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6.1 Introduction

Radiative transfer theory (RTT) is a valuable theoretical framework for describ-
ing the propagation of optical radiation in turbid media (Ishimaru, 1978; Wang
and Wu, 2007). RTT has succeeded in fields such as astronomy and astrophysics
(Chandrasekhar, 1960), remote sensing of the earth surface and atmosphere (Mel-
nikova et al., 2012), heat transfer (Howell et al., 2010; Modest, 2003; Atalay, 2006),
and, particularly, in biomedical optics (Wang and Wu, 2007; Hielscher et al., 2011;
Klose, 2010a). The fundamental equation in RTT is the radiative transfer equation
(RTE) (Wang and Wu, 2007). The RTE is the most accurate model for describing
light propagation in biological tissue, with no approximation regarding the angular,
spatial or temporal dependences (Hielscher et al., 2011). The RTE is an integro-
differential equation that depends on a set of optical parameters (index of refrac-
tion, absorption, scattering and scattering function) that describe the medium (Ishi-
maru, 1978). The validity limits of the RTE rest on the model conceived to describe
light propagation, and should be established for each physical situation (Mart́ı
López et al., 2003). Analytical solutions of the RTE are only known for simple ge-
ometries (Ishimaru, 1978; Liemert and Kienle, 2011b). Thus, numerical techniques
are used in practical situations where complex geometries and/or heterogeneous
optical property distributions need to be considered (Tarvainen, 2006). Solving the
RTE for biological media carries a considerable numerical burden (Tarvainen, 2006;
Klose and Larsen, 2006). In imaging applications, the RTE needs to be solved anew
at each iteration step of an optimization algorithm in order to determine optimal
optical parameters (Dehghani et al., 2009b; Arridge and Schotland, 2009). This is
an implicit limitation of RTE-based image reconstruction algorithms in pre-clinical
and clinical imaging and therapeutics, where the diagnosis time matters.

To reduce computation time, the diffusion equation (DE) is frequently used
instead of the RTE (Wang and Wu, 2007; Dehghani et al., 2009b). The DE is de-
rived from the RTE using the diffusion approximation which assumes that the field
appearing in the RTE is almost isotropic at each point (Ishimaru, 1978; Wang and
Wu, 2007). Unfortunately, there are several practical situations where the DE fails,
as in the vicinity of sources (Mart́ı López et al., 2004) and in the case of small
geometries, low scattering, or high absorption (Hielscher et al., 1998; Chen et al.,
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Fig. 6.1. Molar extinction coefficient (absorption/concentration) of several chromophores.
Arrows at the bottom indicate the emission wavelength of common lasers.

2001). For example, in the so-called therapeutic window (600 to 1000 nm), vascu-
larized tissues present high absorption because of chromophore absorption spectra,
see Fig. 6.1 for the molar extinction coefficient values of common chromophores.

In such circumstances, the radiative field cannot be accurately described by
the DE. Then, DE-based radiation dose calculations will yield wrong estimates
and spatial resolution and quantitativeness of retrieved optical coefficients maps
can be seriously affected. To overcome the drawbacks of the DE and avoid the
RTE’s computational burden, low-order transport models with simplified angular
dependences were recently brought to biomedical optics (Klose and Larsen, 2006;
Chu et al., 2009; Bouza Domı́nguez and Bérubé-Lauzière, 2010; Bouza Domı́nguez
and Bérubé-Lauzière, 2011a). Some of these models are derived from the RTE
using the simplified spherical harmonics approximation (SPN ) (Klose and Larsen,
2006). SPN models have been developed for steady-state – or continuous-wave
(CW) (Klose and Larsen, 2006), frequency-domain (FD) (Chu et al., 2009) and
time-domain (TD) problems (Bouza Domı́nguez and Bérubé-Lauzière, 2010; Bouza
Domı́nguez and Bérubé-Lauzière, 2011a), opening new possibilities in treatment
and imaging applications of biomedical optics.

We herein review the use of SPN models in describing radiative transfer in
biological media. We also survey the outcomes of using SPN models in optical
imaging. With this, we hope to motivate further developments and applications of
SPN models in therapeutics and optical imaging of biological media.
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6.2 Light transport in biological media

In tissue optics, RTT describes the emission, propagation, scattering and absorption
of radiation. It provides a macroscopic view of the propagation of light (Ishimaru,
1978). In RTT, only the flow of energy through the medium is considered. Inter-
ference and diffraction effects are neglected and magnitudes such as the radiance
bear the physical meaning. Through the use of the Stokes vector, polarization can,
however, be accounted for in RTT. Additionally, concepts such as ray, ray congru-
ence and ray divergence can be extrapolated from geometrical optics and employed
to elaborate a mathematical model of light propagation (Mart́ı López et al., 2003).
Applying the law of the conservation of energy in a differential volume element, it
is possible to derive an expression for the radiance variation in terms of the optical
properties of the medium, leading to the RTE. Corresponding boundary conditions
for the radiance can be obtained as well.

In the next section, we write down the expressions for the RTE and its boundary
conditions. We introduce the reduced incident and the diffused radiance its corre-
sponding components and review two well-known approximations: the spherical
harmonics approximation leading to the so-called PN equations, and the diffusion
approximation (DA) leading to the DE.

6.2.1 The radiative transfer equation

The standard way of deriving the RTE1 leads to the following expression (Wang
and Wu, 2007)

η

c

∂

∂t
L(r, ŝ, t) + ŝ · ∇L(r, ŝ, t)

= − [μa(r) + μs(r)]L (r, ŝ, t) + μs(r)

∫
4π

p(r, ŝ, ŝ′)L(r, ŝ′, t) dΩ′ + q (r, ŝ, t) ,

(6.1)

where L(r, ŝ, t) is the radiance at point r in the direction specified by the unit
vector ŝ, η is the refractive index, c is the speed of light in vacuum, μa(r) and
μs(r) are respectively the absorption and scattering coefficients, p(r, ŝ, ŝ′) is the
normalized scattering function (also customarily called the ‘phase function’) which
represents the probability of a photon being scattered in direction ŝ when coming
from direction ŝ′, dΩ′ is a differential element of solid angle, q(r, ŝ, t) is a source
distribution per unit volume and ∇ denotes the gradient operator with respect to
the r coordinates.

Frequently, the radiance is decomposed into collimated and diffuse components
and Eq. (6.1) is posed in terms of the latter (Ishimaru, 1978). This approach is quite
useful when applying low-order transport approximations since the angular depen-
dence of the diffuse radiance is less pronounced than the total radiance. Hence,
low-order transport approximations better reproduce (with the addition of the col-

1In the standard derivation of the RTE, the refractive index is a piecewise constant
function not a continuous function. Besides, ray divergence effects are neglected in the
discussion here (Mart́ı López et al., 2003).
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limated component) the radiative field than full RTE-based low-order transport
approximations. In addition, we point out the fact that measurements in diffuse
optical tomography (DOT) are done in terms of the diffused component only.

The solution of Eq. (6.1) requires the specification of initial and boundary
conditions. For a smooth tissue–air interface ∂V and in the presence of specular
Fresnel reflection, the vacuum boundary condition is substituted by the partly-
reflecting boundary condition (Case and Zweifel, 1967; Duderstadt and Martin,
1979; Ishimaru, 1978)

L(r′, ŝ, t) = BT (r
′, ŝ, t) +RF (n̂ · ŝ′)L(r′, ŝ′, t) , r′ ∈ ∂V, ŝ · n̂ < 0 , (6.2)

where RF is the angle dependent Fresnel coefficient (Born and Wolf, 2003),
BT (r, ŝ, t) is the radiance of the exterior source transmitted inside the medium,
n̂ is the outer normal to the surface ∂V and ŝ′ = ŝ − 2

(
n̂ · ŝ)n̂. Here, ŝ′ is a vec-

tor that points outward and is the specular reflection of vector ŝ. For a smooth
tissue–tissue interface, the flux balance can be expressed as Marshak conditions
(Marshak, 1947; Davidson and Sykes, 1957; Faris, 2002)∫

ŝ·n̂>0

L1(r, ŝ, t) (ŝ · n̂) dΩ =

∫
ŝ·n̂<0

RF,1L1(r, ŝ, t) (−ŝ · n̂) dΩ

+

∫
ŝ·n̂>0

[1−RF,2]L2(r, ŝ, t) (ŝ · n̂) dΩ

(6.3)∫
ŝ·n̂<0

L2(r, ŝ, t) (−ŝ · n̂) dΩ =

∫
ŝ·n̂>0

RF,2L2(r, ŝ, t) (ŝ · n̂) dΩ

+

∫
ŝ·n̂<0

[1−RF,1]L1(r, ŝ, t) (−ŝ · n̂) dΩ

where Li(r, ŝ, t) denotes the radiance in medium i = 1, 2 and RF,i is the angle
dependent Fresnel reflection coefficient for medium i.

6.2.2 Spherical harmonics expansion and the PN approximation

In the spherical harmonics expansion, the transport equation is reduced to a system
of coupled partial differential equations (PDEs) with no angular-dependence (Case
and Zweifel, 1967; Davidson and Sykes, 1957). The angular dependent functions
appearing in Eq. (6.1), such as the radiance L(r, ŝ, t) and the source distribution
q
(
r, ŝ, t

)
, are expanded along spherical harmonics Yl,m(ŝ) ≡ Yl,m(θ, φ) (θ and φ

being respectively the polar and the azimuthal angles of spherical coordinates) as

L(r, ŝ, t) =

∞∑
l=0

l∑
m=−l

(
2l + 1

4π

) 1
2

ψl,m(r, t)Yl,m(ŝ) , (6.4)

q(r, ŝ, t) =

∞∑
l=0

l∑
m=−l

(
2l + 1

4π

) 1
2

ql,m(r, t)Yl,m(ŝ) , (6.5)
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where, following (Case-Zweifel, 1967), the normalization factor
[
(2l + 1)/4π

] 1
2 is

introduced for the convenience that it results in simpler final expressions. Properties
of the spherical harmonics can be found in (Abramowitz and Stegun, 1965).

For the scattering function p(r, ŝ, ŝ′), the reasonable assumption is made that
it only depends on the angular change between the incident and the scattered
directions of a photon, i.e. p(r, ŝ, ŝ′) = p(r, ŝ · ŝ′). In this case, the phase function
can be expanded along Legendre polynomials as

p(r, ŝ · ŝ′) =
∞∑
l=0

l∑
m=−l

(
2l + 1

4π

)
pl(r, t)Pl(ŝ · ŝ′) . (6.6)

Making use of the addition theorem for spherical harmonics, this can be rewritten
as

p(r, ŝ · ŝ′) =
∞∑
l=0

l∑
m=−l

pl(r)Yl,m(ŝ)Yl,m(ŝ′) . (6.7)

Inserting Eqs. (6.4), (6.5) and (6.7) into Eq. (6.1) and after some algebra (see
recurrence relations for Yl,m(ŝ) in (Abramowitz and Stegun, 1965), an infinite set
of coupled PDEs is obtained(

η

c

∂

∂t
+ μtr(r)

)
ψl,m(r, t)

+
1

2l+1

(
∂

∂z

[
(l+1−m)

1
2 (l+1+m)

1
2ψl+1,m(r, t)+(l−m)

1
2 (l+m)

1
2ψl−1,m(r, t)

]
− 1

2

(
∂

∂x
−i ∂
∂y

)[
(l+m)

1
2 (l+m−1)

1
2ψl−1,m−1(r, t)

−(l−m+2)
1
2 (l−m+1)

1
2ψl+1,m−1(r, t)

]
−1

2

(
∂

∂x
+i

∂

∂y

)[
−(l−m)

1
2 (l−m−1)

1
2ψl−1,m+1(r, t)

+(l+m+1)
1
2 (l+m+2)

1
2ψl+1,m+1(r, t)

])
= μs(r)plψl,m(r, t) + ql,m(r, t) , (6.8)

where μtr(r) = μa(r) + μs(r) is the transport coefficient and i =
√−1. Truncating

the series in Eqs. (6.4)–(6.7) at l = N (this is the so-called PN approximation), a
system of (N+1)2 coupled first-order PDEs is obtained. These are known as the PN

equations, which have been used as the forward model for imaging the scattering
and absorption properties of biological media (Wright et al., 2007). Using the finite
element method (FEM) for discretizing the forward model, initial results show an
improvement over reconstructions based on the diffusion equation (Wright et al.,
2007).

6.2.3 P1 and the diffusion approximation

Truncating the expansions in Eqs. (6.4)–(6.7) at l = N = 1 (P1 approximation),
leads to four equations that can be grouped in vector form as (Wang and Wu, 2007)
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η

c

∂ψ0(r, t)

∂t
+∇ · J(r, t) + μa(r)ψ0(r, t) = ε0(r, t) , (6.9)

η

c

∂J(r, t)

∂t
+

1

3
∇ψ0(r, t) + [μa(r) + μ′s(r)]J(r, t) = ε1(r, t) , (6.10)

where μ′s = μs(1− g) is the so-called reduced scattering coefficient and g is known
as the anisotropy coefficient (Ishimaru, 1978; Wang and Wu, 2007), ψ0(r, t) and
J(r, t) are the fluence rate and the radiant current density vector, respectively, with
J given by

J(r, t) =

∫
4π

L(r, ŝ, t) ŝ dΩ =

√
2π

3

(
ψ1,−1 − ψ1,−1,−i(ψ1,−1 + ψ1,−1),

√
2ψ1,0

)
.

(6.11)

The function ε0(r, t) and the vector ε1(r, t) embody the first two orders of the
expansion of the source term (Eq. 6.5), similarly to ψ and J for L. Eqs. (6.9) and
(6.10) are known as the P1 equations and constitute the starting point to derive
the diffusion equation (DE). The DE is considered valid at macroscopic length
scales2 (Van Rossum and Nieuwenhuizen, 1999) and derived under the assumption
that the radiance has a weak angular dependence, originated by a high albedo
scattering medium, i.e. μa 	 μs (Wang and Wu, 2007). To derive the DE, J(r, t)
is algebraically eliminated from Eq. (6.9) by using Eq. (6.10) under the condition
known as the diffusion approximation (DA) (Wang and Wu, 2007)

τ0

∣∣∣∣ ∂∂tJ(r, t)
∣∣∣∣	 |J(r, t)| , τ0 =

η

c [μa(r) + μ′s(r)]
. (6.12)

The DA imposes constraints on the relative time variation of J(r, t), which contains
the odd-order first terms of the series in Eq. (6.4). If in addition to the DA, we have
an isotropic source distribution, then ε1(r, t) = 0, and the classical DE is obtained
(Wang and Wu, 2007)

η

c

∂φ0(r, t)

∂t
+∇ · [D(r)∇φ0(r, t)

]
+ μa(r)φ0(r, t) = ε0(r, t) , (6.13)

where D(r) is the standard diffusion coefficient

D(r) =
1

3 [μa(r) + μ′s(r)]
≈ 1

3μ′s(r)
, (6.14)

and the inequality μa 	 μs has been used to approximate the diffusion coefficient.
Next, we introduce an approximation to the RTE similar to the PN approximation:
the simplified spherical harmonics approximation.

6.3 The simplified spherical harmonics approximation

Additionally to the time variable (or modulation frequency if FD methods are
used), the radiation field is position and direction-dependent. Thus, elaborating
numerical schemes for solving the RTE may involve a discretization method for

2Length scales such as λ� l′tr � ls, where λ is the wavelength, l′tr the transport mean
free path and ls the sample size.
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up to a six-dimensional space. For this reason, RTE approximations that preserve
enough accuracy while reducing computation time are highly desirable for practical
applications. That is the purpose of low-order transport models such as the PN

approximation (Arridge, 1999; Wright et al. 2007). However, the large number and
complexity of the PN equations (as an extra feature, mixed spatial derivatives are
contained in the equations) limit the applicability of the PN approximation. An
alternative is the simplified PN (SPN ) approximation which transforms the RTE
into a system of coupled diffusion equations (elliptic in the steady-state case or
parabolic in the time-dependent case) that depend solely on space and time (Klose
and Larsen, 2006). The SPN equations display a significantly reduced complexity
compared to the PN equations, and allow the application of DE-like numerical
schemes and solvers (Klose and Larsen, 2006; Chu et al., 2009; Bouza Domı́nguez
and Bérubé-Lauzière, 2010, Montejo et al., 2011).

Applying the SPN approximation, a methodology coined the SPN method,
originated in the field of nuclear reactor theory (Fletcher, 1983; de Oliveira, 1986).
In its early days, the SPN method lacked firm theoretical foundations, which ham-
pered its use. Further developments allowed resolving this issue and expanding the
applications of the SPN equations to other fields such as heat transport (Larsen
et al., 2002), coupled electron–photon transport problems (Kotiluoto et al., 2007),
and biomedical optics (Klose and Larsen, 2006).

The SPN equations have been derived in three ways: (i) as a multidimensional
generalization of the PN equations for geometries with planar symmetry – so-called
the formal or heuristic derivation (Gelbard, 1960), (ii) as an asymptotic correction
to the diffusion approximation (Larsen et al., 1996) and (iii) using a rigorous
variational analysis approach (Tomasevic and Larsen, 1996; Brantley and Larsen,
2000). In biomedical optics, it has been demonstrated that SPN equations provide
transport-like solutions for modeling visible and near-infrared light propagation in
small tissue geometries and specially, in the presence of high absorption (∼1 cm−1)
(Klose and Larsen, 2006). In addition, these results are achieved with only a fraction
of the computational cost of a transport calculation and a minimum of twice the
cost of DE calculations (Klose and Larsen, 2006). Moreover, SPN equations have
been introduced in luminescence imaging and provided the inherent advantages
of transport-like solutions in model-based image reconstruction algorithms (Klose,
2009; Klose, 2012).

Subsequently, we first present the heuristic derivation of the SPN equations and
corresponding boundary conditions based on the planar symmetry assumption for
time-independent problems arising in biomedical optics (the more rigorous deriva-
tion based on variational analysis is not discussed here as it would require too much
space, and is beyond the scope of the present work). Following this, we will discuss
the SPN equations for the frequency and time domains.

6.3.1 The steady-state SPN equations

For deriving the SPN equations, we will assume that the optical properties of the
medium vary only along a given axis, and not along directions perpendicular to this
axis (i.e., we have a medium with planar symmetry). This also assumes that there is
azimuthal symmetry (i.e. no dependence on the spherical angle φ, see Fig. 6.2). The
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z axis will then be called the axis of symmetry. For a medium with such symmetry,
the time-independent RTE (or the equivalent, in terms of the diffuse component of
the radiance) has the following form (Klose and Larsen, 2006)


∂

∂z
ψ(z,) = − [μa(z) + μs(z)]ψ (z,)

+

∫ 1

−1

μ̃s(z,,
′)ψ (z,′) d′ +

Q(z)

2
, (6.15)

where ψ(z,) can be either the radiance L(z,) for a medium with embedded
isotropic sources or its diffuse radiance component, z is the coordinate along the axis
of symmetry oriented along the unit vector k̂ and  = ŝ·k̂ is the cosine of the angle
between a given direction of propagation ŝ and k̂, μ̃s(z,,

′) = μsp(z,,
′) is the

differential scattering coefficient (or modified phase function) and Q(z) represents
a time-independent isotropic source.

Fig. 6.2. Planar symmetry in a medium.

The corresponding boundary condition is

ψ(z,) = BT (z,) +RF ()ψ(z,−) , z ∈ S, 0 <  < 1 , (6.16)

where for the diffuse component of the radiance, we can simply assume that
BT (z,) = 0. If we integrate Eq. (6.15) over the interval [−1, 1], we obtain the
exact equation

dψ1(z)

dz
= −μa(z)ψ0(z) +

Q(z)

2
, (6.17)

where ψ0(z) and ψ1(z) are the fluence and the radiant current density for a medium
with planar symmetry. In addition, they are the zeroth and first moments of the
Legendre expansion of ψ(z,) (see below the radiance Legendre expansion).

We may develop the modified phase function μ̃s(z,,
′) and ψ (z,) along

Legendre polynomials as follows (we assume that μ̃s(z,,
′) = μ̃s(z, · ′),

i.e. that scattering only depends on the angle between the incident and scattered
directions)

μ̃s(z,,
′) =

∞∑
n=0

(
2n+ 1

2

)
μs(z)gn(z)Pn()Pn (

′) , (6.18)

ψ (z,) =
∞∑

n=0

(
2n+ 1

2

)
ψn(z)Pn() . (6.19)
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where gn(z) and ψn(z) are the Legendre moments of the phase function and radi-
ance, respectively. In the case of the Henyey–Greenstein phase function, gn(z) =
[g(z)]

n
, where g describes the possibly space-dependent degree of anisotropy of the

scattering (the anisotropy parameter).
Substituting the Legendre expansions into the main equation for ψ(z,), mul-

tiplying both sides by Pn′(), n �= 0, and integrating over the interval [−1, 1], we
obtain

μn(z)ψn(z)+
d

dz

[
n+ 1

2n+ 1
ψn+1(z) +

n

2n+ 1
ψn−1(z)

]
= 0 , n = 1, . . . ,∞ , (6.20)

where the orthogonality property and the recurrence relation of the Legendre poly-
nomials have been used (Abramowitz and Stegun, 1965). Here, we defined the
nth-order transport coefficients as μn(z) = μa(z) + μs(z)[1− gn(z)]. The former
equation allows expressing the moments ψn(z) as

ψn(z) = − 1

μn(z)

d

dz

[
n+ 1

2n+ 1
ψn+1(z) +

n

2n+ 1
ψn−1(z)

]
. (6.21)

If the Legendre expansion of the radiance given in Eq. (6.19) is truncated at a given
order N , which can be selected to be odd, the odd-order PN equations for planar
geometries are obtained. Next, we employ Eqs. (6.21) to algebraically eliminate the
odd-order moments. After some algebra, we obtain final equations for the even-
order moments

μn(z)ψn(z)− n+ 1

2n+ 1

d

dz

{
1

μn+1(z)

d

dz

[
n+ 2

2n+ 3
ψn+2(z) +

n+ 1

2n+ 3
ψn(z)

]}
− n

2n+ 1

d

dz

{
1

μn−1(z)

d

dz

[
n

2n− 1
ψn(z) +

n− 1

2n− 1
ψn−2(z)

]}
= δn,0Q(z) ,

n = 0, 2, . . . , N − 1 . (6.22)

Eq. (6.22) is a system of K = (N +1)/2 coupled one-dimensional elliptic equa-
tions with K unknowns

{
ψn(z)

}
i=0,2,...,N−1

, K being even. As mentioned before,

odd-order moments can be obtained from the solution of Eq. (6.22) and back-
substitution in Eq. (6.21), up to the truncated order N .

The extension of Eq. (6.22) to the three-dimensional case is obtained by replac-
ing z by r, and substituting each operator by its 3-D counterpart in 3-D, i.e. the
partial derivative ∂/∂z becomes the gradient operator ∇ ≡ [∂/∂x, ∂/∂y, ∂/∂z].
Here, the second angular dependence of the spherical harmonics expansion (the
generalization of the PN approximation for 3-D) is neglected. The final simplified
PN equations (SPN equations) for steady-state 3-D problems are thus

μn(r)ψn(r)− n+ 1

2n+ 1
∇ ·

{
1

μn+1(r)
∇
[
n+ 2

2n+ 3
ψn+2(r) +

n+ 1

2n+ 3
ψn(r)

]}
− n

2n+ 1
∇
{

1

μn−1(r)
∇
[

n

2n− 1
ψn(r) +

n− 1

2n− 1
ψn−2(r)

]}
= δn,0Q(r),

n = 0, 2, . . . , N − 1 . (6.23)
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Because of the approximations performed in deriving Eq. (6.23), the solution of
the SPN equations Eq. (6.23) does not converge to the exact transport solution (see
Eqs. (6.15)) as N → ∞. Instead, the solution of Eq. (6.23) converges asymptotically
to the transport solution so there is an optimal order N for each physical situation
(Klose and Larsen, 2006).

To simplify the notation, it is convenient to rewrite Eq. (6.23) in matrix format.
For this, we introduce the column vector of even-order moments Ψ(r) = [ψk′(r)]T ,
k′ = 0, 2, 4, . . . , N−1, which is in turn rewritten in terms of the vector of composite
moments Φ(r) = [ϕk(r)]

T , k = 1, . . . ,K. The relationship between the even-order
moments and the composite moments, and its inverse, can be expressed in a con-
venient matrix notation. Up to N = 7 (higher orders can be obtained as well from
Eq. (6.23)), this relationship is given by

Ψ(r) = TΦ(r), Φ(r) = T−1Ψ(r) , where T−1 =

⎡⎢⎢⎣
1 2 0 0
0 3 4 0
0 0 5 6
0 0 0 7

⎤⎥⎥⎦ .

The composite moments allow diagonalizing the ‘diffusive operator’ containing the
differential operators having the form −∇ · (DK∇). This leads to the matrix form
of the steady-state SPN equations (or CW-SPN model)

(Dr +C)Φ(r) = Q(r) . (6.24)

The term Dr is a diagonal K ×K matrix operator whose elements are all on the
main diagonal and given by

diag(0) (Dr) = [−∇ · (D1∇) −∇ · (D2∇) · · · −∇ · (DK∇)] , k = 1, . . . ,K ,
(6.25)

where Dk = 1/ [(4k − 1)μ2k−1] and the expression diag(0)( ) denotes the list of
the main diagonal elements. Note that we use index (0) for the main diagonal and
positive (negative) values for diagonals located under (below) the main diagonal
(such notation will be used again in the sequel). The components of the (symmetric)
matrix C are linear combinations of the transport coefficients μn. The explicit
expressions for the columns of C in Matlab notation (up to N = 7) are given by

C (:, 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ0(r)

−2

3
μ0(r)

8

15
μ0(r)

−16

35
μ0(r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, C (:, 2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2

3
μ0(r)

4

9
μ0(r) +

5

9
μ2(r)

−16

45
μ0(r)− 4

9
μ2(r)

32

105
μ0(r) +

8

21
μ2(r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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C (:, 3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8

15
μ0(r)

−16

45
μ0(r)− 4

9
μ2(r)

64

225
μ0(r) +

16

45
μ2(r) +

9

25
μ4(r)

−128

525
μ0(r)− 32

105
μ2(r)− 54

175
μ4(r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C (:, 4) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−16

35
μ0(r)

32

105
μ0(r) +

8

21
μ2(r)

−128

525
μ0(r)− 32

105
μ2(r)− 54

175
μ4(r)

256

1225
μ0(r) +

64

245
μ2(r) +

324

1225
μ4(r) +

13

49
μ6(r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.26)

The column vector Q(r) contains the information about the source; it is given by

Q(r) = Q(r)

[
1 −2

3

8

15
−16

35

]T
. (6.27)

6.3.2 SPN boundary conditions and measurement modeling

The boundary conditions (BCs) associated with Eq. (6.24) can be obtained by
inserting Eq. (6.19) into Eq. (6.16) and carrying out integrations similarly to what
was done previously. In a convenient matrix form, these BCs are

AΦ(r) +B
∂

∂n̂
Φ(r) = S(r) , r ∈ ∂V , (6.28)

where ∂/∂n̂ denotes the derivative along the outward-pointing normal n̂ to the
boundary. The boundary matrices A, B and vector S (external source vector)
depend on the reflectivity properties of the boundary and the optical coefficients
of the medium. We assume S = 0 for SPN equations originated from the RTE in
terms of the diffuse component of the radiance, since it is related to the exterior
source. The mentioned terms have the following form (up to N = 7)

A=

⎡⎢⎢⎣
1/2 +A1 −1/8− C1 1/16− E1 −5/128−G1

−1/8− C2 7/24 +A2 −41/384− E2 1/16−G2

1/16− C3 −41/384− E3 407/1920 +A3 −233/2560−G3

−5/128− C4 1/16− E4 −233/2560−G4 3023/17920 +A4

⎤⎥⎥⎦ , (6.29)

B=

⎡⎢⎢⎣
(1 +B1)/3μ1 −D1/μ3 −F1/μ5 −H1/μ7
−D2/3μ1 (1 +B2)/7μ3 −F2/μ5 −H2/μ7
−D3/3μ1 −F3/μ3 (1 +B3)/11μ5 −H3/μ7
−D4/3μ1 −F4/μ3 −H4/μ5 (1 +B4)/15μ7

⎤⎥⎥⎦ . (6.30)
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S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
ŝ·n̂>0

BT (r, ŝ)2 |̂s · n̂| dΩ∫
ŝ·n̂>0

BT (r, ŝ)
[
5|̂s · n̂|3 − 2 |̂s · n̂|

]
dΩ∫

ŝ·n̂>0

BT (r, ŝ)

[
63

4
|̂s · n̂|5 − 35

2
|̂s · n̂|3 + 15

4
|̂s · n̂|

]
dΩ∫

ŝ·n̂>0

BT (r, ŝ)

[
429

8
|̂s · n̂|7 − 693

8
|̂s · n̂|5 + 315

8
|̂s · n̂|3 − 35

8
|̂s · n̂|

]
dΩ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(6.31)

where the coefficients (A1, . . . , H1, A4, . . . , H4) (see Appendix A of Klose and
Larsen (2006) for their explicit expressions) are linear combinations of the angular
moments RF,n of the angle-dependent Fresnel coefficient RF

RF,n =

∫ 1

0

xnRF (x) dx . (6.32)

The Robin-type boundary condition Eq. (6.28) can be considered as the Mar-
shak condition (Davidson and Sykes, 1957) for the vector of composite moments
at a tissue–air interface, where Fresnel reflections occurs. For N = 1, Eq. (6.28)
becomes the common Robin (or Marshak) boundary condition for the DE (Mar-
shak, 1947; Ishimaru, 1978). At tissue–tissue interfaces, the normal component of
the radiant current density vector Jno = J(r, t) · n̂ is continuous (we can just add
both equations appearing in Eq. (6.3)). Then, corresponding boundary conditions
can be found by mere substitution of the expansion Eq. (6.19) in this condition
and grouping of similar terms.

To end up with the derivation of the SPN equations as a forward model in
inverse problems, we need an expression for relating the outgoing light to the vec-
tor of composite moments Φ(r). If we take as measurements a finite collection of
exitance values (outgoing normal component of the radiant current density vector)

J
(out)
no , then

J (out)
no =

[
j1 − j2(B)

−1
A
]
Φ (rd, t) = VμΦ (rd, t) , (6.33)

where Vμ is the measurement operator (vector) that depends on the optical prop-
erties of the medium, rd is a position where a measurement is made (‘detector
position’), and the vectors j1 and j2 have the following expressions (up to N = 7)

j1 =
⎡
⎢⎢⎢⎢⎣

1/4 + J0

(1/4 + J0) (−2/3) + (5/16 + J2) (1/3)

(1/4 + J0) (8/15) + (5/16 + J2) (−4/15) + (−3/32 + J4) (1/5)

(1/4+J0) (−15/35) + (5/16+J2) (8/35) + (−3/32+J4) (−6/35) + (13/256+J6) (1/7)

⎤
⎥⎥⎥⎥⎦

T

,

(6.34)

j2 =

[
−
(
0.5 + J1
3μ1

)
,

(
− J3
7μ3

)
,

(
− J5
11μ5

)
,

(
− J7
15μ7

)]
. (6.35)
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The coefficients (J0, J1, . . .) depend on the angular moments of the angle-dependent
Fresnel reflection coefficient RF,n (Eq. (6.32)), and can be found in (Klose and
Larsen, 2006).

The SPN equations Eqs. (6.24) along with their boundary conditions – Eq. (6.28)
have been numerically implemented and compared with DE-based and transport
(RTE-based) calculations (Klose and Larsen, 2006). The calculations are performed
in small homogeneous geometries: 1 × 1 cm and 2 × 2 cm, that mimic a tomo-
graphic slice of a small animal. The absorption coefficient values are taken from
0.01 to 2 cm−1 (high absorption). The reduced scattering coefficient is kept con-
stant as 10 cm−1 but considering a variation of the scattering coefficient from 10
to 50 cm−1 and the anisotropy factor g from 0 to 0.8. In every case, a medium
with a refractive index value of η = 1.37 is considered as surrounded by air. In a
second round, numerical experiments are carried out in a 2×2 cm diffusive medium
with μa = 0.01 cm−1, μs = 10 cm−1, g = 0 and non-reentry boundary conditions
η = 1. Highly absorbing inclusions (μa = 2 cm−1) are embedded in the diffusive
medium. Following an analysis of the experiment results, see (Klose and Larsen,
2006) for details, the authors concluded that the SPN equations Eqs. (6.24) (i)
can accurately model light propagation in small tissue geometries at visible and
near-infrared wavelengths, (ii) provide transport-like solutions with a considerably
reduced computational cost in comparison with RTE-based calculations and (iii)
improve DE solutions in transport-like domains with high absorption and small
geometries.

6.3.3 Analytical solutions

Analytical solutions are essential for experiments with simple geometries and val-
idation of numerical approaches. Recently, steady-state analytical solutions have
been found for infinite (SP3 and SP5 equations) and semi-infinite (SP3 equations)
homogeneous media (Liemert and Kienle, 2010; Liemert and Kienle, 2011a). In
addition, a methodology for the generalization of the results to the frequency- and
time-domain cases is suggested. The final expressions for the composite moments
are set out as linear combinations of DE free space Green’s functions. Next, we
write down the main results for the aforementioned geometries.

6.3.3.1 Infinite homogeneous medium

An infinite homogeneous medium with an isotropic point source located at the
origin of coordinates Q(r) = δ(r)/4πr2 (r is the distance from the source location)
has an inherent spherical symmetry. This symmetry allows the following spherical
wave expansion of the composite moments and the source

ϕi(r) =
1

2π2r

∫ ∞

0

p ϕ̂i(p) sin(pr) dp , i = 1, 2 (6.36)

Q(r) =
1

2π2r

∫ ∞

0

p sin(pr) dp , i = 1, 2 (6.37)

where the hat over a quantity means the transformed quantity in the p-space.
Introducing Eqs. (6.36) and (6.37) into Eq. (6.24) leads to the following system of
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linear equations
L(μn, p)Φ̂(p) = Q̂ , (6.38)

where Q̂ = [1 − 2/3]T and L (μn, p) is a matrix whose coefficients depend on the
optical properties of the medium (μn) and p. For N = 3 (hereon, following (Liemert
and Kienle, 2010), we show results for N = 3 and 5 only) we get

L (μn, p) =

[
p2
/
3μ1 + μa −2μa/3

−2μa/3 p2
/
7μ3 + 4μa/9 + 5μ2/9

]
. (6.39)

From Eq. (6.38), the composite moment functions ϕ̂i(p), i = 1, 2 are determined
as the ratio of even-order polynomials in p

ϕ̂i(p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F

(1)
i (p2)

p4 + αp2 + β
, i = 1, 2, for N = 3

F
(2)
i (p2)

p6 + αp4 + βp2 + γ
, i = 1, 2, 3 for N = 5

, F
(m)
i (x) =

m∑
j=i−1

aijx
j ,

(6.40)

where the coefficients aij appearing in the definition of the polynomial F
(m)
i (x) are

given by

a10 =
35

3
μ1μ2μ3 , a11 = 3μ1 , a21 = −14

3
μ3 , for N = 3 , (6.41)

a10 =
231

5
μ1μ2μ3μ4μ5 , a11 =

35

3
μ1μ2μ3 + 33μ1μ5

(
16

45
μ2 +

9

25
μ4

)
, a12 = 3μ1 ,

a21 = −462

25
μ3μ4μ5 , a22 = −14

3
μ3 , a32 =

88

15
μ5 , for N = 5 . (6.42)

The coefficients α, β and γ for the polynomials of the denominator are real positive
numbers that depend on the transport coefficients

α = 3μaμ1 +
28

9
μaμ3 +

35

9
μ2μ3 , β =

35

3
μaμ1μ2μ3 , for N = 3 , (6.43)

α = 3μaμ1 +
28

9
μaμ3 +

35

9
μ2μ3 + 11μ5

(
64

225
μa +

16

45
μ2 +

9

25
μ4

)
,

β = μaμ1

(
35

3
μ2μ3 +

176

15
μ2μ5 +

297

25
μ4μ5

)
+ μ3μ4μ5

(
308

25
μa +

77

5
μ2

)
,

γ =
231

5
μaμ1μ2μ3μ4μ5 , for N = 5 . (6.44)

For N = 3, using the expressions for α and β given in Eq. (6.49), it can be

shown that the polynomial discriminant
√
α2 − 4β of the denominator in Eq. (6.40)
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is always positive. Therefore, a partial fractions expansion using the polynomial
zeros λ1,2 =

(−α±
√
α2 − 4β

)
/2 is possible. Thus, the composite moments can be

written as

ϕ̂i(p) =
Ai

p2 + p21
+

Bi

p2 + p22
, pj =

√−λj , j = 1, 2 , (6.45)

where

Ai =
F

(1)
i (λ1)

k22 − k21
, Bi = −F

(1)
i (λ2)

k22 − k21
. (6.46)

In the case of an infinite medium, it is known that the Green’s function G(r)
of the steady-state DE is given by

G(r) =
e−μeff r

4πDr
=

1

2π2r

∫ ∞

0

p sin(pr)

p2 + μeff
dp ,

D =
1

3 (μa + μ′s)
, μeff =

√
3μa(μa + μ′s) . (6.47)

A comparison of Eqs. (6.45) and (6.47) shows that the composite moment functions
ϕi(r), i = 1, 2 can be written as a superposition of two DE free space Green’s
functions G(r) as follows

ϕi(r) = Ai
e−p1r

4πr
+Bi

e−p2r

4πr
, pj =

√−λj , j = 1, 2 . (6.48)

Similarly, for N = 5 the polynomial appearing in the denominator of Eq. (6.40)
can be decomposed into three partial fractions. It is thus possible to demonstrate
that each composite moment function can be expanded into three DE free space
Green’s functions G(r) as

ϕi(r) = Ai
e−p1r

4πr
+Bi

e−p2r

4πr
+ Ci

e−p3r

4πr
, pj =

√−λj , j = 1, 2, 3, (6.49)

where the expressions for the expansion coefficients are

Ai =
F

(2)
i (λ1)

(p22 − p21) (p
2
3 − p21)

, Bi = − F
(2)
i (λ2)

(p22 − p21) (p
2
3 − p22)

,

Ci =
F

(2)
i (λ3)

(p23 − p21) (p
2
3 − p22)

, pj =
√−λj , j = 1, 2, 3 . (6.50)

The zeros of polynomials λj appearing in Eq. (6.50) can be calculated from
Viète’s trigonometric method for obtaining roots of third-degree polynomials as
(see Liemert and Kienle, 2010)

λj = 2

√
ξ

3
cos

[
ν + 2 (j − 1)π

3

]
, ξ =

1

3
α2 − β ,

ν = arccos

[
− 3

2ξ

√
3

p

(
2

27
α3 − 1

3
αβ + γ

)]
, j = 1, 2, 3 . (6.51)
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The analytical solutions provided by Eqs. (6.48) and (6.49) are easy to imple-
ment. The analog expressions for frequency-domain problems can be calculated by
setting μn(z) = μa(z) + μs(z) [1− gn(z)] + i(ηω/c), where η is the refractive index
of the medium, ω is the angular frequency of the intensity modulated source, c is
the speed of light in the vacuum and i =

√−1. By performing the inverse Fourier
transform, we can also obtain analytical formulas in time-domain. In the case of
the SP1 (the DE), an analytical formula for time-domain problems can be directly
derived (Wang and Wu, 2007).

In (Liemert and Kienle, 2010), Eqs. (6.48) and (6.49) are compared with Monte
Carlo simulations (Wang and Wu, 2007) in the steady-state and time domains and
with DE solutions. For the steady-state, the numerical experiments are carried out
with an infinite homogeneous medium. The optical properties of the medium are
μ′s = 1mm−1, g = 0.9 and values of 0.2 and 2mm−1 are used for the absorption
coefficient. An isotropic point source is placed at the origin of coordinates. Then,
the steady-state fluence rate versus distance from the isotropic source is calculated
using the SPN and the corresponding DE solutions and simulated using the Monte
Carlo method. A comparison of the results showed that the SPN solutions are in
much better agreement that the DE-based solutions with the Monte Carlo simu-
lations. Particularly, the SPN solutions accurately reproduce Monte Carlo simula-
tions at all distances from the source including both far and very close (<0.5mm)
to the source. In a second set of experiments, the time-resolved reflectance from a
semi-infinite scattering medium, with a perpendicular incident pencil beam, is cal-
culated using the SPN and the DE solutions. The optical properties of the medium
are μ′s = 1mm−1, g = 0.9, μa = 0.1mm−1 and η = 1.4. The medium is considered
as surrounded by air. The reflectance time-dependence is calculated at distances
of 6.5, 9.5, and 12.5mm from the position where the beam impinges. The results
showed that SPN solutions describe light propagation even for very short time
(<100 ps) values, where the DE fails.

6.3.3.2 Semi-infinite homogeneous medium

In this subsection, we present the analytical solution of the SPN equations for a
semi-infinite geometry with an embedded isotropic point source. This solution is
due to Liemert and Kienle (Liemert and Kienle, 2011a). Contrary to their approach,
we do not use the formalism of bras and kets (i.e. the Dirac formalism of quantum
mechanics), which we find less accessible and can be cumbersome to the non-
initiated, it is also not absolutely necessary to reach the solution as elementary
linear algebra means are sufficient. Although the exposition of the results is carried
out for N = 3, the methodology presented can be used to achieve similar results
for higher orders.

In the present case, the physical situation has an inherent cylindrical symmetry.
Thus, we can expand the composite moments and the δ-source distribution using
the zero-order Hankel transform

ϕi(r) =
1

2π

∫ ∞

0

ϕi (q, z) J0 (qρ) q dq , δ (r− r′) =
δ (z − z′)

2π

∫ ∞

0

J0 (qρ) q dq ,

(6.52)
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where J0(x) is the zeroth-order Bessel function of the first kind. Substituting
Eq. (6.52) into Eq. (6.24) yields a system of second order differential equations
for Φ(r)

d2Φ

dz2
=
(
Mμ + q2I2×2

)
Φ+ δ (z − z′) ε , (6.53)

where the coefficient matrix Mμ and the vector ε are

Mμ =

⎡⎣ 3μaμ1 −2μaμ1

−14μaμ3
28

9
μaμ3 +

35

9
μ2μ3

⎤⎦ , ε =
1

3

[
−9μ1

14μ3

]
, (6.54)

and I2×2 is the 2× 2 identity matrix.
The solution of the boundary value problem Φ(q, z) posed by Eqs. (6.53)

and (6.28) can be obtained by using the superposition principle

Φ (q, z; z′) = Φ(h) (q, z) +Φ(p) (q, z; z′) , (6.55)

where Φ(h) (q, z) is the solution to the source-free problem (homogeneous compo-

nent) and Φ(p) (q, z; z′) is a particular solution of Eq. (6.53).
The solution to the source-free problem

d2Φ(h)

dz2
− (

Mμ + q2I2×2

)
Φ(h) = 0 , (6.56)

will be sought in a form with exponential dependence as follows (similarly to scalar
ODEs with constant coefficients)

Φ(q, z) = eλ(q)zw , (6.57)

with w a two-component vector independent of q. Inserting this solution into
Eq. (6.56) leads to the following[

Mμ − (
λ2 − q2

)
I2×2

]
w = 0 . (6.58)

Hence, for the proposed vector given in Eq. (6.57) to be a solution of the homo-
geneous equation, w must be an eigenvector of Mμ, and λ

2 − q2 must be equal to
an eigenvalue. At this point, the eigenvalues of Mμ must thus be calculated. After
some algebra, these are found to be positive (hence they will be denoted by ς21 and
ς22 ), and given by

ς21/2 = α±
√
α2 − β , (6.59)

with

α =
3

2
μaμ1 +

28

18
μaμ3 +

35

18
μ2μ3 , β =

35

3
μaμ1μ2μ3 . (6.60)

Now that the eigenvalues are found, the associated eigenvectors w1 and w2 can be
calculated. Let wi = [ξi, ηi], i = 1, 2, then ξi and ηi must satisfy(

3μaμ1 − ς2i
)
ξi − (2μaμ1) ηi = 0 . (6.61)
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Hence wi can be taken as follows

wi =

[
2μaμ1

3μaμ1 − ς2i

]
. (6.62)

The spectral decomposition of Mμ will be written as

Mμ = LDL−1 , (6.63)

where
D = diag

(
ς21 , ς

2
2

)
, (6.64)

and L has as its columns the eigenvectors w1 and w2. These eigenvectors being
column vectors, we may thus write

L = [w1w2] =

[
w1;1 w2;1

w1;2 w2;2

]
=

[
2μaμ1 2μaμ1

3μaμ1 − ς21 3μaμ1 − ς22

]
. (6.65)

Here wi;j denotes the jth component of vector wi. Reverting back to λ, we have
that λ2 − q2 can be either equal to ς21 or ς22 . Hence, there will be 4 possible values
for λ, these being ±λi(q) with

λi(q) =
√
q2 + ς2i , i = 1, 2 . (6.66)

Now, since we must have Φ(h) (q, z) → 0 when z → ∞, we can only retain the
possible values of λ, that are negative. Thus, the homogeneous solution can be
expressed as the following superposition

Φ(h) (q, z) = c1(q) e
−λ1(q)zw1 + c2(q) e

−λ2(q)zw2 , (6.67)

where c1(q) and c2(q) will be determined later on using the BCs.

Now, to find the particular solution Φ(p) (q, z; z′), the following Fourier (or
plane wave) decomposition of the particular vector of composite moments, and of
the Dirac delta function are used

Φ(p) (q, z; z′) =
1

2π

∫ ∞

−∞
Φ(p) (q, k) eik(z

′−z) dk , δ (z − z′) =
1

2π

∫ ∞

−∞
eik(z

′−z) dk .

(6.68)

Now, recall that Φ(p) (q, z; z′) must satisfy the following vector differential equation

d2Φ(p)

dz2
− (

Mμ + q2I2×2

)
Φ(p) = δ (z − z′) ε . (6.69)

Inserting the Fourier decompositions into this last equation gives the following
linear vector equation[

Mμ +
(
k2 + p2

)
I2×2

]
Φ(p) (q, k) = −ε . (6.70)

This is similar to the eigenvalue equation encountered before in Eq. (6.58), except
that here the left-hand side is not zero. To solve this equation, we use the spectral
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decomposition of Mμ, giving as solution

Φ(p) (q, k) = L
{[

D+
(
k2 + p2

)
I2×2

]−1
L−1 (−ε)

}
. (6.71)

The quantity in braces is a vector column, and the result on the left-hand side
of the last equation is seen to be a linear superposition (or combination) of the
columns of L, which are the eigenvectors of Mμ.

3 L being a 2 × 2 matrix, its
inverse is easily calculated to be

L−1 =
1

det (L)

[
w2;2 −w2;1

−w1;2 w1;1

]
, (6.72)

where
det(L) = 2μaμ1

(
ς21 − ς22

)
. (6.73)

With these last results, the particular solution given in Eq. (6.16) can be more
explicitly written as

Φ(p) (q, k) =
1

det (L)

(
14μ3w2;1 + 9μ1w2;2

k2 + λ21(q)
w1 − 14μ3w1;1 + 9μ1w1;2

k2 + λ22(q)
w2

)
. (6.74)

Introducing the constants

h1 =
14μ3w2;1 + 9μ1w2;2

3 det (L)
, h2 =

14μ3w1;1 + 9μ1w1;2

3 det (L)
, (6.75)

the last expression for Φ(p) (q, k) can more succinctly be written as

Φ(p) (q, k) =
h1

k2 + λ21(q)
w1 − h2

k2 + λ22(q)
w2 . (6.76)

Taking the inverse Fourier transform of the last expression, we get4

Φ(p) (q, z) =
h1
2

e−λ1(q)|z−z′|
λ1(q)

w1 − h2
2

e−λ2(q)|z−z′|
λ2(q)

w2 . (6.77)

All the pieces to obtain the complete solution Φ decomposed as in Eq. (6.55)
have now been found. The use of the BC given in Eq. (6.28) (using that n̂ = −ẑ)
allows determining the constant coefficients c1(q) and c2(q) appearing in Eq. (6.67)
by solving two equations for these yet two unknowns (we shall not do this explicitly
here). As a final step, inverting the Hankel transform leads to the following final
expression for the composite moments

3That the product of a matrix with a vector on its right is a linear combination of the
columns of the matrix is called the ‘column point of view of matrix multiplication’, see
standard modern texts on linear algebra such as Strang (2005) or Lay (2011).

4Using the 1/2π normalization conventions of the Fourier transforms given in

Eq. (6.68), the inverse Fourier transform of 1/(k2 + a2) is e−a|z−z′|/2a.
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Φ(r) = Φ (ρ, z)

=
h1
4π

e−ς1
√

ρ2+(z−z′)2√
ρ2 + (z − z′)2

w1 − h2
4π

e−ς2
√

ρ2+(z−z′)2√
ρ2 + (z − z′)2

w2

+
1

2π

(∫ ∞

0

c1(q) e
−λ1(q)zJ0 (qp) q dq

)
w1

+
1

2π

(∫ ∞

0

c2(q) e
−λ2(q)zJ0 (qp) q dq

)
w2 . (6.78)

Finally, the fluence ψ0(z) and the reflectance R(ρ) at the boundary z = 0 can
be calculated for N = 3 as

ψ0(z) =
[
1 −2/3

]
Φ = φ1 − 2

3
φ2 , (6.79)

R (ρ) =

[(
1

4
+ J0

)
, −2

3

(
1

4
+ J0

)
+

1

3

(
5

16
+ J2

) ]
Φ+

[
1 + 2J1
6μ1

J3
7μ3

]
dΦ

dz
.

(6.80)

These results for the SP3 equations (derived from the RTE) have been used
to compare reflectance values given in Eq. (6.80) with Monte Carlo simulations
(Wang andWu, 2007) and DE solutions (Liemert and Kienle, 2011a). The numerical
experiments considered an isotropic point source located at one transport mean free
path l′tr = 1/μ1 inside a semi-infinite homogeneous medium (refractive index 1.4)
surrounded by air. For typical values in the near infrared (NIR) (μa = 0.01mm−1,
μs = 10mm−1) and blue or green wavelengths (μa = 1mm−1, μs = 10mm−1)
ranges, the SP3 equations were shown to give results that better agree with those of
Monte Carlo simulations than the DE for distances to the source >1mm. However,
at small distances (<1mm) to the isotropic point source, the SP3 displayed no
improvements compared to the DE (Liemert and Kienle, 2011a). A comparison of
the SP3 solution (and the DE solution) for an isotropic point source as above with
Monte Carlo simulations for an infinitely narrow beam shows that the isotropic
solutions do not match well the Monte Carlo results in this case. This means that
the approximation of such a beam by an isotropic point source is not a good
approximation, contrary to what is pervasively assumed in biomedical optics.

The numerical experiments described in (Liemert and Kienle, 2010; Liemert and
Kienle, 2011a) lead naturally to the questions of which order N to employ in a given
practical situation, and how accurate it can be near sources. First, searching for an
optimalN while exploring higher orders (N = 5, 7) should be attempted (Klose and
Larsen, 2006). In addition, since the radiative field is more anisotropic near sources,
a better accuracy can be achieved with the RTEd as the starting point to apply the
SPN approximation. Despite these recommendations, there is another problem not
covered yet. At short distances to the source, the radiative field is not modified to
much extent by scattering and absorption events, and the source emission pattern
prevails. In the case of an isotropic point source embedded in the medium, the
radiative field propagates along divergent rays starting from the location of the
source. Such a situation is not considered by standard radiative transfer models
where the divergence of rays always has a cylindrical form (Mart́ı López et al.,
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2003). Thus, sources are considered as located at the infinity, presumably a fact
inherited from RTT applications in astronomy and astrophysics. Finally, we want
to stress that in a comparison with real experimental data, modeling the source is
a decisive step, see Ducros (2009) and references therein.

6.3.4 Frequency-domain simplified spherical harmonics equations

Lately, frequency-domain SPN equations (FD-SPN ) have been derived in biomed-
ical optics (Chu et al., 2009). To obtain the FD-SPN , as proposed in the literature,
the Fourier transform is applied to the time-dependent RTE Eq. (6.1). Hence, the
result resembles the time-independent RTE and the previous steps on deriving the
SPN equations Eq. (6.24) are pursued. Finally, the FD-SPN equations have the
same form than that of Eq. (6.24), but with the introduction of the complex-valued
nth-order transport coefficients

μ∗n(r) = μa(r) +
iηω

c
+ μs(r) [1− gn(r)] , (6.81)

The FD-SPN equations and its corresponding BC have thus the same form as
Eqs. (6.24) and by considering μ∗n instead of μn and working in the frequency-
domain (complex magnitudes). Measurements are then related to the quantization
of amplitude, phase and even direct-current exitance (Chu and Dehghani, 2009; Xu
et al., 2010; Xu et al., 2011), as it is common in frequency-domain systems (Wang
et al., 2008).

A finite element method implementation of the FD-SPN equations is available
in the literature (Chu et al., 2009). In that work, several numerical experiments
are performed with a 3-D slab of dimensions 40 × 20 × 30mm. Three different
cases are considered (1) an homogeneous medium where μa = 0.001mm−1, μs =
2mm−1, g = 0.5 and η = 1.37; (2) a similar homogeneous medium with the same
optical properties but a different absorption coefficient of 0.01mm−1 and (3) a
three-layer slab where the upper and the bottom sections have identical optical
properties of μa = 0.001mm−1, μs = 1mm−1, g = 0 and η = 1.37. The middle
layer has the following optical properties μa = 0.2mm−1, μs = 2mm−1, g = 0.5 and
η = 1.37. A comparison of FD-SPN -based and DE-based calculations with Monte
Carlo simulations demonstrate that for N > 1, the FD-SPN model shows increased
accuracy compared with the DE in both the phase and amplitude of boundary data.
Also, a high difference was found between the predicted light distribution by the
DE and the SP7 in regions near the source (modeled as an isotropic point source)
and regions with high absorption (0.2mm−1).

6.3.5 Time-domain simplified spherical harmonics equations

Time-domain SPN equations (TD-SPN ) have been obtained, implemented and
validated to solve problems in radiative transfer and biomedical optics. TD-SPN

models have been derived in three different ways: (i) via formal asymptotic analysis
(Frank et al., 2007), (ii) by direct forward and back-substitution of the moment
functions, leading to an integro-differential final form with temporal convolution
operators (Bérubé-Lauzière et al., 2009) and (iii) imposing diffusive-type conditions
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over odd-order moment functions, similarly to the diffusion approximation (Bouza
Domı́nguez and Bérubé-Lauzière, 2010). These three different approaches lead to
different equations. The last approach has been to the most studied of the three
for problems in biomedical optics. We will thus present the derivation pertaining
to the last approach, leading to the so-called the time-dependent parabolic SPN

equations (TD-pSPN ) (Bouza Domı́nguez and Bérubé-Lauzière, 2010).
For a medium with planar symmetry, the time-dependent RTE only differs from

Eq. (6.15) in the additional term η∂ψ(z,, t)/c∂t. Following the same steps as in
Section 6.3.1, we arrive to an expression identical to Eq. (6.20) for the Legendre
moments of the radiance, except for the additional term η∂ψn(z, t)/c∂t. Now, the
direct back substitution of the odd-orders leads to equations with mixed terms of
spatial and time partial derivatives. These equations are not of the diffusion-type,
but contain convolution operators over the Legendre moment functions (Bérubé-
Lauzière et al., 2009). To preserve the parabolic nature of the equations, we impose
the following diffusive conditions on the time-derivatives of the odd-order moments
(compare with the diffusion approximation Eq. (6.12))

τn

∣∣∣∣ ∂∂tψn(z, t)

∣∣∣∣	 |ψn(z, t)| , τn =
ηln
c
. (6.82)

These last conditions limit the relative time variation of the odd-order moments
within the characteristic time τn. For N = 1, Eq. (6.82) turns out to be the well-
known DA (Eq. (6.12)) for a planar geometry. So far, a complete study of Eq. (6.82)
and therefore, the TD-pSPN model validity, in terms of frequency modulation and
pulse width values in time-resolved problems is pending for completion. An analysis
of the TD-pSPN model validity in the solution of forward and inverse problems
can influence the design of experimental sets specifically built for using this model.

Imposing the diffusive conditions provides an expression similar to Eq. (6.21).
Thus, the algebraic elimination of odd-moments in terms of the even-moments
becomes possible. The extension of these results to 3-D and the introduction of
the time-dependent vector of composite moments Φ(r, t) leads to a system of
K = (N +1)/2 coupled parabolic PDEs. This model, known as the time-dependent
parabolic SPN equations (TD-pSPN ) (Bouza Domı́nguez and Bérubé-Lauzière,
2010), has the same form as Eq. (6.24) except for the introduction of the term
[η∂TΦ(r, t)/c∂t. For N = 1, TD-pSPN equations become the DE. Also, in this
approach, the boundary conditions remain the same as in the steady-state case.

The TD-pSPN model has been numerically implemented using a combined
finite difference – finite element scheme (Bouza Domı́nguez and Bérubé-Lauzière,
2010). In this work, the model (for N = 3) is compared with DE-based numerical
solutions and Monte Carlo simulations. The numerical experiments are carried out
in a 2× 2 cm homogeneous medium (see Fig. 6.3 left) for two different regimes: (1)
a diffusive regime where μa = 0.04 cm−1, μ′s = 20 cm−1 and η = 1 (no refractive
index mismatch) and (2) a near-nondiffusive regime (Hielscher et al., 1998) where
μa = 1 cm−1, μ′s = 10 cm−1 and η = 1 (also, no refractive index mismatch). An
isotropic point source, Dirac delta function in time, is placed at the center of the
medium.

In both cases, the time-dependent fluence values are calculated at the boundary
using the numerical solution provided by the TD-pSP3 equations and the DE.
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Fig. 6.3. Numerical experiment in a 2-D homogeneous medium (left) with η = 1, g = 0.9
and μa/μs

′ = 0.1 (this is a near-nondiffusive regime condition, see Hielscher et al. (1998))
and an isotropic point source, Dirac delta function in time, located at point S. At right,
fluence profile at the detector point D calculated using the DE, the TD-pSP3 equations
and the Monte Carlo method. The TD-pSP3 model better reproduces the Monte Carlo
results than the DE, especially for those parts of the curve corresponding to early arriving
photons and at long times.

For the diffusive regime, the results showed that TD-pSP3 equations accurately
reproduce the Monte Carlo results. For the near-nondiffusive regime, the TD-pSP3

solution better reproduces the Monte Carlo results at the early times and at long
times than the DE, see Fig. 6.3 at right.

In a second round of experiments, an absorptive inclusion is embedded in a
2 × 2 cm homogeneous medium where μa = 0.01 cm−1, μ′s = 10 cm−1 and η = 1,
see Fig. 6.4. Three increasing values are assumed for the inclusion absorption co-
efficient μa = 0.05, 0.1 and 1 cm−1 (last value corresponding to high absorption).
The fluence profile is calculated in the homogeneous medium in the presence and
absence of the absorptive inclusion using the TD-pSP3 equations and the DE. With

Fig. 6.4. Numerical experiments with a 2-D homogeneous medium (η = 1, μa =
0.01 cm−1 and μs

′ = 10 cm−1) with an isotropic point source (as in Fig. 6.3) and an
absorptive inclusion (see small circle in top-left figure) which takes values of 0.05, 0.1 and
1 cm−1 (left to right). Color represents the percentage difference of fluence values with
respect to the results in a medium with no inclusion, for the TD-pSP3 equations (upper
row) and the DE (lower row), at 220 ps. The contrast of the fluence fields is higher for
the TD-pSP3 equations than for the DE. This situation is repeated at different times.
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these values, the percentage difference of fluence values with respect to the results
in a medium with no inclusion is calculated, as a contrast or sensitivity measure, for
each model. In all the cases and times, the TD-pSP3 equations showed a higher sen-
sitivity compared to the DE; see Fig. 6.4. Thus, the TD-pSP3 equations seem more
appropriate for describing light propagation in small geometries in the presence of
absorptive inhomogeneities than the DE (Bouza Domı́nguez and Bérubé-Lauzière,
2010).

6.4 Numerical solutions

In the presence of complex geometries and/or heterogeneous media, it becomes
necessary to resort to numerical methods, either implemented on structured or
unstructured grids (also called meshes with nodes and elements as components (Jin,
2002)). So far, numerical solutions to SPN -based equations for boundary problems
have been achieved with finite-difference (Klose and Larsen, 2006; Bérubé-Lauzière
et al., 2009; Klose and Pöschinger, 2011), finite volume (Montejo et al., 2011) and
finite element (Chu et al., 2009; Bouza Domı́nguez and Bérubé-Lauzière, 2010;
Bouza Domı́nguez and Bérubé-Lauzière, 2011; Lu et al., 2010; Tian et al., 2010;
Zhong et al., 2011) methods.

Next, we make a brief exposition of those methods for the solution of SPN -based
equations.

6.4.1 Finite-difference method

Finite difference methods (FDM) rely on structured grids, which confers them sev-
eral coding advantages as they are less memory demanding (no cell connectivity
information is needed) and function values can be identified with grid indices only
(Agarwal, 2000). At the cell level, a low function approximation is used, which
favors the FDM for regions requiring a large number of cells. On the other hand,
complex boundary conditions are difficult to implement by FDM. In addition, rep-
resentation of irregular (especially curved) geometries by structured grids can be
inexact, unless the grid is especially refined at these locations. An alternative in
such cases is to use blocking-off region methods or block-structured grids (Taluk-
dar, 2006; Klose and Pöschinger, 2011; Montejo et al., 2010). In the blocking-off
method the exterior boundary ∂S is approximated by the junction of grid points
lying in S that best approximate ∂S.

To implement the FDM for SPN—based equations, we consider a regular do-
main S located in the xy-plane (2-D, for simplicity), enclosed by the curve ∂S. A
regular grid composed by 2NS points along the x- and y-axis ri = (xi, yi) can be
defined as

xi = (i− 1)Δx , yi = (j − 1)Δy , i, j = 1, . . . , NS , (6.83)

where Δx and Δy are the grid separations along the x- and y-axis, respectively. We
order the grid by the values of the i-index first and then by the j-index values. Let
the discrete values of each composite moment be denoted by ϕk,i,j ≈ ϕk(xi, yj).
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Then, it is convenient to use centered finite difference approximations for the dif-
ferential operators, see Eq. (6.25), acting over each ϕk as

−∇ · (Dk∇ϕk) ≈ −
(
Dk,i+1,j

Δx2

)
ϕk,i+1,j

+

(
Dk,i+1,j +Dk,i−1,j

Δx2
+
Dk,i,j+1 +Dk,i,j−1

Δy2

)
ϕk,i,j

−
(
Dk,i−1,j

Δx2

)
ϕk,i−1,j −

(
Dk,i,j+1

Δy2

)
ϕk,i,j+1

−
(
Dk,i,j−1

Δy2

)
ϕk,i,j−1 . (6.84)

With this discrete approximation, the discretized equation for the CW-SPN model
is (

K+M
)
Φi,j = Qi,j , Φi,j ≈ Φ (xi, yj) , Qi,j ≈ Q (xi, yj) ,

k = 1, . . . ,K , i, j = 1, . . . , NS , (6.85)

where the vector Φi,j is ordered by the values of the indices i, j and k consecutively.
Here, we have introduced the terms K (a diagonal block matrix) and M (block
matrix). These matrices are composed themselves of block matrices named Kk and
Mk1,k2

which are banded diagonal matrices, respectively. Diagonal entries of Kk

and Mk1,k2
have the following form

diag(0)
(
Kk

)
(i, j) =

Dk,i+1,j +Dk,i−1,j

Δx2
+
Dk,i,j+1 +Dk,i,j−1

Δy2
,

diag(1)
(
Kk

)
(i, j) = −Dk,i+1,j

Δx2
,

diag(−1)

(
Kk

)
(i, j) = −Dk,i−1,j

Δx2
,

diag(Ns−1)

(
Kk

)
(i, j) = −Dk,i,j+1

Δy2
,

diag−(Ns−1)

(
Kk

)
(i, j) = −Dk,i,j−1

Δy2
, (6.86)

diag(0)
(
Mk1,k2

)
= C (k1, k2)|i,j , k1, k2 = 1, . . .K , (6.87)

where C (k1, k2)|i,j means that we evaluate at the grid indices (i, j) the entry
(k1, k2) of the matrix C, see Eq. (6.26). For the FD-SPN model, we obtain a
similar system to Eq. (6.85), but with the complex nth order transport coefficients
(Eq. (6.81)) in the matrix entries of Eqs. (6.86) and (6.87).

To derive a discrete formulation for the time-dependent parabolic SPN equa-
tions, the time derivative can be replaced by a finite difference scheme. For this,
the total time of study T is divided in regular intervals of size Δt and samples tm
for the time variable are generated as

tm = mΔt , Δt =
T

M
, m = 0, . . . ,M − 1 . (6.88)
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Implicit finite difference schemes, such as the forward Euler or the Crank–Nicholson
(CN) schemes (Agarwal, 2000), are preferred to insure unconditional stability. In-
troducing a control parameter θ ∈ [0, 1], the different difference schemes for the
time-dependence can be written in a unified way as( η

cΔt
T+θK+θM

)
Φ

m+1

i,j =
[
(1−θ)K+(1−θ)M]

Φ
m

i,j+θQ
m+1

i,j +(1−θ)Qm

i,j ,

(6.89)

where the matrix T has the same type of structure as M. The value θ = 0 corre-
sponds to the explicit or backward scheme (conditionally stable), θ = 1/2 is the
Crank–Nicholson scheme, and θ = 1 is the full implicit scheme, with the latter two
being unconditionally stable.

Solving Eqs. (6.85) and (6.89) leads to high-dimensional sparse linear systems,
which means that sparse matrix techniques can be used to save storage require-
ments, and solutions can be calculated in highly reduced CPU times compared
to dense matrix techniques (Saad, 2003). Moreover, direct and iterative methods
for solving sparse linear systems are widely available in the literature (Saad, 2003;
Davis, 2006; Press et al., 2007).

6.4.2 Finite volume method

The finite volume method (FVM) is a conservative discretization method (Versteeg
and Malalasekera, 2007). The partial differential equations serving as forward model
are transformed into an integral formulation of the underlying conservation laws
and discretized directly in physical space. The physical volume V is partitioned
into small volumes ΔV called ‘cells’, with such a partition to be denoted by τ here.
The partition τ can be carried in the form of regular or irregular meshes, e.g. a dis-
tribution of cubes or a mesh of tetrahedrae (Versteeg and Malalasekera, 2007). The
magnitudes of interest in the problem to which the FVM is applied are replaced in
the equations by their average values in ‘cells’. This step is carried out after inte-
grating the equations over the partition τ . A cell-centered scheme stores the variable
values at all cell centers whereas a node-centered scheme stores the variable val-
ues at the nodes. The FVM allows the discrete representation of complex volumes
without the implicit FDM implementation mesh refinement on irregular bound-
aries. Furthermore, cell averaging diminishes the problem dimensionality (number
of unknowns) which is convenient for large volumes. As a disadvantage, the FVM
does not provide accurate results in the case of discontinuous (or widely varying)
coefficients that can appear in the forward model. This problem can be avoided if
the coefficient discontinuities coincide with cell boundaries, which can be achieved
by refining the mesh (at the cost of increasing the problem dimensionality).

To apply the FVM to SPN—based equations, we make a partition τ of the
volume of interest V into non-overlapping control volumes ΔVi centered at the
mesh points pi. Next, we follow the node-centered scheme as presented in (Montejo
et al., 2011) for the CW-SPN model. The integration of Eqs. (6.24) over a finite
volume ΔV centered at the mesh point p yields

−
∫∫
∂ΔV

D∇Φ · n̂ dS + [C]p[Φ]pΔV = [Q]pΔV , (6.90)
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where the Gauss–Ostrogradsky Theorem has been applied to obtain the first term,
and where diag(0)

(
D
)
= [D1 D2 · · · DK ], k = 1, . . . ,K (this term can be

approximated by its value at p), ∂ΔV denotes the boundary of ΔV composed of a
number of faces, n̂∂ΔV is the outer normal to ∂ΔV , and the notation [ ]p represents
the discrete approximation of the enclosed magnitude at the center p of a finite
volume element. The vector [Φ]p is ordered by each mesh node p and by the k index,
consecutively, i.e. the values for ϕ1 for all the nodes come first, then followed by
the values of ϕ2, etc.

The first term of Eq. (6.90), i.e.

J
(Φ)
n,ΔV = −

∫∫
∂ΔV

D∇Φ · n̂∂ΔV dS , (6.91)

represents a flux through ∂ΔV . Eq. (6.91) can be approximated by replacing the
gradient operation with finite differences at each face composing ∂ΔV . If such ap-
proximations are used for the flux term for all control volumes (including boundary
conditions in the same way), Eq. (6.90) generates the following matrix system{

K̂+ [C]p

}
[Φ]p = [Q]p , (6.92)

where K̂ is a K×K block diagonal matrix composed of Ak sparse banded matrices
whose explicit form depends on the chosen finite difference scheme at the faces.
Eq. (6.92) is a linear system whose solution can be obtained by the GMRES or
matrix decomposition (if it is advantageous, given the problem dimensionality)
methods (Press et al., 2007).

For the FD-SPN model, the resulting equation will have the same form as
Eq. (6.92), except for considering the complex nth-order transport coefficients (see
Eq. (6.81)) in the matrix entries. For the time-dependent parabolic SPN equations
we obtain a system of differential equations{

K̂+ [Cp +
η

c

d

dt
[T]p

}
[Φ(t)]p = [q]p , (6.93)

which again can be solved using finite differences with a control parameter θ ∈ [0, 1],
(compare with Eq. (6.89)( η

cΔt
[T]p + θK̂+ θ[C]p

)
[Φ]m+1

p

=
[
(1− θ)K̂+ (1− θ)[C]p

]
[Φ]mp + θ[Q]m+1

p + (1− θ)[Q]mp . (6.94)

The structure of Eq. (6.94) suggests the use of matrix decomposition methods
to accelerate the iterative process of finding the solution. Otherwise, the generalized
minimal residual method (GMRES) can be employed. Alternatively for the time
variable, Runge–Kutta techniques can be used.
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6.4.3 Finite element method

The finite element method (FEM) is a highly versatile approach for dealing with
media with intricate geometries and heterogeneous distributions of material (here
optical) properties (Jin, 2002). Boundary conditions are added to the formulation
naturally, no matter the boundarie’s complexity. As with the FVM, the FEM starts
with a partition of the volume of interest into non-overlapping elements. The in-
formation on the partition or mesh takes the form of nodes and elements that
are related by a connectivity matrix. In the FEM, functions representing optical
properties or the light profile in the medium are approximated by piecewise lin-
ear functions or polynomials within each element. Hence, a highly refined mesh is
not needed in regions with spatially slowly varying functions. Compared with the
FVM, the FEM is usually more computationally intensive in terms of the problem
dimensionality. The FEM exclusively deals with functions evaluated at nodes, while
in the FVM it is possible to only deal with point-averaged information.

To implement the FEM for the CW-SPN model, the volume of interest is par-
titioned into l non-overlapping elements τj , j = 1, . . . , l, such that V =

⋃l
j=1 τj .

The elements are defined via d vertex nodes Ñi, i = 1, . . . , d. The nodes can be
separated into d1 internal nodes and d2 boundary nodes where the boundary con-
ditions are satisfied. Thus, d = d1 + d2 and the solution Φ(r) to Eq. (6.24) can be
approximated by the piecewise polynomial and continuous function Φh(r) as

Φ(r) ≈ Φh(r) =

d∑
i=1

Φiui(r) , ui(r) ∈ Ωh , (6.95)

where Ωh is a finite-dimensional subspace spanned by the basis functions ui(r),

i = 1, . . . , d. Hence, we can find Φ̃ = {Φi}, i = 1, . . . , d from which the solution
can be obtained everywhere through the interpolation rule given in Eq. (6.95).
Using the Galerkin method (Jin, 2002; Gockenbach, 2006), we can calculate the

equivalent numerical solution of Eq. (6.24) Φ̃ as[
K̃+ M̃+ Π̃

]
Φ̃ = F̃+ Γ̃ . (6.96)

Here, K̃ represents a ‘compound’ stiffness matrix and can be described as a diagonal
block matrix composed of ‘elemental stiffness matrices’ K̃k, k = 1, . . . ,K, with
entries (i, j) given by the expressions

K̃k (i, j) =

∫
V

1

(4k − 1)μ2k−1
∇ui(r) · ∇uj(r)dV , k = 1, . . . ,K , i, j = 1, . . . , d .

(6.97)

The structure of the ‘compound’ mass matrix M̃ is similar to the matrix M dis-

cussed for the FDMmethod and it is composed of ‘elemental mass matrices’ M̃k1,k2
,

k1, k2 = 1, . . . ,K with the following entries

M̃k1,k2
(i, j) =

∫
V

C (k1, k2)ui(r)uj(r)dV , k1, k2 = 1, . . . ,K , i, j = 1, . . . , d ,

(6.98)
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where C(k1, k2) are the elements of the matrix C (Eq. (6.26)). The structure of

matrix Π̃ is also similar to M and it is composed of matrices Π̃k1,k2
, k1, k2 =

1, . . . ,K, with the following entries

Π̃k1,k2
(i, j) =

∫
∂V

Θ(k1, k2)

(4k1 − 1)μ2k1−1
ui(r)uj(r) dσ ,

k1, k2 = 1, . . . ,K , i, j = 1, . . . , d (6.99)

where dσ is an element of area on the boundary ∂V and Θ(k1, k2) are the elements
of the matrix Θ = B−1A, see the boundary matrices A and B in Eq. (6.28).

The ‘compound’ force load vector F̃ is composed of terms F̃k, k = 1, . . . ,K,
(‘elemental force load vectors’) which are column vectors with the following entries

F̃k =

∫
V

Q(k)ui(r)dV , k = 1, . . . ,K , i = 1, . . . , d , (6.100)

where Q(k) are the components of column vector Q.

The column vector Γ̃ is similar to F̃ and originates from the external source
distribution S at the boundary. This vector is composed of terms Γ̃k, k = 1, . . . ,K,
which are column vectors of length d1 given by

Γ̃k(i) =

∫
∂V

G(k)

(4k − 1)μ2k−1
ui(r)uj(r) dσ , k = 1, . . . ,K , i = 1, . . . , d ,

(6.101)
where G(k) are the elements of the vector G = B−1S.

As for the previous numerical methods discussed, the discretized equations for
the FD-SPN model have the same form as for the steady-state situation, but substi-
tuting the transport coefficient by the complex transport coefficients (Eq. (6.81)).
For the TD-pSPN equations, we can write directly the FEM-discretized equations
as [

K̃+ M̃+ Π̃+
ηT̃

c

d

dt

]
Φ̃(t) = F̃+ Γ̃ , (6.102)

where the matrix T̃ has an expression similar to that of M̃, with analogous entries

T̃k1,k2 (i, j) =

∫
V

T (k1, k2)ui(r)uj(r)dV , k1, k2 = 1, . . . ,K , i, j = 1, . . . , d ,

(6.103)

The solution of Eq. (6.102) can be achieved by a finite difference scheme or Runge–
Kutta methods as previously for the FDM and FVM approaches (Eqs. (6.89)
and (6.94)).
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6.5 Diffuse optical tomography based on SPN models

Diffuse optical tomography is an imaging technique that aims to recover interior
maps based on the transillumination of a biological body and the (generally exte-
rior) measurement of the light that has propagated through the body. DOT involves
the recording of the exiting light and digital data processing, to obtain represen-
tative images of the relevant internal properties of the biological body (Wang and
Wu, 2007). Model-based iterative image reconstruction algorithms in DOT rely
on the accuracy of a discretized forward model to reproduce collected measure-
ments (Klose and Hielscher, 2008; Dehghani et al., 2009; Arridge and Schotland,
2009). Lately, model-based DOT has been attempted with the FD-SPN (Chu and
Dehghani, 2009) and the TD-pSPN equations (Bouza Domı́nguez and Bérubé-
Lauzière, 2011b; Bouza Domı́nguez and Bérubé-Lauzière, 2011c). We now proceed
to describe the main features and results of the implemented DOT algorithms with
these models.

6.5.1 DOT based on the FD-SPN model

For the FEM-discretized FD-SPN model, the inverse problem has been posed as
an unconstrained optimization problem with a regularization term (Chu and De-
hghani, 2009; Wang et al., 2011)

μ = argmin
{μh}

S∑
s=1

D∑
d=1

(Ms,d − Ps,d)
2
+λ

(
μh − μ0

)2
, (6.104)

where ‘argmin’ stands for argument of the minimum. In the last equation, the
vector μ represents the nodal values of an optical parameter set (e.g. absorption
and scattering coefficients); the summation is over the total number of configuration
sources S (modeled as isotropic point sources) and detector positions D, and the
termsMs,d and Ps,d represent the measurements and the forward model predictions,
respectively. Phase and amplitude data are considered in Eq. (6.104). The Tikhonov
regularization parameter λ appears multiplying the L2-regularization term, where
μ0 represents the a priori estimate of μ. The solution to the optimization problem
cast in Eq. (6.104) is found by the Levenberg–Marquardt method (Press et al.,
2007) which employs Jacobian calculations of phase and amplitude with respect
to μ. The Jacobian calculations are performed using the perturbation method and
the reciprocity approach, see (Arridge and Schotland, 2009) for details.

In (Chu and Dehghani, 2009), several numerical experiments are conceived to
test the FD-SPN model performance on retrieving the absorption and scatter prop-
erties. The experiments involve small geometries and tissue typical optical coeffi-
cient values in the NIR spectrum, see the article for details. A distinction in the
retrieved image accuracy, artefact presence (significant near the boundary) and
cross-talk effects is found for different orders N . Particularly, for N = 3 and 5 the
reconstructions performed acceptably well. Errors in the reconstructed values are
within 24% of the expected values and the worse results are obtained by the DE
(SP1) in the absorption coefficient reconstruction. The reported results support the
use of the FD-SPN model (orders N = 3 and 5) in DOT. The authors explained
that further improvements in the image reconstructions can be expected with the
optimization of the regularization parameter and selection of stopping criteria.
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6.5.2 DOT based on the TD-pSPN model

Recently, DOT based on the FDM-FEM discretized TD-pSPN equations has been
carried out (Bouza Domı́nguez and Bérubé-Lauzière, 2011b; Bouza Domı́nguez and
Bérubé-Lauzière, 2011c). This time, the inverse problem is posed as the following
constrained optimization problem

μ = argmin
{μh}

1

2

S∑
s=1

D∑
d=1

M∑
m=1

(
M

(m)
s,d − P

(m)
s,d

σs,d

)2

, P
(m)
s,d = M̂Φ̃

(m)

s

subject to

{
W̃Φ̃

(m)

s =
(
η
c

)
T̃Φ̃

(m−1)

s + Υ̃
(m)

s , m = 1, . . . ,M , s = 1, . . . , S
μl ≤ μ ≤ μu ,

,

(6.105)

The same notation as in Eq. (6.104) is used. An additional summation over the
time steps appears here in the objective function compared to that in Eq. (6.104)

to account for the time dependence of the light field. The quantities σ
(m)
s,d are the

standard deviations of the measurements; which are mainly determined by shot
noise. M̂ is the measurement operator which acts over the time-dependent vector

of composite moments Φ̃
(m)

s . The matrix W̃ = Δt
(
K̃+ M̃+ Π̃

)
+ (η/c)T̃ and

vector Υ̃
(m)

= Δt
[
F̃(m)+Γ̃

(m)]
result from the FDM-FEM numerical discretization

scheme; see Section 6.4 (the Euler finite difference scheme is employed). The vectors
μl and μu are lower and upper bounds over the set of optical coefficients μ to be
recovered.

The inverse problem cast in Eq. (6.105) contains the forward model and bounds
over the optical coefficient values as constraints. In addition, the time-dependence
of the forward model increases the complexity of the optimization problem mainly
because of the necessary time-stepping and the increased dimensionality of the
problem compared to the CW and FD cases. In (Bouza Domı́nguez and Bérubé-
Lauzière, 2011b; Bouza Domı́nguez and Bérubé-Lauzière, 2011c), the authors de-
cided to employ a ‘nested analysis and design’ (NAND) method (Hazra, 2010).
Basically, in the NAND method the implicit dependence of the state constraints

(or Φ̃
(m)

s ; we employ terminology of constrained optimization theory) with the de-
sign variables (or μ) is considered. Then, constraints posed by the forward model
are eliminated. The solution to the optimization problem given in Eq. (6.105) is
obtained through a Sequential Quadratic Programming (SQP) algorithm (Nocedal,
and Wright, 2006). SQP uses the gradient of the objective function in the iteration
process and a Hessian approximation by the damped BFGS method to avoid com-
puting second derivatives. Finally, a time-dependent adjoint differentiation scheme
(see Arridge and Schotland (2009) for the topic of adjoint variables) is utilized to
calculate the gradient and reduce the computation time.

To investigate the performance of the TD-pSPN model in recovering optical
properties of biological media, several numerical experiments are conducted in
(Bouza Domı́nguez and Bérubé-Lauzière, 2011b; Bouza Domı́nguez and Bérubé-
Lauzière, 2011c). The experiments involve a circular two-dimensional medium
(background medium) with a 1.5 cm of radius. The medium is homogeneous with
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optical properties μa = 0.01 cm−1, μs = 80 cm−1, g = 0.9 and η = 1.4 and it is con-
sidered as surrounded by air. In the multi-parameter reconstructions, absorptive
and scattering inclusions are embedded in the background medium; see Fig. 6.5.
Increasing values of μa for the absorptive inclusion are considered: 0.05, 0.1, and
1 cm−1 (high-absorption case) which correspond to diffusion coefficient values of
0.0414, 0.0412 and 0.037 cm. For the scattering inclusion, the value of 120 cm−1 is
assumed for its scattering coefficient. Multi-parameter reconstructions (absorption
and diffusion coefficient maps) were performed with the DE and the TD-pSPN

equations as the forward models and the results compared, see (Bouza Domı́nguez
and Bérubé-Lauzière, 2011b; Bouza Domı́nguez and Bérubé-Lauzière, 2011c) for
details.

Fig. 6.5. Numerical experiments for the multi-parametric inverse problem. Absorption
(only one value of μa = 0.05 cm−1 is represented) and scattering coefficient (120 cm−1)
distribution (top and bottom, left column) and diffusion coefficient distribution for each
type of inclusion (top and bottom, right column).

In all the experiments, the TD-pSPN model (N > 1) recovered accurately
the absorptive and scattering inclusion values; see Bouza Domı́nguez and Bérubé-
Lauzière (2011b) and Bouza Domı́nguez and Bérubé-Lauzière (2011c) for the com-
parison details. Particularly, the results obtained with N = 3 outperformed the
DE. For the reconstructed absorption maps, the errors with respect to the original
values (in percent, taking the maximum of the reconstructed values) for the DE
are of 19%, 16% and 8% (μa = 0.05, 0.1, and 1 cm−1). The corresponding errors for
the TD-pSP3 equations are of 0.1%, 8% and below 1%; see Figs. 6.6 and 6.7 and
compare with Fig. 6.5, to partly appreciate these results. For the reconstructed dif-
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Fig. 6.6. Solution of the inverse problem (absorption coefficient map) for the multi-
parametric inverse problem. The background (circle) optical properties are μa =
0.01 cm−1, μs = 80 cm−1, g = 0.9 and η = 1.4 and the medium is considered as sur-
rounded by air. Values of the absorption coefficient for the absorptive inclusion are: 0.05,
0.1, and 1 cm−1 (left to right). Images are plotted for the orders N = 1, 3, 5 and 7 (first,
second, third and fourth rows).

fusion maps, the DE and the TD-pSP3 equations presented approximately the same
errors in the reconstruction of the scattering heterogeneity in the cases μa = 0.05
and 0.1 cm−1. For the case μa = 1 cm−1, the DE error is greater than 40% while in
the case of the TD-pSP3 equations it is only 6%. A similar behaviour is observed
for the same reconstructed diffusion maps but at the position of the absorptive
inclusion. In addition, reconstructed images presented artifacts (almost negligible
spots, at the boundary) and cross-talk effects which vary with the order N , with
the DE-based reconstructions delivering the worst results. In this work, the authors
concluded that the DOT algorithm based on the TD-pSPN model (N > 1) can
accurately replace DE-based algorithms, especially in the physical situations where
the DE fails.
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Fig. 6.7. Solution of the inverse problem (diffusion coefficient map) for the multi-
parametric inverse problem. The background (circle) optical properties are μa =
0.01 cm−1, μs = 80 cm−1, g = 0.9 and η = 1.4 and the medium is considered as sur-
rounded by air. Images are plotted for the orders N = 1, 3, 5 and 7 (first, second, third
and fourth rows) where the absorptive heterogeneity takes the following values: 0.05, 0.1,
and 1 cm−1 (left to right). At the absorptive heterogeneity (see Fig. 6.5), the diffusion
coefficient takes the following values D = 0.0414, 0.0412 and 0.037 cm. At the scattering
heterogeneity (see Fig. 6.5), the diffusion coefficient has the value D = 0.0277 cm.

6.6 Molecular imaging of luminescence sources based on
SPN models

Optical molecular imaging of luminescence sources (OMI) is a promising discipline
of biomedical optics. OMI allows the study of biological processes and medical
treatment, as well as the diagnosis and follow-up of diseases (Weissleder and Ntzi-
achristos, 2003; Hielscher, 2005; Ntziachristos, 2006; Rao et al., 2007; Willmann et
al., 2008; Klose, 2009; Mitchell et al., 2011; Elwell and Cooper, 2011). Compared to
intrinsic imaging (or DOT), luminescent light increases measurement sensitivity of
experimental systems to specific targets or physiological processes occurring in bi-
ological tissues (Weissleder and Ntziachristos, 2003; Hielscher, 2005; Ntziachristos,
2006). Applications of OMI are mainly focused in small animal imaging, although
clinical imaging has been lately targeted (Burgess et al., 2010; Pleijhuis et al.,
2011). Tomographic methods in OMI would supply researchers and physicians with
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three-dimensional visualization of tissue structure and functions. Current modal-
ities are bioluminescence and fluorescence imaging and, more recently, Cerenkov
luminescence imaging (Mitchell et al., 2011). Tomographic imaging by these meth-
ods involves the solution of an inverse source problem. For solving an inverse source
problem, the optical properties of the medium are needed. Optical properties of lu-
minescence emitting media (or substrate media) can be supplemented by additional
anatomical information from CT/MRI scans and tabulated optical coefficient val-
ues (Alexandrakis et al., 2005; Alexandrakis et al., 2006; Klose et al., 2010). If
no a priori information exists about the substrate medium, or the information is
insufficient, a complementary DOT reconstruction can be carried.

Inverse problems based on deterministic models frequently use the DE (Naser
and Patterson, 2011; Larusson et al., 2011; Zhu et al., 2011). However, in many
practical situations luminescence sources are located deep into small geometries of
tissue, in the presence of high absorption, such as of internal organs. Under those
conditions, the DE fails as a model of light propagation in tissues and transport
calculations are mandatory to gain in accuracy (Hielscher et al., 1998). In this
context, deterministic models based on the SPN approximation are preferred and
used to perform OMI. In this section, we review recent results on the use of SPN -
based models in bioluminescence and fluorescence DOT. We also include the latest
applications of SPN -based models in Cerenkov optical imaging.

6.6.1 Bioluminescence imaging

Bioluminescence originates in chemical reactions and does not require external ex-
citation sources (Klose, 2009; Contag and Bachmann, 2002; Welsh and Kay, 2005;
Vo-Dinh, 2003). The chemical reactions involve the interaction of an administered
light-producing substrate (usually luciferine) and a transfected enzyme (luciferase
from firefly, Renilla, or Aequorin). Luciferase catalyzes the oxidation of luciferine.
causing light emission. The bioluminescent source density changes slowly with time
and the source can be assumed to be steady. Although the DE is frequently used as
the forward model, at emission wavelengths less than <650 nm (Renilla or Gaussia
luciferase) light is strongly absorbed by tissues, violating the limits of DE valid-
ity. In addition, the ratio μ′s/μa at visible and NIR wavelengths varies over a wide
range for some organs such as bone, and for others such as heart and liver, this ratio
does not go beyond 10 (Vo-Dinh, 2003). Hence, physical situations where transport
calculations are necessary can occur (Hielscher et al., 1998). These difficulties are
aggravated in the presence of small geometries and isotropic point-like biolumines-
cence sources, circumstances where the DE is out of its comfort zone (Mart́ı López
et al., 2004; Hielscher et al., 1998; Klose and Larsen, 2006).

To overcome the drawbacks of the DE in such situations, the CW-SPN model
(Eq. (6.24)) has been used as the forward model in bioluminescence imaging (Klose
et al., 2010; Lu et al., 2009; Tian et al., 2010; Klose, 2012). Particularly, the CW-
SP3 equations are frequently chosen, since they can provide transport-like solutions
with low computational cost (Klose et al., 2010). Reconstruction techniques with
the CW-SP3 equations also employ spectrally resolved information in order to
reduce the inherent ill-posedness of inverse source problems (Lu et al., 2009). In the
literature, the following reconstruction techniques for small animal imaging have
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been attempted: (i) a gradient-based optimization method with regularization (Lu
et al., 2009), (ii) the algebraic reconstruction method, with a priori estimation of
the absorption distribution by an evolution strategy (ES) algorithm (Klose et al.,
2010) and a generalized graph cuts optimization method (Tian et al., 2010). Next,
we provide some details on the mentioned source reconstruction techniques.

In (Lu et al., 2009), a FEM discretization of the CW-SP3 equations is used to

calculate the model predictions as the exitance values J
(out)
no . Then, the following

bound-constrained least-squares problem is posed

min
0<Q<Qsup

∥∥A(FEM )Q−M
∥∥+ λη(Q) , (6.106)

where ‖ ‖ represents the L2 or Euclidean norm, Qsup is the upper bound of the
source density distribution Q, the matrix A(FEM ) appears in the FEM discretiza-

tion process and includes the measurement operator M̂ (see Eqs. (6.33) and (6.96)),
M is the vector of measurements, λ is the regularization parameter and η(Q)
is a penalty function. The minimization of Eq. (6.106) is performed by the lim-
ited memory variable metric-bound constrained quasi-Newton method (BLMVM)
(Benson and Moré, 2001). In the BLMVM, an approximate Hessian is calculated
by vector-vector multiplications, which assures easy matrix inversion and reduces
memory and computation time. An implementation of the BLMVM is available in
the Toolkit for Advance Optimization (TAO) (Website TAO, 2012). A fully parallel
version of the reconstruction algorithm including FEM assembly is also provided
in (Lu et al., 2009).

In Klose et al. (2010), an ES algorithm minimizes an objective function similar
to Eq. (6.106) (no regularization term is included this time) to estimate the average
absorption coefficients at each wavelength. The goal is to diminish the inaccuracy on
the determination of the optical parameters which could lead to mislocation of the
source position. The ES is an iterative method that searches for an optimal selection
of parameters by probing the global search parameter space (Beyer and Schwefel,
2002; Dirk, 2002). This method uses selection and mutation as natural-resembling
operations and it is comparatively faster than gradient-based approaches (Dirk,
2002). Average absorption distributions are then used in the inverse source problem.
To find the solution of the inverse source problem, the CW-SP3 equations are
solved by the FDM. A linear relation between model predictions and source density
distribution is derived, P = A(FDM)Q where A(FDM) is an m × n matrix which
appears similarly to A(FEM ), see Eq. (6.106). To speed-up the calculations, the
reciprocity principle is used (Dehghani et al., 2008). The inverse source problem
posed by the linear system of equations A(FDM)Q = M is solved by the algebraic
reconstruction technique (ART) (Natterer, 2001). The ART (or Kaczmarz method)
is a method for solving linear systems of equations that exploit sparseness (Natterer,
2001; Nikazad, 2008). Finally, the ART iteratively computes the solution using the
following formula

Qk+1 = Qk + ξk

(
Mi − 〈ai, Qk〉

‖ai‖2
)
ai , (6.107)

where 〈 , 〉 represents the scalar product, ξk is a relaxation parameter, i =
kmodm + 1, Mi is the ith component of M and ai is the ith row of the matrix
A(FDM).
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In (Tian et al., 2010), the CW-SP3 equations are discretized using the FEM. A
linear relation between the exitance values and the source density distribution is
derived. The solution to the inverse source problem is determined by minimizing
the energy function E(Q)

E(Q) =
∥∥A(FEM )Q−M

∥∥+ λ ‖Q‖ , (6.108)

which is a particular case of the objective function appearing in Eq. (6.106), con-
sidering the penalty function as the L2 norm of Q. To optimize the energy function
given in Eq. (6.108), a gradient-free optimization method called generalized graph
cuts (GGC) is employed. GGC is an efficient optimization tool that is applied in
computer vision and graphics (Boykov and Kolmogorov, 2004; Kolmogorov and
Zabih, 2004; Kolmogorov and Rother, 2007). Lately, GGC has been rediscovered
in other disciplines including bioluminescence imaging (Tian et al., 2010; Liu et
al., 2010). As described in (Tian et al., 2010; Liu et al., 2011), a graph contain-
ing the FEM mesh is built and an equivalent graph expression for Eq. (6.108)
is found. Then, the energy function Eq. (6.108) is minimized using a quadratic
pseudo-boolean optimization method (Kolmogorov and Rother, 2007).

6.6.2 Fluorescence imaging

Fluorescence imaging by direct methods relies on active, or activatable, probes
which are excited by external sources or specific enzymes (Rao et al., 2007; Klose,
2009, 2012). Indirect methods are used in gene activation and regulation with the
introduction of transgenes, which induce the production of fluorescence proteins
(Rao et al., 2007). Fluorescent probes possess their specific properties in terms
of converting excitation light into emitted (fluoresced) light. These are the molar
extinction coefficient ε and the quantum yield ς. In TD methods, the fluorescence
lifetime τ , which characterizes the fluorescence emission dynamics is also included
in the studies. The fluorescence lifetime is sensitive to local metabolite concen-
trations or environmental conditions within tissues (Nothdurft et al., 2009), and
thus provides information about such factors. When distributed into biological
tissues, fluorescent probes contribute to the overall absorption (absorption of a
fluorophore being equal to ε times the concentration C). Fluorescence imaging re-
quires a forward model that maps fluorophore distribution to fluorescence data, as
the straightforwardly used DE (Ntziachristos, 2006; Zacharopoulos et al., 2010; Zhu
et al., 2011). However, in the presence of high absorption, see for example (Comsa
et al., 2008) and references in (Bouza Domı́nguez and Bérubé-Lauzière, 2011a), the
DE cannot compete with quantitativeness of biomarkers offered by nuclear imaging
techniques.

With this perspective, fluorescence tomography has been recently attempted
with the CW-SPN model as the forward model for describing both the excita-
tion (ex ) and the fluorescence (fl) light propagation (Klose, 2010b; Klose and
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Pöschinger, 2011; Klose et al., 2011; Klose, 2012). Thus, the model consists in
a system of two SPN equations as[

D(i)
r +C(i)

]
Φ(i)(r) = Q(i)(r) , i = ex ,fl , (6.109)

where the components of the source vector Q(fl)(r) are proportional to the fluo-
rescence source term Qfl(r), which quantify the interaction between the excitation
light and the fluorescent response

Qfl(r) = ςεCψex
0 (r) . (6.110)

Eq. (6.109) is discretized using the FDM and the resulting algebraic system of equa-
tions is solved by the successive over-relaxation (SOR) method (Klose et al., 2011;
Saad, 2003). Then, the inverse problem is posed similarly to Eq. (6.106) and iter-
atively solved for C using an expectation-maximization (EM) method (Dempster
et al., 1977; Wernick and Aarsvold, 2004). Based on the abovementioned works,
notable improvements have been achieved in the area of hyperspectral excitation-
resolved fluorescence tomography. Here, fluorophores with broad molar extinction
spectra are used as probes, and allow exploiting the spectral properties of tissue
oxy- and deoxy-hemoglobin components in ranges where their molar extinction
varies widely (Klose and Pöschinger, 2011). In another work, the authors employ
the FEM as the discretization method for Eqs. (6.109) (Han et al., 2010). Also, the
usually sparse/spatially-reduced properties of fluorophore distributions are used
in a regularization scheme as a priori information. The solution of the inverse
problem is searched by an iteratively reweighted scheme which approximates the
L1-norm regularization (Han et al., 2010; Wang et al., 2011). A sampling procedure
(visual inspection) is chosen to determine the optimal value for the regularization
parameter.

In FD, a similar formulation to Eq. (6.109) has been derived (Lu et al., 2010),
this time using the FD-SPN equations and introducing the complex-valued nth-
order transport coefficients Eq. (6.81). The resulting equations have been dis-
cretized through the FEM and a parallel adaptive FEM is used. Finally, the quest
for lifetime imaging has recently triggered the development of new TD forward
models based on the TD-pSPN equations (Bouza Domı́nguez and Bérubé-Lauzière,
2011a). In this work, a set of TD-pSPN equations has been obtained for describing
the time-dependent propagation of the excitation light and the ensuing fluores-
cent response. This time, the time-dependent fluorescence source term Qfl(r, t)
quantifies the temporal interaction between the excitation field and the fluores-
cence emission. The coupling between excitation and fluorescence emission can be
described through a convolution operation as

Qfl(r, t) =
ςεC(r)

τ

∫ t′=t

t′=0

ψex(r, t′) exp
(
t′ − t

τ

)
dt′ . (6.111)

A FEM/FDM numerical implementation is described in the same work. Numerical
simulations with three-dimensional biological media provide new information on the
influence of fluorophore distribution on the TD curves, see Fig. 6.8. This approach
should lead, in a near future, to the solution of a nonlinear inverse problem for
recovering lifetime spatial maps τ .
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Fig. 6.8. Numerical simulations for a cylindrical homogeneous medium (η = 1.4, μa =
0.13 cm−1, μs = 100 cm−1 and g = 0.9.) with an absorptive fluorescent inclusion (μa =
3 cm−1 and τ = 0.56 ns) located at point I; see tomographic cut of the cylinder at right.
Plots represent the fluorescence TD curves at point D, the closest point to I. We consider
three different fluorophore distributions (left to right): a point inclusion, a small spherical
inclusion and a Gaussian distributed inclusion. There is a noteworthy change in the shape
of the curve.

6.6.3 Cerenkov luminescence imaging

Cerenkov luminescence imaging (CLI) is an evolving technology that uses optical
photons generated by positron emission tomography (PET) radiotracers (Robert-
son et al., 2009; Liu et al., 2010b; Boschi et al., 2009; Spinelli et al., 2010, Dothager
et al., 2010). Cerenkov radiation is created by high-energy charged particles that
momentarily exceed the speed of light in the medium in which they propagate
(Robertson et al., 2009). PET radionuclides and most of β-emitting radionuclides
with biomedical applications produce measurable Cerenkov radiation in water or
in tissue (Boschi et al., 2009). The Cerenkov light spectrum is continuous, in con-
trast to fluorescence or emission spectra that have characteristic spectral peaks.
The relative intensity is proportional to frequency thus: higher frequencies (ultra-
violet/blue) are most intense. At ultraviolet/blue wavelengths, Cerenkov radiation
is highly absorbed by tissue components (water, hemoglobin, cytochromes, etc.).
Large absorption coefficients make the DE less accurate and transport calculations
are required (Hielscher et al., 1998).

Cerenkov radiation can be detected by current optical imaging methods. Re-
trieving the distribution of Cerenkov optical sources becomes an inverse lumines-
cence source problem, as in bioluminescence tomography. Moreover, radionuclide
activity levels which are necessary to inject and produce detectable optical sig-
nals are typical of small animal imaging (Spinelli et al., 2010; Li et al., 2010).
Therefore, CLI provides considerable advantages regarding drug discovery and in
general, biomedical research. Cerenkov luminescence tomography for small animal
imaging has been attempted with success and even a multispectral approach has
been developed (Spinelli et al., 2011). However, the reconstruction results are lim-
ited by the use of the DE as the forward model (discretized using the FEM) in
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media where large absorption occurs in small geometries. In addition, the inverse
source problem is posed as an unconstrained optimization problem which accen-
tuates the ill-posedness. Typically, a linear least-squares type, objective function
with a Tikhonov regularization term is employed (Spinelli et al., 2011; Zhong et
al., 2011). Then, the solution can be iteratively retrieved by the preconditioned
conjugate gradient (PCG) method (Li et al., 2010) or a non-negative least square
optimization algorithm (Spinelli et al., 2011).

Lately, the FEM-discretized CW-SP3 equations have been used in a model-
based reconstruction algorithm to perform whole-body Cerenkov luminescence to-
mography (Zhong et al., 2011b). The inverse source problem is posed as a linear
least-squares objective function with a regularization term or penalty function sim-
ilarly as in Eq. (6.106). The penalty function is set as a linear combination of L2

(ridge-regression penalty) and L1 (lasso-regression penalty) norms of the source
density distribution Q. This type of regularization is known as elastic net regu-
larization and is used for moderating both smoothing and sparsity effects in the
reconstruction (Friedman et al., 2010; Van der Kooij, 2007). The components of
the vector Q are computed by first applying a soft-threshold operation, to account
for lasso penalty, and consequently a proportional shrinkage, to account for the
ridge penalty. Details of the algorithm and its derivation can be found in (Fried-
man et al., 2010). In (Zhong et al., 2011b), a number of experiments concerning
small animal imaging are performed. A comparison between DE and SP3-based
reconstructions using the mentioned algorithm is carried out. The impact of the
high-absorption tissues (∼1 cm−1) is evaluated. There is a substantial reduction in
the source localization error (more than an order of magnitude) when the CW-SP3

equations serve as the forward model. Thus, the work strongly supports the use
of the CW-SPN model in CLI preclinical studies and opens a pathway to clinics,
where the use radioactive contrast agents is widely accepted. More recently, Klose
has discussed the use of the SP3 equations for Cerenkov light tomography in a
multi-spectral framework (Klose, 2012).

6.7 Summary

Light propagation models based on the SPN approximation have been derived, im-
plemented, and used to solve problems in biomedical optics during the last decade.
In the literature, both the standard RTE and the source-divergence RTE are em-
ployed to obtain low-order transport models by introducing the SPN approxima-
tion. In particular, the equations derived from the source-divergence RTE are able
to correctly describe light propagation near point sources, a common physical situ-
ation in biomedical optics. Applying the SPN approximation to the diffuse compo-
nent of the radiance results in a better description of radiative transport in tissues
since angular dependencies are attenuated with the reduced diffuse components
formulation. SPN equations have been obtained for steady state, frequency and
time domains. Steady-state and frequency-domain SPN equations are equivalent
under a simple transformation of the transport coefficients into complex coefficients.
Time-domain SPN models have different forms in dependence of the derivation. In
particular, the time-domain parabolic SPN equations constitute the light propa-
gation model that has been most studied thus far for applications in biomedical
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optics. SPN models have been extended to describe luminescent light transfer in
biological tissues.

Recently, SPN models have been employed in DOT and luminescence imaging
with significant success. Image reconstructions of absorption and scattering inho-
mogeneities show an appreciable improvement in localization and quantitativeness
in comparison to DE results. Furthermore, the presence of artifacts and cross-
talk effects is reduced by the use of SPN -based DOT algorithms. In inverse source
problems (see references cited in Section 6.6), DE-based results have been improved
through the use of SPN -based algorithms. By accurately modeling Cerenkov light
propagation in biological tissues, the SPN equations have also opened a way to
satisfactory radionuclide and optical images co-registration. Additionally, SPN—
based CLI offers an alternative (with both functional and anatomical information)
to costly PET instrumentation, with no limitations regarding clinically approved
targeted agents as in other luminescence imaging modalities. As a further step
in CLI, optical signals can be reinforced by spectrally coupling Cerenkov radia-
tion at ultraviolet/blue wavelengths to far-red and near-infrared emitting quantum
nanoparticles or fluorophores, resulting in an improvement of reconstructed images
(Dothager et al., 2010).

These results demonstrate that the SPN models are an alternative to com-
putationally costly transport calculations (calculations are speeded-up by near to
two orders of magnitude), and a solution to DE failures in a considerable number
of experimental situations. In general, the reconstructions algorithms that employ
SPN -based forward models have been evolving by including spectral information
and constrained optimization features. Further efforts should be addressed on (i)
improving the numerical schemes for calculating the model predictions, (ii) reduc-
ing the ill-posedness of the inverse problem by imposing constraints in both the
parameter space (optical coefficients) and the forward model, and (iii) augmenting
the robustness of the inverse problem formulation, e.g. in the choice of the objective
function.
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Bérubé-Lauzière acknowledges financial support from an NSERC Discovery Grant
(Canada) for the present work. Yves Bérubé-Lauzière is member of the FRQ-S-
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