between 400
granule pairs if the lossless decomposition is based on 2 consecutive amino acids.
More generally, if the lossless decomposition of a protein sequence is based on n
consecutive amino acids, the calculation of the distance between two sequences
can be distributed to 20n calculations of distances between 20n granule pairs.
Assuming the position series for every granule of a protein sequence has the same
length, the granular approach for calculating the distance between two protein
sequences in a fully distributed computing platform takes approximately only
1/(202n) of the time that is required by the global pairwise alignment approach.

Furthermore, we proposal a granular kernel for protein sequence based on the
granular approach for pairwise distance calculation as follows:

K(S1, S2) = e−dist(S1,S2) (5)

This kernel function enables kernel based learning machines, such as Support
Vector Machine (SVM) to be built on the proposed measure of protein sequence
distance that can be calculated in a parallel manner.

4 Related Work in Protein Sequence Classification

k-length contiguous subsequence(“k-mer”) was used by bio-informatics classifi-
cation methods such as k-spectrum [12]. Classifiers trained on k-mers use these
entities and their frequency of occurrence as features. However, a k-mer does not
capture the spatial index locations of subsequences.

In the multi-layered Vector Spaces (MLVS) method [13], a feature vector was
generated for each ordered pair of amino acids with m steps in a given sequence
by segmenting the sequence into multiple equal-length buckets, then counting
the number of occurrences of each ordered pair in each bucket of that sequence.
Given the fact that protein sequences typically have various lengths, the number
of buckets (or the dimension of feature vectors) used in MLVS needs to be
unified across sequences. Furthermore, the number of buckets is typically much
less the lengths of protein sequences themselves in order to avoid the “curse of
dimensionality” in classification. Therefore, the MLVS approach of converting a
protein sequence to multiple feature vectors is not lossless. In other words, all
those generated feature vectors cannot be re-assembled to the original sequence.

The major contributions of the proposed approach can be summarized as
follows: 1) lossless decomposition of a sequence into multiple granules; 2)using
dynamic programming to evaluate pairwise distance between two corresponding
granules based on their associated position sequences; 3)distributing alignments
between two protein sequences to multiple parallel processes, each which aligns
much shorter position sequence pairs.
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5 Preliminary Experimental Studies

We studied the performance of the proposed approach in protein sequence classi-
fication on 53 SCOP protein families. The data set of the 53 SCOP protein fami-
lies can be downloaded from http://noble.gs.washington.edu/proj/

svmpairwise. Each of the SCOP families contains a training data set and a
testing data set as described in [14]. We simply used 1-nearest neighbor (1NN)
approach to predict if a test sequence belongs to the given family or not. More
specifically, for each test sequence, we evaluate its similarity with each training
sequence, then use the class label of the most similar training sequence as the
label for this test sequence. The accuracy rate of the prediction for each family
is reported.

We used the following approaches to evaluate similarity between two protein
sequences: 1)the Needleman-Wunsch algorithm (NW); 2)the Smith-Waterman

Fig. 2. Preliminary experimental results1

1 The authors recently corrected a bug in the program used for preliminary experimental
studies and generated slightly different results than the values reported in figure 3. The
updated results is available at: https://sites.google.com/site/jrs2012paper/

http://noble.gs.washington.edu/proj/svm\discretionary {-}{}{}pairwise
http://noble.gs.washington.edu/proj/svm\discretionary {-}{}{}pairwise
https://sites.google.com/site/jrs2012paper/
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algorithm (SW); 3) the proposed granular approach based on single amino acids
(Single), and 4) the proposed granular approach based on pairs of amino acids
(Pair). For NW and SW, we set the match reward to be 10 and mismatch penalty
to be -8. No external scoring matrix is used for this preliminary experimental
study. The classification results are summarized in Figure 2.

As can be see in Figure 2, the proposed granular approach based on single
amino acids reaches the same level of accuracy rate as the Needleman-Wunsch
algorithm and the Smith-Waterman algorithm. In other words, the proposed
granular approach is able to distribute the calculation of pairwise similarity to
20 parallel processes without sacrificing accuracy.

The accuracy rate of the proposed granular approach based on pairs of amino
acids is around 6% worse than the other three, however, the calculation of similar-
ity of two protein sequences under this setting can be distributed to 400 parallel
processes, each of which deals with much short position sequences. Therefore, this
approach may be suitable for online analysis of very large scale protein sequence
database, where the tradeoff between efficiency and accuracy is necessary.

6 Conclusion and Future Work

In this paper, we studied a lossless decomposition of a protein sequence into
a set of granules such that the calculation of pairwise similarity of protein se-
quences can be distributed to multiple parallel processes, each of which is less
time consuming. This study further suggests that lossless or close-to-lossless in-
formation decomposition, as a top down paradigm for granular computing, may
provide a solution framework for analyzing data set with complex structures.
As the next step of our work, we will expand our study in the following ways:
1) compare the proposed method with the blast algorithm, a popular heuristic
approach that approximate Smith-Waterman algorithm in sequence search, on
both search effectiveness and efficiency; 2) study the way to incorporate exter-
nal scoring matrix, such as BLOSUM62, in the proposed granular approach; 3)
developing adaptive sequence search methods based on the proposed granular
approach; 4) apply the lossless decomposition principle to other data sets with
complex structures.
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Abstract. We summarize the JRS’2012 Data Mining Competition on
“Topical Classification of Biomedical Research Papers”, held between
January 2, 2012 and March 30, 2012 as an interactive on-line contest
hosted on the TunedIT platform (http://tunedit.org). We present the
scope and background of the challenge task, the evaluation procedure,
the progress, and the results. We also present a scalable method for the
contest data generation from biomedical research papers.
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1 Introduction

The JRS’2012 Data Mining Competition was related to multi-label classification
problem which is recently one of the hottest topics in machine learning. It is also
a topic of interest of an ongoing project, called SONCA (Search based on ON-
tologies and Compound Analytics), realized at the Faculty of Mathematics, In-
formatics and Mechanics of the University of Warsaw. It is a part of the project
’Interdisciplinary System for Interactive Scientific and Scientific-Technical In-
formation’ (http://www.synat.pl/). SONCA is a hybrid database framework
application, wherein scientific articles are stored and processed in various forms.
SONCA is expected to provide interfaces for intelligent algorithms identifying
relations among various types of objects. It extends the typical functionality of
scientific search engines by more accurate identification of relevant documents
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Centre grant 2011/01/B/ST6/03867 and by the Polish National Centre for Research
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ciplinary System for Interactive Scientific and Scientific-Technical Information”.

J.T. Yao et al. (Eds.): RSCTC 2012, LNAI 7413, pp. 422–431, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://tunedit.org
http://www.synat.pl/


JRS’2012: Topical Classification of Biomedical Research Papers 423

and more advanced synthesis of information. To achieve this, concurrent pro-
cessing of documents needs to be coupled with an ability to produce collections
of new objects using queries specific to analytic database technologies.

Ultimately, SONCA should be capable of answering a user query by listing
and presenting resources that correspond to the query semantically. In other
words, the system should have understanding of the intention of the query and
of contents of documents stored in the repository, as well as an ability to effi-
ciently retrieve relevant information. The system should be able to use various
knowledge sources related to investigated areas of science. It should also allow
for independent sources of information about the analyzed objects, such as, e.g.,
information about scientists who may be identified as articles’ authors.

Some developed functionalities of SONCA have been implemented and tested
on the biomedical documents, which are freely available from the highly special-
ized biomedical articles repository called PubMed Central [1]. Rapidly increas-
ing size of the scientific article meta-data and text repositories emphasizes the
growing need for accurate and scalable methods for automatic tagging and clas-
sification of textual data. For example, medical doctors often search through
biomedical documents for information regarding diagnostics, drugs dosage and
effects or possible complications resulting from specific treatments. In the queries,
they use sophisticated terminology, that can be properly interpreted only with
a use of a domain ontology, such as Medical Subject Headings (MeSH) [2]. In
order to facilitate the searching process, documents in a database should be in-
dexed with concepts from the ontology. Additionally, the search results could be
grouped into clusters of documents, that correspond to meaningful topics match-
ing different information needs. Such clusters should not necessarily be disjoint
since one document may contain information related to several topics.

In order to be able to provide semantic relationships between concepts and
documents we employ a method called Explicit Semantic Analysis (ESA) [3].
This method associates elementary data entities with concepts coming from a
knowledge base. We have field-tested a modified version of the ESA approach on
PubMed Central using MeSH (see [4,5]), and found out that while conceptually
the method performs really well, it needs introduction of some refinement tech-
niques, that improve semantic tagging. One of the aims of our research and the
JRS’2012 Data Mining Competition was to investigate methods and techniques,
that allow for accurate predictions of labels given by human experts.

Our competition was hosted on the TunedIT platform1, which supports au-
tomatic evaluation of solutions submitted by multiple participants [6]. It contin-
ues the series of contests organized at the RSCTC conferences [7]. The TunedIT
platform provides tools such as a leaderboard, which displays preliminary results
of the challenge. This allows participants to verify quality of their solution in
comparison to others and better adjust their methods. At the same time, the
possibility of over-fitting with a solution to the test data by extensive parameter
tuning is limited due to separation of preliminary and final test data sets.

1 http://tunedit.org/challenge/JRS12Contest

http://tunedit.org/challenge/JRS12Contest
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2 Task of the Challenge

Our research group invested a significant amount of time and effort to gather a
corpus of documents containing 20,000 journal articles from the PubMed Central
repository open-access subset. Each of those documents was labeled by biomed-
ical experts from PubMed with several MeSH subheadings which can be viewed
as different contexts or general topics discussed in the text. With a use of our
automatic tagging algorithm, which is described in the further sections and dis-
cussed in more details in [4,8], we associated all the documents with the most
related MeSH terms (headings). The competition data consisted of information
about strengths of those bonds, expressed as numerical values. Intuitively, they
can be interpreted as values of a rough membership function that measures a
degree in which a term is present in a given text.

The task for the participants of the JRS’2012 Data Mining Competition was
to devise algorithms capable of accurately predicting MeSH subheadings (topics)
assigned by the experts, based on the association strengths of the automatically
generated tags corresponding to MeSH headings. Each document could be la-
beled with several subheadings and this number was not fixed. In order to ensure
that participants who might be not familiar with the biomedicine domain, and
with the MeSH ontology in particular, had equal chances as domain experts, the
names of the tags and topical classifications were removed from the data. Those
names and relations between data columns, as well as a dictionary translating
decision class identifiers into MeSH subheadings, could be provided on request
for the sake of after-competition research.

The data set was provided in a two-dimensional tabular form as two tab-
separated values files – a training set and a test set. Each row of those data files
represents a single document and, in the consecutive columns, it contains integers
ranging from 0 to 1000, expressing association strengths to the corresponding
MeSH terms. Additionally, there was available a text file containing labels, whose
consecutive rows corresponded to entries in the training data set. Each row of
that file was a list of topic identifiers (integers ranging from 1 to 83), separated by
commas, which can be regarded as a generalized classification of a journal article.
This information was not available for the test set and the task for participants
was to predict it using models constructed on the training data.

It is worth noting that, due to a nature of the considered problem, the data
sets were highly dimensional - the number of columns roughly corresponded to
a size of the MeSH ontology. The data sets are also sparse, since usually only a
small fraction of the MeSH terms was assigned to a particular document by our
tagging algorithm. Finally, a large number of data columns have little (or even
none) non-zero values which is due to a fact that the corresponding concepts
were rarely assigned to documents. It was up to participants to decide which of
them are still useful for the task.

The quality of label predictions submitted by participants for a single test
instance was measured using F1-score, which is defined as a harmonic average
of precision and recall. Let TrueTopicsi denote labels assigned by experts to i-th
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Table 1. Seven most represented countries in the JRS’2012 Data Mining Competition

No. participating teams Country
53 United States
52 People’s Republic of China
51 Poland
38 India
30 Russian Federation
13 Spain
13 Afghanistan

test document and let PredTopicsi be a set of predicted labels. Precision of a
prediction for the i-th object is defined as:

Precisioni =
|TrueTopicsi ∩ PredTopicsi|

|PredTopicsi| , (1)

whereas recall of this prediction is:

Recalli =
|TrueTopicsi ∩ PredTopicsi|

|TrueTopicsi| . (2)

The quality measure used in the competition was an average F1-score over all
test documents, which can be defined as:

F1-scorei = 2 · Precisioni · Recalli
Precisioni + Recalli

, (3)

AvgF1-score =

N∑
i=1

F1-scorei

N
(4)

In the above formula N is the total number of test documents.
Participants of the challenge could submit multiple solutions, that were eval-

uated online on a subset of the test data. The preliminary evaluation scores were
constantly made available to submitters and the best result of each participating
team was published on the competition’s leaderboard. Winners of the competi-
tion were decided based on their scores computed on the remaining portion of
data, called the final test data set. The division between preliminary and final
test sets was not revealed.

3 Summary of the Competition

There was a total of 396 teams with 533 members registered to the challenge.
Among them, there ware 126 active teams who submitted at least one solution to
the leaderboard. The total number of submissions was 5964. The competition at-
tracted participants from 50 different countries across six continents. Seven most
represented countries (with a number of registered teams) are listed in Table 1.
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Fig. 1. A snapshot of competition’s leaderboard with the final stands of the top 10
teams, including the winners [9]

The participants were able to significantly improve over the baseline result,
which was obtained by assigning five majority classes to all objects in the test
set. The improvement in the F1-score exceeded 125% (the best team obtained a
result of 0.53579, while the baseline was 0.23721).

From the active teams, 41 agreed to share their approach by sending us a brief
report. The winning team solved the challenge by using a meta-learning tech-
nique in order to ensemble multiple logistic regression models, a random forest
and neural networks [9]. The most interesting of other top-ranked approaches
are described in several other papers in the RSCTC 2012 proceedings.

Figure 1 presents the final results of the top 10 teams. Scores of the remaining
teams are still available online2.

To verify potential usefulness of a combination of the top-ranked approaches
in the contest we made an experiment in which we merged solutions of five
best teams. The new classification of the test documents was constructed by a
simple majority voting algorithm. The number of labels to be assigned for each
document was decided based on an average length of predictions made by each
of the considered teams. Quality of this ensemble was measured using the same
evaluation method as in the case of the real contest. As expected, the obtained
result, which was 0.536 for the preliminary set and 0.53976 for the final test set,

2 http://tunedit.org/challenge/JRS12Contest?m=leaderboard

http://tunedit.org/challenge/JRS12Contest?m=leaderboard
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Fig. 2. The tables used in the case study

was slightly better than the score of the winners of JRS’2012 DMC. It shows
that there is definitely a lot of space for further improvements.

4 Semantic Tagging within the SONCA Engine

All the data used in the contest were generated using our current implementa-
tion of SONCA. The documents were stored in a relational database in a generic
structure using the entity-attribute-value model [10]. For the purpose of analyt-
ics, this schema was transformed to a more flattened form. For the sake of clarity
of the presentation, let us make some simplifying assumptions.

Let us assume that the information about articles is stored in a table called
document_word. The table contains columns as follows: doc_id – identifier of
the document, word_pos – an ordinal number of the given word in document,
and word – a word from the document. Thus, to store a document we need as
many rows as there are words in it. Below we will refer to this table as R.

The second table which is involved in our calculations is called word_stem,
and denoted by S. The table contains two columns word and stem – which
represent a stem of the given word. A stem is the root of a word. The table
stores the information about the stem and the stemming process, which was
performed earlier using the standard Porter stemming algorithm3.

The third table needed to present a semantic tagging process. It is called
stem_inv_ind and denoted by T. The table contains three columns, as follows:
stem, concept – a name of a concept from MeSH controlled vocabulary and tf –
a term frequency4 in the concept description from MeSH.

The last table needed in the calculations is called mesh_idf. It is denoted by
U and contains two columns – stem and idf – invert document (in this case
concept’s description) frequency4. Figure 2 outlines the introduced tables. Data
stored in those tables is used by the ESA method, which aims at determining
semantic relationships between documents and (MeSH) concepts.

In our system we want to associate each document with a list of concepts from
ontology or knowledge base, such as MeSH [5] and others. This, technically speak-
ing, corresponds to creation of a vector of ontology concepts associated with a doc-
ument. The vector is constructed in such a way, that each position corresponds to
an ontology concept and a numerical value at this position represents a strength

3 http://tartarus.org/~martin/PorterStemmer/
4 http://en.wikipedia.org/wiki/Tf*idf

http://tartarus.org/~martin/PorterStemmer/
http://en.wikipedia.org/wiki/Tf*idf
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of the association. We describe this calculation with relational calculus formulæ
corresponding to SQL queries.

First, the inflected or derived words are reduced to their stems. We create
a new table called word_doc_stemmed – R2 as the result of a join of tables
document_word – R and word_stem – S.

R2 ← Π(R.doc_id,S.stem)(R ��
word=word

S) (5)

The next task is a calculation of stem frequencies within the documents. We
perform this using one table R2. The term (stem) frequency is calculated as:

R3 ← Π(V 1.doc_id,V 1.stem,(V 1.cnt/V 2.cnt_all)→tf)

(
ρV 1

(
γ(R2.doc_id,R2.stem,R2.count(∗)→cnt)(R2)

)
��

doc_id=doc_id

ρV 2

(
γ(R2.doc_id,R2.count(∗)→cnt_all)(R2)

))
(6)

The final step is a calculation of the vectors of concepts associated with the
documents and the association strengths.

R4 ← Π(R3.doc_id,T.concept,assoc)

(
τ(assocDESC)

(
γ(R3.doc_id,T.concept,SUM(

√
R3.tf∗T.tf∗U.idf2)→assoc)(

R3 ��
stem=stem

T ��
stem=stem

U)
))

(7)

The queries presented above return a complete information, i.e., for each docu-
ment they give us the levels of association with each and every concept in our
ontology (knowledge base). This is both unnecessary and unwanted in practical
applications. Empirical experiments show that if we are to present the results
to the user, we shall present no more than top-k most associated concepts, with
k ≤ 30. Anything above 30 is likely to produce a perceptual noise. So, as a last
step in the calculation we shall prune the result, leaving only the top 30 most
associated concepts in each documents’ representation.

The calculation of the associations among documents and concepts according
to formula (7) is a very time consuming task. From the database viewpoint the
problem we want to solve is one of performing a top-k analytic, an agglomer-
ative SQL query that involves joins on very large data tables (see [11]). The
characteristic property of our task is a possibility to decompose it into smaller
subtasks (tasks on sub-tables), given some knowledge about the nature and
structure of our data set. The fact that the query-answering can be decomposed
into largely independent sub-tasks makes it possible to optimize it by using only
top-k instead of all sub-results most of the time. Inasmuch as sub-tasks are
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Algorithm 1. Query sharding
1 begin
2 N := SELECT DISTINCT doc_id from TABLE
3 for doc_id ∈ N do
4 run SELECT ... WHERE DOC_ID = doc_id in K threads concurrently
5 end
6 end

largely independent from one another, we can also create shards and process
them concurrently using, e.g., multiple cores (processors).

By running queries for each of the pieces (documents) separately we achieve
an additional profit. We are able to handle queries that require application of
the LIMIT operator within the GROUP BY statement. This functionality was added
in the SQL:1999 and SQL:2003 standards by introducing windowing functions
and elements of procedural languages. However, these functionalities are not
supported by the database solutions utilized in the SONCA framework yet. The
ability to limit the processing to only top-k objects (documents) can make a big
difference in an execution time [12].

In a case of the query (7), sharding corresponds to creation of separate sub-
queries for each of the objects, since we know that there is no interference with
other objects along the calculation. Objects correspond to documents, and the
boundary of an object can be determined by detecting the change of id in the
column doc_id. Thus, each of the considered queries can be decomposed into a
series of simpler queries by basing on Algorithm 1.

In the JRS’2012 Data Mining Competition, the data generated by the above-
described method was post-processed in order to better fit to the competition’s
task. After selecting the 30 most associated concepts for each of the processed
documents, the associations were extended by a list of neighborhood concepts
from the tree structure of MeSH [2]. For a given pair of a document doc and a
MeSH heading M , the semantic representation of the document was extended
by all its relatives with a weight corresponding to the association strength of
M to doc divided by a total number of relatives of M in MeSH. Since MeSH
is organized in a tree-like structure with concepts higher in the hierarchy being
more general than those which are lower, children and parents of M were counted
separately and their associations were computed with different weights.

Finally, from our corpus of documents collected from PubMed Central open
subset [1], we selected 20000 papers for the challenge. We constructed an infor-
mation system in a form of a flat table having 20000 rows (corresponding to
the documents) and 25640 columns. Each attribute represented a MeSH head-
ing which was associated to at least one document in the whole corpus (but not
necessarily to one of the documents selected for the contest). We linearly scaled
the resulting data so that each association strength was between 0 and 1000,
and we rounded the results.
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The target labels in the task corresponded to MeSH subheadings pointed out
by domain experts. These tags expressed a context for concepts associated with
the analyzed texts and were obtained directly from PubMed Central pages.

5 Our Plans for the Future

The traditional search engines are not the best techniques, inasmuch the results
related to the keywords of a user query are displayed considering only their
literal meaning. Therefore, emergence of new technologies inter alia Semantic
Search carries a hope for an improvement of search methods. Within semantic
search process, the conceptual meaning of the query is considered. However,
for a successful implementation of semantic search engines, the semantic text
representation (semantic labeling and indexing of documents) are needed.

Labeling documents with concepts that correspond to them semantically has a
significant potential. It delivers to a domain expert better methods of navigation
across knowledge repositories. However, a manual documents labeling is a very
time consuming and expensive method. Especially laborious task is labeling
parts of documents like chapters, sections and even sentences. The appearing
automatic labeling methods allows to cope with this issue.

The algorithms developed and presented during the contest showed that there
is a significant potential in automatic semantic document tagging and indexing.
The potential profits from using these methods are as follows: a) improvement of
the search engines accuracy by understanding the contextual meaning of texts,
b) ability to figure out the most relevant chapter, section or sentence for a user
query, c) concept and knowledge matching.

Our current researches are focused on improving the accuracy of our tagging
algorithms. In the future research we would also like to investigate the problem
of online model updating that utilizes user feedback.
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Abstract. Algorithm which has taken the third place in “JRS 2012
Data Mining Competition” among 126 participants is described. The
competition was related to the problem of predicting topical classifica-
tion of scientific publications in a field of biomedicine. The presented
algorithm is a combination (blend) of simple classification algorithms: a
linear classifier, a k-NN classifier and two SVMs. We build the combi-
nation using special estimation matrices. It proves again that combina-
tions have significantly better performance compared to their individual
members.
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1 Introduction

Organizers of “JRS 2012 Data Mining Competition” [1] have gathered a corpus
of documents containing 20000 journal articles from the PubMed Central open-
access subset [2]. The documents have been labeled by biomedical experts from
PubMed with several MeSH subheadings [3]. A label of the document can be
viewed as context or topic discussed in the text. One document can have several
labels. All the documents are associated with the most related MeSH terms.
The competition data consists of information about strengths of those bonds,
expressed as numerical values.

The training data consists of a description m×nmatrix X (the feature matrix)
and a classification m × l matrix Y , where m = 10000 is a number of articles
in the training set, n = 25640 is a number of features (MeSH terms), l = 82
is a number of classes (topics). The ith row of the matrix X represents the ith
journal article from the training set. The jth column of the matrix X contains
integers ranging from 0 to 1000, expressing association strength to corresponding
MeSH term. The ijth element of the binary matrix Y is equal to 1 iff the ith
journal article is related to the jth topic (the article has the jth label).

� This work was supported by the Russian Foundation for Basic Research, project 12-
07-00187; by the President of the Russian Federation, project MD-757.2011.9. The
author is also grateful to the organizers of “JRS 2012 Data Mining Competition”
for running the interesting competition. Finally, we want to thank all the active
participants of the challenge for their efforts.
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The test data contains only a q × n matrix X2 that describes articles with
unknown (for participants) topic classifications, where q = 10000 is a number of
articles in the test set. The task is to reveal a classification q × l matrix Y2 for
the test set.

Submissions of participants were evaluated using an average F-score [4] of the
predictions:

1

q

q∑
i=1

2
∑l

j=1 aijyij∑l
j=1 aij +

∑l
j=1 yij

,

where ||aij ||q×l was a submitted solution, ||yij ||q×l was the correct classification
matrix. The submitted solutions were evaluated on-line on a random subset of
the test set (∼ 10% of all the data), fixed for all participants. The final evaluation
was performed after completion of the competition using the remaining part of
the test data.

Now we describe the algorithm which has taken the third place in “JRS 2012
Data Mining Competition” with the preliminary result 0.53 and the final result
0.53242 F-score.

2 Combination of Algorithms

The main idea behind our solution is a blending of very simple algorithms, be-
cause the usage of different algorithms can sufficiently improve the performance
[5], and simple algorithms are more reliable and easy to tune. The same idea
is the basis of modern voting classification algorithms, such as Bagging [6] or
AdaBoost [7].

Let the q× l matrix E = ||eij ||q×l be an output of an algorithm. This matrix
may be also a result of an intermediate step of the algorithm. In matrix E the
element eij is equal to estimation of belonging the ith test object (the ith article)
to the jth class. The matrix E we will call the estimation matrix. One may easily
obtain classification by comparing matrix elements with a threshold: if eij > θ
then the ith journal article has the jth label. The threshold θ can be calculated
by optimizing algorithm performance in local testing (on the training set).

Let E1, . . . , Ek be the output estimation matrices from k algorithms. Then,
the final classification can be obtained by comparing the matrix

c1E1 + · · ·+ ckEk (1)

with the threshold θ. The coefficients c1, . . . , ck and the threshold θ can be
calculated by gradient descend optimization of F-score on the training set. The
same idea (of using the linear combination of estimation matrices) is in the base
of an algebraic approach to classification problem solving [8]– [9].

Our experiments show that more complex expressions (than the simple linear
combination (1)) can increase performance on 0.5%. In the final solution we use

c1N√
max(E1) + · · ·+ ckN√

max(Ek) (2)
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instead of (1), where the operation N√
max(E) divides each element of the matrix

E on a root of the maximal element in his row:

N√
max(||eij ||) =

∣∣∣∣∣
∣∣∣∣∣ eij√

max(ei1, . . . , eil)

∣∣∣∣∣
∣∣∣∣∣ .

The idea of the deformed linear combination (2) follows from LENKOR technol-
ogy for data mining problem solving developed by the author [10].

Now we describe machine learning algorithms that we used to calculate esti-
mation matrices from (2).

3 The Linear Classifier over SVDecomposition

It is natural to treat the contest task as a standard linear regression problem
[11]. This corresponds to finding a least squares solution C for the equation

XC = Y. (3)

The matrix
X2C = X2(X

TX)−1XTY (4)

can be viewed as an estimation matrix, so the last step of this approach is
threshold choosing. However the equation (3) is over parameterized (the size of
C is n× l) and the matrix XTX in (4) is singular. The regularization

X2(X
TX + εI)−1XTY

(it is also known as ridge regression) does not improve performance and takes
a lot of time and memory. Therefore it is necessary to “reduce” the matrices X
and X2.

The singular value decomposition (SVD) of the matrix X has the form X =
UΣV T and we can use a low-rank approximation of X :

X + U [ ,1:r] ·Σ[ 1:r,1:r] · (V [ ,1:r])T ,

where V [ ,1:r] is a submatrix of V formed by the first r columns. We suggest to
use the matrices

X · V [ ,1:r], X2 · V [ ,1:r]

as feature matrices for regression problem solving. Then, the estimation matrix
is

X2 · V [ ,1:r] · ((X · V [ ,1:r])T · (X · V [ ,1:r])
)−1 · (X · V [ ,1:r])T · Y. (5)

Our experiments show that the best choice is to take r = 700 (see Table 1)
and to replace matrices X , X2 in (5) with matrices N√

Σ(X), N√
Σ(X2), where

N√
Σ(||xij ||) =

∣∣∣∣∣∣
∣∣∣∣∣∣ xij√∑n

j=1 xij

∣∣∣∣∣∣
∣∣∣∣∣∣ . (6)
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Table 1. Performance of SVD+ regression

r = 400 500 600 700 800

F-score 47.3 50.0 51.4 51.6 51.4

The modified matrices contributed to improvement in result from 0.513 to 0.516.
Note that the normalization (6) is not standard (xij instead of x2

ij under the
sum symbol).

The described algorithm is the best in the blending.

4 k-Nearest Neighbor Algorithm (k-NN)

Even the simplest k-NN method has been shown to perform well in text classi-
fication [12]. We use a weighted k-NN algorithm where each point has a weight
and neighboring points have a higher vote than the farther points. Firstly, we
normalize the feature matrices (X and X2):

||xij || −→
∣∣∣∣∣∣∣∣xij

sj

∣∣∣∣∣∣∣∣
(each element in the jth column is divided by sj), where

sj =
1

l

l∑
i=1

log(sij + 1),

||sij ||q×l = Y T ·X.

It is tf-idf-like transformation [12] for multilabel task. Some other transforma-
tions that we used are listed in Table 2. The second normalization is N√

Σ (see
(6)). Then we use weighted k-NN with k = 200, weights

w1 =
k2

Sk
, . . . , wk−1 =

22

Sk
, wk =

12

Sk
,

Sk = k2 + . . .+ 22 + 12,

where wj is the weight given to the jth neighbor, and similarity function

B((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + · · ·+ xnyn.

If the second normalization was standard, it would be usual cos-similarity func-
tion, which is popular in text classification [12]. Surprisingly, the nonstandard
N√

Σ-normalization improves performance by 0.6%.
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Table 2. Performance of k-NN

some normalizations F-score

our normalization 0.497

tf-idf 0.470

si = |{j ∈ {1, 2, . . . , l} | sij > 0}| 0.489

So, the method outputs a q× l matrix A2, where each row is the sum of rows
of the matrix Y with the corresponding weights. Similarly on the training set
the method outputs a q×m matrix A (we use leave-one-out [13]). The last step
is a linear regression and the final answer (the estimation matrix) of our k-NN
algorithm is

A2(A
TA)−1ATY.

5 Two LIBSVM Algorithms

The last two estimation matrices in (2) are made by LIBSVM package [14]:

svmtrain(Y, X, ’-t 0 -c 0.01 -h 0’)

We run two SVM algorithms with linear kernel functions and c = 0.01 [15]. The
algorithms are different in preliminary normalizations of feature matrices:

||xij || −→
∣∣∣∣∣∣∣∣ xij

max(xi1, . . . , xin)

∣∣∣∣∣∣∣∣
(each element is divided by the maximal element in the row),

||xij || −→
∣∣∣∣∣∣∣∣ xij

max(x1j , . . . , xmj)

∣∣∣∣∣∣∣∣
(each element is divided by the maximal element in the column). These normal-
izations are chosen to make the algorithms independent even when tuning by
the same package.

The reason to use normalizations is very simple: when you tune SVM all
features should be in one scale. Unfortunately we did not manage to perform
complete research of all the possible normalizations.

After running of LIBSVM package we apply a standard linear regression, as
after the k-NN method.

Given that the execution time of LIBSVM was in the neighbourhood of one
hour1, it is reasonable to rely on the faster LIBLINEAR algorithm [17].

1 On a HP p6050ru computer with Intel Core 2 Quad CPU Q8200 2.33GHz, RAM
3Gb, OS Windows Vista in MATLAB 7.10.0 [16].
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6 Conclusions

In this paper we present our solution for the topical classification task of “JRS
2012 Data Mining Competition”. We try to use only traditional simple algo-
rithms (a linear regression, a k-NN method, SVMs with linear kernel). The core
of our approach is the blending (2) using the estimation matrices. The matrices
are constructed by linear regression and the blending is tuned to improve F-score
in local tests (on the training set).

We used a similar approach before for winning “ECML/PKDD Discovery
Challenge 2011” [10]. In our opinion it is a very good strategy to find “deformed”
linear combination of estimation matrices of simple classifiers. The same idea is
main in the theory of neural networks [18].

We expect that better results can be obtained by optimizing LIBSVM algo-
rithms and using LIBLINEAR package instead of LIBSVM. Surprisingly, many
other simple algorithms do not improve performance of the blending, for example
popular in text mining centroid classifier (this algorithm has only 0.42 F-score).
The final solution is

0.5939N√
max(Elin+svd) + 0.0011N√

max(Eknn)+

0.2970N√
max(Elibsvm1) + 0.1080N√

max(Elibsvm1) <> θ = 0.345.

In our local testing the maximum is reached at another threshold value (see
Table 3). We simply did not manage to submit the solution with θ = 0.35.

Note that the contribution to the solution of the k-NN classifier is very small,
however one can be in Top20 of the competition leaderboard by using the only
k-NN algorithm. Without LIBSVM-algorithms the blending has performance
only 0.517 F-score.

Table 3. Performance of the blending (in local tests)

θ = 0.335 0.34 0.345 0.350 0.355

F-score 52.72 53.60 53.79 53.99 53.79
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Abstract. The F-measure, originally introduced in information retrieval,
is nowadays routinely used as a performance metric for problems such as
binary classification, multi-label classification, and structured output pre-
diction. In this paper, we describe our methods applied in the JRS 2012
Data Mining Competition for topical classification, where the instance-
based F-measure is used as the evaluation metric. Optimizing such a mea-
sure is a statistically and computationally challenging problem, since no
closed-form maximizer exists. However, it has been shown recently that the
F-measure maximizer can be efficiently computed if some properties of the
label distribution are known. For independent labels, it is enough to know
marginal probabilities. An algorithm based on dynamic programming is
then able to compute the F-measure maximizer in cubic time with respect
to the number of labels. For dependent labels, one needs a quadratic num-
ber (with respect to the number of labels) of parameters for the joint dis-
tribution to compute (also in cubic time) the F-measure maximizer. These
results suggest a two step procedure. First, an algorithm estimating the re-
quired parameters of the distribution has to be run. Then, the inference al-
gorithm computing the F-measure maximizer is used over these estimates.
Such a procedure achieved a very satisfactory result in the JRS 2012 Data
Mining Competition.

1 Introduction

While being rooted in information retrieval [1], the so-called F-measure is nowa-
days routinely used as a performance metric for different types of prediction prob-
lems, including binary classification, multi-label classification (MLC), and cer-
tain applications of structured output prediction, like text chunking and named
entity recognition. Compared to measures like the 0-1 loss in binary classification
and the Hamming loss in MLC, it enforces a better balance between performance
on the minority and the majority class, and it is hence more suitable in the case
of imbalanced data, which arises quite frequently in real-world applications.

J.T. Yao et al. (Eds.): RSCTC 2012, LNAI 7413, pp. 439–446, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The predictive task in the JRS 2012 Data Mining Competition1 falls into such
a category. Generally speaking, this competition concerns the topical classifica-
tion of biomedical research papers based on the concept information from the
MeSH ontology,2 which are automatically assigned by the tagging system. More
precisely, as the training data, there are in total 10000 instances with 25640 fea-
tures and 83 classes. The values of the features are presented as integers ranging
from 0 to 1000, expressing association strengths to corresponding MeSH terms,
and the classes correspond to the topic identifiers. There are another 10000 in-
stances as the test data. They share the same format as the training data, except
that the class information is not given. Similar to other text classification prob-
lems, the data of the JRS competition are very sparse. Consider the training
data for example, the most dense feature has 2738 nonzero entries and the most
dense class is associated with 2475 instances. The sparseness of the data calls
for evaluation metrics like the F-measure. More precisely, the instance-based F-
measure is applied in the JRS competition, which we shall discuss later in more
details.

The paper is organized as follows. We first introduce the formal setting of
multi-label classification and the definition of the instance-based F-measure in
Section 2. Inference techniques for F-measure maximization are discussed in
Section 3, where we start with the case of independent class labels and then
discuss the more general case without the independence assumption. These in-
ference techniques are based on the parameters of the label distribution. We
discuss the estimation of such parameters in Section 4. Some empirical evalua-
tions of our approaches are shown in Section 5, prior to the final conclusion in
Section 6.

2 Multi-label Learning and Instance-Based F-Measure

The task of the JRS competition is a multi-label learning problem. Let X denote
an instance space, and let L = {λ1, λ2, . . . , λm} be a finite set of class labels.
An instance x ∈ X is (non-deterministically) associated with a subset of labels
L ∈ 2L; this subset is called the set of relevant labels, while the complement
L \L is considered as irrelevant for x. It is common to identify L with a binary
vector y = (y1, y2, . . . , ym), where yi = 1 means λi ∈ L. We denote the set of
possible labelings as Y = {0, 1}m.

Given a prediction h(x) = (h1(x), . . . , hm(x)) ∈ Y of an m-dimensional bi-
nary label vector y = (y1, . . . , ym), the label vector associated with a single
instance, the instance-based F-measure is defined as follows:

F (y,h(x)) =
2
∑m

i=1 yihi(x)∑m
i=1 yi +

∑m
i=1 hi(x)

∈ [0, 1] , (1)

1 http://tunedit.org/challenge/JRS12Contest
2 http://www.nlm.nih.gov/mesh/introduction.html

http://tunedit.org/challenge/JRS12Contest
http://www.nlm.nih.gov/mesh/introduction.html
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where 0/0 = 1 by definition. This measure essentially corresponds to the har-
monic mean of precision prec and recall rec:

prec(y,h(x)) =

∑m
i=1 yihi(x)∑m
i=1 hi(x)

, rec(y,h(x)) =

∑m
i=1 yihi(x)∑m

i=1 yi
. (2)

One can generalize the F-measure to a weighted harmonic average of these two
values, but for the sake of simplicity, we stick to the unweighted mean, which
is often referred to as the F1-score or the F1-measure. This variant of the F-
measure was also used in the competition.

Modeling the ground-truth as a random variable Y , i.e., assuming an un-
derlying probability distribution p(Y ) on {0, 1}m, the prediction h∗

F (x) that
maximizes the expected F-measure is given by

h∗
F (x) = argmax

h(x)∈{0,1}m

Ey∼p(Y ) [F (y,h(x))]

= argmax
h(x)∈{0,1}m

∑
y∈{0,1}m

p(Y=y)F (y,h(x)) .
(3)

Unfortunately, a closed form of the maximizer h∗
F (x) does not exist and a brute-

force search is infeasible, as it would require checking all 2m combinations of pre-
diction vector h and computing a sum over an exponential number of terms for
each h. However, several algorithms have been introduced recently that compute
the F-measure maximizer efficiently.

3 Algorithms for F-Measure Maximization

The problem (3) can be solved via outer and inner maximization [2]. Namely,
(3) can be transformed into an inner maximization

h(k)∗ = argmax
h∈Hk

Ey∼p(Y ) [F (y,h)] , (4)

where Hk = {h ∈ {0, 1}m | ∑m
i=1 hi = k}, followed by an outer maximization

h∗
F = argmax

h∈{h(0)∗ ,...,h(m)∗}
Ey∼p(Y ) [F (y,h)] . (5)

The outer maximization (5) can be done by simply checking allm+1 possibilities.
The main effort is then required for solving the inner maximization (4).

3.1 Label Independence

By assuming independence of the random variables Y1, . . . , Ym, the optimization
problem (3) can be substantially simplified. It has been shown independently in
[3] and [2] that the optimal solution always contains the labels with the highest
marginal probabilities pi = P (Yi = 1), or no labels at all. As a consequence,
only a few (m + 1 instead of 2m) hypotheses h need to be examined.
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Furthermore, Lewis [3] has shown that the expected F-measure can be ap-
proximated by the following expression under the assumption of independence:3

Ey∼p(Y ) [F (y,h)] +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m∏
i=1

(1− pi) if h = 0 ,

2
∑m

i=1 pihi∑m
i=1 pi +

∑m
i=1 hi

if h �= 0 .

(6)

This approximation is exact for h = 0, and is tractable with O(m). For h �= 0,
an upper bound of the error can easily be determined [3]. However, the exact
solution can be computed efficiently, as will be explained in more details below.

Jansche [2] and Chai [4] have independently proposed exact procedures for
solving the inner maximization (4). The former runs in O(m3), while the lat-
ter runs in O(m2), leading to the overall complexity of O(m4) and O(m3), re-
spectively. Since both algorithms deliver the same estimate, we focus on Chai’s
approach here. We refer to it as DP, since it is based on dynamic programming.

Chai [4] has shown that the expected F-measure of h(k)∗ , the solution of the
inner maximization (4) for a given k that assigns ones to k labels with the largest
marginal probabilities, can be expressed as follows:

Ey∼p(Y )

[
F (y,h(k))

]
= 2

m∏
i=1

(1− pi)I1(m) ,

where I1(m) is given by the following recurrent equations and boundary condi-
tions:

It(a) = It+1(a) + rtIt+1(a + 1) + rtJt+1(a + 1)

Jt(a) = Jt+1(a) + rtJt+1(a + 1)

Ik+1(a) = 0 Jm+1(a) = a−1

with ri = pi/(1−pi). These equations suggest a dynamic programming algorithm
of spaceO(m) and time O(m2) for solving the inner maximization (4) for given k.

3.2 A General Procedure

If the independence assumption is violated, the above methods may produce
predictions far away from the optimal one, as shown in [5] by Dembczynski et
al. In this paper, the authors have further introduced an exact and efficient
algorithm for computing the F-measure maximizer without using any additional
assumption on the probability distribution p(Y ). The algorithm, called general
F-measure maximizer (GFM), needs m2 + 1 parameters and runs in O(m3).

The inner optimization problem (4) can be formulated as follows:

h(k)∗ = argmax
h∈Hk

Ey∼p(Y ) [F (y,h)] = argmax
h∈Hk

∑
y∈{0,1}m

p(y)
2
∑m

i=1 yihi

sy + k
,

3 We henceforth denote 0 and 1 as vectors containing all zeros and ones, respectively.
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with sy =
∑m

i=1 yi. The sums can be swapped, resulting in

h(k)∗ = argmax
h∈Hk

2

m∑
i=1

hi

∑
y∈{0,1}m

p(y)yi
sy + k

. (7)

Furthermore, one can sum up the probabilities p(y) for all y with an equal value
of sy. By using

pis =
∑

y∈{0,1}m:sy=s

yip(y) ,

one can transform (7) into the following expression:

h(k)∗ = argmax
h∈Hk

2

m∑
i=1

hi

m∑
s=1

pis
s + k

. (8)

As a result, one does not need the whole distribution to solve (4), but only the
values of pis, which can be given in the form of an m×m matrix P with entries
pis. For the special case of k = 0, we have h(k)∗ = 0 and Ey∼p(Y ) [F (y,0)] =
p(Y = 0).

If the matrix P and p(Y = 0) are given, the solution of (3) is straight-forward.
To simplify the notation, let us introduce an m×m matrix W with elements

wsk =
1

s + k
, s, k ∈ {1, . . . ,m} . (9)

The resulting algorithm needs then to compute the following matrix:

F = PW ,

with entries denoted by fik. The inner optimization problem (4) can then be
reformulated as follows:

h(k)∗ = argmax
h∈Hk

2

m∑
i=1

hifik .

The solution for a given k ∈ {1, . . . ,m} is obtained by setting hi=1 for the top
k largest elements in the k-th column of the matrix F, and hi= 0 for the rest.
The corresponding value of the expected F-measure for h(k)∗ has to be stored
for being used in the outer maximization. We also need to compute a case in
which k = 0:

Ey∼p(Y ) [F (y,0)] = p(Y = 0) .

The last step relies on solving the outer maximization (5):

h∗
F = argmax

h∈{h(0)∗ ,...,h(m)∗}
Ey∼p(Y ) [F (y,h)] .

The complexity of the above algorithm is dominated by the matrix multiplication
PW that is solved naively in O(m3). The algorithm needs m2 +1 parameters in
total, namely the matrix P and probability p(Y = 0).
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3.3 Discussion

The DP approach described in Section 3.1 and GFM are characterized by a
similar computational complexity, however, the former does not deliver an exact
F-measure maximizer if the assumption of independence is violated. On the
other hand, the DP approach relies on a smaller number of parameters (m values
representing marginal probabilities). GFM needs m2 + 1 parameters, but then
computes the maximizer exactly. Since estimating a larger number of parameters
is statistically more difficult, it is a priori unclear which method performs better
in practice. We are facing here a common trade-off between an approximate
method on better estimates (we need to estimate a smaller number of parameters
from a given sample) and an exact method on potentially weaker estimates.

4 Learning Parameters of the Distribution

In the above section, we described two inference techniques that compute the
F-measure maximizers based on delivered parameters of the label distribution.
To estimate these parameters we used two well-known methods for multi-label
classification: binary relevance and probabilistic classifier chains.

4.1 Binary Relevance

BR is the simplest approach to multi-label classification. It reduces the problem
to binary classification, by training a separate binary classifier hi(·) for each label.
Learning is performed independently for each label, ignoring all other labels.
Obviously, BR does not take label dependence into account, but with a proper
base classifier it is able to deliver accurate estimates of marginal probabilities.
These estimates can be further used as inputs in the DP inference algorithm.
BR is, however, not appropriate for GFM.

4.2 PCC

PCC [6] is an approach similar to Conditional Random Fields (CRFs) [7,8],
which estimates the joint conditional distribution p(Y |x). This approach has the
additional advantage that one can easily sample from the estimated distribution.
The underlying idea is to repeatedly apply the product rule of probability to the
joint distribution of the labels Y = (Y1, . . . , Ym):

p(Y = y |x) =
m∏
i=1

p(Yi = yi |x, y1, . . . , yi−1) . (10)

Learning in this framework can be considered as a procedure that relies on
constructing probabilistic classifiers for estimating p(Yi = yi|x, y1, . . . , yi−1), in-
dependently for each i = 1, . . . ,m. By plugging the log-linear model into (10), it
can be shown that pairwise dependencies between labels yi and yj are modeled.
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To sample from the conditional joint distribution p(Y |x), one follows the
chain and picks the value of label yi by tossing a biased coin with probabilities
given by the i-th classifier. From the sample of such observations one can estimate
all the parameters required by the GFM algorithm. One can also estimate the
marginal probabilities and use the DP algorithm. The result is not necessarily
the same as in BR, since we are using a more complex feature space here.

5 Results in the Competition

In this section we report results on the JRS 2012 Data Mining Competition
dataset of the methods we discussed in previous sections. Our preprocessing on
the competition data is quite straightforward: We simply delete all the empty
columns (i.e., zero vectors) in the training data, then the corresponding columns
in the test data. The values of features are normalized to [0, 1].

In both BR and PCC we use linear regularized logistic regression from the
Mallet package4 as a base classifier. We tune the regularization parameter for
each base classifier independently by minimizing the negative log-likelihood,
which should provide better probability estimates. We use 10-fold cross-validation
and we choose the regularization parameter from the following set of possible
values {10−5, 10−4, . . . , 105}. We use PCC with both inference methods and try
different sizes of sample generated from the conditional distribution of a given x.

The results of the methods are presented in Table 1. The F-measure is com-
puted over the entire test set delivered by the organizers after the competition.
This is a minor difference in comparison to the competition results which are
computed over 90% of test examples. The remaining 10% of test examples con-
stitute a validation set that served for computing the scores for the leaderboard
during the competition. The last row in the table gives the result of the final
method we used in the competition. It relies on averaging over all predictions
we computed during the competition. These predictions are the results of the
approaches presented in this paper but with different parametrization. In total
we gathered 16 predictions and we aggregated them via voting. In this voting
procedure we tested different thresholds on the validation set and selected the
best one (nine votes from 16).

From the results we can see that there is no big difference among the methods.
The voting procedure improves only slightly over BR+DP and PCC+GFM.
Interestingly, BR+DP performs here better than PCC+GFM, which suggests
independence of the labels. However, one can also observe that PCC+DP loses
against other methods. This shows that PCC with the sampling procedure has
problems with the accurate estimation of the marginal probabilities. Increasing
the sample size improves the results (for both, DP and GFM), but it still seems
that BR+DP is the most appropriate method in this case. It is the cheapest one,
since it does not require additional sampling in the inference step as PCC does,
and gives results only slightly worse than the voting method that averages over
many predictions.

4 http://mallet.cs.umass.edu/

http://mallet.cs.umass.edu/
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Table 1. The results of the presented methods obtained on the entire test set. The
numbers in parentheses denote the size of the sample in PCC.

Method F-measure Method F-measure

PCC+DP (50) 0.48650 PCC+GFM (50) 0.52286
PCC+DP (200) 0.51979 PCC+GFM (200) 0.53005
PCC+DP (1000) 0.52995 PCC+GFM (1000) 0.53146
BR+DP 0.53279 Voting (final submission) 0.53327

6 Conclusions

The JRS 2012 Data Mining Competition is essentially a multi-label learning
problem, where the objective is to optimize the instance-based F-measure. In
this paper, we have introduced several theoretically sound methods addressing
this optimization problem. We have shown that, although the F-measure max-
imization becomes significantly simpler under the assumption of independently
distributed labels, it can also be accomplished efficiently without this assump-
tion. Our final predictions are produced by a blend of all these methods and
have achieved a very satisfactory result, the second place in the competition.
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Abstract. In this article, we report on our participation in the JRS
Data-Mining Challenge. The approach used by our system is a lazy-
learning one, based on a simple k-nearest-neighbors technique. We more
specifically addressed this challenge as an opportunity to test Informa-
tion Retrieval (IR) inspired techniques in such a data-mining framework.
In particular, we tested different similarity measures, including one called
vectorization that we have proposed and tested in IR and Natural Lan-
guage Processing frameworks. The resulting system is simple and efficient
while offering good performance.

Keywords: Vector space, Vectorization, LSI, k-Nearest Neighbors, In-
formation Retrieval.

1 Introduction

This article describes the IRISA participation in the JRS Data-Mining Chal-
lenge. The team was composed of Vincent Claveau, IRISA-CNRS, and was
identified as vclaveau. The approach used by our system is a lazy-learning one,
relying on a k-nearest-neighbors technique (kNN). In this standard data-mining
technique, the object to classify is compared with those from the training set.
The closest ones then vote for the classes and the final class(es) are attributed
to the new object based on these votes.

Such a technique necessitates to define at least two components: how to com-
pute the similarity between a new object and the training set ones, and how
to combine the votes to assign the classes to the new objects. For these two
components, we used techniques initially developed in the Information Retrieval
(IR) domain. In particular, we show that the similarity measure that we have
developed, called vectorization, yields better results than usual similarity mea-
sures. It implements a second-order distance based on the use of pivots to build
a new vector space representation.

The resulting system does not need any learning step per se and is very fast:
the full processing (from the processing of the training set to the generation of
the results for the test set) takes approximately 5s on a laptop computer. The
best score that was obtained during the official evaluation is 0.500. It is ranked

J.T. Yao et al. (Eds.): RSCTC 2012, LNAI 7413, pp. 447–454, 2012.
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17th on the leaderboard, with score only 0.02947 points worse than the best
score.

The paper is organized as follows: the next section gives some background on
how usual techniques from IR can be used to implement kNN. Section 3 presents
our vectorization approach to compute second-order similarities. Section 4 details
how the classes are predicted from the nearest-neighbors found. The results
obtained by our approach and different variants are presented in Section 5, and
some conclusive remarks are given in the last section.

2 First Order Similarity for Nearest Neighbors

As we previously said, our whole approach is based on techniques initially de-
veloped for Information Retrieval (IR). Thus, we make an analogy between the
JRS Challenge data and IR, and more precisely with the vector space model
classically used in IR: a vector represents a document (noted d hereafter), and
each dimension represents a word. As in IR, instead of computing a distance or
similarity directly from the initial vectors, we apply a weighting scheme to the
data. This common approach is explained in the two following subsections and
is what we call a first order similarity.

2.1 Weighting Schemes

Several weighting schemes have been proposed in IR. Their goal is to give more
importance to representative attributes/words of an object/document. The TF-
IDF is certainly the most well known of these weighting schemes. It is based on
considerations developed in several seminal papers [13,14] and is usually defined
as:

wTF−IDF (t, d) = TF (t, d) ∗ IDF (t) = tf(t, d) ∗ log(N/df(t))

where tf(t, d) represents the value of the dimension/word t for the vector/
document d, N is the total number of vectors and df(t) is the number of vectors
having a non-zero dimension t.

Another weighting scheme has been proved much more efficient than the stan-
dard TF-IDF for most IR problems. This scheme, called Okapi-BM25, can be
seen as a variant of TF-IDF. Its definition is given in Equation 1; it indicates
that the weight of word/dimension t in the document/vector d (k1 = 2 and
b = 0.75 are constants, dl is the length of document, dlavg the average document
length).

wBM25(t, d) = TFBM25(t, d) ∗ IDFBM25(t)

=
tf(t, d) ∗ (k1 + 1)

tf(t, d) + k1 ∗ (1− b+ b ∗ dl(d)/dlavg)
∗ log N − df(t) + 0.5

df(t) + 0.5
,

(1)
The TFBM25 part was initially derived from a probabilistic model of the fre-
quency of terms (dimensions) in the documents (vectors), namely the 2-Poisson
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model of Harter [15]. This model represents the distribution of terms in the doc-
uments as a mixture of two Poisson distributions: one represents the frequency
of terms relevant to describe the document, while the other represents the fre-
quency of non relevant ones [9]. In practice in IR, this TF formula is considered
as better than the original one because it includes a normalization based on
the size of the document. The IDFBM25 part is also derived from probabilistic
considerations [15] and is quite similar to the empirically set up standard IDF
formula.

Note that these weighting schemes do not change the sparsity of the vectors.
Every 0-component of the vectors keeps its value to 0. This property is generally
exploited to perform very efficient similarity computations (see below).

2.2 Similarity

The data were provided in a vector representation. Each object is thus described
as a vector of 25000 dimensions which is very sparse. This sparse vector repre-
sentation is very often used in IR, and measures like Minkowsky Lp distances are
commonly used to compute similarity between two such vectors. For two vectors
x and y, Minkowsky distances are defined by equation 2; p is usually chosen as
1 (Manhattan distance), 2 (Euclidean distance) or ∞ (Chebyshev distance), if
p < 1, Lp is no longer a distance.

Lp(x, y) = p

√∑
i

|xi − yi|p (2) cos(x, y) =

∑
i xi · yi

‖x‖ · ‖y‖ (3)

The cosine similarity (eqn 3) is also very often used in IR and data-mining. Since
it is based on the scalar-product of the two vectors, it allows a very efficient
computation for sparse vectors since only the components which have non-zero
values in both vectors have to be considered. Note that the cosine is equivalent
to (i.e. yields the same ordering of neighbours as) the L2 distance if the vectors
are normalized: L2(x, y) =

√
2− 2 ∗ cos(x, y) .

In practice, such distances or similarity measures are computed between the
weigthed versions of the vectors (TF-IDF, Okapi or others). More precisely, one
vector serves as a query, and its nearest neighbors are the vectors having a mini-
mal distance (or maximal similarity) with it. In IR, it is usual to adopt different
weighting schemes for the query vector and the vectors from the collection (train-
ing vectors), since the query have some particularities one may want to take into
account (for instance, queries in a search engine are often composed of only 2 or
3 words and thus results in a vector much sparser than the text collection ones).

3 Vectorization: Second-Order Similarity

3.1 Principle

However, we have developed a more effective similarity technique, based on a
transformation on the initial vector space into another. This transformation,
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called Vectorization, has been used in various IR and Text Mining tasks [3]
where it has shown to provide both a low complexity and accurate results. As any
embedding technique, Vectorization aims to project any similarity computation
between two objects in a vector space. Its principle is relatively simple. For each
document of the considered collection, it consists of computing using an initial
similarity measure (e.g., a standard similarity measure like the cosine), some
proximity scores to m pivot-objects. These m scores are then gathered into a
m-dimensional vector representing the object, as shown in Figure 1.
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Fig. 1. Vectorization embedding of an example

It is important to notice that the vectorization process changes the repre-
sentation space. It is not only a space reduction or an approximation of the
initial distance as proposed for instance by some authors [2]. It is not either an
othogonalization or a linear transform as in Latent semantic Indexing/Analysis
(LSI/LSA), probabilistic Latent Semantic analysis (pLSA) [10], Latent Dirichlet
Allocation (LDA) [7], principal component analysis (PCA) [1], LDA [6] and even
random linear transformations [17]. In these representations, a new vector space
is also built, but its dimensions are simply linear combinations of the initial ones.

Changing the representation space, based on the similarity to the pivots,
brings up two important properties. Firstly, this embedding helps to reduce
the complexity when the initial similarity measure is too expensive to be used
in-line [4]. Of course, this property is not really useful in the context of this JRS
Challenge but appears as important when vectorization is used for Information
Retrieval. Secondly, vectorization will consider two objects as close if they have
the same behaviour regarding the pivots, that they are close to same pivots and
far for the same pivots. As with LSI or LDA, this indirect comparison makes it
possible to pair two objects even if they do not bear common components in the
initial vector space.

3.2 Pivots

The pivots can be any objects provided that we are able to compute a similarity
between them and the initial vector. They may be artificially created or gen-
erated from existing data. In this JRS Challenge context, we have adopted the
latter solution: we have built 83 pivots, one per class. Each pivot is simply a sum
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of a random selection of the vectors belonging to the corresponding class. Each
training object is then represented in this 83-dimension space by computing its
distance (we used a cosine) to each of the 83 pivots. This embedding provides
a more robust representation than the initial 25000-dimension one; indeed, it
allows to consider two objects as close, because they are close from the same
pivots, even if they were not considered as close in the initial space. This prop-
erty may be important in the JRS Challenge context in which a topic could be
expressed by different MeSH term combinations.

3.3 Similarity

Comparing two ’vectorized’ objects can be performed in a very standard way
in the new vector space with a L2 distance for example. Yet, it is important
to note one property: as we previously underlined it, computing L2 or cosine
between two vectors can be very efficiently done when the vectors are sparse
since it needs to consider only the dimensions having a non-zero value in each
vector. When the vector space is not sparse and has high dimensionality, the
cost of computing the distance can be very important.

Yet, many algorithms are available to compute or approximate very efficiently
such distances. To save processing time, these techniques either address the
completeness of the search, or the accuracy of distance calculation. For instance,
the hashing-based techniques [16,5] tackle the completeness: the space is divided
into portions, and the search is conducted on a subset of these portions. The
NV-tree [12] pushes this approach further as it also approximates L2 distances of
the portion chosen. Finally, it provides results in O(1) (ie, a constant time based
on a single disk access), whatever the number of vectors in the space. For the
experiments presented below and given the small number of pivots and training
vectors, such techniques were not necessary; a direct cosine (i.e. equivalent to a
direct L2) computation was performed.

4 Vote

Based on the similarity measure described above, the nearest-neighbors of an
object can be efficiently retrieved. For each of them, we have a list of its classes
and its similarity score. To gain more robustness, we ran different runs. Since
the pivots are randomly generated, the results obtained varied from one run
to another. Here again, to combine the results, we made an analogy to the
IR process. More precisely, we made an analogy to meta-search whose goal is
to combine the ranked results of multiple systems. Thus we used one of the
most-know combination formula used for meta-search, namely CombMNZ [8,11].
CombMNZ re-orders the classes of the neighbors retrieved by all the systems. Let
us note Sysc the set of systems (or runs in our case) proposing c as a possible class
(that is, with a non-zero score) for the considered test object; the CombMNZ
score is then defined as:

CombMNZ(c) =
∑

s∈Sysc

score(s, i) ∗ |Sysc| (4)
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It is based on score (score(s, i)) associated with each class. In IR, this score is
the similarity between the query and the document considered. In our case, it is
the sum of similarities with close neighbors belonging to class c as obtained by
vectorization. The full process is schematized in Figure 2 The resulting similarity
list was cut based on a fixed threshold on the CombMNZ score.
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Fig. 2. Complete voting process based on CombMNZ

5 Results

In Table 1, we present different results obtained with the system described in the
previous sections. We indicate the results obtained when using different similarity
measures instead of vectorization. We thus report the scores obtained by first-
order similarities like TF-IDF/L2 and Okapi, as well as the transformation-based
similarities LSI and LDA with several sizes of space. These results are expressed
in terms of f-measure, as defined by the organisers, and we also indicate the
optimal f-measure, that is, the best f-measure that could be obtained if the class
list produced by our systems (i.e. by CombMNZ) would have been cut at the
best place. In order to have a precise estimate of these measures, we use a 20-fold
cross-validation.

Several points are worth noting. Firstly, it seems that the weighting schemes
have almost no influence on the results. This result is surprising but difficult
to interpret given that no information was given on how the vector values were
computed and what they represent.

Another interesting fact is that systems based on a dimensionality reduction,
such as LSI, LDA or vectorization, perform better on average than those re-
lying on the initial highly dimensional vector space. Here again, given that no
information is given on which dimension represents which MeSH term and how
the hierarchical nature of the MeSH was taken into account, these results are
difficult to interpret. But, since the 25,000 MeSH index terms used to build the
vectors are not independent, it can be supposed that the space reduction helps
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Table 1. F-measure and optimal f-measure for different IR-inspired kNN systems

f-measure optimal f-measure

no weighting/L2 0.4305 0.5992
TF-IDF/L2 0.4464 0.6023
Okapi 0.4529 0.6142
LSI 83 dims 0.4605 0.6253
LSI 150 dims 0.4795 0.6397
LSI 250 dims 0.4811 0.6435
LSI 350 dims 0.4815 0.6497
LDA 83 dims 0.4087 0.5801
LDA 150 dims 0.4384 0.6057
LDA 250 dims 0.4514 0.6122
LDA 350 dims 0.4482 0.6101
Vectorization 83 pivots 0.5106 0.6915

to match vectors belonging to the same categories even if they are described by
different (but dependent) terms.

Finally, among all tested similarity measures, Vectorization performs best.
Moreover, the optimal results obtained needs less dimensions than the LSI or
LDA techniques, resulting more compact vectors. Several other experiments, not
reported here, have been conducted to assess the influence of other parameters.
They showed that the number k of neighbors has only a small effect on the
results. There is almost no difference for k varying between 3 and 20. Also,
different aggregating techniques have been tested beside CombMNZ, such as
CombSUM, CombMAX, Condoret vote... All of them yielded lower results, as it
has been verified in many IR tasks.

Last, let us note that the official score obtained by our system, computed on
the final test data, is 0.50632. It is ranked 17th on the leaderboard, with score
only 0.02947 points worse than the best performing system.

6 Conclusions

The approach that we proposed for this JRS Data-Mining Challenge is efficient
and yields good results. One of its main characteristics is that it does not rely
on a complex Machine Learning approach; it rather uses a lazy learning system
inspired by Information Retrieval techniques. In particular, this challenge offered
us an opportunity to emphasize the interest of using vectorization to build com-
pact yet precise vector representation of the data in this data-mining framework.
Thanks to this representation, the resulting system is very fast while yielding
good results.

Many improvements could be done in order to achieve better scores. In par-
ticular, one remaining problem was to decide where the list of potential classes
provided by CombMNZ should be cut. As we have shown, this choice has a major
impact on the results; indeed, if the optimal cut-off value had been chosen for
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each test object, the results obtained would have reached 0.69. The choice of the
evaluation measure (simple f-measure) has made this cut-off step somewhat ar-
tificially important regarding the task. Other evaluation measures like the mean
average precision (mAP) could have provided a more flexible and informative
framework.
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Abstract. Ensembles are often capable of greater prediction accuracy
than any of their individual members. As a consequence of the diver-
sity between individual base-learners, an ensemble will not suffer from
overfitting. To address a high-dimensionality problem, we developed a
special version of Wilcoxon criterion for sparse data, which is very fast.
Using this criterion we can compute the matrix of ratings for all features
and labels. It is supposed that any particular base-learner will be based
on the random subset of features which were selected in accordance with
Wilcoxon-based ratings. On the other hand, in many cases we are deal-
ing with an imbalanced data and a classifier which was built using all
data has tendency to ignore the minority classes. As a solution to the
problem, we propose to consider a large number of relatively small and
balanced subsets, where representatives from the both patterns are to be
selected randomly.

Keywords: ensembling, boosting, support and relevance vector ma-
chines, neural nets, cross validation, classification.

1 Introduction

Development of freely available biomedical databases allows users to search for
documents containing highly specialized biomedical knowledge1. Rapidly in-
creasing size of scientific literature available through internet, emphasizes the
growing need for accurate and scalable methods for automatic tagging and clas-
sification of textual data. For example, medical doctors often search through
biomedical documents for information regarding diagnostics, drugs dosage and
specific treatments. In the queries, they use highly sophisticated terminology,
that can be properly interpreted only with a use of a domain ontology, such as
Medical Subject Headings (MeSH) [1]. Searching databases for a specific topic
can be confusing and ineffective if terms are not used correctly. If authors are
reporting studies without using standard controlled vocabulary, indexers might

1 http://tunedit.org/challenge/JRS12Contest
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not assign the appropriate terminology to represent the studies. In order to fa-
cilitate the searching process, documents in a database should be indexed with
concepts from the ontology. Additionally, the search results could be grouped
into clusters of documents, that correspond to meaningful topics matching dif-
ferent information needs. Such clusters should not necessarily be disjoint since
one document may contain information related to several topics.

2 JRS 2012 Data Mining Competition

The data for the Challenge were prepared and presented by the Organisers of
the International JRS 2012 Data Mining Competition: “Topical Classification of
Biomedical Research Papers”, which is a special event within the Joint Rough
Sets Symposium in China.

The database for training includes 2 matrices: 1) L - binary labels (topic=1,
non topic=0) with sizes n × k, and 2) X - attributes with sizes n × m, where
n = 10000,m = 25640 and k = 83 - numbers of documents/samples, at-
tributes/features and classes/topics, respectively.

The dataset T for testing has the same sizes n × m, where the labels were
excluded. The main objective of the Challenge was to predict labels for the test
dataset, where any particular document maybe characterized by one or more
topics.

As far as we are dealing with high-dimensional data, the most important
intermediate task is to compute the matrix of ratings for the attributes and
labels R with sizes m× k. That means, ratings should be computed specifically
for any particular topic.

The data are non-negative and sparse. Therefore, there are much smaller
number of positive elements in any column of the matrix X compared to n. We
shall exploit this property in the following section.

2.1 Wilcoxon-Based Criterion for Sparse Data

Let us drop the label-index in order to simplify notations, because the consider-
ation of any particular label is an identical.

We denote by Na a set of all objects/documents from the class a. We used
the following separation type criterion [2] (named Wilcoxon) for the selection of
the most relevant attributes/terms,

WXN(g) = max(q01(g), q10(g)), (1)

where
qab(g) =

∑
i∈Na

∑
j∈Nb

I(xig < xjg), (2)

where I is an indicator function.

Remark 1. The score function WXN can be interpreted as counting for each
object having response value a, the number of objects with response b (a �= b)
that have smaller expression values, and summing up these quantities.
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We have

n = na + nb, (3)

where na = #Na and nb = #Nb.
Let us denote by Na1 and Na0 subsets of Na with positive and zero elements,

na1 = #Na1, na0 = #Na0. By construction, na1 , na0.

Definition 1. Then, we can modify (1) in order to create a special version of
the Wilcoxon-based criterion for sparse data

WXN(g) = max(na0nb1 + qab(g), nb0na1 + qba(g)), (4)

where

qab(g) =
∑

i∈Na1

∑
j∈Nb1

I(xig < xjg). (5)

Remark 2. Taking into account that subsets Na1 and Nb1 are much smaller
compared to Na and Nb, the implementation of the Wilcoxon criterion according
to (4) and (5) will take significantly less time compared to (2) and (3). The
computation of the whole matrix of ratings R (which is quite big) took less than
3min time.

2.2 Generalised Wilcoxon-Based Criterion

One may expect that the quality of the ranking will be improved if we shall take
into account in (5) the difference between values of the attributes xig and xjg :

qab(g) =
∑

i∈Na1

∑
j∈Nb1

Φ(xjg − xig)I(xig < xjg), (6)

where Φ is monotonical and non-negative function, for example, Φ(·) = √·.

2.3 Initial Trimming

Using matrix of ratings R, we conducted some initial trimming of the given
matrix X. Firstly, we can compute Qg maximal rating for any attribute g. The
attributes to be selected in the model were identified according to the criterion

rg ≥ Qg

α
,

where α is a regulation parameter. For example, the union of the selected features
for all 83 labels includes 14248, 6992 and 4933 attributes in the cases if α = 25, 11
and 9.
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3 Homogeneous Ensembling with Balanced Random Sets

Ensembles are often capable of greater prediction accuracy than any of their
individual members [3]. In many cases, we are dealing with imbalanced data and
a classifier which was built using all data has tendency to ignore minority classes.
As a solution to the problem, we propose to consider a large number of relatively
small and balanced subsets where representatives from the both patterns are to
be selected randomly [4].

We conducted experiments with several classification models as base learners:
1) gbm [5] and 2) random Forest [6] in R. Also, we used 3) kridge, 4) svc and 5)
Neural Nets in the Matlab-based package CLOP2.

3.1 Selection of the Samples

The data are strongly imbalanced with numbers of positive instances ranging
from 2 (attribute N77) to 2475 (attribute N40), see Table 1. Suppose, that ytg
is a binary label corresponding to the class g, t is an index of the sample. Then,
sample xt will be selected to the training subset according to the condition

ξ ≤ ξ1, if ytg = 1; (7a)

ξ ≤ ξ0, if ytg = 0, (7b)

where ξ is a standard uniform random variable,

ξ1 = c1 + (1− c1)
n0

np
, ξ0 = c0 + (1− c0)

np

n
,

where c1 = 0.75, c0 = 0.025; n0 = 200 (the selection of the above parameters
were based on some qualitative considerations and cannot claim any sort of
optimality); and np is the number of “positive” samples corresponding to the
class g.

3.2 Selection of the Features

To reduce overfitting further, we can add more randomness in the model by
selecting the subset of features for any single classifier. The selection algorithm
is based on the matrix of ratings R, see Section 2.1.

Suppose, we decided to keep in the model top (leading) nT features, and let
us denote by rg(nT ) the smallest rating qualified for the automatic (guaranteed)
acceptance.

In general terms, feature with rating rg will be accepted to be included in the
regression model subject to the following condition

ξ ≤
(

rg
rg(nT )

)h

,

where ξ is a standard uniform random variable, h is a regulation parameter. We
used the following ranges 20 ≤ nT ≤ 60, 0.35 ≤ h ≤ 2.0.

2 http://clopinet.com/CLOP/

http://clopinet.com/CLOP/
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3.3 Selection of the Number of Random Sets

According to Section 3.1, the sample size of any particular set is an increasing
function of np. Therefore, it appears to be logical to define the number of random
sets as a decreasing function of np. In most of the cases, we selected the number
of random sets as an integer of √

10
n

np
,

with upper limit depending on the speed of the base learner. For example, we
can set 150 as an upper limit of the number random sets in the case of neural
nets or 20 in the case of gbm.

4 A Frequentist Approach for the Selection of the Vector
of Cut-Off Parameters

As an outcome of the above procedure with homogeneous random sets, we shall
compute the matrix of decision functions S, with sizes n × k, which we should
transfer to the binary matrix of decision rules Z, with the same sizes.

We shall suppose here that the split of the whole field of 20000 samples be-
tween training and test sets was conducted at random. Therefore, it is logical to
assume that the distributions (known, also, as prior distributions) of the patterns
in the test set are about the same as in training set.

The transformation S⇒ Z was conducted according to the following method

zij =

{
1 if sij ≥ Δj ;
0, otherwise,

where cut-off parameter Δj was selected as the uj-th biggest element in the j-th
column of the matrix S, where index uj was calculated according to the matrix
of labels L

uj =

n∑
i=1

lij .

4.1 More Advanced Versions of the Cut-Off Parameters

We had conducted cross-validation experiments specifically for the particular
binary labels/topics, and applied more restrictive models (bigger values of the
cut-off parameters) against the labels with poorer CV results.

4.2 Dependence between Different Topics

Figure 1 clearly illustrates that there is a strong dependence between different
topics, and we are interested to reduce possible contradiction between topics
corresponding to the same document (test solution) using the following very
simple strategy.
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Table 1. List of 32 the most frequent topics, where “I” and “F” indicate an original
index of the topic and the number of the corresponding occurrences in the training
data

N I F I F I F I F

1 47 362 14 583 43 786 39 1133
2 6 380 74 621 75 800 68 1259
3 48 403 58 634 65 832 79 1446
4 66 442 23 651 76 842 41 1474
5 80 448 69 661 50 912 62 1735
6 57 536 20 663 73 933 18 2160
7 21 542 8 688 52 980 44 2435
8 64 548 15 774 46 992 40 2475

Table 2. Top performance in the terms of public LeaderBoard (used only 10% of the
test data) corresponding to the single and ensemble models

Model Score

best 0.501

svc 0.499
neural 0.483
kridge 0.477

blend 0.466

gbm 0.459
RF 0.454

First of all, we shall select the leading predicted topic for any particular docu-
ment. Next, we shall penalise all the other topics in accordance with the matrix
of empirical probabilities, see Figure 1(b), where penalty is a decreasing function
of the empirical probability.

5 Ensembling and Blending

We made our first submission to the LeaderBoard on 9th March (that means,
more than two months after the competition was started). The best single results
was observed with support vector classifier (svc function in the Matlab-based
package CLOP), where the proper data preprocessing was very essential. We
used the following transformation of the features

xnew =
(xgiven

10

)0.65
.

Based on our initial experience, ensembling produced only some modest progress,
and it was much better to concentrate on the improvement of parameter settings
for single models.
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Fig. 1. Hot-maps illustrating frequencies of the different pairs, which were observed
together (from 32 the most frequent topics, see Table 1) - left column; empirical con-
ditional probabilities -right column, where top row corresponds to the training data,
and second row corresponds to the test data (used solution with the score 0.501 on the
public LeaderBoard).

Remark 3. We conducted some CV10 experiments with gbm function, and the
observed results were quite close to the corresponding result in Table 2.

5.1 On the Blending Strategy

We shall extend here further the ideas of Section 4.2. The matrix S contains
k = 83 different solutions, which are dependent and maybe used together in
order to produce more advanced solutions. The next fundamental question is
how to link (or how to blend) those k different solutions in a most efficient way
[7].

We considered here the most straightforward method: split the training data
into 2 parts (for example, 70% and 30%), where first part X1 will be used for
training, and the second part X2 will mimic test dataset T.

The whole blending procedure represents a sequence with two main steps. At
the first step, we shall use svc (or kridge) function applied to X1 for training,
and shall apply the corresponding model to X2 and T. As a consequence, we

shall produce secondary datasets X
(2)
2 and T(2) with k predictors each. At the
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second step, we shall use gbm (or randomForest) function applied to X
(2)
2 for

training, and shall use the corresponding model against T(2) to produce the final
blend solution.

Remark 4. Any predictor in the datasetX
(2)
2 corresponds to the particular topic,

where the numbers of occurencies in the training set maybe used as the most
basic characteristic of the quality of the predictor. We can recommend threshold
200 for the feature selection, which corresponds to 44 predictors.

Remark 5. The best result corresponding to the blending model (see Table 2) is a
quite modest. However, the blend solution is a significantly different in the terms
of structure compared to the other base solutions. Accordingly, an ensemble with
blend solution produced some improvement in the terms of public LeaderBoard
score.

6 Concluding Remarks

As it was discussed in Section 4, the whole task for this competition maybe
divided into two tasks: 1) computation of the decision functions (matrix S), and
2) computation of the binary decision rules (matrix Z) according to the given
vector of the cut-off parameters, where the first task is a very important and
complex.

The second task is rather a trivial one, but require sufficient time for the
detailed experiments. The competition criterion maybe very sensitive in relation
to the proper selection of the cut-off parameters taking into account the fact
that some particular labels are highly imbalanced.

We are proposing to introduce an additional criterion to test separability of
the matrix of decision functions S. The definition of the criterion is a very simple
indeed: an average of the AUCs corresponding to the particular topics or labels.
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Abstract. In this article we describe the approach we applied for the
JRS 2012 Data Mining Competition. The task of the competition was
the multi-labelled classification of biomedical documents. Our method is
motivated by recent work in the machine learning and computer vision
communities that highlights the usefulness of feature learning for classi-
fication tasks. Our approach uses orthogonal matching persuit to learn a
dictionary from PCA-transformed features. Binary relevance with logis-
tic regression is applied to the encoded representations, leading to a fifth
place performance in the competition. In order to show the suitability of
our approach outside the competition task we also report a state-of-the-
art classification performance on the multi-label ASRS dataset.

Keywords: Multi-label classification, feature learning, text mining.

1 Introduction

Different representations for text corpora have been extensively studied, being
TF-IDF and Okapi BM25 two of the most common ways of representing data [9].
The choice of document representation has a major incidence in the performance
for tasks such as document classification or retrieval. Particularly, multi-labelled
document classification is a research problem that received much less attention in
the literature than the single-labelled counterpart.Yetmulti-labelled classification
is in many cases a more natural approach for document classification tasks [13].

The machine learning community, specially in the area of computer vision, has
witnessed the importance of learning feature representations as an alternative to
manually configuring the best data representation to feed a prediction method.
Learned representations coupled with simple classification methods usually tend
to have similar classification accuracy and even overcome other more complex
classification methods [3,4,14].

The JRS 2012 Data Mining Competition represented a great opportunity to
benchmark and evaluate our hypothesis of whether a learned representation of
the data combined with a standard classification approach could have a com-
petitive performance against other approaches for multi-label text classification.

J.T. Yao et al. (Eds.): RSCTC 2012, LNAI 7413, pp. 463–470, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The learned representation can be thought as a means to both reduce and en-
hance the original data representation to facilitate learning of the classifier that
is used a posteriori.

The present paper reports the details of the method that got our highest
preliminary score on the competition. Our proposed method is based on a two
step feature learning procedure that was motivated by recent work in object
recognition [4] and adapted to be used for sparse, high dimensional data. We
first embed the inputs using Principal Component Analysis (PCA) and then
learn a sparse dictionary that we concatenate with the PCA embeddings for
classification. Our final predictions were obtained using binary relevance with a
linear logistic regression classifier. In order to further illustrate the benefits of
our approach we also show the results on the multi-label SIAM 2007 competition
dataset for text mining.

2 Method

Our approach can be divided in three main parts, namely: preprocessing, repre-
sentation learning and classification.

2.1 Data Preprocessing

Let X = {x(1), . . . , x(m)} be the set of m training documents where the j-th

feature of x(i) is x
(i)
j , j = 1 . . . n. We first process the data by normalizing each

x(i) to [0, 1], where i = 1 . . .m. This is done by dividing each feature by its range
(i.e. the difference between the maximum and the minimum value). The data
is then rescaled to [−1, 1]. Finally, we use a ‘regularized’ mean centering and
variance normalization for each feature j:

x
(i)
j =

x
(i)
j − μj√
σ2
j + ε

(1)

where the feature means (μj) and standard deviations (σj) are preserved for use
with the test set. For our experiments we use ε = 0.01.

2.2 Unsupervised Representation Learning

Given the pre-processed data, we first apply PCA and extract the first k principal
components. This calculation is the most expensive procedure for our method,
both memory and time wise, due to the size of the covariance matrix. Let S =
{s(1), . . . , s(m)} represent the k-dimensional outputs. We perform one additional
processing step of S by centering and normalizing the variances of each individual
datapoint s(i). We use the same ‘regularized’ normalization as in Equation 1 but
applied to documents as opposed to features. This step, when applied to images,
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can be seen as a form of brightness and contrast normalization. Although less
motivated for our PCA-transformed data, we found it to be a useful addition to
the pipeline.

After this normalization step, the data are now ready to be used for con-
structing a dictionary (also called prototypes or codebook). Dictionaries have
been traditionally used in the area of signal processing for data compression.
Common examples to this kind of techniques are vector quantization or k-means
[5]. We use orthogonal matching pursuit (OMP) [11], which aims to solve the
following optimization problem:

minimize
D,ŝ(i)

m∑
i=1

||Dŝ(i) − s(i)||22

subject to ||D(j)||22 = 1

||ŝ(i)||0 ≤ q

(2)

where D ∈ Rk,d is the dictionary to be learned. The first constraint enforces
that the dictionary elements remain normalized (to avoid degeneracy) while the
second constraint enforces sparsity, allowing at most q elements of ŝ(i) to be non-
zero. Our objective is minimized using alternation: first fixing D and minimizing
ŝ(i), then fixing ŝ(i) and minimizing D. We set q = 1 for all of our experiments.
We chose to use OMP over other methods due to the speed of training, taking
only a few minutes to train the dictionary.

As opposed to using the proper representations ŝ(i), Coates et al. [4] showed
that in the presence of enough labelled data a simple soft activation may perform
equally, if not better when applied in an object recognition setting. We follow
this approach by encoding that data with a simple rectification unit:

š(i) = max{Ds(i), 0}, (3)

where the max function is applied componentwise. Finally, we apply another
form of ‘contrast normalization’ over individual datapoints as was previously
done with the PCA transformed data. Given the encoded data Š, we concatenate
the learned features with the PCA embeddings and we then normalize the data
once more using Equation 1. These datapoints, Z = {z(1), . . . , z(m)}, are now
ready for training our classifier.

2.3 Classification

To train our model, we used binary relevance with logistic regression incorpo-
rating weight decay for regularization. This means that for each single label l we
perform the following optimization:

minimize
θ(l)

− 1

m

[ m∑
i=1

y(i)log hθ(l)(z
(i)) + (1 − y(i))log(1 − hθ(l) (z(i)))

]
+ λ‖θ(l)‖2F

(4)
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where hθ(z) = 1/(1+exp(−θT z)), y(i) is the label of the i-th document (for class
l) and ‖·‖2F stands for the square of the Frobenius norm. Optimization was done
using L-BFGS [8] with minFunc1, often converging in less than 30 iterations per
class.

We also experimented using a multi-label SVM with a linear kernel combined
with an adaptive thresholding scheme used to maximize F-measure. We found
that although the latter was faster to train, it was less stable for parameter
selection and often led to an imbalance of either precision or recall.

3 Results

3.1 JRS 2012 Data Set

The competition dataset comprises of 20000 documents out of which half of them
were held out for testing (whose labels were not disclosed during the competition
time). Each document is represented by a 25640-dimensional vector, where each
component represents the association strength to a Medical Subject Heading
(MeSH) term.

For our best preliminary result, we used a total of k = 1600 principal compo-
nents and a dictionary size of d = 3200. This lead to a final feature vector of size
4800. We used the same parameter λ for each of the classifiers. To obtain λ, we
split the training set into 8000 samples for training and 2000 for validation. We
then performed a grid search across powers of 2, followed by a more fine-grained
search, leading to a chosen parameter of λ = 0.5. We obtained an F-measure on
the validation set of 0.522 and with the same model a final preliminary score of
0.523. We also attempted to find a separate λj for each class j, leading to a val-
idation score of 0.527. Unfortunately, this did not generalize to the preliminary
result. Our final performance on the test data was 0.53, resulting in a 5th place
finish.

We used the same pipeline as described above throughout the whole com-
petition with all of our improvements coming from modifying the choice of di-
mensionality reduction, number of bases and normalization steps. Combining
the PCA embeddings with the encodings performs much better than either one
or the other alone. We found that performance consistently improved by using
more bases and principal components.

To further motivate our basis learning approach, we trained the described
multi-label SVM on the normalized input data, receiving a validation score of
0.5. When combined with the encodings learned from the PCA embeddings, this
increased the score to 0.52. We opted out from further pursuing this approach
in the competition due to the high dimensionality of the final feature vectors.

Finally, we experimented with the usefulness of all of our normalization steps
and found the most important being the initial regularized normalization as
well as the same normalization before training the classifier. In this sense, all of
the ‘contrast normalization’ steps can be safely removed and still result in good
performance.

1 http://www.di.ens.fr/~mschmidt/Software/minFunc.html

http://www.di.ens.fr/~mschmidt/Software/minFunc.html
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3.2 Additional Results: SIAM 2007 Data Set

In the domain of text mining, a common approach to representing documents
is through a bag-of-words (or the more general n-gram) representation. Here, a
weight is given for each document-term pair, such as frequency of TF-IDF. Such
a representation is often of high dimension with only a few non-zero entries
corresponding to the n-grams which are present in the corresponding document.
Thus we further evaluate our proposed approach on a text classification task
to show that our approach can be utilized in other domains aside from the
biomedical classification task from this competition.

We consider the ASRS (Aviation Safety Reporting System) dataset, which
was used for the SIAM 2007 competition [10]. ASRS is a collection of roughly
21000 training documents and 7000 testing documents whose labels are 22 di-
mensional binary vectors indicating the presence of one or more aircraft security
issues. Sample classes include weather, fuel emergencies, passenger disruptions,
pilot attentiveness and runway obstructions to name a few. The SIAM compe-
tition data was sampled from the publicly available ASRS database maintained
by NASA2. Below is an example of a typical document from the dataset:

“UPON TOUCHDOWN AT NIGHT ON runway AT BID THE right land
GEAR STRUCK A DEER ON THE runway.I DID NOT SEE THE DEER.THE
result DAMAGE WAS THE remove OF THE right GEAR AND THE aircraft
settle ON right WING skid OFF THE right SIDE OF runway.”

To obtain the initial representation of a document, we first pre-process the data
by lowering case and performing stopword removal. We then obtain the 5000
most frequent words for which a document-term matrix of unnormalized TF-
IDF values is constructed. The IDF values are obtained from the training set and
applied in conjunction with the frequencies calculated on each test point. Model
selection was performed in the same way as was done on the JRS competition
data using the same number of principal components (1600) and bases (3200).

Table 1. A comparison of (micro-averaged) classification performance on the SIAM
ASRS dataset. The first two methods are the results of the competition winner, the
first being where the competition score is maximized while the second being where
F-measure is maximized.

Method Precision Recall F-Measure Error

SIAM Winner (Score) [6] 61.53 62.37 61.95 6.80
SIAM Winner (F-Measure) [6] 53.30 78.55 63.51 8.01
Normalized Baseline (this paper) 63.15 70.30 66.40 6.31
PCA + OMP (this paper) 64.25 71.68 67.76 6.05

2 http://asrs.arc.nasa.gov/

http://asrs.arc.nasa.gov/
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To test the effectiveness of our approach, we compared our results to the per-
formance of the first place finisher of the SIAM 2007 competition [6]. Table 1
shows our result in comparison to the winner’s best approach with respect to
the competition evaluation as well as the approach that maximized F-measure.
We also included a baseline showing the result when binary relevance is applied
directly to the normalized document-term matrix. Our result outperforms the
competition winner yielding state-of-the-art results on this dataset3. Surpris-
ingly, the baseline without any representation learning is able to also outper-
form the existing result. We attribute this to the regularized normalization of
the features. In particular, result are over 2% worse across all metrics when no
regularization (ε ≈ 0) is used.

3.3 Adapting Precision and Recall

One further observation that was made on both datasets was that the precision
and recall can be directly tuned through the logistic regression regularization
parameter (λ). More specifically, increasing λ leads to an increase of recall but
decrease of precision and equivalently in the opposite when decreasing λ. Figure
1 illustrates this effect on the validation sets of both the JRS competition and
ASRS datasets. Moreover, the parameter that led to the best model for the
competition was that which had slightly higher recall on the validation set.

(a) JRS (b) SIAM ASRS

Fig. 1. Graphs illustrating the effect of the logistic regression regularization on preci-
sion in black and recall in red (best seen in color)

We note that it is often the case that specific applications may be more inter-
ested in maximizing either precision or recall. As a related example to aircraft
security, it is much more important for text retrieval systems to have high recall
rather than high precision so that all security incidents can be retrieved, even if
this may lead to a high false positive rate. Being able to control this effect gives
our approach potential use in these types of domains.

3 We note that other proposed methods have been evaluated from taking random
samples from the full ASRS database.
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4 Conclusions

In this work we described an unsupervised feature learning methodology in the
context of multi-label document classification. Our method obtained the 5th
position in the JRS 2012 Data Mining Competition. We also showed the results
of applying our method on another challenging and multi-labelled dataset. In
this last data set we obtained a state-of-the-art performance, hence indicating
the suitability of our approach for multi-label text classification.

There are several possible avenues for future research. One such approach is
testing the effectiveness of our method in a semi-supervised setting. More specif-
ically, a dictionary could be trained using both sets of labelled and unlabelled
data. Related to this is the use of self-taught learning [12] also known as transfer
learning from unlabelled data. One could train a large dictionary on a corpus
that have come from a different distribution than the target dataset intended
for classification. Such an approach may be effective in tasks where only small
amounts of labelled data exist. Our approach could also be used for domain adap-
tation in situations where two or more datasets have the same label distribution
but the target dataset of interest is unlabelled. These situations often occur in
sentiment classification tasks when labels may correspond to binary positive and
negative opinions or 5-star ratings. Finally, there has been much work on learn-
ing deep representations [1,7]. The output encoding features could be used as
input to another layer of dictionary training with the first layer bases frozen.
Such greedy layer-by-layer training could be used as many times as desired. It
is still an open problem what the best approaches to training such architectures
are [2].

Throughout our procedure almost all the focus was made on the representation
learning and normalization phases, with little effort put towards classification.
Binary relevance is flawed in that it does not take into account correlations
between labels. It is worth exploring whether improvements can be made by
adapting more sophisticated multi-label classification approaches. It also remains
as an interesting research question whether the knowledge of a domain ontology,
such as the disclosure of the MeSH ontology for the competition dataset, can be
used to further improved the classification accuracy.

Acknowledgments. Authors thank The Boeing Company and NSERC for
funding of this work.
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Abstract. The task of the JRS 2012 data mining competition was to
infer a prediction model capable of associating biomedical journal articles
with a subset of topics. Our approach consisted of training a set of base
learners, stacking their results, and thresholding the predictions on each
label separately. Our method obtained an F-score of 0.53579, which was
enough to claim first prize in the competition.

Keywords: multi-label classification, topical classification, sparse data-
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1 Introduction

The goal of the JRS 2012 data mining competition was to design an algorithm
capable of associating journal articles obtained from PubMed Central [8] with at
least one of 83 topics, or labels, as reported in PubMed and defined by manual
curation of biomedical experts. Each article was described by 25,640 continuous
features with values ranging from 0 to 1,000. The individual feature values mea-
sured the degree to which a term was present in a given journal article. In order
to ensure that participants who were not familiar with biomedicine had equal
chances as domain experts, the names of features and labels were removed. The
dataset was split into 10,000 training examples, for which the associated labels
were given, and 10,000 test examples, on which our solutions would be eval-
uated. The dataset was high-dimensional and sparse. There were almost three
times as many features as examples and only 0.4% of the feature values contained
nonzero entries. The contestants were able to compare their methods on a pub-
lic leaderboard. The leaderboard results were computed on 10% of the entire
test set.

1.1 Evaluation

The submitted solutions were evaluated using the average F-score. First, the
F-score of predicting the i-th document was calculated as

J.T. Yao et al. (Eds.): RSCTC 2012, LNAI 7413, pp. 471–478, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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precisioni =
|{true labels}i ∩ {predicted labels}i|

|{predicted labels}i|

recalli =
|{true labels}i ∩ {predicted labels}i|

|{true labels}i|

fscorei = 2
precisioni · recalli
precisioni + recalli

(1)

where

– {true labels}i is the set of labels of document i. These were determined by
domain experts.

– {predicted labels}i is the set of labels of document i predicted by our method.

The average F-score was defined as the average fscorei over all m = 10,000 test
documents.

avg fscore =

∑m
i=1 fscorei

m

1.2 Overview

We trained a set of 14 base learners using 5-fold cross validation. The predictions
on each fold were stored as they would later be used to build the training set
for stacking. The accompanying test set was constructed by retraining each base
learner on the entire training set and classifying all the examples in the test
set. The 14 individual prediction sets were stacked with a feed forward neural
network built on each of the 83 labels independently. The training set for each
label consisted of predictions of the 14 base learners for that label. The output of
stacking was thresholded by an ad hoc procedure which used a greedy algorithm
to assign a different threshold to each label prediction. The F-scores obtained
by individual components of our solution are summarized in Fig. 1.

2 Base Learners

Different base learners were used to infer classifiers for all 83 labels. The 14 base
learners were derived by altering the parameter values of 5 basic models described
in this section. As the predictions of these learners were later used in stacking, we
aimed at diversifying the classification methods. In order to obtain the F-scores
of individual methods we first needed to threshold the predicted probabilities.
We chose a threshold value of 0.25. Note that this threshold was used only to
determine the F-score of each learner. The input for stacking was constructed
from the actual predicted probabilities and not the thresholded predictions. The
F-score values reported in Tables 1, 2, 3, 4, and 5 were obtained on the full test
set, which was available only after the competition had ended.
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Fig. 1. Leaderboard F-scores of all the base learners, the stacked predictor, and the
predictor after optimized thresholding compared to the F-scores obtained by other
contestants

2.1 Logistic Regression

We transformed the multi-label classification problem into 83 independent single-
label classification problems and predicted the individual labels using L2 regu-
larized logistic regression on the original features. The parameters θ ∈ IRn were
obtained by minimizing the cost function J(θ):

J(θ) =
1

m

m∑
i=1

[
−y(i) log hθ(x

(i))− (1− y(i)) log(1− hθ(x
(i)))
]
+

λ

2m

n∑
j=1

θ2j (2)

using the L-BFGS optimization algorithm [7], where

– m is the number of training examples,

– n = 25640 is the number of features,

– x(i) ∈ {0, 1, . . . , 1000}n is the i-th training example,

– y(i) ∈ {0, 1} is 1 if the i-th training example is associated with the label and
0 otherwise,

– λ is the regularization parameter,

– hθ(x) is the logistic function, defined as:

hθ(x) =
1

1 + e−θTx

The F-scores obtained on the test set are presented in Table 1.
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Table 1. Results obtained by logistic regression. The parameter λ is the regularization
parameter from (2). The predictions were thresholded at 0.25.

F-score Parameter

0.50870 λ = 2
0.51321 λ = 3
0.51451 λ = 4
0.51555 λ = 5

2.2 Logistic Regression and Neural Networks

The approach from Sect. 2.1, in which the multi-label classification problem
is split into independent single-label classification problems, is known as the
binary relevance method (dubbed PT4 in [6]). Its strong assumption on label
independence makes it fast and simple to implement. On the other hand, the
predictions made by the binary relevance method are likely to contain label
combinations that never co-occur in the training set or, conversely, it might miss
obvious combinations. A possible solution would be to run a second learning
algorithm on the output of the algorithm from Sect. 2.1 in the hope that it will
uncover the dependencies between labels that were missed by the first. Exam-
ining the predictions of all 83 labels together, a powerful learning method, like
neural networks, should be able to take advantage of the dependencies between
labels.

Using 5-fold cross validation we predicted the probabilities of the labels for
all training examples using L2 regularized logistic regression. To produce the
final predictions, we fed this output into a feed forward neural network with
83 input units, a single hidden layer with 100 units, and 83 output units. The
parameter for this method was λnn, the regularization parameter for the neural
network. The regularization parameter for logistic regression, λlr, was set to 1
and kept constant. The neural network was trained with the backpropagation
algorithm, using the L-BFGS algorithm to minimize the cost function. The L-
BFGS algorithm was stopped after 400 iterations. Table 2 shows the F-scores
obtained by this method. Combining logistic regression and neural networks in
this way produced a learning model with the highest F-score of any single base
learner.

Table 2. F-score values of logistic regression followed by neural networks. λnn is the
regularization parameter of the neural network. The predictions were thresholded at
0.25.

F-score Parameter

0.52487 λnn = 3
0.52378 λnn = 5
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2.3 F-Score Logistic Regression

Another way around the shortcomings of the binary relevance method is to fit
all the parameters Θ ∈ IRn×k in one run of the L-BFGS algorithm. This also
allowed us to use a cost function that maximizes the average F-score directly. In
order to do so, we first needed to derive a smooth approximation of the F-score
that uses probability estimates instead of binary class assignments and is easier
to maximize. Noting that

fscorei = 2
precisioni · recalli
precisioni + recalli

= 2
|{true labels}i ∩ {predicted labels}i|
|{predicted labels}i|+ |{true labels}i|

we performed the following steps:

1. |{true labels}i| can be calculated as
∑k

l=1 y
(i)
l .

2. Since hΘl
(x(i)) is the predicted probability of our hypothesis for the l-th

label of the i-th document, |{predicted labels}i| can be approximated by∑k
l=1 hΘl

(x(i)).
3. Similarly, |{true labels}i ∩ {predicted labels}i| can be approximated by cal-

culating
∑k

l=1 hΘl
(x(i))y

(i)
l

giving rise to the equation

fscore approxi = 2

∑k
l=1 hΘl

(x(i))y
(i)
l∑k

l=1[hΘl
(x(i)) + y

(i)
l ]

(3)

and the new cost function

J(Θ) = − 1

m

m∑
i=1

∑k
l=1 hΘl

(x(i))y
(i)
l∑k

l=1[hΘl
(x(i)) + y

(i)
l ]

+
λ

2m

n∑
j=1

k∑
l=1

Θ2
jl (4)

where

– k = 83 is the number of labels,
– Θl is the l-th column of the parameter matrix Θ,

– y
(i)
l ∈ {0, 1} is 1 if the i-th training example is associated with label l and 0
otherwise.

The cost function is minimized by computing the partial derivatives with respect
to every parameter Θjl and feeding them into the L-BFGS algorithm. The F-
scores obtained by this method are comparable to those of logistic regression
from Sect. 2.1 and are presented in Table 3.

2.4 Log F-Score Logistic Regression

The algorithm differs from the one presented in Sect. 2.3 only in the cost function
used. The cost function for log F-score logistic regression is obtained by taking
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Table 3. The results obtained by F-score logistic regression. The regularization is
controlled by adjusting λ from (4). The predictions were thresholded at 0.25.

F-score Parameter

0.51283 λ = 0.1
0.51690 λ = 0.2
0.51524 λ = 0.3
0.51014 λ = 0.4

Table 4. The results of log F-score logistic regression. The parameter λ controls the
amount of regularization. The predictions were thresholded at 0.25.

F-score Parameter

0.51819 λ = 0.4
0.51804 λ = 0.5
0.51730 λ = 0.6

the logarithm of (3). Combined with L2 regularization, the new cost function is
defined as

J(Θ) = − 1

m

m∑
i=1

log

( ∑k
l=1 hΘl

(x(i))y
(i)
l∑k

l=1[hΘl
(x(i)) + y

(i)
l ]

)
+

λ

2m

n∑
j=1

k∑
l=1

Θ2
jl

The F-scores shown in Table 4 were higher than the ones obtained by the method
in the previous section, despite the fact that the methods are defined in a similar
manner.

2.5 Random Forest

Due to computational constraints, we trained a random forest on a subset of
features which had at least 50 nonzero entries in the training set. There were
slightly over 7,000 such features. An alternative approach included an inference
of forests on binarized data (zero vs. nonzero feature value) with information
gain-based feature selection. One forest was developed for each of the 83 labels.
Forests consisted of 200 trees. The standard tree induction algorithm [4] was
used with no pruning other than stopping the inference when a node included
fewer than five data instances.

The F-score obtained by random forests (shown in Table 5) was substantially
lower than the F-scores acquired by other base learners. We decided to keep
random forests in the ensemble anyway, because they seemed to improve the F-
score of the stacked solution. A post-competition analysis revealed that this was
in fact not the case as the F-scores obtained with and without random forests
were practically identical.
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Table 5. F-score of random forest. The predictions were thresholded at 0.25.

F-score Parameter

0.46062 -

3 Stacking

Stacking [5] is a technique for combining predictions of several learners. It was
used successfully in past competitions [1,2], most notably the Netflix Prize [3].
As stated in the introduction, the base learners were 5-fold cross-validated on the
training set, producing a 10,000 × 83 table of probability estimates each. As in
Sect. 2.1 and 2.5, the multi-label problem was decomposed into 83 independent
single-label problems. The training set for the l-th problem was constructed
by selecting the predictions for the l-th label from every base learner. A feed
forward neural network with 14 input units, 20 units in the hidden layer, and
a single output unit was used to obtain the final predicted probabilities. The
regularization parameter λ was set to 0.5. Stacking achieved an F-score of 0.53378
on the test set (thresholding the predictions at 0.25), which was a considerable
improvement over 0.52487, the best result obtained by a single base learner.
Leaving out this crucial step and submitting the base learner with the highest
F-score would result in a modest 9-th place in the competition.

4 Thresholding

We adjusted the probability threshold for each label separately, i.e., we learnt
the parameters θ ∈ [0, 1]83 and associated an example with label i only if the
prediction was greater or equal to θi. We decided on a greedy algorithm to fit
the parameters θ. Starting with the first label, we chose θ1, the first threshold,
so that it maximized the average F-score. The thresholds not already set by this
method were initialized to 0.25. The procedure was repeated on all the labels in
sequence. Thresholding resulted in a small improvement of the average F-score
which increased from 0.53378 to our final result of 0.53579.

5 Conclusion

We have described the winning solution to the JRS 2012 data mining competition.
Our approach is yet another example of how stacking diverse base learners can sub-
stantially increase the performance of the overall system.The resulting framework,
i.e., the developed method that includes a selection of base learners and continues
with stacking and thresholding, can be seen as a general approach to multi-label
classification in high-dimensional and sparse datasets. The source code of our so-
lution is available online at https://bitbucket.org/jzbontar/jrs2012.

https://bitbucket.org/jzbontar/jrs2012
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