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Preface

This eighth volume of Light Scattering Reviews is aimed at the discussion of re-
cent trends and results in radiative transfer and light scattering theories. Radia-
tive transfer theory is based on the phenomenological radiative transfer equation
whereas the main equations of light scattering theory are derived on the basis of
the Maxwell theory. The first part of the book discusses recent results in single light
scattering theory. Aerosol and cloud particles composed of liquids (mainly water)
are generally spherical in shape although they can contain nonspherical inclusions.
Solids suspended in the atmosphere (road dust, ice crystals, etc.) are irregularly
shaped particles. The methods of calculation of optical properties of spherical parti-
cles are well developed. This is not the case for irregularly shaped particles, where
the main tool used for the computations is the physical and geometrical optics
approximations. Interestingly enough, due to large sizes of scatterers and weak
absorption in the visible, various optical models of irregularly shaped particles pro-
duce similar light scattering patterns, for both intensity and degree of polarization
of scattered light. These patterns are usually featureless and differ considerably
from those for Mie scatterers.

The first chapter of this volume, prepared by A. Baran, discusses various models
used to represent single light scattering by crystalline clouds and nonspherical
aerosols. Bi and Yang describe in detail the physical-optics hybrid methods for
computing the scattering and absorption properties of ice crystals and dust aerosols.
A. Borovoi considers the physical optics approximation and the shadow-forming
field, which is a useful concept used for understanding light scattering properties
of large scatterers. R. L. Panetta et al. introduce a pseudo-spectral time domain
method, valid also for small macroscopic particles, where physical optics cannot
be used. Farafonov in the last chapter of Part I discusses the application of non-
orthogonal bases in the theory of light scattering by spheroidal particles. The last
two chapters of Part I section are based on the direct solution of Maxwell equations.

Part II of the volume is aimed at the discussion of diverse radiative transfer
problems, such as optical imaging in biological media (Dominguez and Bérubé-
Lauzière), transillumination of turbid media by polarized light (Gorodnichev et
al.), and surface state analysis (Efremenko et al.). The astrophysical applications
are presented by A. Nikoghossian. V. Natraj gives a comprehensive account of fast
radiative transfer methods. In the last chapter of the volume, C. Tomasi et al. study
the aerosol direct effect on climate using extensive radiative transfer calculations.

Bremen, Germany Alexander A. Kokhanovsky
October, 2012
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Single Light Scattering



1 Light scattering by irregular particles in the
Earth’s atmosphere

Anthony J. Baran

1.1 Introduction

On planet Earth, we are fortunate to have an atmosphere, which sustains life,
along with the radiation radiated from our nearest star, the Sun. The interaction
between radiation emitted by the Sun and the Earth’s atmosphere, not only helps
to sustain life, but also gives rise to the observed display of colours in the Earth’s
atmosphere. The interaction between electromagnetic radiation emitted by the Sun
and the Earth’s atmosphere is responsible for the depth of blue in the sky. The red
sky at sunset. The yellowness of the Sun, rainbows, the whiteness of clouds, the
appearance of haloes around the Sun and moon, and the vivid array of colours that
might appear in the sky after volcanic eruptions. All these manifestations of colour
arise from the basic interaction between electromagnetic radiation and matter. On
the surface of the Earth, we observe these manifestations of colour, through the
process of single-scattering or multiple scattering. Indeed, if we were observers in
space, the Sun would appear a different colour, in fact white, simply because there
is no atmosphere in space.

Through the process of scattering, we are indeed fortunate to enjoy the rich
tapestry of colour that nature can provide, which has inspired great painters and
poets, such as Turner and Wordsworth. Indeed, Keats once commented that the
rainbow appears so beautiful that science by describing its causes will destroy
its beauty. However, this is a comment that few would agree with, since science
has enhanced its beauty through the unification of electricity and magnetism, so
elegantly coupled together, through the Maxwell equations, achieved in 1861. It is
this set of equations, which can predict all the scattering that we observe on Earth,
and indeed on any other planet or in interstellar space. The Maxwell equations are
universal; far from destroying the beauty of the rainbow, they enhance its beauty,
through four simple universal equations.

Given that the Earth’s atmosphere is composed of matter, which can take on
a variety of forms, such as molecules of different gases, aerosol particles, water
droplets and ice crystals. These different states of matter exist in different sizes,
materials, densities, and spatial and temporal distributions, and over a spectrum
of size. Fundamentally, it is the size and material composition of the particles that
determine how incident electromagnetic radiation will interact with atmospheric
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particles. For instance, molecules being the smallest size will interact with incident
electromagnetic radiation of particular wavelengths, i.e., the shorter wavelengths,
such as blue light. This preferential wavelength selection manifests itself as scattered
blue light around the sky. The intensity of scattered blue light also depends on
the density profile of atmospheric molecules and the presence of ozone. Since, the
atmosphere is composed of gases, which vary spatially and temporally, as the Sun
sets near the horizon, most of the blue light has been scattered out of the line
of sight, and this results in the longer wavelength, red light, being preferentially
scattered into our eyes.

As the size of particles increase with respect to the wavelength of incident
electromagnetic radiation, i.e., size� incident wavelength, results in processes such
as refraction into the particle, and internal reflection around the particle. These
processes in water droplets form the rainbow and, in ice crystals, they can result
in the formation of the 22◦ and 46◦ halo, observed around the Sun. Atmospheric
particles such as aerosols may be composed of differing materials, and these different
materials, can absorb visible light, which may result in scattered electromagnetic
radiation, with a vivid array of colours. Aerosols can be injected into the Earth’s
upper atmosphere by meteor impacts, wind-blown desert dust storms, and volcanic
eruptions.

Clouds also manifest themselves in the Earth’s atmosphere, and these in the
lower atmosphere, due to the warmer temperatures, are water clouds, which are
composed of water droplets. In the upper atmosphere, usually at altitudes greater
than about 6 km, at colder temperatures, the water molecules freeze into the sim-
plest ice crystal form – hexagonal ice crystals. These ice crystal clouds are called
cirrus, and appear as wispy tufts of hair, taking on a ghostly appearance. Given
that the basic ice crystal formed is hexagonal in shape, this geometry, which is
tumbling randomly in the Earth’s atmosphere, is the reason why the 22◦ and 46◦

halo exist. Ice crystals, being essentially non-absorbing at visible wavelengths, re-
fracts light into the crystal via its mantle surfaces, and light refracts back out of
the mantle surface, and through its ends, resulting in the familiar 22◦ and 46◦

haloes. Therefore, optical phenomena observed in the sky depend on the phase,
composition, shape and orientation of the particles.

The differences in scattering and absorption, between the different particle en-
sembles, will result in a net radiative effect that either cools or warms the surface
of the Earth. The net radiative effect is defined as follows; it is the sum of the
short-wave radiative effect and long-wave radiative effect. The short-wave radia-
tive effect is the difference between the reflected short-wave flux and the clear-sky
reflected short-wave flux, and the long-wave radiative effect is similarly defined. In
general, the short-wave radiative effect is generally negative (i.e., cooling effect),
whilst the long-wave radiative effect is generally positive (i.e., warming effect).
The net radiative effect can therefore be positive, neutral or negative. Therefore,
in order to determine the net radiative effect of different particle ensembles it is
important to understand and to predict, how electromagnetic radiation interacts
with atmospheric particulates, if the future climate state of planet Earth is to be
reliably predicted.

However, as Figs. 1.1(a) and 1.1(b) demonstrate, the representation of particu-
late scattering and absorption in a climate model is far from understood. The figure
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Fig. 1.1. Differences between GCM predicted top-of-atmosphere reflected short-wave
flux (units of Wm−2) and space-based measurements for June-July-August, averaged
over 10 years, for (a) cloud and (b) mineral dust aerosol (b) from J. Mulcahy, personal
communication).

compares space-based measurements of the Earth’s top-of-atmosphere (TOA) re-
flected short-wave flux with a general circulation model (GCM) prediction of the
TOA reflected short-wave flux. Figure 1.1(a) compares this difference for cloud,
and Fig.1.1(b) compares the difference for mineral dust aerosol. In general, the fig-
ure shows that the GCM is too reflective, when compared against measurements,
though in the tropics the cloud is too dark. However, how much incident solar
radiation is reflected back to space depends not only on scattering, but also on
how the particles are vertically distributed, in terms of their size and mass and
their altitude, and on their spatial and temporal distribution. All these parameters
are currently highly uncertain, and can lead to uncertainties in the instantaneous
short-wave radiative effect of cirrus and mineral dust aerosol of about ±30Wm−2
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and ±46Wm−2, respectively (Baran, 2009; Osborne et al., 2011). Not surpris-
ingly, with such radiative uncertainties and differences between measurements and
models, as exemplified by Fig. 1.1, the most recent fourth assessment report of the
Panel on Climate Change (IPCC, 2007) concluded that the coupling between clouds
and aerosol to the Earth’s atmosphere remains one of the greatest uncertainties in
predicting climate change.

Having briefly highlighted the difficulties that climate models have in represent-
ing the scattering and absorption properties of atmospheric particulates, the rest of
this chapter will review the basic definitions of scattering, the electromagnetic and
light scattering methods used to solve scattering problems, the myriad of sizes and
shapes of particle that exist in the Earth’s atmosphere, and the idealized irregular
models that have been proposed to represent their light scattering properties.

1.2 Basic definitions of scattering

In this chapter, it is assumed that atmospheric particulates are randomly oriented
in three-dimensional space, and that each particle possesses a plane of symmetry.
Incident sunlight on this ensemble of nonspherical particles is unpolarized, in which
case the incident Stokes vector (Iinc, Qinc, Uinc, Vinc) is linearly related to the scat-
tered Stokes vector (Isca, Qsca,Usca, Vsca) by a 4×4 scattering matrix. Each element
of the scattering matrix is dependent on the scattering angle, θ, but not on the
azimuth angle, φ, due to the simplifying assumptions previously stated. Thus, the
scattered Stokes vector is related to the incident Stokes vector (van de Hulst, 1957),
via the following 4× 4 scattering matrix.⎛⎜⎜⎝

Isca
Qsca

Usca

Vsca

⎞⎟⎟⎠ =
Csca

4πr2

⎛⎜⎜⎝
P11 P12 0 0

P21 P22 0 0
0 0 P33 P34

0 0 P43 P44

⎞⎟⎟⎠
⎛⎜⎜⎝
Iinc
Qinc

Uinc

Vinc

⎞⎟⎟⎠ (1.1)

where in Eq. (1.1) Csca is the particle scattering cross-section (scattering efficiency
multiplied by the particle orientation-averaged geometric cross-section) and r is the
distance of the particle from the observer. The scattering efficiency, Qsca, is a di-
mensionless quantity, and in the case of zero absorption and particle size� incident
wavelength (referred to as the limit of geometric optics), then Qsca = Qext ∼ 2.0,
where Qext is the extinction efficiency (van de Hulst, 1957). The 4 × 4 matrix,
given by Eq. (1.1), is called the ‘scattering phase matrix’, ‘scattering matrix’ or
the ‘Mueller’ matrix. The term phase used here is unfortunate as Eq. (1.1) does
not by itself contain any information on phase.

If phase were to be included, then the amplitude scattering matrix must be
solved (Mishchenko, 2000). The amplitude scattering matrix more generally de-
scribes a scattering event, using electromagnetic theory. The linearity of the bound-
ary conditions imposed by the Maxwell equations means that the electric or mag-
netic vector fields of the incident plane waves, denoted by i, can be related to the
electric or magnetic vector fields of the scattered plane waves, denoted by s, by
resolving them into their parallel (‖) and perpendicular (⊥) counterparts, defined
with respect to the scattering plane. The scattered and incident electric fields can
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be related to each other via the following 2×2 amplitude scattering matrix (Bohren
and Huffman, 1983):(

Es⊥
Es‖

)
=
eik(r−z)

−ikr

(
S2

S4

S3

S1

)(
Ei⊥
Ei‖

)
(1.2)

where in Eq. (1.2), k is the wavenumber (2π/λ, and λ is the incident wavelength) of
a plane wave propagating along the z-axis. Equation (1.2) describes the complete
particle scattering pattern, inclusive of interference. In general, the matrix elements
of Eq. (1.2) could also be functions of θ and φ to obtain the complete scattering
pattern.

Since Eq. (1.1) considers only randomly oriented particles, each possessing a
plane of symmetry, then out of the 8 elements shown in Eq. (1.1), only 6 are in-
dependent, due to P21 = P12 and P43 = −P34 (van de Hulst, 1957). Likewise,
the scattering matrix elements of Eq. (1.2) could also be simplified by consider-
ing simple symmetric shapes such as the sphere. Given that incident sunlight is
unpolarized, then the incident Stokes vector is [1, 0, 0, 0]T, which means that from
Eq. (1.1), Isca ∝ P11Iinc. The P11 element of the scattering phase matrix is called
the scattering phase function and it is proportional to the scattered intensity, and
is normalized to unity by the following equation:

1

2

∫ π

0

P11(θ) sin θ dθ = 1 (1.3)

Note also, from Eq. (1.1), that after multiplying out the scattering phase ma-
trix by the incident unpolarized Stokes vector, the resulting scattered Stokes vector
has become linearly polarized, since Qsca ∝ P12Iinc. Incident unpolarized electro-
magnetic radiation on an ensemble of particles generally leads to scattered linearly
polarized light , unless P12 = 0, which is true in the exact forward (i.e., θs = 0)
and exact backscattering (i.e., θs = 180◦) directions. It is therefore important to
generally include polarization in radiative transfer calculations, as its omission can
lead to serious errors in aerosol scattered radiance calculations (Mishchenko et al.,
1994; Levy et al., 2004; Feng et al., 2009).

The degree to which unpolarized incident light becomes linearly polarized is
called the degree of linear polarization (DLP), in terms of matrix elements from
Eq. (1.1), it is defined by the following equation:

DLP = −P12

P11
(1.4)

The DLP is an important quantity, as it gives the proportion of scattered light
that is horizontally (i.e., DLP < 0) and perpendicularly (i.e., DLP > 0) polarized,
with respect to some horizontal plane. Thus, the DLP can take on both positive
and negative values, and the DLP depends upon the size and shape of the particle,
as well as scattering angle. Therefore, it is an important quantity to measure for
the remote sensing of cirrus and aerosol particles.

In the exact backscattering direction the scattering matrix is diagonal (Mish-
chenko and Hovenier, 1995) and consists of two independent elements of the scat-
tering matrix, which are P11 and P22. It has been seen from above that incident un
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polarized light can become linearly polarized due to the process of single scattering,
in turn, incident vertical or horizontal polarized light can become ‘depolarized’ due
to the process of single scattering. Laser light can be a source of polarized light.
If it is assumed that a laser beam is 100% linearly polarized parallel to a fixed
plane such as the scattering plane, then the incident Stokes parameter is [1, 1, 0, 0]T,
and in the case of single scattering in the exact backscattering direction Qs differs
from Is, and this phenomenon is called linear depolarization. The degree to which
polarized light becomes depolarized due to single scattering is called the linear
depolarization ratio, δL, defined as the ratio of flux between the cross-polarized
component of the backscattered light to the co-polarized component, and is given
by the following equation (Mishchenko et al., 2002):

δL =
P11(180

◦)− P22(180
◦)

P11(180◦) + P22(180◦)
(1.5)

In the case of perfectly symmetric particles such as spheres or if the incident light
is aligned with the symmetry axis of an axially symmetric particle, then, δL = 0,
since P11 = P22. For the case of randomly oriented axially symmetric particles
or particles lacking symmetry, then δL > 0. Therefore, δL is also an important
quantity to measure for the remote sensing of clouds and aerosol and can be used to
differentiate between spherical and nonspherical particles. However, 100% incident
linearly polarized light may be linearly depolarized not only because of particle
shape and size (Mishchenko and Sassen, 1998), but also due to multiple scattering.
It is therefore important to take into account multiple scattering when considering
atmospheric linear depolarization (Noel and Chepfer, 2004; Hu et al., 2007). The
expression for δL, given by Eq. (1.5), can be simply re-arranged, to derive the ratio
of P22(180

◦) to P11(180
◦), given by the following equation:

P22(180
◦)

P11(180◦)
=

1− δL
1 + δL

(1.6)

Equation (1.6) has been used to constrain scattering models of cirrus using a space-
based LIght Detection And Ranging (LIDAR) instrument (Baum et al., 2011).

Equation (1.1) implicitly assumes that particles are randomly oriented in three-
dimensional space. A question that naturally arises is how true is this assumption?
Optical phenomena such as Sun dogs, caused by oriented hexagonal ice plates, are
quite commonly observed. However, to obtain a global perspective of the common-
ality of oriented cirrus particles, space-based measurements must be used. There
have been lidar observations of horizontally oriented hexagonal plates in cirrus
(Chepfer et al., 1999; Noel and Sassen, 2005; Westbrook et al., 2009). However,
more recent work by Yoshida et al. (2010) using global Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observations (CALIPSO) data, conclude that oriented
plates occur at temperatures between about −10◦C and −20◦C, whilst randomly
oriented hexagonal columns occur at temperatures colder than this. Similarly, Noel
and Chepfer (2010) also, using global Calipso data, conclude that at temperatures
colder than −30◦C, oriented particles are very infrequent. At temperatures warmer
than this, between about −10◦C and −30◦C, they find that orientation can be more
common, with 30% and 50% of low and high latitude clouds being composed of ori-
ented ice particles, respectively. However, the work of (Bréon and Dubrulle, 2004;
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Noel and Chepfer, 2004) found that the actual fraction of horizontally oriented
ice crystals is more likely to be about 10−2. With such small fractions of oriented
ice crystals, it would be surprising if oriented particles dominated the cirrus solar
and thermal radiation fields, since cirrus temperatures are usually less than about
−40◦C (Guignard et al., 2012).

Resolving the orientation of mineral dust aerosol particles may be more prob-
lematic. It is known that electric fields can exist within dust plumes at some con-
siderable distance from their source (Ulanowski et al., 2007; Harrison et al., 2010
and Nicoll et al., 2011). Moreover, if the aerosol particles are charged, then align-
ment may occur. This charging of mineral dust particles might help to explain why
these aerosols are transported over such long distances (Ulanowski et al., 2007).
However, the alignment of atmospheric particles is still an active area of research,
and further intensity and polarized measurements are required before definitive
conclusions can be made.

To predict the transfer of incident radiation through clouds of aerosol or ice
crystals, the following optical properties are required, if polarization is neglected.
The P11 element of the scattering phase matrix, volume extinction coefficient, Kext,
volume scattering coefficient, Ksca, volume absorption coefficient, Kabs, and the
single-scattering albedo (the ratio of the scattered energy to the total amount of
attenuated energy), ω0. The volume extinction/scattering coefficient is defined by,

Kextλ,scaλ =

∫
Qextλ,scaλ(�q )〈S(�q )〉n(�q ) d�q (1.7)

where both the extinction and scattering efficiency factors are functions of the
incident wavelength, λ. The term 〈S(�q )〉 is the orientation averaged geometric
cross-section, where the vector �q represents the size and shape of particles and n(�q )
is the size spectra of particles (PSD). From Kext and Ksca the volume absorption
coefficient, Kabs, can be found from.

Kabs = Kext −Ksca (1.8)

Then, by definition, ω0, is given by.

ω0 = Ksca/(Kabs +Ksca) (1.9)

The subscript λ has been dropped for reasons of clarity.
Equation (1.8) can be re-arranged, in terms of Kext, and then integrated, to

find the total optical depth, τ , of the layer of particles of some vertical geometric
depth, dz. The total optical depth is given by.

τext =

∫ z2

z1

(Ksca +Kabs) dz (1.10)

To forward model the flux or irradiance in GCMs, a further parameter is re-
quired, and this parameter is called the asymmetry parameter. The asymmetry
parameter, g, is a measure of how much asymmetry there is in the forward peak
of the P11 element of the scattering phase matrix. The asymmetry parameter is
then a parameterization of the scattering phase function, and is described by a
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single number. The formal mathematical definition of the asymmetry parameter is
that it is the average cosine of the scattering angle and it is given by the following
equation.

g = 〈cos θ〉 = 1

2

∫ 1

−1

P11(cos θ) cos θ d(cos θ) (1.11)

The asymmetry parameter can take on values, at least mathematically, between
±1, depending on the size, shape, and complex refractive index of the particle. It
is an important quantity in climate models, because it determines how much solar
radiation is reflected back to space. For high g values, clouds appear dark, while
for low g values clouds appear bright.

The optical properties defined by Eqs (1.7, 1.9 and 1.11) are often referred to as
the ‘scalar’ or ‘total’ optical properties, as they are given by total integrals, and so
have no angular dependence. It is the scalar optical properties that are required in
GCMs, to forward model solar and infrared irradiance (flux). The next section of
this chapter reviews the current and possibly future methods, which are or might
be employed to solve for the general scattering properties of atmospheric particles.

1.3 Electromagnetic and light scattering methods

The fundamental problem to be solved is Eq. (1.2), for any particle ensemble of
shapes or composition (complex refractive index), independent of incident wave-
length or frequency. To date, there is no one electromagnetic or light scattering
method available that can be arbitrarily applied to any particle of given size and
complex refractive index. This is because atmospheric particles, as will be un-
derstood later in this chapter, can be very large and complex, rendering current
numerical solutions to the Maxwell equations impossible to obtain. For this reason,
approximations are still sought to solve Eq. (1.1) or Eq. (1.2). The range of ap-
plicability of current electromagnetic methods depends on the particle size, shape
and complex refractive index. When the electromagnetic limit is reached, approx-
imations such as geometric optics or physical optics are applied to solve Eq. (1.1)
and Eq. (1.2), respectively. Currently, it is possible to obtain general scattering so-
lutions over the size space observed in the Earth’s atmosphere, by bridging the gap
between small and large particle sizes, by combining electromagnetic and physical
optics methods, respectively. However, this is still unsatisfactory, as physical optics
is still an approximation, ideally the electromagnetic method should be applied
to the entire size domain observed in the Earth’s atmosphere, or solutions using
physical optics methods are practically indistinguishable from electromagnetic so-
lutions.

The electromagnetic or light scattering method used to solve Eqs (1.1), (1.2),
in part, depends on the ratio of the particle size to incident wavelength. This ratio
is called the size parameter, X, and is more formally defined as the ratio of the cir-
cumference of the equivalent sphere to incident wavelength. The equivalent sphere
is usually defined as the equal volume or area (surface or geometric projected)
sphere, of some radius rv or ra, respectively. The size parameter of aerosols and
ice crystals, in the Earth’s atmosphere, can range from less than unity to �1000s.
Currently, small size parameter space, is defined as about X = 60 (electromagnetic
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methods are applied) and large size parameter space, is defined as X � 60 (ge-
ometric optics methods are applied). Though, for 20 < X 	 60, physical optics
methods can be applied. The ultimate goal of this field is to render the partition
between small X and large X as meaningless. However, since this one classical
method, has so far eluded researchers, approximations are still usefully employed
to solve Eqs (1.1), (1.2).

Small X is covered by electromagnetic methods; these methods usually fall into
two categories, depending on how the Maxwell equations are solved. The so-called
‘volume-based’ and ‘surface-based’ methods. The volume-based methods require
discretization of the whole volume of the scatterer, and therefore the computational
resources required by these methods are high. However, volume-based methods can,
in principle, be applied to any homogeneous or inhomogeneous arbitrary shape
of any complex refractive index. Examples of volume-based methods, suitable for
application to the problem of scattering by nonspherical atmospheric particles, are
the Finite-Difference-Time-Domain (FDTD) (Yee, 1966; Yang et al., 2000; Sun et
al., 1999) and the Discrete Dipole Approximation (DDA) (Purcell and Pennypacker,
1973; Draine and Flatau, 1994; Zubko et al., 2008, and references therein). A further
improvement to the FDTD method is the PseudoSpectral Time Domain (PSTD)
method, which allows full electromagnetic scattering solutions for larger X values
relative to the FDTD method, for the sphere, size parameters up to X = 80 have
been achieved (Chen et al., 2008). The Boundary Element method has been applied
to the hexagonal ice column for certain orientations, up to X ∼ 50, has so far been
achieved by Mano (2000).

The most well-known surface-based method is the T-matrix method (Water-
man, 1971; Wriedt and Doicu, 1998; Mishchenko and Travis, 1998; Havemann and
Baran, 2001; Kahnert et al., 2002; Havemann et al., 2003; Petrov et al., 2008), which
is sometimes referred to as the Extended Boundary Condition Method (EBCM) or
null-field method. In this method, the linearity property of the Maxwell equations
is used to simply relate the incident Stokes vector to the scattered Stokes vector
via the so-called transition matrix. The great advantage of the T-matrix method
is that the matrix depends only on the shape of the particle, its complex refractive
index, size parameter and its relation to the coordinate system. It is independent
of the directions of incidence or scattering, and so needs only to be computed once,
if the T-matrix is known, then the averaged scattering properties of the particle
or system of particles can easily be computed (Mischenko, 1991). The FDTD and
T-matrix methods have been shown to be in good agreement for calculating the
phase matrix elements of Eq. (1.1), assuming the randomly oriented hexagonal ice
column of aspect ratio unity (i.e., ratio of diameter to length), for X ∼ 20 (Baran
et al., 2001a). The T-matrix method has been more recently applied to multiple
scattering problems, which involve systems of many particles, which in principle,
can vary in shape and thus the averaged-scattered field of the whole ensemble could,
in principle, be solved using the method outlined by Ganesh and Hawkins (2010).

A method that includes the coupling of volume and surface-based electromag-
netic approaches is the Discrete Dipole Method of Moments (Mackowski, 2002).
A comprehensive review of all the current electromagnetic methods can be found
in the following references (Mishchenko et al., 2002; Kahnert, 2003; and Wriedt,
2009).



12 Anthony J. Baran

For cases where X � 50, solutions to Eqs (1.1), (1.2) are sought, using approx-
imations applied to nonspherical particles. Approximate light scattering methods
that are currently being applied to intermediate size parameter space include the
physical optics methods. In this method, wave interference and diffraction, are
implicitly included, so that a complete solution to scattering in the far-field is ob-
tained. In these methods, the incident wave is still treated as a ray or beam, so the
size of the particle still needs to be larger than the incident wavelength, around
X ∼ 20 (Bi et al., 2011), for the ray or beam concept to have any physical mean-
ing. The first physical optics approach, of relevance to atmospheric light scattering
applied to general shapes, is the Modified Kirchhoff Approximation (MKA), de-
veloped by Muinonen (1989). Although the MKA approach can only be applied to
particles in random orientation, it can however be applied to X as low as about 10.
Later improvements to this approach, were introduced by Yang and Liou (1996)
using the so-called Improved Geometric Optics (IGO) method. The improvement
over the MKA method is that IGO calculates the surface field using Fresnel formu-
lae, and by taking into account the phase and area illuminated by each individual
wavelet. The surface fields are expressed in the form of tangential and electric and
magnetic currents, which are then transformed to the far-field, using the rigorous
electromagnetic equivalence principle.

More recently Bi et al. (2011), have introduced the Physical-Geometric Optics
Hybrid method (PGOH), which uses the method of beam-tracing to compute the
single-scattering properties of nonspherical particles of arbitrary orientation, com-
plex refractive index (including high absorption), and in-principle shape, for size
parameters much greater than 20. The nonspherical particle edge contributions to
Qext and Qabs are also approximated, and included into the solution for the total
or scalar optical properties. Good agreement was found between PGOH and DDA
in computing the P11 element of the scattering phase matrix, assuming the finite
oriented hexagonal ice column, for X = 50 (X in terms of the length of the col-
umn) over a wide range of complex refractive index (Bi et al., 2011). Moreover, in
random orientation excellent agreement, at the exact backscattering angle of 180◦,
was found between the PGOH and DDA methods (Bi et al., 2011). Due to the
approach of Bi et al. (2011), the limiting factor of the PGOH method is no longer
the size parameter but the shape of the nonspherical particle. The more complex
the nonspherical particle becomes, a greater number of beams are required to trace
around the particle in order to accurately represent scattering by such particles.
Further details of the PGOH method with results, is described in Chapter 2 of this
book.

A further method that has been shown to be useful in bridging the gap between
small and large size parameter space, is the Ray Tracing Diffraction on Facets
method (Hesse, 2008). This method has been demonstrated to be computationally
very fast, since it is only a modification to the method of geometric optics, and can
in principle be applied to any arbitrary dielectric three-dimensional nonspherical
particle. As stated earlier, the method of RTDF is a modification to geometric
optics, so the Fresnelian interactions are treated in the usual way, except that, as
rays meet each facet of the particle, they are deflected to take account of internal
diffraction, caused by each facet acting as an aperture. Due to diffraction being
implicitly accounted for, within the nonspherical particle, this means that RTDF
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can be applied to bridge the gap between approximations and electromagnetic
methods. Moreover, RTDF also has the advantage that at large values of X, the
solutions to Eq. (1.1), should be more accurate than ordinary geometric optics
or ray tracing (Clarke et al., 2006). In the same size parameter region, a further
novel physical optics method has been proposed by Borovoi and Grishin (2003) for
computing the amplitude scattering matrix, which includes interference information
implicitly and assumes Fraunhofer diffraction. However, in this method, diffraction
effects inside the crystal are not accounted for.

For large size parameters encountered in the Earth’s atmosphere, the classical
ray-tracing method (Wendling et al., 1979; Liou and Takano, 1994; Macke et al.,
1996a) can be applied to any three-dimensional particle, as long as all of its di-
mensions are much greater than the incident wavelength. However, in the highly
absorptive case, the simple ray-tracing approach is inaccurate (Yang and Liou,
1997). In Chapter 5 of this book the meaning of physical and geometric optics is
more fundamentally discussed.

In principle, with the current methods, the problem of light scattering can be
solved for any nonspherical particle with arbitrary complex refractive index, across
the whole of X encountered in the atmospheric sciences. However, beyond X ∼ 50
the methods outlined are still approximate. At visible wavelengths, for typical ice
crystal sizes encountered in the Earth’s atmosphere, the approximate methods still
have to be applied. This is still problematic and unsatisfactory because a size
parameter of 50 is about a size of 10μm at visible wavelengths, which represents a
very small fraction of typical size spectra encountered in cirrus.

The remaining fundamental problem is to develop new numerical methods that
solve the scattering problem efficiently, such that the solution to Eq. (1.2), becomes
independent of X (size or frequency). The traditional electromagnetic approaches
outlined above are being developed slowly. The limiting factor, for electromagnetic
methods, is ultimately determined by the size, irregularity and composition of the
particle, size of the equation systems, or size of matrix inversion, numerical stabil-
ity, convergence, or volume discretization within the particle and in the entire space
domain. For sufficiently large particles or small particles at sufficiently short inci-
dent wavelengths, the computational demands are so great, that exact (within the
computational accuracy of the numerical method), solutions are currently unob-
tainable. Therefore, it is timely to investigate different approaches to the scattering
problem from other areas of mathematical physics.

One area that is currently receiving significant attention is high-frequency scalar
wave scattering by impenetrable objects. The problems encountered in this area,
are not unlike the problems encountered, when trying to solve the scattering equa-
tions using Maxwell’s equations. However, the traditional approach, using electro-
magnetic methods, is to tend to higher size parameters, until the equation system
can no longer be solved, due to computational limitations or the particle geome-
try is too complex. However, recent developments in scalar wave scattering have
improved the computational cost of the numerical algorithms used to solve the
Helmholtz equation, to such an extent that the cost grows as log(k), where k is
the wave number as defined above, and as k tends to very large values, or high
frequencies, the cost is still approximately log(k). The fundamental method used
to solve the Helmholtz equation is Green’s representation theorem. This theorem,
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allows finding the solution for the entire scattered field, by re-transforming the
scattering problem, to an integral equation on the boundary of the particle (it is
similar to the Kirchhoff diffraction integral), and therefore naturally includes in-
terference and diffraction. This approach therefore reduces the dimensionality of
the scattering problem, 2-D becomes 1-D, and so on. Although, Boundary Integral
Equation (BIE) methods are well established, the novel aspect of more recent work
in reducing the computational cost to log(k), is the inclusion of information from
the high-frequency asymptotics into the approximation space (Chandler-Wilde et
al., 2012).

Clearly, the approach used in high-frequency scalar wave scattering is poten-
tially powerful, if it can be extended to higher-dimensional space, i.e., the vector
nature of light, and general penetrable shapes, then the approach could be a solu-
tion to the general scattering problem. This method, already considers the equiva-
lent to very large X. This is, the other way round to the traditional electromagnetic
approach, and is therefore highly desirable. The generalization of high-frequency
scalar wave scattering to the problem of particle transmission is currently a very
active area of applied mathematical research, and represents an alternative and
illuminating approach to the more traditional approaches, which tend to be com-
putationally expensive.

To simulate the short-wave and long-wave irradiance of aerosol or cirrus over
a period of decades, GCMs are required. To do these simulations over reasonable
time scales, the scalar optical properties (Kext, ω0, and g) must be used. To com-
pute the scalar optical properties, it is possible to employ any of the previously
described electromagnetic or light scattering methods. However, other approxima-
tions that overcome limitations on particle size and shape have been proposed.
Methods based on the anomalous diffraction approximation (ADT) (van de Hulst,
1957) have been applied to compute the extinction and absorption efficiencies of
nonspherical particles; these include modifications to ADT proposed by (Mitchell
et al., 1996; Mitchell et al., 2001; and Mitchell et al., 2006). These modifications
include parameterizations of the edge effects and internal reflections, so that these
physical processes are added to Qext and Qabs. This method is called the Modified
Anomalous Diffraction Approach (MADA). In the original ADT, the size of the
sphere is assumed to be much greater than the incident wavelength, and the real
refractive index is close to unity, so only the phase change of the incident wave
with respect to the diffracted wave is considered, ignoring internal reflections or
edge effects. Therefore, for real refractive indices larger than 1.0, methods based
on ADT will be in error, and the error will increase as the real refractive index
becomes larger than unity. Since there is no angle-dependence in ADT (except for
θ → 0◦), then neither the scattering phase matrix or the asymmetry parameter can
be calculated. In the MADA approach, the empirically derived coefficients that are
used to estimate the edge effects are based on exact methods. Not surprisingly
therefore, comparisons between MADA, FDTD and T-matrix were generally in
good agreement, in calculating Qext of randomly oriented hexagonal ice columns,
between the wavelengths of 2.2 and 16.0μm (Mitchell et al., 2006).

Other approximate methods, to compute the scalar optical properties of non-
spherical particles, using the equivalent spherical volume-to-area ratio, are de-
scribed in the following references (Grenfell and Warren, 1999; Neshya et al., 2003;
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and Grenfell et al., 2005). Approximating the scalar optical properties of compact
hexagonal aggregates, by an ensemble of equivalent volume-to-area cylinders, was
proposed by Baran (2003). Using this approach, it was shown that an ensemble of
symmetric shapes could approximate the scalar optical property FDTD solutions
of non-symmetric shapes, to well within 4%, at wavelengths across the terrestrial
window region. A similar method to Baran (2003) was applied by Weinman and
Kim (2007), to compute the total optical properties of irregular particles, at fre-
quencies in the microwave region, and, on comparing with exact methods, they
found similar results to Baran (2003). In the paper by Lee et al. (2003), they in-
vestigated using circular cylinders as surrogates for pristine hexagonal ice crystals
in the terrestrial window region. They show using T-matrix, FDTD and IGO, that
randomly oriented finite circular ice cylinders can approximate the single-scattering
properties of randomly oriented finite hexagonal ice columns, to within a few per-
cent, at wavelengths between 8.0 and 12.0μm. In the next section of this chapter,
the shapes and sizes of mineral dust aerosol, volcanic dust aerosol and cirrus ice
crystals are discussed.

1.4 A myriad of sizes and shapes

1.4.1 The sizes and shapes of mineral dust and volcanic ash particles in
the Earth’s atmosphere

It is important to measure the sizes and shapes of mineral dust and volcanic aerosol,
because of their influence on the Earth–atmosphere radiation balance, and civil
aviation aircraft, respectively. Mineral dust aerosol is transported into the Earth’s
atmosphere, by dust storms or winds; as a consequence, this aerosol type is one
of the most common found in the Earth’s atmosphere (Penner et al., 2001). It
is also known that wind-blown dust storms transport mineral dust aerosol from
Africa, over the Atlantic Ocean, to America (Prospero et al., 2010; Otto et al.,
2011, and references therein). With such a spatial extent, mineral dust aerosol has
a significant influence on the Earth–atmosphere radiation balance (Haywood et al.,
2003; 2005; 2011; Highwood et al., 2003; Osborne et al., 2011; and Otto et al.,
2011). Although, it is now well established that mineral dust aerosol is transported
from Africa to America, it is also known that large sizes of aerosol, > 62.5μm, can
be transported thousands of kilometres from their original source (Ulanowski et
al., 2007).

The physical reason why such large mineral dust aerosol particles are trans-
ported over long distances could be due to the fine and coarse mineral dust aerosol
being charged with opposite polarity, which may reduce the fall speeds of the coarse
particles (Ulanowski et al., 2007). Alignment of mineral dust particles will clearly
have important consequences for their radiative properties. For instance, Ulanowski
et al. (2007) estimated that, due to the vertical alignment of the particles, the opti-
cal depth becomes anisotropic, and is reduced by as much as 10%, in that direction,
for the case they examined, at the wavelength 0.780μm. If vertical alignment of
mineral dust is commonplace, then this will have important implications for mod-
elling their radiative properties in climate models, and clearly, further research is
required in this area, as this effect is currently neglected in climate simulations.
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To study the possible alignment of mineral dust aerosol, the linear depolarization
of mineral dust aerosol as a function of zenith angle, would be a useful measure
(Asano, 1983).

Volcanic eruptions are also a source of dust in the atmosphere, the most dra-
matic recent example of this, which grounded civil aviation aircraft in Europe,
was the eruption of the Icelandic Eyjafjallajökull volcano, during April 2010. The
plume of this volcano, advected over northern European airports, due to the fine
nature of the ash particles, and their potential concentrations, caused European
airports to close. The closure of European airports proved to be very expensive for
the airline industry and insurance companies. Due to the financial impact of this
one event, interest in the nature, mass, composition, and sizes of volcanic particles,
has increased considerably (Johnson et al., 2012; Turnbull et al., 2012). However,
volcanic eruptions can also have significant impacts on the Earth’s climate. The
eruption of Mt. Pinatubo in the Philippines in June 1991 ejected an estimated 20
million tonnes of sulphur dioxide into the Earth’s stratosphere (Bluth et al., 1992).
Though, later estimates from a number of different authors, estimated the total
mass to be 14–20 million tonnes of sulphur dioxide (McCormick and Veiga, 1992;
Stowe et al., 1992; Lambert et al., 1993; Strong and Stowe, 1993; and Baran and
Foot, 1994). The sulphur dioxide deposited in the stratosphere, in a few weeks,
converts to sulphates, which circumnavigated the globe in about one month (Mc-
Cormick and Veiga, 1992; Long and Stowe, 1994). The sulphate aerosol particles
reflect solar radiation back to space, and absorb near-infrared solar radiation and
long-wave terrestrial radiation, thereby cooling the surface of the Earth by about
0.5◦C (Soden et al., 2002) and warming the lower tropical stratosphere by about
3K (Ramachandran et al., 2000).

The radiative effects of aerosols, most critically depend on their size, concen-
tration, composition, vertical distribution and shape. The size spectrum of aerosols
can be measured using a number of microphysical probes, some are based on sin-
gle particle scattering (Johnson et al., 2012). The size spectrum of aerosol, in the
nominal size range 0.01μm to 0.1μm, is called the ‘nucleation mode’, and 0.1μm
to 0.6μm is called the ‘accumulation mode’. For nominal aerosol sizes greater than
about 0.6μm, the term ‘coarse mode’ is used. The size spectrum is measured as a
function of concentration, and can be measured by an instrument called the Passive
Cavity Aerosol Spectrometer Probe (PCASP). The principle of PCASP is based on
scattering a 0.630μm laser beam, by the fine mode aerosol, into a scattering angle
range of between 35◦ to 145◦. For aerosol size greater than 3.0μm, an alternative
single-particle scattering probe is used. This probe is called the Cloud and Aerosol
Spectrometer (CAS), and this can measure aerosol size and concentration in the
size range 0.6μm to 50.0μm. The CAS instrument works on the principle of scat-
tering 0.630μm laser light into the forward scattering directions of 4◦ to 12◦, to
size the particles. Particles in this size range are called the ‘coarse-mode’ aerosol.
Therefore, aerosols have both a fine-mode and a coarse-mode, which must be fully
measured to estimate their radiative effect. The PCASP and CAS, both bin the
measured concentration as a function of nominal diameter. This binning of con-
centration as a function of diameter is called the ‘particle size distribution’, often
abbreviated to PSD. A typical aerosol PSD is shown in Fig. 1.2, measured with
the PCASP and CAS (Johnson et al., 2012) probes. The figure shows a fine- and
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coarse-mode, detected by PCASP and CAS, respectively. Note, that the aerosol
mass distribution is dominated by the aerosol coarse-mode, with a peak at about
4.0μm. This is why aerosol, with peak coarse-modes typically in terms of microme-
tre sizes, interacts with solar and terrestrial radiation (Haywood et al., 2003), to
warm or cool the surface of the planet, depending on surface type (Haywood et al.,
2011).

Fig. 1.2. Aerosol PSD measured by PCASP and CAS, during a number of flights during
April 2010. The PSD is shown as a function of mass concentration (dM/d logD) and
volume equivalent diameter (after Johnson et al., 2012).

The aerosol PSD, shown in Fig. 1.2, is typically modelled using log-normal
size distribution functions (Whitby, 1978; Tanre et al., 1996; Kokhanovsky, 1998;
Zhang et al., 1998; Haywood et al., 2003; Nousiainen and Vermeulen, 2003; Bi et
al., 2009; Johnson and Osborne 2011; Osborne et al., 2011; and Johnson et al.,
2012), using either mono-modal or multi-modal PSDs. The lognormal PSD is given
by the following equation (Kokhanovsky, 1998):

f(r) =
1

r lnσg
√
2π

exp

[
− ln2 r/rg

2 ln2 σg

]
(1.12)

Where r is the aerosol radius, and rg and σg are the geometric mean radius and
geometric standard deviations of the PSD, respectively.

Note that, polydispersions of spherical particles of very different PSDs, with
similar effective variance, vef = 〈r2(r − ref)

2〉/〈r2〉r2ef , and effective radius, ref =
〈r3〉/〈r2〉, have similar scalar optical properties (Hansen and Travis, 1974), where
the angle backets mean averaged quantities. The effective radius is weighted by
the geometric cross-section of spherical particles, and the cross-section is related
to the scattered intensity of incident light. For a given ref of spherical particles,
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the same extinction coefficient can be derived, as integrating each optical property,
for each bin size, over the PSD. Therefore, the effective radius is a very important
quantity in atmospheric optics (Hansen and Travis, 1974; Kokhanovsky, 1998). A
typical lognormal fit, using Eq. (1.12), to the coarse-mode of aerosol, is shown in
Fig. 1.3. The figure shows that lognormal fits are usually a good representation of
the coarse-mode (Johnson et al., 2012).

Fig. 1.3. The CAS normalized mass concentration as a function of volume equivalent
diameter, showing the lognormal fits to the data shown in Fig. 1.2. Note that the peak of
the coarse mode occurs at a volume equivalent diameter of about 4.0μm (after Johnson
et al., 2012).

An example of the shapes of particulate aerosol is shown in Fig. 1.4. The figure
shows examples of Scanning Electron Microscope (SEM) images (R. A. Burgess,
personal communication, and from Johnson et al., 2012) of ground-based Arizona
dust, Saharan dust and volcanic ash aerosol. The images show that aerosol is ir-
regular and not spherical or smooth spheroids, as many papers in the literature
assume. Moreover, not only are the particles sharp-edged, but may also aggregate,
and have roughened surfaces. The figure highlights the need for more sophisticated
treatments of aerosol morphology assumed in electromagnetic and light scattering
calculations. Idealized irregular models, proposed to represent irregular aerosols,
such as those shown in Fig. 1.4, are reviewed in Section 1.5.

The composition of mineral dust and volcanic aerosol is also of importance in
electromagnetic and light scattering calculations, as their material compositions
determine their complex refractive index. The complex refractive index of mineral
dust aerosol has been compiled by Balkanski et al. (2007), between the wavelengths
0.3μm to 100μm, for different internal mineralogical mixtures of 0.9%, 1.5% and
2.7% of haematite. The Balkanski et al. (2007) compilation is generally used to
compute the scattering properties of mineral dust aerosol. The composition of vol-
canic aerosol can differ substantially, from similar properties to mineral dust aerosol
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Fig. 1.4. Scanning electron microscope images of (a) desert dust from Arizona, (b) Sa-
haran mineral dust aerosol, and (c) volcanic dust aerosol from the April 2010 eruption of
Eyjafjallajökull (from R. A. Burgess, personal communication, and R. A. Burgess, and
after Johnson et al., 2012).
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(Schumann et al., 2011), to basaltic ash particles (Pollack et al., 1973). The complex
refractive index for a number of volcanic aerosols has been compiled by Pollack et
al. (1973), from wavelengths 0.21μm to 50μm. Since the publication of the Pollack
et al. (1973) compilation, there have been no revisions to those refractive indices.
Given the need to accurately estimate the mass concentration of volcanic aerosol
using space-based or in situ measurements, then measuring new refractive indices
of volcanic aerosol in the solar and infrared region should be a priority (Newman
et al., 2012). There have been a few measurements of the complex refractive in-
dex of mineral dust and volcanic aerosol at low microwave frequencies, from 8.0 to
12.0GHz and from 10.0 to 18.0GHz, measured by Ghobrial and Sharief (1987) and
Bredow et al. (1995), respectively. However, there have been no determinations of
the complex refractive index of Earth-based atmospheric aerosols at submillimetre
frequencies (i.e., > 300GHz) (Baran, 2012b). The submillimetre region, when com-
bined with the microwave region, of the electromagnetic spectrum, may be useful
in characterizing the mass concentration of aerosol plumes, close to their source
(Baran 2012b). Therefore, it is important to extend measurements of the complex
refractive index of aerosols into the submillimetre region.

1.4.2 The sizes and shapes of ice crystals in the Earth’s atmosphere

Cirrus or ice crystal cloud, generally form at altitudes greater than about 6 km.
Therefore, they are cold, pure ice crystal cloud, occurs at temperatures below about
−40◦C (Guignard et al., 2012). On the global scale, the spatial and temporal dis-
tribution of cirrus can only be determined using space-based measurements. These
measurements show that cirrus covers about 30% of the mid-latitudes at any given
time, whilst in the tropics; the coverage can be 60% to 80% at any given time
(Wylie et al., 1999; Stubenrauch et al., 2006; Sassen et al., 2008; Nazaryan et al.,
2008; Lee et al., 2009; Guignard et al., 2012). With this spatial and temporal distri-
bution, it is clear that cirrus is an important contribution to the Earth’s radiation
budget and hydrological cycle. Indeed, the most recent fourth assessment report
of the Intergovernmental Panel on Climate Change (IPCC, 2007) concluded that,
understanding the coupling between all clouds and the Earth’s atmosphere remains
one of the largest uncertainties in climate prediction. Cirrus is one such cloud type,
where the radiative coupling between it and the Earth’s atmosphere is still highly
uncertain. Therefore, determining the size and shapes of ice crystals, their verti-
cal variability and extent in the Earth’s atmosphere, are important quantities to
determine, if their representation in climate models is to be further improved.

In the mid-latitudes, cirrus is usually generated synoptically, and this mode
of generation forms layers of ice crystals, with the ice crystal size (number or
mass weighted) increasing with cloud depth, measured relative to cloud-top. At
cloud-top, ice crystal size can be less than 10μm, increasing to many thousands of
micrometres at cloud-base (Heymsfield and Miloshevich, 2003; Korolev and Isaac
2003; Field et al., 2007; Field et al., 2008; Korolev et al., 2011). The distance the ice
crystal is from cloud-top, provides a proxy for time, the greater the vertical extent
of the cloud layers, the deeper the ice crystal falls, due to gravitational settling.
The longer the ice crystals take to fall, the more time there is for ice crystal growth,
due to vapour deposition, and perhaps more importantly ice crystal aggregation
(Heymsfield et al., 2002; Field et al., 2005; Field et al., 2008).
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The overall PSD shape of ice crystals is bi-modal (Heymsfield and Miloshevich
1995; Ivanova et al., 2001; Field et al., 2005; Baker and Lawson 2006; Field et al.,
2007, Baran et al., 2011a; Zhao et al., 2011), and the nature of the cirrus PSD is
that both small and large ice crystals can coexist, but with the larger ice crystals
appearing less frequently. In the mid-latitudes, the updraughts are not usually
sufficient, to transport larger ice crystals toward cloud-top. However, in the tropics,
where there are much greater updraughts, due to vigorous convection, larger ice
crystals can be transported to cloud-top, near the convective core, and here larger
ice crystals can appear more frequently in the PSD (Heymsfield and Miloshevich
2003; Yuan et al., 2011). As the cirrus flows out from the convective core, the
ice crystals gravitationally settle, so that at cloud-top, the PSD is dominated by
smaller ice crystals, and as the PSD evolves with depth from the cloud-top, ice
crystal aggregation takes place and a broader PSD results, with sizes that could
be several centimetres in size (Heymsfield, 2003). There have been fewer cirrus
in situ measurements taking place in the Arctic where, not surprisingly, there are
difficulties with accessing this particular region. However, there have been some
studies, which suggest that ice crystal size in this region can be larger than about
40 μm, and up to about 1000 μm (Korolev et al., 1999; Liou 2002; Lawson et al.,
2006).

Example images of ice crystal shapes are shown in Figs. 1.5, 1.6 (provided by
Andrew Heymsfield, personal communication) and 1.7 (Baran et al., 2011a), as
a function of altitude. The images were obtained using an instrument called, the
Cloud Particle Imager (CPI), and is described in Lawson et al. (2006). The im-
ages shown in Fig. 1.5 are for ice crystal sizes greater than 100μm (Heymsfield
and Miloshevich, 2003). In Fig. 1.5, there is little evidence for pristine hexagonal
ice columns or plates, the most common shapes appear to be rosettes or chains of
rosettes, with the rosettes appearing spatial rather than compact. In Fig. 1.5, there
is also evidence of air inclusions, both in single hexagonal ice columns and branches
of the rosettes (Schmitt and Heymsfield, 2007). The occurrence of hollowness may
be a common feature of ice crystals, as noted by other authors such as (Weickmann,
1947; Magono and Lee, 1966; Heymsfield and Platt, 1984). In Fig. 1.6, the most
common shapes, larger than about 100μm, seem to be bullet-rosettes or aggregates
of rosettes. The shape of ice crystals, less than 100μm in size, is currently unknown,
due to the limited resolving power of the CPI. The CPI cannot resolves the shapes
of ice crystals less than about 35μm in size, due to its spatial resolution being
3μm. However, the CPI images small ice crystals as quasi-spherical or spheroidal
in shape, due to diffraction. However, these small ice particles may still be irregular
(Ulanowski et al., 2006). Moreover, recent laboratory cloud chamber studies con-
ducted by López et al. (2012), at temperatures between −30◦C and −40◦C, show
that small ice particles, studied under a microscope, of average effective diameter
14μm, were deformed, with sharp-edged long protrusions extending out of their
surfaces. Characterizing the shapes and sizes of ice particles less than 100μm in
size, is very important, as they can have an important influence on the radiative
properties of cirrus (Ivanova et al., 2001; Yang et al., 2003; Ulanowski et al., 2006;
Ulanowski et al., 2010; Mauno et al., 2011; Um and McFarquhar, 2011; Thelen and
Edwards, 2012).
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Fig. 1.5. A set of ice crystal images shown as a function of height. The images were
obtained using the CPI instrument (from A. J. Heymsfield, personal communication).

Figure 1.7 shows examples of tropical ice crystal CPI images, which originate
from a fresh tropical anvil. These images show that the most common ice crystal
shape appears to be hexagonal ice plates and aggregates of plates, though there
are other more indeterminate ice crystal shapes present. The hexagonal ice plate
aggregates are large in size, and if they are sufficient in number, they may well
dominate the radiative properties of fresh anvils (Um and McFarquhar, 2009).
The occurrence of aggregates of hexagonal plates has also been noted by (Lawson
et al., 2003; Connolly et al., 2005; Evans et al., 2005; Baran 2009; Xie et al.,
2011; Gayet et al., 2012). Laboratory cloud chamber studies have shown that plate
aggregates might form in the presence of electric fields (Saunders and Wahab, 1975;
Wahab 1974). But, the hexagonal plate aggregates shown in Fig. 1.7, could also
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Fig. 1.6. Same as Fig. 1.5 but ice crystal size is shown on the top, along the x-axis.
The altitude of the top row is 9.5 km, second row 8.0 km, and third row 7 km (from A. J.
Heymsfield, personal communication).

form through the process of ice crystal aggregation (Westbrook et al., 2004; Baran
2009). However, not all convective cloud produces chains of aggregates (Lawson et
al., 2003).

From the currently available evidence, it can be said that the most common
types of ice crystal that inhabit cirrus are pristine or spatial ice crystals and non-
symmetric aggregates of these (Korolev et al., 2000; Um and McFarquhar 2007;
Baran et al., 2009; McFarquhar and Heymsfield, 1996; Lawson et al., 2003; Connolly
et al., 2005; Evans et al., 2005; Baran et al., 2011a; and Xie et al., 2011). Although
ice crystal aggregates may, themselves, be non-symmetric overall, the individual
monomers that make up the aggregate may be symmetric (Stoelinga et al., 2007).

The CPI images of ice crystal sizes less than 100μm, shown in Figs. 1.6 and
1.7, may also be a result of ice crystal shattering on the inlet of the probes. Instru-
ments such as the CPI are closed instruments, that is, the ice crystals are funnelled
through an inlet, into the instrument’s sampling volume. The inlet has sharp edges,
and this can cause large ice crystals to shatter into smaller ice crystals on impact
with the probe. These smaller ice crystals, resulting from the shattering of larger
ice crystals, artificially increase the measured concentrations of small ice crystals,
less than about 250μm in size (Korolev et al., 2011). Although shattering has been
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Fig. 1.7. CPI images of ice crystals that occurred in a fresh tropical anvil; note the
appearance of hexagonal plate aggregates. The scale on the top left indicates the ice
crystal size in each of the images (after Baran et al., 2011b).

known for some time (Cooper 1978), solutions to the ice crystal shattering problem
have only been offered in recent times (Field et al., 2003; Field et al., 2006; Lawson
et al., 2006; McFarquhar et al., 2007; Heymsfield 2007; Korolev et al., 2011; and
Lawson 2011).
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It is now generally accepted, that historical in situ measurements of cirrus
PSDs, have been artificially skewed, for particle sizes less than about 250μm in
size (Korolev et al., 2011). To remove the shattered artifacts from the measured
PSD, it is necessary to measure the inter-arrival time of each ice crystal (shattered
ice crystals arrive in groups and so have short inter-arrival times), so that ice crys-
tals with short inter-arrival times are filtered out from the measured PSD (Field
et al., 2003). However, filtering itself may not be sufficient to remove all shattered
ice crystals, and what is also required, is the placing of specially designed tips at
the probe inlets (Korolev et al., 2011). However, in a more recent paper by Lawson
(2011), it was found that only inter-arrival time was required, due to the domi-
nance of small ice crystal sizes, in the data that was examined. Clearly, shattering
has important consequences for measurements of ice crystal concentration and ice
crystal size. However, for estimates of ice water content (IWC), using the measured
size spectrum, ice crystal shattering is less of a problem, as shown by Field et al.
(2006) and Korolev et al. (2011). Indeed, it was shown by Field et al. (2006), that
ice crystal shattering does not affect IWC by more than 10%. Whilst Korolev et
al. (2011) concluded that IWC and radar reflectivity can generally be derived to
well within a factor 2% and 20%, respectively, when shattering is present. Clearly,
to remove shattering from measured historical PSDs, the method of filtering must
be applied, if inter-arrival times are available. Future in situ measurements of the
PSD should be based on microphysical probes that are fitted with anti-shatter tips.
Historical PSDs need not necessarily be abandoned, especially if the PSDs are used
to estimate IWC and/or radar reflectivity. Historical PSDs must also be examined
for evidence of shattering using ice crystal inter-arrival times, before applying these
PSDs to calculate the bulk scattering properties of cirrus.

To characterize the shape and size of ice crystals much less than 100μm in
size requires instrumentation that is able to overcome the limitations of optical
resolution. One such probe is called the Small Ice Detector (SID); a description of
SID is given in Kaye et al. (2008). The latest SID probe is collectively known as
SID-3. The SID series of instruments is based on single-scattering measurements of
the 2-D light scattering pattern (i.e., both θ and φ are measured), and can size ice
crystals in the range 1μm to several hundredμm (Ulanowski et al., 2010; Ulanowski
et al., 2011). The latest, SID-3, uses intensified charge coupled device cameras to
measure high-resolution 2-D light scattering patterns, enabling the estimation of
ice particle surface roughness, size, and concavity (Ulanowski et al., 2011).

A random example of 2-D light scattering patterns measured by SID-3 is shown
in Fig. 1.8. These images were obtained in mid-latitude cirrus, around the UK,
in the winter of 2010 (Ulanowski et al., 2010, personal communication). Unlike
most earlier results from cloud chambers, where 2-D patterns had sharp, well-
defined bright arcs and spots (Kaye et al., 2008), the majority of the cloud data,
collected during this particular campaign, was characterized by much more random,
‘speckled’ 2-D scattering patterns. Laboratory experiments demonstrate that such
pattern features are characteristic of particles with rough or irregular surfaces.
Quantitative comparison of laboratory and cloud data has been done using pattern
texture measures, originally developed for surface roughness analysis using laser
speckle. The results were consistent with the presence of significant roughness in
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Fig. 1.8. Six randomly selected SID-3 scattering patterns from ice particles seen in mid-
latitude cirrus (top row) and mixed phase (bottom row) flights, compared to patterns from
ice-analogue rosettes with smooth (top right) and moderately rough surfaces (bottom
right) (after Ulanowski et al., 2010).

Fig. 1.9. SID-2 measurements obtained in mid-latitude cirrus in which supercooled liquid
water drops co-existed with ice crystals, showing (A) 2-D scattering patterns of nonspher-
ical ice crystals (b, d) and (c) 2-D scattering patterns of supercooled liquid drops, with
the size of each drop shown in the panel labelled (e). (B) The SID-2 estimated asphericity
parameter (AF) as a function of diameter for ice crystals (grey circles) and supercooled
liquid water drops (black circles) (after Cotton et al., 2010).

the majority of cirrus and mixed phase cloud ice crystals, at levels comparable to
those found in the rough ice analogues studied previously (Ulanowski et al., 2006;
Ulanowski et al., 2010).
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Another example of how single light scattering measurements can be used to
characterize the phase and shapes of ice crystals is shown in Fig. 1.9(A) and
Fig. 1.9(B) (Cotton et al., 2010), respectively. The figure shows SID-2 measure-
ments, again obtained in mid-latitude cirrus, of the particle shape and phase of ice
crystals encountered. Fig. 1.9(A) shows the SID-2 measured 2-D scattering pattern
and the asphericity factor, Af , is shown in Fig. 1.9(B). Fig. 1.9(A) shows that, the
sphere, bottom left scatters light equally in the azimuth direction. However, the
top of fig 9A, shows the asymmetric scattering nature of nonspherical particles,
showing pristine particles (top right) and highly irregular particles (top left). The
asphericity factor, shown in Fig. 1.9(B) plotted as a function of particle diameter, is
a measure of the degree of asymmetry in the scattered light, measured by the SID-2
detectors. Azimuthally, spheres scatter light equally in all directions (Fig. 1.9(A));
however, nonspherical particles do not. Therefore, the asphericity factor allows dis-
crimination between water and ice particles. Fig. 1.9(B) shows that the asphericity
factor clearly discriminates between water (Af < 4) and ice particles (Af > 4).
Interestingly, the SID-2 measurements, shown in Fig. 1.9(B), were obtained at tem-
peratures of about −30◦C. Other instruments, unable to distinguish small particle
phase, would have assumed that all measurements, at such temperatures, were of
ice particles. Instruments unable to resolve small particles, would classify, for the
case shown in Fig. 1.9, water spheres as ice particles, and later assume these to
be solid ice, when estimating the total amount of ice mass. The SID series of in-
struments have also been used to discriminate between sea salt and mineral dust
particles (Cotton et al., 2010).

Instruments such as the SID are an important addition, as they are able to
measure, at high resolution, the 2-D scattering pattern, from which fundamental
information on the surface roughness, concavity, shape, size and phase of particles
can be extracted as functions of atmospheric state. These fundamental proper-
ties determine the light scattering properties of particles, and this aspect will be
discussed in the next section.

In Section 1.4.1, the radiative properties of aerosol could be defined in terms of
a characteristic size, called the effective radius. There have been attempts to define
the radiative properties of cirrus, using a similar definition. However, Figs. 1.5,
1.6 and 1.7 show that ice crystals are highly variable in both shape and size;
therefore the shape of the PSD will also be very different. Therefore, any definition
of effective radius applied to cirrus, would need to be independent of particle shape
and PSD. In the case of cirrus, the characteristic size is expressed through the
effective dimension, De, or diameter, of the PSD. This concept was first proposed
by Foot (1988), and is given by the following expression:

De =
3

2

IWC

ρ〈S(�q )〉 (1.13)

where ρ is the density of solid ice and is assumed to have a value of 0.92 g cm−3.
The other terms have been previously defined. There are, however, many definitions
of De, as can be found in the following set of papers (Francis, 1995; McFarquhar
and Heymsfield, 1998; Fu et al., 1999; Mitchell, 2002; Mitchell et al., 2011). The
expression for De, can be rewritten in terms of integral quantities, the column
integrated IWC, called the ice water path (IWP) and the optical depth τ (see



28 Anthony J. Baran

Eq. (1.10)). For very large ice crystals, the dimensions of the particle are much
greater than the incident wavelength, for this case the volume extinction coefficient
is twice the orientation-averaged cross-section (van de Hulst, 1957), since Qext =
2.0. Applying these integral quantities, to Eq. (1.13), the following expression is
derived, for De.

De =
3 IWP

ρτ
(1.14)

This expression means that De is itself, a fundamental optical quantity that de-
scribes light extinction in clouds (Mitchell et al., 1996; Wyser and Yang, 1998;
Kokhanovsky, 2004; Mitchell, 2002; Mitchell et al., 2011). The concept of De does
not, however, apply to the asymmetry parameter, since this quantity depends on
the assumed geometry of the ice crystal, as shown in (Kokhanovsky and Macke,
1997; Wyser and Yang, 1998). Equation (1.14) is in part an expression of geometric
optics, that is De only has any physical meaning when the size of the ice crystal
is much larger than the incident wavelength. In the limit of geometric optics, the
inverse relationship between De and the mass extinction coefficient (defined as the
ratio of Kext to IWC) holds well, as demonstrated by Wyser and Yang (1998), but
begins to break down at wavelengths in the infrared (Mitchell, 2002; Baran 2005;
Mitchell et al., 2011). The study of Baran (2005) showed that theDe concept begins
to break down at the wavelength of about 4μm, and completely breaks down by
a wavelength of 30μm. Moreover, for some PSDs common to cirrus, De and IWC
do not uniquely define the radiative properties of cirrus, as cirrus PSDs are not
uniquely the same (Mitchell 2002; Deleon and Haigh, 2007; Mitchell et al., 2011).

A further difficulty with the concept of De is that, in the case of aggregating ice
crystals, mass ∝ D2, whereD is the maximum dimension of ice crystals (Westbrook
et al., 2004). Moreover, the orientation-averaged cross-section, in the denominator
of Eq. (1.13), is approximately D2. Therefore, in regions of ice crystal aggregation,
Eq. (1.13) predicts that De becomes a constant value (Baran et al., 2011b). Clearly,
in these regions, De is not applicable. Moreover, the work of (Mitchell 2002; Deleon
and Haigh, 2007; Baran, 2009; Mitchell et al., 2011; Baran et al., 2011b) suggest
that De should not generally be applied to represent the radiative effect of cirrus in
GCMs or in the remote sensing of cirrus. An alternative formulation to representing
the radiative properties of cirrus as functions of other variables is described in the
next section.

1.5 Idealized geometrical models of mineral dust aerosol and
ice crystals and their single-scattering properties

1.5.1 Aerosol models and their light scattering properties

As Fig. 1.4 demonstrates, aerosol such as dust or for that matter volcanic ash
(Johnson et al., 2012), that appears in the Earth’s atmosphere is not spherical, but
irregular, and may also possess sharp edges, with roughened surfaces. The compo-
sition of atmospheric aerosol may also vary, from homogeneous to inhomogeneous
and porous. For the smallest sizes of aerosol i.e., in the sub-micrometre range, at
visible wavelengths, calculating their light scattering properties is achievable using
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Lorenz–Mie theory or T-matrix applied to spheres or rotationally symmetric parti-
cles, respectively. However, for the larger sizes of aerosol, greater than about 1μm,
the aerosol properties previously described, make calculating their light scattering
properties difficult. For such larger sizes, the use of Lorenz–Mie theory should be
avoided, even for irradiance calculations (Nousiainen, 2009). The typical idealized
geometrical shapes, generally assumed for calculating the single scattering prop-
erties of atmospheric aerosols, are shown in Fig. 1.10. The aerosol models shown
in Fig. 1.10, are the (a) spheroid, (b) tri-axial ellipsoid (Meng et al., 2010), (c)
Gaussian random sphere (Muinonen et al., 1996), (d) shifted hexahedra (Bi et al.,
2010), (e) hexagonal columns combined with polyhedral particles (Osborne et al.,
2011), and large polyhedral particles (Kokhanovsky, 2003).

Fig. 1.10. Idealized geometrical models proposed to represent mineral and volcanic dust
aerosols, showing the (a) spheroid, (b) tri-axial ellipsoid, (c) Gaussian random sphere, (d)
shifted hexahedra, and (e) shape mixture of hexagons and polyhedral particles.
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The simplest nonspherical particle shape shown in Fig. 1.10 (a) is the spheroid,
prolate or oblate. The spheroid is a rotationally symmetric particle that is fully
described by two morphological parameters. These are, the axis of spheroid rota-
tion, called a, and the axis that is perpendicular to the axis of spheroid rotation,
called b (Mishchenko et al., 2002). The ratio of a to b is called the aspect ratio,ε.
Thus, for ε < 0 the spheroids are prolate, and for ε > 1, the spheroids are oblate.
The T-matrix method can be readily applied to polydispersions of these rotation-
ally symmetric particles, as demonstrated by Mishchenko and Travis (1994). In
that paper, they show that differences between equivalent spheres and spheroids,
in terms of the phase matrix elements, can be significant, and that the variation
of the angle dependent quantities, depends on effective radius and shape of the
scattering particle. Differences between equivalent spheres and spheroids in terms
of the scalar quantities, Qext, ω0, and g were not as dramatic, as differences found
for the phase matrix elements. An important conclusion of the paper is that even
for moderately aspherical particles of aspect ratio 1.5, differences between spheres
and spheroids can still be as large as a factor of 2.5. Clearly, if spheres are used
to represent nonspherical aerosols, in remote sensing their properties, then large
errors may result. The T-matrix method has also been applied to layered-spheroids;
see the review and references therein, by Mishchenko et al. (1996). More recently,
the modified T-matrix approach, called the Sh-matrix method, has also been ap-
plied to layered-spheroids by Petrov et al. (2007), as well as the extended boundary
condition method by Farafonov and Voshchinnikov (2012).

For aerosol scattering calculations, the concept of the ‘equivalent sphere’ may
be invoked as a justification for using Lorenz–Mie theory. The ‘equivalent sphere’,
means that the equal surface area, volume, or surface area to volume ratio, as
the nonspherical particle, has been assumed. As Mishchenko and Travis (1994)
demonstrate, this concept, in terms of the phase matrix elements, does not apply
and so, for radiance calculations, should be avoided. Moreover, the same is true
for irradiance or flux calculations as well (Nousiainen, 2009). There is no longer
any justification for using Lorenz–Mie theory to interpret radiance or irradiance
measurements of atmospheric aerosol; spheres can be considered to be purely a
figment of the imagination.

Although spheroids are nonspherical they do not possess irregularity and sharp
edges (see Fig. 1.4). In order to overcome this problem, Dubovic et al. (2006)
introduced a shape mixture of spheroids of varying aspect ratio, to try and replicate
the irregularity of actual nonspherical aerosols. The spheroid shape mixture model
of Dubovic et al. (2006) consists of randomly oriented oblate and prolate spheroids
of aspect ratio 0.3 to 3.0, respectively. The size parameter range covered is from
about 0.012 to approximately 625, which covers realistic measurements of aerosol
PSDs. To cover this large size-parameter range the methods of T-matrix, IGO
and geometrical optics were applied, to compute the scattering phase matrix and
scalar optical properties, which were then integrated to obtain the bulk scattering
properties. The bulk scattering properties were calculated assuming that the real
part of the complex refractive index varies between 1.33 and 1.6, and the imaginary
part between 0.0005 and 0.5. The spheroid shape mixture model has been compared
against laboratory measurements of the scattering phase matrix elements of mineral
dust aerosol (Volten et al., 2001), and ground-based measurements (Dubovic et al.,
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2006). The model was shown to reproduce well the scattering matrices of Volten et
al. (2001), and fitted well to ground-based angular measurements of the total and
linearly polarized intensity (Dubovic et al., 2006).

The advantage of the spheroid model is that it has just two free morphological
parameters. However, the spheroid retains symmetry, not apparent in actual images
of large aerosol see Fig. 1.4. A further way to reduce the symmetry of spheroids
is to consider tri-axial ellipsoids, Fig. 1.10(b); this introduces an additional free
morphological parameter, but reduces the symmetrical properties of spheroids (Bi
et al., 2009). The work of Bi et al. (2009) showed that a weighted shape mixture of
mineral dust ellipsoids, with optimized three-dimensional aspect ratios, could also
replicate the scattering phase matrix elements measured by Volten et al. (2001).
There is now available a single-scattering database of dust-like tri-axial ellipsoids
that can be applied between the ultraviolet and far-infrared regions of the electro-
magnetic spectrum (Meng et al., 2010). Of course, by definition, the database of
Meng et al. (2010) also includes the case of spheroids.

The single-scattering database of Meng et al. (2010) was produced by apply-
ing the methods of Lorenz–Mie theory, the T-matrix method, the discrete dipole
approximation, and IGOM, to compute the scattering phase matrix elements and
scalar optical properties for 42 particle shapes, 69 complex refractive indices, and
471 size parameters. The database also comes supplied with software to interpolate
the single-scattering properties for shapes, refractive indices, and size parameters
specified by the user.

The Gaussian random sphere, shown in Fig. 1.10(c), was introduced byMuinonen
et al. (1996) and Muinonen (2000), to capture the irregularity of atmospheric
aerosol. The Gaussian random sphere (GRS) is a statistical shape, represented
by its radius r, specified as a function of θ and φ. Since the Gaussian random
sphere is a statistical shape, it also depends on the mean radius, the relative stan-
dard deviation and the log radius, summed over spherical harmonic functions that
are weighted with complex coefficients. Although elongated and flattened spheroids
have been successful in generally replicating the scattering phase matrix measure-
ments of Volten et al. (2001). However, features in the angle-dependent quantities
specific to the irregularity of the aerosol, such as the flat phase function at backscat-
tering angles and the minimum in the linearly depolarized phase function, are best
modelled with the Gaussian random sphere (Veihelmann et al., 2006).

All the aerosol models discussed so far consider the aerosol surfaces to be
smooth, without possessing sharp edges. To replicate sharp edges and the irreg-
ularity of mineral dust aerosol Bi et al. (2010) have introduced non-symmetric
hexahedra, an example is given in Fig. 1.10(d). Hexahedra are three-dimensional
symmetric objects with six faces. The symmetry of the hexahedra is reduced by
randomly tilting its faces, while keeping its centre fixed. The methods of discrete
dipole approximation and IGOM are used to calculate the scattering phase ma-
trix and scalar optical properties of the randomized hexahedra, for size parameters
ranging from 0.5 to 3000.0. The randomized hexahedra removes its symmetric prop-
erties, resulting in scattering phase functions with high side scattering and dimin-
ished backscattering, relative to regular hexahedral particles. The single-scattering
properties of the randomized hexahedra also replicated the mineral dust scattering
phase matrix measurements of Volten et al. (2001), whilst the regular hexahedra
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do not (Bi et al., 2010). Therefore, some form of randomization is required in order
to replicate scattering phase matrix measurements of mineral dust aerosol.

The polyhedral particle shown in Fig. 1.10(e) was initially introduced by Macke
et al. (1996a) to represent the irregularity of atmospheric ice crystals. This poly-
hedral particle is commonly known as the polycrystal, and it is generated by ran-
domizing a second generation Koch fractal. The aspect ratio of the polycrystal
is invariant with respect to size. The polycrystal has been applied to study the
scattering phase matrix elements of large mineral dust particles by Kokhanovsky
(2003). It was shown that by introducing the irregularity of the polycrystal, the
scattering phase matrix measurements of Volten et al. (2001) could be replicated
to high accuracy for a number of complex refractive indices.

The polycrystal model was adopted by Osborne et al. (2011), combined with the
hexagonal column of aspect ratio unity (Fig. 1.10(e)), called the ‘irregular’ model,
to replicate aircraft measurements of the transmitted short-wave scattered inten-
sity of mineral dust aerosol, between the scattering angles of about 5◦ to 95◦. The
irregular model of Osborne et al. (2011) comprises hexagonal columns and polycrys-
tals in the size range between 0.12 and 1.0μm, and 1.2 and 20.0μm, respectively.
Hexagonal columns were used to replicate the sharp edges found on small mineral
dust aerosol, and the size parameters of these particles are sufficiently small, that
the halo features at 22◦ and 46◦ are not apparent on the scattering phase function.
As the aerosol becomes large in size, the polyhedral particles supposedly replicate
the irregularity of the larger-sized mineral dust or volcanic particles. To compute
the single-scattering properties of the hexagonal columns and polyhedral particles,
the methods of T-matrix and RTDF were used, respectively. The phase function
and scalar optical properties were integrated over measured in situ PSDs to de-
rive the bulk scattering properties of mineral dust aerosol (Johnson and Osborne
2011). In the paper by Osborne et al. (2011), they demonstrate that the irregular
model best fitted their aircraft measurements, relative to spheres and the Dubovic
et al. (2006) model. The irregular model has also been applied to simulate the
scattering properties of volcanic silicate aerosol by (Johnson et al., 2012; Marenco
et al., 2011; Newman et al., 2012; Turnbull et al., 2012). For large mineral dust
particles, randomized particles, replicating the irregularity observed in actual min-
eral dust particles, should generally be preferred to model their single-scattering
properties. However, Fig. 1.4 also shows that aggregation of aerosol particles can
also take place, and therefore an idealized model of aerosol aggregates should also
be considered.

Example bulk phase functions, computed at a wavelength of 0.55μm, for the
irregular model of Osborne et al. (2011), spheres and the Dubovic et al. (2006)
model are shown in Fig. 1.11, plotted as a function of scattering angle. The figure
shows that the irregular model has higher side scattering than for spheres and the
Dubovic et al. (2006) model, at scattering angles between about 20◦ and about
100◦; however, it is decreased for the Dubovic et al. (2006) model, at backscat-
tering angles, relative to the sphere and irregular models. Fig. 1.12 highlights this
behaviour in the scattering phase function more clearly. In Fig. 1.12, the spheroid
and irregular phase functions are normalized by the sphere phase function, plot-
ted against scattering angle. Also shown in this figure, is the phase function for
spheroids, assumed to have an invariant aspect ratio of 1.7, with respect to size.
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Fig. 1.11. The scattering phase function as a function of scattering angle, assuming three
mineral dust aerosol models, which are spheres shown as the grey line, the Dubovic et al.
(2006) model is shown as the dashed line, and the irregular model is shown as the full
line (after Osborne et al., 2011).

Fig. 1.12. The normalized scattering phase functions as a function of scattering angle,
the non-spherical phase functions have been normalized by the sphere phase function, for
the prolate spheroid of aspect ratio 1.7 (full line), the Dubovic et al. (2006) model (dashed
line), and the irregular model (dotted line) (after Osborne et al., 2011).

The figure shows that, especially at backscattering angles, the differences, assuming
one fixed ratio and a distribution of aspect ratios are large. Note also, the decrease
in the forward peak of the phase function for the irregular model, at scattering
angles less than 15◦. Therefore, the irregular model shown in Fig. 1.12 will have a
smaller g value relative to the sphere or spheroid models.

The g values for the sphere, Dubovic et al. (2006) model and irregular model,
shown in Fig. 1.11, were determined in the short-wave region to be 0.73, 0.73
and 0.62, respectively (Johnson and Osborne 2011). The decrease in g value for the
irregular model, relative to the other two models is about 15%. The impact of these
modelled g values on the short-wave fluxes at the TOA and surface are shown in
Fig. 1.13, as a function of time. The short-wave fluxes have been modelled using the
Edwards–Slingo flexible, spherical harmonic, radiation code; for a full description
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Fig. 1.13. The modelled top-of-atmosphere (TOA) and surface (surf) short-wave radia-
tive forcing (0.3–3.0μm) as a function of time for the irregular model, spheres and the
Dubovic et al. (2006) model. The TOA and surf short-wave forcing for each assumed
model is shown by the key in the top-right of the figure (after Osborne et al., 2011).

of this radiative transfer model see Edwards and Slingo (1996). The two-stream
version of the Edwards–Slingo code has been used, assuming a fixed aerosol optical
depth of unity. The short-wave forcing is defined as the difference between the
clear-sky radiative forcing and the short-wave flux with atmosphere and aerosol.
The short-wave forcing at the surface is defined as the change in the downwelling
forcing, due to the presence of aerosol.

The figure shows, that the surface forcing, is negative for all models throughout
the day. The daily average for irregular particles is about −60Wm−2, whilst for
spheres and the Dubovic et al. (2006) model it is about the same, ∼−110Wm−2,
almost a factor of 2 greater than the irregular model. The short-wave TOA forcing
is greatest (largest negative values) at 0700 to 0800 and 1600 to 1700 local time,
when the solar zenith angle was between 57◦ and 70◦. The sign of the TOA forcing
changes sign, at about local noon for spheres and the Dubovic et al. (2006) model,
but is positive, for a significant period, for the irregular model. The daily mean TOA
forcing efficiencies, for the irregular, sphere and Dubovic et al. (2006) models were
computed to be −13Wm−2, −38Wm−2 and −35Wm−2, respectively. Clearly,
the g values of aerosols are an important quantity to constrain, as the short-wave
forcing between irregulars and symmetric particles, with smooth surfaces, can be
very significant.

As previously mentioned, volcanic ash is also an important type of aerosol,
which needs to be considered. The polyhedral particle was adopted by Johnson
et al. (2012), to estimate the mass concentration of a volcanic plume, using the
CAS instrument, that had drifted over the UK during spring 2010, from the Ey-
jafjallajökull eruption. As discussed in Johnson et al. (2012), the response of the
CAS instrument to the scattering properties of the volcanic aerosol, depends on
the integral of the phase function, between the scattering angles of 4◦ and 12◦.
To obtain the mass concentration, therefore depends on the assumed scattering
phase function. Figure 1.14(a) to (c), shows a number of phase functions, plotted
against scattering angle, for three different randomizations applied to each parti-
cle, assuming six different volcanic aerosols. The Monte Carlo ray-tracing method
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Fig. 1.14.
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Fig. 1.14. The scattering phase function plotted against the scattering angle, assuming
three different randomizations, applied separately to each model. The randomizations
applied are regular models, i.e., no randomizations, (b) distorted particles and (c) spherical
air inclusions. Each model is assumed to have a maximum dimension, Dm, of 90μm; the
calculation assumed an incident wavelength and complex refractive index of 0.55μm and
1.55 + i0.0011, respectively.

described by Macke et al. (1996a) has been used to calculate the phase functions
shown in Fig. 1.14(a) to (c). In Fig. 1.14(c) the aerosol particle has been ‘distorted’;
this means that at each refraction and reflection event the ray-paths are randomly
tilted with respect to their original direction. This ray distortion has the effect
of reducing and, at high levels of distortion, of completely removing any optical
features that may be present on the phase function, such as haloes and bows. For
high distortion values, featureless phase functions can be generated, and the effect
of distortion on the phase function is assumed to be similar to surface roughness.

The volcanic aerosols assumed, in Fig. 1.14(a) to (c), are the polycrystal, oc-
tahedron, dodecahedron, hexahedra 5, 4, 4, 3, 3, oblique pyramid with triangular
base, and an oblique pyramid but with a hexagonal base. The phase functions
were calculated at the wavelength of 0.55μm, assuming a complex refractive index
of 1.55 + i0.001 (Osborne et al., 2011). The figure shows that at the scattering
angles between 4◦ and 12◦ the phase functions can diverge significantly from the
polycrystal, depending on randomization. Therefore, estimating volcanic ash mass
concentrations using in situ sampling instruments such as CAS, or any other single-
scattering instrument, depends on assumed particle shape and randomization. To
quantify the uncertainty in the estimated mass, using single-scattering instruments,
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the shape and randomization must be taken into account by using a variety of ide-
alized volcanic shapes.

The next section discusses idealized geometric models that have been proposed
to represent the single-scattering properties of atmospheric ice crystals.

1.5.2 Ice crystal models and their light scattering properties

Figures 1.5, 1.6 and 1.7 show the wide range of possible ice crystal shapes that
might occur in the Earth’s atmosphere. As previously discussed, for ice crystal
size, much less than about 100μm, the shapes were ‘indeterminate’, due to the
limiting resolving power of the CPI instrument. However, for larger ice crystal
sizes, single pristine, spatial and aggregates of ice crystals appeared frequently in
the CPI images. Due to the uncertainties surrounding the actual shapes of small
ice crystals that might exist in cirrus, there are now a number of theoretical models
that have been proposed to represent small ice crystals. To represent the scattering
properties of large aggregated ice crystals, a number of habit mixture models have
been proposed. To begin this survey of ice crystal models, we start with idealized
single ice crystal models.

1.5.2.1 Single ice crystal models

Idealized single ice crystal models, that have been proposed to represent the scatter-
ing properties of atmospheric ice particles, are shown in Fig. 1.15. The uncommon,
hexagonal ice column and hexagonal ice plate are shown in Fig. 1.15(a) and (b), re-
spectively. The more common, six-branched bullet-rosette is shown in Fig. 1.15(c).
As noted previously, ice crystals may also contain air cavities, and an example of
a bullet-rosette model, with air cavities in its component branches, is shown in
Fig. 1.15(d) (from P. Yang, personal communication). These simple single shapes
have well defined three-dimensional structures, which help to simplify light scatter-
ing calculations. However, as shown in Figs 1.5, 1.6 and 1.7, ice crystals are usually
indeterminate spatial and/or aggregated, and single models that have been pro-
posed to represent these crystals, are shown in Fig. 1.15(e) to (j). To represent ice
crystal randomization, shown in Figs. 1.5, 1.6, and 1.7, the ‘polycrystal’ was pro-
posed by Macke et al. (1996a), previously discussed in Section 1.5.1, and this model
is shown in Fig. 1.15(e). To represent the compact ice aggregates, the hexagonal ice
aggregate shown in Fig. 1.15(f), was proposed by Yang and Liou (1998), and this
model consists of eight arbitrarily attached hexagonal columns, the overall aspect
ratio of this model also remains invariant with respect to size. Ice aggregates may
also appear spatial rather than compact, and to represent these ice crystals, Baran
and Labonnote (2006) proposed the eight-chain aggregate, Fig. 1.15(g), which was
a re-transformation of the Yang and Liou (1998) compact hexagonal ice aggregate
model. A ‘radiatively equivalent’ ice crystal model, Fig. 1.15(h), called the Inhomo-
geneous Hexagonal Monocrystal (IHM), was proposed by Labonnote et al. (2001)
to represent the observed radiative properties of cirrus. The IHM was included with
spherical air bubbles and aerosol to replicate the observed radiative properties of
cirrus, as well as their polarization properties. Um and McFarquhar (2007, 2009)



38 Anthony J. Baran

Fig. 1.15. Examples of idealized ice crystal models that have been proposed to represent
single ice crystals in light scattering calculations. The models shown are (a) the hexagonal
ice column, (b) the hexagonal ice plate, (c) the six-branched bullet-rosette, (d) the bullet-
rosette with air cavities in each branch (Ping Yang, personal communication), (e) the
polycrystal, (f) the hexagonal ice aggregate, (g) the chain hexagonal ice aggregate, (h) the
IHM model, (i) the rosette-chain (G. McFarquhar and J. Um, personal communication),
and (j) the chain of hexagonal plates (P. Yang, personal communication).
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and Xie et al. (2011), have proposed models of rosette and plate aggregates, to rep-
resent these ice crystal shapes that occur in Figs. 1.5, 1.6, and 1.7. Figure 1.15(i)
and Fig. 1.15(j) show idealized models of the rosette aggregate (Um and McFar-
quhar, 2007), and hexagonal plate aggregate (P. Yang, personal communication),
respectively.

These more idealized aggregate ice crystal models shown in Fig. 1.15(e) to (j) or
their ‘radiative equivalents’ represent the larger ice crystals. However, as shown in
Figs. 1.6 and 1.7, there also exist small ice crystals of maximum dimensions much
less than about 100μm, and the shapes of these much smaller ice crystals are not
at present known. To represent the shapes of small ice crystals various idealized
geometrical models have been proposed, and some of these are shown in Fig. 1.16.
Due to the ‘rounded’ nature of the small ice crystals, imaged by the CPI, shown in
Figs. 1.6 and 1.7, simple spheroids have been proposed by Asano and Sato (1980),
the so-called ‘quasi-spherical’ models. However, indentations can sometimes been
seen on the CPI images of small ice crystals, and a model based on the Chebyshev
polynomial has been proposed by McFarquhar et al. (2002), to account for these
images, shown in Fig. 1.16(a) (from G. McFarquhar, personal communication). The

Fig. 1.16. Examples of idealized geometrical ice crystal models that have been proposed
to represent small ice crystals in light scattering calculations. The models shown are (a)
the Chebyshev model (G. McFarquhar, personal communication), (b) the droxtal, (c)
the Gaussian random sphere and (d) the bucky ball model (G. McFarquhar and J. Um,
personal communication).
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droxtal ice crystal shown in Fig. 1.16(b) has been proposed by Yang et al. (2003),
and this shape may exist in freezing fog (Ohtake, 1970) and wave cloud (Zhang et
al., 2004) (from P. Yang, personal communication). The Gaussian random sphere
shown in Fig. 1.16(c) has been proposed by Nousiainen and McFarquhar (2004)
(from T. Nousiainen and G. McFarquhar, personal communication). This model has
also been applied to simulate the properties of Saharan dust particles as previously
discussed in Section 1.5.1. The more recent, budding bucky ball model, shown in
Fig. 1.16(d), has been proposed by Um and McFarquhar (2011), and this model was
based on a germinating ice crystal analogue model, described in Ulanowski et al.
(2006) (from G. McFarquhar and J. Um, personal communication). However, the
recent cloud chamber results of López and Ávila (2012), suggest that pure quasi-
spherical models, may not actually exist, due to the protrusions of sharp edges,
from their surfaces. Even small ice crystals are indeed, nonspherical to a high degree
(López and Ávila, 2012). However, the more recent nonspherical models proposed to
represent small ice crystals, cannot as yet be discounted. Clearly, further laboratory
scattering studies and measurements made by SID-3 are required, to constrain the
scattering properties of small ice crystals. The phase function of the small ice
crystals imaged by López and Ávila (2012) should be measured and compared
against idealized small ice crystal model predictions of the phase function.

As can be seen from Figs. 1.15 and 1.16, there are a large number of single ice
crystal models that have been proposed to represent the variability of ice crystal
shape found in cirrus. In the next subsection ice crystal habit mixture models are
reviewed.

1.5.2.2 Habit mixture models of cirrus

Figs. 1.5, 1.6 and 1.7 indicate that cirrus is not wholly composed of single ice
crystal shapes, but of shape mixtures or an ensemble collection of ice crystals. Habit
mixture models have been proposed by (Volkivitsky et al., 1980; McFarquhar et
al., 1999; Liou et al., 2000; Rolland et al., 2000; Baran et al., 2001b; McFarquhar
et al., 2002; Baum et al., 2005; Baran and Labonnote 2007; Bozzo et al, 2008;
Mitchell et al., 2008; Baum et al., 2011). However, as noted in Section 1.4, the
mass of aggregating ice crystals is proportional to the square of their maximum
dimension. Therefore, ice crystal aggregating models should be shown to follow this
mass-dimensional relationship.

The habit mixture model of Baum et al. (2005) is shown in Fig. 1.17 (from P.
Yang, B. Baum and G. Hong, personal communication), hereinafter referred to as
the Baum model. The Baum model is currently used as the operational model to
retrieve global cirrus properties using the space-based passive Moderate Resolution
Imaging Spectroradiometer (MODIS) instrument (see, for example, Hong et al.
(2007) and Lee et al. (2009)). The Baum model comprises of a size-dependent
weighted habit mixture, as shown in Fig. 1.17, The smallest ice crystals in the
PSD, are represented by droxtals; then for larger sizes, the habit mixture consists
of six-branched bullet-rosettes, solid hexagonal columns and solid hexagonal plates,
and hollow columns; and the largest ice crystals are represented by eight-branched
compact hexagonal ice aggregates. However, due to the compact nature of the
hexagonal ice aggregate, this model predicts that ice mass is proportional to the
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Fig. 1.17. The habit mixture model of Baum et al. (2005) (from P. Yang, B. Baum and
G. Hong, personal communication).

cube of its maximum dimension. Therefore, in regions of ice crystal aggregation, it
will over-predict IWC. For this reason, and amongst others discussed in Baum et
al. (2011), a new habit mixture model has been proposed by Baum et al. (2011),
hereinafter referred to as Baum2.

The Baum2 habit mixture model is shown in Fig. 1.18 (P. Yang, personal com-
munication), and this new model, now consists of three additional habits, which
are hollow bullet rosettes, with air cavities in each component branch, small spatial
hexagonal plate aggregates and large spatial hexagonal plate aggregates. Without
any dependence on temperature, this more generalized habit mixture model is able
to replicate, generally within a factor of 2, many global in situ estimates of IWC.
However, temperature-dependent, habit mixture models have also been developed
by Baum et al. (2011), such as convective and non-convective models, as well as
polar models. All these models appear to conserve ice crystal mass reasonably well,
which means they must follow the generally observed ice aggregation power law
relationship.

An alternative to the Baum and Baum2 habit mixture model, called the ‘ensem-
ble model’, has been proposed by Baran and Labonnote (2007). The CPI images
shown in Figs. 1.5, 1.6 and 1.7 indicate that ice crystals, as a function of depth
from cloud-top, become progressively complex and spatial. The ensemble model,
attempts to replicate this generally observed aggregation process, and the model
is shown in Fig. 1.19. The ensemble model is composed of six elements, which be-
come progressively more complex as a function of maximum dimension, D. The first
ensemble member consists of a solid hexagonal ice column of aspect ratio unity,
which is shown in Fig. 1.19(a). With increasing D, the ensemble model becomes
progressively more complex and spatial, by arbitrarily attaching other hexagonal
ice column elements to each other, until the last ensemble member, a spatial ten
element chain, shown in Fig. 1.19(f), is formed. It should be noted here, that un-
like the single ice crystal models previously described in subsection 1.5.2.1, such as
the polycrystal and eight-branched compact hexagonal ice aggregate, the overall
aspect ratio of each ensemble member does not remain invariant with respect to
D. Each of the ensemble members, shown in Fig. 1.19, is distributed throughout a
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Fig. 1.18. The habit mixture model of Baum et al. (2011) (from Ping Yang, personal
communication).

Fig. 1.19. The ensemble model of Baran and Labonnote (2007) (after Baran and Labon-
note, 2007).
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PSD, which is divided into six equal intervals. The first member of the ensemble
is distributed into the first interval, and the last ensemble member is distributed
into the sixth interval.

The single-scattering properties predicted by the Baum and Baum2 models are
integrated using in situ derived PSDs, whereas the ensemble model is integrated
using a moment estimation parameterization of the PSD. This parameterized PSD
has been proposed by Field et al. (2007). The parameterized PSD is based on many
thousands of in situmeasured PSDs, at temperatures between 0◦C and −60◦C. The
moments of the in situ PSDs are parameterized, by relating the second moment
(i.e., IWC) to higher moments, through power law relationships, depending on the
in-cloud temperature. Thus, from the IWC and in-cloud temperature, the original
PSD is estimated. Relating the PSD to IWC, is a desirable link, as the IWC is a
prognostic variable of a GCM. This parameterized PSD, is based merely on the
measured size, and is thus independent of assumed ice particle shape, a further de-
sirable property if it is to be consistently applied to the single-scattering properties
of ice crystals.

Other parameterized PSDs that are available in the literature, tend to rely
on specific mass-dimensional relationships, which depend on the particular shapes
and specific pre-factors and exponents, estimated during field campaigns. There-
fore, such parameterized PSDs cannot be consistently applied to ice crystal models,
as these models, may predict different mass-dimensional relationships to the ones
used to construct the parameterized PSD. A further advantage of the Field et al.
(2007) parameterization is that it is based on linear algebra; this means that the
resolution of the PSD can be as fine as the user wishes, making integration of the
single-scattering properties accurate. A further desirable feature of this parameter-
ization is that it circumvents the problem of ice crystal shattering. It does this by
ignoring ice crystal sizes less than 100μm, measured by the in situ probes. The
parameterization, for particle sizes less than 100μm, approximates the PSD by an
exponential, for particle sizes greater than 100μm, the parameterization assumes
a gamma function.

The ensemble model of Baran and Labonnote (2007), when combined with the
Field et al. (2007) PSD, has been demonstrated to have predictive value in replicat-
ing, to within measurement uncertainty, mid-latitude and tropical cirrus IWC, and
total solar optical depth (Baran et al., 2009; Baran et al., 2011a). This predictive
property, of the ensemble model, means that it too, can be readily applied in GCM
radiation schemes without regard to location; this is an important consideration in
GCM climate change experiments (Baran et al., 2010; Baran 2012a).

A further habit mixture model has been proposed by Mitchell et al. (2008),
based on many mid-latitude and tropical in situ measurements of area-dimensional
and mass-dimensional relationships, for a number of ice particle shapes, such as
hexagonal ice columns, hexagonal ice plates, bullet-rosettes and ice aggregates.
This scheme is also linked to a parameterized PSD, generated from the IWC and
cloud temperature, and has been applied to study the radiative effect of small ice
crystals in GCMs (Mitchell et al., 2008).

Ice crystal aggregating models, if they follow the generally observed mass-
dimensional relationship can be used to forward model the radar reflectivity or
microwave radiances. Indeed, the Baum and Baran and Labonnote (2007) mod-
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els have been shown to have predictive value in forward modelling the CloudSat
radar reflectivity at 94 Ghz (Hong et al., 2008; Baran et al., 2011b). Moreover,
Baran et al. (2011b) have proposed a radar reflectivity forward model at 94 GHz
for application to GCMs, so that CloudSat, or any other space-based radar instru-
ment operating at 94 GHz, can be simulated directly using only GCM prognostic
variables.

The ice aggregating models discussed in this section should be physically consis-
tent across the electromagnetic spectrum. That is, the same ice crystal model should
be used to forward model solar, infrared, and microwave radiances or radar reflec-
tivity, without the need to apply different ice crystal models to different regions of
the spectrum. With the advent of the space-based A-train that near-simultaneously
samples cirrus across the electromagnetic spectrum, this requirement of physical
consistency across the spectrum, is a prerequisite of any model; see also Baran and
Francis (2004). The next subsection discusses the single-scattering properties of ice
crystals.

1.5.2.3 The single-scattering properties of ice crystals

Figures 1.20 and 1.21 show the P11 and P12 elements of the scattering phase ma-
trix, respectively, predicted by some of the ice crystal models discussed in subsec-
tion 1.5.2.2. The ice crystal models, shown in Fig. 1.20, are the randomly oriented
hexagonal ice plate of aspect ratio 0.5, 50% hollow hexagonal ice plate of aspect ra-
tio 0.5, six-branched bullet-rosette, very distorted six-branched bullet-rosette, very
distorted hexagonal ice aggregate, the IHM model, and the ensemble model. Also
shown in Fig. 1.20 is the calculated g value, for each of the models. The calcula-
tions shown in Fig. 1.20 and 21 assume an incident wavelength of 0.55μm, and a
complex refractive index of 1.33 + i1.0 × 10−12, where i is the imaginary part of
the refractive index. The calculations were performed using the method of Monte
Carlo ray-tracing described by Macke et al. (1996a).

Fig. 1.20 shows that, smooth ice crystal models, such as the hexagonal ice plate,
and six-branched bullet rosette, predict phase functions, which have the familiar
22◦ and 46◦ haloes. As well as the ice bow feature, at scattering angles between
about 135◦ amd 160◦, and reflection peak, at the exact backscattering angle of
180◦. The 50% hollow hexagonal ice plate has more forward scattering, relative to
the smooth particles. This is why the g parameter predicted by the 50% hollow
plate has increased relative to the smooth particles; see also Schmitt et al. (2006)
and Yang et al. (2008)). Moreover, the 22◦ halo and ice bow features are either
reduced or almost removed on the phase function of the 50% hollow hexagonal
plate, respectively (Schmitt et al., 2006; Yang et al., 2008).

In contrast to the smooth ice crystal models, the distorted or rough ice crystals,
such as the very distorted six-branched bullet-rosette and very distorted hexagonal
ice aggregate models, produce phase functions which are featureless (Yang and Liou
1998; Ulanowski et al., 2006). Moreover, the distorted ice crystal models predict
g values, which can be considerably smaller than their smooth or hollow counter-
parts. Therefore, depending on the process dominating the randomization of the ice
crystal, the asymmetry parameter, may increase or decrease. The IHM model, pre-
dicts much diminished haloes and a featureless phase function, at scattering angles
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Fig. 1.20. The scattering phase function plotted against scattering angle for a variety
of ice crystal models. The models are shown by the key in the top right-hand side of the
figure, together with their predicted values of g.

Fig. 1.21. The P12 element of the scattering phase matrix plotted against the scattering
angle for a number of ice crystal models. The models are shown by the key in the top
right-hand side of the figure, together with their predicted values of g.
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greater than about 46◦. This is because the IHM is composed of spherical air and
aerosol bubbles which, due to multiple scattering between the spherical bubbles,
diminish haloes and produce a generally featureless phase function (Labonnote et
al., 2001). The ensemble model of Baran and Labonnote (2007), predicts a phase
function, which is completely featureless and almost flat at backscattering angles,
due to a randomization of ray paths and spherical air bubble inclusions within the
crystal volume (Macke et al., 1996a; Macke et al., 1996b; Shcherbakov et al., 2006).

However, a recent paper by Gayet et al. (2012) reports on Polar Nephelometer
(PN) measurements; the PN measures the scattering phase function between the
polar angles of about 15◦ to 162◦. The phase function measurements were obtained
in a mid-latitude anvil cloud, toward the cloud-top at temperatures of about−58◦C.
The ice crystals that produced the measured phase functions were chains of aggre-
gates and chains of quasi-spherical ice crystals. The PN measurements revealed
that, although there were no halo features present on the phase functions, there
was, an ice bow-like feature at around scattering angles of 140◦ to 160◦. Moreover,
the presence of this backscattering feature lowers the side-scattering of the phase
function, relative to completely randomized particles, with no features present at
all. The averaged asymmetry parameter of the in situ measured phase function
was estimated by Gayet et al. (2012) to be about 0.78 ± 0.04. The measurements
obtained by Gayet et al. (2012) show that it is not sufficient to measure phase
functions over narrow ranges of scattering angle, but rather measurements must be
obtained that cover both forward scattering and backscattering angles, only with
such measurements can inferences be made about the asymmetry parameters of ice
crystals.

The unusual phase functions reported by Gayet et al. (2012) have implications
not only for the energy balance of anvils but also for remote sensing. Clearly, the
occurrence of such phase functions needs to be further quantified.

The variation in g, predicted by the models, shown in Fig. 1.20, is considerable.
The difference in g, between the smallest and largest g values, is about 12%. This
12% difference is radiatively very significant, as the following example illustrates.
According to asymptotic theory, for the case of a semi-infinite atmosphere, the
reflection, r∞, depends on ω0 and g, which are related to r∞, through the similarity
principle S, given by (van de Hulst, 1980):

S =

√
(1−0)

(1−0g)
(1.15)

r∞ =
1− S

1 + S
(1.16)

If we assume that 0 = 0.9, and g = 0.73 and 0.81, the highest and lowest g values
in Fig. 1.20. Then, the difference in r∞ is about 6%, between the highest and lowest
g values. In terms of flux units, this difference is approximately 55Wm−2. These
differences are significant, and this is why in climate models, the assumed value of
g is so important. Therefore, it is important to constrain values of g, predicted by
theory, by using in situ measurements, such as those provided by SID-3 and the
PN instruments.
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In the literature, there does appear to be a cluster of g values around about
0.75±0.03. However, theoretically, it is possible to predict g values which are much
lower than 0.75 (Mishchenko and Macke, 1997; Ulanowski et al., 2006). Moreover,
examination of spatial light scattering patterns of ice crystals, measured by SID-3,
in a variety of mid-latitude cirrus, suggest very rough ice crystals, which imply
significantly lower g values relative to their smooth counterparts (Z. Ulanowski,
personal communication). In a more recent paper, Mauno et al. (2011) found that
differences between simulated and measured ground-based short-wave fluxes could
not be accounted for by uncertainties in the assumed ice crystal model shapes or
shapes of the PSD. However, they found that by reducing their ice crystal model
values of g, the average value of which at 0.55μm was about 0.78, by about 10%,
improved their agreement, for some periods, between model and measurements.
They speculated that this 10% reduction in g could be due to ice crystal surface
roughness or inclusions or irregularities on the ice crystal not accounted for in their
model.

On the other hand, Yang et al. (2011), find that ignoring the vertical profile
of ice crystal shapes, and the shape of the PSD, can lead to significant errors in
the downwelling and upwelling short-wave fluxes, if only simple shapes, such as
columns, are considered in GCMs. Moreover, they find that the error in ignoring
the vertical structure is similar to the impact of scaling the asymmetry parameter
from high to moderate values, i.e., reducing their g values by about 6%. If their g
values are reduced by extreme amounts, such as by 13%, then differences between
simple columns and rough columns could be as large as 25Wm−2. However, further
randomizations need to be considered in simulations, such as the ones performed
by Yang et al. (2011), apart from surface roughness. These include concavities and
porosity, as well as irregularity.

To illustrate the degree to which each of these processes either increases or
decreases g, for a particular shape, we consider the hexagonal plate, from Fig. 1.20,
assuming the same wavelength and complex refractive index as used in that figure.
For this shape, the ray-tracing code of Macke et al. (1996a) is applied, and the
modification to the original Macke et al. (1996b) code by Shcherbakov et al. (2006),
which included air bubbles or aerosol bubbles within the volume of the ice crystal,
is used to fully randomize the crystal, apart from distortion.

Table 1.1 illustrates the effect on the value of g, by applying the processes of
hollowing the crystal by 50%, distorting the ice crystal and then including the
crystal with spherical air bubbles. As in Fig. 1.20, the pristine crystal has a g value
of 0.79, and hollowing the crystal then increases the value of g to 0.81. Applying
severe distortion to the crystal, decreases g, for both the solid and hollow crystals,
by about 5% and 7%, respectively. If the crystals are then included, with spherical
air bubbles, which increases multiple scattering and therefore decreases g, then the
value for g in both cases decreases by about 12%. The inclusions of spherical air
bubbles decreases g further, by about 5% or 6%. The difference between the two
extreme g values of 0.81 and 0.71, in terms of reflected flux, using Eq. (1.16), is
about 66Wm−2.

Clearly, Table 1.1 demonstrates that it is possible to generate extreme dif-
ferences in the value of g, using the same ice crystal model. However, whether
such extreme g values really do occur in the natural atmosphere, requires further
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Table 1.1. The asymmetry parameter, g, tabulated as a function of randomization (pro-
cess), assuming the hexagonal ice plate of aspect ratio 0.5. The processes applied are
pristine, 50% hollow, very distorted (VD), 50% hollow plus very distorted, and finally
50% hollow plus very distorted plus spherical air inclusions.

Process g

Pristine 0.79
50% Hollow 0.81

Very distorted (VD) 0.74
50% Hollow + VD 0.75

50% Hollow + VD + Air Inclusions 0.71

measurement, using many more in situ measurements of the ice crystal scattering
patterns, covering a considerable degree of scattering angle space. It is also impor-
tant to determine, which process or processes acting on the ice crystal, is or are
occurring, as a function of atmospheric state (i.e., temperature and humidity) and
possibly vertical velocities, as these processes will ultimately determine the real
value of g (Ulanowski et al., 2010, 2011; Gayet et al., 2011; Gayet et al., 2012). The
unusual in situ-measured ice crystal phase function reported by Gayet et al. (2012)
has been theoretically interpreted by Baran et al. (2012) as being chiefly due to
the quasi-spherical ice crystals dominating the PN measurements, rather than to
the underlying aggregate shape. This is evidence that retrieving ice crystal shape
using remotely sensed measurements may not be accurate.

The phase functions predicted by the very distorted ice crystal models and ice
crystal models with inclusions are very similar at backscattering angles, as shown
in Fig. 1.20. Intensity alone measurements, could not distinguish between these
different models, and yet their geometries are very different.

Figure 1.21 shows the linearly polarized P12 element of the scattering phase
matrix, predicted by the very distorted six-branched bullet-rosette, very distorted
hexagonal ice aggregate, IHM and ensemble model. The figure shows that, for scat-
tering angles greater than about 60◦, the gradient in the linear polarization is quite
different, for the various models, and between about 10◦ and 60◦, the predictions are
significantly different. This figure illustrates the importance of linear polarization
measurements, which can be used to further constrain ice crystal models (Labon-
note et al., 2001; Baran and Labonnotte 2006; Sun et al., 2006; Mishchenko et al.,
2007). However, given the range of ice crystal complexity, as shown in Figs 1.5,
1.6 and 1.7, there might be no unique intensity or polarized signature, for a given
ice crystal shape or ensemble of shapes. Since, what is measured by radiometers is
intensity, which is a convolution of the ice crystal size, shape and complexity. As
illustrated by Fig. 1.20, the very distorted models predict scattered intensities that
are very similar to each other, and so for these, the shape information is lost. The
measured intensity is not, therefore, a unique signature of shape, unless the crystals
are perfect geometrically, and smooth. This point is illustrated by Fig. 1.22.

Figure 1.22 shows the phase functions predicted by the ensemble model, after
progressively randomizing the model, from pristine to distorted, eventually becom-
ing highly distorted with spherical air bubble inclusions. As previously discussed,
as the ice crystals become progressively more randomized, the optical features such
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as the 22◦ and 46◦ halo are removed, and the backscattering is decreased, with an
increase in side scattering. The phase function of the most randomized ensemble
model becomes featureless and at backscattering angles, is flat. Figure 1.22 illus-
trates that retrieving ice crystal ‘shape’ is an entirely meaningless proposition, and
what should be retrieved instead, is a randomization. It is the randomization, which
has the greatest impact on g, unless the ice crystal is perfectly smooth (Baran et
al., 2012). This ensemble model phase function, shown in Fig. 1.22, can be readily
applied to any inversion scheme to retrieve randomization, rather than shape. Of
course, any other model could be randomized, and those phase functions applied to
retrieval schemes (Doutriaux-Boucher et al., 2000; Baran et al., 2001b; Ulanowski
et al., 2006; Baran and Labonnote 2007; Baum et al., 2011).

In the literature the scalar optical properties are often plotted as functions of
De, however, in this chapter, they are plotted as a function of IWC and cloud tem-
perature. Figure 1.23(a) and and Fig. 1.23(b) show the scalar optical properties,
ω0 and g, predicted by the ensemble model at the wavelength of 1.6μm, plotted
as a function of IWC and cloud temperature. The scalar optical properties were
calculated using the ray-tracing code of Macke et al. (1996a); the bulk scattering
properties were then derived, by integrating the scalar optical properties over 20662
PSDs using the Field et al. (2007) parameterization. The IWC and cloud temper-

Fig. 1.22. The scattering phase function plotted against the scattering angle for the
ensemble model, assuming various randomizations. The randomizations are shown by
the key in the top right-hand side of the figure. The incident wavelength and complex
refractive index are the same as used in Fig. 1.20.
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ature values, which were used to generate the PSDs, were obtained in a variety of
cirrus, and these measurements are described in Baran et al. (2011b).

Figure 1.23(a) and Fig. 1.23(b) show that the physical behaviour of ω0 and g is
sensible. At low IWC and cold temperatures, the ω0 and g values are high and low,
respectively. This is because at low IWC and cold temperatures, the shape of the
PSD is narrow, which means that it is dominated by small ice crystals. Therefore,

Fig. 1.23. The ensemble model predicted scalar optical properties at the wavelength of
1.6μm, plotted as a function of IWC and cloud temperature, using tropical PSDs. The
scalar optical properties shown are (a) ω0, and (b) g.
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these small ice crystals have low g values and scatter incident radiation efficiently.
At warm temperatures and high IWC, the reverse is true. In this case, the ω0 and
g values become low and high, respectively. Again, this is due to the shape of the
PSD, which becomes broad, for values of high IWC and warm temperatures, and
so the PSD has larger ice crystals occurring more frequently than previously. Thus,
larger ice crystals will absorb more incident radiation, and consequently ω0 will
become lower, whilst the g values become large, due to the greater absorption, which
increases the diffracted component. As Fig. 1.23(a) and Fig. 1.23(b) demonstrate,
the bulk scalar optical properties vary in both the horizontal and vertical directions,
though they depend mostly on IWC, and only weakly on cloud temperature.

The scalar optical properties shown in Fig. 1.23(a) and Fig. 1.23(b) can be
readily parameterized into climate models, thus linking directly, GCM prognostic
variables to the bulk scattering properties of the cloud, without the need for De.
Indeed, this has been achieved by Mitchell et al. (2008), Baran et al. (2010) and
Baran (2012a). These new parameterizations demonstrate that there is no need
to link the optical properties in GCMs via properties such as effective diameter,
which is still the general approach adopted in parameterizing bulk scalar optical
properties in climate models (Edwards et al., 2007; Fu, 2007; Hong et al., 2009; Gu
et al., 2011).

As previously discussed the ensemble model predicts that the ice crystal mass
is proportional to the square of its maximum dimension. This means that the
ensemble model can predict the radar reflectivity of aggregating ice crystals. An
example of this is shown in Fig. 1.24. The radar reflectivity is calculated, using the
Rayleigh–Gans approximation, and is given by (Baran et al., 2011b);

Ze = 1018C

∫ Dmax

Dmin

36π3

λ4ρ2i

∣∣∣∣ε− 1

ε+ 1

∣∣∣∣2m2(D)f(D)n(D) dD (1.17)

Fig. 1.24. Same as Fig. 1.23 but for the radar reflectivity (dBZe) at 94GHz (after Baran
et al., 2011b).
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where the units of Ze are in mm6 m−3, the constant C = λ4/(|K|2π5), and λ
is the incident wavelength in m, |K|2 is the dielectric factor, assumed to have
a value of 0.75 at 94GHz (this value of |K|2 has been assumed, since it is the
value used to calibrate the CloudSat radar), and the choice of the dielectric factor
is dictated by convention, to ensure that for water droplets Z =

∫
N(D)D6 dD,

where N(D) is the droplet size distribution function. The constant C has a value of
4.520× 10−13 m4 and n(D) is the PSD, in units of m−4. The units of the integrand
are in SI (m6 m−3) units, to convert these to mm6 m−3, the integrand must be
multiplied by a factor of 1018. In Eq. (1.17) ρi is the density of solid ice, assumed
to be 920 kgm−3, and ε is the dielectric constant of solid ice, and f(D) is the form
factor. The form factor represents the deviation from the Rayleigh approximation,
as the size parameter increases beyond unity. The form factor has been previously
computed by Westbrook et al. (2006) and Westbrook et al. (2008) for aggregating
ice crystals. Since the form factor presented in Westbrook et al. (2008) has been
computed for aggregating ice crystals, the same form factor is used in this chapter,
and applied to Eq. (1.17). The mass of ice crystals, in Eq. (1.17), is represented by
m(D). The predicted ensemble model, mass-dimensional relationship, is 0.04D2, in
SI units (Baran et al., 2011b).

The radar reflectivity Ze, is generally expressed in decibels, given by 10 log 10Ze.
The ensemble model tropical radar reflectivity is shown in Fig. 1.24, as a function
of IWC and cloud temperature, derived in the same manner as Fig. 1.23(a) and
Fig. 1.23(b). Similar to Fig. 1.23, the radar reflectivity behaves in the same way as
the scalar optical properties. Again, radar reflectivity can be parameterized without
the need for an effective diameter, and the parameterization can be incorporated
into a GCM.

The point is, however, that it is possible to construct a high- and low-frequency
scattering model of cirrus that is applicable across the electromagnetic spectrum,
without the need for a hierarchy of cirrus scattering models applied to particular
regions of the electromagnetic spectrum.

1.6 Conclusion

In this chapter, the light scattering properties of atmospheric mineral dust, vol-
canic aerosol and ice crystals have been discussed and reviewed. Current climate
models, when compared against space-based measurements of the short-wave flux
at TOA, can be in error by as much as 50Wm−2. This error is still in part due
to an incomplete understanding of how incident light interacts with atmospheric
particulates. Therefore, to reduce the uncertainty in climate model predictions of
climate change, under the scenario of increased industrial emissions, it is vital to
understand the basic interaction between light and atmospheric particulates.

It is still common practice to parametrize mineral dust particles in climate
models using scalar optical properties derived from Lorenz–Mie theory. However,
as Fig. 1.4 demonstrates, mineral dust aerosols are nonspherical, and so are volcanic
ash particles (Johnson et al., 2012). Moreover, these particles are irregular, with
deformations, and exhibit rough surfaces. There have been attempts to model these
particles as systems of spheroids of varying aspect ratios. However, the work of Os-
borne et al. (2011) has shown that, for the case of heavily laden Saharan mineral
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aerosol, the often-applied habit mixture model of spheroids fails to reproduce the
measured transmitted radiance as a function of scattering angle at various wave-
lengths in the solar region. Although, such models may be appropriate for small
aerosol or not so heavily laden aerosol, for larger particles the model is not suffi-
ciently general. Therefore, models that exhibit more irregularity on their surface,
rather than smooth surfaces, need to be investigated further, as well as aggregated
aerosol, which to date has been completely ignored.

The impact, on the short-wave upwelling and downwelling fluxes, of assuming
habit mixture smooth spheroid models or irregular models is very significant. This
is because both models predict very different asymmetry parameters; these differ-
ences in the asymmetry parameter can cause differences of about −22Wm−2 in
the averaged daily TOA radiative forcing. This difference in TOA radiative forcing
is not dissimilar to the differences shown in Fig. 1.1(b). Therefore, constraining, the
general irregularity and asymmetry parameter of mineral dust aerosol is important,
if Fig. 1.1(b) is to be further improved. In this respect, new instrumentation such
as SID-3 is important, which will help to characterize the irregularity of small par-
ticles. Moreover, although the SID series of instruments is useful for characterizing
the forward scattering properties of aerosol, there are still insufficient measurements
of the backscattering properties of dust and ash aerosol, at sufficient angular reso-
lution in scattering angle space, to be able to fully constrain light scattering models
of dust and ash aerosols. Instruments that combine features of SID-3 with the scat-
tering angle range of the Polar Nephelometer are required to fully understand the
light scattering patterns of atmospheric particulates.

However, polarization measurements, either in situ or space-based, will also help
to constrain aerosol models, as the scattering phase matrix elements, other than
P11, are particularly sensitive to assumptions about particle irregularity.

In recent times, the volcanic eruption of Eyjafjallajökull closed a number of
European airports as the volcanic plume advected over them. They closed be-
cause aircraft, at that time, could not fly into volcanic material. In order to relax
this constraint on aircraft, it is necessary to know the mass concentration con-
tained in the plume. To estimate mass concentration, single scattering microphys-
ical probes, have and are being developed, to estimate the mass concentration to
some uncertainty. However, here again, to estimate the mass concentration requires
knowledge of the light scattering properties of volcanic ash. Figures 1.14(a) to (c)
demonstrate, how different the scattering phase functions can be between different
models of volcanic ash. Therefore, light scattering models of volcanic ash are re-
quired, that span the resonance (i.e., size parameters around unity) and geometric
optics regions, so that estimates of mass concentration can be better estimated
using single-scattering microphysical probes. Here too, polarization measurements
must be further utilized, as the backscattering properties of ice and ash may be
different, thereby enabling potential discrimination between ash and ice. If ice is
not successfully discriminated, then this could, potentially, lead to significant errors
in the estimates of volcanic mass concentration.

A further uncertainty is the complex refractive index of volcanic ash, as high-
lighted by Newman et al. (2012) and Baran (2012b). Although, there are measure-
ments of their complex refractive index in existence, these are now some 40 years
old. New measurements are required, and should be encouraged, so that uncertain-
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ties in light scattering calculations can be further reduced. Currently, as regards
aerosol, there exist no determinations of the complex refractive indices of these
materials at submillimetre frequencies (i.e., > 300GHz) as highlighted by Baran
(2012b). If new instrumentation in the submillimetre region of the electromagnetic
spectrum is to be exploited, then determination of the dielectric properties of min-
eral dust and volcanic aerosol is a necessity (Baran, 2012b).

It is now commonplace to find measurements of cirrus that span the electromag-
netic spectrum of importance to the energetics of the Earth–atmosphere system.
Therefore, there is no further point in constructing theoretical light scattering mod-
els of cirrus, that apply only, to particular regions of the electromagnetic spectrum
(Baran and Francis, 2004). Moreover, there is also little point in constructing the-
oretical light scattering models of cirrus based on single idealized ice crystals, since
cirrus is composed of habit mixtures. Furthermore, single geometrical models do
not, generally, exhibit the correct mass-dimensional relationships, in the presence
of ice aggregation. Therefore, what is required are theoretical light scattering mod-
els of cirrus that are physically consistent across the electromagnetic spectrum,
and that satisfy observed mass-dimensional relationships for aggregating ice crys-
tals (i.e., mass ∝ D2). This mass ∝ D2 condition means that ice crystal models
should be spatial rather than compact, and cloud physics and radiation research,
cannot be considered as two separate disciplines; rather, they are intrinsically cou-
pled (Baran and Labonnote, 2007; Mitchell et al., 2008; Baran et al., 2009; Baran
et al., 2010; Mitchell et al., 2011; Baran et al., 2011a; Baran et al., 2011b; Baran,
2012a). The short-wave TOA flux calculations, shown in Fig. 1.1(a), have been
accomplished using decoupled cloud physics and radiation schemes. However, cou-
pled cloud-physics and radiation schemes are to be preferred, as these directly link
model prognostic variables with radiation measurements (Baran and Labonnote,
2007; Mitchell et al., 2008; Baran et al., 2010; Baran, 2012a).

The short-wave flux differences between a climate model and measurements,
shown in Fig. 1.1(a), can be as large as −40Wm−2. Assuming different ice crystal
models, to calculate the asymmetry parameter, can lead to short-wave flux differ-
ences as large as approximately 66Wm−2, as demonstrated in this chapter. Clearly,
such a difference, due merely to changing the asymmetry parameter, can be compa-
rable to other differences in climate models, due to other model parameters, apart
from the scalar optical properties. It is therefore important to further constrain
possible values for the asymmetry parameter. In this regard, further measurements
using the Polar Nephelometer (Gayet et al., 2011; Gayet et al., 2012) and SID-3
(Ulanowski et al., 2010) appear particularly useful.

However, to take advantage of the Polar Nephelometer and SID-3 measure-
ments, especially at visible wavelengths, requires improved treatments of electro-
magnetic scattering. Currently, there are now electromagnetic and physical optics
methods that bridge the gap between the resonance and geometric optics regimes.
The method outlined in Bi et al. (2011) is particularly promising, as this incor-
porates concepts of electromagnetic theory and physical optics, inclusive of edge
effects. Moreover, it is essentially independent of size parameter through the in-
novative use of beam tracing, but becomes limited by the shape of the particle.
But a method that encompasses both the resonance and geometric optics regimes
still eludes researchers. The traditional approach to electromagnetic scattering is
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to solve the Maxwell equations until the size or frequency becomes so large that
the equation systems cannot be solved. However, other areas of research such as
numerical–asymptotic methods, applied to high-frequency scalar wave scattering,
appear particularly interesting, and are currently receiving considerable attention;
for further information, see the review papier of Chandler-Wilde et al. (2012).

This chapter, it is hoped, has demonstrated the need to understand the light
scattering properties of atmospheric particulates, and how important this need is, if
climate model predictions are to be further improved and constrained. In the areas
of remote sensing, this need is ever greater, as more regions of the electromagnetic
spectrum are beginning to be explored, such as the wavelength or frequency resolved
solar, infrared and far-infrared regions (see, for example, Baran and Francis (2004);
Cox et al. (2010)) and submillimetre regions (Evans et al., 2005; Buehler et al., 2007;
Baran 2012b).
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H. Volten, O. Muñoz, B. Veihelmann, W.J. van der Zande, J.-F. Leon, M. Sorokin,
and I. Slutsker, 2006, Application of spheroid models to account for aerosol parti-
cle nonsphericity in remote sensing of desert dust, J. Geophys. Res., 111, D11208,
doi:10.1029/2005JD006619.

Edwards, J. M., S. Havemann, J.-C. Thelen, and A. J. Baran, 2007, A new parameteri-
zation for the radiative properties of ice crystals: Comparison with existing schemes
and impact in a GCM, Atmos. Res., 83, 19–35.

Edwards, J. M., and T. Slingo, 1996, Studies with a flexible new radiation code. I: Choos-
ing a configuration for a large-scale model, Q. J. R. Meteorol. Soc., 122, 689–719.

Evans, K. F., J. R. Wang, P. E. Racette, G. Heymsfield, and L. Li., 2005, Ice cloud
retrievals and analysis with the compact scanning sunmillimeter imaging radiometer
and the cloud radar system during CRYSTAL FACE, J. Appl. Meteor., 44, 839–
859.

Farafonov, V. G., and N. V. Voshchinnikov, 2012, Light scattering by multilayered
spheroidal particle, Applied Optics, 51, 1586–1597.

Feng, Q., P. Yang, G. W. Kattawar, C. N. Hsu, Si-Chee Tsay, I. Laszlo, 2009, Effects of
particle nonsphericity and radiation polarization on retrieving dust properties from
MODIS observations, Aerosol Science, 40, 776–789.

Field, P. R., A. J. Heymsfield, and A. Bansemer, 2008, Determination of the combined
ventilation factor and capacitance for ice crystal aggregates from airborne observations
in a tropical anvil cloud, J. Atmos. Sci., 65, 376–391.

Field, P. R., A. J. Heymsfield, and A. Bansemer, 2007, Snow size distribution parameter-
ization for midlatitude and tropical ice cloud, J. Atmos. Sci., 64, 4346–4365.

Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006, Shattering and particle interarrival
times measured by optical array probes in ice clouds, J. Atmos. Ocean. Tech., 23,
1357–1371.

Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R.
J. Cotton, 2005, Parametrization of ice-particle size distribution functions for mid-
latitude stratiform cloud, Q. J. R. Meteorol. Soc., 131, 1997–2017.

Field, P. R., R. Wood, P. R. A. Brown, P. H. Kaye, E. Hirst, R. Greenaway, and J. A.
Smith, 2003, Ice particle interarrival times measured with a fast FSSP, J. Atmos.
Ocean. Tech., 20, 249–261.

Foot, J. S., Some observations of the optical properties of clouds. II: Cirrus, 1988, Q. J.
R. Meteor. Soc., 114, 141–164.

Francis, P. N., 1995, Some aircraft observations of the scattering properties of ice crystals,
J. Atmos. Sci., 52, 1142–1154.

Fu, Q., 2007, A new parameterization of an asymmetry factor of cirrus clouds for climate
models, J. Atmos. Sci., 64, 4140–4150.

Fu Q., W. B. Sun, and P. Yang, 1999, Modeling of scattering and absorption by nonspheri-
cal cirrus ice particles at thermal infrared wavelengths, J. Atmos. Sci., 56, 2937–2947.

Ganesh, M., and S. C. Hawkins, 2010, Three dimensional electromagnetic scattering T-
matrix computations, Journal of Computational and Applied Mathematics, 234, 1702–
1709.

Gayet, J.-F., G. Mioche, L. Bugliaro, A. Protat, A. Minikin, M.Wirth, A. Dörnbrack,
V.Shcherbakov, B. Mayer, A. Garnier, and C. Gourbeyre, 2012, On the observation of



1 Light scattering by irregular particles in the Earth’s atmosphere 59

unusual high concentration of small chain-like aggregate ice crystals and large ice water
contents near the top of a deep convective cloud during the CIRCLE-2 experiment:
Atmos. Chem. Phys., 12, 727–744.

Gayet, J.-F., G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, 2011,
Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study
during CIRCLE-2 experiment, Atmos. Chem. Phys., 11, 2537–3544.

Ghobrial, S. I., and S. M. Sharief, 1987, Microwave attenuation and cross polarization in
dust storms, IEEE Trans. Antennas. Propagat., AP-35, 418–425.

Grenfell, T. C., S. P. Neshyba, and S. G. Warren, 2005, Representation of a nonspherical
ice particle by a collection of independent spheres for scattering and absorption of
radiation: 3. Hollow columns and plates, J. Geophys. Res., 110, Art. D17203.

Grenfell, T. C., and S. G. Warren, 1999, Representation of a nonspherical ice particle
by a collection of independent spheres for scattering and absorption of radiation, J.
Geophys. Res., 104, 31697–31709.

Guignard, A., C. J. Stubenrauch, A. J. Baran, and R. Armante, 2012, Bulk microphysical
properties of semi-transparent cirrus from AIRS: a six years global climatology and
statistical analysis in synergy with CALIPSO and CloudSat, Atmos. Chem. Phys.,
12, 503–525.

Gu, Y., K. N. Liou, S. C. Ou, and R. Fovell, 2011, Cirrus cloud simulations using WRF
with improved radiation parameterization and increased vertical resolution, J. Geo-
phys. Res., 116, D06119, doi:10.1029/2010JD014574.

Hansen, J.E., and L.D. Travis, 1974, Light scattering in planetary atmospheres. Space
Sci. Rev.,16, 527-610.

Harrison, R. G., K. A. Nicoll, Z. Ulanowski, and T A Mather, 2010, Self-charging of
the Eyjafjallajökull volcanic ash plume, Environ. Res. Lett., 5, doi:10.1088/1748-
9326/5/2/024004.

Havemann, S., A. J. Baran, and J. M. Edwards, 2003, Implementation of the T-matrix
method on a massively parallel machine: a comparison of hexagonal ice cylinder single-
scattering properties using the T-matrix and improved geometric optics methods,
Journal of Quantitative Spectroscopy and Radiative Transfer, 79–80, 707–720.

Havemann, S., and A. J. Baran, 2001, Extension of T-matrix to scattering of electromag-
netic plane waves by non-axisymmetric dielectric particles: Application to hexagonal
cylinders, Journal of Quantitative Spectroscopy and Radiative Transfer, 70, 139–158.

Haywood, J. M., B. T. Johnson, S. R. Osborne, A. J. Baran, M. Brooks, S. F. Milton, J.
Mulcahy, D. Walters, R. P. Allan, A. Klaver, P. Formenti, H. E. Brindley, S. Christo-
pher, and P. Gupta, 2011, Motivation, rationale and key results from the GERBILS
Saharan dust measurement campaign, Q. J. R. Meteorol. Soc., 137, 1106–1116.

Haywood, J. M., R. P. Allan, I. Culverwell, T. Slingo, S. Milton, J. Edwards, and N. Cler-
baux, 2005, Can desert dust explain the outgoing longwave radiation anomaly over the
Sahara during July 2003, J. Geophys. Res., 110, D05105, doi:10.1029/2004JD005232.

Haywood, J., P. Francis, S. Osborne, M. Glew, N. Loeb, E. Highwood, D. Tanré, G. Myhre,
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Mano, Y., 2000, Exact solution of electromagnetic scattering by a three-dimensional
hexagonal ice column obtained with the boundary-element method, Applied Optics,
39, 5541–5546.

Marenco, F., B. Johnson, K. Turnbull, S. Newman, J. Haywood, H. Webster, and H.
Ricketts, 2011, Airborne lidar observations of the 2010 Eyjafjallajökull volcanic ash
plume, J. Geophys. Res., 116, doi:10.1029/2011JD016396.
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Tanré, D., M. Herman, and Y. J. Kaufman, 1996, Information on aerosol size distribution
contained in solar reflected spectral radiances, J. Geophys. Res., 101, 19043–19060.

Thelen, J.-C., and J. M. Edwards, 2012, Short-wave radiances: comparison between SE-
VIRI and the unified model, Q. J. R. Meteorol. Soc., in press.



66 Anthony J. Baran

Turnbull, K., B. Johnson, F. Marenco, J. Haywood, A. Woolley, et al., 2012, A case study
of observations of volcanic ash from the Eyjafjallajökull eruption; in situ airborne
observations, J. Geophys. Res., 117, D00U12, doi:10.1029/2011JD016688.

Ulanowski, Z., P.H. Kaye, E. Hirst, and R. Greenaway, 2011, Retrieving the size of particles
with rough surfaces from 2D scattering patterns. 13th Int. Conf. on Electromagnetic
& Light Scatt., Taormina. In: Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat. 89,
Suppl. 1, C1V89S1P087. doi: 10.1478/C1V89S1P087.

Ulanowski, Z., P. H. Kaye, E. Hirst, and R. S. Greenway, 2010, Light scattering by ice
particles in the Earth’s atmosphere and related laboratory measurements, In Electro-
magnetic and Light Scattering by Nonspherical Particles XII, Helsinki 2010.

Ulanowski, Z., J. Bailey, P. W. Lucas, J. H. Hough, and E. Hirst, 2007, Alignment of
atmospheric mineral dust due to electric field, Atmos. Chem. Phys., 7, 6161–6173.

Ulanowski, Z., E. Hesse, P. H. Kaye, and A. J. Baran, 2006, Light scattering by complex
ice-analogue crystals, Journal of Quantitative Spectroscopy and Radiative Transfer,
100, 382–392.

Um, J., and G. M. McFarquhar, 2011, Dependence of the single-scattering properties of
small ice crystals on idealized shape models, Atmospheric Chemistry and Physics, 11,
doi:10.5194/acp-11-1-2011.

Um, J., and G. M. McFarquhar, G. M., 2009, Single-scattering properties of aggregates
of plates, Q. J. Roy. Meteor. Soc., 135, 291–304.

Um, J., and G. M. McFarquhar, 2007, Single-scattering properties of aggregates of bullet
rosettes in cirrus, J. Appl. Meteorol. Climatol., 46, 757–775.

van de Hulst, H. C., 1980, Multiple Light Scattering: Tables, Formulas, and Applications,
Academic Press, New York.

van de Hulst, H. C., 1957, Light Scattering by Small Particles, Wiley, New York.
Veihelmann, B., T. Nousiainen, M. Kahnert, W. J. van der Zande, 2006, Light scattering

by small feldspar particles simulated using the Gaussian random sphere geometry,
Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 393–405.

Volkovitskiy, O. A., L. N. Pavlova, and A. G. Petrushin, 1980, Scattering of light by ice
crystals, Atmos. Ocean. Phys., 16, 90–102.

Volten, H., O. Munoz, E. Rol, J. F. de Haan, W. Vassen, J. W. Hovenier, K. Muinonen,
and T. Nousiainen, 2001, Scattering matrices of mineral aerosol particles at 441.6 nm
and 632.8 nm, J. Geophys. Res., 106, 17,375–17,401.

Wahab, N. M. A., 1974, Ice crystal interactions in electric fields. PhD;UMIST.
Waterman, P. C., 1971, Symmetry, unitarity, and geometry in electromagnetic scattering,

Physical Review, D, 3, 825–839.
Weickmann, H., 1947, Die Eisphase in der Atmosphare, Royal Aircraft Establishment,

Farnborough.
Weinman, J. A., and M. J. Kim, 2007, A simple model of the millimeter-wave scattering

parameters of randomly oriented aggregates of finite cylindrical ice hydrometeors, J.
Atmos. Sci., 64, 634–644.

Wendling, P., R. Wendling, and H. K. Weickmann, 1979, Scattering of solar radiation by
hexagonal ice crystals, Applied Optics, 18, 2663–2671.

Westbrook, C. D., A. J. Illingworth, E. J. Connor, and R. J. Hogan, 2009, Doppler lidar
measurements of oriented planar ice crystals falling from supercooled and glaciated
layer clouds, Q. J. R. Meteor. Soc., 136, 260–276.

Westbrook C. D., R. C. Ball, and P. R. Field, 2008, Notes and correspondence corri-
gendum: Radar scattering by aggregate snowflakes, Q. J. R. Meteorol. Soc., 134,
547–548.

Westbrook, C. D., R. C. Ball, and P. R. Field, 2006, Radar scattering by aggregate
snowflakes, Q. J. R. Meteorol. Soc., 132, 897–914.



1 Light scattering by irregular particles in the Earth’s atmosphere 67

Westbrook, C. D., R. C. Ball, P. R. Field, and A. J. Heymsfield, 2004, Theory of growth
by differential sedimentation, with application to snowflake formation, Phys. Rev., E,
70, Art. No. 021403.

Whitby, K. T., 1978, The physical characteristics of sulfur aerosols, Atmos. Environ., 12,
135–159.

Whitby, K. T., The physical characteristics of sulfur aerosols, Atmos. Environ., 12, 135–
159.

Wriedt, T., 2009, Light scattering theories and computer codes, Journal of Quantitative
Spectroscopy and Radiative Transfer, 110, 833–843.

Wriedt, T., and Doicu, A., 1998, Formulation of the extended boundary condition method
for three-dimensional scattering using the method of discrete sources, Journal of Mod-
ern Optics, 45, 199–213.

Wylie, D. P, and W. P. Menzel, 1999, Eight years of cloud statistics using HIRS, J.
Climate, 12, 170–184.

Wyser, K., and P. Yang, 1998, Average ice crystal size and bulk short-wave single-
scattering properties of cirrus clouds, Atmos. Res., 49, 315–335.

Xie, Y. P., Yang, G. W. Kattawar, B. A. Baum, and Y. Hu, 2011, Simulation of the optical
properties of plate aggregates for application to the remote sensing of cirrus clouds,
Applied Optics, 50, 1065–1081.

Yang, H., S. Dobbie, R. Herbert, P. Connolly, M. Gallagher, S. Ghosh, S. M. R. K. Al-
Jumur, and J. Clayton, 2011, The effect of observed vertical structure, habits, and size
distributions on the solar radiative properties and cloud evolution of cirrus clouds, Q.
J. R. Meteorol. Soc., doi:10.1002/qj.973.

Yang., P., Z. Zhang, G. W. Kattawar, S. G. Warren, B. A. Baum, H.-L. Huang, Y.-X. Hu,
D. Winker, and J. Iaquinta, 2008, Effect of cavities on the optical properties of bullet
rosettes: Implications for active and passive remote sensing of ice cloud properties, J.
Appl. Meteor. Climatol., 47, 2311–2330.

Yang, P., B. A. Baum, A. J. Heymsfield, Y. X. Hu, H. L. Huang, S. C. Tsay, and S. Ack-
erman, 2003, Single-scattering properties of droxtals, Journal of Quantitative Spec-
troscopy and radiative Transfer, 79–80, 1159–1180.

Yang, P., K. N. Liou, M. I. Mishchenko, and B. C. Gao, 2000, An efficient finite-difference
time domain scheme for light scattering by dielectric particles: application to aerosols,
Applied Optics, 39, 3727–3737.

Yang, P., and K. N. Liou, 1998, Single-scattering properties of complex ice crystals in
terrestrial atmosphere, Contr. Atmos. Phys., 71, 223–248.

Yang P., and K. N. Liou, 1997, Light scattering by hexagonal ice crystals, solution by a
ray-by-ray integration algorithm, J. Opt. Soc. Am. A., 14, 2278–2289.

Yang, P., and K. N. Liou, 1996, Geometric-optics-integral-equation method for light scat-
tering by nonspherical ice crystals, Applied Optics, 35, 6568–6584.

Yee, K. S., 1966, Numerical solution of initial value boundary problems involving
Maxwell’s equations in isotropic media, IEEE Trans. Antennas and Propagat., 14,
302–307.

Yoshida, R., H. Okamoto, Y. Hagihara, and H. Ishimoto, 2010, Global analysis of cloud
phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO) data using attenuated backscattering and depolar-
ization ratio, J. Geophys. Res., 115, art. D00H32.

Yuan, J., R. A. Houze Jr, and A. J. Heymsfield, 2011, Vertical structures of anvil clouds
of tropical mesoscale convective systems observed by CloudSat, J. Atmos. Sci., 68,
1653–1674.



68 Anthony J. Baran

Zhang, Z. B., P. Yang, G. W. Kattawar, S.-C. Tsay, B. A. Baum, Y. X. Hu, A. J. Heyms-
field, and J. Reichardt, 2004, Geometrical optics solution to light scattering by droxtal
ice crystals, Applied Optics, 43, 2490–2499.

Zhang, X. Y., R. Arimoto, G. H. Zhu, T. Chen, and G. Y. Zhang, 1998, Concentration,
size-distribution and deposition of mineral aerosol over Chinese desert regions, Tellus,
50B, 317–330.

Zhao, Y., G. Mace, and J. M. Comstock, 2011, The occurrence of particle size distribution
bimodality in midlatitude cirrus as inferred from ground-based remote sensing data,
J. Atmos. Sci., 68, 1162–1175.

Zubko, E., Y. Shkuratov, M. Mishchenko, and G. Videen, 2008, Light scattering in a finite
multi-particle system, Journal of Quantitative Spectroscopy and Radiative Transfer,
109, 2195–2206.



2 Physical-geometric optics hybrid methods for
computing the scattering and absorption
properties of ice crystals and dust aerosols

Lei Bi and Ping Yang

2.1 Introduction

Exact solutions and reasonable approximations of the optical properties of non-
spherical particles in the atmosphere (particularly, coarse mode mineral dust par-
ticles, ice crystals within cirrus clouds, and aviation-induced contrails) are funda-
mental to numerous climate studies and remote sensing applications (Chýlek and
Coakley, 1974; Haywood and Boucher, 2000; Ramanathan et al., 2001; Sokolik et
al., 2001; Kaufman et al., 2002; Liou et al., 2000; Liou, 2002; Baum et al., 2005;
Baran, 2009; Yang et al., 2010). The morphologies of realistic aerosols (Reid et
al., 2003) and ice crystal habits (Heymsfield and Iaquinta, 2000) are extremely
diverse. For simplicity, light scattering simulations reported in the literature are
limited to a small set of well-defined nonspherical geometries such as hexagonal
columns or plates, aggregates of columns or plates, bullet rosettes, circular cylin-
ders, and ellipsoids (Asano and Yamamoto, 1975; Mishchenko and Travis, 1998;
Yang et al., 2005; Bi et al., 2008; Meng et al., 2010; Xie et al., 2011). Rigorous so-
lutions of elastic light scattering for the defined nonspherical particles are obtained
by solving either Maxwell’s equations or their mathematical equivalents (Kahnert,
2003). The most commonly used light scattering computational methods are the
T-matrix (Mishchenko et al., 2000 and references therein; Mishchenko et al., 2002),
the finite-difference time-domain (FDTD) (Yee, 1966; Yang and Liou, 1996a; Sun
et al., 1999), the pseudo-spectral time-domain (PSTD) (Liu, 1999; Tian and Liu,
2000; Chen et al., 2008), and the discrete dipole approximation (DDA) (Purcell and
Pennypacker, 1973; Kahnert, 2003) methods. The use of these methods has signif-
icantly advanced the knowledge of the optical properties of nonspherical particles.
However, unlike the Lorenz–Mie theory for spherical particles, the aforementioned
methods are applicable to a limited range of particle size parameters χ ∈ (0, χmax],
and the maximum value χmax varies with the selected method, the defined particle
shape, the refractive index, the number of particle orientations, and the computa-
tional resources. In practice, an exact solution to a light scattering process by a
generally irregular particle can be efficiently obtained only when the size parameter
is in either the Rayleigh or the resonance (i.e., the particle size is on the order of the
incident wavelength) regime. This is particularly true when a large number of sim-
ulations (e.g., random orientations and a series of sizes and refractive indices) are
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69 , Light Scattering Reviews 8: Radiative transfer and light scatteringA.A. Kokhanovsky (ed.),



70 Lei Bi and Ping Yang

involved. Thus, the challenge is to develop approximate methods that can handle
size parameter ranges beyond the resonance regime.

Numerous studies have attempted to develop methods based on the principles
of geometric optics or ray optics to approximately calculate the single-scattering
properties of large size nonspherical particles (Cai and Liou, 1982; Muinonen, 1989;
Takano and Liou, 1989; Macke, 1993; Macke et al., 1996a,b; Macke and Mishchenko,
1996; Yang and Liou, 1996b; Yang and Liou, 1997; Borovoi et al., 2002; Borovoi and
Grishin, 2003; Bi et al., 2011a,b). Yang and Liou (2006) briefly reviewed the devel-
opment of the geometric-optics method. Rigorously speaking, the term ‘geometric-
optics’ is inaccurate because the geometric-optics principle fails to deal with diffrac-
tion, a wave nature of light, which is commonly accounted for in physical optics or
semi-classical analysis. Here, the meaning of diffraction is in a broad sense rather
than considering only Fraunhofer diffraction by a projected area (see Nussenzveig,
1992). As noted in most texts, in addition to diffraction, the geometric-optics prin-
ciple fails to consider ‘interference’, which is classified as another physical-optics
effect. However, the present convention assumes interference is considered in gen-
eralized geometric optics (Born and Wolf, 1959), because the resultant field values
in the ray-tracing calculation are computed from the superposition of the fields in
conjunction with individual rays and include the phase information. Hereafter, we
use the term ‘physical-geometric optics hybrid (PGOH)’ to emphasize the hybrid
nature of the method, and the nomenclature has previously been used in publi-
cations (Bi et al., 2010a, 2011b). The literature also has references to the PGOH
method as the physical-optics approximation (Ravey and Mazeron, 1982; Mazeron
and Muller, 1996) or the ray-wave approximation (Priezzhev et al., 2009).

Physical optics deals with the Fraunhofer diffraction effect arising from the
incomplete incident wave front due to blocking by a particle as well as the diffrac-
tion of rays exiting the particle surface. The diffraction effect of outgoing rays is
not considered in the early and some later developments of the geometric-optics
method (e.g., Wendling et al., 1979; Cai and Liou, 1982; Macke, 1993). The origin
of the PGOH that considers the diffraction of rays from the particle to the radia-
tion zone may be traced to the work of Ravey and Mazeron (1982), who utilized
the Kirchhoff approximation in electrodynamics to compute the single-scattering
properties of spheroids. Inside the framework of the PGOH, geometric-optics prin-
ciples are employed to obtain either the internal field within a scattering particle
or the field on the external surface of the particle via the superposition of the elec-
tromagnetic field vectors associated with all the rays. The field is represented in a
form that includes all information about the amplitude, the phase, and the polar-
ization state. For practical applications, the PGOH has an advantage over exact
methods in two aspects: (1) the PGOH is applicable to the large size parameter
region where rigorous methods attempting to solve Maxwell’s equations are inef-
ficient or inapplicable; and, (2) the PGOH has an intuitive physical insight about
light scattering processes that is useful in identifying the relationship between the
optical properties and microphysical properties of a scattering system. However,
the PGOH is an approximate method useful for moderate or large size parameters
and, consequently, is less accurate for smaller size parameters than those methods
solving Maxwell’s equations. Whenever the size parameter is smaller than ∼20,
rigorous methods are necessary to solve Maxwell’s equations.
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This chapter is designed to elaborate the fundamentals of the geometric-optics
method and to discuss its accuracy and application regime based on the current
status of knowledge in modeling the optical properties of ice crystals and mineral
dust aerosols. Specifically, we intend to:

– review the conceptual basis and various modifications of the geometric-optics
method reported in the literature;

– describe advanced numerical techniques such as the beam-splitting approach
and the line-integration method;

– establish rigorous mathematical formulation of inhomogeneous waves in the case
of absorptive particles, the amplitude variation over wave front of propagating
beams, and the analytical integration of the geometric-optics near-field; and

– illustrate the accuracy and efficiency of the PGOH in the computation of the
single-scattering properties of ice crystals and mineral dust aerosols.

2.2 Conceptual Basis

In the geometric optics framework for light scattering by a particle, the presence of
the particle blocks a partial wave front of a propagating plane wave according to its
projected area. As shown in Fig. 2.1, the blocked wave front, via interacting with a
particle, undergoes a series of reflection and transmission (i.e., refraction) processes
on the particle surface generating various induced or secondary waves exiting the
particle, and the remaining incomplete wave front (i.e., the original wave front sub-
tracted by the blocked wave front) induces Fraunhofer diffraction in the radiation
zone. As stated in Babinet’s principle (van de Hulst, 1981), the contribution of the
surrounding incomplete wave front to scattering is equivalent to the diffraction of
a localized incident plane wave within the projected area or shadow. Based on this
insight, early developments of geometric optics assumed that the scattered far-field
was contributed by geometric rays and Fraunhofer diffraction. Furthermore, with-
out the consideration of the interference between diffraction and scattered beams,
the extinction cross-section is assumed to be twice the projected area. This concept
was easily implemented for spheres and randomly oriented cylinders and ellipsoids
(Liou and Hansen, 1971; Macke and Mishchenko, 1996). A comparison between
the geometric-optics-based phase matrix and its counterparts computed from the
Lorenz–Mie theory and the T-matrix method shows that geometric-optics provides
reasonably accurate results when the particle size parameter is larger than approxi-
mately 100 (Liou and Hansen, 1971; Macke and Mishchenko, 1996). An extension of
the method, usually known as the conventional geometric optics method (CGOM),
to faceted particles such as hexagonal ice crystals reveals a unique feature known
as the delta-transmission that is not present in the cases of spheres and ellipsoids
but may be quite pronounced for particles with parallel faces (Takano and Liou,
1989; Mishchenko and Macke, 1998). In addition, isolated points exist in the phase
matrix for oriented particles and an artificial halo phenomenon is observed for
particles of moderate sizes (Mishchenko and Macke, 1998, 1999). The fundamental
physical reason for the phenomena is the wave front of outgoing beams from faceted
particles has no curvature causing caustics in the radiation region, and, thus, the
diffraction effects of beams exiting the particle surface must be considered.
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blocked wave front
and ray-tracing

incomplete wave front
and diffraction

incomplete wave front
and diffraction

Fig. 2.1. Conceptual figure of incomplete wave front and diffraction, and blocked wave
front and ray-tracing.

Various approaches have been developed to take into account the diffraction
associated with an exiting beam. In a simplified formulation, the diffraction effect
of outgoing beams is assumed to behave similarly to Fraunhofer diffraction applied
to the blocking wave front. In the more rigorous theory of electrodynamics, the
scattered far-field is related to the near-field, either through the Fredholm volume
integral equation or the Kirchhoff surface integration equation. The establishment
between the far-field and the near-field provides a straightforward approach to in-
clude the diffraction effect. In this case, the approximate nature of the method is
attributed to the application of the geometric-optics principles to the near-field cal-
culation. The surface- and volume-integration-based PGOH methods do not lead to
the same optical properties because the geometric-optics near-field is not accurate.
In the near-to-far-field transformation based on the Kirchhoff surface integral, the
diffraction arises from the mapping of either the incident field on the illuminated
side or the negative of the incident field on the non-illuminated side of the par-
ticle to the radiation region and is similar to Babinet’s principle. However, if the
far electric field is obtained from the Fredholm volume-integral equation, Fraun-
hofer diffraction is inherently combined with the external reflection and cannot
be explicitly separated (Bi et al., 2010a). The physical-optics approximation for a
conducting particle is usually based on the surface integral approach because the
internal field is zero. By assuming that a scattering particle is an extremely absorp-
tive dielectric particle, a simple formula can be derived from the volume-integral
equation to account for the combined effect of diffraction and external reflection.

The two alternative methods to obtain the geometric-optics-based near-field
are: (1) to trace narrow geometric rays (hereafter, the ray-tracing method); and,
(2) to trace broad beams or ray tubes (hereafter, the beam-tracing method). In the
ray-tracing method, the incident wave front is imagined as consisting of a bundle
of separate rays with very small cross-sections (Fig. 2.2(a)). In the beam-tracing
method, the wave front is divided into several parts with each part incident on a
single facet of the particle, as shown in Fig. 2.2(b). The single-scattering properties
(i.e., the extinction efficiency, the single-scattering albedo, and the phase matrix)
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have been formulated from the different near-to-far field transformations using
the ray-tracing or beam-tracing methods. Based on the ray-tracing method, Yang
and Liou (1996b, 1997) derived the optical properties of hexagonal ice crystals
from the Kirchhoff surface integral equation and developed the formalism of the
optical properties of hexagonal ice crystals from the Fredholm volume integral
equation. Borovoi and Grishin (2003) developed an algorithm based on the beam-
tracing technique for non-absorbing hexagonal ice crystals from the theory of vector
Fraunhofer diffraction (Jackson, 1999). Bi et al. (2011b) reported the integration of
the geometric-optics-based near-field in terms of the beam-tracing method based
on the Fredholm volume integral equation with no simplification. Specifically, the
geometric-optics-based near-field is obtained by superimposing the electric field
associated with various ray tubes. Analytical integrations are carried out for each
ray tube by transforming all the integrations into summations associated with
vertices of ray cross-sections. Furthermore, in the case of an absorptive particle, the
inhomogeneity of waves associated with various orders of reflection and refraction
events is fully considered via an algorithm (Yang and Liou, 2009a,b) applicable to
arbitrary refractive indices.

Fig. 2.2. (a) A partial wave front impinging on a facet. (b) A partial wave front refracted
into the particle and split into three parts impinging subsequently on three facets; the
initial cross-section has the same pattern as the associated cross-section.

To obtain the angular distribution of scattered light for randomly oriented
particles, a rigorous PGOH method (i.e., an approach of exactly integrating the
geometric-optics near-field to obtain the far-field) demands tremendous compu-
tational effort, particularly when the PGOH is implemented with the ray-by-ray
integration method (Yang and Liou, 1997). In practice, a simplified PGOH algo-
rithm, the intensity mapping algorithm (Yang and Liou, 1996), has been developed
for randomly oriented particles. In this algorithm, the phase matrix elements are
calculated by incorporating the diffraction effect into the phase matrix obtained
from the CGOM. Interference among rays is neglected based on the assumption
that the interference becomes less important if random orientations are considered.
A combination of the simplified algorithm for the phase matrix calculation and a
method based on the Fredholm volume integral equation (Yang and Liou, 1997) for
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the calculation of the extinction and absorption efficiency, the improved geometric
optics method (IGOM), is used in some applications to derive the single-scattering
properties of ice crystals (Yang et al., 2005) and mineral dust aerosols (Yang et al.,
2007).

Rigorously speaking, the diffraction associated with beams propagating inside
of the particle must be incorporated similar to the diffraction effect associated with
outgoing beams; however, at this time, no known studies are underway to inves-
tigate the issue due to the inherent complexity. Based on the Fresnel–Huygens
principle, van de Hulst (1981) states that for the existence of a ray (i.e., a pencil
of light, or a localized wave), with a length l and at a wavelength λ, the width of
its base area needs to be significant in comparison with

√
λl. Qualitatively, this

speculation can be regarded as a constraint to the lower size parameter limit for
the applicability of the geometric-optic principles in the near-field calculation. As a
numerical example, we consider a linearly polarized plane wave incident normally
on a basal face of a circular cylinder (Fig. 2.3(a)). Shown in Fig. 2.3(b) and 2.3(c)
are the intensities of the total electric field on the two basal faces of a circular cylin-
der simulated from the Amsterdam DDA (ADDA) computational program (Yurkin
and Hoekstra, 2011). According to geometric optics principles, the intensity should
be the same at any arbitrary location on the cross-section. From Fig. 2.3(a), it is
evident that the variation of the intensity on the cylinder cross-section facing the
incoming radiation is small, indicating the geometric-optics to be approximately
valid. However, a pronounced diffraction-like pattern is observed at the end cross-
section, which implies the geometric-optics to be essentially invalid. This example
illustrates that the accuracy of the geometric-optics principle in the near-field cal-
culation depends on the particle geometry, orientation, and size parameter. If the
particle is absorptive, the contribution of higher-order beams to the optical prop-
erties is insignificant, and thus, the contribution from the first-order reflection and
refraction dominates. The beam cross-section associated with the first-order re-
flection or refraction is relatively large in comparison with its higher-order beam
counterparts making the geometric-optics method more accurate for absorptive
particles than for non-absorptive particles. In practical calculations, the ray con-

Fig. 2.3. Intensity of the total electric field on the initial (middle panel) and end (right
panel) side of a circular cylinder simulated from the DDA method. The size parameter,
defined in terms of diameter, is kD = 50, where k is the wave number. The aspect ratio
(length L/diameter D) is 5. The refractive index is 1.05.



2 Physical-geometric optics hybrid methods 75

cept within the particle is reasonable when the size parameter is approximately 20
(the value will increase if the particle surface has some fine variations or the facets
composing the particle are small). However, in special cases such as that shown in
Fig. 2.3, the size parameters need to be of a diameter much larger than 20 in order
to distinguish rays within particles. Comparisons between the PGOH-simulated
optical properties and the ADDA simulations also support the aforementioned van
de Hulst speculation.

Based on the van de Hulst speculation, rays with very narrow cross-sections may
not exist. In fact, the technique of tracing narrow rays can be used numerically.
For example, in Fig. 2.3a, there is physically only one ray. However, a number of
rays may be employed to do the ray tracing to calculate the near field. The use
of multiple narrow rays instead of a large cross-section ray is valid only when the
large cross-section ray exists according to the van de Hulst speculation.

The tunneling or edge effect (Nussenzveig, 1992) associated with tunneling rays
is not included in the PGOH. Tunneling rays are those passing the particle and
interacting with the particle through a tunneling process found within the frame-
work of wave optics. In the theory of light scattering of spheres, the semi-classical
scattering analysis justifies the existence of both surface waves and tunneling rays
and formulates their contribution to the scattering of light (Nussenzveig, 1992). Fu
et al. (1999) investigated the Poynting vector both near to and inside a hexago-
nal particle by using the FDTD method and illustrated the extra contribution of
tunneling rays to the extinction and absorption of the particle. The ray-tracing
process fails to consider tunneling; consequently, without the contribution of the
associated semi-classical scattering effects, discontinuities appear between the tran-
sitions from the exact solutions of the extinction and absorption efficiencies to those
computed from the PGOH. The justification of the contribution of tunneling rays
to the extinction of light by the DDA method will be detailed in Section 2.5. The
semi-empirical formulas considering the edge-effect contribution to the extinction
and the absorption efficiencies are also discussed.

2.3 Geometric-optics-based near-field

In this section, we focus on a combination of the beam-tracing and field-tracing pro-
cesses within an absorbing particle to obtain the geometric-optics-based near-field
(note that a non-absorbing particle is a special case not needing additional treat-
ment). A detailed ray-tracing discussion can be found in Yang and Liou (2009a,b).

2.3.1 Effective refractive index and Snell’s law

When a wave is incident on a local planar surface, within the framework of the
geometric-optics approximation, both reflection and refraction occur. Snell’s law
determines the beam direction change, and the Fresnel formulas give the ampli-
tude and polarization of the electromagnetic field associated with the reflected and
refracted beams. In this section, we focus on the ray/beam-tracing process, which
requires only Snell’s law, given by

sin θt = sin θi/m , (2.1)
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Fig. 2.4. Diagram to illustrate the difference between the trajectory of rays using the
real part of the refractive index (solid) and the real part of effective refractive index
(dotted). The angle (not shown in the diagram) between the interface for the first-order
reflection/refraction (a) and that for the second-order reflection/refraction (b) is 60◦. The
refractive index of ice is selected to be 1.0925 + i0.248.

where θt is the refraction angle, θi is the incident angle, and m is the refractive
index. When m is complex (i.e., the particle is absorptive), θt is complex and
the refracted plane wave is inhomogeneous, i.e., in general, the surface of constant
amplitude does not coincide with the surface of constant phase. The inhomogeneous
wave in the absorbing medium takes the following form,

�E(�r, t) = �E0 exp
{
i
[
�k · �r − ωt

]}
, (2.2)

where �k is a complex vector, ω is the circular frequency, and �E0 is the amplitude.
From Maxwell’s equations, we have

�k · �E0 = 0, �k · �H0 = 0 , (2.3)

where �H0 is the amplitude of the magnetic field. The complex transversality shown
in Eq. (2.3) implies that both �E0 and �H0 have nonzero components along the
propagation direction. Based on the phase-match condition, the effective refractive
index can be defined in formulating the inhomogeneous refracted waves. The real
part of the effective refractive index Nr determines the propagation direction of the
constant-phase surface of the refracted wave, and the imaginary part Ni accounts
for the attenuation of the associated amplitude. Specifically, the inhomogeneous
refractive wave can be written as

�E(�r ) exp(−kNil) exp(ikNrl) , (2.4)

where l is the propagating distance from the position on the interface. We have
assumed an e−iωt time dependence of the harmonic electromagnetic field, which
implies a positive imaginary part of refractive index. In general, the effective re-
fractive index is not the same at different orders of interaction. For clarity, let the
subscript index p (= 1, 2, 3, . . .) indicate the pth order reflection/refraction event;
p = 1 corresponds to the external reflection and refraction (from medium to par-
ticle); and, p > 2 indicates the internal reflection and refraction (from particle to
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medium). The effective refractive index for the pth order of reflection/refraction
event is denoted as Np whose real and imaginary parts are Nr,p and Ni,p. The gen-
eralized Snell’s law for the first-order reflection/refraction is given by (Yang and
Liou, 2009a)

sin θt,p=1 = sin θi,p=1/Nr,p=1 , (2.5)

Nr,p=1 =

√{
m2

r−m2
i +sin2 θi,p=1+

√
(m2

r−m2
i −sin2 θi,p=1)2+4m2

rm
2
i

}
/2 ,

(2.6)

Ni,p=1 = cos θt,p=1

×
√{

−(m2
r −m2

i − sin2 θi,p=1) +
√

(m2
r −m2

i − sin2 θi,p=1)2 + 4m2
rm

2
i

}
/2 ,

(2.7)

where θi,p=1 is the incident angle (the reflection angle θr,p=1 = θi,p=1) and θt,p=1 is
the refraction angle. The effective refractive index is equal to the original refractive
index when mi = 0 or θi,p = 0, i.e., the incident wave is perpendicular to the inter-
face. In all other cases, the effective refractive index depends on the incident angle;
therefore, the use of the real part of the refractive index to determine the refracted
angle introduces some uncertainty. Similarly, for successive internal reflections, the
effective refractive indices can be defined (Yang and Liou, 2009a) as,

Nr,p+1 =

×
√{

m2
r −m2

i +N2
r,p sin2 θi,p+1 +

√
(m2

r −m2
i −N2

r,p sin2 θi,p+1)2 + 4m2
rm

2
i

}
/2 ,

(2.8)

Ni,p+1 = cos θr,p+1

×
√{

−(m2
r−m2

i −N2
r,p sin2 θi,p+1)+

√
(m2

r −m2
i −N2

r,p sin2 θi,p+1)2 + 4m2
rm

2
i

}
/2 ,

(2.9)

where the reflection angle θr,p+1 is related to the incident angle and the refraction
angle as,

Nr,p sin θi,p+1 = Nr,p+1 sin θr,p+1 = sin θt,p+1. (2.10)

Note that the reflection angle is not equal to the incident angle, and Eqs. (2.8)
and (2.9) are iterative formulas. Based on the effective refractive index, the inci-
dent, reflection, and refraction angles are real, and the ray-tracing process can be
performed for an arbitrary complex refractive index. For detailed physical insight
regarding the ray-tracing procedure in the case of an absorptive particle, the reader
is recommended to refer to Dupertuis et al (1994), Chang et al (2005), and Yang
and Liou (2009a) for in-depth discussions. As a numerical example, Fig. 2.4 is a
comparison of ray-tracing of the first- and second-order reflection/refraction based
on the real part of the refractive index and the real part of the effective refractive
index, and the differences in the ray paths are evident.
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2.3.2 Beam-tracing technique

The ray-tracing process, which represents rays as rectilinear lines (see Fig. 2.1),
can be applied to arbitrarily shaped geometries; however, for faceted particles, the
beam-tracing method implemented with broad cross-sections is more efficient than
ray-tracing. The incident partial wavefront intercepted by the particle is split into
several parts according to the facets facing the incoming wave. As a portion of
the wave front (or localized wave) impinges on one of the facets, the subsequent
electromagnetic interaction leads to outgoing reflected and inwardly propagating
refracted beams. The first-order refracted beams from medium to particle and the
higher-order internally reflected beams may split during their subsequent propaga-
tion processes. An appropriate beam-splitting algorithm must describe the mech-
anism of the split internal beams and specify the geometries of internal ray paths
(or ray tubes). The geometry of the scattering particle is assumed to be convex
and any externally reflected beams and higher-order refracted beams exiting the
particle surface cannot be blocked by the particle itself and are not involved in
the subsequent beam-tracing calculation. Therefore, the beam-splitting algorithm
is unaffected by beams propagating outside the particle. Similar studies of splitting
beams according to the particle geometry have been reported by Popov (1996) and
Borovoi and Grishin (2003). As the beam-tracing calculation for concave particles
is much more complicated than for convex particles, this chapter only reviews the
beam-splitting process for convex faceted particles reported in Bi et al. (2011b).

A beam of light is defined by its propagation direction and its initial beam cross-
section. In the case of a faceted particle, the cross-sections of all involved beams are
in the shape of a polygon. To identify various beams generated in the beam-tracing
process, the direction of one internal beam, the first-order refracted beam or higher-
order reflected beam, leaving some interface of the pth-order reflection/refraction
is specified by êp, and the vertices of the beam cross-section on the interface of
electromagnetic interaction are denoted as �rp,i (i = 1, NV ), where NV is the
number of vertices. The sequence of the vertices is arranged in a counterclockwise
direction with respect to the outward normal direction of the local facet. When
p = 1, the coordinates of the initial cross-section of the first-order refracted beam
�r1,i (i = 1, NV ) are the coordinates of the vertices of the facet where the beam is
refracted into the particle.

To consider the split of an internal beam specified by êp and �rp,i, the first step is
to determine those particle facets intercepting the beam. We generate NV number
of rectilinear rays, starting from the positions of NV vertices and propagating in the
direction of êp. Assume that a number of NV rays strike a number of Mv different
facets. The symbols τ̂i (i = 1, Mv) are assigned to denote the normal directions
of the facets. The beam will not split and impinge on a single facet when Mv = 1;
whereas, the beam splits when Mv ≥ 2. If Mv ≥ 2, the beam can be split into
two parts based on the information of two facets with normal directions τ̂1 and τ̂2.
Figure 2.4 shows an initial beam cross-section with NV = 4. An arbitrary position
within the initial beam cross-section can be written as,

�r = cu�up + cv�vp , (2.11)
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where cu and cv are two arbitrary coefficients with respect to two basic vectors, �up
and �vp. Vectors �up and �vp can be defined as

�up = �rp,2 − �rp,1 , �vp = �rp,N − �rp,1 . (2.12)

Note that �up and �vp are neither normalized nor necessarily orthogonal. The co-
ordinates (cu, cv) of the points on the initial beam cross-section that will strike
the intersection line of two planes associated with the selected two facets, whose
outward normal directions are τ̂1 and τ̂2, must satisfy the following condition,

cuwu + cvwv = d1 − d2 , (2.13)

where d1 and d2 represent the propagation distances from �rp,1 in the direction of
�ep to the planes of the two selected facets. wu and wv are given by

wu =

(
�up · τ̂1
�ep · τ̂1 − �up · τ̂2

�ep · τ̂2

)
, wv =

(
�vp · τ̂1
�ep · τ̂1 − �vp · τ̂2

�ep · τ̂2

)
. (2.14)

All the coordinate points (cu, cv) that satisfy Eq. (2.13) define a straight line to
split the original beam cross-section into two sub-beams. The intersection points
between the straight line given by Eq. (2.13) and the polygon-shaped boundary
can be written in the form of

�r = �rp,j + (�rp,j+1 − �rp,j)lj , if lj ∈ [0, 1] , (j = 1, Nv) (2.15)

where lj are defined as:

l1 = (d1 − d2) /wu , lN = (wv − d1 + d2) /wv , (2.16)

lj =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n̂p ·
[
(�rp,1 + l1�u− �rp,j)× �Q

]
n̂p ·

[
(�rp,j+1 − �rp,j)× �Q)

] , |wv| ≤ |wu|

n̂p ·
[
(�rp,1 + (1− lN )�v − �rp,j)× �Q

]
n̂p ·

[
(�rp,j+1 − �rp,j)× �Q)

] , |wv| > |wu|

, j = 2, Nv − 1 ,

(2.17)
and where

�Q =

⎧⎪⎪⎨⎪⎪⎩
�vp − wv

wu
�up, |wv| ≤ |wu|

wu

wv
�vp − �up, |wv| > |wu|

. (2.18)

In Eq. (2.17), n̂p is the outward or inward normal direction of the particle
facet where the initial beam cross-section locates (for simplicity, it is defined to be

inward). To avoid the occurrence of singularity in the evaluation of lj and �Q, differ-
ent formulas have been used in the computation based on comparing the absolute
values of wu and wv. Because the beam cross-section is always convex in cases of
convex faceted particles, only two lj in the 0 to 1 range can give two solutions based
on Eq. (2.15), and for an example, see the case shown in Fig. 2.5. At this point, it
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is straightforward to split the original beam into two sub-beams by regrouping the
vertices of the original beam cross-section and the two intersection points given by
Eq. (2.15). Generally speaking, each sub-beam may impinge on multiple facets, and
the process must be repeated for each sub-beam until each next-order sub-beam
impinges on a single facet. Once the initial beam cross-section is divided, the vertex
coordinates of the end cross-section of each sub-beam can be obtained. The initial
and end beam cross-sections define an internal ray tube. An example of splitting a
refracted beam from one facet of the particle into three sub-beams with each sub-
beam incident on a single facet is illustrated in Fig. 2.2(b). All sub-beams belonging
to different ray tubes undergo internal reflections at different facets, corresponding
to the emergence of the next-order reflected beams. The beam-tracing process is
flexible in order to consider arbitrarily shaped convex faceted particles. The com-
putational program is designed to read the geometry specified by the coordinates
of vertices.

Fig. 2.5. Diagram of the splitting algorithm applied to an initial beam cross-section.

A recursive subroutine is developed to implement the beam-tracing process.
Included in the recursive subroutine are an algorithm for splitting an input beam
and a follow-up loop that calls the recursive subroutine itself with each sub-beam
as the input. One condition to terminate the beam-tracing process is that the area
of a beam cross-section must be smaller than a prescribed value. We note that
all the sub-beams must be slightly scaled with a scaling factor of 0.9999 to allow
the computer program to be stable especially for the case of lj very close to 0
or 1. The efficiency of the algorithm and the required computer memory depend
on the number of facets and the particle orientation but are not very sensitive to
the particle size. The programming feature based on recursive subroutines is an
additional complexity in the beam-tracing process because only a single beam is
traced at each step. The recursive subroutine is unnecessary in the traditional ray-
tracing algorithm for simple geometries (e.g., cubes or hexagonal columns), because
for a single incident ray, only one internal ray emerges in conjunction with each
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subsequent reflection and refraction event. For complex particle geometries (e.g.,
hollow columns or aggregates), the recursive subroutine is required because the
outgoing rays may be blocked by the particle itself. To avoid the recursive structure
of the code, a Monte Carlo ray-tracing algorithm (Takano and Liou, 1995; Yang
and Liou, 1998) may be used, but the accuracy of the final optical properties may
be decreased.

In practical calculations, if a series of sizes of a well-defined faceted particle of
fixed overall shape and aspect ratio are involved in the computation, the computa-
tional efficiency may be increased because the geometries of all the ray-tubes are
the same for different sizes. In this case, the beam-tracing process can be performed
only once for a chosen size, and the beams for different sizes can be obtained by
scaling the geometries of the beams already obtained. If we consider a randomly
oriented particle, the algorithm is readily parallelized such that each individual
processor deals with a single orientation and the wall-clock time is reduced.

2.3.3 Field-tracing

The field-tracing requires the determination of the amplitude, phase, and polar-
ization of the electromagnetic field in the beam-tracing process. The final internal
field is the superposition of the fields associated with all the ray-tubes, and the
surface field is the superposition of the fields associated with the beams that exit
the particle. In a more specific form, we intend to establish the relationship be-
tween the electromagnetic field of each beam with that of the incident beam. Such
a relationship contains information about the process how the particle scatters
and absorbs the incident light, and, thus accounts for the optical properties of the
particle. In the conventional ray-tracing technique, the electric fields are traced
without calculating the magnetic field. Because of the convenience of dealing with
the inhomogeneous waves for absorptive particles, we consider both the electric
and magnetic fields while tracing the fields. The magnetic near-field must be con-
sidered if the Kirchhoff surface integral equation is applied to obtain the far-field
in the radiation zone. In the description of the field-tracing process, we focus only
on the first-order reflection and refraction (from air to particle) and the second-
order reflection and refraction (from particle to medium). The calculation of the
higher-order interactions is similar to that of the second-order interaction and will
not be addressed in detail, but we will explain the additional complexity involved
in the process of beam splitting.

Figure 2.6(a) defines the propagation direction (êinc) of an incident wave in the

laboratory coordinate system and two orthogonal directions (θ̂inc and ϕ̂inc) used to

specify the polarization state of incident field �Einc(�r). The electric field of a linearly
polarized incident plane wave can be written in the form

�Einc(�r ) =

[
Einc

ϕ

Einc
θ

]
exp

(
ikêinc · �r ) , (2.19)

where Einc
θ and Einc

ϕ are the amplitudes of the electric field components decom-

posed with respect to the θ̂inc and ϕ̂inc directions and �r is the position vector. The
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Fig. 2.6. (a) The direction of the incident ray in the laboratory coordinate system. (b)
The vectors defined to describe the first-order interaction. (c) The vectors defined to
describe higher-order interactions.

corresponding magnetic field is obtained through

�H inc(�r ) =
1

ik
�∇× �Einc(�r ) =

[
Einc

θ

−Einc
ϕ

]
exp

(
ikêinc · �r) . (2.20)

Figure 2.6(b) defines a set of unit vectors to specify the propagation direction
and the polarization configuration of the incident wave, the reflected wave, and the
refracted wave at the first-order interaction (p=1, from the medium to the particle).
The plane of incidence is the plane spanned by the incident direction êinc and the
local inward normal direction n̂p=1. In the particular case where n̂p=1 × êinc = 0,
the plane of incidence is defined by ϕ̂inc and n̂p=1. The unit vectors êscap=1 and êp=1

represent the propagation directions of the reflected (i.e., scattered wave exits the
particle) and refracted waves (internal waves). The unit vector perpendicular to
the incident plane can be determined by

β̂p=1 =

{ −(n̂p=1 × êinc)/
∣∣n̂p=1 × êinc

∣∣ , n̂p=1 × êinc �= 0

θ̂inc , n̂p=1 × êinc = 0
, (2.21)

and the unit vectors α̂inc
p=1, α̂

sca
p=1, and α̂p=1 parallel to the incident plane are

α̂inc
p=1 = êinc × β̂p=1 . (2.22)

α̂sca
p=1 = êscap=1 × β̂p=1 , (2.23)

α̂p=1 = êp=1 × β̂p=1 . (2.24)

êf,1 is a unit vector on the interface within the incident plane, defined by

êf,1 = n̂p=1 × �β1 . (2.25)

Similar to Fig. 2.6(b), Fig. 2.6(c) shows relevant defined vectors at successive
higher-order interactions (p > 1, from the particle to the medium).
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Because the medium is non-absorbing (the transverse wave condition is im-
plied), the electric field associated with beams that exit the particle can be ex-
pressed by

�Esca
p (�rp,1) = α̂sca

p Esca
p,α(�rp,1) + β̂sca

p Esca
p,β(�rp,1) . (2.26)

Due to the occurrence of inhomogeneous waves within the particle for the complex
refractive index, the electric and magnetic field have nonzero components along the
propagation direction. Therefore, the polarized electric field associated with beams
inside of the particle has three components and can be written as

�Ep(�rp,1) = α̂pEp,α(�rp,1) + β̂pEp,β(�rp,1) + êpEp,γ(�rp,1). (2.27)

The task of field tracing is to establish the relationship between the incident field
given by Eq. (2.19) and the field associated with beams at each order of reflection
and refraction event given by Eqs. (2.26) and (2.27). Symbolically, we have[

Esca
p,α(�rp,1)

Esca
p,β(�rp,1)

]
= Usca

p

[
Einc

ϕ

Einc
θ

]
, (2.28)

⎡⎢⎣ Ep,α(�rp,1)

Ep,β(�rp,1)

Ep,γ (�rp,1)

⎤⎥⎦ = Up

[
Einc

ϕ

Einc
θ

]
, (2.29)

where Usca
p and Up are 2× 2 and 3× 2m atrices, respectively.

Referring to the plane of incidence, the two components of the electric field at
the position of �rp,1 can be obtained[

Einc
p=1,α(�rp=1,1)

Einc
p=1,β(�rp=1,1)

]
= Λ

[
Einc
ϕ

Einc
θ

]
exp

(
ikêinc · �rp=1,1

)
, (2.30)

where Λ is a rotation matrix, given by

Λ =

[
α̂inc
p=1 · ϕ̂inc α̂inc

p=1 · θ̂inc
−α̂inc

p=1 · θ̂inc α̂inc
p=1 · ϕ̂inc

]
. (2.31)

The refracted field is assumed to be the superposition of fields corresponding to
the transverse electric (TE) and transverse magnetic (TM) modes. The TE mode
is defined in the case of

Einc
p=1,α = H inc

p=1,β = 0, Einc
p=1,β = H inc

p=1,α �= 0 , (2.32)

whereas, the TM mode corresponds to

Einc
p=1,β = H inc

p=1,α = 0, Einc
p=1,α = −H inc

p=1,β �= 0 . (2.33)

Therefore, based on the electromagnetic boundary conditions, we obtain the wave
reflected to the medium (i.e., scattered light) and the wave transmitted to the
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particle in the form of[
Hsca

p=1,β (�rp=1,1)

Esca
p=1,β (�rp=1,1)

]
=

[
Rp=1,M 0

0 Rp=1,E

][
H inc

p=1,β (�rp=1,1)

Einc
p=1,β (�rp=1,1)

]
, (2.34)

[
Hp=1,β (�rp=1,1)

Ep=1,β (�rp=1,1)

]
=

[
Tp=1,M 0

0 Tp=1,E

][
H inc

p=1,β (�rp=1,1)

Einc
p=1,β (�rp=1,1)

]
. (2.35)

The reflection coefficients, Rp=1,E and Rp=1,M , and transmission coefficients,
Tp=1,E and Tp=1,M , are given by (Yang and Liou, 2009b)

Rp=1,E =
cos θi,1 − (Nr,1 cos θt,1 + iNn,1)

cos θi,1 +Nr,1 cos θt,1 + iNn,1
, (2.36)

Rp=1,M =
m2 cos θi,1 − (Nr,1 cos θt,1 + iNn,1)

m2 cos θi,1 +Nr,1 cos θt,1 + iNn,1
, (2.37)

Tp=1,E =
2 cos θi,1

cos θi,1 +Nr,1 cos θt,1 + iNn,1
, (2.38)

Tp=1,M =
2m2 cos θi,1

m2 cos θi,1 +Nr,1 cos θt,1 + iNn,1
, (2.39)

where Nn,1 = Ni,1/ cos θt,1. A combination of the TE and TM modes yields,

�Esca
p=1(�rp=1,1) = Esca

p=1,β(�rp=1,1)β̂p=1 −Hsca
p=1,β(�rp=1,1)α̂

sca
p=1 , (2.40)

�Hsca
p=1(�rp=1,1) = Hsca

p=1,β(�rp=1,1)β̂p=1 + Esca
p=1,β , (�rp=1,1)α̂

sca
p=1 , (2.41)

�Ep=1(�rp=1,1) = Ep=1,β(�rp=1,1)β̂p=1 − 1

ikm2
�∇×

[
Hp=1,β(�rp=1,1)β̂p=1

]
, (2.42)

�Hp=1(�rp=1,1) = Hp=1,β(�rp=1,1)β̂p=1 +
1

ik
�∇×

[
Ep=1,β(�rp=1,1)β̂p=1

]
. (2.43)

Using Eqs. (2.28)–(2.42), we obtain

U sca
p=1 =

[
Rp=1,M 0

0 Rp=1,E

]
Λexp

(
ikêinc · �rp=1,1

)
, (2.44)

Up=1 =

⎡⎣ Tα 0
0 Tβ
Tγ 0

⎤⎦Λexp
(
ikêinc · �rp=1,1

)
, (2.45)

where

Tα =
2(Nr,1 + iNn,1 cos θt,1)

m2 cos θi,1 + [Nr,1 cos θt,1 + iNn,1]
, (2.46)

Tβ =
2 cos θi,1

cos θi,1 + [Nr,1 cos θt,1 + iNn,1]
, (2.47)

Tγ =
i2Nn,1 cos θi,1 sin θt,1

m2 cos θi,1 + [Nr,1 cos θt,1 + iNn,1]
. (2.48)
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From Eqs. (2.42) and (2.43), it is evident that the TE mode generates a nonzero
magnetic field along the propagation direction; whereas, the TM mode generates
a nonzero electric field along the propagation direction. Once the electromagnetic
field at one vertex position of the beam cross-section is known, the electric field at
an arbitrary position can be obtained by considering the variances of the phase
and amplitude of the electromagnetic field. Therefore, we always calculate the
electromagnetic field at the position of the first vertex of the beam cross-section.
The electric field in an arbitrary position within the beam cross-section (represented
by �r = �rp=1,1 + �w1) is written as[

Esca
p=1,α (�rp=1,1 + �w1)

Esca
p=1,β (�rp=1,1 + �w1)

]

=

[
Esca

p=1,α (�rp=1,1)

Esca
p=1,β (�rp=1,1)

]
exp[ikNr,1êp=1 · �w1] exp

[
−kNi,1

�Ap=1 · �w1

]
, (2.49)

⎡⎢⎣ Ep=1,α(�rp=1,1 + �w1)

Ep=1,β(�rp=1,1 + �w1)

Ep=1,γ(�rp=1,1 + �w1)

⎤⎥⎦
=

⎡⎢⎣ Ep=1,α(�rp=1,1)

Ep=1,β(�rp=1,1)

Ep=1,γ(�rp=1,1)

⎤⎥⎦ exp[ikNr,1êp=1 · �w1] exp
[
−kNi,1

�Ap=1 · �w1

]
, (2.50)

where �A is a vector, defined to count for the amplitude variation, which is zero for
the first-order refracted beam. If beam splitting occurs, the field associated with
the first vertex of each sub-beam can be obtained accordingly. In this case, �w1 is
the difference between the first vertex of the sub-beam and the original beam.

To consider the second-order reflection and refraction when one of the first-order
refracted beams is incident on a single facet, the field of the first-order refracted
beam can be represented with respect to the plane of incidence containing the
incident direction êp=1 and the inward normal direction of n̂p=2 (see Fig. 2.6(c)).
A combination of the TE and TM modes gives the incident field of[
H inc

p=2,β(�rp=2,1)

Einc
p=2,β(�rp=2,1)

]
=

⎡⎣ β̂2 · β̂1 Nr,1(α̂t,1 ·β̂2)+iNn,1(êf,1 ·β̂2)

−Nr,1(α̂t,1 ·β̂2)+iNn,1(êf,1 ·β̂2)
m2

β̂2 · β̂1

⎤⎦

×
[
Hp=1,β (�rp=1,1)

Ep=1,,β (�rp=1,1)

]
exp(ikδ2,1) exp(−kρ2,1), (2.51)

where kδ2,1 is the phase associated with the first vertex of the beam on the interface
of the second-order interaction and δ2,1 = êinc · �r1,1 + |�r2,1 − �r1,1|, and the second
exponential determines the amplitude decrease where ρ2,1 = Ni,1 |�r2,1 − �r1,1|. The
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second-order reflected and refracted fields are given by[
Hp=2,β (�rp=2,1)

Ep=2,,β (�rp=2,1)

]
=

[
Rp=2,M 0

0 Rp=2,E

][
H inc

p=2,β (�rp=2,1)

Einc
p=2,β (�rp=2,1)

]
, (2.52)

[
Hsca

p=2,β (�rp=2,1)

Esca
p=2,β (�rp=2,1)

]
=

[
Tp=2,M 0

0 Tp=2,E

][
H inc

p=2,,β (�rp=2,1)

Einc
p=2,β (�rp=2,1)

]
, (2.53)

where

Rp=2,M =
Nr,1 cos θi,2 − iNn,1n̂1 · n̂2 −m2 cos θt,2

Nr,2 cos θr,2 + iNn,2 +m2 cos θt,2
, (2.54)

Rp=2,E =
Nr,1 cos θi,2 − iNn,1n̂1 · n̂2 − cos θt,2

Nr,2 cos θr,2 + iNn,2 + cos θt,2
, (2.55)

Tp=2,M =
Nr,2 cos θr,2 + iNn,2 +Nr,1 cos θi,2 − iNn,1n̂1 · n̂2

Nr,2 cos θr,2 + iNn,2 +m2 cos θt,2
, (2.56)

Tp=2,E =
Nr,2 cos θr,2 + iNn,2 +Nr,1 cos θi,2 − iNn,1n̂1 · n̂2

Nr,2 cos θr,2 + iNn,2 + cos θt,2
, (2.57)

where Nn,2 = Ni,2/ cos θr,2. The electric fields after a combination of TM and TE
modes associated with the reflected and refracted waves are given by

�Ep=2 (�rp=2,1) = Ep=2,β (�rp=2,1) β̂2 − 1

ikm2
�∇×

[
Hp=2,β β̂2

]
(�rp=2,1) , (2.58)

�Esca
p=2(�rp=2,1) = Esca

p=2,β(�rp=2,1)β̂2 −Hsca
p=2,β(�rp=2,1)α̂

sca
2 . (2.59)

Based on Eq. (2.58) and (2.59), we obtain

Up=2 =

⎡⎢⎢⎢⎢⎣
−Nr,2 + iNn,1 cos θr,2

m2
0

0 1

iNn,2 sin θr,2
m2

0

⎤⎥⎥⎥⎥⎦
[
RM,2 0
0 RE,2

]

×

⎡⎢⎣ β̂2 · β̂1 Nr,1(α̂t,1 · β̂2) + iNn,1(êf,1 · β̂2)

−Nr,1(α̂t,1 · β̂2) + iNn,1(êf,1 · β̂2)
m2

β̂2 · β̂1

⎤⎥⎦
×
[
−Tp=1,M 0

0 Tp=1,E

]
Λ exp(ikδ2,1) exp(−kρ2,1) (2.60)

and
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U sca
p=2 =

[
−1 0

0 1

][
Tp=2,M 0

0 Tp=2,E

]

×

⎡⎢⎣ β̂2 · β̂1 Nr,1(α̂t,1 · β̂2) + iNn,1(êf,1 · β̂2)

−Nr,1(α̂t,1 · β̂2) + iNn,1(êf,1 · β̂2)
m2

β̂2 · β̂1

⎤⎥⎦
×
[
−Tp=1,M 0

0 Tp=1,E

]
Λ exp(ikδ2,1) exp(−kρ2,1)

At an arbitrary position (represented by �r = �rp=2,1 + �w2) within the beam cross-
section, the reflected and refracted electric fields are[

Ep=2,α(�rp=2,1 + �w2)

Ep=2,β(�rp=2,1 + �w2)

]

=

[
Ep=2,α(�rp=2,1)

Ep=2,β(�rp=2,1)

]
exp(ikNr,2êp=2 · �wp=2) exp(− �Ap=2 · �wp=2) , (2.61)

[
Esca

p=2,α(�rp=2,1 + �w2)

Esca
p=2,β(�rp=2,1 + �w2)

]

=

[
Esca

p=2,α(�rp=2,1)

Esca
p=2,β(�rp=2,1)

]
exp(ikNr,2êp=2 · �wp=2) exp(− �Ap=2 · �wp=2) , (2.62)

with �Ap=2 nonzero except for special cases. The phase variation governed by Snell’s
law is independent of the history of ray tracing and can be considered in terms of
the real part of the refractive index and the propagating direction. The amplitude
variation is dependent on the ray-tracing history and �Ap can be obtained from
�Ap−1 as follows

�Ap =
( �Ap · v̂p)(ûp · v̂p)− �Ap · ûp

(ûp · v̂p)2 − 1
ûp +

( �Ap · ûp)(ûp · v̂p)− �Ap · v̂p
(ûp · v̂p)2 − 1

v̂p , (2.63)

Ni,p−1( �Ap · ûp)ûp = Ni,p−2( �Ap−1 · ûp−1)ûp−1

+
[
Ni,p−1 −Ni,p−2(êp−1 · ûp−1)( �Ap−1 · ûp−1)

] n̂up−1

êp−1 · n̂up−1

,

(2.64)

Ni,p−1( �Ap · v̂p)v̂p = Ni,p−2( �Ap−1 · v̂p−1)v̂p−1

+
[
Ni,p−1 −Ni,p−2(êp−1 · v̂p−1)( �Ap−1 · v̂p−1)

] n̂vp−1

êp−1 · n̂vp−1

,

(2.65)
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�nup−1 = êp−1 − (êp−1 · ûp−1)ûp−1 , (2.66)

�nvp−1 = êp−1 − (êp−1 · v̂p−1)v̂p−1 . (2.67)

A similar procedure applies to higher-order internal reflection. Note that Eq. (2.12)
in Bi et al. (2011b) should be written in the form of Eqs. (2.63)–(2.67).

2.4 Physical optics and scattered far-field

After the near-field is determined via the beam–tracing calculation, the scattered
field in the radiation zone (far-field region) can be found through electromagnetic
relationships. This approach allows the geometric optics of obtaining the far-field
to be more physical than in the CGOM, and the effect incorporated into the fi-
nal results is referred to as the physical-optics correction. In this section, we dis-
cuss several alterative methods, not mathematically equivalent, for establishing the
geometric-optics-based near-field and the physical-optics-based far-field.

2.4.1 Fredholm volume integral equation

Yang and Liou (1997) appear to have been the first to use the Fredholm volume-
integral equation to obtain the far-field from the geometric-optics-based near-field.
In Yang and Liou (1996b), the ray tracing is based on rays with small circular
cross-sections with radii on the order of λ/2π. The variations of the phase and the
amplitude within the ray cross-sections are negligible as the ray cross-sections are
small, and a ray tube within the particle can be assumed to be a circular cylinder,
although the initial and end cross-sections may not be perpendicular to the propa-
gation direction (see Fig. 2.1 in Yang and Liou, 1997). With the simplifications, the
far-field corresponding to the near-field in each ray tube is obtained in a straight-
forward manner, and the method is referred to as ray-by-ray integration (RBRI).
The disadvantage of the RBRI algorithm is that the number of rays increases with
an increase in the size parameter which, consequently, leads to a significant demand
on computational resources. However, if only the first-order refracted beam, whose
contribution to the scattering and the absorption dominates in the case of strongly
absorptive particles is considered, the resultant amplitude scattering matrix may
be expressed in terms of a surface integral on the illuminated particle facets and
the corresponding numerical computation can be quite efficient (Yang et al., 2001;
Bi et al., 2011a). The algorithm based on the volume integration is further devel-
oped by analytically integrating the near-field in exactly defined ray tubes instead
of small circular cylinders (Bi et al., 2011b). In this case, the number of ray tubes
depends only on the particle geometry and orientation. The simplified algorithm
successfully improves both the computational efficiency and numerical accuracy.

The volume-integral equation that relates the total electric field within the
particle to the induced scattered field in the radiation zone (i.e., the far-field region)
is given by (Saxon, 1973; Yang and Liou, 1997),

�Es(�r )|kr→∞ =
k2 exp(ikr)

4πr

∫∫∫
v

(m2−1)
{
�E(�r ′)− r̂[r̂ · �E(�r ′)]

}
exp(−ikr̂·�r ′) d3�r ′ ,

(2.68)



2 Physical-geometric optics hybrid methods 89

where v is the particle volume (the domain of non-unity refractive index), r̂ is the
direction of the scattered light to the observation position , andm is the complex re-
fractive index with non-negative imaginary part. The scattered electric field �Es(�r )
in the radiation region is a spherical wave, which is evident from the factor before
the volume integral in Eq. (2.68). Furthermore, �Es(�r ) is locally transverse with
respect to the scattering direction r̂ and can be decomposed into two components
parallel and perpendicular to scattering planes in the form

�Es(�r ) = Es
α(�r )α̂

s + Es
β(�r )β̂

s , (2.69)

where α̂s and β̂s are two unit vectors parallel and perpendicular to the scattering
plane, as shown in Fig. 2.7. Applying the dot products α̂s· and β̂s· on both sides
of Eq. (2.68) yields the following vector equation:[

Es
α

Es
β

]
kr→∞

=
k2 exp(ikr)

4πr

∫∫∫
v

(
m2 − 1

) [ α̂s · �E(�r ′)

β̂s · �E(�r ′)

]
exp(−ikr̂ · �r ′) d3�r ′ .

(2.70)

êinc

ˆinc
ˆinc

sca

sca

ˆ s

ˆ s

r̂

Scattering Plane

Fig. 2.7. Definition of scattering plane, scattering angle, and scattering azimuthal angles.

The internal electric field in Eq. (2.70) can be formally written as a double
summation with each term arising from beams associated with different orders of
reflection/refraction events,

�E(�r ′) =
∞∑
p=1

∑
q

Eq
p,α(�r

′)α̂q
p + Eq

p,β(�r
′)β̂q

p + Eq
p,γ(�r

′)êqp . (2.71)

The summation in terms of the index p corresponds to different orders of reflection
and refraction events; whereas, the index q refers to a number of beams for the
pth-order interaction. The maximum value of q depends on the particle geometry
and orientation and is not given explicitly. Hereafter, variables with index q have
the same physical meaning as their counterparts without q defined in previous
sections. For non-absorptive particles, based on the transverse-wave condition, the
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third term in Eq. (2.70) is zero. Substituting Eq. (2.71) into Eq. (2.70) yields

[
Es

α

Es
β

]
kr→∞

=
k2 exp(ikr)

4πr

∞∑
p=1

∑
q

∫∫∫
V q
p

(m2 − 1)Kq
p

⎡⎢⎣ E
q
p,α

Eq
p,β

Eq
p,γ

⎤⎥⎦ exp(−ikr̂ · �r ′) d3�r ′ ,

(2.72)
where vqp is the volume associated with one pth order internal ray tube and Kq

p is
a 2-by-3 matrix given by

Kq
p =

[
α̂s · α̂q

p α̂s · β̂q
p α̂s · êqp

β̂s · α̂q
p β̂s · β̂q

p β̂s · êqp

]
. (2.73)

The internal field in Eq. (2.72) was calculated in the field-tracing section. To obtain
the amplitude scattering matrix, we express the electric field in Eq. (2.72) in terms
of the incident electric field in the form⎡⎢⎣ E

q
p,α(�r

′)
Eq

p,β(�r
′)

Eq
p,γ(�r

′)

⎤⎥⎦ = U q
p exp

(
ikδqp,1 − kρp,1

)
exp

[
ik(Nq

r,p−1êp−1 + iNq
i,p−1

�Aq
p) · �wq

p

]

× exp(ikN q
p l)

[
Einc

α

Einc
β

]
. (2.74)

Here Uq
p is 3-by-2 matrix and obtained in the field-tracing process. Eq. (2.72) is

transformed to[
Es

α

Es
β

]
kr→∞

=
k2 exp(ikr)

4πr

∞∑
p=1

∑
q

(
m2 − 1

)
Kq

pU
q
pΓ exp

(
ikδqp,1 − kρqp,1

)
×
∫∫∫
V q
p

exp
[
ik(Nq

r,p−1ê
q
p−1+iN

q
i,p−1

�Aq
p)· �wq

p

]
exp(ikNq

p l) exp(−ikr̂ · �r ′)d3�r ′
[
Einc

φ

Einc
θ

]
.

(2.75)

The amplitude scattering matrix is readily given by[
S2 S3

S4 S1

]
=

−ik3
4π

∞∑
p=1

∑
q

(
m2 − 1

)
Kq

pU
q
pΓ exp

(
ikδqp,1 − kρqp,1

)
Iqp , (2.76)

where

Iqp =

∫∫∫
V q
p

exp
[
ik(Nq

r,p−1ê
q
p−1 + iNq

i,p−1
�Aq
p) · �wq

p

]
exp

[
ik
(
Nq

r,p + iNq
i,p

)
l
]

× exp(−ikr̂ · �r ′)d3�r ′ , (2.77)

and

Γ =

[
θ̂inc · β̂s ϕ̂inc · β̂s

−ϕ̂inc · β̂s θ̂inc · β̂s

]
. (2.78)
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Γ is a rotational matrix that transforms the components of the incident electric
field with respect to θ̂inc and ϕ̂inc into those referring to the scattering plane (see
Fig. 2.7). To efficiently calculate the amplitude scattering matrix, the integral Iqp
must be analytically evaluated and Eq. (2.77) transformed into the form

Iqp =

∫∫
Sq
p

exp
[
ik(Nq

r,p−1ê
q
p−1+iN

q
i,p−1

�Aq
p)· �wq

p

]
exp

[−ikr̂ · (�rqp,1+ �wq
p

)] ∣∣êqp · n̂qp∣∣ d2 �wq
p

×
∫ lm

0

exp
[
ik(Nq

r,p + iNq
i,p − r̂ · êqp)l

]
dl , (2.79)

where

lm =
∣∣�rqp+1,1 − �rqp,1

∣∣+ �wq
p+1 · n̂′
êqp · n̂′ . (2.80)

In Eq. (80), n̂′ is a vector in the plane composed of �wq
p and �wq

p+1 and perpendicular
to �wq

p. Solving the integration in terms of l and employing the following identities

�wq
p+1 = �wq

p +
�wq
p+1 · n̂′
êqp · n̂′ êqp , (2.81)

�Aq
p+1 · �wq

p+1 =
Ni,p−1

Ni,p

�Aq
p · �wq

p +
�wq
p+1 · n̂′
êqp · n̂′ , (2.82)

êqp · �wq
p+1 = êqp · �wq

p +
�wq
p+1 · n̂′
êqp · n̂′ , (2.83)

results in an explicit expression for Eq. (2.77)

Iqp =
4π

k2
1

ik(Nq
p − r̂ · êqp)

[ ∣∣êqp · n̂qp+1

∣∣ D̄q
p+1 exp

(
ikNq

p

∣∣�r q
p+1 − �r q

p

∣∣)− ∣∣êqp · n̂qp∣∣Dq
p

]
,

(2.84)
where the term Dq

p is given by Bi et al. (2011)

Dq
p =

k2

4π
exp

(−ikr̂ · �rqp,1) ∫ exp
{
ik
(
Nq

r,pê
q
p − r̂ + iNq

i,p
�Aq
p

)
· �wq

p

}
d2 �wq

p

=
ik

4π

N∑
j=1

(�rp,j+1 − �rp,j) ·
[
(Nq

r,pê
q
p − r̂ + iNq

i,p
�Aq
p)× (−n̂qp)

]
(Nq

r,pê
q
p−r̂ + iN q

i,p
�Aq
p)·(Nq

r,pê
q
p−r̂ + iN q

i,p
�Aq
p)−[(Nq

r,pê
q
p−r̂+iN q

i,p
�Aq
p)·n̂qp]2

×
sin
[
k(Nq

r,pê
q
p − r̂ + iNq

i,p
�Aq
p) ·

(
�rqp,j+1 − �rqp,j

)]
k(Nq

r,pê
q
p − r̂ + iNq

i,p
�Aq
p) ·

(
�rqp,j+1 − �rqp,j

)
/2

exp
[−ikr̂ · (�rqp,j+1+�r

q
p,j

)
/2
]

× exp
[
ik(Nq

r,pê
q
p + iNq

i,p
�Aq
p) ·

(
�rqp,j+1 + �rqp,j − 2�rqp,1

)
/2
]
, (2.85)

and the term D̄q
p+1 is defined by

D̄q
p+1 =

k2

4π
exp

(−ikr̂ ·�rqp+1,1

) ∫
exp

{
ik
(
Nq

r,pê
q
p− r̂+ iNq

i,p
�Aq
p+1

)
· �wq

p+1

}
d2 �wq

p+1 ,

(2.86)
which can be calculated similar to Eq. (2.85). In Bi et al. (2011b), Eq. (2.86) is
assumed to be Eq. (2.85) by replacing p with p+ 1 because the effective refractive
index of higher-order is not rigorously taken into account.
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2.4.2 Kirchhoff surface integral equation

The use of the Kirchhoff surface-integral equation to calculate the scattered field in
the radiation zone from the geometric-optics near-field can be traced to studies by
Ravey and Mazeron (1982), Muinonen (1989), and Yang and Liou (1996b). Instead
of the conventional straight-line rays (with small beam cross-section), we employ
the beam-tracing technique to the faceted particle case described in Section 2.2 in
order to calculate the geometric-optics-based near-field and formulate the optical
properties based on the Kirchhoff surface-integral equation. In the radiation region,
the Kirchhoff surface-integral in an asymptotic form can be written as

�Esca(�r )kr→∞ =
exp(ikr)

−ikr
k2

4π

∫∫
�Z exp(ikr̂ · �r ′) d2�r ′ (2.87)

where
�Z = r̂ ×

[
n̂s × �E(�r ′)

]
− r̂ × r̂ ×

[
n̂s × �H(�r ′)

]
, (2.88)

where n̂s is outward normal direction. Based on the transverse-wave condition,
Eq. (2.87) can be written in a vector form,[

Esca
α

Esca
β

]
kr→∞

=
exp(ikr)

−ikr
k2

4π

∫∫ [
α̂s · �Z
β̂s · �Z

]
exp(−ikr̂ · �r ′)d2�r ′?., (2.89)

where [
α̂s · �Z
β̂s · �Z

]
=

[
�E × β̂s + �H × �αs

− �E × α̂s + �H × β̂s

]
· n̂s (2.90)

If remaining consistent throughout, �E and �H may be either the total field or the
scattered field. In the present context, they represent the total electric field and
total magnetic field or the superposition of the incident field on the illuminated
side of the particle and the fields from various outgoing beams. Symbolically,

�E = �Einc(illuminated faces) +

∞∑
p=1

∑
q

�Eq,sca
p (outgoing beams). (2.91)

The far-scattered field corresponding to the first term in Eq. (2.91), essentially the
diffraction contribution, is given by[

Edif
α

Edif
β

]
=

exp(ikr)

−ikr
∑
q=1

(−n̂qp=1)

·
[

α̂inc × β̂s − β̂inc × α̂s β̂inc × β̂s + α̂inc × α̂s

−(β̂inc × β̂s + α̂inc × α̂s) α̂inc × β̂s − β̂inc × α̂s

][
Einc

α

Einc
β

]
× D̄q

p=1 exp(ikêinc · �rqp=1,1) , (2.92)
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where D̄q
p=1 is a defined integration on the area of the qth illuminated facet Sq

given by

D̄q
p=1 =

k2

4π
exp

(−ikr̂ · �rqp=1,1

) ∫∫
Sq

exp
{
ik(êinc − r̂) · �wq

p=1

}
d2 �wq

p=1 . (2.93)

The fields associated with outgoing scattered beams can be represented as

�Eq,sca
p (�rqp,1 + �wq

p) =
[
Eq,sca

p,α (�rqp,1)α̂
q,sca
p + Eq,sca

p,β (�rqp,1)β̂
q,sca
p

]
exp(ikδqp − kρqp)

× exp
[
ik
(
êq,scap + i �Aq

p

)
· �wq

p

]
) , (2.94)

�Hq,sca
p (�rqp,1 + �wq

p) =
[
Eq,sca

p,β (�rqp,1)α̂
q,sca
p − Eq,sca

p,α (�rqp,1)β̂
q,sca
p

]
exp(ikδqp − kρqp)

× exp
[
ik
(
êq,scap + iNq

p−1
�Aq
p

)
· �wq

p

]
) . (2.95)

Their counterparts in the radiation zone are[
Esca

α

Esca
β

]ray
=

exp(ikr)

−ikr (−n̂qp)

·
[

α̂q,sca
p × β̂s − β̂q,sca

p × α̂s β̂q,sca
p × β̂s + α̂q,sca

p × α̂s

−(β̂q,sca
p × β̂s + α̂q,sca

p × α̂s) α̂q,sca
p × β̂s − β̂q,sca

p × α̂s

]

×
[
Eq,sca

p,α

Eq,sca
p,β

]
exp(ikδqp − kρqp)D̄

q
p , (2.96)

where D̄q
p is given by Eq. (2.72). At this step, the final amplitude scattering matrix

can be written as[
S11 S12

S21 S22

]
=
∑
q

(−n̂q1)

·
[

φ̂i×β̂s−θ̂i×α̂s θ̂i×β̂s+φ̂i×α̂s

−(θ̂i×β̂s+φ̂i×α̂s) φ̂i×β̂s−θ̂i×α̂s

]
ΓD̄q

p=1 exp(−ikêinc · �rqp=1,1)

+
∞∑
p=1

∑
q

(−n̂qp)

·
[

α̂q,sca
p × β̂s − β̂q,sca

p × α̂s β̂q,sca
p × β̂s + α̂q,sca

p × α̂s

−(β̂q,sca
p × β̂s + α̂q,sca

p × α̂s) α̂q,sca
p × β̂s − β̂q,sca

p × α̂s

]
U q,sca
p Γ

× exp(ikδqp − kρqp) D̄
q
p . (2.97)

The explicit expression of the amplitude scattering matrix associated with the
diffraction and external reflection can be found in Bi et al. (2011a).

Similarly, Borovoi and Grishin (2003) employed the beam-splitting technique
to the calculation of the near-field for a hexagonal particle. To obtain the scattered
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field in the radiation zone, the spirit of vector Fraunhofer diffraction described in
Jackson (1999) is adopted, i.e., the diffraction of an outgoing beam behaves like
the diffraction of a plane wave by an aperture with the same shape as that of the
beam cross-section. Mathematically, instead of Eq. (2.87), the following equation
is used to transform the near-field to the far-field:

�Esca(�r )kr→∞ =
ikeikr

2πr
r̂ ×

∫
s

n̂s × �E(�r
′
) exp(−ikr̂ · �r ′) ds̄ . (2.98)

In Borovoi and Grishin’s study, the particle is assumed to be non-absorptive or
weakly absorptive, thus, the amplitude variance is reasonably negligible. A similar
approach was reported by Popov (1996) from studying light scattering by hexag-
onal ice crystals; unfortunately, no detailed treatments of inhomogeneous waves
for absorptive particles and commonly defined optical properties were included.
Instead of using vector Fraunhofer diffraction, Priezzhev et al. (2009) obtained the
scattered field in the radiation zone from scalar Fraunhofer diffraction. Priezzhev’s
algorithm allows for the calculation of the phase function and not the phase ma-
trix. In Section 2.2, the amplitude variance over the beam cross-section has been
taken into account through an iterative formula with respect to �Ap. Therefore, the
optical properties for absorptive particles can be established in a similar framework
of vector Fraunhofer diffraction.

2.4.3 Intensity mapping algorithm

The intensity-mapping algorithm is aimed at incorporating the ray-spreading effect
into the phase matrix obtained in the CGOM. In a simplified form (Yang and Liou,
1996b), the amplitude scattering matrix associated with a ray is given by[

S11 S12

S21 S22

]
= − k

2

4π
exp(ikδ)

[
Ξ2 Ξ3

Ξ4 Ξ1

][
S̃11 S̃12

S̃21 S̃22

][
cosφt sinφt

− sinφt cosφt

]
, (2.99)

where δ is the phase of the ray, S̃ijare the elements of the amplitude scattering
matrix computed from the CGOM that transform the incident electric field to the
scattered field associated with a outgoing ray (with respect to plane A in Fig. 2.8),
ϕt is the rotation angle from the plane A to the scattering plane B composed of
the observation direction and the direction of the incident light, and the matrix Ξ
accounts for the spreading of light from the direction of the outgoing ray to the
observation direction and is given by

Ξ1 = h cosϕt , (2.100)

Ξ2 = h cos θ cos θt cosϕt + h sin θ sin θt , (2.101)

Ξ3 = −h cos θ sinϕt , (2.102)

Ξ4 = h cos θt sinϕt , (2.103)

where

h = πa2(1 + cosΘ)
J1(ka sinΘ)

ka sinΘ
. (2.104)
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In Eq. (2.104), a is the radius of the ray cross-section and Θ is the angle of ray-
spreading. Eq. (2.104) is similar to the Fraunhofer diffraction of a beam passing
an aperture with the radius of a. To proceed, we neglect the phase information
δ to incorporate the diffraction effect into the phase matrix computed from the
CGOM. The matrices on the two sides of the matrix S̃ij are Jones matrices, whose
corresponding Mueller matrices are in the shapes of,

H =

⎡⎢⎢⎢⎣
H11 H12 H13 0

H21 H22 H23 0

H31 H32 H33 0

0 0 0 H44

⎤⎥⎥⎥⎦ . (2.105)

and

L =

⎡⎢⎢⎢⎣
1 0 0 0
0 cos(2φt) sin(2φt) 2

0 − sin(2φt) cos(2φt) 0

0 0 0 1

⎤⎥⎥⎥⎦ . (2.106)

The relationship between the elements of the H matrix and the four elements of the
Ξ matrix is similar to the relationship between the amplitude scattering matrix and
the phase matrix given by Boren and Huffman (1983). Some elements in Eq. (2.105)
are zero because Ξi are real rather than complex numbers.

Fig. 2.8. Diagram to show the spreading of light from the direction of an outgoing ray
to the observation position according to the diffraction.

The resultant phase matrix is given by

P (θ, φ) =

∫∫
H(θ, θt, ϕ, ϕ0)P̃ (θt, ϕ0)L(ϕt = ϕ− ϕ0) sin θt dθt dϕ0, (2.107)



96 Lei Bi and Ping Yang

where L is associated with the rotation of the scattering plane and H accounts for
the effect of ray-spreading. To distinguish various algorithms in the calculation of
the phase matrix, the literature refers to the method using the intensity-mapping
algorithm as the IGOM.

2.5 Extinction and absorption

In addition to the phase matrix, the extinction and single-scattering albedo are
optical parameters critical to radiative transfer simulation. We describe the algo-
rithm used to compute the extinction and absorption cross-sections, and discuss
both the edge effect beyond the computational capability of the PGOH method
and a semi-empirical approach to incorporate the edge effect into the extinction
and absorption efficiencies (Bi et al., 2010b, 2011b).

2.5.1 PGOH cross-sections

The extinction cross-section for an oriented particle can be found from the volume
integral equation,

Cext = Im

⎡⎣ k∣∣ �Einc
∣∣2 (m2 − 1)

∫∫∫
v

�E (�r ′) · �Einc∗ (�r ′) d3�r ′

⎤⎦ . (2.108)

After substituting the geometric-optics internal field into the above equation, the
extinction cross-section derived is the same as that derived from the optical theorem
(Bohren and Huffman, 1983):

Cext =
2π

k2
Re

[
S11(ê

inc) + S22(êinc)
]
. (2.109)

Here, the two diagonal elements of the amplitude scattering matrix are obtained
from the volume-integral equation. Physically, the previously derived result takes
into account the interference between the diffraction and the fields associated with
forward scattered beams but neglects the edge effect associated with tunneling rays.
The process has been justified by separating the contribution of tunneling rays to
the extinction from the total extinction cross-section in the circular cylinder case
(Bi et al., 2010b).

Given the internal field, the absorption cross-section is expressed as (Hage et
al., 1991)

Cabs =
k∣∣ �Einc
∣∣2 εi

∫∫∫
v

�E (�r ′) · �E∗(�r ′) d3�r ′ , (2.110)

where εi is the imaginary part of permittivity. If the interference between the
internal beam fields is neglected, the absorption cross-section can be obtained by
integrating the electric fields with each ray tube generated in the beam-tracing
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process. The final expression for the absorption cross-section is (Bi et al., 2011b)

Cabs =
1

2

∞∑
p=1

∑
q

Nq
r,p exp(−2kρqp,1)

×
(∣∣U q

p,11

∣∣2 + ∣∣U q
p,12

∣∣2 + ∣∣U q
p,21

∣∣2 + ∣∣U q
p,22

∣∣2 + ∣∣U q
p,31

∣∣2 + ∣∣U q
p,32

∣∣2)
×
(∣∣ê1p · n̂qp∣∣ D̃q

p − exp
(−2N q

i,pk
∣∣�rqp+1 − �rqp

∣∣) ∣∣êqp+1 · n̂qp+1

∣∣ D̃q
p+1

)
, (2.111)

where

D̃q
p =

∫∫
s

exp
(
−2kN q

i,p−1 �w
q
p · �Aq

p

)
d2 �wq

p

=
1

2kN q
i,p

N∑
j=1

(
�rqp,j+1 − �rqp,j

) · ( �Aq
p × (−n̂qp)

)
∣∣∣ �Aq

p

∣∣∣2 − ( �Aq
p · n̂qp)2

sin
(
2kNq

i,p−1
�Aq
p ·
(
�rqp,j+1 − �rqp,j

))
2kNq

i,p−1
�Aq
p ·
(
�rqp,j+1 − �rqp,j

)
× exp

{
−kNq

i,p−1
�Aq
p · (�rp,j+1 + �rp,j − 2�rp,1)

}
. (2.112)

To interpret the physical meaning implied in Eq. (2.111), let us express the energy
passing across the initial beam cross-section of a pth order internal beam in the
form

F =
1

2
Nq

r,p exp(−2kρqp,1)
∣∣êqp · n̂qp∣∣ D̃q

p

×
(∣∣U q

p,11

∣∣2 + ∣∣U q
p,12

∣∣2 + ∣∣U q
p,21

∣∣2 + ∣∣U q
p,22

∣∣2 + ∣∣U q
p,31

∣∣2 + ∣∣U q
p,32

∣∣2) . (2.113)

A comparison between Eqs. (2.111) and (2.113) provides straightforward physical
proof that the absorption cross-section is associated with the energy lost in all the
internal ray tubes. The tunneling contribution to the absorption cross-section is
not considered in Eq. (2.111).

2.5.2 Tunneling/edge effect

To incorporate the tunneling effect into both the PGOH extinction and absorp-
tion cross-sections, we must numerically justify the contribution of tunneling rays.
The process is only understood for spheres, in which case an analytical solution
exists. van de Hulst (1981) has attempted to obtain geometric-optics results from a
Lorenz–Mie formula based on the localization principle, which states that ‘a term
of the order n in Mie coefficients corresponds to a ray passing the origin at a dis-
tance of (n + 1/2)λ/2π’. Based on the localization principle, the edge effect for a
circular cylinder/disk (Fig. 2.3a) can be separated from the DDA results (Bi et al.,
2010b).

In the DDA method, the geometry of the particle is discretized to a number of
small volumes termed ‘dipoles”. The basic equation for the DDA method is given
by

�Einc
l = α−1

l
�Pl −

∑
m 	=l

Glm
�Pm , (2.114)
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where �Einc
l is the electric vector at the dipole of the index l, α−1

l is the inverse

of polarizability, �P inc
l indicates the electric dipole moment, and Gml is the dyadic

Green’s function. The solution to Eq. (2.114) is semi-rigorous in the sense that it
solves Maxwell’s equations, and the numerical errors can be reduced so that the
true solution is approached by increasing the number of dipoles that represent the
particle geometry. Once the vector of polarizability at each dipole is determined,
the extinction efficiency and absorption efficiency can be obtained. The incident
electric field can be expanded in terms of multipole fields similar to those in the
Lorenz–Mie theory. We truncate the summation to an edge term of the order of
n = [ka− 1/2], where a is the radius of the circular cylinder and the new incident

field is noted as �Einc
no edge. The DDA equation can be written as

�Einc
l,no edge = α−1

l
�Pl −

∑
m	=l

Glm
�Pm . (2.115)

Physically, the solution to Eq. (2.115) corresponds to the solution of the PGOH.
Based on the principle of the PGOH, the solution to the extinction efficiency is (Bi
et al., 2010b),

Qext = 2Re

{
1− 4m exp{i(m− 1)kL}

(m+ 1)2 − (m− 1)2 exp(i2mkL)

}
. (2.116)

Figure 2.9 shows a comparison of the extinction efficiency factors computed based
on Eqs. (2.114)–(2.116). The general agreement between the results simulated from
the DDA method with the edge effect separate and the PGOH results supports the
explanation of the edge effect based on the localization principle.

The edge effect contribution to the extinction and the absorption efficiency for
a sphere can be written in the form of (Nussenzveig, 1992)

ΔQext = fextx
−2/3 , (2.117)

ΔQabs = fabsx
−2/3 , (2.118)

where x is the size parameter, fext = 1.99239, and fabs can be expressed in integral
terms. To incorporate the edge effect into the PGOH, we first simulate the extinc-
tion and absorption efficiencies for a moderate size particle by a rigorous method.
By comparing of the rigorous result with that from the PGOH, we can determine
the coefficients of the edge effect contribution. We assume the coefficients are in-
dependent of the size parameter but dependent on the particle shape. In principle,
the method based on Eqs. (2.117) and (2.118) for nonspherical particles is semi-
empirical, but in practice, the size parameter must be sufficiently large in order
for the ray to represent waves. The determination of fext in absorptive particles is
critical to avoid a highly oscillated Qext curve. fext is weakly refractive-index depen-
dent and fabs is strongly refractive-index dependent. The semi-empirical methods
including edge effects for spheroids and ellipsoids can be found in studies by Jones
(1957), Fournier and Evans (1991), Yang et al. (2007), and Bi et al. (2008). Liou et
al. (2011) have investigated the edge effect contribution to the extinction efficiency,
the absorption efficiency, and the asymmetry factor, and the coefficients are deter-
mined from the ratio of two defined volumes. Note that the extinction efficiencies
derived from different PGOH algorithms may have subtle differences, which could
lead to some uncertainties of the semi-empirical factors.
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Fig. 2.9. The comparison of the extinction efficiency factor from two selected refractive
indices computed from the DDA method, the DDA method without the edge effect, and
the PGOH method. The lower panel data is from Bi et al. (2010b).

2.6 Numerical examples for ice crystals and mineral dusts

The PGOH method has been applied in investigations of the optical properties (i.e.,
the extinction efficiency, the single-scattering albedo, and the phase matrix) of large
ice crystals. Conventionally, the PGOH is applied to study randomly oriented ice
crystals and seldom to study the optical properties of an ice particle with a fixed
orientation due to the existence of isolated points. Developments have improved
the method by taking into account the diffraction effects of light beams; however,
the algorithm is very CPU-time-consuming when applied to large size parameters.
An algorithm developed by Borovoi and Grishin (2003) adopted the beam-splitting
technique to the near-field calculation and is suitable to study preferably oriented
ice crystals. Borovoi and Grishin’s algorithm is used to study the scattering of light
within the visible range where the particle is either non-absorptive or weakly ab-
sorptive. In principle, the algorithm is applicable to any convex faceted particles
with arbitrary refractive indices at fixed orientations or to orientations described by
a distribution function. A comparison of the present PGOH method with the one
developed based on vector Fraunhofer diffraction with the consideration of absorp-
tion is interesting; however, the comparison will not be discussed here. We will show
some representative numerical results obtained from the Kirchhoff surface integral
equation, the Fredholm volume integral equation, and the IGOM. Note, unlike the
other methods, the IGOM is only applicable to randomly oriented particles.
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Figure 2.10 shows the refractive indices of ice ranging from 0.2 to 15μm and
compiled by Warren and Brandt (2008). We select several refractive indices at rep-
resentative wavelengths to illustrate the phase matrices computed from the PGOH
methods. For integrated single-scattering properties (i.e., the extinction efficiency,
the single-scattering albedo, and the asymmetry factor), we present results over a
complete range of the spectrum.

Fig. 2.10. Refractive indices of ice crystals compiled by Warren and Brandt (2008).

Figure 2.11 illustrates a comparison of the phase matrix elements simulated
from the Fredholm volume integral equation (PGOHv), the Kirchhoff surface inte-
gration equation (PGOHs), and the ADDA method for an oriented hexagonal ice
crystal at the wavelength of 0.66μm and a refractive index of 1.3078+i1.66×10−8.
A small imaginary refractive index part indicates negligible absorption. The size
parameter defined in terms of the semi-width is 25 and the aspect ratio is unity
(i.e., the height is equal to the diameter). In the ADDA simulation, the number of
dipoles per wavelength is 15 and the lattice dispersion relation is used to describe
the polarization relation. The phase matrix elements are averaged with respect
to the scattering azimuthal angle. For simplicity, six phase matrix elements (Pij)
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Fig. 2.11. Comparison of the phase matrix elements computed from the PGOHs, PGOHv,
and ADDA.

are demonstrated, although the phase matrix pattern is not in the Lorenz–Mie
structure for an oriented ice crystal. From Fig. 2.11, it is evident that both the
PGOHs and PGOHv yield results with reasonable accuracy. Figure 2.12 is similar
to Fig. 2.11 except that the wavelength is at 3.2 μm where the ice is quite absorp-
tive and the diffraction and external reflection dominate the scattering pattern. The
phase function peak at 120 degrees is evidently from the external reflection. From
the comparison, PGOHv appears to be more accurate than PGOHs. Hereafter, for
simplicity, we will only demonstrate the results computed from the PGOHv.

Figure 2.13 illustrates the comparison of phase matrix elements computed from
the IGOM, the PGOH, and the DDA methods for a randomly oriented hexagonal
ice crystal. General agreement between the three results is identified, although
there are differences (e.g., the phase function near the backscattering directions).
As evident from the comparison, the PGOH mimics the oscillation feature of the
optical properties of ice crystals whereas the IGOM does not. In the IGOM, the
interference among rays is neglected, which explains the anomaly. Note that ice
haloes are not observed because the size parameter is not sufficiently large. If the
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Fig. 2.12. Similar to Fig. 2.11, but at a wavelength of 3.2 μm.

CGOM is employed for the computation, ice haloes will exist no matter how large
the size parameter, but the explanation is nonphysical.

Figure 2.14 shows the comparison of phase matrix elements simulated from the
IGOM and the PGOH for large randomly oriented ice crystals. The size parameter
is 500, which is beyond the modeling capability of the DDA method. The RBRI
algorithm developed in Yang and Liou (1997) is time consuming for large size pa-
rameters; therefore, the comparison between the RBRI and FDTD, at that time,
was only carried out for 2-D randomly oriented hexagonal particles. The PGOH is
much more efficient than the RBRI, and, thus, makes the simulation of 3-D ran-
domly oriented ice crystals possible. The phase matrix is averaged in terms of 360
scattering planes. 2560 incident angles corresponding to two Euler angles are spec-
ified for the orientation-average computation. The comparison between the IGOM
results and the PGOH results supports the feasibility of physical simplifications in
the IGOM algorithm described in Section 3 by Yang and Liou (1996b). Due the
difficulty of defining the solid angle in the backscattering direction, the IGOM is
less accurate than the PGOH in the computation of backscattering optical prop-
erties, and the differences may be seen in Fig. 2.14. The curves from the IGOM
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Fig. 2.13. Phase matrix elements for randomly oriented ice crystals simulated from the
IGOM, PGOH, and ADDA.

are much smoother than those from the PGOH. The optical properties computed
from the PGOH and the IGOM are closer in accuracy when a size distribution is
applied to obtain the back-scattering properties.

The present PGOH algorithm can be applied to arbitrarily shaped faceted par-
ticles. Figure 2.15 shows the PGOH phase matrix elements for a droxtal ice crystal
at two wavelengths. The definition of droxtal geometry can be found in Yang et al
(2003), and Zhang et al. (2004). The diameter of the droxtal is 8μm, and the size
parameters at the wavelengths of 0.2μm and 1.0μm are approximately 251 and 50.
At the small size parameter, oscillations of the phase functions, P12 and P43, are
evident (similar FDTD simulations can be found in Yang and Liou, 2006). At the
large size parameter, the geometric optics features are identified (e.g., the peaks
of the phase function), and can be compared with the results obtained from the
IGOM in Zhang et al. (2004).
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Fig. 2.14. Phase matrix elements for large randomly oriented hexagonal ice crystals
simulated from the IGOM and PGOH.

Figure 2.16 shows the extinction efficiency, the single-scattering albedo, and
the asymmetry factor for hexagonal ice plates and droxtals in a spectral range of
wavelengths from 0.2 to 15 μm. The diameters of the ice plates and droxtals are 5
μm and the particles are assumed to be randomly oriented in space. The PGOH is
employed for the calculation when the wavelength is smaller than 1.03μm (the size
parameter is on the order of 30.5), and the ADDA method is used for the remaining
spectral regime. This figure shows a combination of the PGOH method and the
ADDA method for the computation of the optical properties of ice crystals in a
complete range of wavelengths, and the differences in the optical properties between
the two shapes are evident. The edge effect is included in the PGOH results.

Unlike ice crystals, mineral dust aerosols rarely have particular shapes. Optical
modeling of mineral dust aerosols is usually based on a few simple randomly ori-
ented nonspherical geometries, such as spheroids/ellipsoids (Dubovik et al., 2002;
Yang et al., 2007; Bi et al., 2008; Nousiainen, 2009; Meng et al., 2010; Merikallio
et al., 2011) and non-symmetric hexahedra (Bi et al., 2010). The PGOH with
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Fig. 2.15. Phase matrix elements for a randomly oriented droxtal particle at two wave-
lengths and simulated by the PGOH.

the beam-splitting technique is applicable to non-symmetric hexahedra, which are
faceted, but not to ellipsoids with curved surfaces. For ellipsoids, the IGOM must
be used.

Figure 2.17 shows the phase matrix elements of randomly oriented non-symmetric
hexahedra. The size parameter defined in terms of the radius of a surface-area-
equivalent sphere is 10. For such a small size parameter, the PGOH can produce
quite similar results with those simulated from the DDA method. The element P12

in the range of 30◦–90◦ has relatively large differences.
To illustrate the applicability of a combination of the ADDA and the IGOM

to modeling dust particles, Fig. 2.18 shows the comparison of the phase matrix
elements for Pinatubo aerosol samples simulated based on randomly oriented non-
symmetric hexahedra and actual measurements (Volten, 2006). In the comparison,
three non-symmetric hexahedra are used to match the theoretical results and the
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Fig. 2.16. Extinction efficiency, single-scattering albedo, and asymmetry factors com-
puted from the PGOH and ADDA for hexagonal ice plates and droxtals with a diameter
of 5 μm in a spectral range from 0.2 to 15 μm. The aspect ratio of a plate is unity (i.e.,
the height is equal to the diameter).

measurements. The effective radius and effective variance indicated in Fig. 2.18 are
defined as (Hansen and Travis, 1974)

reff =

∫ r2
r1
r3n(r) dr∫ r2

r1
r2n(r) dr

, (2.119)

σeff =

√√√√∫ r2
r1

(r − reff)2r2n(r) dr

(reff)2
∫ r2
r1
r2n(r) dr

. (2.120)
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Fig. 2.17. Phase matrix for a randomly oriented non-symmetric hexahedra.

It was found that the shape-averaged phase matrix elements are not very sensitive
to relative weights of the shape. The study demonstrated both the theoretical
possibility of using irregularly faceted particles to model realistic aerosols with
complicated geometries without facets and the nonspherical model to be much
better than the spherical model in reproducing laboratory measurements (also see
Kokhanovsky, 2002).

Currently, the optical modeling of nonspherical dust aerosols is generally based
on spheroids (Mishchenko and Travis, 1998; Dubovik, et al., 2002). Yi et al. (2011)
have investigated the uncertainties of particle shapes and refractive indices in at-
mospheric flux calculations based on the single-scattering database of tri-axial el-
lipsoids developed by Meng et al. (2010). Other efforts have attempted to simulate
the optical properties of nonspherical aerosols using quite complicated geometries
(e.g., Kalashnikova and Sokolik, 2004).
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Fig. 2.18. Comparison of simulated results from hexahedra and sphere models and lab-
oratory measured data (data from Bi et al., 2010).

2.7 Summary

In this chapter, we have reviewed the conceptual basis and theoretical development
of the PGOH methods for the computation of the single-scattering properties of
atmospheric nonspherical particles. The PGOH has been demonstrated to be a
computationally efficient method to solve light scattering by dielectric particles
whose characteristic dimensions are much larger than the incident wavelength. The
derived solution is expected to be more accurate when the particle size parameter
increases, and is unlikely to be reliable at small size parameters as the ray concept
fails. An estimation of the lower limit of the size parameter is near 20.

Several physical-geometric optics hybrid algorithms exist: CGOM, IGOM,
PGOHs, and PGOHv. The CGOM is based on a straightforward combination of
Fraunhofer diffraction and angular scattering pattern from geometric-optics and
an assumption of the extinction efficiency of two. The IGOM incorporates the ray-
spreading effect into the CGOM phase matrix. The PGOHs and PGOHv are more
rigorous PGOH algorithms because they adopt no additional simplifications be-
yond the geometric-optics approximation. In regard to the application regimes, the
CGOM is only applicable to large randomly oriented particles (the size parameter



2 Physical-geometric optics hybrid methods 109

should be larger than ∼100); the IGOM is only applicable to randomly oriented
particles but can be used for lower size parameters and transitions to the CGOM
when the size parameter increases; the PGOHs and PGOHv are applicable to ori-
ented ice crystals and randomly oriented particles, but, although less efficient than
the CGOM and IGOM, have better accuracy. In principle, the CGOM and the
IGOM are more semi-empirical than the PGOHs and PGOHv. In an attempt to
forward a better understanding of geometric-optics methods, we have listed some
key references in Table 2.1. For practical electromagnetic scattering calculations
involving a dielectric particle, we summarize the major strengths of the present
PGOH formalism (PGOHs and PGOHv) as:

– no limitations exist on the maximum particle size parameter, but a conservative
estimate of the lower size parameter is x > 20;

– the algorithm is applicable to particles of arbitrary orientation and very efficient
for studying oriented ice crystals;

– the algorithm is reasonably accurate in the description of backscattering prop-
erties for lidar applications (Zhou et al., 2012); and

– the algorithm allows light scattering computation in the case of an arbitrary
refractive index in the optical regime.

The applicability of the PGOH algorithm to the study of the single-scattering
properties of ice crystals within cirrus clouds can be justified by the fact that
ice crystals are large in size in comparison with the incident wavelengths in the
optical spectrum and have faceted geometry. The applicability of faceted model
particles to mineral dust aerosols is explored based on the objective of using ‘simple
geometries to represent irregular realistic particles without any particular geometry’

Table 2.1. Some references pertinent to the CGOM, IGOM, and PGOH methods.

CGOM
IGOM PGOH

Liou and Hansen, 1971
Jacobowitz, 1971
Wednling et al., 1979
Coleman and Liou, 1981
Cai and Liou, 1982
Takano and Jayaweera, 1985
Takano and Liou, 1989
Macke, 1993 (at

http://www.ifm-geomar.de
/index.php?id=981)

Macke et al., 1996a,b
Hess and Wiegner, 1994
Muinonen et al., 1997

(http://www.atm.helsinki.fi
/∼tpnousia/siris.html)

Borovoi, 2002
Yang and Liou, 2009b

Yang and Liou, 1996
Yang and Liou, 1998
Yang et al., 2007
Zhang et al., 2004
Bi et al., 2009
Bi et al., 2010
Meng et al., 2010

Ravey and Mazeron, 1982
Mazeron and Muller, 1996
Popov, 1996
Muinonen, 1989
Yang and Liou, 1996
Yang and Liou, 1997
Yang et al., 2003
Borovoi, 2003
Priezzhev, 2009
Liou et al., 2011
Bi et al., 2011a
Bi et al., 2011b

http://www.ifm-geomar.de//index.php?id=981
http://www.atm.helsinki.fi/%E2%88%BCtpnousia/siris.html
http://www.atm.helsinki.fi/%E2%88%BCtpnousia/siris.html
http://www.ifm-geomar.de//index.php?id=981
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(Kahnert et al., 2002). The comparison of measurements and simulations suggests
the feasibility of the approach suggested by Kahnert et al. (2002).
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3 Light scattering by large particles:
physical optics and the shadow-forming field

Anatoli G. Borovoi

3.1 Introduction

There are a lot of excellent books and papers considering the theory and vari-
ous approximations to the problem of light scattering by spherical and nonspher-
ical particles (see, for example, van de Hulst, 1981; Bohren and Huffman, 1983;
Kokhanovsky, 1999; Mishchenko et al., 2002; and numerous references therein).
These works start from the fundamental Maxwell equations and then the desired
solutions are derived from the Maxwell equations as some series. Finally, these se-
ries are summarized by a computer code. However, such procedures are effective
for relatively small nonspherical particles and the maximum particle size occurs
to be strongly dependent on computer power. At present, this particle size limit
is reached at, say, under the condition: (particle size)/(incident wavelength) < 20.
Otherwise such calculations become too computationally expensive.

Fortunately, the problem of light scattering by large particles can be effectively
attacked from the opposite side. Namely, there is a classical asymptotics of the
Maxwell equations called geometric optics. Here propagation and scattering of the
electromagnetic fields are associated with propagation of photons or, equivalently,
geometric-optics rays similarly to evident propagation of classical-mechanics parti-
cles. Ray-tracing simulation of such propagation and scattering is a common code
for this case. In particular, the problem of light scattering by atmospheric ice crys-
tals and coarse aerosol particles has been widely studying by ray-tracing codes
already for many years. A survey of these works can be found, for example, in
(Liou, 2002; Yang and Liou, 2006; Bi and Yang, 2013; Baran,2013).

In parallel to the numerical calculations of the scattering matrices by means
of ray-tracing algorithms, a number of attempts were made in such calculations
to take into account the wave properties of light, i.e. interference and diffraction.
These works concerned mainly the problem of light scattering by atmospheric par-
ticles. Here different algorithms of taking into account the wave properties of light
had obtained different names in the literature depending on the volume of the light
wave properties included. Thus, if the scattering matrix calculated by a ray-tracing
code was supplemented with the forward scattering peak described by the Fraun-
hofer diffraction from an effective circle (Cai and Liou, 1982), it was called GOM-1
method (geometric-optics method). This procedure extended to any scattering di-
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rections (Muinonen, 1989) was called the modified Kirchhoff approximation. In the
next GOM-2 or IGOM method (Yang and Liou, 1995; Yang and Liou, 1996), the
authors replaced the geometric-optics rays inside a crystal by thin ray tubes called
the wavelets or localized waves. Then the electromagnetic fields on ice crystal sur-
faces were found numerically by tracing these localized waves. Later the localized
waves were used also for the integral over a crystal volume (Yang and Liou, 1997)
in the method called RBRI (ray-by-ray integration). Though the wave properties of
light were included in the GOM-2 and RBRI methods with a reasonable accuracy,
these methods proved to be computationally costly because of great number of the
ray tubes needed to cover ice crystal facets. Only recently, this drawback of the
GOM-2 and RBRI methods was eliminated in the method (Bi et al., 2011; Bi and
Ping, 2013) called PGOH (physical-geometric optics hybrid). Here the localized
waves were replaced by the real plane-parallel beams of light propagating inside
the ice crystals. It is worth noting that the same method for the case of nonab-
sorbing particles was developed by the author too (Borovoi and Grishin, 2003).
In our algorithm, the plane-parallel beams inside the crystals originated from the
illuminated crystal facets are numerically calculated.

This variety of terminologies and names of methods is caused by the fact that
while geometric optics is a well-defined field of physics, physical optics has not been
commonly defined. The first purpose of this chapter is to systemize the approaches
achieved in the problem of light scattering by large particles and to define strictly
a concept of physical-optics approximations.

The second and more important purpose of this chapter is to draw the attention
of the light scattering community to the fact that the main feature peculiar to light
scattering by large particles is the appearance of the so-called shadow-forming field.
We are going to convince a reader that the shadow-forming field exists in reality.
The shadow-forming field is strictly determined at any distance from scattering
particles and the shadow-forming field is the same full member of any superposi-
tion of scattered waves as, say, the reflected/refracted fields. If one assumes the
concept of the shadow-forming field, a lot of various phenomena like the δ-function
transmission (Takano and Liou, 1989; Mishchenko and Macke, 1998), the extinction
paradox (van de Hulst, 1981), Babinet’s principle, etc. becomes physically obvious.
Moreover, we demonstrate that a number of important results can be obtained
without any analytical calculations if we consider the shadow-forming field in the
near zone of the large particles instead of the common wave zone.

3.2 Physical-optics approximations in the problem of light
scattering

3.2.1 Light scattering by use of the Maxwell equations

The Maxwell equations in the problem of light scattering by an arbitrary particle
can be reduced to the following differential equation for the electric field E(r)

(L− V )E = 0 (3.1)
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where L = −rotrot + k2 is the propagation operator for a free space, k = 2π/λ, λ
is the wavelength in the free space, V (r) = k2[1−m2(r)], and m(r) is the complex-
valued refractive index of the particle in the point r = (x, y, z). The function V (r)
becomes zero outside the volume occupied by a particle. Therefore this function
V (r) is sometimes more convenient to determine a size, shape and structure of a
particle as compared with the refractive index m(r).

The differential equation (3.1) is equivalent to the volume integral equation

E(r) = E0(r) +

∫
G(r, r′)V (r′)E(r′) dr′ (3.2)

where

G(r, r′) = L−1 =

(∇r∇r′

k2
− 1̂

)
eik|r−r′|

4π|r− r′|
is the volume Green function and

E0(r) = E0 eikn0
r (3.3)

is the plane wave incident on the particle in the direction n0 where |n0| = 1.
Equation (3.2) corresponds to the general superposition of the total field E(r)

into the incident and scattered fields

E(r) = E0(r) +Es(r) (3.4)

According to Eq. (3.2), the scattered wave is the integral over the volume occupied
by the particle

Es(r) =

∫
G(r, r′)V (r′)E(r′) dr′ (3.5)

Two general statements are now noticeable. First, if we know the scattered field
inside the particle, it is simply found outside the particle by means of the integral
(3.5). Second, if we know the scattered field at any surface S surrounding the
particle, it is found outside the surface by means of the surface integral with the
surface Green function GS(r, r

′), see, e.g., (Jackson, 1999)

Es(r) =

∫
S

GS(r, r
′)E(r′) dr′ (3.6)

At far distance from a particle R = |r− r0| → ∞, where r0 is a point chosen as a
center of the particle, the scattered field is transformed into the divergent spherical
wave

Es(R,n) =
1

R
eikR+ikn0r0J(n,n0)E

0 (3.7)

where n = (r − r0)/|r − r0| is the scattering direction, and the matrix J of 2 × 2
dimensions is responsible for polarization of the transverse electromagnetic wave.
We shall call the matrix as the Jones matrix for brevity though there are a number
of other names.
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For the quadratic values of the field, i.e. for the Stokes vectors I, we have the
similar equation, where the Jones matrix is replaced by the (4×4) Mueller matrixM

Is(R,n) =
1

R2
M(n,n0)I0 (3.8)

3.2.2 Geometric optics versus the Maxwell equations

Geometric optics is a well-known asymptotics to the Maxwell equations that is
indispensable for the case of small wavelengths λ → 0. Here the electric field is
represented as the series over powers of the wavelength λ = 2π/k (Born and Wolf,
1959)

E(r) = eikL(r)
∞∑
j=0

ej(r)

(ik)j
(3.9)

The scalar function L(r) is called the eikonal and the vector functions ej(r) are the
jth order amplitudes. Substitution of the series (3.9) into the Maxwell equations
results in the following equation for the eikonal

(∇L(r))2 = n2(r) (3.10)

where n(r) = Rem(r) is the real part of the refractive index. Solutions of Eq. (3.10)
are a set of ray trajectories. The surfaces perpendicular to the ray trajectories
are the wave fronts where phases of the electromagnetic waves are constant. The
vector amplitudes ej(r) are tangent to the wave fronts obeying their own equations.
Here only the zeroth amplitude e0(r) is of physical importance since it provides a
conservation of the energy flux along any ray tube.

There is a remarkable analogy that classical mechanics is obtained from quan-
tum mechanics by means of the same mathematical procedure. Such an analogy
is a powerful instrument to explain various physical regularities appearing in both
the electrodynamics and quantum mechanics.

In particular, within the geometric optics, light propagation can be treated
as a motion of photons along the ray trajectories. These trajectories are curved
inside an inhomogeneous medium. If a photon meets an interface, i.e. a jump of
the refractive index, its trajectory becomes broken in accordance to the well-known
reflection/refraction laws. In this case, the incident trajectory sets are transformed
into other sets and so on. As a result, a geometric-optics field Eg(r) becomes the
superposition that summarizes different trajectory sets

Eg(r) =
∑
l

e
(l)
0 (r) eikL

(l)(r) (3.11)

These photons trajectories are easy simulated by computer ray-tracing codes that
can include the phases or eikonals as well. Sometimes the phases of light are of
no interest and then we arrive at the geometric optics without interference that
coincides completely with propagation of classical-mechanics particles.
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3.2.3 Light scattering by use of geometric optics

Thus, the problem of light scattering by a large particle within the framework of ge-
ometric optics consists of obvious findings of ray trajectories or ray tubes according
to the eikonal equation (3.10). Fig. 3.1 shows such kinds of the findings for a ho-
mogeneous nonspherical particle. Here, for an optically soft particle in Fig. 3.1(a),
we can neglect light reflection and the scattering directions are concentrated near
the incident direction unlike the case of the optically hard particle depicted in
Fig. 3.1(b).

                  a                                                       b                                            c 

Fig. 3.1. Light scattering by a large homogeneous nonspherical particle for: (a) an op-
tically soft particle |n − 1| � 1; (b) an optically hard particle; (c) a perfectly absorbing
particle (no reflection/refraction).

The geometric-optics field Eg(r) of Eq. (3.11) is often needed at far distances
from an object

R� a (3.12)

where a is a characteristic particle size. At this distance, a particle is seen as a
point source of light with variable radiance relative to the scattering direction
n = (r − r0)/|r − r0| as illustrated in Fig. 3.2. Here all photons leaving a particle
with the same propagating or scattering direction n are collected in one point n
situated on the scattering direction sphere. This sphere is constructed by means of
a replacement of the 3-D variable r by two variables: the distance R = |r− r0| and
scattering direction n = (r− r0)/|r− r0| that are used in the general Eqs.(3.7) and
(3.8), too. In literature, there is no name for the distance defined by the simple
inequality of Eq. (3.12) where the variables R and n are effective. In this chapter
we call it as the remote zone, for brevity.

It is worthwhile to note that, for such a summation in the remote zone, we use

the fields presented by the superposition (3.11), i.e. both the amplitude e
(l)
0 and

the phase kL(l) of a summand are taken into account. The scattered fields obtained
have the same structure as the exact Eqs. (3.7) and (3.8), i.e. we have

Eg(R,n) =
1

R
eikR+ikn0r0Jg(n,n0)E

0 (3.13)

Ig(R,n) =
1

R2
Mg(n,n0)I0 (3.14)
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Fig. 3.2. Scattering of light by a large particle to the remote zone.

Thus, the Jones and Mueller matrices appeared in the remote zone within the
framework of geometric optics are some approximations to the exact matrices J
and M. The geometric-optics Mueller matrices Mg(n,n0) are usually calculated
numerically by some ray-tracing techniques. In such calculations, the phase factors
exp(ikL(l)) of the terms can be often omitted. It means that interference has been
ignored and light scattering is considered as totally equivalent to scattering of
classical-mechanics particles. Such kinds of the Mueller matrices obtained for light
scattering by ice crystals are surveyed in (Liou, 2002; Yang and Liou, 2006).

3.2.4 What is physical optics? Diffraction and interference

Historically, physical optics appeared as an understanding that light is not an
ensemble of corpuscles but it is a wave. Two phenomena were reasons for this
understanding: interference and diffraction.

One may state that there is no common definition of what the physical op-
tics is. In all textbooks, interference and diffraction are discussed after an evident
concept of ray trajectories. Therefore it may be inferred that physical optics is
an extension of geometric optics by inclusion of both interference and diffraction.
However, such a definition has the following drawback. If we assume that geometric
optics is strictly defined by Eqs. (3.9)–(3.11), then we shall see that interference
has been already included in geometric optics. Indeed, interference means taking
into account phases of waves, but this is the eikonal that just determines a phase of
an electromagnetic wave. Moreover, in a lot of experimental schemes in textbooks,
for example, reflection and transmission of light through thin plane-parallel plates
are successfully treated by use of ray trajectories where a phase along rays explains
the interference phenomena in the plates discussed in these textbooks.

So, it is only diffraction that is not included in the geometric optics equations.
Diffraction means a violation of the geometric-optics law that light propagates only
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along ray tubes. Therefore diffraction can be generally defined as a penetration of
light energy from any ray tube to the neighbor tubes. Thus, we can state that
physical optics is an extension of geometric optics by inclusion of only diffraction.
This is the second step to the strict Maxwell equations as compared with the first
step of geometric optics. However, at present, there is no common mathematical
procedure to take diffraction into account. Therefore there is no a mathematical
definition of physical optics. Anybody who extends geometric optics by means of
diffraction can state that he uses a physical-optics approximation.

In optics, it is common to associate diffraction with transmission of light through
an aperture in a black thin screen where a size of the aperture is much larger than
the wavelength a � λ (see Fig. 3.3). In radiophysics, the term of diffraction is
treated more widely. Here the terms of diffraction and scattering are equivalent.
Indeed, from the standpoint of the Maxwell equations, if we have either a particle
of finite size or a finite aperture in an infinite screen, in both cases we should use
the same mathematical methods and the results obtained would be similar either
quantitatively or, at least, qualitatively.

Fig. 3.3. Diffraction by a large aperture at different distances.

Main qualitative features of diffraction are well seen in the classical experimental
scheme where a plane electromagnetic wave is incident on a black screen with a
large aperture a� λ (Fig. 3.3). Mathematically, this problem is described by just
Eq. (3.6) that was written above for a scattering problem. A classical approach to
a solution of this problem is the Kirchhoff approximation. In this approximation,
the surface integral of Eq. (3.6) is taken only over the aperture and the unknown
electromagnetic field inside the aperture is replaced by the incident field E0(r) or,
that is the same, by its geometrical optics value E0g(r)

Es(r) ≈
∫
S

GS(r, r
′)E0(r

′) dr′ =
∫
S

GS(r, r
′)E0g(r

′) dr′ (3.15)

It is well known that the electromagnetic wave just after the screen becomes a
plane-parallel beam propagating in the same direction as the incident wave. By the
way, let us notice that this plane-parallel beam can be created in space by other
ways, too. For example, it can be generated by a laser. Also it can be created by
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reflection/refraction of a plane wave from ice crystal facets, etc. So, in general, we
arrive at the problem of propagation of any plane-parallel beams.

As known, diffraction does not practically distorts the beam and the light prop-
agates inside its plane-parallel geometric-optics ray tube of the transversal size a
until the distance R 	 a2/λ. Therefore this distance R 	 a2/λ is called the near
zone or the geometric-optics zone.

At distanceR ≈ a2/λ, geometric optics is violated by the Fresnel diffraction that
means a smoothing of the sharp geometric-optics edges of the beams. In addition,
some transversal inhomogeneities of light amplitudes appear across the beam. This
distance R ≈ a2/λ is called the Fresnel diffraction zone.

And at far distance R� a2/λ, the Fraunhofer diffraction transforms the beam
into a diverging spherical wave corresponding to the general Eq. (3.7). This distance
is called the wave zone or the Fraunhofer diffraction zone.

3.2.5 Physical-optics approximations

Thus, for a mathematical definition of a physical-optics approximation, we have
to take into account diffraction in the geometric-optics scattered fields shown in
Fig. 3.1(a–c). Assume that a scattering particle is sufficiently large a� λ to justify
the ray structure of the scattered fields drawn in Fig. 3.1. Then a substitution of
the total geometric-optics field Eg(r) consisting of the incident E0(r) = E0g(r) and
the scattered geometric-optics field Esg(r)

Eg(r) = E0g(r) +Esg(r) (3.16)

into the general integrals of Eqs. (3.5) and (3.6) that are taken either over the
particle volume

Es(r) ≈
∫
G(r, r′)V (r′)Eg(r

′) dr′ (3.17a)

or over a surface surrounding this particle in the near zone

Es(r) ≈
∫
S

GS(r, r
′)Eg(r

′) dr′ (3.17b)

results in a desired approximation for the scattered field.
Consider the properties of this scattered field. For the first, this approximation

should lead to the same geometric-optics scattered fields if an observing point is
situated in the near zone. This fact is provided by the asymptotic transformation
of the Maxwell equations into the geometric optics equations within the near zone.

Then, moving an observation point r away from the particle, an observer should
pass the distances where the geometric-optics spherical wave of Eqs. (3.13) and
(3.14) is already formed according to Fig. 3.2, but the Fresnel diffraction is not
essential yet. In this region, light propagates along the conical ray tubes shown in
Fig. 3.4. For example, if a particle is a large ice crystal of a fixed orientation, its
geometric-optics Mueller matrix is a superposition of the Dirac δ-functions δ(n−nj)
on the scattering direction sphere (Borovoi et al., 2005). Here the points nj indicate
the propagating directions of plane-parallel beams leaving the crystal. Localization
of these points nj on the scattering direction sphere does not depend of the dis-
tance R.
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Coming to the Fresnel diffraction zone R ≈ a2/λ, propagation of light along
conical tubes is violated as shown in Fig. 3.4 that is similar to Fig. 3.3. In the Fres-
nel diffraction zone, light energy is exchanged between the neighbor ray tubes like
the transverse diffusion. In radiophysics, such a treatment of the Fresnel diffrac-
tion is well known, see, e.g., Nussenzveig (1992). And, finally, this redistribution of
light energy among the conical ray tubes is completed in the wave zone R� a2/λ.
Here light propagates again along the conical ray tubes as shown in Fig. 3.4 that is
described by the exact Mueller matrix of Eq. (3.8). Now it is obvious that the
exact Mueller matrix is a result of smoothing geometric-optics Mueller matrix
of Eq. (3.14) because of the Fraunhofer diffraction. In particular, for the afore-
mentioned case of an ice crystal of a fixed orientation, the Dirac δ-functions are
smoothed into the Fraunhofer diffraction patterns of the outgoing plane-parallel
beams of given transversal shape.

Fig. 3.4. Different zones at light scattering by a large particle.

Thus, the substitution of the geometric optics field found in the near zone of the
particle into general equations (3.5) and (3.6) has taken into account diffraction in
both the Fresnel and wave zones of the particle. We have obtained the following
conclusion:

Conclusion 1. Equations (3.17) are the desired mathematical definition of the
simplest physical-optics approximation. Such an approximation is the direct exten-
sion of the classical Kirchhoff approximation (Eq. (3.15)) from a large aperture to
any large 3-D scatterers.



124 Anatoli G. Borovoi

Factually, this approximation was used by majority of authors considering light
scattering by large particles. For example, this approximation was used in both
GOM-2 (Yang and Liou, 1995) and GPOH (Bi et al., 2011) methods. Also the
author (Borovoi and Grishin, 2003) called this approximation GALP (general ap-
proximation for large particles), etc. Now we propose to refuse the complicated
terminologies and assume that this is only the simplest approximation of physical
optics directly generalizing the classical Kirchhoff approximation.

Of course, other more complicated approximations of physical optics can be
defined, too. Let us indicate two such possibilities. For the first, assume that a
large particles of typical sizes L� λ includes more small either volume or surface
inhomogeneities of sizes a � λ. Here, if a2/λ ≤ L, either the Fresnel or Fraun-
hofer diffraction from these inhomogeneities appears inside the particle. Fig. 3.5
illustrates existence of the Fresnel diffraction inside a long cylinder. Here a thin
front layer of the cylinder marked by a thin curve forms the Fresnel diffracted field
both inside and outside of the similar rear layer. In such cases, our approximation of
Eqs. (3.17a) and (3.17b) should be replaced by other, more complicated, equations.

Fig. 3.5. Fresnel diffraction inside a particle.

For the second, from the standpoints of the Maxwell equations, any geometric-
optics field considered on a surface of a large particle is only the first term of certain
asymptotic series. It is reasonable to add the next term of this series as against
Eq. (3.16)

E′
g(r) = E0g(r) +Esg(r) +Eedge(r) (3.18)

Substitution of this field into Eq. (3.17b) leads to another physical-optics approxi-
mation. In such an approach, the case of a homogeneous sphere was mainly stud-
ied because of its relative simplicity. In particular, the spherical Earth surface was
considered in radiophysics to estimate the radiowave beyond-the-horizon commu-
nications (Fock, 1965). Analogously, in quantum mechanics there is a problem to
estimate the small diffraction term at large scattering angles for high-energy in-
cident particles (Landau and Lifshitz, 1991). In both cases, the scattered field is
considered in the region where a contribution from the geometric-optics field Esg is
small and the term Eedge becomes essential. In optics, this term was recently used
to study a transition from geometric optics to the exact Mie solution for spherical
particles (Liou et al., 2010). The term Eedge(r) was associated with the edge effect,
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tunneling effect, surface waves, etc (Nussenzveig, 1992). It is worthwhile to note,
that the similar terms were also studied in radiophysics for estimation of radar sig-
nals reflected from scattering objects of more complicated shapes (Ufimtsev, 2007).
Recently (Bi et al., 2010; Bi and Yang, 2013), light scattering by the long cylinder
depicted in Fig. 3.5 was calculated by use of the discrete dipole approximation
(DDA). Here a deviation of the scattered field calculated by DDA from the field
corresponding to the physical-optics approximation of Eq. (3.17) was also associ-
ated with the edge effect. Since terminology in this field of optics is not generally
accepted, we would prefer to interpret this deviation more directly as an influence
of the Fresnel diffraction inside a large particle on the scattered field.

3.3 The shadow-forming field

3.3.1 Does the shadow-forming field exist in reality?

The main feature of the problem of light scattering by large a � λ particles is
appearance of the so-called shadow-forming field. The shadow-forming field is a
necessary component of any field scattered by a large particle. To make sure of that
it is enough to look at Fig. 3.1 representing the total field E(r) in the near zone.
In all Fig. 3.1(a) to 3.1(c) we watch the obvious shadow on the background of the
incident plane-parallel rays. This shadow pattern is pure for a perfectly absorbing
particle in Fig. 3.1(c), otherwise it is superposed with refracted/reflected rays in
Figs. 3.1(a) and 3.1(b). Mathematically, the shadow-forming field appears when
we use the general superposition of the total field into the incident and scattered
components

E(r) = E0(r) +Es(r) (3.19)

The scattered field will be further considered in the physical-optics approximation
of Eq. (3.17). Consequently, the total geometric-optics fields depicted in Fig. 3.1
describe the reality. In particularly, in the simplest case of perfectly absorbing
particles shown in Fig. 3.1(c) it is obvious that the total field E(r) is equal to zero
inside the shadow and it is equal to the incident wave outside the shadow. In this
case the scattered field of Eq. (3.19) is reduced to the field

Esh(r) =

{−E0(r) inside the particle shadow in the near zone

0 outside the particle shadow in the near zone
(3.20)

that is called the shadow-forming field since its superposition with the incident
field transforms the total field into zero.

As seen in Figs. 3.1(a) and 3.1(b), the shadow-forming field appears for arbitrary
particles as well, but here the scattered field becomes a superposition of the shadow-
forming field and the refracted field Er(r) created by a set of the refracted/reflected
rays in the near zone

Es(r) = Esh(r) +Er(r) (3.21)

According to Fig. 3.3, the shadow-forming field propagates in the near zone as a
plane-parallel beam with a transverse shape corresponding to a shadow or projec-
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tion of a particle. So, its energy flux is equal to

Φsh = s (3.22)

where s is area of the shadow. At large distances from the particle where the Fresnel
diffraction does not appear a 	 R 	 a2/λ, i.e in the so-called remote zone, this
plane-parallel beam can be represented, if needed, in the variables of the distance
R = |r−r0| and of the scattering direction n = (r−r0)/|r−r0|. In these variables,
the intensity of the plane-parallel beam is equal to

I(R,n) =
s

R2
δ(n− n0) (3.23)

where δ is the Dirac delta-function. Then, according to Figs. 3.3 and 3.4, Eq. (3.23)
is violated at the distances R ≈ a2/λ since the Fresnel diffraction forces to move
light energy from the central ray tube to the neighbor tubes. At last, in the wave
zone R� a2/λ, this redistribution of light energy among conical ray tubes is com-
pleted and the final angular distribution of intensity is described by the Fraunhofer
diffraction pattern for a given shadow size and shape.

One may ask a question: does the shadow-forming field exist in reality? In the
other words, does the shadow-forming field exist for small particles, say a ≈ λ? The
full-length answer is as following. For the first, Eq. (3.20) gives a strict mathematical
definition of the shadow-forming field. Though Eq. (3.20) defines the field in the
near zone, it is determined at any distance by means of the surface Green function
in Eq. (3.6). For the second, any field can be decomposed in a superposition of any
components that we like. For example, if we define any component E1 in an exact
scattered field Es(r) = E1(r) + E2(r), the rest component E2 will compensate an
approximation used for the first component.

Thus, the shadow-forming component defined by Eq. (3.20) can be used in any
superposition of fields including the case of small particles, too. However, such a
procedure is not expedient for small particles because it would result in an un-
justified complexity both physically and mathematically. As for the large particles
a � λ, the shadow-forming component is a realistic component of the scattered
fields and it is a powerful instrument to study the scattering problem as it will be
shown below.

3.3.2 Conservation of the partial energy fluxes

In the theory of light scattering, there is a simple and useful law of conservation
for partial energy fluxes of scattered waves that is not widely explored in the
literature. To emphasize its importance, we describe this law in a separate section.
Let us surround a scattering particle by an arbitrary closed surface. The total field
E(r) can be represented as a finite sum of arbitrary components

E(r) =
∑

Ej(r) (3.24)

Denote an energy flux of one of these components through this surface as Φj . It
is well known that if a field Ej(r) is generated by some source, the flux of this
field through any surrounding closed surface is conserved for any distance from the
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source and for any surface. Therefore the flux Φj is a constant through the near
zone, Fresnel diffraction zone and wave zone.

For a superposition of two waves E1 +E2 the flux consists of three terms

Φ = Φ1 +Φ2 +Φ12 (3.25)

where Φ1 and Φ2 are fluxes of the components and the flux Φ12 is formed by inter-
ference of these fields. Since three fluxes Φ, Φ1 and Φ2 are constants independently
of the shape of the surrounding surface, the interference flux Φ12 should be also a
constant though the interference pattern between two fields is often a rapidly oscil-
lating function on a surface. These results are directly generalized for any number
of components in Eq. (3.24)

Φ =
∑
j

Φj +
∑
j 	=l

Φjl (3.26)

where all terms are constants independently of a distance and shape of a surround-
ing surface.

3.3.3 Scattering and extinction cross-sections

Now let us come back to the general superposition of the total field E(r) = E0(r)+
Es(r) where E0(r) and Es(r) are the incident and exact scattered fields, respec-
tively. Intensity of the incident field is common to assume as unity (|E0(r)|2 = 1).
By definition, the scattering cross-section σs is the energy flux of the scattered field
Es(r) over any surface surrounding a particle

σs = Φs (3.27)

The scattered wave is produced by the incident wave, therefore its energy appears
because of extraction of the same energy from the incident wave. A part of the
energy can be also absorbed inside a particle if absorption takes place. This ab-
sorption is characterized by the absorption cross-section σa. The absorption is a
sink of energy inside a particle. Therefore the value σa is determined mathemati-
cally as the flux of the total field E(r) over a surrounding surface with the negative
sign

σa = −Φ (3.28)

Total extraction of energy from the incident wave is characterized by the sum

σe = σa + σs (3.29)

that is called the extinction cross-section σe.
There is a fact that is important for future discussion. Namely, extinction can

be also treated as a result of interference between the incident and scattered waves.
Indeed, let us substitute Eq. (3.25) in Eq. (3.28)

σa = −Φ = −(Φ0 +Φs +Φ0s) (3.30)

Here the flux of the incident field is equal to zero Φ0 = 0 because a source of the
incident wave is situated outside of the surface surrounding a particle. The flux
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of the scattered wave is the scattering cross-section Φs = σs by definition. As a
result, we get an alternative definition of the extinction cross-section. This value
σe proves to be just the interference flux Φ0s

σe = −Φ0s (3.31)

Two interesting conclusions appear from Eq. (3.31):

Conclusion 2. The total extraction of energy from the incident wave is equal to
the interference flux Φ0s between the incident and scattered waves.

Conclusion 3. If we know the scattered wave Es(r) on any surface surrounding a
particle, this wave Es(r) already contains information about absorption inside the
particle.

Conclusion 2 is a direct consequence of the energy conservation law presented
factually by Eq. (3.30). Indeed, if there is no absorption σa = −Φ = 0 we get

σs = Φs = −Φ0s (3.32)

i.e. a carry-over of energy by the scattered wave is compensated by its extraction
from the incident wave because of the interference. Then Conclusion 3 includes
absorption as σa +Φs = −Φ0s.

According to the previous section, the interference flux Φ0s is conserved for
any surrounding surface. As an example, let us calculate analytically the flux Φ0s

if a surrounding surface is a sphere situated in the wave zone R � a2/λ. Here
the scattered wave becomes a diverging transverse electromagnetic wave due to
Eq. (3.7)

Es(R,n) =
1

R
eikR+ikn0r0J(n,n0)E

0 =
1

R
eikR+ikn0r0E(s)(n,n0) (3.33)

To calculate the flux Φ0s, we arrive at a well-known problem of interference between
plane and spherical waves. Intensity of the total field on the plane z = const
perpendicular to the incident direction n0 is equal to

I(z,ρ) = |E0 eikz +E(s)(n(ρ),n0) e
ikR(ρ)/R(ρ)|2 (3.34)

where ρ = (x, y) are 2-D coordinates on the plane. Here the quadratic values
determine the fluxes of the incident and scattered waves, respectively, and the
cross terms determine the interference flux Φ0s over this plane as the following
integral

Φ0s = 2Re

∫ [
E∗0E(s)(n,n0) e

ik[R(ρ)−z]
]
R−1(ρ) dρ (3.35)

The exponential in the integrand describes the well-known oscillating and alternat-
ing in sign Fresnel rings (Born and Wolf, 1959). An integral of them is reduced to
contribution mainly from the central Fresnel ring that is formally provided by the
following integral.∫

eikR(ρ)R−1(ρ) dρ =

∫ 2π

0

dϕ

∫ ∞

z

dR eikR = iλ eikz (3.36)
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Within the central Fresnel ring, the scattering amplitude varies negligibly and it
can be replaced by its value E(s)(n0,n0) at the forward scattering direction. Then
application of Eq. (3.36) to Eq. (3.35) results in the famous optical theorem

σe = −Φ0s = 2λ Im[E0E(s)∗(n0 ,n0)] (3.37)

We would comment the optical theorem by the next conclusion:

Conclusion 4. In the wave zone R� a2/λ, extraction of energy from the incident
wave takes place only in the vicinity of the forward scattering direction. There-
fore the extinction cross-section is strictly expressed through the amplitude of the
scattered wave taken in the forward scattering direction.

3.3.4 Cross-sections for large optically hard particles

All equations of the previous section are quite general; they are applicable for both
small and large particles. In this section, we are going to show that the cross-
sections σs, σa, and σe for large particles are found without tedious calculations if
we consider the partial energy fluxes not in the wave zone but in the near zone.

Let us begin from the simplest case of a perfectly absorbing particle depicted in
Fig. 3.1(c). Here the scattered field is reduced to the shadow-forming field Es(r) =
Esh(r). The total field E(r) in the near zone behind the particle is as following

E(z,ρ) = E0 eikz(1− η(ρ)) (3.38)

where z and ρ are longitudinal and transverse coordinates, respectively, and the
function η(ρ) outlines the shadow by means of the equation

η(ρ) =

{
1 inside the particle shadow
0 outside the particle shadow

(3.39)

The energy flux of the total field over a plane z = constbehind the particles is
equal to

Φ =

∫
|E(z,ρ)|2 dρ =

∫ (
1− 2η(ρ) + η2(ρ)

)
dρ (3.40)

Here the first addend is the flux of the incident wave through the plane z = const
behind a particle. If we supplement the given plane z = const with another plane
z′ = const situated before the particle, the flux of the incident wave through the
both planes surrounding the particle becomes zero Φ0 = 0 as it is true for any
surrounding surface. The shadow-forming field by definition is equal to zero on any
plane z′ = const situated before the particle. Therefore the third term of Eq. (3.40)
gives the scattering cross-section without any calculations

σs = Φs = Φsh = s (3.41)

where s is the shadow area. We note that the simple result of Eq. (3.41) is often
obtained in the literature by a tedious integration of the Fraunhofer diffraction
patterns of the wave zone for some given particle shapes.
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The second term in Eq. (3.40) corresponds to interference between the fields.
Therefore, due to Eq. (3.31), it gives the extinction cross-section

σe = −Φ0s = −Φ0sh = 2s (3.42)

Finally, Eq. (3.29) determines the absorption cross-section

σa = σe − σs = s (3.43)

Eqs. (3.41)–(3.43) obtained within the framework of the physical-optics approxi-
mation have obvious physical interpretation. Namely, Eq. (3.43) proves the evident
fact that all photons incident on a perfectly absorbing particle should be absorbed.
Their energy flux is equal to the particle projection σa = s as seen in Fig. 3.1(c).
Then, Eq. (3.41) gives the energy flux of the shadow-forming field and its value of
s is also evident from the definition of the shadow-forming field by Eqs. (3.20) and
(3.38).

It is interesting to comment Eq. (3.42) for the interference flux giving the double
projection area 2s. From the standpoint of the definition of the extinction cross-
section by the equation σe = σa + σs, the result of σe = 2s is trivial. But anyone
may ask a question: why does the same scattered field Es(r) produce two fluxes: s
and 2s? The answer is worth mentioning. Indeed, the factor of (−1) in Eq. (3.20)
defining the shadow-forming field can be interpreted also as a phase shift of π rela-
tive to the incident one. While this shift is not important for the flux Φs, it is quite
important for the interference flux Φ0s. In Conclusion 3 of the previous section,
we stated that any scattered field always contains information about absorption
inside a particle. In this case, it is just the phase shift of π in the scattered field
that managed to take into account absorption inside the particle.

Let us come back to other cases depicted in Fig. 3.1. Here the scattered field
consists already of two components that are the shadow-forming and refracted fields
according to Eq. (3.21). Therefore the new energy fluxes Φr, Φ0r, and Φsh,r appear
for the scattering and extinction cross-sections

σs = Φs = Φsh +Φr +Φsh,r (3.44)

σe = −Φ0s = −(Φ0sh +Φ0r) (3.45)

The fluxes Φsh = s and Φ0sh = −2s are already found due to Eqs. (3.41) and
(3.42). Consider the interference flux Φ0r produced by the incident and refracted
fields. As seen from the structure of the refracted field in the near zone shown in
Figs. 3.1(a) and 3.1(b), the phases of the field Er(r) are rapidly varying values on
any plane z = const where the phase of the incident field is constant. Therefore
the interference pattern is a rapidly oscillating with alternative signs and rather
chaotic value along the plane z = const . Usually an integral of such a pattern, i.e.
the flux Φ0r, is close to zero

Φ0r ≈ 0 (3.46)

The flux Φsh,r is an integral of the same interference pattern but it is taken only
over shadow region on the plane z = const behind a particle. Here the scale of the
chaotic interference pattern is also much smaller than the particle size a. Therefore
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we get the same
Φsh,r ≈ 0 (3.47)

Substitution of Eq. (3.46) in Eq. (3.45) gives an important result

σe = σs + σa = 2s (3.48)

i.e. the extinction cross-section for large optically hard particles is equal to the
double area 2s independently of the presence of absorption. This energy flux σe = 2s
is extracted from the incident wave by means of interference between the shadow-
forming and incident fields that also takes place for the case of perfectly absorbing
particles.

The equation for the scattering cross-section σs obtained from Eq. (3.48)

σs = 2s− σa (3.49)

has the following interpretation. A half of the flux 2s extracted from the incident
wave is carried over by the flux of the shadow-forming field Φsh = σsh = s as
before. Another half is carried over by the refracted field whose flux is equal to
Φr = s if there is no absorption. Indeed, it is easily seen in Figs. 3.1(a) and 3.1(b)
that the energy fluxes of the incident field over particle projection are completely
transformed into the flux of the refracted field. Therefore, absorption along the
geometric-optics rays inside a particle subtracts the value of σa from the refracted
field, resulting in the equation Φr = σr = s−σa. In the case of absolute absorption
depicted in Fig. 3.1(c), the cross-section of the refracted field becomes zero.

Summarizing the results obtained in this section, we can formulate the following
conclusion.

Conclusion 5. Extraction of energy from the incident wave in the case of optically
hard particles is made by only the shadow-forming field resulting in the extinction
cross-section σe = 2s. Though the refracted field carries over the energy flux of
Φr = s− σa, this field does not take part in the energy extraction because of small-
ness of the interference flux Φ0r.

It is worth noting that Eq. (3.48) in the literature is called the extinction para-
dox (van de Hulst, 1981) because the cross-section is doubled in comparison with
the shadow area. This paradox is commonly explained by penetration of light from
an illuminated region to shadow. In addition, proving that the cross-section of this
process is equal to s, Babinet’s principle should be involved. Both steps of the
explanation look rather artificial. Our concept of the shadow-forming field looks
more consistent for such explanations. Indeed, our shadow-forming field does not
appear from Babinet’s principle but it is a direct consequence of the quite general
principle of field superpositions. Its energy flux is equal to s that is obvious in the
near zone. Then, in the process of propagation from the near zone to the Fres-
nel diffraction zone, the shadow-forming field is spread in the transverse direction
like any plane-parallel beam. A single peculiarity is that this beam differs from
the incident field by the factor of (−1) that is equivalent to the phase shift of π.
Therefore a well-known transversal spreading of the beam because of either Fresnel
or Fraunhofer diffraction multiplied by the negative sign can be more artificially
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treated as penetration of light from an illuminated area to shadow as was used in
the common explanation of the extinction paradox.

It is important to note that the results of this section are obtained under condi-
tions of Eqs. (3.46) and (3.47). The opposite case is discussed in the next sections.

3.3.5 Cross-sections for large optically soft particles

In the case of optically soft particles, i.e. |n−1| 	 1, one can ignore any curving of
rays inside a particle as depicted in Fig. 3.6(a). Here light propagation in the near
zone z 	 a2/λ is reduced to accumulation of phase shifts along any straight ray ρ =
const , where z and ρ are the longitudinal and transverse coordinates, respectively.
The total field behind the particle is described by the intuitively evident equation

E(z,ρ) = E0 exp

{
ik

∫ z

0

m(z′,ρ) dz′
}

= E0(z,ρ)u(ρ) (3.50)

where m(r) is the complex-valued refractive index; E0(z,ρ) = E0 exp(ikz) is the
incident wave; z′ = 0 and z′ = z are planes situated before and behind a particle,
respectively; and u(ρ) is the complex-valued scalar amplitude of the total field

u(ρ) = exp

{
ik

∫ z

0

[m(z′,ρ)− 1] dz′
}

≡ eiφ(ρ) (3.51)

Now we can use the scalar field u(ρ) instead of the vector field E(z,ρ) since they
differ by the factor of E0 exp(ikz). The phase φ(ρ) accumulates additional phase
shifts caused by the particle. If there is absorption, the phase is complex-valued

φ(ρ) = ϕ(ρ) + iχ(ρ) (3.52)

The total field of Eq. (3.51) is equal to the incident field u0(ρ) = 1 outside the
particle shadow and it differs from unity inside the shadow.

                  a                                                              b
Fig. 3.6. Light scattering by large optically soft particles in the near zone.

It is worth noting that, strictly speaking, Eq. (3.50) does not correspond to
geometric optics. Here we summarize the phase shifts along the ray trajectories
similarly to the eikonal equation (3.10) but the curved geometric-optics trajectories
are replaced by straight rays. Thus, the geometric-optics orthogonality between
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trajectories and wave fronts is violated. To justify such an approximation, we recall
that it is a common approach in physics. In particular, in quantum mechanics it
is called the straight path approximation. In radiophysics, it is called the phase
screen approximation. In optics, van de Hulst proposed the term of the anomalous
diffraction approximation. The last term is worst since it is associated already with
scattered fields in the wave zone while an essence of this approximation is just an
assumption of the straight rays inside a particle. In our papers (Borovoi, 2006) we
prefer to use the term of the straight-ray approximation.

Now the physical-optics approximation is reduced to substitution of the field
defined by Eq. (3.50) in Eqs. (3.17). The superpositions of the fields widely used
in the previous sections are applicable to the scalar field u(ρ) as well. Thus, by
definition, the scattered wave is found by subtraction of the incident wave u0(ρ) = 1
from Eq. (3.51)

us(ρ) =
[
eiφ(ρ) − 1

]
η(ρ) (3.53)

Though the term in the square brackets is already equal to zero outside the shadow,
the factor η(ρ) defined by Eq. (3.39) is included for convenience. Now Eq. (3.53)
can be treated as the superposition of the scattered wave consisting of the refracted
and shadow-forming fields. These fields occur to be equal to

ush(ρ) = −η(ρ) (3.54)

ur(ρ) = eiφ(ρ)η(ρ) (3.55)

It is clear that the shadow-forming fields for either optically soft particles obtained
by Eq. (3.54) or optically hard particles defined by Eq. (3.20) are just the same
fields. Therefore all results obtained in the previous section concerning the shadow-
forming field and its interference flux Φ0sh remain the same

Φ0sh = −2s ; Φsh = s (3.56)

It means that the shadow-forming field carries over an energy flux of s; and its
interference with the incident wave extracts the double flux 2s. Moreover, if the
real part of the phase φ(ρ) in the refracted wave of Eq. (3.55) is a function quickly
changing across the shadow, the interference flux between the refracted and incident
waves Φ0ris small like Eq. (3.46). In this case, the cross-sections for both optically
hard and optically soft particles are the same.

The difference between these two kinds of particle appears only if the real phase
ϕ(ρ) in Eq. (3.55) changes slowly across the shadow. By the way, note that since
the fields of Eqs. (3.54) and (3.55) are restricted by shadow region, the fluxes Φ0r

and Φsh,r differ by only the sign

Φ0r = −Φsh,r (3.57)

The limit case where the phase ϕ(ρ) is real and it does not vary across the shadow
is of most importance. It corresponds to a perpendicular plate without absorption
giving the constant phase shift ϕ(ρ) = ϕ0 as shown in Fig. 3.6(b). The scattering
cross-section of this plate is found from Eq. (3.53) as following

σs = Φs = Φr +Φsh,r +Φsh = |eiϕ0 − 1|2s = (1− 2 cosϕ0 + 1)s (3.58)
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In spite of triviality of Eq. (3.58) describing a simplest interference phenomenon,
this equation leads to important physical conclusions. In the last expression of
Eq. (3.58), the first and third terms are energy fluxes of the refracted Φr and
shadow-forming Φsh fields, respectively, resulting in the flux of 2s. The second
term is the interference flux between the refracted and shadow-forming fields. This
interference term causes oscillations of the scattering cross-section between zero
and 4s, i.e.

0 ≤ σs ≤ 4s (3.59)

The boundary values of the scattering cross-section σs together with the phase
shifts and values of all fields inside the shadow are presented below

ϕ0 = N2π σs = 0 us = 0 ur = 1 ush = −1 u = 1 (3.60)

ϕ0 = (2N + 1)π σs = 4s us = −2 ur = −1 ush = −1 u = −1 (3.61)

The case ϕ0 = N2π, where N = 0, 1, 2, . . ., corresponds to an invisible plate. The
invisibility is provided by the fact that the refracted field occurs to be in antiphase
with the shadow-forming field. As a result, their sum gives the zeroth scattered
field. Consequently, the total field behind the particle coincides with the incident
field.

In the case ϕ0 = (2N + 1)π, on the contrary, the refracted field is in phase
with the shadow-forming field. The amplitude of the scattered field is doubled and,
consequently, the scattering cross-section is quadrupled. It is interesting to note
that the total field behind the particle occurs to be in antiphase with the incident
field.

If absorption takes place, the absorption and extinction cross-sections are equal
to

σa = s− Φs = (1− |us|2)s =
[
1− |eiϕ0−χ0 − 1|2] s

= (1 + e−2χ0 − 2 e−χ0 cosϕ0)s (3.62)

σe = −Φ0s = Φsh,s = −2sReus = −2sRe(eiϕ0−χ0 − 1)

= (1− e−χ0 cosϕ0)2s (3.63)

Owing to Eq. (3.63), we see that absorption only decreases the amplitude of oscil-
lations for the extinction cross-section between the values of 0 and 4s inherent to
the transparent particles. Similarly to Eq. (3.59), we get the general inequality

0 ≤ σe ≤ 4s (3.64)

Though Eqs. (3.58)–(3.64) are obtained for a plate, the results are easy general-
ized for a particle of any shape shown in Fig. 3.6(a). Indeed, such a particle can
be mentally divided into a lot of narrow tubes with cross areas of dρ and phase
shifts of φ(ρ). Therefore all cross-sections of a particle of arbitrary shape are found
as integrals of the corresponding functions of Eqs. (3.58), (3.62), and (3.63), for
example

σe = −2Re

∫
us(ρ) dρ = −2Re

∫
(eiφ(ρ) − 1) dρ (3.65)
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Consequently, the inequality (3.64) remains valid for particles of arbitrary shapes,
too.

We arrive at the following conclusion.

Conclusion 6. This is the interference between the shadow-forming and refracted
fields that forces the extinction cross-section to oscillate between zero and quadru-
pled shadow area. The quadrupled extinction cross-section 4s appears if the total
field behind a particle is in antiphase with the incident field and has the same
amplitude.

3.3.6 Can the extinction efficiency exceed number 4?

Though Conclusion 6 is obtained by use of the case of optically soft particles, the
principle formulated seems to be quite general. Indeed, let us consider a coherent
electromagnetic wave emitted by an arbitrary source. One may ask a question: what
should the disturbance of the incident wave in the near zone of a large scatterer
(with arbitrary refractive index and the projection area s) be to get the maxi-
mum extinction cross-section? The answer is as follows. We need to provide the
total field to be in antiphase with the incident wave and to have just the same
amplitude over all projection area. In this case, the interference flux between the
incident and scattered waves is maximal. If these two conditions are not satisfied,
the interference flux having the physical meaning of the extinction cross-section
should be decreased.

As an illustration, consider light scattering by a large optically hard plate de-
picted in Fig. 3.7. Here the refracted field behind the particle can be also in phase
with the shadow-forming field as in Fig. 3.6(b). But the amplitude of the refracted
field is decreased because of reflection. Moreover, the coherence between the re-
fracted and shadow-forming fields takes place over a certain area that is less than
s. Consequently, the extinction efficiency of this plate should be less than 4.

Fig. 3.7. Light scattering by a large optically hard plate.

This example of the optically hard plate shows that the geometric-optics field
created around any large particle with arbitrary refractive index is not capable
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of providing the full coherence between the refracted and shadow-forming fields.
Consequently, the extinction efficiency should be less than 4.

As has been demonstrated in this chapter, the refracted and shadow-forming
fields are often not coherent, i.e. the interference flux Φr,sh is negligible. In this
case, this is only the shadow-forming field that provides the extinction efficiency
σe/s = 2 corresponding to the extinction paradox. If the extinction efficiency devi-
ates noticeably from the number 2, this case was called the anomalous diffraction
(van de Hulst, 1981). We see that the case of the anomalous diffraction is charac-
terized by noticeable interference between the refracted and shadow-forming fields
resulting in oscillations of the extinction efficiency about the number 2 between
zero and number 4.

The same results are also evident in the wave zone of a particle where the
optical theorem of Eq. (3.37) takes place. Indeed, if the shadow-forming and re-
fracted components are partly coherent in the near zone, in the wave zone they are
comparable in the forward scattering direction as it follows from the Fraunhofer
diffraction equations. The scattered field in the forward scattering direction and,
consequently, the extinction cross-section happen to be sensitive to any change of
the refractive field. It causes the oscillations of the extinction cross-section corre-
sponding to the anomalous diffraction. Otherwise, if the phase of the refracted field
is a quickly oscillating function in the near zone, as compared to the shadow-forming
counterpart, in the wave zone the refracted field spreads over large solid angles.
As a result, the contribution of the refracted field to the total scattered field in
the forward scattering direction is negligible. Here the shadow-forming component
becomes predominant that extracts from the incident field the standard energy flux
2s. It is worth mentioning that these results for a sphere can be obtained from the
Mie series as well (Lock and Yang, 1991).

Let us recall that we dealt with the physical-optics approximation defined by
Eq. (3.17) where it is assumed that the scattered field in the near zone of a large
particle is the geometric-optics field. It is worth noting that, recently, calculations
of the extinction efficiency for a large long cylinder depicted in Fig. 3.5 were per-
formed by use of the discrete-dipole approximation (Bi et al., 2010; Bi and Yang,
2013). Here the extinction efficiency reaches the maximum value of about 5.5. The
authors associate this result with the edge effect (Nussenzveig, 1992). Following the
terminology used in this chapter (see Section 3.2.5), we would better refer these
results to the effect of the Fresnel diffraction inside a particle.

3.4 Conclusions

In this chapter we have considered the cross-sections for particles of arbitrary shapes
and internal structure in the limit of short wavelengths λ→ 0. Two concepts have
come to be useful in this study: the shadow-forming field and the partial energy
fluxes. We show that these concepts applied not to the common wave zone of the
particles but to the near zone allow us to get several general results without tedious
calculations. The conclusions reached in the text are repeated below.
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1. Equations (3.17) are the desired mathematical definition of the simplest physical-
optics approximation. Such an approximation is the direct extension of the clas-
sical Kirchhoff approximation (Eq. (3.15)) from a large aperture to any large
3-D scatterers.

2. The total extraction of energy from the incident wave is equal to the interference
flux Φ0sbetween the incident and scattered waves.

3. If we know the scattered wave Es(r) on any surface surrounding a particle, this
wave Es(r) already contains information about absorption inside the particle.

4. In the wave zone R� a2/λ, extraction of energy from the incident wave takes
place only in the vicinity of the forward scattering direction. Therefore the
extinction cross-section is strictly expressed through the amplitude of the scat-
tered wave taken in the forward scattering direction.

5. Extraction of energy from the incident wave in the case of optically hard parti-
cles is made by only the shadow-forming field resulting in the extinction cross-
section σe = 2s. Though the refracted field carries over the energy flux of
Φr = s − σa, this field does not take part in the energy extraction because of
smallness of the interference flux Φ0r.

6. This is the interference between the shadow-forming and refracted fields that
forces the extinction cross-section to oscillate between zero and quadrupled
shadow area. The quadrupled extinction cross-section 4s appears if the total
field behind a particle is in antiphase with the incident field and has the same
amplitude.
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4 A pseudo-spectral time domain method for light
scattering computation

R. Lee Panetta, Chao Liu, and Ping Yang

4.1 Introduction

Atmospheric particles, for example ice crystals, dust, soot, or various chemical crys-
tals, play a significant role in the atmosphere by scattering and absorbing radiation,
principally in two bands: incident solar, with peak at about 0.5μm, and terres-
trial thermal emission, with peak at about 10μm. Knowledge of aerosol scattering
properties is a fundamental but challenging aspect of radiative transfer studies and
remote sensing applications. In this chapter we consider only scattering by single
homogeneous particles, but in the atmosphere particles occur both individually
and as constituents of such aerosols as homogeneous or heterogeneous aggregates
with other particles and sometimes coated with liquids. The pseudo-spectral time
domain method (PSTD) for calculating scattering properties that we discuss, like
a number of other methods currently in use, can be used to investigate scattering
properties of a wide variety of aerosols, homogeneous or heterogeneous, singly or
in aggregate.

Even with a narrow focus on single scattering by homogeneous particles, there
are significant obstacles remaining to a comprehensive understanding of scattering
properties, given the complexity introduced by considerations of particle shape,
size, and refractive index. Much of what we know of this complexity comes from
numerical work, and the estimation of errors can become quite challenging in the
absence of either a known exact solution or observations. The ‘gold standard’ in
single scattering is provided by the Lorenz–Mie theory (Mie, 1908). It provides
an exact solution of the scattering problem for a single spherically homogeneous
particle of arbitrary size, thereby giving a way of assessing in one special case the
faithfulness of numerical methods developed to treat particles of different shapes
and compositions, as well as methods designed to work in special particle size
regimes.

There is of course no guarantee that a method working well in homogenous and
spherically symmetric cases will necessarily work well in general cases, but if the
method has no built-in preference for spherically symmetric problems (as might
be the case, for example, with a spectral method based on spherical harmonics),
and the tests applied also have no such prejudice, we have done the best we can to
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justify proceeding to use the method in more general cases. Similar remarks may be
made concerning such comparisons as we make below between different methods.

We emphasize that precisely because the number of exact solutions is very
limited, there is considerable value in having more than one numerical method
that performs well. Our purpose here is to argue that the PSTD is a method
that performs well over wide and atmospherically relevant ranges of particle sizes
and indices of refraction, but not to argue that it is the only method that should
be used. Confidence in any given numerical result is gained when more than one
method produces the same result. Inevitably it will emerge that one method has
advantages in one regime and another method has advantages in another: for the
PSTD, the regime in which it appears to show competitive advantage is when
indices of refraction exceed approximately 1.2, especially as the particle size gets
large.

In scattering calculations, what is crucially important is the relation between
the size of the particle and the wavelength of the incident light. For a spherical
particle of radius a and incident wavelength λ, or incident wavenumber k = 2π/λ,
the size parameter x is defined by

x = k a =
2π a

λ
;

the second form is the ratio of the circumference to the wavelength. In the regime
of very large particles, x � 1, ray theories and geometric optics are useful and
computationally relatively inexpensive, while in the regime of Rayleigh scattering,
x 	 1, computations are also relatively inexpensive. In the intermediate case,
recourse must be made to numerical solution of some form of Maxwell’s equations.
In this case, cpu demands typically grow rapidly as x increases, especially for
indices of refraction m that become significantly larger than 1. Given the current
computational resources available to most researchers, the effective bound for all
but truly heroic efforts begins to be felt for particles with x ∼ 100. Computations
can get challenging with smaller x if the index of refraction increases much beyond
1, as we will show in Section 4.6. Our interest is in pushing this technology-imposed
boundary and we will present results indicating that the PSTD method shows
promise of helping us to do so.

Numerical simulation of single-particle scattering has a history of over a cen-
tury of work, and a proper survey is well beyond our scope here. We will only
briefly mention here a few methods that are relevant to the results we will present
using the pseudo-spectral method. The discrete dipole approximation (DDA) (Pur-
cell and Pennypacker, 1973; Draine and Flatau, 1994; Yurkin and Hoekstra, 2007,
2011) and the finite-difference time domain method (FDTD) (Yee, 1966; Yang and
Liou, 1996a), are two methods which can be used for scatterers with arbitrary
shapes, and have been widely applied to simulate single-scattering properties of
atmospheric particles, e.g. hexagonal columns (Yang and Liou, 1996a), droxtals
(Yang et al., 2003), tri-axial ellipsoids (Bi et al., 2009), and other shapes. Both
DDA and FDTD discretize the three-dimensional spatial domain, with dipoles or
grid cells, and solve Maxwell’s equations. However, even with parallelized imple-
mentations (Yurkin et al., 2007b; Brock et al., 2005) on multi-processors, they are
applicable for only particles with small-to-moderate size parameters, say x a few
multiples of 10, and become computationally expensive and impractical for large
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ones. To the best of our knowledge, the maximum size parameter of spheres with
refractive index significantly larger than 1.0 that has been simulated using DDA is
130 (Yurkin et al., 2007b, using a refractive index of 1.2). Furthermore, because of
the high requirement for the spatial resolution (10 to 20 grid cells per wavelength
in the particle) and numerical dispersion, the FDTD technique is difficult to ap-
ply for particles with size parameter over 100. (We will illustrate the dispersion in
Section 4.4 below in the case of one dimension.) If results involving averaging over
random orientation are required for nonspherical particles, both methods become
prohibitively time-consuming (given current hardware) for averaging over tens to
hundreds of particle orientations.

Another powerful approach is the T-matrix method (Waterman, 1965; Water-
man, 1971; Mischenko and Travis, 1998; Mishchenko et al., 1996). The central
idea in the approach is to represent the incident and scattered fields as expansions
in vector spherical harmonic series, with the T-matrix being a transform matrix
mapping the sequences of expansion coefficients for incident waves to sequences of
expansion coefficients of scattered waves. Once the matrix is given, all the far-field
scattering properties are derived from analytical formulas. Getting the matrix itself
involves calculation of various integral properties that depend on the particle doing
the scattering. In the special case that the particle is a homogeneous sphere, the
T-matrix approach reduces to the Lorenz–Mie solution. Using extended precision
arithmetic, (Mischenko and Travis, 1998) showed T-matrix results for spheroids or
circular cylinders with size parameters over 100. The calculation of the T-matrix,
in principle possible for particles of any size or shape, can run into numerical dif-
ficulties in dealing with particles that have large aspect ratios or surfaces with
concave regions. Aside from such situations, the approach is widely regarded as a
good source of ‘reference solutions’, and we will make use of it as appropriate in
discussion of PSTD results.

The conventional geometric-optics method (CGOM) (Macke et al., 1996) and
the improved geometric-optics method (IGOM) (Yang and Liou, 1996b, 1997) have
been developed to simulate light scattering by moderate-to-large-sized particles.
Although significant improvements have been included in IGOM, including con-
sideration of edge effects (Jones, 1957; Bi et al., 2009, 2010), in these approaches
the near fields are approximated with the ray-tracing method, making this an in-
appropriate method for small- to moderate-size particles. The recently developed
physical-geometric optical hybrid method (PGOH) (Bi et al., 2011) is suitable for
calculating the optical properties of particles with complex refractive indices and
a wide range of size parameters. By employing a beam-splitting technique instead
of the ray-tracing algorithm, virtually no limitation exists on the maximum parti-
cle size parameter for the PGOH method. However, its accuracy becomes greatly
compromised for particles with size parameters smaller than 30–40. The context
in which we will find geometric-optics useful is in discussing PSTD simulations of
scattering by particles with large size parameter and concave surfaces.

Before mentioning previous work with PSTD in light scattering problems, it is
useful to mention that pseudo-spectral methods have a long history starting in fluid
dynamical studies the early 1970s (Kreiss and Oliger, 1972; Orszag, 1972). They
now have achieved considerable sophistication and have extensive use in numerical
studies of many partial differential equations of mathematical physics: their prin-
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ciple advantage is their ability to approximate derivatives much more accurately
and efficiently than is possible with finite difference methods, as we illustrate in
special cases below. The terminology pseudo-spectral was introduced by Orszag
(1972) to distinguish the method from true, or fully spectral, methods in which all
calculations are carried out in wavenumber space. Fully spectral methods are made
prohibitively expensive by the presence of quadratic nonlinearities in the equations
of fluid motion. It was the breakthrough observation of Orszag (1972) that a com-
bination of approaches, computation of derivatives by Fourier transform methods
and computation of nonlinear terms by grid point multiplication, could yield a
significant improvement in numerical performance over finite difference methods,
provided that such an efficient Fourier transform algorithm as the fast Fourier
transform (FFT) is available. The term pseudo-spectral has since come to mean
any of a class of methods that generalize the Fourier interpolation method that we
outline in Section 4.3.

The use of PSTD in electromagnetic scattering problems was pioneered by (Liu,
1994, 1997, 1998, 1999), (Yang et al., 1997), and (Yang and Hesthaven, 1999), and
has been applied in a number of forms to model the transient electromagnetic field
by solving Maxwell’s equations. The pseudo-spectral method based on trigono-
metric polynomials (Liu, 1998) and Chebyshev polynomials (Yang et al., 1997)
has been used to give a better approximation for the spatial derivatives, and the
multi-domain PSTD method in general curvilinear coordinates has been developed
to solve problems with complex structures in a manner avoiding the Gibbs phe-
nomenon (Yang and Hesthaven, 1999, 2000; Tian and Liu, 2000). Chen et al., (2008)
have successfully used the PSTD to calculate the single-scattering properties of at-
mospheric particles, treating spheres with a maximum size parameter of 80 (refrac-
tive index of 1.31), and have also shown the PSTD to be a robust method for light
scattering problems of nonspherical particles such as hollow hexagonal columns and
hexagonal aggregates. Based on the work of Chen (2007) and Chen et al., (2008),
Liu et al., (2012a) improved and parallelized the PSTD implementation, using an
exponential filter in wavenumber space to eliminate the Gibbs phenomenon and
stabilize the simulation in a manner that we explain below. At the stage of this
writing, the applicability of PSTD has been demonstrated for spheres with size
parameter up to 200 (Liu et al., 2012a), as well randomly oriented nonspherical
particles with the same size parameter.

The central difference between the PSTD and the FDTD methods, which are
otherwise closely related, is in the treatment of spatial differentiation. Each method
can be formulated in terms of a spatial grid. For purposes of finite difference cal-
culations of derivatives, the FDTD is often formulated in terms of ‘cells’ centered
on grid points of the grid, and different field components (electric or magnetic)
are considered to be evaluated at centers of either edges or walls of these cells
(Yee, 1966; Taflove and Hagness, 2005). In the FDTD these derivatives are most
commonly approximated using centered second-order finite difference methods, re-
sulting in a second-order accurate scheme for computing spatial derivatives. The
complexity of cell wall edge versus center field representation is swept away in the
PSTD method, in which all field variables are evaluated at the grid points that are
the centers of cells in the FDTD formulation, and the notions of cells and walls
are not used. In place of a finite difference approximation to spatial derivatives,
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the PSTD method uses pairs of Fourier transforms at each time step and results in
what is known as a ‘spectrally accurate’ approximation to the spatial derivatives.
The principle purpose of this chapter is to explain in some detail the notion of
spectral differentiation, and the meaning of spectral accuracy, in a way that makes
clear both the connection between the spectral and finite difference methods, and
the reason for the increased accuracy provided by the PSTD. This is the content of
Section 4.3. A second aim of the chapter is to explain how the Gibbs phenomenon,
mentioned in Chen et al., (2008) as representing a difficulty with pseudo-spectral
methods, can be handled. This is the focus of Section 4.4.

Before turning to the technical discussion of spectral differentiation and the
treatment of the Gibbs phenomenon, we outline in Section 4.2 the background of
numerical simulation in which the pseudo-spectral method is embedded, sketching
the main steps in a time-domain numerical simulation of single particle scattering
optical properties. After the discussion in Sections 4.3 and 4.4, we present in Sec-
tion 4.5 results validating the PSTD method by comparison with Lorenz–Mie and
T-matrix solutions, and finish with a comparison in Section 4.6 of the PSTD and
DDA methods that indicates some of the potential of PSTD methods to push into
regimes of size parameter and index of refraction that are beyond the current reach
of DDA.

4.2 Conceptual background

The general scattering problem simply stated is: given the properties of a wave
field incident on a dielectric particle, determine the properties of the scattered
wave field that results from the interaction of the incident field with the particle.
Because of the application to remote sensing we have in mind, we are interested
in the properties of this scattered wave field at great distance from the scattering
body, the far field properties. By definition, the far field refers to distances r from
the scatterer for which the scatterer appears to be essentially a point and kr is
large enough that the scattered wave field is well approximated as an outward
propagating spherical wave.

It would be far too expensive of cpu time to use numerical methods like the
FDTD, PSTD, or DDA to compute the solution in a domain extending out into
the far field. Fortunately, it is unnecessary to do so because the far field may be ex-
pressed, in a Green’s function approach, as the distant response to a distribution of
near-field sources of charges and currents. Our scattering calculation thus proceeds
in two stages: the ‘near-field’ response to an incident wave field is calculated with
a high degree of accuracy (and the bulk of the cpu time). With data gathered from
this calculation a far less cpu intensive ‘near-to-far-field’ transformation is carried
out, the result being the far-field approximation used to calculate the scattering
data.

In the subsections below, we first give brief descriptions of the scattering prop-
erties of interest and computational boundary conditions, followed by some equally
brief discussions of issues important in time-domain calculations, namely two com-
monly used near-to-far-field transformation methods. The discussion of the distinc-
tion between finite difference and spectral methods in their treatment of differen-
tiation will be given in the following section.
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4.2.1 Scattering properties of interest

The central quantity from which all others of interest may be derived is a matrix
relating components of the Stokes vectors of the incident and far-field scattered
waves.

The stokes vector and phase matrix

The electric field associated with a monochromatic plane wave may be written

�E(�x) = �E0 expi(
�k·�x−ωt) . (4.1)

The direction of propagation is given by the unit vector k̂, where

�k = k k̂ ;

the amplitude k is variously called the wavenumber or propagation constant.
The constant vector �E0 has nonzero components only in directions orthogonal

to the direction of propagation k̂: if orthogonal unit vectors �n1 and �n2 in the plane
orthogonal to k̂ are chosen, then

�E0 = A1 e
iθ1 �n1 +A2 e

iθ2 �n2.

The vector �E0 is thus specified by the four real numbers A1, θ1, A2, θ2. (Note
that the phase angles θ1 and θ2 neither are individually measurable nor have intrin-
sic physical significance. It is only the difference θ1 − θ2 that has intrinsic physical
significance, so there are in fact only three significant quantities: A1, A2, and θ1−θ2.
The wave can also be described in terms of a related set of four real numbers called
Stokes parameters that are measurable:

I = |�E0|2 = A2
1 +A2

2, (4.2)

Q = A2
1 −A2

2, (4.3)

U = 2A1A2 cos(θ1 − θ2), (4.4)

V = 2A1A2 sin(θ1 − θ2). (4.5)

These numbers are the four components of the Stokes vector �S. The component I
evidently gives the intensity of the wave; the pair (Q, U) together determine the
linear polarization, and V determines the circular polarization (see, e.g., Jackson,
1999). Again, there are only three independent quantities, since I2 = Q2+U2+V 2.
Only the linear polarization parameters Q and U are dependent on the particular
choice of the orthonormal pair (�n1;�n2) in the plane orthogonal to the propagation
direction.

In the immediate vicinity of the scatterer, the electromagnetic field can have
quite complex structure, but for an observer at a large distance r from the scatterer
the field is well approximated by a simple outgoing wave. The interaction with the
particle being linear, the Stokes vector for the outgoing wave can be related to that
of the incoming wave by a matrix multiplication that can be written in more than
one form. For instance, using a spherical coordinate system centered on the particle
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and considering an observation point at scattering direction given by zenith and
azimuth angles (θ, φ), the linear relation can be written

�Ss(θ, φ) =
1

k2r2
F(θ, φ) �Si (k r � 1) . (4.6)

This form results in a matrix F whose component F11 has the property (see, e.g.,
Liou, 2002) that integration over all scattering angles produces

σsca =
1

k2

∫ 2π

0

∫ π

0

F11(θ, φ) sin θ dθ dφ ,

where σsca is the scattering cross-section of the scatterer: this is the area that if
oriented perpendicular to the incident wave would intercept an amount of energy
equal to that scattered in all directions by the scatterer.

We will use the scattering cross-section as part of a normalization of the matrix
in (4.6), rewriting that equation in terms of the phase matrix P:

�Ss =
σsca
4πr2

P �Si, (k r � 1) . (4.7)

(The terminology ‘phase matrix’ is traditional: the matrix is defined by the relation
(4.7) and has nothing to do with the phase of a plane wave.)

For a general scatterer with no geometric symmetries, there are sixteen nonzero
elements Pi j in the matrix P (only seven of which are independent), but for a
spherical scatterer the scattering matrix is independent of the azimuthal angle
φ and has a particularly simple block-diagonal form with only four independent
nonzero entries:

Psphere =

⎡⎢⎢⎣
P11 P12 0 0
P12 P11 0 0
0 0 P33 P34

0 0 −P34 P33

⎤⎥⎥⎦ (all quantities functions of θ) .

Explicit expressions for these elements are given by Lorenz–Mie theory in the case
of a homogeneous sphere. In the general case of a scatterer with no special sym-
metries another variable enters the problem, the orientation of the scatterer with
respect to the incident wave field. But in many applications in remote sensing,
where scattering is done by an ensemble of aerosols at random orientations, with
the aerosols spatially separated by distances considerably greater than a wave-
length so that multiple scattering effects may be neglected, it becomes useful to
consider the scattering matrix that results from averaging over ‘random’ orienta-
tions (i.e., assuming a uniform probability distribution over orientation angles). In
this case it can be shown by taking advantage of symmetry arguments that what
results is a scattering matrix Pavg having a similar block-diagonal form but now
six independent nonzero entries:

Pavg =

⎡⎢⎢⎣
P11 P12 0 0
P12 P22 0 0
0 0 P33 P34

0 0 −P34 P44

⎤⎥⎥⎦ (all quantities functions of θ) . (4.8)

(see, e.g., van de Hulst, 1957).
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A caution. The intensity Is of the scattered wave is determined in the following
way (omitting the prefactor σsca/(4πr

2)):

Is ≈ P11Ii + P12Qi + P13Ui + P14Vi

=

[
P11 + P12

Qi

Ii
+ P13

Ui

Ii
+ P14

Vi
Ii

]
Ii . (4.9)

In our discussion we refer to P11 = P11(θ) that appears in (4.8) as the ‘phase
function’, but sometimes this term is used for the entire term in the square brackets
in (4.9).

Although all elements of P(θ) are important in applications, we will be most
interested in P11(θ), and its dependence on size parameter and index of refraction,
in our comparisons of results using the various numerical methods. Figure 4.1 gives
two versions of a planar representation of P11 illustrating size effects. The figure
shows scattering by two spheres, each having an index of refraction of m = 1.311
(ice) and incident visible wavelength 0.532μm. The smaller sphere has x = 1 and
the larger has x = 10, and the data for the figure were calculated using Lorenz–Mie
theory. The quantity P11(θ) is always positive, and being an azimuthal average is
only defined for 0 ≤ θ ≤ π. For graphic display it can be extended to a function
r(θ) of full range in θ using symmetry to produce a curve in the (r, θ) plane:

r1(θ) =

{
P1 1(θ) 0 ≤ θ ≤ π

P1 1(2π − θ) π ≤ θ ≤ 2π .

The upper panel in the figure shows that the increase in size introduces pronounced
asymmetry in the forward direction. (In the Rayleigh scattering regime, with x	 1,
the curve would have lobes symmetrical about the line θ = π/2.) This representa-
tion makes it hard to see much beyond the strong shift to forward scattering. To
show more detail, the data are replotted in the lower panel by taking logarithms of

θ

P
11

(θ)

x=1 x=10

Fig. 4.1. The effect of particle size on P11. The smaller particle has x = 1 and the larger
particle has x = 10: the upper pair of figures (blue) show P11 itself, and the lower pair
(red) show log10(P11 + r0) (see text).
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the data in the upper panel, with an offset r0 in the logarithm to keep the resultant
numbers positive and make the representation intelligible:

r1(θ) = log10[P1 1(θ) + r0] .

In our comparisons in later sections, a different graphical representation of the
phase matrix elements is used, this time using semilog axes. The semilog represen-
tation for this case is shown in Figure 4.2.
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Fig. 4.2. The representation of the same values of P11 shown in Fig. 4.1. This is the
representation that will be used in subsequent figures.

Other key quantities: cross-sections, efficiencies, and the
asymmetry factor

As mentioned above, the scattering cross-section σsca is the area oriented perpen-
dicular to the incident wave that would intercept an amount of energy equal to
that scattered in all directions by the scatterer. The scattering efficiency Qsca is
the non-dimensional number that expresses the ratio of this area to the projected
area of the scatterer on a plane normal to the incident wave:

Qsca =
σsca

projected area
.

Similar definitions give the absorption Qabs and extinction Qext efficiencies using
their respective cross-sections. Energy conservation requires that

Qext = Qsca +Qabs ,
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so any two of these efficiencies determine the third. A related variable is the fraction
of extinction due to scattering, called the single-scattering albedo (SSA):

SSA =
Qsca

Qsca +Qabs
=

1

1 + η

(
η =

Qabs

Qsca

)
.

As the particle gets less and less absorptive its SSA approaches 1.
The pronounced asymmetry in scattering amplitudes between the forward and

backward directions that is evident in Fig. 4.1 is quantified by the asymmetry factor
g, defined by

g =
1

2

∫ π

0

P11(θ)cosθsinθ dθ

⎧⎨⎩ > 0 for preferentially forward scattering
= 0 for isotropic scattering
< 0 for preferentially backward scattering .

Figure 4.3 shows the values of Qext and g over a range of size parameters that
includes the cases shown in Figs. 4.1 and 4.2. The index of refraction and incident
wavelength are the same as in those figures. The fact that the extinction efficiency
exceeds 1, i.e. that the scattering cross-section exceeds the projected cross-section,
for a sphere with size parameter above 2 is due to diffraction of the incident wave
around the sphere.
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Fig. 4.3. The extinction efficiency Qext (upper panel) and asymmetry factor g (lower
panel) for spherical particles over the range of size parameters 1 ≤ x ≤ 200.
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4.2.2 Near-field calculations

The near field numerical simulations using Maxwell’s equations are carried out in
a computational domain that necessarily has a boundary at finite distance, but the
boundary is only a feature of the computational approach and does not represent
any physical feature of the scattering problem. Care must be taken at the boundary
of the computational domain so that there is negligibly small reflection of what
should be a purely outgoing scattered signal. For this purpose it is common now
in numerical simulations to introduce at computational boundaries what is called
a ‘perfectly matched’ boundary layer. Such a layer is used in both finite difference
and pseudo-spectral methods: by proper adjustment of the optical characteristics of
the layer, waves incident on it from any direction are absorbed without reflection.
The earliest version of the method (Berenger, 1994) was developed for use in FDTD
simulations and is now known as the PML (‘perfectly matched layer’) method. The
layer was constructed in a mathematical manner that made physical interpretation
difficult, and applicability to more general unstructured grid simulations unclear.
These deficiencies were removed in the reformulated ‘uniaxial’ PML, or UPML by
Gedney (1996). The layer matching methods are now seen more generally in the
context of stretched coordinate methods (see Johnson (2010) and its references).
We use an implementation of the UPML in our PSTD simulations. (The DDA
method, which is based on a distribution of dipoles and is not formulated in terms
of Maxwell’s equations in the time domain, does not require a special boundary
layer treatment.)

In Fig. 4.4, which shows a two-dimensional cross-section of the computational
domain, the UPML boundary layer is indicated by the dark gray border. The
scatterer (here a light gray sphere) is at the center of the computational domain,
and the white region between the scatterer and the UPML is meant to represent
a region with ε = 1.0 (‘free space’). The relative sizes of areas in the sketch do
not correspond to the relative sizes in our simulations: these relative sizes will be
indicated in the discussion of the near-to-far-field transformation below.

Scatterer 

UPML 

Incident 

Fig. 4.4. The three regions of the computational domain: scatterer, free space, and ‘per-
fectly matched layer’ (relative areas not to scale).
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In the presence of both current densities �J and charge densities ρ, Maxwell’s
equations written in Gaussian units are

ε

c

∂ �E

∂t
= ∇× �H − 4π

c
�J, (4.10)

μ

c

∂ �H

∂t
= −∇× �E, (4.11)

∇ · �E =
4π

ε
ρ, ∇ · �H = 0 . (4.12)

Here ε is the permittivity of the dielectric medium, μ is the permeability (from here
on assumed to have the vacuum value of 1 everywhere), c is the speed of light in

vacuum, �E and �H are the electric and magnetic fields, and �J is the current density.
The permittivity ε in absorptive (sometimes called ‘lossy’) media is a complex
parameter that is related to the complex refractive index m by

ε = εR + i εI = m2 . (4.13)

We will not consider the presence of current densities or free charges in any
of the calculations we present in this chapter, and assume ρ = 0. But for this
section alone we include current densities in the statement of the equations and
their ‘frequency domain’ formulations immediately to follow, in order to discuss an
approximation that saves computer memory that is presented later in this section.

In a ‘frequency domain’ approach, the time-evolution equations are Fourier
transformed in time to get expressions in terms of temporal frequency ω. That is,
for each ω, complex-valued solutions are sought of the form

�E = �E(�x) e−iω t , �H = �H(�x) e−iω t , �J = �J (�x) e−iω t ,

where �E , �H and �J are complex-valued functions of space. (As usual, physical so-
lutions are found by taking real parts.) Then Maxwell’s equations transform to

−i ω ε
c
�E = ∇× �H− 4π

c
�J , (4.14)

−i ω 1

c
�H = −∇× �E , (4.15)

∇ · �E = 0, ∇ · �H = 0 . (4.16)

In the absence of free charges or current densities, this system can be easily seen
to lead to an elliptic system of partial differential equations (Helmholtz equations
for plane waves), and can be solved using any of a number of elliptic solvers.
Pseudo-spectral methods may be used here as well, but discussion of this approach
is beyond our scope.

An approximation to save memory

While the scattering problem we consider does not directly involve current densi-
ties, it does involve dielectric particles with complex indices of refraction. This fact
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introduces complex numbers into calculations, and effectively doubles the demands
on computer memory, since all field variables must then have both real and imagi-
nary parts. As discussed in Yang and Liou (1996a), it is possible to get around this
difficulty in the case of monochromatic incident waves by making an approximation
to Maxwell’s equations that is exact at precisely the frequency of the incident wave.
A way to view the approximation is to note the formal similarity between a term
introduced by a nonzero imaginary part of the index of refraction and a current
density term in the frequency-domain formulation. We outline the argument here,
focusing just on the formal nature of the approximation itself and refer the reader
to (Yang and Liou, 1996a) for more discussion.

With the complex permitivity decomposed into real and imaginary parts as in
(4.13) above, the frequency-domain equation (4.14) becomes

−i ω εR
c
�E = ∇× �H−

(
ω εI
c
�E +

4π

c
�J
)

(ω arbitrary) .

Thus the presence of a nonzero imaginary part of the permitivity at a point formally
behaves (at one frequency) as would an ‘effective current density’ there. In the

absence of any true current or charge densities ( �J = 0), this frequency domain
equation has the simpler form

−i ω εR
c
�E = ∇× �H− ω εI

c
�E . (4.17)

Now suppose we want to do a scattering calculation with an incident monochro-
matic wave having frequency ω0, and consider instead the modified equation that
differs only in the last term:

−i ω εR
c
�E = ∇× �H− ω0 εI

c
�E . (4.18)

(The choice of ω0 will be given below.) Solutions to the frequency domain equations
(4.17) and (4.18) will in general be different, but will agree at ω = ω0. The equation
(4.18) is the Fourier transform of the evolution equation

εR
c

∂ �E

∂t
= ∇× �H − ω0εI

c
�E , (4.19)

an evolution equation that has only real coefficients. This approximate equation,
equivalent to the one derived in Yang and Liou (1996a), is used in place of equation

(4.10), with �J = 0, in the PSTD calculations discussed in this chapter. The natural
choice ω0 = k c is made, where k is the wavenumber of the incident wave.

The new equation has purely real coefficients, so if we use it there will be no need
to introduce complex numbers into the numerical simulations and we effectively
halve the memory requirement of computations. It is true that modification of this
one equation gives a model which is exact at only the one frequency ω = ω0, and
is approximate at other frequencies. Since the light scattering problem is linear,
and we are only interested in the one frequency ω0, we may ignore errors at other
frequencies. The comparisons we give below with the Mie solution in the case of
spheres validate our expectation that the approximation is good at the frequency
of our interest.
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Scattered and incident fields

In the time-domain simulations, the total fields that appear in equations (4.19,
4.11) with μ = 1 are decomposed in terms of scattered and incident fields,

�E = �Einc + �Esca, �H = �Hinc + �Hsca ,

where the incident fields satisfy

1

c

∂ �Einc

∂t
= ∇× �Hinc, (4.20)

1

c

∂ �Hinc

∂t
= −∇× �Einc, (4.21)

∇ · �Einc = 0, ∇ · �Hinc = 0 . (4.22)

The equations satisfied by the scattered field are then

∂ �Esca

∂t
=

c

εR
∇× �Hsca − ω0

εI
εR

�Esca +

[(
1− εR
εR

)
∂

∂t
− ω0

εI
εR

]
�Einc , (4.23)

∂ �Hsca

∂t
= −c∇× �Esca , (4.24)

and at each time step in the numerical integration the exact values for the ex-
pressions involving �Einc are used, so that once again the right-hand sides of the
equations involve only spatial derivatives. The distinguishing feature of the PSTD
method is how it evaluates these spatial derivatives, and will be discussed in the
following section: the choice of time-stepping methods is a separate consideration
beyond the scope of this chapter. All results using the PSTD that we discuss here
were obtained using the standard second-order accurate centered difference time-
stepping method, sometimes called the leapfrog method.

Using the PSTD, the equations (4.23, 4.24) are solved in the region of the com-
putational domain interior to the UPML region (see Fig. 4.4), and in the UPML re-
gion the equations are augmented by the UPML expressions that match impedances
across the layer boundary in such a way as to prevent any reflection as the out-
going waves enter the layer, and furthermore damp the entering waves sufficiently
rapidly that they never re-emerge upon reflection at the outer boundary of the
computational domain.

The particular form of the incident wave we use will be described when we
discuss near-to-far-field transformations below.

4.2.3 Near-to-far-field transformation

There are two methods commonly in use to compute the scattered field far from
the scattering object: the ‘volume integral method’ (VIM) and the ‘surface inte-
gral method’ (SIM). The two methods are mathematically equivalent, but impose
substantially different computational burdens. Each method assumes first that

�E(�x) = �Einc(�x) + �Eoutgoing(�x) ,
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where the origin of the coordinate system is at the center of the scatterer, and that
|�x| is great enough that the response to a monochromatic plane wave input is a
monochromatic outward-propagating spherical wave. The natural formulation of
this is in the frequency domain, and the assumption (the ‘Sommerfield radiation’,
or outward energy propagation, condition) is that

�Eoutgoing(�x) ∼ ei k |�x|

|�x| .

Adoption of this assumption provides the necessary outer boundary condition in
using identities of Green (essentially integration-by-parts arguments) to write solu-
tions of the vector Helmholtz equation at positions outside some surface S enclosing
the scatterer in one of two integral forms:

– an integral over the surface S:

�E(�x) = ik ei k |�x|

4π |�x| x̂×
∫∫
S

{�nS × �E(�x′)− x̂× [n̂S × �H(�x′)]}e−i k x̂·�x′
d �x′ , (4.25)

where

x̂ =
�x

|�x| .

This is the ‘surface integral method’.
– an integral over the volume V enclosed by the surface S

�E(�x) = k2 ei k |�x|

4π |�x|
∫∫∫
V

[ε(�x′)− 1]{�E(�x′)− [�E(�x′) · x̂] x̂} e−i k x̂·�x′
d�x′ . (4.26)

where ε = m2 is the complex permittivity of the particle. This is the ‘volume
integral method’.

It would take us too far afield to reproduce the mathematical arguments that lead
to these particular expressions: see Umashankar and Taflove (1982) for the SIM
and Goedecke and O’Brien (1988) for the VIM.

The way in which either of these methods is used is to extract data �E(�x′), �H(�x′)
needed for the integrals from the near-field calculations and perform the indicated
integrations to get the far fields: thus they are each called ‘near-to-far-field’ trans-
formations. Neither integral method is as expensive of cpu time as is the numerical
simulation of Maxwell’s equations. Details differ with choices of parameters, but
for a size parameter x = 200, with 5123 gridpoints in the computational domain
(‘equivalent resolution’, in a sense to be explained below, for a PSTD with 256
Fourier coefficients in each direction), typically a calculation using the SIM uses
2%–5% of the total cpu time. Thus the natural computational strategy is to take S
very close to the scatterer, and the UPML just outside it, minimizing the domain
for the cpu-intensive near-field calculations.

The comparison in computational times just sketched is slightly different when
considering the VIM, which does demand a more cpu time (on the order of 5%–
10% of the total cpu time), the reason for which can be appreciated easily from
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dimensional considerations. However, it is also true that in the SIM the data must
be very carefully gathered on the lower dimensional object S. Our experience has
been that with the required care taken, the SIM is the better method to use, and
all of the computations we report below use that method. Again on the basis of
experimentation, we have found that setting the distance from the scatterer to the
UPML to be on the order of 6Δx or 8Δx, with the distance from the scatterer to S
to be 2Δx, works well in the cases we have considered. (Here and below Δx is the
grid-spacing in each dimension of a uniform mesh in the computational domain.)

What then determines the total amount of time a simulation must be run is
the amount of time that it takes to get good frequency data on the surface S using
our time-domain integration method. For this purpose we use as incident signal a
‘Gaussian pulse’,

�Einc(�x, t) = �E0 P (k̂ · �x− c t), with P (s) = e−
4 s2

λ2 cos(|�k| s) . (4.27)

Here k̂ =
�k

|�k| : this Gaussian has e-folding width λ, and at a given point �x0 in space

the electromagnetic field has time behavior like

�E(�x0, t) ∼ e
− 4 (t−t0)

2

T cos(ω t), T =
λ

c
.

The time t0 is chosen (e.g. t0 = 5T ) so that the pulse has exponentially small
amplitude at the start of the numerical integration.

Doing the Fourier transformation

In order to use the near-to-far-field transformation, the single-frequency response
in the near-field time-domain calculations (PSTD or FDTD) must be extracted.
As opposed to using some kind of FFT method, which would require storing all
the temporal data over a long time integration before doing the FFT, we choose a
method much more sparing of memory. The method can be appreciated by consid-
ering a simple example. Suppose G(x, t) is a time-domain signal whose frequency
transform G(x, ω) at some frequency ω is desired. For any finite time interval of
length T∗ we can make the estimate

G(x, ω) ≈ 1

T∗

∫ T∗

0

G(x, t) e−iω t dt , (4.28)

with the estimate improving in accuracy with increasing integration length T∗. The
time-discrete version of this is

GN (x, ω) =
1

N

N∑
n=1

Gn(x) e
−iωnΔt , (4.29)

where Gn(x) = G(x, nΔt) and N Δt = T∗. Now we make the simple observation
that when T∗ increases to (N + 1)Δt,

GN+1(x, ω) =

(
N

N + 1

)
GN (x, ω) +

1

N + 1
GN+1(x) e

−iω(N+1)Δt , (4.30)
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which allows us to update estimates of G(x, ω) as we integrate in time. Thus we need
save only the data required by our time-stepping method, and we need only run
that method long enough for our transforms GN to become constant, that is for the
successive iterates to satisfy (uniformly in space) a criterion set for being constant.
That this should happen eventually can be understood by considering equation
(4.30), and remembering that the incident wave packet has a narrow width in time
as it travels in free space. So as N increases, there comes point beyond which
the incremental update becomes exponentially small. However, when exactly this
decay sets in is not easy to estimate a priori, since the full interaction time of the
packet with the particle is not easily approximated, and our best guide has been
experimentation. We have found that the total time of integration needed for the
Fourier transform to converge is between four and five times the amount of time
that the packet would take to cross a distance in free space equal to one diameter
of the particle.

4.3 Derivatives: finite difference versus spectral

We present here a unifying view of the connections between finite difference approx-
imations of various orders and spectral approximations, and discuss the behavior
of errors as resolution increases in each case: it is shown that in the case of smooth
functions the decrease of errors in spectral approximations to derivatives is dra-
matically more rapid as resolution increases than is the case with finite difference
approximations. We confine attention to a case in which complications are min-
imal, a one-dimensional case and assume functions to be periodic on some finite
interval x ∈ [0, L]: these restrictions in no way affect the main points we make. In
this discussion we assume functions are as smooth as needed to make the appeals
to Taylor series arguments valid. We necessarily relax this assumption later in the
discussion of the Gibbs phenomenon.

As a focus for discussion, consider a linearly polarized wave propagating in a
homogeneous medium: if we let u = Ez and v = Hy, and all other components of
the fields be zero, we have

ε

c

∂u

∂t
=

∂v

∂x
, (4.31)

μ

c

∂v

∂t
=

∂u

∂x
. (4.32)

Taking the time derivative of the first equation and substituting from the second
gives either of the following two equivalent forms

∂2u

∂t2
− c2∗

∂2u

∂x2
= 0 , (4.33)(

∂

∂t
+ c∗

∂

∂x

)(
∂

∂t
− c∗

∂

∂x

)
u = 0 , (4.34)

where c∗ = c/
√
ε μ. It is clear from the second form that waves uniformly translating

toward either positive or negative values of x at speed c∗ are solutions. We consider
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a simple waveform moving to the right, which satisfies

∂u

∂t
= c∗

∂u

∂x
.

As stated above, our comparison of finite difference and pseudo-spectral methods
will be carried out using the same (leapfrog) time-stepping method in each case, and
focus on the two different numerical treatments for the derivative on the right-hand
side of the equation.

In finite difference methods functions are represented in terms of their values
at grid points, with better representation of the functions being made possible by
increasing the number of grid points. With N grid points on an equally spaced
grid, the points may be denoted

xj = (j − 1)
L

N
= (j − 1)Δx , j = 1, 2, . . . , N .

(Notice that it is not necessary to include what would be an N -plus-first grid point
xN+1 = N Δx = L because of the periodicity assumption.) In this section we will
always assume N is an even integer.

The familiar centered difference approximation

∂u

∂x
(xj) ≈ u(xj+1)− u(xj−1)

2Δx
(4.35)

is a second-order approximation: as Δx approaches zero (i.e. as N increases without
bound) the error in the approximation goes to zero quadratically (halving Δx
results in a reduction in the error by a factor of (1/2)2 = 1/4. A simple argument
based on Taylor series establishes this.

In the context of higher-order and spectral approximations there is an illumi-
nating way to view the expression on the right-hand side of (4.35). If we want to
get a second order accurate approximation to the derivative of u at xj , we con-
struct a second-degree polynomial that should (based on our information at grid
points) be ‘close to’ u near xj , and calculate its derivative at xj . Specifically, we
consider the (unique) second-order polynomial interpolant U(x) through the points
(xm, u(xm)) for m = j − 1, j, j + 1, and then define the approximation to be the
value of the derivative of this polynomial interpolant , evaluated at the point xj .
As a little algebra easily verifies, the interpolant can be written as a sum of a set
of three basic quadratic polynomials weighted by the values of the function at grid
points

U(x) = u(xj−1)lj−1(x) + u(xj) lj(x) + u(xj+1)lj+1(x) , (4.36)

where the li(x) are the second-order Lagrange polynomials

lj−1(x) =
(x− xj)(x− xj+1)

(xj−1 − xj)(xj−1 − xj+1)
,

lj(x) =
(x− xj−1)(x− xj+1)

(xj − xj−1)(xj − xj+1)
,

lj+1(x) =
(x− xj−1)(x− xj)

(xj+1 − xj−1)(xj+1 − xj)
.
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By inspection we see that each Lagrange polynomial is quadratic, vanishes at two
of the three grid points, and has unit value at the third:

li(xm) = δi,m .

So U(x) is clearly the interpolant. Simply differentiating the polynomial and eval-
uating it at the grid point xj shows

d

dx
U(xj) =

u(xj+1)− u(xj−1)

2Δx
,

and we see that the second order accurate centered differencing is equivalent to the
approximation using second order interpolating polynomials

∂u

∂x
(xj) =

dU

dx
(xj) +O(Δx2) .

(This construction of an interpolant is done at each grid point separately, so we
could have written Uj(x) and dUj/dx instead of U(x) and dU/dx, but with little
gain in understanding.)

The value in taking this view is that it is easy to anticipate how to get, for
example, a fourth-order accurate finite difference approximation to the derivative
at the grid-point xj : find the unique fourth-order polynomial through the five points
(xm, u(xm)), j−2 ≤ m ≤ j+2, and then evaluate the derivative at the gridpoint xj .
The interpolating polynomial will then be a sum of quartic Lagrange polynomials
weighted by values of the function at the grid points: the second-order interpolant
formula (4.36) is replaced by

U(x) =

j+2∑
m=j−2

u(xm)lm(x), (4.37)

where for j − 2 ≤ m, p ≤ j + 2,

lm(x) =
∏
p 	=m

(x− xp)

(xm − xp)
. (4.38)

In this case again the derivative approximation is a linear combination of the deriva-
tives of the Lagrange polynomials evaluated at the gridpoint:

∂u

∂x
(xj) =

j+2∑
m=j−2

u(xm)l′m(xj) +O(Δx4) . (4.39)

(It can be easily checked that the method based on the sum term does in fact give
fourth-order accuracy.) Figure 4.5 shows the Lagrange polynomials for the case of
the second-order and fourth-order interpolations. (The x-axis in each case is labeled
in multiples of Δx, and so covers only a part of the [0, L] interval.) Each individual
polynomial is zero at all grid points except one, where it has unit value, and so is
‘concentrated’ on a single grid point.
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Fig. 4.5. The sets of lm(x) for second- and fourth-order polynomial interpolation. Hor-
izontal axes centered on gridpoint xj , scaled in multiples of Δx: circles indicate nearby
gridpoints xm.

In practice, each of these finite difference methods can be written as a matrix
multiplication: if u and u′ denote column vectors of gridpoint values, the finite
difference calculation of order p is accomplished at all gridpoints simultaneously by
the matrix multiplication

u′ = Dpu , (4.40)

where Dp is a banded diagonal matrix with entries determined, at the start of
calculations, by the weights for grid point values implied by the derivatives of
the Lagrange polynomials. The width of the band is related to the order p of the
derivative approximation, and advantage of this structure can be taken to optimize
performance as the number of grid points increases. In the limiting case, for a fixed
number of grid points N + 1, we could choose to use a Lagrange polynomial of
order N to get a numerical differentiation scheme that is Nth-order accurate: the
expression for the interpolant would be similar to (4.37), but use information from
all gridpoint values: the interpolant could be written in the form

U(x) =

j+N/2−1∑
m=j−N/2

u(xm)lm(x) , (4.41)
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and the {lm(x)} would be the collection of Nth-degree polynomial analogues of
(4.38). This approximation, by involving all gridpoint values at once, is highly
non-local, as compared with the local centered difference approximation. A gain in
order, hence accuracy, comes about through this non-locality, but the ‘band’ about
the diagonal fills the matrix. A consequence of going to a dense matrix is that the
matrix multiplication in (4.40) now involves O(N2) operations, rather than the
O(N) operations in the multiplication corresponding to the second-order accurate
centered difference method: high accuracy comes with a computational cost.

Going to higher order is one way to increase accuracy, and another way is to
simply increase the number of gridpoints and keep the same order of accuracy.
Inevitably, higher order involves greater demands on cpu time and memory, and so
pursuit of greater accuracy in calculations involves a trade-off between increasing
the order of the scheme and increasing the number of gridpoints keeping the order
of the scheme fixed.

Figure 4.6 illustrates derivative calculations using second- and fourth-order dif-
ference schemes as the number of grid points N is increased. The function being
differentiated is a simple Gaussian G(x) = exp−(x−1)2/σ2

: the upper panels show
both the Gaussian itself (blue curve) as well as the numerical derivatives and the ex-
act values. The lower panels give one way of seeing how the error in the calculation
is reduced as the number of gridpoints increases for the second- and fourth-order
finite difference methods. We give more insight into the behavior of error with
increasing numbers of grid points below, after introducing the spectral method.
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Fig. 4.6. Error in derivative calculations as the number of gridpoints increases.
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In the spectral method that we discuss here, the analog to the collections of basic
Lagrange interpolating polynomials concentrated at grid points, one collection for
each grid point, is essentially a single set of trigonometric polynomials that is used
for all grid points. That is we consider as interpolation basis a single set of highly
non-local (concentrated at no single grid point) complex exponentials, and write
the interpolant:

U(x) =

N/2−1∑
k=−N/2

Ũk e
i k̂ x, k̂ =

2π

L
k . (4.42)

The N coefficients Ũk are determined by the requirement that U(x) be an
interpolant of the values of u at grid points. That is, once again we require U(xj) =
u(xj), and hence that

u(xj) =

N/2−1∑
k=−N/2

Ũk e
i k̂ xj , j = 1, 2, . . . N . (4.43)

Given the u(xj), this is a system of N equations in the N unknowns Ũk. It can
be shown using simple algebra and properties of the complex exponential that the
solution is

Ũk =
1

N

N∑
j=1

u(xj) e
−i k̂ xj , −N

2
≤ k ≤ N

2
− 1 . (4.44)

The association between the sequence of grid point values {u(xj)} and the sequence

of Fourier amplitudes {Ũk} is the one established by the discrete Fourier transform
and its inverse, and transforming between the two sequences can be done efficiently
using a fast Fourier transform (FFT) algorithm.

Notice that this approach associates a natural maximum wavenumber K =
N/2 with a number of grid points, natural on the assumption of equal spacing
of grid points. In terms of wavelengths, the smallest wavelength included in the
interpolant is the ‘2Δx’ wave. Conversely, the equally spaced N -point grid is called
the ‘equivalent spatial grid’ for the N/2-wave spectral representation.

Approximating the derivative is done in the same manner as in the case of
polynomial interpolations. In this case the derivative of the interpolant is especially
easily calculated:

U ′(x) =
N/2−1∑
k=−N/2

i k̂ Ũk e
i k̂ x . (4.45)

We see that, unlike the situation with the Lagrange polynomials, the derivative is
easily expressible in terms of the same basis functions that are used in the inter-
polant itself. Thus, approximations to derivatives at grid points may be calculated
by (i) finding the Ũk using an FFT, (ii) constructing a new sequence D̃k = i k̂Ũk,
and (iii) using an inverse fast Fourier transform (IFFT) construct the sum indicated
in (4.45) to get the derivative values at gridpoints.

One important feature to note is that this approximation, as well as its calcu-
lated derivative, is exact in the case that the function u(x) only involves oscillations
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on scales larger than 2Δx, or discrete Fourier coefficients up to index m = N/2.
This means that in the general case that u involves variation at smaller scales, as
long as u is a smooth function the error in spectral differentiation is entirely due to
omission of high wavenumbers in the interpolative representation. If the amplitude
in these higher wavenumbers is small, so will be the error. We return to this point
below.

One of the features of the spectral method that can make it so attractive emerges
when we look into the order of the approximation. It turns out that, if the function
being approximated is very smooth (infinitely differentiable) the approximation is
better than order Δxp for any p: this better-than-any-polynomial-order accuracy
is called spectral accuracy. The reason underlying this potential for high accuracy
is that there is a relation between the amount of smoothness (differentiability) of
a function and the rate of decay of spectral coefficients: very smooth functions
have spectral coefficients whose amplitude decays as a function of wavenumber
faster than any integral power. Thus, as a function of the truncation wavenumber
K ∼ Δx−1, the error decays faster than any negative power of K, hence any
positive power of Δx. A detailed exposition can be found in (Tadmor, 1986); a less
technical discussion can be found in the excellent (Trefethen, 2000), on which we
have based some of the presentation in this section, including the particular test
function we consider next.

The distinction between polynomial and spectral accuracy can be illustrated
by considering numerical calculations of the derivative of the function y = e− sin(x)

whose graph is shown in Fig. 4.7.
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Fig. 4.7. y = e− sin(x)



162 R. Lee Panetta, Chao Liu, and Ping Yang

This function is sufficiently complicated that no polynomial or finite term spec-
tral approximation can be truly exact: there is always some error and the question
becomes of how rapidly this error shrinks with increasing N using each of the nu-
merical approximations. There is a numerical limit, of course, to how small the
error can be that is determined by the limits of numerical representation on any
given computer, the ‘machine epsilon’ ε (not to be confused here with ε, the stan-
dard symbol for permittivity of a dielectric medium): once the approximation error
is reduced to this level, no further improvement is possible.

Figure 4.8 shows how the error (calculated as the sum of squares of errors at
grid points) shrinks as the number of grid points N increases, i.e. as Δx ∼N−1

decreases. The use of a log-log plot makes power-law decay show as linear: clearly
evident are power-law decay rates in the case of the second- and fourth-order
schemes. The figure also makes clear the dramatically more rapid rate of decay
of errors shown by the spectral method: the level of machine accuracy is reached
quite quickly on a computer with a machine epsilon of 2−52 ≈ 2.22× 10−16.

The rapid attainment of a high order of accuracy means that, for a fixed level
of error to be tolerated in a numerical calculation, the Δx required may be (consid-
erably) larger for a spectral method than a finite difference method. This not only
means that less demand is made on memory resources, but in a time-dependent
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(green) derivative calculations.
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calculation in which the time step must satisfy a CFL condition (see, e.g., Morton
and Mayers, 2005) set by the choice of Δx, a larger time step may be used with a
spectral method than with a finite difference method that satisfies the same error
tolerance. This is a second important way in which a spectral method can save cpu
resources.

A third source of savings in cpu time comes from special features of complex
exponentials as they occur in Fourier transform calculations. It will be recalled
that in the case of finite difference methods, the cost of going to highly non-local
polynomial interpolation to get higher-order accuracy comes at the O(N2) cost
of having to do matrix multiplication with dense matrices. On the face of it, the
expression (4.45) would suggest a similar O(N2) cost, since tracing back through
the definition of the Ũk means that the expression (4.45), when applied at grid
points, could be rewritten in the form

U ′(xj) =
N∑
l=1

Ej l U(xl) , (4.46)

where the matrix with entries Ej l that involve products of wavenumbers and com-
plex exponentials is dense. However, fast Fourier transforms take advantage of prop-
erties of complex exponentials to calculate the Ũm as well as the inverse transform,
and the entire derivative calculation can be done, not by the matrix multiplication,
but instead by a pair of calls to fast Fourier transform routines in what is, for N a
product of a small number of primes, in fact O(N logN) operations, a significantly
smaller number than O(N2) when N gets large. A very common choice is N = 2n

for some integer N . Versions of FFTs, in dimensions 1–3, are included in most com-
putational mathematics software packages, and vendors of large computer systems
typically provide versions that are tuned optimally to their systems.

Another benefit that spectral methods can bring to wave propagation problems
is the much reduced ‘numerical dispersion’, when compared to the situation with
finite difference methods. This can be illustrated by considering numerical solutions
to the simple wave equation

∂u

∂t
= −2π

∂u

∂x
, (4.47)

u(x, 0) = e− sin(x) ,

u(0, t) = u(2π, t) (periodicity in x) .

The exact solution is u(x, t) = e− sin(x−2π t). Because of the periodicity of the sine
function, integrating the solution for an interval of time equal to an integer should
reproduce the initial condition, and using this fact makes checking the numerical
solution at integral multiples of time a simple way to illustrate error properties.
Figure 4.9 shows results of integrations over different periods and using different
numbers of grid points, comparing spectral results with second-order finite dif-
ference results. The time-stepping method was the same in each case (a simple
second-order accurate leapfrog method), and the only difference was in the calcu-
lation of the spatial derivative.

With N = 16, the finite difference scheme is clearly suffering numerical disper-
sion after just one period of integration, while the spectral scheme shows only a
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little error of any sort (note that the peak is in the correct position even at such
coarse resolution). To get error even comparable with the spectral results requires
doubling the number of grid points and the dispersion is still evident in the failure
to correctly position the maximum. Integration at the same doubled spatial res-
olution, but for 10 periods, shows the clear difficulty the finite difference method
is having. Quadrupling the number of grid points improves the 10-period solution
using the finite difference method, but at this resolution the 100-period solution is
again clearly inferior to the spectral approximation. The essential reason why the
spectral method propagates this wave so well is that the individual Fourier com-
ponents propagate independently in this linear problem, and the spatial derivative
calculation is exact for all the represented components.
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4.4 The Gibbs phenomenon

There is of course one difficulty with spectral methods that is well known: they
work best with smoothly varying functions and do not easily handle functions that
have discontinuities, where they show the ‘Gibbs phenomenon’. Spectral meth-
ods require inclusion of high wavenumbers (small-scale oscillations) to represent
rapidly varying features of functions, and if a function has variations, even at only
one location, on very small scales, high wavenumbers are required in the Fourier
representation and their omission through truncation will have deleterious effects
everywhere.

An extreme example is what happens at a simple jump discontinuity. While the
spectral representation using an infinite Fourier series (which includes components
of arbitrarily small wavelength) is excellent away from a simple discontinuity, if
the series is truncated the result has error-containing oscillations, greatest near
the discontinuity but present everywhere in sufficient amplitude to drastically re-
duce the overall error to O(1/N). And even though with increase in N significant
amplitude in these oscillations can be confined closer and closer to the discon-
tinuity as the number of waves included increases, there is always an overshoot
and undershoot of the representation in the immediate vicinity of the jump, and
the amount of the overshoot is never reduced in any finite truncation. The phe-
nomenon is shown in Fig. 4.10, for the case of a simple ‘sawtooth’ function S(x).
The figure has S(x) along with approximations using wavenumbers up to M for
M = 2p, p = 2, 4, 6, 7. (The reader will recall that the maximum wavenumber
that can be represented using N equally spaced grid points is M = N/2.) The
evident agreement of the partial sums with each other right at the jump reflects
the fact that the Fourier series of a function with an isolated jump discontinuity
converges at the location of the discontinuity to the average value of the left- and
right-hand limits. Notice that while the error for any choice of M is worst near
the jump, even at large M there is error evident far from the jump in the form of
a small-wavelength signal. In a time-dependent calculation, the possibility exists
for the largest errors, originally located near the jump, to propagate away from
it.

Since scattering calculations involve changes that are effectively jump discon-
tinuities in indices of refraction at particle boundaries, it is a priori important to
have a way of minimizing errors introduced by the Gibbs phenomenon. What leads
to these errors is the presence of significant amplitudes in the high wave number
Fourier components: with ‘infinite’ resolution these high-wavenumber components
destructively interfere, but with any sum involving only finitely many of them the
destructive interference is incomplete and the result is the oscillatory error be-
havior away from the jump in Fig. 4.10. A number of ‘filtering’ treatments have
been applied to the high wavenumber modal amplitudes, essentially replacing Ũk

with g(k) Ũk, where the function g(k), defined for non-negative k, has the proper-
ties

g(k)

{ ≈ 1 for small k
→ 0 ‘rapidly’ for k approaching K .

(4.48)
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Fig. 4.10. The Gibbs phenomenon at a simple jump discontinuity. M is the truncation
wavenumber in the Fourier series partial sum.

A choice of g that has a number of desirable properties is the ‘exponential
filter’. If

g0(k) = exp

{
−γ k

K

}
, where γ = − ln(ε) ,

(ε is again the machine epsilon) then g0(0) = 1 and g0(K) = ε, but the drop
in g with increasing wavenumber k occurs too quickly. Taking a power p of the
exponential’s argument,

gp(k) = exp

{
−γ

(
k

K

)p}
postpones the approach to ε. That is, successively higher powers p give filters that
stay near 1 for successively greater wavenumbers before dropping quickly to ε, as
shown in Fig. 4.11.

Then if the function u(x) has Fourier amplitudes ũk, the filtered version up(x)
of u(x), using exponent p is defined by

up(x) =

N/2−1∑
k=−N/2

gp(| k |) ũk ei k̂ x = IFFT ({gp(| k |) ũk}) .
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Fig. 4.11. Filter behavior as p varies.

Figure 4.12 shows the results of filtering for different choices of truncation wavenum-
ber M and exponent p. A low value of p gives a filtered version which has very
few oscillations away from the discontinuity, especially as the M increases. This
is shown in the upper panel of the figure, which has results with p = 2. However,
with such a small value of p the jump is spread over a comparatively wide band
around the true jump. The middle panel shows what happens when p is increased
to 8: the jump is less spread but the high wavenumber oscillations are starting to
be evident again, which is understandable because the filter has come to resemble
more a sharp cut-off at a particular wavenumber (see Fig. 4.11 again). The bottom
panel compares the error in the p = 0 (unfiltered) approximation and in the p = 8
approximation, in each case using M = 128 waves. This panel uses a stretched
vertical scale to show the reduction in the oscillatory error away from the jump
that the exponential filter provides. (Note that because of the magnification chosen
the amplitude of the error close to the jump is off the scale.)

It can be shown (see, e.g., Gottlieb and Shu, 1997) that the use of an exponential
filter of order p will produce O(N1−p) accuracy everywhere away from the jump:
the Gibbs phenomenon pollution away from the jump can be essentially removed.

This has been a general discussion of the Gibbs phenomenon and its treatment
using simple exponential filters: the matter of how to choose a filter, exponential
with a certain order or another kind of filter, for a given scattering problem is
a subject of current research. It was found by Liu et al., (2012b) that simply
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Fig. 4.12. Filtering using the exponential filter and various values of M . In comparing
the panels, note that the the vertical scale in the bottom panel has been stretched to show
the difference in error behavior away from the jump between the unfiltered and filtered
M = 128 approximations.

truncating the Fourier expansion at M = 0.9K or 0.95K, which is comparable to
taking a very high order of p, produced results suitable for their validation tests
that were not noticeably different from those obtained using an exponential filter.
In fact, the PSTD results shown in Sections 4.5 and 4.6 below were obtained using
such a simple truncation.
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4.5 Some PSTD results

In this section we show two kinds of results. The first kind establishes the validity
of the PSTD method by considering scattering problems for which either an exact
solution or another highly reliable method is available. In the case of spherical
particles the exact solution is the Lorenz–Mie solution, and in the case of spheroids
the reliable method is the T-matrix method. The second kind of results involve
cases in which neither of these approaches to validation is available. In the section
that follows this one we discuss the relative performance characteristics of the
PSTD and DDA methods. All the calculations in this section and the following one
were performed on a single 8-cpu node of an IBM iDataplex cluster with 2.8-GHz
processor at the Texas A&M Supercomputing Facility.

4.5.1 Comparison with Lorenz–Mie calculations

As a first demonstration we use PSTD to calculate light scattering by spheres,
considering size parameters ranging from 10 to 200, and three realistic refractive
indices of ice: at wavelengths of visible (0.670μm), near infrared (4.05μm) and
infrared (11.45μm) using values of refractive index 1.308 + 1.93 × 10−8 i, 1.358 +
1.336× 10−2 i and 1.162+ 3.537× 10−1 i, respectively (Warren and Brandt, 2008).
The three refractive indices represent the non-absorptive, weakly absorptive and
strongly absorptive cases.

Table 4.1 shows the computational times and spatial resolutions used for each
size and refractive index using the PSTD. The spatial resolution is defined to
be λ/Δx, the number of grid points per wavelength. Even with the parallelized
implementations, the computational burden increases significantly with increase
in particle size. For small size parameter, high spatial resolution is necessary (but
affordable) to give an accurate representation of the particle shape, whereas, for

Table 4.1. Computational time and spatial resolution for numerical simulation of light
scattering by spheres.

Visible Near-IR IR
(m=1.308+1.930×10−8 i) (m=1.358+1.336×10−2 i) (m=1.162+3.537×10−1 i)

x time(s) λ/Δx time(s) λ/Δx time(s) λ/Δx

10 2.9× 102 26.7 1.8× 102 22.9 1.5× 102 22.9
20 2.5× 103 24.6 2.2× 103 26.5 6.5× 102 21.5
30 5.5× 103 18.5 2.6× 103 18.5 1.5× 103 16.4
40 2.0× 104 23.3 1.1× 104 20.8 4.6× 103 17.0
60 1.5× 104 14.5 1.3× 104 14.5 6.8× 103 12.2
80 2.0× 104 10.4 4.2× 104 14.1 2.1× 104 11.7

100 1.1× 105 14.3 5.8× 104 11.3 4.3× 104 10.6
120 1.5× 105 12.0 1.5× 105 12.0 6.5× 104 9.45
140 1.8× 105 11.9 1.9× 105 10.3 1.2× 105 8.46
160 2.2× 105 8.97 1.8× 105 8.03 1.5× 105 8.03
180 2.9× 105 8.53 3.0× 105 8.53 2.6× 105 8.53
200 3.4× 105 7.68 3.5× 105 7.68 3.0× 105 7.68
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large size parameters, the particle surface radii of curvature become much larger
compared to the wavelength, i.e. effectively smoother, and relatively coarse spatial
resolution may be taken. The ratio of wavelength to grid-point spacing is no more
than 30 for small particles, and no more than 10 for spheres with size parameters
larger than 140. There are between five and seven grid points (depending on index of
refraction) per intra-particle wavelength for simulations with size parameter of 200,
a number of grid points that is much smaller number than that needed for FDTD.
Table 4.1 shows that the computational time is not monotonic as function of the
size parameter: this is because, with different spatial resolutions used, the number
of grid points N is not monotonic for these simulations. In a calculation using
single 8-cpu node, the most time-consuming simulation took 3.5× 105 seconds, i.e.
approximately 4 days for a sphere with size parameter of 200 and refractive index
of 1.358+1.336× 10−2 i, while the computational time was no more than 4.3× 104

seconds (about 12 hours) for x < 100.
With the exact solutions given by the Lorenz–Mie method, we can evaluate the

overall performance of PSTD quantitatively. For this purpose six different diagnos-
tic quantities related to scattering properties are calculated:

– relative error (RE) in extinction efficiency, single-scattering albedo (for the two
absorptive cases), asymmetry factor, and phase function at 180◦,

– root-mean-square relative error (RMSRE) of P1 1(θ), and
– root-mean-square absolute error (RMSAE) of the ratio P1 2(θ)/P1 1(θ).

Here the ‘relative error’ RE for a value calculated by a numerical method is defined
in terms of the ‘true’ value as follows:

RE =

∣∣∣∣approximate value – true value

true value

∣∣∣∣ .
The quantity P1 1(180

◦) is an important parameter for lidar applications, while
both the RMSRE and RMSAE can give a good overall measure of the accuracy of
the phase matrix elements simulated by a numerical method.

Figure 4.13 shows how the diagnostic quantities for the PSTD vary as functions
of size parameter for the three refractive indices at visible, near-infrared (near-IR)
and infrared (IR) wavelengths. For most cases, the relative errors for Qext, SSA,
and g are no more than 2%. Most numerical methods have difficulty giving an
accurate approximation for backward scattering, especially scattering at exactly
180◦, and PSTD is no exception (weak backward scattering for large particles may
be several orders of magnitude smaller than the forward scattering). The relative
errors of P1 1(180

◦) are extremely large for same cases: e.g. over 100% for a sphere
with size parameter of 160 at the visible wavelength, whereas most relative errors
for P1 1(180

◦) are smaller than 50%. The RMSREs of P1 1 are smaller than 50%
and the RMSAEs of P1 2/P1 1 are all less than 30% (except for a sphere with size
parameter of 180 at the visible wavelength). The errors of P1 1 and P1 2/P1 1 for
the absorptive cases are smaller than those of the non-absorptive ones, essentially
because the backward scattering is smoothed out by the absorption. The relative
errors for the integral scattering properties are highly irregular, and no clear pattern
is found as x and m are varied. However, the RMSREs of P1 1 and the RMSAEs
of P1 2/P1 1 generally increase with the increase of the size parameter, because the
phase matrix elements of spheres become more oscillatory for large x.
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Fig. 4.13. The REs, RMSREs and RMSAEs for spheres with different x at three
wavelengths: visible (0.67μm, m = 1.308 + 1.93 × 10−8 i); near-IR (4.05μm, m =
1.358 + 1.336× 10−2 i) and IR (11.45μm, m = 1.162 + 3.537× 10−1 i ).

Overall, PSTD appears to give accurate and reliable results for light scattering
by a sphere in a case for which the product of the size parameter and the real part
of the refractive index xRe(m) reaches approximately 270. Particles of this size can
be treated with other methods (Mie or T-matrix) if the particle has appropriate
symmetry, but not if the particle is significantly irregular. The PSTD has no such
symmetry requirements. DDA methods may also be used for large particles without
symmetry requirements, but as will also be seen below, the index of refraction must
be close to 1.

Large particles

Figure 4.14 illustrates the normalized phase functions given by PSTD and Lorenz–
Mie theories for spheres with size parameter of 200 and the three refractive indices.
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Fig. 4.14. The normalized phase function and relative errors for spheres with x = 200
at three wavelengths: visible (0.67μm, m = 1.308 + 1.93 × 10−8 i); near-IR (4.05μm,
m = 1.358 + 1.336× 10−2 i) and IR (11.45μm, m = 1.162 + 3.537× 10−1 i).

The relative errors of the normalized phase functions are given in the right panel.
Even with such a large size parameter, for which the phase function oscillates
significantly, the PSTD results agree quite well with the exact solutions given by
the Lorenz–Mie theory in the forward scattering directions: the inserts are provided
to emphasize this point. The relative errors for the forward scattering are mostly
less than 30%, but much more significant errors arise for backward scattering than
forward. While the performance is not as good in the non-forward directions, it
should be borne in mind that the FDTD method has great difficulty reaching such
large particle size, and the DDA runs into trouble with refractive indices that
exceed 1.2 (see results in the next section). For the absorptive cases, the backward
scattering of the large spheres becomes very smooth, whereas PSTD results are
more oscillatory.
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Larger mR

The real parts of the refractive indices for ice crystals and aerosols at different
wavelengths are usually under 2, but they become very large at microwave wave-
lengths. For example, the refractive index of water at the wavelength 3.2 cm is
8.2252 + 1.680 i (Yang et al., 2004). It is quite challenging to calculate the optical
properties of particles with large refractive index accurately (Sun and Fu, 2000;
Yang et al., 2004; Zhai et al., 2007).

Figure 4.15 shows results from a PSTD calculation for a sphere with x = 40
and refractive index 8.2252+ 1.680 i. The relative errors of the phase function and
the absolute errors of the ratios of other phase matrix elements to it are shown in
the right column. With very smooth backward scattering that PSTD approximates
accurately, the errors are basically in the forward directions (scattering angles θ
in the range 0◦ − 40◦), although the relative errors are no more than 30%. The
absolute errors for the ratios are also very small, less than 0.4 for P1 2/P1 1 and
P3 3/P1 1, although the absolute errors do reach nearly 0.8 for P3 4/P1 1.

Fig. 4.15. The normalized phase function and the ratios of other nonzero phase matrix
elements to it for spheres with size parameter of 40 and refractive index of m = 8.2252 +
1.680 i computed by PSTD. The relative errors of the phase function and the absolute
errors of the ratios are shown in the right panel.



174 R. Lee Panetta, Chao Liu, and Ping Yang

4.5.2 Comparison with T-matrix calculations

The central purpose in developing the PSTD technique is to be able to use it in the
study of scattering by randomly oriented nonspherical particles. We give now some
examples of calculations for randomly oriented spheroids using PSTD, and compare
the results with those from solutions using the T-matrix method (Mishchenko et
al., 1996).

Figure 4.16 shows Qext and g for oblate spheroids as functions of the size pa-
rameter defined in the form of 2πa/λ, where a is the equatorial radius. The as-
pect ratio a/b is equal to 2.0, where b is the semi-length of the shorter symmetry
axis (see the figure insert). The refractive index of ice at wavelength of 0.67μm
(m = 1.308+1.93×10−8 i) is used for the simulation, and scattering of the spheroids
with 16 orientations are simulated and averaged for the randomly oriented prop-
erties (using 32 orientations produced no significantly different results). The solid
lines in the figure are given by the T-matrix theory, and the dots are the PSTD
results with their relative errors shown in the right column. The ratios of wave-
length to Δx used are over 100 for the small particles, while they can be reduced to
only about 10 for spheroid with size parameter of 100. The figure shows excellent
agreement between the results given by the PSTD and T-matrix methods for size
parameter from 1 to 100. The relative errors of Qext are no more than 1.2%, and
those of g are less than 0.8%, with the errors for the asymmetry factor generally
increasing (but not monotonically) with increasing particle size.

b 
a

Fig. 4.16. Qext and g for spheroids as functions of size parameter, and the refractive
index of the spheroids is m = 1.308+1.93× 10−8 i. Relative errors are shown in the right
column.
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Figure 4.17 shows the phase function and the ratios of other nonzero phase
matrix elements to it for a randomly oriented spheroid having size parameter 100.
The PSTD results show good agreement with those given by the T-matrix theory,
except some errors (with relative errors less than 25%) for P1 1 at scattering angles
from 160◦ to 180◦. PSTD approximates the scattering properties of the randomly
oriented spheroid much more accurately than those of the spherical cases, because
the oscillations of the phase matrix elements for individual orientations cancel each
other out in the averaging, with the result being relatively smooth curves. (For the
same reason randomly oriented asymmetrical nonspherical particles also present
relatively smooth phase matrix element curves, as we will show in Figs. 4.18 and
4.19 below.)
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Fig. 4.17. The normalized phase function and the ratios of other nonzero phase matrix
elements to it for randomly oriented spheroid with size parameter of 100 and refractive
index of 1.312 + 1.489 i× 10−9 given by the T-matrix and PSTD methods.
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4.5.3 Two less-symmetric examples

The PSTD can of course be applied to calculate scattering from particles of a
much wider range of shapes than the highly symmetrical cases just considered. In
conclusion to this section, we show results from calculations of scattering by more
asymmetrical particles. (For these cases there are no exact solutions available, so we
cannot provide error estimates.) Figure 4.18 shows results for a hexagonal column,
a model for an ice crystal that may occur in a cirrus cloud, calculated by the PSTD
method and the IGOM method. Figure 4.19 shows results using a fractal model
for a dust particle (see the inset in the figure). The incident wavelength for the ice
crystal is 0.532μm and the index of refraction is m = 1.3117 + 1.489 × 10−9 i; for
the dust particle the incident wavelength is 0.6328μm and the refractive index is
m = 1.55+1×10−3 i. The fractal particle was constructed using an algorithm, due
to Macke et al. (1996), that starts with a regular tetrahedron and goes through a
specified number of iterations, at each iteration adding a scaled-down tetrahedron
to all the faces of the particle at that stage. For details, see Macke et al. (1996) or
Liu et al. (2013). In the case of each figure, what is shown is the result of averaging
over a number of orientations. In the case of the hexagonal column, advantage is
taken of the symmetries of the hexagon and the number of orientations is just 48,
but in the fractal there are no symmetries and the number of orientations used is
256.

The hexagonal columns in Figs. 4.18(a) and (b) have the size parameters kL =
100 and kL = 200, respectively, where L is the length of the columns. The width-
to-length ratio 2a/L is chosen to be 1, and a is the semi-width of the hexagonal
cross-section. With a size parameter of 100 in Fig. 4.18(a), both the phase functions
from PSTD and IGOM show weak scattering peaks at scattering angles 22◦ and
46◦, and the peaks become very strong when the size parameter increases to 200,
as evident from the P11 curves shown in Fig. 4.18(b). The agreement of the IGOM
approximations to the PSTD results becomes better as the size parameter increases.
The ratios of other phase matrix elements to the phase functions given by the PSTD
and IGOM also show similar overall patterns. The PSTD solutions show small
oscillations with scattering angle, oscillations that are not obtained by IGOM.
This is because the PSTD is able to take into account phase interference in the
electromagnetic field. The size parameter of the fractal particle shown in Fig. 4.19
is based on the equivalent-projected-area sphere, and the value of 30 is used. Again,
we can see that the PSTD and IGOM results agree quite well.

As this brief survey indicates, the PSTD appears to perform well in reproducing
integral scattering properties and phase matrices given by the analytical Lorenz–
Mie and T-matrix theories, over a range of size parameters and refractive indices.
In the next section, we discuss some recent work comparing the PSTD with the
DDA method in the outer region, in terms of size parameter and index of refraction,
of what is currently numerically feasible with the DDA.
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Fig. 4.19. Fractal particle: incident wavelength 0.6328μm, refractive index m = 1.55 +
1.0× 10−3 i, ka = 30 (see text). Calculations done using PSTD and IGOM.

4.6 Comparison with DDA

The discrete dipole approximation (DDA) has been extensively applied for atmo-
spheric particles (e.g. Bi et al., 2009, 2010; Yang et al., 2005; Meng et al., 2010),
and a number of DDA implementations have been developed in the past decades
(Draine and Flatau, 1994; Zubko et al., 1999; Yurkin and Hoekstra, 2007). DDA
was compared with FDTD by Yurkin et al., 2007a, who showed that the two meth-
ods perform comparably around the refractive indices of 1.4. DDA is faster for
smaller refractive indices, whereas FDTD is the more efficient method for larger
ones.

A comparison between PSTD and DDA was carried out by Liu et al. (2012b),
using a version of a DDA method known as the Amsterdam DDA (ADDA) v.0.79
code that was parallelized with MPI to run on a cluster of processors. The PSTD
implementation was parallelized using OpenMP, which supports shared-memory
parallel programming (Liu et al., 2012b), but can only be used with a collection
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of processors on a single node. MPI codes have the advantage that they can run
across multiple nodes, but intrinsic to their operation is a cpu overhead incurred in
inter-processor communication. This overhead cost is greater when the processors
in communication are on different nodes, but is still not negligible when they are
on the same node. So comparing performance an MPI code with an OpenMP code
must involve some consideration of this issue. Liu et al. (2012b) estimated that the
overhead cost was not more than 20%, and hence did not affect their conclusion
that the PSTD not only outperforms DDA for larger refractive indices, but also
for large spheres with smaller refractive indices. We summarize some of the results
of Liu et al. (2012b) here. As mentioned above, all calculations were carried out
on a single node of an iDataplex cluster; the node had 8 Nehalem-based 2.8GHz
processors.

Simulations were performed for spheres with size parameters from 10 to 100 and
real part of refractive indices from 1.2 to 2.0. The excellent performance of DDA
for light scattering by particles with refractive index close to 1 (the vacuum value)
is well known (Yurkin and Hoekstra, 2007, 2011): consistently, Liu et al. (2012b)
found that for particles with indices of refraction very close to 1, the PSTD is
comparatively more expensive of cpu time. The balance was found to shift, as we
show below, as indices of refraction significantly larger than one are considered. The
results we discuss are for refractive indices that are 1.2 or larger, and all refractive
indices are purely real.

The scatterers considered were spherical, so the true values are known. In our
comparison of the two methods, we choose accuracy criteria for Qext and P1 1(θ)
as follows: the relative error of Qext should be less than 1%, and the root mean
square of the relative errors of the phase function P1 1(θ) should be less than 25%.
The phase matrix in one scattering plane is calculated with the scattering angle θ
varying from 0◦ to 180◦ in steps of 0.25◦. For each method, and for a given choice of
size parameter and index of refraction, the resolution was increased until the calcu-
lation using that method met the accuracy criteria. (Increasing the resolution in a
DDA simulation means increasing the number of dipoles and decreasing the space
between them.) The DDA code has default settings for the dipole polarizability and
iterative method, and those were used in the comparison runs. The convergence
criterion of the iterative solver was set to be 10−3 (larger than the default value
10−5); this weaker convergence criterion proved sufficient to achieve the accuracy
required for the comparison of methods. With the same accuracy achieved by the
two methods, the computational time becomes the most direct way to describe the
overall performance of the methods.

Table 4.2 lists the most important computational parameters and the resultant
accuracy of the simulated results in reference to those from Lorenz–Mie theory.
It includes the spatial resolutions, the computational times, the relative errors of
Qext, and the RMSREs of the normalized phase function. (For the DDA the spatial
resolution is the number of dipoles per wavelength.) In the interest of keeping the
table legible, we have not included a pair of columns to show the amounts of memory
required by each simulation and method. We simply report here two examples, with
fixed index of refraction m = 1.2, of memory usage at two different size parameters.
For x = 10, a case in which the DDA ran slightly more than twenty times faster
than the PSTD, the PSTD required about 70MB of memory and the DDA only
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Table 4.2. Parameters and performance results for the comparison of PSTD and DDA
for spheres with different x and m. ‘NR’ means no result (see text). Note (*): the DDA
for a sphere with x = 100 and m = 1.2 did not converge with the default iteration method
(quasi-minimal residual), and the bi-conjugate stabilized method was used instead.

Time (s) λ/Δx RE(Qext) (%) RMSRE(P11) (%)

m x PSTD DDA PSTD DDA PSTD DDA PSTD DDA

1.2 10 2.1× 101 1.0× 100 13 10 0.34 0.071 5.6 0.74
20 4.4× 101 2.0× 100 7.7 7.5 0.0083 0.54 8.5 13
30 3.0× 103 1.2× 101 20 6.7 0.83 0.25 4.2 16
40 3.9× 104 1.2× 102 30 7.5 1.0 0.43 25 19
60 2.5× 104 2.3× 103 18 8.4 0.91 0.20 15 13
80 1.0× 104 7.3× 104 9.2 9.4 0.26 0.62 19 19

100(∗) 2.3× 104 2.7× 104 9.3 10 0.050 0.25 18 13

1.4 10 2.3× 102 2.0× 100 22 15 0.30 0.69 6.1 12
20 3.3× 103 1.1× 103 22 25 0.78 0.98 10 22
30 3.8× 102 9.8× 103 11 17 0.87 0.74 19 25
40 6.7× 103 1.8× 104 18 18 0.99 0.68 18 15
60 2.9× 103 NR 18 NR 1.0 NR 21 NR
80 (1.2× 104) NR (9.2) NR (0.32) NR (38) NR
100 8.9× 104 NR 13 NR 0.47 NR 23 NR

1.6 10 4.9× 101 5.4× 101 12 25 0.85 0.76 14 7.1
20 (1.1× 103) (3.2× 104) (20) (40) (5.4) (5.7) (44) (45)
30 8.3× 102 4.4× 104 13 30 0.78 0.75 25 15
40 2.7× 103 (2.4× 105) 14 (20) 0.23 (1.5) 24 (33)
60 (3.2× 104) NR (18) NR (0.035) NR (29) NR

1.8 10 2.7× 102 6.4× 102 26 35 0.92 0.88 10 8.8
20 1.5× 103 (3.0× 103) 23 (40) 0.85 (2.7) 10 (19)
30 3.0× 103 (9.5× 104) 19 (25) 0.70 (5.4) 15 (52)
40 1.5× 104 NR 21 NR 0.63 NR 19 NR
60 1.7× 104 NR 15 NR 0.28 NR 22 NR

2.0 10 5.1× 101 2.0× 103 13 40 0.90 0.45 16 16
20 5.6× 102 (5.0× 104) 16 (35) 0.58 (8.9) 13 (35)
30 1.3× 103 (5.1× 105) 14 (25) 0.21 (2.0) 21 (55)
40 (3.4× 103) NR (14) NR (2.3) NR (26) NR

20MB. When the size parameter was increased to 100 the PSTD took only 85%
of the time required for the DDA and used 5GB, while the DDA used 16GB of
memory. This was generally the trend: as the DDA struggled to deal with increasing
index of refraction and particle size, its demands on memory became increasingly
larger than those of PSTD.

For some cases, a method would fail to reach the prescribed accuracy even
with a very fine spatial resolution (40 dipoles per wavelength for DDA or 30 grid
points per wavelength for PSTD), and results of these simulations are indicated
with parentheses. The computations that are too time-consuming (the time limit
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for any given calculation was set at 7 days, i.e. 6.048 × 105 s) to reach even lower
accuracy for DDA are marked as ‘NR’ (no result) in the tables, whereas PSTD
was able to handle all x and m chosen. To reach the prescribed accuracy, the
spatial resolutions used for PSTD range from 10 to 30 grid points per wavelength,
with most simulations using spatial resolution less than 20. However for DDA,
the spatial resolution, under 20 dipoles per wavelength for refractive indices of 1.2
and 1.4, rose from 25 to 40 for larger refractive indices. Both PSTD and DDA
require much more computational time for large x, because of the increase in the
total grid point or dipole number in the computational domain. PSTD reached
the prescribed accuracy for most cases within 24 hours (i.e. 86 400 s), except for
spheres with x = 100 and m = 1.4, whereas for DDA the computational time
increased significantly with both size parameter and refractive index. Convergence
for most cases with large refractive indices could not be achieved by DDA. A pattern
becomes clear in the calculations: the two methods show significant differences in
capability for different x and m. For small refractive indices (m = 1.2 or 1.4), there
is a critical size parameter above which PSTD is more efficient, and this critical
value decreases from 80 to 30 as the refractive index increases from 1.2 to 1.4. For
refractive indices larger than 1.4, PSTD is almost more than an order magnitude
faster, and DDA encounters a challenge even for size parameters around 30.

In the next two figures we give some details of the comparison calculations by
showing how the accuracy in P11 and P12/P11 changes, for a fixed particle size
x = 30, as the index of refraction varies from 1.2 to 2.0. Included in the panels in
the left column is the ratio of cpu times

ρ =
PSTD time

DDA time

required for the calculations.
Figure 4.20 compares the phase functions of spheres with the same size parame-

ter of 30 and different refractive indices in the left panels, and the relative errors of
P11 are illustrated in the right panels. From the top to the lower panel, the refrac-
tive index increases from 1.2 to 2.0 in steps of 0.2. The PSTD and DDA results, as
well as the exact solutions given by the Mie theory, are shown. At size parameter
30, the DDA is more efficient than PSTD only for the sphere with refractive index
of 1.2 with the ratio ρ greater than 1; the PSTD is more efficient for m larger than
1.2. We can see that the PSTD and DDA results themselves are comparable for
spheres with refractive indices of 1.2, 1.4 and 1.6, while the relative errors given
by DDA for m = 1.8 and 2.0 become significantly larger than those given by the
PSTD. Similar results are shown in Fig. 4.21 for P12/P11. More detailed results
and discussion can be found in (Liu et al., 2012b).

We summarize the data in Table 4.2 with a ‘regime diagram’ in Fig. 4.22. It is
a representation of the (x, m) plane, in which green symbols indicate parameter
choices (x, m) for which the DDA seems to be the preferable method, based on
cpu time needed to meet accuracy criteria, and red symbols indicate choices for
which the PSTD was preferable. The value entered at a location in the diagram is
the time ratio ρ. Cases in which the PSTD produced results meeting the accuracy
criteria but the DDA did not are indicated by open rather than solid circles.
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Fig. 4.20. Comparison of calculations of P11 using PSTD and DDA for spheres with
x = 30 and indices of refraction ranging from 1.2 to 2.0. In addition to the index of
refraction m, the ratio ρ of PSTD to DDA cpu times is displayed in each panel of the left
column.
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Fig. 4.21. As in Fig. 4.20, but for P12/P11: comparison calculations for PSTD and DDA
for spheres with x = 30 and indices of refraction ranging from 1.2 to 2.0.
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Fig. 4.22. A diagram illustrating the relative performance of the PSTD and the ADDA
for spherical particles with different x and m. Numbers in the figure are the ratios ρ of
PSTD to DDA cpu time required for the scattering calculation at indicated (x,m). Open
circles indicate that a PSTD result was calculated, but the DDA calculation failed to
converge. See text for more details.

4.7 Summary

This chapter reviewed the theoretical development and numerical performance of
the pseudo-spectral time-domain approach to calculating the single-scattering prop-
erties of atmospheric aerosols. The key features of the pseudo-spectral method that
were discussed were significant computational economy due to the high order of
accuracy in computation of spatial derivatives, with associated benefits in choice
of time-step size, and the relatively small numerical dispersion. A discussion was
given of the manner in which the Gibbs phenomenon can be handled in the case of
solution discontinuities. Selected numerical results were presented to validate the
PSTD in highly symmetric cases for which exact solutions are known, and some
examples of results with asymmetrical particles were shown. Comparisons with the
highly successful DDA, focusing on the case of spherical particles, indicate that
the PSTD cannot really compete with the DDA for spherical particles with modest
size parameters and indices of refraction with real part close to 1. But the PSTD
appears to have an advantage as size parameters increase, especially when indices
of refraction have real parts that are above 1.4. Some comparisons of PSTD and
DDA calculations for spheroids were given by Liu et al., (2012b).

As emphasized in the introduction, it is not to be expected, or even desired,
that a single method of calculation should be regarded as superior in all aspects to
all others, and we make no such claims for the PSTD here. Furthermore, none of
the cpu times that we quote have absolute meaning in the context of a computer
technology that is always rapidly advancing. What seems out of reach computa-
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tionally today may be an unremarkable undertaking in two years. But we see no
reason why the relative performance strengths that we have found will not remain
representative for a longer time. We particularly emphasize that while many of
the comparison calculations we have discussed here have been with simple particle
shapes, and those simple shapes happen because of their symmetry to be within
the reach of other methods, there are no special requirements of particle shape
or symmetry that are made by the PSTD method itself. On the basis of results
shown here, as well as results recently obtained for scatterers with inhomogeneous
composition, we believe that the PSTD method shows real promise for pushing the
boundary of what is feasible in the regime of large size, large index of refraction,
and complex geometry.
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5 Application of non-orthogonal bases in the
theory of light scattering by spheroidal particles

Victor Farafonov

5.1 Introduction

The theory of light scattering by single particles and their ensembles has impor-
tant applications in various areas of science and technology, e.g. in optics of the
atmosphere, radio physics, astrophysics and biophysics as well as in environmental
monitoring, analysis of the Earth’s climate changes and so on. So far in such appli-
cations one used to employ the Mie theory that provides the solution to the light
scattering problem for a sphere (van de Hulst, 1957; Bohren and Huffman, 1983).
In this solution the fields are represented by their expansions in terms of vector
spherical wave functions that form an orthogonal basis for the problem including
the boundary conditions on the spherical particle surface. As a result the Mie solu-
tion is rather simple and allows one to extensively apply numerical modelling due
to the ease of calculations of the spherical wave functions in a very wide range of
parameter values. However, real particles tend to differ substantially in shape from
spheres, and one needs to consider the light scattering by nonspherical particles
(Mishchenko et al., 2000, 2002).

After excluding spheres, the simplest finite size particles appear to be prolate
and oblate spheroids. But even in this case the corresponding vector spheroidal wave
functions are not orthogonal on spheroidal coordinate surfaces (Morse and Fesh-
bach, 1953). Hence in solving even these rather simple problems by the separation
of variables method, there arise infinite systems of linear algebraic equations (IS-
LAEs) relative to the unknown field expansion coefficients (Asano and Yamamoto,
1975; Sinha and McPhie, 1977; Farafonov and Slavyanov, 1980; Farafonov, 1983;
Schultz et al., 1998). The same result occurs when applying the extended boundary
condition method with a spherical basis, i.e. with the field expansions in terms of
spherical wave functions (Barber and Yeh, 1975; Barber and Hill, 1990; Farafonov
et al., 2010). This method with a spheroidal basis has only recently been developed
(Farafonov, 2001; Kahnert, 2003a), and numerical results were obtained just in a
few works (Il’in et al., 2007; Farafonov et al., 2007; Farafonov and Voshchinnikov,
2012). In the general case, in solving the light scattering problem for a nonspheri-
cal particle, the requirement to satisfy the boundary conditions practically always
leads to an ISLAE relative to the unknown expansion coefficients (Kahnert, 2003b;
Farafonov and Il’in, 2006). Even if, as in the Mie theory, the basis chosen is orthog-
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onal on any spherical coordinate surface, it is not orthogonal on the boundary of
the nonspherical particle where the boundary conditions are imposed. Therefore,
to solve the light scattering problem correctly one has to prove both solvability of
the arising ISLAEs and convergence of the field expansions everywhere up to the
particle surface. These questions have been considered in the case of a spheroidal
basis in the recent work of Farafonov (2011).

This review deals with application of non-orthogonal bases to the problem of
the light scattering by dielectric and perfectly conducting spheroids. In Section 5.2
we discuss the differential and integral formulations of the problem and describe
an original solution for the both kinds of spheroids. In contrast to the standard
approaches our solution assumes representation of the field by a sum of two compo-
nents where one component is independent of the azimuthal angle while averaging
of the other component over this angle gives zero. Commutativity of the opera-
tor Lz = ∂/∂ϕ and the integral operator T corresponding to the light scattering
problem allows one to solve the problem for each of the components independently.
This commutativity also provides separation of variables (here for the azimuthal
angle only) in the light scattering problem for a spheroid, i.e. each term of the
Fourier series can be found separately. Another feature of our approach is the use
of scalar potentials properly chosen for each of the components. When solving the
problem for the axisymmetric component of the field, one can apply the Abraham
potentials that reduce the vector problem to a scalar one. In the problem for the
non-axisymmetric component one can utilize a combination of the scalar potentials
U and V usually introduced when solving the light scattering problem for a circular
cylinder and a sphere, respectively. The former potential is the z-component of the
electric or magnetic Hertz vector (Stratton, 1941; Farafonov and Il’in, 2006), the
latter one is the Debye potential being the product of the radius-vector magnitude
and the r-component of the corresponding Hertz vector. Note that application of
the potentials U and V is equivalent to the use of M z

ν , M
r
ν and N z

ν , N
r
ν as the

vector function basis for the transverse magnetic (TM) and electric (TE) modes,
respectively (Farafonov and Il’in, 2006; Farafonov, 2011). The axisymmetric and
non-axisymmetric problems are solved by the separation of variables method where
the potentials are represented by their expansions in terms of the spheroidal wave
functions. Substitution of the expansions into the boundary conditions leads to
ISLAEs relative to the unknown coefficients of the scattered field expansion. All
characteristics of the scattered radiation (cross-sections, phase function, etc.) are
expressed through these coefficients. Thus, to solve the light scattering problem
one needs to solve the ISLAEs arisen and to calculate the required characteristics
using the expansion coefficients obtained.

Section 5.3 is devoted to analysis of the ISLAEs typical of the light scattering
problems for spheroids. The analysis is based on the obtained estimates of integrals
of products of the spheroidal angular functions (SAFs) and their derivatives and
the derived asymptotics of the spheroidal radial functions (SRFs) for large index
values. It is found that excluding the case of a segment and a disk, the ISLAEs
are completely quasi-regular, and the properties of such systems are discussed. As
a result, we prove that excluding the cases mentioned above the ISLAEs have the
only solution that can be found by the reduction method. This has the practical
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importance as in numerical calculations we always truncate the infinite systems.
We also show that for a selected spheroidal basis the field expansions converge
everywhere up to the scatterer surface.

The light scattering by extremely prolate and oblate spheroids is considered
in Section 5.4. In these cases, the ISLAEs can be solved explicitly in the first ap-
proximation with respect to the small parameter b/a (i.e. for the large semiaxis
ratio a/b � 1). The principal term of the scattered field asymptotics is found to
coincide with the so-called quasi-statical approximation where the field inside a
scatterer is approximated by the incident wave taking into account polarizability
when the scatterer is essentially smaller than the wavelength. Thus, the quasi-static
approximation is a generalization of the Rayleigh–Gans and Rayleigh approxima-
tions. We also consider asymptotics of the radiation scattered by extremely prolate
perfectly conducting spheroids. The principal term in the case the incident TM
mode wave when the electric field is parallel to the spheroidal symmetry axis is
of order O(1) under the condition of the linear antenna excitation d = nλ/2 (the
oscillator length is equal to an integer number of half-wavelengths). Otherwise, the
strength of the scattered field is inversely proportional to the logarithm of the as-
pect ratio 1/ ln a/b. The principal term of the scattered field asymptotics for the
TE mode and the second term for the TM mode are proportional to the square of
the small parameter (b/a)2 and are derived explicitly. Numerical calculations have
completely confirmed these analytical results.

In Section 5.5 we consider the light scattering by extremely oblate perfectly
conducting spheroids. The main difficulty is here related with the fact that in the
particular case of the disk there appear some additional conditions at its edge. These
are the Meixner conditions whose sense is that the edge of the perfectly conducting
disk should not radiate. Initially, our solution does not satisfy these conditions, and
hence it should be improved. We suggest a new solution that involves the solution
for the disk and hence automatically satisfies the Meixner conditions. Numerical
calculations performed have shown that the improved solution allows one to treat
spheroids of a large aspect ratio a/b. This solution is also applicable to perfectly
conducting disks.

In Section 5.6 ‘Conclusions’, we formulate the main results obtained in the
Chapter. In Appendix A, various integrals of the SAFs and their derivatives are
represented by sums containing the coefficients of the SAF expansions in terms
of the associated Legendre functions of the first kind. Some relations between the
integrals are presented as well. This representation is very efficient for numerical
calculations and is useful for analysis of the integrals. A Fortran code used for
illustrative calculations of light scattering by homogeneous spheroids is available
at the DOP site http://www.astro.spbu.ru/DOP/6-SOFT/SPHEROID/.

http://www.astro.spbu.ru/DOP/6-SOFT/SPHEROID/
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5.2 Light scattering problem for a spheroidal particle

The behaviour of the electromagnetic field in any medium is described by the
macroscopic Maxwell equations which are in the CGS system as follows (Jackson,
1975):

∇×E = −1

c

∂B

∂t
, ∇ ·D = 4π� ,

∇×H =
4π

c
j +

1

c

∂D

∂t
, ∇ ·B = 0 ,

(5.1)

where E and D are the electric field and displacement, H and B the magnetic
field and induction, � and j the free charge and current densities, c is the speed of
light in vacuum.

The Maxwell equations are supplemented by the constitutive equations that
describe the properties of the medium where the electromagnetic field is considered.
Below we deal with the media characterized by the following equations:

D = ε̃E , B = μH , E = σ j , (5.2)

where ε̃ and μ are the dielectric permittivity and the magnetic permeability of a
medium, and σ is its specific conductivity.

Due to linearity of Eqs. (5.1)–(5.2) no generality is lost if we consider further
only the harmonic fields, i.e. the fields with the time-dependence given by e−iωt

(Bohren and Huffman, 1983). We also assume that there are no free charges (� = 0).

5.2.1 Differential and integral formulations of the light scattering
problem

To find the field of radiation scattered by a particle, one must supplement the
equations presented above with the boundary conditions at the scatterer surface
(continuity of the tangential components of the field) and at infinity (the Sommer-
feld condition about existence of divergent waves only).

Let us denote the known field of incident radiation by E(0), H(0), the unknown
fields of scattered radiation by E(1), H(1) and of radiation inside the scatterer by
E(2), H(2).

Then the light scattering problem can be written as follows:

ΔE(1) + k21 E
(1) = 0 , r ∈ R3 \ D̄ , (5.3)

ΔE(2) + k2 E(2) = 0 , r ∈ D , (5.4)

∇ ·E(1) = 0 , ∇ ·E(2) = 0 , (5.5)(
E(0) +E(1)

)
× n = E(2) × n, r ∈ S , (5.6)(

H(0) +H(1)
)
× n = H(2) × n , r ∈ S, (5.7)

lim
r→∞ r

(
∂E(1)

∂r
− ik1E

(1)

)
= 0 , (5.8)
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where k = k1
√
εμ is the wavenumber in the medium, ε = ε̃+ i4πσ/ω the complex

dielectric permittivity, k1 = ω/c the wavenumber in vacuum, ω the radiation fre-
quency, n the outer normal to the surface S of the particle having the volume D,
r the radius-vector, r = |r|. The magnetic fields H(1), H(2) are determined from
the known electric fields E(1), E(2) by using the Maxwell equations

H =
1

iμk1
∇×E . (5.9)

Sometimes it is more convenient to present the problem in the integral form by
using the Stratton–Chu formula. All solutions to the Maxwell equations inside the
domain D (here inside a particle) are known to satisfy (Colton and Kress, 1984)

∇ ×
∫
S

n×E(r′)G(r, r′) ds′ − 1

ik1ε
∇×∇

×
∫
S

n×H(r′)G(r, r′) ds′ =
{ −E(r), r ∈ D ,

0, r ∈ R3 \ D̄ ,
(5.10)

where G(r, r′) is the Green function of the scalar Helmholtz equation for free space

G(r, r′) =
eik1|r−r′|

4π|r − r′| . (5.11)

For the solutions to the Maxwell equations outside D̄ that also satisfy the
radiation condition at infinity (5.8), one has integral equations similar to Eqs. (5.10)

∇ ×
∫
S

n×E(r′)G(r, r′) ds′ − 1

ik1ε
∇×∇

×
∫
S

n×H(r′)G(r, r′) ds′ =
{

0, r ∈ D,
E(r), r ∈ R3 \ D̄ .

(5.12)

If one applies these integral equations to the incident E(0) and scattered E(1)

fields, adds the equations and takes into account the boundary conditions (5.6)–
(5.7), the surface integral equation formulation of the light scattering problem can
be obtained

∇ ×
∫
S

n×E(2)(r′)G(r, r′) ds′ − 1

ik1ε
∇×∇

×
∫
S

n×H(2)(r′)G(r, r′) ds′ =
{ −E(0)(r), r ∈ D,

E(1)(r), r ∈ R3 \ D̄ .
(5.13)

Usually, the first step is to solve the integral equation for the domain D and to
determine the internal field E(2). After that the scattered field E(1) can be easily
found from the equation for the domain R3 \ D̄.

5.2.2 Original solution to the problem for a dielectric spheroid

We solve this light scattering problem by the separation of variables method in the
spheroidal coordinates (ξ, η, ϕ) connected with the Cartesian coordinates (x, y, z)
as follows (Flammer, 1957; Komarov et al., 1976):
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x =
d

2
(ξ2 ∓ 1)

1
2 (1− η2)

1
2 cosϕ ,

y =
d

2
(ξ ∓ 1)

1
2 (1− η2)

1
2 sinϕ ,

z =
d

2
ξ η ,

(5.14)

where d is the focal distance of the spheroid under consideration. For the prolate
spheroidal coordinates, ξ ∈ [1,∞), η ∈ [−1, 1], ϕ ∈ [0, 2π) and the upper sign is
selected, for the oblate spheroidal coordinates, ξ ∈ [0,∞), η ∈ [−1, 1], ϕ ∈ [0, 2π)
and the lower sign is used. The metric coefficients are

hξ =
d

2

(
ξ2 ∓ η2

ξ2 ∓ 1

) 1
2

, hη =
d

2

(
ξ2 ∓ η2

1− η2

) 1
2

, hϕ =
d

2

[
(ξ2 ∓ 1)(1− η2)

] 1
2. (5.15)

Note that the transition from the prolate spheroidal coordinates to the oblate ones
is done by the replacements d→ −id and ξ → iξ.

A plane wave of arbitrary polarization incident at the angle α to the symmetry
axis of the spheroid (the z axis) can be represented by a superposition of two mode
waves:

(1) TE mode

E(0) = iy exp[ik1(x sinα+ z cosα)] ,

H(0) = −
√
ε1
μ1

[(ix cosα− iz sinα) exp[ik1(x sinα+ z cosα)] ;
(5.16)

(2) TM mode

E(0) = (ix cosα− iz sinα) exp[ik1(x sinα+ z cosα)] ,

H(0) =

√
ε1
μ1

iy exp[ik1(x sinα+ z cosα)] ,
(5.17)

where ix, iy, iz are the unit vectors of the Cartesian system.

The differential formulation of the problem for a spheroid looks like that for an
arbitrary shape particle (5.3)–(5.8) with the exception of the boundary conditions
which become as follows:

E(0)
η + E(1)

η = E(2)
η , H(0)

η +H(1)
η = H(2)

η ,

E(0)
ϕ + E(1)

ϕ = E(2)
ϕ , H(0)

ϕ +H(1)
ϕ = H(2)

ϕ ,

}
ξ=ξ0

(5.18)

where ξ0 is the value of the radial coordinate corresponding to the particle surface.
The approach under consideration has two features. First, the fields are repre-

sented by the sums

E(i) = E
(i)
1 +E

(i)
2 , H(i) = H

(i)
1 +H

(i)
2 , (5.19)

where E
(i)
1 and H

(i)
1 do not depend on the azimuthal angle ϕ, while averaging of

E
(i)
2 and H

(i)
2 over this angle gives zero.
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Second, we apply original basis functions Mν , Nν (or corresponding scalar

potentials – Farafonov and Il’in (2006)) to represent the fields E
(i)
2 and H

(i)
2 .

Consideration of the axisymmetric components E
(i)
1 and H

(i)
1 is often useful and

can be simplified due to application of the Abraham potentials.
The possibility to separately consider the problems for the field components

introduced by Eqs. (5.19) is provided by commutativity of the operator T corre-
sponding to the light scattering problem and the operator Lz = ∂/∂ϕ. To prove
that, we consider T in the integral form

TE = rot

∫
S

n×E(r′)G(r, r′) ds′− 1

ik1ε
rot rot

∫
S

n×H(r′)G(r, r′) ds′ , (5.20)

where we use the problem formulation (5.13).
One can write T in the spheroidal coordinates and express H through the

electric field (see Eq. (5.9))

TE = rot

∫ 1

−1

∫ 2π

0

iξ′ ×E(r′)G(r, r′)hη′hϕ′ dη′ dϕ′ (5.21)

+
1

k21με
rot rot

∫ 1

−1

∫ 2π

0

iξ′ × rot′E(r′)G(r, r′)hη′hϕ′ dη′ dϕ′ .

When considering LzTE, we take into account that the Lame coefficients hξ, hη,
hϕ for the spheroidal coordinates are independent of the angle ϕ (see Eqs. (5.15)),
i.e. ∂/∂ϕ rot = rot ∂/∂ϕ and get

LzTE = rot

∫ 1

−1

∫ 2π

0

iξ′ ×E(r′)
∂G(r, r′)

∂ϕ
hη′hϕ′ dξ′ dϕ′ (5.22)

+
1

k21με
rot rot

∫ 1

−1

∫ 2π

0

iξ′ × rot′ E(r′)
∂G(r, r′)

∂ϕ
hη′hϕ′ dξ′ dϕ′ .

We have ∂
∂ϕG(r, r

′)=− ∂
∂ϕ′G(r, r

′), and integration by parts over ϕ′, gives

LzTE = rot

∫ 1

−1

∫ 2π

0

iξ′ × ∂E(r′)
∂ϕ′ G(r, r′)hη′hϕ′ dξ′ dϕ′

+
1

k21με
rot rot

∫ 1

−1

∫ 2π

0

iξ′ × rot′
∂E(r′)
∂ϕ′ G(r, r′) (5.23)

×hη′hϕ′ dξ′ dϕ′ = TLzE .

Here we kept in mind that E(r′) and G(r, r′) were 2π-periodic functions of ϕ′ and
hence all terms appearing after the integration by parts outside the integrals are
equal to zero.

Thus, the light scattering problem for a spheroid allows the separation of vari-
ables for the azimuthal angle ϕ, and hence each term of the Fourier series (i.e.
expansion in the trigonometric functions of this angle) of the fields including the

components E
(i)
1 and H

(i)
1 can be found separately.
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Solution to the axisymmetric problem

When the electromagnetic field does not depend on the azimuthal angle, one can
introduce the Abraham potentials

P = hϕEϕ , Q = hϕHϕ . (5.24)

Other components of E and H are expressed through P and Q as follows:

Eξ = − i

k1ε

1

hηhϕ

∂Q

∂η
, Hξ =

i

k1μ

1

hηhϕ

∂P

∂η
,

Eη =
i

k1ε

1

hξhϕ

∂Q

∂ξ
, Hη = − i

k1μ

1

hξhϕ

∂P

∂ξ
.

(5.25)

It is known that the azimuthal components of the vectors E and H independent
of the angle ϕ can be expressed through the spheroidal functions with the index
m = 1 (Komarov et al., 1976). When a plane wave is scattered by a prolate spheroid,
such components of the incident, scattered and internal fields are expanded as
follows:

E
(0)
1ϕ =

∞∑
l=1

a
(0)
l S1l(c1, η)R

(1)
1l (c1, ξ) ,

H
(0)
1ϕ =

∞∑
l=1

b
(0)
l S1l(c1, η)R

(1)
1l (c1, ξ) ,

(5.26)

E
(1)
1ϕ =

∞∑
l=1

a
(1)
l S1l(c1, η)R

(3)
1l (c1, ξ) ,

H
(1)
1ϕ =

∞∑
l=1

b
(1)
l S1l(c1, η)R

(3)
1l (c1, ξ) ,

(5.27)

E
(2)
1ϕ =

∞∑
l=1

a
(2)
l S1l(c2, η)R

(1)
1l (c2, ξ) ,

H
(2)
1ϕ =

∞∑
l=1

b
(2)
l S1l(c2, η)R

(1)
1l (c2, ξ) ,

(5.28)

where Sml(c, η) are the prolate SAFs with the normalizing coefficients Nml(c),

R
(j)
ml(c, ξ) the prolate SRFs of the jth kind, and ci = kid/2 is a dimensionless

parameter (i = 1, 2).
The fields represented by the expansions (5.26)–(5.28) satisfy the Maxwell equa-

tions, and the boundary conditions (5.6)–(5.7) allow one to find the unknown ex-

pansion coefficients a
(1)
l , b

(1)
l , and a

(2)
l , b

(2)
l .

Let us determine the coefficients of the incident field (5.26). For the TE mode,
we have

E
(0)
1ϕ =

1

2π

∫ 2π

0

E(0) · iϕ dϕ =
1

2π

∫ 2π

0

eik1(x sinα+z cosα) cosϕ dϕ . (5.29)
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The expansion of the scalar plane wave in terms of spheroidal wave functions is as
follows (Komarov et al., 1976):

eik1(x sinα+z cosα) =2
∞∑

m=0

∞∑
l=m

il(2− δ0m)N−2
ml (c1)

× Sml(c1, cosα)Sml(c1, η)R
(1)
ml (c1, ξ) cosmη .

(5.30)

From orthogonality of the trigonometric functions, we get

E
(0)
1ϕ = 2

∞∑
l=1

ilN−2
1l (c1)S1l(c1, cosα)S1l(c1, η)R

(1)
1l (c1, ξ) . (5.31)

The azimuthal component of the magnetic field is obtained analogously

H
(0)
1ϕ =

√
ε1
μ1

cosα

2π

∫ 2π

0

eik1(x sinα+z cosα) sinϕ dϕ = 0 . (5.32)

Thus, the coefficients a
(0)
l and b

(0)
l for the TE mode are

a
(0)
l = 2ilN−2

1l (c1)S1l(c1, cosα) ,

b
(0)
l = 0 .

(5.33)

In the case of the TM mode (see Eqs. (5.16)–(5.17)), we have

a
(0)
l = 0 ,

b
(0)
l = 2

√
ε1
μ1

ilN−2
1l (c1)S1l(c1, cosα) .

(5.34)

From Eqs. (5.24)–(5.25) it follows that the Abraham potentials are determined
independently from each other and for the TE mode only the potential P is not

equal to zero (i.e. b
(1)
l = b

(2)
l = 0), while for the TM mode only the potential Q is

not zero (i.e. a
(1)
l = a

(2)
l = 0).

Let us substitute the field expansions in the boundary conditions. For the TE
mode, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
l=1

(
a
(0)
l R

(1)
1l (c1, ξ0) + a

(1)
l R

(3)
1l (c1, ξ0)

)
S1l(c1, η)

=
∞∑
l=1

a
(2)
l R

(1)
1l (c2, ξ0)S1l(c2, η) ,

1

μ1

∞∑
l=1

{
a
(0)
l

[
(ξ20 − 1)

1
2R

(1)
1l (c1, ξ0)

]′
+a

(1)
l

[
(ξ20 − 1)

1
2R

(3)
1l (c1, ξ0)

]′}
S1l(c1, η)

=
1

μ2

∞∑
l=1

a
(2)
l

[
(ξ20 − 1)

1
2R

(1)
1l (c2, ξ0)

]′
S1l(c2, η) ,

(5.35)
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where the prime means differentiation by ξ at ξ = ξ0. Due to orthogonality of the
prolate SAFs, multiplication of these equations by N−1

1n (c2)S1n(c2, η) and integra-
tion over η from −1 to 1 give⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
l=1

(
a
(0)
l R

(1)
1l (c1, ξ0) + a

(1)
l R

(3)
1l (c1, ξ0)

)
N1l(c1) δ

(1)
nl (c2, c1)

=
∞∑
l=1

a
(2)
l R

(1)
1n (c2, ξ0)N1n(c2, η) ,

1

μ1

∞∑
l=1

{
a
(0)
l

[
(ξ20 − 1)

1
2 R

(1)
1l (c1, ξ0)

]′
+a

(1)
l

[
(ξ20 − 1)

1
2 R

(3)
1l (c1, ξ0)

]′}
N1l(c1) δ

(1)
nl (c2, c1)

=
1

μ2

∞∑
l=1

a
(2)
l

[
(ξ20 − 1)

1
2 R

(1)
1l (c2, ξ0)

]′
N1n(c2) .

(5.36)

The integrals of the products of the prolate SAFs denoted by δmnl(c2, c1) are pre-
sented in Appendix A.

Now we exclude the unknown coefficients a
(2)
n and introduce some notation

for the vectors Z0 = {z0l}∞l=1, F 0 = {f0l}∞l=1, the unit matrix I = {δnl }∞n,l=m,

and the matrices Δ = {δ(m)
nl (c2, c1)}∞n,l=m, R0,1 = {r(1),(3)ml (c1) δ

n
l }∞n,l=m, R2 =

{r(1)ml (c2) δ
n
l }∞n,l=m, where

z0l = a
(1)
l R

(3)
1l (c1, ξ0)N1l(c1) ,

f0l = a
(0)
l R

(1)
1l (c1, ξ0)N1l(c1)

= 2ilN−1
1l (c1)S1l(c1, cosα)R

(1)
1l (c1, ξ0) ,

r
(j)
ml(ci) =

R
(j)′

ml (ci, ξ0)

R
(j)
ml(ci, ξ0)

.

(5.37)

Then the system (5.36) can be written in the matrix form[
ξ0(μ2 − μ1)Δ+ (ξ20 − 1)(μ2ΔR1 − μ1R2Δ)

]
Z0

+
[
ξ0(μ2 − μ1)Δ+ (ξ20 − 1)(μ2ΔR0 − μ1R2Δ)

]
F 0 = 0 .

(5.38)

For the TM mode, we get[
ξ0(ε2 − ε1)Δ+ (ξ20 − 1)(ε2ΔR1 − ε1R2Δ)

]
Z0

+
[
ξ0(ε2 − ε1)Δ+ (ξ20 − 1)(ε2ΔR0 − ε1R2Δ)

]
F 0 = 0 ,

(5.39)

where in the expression for z0l one should replace a
(1)
l with b

(1)
l while f0l should

remain the same. Note that these ISLAEs are similar and can be transformed into
each other by the replacements μi → εi and εi → μi.

To obtain similar results for an oblate spheroid, one should make the stan-
dard replacements c → −ic (d → −id) and ξ → iξ as well as replace the prolate
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spheroidal wave functions with the oblate ones. It is convenient to introduce the
parameter f equal to 1 for prolate spheroids and to −1 for oblate ones. If the mag-
netic permeability is the same everywhere, the ISLAEs (5.38) and (5.39) can be
rewritten as follows:

(R̃2 −R1)Z0 + (R̃2 −R0)F 0 = 0, (5.40)[
ξ0(ε− 1)I + (ξ20 − f)(εR1 − R̃2)

]
Z0

+
[
ξ0(ε− 1)I + (ξ20 − f)(εR0 − R̃2)

]
F 0 = 0, (5.41)

where ε=ε2/ε1 is the relative dielectric permittivity, R̃2 = Δ−1R2Δ (see properties
of the integrals of SAFs products in Appendix A).

Solution to the non-axisymmetric problem

The second components in the sums (5.19) are represented as follows:

(1) for the TE mode

E
(i)
2 = rot

(
U (i) iz + V (i)r

)
,

H
(i)
2 =

1

iμik0
rot rot

(
U (i) iz + V (i) r

)
;

(5.42)

(2) for the TM mode

E
(i)
2 = − 1

iμik0
rot rot

(
U (i) iz + V (i) r

)
,

H
(i)
2 = rot

(
U (i) iz + V (i) r

)
,

(5.43)

where the scalar potentials U (i) and V (i) are expanded in terms of spheroidal wave
functions

U (0) =

∞∑
m=1

∞∑
l=m

a
(0)
ml Sml(c1, η)R

(1)
ml (c1, ξ) cosmϕ ,

V (0) =

∞∑
m=1

∞∑
l=m

b
(0)
ml Sml(c1, η)R

(1)
ml (c1, ξ) cosmϕ ,

(5.44)

U (1) =

∞∑
m=1

∞∑
l=m

a
(1)
ml Sml(c1, η)R

(3)
ml (c1, ξ) cosmϕ ,

V (1) =

∞∑
m=1

∞∑
l=m

b
(1)
ml Sml(c1, η)R

(3)
ml (c1, ξ) cosmϕ ,

(5.45)

U (2) =

∞∑
m=1

∞∑
l=m

a
(2)
ml Sml(c2, η)R

(1)
ml (c2, ξ) cosmϕ ,

V (2) =

∞∑
m=1

∞∑
l=m

b
(2)
ml Sml(c2, η)R

(1)
ml (c2, ξ) cosmϕ ,

(5.46)
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where summation over the azimuthal index begins with m = 1 since averaging
over this angle has to give zero. Note that these expansions are equivalent to the
expansions of the fields in terms of the vector spheroidal wave functions M z

ml,
M r

ml and N z
ml, N

r
ml (see Farafonov and Il’in, 2006).

By using the equation

iy e
ik1(x sinα+z cosα) = rot

(
2

k1 sinα

∞∑
m=0

∞∑
l=m

i(l−1)(2− δ0m)

N−2
ml (c1)Sml(c1, cosα)Sml(c1, η)R

(1)
ml (c1, ξ) cosmϕ iz

)
,

(5.47)

we get for the incident field

a
(0)
ml =

4il−1

k1 sinα
N−2

ml (c1)Sml(c1, cosα) ,

b
(0)
ml = 0

(5.48)

for both polarizations of the plane wave (see Eqs. (5.16)–(5.17)).
The field expansions (5.44)–(5.46) satisfy the Maxwell equations, and the

boundary conditions (5.6)–(5.7) allow one to find the unknown coefficients a
(1)
ml ,

b
(1)
ml and a

(2)
ml , b

(2)
ml . After substitution of Eq. (5.42) into the boundary conditions

and laborious transformations described in detail by Voshchinnikov and Farafonov
(1993), we get

η U + ξ
d

2
V = η U (2) + ξ

d

2
V (2),

∂

∂ξ

(
ξ U + fη

d

2
V

)
=

∂

∂ξ

(
ξ U (2) + fη

d

2
V (2)

)
,

ε1

(
ξ U + fη

d

2
V

)
= ε2

(
ξ U (2) + fη

d

2
V (2)

)
,

1

μ1

[
∂

∂ξ

(
η U + ξ

d

2
V

)
+

(
1− c21

c22

)
1− η2

ξ2 − f

∂

∂η

(
ξ U + fη

d

2
V

)]
=

1

μ2

∂

∂ξ

(
η U (2) + ξ

d

2
V (2)

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
ξ=ξ0

(5.49)

Similar expressions for the TM mode coincide with Eqs. (5.49) after the replace-
ments μi → εi and εi → μi. When the magnetic permeability is the same every-
where, the first and third equations can be rewritten as follows:

U = U (2),

∂

∂ξ

(
ξ U + fη

d

2
V

)
=

∂

∂ξ

(
ξ U (2) + fη

d

2
V (2)

)
,

V = V (2),

1

ε1

[
∂

∂ξ

(
η U + ξ

d

2
V

)
+

(
1− c21

c22

)
1− η2

ξ2 − f

∂

∂η

(
ξU + fη

d

2
V

)]
=

1

ε2

∂

∂ξ

(
η U (2) + ξ

d

2
V (2)

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
ξ=ξ0

(5.50)

In the systems (5.49) and (5.50) we use the parameter f introduced above.
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In addition to the notation (5.37) let us define

Z1 = {z(m)
1 l }∞l=m, Z2 = {z(m)

2 l }∞l=m,

X1 = {x(m)
1 l }∞l=m, X2 = {x(m)

2 l }∞l=m,

Fm = {f (m)
l }∞l=m, Γ (ci, cj) = {γ(m)

nl (ci, cj)}∞n,l=m,

K(ci, cj) = {κ(m)
nl (ci, cj)}∞n,l=m, Σ(ci, cj) = {σ(m)

nl (ci, cj)}∞n,l=m,

(5.51)

where

z
(m)
1 l = k1a

(1)
ml Nml(c1)R

(3)
ml (c1, ξ0) , z

(m)
2 l = c1b

(1)
ml Nml(c1)R

(3)
ml (c1, ξ0) ,

x
(m)
1 l = k1a

(2)
ml Nml(c2)R

(1)
ml (c2, ξ0) , x

(m)
2 l = c1b

(2)
ml Nml(c2)R

(1)
ml (c2, ξ0) ,

f
(m)
l = k1a

(0)
ml Nml(c1)R

(1)
ml (c1, ξ0) =

4il−1

sinα

Sml(c1 cosα)R
(1)
ml (c1, ξ0)

Nml(c1)
.

(5.52)

The integrals of products of the SAFs and their derivatives γ
(m)
nl , κ

(m)
nl , and σ

(m)
nl

are given in Appendix A.
After substitution of the expansions (5.44)–(5.46) into the boundary condi-

tions (5.49), multiplication by N−1
mn(c2)Smn(c2, η) cosmϕ, and integration over η

from −1 to 1 and over ϕ from 0 to 2π, orthogonality of the functions cosmϕ
provides the following ISLAEs written by us in the matrix form (m = 1, 2):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ (c2, c1) (Z1 + Fm) + ξ0Δ(c2, c1)Z2

= Γ (c2, c2)X1 + ξ0 X2 ,

Δ(c2, c1) [(I + ξ0R1)Z1 + (I + ξ0R0)Fm]

+ f Γ (c2, c1)R1 Z2 = (I + ξ0R2)X1 + f Γ (c2, c2)R2 X2 ,

ε1 [ξ0Δ(c2, c1)(Z1 + Fm)] + f Γ (c2, c1)Z2

= ε2 (ξ0 X1 + f Γ (c2, c2)X2) ,

Γ (c2, c1) [R1 Z1 +R0 Fm] +Δ(c2, c1)(I + ξ0R1)Z2

+

(
1− c21

c22

)
1

ξ20 − f
[ξ0K(c2, c1)(Z1 + Fm) + fΣ(c2, c1)Z2]

= Γ (c2, c1)R2 X1 + (I + ξ0R2)X2 .

(5.53)

The first and third equations give the unknown vectors

X1 = Q(c2, c1)

[(
ξ20
ε
I − fΓ 2(c1, c1)

)
(Z1 + Fm) +

(
1

ε
− 1

)
fξ0Γ (c1, c1)Z2

]
,

X2 = Q(c2, c1)

[(
ξ0I − f

ε
Γ 2(c1, c1)

)
Z2 +

(
1− ξ0

ε
Γ (c1, c1)

)
(Z1 + Fm)

]
,

(5.54)

where Q(ci, cj) =
[
ξ20 Δ(ci, cj)− f Γ 2(ci, cj)

]−1
. We used the properties of the

infinite matrices which elements are the integrals of products of the SAFs and
their derivatives (see Appendix A).
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Substitution of the vectors X1 and X2 into the second and fourth equations
gives an ISLAE relative to the vectors Z1 and Z2⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ξ0(R̃2 −R1)− ξ0

(
1− 1

ε

)
A

]
Z1 + f

[
Γ (R̃2 −R1)−

(
1− 1

ε

)
Γ

]
Z2

+

[
ξ0(R̃2 −R0)− ξ0

(
1− 1

ε

)
A

]
Fm = 0 ,[

Γ (R̃2 −R1)− ξ0

(
1− 1

ε

)
B

]
Z1 +

[
ξ0(R̃2 −R1)− f

(
1− 1

ε

)
BΓ

]
Z2

+

[
Γ (R̃2 −R1)− ξ0

(
1− 1

ε

)
B

]
Fm = 0 ,

(5.55)
where

A = ξ0 (I + ξ0 R̃2)Q− fΓR̃2Γ Q = Ω2 ,

B = ξ0 ΓR̃2Q− (I + ξ0 R̃2)Γ Q+
1

ξ20 − f
K = Ω1 ,

(5.56)

and the matrices Δ,Γ,K,Σ,Q depend on the parameter c1 only.
For the TM mode, the boundary conditions (5.50) become more simple, and

using the notation (5.37) and (5.51), one can obtain an ISLAE relative to the
vectors Z1 and Z2⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ0 (R̃2 −R1)Z1 + f Γ (R̃2 −R1)Z2 + ξ0 (R̃2 −R0)Fm = 0 ,[
Γ

(
1

ε
R̃2 −R1

)
−
(
1− 1

ε

)
ξ0

ξ20 − f
K

]
Z1

+

[
1

ε
(I + ξ0 R̃2)− (I + ξ0R1)− f

(
1− 1

ε

)
ξ0

ξ20 − f
KΓ

]
Z2

+

[
Γ

(
1

ε
R̃2 −R0

)
−
(
1− 1

ε

)
ξ0

ξ20 − f
K

]
Fm = 0 .

(5.57)

An analytical study of the ISLAE arisen in the solution to the axisymmetric
(5.40)–(5.41) and non-axisymmetric (5.55)–(5.57) problems of light scattering by
spheroids is presented in Section 5.3.

5.2.3 Perfectly conducting spheroids

The model of a perfectly conducting spheroid is used in radio physics to study the
effects of electromagnetic radiation scattering by metallic bodies. In this case the
boundary conditions for a spheroidal body are

E(0)
η + E(1)

η = 0 ,

E(0)
ϕ + E(1)

ϕ = 0 .

}
ξ=ξ0

(5.58)

The approach to solution of the diffraction problem remains the same. Note that
the parameter c2 is absent in this problem.

The axisymmetric component of radiation scattered by a perfectly conducting
spheroid is obtained directly:
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(1) for the TE mode

a
(1)
l = −2il

R
(1)
1l (c1, ξ0)

R
(3)
1l (c1, ξ0)

N−2
1l (c1)S1l(c1, cosα) ,

b
(1)
l = 0 ;

(5.59)

(2) for the TM mode

a
(1)
l = 0 ,

b
(1)
l = −2il

[(ξ20 − 1)
1
2R

(1)
1l (c1, ξ0)]

′

[(ξ20 − 1)
1
2R

(3)
1l (c1, ξ0)]

′
N−2

1l (c1)S1l(c1, cosα) .
(5.60)

For the non-axisymmetric components, the coefficients of the expansions (5.45)
are derived from the boundary conditions (5.58) that can be rewritten using the
potentials U (i) and V (i) as follows (U = U (0) + U (1), V = V (0) + V (1)):

η U + ξ
d

2
V = 0,

∂

∂ξ
(ξ U + f η

d

2
V ) = 0

⎫⎪⎪⎬⎪⎪⎭
ξ=ξ0

(5.61)

for the TE mode, and

ξ U + η
d

2
V = 0,

∂

∂ξ
(η U + f ξ

d

2
V ) = 0

⎫⎪⎪⎬⎪⎪⎭
ξ=ξ0

(5.62)

for the TM mode, respectively.
Substitution of Eqs. (5.44) and (5.45) into Eqs. (5.61) and (5.62), respectively,

and exclusion of one of the unknown vectors give for the TE mode{
[ξ0I − fΓ (I + ξ0R1)

−1 ΓR1]Z2 + ξ0Γ (I + ξ0R1)
−1 (R1 −R0)Fm = 0 ,

Z1 = −(I + ξ0R1)
−1 [fΓR1 Z2 + (I + ξ0R0)Fm]

(5.63)

and for the TM mode{
[ξ0I − fΓ (I + ξ0R1)

−1 ΓR1]Z1 + [ξ0I − fΓ (I + ξ0R1)
−1 ΓR0)]Fm = 0 ,

Z2 = −(I + ξ0R1)
−1 (fΓR1 Z1 + ΓR0 Fm) .

(5.64)
Note that these ISLAEs differ just in their right-hand parts and hence the problems
for both polarizations can be solved simultaneously.

The infinite systems (5.63) and (5.64) are generally similar to those for dielec-
tric spheroids. However, light scattering by a perfectly conducting disk, being a
particular case of the oblate spheroid with ξ0 = 0, has some important features.
There arise additional boundary conditions at the disk edge that are called the
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Meixner conditions (Meixner, 1950). The direct transition ξ0 → 0 in Eqs. (5.63)
and (5.64) leads to wrong solutions

Z2 = 0 , Z1 = −Fm (5.65)

and
Z1 = −R−1

1 R0 Fm , Z2 = 0 , (5.66)

as they do not satisfy the Meixner conditions. Diffraction of electromagnetic radi-
ation by extremely oblate perfectly conducting spheroids and necessary improve-
ments of the solution presented above are considered in detail in Section 5.5.

5.2.4 Spherical particles

Such a particle is a particular case of the spheroid when one makes the transitions
ξ0 → ∞, c → 0, and cξ0 → kr0. Then the spheroidal functions can be replaced by
the spherical ones (Komarov et al., 1976)

R
(1)
ml (c1, ξ0) → jl(k1r0), R

(3)
ml (c1, ξ0) → h

(1)
l (k1r0) ,

R
(1)
ml (c2, ξ0) → jl(k2r0), Sml(c, η) → Pm

l (cos θ) ,
(5.67)

and the matrices of the ISLAEs simplify

R0 = c1J0, R1 = c1H, R̃2 = c2J2, Q =
1

ξ20
I ,

A = R̃2 = c2J2 , B =
c2
ξ0

(ΓJ2 − J2Γ ) +
1

ξ20
(K − Γ ) = O

(
1

ξ0

)
,

(5.68)

where J0,2 = {j′l(k1,2 r0) / jl(k1,2 r0)}∞l=m, H =
{
h
(1)′

l (k1r0) / h
(1)
l (k1r0)

}∞

l=m
are

the diagonal matrices, and the matrices Γ and K have nonzero elements just above
and below the main diagonal, respectively.

Keeping in mind Eqs. (5.67)–(5.68) and the behaviour of the vectors Z0 = O(1),
F 0 = O(1), Z1 = O(1), Z2 = O(c1), and Fm = O(1) (see Eqs. (5.37), (5.52)),
one can solve the ISLAEs analytically. For instance, for a TM mode plane wave
incident at a dielectric spheroid, we get (see Eqs. (5.41) and (5.57))⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z0 =− (H − J2)
−1 (J1 − J2)F 0 ,

Z1 =− (H − εJ2)
−1 (J1 − εJ2)Fm ,

Z2 =− c1

[
(I + k1r0H)− 1

ε
(I + k2r0J2)

−1
]{[

Γ (J1 − J2)+

+

(
1− 1

ε
k1r0K

)]
Fm +

[
Γ (H − J2) +

(
1− 1

ε

)
k1r0K

]
Z1

}
,

(5.69)

where the inverse matrices are easily calculated as they are diagonal. In the expres-

sions for the coefficients a
(2)
ml the parameter c1 is absent.

Thus, the solution given by the suggested approach differs from that given by
the Mie theory because the coordinate system is not properly chosen (the z axis
does not coincide with the direction of the plane wave propagation) and other scalar
potentials are selected. Note that nevertheless the ISLAEs are solved analytically.
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5.2.5 Characteristics of the radiation scattered by a spheroid

The plane of incidence is defined as the plane including both the x and z axes
(the symmetry axis) and is the reference plane for the incident wave, i.e. the wave
vector k1 lies in the plane xz. The plane of scattering is defined in a similar way
as the plane containing the z axis and the direction of the scattered radiation
propagation. Then the vectors perpendicular and parallel to the planes of incidence
and scattering are

i
(0)
‖ = cosα ix − sinα iz , i

(1)
‖ = −iη ,

i
(0)
⊥ = −iy , i

(1)
⊥ = iϕ , (5.70)

where (iξ, iη, iϕ) are the unit vectors of the spheroidal coordinate system so that

the vectors (i
(0)
‖ , i

(0)
⊥ , ik1

) and (i
(1)
‖ , i

(1)
⊥ , iξ) form a right triad of vectors. Note that

in the far-field zone r → ∞ and hence ξ → ∞, η → cos θ, iη → −iθ.
The relation of the incident and scattered radiation in the far-field zone is

determined by the amplitude matrix as follows:(
E

(1)
‖

E
(1)
⊥

)
=

1

−ik1r
ei(k1r−k1·r)

(
A2 A3

A4 A1

)(
E

(0)
‖

E
(0)
⊥

)
. (5.71)

The representation of the fields by their potentials and the asymptotics of the
spheroidal radial functions for the large values of their argument allow one to
obtain for the TM mode and r � 1

E(1) =
eik1r

−ik1r
A(1) =

eik1r

−ik1r

{
−

∞∑
m=1

∞∑
l=m

i−l b
(1)
ml

mSml(c1, cos θ)

sin θ
sinmϕ iϕ

+

[
−

∞∑
l=1

i−l b
(1)
l S1l(c1, cos θ) +

∞∑
m=1

∞∑
l=m

i1−l
(
k1 a

(1)
ml Sml(c1, cos θ)

+ i b
(1)
ml S

′
ml(c1, cos θ)

)
sin θ cosmϕ

]
iθ

}
(5.72)

and similar equations for the TE mode.
In the case under consideration the elements of the amplitude matrix can be ex-

pressed through the expansion coefficients for the scalar potentials of the scattered
field

A1 = −
∞∑
l=1

i−l b
(1)
l S1l(c1, cos θ) +

∞∑
m=1

∞∑
l=m

i1−l
(
k1 a

(1)
ml Sml(c1, cos θ)

+ i b
(1)
ml S

′
ml(c1, cos θ)

)
sin θ cosmϕ , (5.73)

A2 = −
∞∑
l=1

i−l b
(1)
l S1l(c1, cos θ) +

∞∑
m=1

∞∑
l=m

i1−l
(
k1 a

(1)
ml Sml(c1, cos θ)

+ i b
(1)
ml S

′
ml(c1, cos θ)

)
sin θ cosmϕ , (5.74)
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A3 =

∞∑
m=1

∞∑
l=m

i−l b
(1)
ml

mSml(c1, cos θ)

sin θ
sinmϕ , (5.75)

A4 =

∞∑
m=1

∞∑
l=m

i−l b
(1)
ml

mSml(c1, cos θ)

sin θ
sinmϕ . (5.76)

Note that to get A1 and A3, one uses the coefficients obtained in the solution to
the problem for the TE mode, while to calculate A2 and A4, one needs just the
solution for the TM mode.

The amplitude matrix allows one to determine all characteristics of the scat-
tered radiation (van de Hulst, 1957; Bohren and Huffman, 1983). For instance, the
parameters of the dimensionless intensity of the scattered radiation iij are derived
as follows:

i11 = |A1|2 , i12 = |A4|2 , i21 = |A3|2 , i22 = |A2|2 , (5.77)

where the first and second indices show the polarization of the incident and scat-
tered radiation, respectively, so that the index 1 corresponds to the perpendicular
component, while the index 2 to the component parallel to the reference plane.

The integral cross-sections of extinction and scattering for the TE mode are

Cext =
4π

k21
Re

(
Asca · i(0)

)∣∣∣∣
Θ=0

=

=
4π

k21
Re

[ ∞∑
l=1

i−l a
(1)
l S1l (c1, cosα)−

∞∑
m=1

∞∑
l=m

i−(l−1)

(
k1 a

(1)
ml Sml (c1, cosα)

+ i b
(1)
ml

dSml (c1, cosα)

d cosα

)
sinα

]
, (5.78)

Csca =
1

k21

∫ ∫
4π

|Asca|2 dΩ =

=
π

k21

{ ∞∑
l=1

2
∣∣∣a(1)l

∣∣∣2 + Re
∞∑

m=1

∞∑
l=m

∞∑
n=m

i(n−l)

[
k21 a

(1)
ml a

(1)∗
mn ωm

ln (5.79)

+ i k1

(
b
(1)
ml a

(1)∗
mn κmln − a

(1)
ml b

(1)∗
mn κmnl

)
+ b

(1)
ml b

(1)∗
mn τmln

]
N−1

mn(c1)N
−1
ml (c1)

}
.

Here Asca is the amplitude of the electric field of the scattered radiation, i(0) the
unit vector showing the polarization of the incident radiation, Ω the solid angle,
cosΘ = cosα cos θ −sinα sin θ sinϕ the angle between the directions of the incident
and scattered radiation. The integrals of products of the SAFs and their derivatives
ωm
ln, κ

m
ln, τ

m
ln are given in Appendix A.
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The intensity of radiation scattered in the direction Θ = π or θ = π−α, ϕ = π
is determined by the backscattering cross-section

Cbk =
4π

k21
|Asca |2

∣∣∣∣
Θ=π

=
4π

k21

∣∣∣∣∣
∞∑
l=1

il a
(1)
l S1l (c1, cosα)−

∞∑
m=1

∞∑
l=m

i (l−1)

(
k1 a

(1)
ml Sml (c1, cosα)

− i b
(1)
ml

dS1l (c1, cosα)

d cosα

)
sinα

∣∣∣∣2 , (5.80)

For the TM mode, one should just change a
(1)
l for b

(1)
l .

Some results of numerical calculations based on the solution described above for
homogeneous dielectric and absorbing spheroids have been presented by Voshchin-
nikov and Farafonov (1993), Voshchinnikov (1996), Farafonov et al. (1996), Voshchin-
nikov et al. (2000). For perfectly conducting spheroids, such results can be found
in the papers of Farafonov (1984), and Voshchinnikov and Farafonov (1988). Below
we discuss convergence of the numerical calculations. One of the tests of numer-
ical calculations is based on the energy conservation law for non-absorbing and
perfectly conducting particles. According to this law, the efficiency factors for ex-
tinction and scattering must be equal Qext = Qsca. Note that these efficiency factors
are normalized by using the cross-sections obtained in the geometrical optics limit
Q = C/CGO. In Tables 5.1 and 5.2 we illustrate convergence of the results with an
increasing number of terms N kept in the field expansions. It is well seen that the
accuracy of the results depends only on the linear size of the scatterer divided by
the wavelength. There is no dependence on the scatterer shape, i.e. on the aspect
ratio a/b and on the particle kind (prolate or oblate).

Of special interest is to compare the solution presented with that of Asano
and Yamamoto (1975) from computational point of view. The comparison can be
carried out in such a way. Asano and Yamamoto (1975) summed N = 20 terms
for c = 5 to get the agreement for the first five places for Qext and Qsca values
if a/b = 2 and N = 40 terms to get coincidence for the three places if a/b = 10.

Table 5.1. Efficiency factors for scattering Qsca for a homogeneous sphere (the Mie
theory) and different spheroids with the refractive index m = 1.5 + 0.0i and the size
parameter 2πa/λ = 5 (the parallel incidence of radiation, α = 0)

Sphere Prolate spheroid Oblate spheroid

N a/b = 2 a/b = 10 a/b = 2 a/b = 10

6 3.690000 7.580000 2.970000 2.380000 0.2280000
8 3.893700 7.503100 3.341100 2.351100 0.2453000

10 3.926970 7.508290 3.367370 2.35076 0.2433100
12 3.927816 7.508208 3.366813 2.350734 0.2434590
14 3.927827 7.508209 3.366825 2.350734 0.2434532
16 3.927827 7.508209 3.366824 2.350734 0.2434534
18 3.927827 7.508209 3.366824 2.350734 0.2434534
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Table 5.2. Efficiency factors for extinction Qext, scattering Qsca, and backscattering Qbk

for perfectly conducting spheroids with a/b = 2 and the size parameter 2πa/λ = 5 (the
parallel incidence of radiation, α = 0)

Prolate spheroid Oblate spheroid

N Qext Qsca Qbk Qext Qsca Qbk

8 1.892000 1.894000 0.140000 0.830000 7.780000 35.40000
10 1.895900 1.896000 0.146900 1.960000 2.400000 6.870000
12 1.896230 1.896250 0.147560 2.038000 2.049000 1.390000
14 1.896274 1.896276 0.147643 2.041100 2.041700 0.990000
16 1.896278 1.896279 0.147653 2.041295 2.041339 0.951000
18 1.896279 1.896279 0.147654 2.041310 2.041315 0.947200
20 1.896279 1.896279 0.147659 2.041311 2.041311 0.946820
24 1.896279 1.896279 0.147659 2.041311 2.041311 0.946764
28 1.896279 1.896279 0.147659 2.041311 2.041311 0.946764

Voshchinnikov and Farafonov (1993) obtained the same results taking into account
N = 10 terms in the first case and only eight terms in the second case. Note that
for the solution used computational time (for α = 0) weakly depends on scatterer
shape and is proportional to t ∝ N2, while for the solution of Asano and Yamamoto
t ∝ N3 (Onaka, 1980). Thus, the solution presented is faster than that of Asano
and Yamamoto by about one order of magnitude for a/b ∼ 2 and by about two
orders for a/b ∼ 10. Obviously, it is not a result of calculation of spheroidal wave
functions by using their expansions in terms of the spherical functions which was
utilized by Asano and Yamamoto and is not appropriate for large values of the
aspect ratio a/b (Flammer, 1957).

A comparison of the suggested solution with solutions obtained by other meth-
ods has been done, e.g., by Hovenier et al. (1996), Voshchinnikov et al. (2000), Il’in
et al. (2002). The general conclusion was illustrated as Fig. 1 of the last paper.
Note that other solutions, e.g. that of Asano and Yamamoto (1975), Barber and
Yeh (1975), and Mishchenko et al. (1996), demand an essential increase of the term
number N and hence of the computational time required to reach reliable results
when the aspect ratio grows and meet problems when a/b ≤ 5–10 (Hovenier et al.,
1996). For extremely prolate or oblate spheroids, other solutions require the use
of extended precision calculations (Zakharova and Mishchenko, 2000). Thus, the
suggested solution to the light scattering problem for spheroids has certain advan-
tages when the scatterers essentially differ in shape from spheres. Note that a new
efficient algorithm to compute the prolate radial spheroidal functions for extremely
prolate spheroids has been suggested by Voshchinnikov and Farafonov (2003).

5.2.6 Diffraction of the dipole field by a spheroid

Let us assume that the moment of a dipole D is coplanar to the vector iz directed
along the symmetry axis of the spheroid, i.e. this axis and D lie in a plane. Without
loss of generality we can assume that the dipole is located in the plane xz, and its
moment is directed along the x or z axis. Solution to the problem of the dipole field
diffraction on a spheroid is similar to the problem of the plane wave scattering.
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We begin with expanding the azimuthal component of the dipole field that is
independent of the angle ϕ. For a vertical magnetic dipole,

E(0) = ik rot

(
D iz

exp(ik|r − r1|)
|r − r1|

)
, (5.81)

where r and r1 are the radius-vectors to the point of observations and to the dipole
position, and we have the axisymmetric component

E
(0)
1ϕ =− 2k3D

c

(ξ21 − 1)
1
2 (1− η21)

1
2

ξ21 − η21

×
∞∑
l=1

[
ξ1

∂

∂ξ1
− η1

∂

∂η1
+

ξ21 − η21
(ξ21 − 1)(1− η21)

]
×R

(1)
1l (c, ξ<)R

(3)
1l (c, ξ>)S1l(c, η1)S1l(c, η)N

−2
1l (c1) ,

(5.82)

where ξ< = min(ξ, ξ1), ξ> = max(ξ, ξ1). This result can be obtained by using the
following equations:

E
(0)
1ϕ =

1

2π

∫ 2π

0

(E0, iϕ) dϕ =
ikD

2π

∫ 2π

0

(
ix
∂G̃

∂y
− iy

∂G̃

∂x
, iϕ

)
dϕ

=− ikD

2π

∫ 2π

0

(
ix
∂G̃

∂y1
− iy

∂G̃

∂x1
, iϕ

)
dϕ

=− ikD

2π

∫ 2π

0

[
− sinϕ

(
grad1G̃ , iy1

)
− cosϕ

(
grad1G̃ , ix1

)]
dϕ

=− ikD

2π

∫ 2π

0

[
− sinϕ

∂G̃

∂ϕ1

1
d
2 (ξ

2
1 − 1)

1
2 (1− η21)

1
2

+cosϕ
(ξ21 − 1)

1
2 (1− η21)

1
2

d
2 (ξ

2
1 − η21)

(
η1
∂G̃

∂η1
− ξ1

∂G̃

∂ξ1

)]
dϕ ,

(5.83)

where we assume that the dipole is located at the point (ξ1, η1, 0) and use the
expansion of the Green function (Komarov et al., 1976)

G̃(r, r1) =
exp(ik|r − r1|)

|r − r1| = 2ik

∞∑
m=0

∞∑
l=m

(2− δ0m)N−2
ml (c)

× Sml(c1, η1)Sml(c, η)R
(1)
ml (c, ξ<)R

(3)
ml (c, ξ>) cosm(ϕ− ϕ1) .

(5.84)

For a horizontal dipole,

E(0) = ik rot

[
Dix

exp(ik|r − r1|)
|r − r1|

]
, (5.85)

and in a similar way we get

E
(0)
1ϕ =

2k3D

c(ξ21 − η21)

∞∑
l=1

[
η1(ξ

2
1 − 1)

∂

∂ξ1
+ ξ1(1− η21)

∂

∂η1

]
N−2

1l (c)

× Sml(c, η1)Sml(c, η)R
(1)
ml (c, ξ<)R

(3)
ml (c, ξ>) cosm(ϕ− ϕ1) .

(5.86)

In both cases the azimuthal component of the magnetic field H
(0)
1ϕ = 0.
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When one considers the vertical and horizontal electric dipoles, E
(0)
1ϕ = 0 and the

corresponding component of the magnetic field is determined as for the magnetic
dipoles.

The non-axisymmetric component of the magnetic field is (Flammer, 1957)

E
(0)
2 =

∞∑
m=1

∞∑
l=1

(
a
(0)
ml M

z(1)
ml + b

(0)
ml M

r(1)
ml

)
, (5.87)

with the coefficients being equal to:

(a) for a vertical dipole,

a
(0)
ml = −4k2DN−2

ml (c)Sml(c, η1) ,

b
(0)
ml = 0 ;

(5.88)

(b) for a horizontal dipole,

a
(0)
ml = −4k2 cot θ1N

−2
ml (c)Sml(c, η1) ,

b
(0)
ml =

4k2D

r1 sin θ1
N−2

ml (c)Sml(c, η1) ,
(5.89)

where (r1, θ1, 0) are the spherical coordinates of the dipole.

For electric dipoles, the functions M z
ml, M

r
ml in the expansion (5.87) should

be replaced by N z
ml, N

r
ml, which is typical of the approach considered.

Eqs. (5.82)–(5.87) allow one easily to build solution to the problem of diffraction
of the dipole field on a spheroid. The ISLAEs relative to the coefficients of the
scattered field expansions (5.27) and (5.45) differ from the corresponding ISLAEs
for the plane wave scattering by their right-hand parts. For instance, for diffraction
of the field of the horizontal magnetic dipole on a perfectly conducting prolate
spheroid, we have:

(a) for the axisymmetric problem (see Eqs. (5.59), (5.88))

a
(1)
l =

−2k3D

c(ξ21 − η21)

R
(1)
1l (c, ξ0)

R
(3)
1l (c, ξ0)

[
η1(ξ

2
1 − 1)

∂

∂ξ1

+ξ1(1− η21)
∂

∂η1

]
N−2

1l (c)S1l(c, η1)R
(3)
1l (c, ξ1) ,

b
(1)
l =0 ;

(5.90)

(b) for the non-axisymmetric problem (see Eqs. (5.60), (5.89))[
ξ0 I − Γ (I + ξ0R1)

−1ΓR1

]
Z2

= −ξ0 Γ (I + ξ0R1)
−1(R1 −R0)F

(1)
m

− [ξ0 I − Γ (I + ξ0R1)
−1ΓR0]F

(2)
m ,

(5.91)

where F
(i)
m = {f (i)ml}∞l=m and f

(1)
ml = k a

(0)
ml Nml(c)R

(1)
ml (c, ξ0)R

(3)
ml (c, ξ1), f

(2)
ml =

c b
(0)
mkNml(c)R

(1)
ml (c, ξ0)R

(3)
ml (c, ξ1). Note that the right-hand part of the ISLAE (5.91)

is similar to the corresponding part of the systems in Section 5.2.3 for both the TE
and TM modes (see Eqs. (5.63)–(5.64)).
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5.3 Analysis of ISLAEs arisen in the light scattering by
spheroids

5.3.1 Estimates of integrals of products of the SAFs

Here we consider some integrals of products of the spheroidal angular functions and
their derivatives for large values of one and more indices. To estimate the integrals,
we represent the SAFs by their expansions in terms of the Legendre functions of the
first kind (see Appendix A for more details). The coefficients of these expansions
dml
r satisfy the recurrence relation (Komarov et al., 1976)

Ar d
ml
r+2 + (Br − λml) d

ml
r + Cr d

ml
r−2 = 0 , (5.92)

where

Ar =
(r + 2m+ 2)(r + 2m+ 1)

(2r + 2m+ 5)(2r + 2m+ 3)
c2,

Br =(m+ r)(m+ r + 1)− 2c2
(r +m)(r +m+ 1) +m2 − 1

(2r + 2m+ 3)(2r + 2m− 1)
,

Cr =
r(r − 1)

(2r + 2m− 1)(2r + 2m− 3)
c2, dml

−2, d
ml
−1 = 0 .

(5.93)

We estimate the coefficients dmn
r . For r < n−m, the recurrence relation (5.92)

can be solved from the beginning

dmn
r

dmn
r+2

=
Ar

λmn −Br − Cr
dmn
r−2

dmn
r

. (5.94)

The eigenvalues λmn satisfy the inequality

n(n+ 1)− c2 ≤ λmn(c) ≤ n(n+ 1) (5.95)

that is obtained from the equations (Komarov et al., 1976)

1

2c

dλmn(c)

dc
= −N−2

mn(c)

∫ 1

−1

S2
mn(c, η) (1− η2) dη (5.96)

and λmn(0) = n(n+1). Eqs. (5.93) give the following inequalities for the coefficients:

Ar ≤ c2, Cr ≤ c2

4
, (r+m)(r+m+1)− c2 ≤ Br ≤ (r+m)(r+m+1) . (5.97)

Hereafter we assume that the parameter c is positive, which occurs for media with-
out absorption. Otherwise, one should simply write all inequalities for moduli of
the corresponding quantities.

By using the mathematical induction over the index r from the recurrence
relation (5.94), one gets the inequality for r < m− n∣∣∣∣ dmn

r

dmn
r+2

∣∣∣∣ ≤ 2c2

n(n+ 1)− (m+ r)(m+ r + 1)
(5.98)
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that is valid under the condition

n ≥ 2c2 +
1

2
. (5.99)

The inequality (5.98) gives for r ≤ n−m

|dmn
r | ≤

(
c2

2

)n−m−r
2 Γ (n+m+r+1

2 ) |dmn
n−m|

Γ (n−m−r
2 + 1)Γ (n+ 1

2 )
. (5.100)

If r > n−m, one should use the relation (5.92) and solve it backward∣∣∣∣ dmn
r

dmn
r−2

∣∣∣∣ = −Cr

Br − λmn +Ar
dmn
r+2

dmn
r

. (5.101)

From this relation keeping in mind the inequalities (5.95)–(5.97) and the asymp-
totics dmn

r+2/d
mn
r ∼ c2/(4r2) for r → ∞ (Komarov et al., 1976), the mathematical

induction over the index r gives under the condition (5.99) for r > n−m∣∣∣∣ dmn
r

dmn
r−2

∣∣∣∣ ≤ c2

2[(r +m)(r +m+ 1)− n(n+ 1)]
. (5.102)

Then for r ≥ n−m, we get

|dmn
r | ≤

(
c2

8

) r−n+m
2 Γ (n+ 3

2 ) |dmn
n−m|

Γ ( r−n+m
2 + 1)Γ (n+r+m+3

2 )
. (5.103)

Without the restriction (5.99) on n, for r ≥ n−m+L, where L is the minimum
even number for which n+ L ≥ 2c2 + 1

2 , we have

|dmn
r | ≤

(
c2

8

) r−(n+L)+m
2 Γ (n+ L+ 3

2 ) |dmn
n−m+L|

Γ ( r−(n+L)+m
2 + 1)Γ (n+L+r+m+3

2 )
. (5.104)

In the Eq. (5.95) for λm,n+L we should also replace n(n+1) with (n+L)(n+L+1).

Let us consider the integrals γ
(m)
nl . For l ≥ n ≥ 2c2 + 1

2 , the inequalities (5.97)
and (5.102) allow one to rewrite Eqs. (5.92) as follows:

∣∣∣γ(m)
nl

∣∣∣ ≤N−1
mn(c)N

−1
ml (c)

[ n−m−2∑
r=0,1

′ |dmn
r | |dml

r+1|
2(r + 2m+ 1)(r + 2m)!

(2r + 2m+ 1)(2r + 2m+ 3)r!

+

l−m−1∑
r=n−m

′ |dmn
r | |dml

r+1|
2(r + 2m+ 1)(r + 2m)!

(2r + 2m+ 1)(2r + 2m+ 3)r!

+

∞∑
r=l−m+1

′ 2r |dmn
r | |dml

r−1|
(2r + 2m+ 1)(2r + 2m− 1)

(r + 2m)!

r!

](
1 +

2c2

l

)
.

(5.105)

We discuss three series appeared in Eq. (5.105). The first series is estimated from
the Cauchy–Schwarz inequality and a comparison with the geometric progression
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with the common ratio 1/2

I1 =N−1
mn(c)N

−1
ml (c)

n−m−2∑
r=0,1

′ |dmn
r | |dml

r+1|
2(r + 2m+ 1)

(2r + 2m+ 1)(2r + 2m+ 3)

× (r + 2m)!

r!
≤ 2

(
c2

2

) l−n+1
2 Γ ( l+n

2 )

Γ ( l−n+3
2 )Γ (l + 1

2 )
.

(5.106)

For the normalization factor, we used Eq. (5.295) from Appendix A.
By using Eqs. (5.101) and (5.103), one can rewrite the second series in

Eq. (5.105)

I2 ≤ |dmn
n−m| |dml

l−m|
Nmn(c)Nml(c)

l−m−1∑
r=n−m

′
(
c2

2

) l−n−1
2

(
1

2

)r−n+m Γ (n+ 3
2 )

Γ ( r−n+m
2 + 1)

× Γ ( l+m+r
2 + 1)

Γ (n+r+m+3
2 )Γ ( l−m−r

2 + 1)Γ (l + 1
2 )

2(r + 2m+ 1)(r + 2m)!

(2r + 2m+ 1)(2r + 2m+ 3)r!
.

(5.107)

Let us introduce the notation

Sl,n =

(
c2

2

) l−n−1
2 l−m−1∑

r=n−m

′
(
1

2

)r−n+m Γ (n+ 3
2 )Γ (

l+m+r
2 + 1)

Γ ( r−n+m
2 + 1)Γ (n+r+m+3

2 )

× 1

Γ ( l−m+r
2 + 1)Γ (l + 1

2 )

r + 2m+ 1

2r + 2m+ 3

2

2r + 2m+ 1

(r + 2m)!

r!

(5.108)

and estimate Sl+2,n using Sl,n

Sl+2,n ≤ c2

2

Sl,n

(l + 1
2 )(l +

3
2 )

+
1

2
Sl+2,n . (5.109)

This estimate is valid under the condition

n ≥ 3m (5.110)

and due to the fact that each term of the series (5.108) is not larger than the
previous term. From the inequality (5.109), we get

Sl+2,n ≤ c2

[(l + 1)(l + 3)]
1
2

Sl,n , (5.111)

and as a result the series (5.107) is estimated as follows:

I2 ≤Nmn(c)
−1
Nml(c)

−1 |dmn
n−m| |dml

l−m| c l−n−1

[
Γ (n+ 2)

Γ (l + 1)

] 1
2

Sn+1,n

≤ n+m+ 1

2n+ 3
c l−n−1

[
Γ (n+ 2)

Γ (l + 1)

] 1
2

.

(5.112)
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Under the condition (5.110) the third series in Eq. (5.105) decreases faster than
the geometric progression with the common ratio 1/2, and the first term of this
series is smaller than the last term of the series I2 by c2/2l times, therefore

I3 ≤ N−1
mnN

−1
ml

∞∑
r=l−m+1

′ |dmn
r | |dml

r−1|
(r + 2m)!

(2r + 2m+ 1)!
≤ c2

l
I2 . (5.113)

A comparison of the estimates (5.106), (5.112), and (5.113) shows that the

major contribution to the integrals γ
(m)
nl is made by the series I2

∣∣∣γ(m)
nl

∣∣∣ ≤ n+m+ 1

2n+ 3
c l−n−1

[
Γ (n+ 2)

Γ (l + 1)

] 1
2
(
1 +

2c2

l

)2

. (5.114)

Similarly, one can derive the estimates of the integrals γ
(m)
nl for l ≥ n + L ≥

max(2l2 + 1
2 , 3m). In this case in Eq. (5.114) n is replaced by n+ L

∣∣∣γ(m)
nl

∣∣∣ ≤ n+ L+m+ 1

2(n+ L) + 3
c l−(n+L)−1

[
Γ (n+ L+ 2)

Γ (l + 1)

] 1
2
(
1 +

2c2

l

)2

. (5.115)

In the case of l < n or l+L < n, the indices n and l are interchanged in Eqs. (5.114)
and (5.115).

Analogously, one can estimate the other integrals (c2 > c1, l > n)

∣∣∣δ(m)
nl

∣∣∣ ≤ c l−(n+L)
2

[
Γ (n+ L+ 1)

Γ (l + 1)

] 1
2
(
1 +

2c22
l

)2

,∣∣∣κ(m)
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∣∣∣ ≤ (n+ L+m+ 1)(n+ L+ 2)
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c
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2

×
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Γ (l + 1)

] 1
2
(
1 +

2c22
l

)2

,∣∣∣σ(m)
nl

∣∣∣ ≤ (n+ L+ 2)(n+ L+m+ 1)(n+ L+m+ 2)

2(n+ L) + 3][2(n+ L) + 5]

× c
l−(n+L)−2
2

[
Γ (n+ L+ 3)

Γ (l + 1)

] 1
2
(
1 +

2c22
l

)2

,

(5.116)

where L is the same as in Eq. (5.115). For l < n, in Eqs. (5.114)–(5.115) n and l
are interchanged.

Estimating the integrals γ
(m)
nl (−ic), δ

(m)
nl (−ic), κ

(m)
nl (−ic), σ

(m)
nl (−ic) including

the oblate SAFs is similar. Under the same restrictions on l and n, the esti-
mates (5.114)–(5.116) are obtained.
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For large n, we have the following asymptotics of the integrals:∣∣∣γ(m)
n,n−1

∣∣∣ = 1

2
+O
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)
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2
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)
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1 +O

(
1
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,
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n,n−2 = −n

4

[
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1
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n,n =
3

4
+O

(
1
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σ
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n

4

[
1 +O

(
1

n

)]
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)
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(5.117)

which follow from the relation (Komarov et al., 1976)

Smn(c, η) = Pm
n (η)

[
1 +O

(
1

n

)]
. (5.118)

5.3.2 Asymptotics of the SRFs for large indices n

These asymptotics are built by the method of the standard equations (Komarov et
al., 1976). After the substitution

U(ξ) = (ξ2 − 1)
1
2 Rmn(c, ξ) , (5.119)

one gets the equation

U ′′ +
[
c2 − λmn

ξ2 − 1
+

1−m2

(ξ2 − 1)2

]
U = 0 . (5.120)

The asymptotics of the eigenvalues λmn is known (see Eq. (5.95))

λmn = n(n+ 1) +O(1) . (5.121)

The region of variable values can be divided in two intersecting intervalsD1 ∈ [1; ξ1)
and D2 ∈ (ξ2;∞), where ξ2 < ξ1. In the region D1 the standard equation is

W ′′(z) +
[
−n(n+ 1)

z2 − 1
+

1−m2

(z2 − 1)2

]
W (z) = 0 . (5.122)

Its fundamental system of solutions is

W1(z) = (z2 − 1)
1
2 Pm

n (z) , W2(z) = (z2 − 1)
1
2 Qm

n (z) , (5.123)

where Qm
n (z) are the associated Legendre functions of the second kind.

According to the standard equation method, the solutions to Eq. (5.120) are

U(ξ) =

[
z(ξ)

z′(ξ)

] 1
2

W (z(ξ)) , (5.124)
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where the function z(ξ) is expanded in terms of the inverse powers of the index n

z(ξ) =

∞∑
j=0

zj(ξ) n
−j . (5.125)

To determine the functions zj(ξ), we substitute Eq. (5.124) into Eq. (5.120), use
Eq. (5.122) and the expansion (5.125), and consider the expressions at the same
powers of n. The initial conditions are derived from the requirement of transition
of the singularities of Eq. (5.120) into the singularities of Eq. (5.122).

In the first approximation, we get

z′0(ξ)
z20(ξ)− 1

=
1

ξ2 − 1
, z0(1) = 1 , (5.126)

and hence z0(ξ) = ξ. Thus, from the behaviour of the spheroidal radial functions
at ξ = 1 and from Eqs. (5.119) and (5.123), we have for ξ ∈ D1

R(1)
mn(c, ξ) = C1 P

m
n (ξ)

[
1 +O

(
1

n

)]
,

R(2)
mn(c, ξ) = C2Q

m
n (ξ)

[
1 +O

(
1

n

)]
+ C3 P

m
n (ξ)

[
1 +O

(
1

n

)]
.

(5.127)

For the second interval D2, the standard equation is

W ′′(z) +
[
c2 − n(n+ 1)

z2

]
W (z) = 0 , (5.128)

and the fundamental system of its solutions is

W1(z) = (cz)
1
2 Jn+ 1

2
(cz) , W2(z) = (cz)

1
2 Nn+ 1

2
(cz) , (5.129)

where Nn+ 1
2
(cz) is the Bessel function of the second kind.

The approach used above gives here[
z′0(ξ)
z0(ξ)

]2
=

1

ξ20 − 1
,

z0(ξ)

ξ
−−−→
ξ→∞

1 , (5.130)

and hence

z0(ξ) =
1

2

[
ξ + (ξ2 − 1)

1
2

]
. (5.131)

Keeping in mind the asymptotics of the prolate SRFs at infinity (Komarov et al.,
1976), we get for ξ ∈ D2

R(1)
mn(c, ξ) =

[
1

2

(
ξ(ξ2 − 1)−

1
2 + 1

)] 1
2

jn

[ c
2

(
ξ + (ξ2 − 1)

1
2

)] [
1 +O

(
1

n

)]
,

R(2)
mn(c, ξ) =

[
1

2

(
ξ(ξ2 − 1)−

1
2 + 1

)] 1
2

nn

[ c
2

(
ξ + (ξ2 − 1)

1
2

)] [
1 +O

(
1

n

)]
,

(5.132)
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where jn(z) and nn(z) are the spherical Bessel functions of the first and second
kinds.

The asymptotic representations (5.127) and (5.132) are simultaneously valid
for the intervals (ξ2, ξ1) and D1 ∩ D2, and hence they should coincide there. The
asymptotics of the functions Pm

n (ξ) and Qm
n (ξ) for n→ ∞ and ξ ∈ D1 ∩D2 are as

follows (Morse and Feshbach, 1953):

Pm
n (ξ) =

n!

(n−m)!
(2πn)−

1
2

(
ξ2 − 1

)− 1
4

(
ξ + (ξ2 − 1)

1
2

)n+ 1
2

[
1 +O

(
1

n

)]
,

Qm
n (ξ) =

(−1)mn!

(n−m)!

( π
2n

) 1
2 (
ξ2 − 1

)− 1
4

(
ξ + (ξ2 − 1)

1
2

)−(n+ 1
2 )
[
1 +O

(
1

n

)]
.

(5.133)
On the other hand, from the asymptotics of the spherical Bessel functions for a
large n (Morse and Feshbach, 1953), we get for ξ ∈ D1 ∩D2

R(1)
nm(c, ξ) =

n!

(2n+ 1)!

cn√
2
(ξ2 − 1)−

1
4

(
ξ + (ξ2 − 1)

1
2

)n+ 1
2

[
1 +O

(
1

n

)]
,

R(2)
nm(c, ξ) = −2n!

n!

√
2

cn+1
(ξ2 − 1)−

1
4

(
ξ + (ξ2 − 1)

1
2

)−(n+ 1
2 )
[
1 +O

(
1

n

)]
,

(5.134)
A comparison of Eqs. (5.133) and (5.134) gives the unknown coefficients of the

expansion (5.127)

C1 =
(πn)

1
2 cn (n−m)!

(2n+ 1)!
, C2 = 2 (−1)m+1 n

1
2 (n−m)! 2n!

π
1
2 cn+1 (n!)2

, C3 = 0 . (5.135)

Note that, when n→ ∞, C−1
1 and C−1

2 determine the asymptotics of the coef-

ficients k
(1)
mn and k

(2)
mn that relate the SAFs and SRFs. The asymptotic expansions

of the spherical functions and eigenvalues in the cases n → ∞ and c → 0 coincide
in the first approximation (Komarov et al., 1976).

The oblate SRFs can be treated similarly. To obtain the final result, one should
make the standard substitution in the equations given above

R(1)
mn(−ic, iξ) = C1 P

m
n (iξ)

[
1 +O

(
1

n

)]
,

R(2)
mn(−ic, iξ) = C2Q

m
n (iξ)

[
1 +O

(
1

n

)]
,

(5.136)

for ξ ∈ D1, and

R(1)
nm(−ic, iξ) =

[
1

2

(
ξ(ξ2 + 1)−

1
2 + 1

)] 1
2

jn

[
c2

(
ξ + (ξ2 + 1)

1
2

)] [
1 +O

(
1

n

)]
,

R(2)
nm(−ic, iξ) =

[
1

2

(
ξ(ξ2 + 1)−

1
2 + 1

)] 1
2

nn

[
c2

(
ξ + (ξ2 + 1)

1
2

)] [
1 +O

(
1

n

)]
,

(5.137)
for ξ ∈ D2, respectively.
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For the interval D1 ∩D2 = (ξ2, ξ1), the asymptotic representations are

R(1)
mn(−ic, iξ) =

n!

(2n+ 1)!

cn√
2
(ξ2 + 1)−

1
4

(
ξ + (ξ2 + 1)

1
2

)(n+ 1
2 )
[
1 +O

(
1

n

)]
,

R(2)
mn(−ic, iξ) = −2n!

n!

√
2

cn+1
(ξ2 + 1)−

1
4

(
ξ + (ξ2 + 1)

1
2

)(n+ 1
2 )
[
1 +O

(
1

n

)]
.

(5.138)
The coefficients in Eqs. (5.136) are

C1 =
(πn)

1
2 cn (n−m)!

(2n+ 1)!
, C2 = 2 (−1)m+1 n

1
2 (n−m)! 2n!

π
1
2 cn+1 (n!)2

. (5.139)

It should be emphasized that in this case the interval [−i, i] includes the point
ξ = 0, which requires consideration of two integrals for the radial variable intervals
D1 = [0, ξ1) and D2 = [ξ2,∞).

5.3.3 Properties of quasi-regular systems

The problem of the electromagnetic wave diffraction on a spheroid is here reduced
to solution of an ISLAE. As analytical studies of the properties of ISLAEs are
seldom in the scientific literature, we discuss both the well known and new further
required properties of the ISLAEs.

The infinite system

xn =

∞∑
i=1

cni xi + qn , n = 1, 2, . . . , (5.140)

is called regular provided

∞∑
i=1

|cni| < 1, n = 1, 2, . . . , (5.141)

and

|qn| < K

(
1−

∞∑
i=1

|cni|
)
, n = 1, 2, . . . , (5.142)

where K is a positive number.
When the sums (5.142) differ from the unity by a positive number

∞∑
i=1

|cni| ≤ p < 1 , n = 1, 2, . . . , (5.143)

the condition (5.141) transforms into a restriction for the free terms

|qn| < K, n = 1, 2, . . . . (5.144)

The system (5.140) whose coefficients satisfy the conditions (5.143) and (5.144) is
called completely regular.
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Theorem 1. A regular system (5.140) has a restricted solution that can be found by
the reduction method. A completely regular system has the only restricted solution
that can be found by the reduction method.

The first part of the theorem was proved by Kantorovich and Krylov (1964).
Ability to find a solution to the infinite system by the reduction method means

the
XN

n −−−−→
N→∞

Xn , n = 1, 2, . . . , (5.145)

where XN
n is the solution to the system of the size N × N that is obtained from

the initial system by reduction. We use the term completely quasi-regular system,
when the conditions (5.141) and (5.142) are satisfied starting with some row

∞∑
i=1

|cni| <∞, n = 1, 2, . . . , N ,

∞∑
i=1

|cni| < 1, n = (N + 1), (N + 2), . . . ,

|qn| ≤ K

(
1−

∞∑
i=1

|cni|
)
.

(5.146)

Hereafter we apply the condition (5.146) in a stronger form

∞∑
i=1

| cni| <∞, n = 1, 2, . . . , N ,

∞∑
i=1

| cni| ≤ p < 1, n = (N + 1), (N + 2), . . . ,

|qn| ≤ K .

(5.147)

The last condition means that the free terms are restricted. The infinite sys-
tem (5.140) under the conditions (5.147) can be called completely quasi-regular
one.

Theorem 2. Either a completely quasi-regular system has the only solution that
can be found by the reduction method, or the corresponding homogeneous system
has non-trivial restricted solutions.

In the book of Kantorovich and Krylov (1964) this theorem was not formulated
explicitly, but it can be easily proved.

Let us rewrite a completely quasi-regular system in the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
xn =

∞∑
i=N+1

cni xi +

(
qn +

N∑
l=1

cnl xl

)
, n = N + 1, . . . ,

xn =

N∑
l=1

cnl xl +

(
qn +

∞∑
i=N+1

cni xi

)
, n = 1, . . . , N .

(5.148)
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A solution to the first system that is completely regular relative to xN+1, xN+2, . . .
can be represented as

xn = ξn +

N∑
l=1

dnl xl, n = (N + 1), . . . , (5.149)

where ξn is the solution to the system where the free terms are just qn, and dnl is the
solution to the same system with the free terms cnl. Here |ξn| < K, |dnl| < 1, which
follows from the general properties of the completely regular system (its solution is
restricted by a constant limiting the free terms – Kantorovich and Krylov, 1964).
The starting N unknowns are derived from the second system (5.148) after the
substitution (5.149)

xn =

N∑
l=1

cnl xl +

N∑
l=1

( ∞∑
i=N+1

cni dil

)
xl +

(
qn +

∞∑
i=N+1

cni ξi

)
, (5.150)

where n = 1, 2, ..., N . The system (5.150) is finite, and hence either it has the
only solution or the corresponding homogeneous system has non-trivial solutions.
Therefore, either the infinite system has the only solution, or the corresponding
homogeneous system has non-trivial solutions.

Let us demonstrate that the only restricted solution to a completely quasi-
regular system can be found by the reduction method. For a finite system of the
size R×R (R > N) formed by truncation of the initial system, we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x(R)
n =

R∑
i=N+1

cni x
(R)
i +

(
qn +

N∑
l=1

cnl x
(R)
l

)
, n = N + 1, . . . , R ,

x(R)
n =

N∑
l=1

cnl x
(R)
l +

(
qn +

∞∑
i=N+1

cni x
(R)
i

)
, n = N + 1, . . . , N .

(5.151)

The first system of Eq. (5.148) can be solved by the reduction method, and hence
solution to the first system of Eq. (5.151) can be represented as follows:

x(R)
n = ξ(R)

n +

N∑
l=1

d
(R)
nl x

(R)
l , n = (N + 1), . . . , R , (5.152)

where
ξ(R)
n −−−−→

R→∞
ξn , d

(R)
nl −−−−→

R→∞
dnl . (5.153)

The unknowns x
(R)
1 , . . . , x

(R)
N are determined from the second system of Eqs. (5.151)

x(R)
n =

N∑
l=1

cnl x
(R)
l +

N∑
l=1

(
R∑

i=N+1

cni d
(R)
il

)
x
(R)
l +

(
qn +

R∑
i=N+1

cni ξ
(R)
i

)
, (5.154)

where n = 1, 2, . . . , N .
Let us compare the systems (5.150) and (5.154). They are finite, and the coef-

ficients of the system (5.154) trend to the coefficients of the system (5.150) when
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R → ∞. It follows from Eqs. (5.153) and the fact that the series
∑R

i=N+1 cni d
(R)
il

and
∑R

i=N+1 cni ξ
(R)
i have the majorants

∑∞
i=N+1 cni < 1 and

∑∞
i=N+1 |cni|K <

K, respectively, and hence the transition to limit is possible. So, we have

x(R)
n −−−−→

R→∞
xn, n = 1, 2, . . . , N . (5.155)

From Eqs. (5.152)–(5.153) we get

x(R)
n −−−−→

R→∞
xn, n = 1, 2, . . . . (5.156)

Thus, any quasi-regular system that has the only restricted solution can be
solved by the reduction method.

Let us prove an additional theorem required to perform analysis of the ISLAEs
arisen in the problem of the electromagnetic wave diffraction on a spheroid.

Theorem 3. Let us consider an infinite system

zn = κ1 zn+1 + κ2 zn−1 +

( ∞∑
i=1

cni zi + qn

)
, (5.157)

where n = 1, 2, . . . , Z0 = 0, and |κ1|+ |κ2| = p < 1. If

∞∑
i=1

|cni| < M n−( 1
2+ε) , (5.158)

where M and ε are some positive numbers independent of n, and

∞∑
i=1

|qn|2 < ∞ , (5.159)

then either the system (5.157) has the only solutions in the space l2, or the corre-
sponding homogeneous system has non-trivial solutions in this space. The solution
to the system (5.157) can be found by the reduction method.

Under the conditions (5.158) and (5.159), the system (5.157) is completely
quasi-regular, and hence either it has the only restricted solution, or the corre-
sponding homogeneous system has non-trivial solutions (see Theorem 2). Let us
prove that the restricted solution z = {zn} to the system (5.157) belongs to the
space l2 (hereafter || || l2 means the norm in the space l2), i.e.

||z||2l2 =

∞∑
n=1

|zn|2 <∞ . (5.160)

Let us introduce the notation u = {un} = {∑∞
i=1 cni zi + qn}. From Eqs. (5.158)–

(5.159) and the triangle inequality ||a+ b|| ≤ ||a||+ ||b||, we have

||u|| l2 ≤
⎡⎣ ∞∑
n=1

( ∞∑
n=1

cni

)2
⎤⎦ 1

2

sup
n

|zn|+ ||q|| l2 <∞ , (5.161)
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where q = {qn}. So, u ∈ l2, and from the system (5.157) we get the following
estimate:

||z|| l2 ≤ 1

1− |κ1| − |κ2| ||u|| l2 , (5.162)

i.e. the restricted solution belongs to the space l2. The inequalities (5.161) and
(5.162) for qn = 0 show that the restricted non-trivial solution to the homogeneous
system also belongs to the space l2.

5.3.4 Analysis of the infinite systems for perfectly conducting spheroids

Let us consider ISLAEs arisen in solution of the problem of the electromagnetic
wave diffraction on a perfectly conducting spheroid. For the TE mode, the infinite
systems are (the vector Z2 is not excluded){

Γ Z1 + ξ0 Z2 = −Γ Fm ,

(I + ξ0R1)Z1 + f Γ R1 Z2 = −(I + ξ0R0)Fm .
(5.163)

Eqs. (5.132)–(5.135) allow one to represent the elements of the diagonal matrices
R0,1 by

r(1)mn =
R

(1)′
mn (c, ξ0)

R
(1)
mn(c, ξ0)

=
n

(ξ20 − 1)
1
2

[
1 +O(n−1)

]
, (5.164)

r(3)mn =
R

(3)′
mn (c, ξ0)

R
(3)
mn(c, ξ0)

= − n

(ξ20 − 1)
1
2

[
1 +O(n−1)

]
. (5.165)

Using Eqs. (5.114), (5.117), the system (5.163) can be rewritten⎧⎪⎪⎪⎨⎪⎪⎪⎩
y
(m)
2,n = − 1

2ξ0

(
y
(m)
1,n−1 + y

(m)
1,n+1

)
+
∑
i

c1ni y
(m)
1,i + q

(m)
1,n ,

y
(m)
1,n = − 1

2ξ0

(
y
(m)
2,n−1 + y

(m)
2,n+1

)
+
∑
i

c2ni y
(m)
2,i + q

(m)
2,n ,

(5.166)

where we have introduced the notation

y
(m)
1,2k−1 = z

(m)
1,2k, y

(m)
1,2k = z

(m)
2,2k−1 ,

y
(m)
2,2k−1 = z

(m)
1,2k−1 , y

(m)
2,2k = z

(m)
2,2k

(5.167)

and kept in mind the fact that the infinite system (5.163) can be divided in two
independent systems relative to the variables (5.167) because of the parity of the
integrals of the SAFs.

The coefficients of the ISLAEs (5.166) satisfy the conditions of Theorem 3,
namely ∑

i

|c1ni|+
∑
i

|c2ni| ≤M n−1 , (5.168)

∑
n

|q1,n|2 +
∑
n

|q2,n|2 <∞ , (5.169)
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where the free terms are

q
(m)
1,n = −

∑
j

γ
(m)
nj f

(m)
j , q

(m)
2,n = −

(
1 + ξ0 r

(1)
mn

)
f (m)
n . (5.170)

The inequality (5.168) can be easily proved. From estimates (5.114) and (5.117),
we have

∑
i

|c1ni| ≤ C

⎛⎝ n−3∑
l=0,1

′
∣∣∣γ(m)

nl

∣∣∣+ ∣∣∣∣γ(m)
n,n−1 −

1

2

∣∣∣∣+ ∣∣∣∣γ(m)
n,n+1 −

1

2

∣∣∣∣+ ∞∑
l=n+3

′
∣∣∣γ(m)

nl

∣∣∣ l
n

⎞⎠
≤ C n−1 .

(5.171)

The quantities f
(m)
n involved in the free terms of the system (5.166) are estimated

as follows:∣∣∣f (m)
n

∣∣∣ ≤ 4

sinα

∣∣∣R(1)
mn(c, ξ0)Smn(c, cosα)N

−1
mn(c)

∣∣∣
≤ Const

∣∣∣∣ jn [ c2 (ξ0 + (ξ20 − 1)
1
2

)] 1

sinα
Pm
n (cosα)N−1

mn(0)

∣∣∣∣
≤ Const

(n+m)!

(2n)!

[ c
2

(
ξ0 + (ξ20 − 1)

1
2

)]n
,

(5.172)

where we use the relations (5.134) and the available estimate of the associated
Legendre polynomials (Sinha and McPhie, 1977)∣∣∣∣ 1

sinα
Pm
n (cosα)

∣∣∣∣ ≤ Const
(n+m)!

n!
. (5.173)

From Eqs. (5.114), (5.117) and (5.172), we get∣∣∣q(m)
1,n

∣∣∣ ≤ Const
(n+m)!

(2n)!
[(n− 1)!]

1
2

[ c
2

(
ξ0 + (ξ20 − 1)

1
2

)]n
,∣∣∣q(m)

2,n

∣∣∣ ≤ Const
(n+m)!

(2n)!
2n

[ c
2

(
ξ0 + (ξ20 − 1)

1
2

)]n
,

(5.174)

and hence the validity of the conditions (5.169).
From Theorem 3, for a givenm, the ISLAEs (5.163) as well as the systems (5.63)

and (5.64) have the only solution in the space l2 that can be found by the reduction
method under the condition

ξ0 > 1 (5.175)

that is satisfied for any prolate spheroids not degenerated into a segment. Here we
utilize the fact that the diffraction problem without sources and the corresponding
homogeneous ISLAEs have the trivial solution only.

As squares of z
(m)
1,n , z

(m)
2,n are summarized, from Eqs. (5.42)–(5.46) and (5.52) it

follows that the parts of the solution to the diffraction problem for a plane electro-
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magnetic wave on a perfectly conducting spheroid with a fixed cosmϕ converge on
any spheroidal surface Ω (ξ = const) in space L2(Ω) everywhere up to the scatterer
boundary (ξ ≥ ξ0). The possibility of independent solving the diffraction problem
for any of the parts follows from the commutativity of the operators Lz and T (see
Section 5.2.2).

For an oblate spheroid, from Eqs. (5.115), (5.134) one can derive the IS-
LAEs (5.166) that can be solved under the condition (5.175), i.e. under the fol-
lowing geometrical restriction:

d > 2b , (5.176)

i.e. the focal distance should be larger than the minor axis of the spheroid. In this
case one can draw the same conclusions as for the prolate spheroids. Note that the
condition (5.175) is equivalent to the condition a/b <

√
2 that is required for the

expansions of the internal and scattered fields to converge everywhere up to the
scatterer boundary.

However, in contrast to the case of the field convergence, the condition (5.175)
is not the necessary one for the ISLAEs to be uniquely solvable in the space l2.
After a more accurate investigation of the infinite systems for oblate spheroids the
restriction (5.175) and hence (5.176) can be removed.

Let us introduce new variables in the systems (5.166)

t
(m)
1,n =

[
q
(
ξ0 + (ξ20 + 1)

1
2

)]n
y
(m)
1,n ,

t
(m)
2,n =

[
q
(
ξ0 + (ξ20 + 1)

1
2

)]n
y
(m)
2,n ,

(5.177)

where q > I is a number. Then the ISLAEs (5.166) can be rewritten⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t
(m)
1,n−1 =

−2ξ0

q
[
ξ0 + (ξ20 + 1)

1
2

] t(m)
1,n − 1

q2
[
ξ0 + (ξ20 + 1)

1
2

]2 t(m)
1,n+1

+
∑
i

c̃1ni t
(m)
1,i + q̃

(m)
1,n ,

t
(m)
2,n−1 =

−2ξ0

q
[
ξ0 + (ξ20 + 1)

1
2

] t(m)
2,n − 1

q2
[
ξ0 + (ξ20 + 1)

1
2

]2 t(m)
2,n+1

+
∑
i

c̃2ni t
(m)
2,i + q̃

(m)
2,n ,

(5.178)

where

c̃1,2ni =c1,2ni

2ξ0[
q
(
ξ0 + (ξ20 + 1)

1
2

)]n−1 ,

q̃1,2kn =q1,2kn

2ξ0[
q
(
ξ0 + (ξ20 + 1)

1
2

)]n−1 .

(5.179)
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Under the condition q > 1, we have

2ξ0

q
[
ξ0 + (ξ20 + 1)

1
2

] +
1

q2
[
ξ0 + (ξ20 + 1)

1
2

]2 ≤ 1

q
< 1 , (5.180)

and the infinite systems (5.178) are completely quasi-regular. For the coefficients
of these systems, the inequalities (5.168)–(5.169) are valid, and Theorem 3 can be
applied as it follows from Eqs. (5.115), (5.117) and (5.172). Thus, for any per-
fectly conducting oblate spheroids, not degenerated into a disk (ξ0 = 0), the same
conclusions are valid as for the prolate spheroids. As the transition to a perfectly
conducting disk is not possible within the solution suggested (see Section 5.2.3),
in numerical calculations one should expect worse convergence for more flattened
spheroids, which is really observed.

5.3.5 Analysis of ISLAEs arisen for dielectric spheroids

The axisymmetric component of the scattered field for perfectly conducting spheroids
can be found analytically, while for dielectric spheroids one should solve ISLAEs
relative to the coefficients of the corresponding expansions. For the TE wave, we
have

(ΔR1 −R2Δ)Z0 + (ΔR0 −R2Δ)F 0 = 0 . (5.181)

From Eqs. (5.115), (5.117), (5.165) and (5.172), we get

z0,n =
∑
i

cni z0,i + qn , (5.182)

where the coefficients satisfy the conditions∑
i

|cni| ≤Mn−1 ,
∑
n

|qn|2 <∞ . (5.183)

For the TM wave, the ISLAEs are[
ξ0(ε2 − ε1)Δ+ (ξ20 − 1)(ε2ΔR1 − ε1R2Δ)

]
Z0

+
[
ξ0(ξ2 − ξ1)Δ+ (ξ20 − 1)(ε2ΔR0 − ε1R2Δ)

]
F 0 = 0 ,

(5.184)

and keeping in mind the behaviour of the coefficient they can be written in the
form (5.182) with the condition (5.183).

For the oblate spheroids, we obtain similar results. So, the conclusions made
above about the axisymmetric component of the scattered field in the case of per-
fectly conducting spheroids are valid for dielectric spheroids as well.
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For the non-axisymmetric component of the scattered field, the estimates de-
rived above allow one to write the ISLAEs for the TE mode as follows (see
Eq. (5.55)):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z
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2,n +

1

2ξ0

(
z
(m)
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(m)
1,n+1

)
=

x
(m)
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1

2ξ0

(
x
(m)
1,n−1 + x

(m)
1,n+1

)
+
∑
i

d 1
ni zi + q1n ,

z
(m)
1,n +

1

2ξ0

(
z
(m)
2,n−1 + z

(m)
2,n+1

)
=

− x
(m)
1,n − 1

2ξ0

(
x
(m)
2,n−1 + x

(m)
2,n+1

)
+
∑
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d 2
ni zi + q2n ,

ε1

[
z
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1

2ξ0

(
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(m)
2,n+1

)]
=

ε2

[
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1

2ξ0

(
x
(m)
2,n−1 + x

(m)
2,n+1

)]
+
∑
i

d 3
ni zi + q3n ,

z
(m)
2,n +

1

2ξ0

(
z
(m)
1,n−1 + z

(m)
1,n+1

)
=

− x
(m)
2,n − 1

2ξ0

(
x
(m)
1,n−1 + x

(m)
1,n+1

)
+

1

2

(
1− c21

c22

)
1

(ξ20 − 1)
1
2

×
[
z
(m)
1,n+1 − z

(m)
1,n−1 +

1

2ξ0

(
z
(m)
2,n+2 − z

(m)
2,n−2

)]
+
∑
i

d 4
ni zi + q4n ,

(5.185)

where {zi} and {xi} are the sets of the unknowns related with the scattered and
internal fields, respectively. The coefficients of the system (5.185) satisfy the con-
ditions ∑

i

|d k
ni| ≤ Mn−1 ,

∑
n

|qkn|2 <∞ . (5.186)

Multiplying the second equation of the system (5.185) by −ε1 and ε2 and adding
of the results with the third equation give⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x
(m)
1,n +

1

2ξ0

(
x
(m)
2,n−1 + x

(m)
2,n+1

)
=

−1

ε1 + ε2

[∑
i

(
d 3
ni − ε1d

2
ni

)
zi + q3n − ε1q

2
n

]
,

z
(m)
1,n +

1

2ξ0

(
z
(m)
2,n−1 + z

(m)
2,n+1

)
=

1

ε1 + ε2

[∑
i

(
d 3
ni + ε2d

2
ni

)
zi + q3n + ε2q

2
n

]
.

(5.187)

Similarly, from the first and fourth equations, we get
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(m)
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=
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z
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+
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(
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,

z
(m)
2,n +

1

2ξ0

(
z
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=

1

4

(
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(
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(m)
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+

1

2

[∑
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(
d 4
ni + d 3
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)
zi + q4n + q3n

]
.

(5.188)
From Eqs. (5.187), we have

z
(m)
1,n+1 − z

(m)
1,n−1 +

1

2ξ0

(
z
(m)
2,n+2 − z

(m)
2,n−2

)
=

1

ε1 + ε2

[∑
i

(
d 3
n+1i + ε2d

2
n+1i

−d 3
n−1i − ε2 d

2
n−1i

)
zi + q3n+1 + ε2 q

2
n+1 − q3n−1 − ε2 q

2
n−1

]
,

(5.189)

i.e. Eqs. (5.188) actually have the same form as Eqs. (5.187). A similar result is
obtained for the TM wave as well as in the case of an oblate spheroid. Thus,
the infinite systems (5.187)–(5.188) for dielectric spheroids are analogous to the
systems (5.166) for perfectly conducting spheroids, and the same conclusions can
be drawn in both cases. Namely, the ISLAEs for any prolate or oblate spheroids
not generating into a disk or a segment are completely quasi-regular and have
the only solution (in the space l2) that can be found by the reduction method.
The solution to the diffraction problem for a fixed m, i.e. with the factor cosmϕ,
converges on any surface Ω(ξ = const) in the space L2(Ω) up to the surface of the
scattering spheroid. Our investigation of the cases of extremely prolate and oblate
dielectric spheroids and extremely prolate perfectly conducting spheroids shows
that the systems arisen can be rather simply solved in the first approximation
with the small parameter being the ratio of the minor to major axis, and the
solution obtained gives reasonable results in a wide region of parameter values.
For a perfectly conducting disk the solution should be improved (see Section 5.5).
After that the solution becomes physically correct, and the Meixner conditions at
the disk edge are satisfied.

5.4 Light scattering problem for extremely prolate and
oblate spheroids

It is known that in the case of the axisymmetric excitation of a perfectly conducting
spheroid one can find asymptotics of the scattered field for a small parameter
b/a by utilizing the separation of variables method, the Abraham potentials, and
some properties of the spheroidal functions. There arises the condition of the linear
antenna excitation (Stratton, 1941)

d = n
λ

2
, (5.190)

i.e. the length of the oscillator is equal to an integer number of half-wavelengths.
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Below we demonstrate that the solution suggested is very efficient for extremely
prolate dielectric and perfectly conducting spheroids as well as extremely oblate
dielectric spheroids. Moreover, in these cases the solution allows one to derive the
principal term of the asymptotics for the small parameter equal to the ratio of the
minor to major semiaxis of the spheroid.

5.4.1 Extremely prolate spheroids

For such particles, the small parameter is related with the value of the radial
spheroidal coordinate ξ0 such that (b/a)2 = (ξ20 − 1)/ξ20 , and hence the principal
term of the asymptotic expansions in (ξ20 − 1) and (b/a)2 is the same.

The asymptotics of the prolate SRFs of the first kind for ξ0 → 1 in the region
c = O(1) is as follows:

R
(1)
ml (c, ξ0) = Cml P

m
l (ξ0)

[
1 +O(ξ20 − 1)

]
. (5.191)

To construct the asymptotics of the prolate SRFs of the second kind, one uses the
Liouville formula (Flammer, 1957)

R
(2)
ml (c, ξ0) =

1

2
Qml(c)R

(1)
ml (c, ξ0) ln

ξ0 + 1

ξ0 − 1
+ (ξ20 − 1)−

m
2 ϕml(c, ξ0) , (5.192)

where Cml, Qml(c) are some constants, Pm
l (ξ0) the associated Legendre polynomi-

als, and

ϕml(c, ξ0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ξ0

∞∑
r=0

bml
r (ξ20 − 1)r, l −m = 2q − 1 ,

∞∑
r=0

bml
r (ξ20 − 1)r , l −m = 2q .

(5.193)

From Eqs. (5.191)–(5.193), in the first approximation we get

R0 =
m

ξ20 − 1
I , R̃2 =

m

ξ20 − 1
I , R1 = − m

ξ20 − 1
I . (5.194)

Then for the matrices A and B (see Eq. (5.56)), we have

A =
m

ξ20 − 1
I , B =

1

ξ20 − 1
K . (5.195)

Eqs. (5.194) and (5.195) allow one to solve the ISLAEs in the first approximation
with respect to the parameter (ξ20 − 1) (see for more details, Voshchinnikov and
Farafonov (1993) and Farafonov and Il’in (2006)). For the axisymmetric component,
we get (see Eqs. (5.40) and (5.41)):

(1) for the TE mode
Z0 = 0 , (5.196)

(2) for the TM mode
Z0 = (ε− 1)F 0 . (5.197)
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For the non-axisymmetric component, we obtain:

(1) for the TE mode

Z1 = −ε− 1

ε+ 1
Q1

(
−I + 1

m
ΓK

)
Fm ,

Z2 =
ε− 1

ε+ 1
Q1

(
−Γ +

1

m
K

)
Fm ,

(5.198)

(2) for the TM mode

Z1 = −ε− 1

ε+ 1
Q1

(
Γ 2 +

1

m
ΓK

)
Fm ,

Z2 =
ε− 1

ε+ 1
Q1

(
Γ +

1

m
K

)
Fm ,

(5.199)

where Q1 = (I − Γ 2)−1. From Eqs. (5.37), (5.49) and (5.191), (5.192), in the first
approximation we have

a
(1)
l = O

[
(b/a)4

]
, b

(1)
l = O

[
(b/a)2

]
,

a
(1)
ml = O

[
(b/a)2m

]
, b

(1)
ml = O

[
(b/a)2m

]
.

(5.200)

Thus, in the first approximation with respect to (b/a)
2
one should keep just

the axisymmetric component for the TM mode and the non-axisymmetric compo-
nent with m = 1, and hence the dimensionless parameters Aj are as follows (see
Eqs. (5.73)–(5.76) and (5.196)–(5.199)):

A1 =
ε− 1

ε+ 1

(
b

a

)2

T1 , A3 =
ε− 1

ε+ 1

(
b

a

)2

T2 ,

A4 =
ε− 1

ε+ 1

(
b

a

)2

T3 , A2 =

(
b

a

)2 (
ε− 1

2
T4 +

ε− 1

ε+ 1
T5

)
,

(5.201)

where the functions Tj do not depend on the dielectric permittivity of the particle
ε, and their dependence on the azimuthal angle is known, namely: T1, T5 ∼ cosϕ,
T2, T3 ∼ sinϕ, and T4 does not depend on ϕ.

5.4.2 Extremely oblate spheroids

From the parity properties of the integrals δ
(m)
nl , γ

(m)
nl , κ

(m)
nl , it follows that the

ISLAEs relative to the unknown vectors Z0, Z1, and Z2 can be solved separately
for their even and odd elements. Let us introduce the vectors Ze = {z2(l−m)}∞l=m

and Zo = {z2(l−m)+1}∞l=m and the matrices Ae = {A2(n−m),2(l−m)}∞n,l=m,

Ao = {A2(n−m)+1,2(l−m)+1}∞n,l=m (in the case of R0, R̃2, R1, Δ, Σ) and Be =
{B2(n−m)+1,2(l−m)}∞n,l=m, Bo = {B2(n−m),2(l−m)+1}∞n,l=m (in the case of Γ , K).
In the new notation it is obvious that the ISLAEs relative to the axisymmetric
components Ze

0 and Zo
0 can be solved independently, and the matrices and the

vector F 0 should have the corresponding superscript e or o. The ISLAEe relative
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to the non-axisymmetric components Ze
1, Z

o
2 and Zo

1, Z
e
2 are solved independently

as well. The matrices corresponding to the vector Z1 and the vector Fm should
have the same superscript as the vector Z1, and the matrices corresponding to the
vector Z2 should have the opposite superscript (i.e. the same as the vector Z2).

For extremely oblate spheroids, the aspect ratio is small (b/a → 0), and the
value of the radial coordinate ξ0 is small too (ξ0 → 0). The principal term of the
expansions in b/a and ξ0 are the same as (b/a)2 = ξ20/(ξ

2
0 +1). Taking into account

the asymptotics of the R0,2 matrix elements for ξ0 → 0 (see Appendix), we get in
the first approximation

R e
0 = ξ0[Λ

e(−ic1)− (c21 +m2) I] +O(ξ30) ,

R o
0 =

1

ξ0
I +O(ξ0) , R̃ o

2 =
1

ξ0
I +O(ξ0) ,

R̃ e
2 −R e

0 = −ξ0(ε− 1) c21 (Γ
2)e +O(ξ30) ,

R̃ o
2 −R o

0 = O(ξ0) ,

(5.202)

where Λe(−ic1) is a diagonal matrix whose elements are the eigenvalues λe(−ic1)
for even differences (l−m), including zero. From Eqs. (5.202) for the axisymmetric
components, the ISLAEs (5.40) and (5.41) in the first approximation have the
following solutions:

(1) for the TE mode

Ze
0 = −ξ0 (ε− 1) (R e

1 )
−1 c21 (Γ

2)e F e
0 ,

Zo
0 = 0 ;

(5.203)

(2) for the TM mode

Ze
0 =− ξ0

ε− 1

ε
(R e

1 )
−1
[
Λe(−ic1) + c21 (Γ

2)e

+(1−m2 − c21) I
]
F e

0 ,

Zo
0 =(ε− 1)F o

0 .

(5.204)

The relations (5.202) allow one to analytically solve the ISLAEs (5.55) and
(5.57) relative to the non-axisymmetric components in the first approximation with
respect to ξ0 (see for more details Voshchinnikov and Farafonov, 1993; Farafonov
and Il’in, 2006). The matrices A and B used in the systems (5.55) are written in
the first approximation as follows:

Ae =
1

ξ0
I , Ao = O(ξ0) , Be = −2 (Γ−1)e +Ke , Bo = Ko . (5.205)

So, we get:

(1) for the TE mode

Ze
1 =(R e

1 )
−1 (ε− 1) ξ0{−c21 (Γ 2)e

+ (Γ e)−1[(Γ o)−1 −Ke]}F e
m ,

Zo
2 =− (ε− 1) ξ0 (Γ

o)−1 F e
m ,

Zo
1 =0 ,

Ze
2 =0 ;

(5.206)
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(2) for the TM mode

Ze
1 =− ξ0

(
ε− 1

ε

)
(R e

1 )
−1
[
Λe(−ic1)− (c21 +m2) I

+ c21 (Γ
2)e + (Γ e)−1Ke

]
F e

m ,

Zo
2 =0 ,

Zo
1 =(ε− 1)F o

m ,

Ze
2 =− (ε− 1)(R e

1 )
−1(Γ e)−1 F o

m .

(5.207)

From Eqs. (5.203)–(5.204), (5.206)–(5.207) and the relation F o
m ∼ ξ0, we get the

dimensionless intensity parameters of the scattered field

A1 =
ε− 1

2

b

a
T1 , A3 =

ε− 1

2

b

a
T2 ,

A4 =
ε− 1

2

b

a
T3 , A2 =

b

a

[
ε− 1

2ε
T4 +

ε− 1

2
T5

]
,

(5.208)

where as for the extremely prolate spheroids the functions Tj being independent of
the dielectric permittivity ε depend on the parameters c, α, Θ, ϕ. The functions
are expressed through the spheroidal functions, and T1, T2, T4 are even functions
of cosα, while T3, T5 are odd functions. This follows from the expressions of the
free terms F e

m and F o
m through the oblate SAFs which are in their turn either

even or odd functions of cosα.

5.4.3 Justification of the quasi-static approximation

For extremely prolate and oblate spheroids, Eqs. (5.201) and (5.208) can be also
considered as the Rayleigh–Gans approximation, i.e. the approximation for small
optically soft particles whose dielectric permittivity is close to that of the surround-
ing medium

|ε− 1| 	 1, |ε− 1| klmax 	 1 . (5.209)

On the other hand, the Rayleigh–Gans approximation for spheroids is expressed
through the elementary functions (Lopatin and Sid’ko, 1988). A comparison of
these expressions for ε→ 1 allows one to derive the functions Tj explicitly

T1 =
2c31
3
G(u) cosϕ , T2 =

2c31
3
G(u) cos θ sinϕ ,

T3 = −2c31
3
G(u) cosα sinϕ , T4 =

2c31
3
G(u) sinα sin θ ,

T5 =
2c31
3
G(u) cosα cos θ cosϕ ,

(5.210)

where the function G(u) is

G(u) =
3

u3
(sinu− u cosu) , (5.211)
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with its argument being
u = c1| cos θ − cosα| (5.212)

for extremely prolate spheroids, and

u = c1
[
sin2 α+ sin2 θ − 2 sinα sin θ cosϕ

] 1
2 (5.213)

for extremely oblate spheroids, respectively.
Note that in the monograph of Lopatin and Sid’ko (1988) the expression for

the Rayleigh–Gans approximation is given for the case when the reference plane
contains both the directions of propagation of the incident and scattered radiation,
while Eqs. (5.201) and (5.208) are derived in the coordinate system related with
the directions of propagation of the incident wave and of the symmetry axis of the
spheroid. Formulating the Rayleigh–Gans approximation in the new frame, one
should keep in mind that for extremely prolate spheroids the dependence of the
functions Tj on the azimuthal angle ϕ is known (see Eq. (5.201)) and for extremely
oblate spheroids we know the parity properties of Tj as functions of cosα (see
Eq. (5.208)).

As Eqs. (5.210)–(5.213) coincide with similar equations of the quasi-static ap-
proximation, the internal field can be approximated as follows:

E(2) = K1 (E
(0), ix) ix +K2 (E

(0), iy) iy +K3 (E
(0), iz) iz . (5.214)

The approximation (5.214) can be applied to any tri-axial ellipsoid. For ellipsoids
with at least one small semiaxis, a similar approximation was used in the paper
of Seker (1986). However, as a starting point this author represented the internal
field by the expansion (5.214) but in terms of the unit vectors of the spherical
coordinates (ir, iθ, iϕ). This gave a wrong result except for the case of spheres
and the correct Rayleigh–Gans approximation when all the coefficients Kj were
the same.

Thus, we have proved correctness of the use of the quasi-static approximation
for extremely prolate and oblate spheroids.

The characteristics of the scattered field can be found from the known fields
inside and outside the particle. The dimensionless parameters of the scattered ra-
diation intensity for extremely prolate spheroids are

i11 =
4

9

(
b

a

)4

c6G2(u)

∣∣∣∣ε− 1

ε+ 1

∣∣∣∣2 cos2 ϕ ,
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4

9

(
b

a

)4
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∣∣∣∣ε− 1
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∣∣∣∣2 cos2 θ sin2 ϕ ,

i21 =
4

9

(
b

a

)4

c6G2(u)
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∣∣∣∣2 cos2 α sin2 ϕ ,

i22 =
4

9

(
b

a

)4

c6G2(u)

∣∣∣∣ε− 1

2
sinα sin θ +

ε− 1

ε+ 1
cosα cos θ cosϕ

∣∣∣∣2 .
(5.215)

For extremely oblate spheroids, in Eq. (5.215), one should replace (b/a)4 with
(b/a)2, (ε− 1)/(ε+ 1) with (ε− 1)/2, and (ε− 1)/2 with (ε− 1)/(2ε) and properly
select the argument of the function G(u) from Eq. (5.213).
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The efficiency factors are calculated by integrating the scattered radiation in-
tensity over all directions. In the general case, for extremely prolate spheroids, one
should take an integral over the azimuthal angle

QTE
sca =

4c4

9
[(

b
a

)2
+ sin2 α

] 1
2

(
b
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∣∣∣∣2 ∫ π

0
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b
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⎧⎨⎩
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⎫⎬⎭ .

(5.216)

For extremely oblate spheroids, one should consider a double integral
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}
(5.217)

as the argument of the function G(u) depends on the azimuthal angle.
Absorption of the electromagnetic radiation by a particle can be determined

from the internal field (5.214), and in the quasi-static approximation the efficiency
factors coincide with the corresponding factors derived in the Rayleigh approxima-
tion, namely for extremely prolate spheroids
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4
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) (5.218)
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and for extremely oblate spheroids

QTE
abs =
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] 1
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Im ε ,

QTM
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|ε|2 sin2 α

)
.

(5.219)

The extinction efficiency factors are determined as follows:

Qext = Qsca +Qabs . (5.220)

The scattering matrix derived for a single particle in the quasi-static approxi-
mation differs from that in the Rayleigh approximation by the factor G2(u) only,
and hence the polarization degree of the scattered radiation is the same for both
the quasi-static and Rayleigh approximations.

An investigation of applicability of the quasi-static approximation for sphero-
ids has been performed by Voshchinnikov and Farafonov (2000). It was shown
that this approximation was widely applicable to extremely prolate and oblate
dielectric spheroids. Besides that, these authors studied the geometry of scattering
by such particles in detail. It was found that for extremely prolate spheroids the
maximum intensity of the scattered radiation was formed close to the guiding
lines of the cone with the opening angle 2α, where α was the incidence angle of a
plane wave (Voshchinnikov and Farafonov, 1993). A similar situation occurred for
infinite circular cylinders. For extremely oblate spheroids, the scattered radiation
is maximal in the directions of the transmitted and reflected waves like in the case
of reflection by a plane (Voshchinnikov and Farafonov, 1993). It was also shown
that deep minima of the scattered radiation intensity took place in vicinity of the
zeros of the function G(u) that appeared in the quasi-static approximation.

5.4.4 Extremely prolate perfectly conducting spheroids

In this case the ISLAEs (5.63) and (5.64) for the non-axisymmetric components
(along with the relations (5.194)) can be solved explicitly in the first approximation
with respect to the parameter (b/a)2:

(1) for the TE mode
Z1 =Q1 (I + Γ 2)Fm ,

Z2 = − 2Q1 Γ Fm ;
(5.221)

(2) for the TM mode
Z1 = −Q1 (I + Γ 2)Fm ,

Z2 =2Q1 Γ Fm ,
(5.222)

where Q1 = (I + Γ 2)−1.

From Eqs. (5.37), (5.52), (5.59), (5.196)–(5.199) and (5.221)–(5.222), we find

that for extremely prolate spheroids the scattered field expansion coefficients ã
(1)
l ,
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ã
(1)
ml , b̃

(1)
ml (except for the axisymmetric components of the TM mode) are related in

the first approximation with respect to the parameter (b/a)2 with the corresponding
coefficients for extremely prolate dielectric spheroids

b
(1),TM
l = −(ε− 1) ã

(1),TE
l ,

a
(1),TE
ml − a

(1),TM
ml =

ε− 1

ε+ 1
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(1),TE
ml = −ε− 1

ε+ 1
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(1),TM
ml ,

b
(1),TE
ml − b

(1),TM
ml =

ε− 1

ε+ 1
b̃
(1),TE
ml = −ε− 1

ε+ 1
b̃
(1),TM
ml .

(5.223)

From Eqs. (5.72)–(5.76), (5.200), and (5.223), it follows that

T̃1 =

(
T1 − 1

2
T4 − T5

)
, T̃2 = T2 + T3 ,

T̃3 = T2 + T3 , T̃5 = T5 − T1 ,

(5.224)

where the functions Tj are determined by Eqs. (5.210).
Let us now consider the axisymmetric components of the TM mode. From the

asymptotics (5.191)–(5.192), we get[
(ξ20 − 1)

1
2 R

(1)
1l (c, ξ0)

]′
[
(ξ20 − 1)

1
2 R

(3)
1l (c, ξ0)

]′ = 1

1 + 1
2 i
[
Q1l(c) ln

ξ0+1
ξ0−1 +O(1)

] . (5.225)

This equation is valid, when Q1l(c) �= 0, which occurs for c �= lπ/2. When c = nπ/2,
the prolate SRFs are expressed through the elementary functions (Komarov et al.,
1976)

R
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=
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1
2

,

(5.226)

and the corresponding ratio has the following asymptotics:[
(ξ20 − 1)

1
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(
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)]′
[
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1
2 R
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(
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)]′ = 1 +O(ξ20 − 1) . (5.227)

In the case under consideration the principal term of the asymptotics is deter-
mined by the resonance term (5.227), and as a result we have
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2
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]−2

iθ ,

(5.228)
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since the prolate SAFs can be represented as (Komarov et al., 1976)
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, n = 2q − 1 , (5.229)
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, n = 2q . (5.230)

So, from Eqs. (5.72)–(5.76), (5.200), (5.210), (5.224)–(5.225) we find the princi-
pal term of the field scattered by an extremely prolate perfectly conducting spheroid
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(5.231)

For the oblique incidence of radiation including a TM mode component, the
main contribution to the scattered radiation is given by the axisymmetric com-
ponent of the TM mode. The asymptotics is generally inversely proportional to
ln a/b (see Eq. (5.225)) and has the order O(1) under the condition c = nπ/2 (see
Eq. (5.227)) that is equivalent to the well-known condition (5.190) of linear an-
tenna excitation (Stratton, 1941). For the oblique incidence of a TE mode wave or
for the wave propagation along the spheroid symmetry axis, the scattered field is
proportional to (b/a)2.

The dimensionless parameters of the scattered radiation intensity are as follows:
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(5.232)

For the oblique incidence of a non-polarized wave, the scattered radiation is linearly
polarized in the first approximation as the main component is related with i22. For
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the parallel incidence, the polarization degree is equal to zero as
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(5.233)

The efficiency factors for scattering and backscattering are
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and
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respectively.
For the parallel incidence, the expressions simplify
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×
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Qbk =
64

9
c4G2(2c) . (5.237)

Note that for a small diffraction parameter c	 1 and for the parallel incidence of
a plane wave, the results coincide with the Rayleigh approximation for the corre-
sponding perfectly conducting prolate spheroid (van de Hulst, 1957).
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To conclude, we consider the light scattering by randomly oriented perfectly
conducting thin needles. As the scattering and backscattering cross-sections for
the TE and TM modes similarly depend on the parameters, we have

〈Csca〉 = 1
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∫ π
2
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Gsca sinα dα ,
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)
Gbk sinα dα .

(5.238)

From Eqs. (5.234)–(5.235) and the orthogonality properties of the prolate SAFs,
we get in the first approximation with respect to (b/a)2
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〈Cbk〉 = 8π
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Under the condition (5.190), the principal term of the asymptotics gives the reso-
nance term (5.225), and hence

〈Csca〉 = 2π

k2
, (5.241)
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〈Cbk〉 =
2π

k2

∫ 1

0

sin4
(
nπ
2 η

)
(1− η2)2

dη

[∫ 1

0

sin4
(
nπ
2 η

)
(1− η2)2

dη

]−2

, n = 2q . (5.243)

Numerical calculations of the characteristics of radiation scattered by extremely
prolate perfectly conducting spheroids were performed by using the exact solution
(see Section 5.2.3) and the approximation presented above.

Figures 5.1–5.2 show some results of exact calculations of the factors QTM
sca

and QTM
bk in the case of the normal incidence. The absence of maxima under the

condition d = nλ (i.e. for even n in Eq. (5.190)) is related with the fact that the
resonant term (5.228) is equal to zero as a result of oddness of the prolate SAFs.
The factors QTE

sca Q
TE
bk are smaller than the corresponding factors for the TM mode

by 103–104 times for c = 1.0 and by 5–10 times for c = 10, when the ratio a/b = 10,
and by 106–108 and 102 times, when the ratio a/b = 100. For the parallel incidence,
these factors are given in Tables 5.3–5.4. Note that the function ϕ(c) tends to the
limit 4π/3 ≈ 4.19 with increasing c. A comparison of the exact and approximate
solutions shows that the differential characteristics of the scattered radiation are
well represented by the approximate formulae, when (c·b/a) ≤ 0.2, and the integral
characteristics (Qsca), when (c · b/a) ≤ 0.6.
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Fig. 5.1. Efficiency factors for scattering Qsca for perfectly conducting prolate spheroids
with the aspect ratio a/b = 10 (1) and 100 (2) in the dependence on the parameter 2πa/λ.
The case of the TM mode and the normal incidence (α = 90◦).

Fig. 5.2. The same as in Fig. 5.1, but for the efficiency factors for backscattering Qbk.
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Table 5.3. Efficiency factors for scattering Qsca and backscattering Qbk for perfectly
conducting extremely prolate spheroids (a/b = 100, α = 0)

c ϕ(c) Qapp
sca Qsca Qapp

bk Qbk

1.0 1.473 1.47-4 1.46-4 3.03 2.99
2.0 3.290 6.58-4 6.56-4 8.63-1 8.91-1
3.0 3.493 1.05-3 1.05-3 4.05 4.02
4.0 3.673 1.47-3 1.46-3 2.90-1 2.62-1
5.0 3.807 1.90-3 1.90-3 2.46 2.52
6.0 3.843 2.31-3 2.30-3 3.16 3.09
7.0 3.905 2.73-3 2.73-3 1.74-2 2.79-2
8.0 3.943 3.15-3 3.15-3 3.53 3.58
9.0 3.960 3.56-3 3.56-3 1.97 1.88

10.0 3.992 3.99-3 3.99-3 5.25-1 5.88-1

Table 5.4. Efficiency factors for scattering Qsca and backscattering Qbk for perfectly
conducting extremely prolate spheroids (α = 0)

Qsca Qbk

c a/b = 10 a/b = 50 a/b = 100 a/b = 10 a/b = 50 a/b = 100

1.0 1.47-2 5.83-4 1.46-4 3.03 2.99 2.99
2.0 6.56-2 2.63-3 6.56-4 8.67-1 8.89-1 8.91-1
3.0 1.04-1 4.18-3 1.05-3 4.08 4.02 4.02
4.0 1.44-1 5.86-3 1.46-3 2.99-1 2.65-1 2.62-1
5.0 1.86-1 7.58-3 1.90-3 2.50 2.51 2.52
6.0 2.24-1 9.19-3 2.30-3 3.28 3.10 3.09
7.0 2.63-1 1.09-2 2.73-3 1.44-2 2.66-2 2.79-2
8.0 3.01-1 1.26-2 3.15-3 3.68 3.57 3.58
9.0 3.37-1 1.42-2 3.56-3 2.19 1.90 1.88

10.0 3.75-1 1.59-2 3.99-3 5.05-1 5.81-1 5.88-1

From Eq. (5.235) one can derive the condition of minimum of the efficiency
factors for backscattering QTE

bk

2c cosα = u0 , (5.244)

where u0 are the roots of the functions G(u) that satisfy the condition tanu0 = u0.
With an increasing incidence angle α, the number of minima (and hence that of
maxima) of the function QTE

bk (c) decreases. For the normal incidence (α = 90◦,
G(0) = 1), this factor increases with an increasing c in the region of applicability
of the approximation.

For the parallel incidence, the dimensionless parameters of the scattered radi-
ation intensity have minima at the points corresponding to the roots of the func-
tion G(c(1− cos θ)) except for scattering backward (see Eq. (5.232) and Fig. 5.3).
Backscattering is determined by

16

9
c6G2(2c) =

1

4
(sin 2c− 2c cos 2c)2 , (5.245)



5 Application of non-orthogonal bases in the LS theory 241

Table 5.5. Cross-sections for scattering 〈Csca〉 and backscattering 〈Cbk〉 for perfectly
conducting extremely prolate spheroids (a/b = 100, k =

√
2π)

〈Csca〉 〈Cbk〉
c Eq.(5.241) Eq.(5.239) Eq.(5.242) Eq.(5.240)

π/2 1.0 1.0 1.27 1.27
π 1.0 1.08 1.39 1.37

3π/2 1.0 1.19 1.54 1.49
2π 1.0 1.29 1.68 1.70

5π/2 1.0 1.40 1.83 1.75
3π 1.0 1.49 1.97 2.01

Fig. 5.3. Dimensionless phase function i(Θ) for perfectly conducting prolate spheroids
with the aspect ratio a/b = 10 (1) and 100 (2). Circles show the results obtained with
the approximate solution suggested. The case of the parallel incidence (α = 0) of non-
polarized radiation.
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Fig. 5.4. Normalized scattering 〈Csca〉 (1) and backscattering 〈Cbk〉 (2) cross-sections for
randomly oriented perfectly conducting prolate spheroids with the aspect ratio a/b = 100.
Circles show the results obtained with the approximate solution suggested. The case of
the wave number k =

√
2π.

where the maximum is obtained under the condition (5.190). The same result occurs
for dielectric spheroids.

For randomly oriented perfectly conducting thin needles, the maximum of the
cross-sections 〈Csca〉 and 〈Cbk〉 is reached under the condition (5.190) (see Fig. 5.4).
Numerical calculations performed with Eqs. (5.239)–(5.243) show that the range of
applicability of Eqs. (5.242)–(5.243) for the backscattering factors 〈Cbk〉 is essen-
tially wider than that of Eqs. (5.241) for the integral scattering factors 〈Csca〉 (see
Table 5.5). It is explained by the fact that the contributions of the partial waves
weakly decrease with an increasing semiaxis ratio (a/b ∼ 1/(ln a/b)), and for the
cross-sections 〈Csca〉 the contributions are added, while for 〈Cbk〉 they are damped.

The approximation considered above gives good results for kb 	 1, ka = O(1)
(i.e. for b/a	 1, c� O(1)).
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5.5 Scattering of a plane electromagnetic wave by extremely
oblate perfectly conducting spheroids

Solution to the light scattering problem for a perfectly conducting circular disk
has been known for a long time (Meixner, 1950; Meixner and Andrejewski, 1953;
Andrejewski, 1953; Flammer, 1953). In these papers the solution was obtained by
the separation of variables method formulated in oblate spheroidal coordinates.
Difficulties arise as for the disk with b/a = 0 there appear additional boundary
conditions at the edge (the so-called Meixner conditions) which guarantee unique-
ness of the problem solution. Only in the case of the axisymmetric excitation of a
perfectly conducting oblate spheroid (including the disk) when the source of the
incident radiation is a dipole located at the symmetry axis of the spheroid and
aligned along this axis, the problem was correctly solved by using the Abraham
potentials (Meixner and Andrejewski, 1953). The solution to the problem of the
plane wave scattering by perfectly conducting oblate spheroids including the disks
has not been found.

5.5.1 Problem formulation

Our solution to the light scattering problem for spheroidal particles has been found
to be efficient for both prolate and oblate dielectric (absorbing) spheroids. However,
for extremely oblate perfectly conducting particles, the solution is not appropriate
as in the limiting case of the disk it does not satisfy the Meixner conditions. Below
the solutions is improved so that in the case of the perfectly conducting disk the
Meixner conditions at the edge are satisfied automatically.

As before, the electric and magnetic fields are represented by sums of two com-
ponents where one component is independent of the azimuthal angle ϕ and av-
eraging of the other over this angle gives zero. The diffraction problem for the
axisymmetric components is solved just as above by using the Abraham potentials.
The non-axisymmetric components of the scattered field are represented now as
follows:

E
(1)
2,TE = rot

(
U (1) iz + V (1) r +Πx ix +Πy iy

)
, (5.246)

E
(1)
2,TM =

i

k
rot rot

(
U (1) iz + V (1) r +Πx ix +Πy iy

)
. (5.247)

The representation of the incident fields does not change (see Eqs. (5.42)–(5.44),
(5.48)). The new scalar potentials Πx and Πy satisfy the Helmholtz equation and
are expanded in terms of spheroidal wave functions

Πx =

∞∑
m=0

∞∑
l=m

(cm+1 − cm−1)Aml Sml(−ic, η)R
(3)
ml (−ic, iξ) cosmφ , (5.248)

Πy =

∞∑
m=0

∞∑
l=m

(cm+1 − cm−1), Aml Sml(−ic, η)R
(3)
ml (−ic, iξ) sinmφ , (5.249)
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where

Aml = il−mS
′
ml(−ic, 0)

N2
ml(−ic)

R
(1)′

ml (−ic, iξ0)

R
(3)′
ml (−ic, iξ0)

(5.250)

for the TE mode, and

Aml = il−mSml(−ic, 0)

N2
ml(−ic)

R
(1)
ml (−ic, iξ0)

R
(3)
ml (−ic, iξ0)

(5.251)

for the TM mode, respectively. The expansions of the scattered field potentials U (1)

and V (1) are as above (see Eqs. (5.45)).
Let us introduce the quantities

Φ = Πx cosϕ+Πy sinϕ , Ψ = −Πx sinϕ+Πy cosϕ , (5.252)

which are represented according to Eqs. (5.248)–(5.249) as follows (c−1 = c0 = 0):

Φ =
∞∑

m=1

∞∑
l=m−1

cm

[
Am−1,l Sm−1,l(−ic, η)R

(3)
m−1,l(−ic, iξ)

−Am+1,l Sm+1,l(−ic, η)R
(3)
m+1,l(−ic, iξ)

]
cosmϕ ,

Ψ = −
∞∑

m=1

∞∑
l=m−1

cm

[
Am−1,l Sm−1,l(−ic, η)R

(3)
m−1,l(−ic, iξ)

−Am+1,l Sm+1,l(−ic, η)R
(3)
m+1,l(−ic, iξ)

]
sinmϕ .

(5.253)

From the main integral relation for the SRFs and SAFs (Komarov et al., 1976),
we have

Sml(−ic, iη)R
(1)
ml (−ic, iξ) =

im−l

2

∫ 1

−1

eic ξη tJm

[
c(ξ2 + 1)

1
2 (1− η2)

1
2 (1− t2)

1
2

]
Sml(−ic, t) dt ,

(5.254)

and by using completeness and orthogonality of the oblate SAFs, we get

eic ξη tJm

[
c(ξ2 + 1)

1
2 (1− η2)

1
2 (1− t2)

1
2

]
=

2

∞∑
l=m

il−mN−2
ml (−ic)Sml(−ic, η)R

(1)
ml (−ic, iξ)Sml(−ic, t) .

(5.255)
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Now for t = 0 we find that

Jm(k�) = 2

∞∑
l=m

il−mN−2
ml (−ic)Sml(−ic, 0)Sml(−ic, η)R

(1)
ml (−ic, iξ) ,

ic ξ ηJm(k�) = 2

∞∑
l=m

il−mN−2
ml (−ic)S′

ml(−ic, 0)Sml(−ic, η)R
(1)
ml (−ic, iξ) ,

ic η

[
Jm(k�) +

cξ2(1− η2)
1
2

(ξ2 + 1)
1
2

J ′
m(k�)

]
=

2
∞∑

l=m

il−mN−2
ml (−ic)S′

ml(−ic, 0)Sml(−ic, η)R
(1)′

ml (−ic, iξ) ,

(5.256)

where k� = c (ξ2 + 1)
1
2 (1− η2)

1
2 , Jm(z) is the Bessel function of the first kind.

From Eqs. (5.250)–(5.256) valid at the surface of the spheroid (ξ = ξ0), we have:

(1) for the TE mode

∂Φ

∂ξ
=

ic η

2

∞∑
m=1

cm

[
Jm−1(k�)− Jm+1(k�)

+
c ξ20(1− η2)

1
2

(ξ20 + 1) 12

(
J ′
m−1(k�)− J ′

m+1(k�)
)]

cosmϕ ,

∂Ψ

∂ξ
= − ic η

2

∞∑
m=1

cm

[
Jm−1(k�)− Jm+1(k�)

+
c ξ20(1− η2)

1
2

(ξ20 + 1)
1
2

(
J ′
m−1(k�) + J ′

m+1(k�)
)]

sinmϕ ;

(5.257)

(2) for the TM mode

Φ =
1

2

∞∑
m=1

cm [Jm−1(k�)− Jm+1(k�)] cosmϕ ,

Ψ = −1

2

∞∑
m=1

cm [Jm−1(k�) + Jm+1(k�)] sinmϕ .

(5.258)

The fields described by Eqs. (5.246)–(5.247), (5.45), (5.248)–(5.249) satisfy the
Maxwell equations and the radiation condition at infinity. The unknown coefficients

a
(1)
ml and b

(1)
ml can be found from the standard boundary conditions (5.58), while the

coefficients cm from the Meixner conditions at the edge of the perfectly conducting
disk. The physical sense of the latter is associated with the demand of energy
finiteness, i.e. the electromagnetic energy density of the scattered radiation in the
vicinity of the edge must be quadratically integrable or, which is equivalent, the
edge should not radiate (Meixner, 1950)

j� =

([
H(1) × iξ

] ∣∣∣
ξ=0, η=+0

−
[
H(1) × iξ

]∣∣∣
ξ=0, η=−0

, iη

)
= 0 , (5.259)
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where j� is the radial component of the current induced on the disk. In the case
under consideration, the Meixner conditions are written as follows:

∂Φ

∂ξ
+
∂U (1)

∂η
+
d

2

∂V (1)

∂ξ
= 0 ,

∂Φ

∂η
− ∂U (1)

∂ξ
+
d

2

∂V (1)

∂η
= 0 .

⎫⎪⎪⎬⎪⎪⎭
ξ=0, η=0

(5.260)

To obtain the conditions (5.260), one should consider the current density for
the TM mode wave

jη =
(ξ2 + 1)

1
2 (1− η2)

1
2

(ξ2 + η2)

{
ξ

[
(1− η2)

1
2

(ξ2 + 1)
1
2

∂Φ

∂η
− ∂U

∂ξ
+
d

2

∂V

∂η

]

− η

[
(ξ2 + 1)

1
2

(1− η2)
1
2

∂Φ

∂ξ
+
∂U

∂η
− d

2

∂V

∂ξ

]}
,

jφ =
(1− η2)

1
2

(ξ2 + 1)
1
2

{
∂

∂ξ

[
(ξ2 + 1)

1
2 (1− η2)

1
2 Ψ

]
− ∂

∂ϕ

[
ξ
(1− η2)

1
2

(ξ2 + 1)
1
2

Φ+ η U + ξ
d

2
V

]}
.

(5.261)

It is easy to see that the requirement j� = −jη = 0 at the disk edge leads to the first
equation in Eqs. (5.260). The second equation is an identity within the suggested
solution (see Eqs. (5.246)–(5.253), (5.260)). Note that the azimuthal component of

the current density jϕ changes in the edge vicinity as R− 1
2 , where R is the distance

from the point to the edge (R2 ∼ (ξ2 + 1 − η2)) while the radial component jη is
finite.

For a plane wave of the TE mode, we have

H = − i

k
[grad div (U iz + V r +Πx ix +Πy iy)

−2 gradV + k2 (U iz + V r +Πx ix +Πy iy)
]
.

(5.262)

In this case, the Meixner conditions can also be written in the form (5.260), and
then the first equation is an identity. The current density in the vicinity of the edge
behaves like the TM mode wave.

The difference between the representations of the non-axisymmetric components
of the scattered field given by Eqs. (5.246)–(5.247) and by the equations used by us
above consists in appearance of Πx ix and Πy iy that allow one to find the solution
for which the Meixner conditions (5.260) for a perfectly conducting disk are satisfied
automatically. Note that the axisymmetric components of the scattered field satisfy
the Meixner conditions at the edge of a perfectly conducting disk without any
additions.
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5.5.2 Derivation of the scattered field for the TE mode

In the case of the TE mode plane wave, the boundary conditions are (U = U (1) +
U (2), V = V (1))

∂

∂ϕ

(
η U +

d

2
ξ V

)
=

∂

∂ξ

[
(ξ2 + 1)

1
2 (1− η2)

1
2 Ψ

]
− ξ

(1− η2)
1
2

(ξ2 + 1)
1
2

∂Φ

∂ϕ
,

∂2

∂ξ∂ϕ

(
η U − d

2
ξ V

)
=

∂2

∂ξ∂η

[
(ξ2 + 1)

1
2 (1− η2)

1
2Ψ
]
+ η

(1− η2)
1
2

(ξ2 + 1)
1
2

∂Φ

∂ϕ
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
ξ=ξ0

(5.263)

By using Eqs. (5.253), after laborious transformations we can rewrite the systems
in the form

∂

∂ϕ

(
η U +

d

2
ξ V

)
= −i η

∞∑
m=1

mcm Jm(k�) sinmϕ

+ ξ
(1− η2)

1
2

(ξ2 + 1)
1
2

{
ψ + ic ξ η

∞∑
m=1

cm
2

(Jm−1(k�) + Jm+1(k�)) sinmϕ

− ∂

∂ϕ

[
Φ− ic η ξ

∞∑
m=1

cm
2

(Jm−1(k�) + Jm+1(k�)) cosmϕ

]}
,

∂2

∂ξ∂ϕ

(
ξ U − d

2
η V

)
=

∂

∂ξ

[
−iη

∞∑
m=1

mcm Jm(k�) sinmϕ

]
+

ξ

(ξ2 + 1)
1
2

×
{
(1− η2)

1
2

[
ψ + ic ξ η

∞∑
m=1

cm
2

(Jm−1(k�) + Jm+1(k�)) sinmϕ

]

+
∂

∂ϕ

η

(1− η2)
1
2

[
Φ− ic η ξ

∞∑
m=1

cm
2

(Jm−1(k�)− Jm+1(k�)) cosmϕ

]}
.

(5.264)

We introduce the additional notation F̃m = {f̃ml}∞l=m, G1m = {g(m)
1l }∞l=m,

Pm∓1 = {ϕm,m∓1
nl }∞n,l=m, Am∓1 = {αm,m∓1

nl }∞n,l=m, where

f̃ml = fml + il−m+1k cmN−1
ml (−ic)Sml(−ic, 0)R

(1)
ml (−ic, iξ0) ,

g
(m)
1l = il−mN−1

ml (−ic)S′
ml(−ic, 0)

1

R
(3)′

ml (−ic, iξ0)
.

(5.265)

The integrals of products of the oblate SAFs and their derivatives, ϕm,m∓1
nl and

αm,m∓1
nl , are defined in Appendix A.
We substitute the expansions (5.246), (5.45) and (5.253)–(5.254) in the bound-

ary conditions (5.264), multiply them by N−1
ml (−ic)Sml(−ic, η) cosmϕ and inte-

grate over ϕ from 0 to 2π and over η from −1 to 1.
By using the Wronskian of the oblate SRFs (Komarov et al., 1976) and in-

troducing the unknown vector Z1, we get the ISLAEs that can be written in the
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matrix form as follows (m = 1, 2, . . .):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ξ0 I + Γ (I + ξ0R1)
−1ΓR1]Z2 = −ξ0 Γ (I + ξ0R1)

−1(R1 −R0) F̃m

+
ik cm ξ0

c(ξ20 + 1)
3
2

[
m− 1

m

(
Pm−1G1,m−1 − Pm+1G1,m+1

)
+ Γ (I + ξ0R1)

−1(Am−1G1,m−1 −Am+1G1,m+1)

]
,

Z1 = −(I + ξ0R1)
−1

[
(I + ξ0R0) F̃m − ΓZ2

+
ikcmξ0

c(ξ20 + 1)
3
2

(
Am−1G1,m−1 −Am+1G1,m+1

)]
.

(5.266)

The unknown coefficients cm are determined from the Meixner conditions. For a
perfectly conducting disk (ξ0 = 0), the systems (5.266) can be solved explicitly

Z1 = −F̃m , Z2 = 0 (5.267)

and

a
(1)
ml = − 4il−1

k sinα
N−2

ml (−ic)Sml(−ic, cosα)

+ il−m+1cmN
−2
ml (−ic)Sml(−ic, 0)

R
(1)
ml (−ic, iξ0)

R
(3)
ml (ic, iξ0)

,

b
(1)
ml =0 .

(5.268)

After the substitution of the expansions (5.253) and (5.45) into the Meixner con-
ditions (5.260), keeping in mind the relation (5.268), we find

cm =

∞∑
l=m

4il−1

k sinα

Sml(−ic, cosα)Sml(−ic, 0)

N2
ml(−ic)R

(3)
ml (−ic, 0)

×
[
2

∞∑
l=m

il−m+1S2
ml(−ic, 0)

N2
ml(−ic)R

(3)
ml (−ic, 0)

+

∞∑
l=m−1

il−m+1

(
S2
m−1,l(−ic, 0)

N2
m−1,l(−ic)R

(3)′
m−1,l(ic, 0)

+
S2
m+1,l(−ic, 0)

N2
m+1,l(−ic)R

(3)′
m+1,l(ic, 0)

)]−1

.

(5.269)

Thus, the unknown coefficients of the scattered field expansion (5.45) are derived
from the ISLAEs (5.266), where the coefficients cm are calculated from Eq. (5.269).
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5.5.3 Derivation of the scattered field for the TM mode

In the case of the TM mode plane wave, the boundary conditions are

∂

∂ϕ

(
ξ U − d

2
η V

)
= η

(ξ2 + 1)
1
2

(1− η2)
1
2

∂Φ

∂ϕ

+
∂

∂η

[
(ξ2 + 1)

1
2 (1− η2)

1
2Ψ
]
,

(ξ2 + 1)
∂2

∂ξ∂ϕ

(
η U +

d

2
ξ V

)
= (ξ2 + 1)

1
2 (1− η2)

1
2

(
η
∂2Φ

∂η∂ϕ
− ξ

∂2Φ

∂ξ∂ϕ

)
− (ξ2 − η2)

(ξ2 + 1)
1
2 (1− η2)

1
2

[
∂Φ

∂ϕ
+
∂2Ψ

∂ϕ2
+ c2(ξ2 + 1)(1− η2)Ψ

]
− (1− η2)

[
∂2

∂η∂ϕ

(
ξ U − d

2
η V

)]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
ξ=ξ0

(5.270)

By using Eqs. (5.201), after laborious transformations we get

ξ U − d

2
η V = 0,

∂

∂ξ

(
η U +

d

2
ξ V

)
=
ξ(1− η2)

1
2

(ξ2 + 1)
1
2

[
∂

∂ξ

∞∑
m=1

cm
2

× (Jm−1(k�)− Jm+1(k�)) cosmϕ− ∂Φ

∂ξ

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
ξ=ξ0

(5.271)

In addition to notation (5.52) and (5.199), we introduce G2,m = {g(m)
2l }∞l=m,

where

g
(m)
2l = il−mN−1

ml (−ic)Sml(−ic, 0)
1

R
(3)
ml (−ic, 0)

. (5.272)

After the substitution of the scalar potential expansions into the boundary
conditions (5.271) like in Section 5.5.2, we get the ISLAEs⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ξ0I + Γ (I + ξ0)R1)

−1ΓR1

]
Z1 = − [ξ0I + Γ (I + ξ0R1)

−1ΓR0

]
Fm

− ikcmξ0

c (ξ20 + 1)
3
2

Γ (I + ξ0R1)
−1
(
Pm−1G2,m−1 − Pm+1G2,m+1

)
,

Z2 = −(I + ξ0R1)
−1

[
Γ (R1Z1 +R0Fm)

+
ikcmξ0

c(ξ20 + 1)
3
2

(
Pm−1G2,m−1 − Pm+1G2,m+1

)]
.

(5.273)
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To derive the coefficients cm, we consider the case of the disk (ξ0 = 0). Then
the system (5.212) can be solved explicitly

Z1 = R−1R0 Fm , Z2 = 0 (5.274)

and hence

a
(1)
ml = − 4 il−1

k sinα
N−2

ml (−ic)Sml(−ic, cosα)

+ il−m+1cmN
−2
ml (−ic)Sml(−ic, 0)

R
(1)′

ml (−ic, 0)

R
(3)′
ml (ic, 0)

,

b
(1)
ml =0.

(5.275)

After the substitution of the expansions (5.253) and (5.45) into the Meixner con-
ditions (5.260), keeping in mind the relation (5.275), we get

cm =

∞∑
l=m

4il−1

k sinα
Sml(−ic,cosα)S′

ml(−ic,0)

N2
ml(−ic)R

(3)′
ml (−ic,0)

∞∑
l=m−1

il−m+1

(
S2
m−1,l(−ic,0)

N2
m−1,l(−ic)R

(3)
m−1,l(ic,0)

+
S2
m+1,l(−ic,0)

N2
m+1,l(−ic)R

(3)
m+1,l(ic,0)

) . (5.276)

Thus, the unknown coefficients of the scattered field expansion (5.45) are derived
from the ISLAEs (5.273) where the coefficients cm are calculated from Eq. (5.276).

The improved solution to the problem of the plane wave scattering by perfectly
conducting oblate spheroids has several interesting features. Firstly, the infinite
systems (5.266) and (5.273) differ from the corresponding systems of the initial
solution only by the free terms. Secondly, after the limiting transition to spheres
(c→ 0, ξ0 → ∞, c ξ0 = kr0, where r0 is the sphere radius) we get the solution that
coincides with the initial one as the coefficients cm ∼ c and tend to zero.

The conclusions of the ISLAEs analysis performed above (see Section 5.3.4) are
valid for the systems (5.266) and (5.273) as well, but the new solution allows the
transition to the perfectly conducting disk.
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5.5.4 Characteristics of the scattered radiation

In accordance with the solution presented above, the scattered radiation in the
far-field zone is described as follows:

E
(1)
TE =

eikr

−ikr

{[
−

∞∑
l=1

i−la
(1)
l S1l(−ic, cos θ)

−
∞∑

m=1

( ∞∑
l=m

i−(l+1)
(
k a

(1)
ml Sml(−ic, cos θ)

+ i b
(1)
ml S

′
ml(−ic, cos θ)

)
sin θ

− k cm

∞∑
l=m−1

i−(l+1)
(
Am−1,l Sm−1,l(−ic, cos θ)

−Am+1,l Sm+1,l(−ic, cos θ)
)
cos θ

)
cosmϕ

]
iϕ

+

∞∑
m=1

[ ∞∑
l=m

i−lb
(1)
ml

mSml(−ic, cos θ)

sin θ

+ k cm

∞∑
l=m−1

i−(l+1)
(
Am−1,l Sm−1,l(−ic, cos θ)

+Am+1,l Sm+1,l(−ic, cos θ)
)]

sinmϕ iθ

}
.

(5.277)

E
(1)
TM =

eikr

−ikr

{[
−

∞∑
l=1

i−lb
(1)
l S1l(−ic, cos θ)

−
∞∑

m=1

( ∞∑
l=m

i−(l+1)
(
ka

(1)
ml Sml(−ic, cos θ)

+ i b
(1)
ml S

′
ml(−ic, cos θ)

)
sin θ

− kcm

∞∑
l=m−1

i−(l+1)
(
Am−1,l Sm−1,l(−ic, cos θ)

−Am+1,l Sm+1,l(−ic, cos θ)
)
cos θ

)
cosmϕ

]
iθ

−
∞∑

m=1

[ ∞∑
l=m

i−lb
(1)
ml

mSml(−ic, cos θ)

sin θ

+ k cm

∞∑
l=m−1

i−(l+1)
(
Am−1,l Sm−1,l(−ic, cos θ)

+Am+1,l Sm+1,l(−ic, cos θ)
)]

sinmϕ iϕ

}
.

(5.278)

From Eqs. (5.277)–(5.278), one can find the elements of the amplitude matrix,
the dimensionless parameters of the scattered radiation intensity, the efficiency
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factors for extinction, scattering, and backscattering (see Section 5.2.5).

A1 = −
∞∑
l=1

i−la
(1)
l S1l(−ic, cos θ)

−
∞∑

m=1

[ ∞∑
l=m

i−(l+1)
(
ka

(1)
lm Sml(−ic, cos θ)

+ ib
(1)
ml S

′
ml(−ic, cos θ)

)
sin θ

− kcm

∞∑
l=m−1

i−(l+1)
(
Am−1,l Sm−1,l(−ic, cos θ)

−Am+1,l Sm+1,l(−ic, cos θ)
)
cos θ

]
cosmϕ ,

(5.279)

A3 =

∞∑
m=1

[ ∞∑
l=m

i−lb
(1)
ml

mSml(−ic, cos θ)

sin θ

+ k cm

∞∑
l=m−1

i−(l+1)
(
Am−1,l Sm−1,l(−ic, cos θ)

+Am+1,l Sm+1,l(−ic, cos θ)
)]

sinmϕ ,

(5.280)

A4 = −
∞∑

m=1

[ ∞∑
l=m

i−lb
(1)
ml

mSml(−ic, cos θ)

sin θ

+ kcm

∞∑
l=m−1

i−(l+1)
(
Am−1,l Sm−1,l(−ic, cos θ)

+Am+1,l Sm+1,l(−ic, cos θ)
)]

sinmϕ ,

(5.281)

A2 = −
∞∑
l=1

i−la
(1)
l S1l(−ic, cos θ)

−
∞∑

m=1

[ ∞∑
l=m

i−(l+1)
(
ka

(1)
ml Sml(−ic, cos θ)

+ i b
(1)
ml S

′
ml(−ic, cos θ)

)
sin θ

− kcm

∞∑
l=m−1

i−(l+1)
(
Am−1,l Sm−1,l(−ic, cos θ)

−Am+1,l Sm+1,l(−ic, cos θ)
)
cos θ

]
cosmϕ .

(5.282)
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Qext =
4

c2[(ξ20 + 1)(ξ20 + cos2 α)]
1
2

×Rl

{
−

∞∑
l=1

i−la
(1)
l S1l(−ic, cosα)

−
∞∑

m=1

[ ∞∑
l=m

i−(l+1)
(
k a

(1)
ml Sml(−ic, cosα)

+ i b
(1)
ml S

′
ml(−ic, cosα)

)
sinα

− k cm

∞∑
l=m−1

i−(l+1)
(
Am−1,l Sm−1,l(−ic, cosα)

−Am+1,l Sm+1,l(−ic, cosα)
)
cosα

]}
,

(5.283)

Qsca =
1

c2[(ξ20 + 1)(ξ20 + cos2 α)]
1
2

{
2

∞∑
l=1

∣∣∣a(1)l

∣∣∣2 N2
1l(−ic)

+
∞∑

m=1

[ ∞∑
l=m
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(m)
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+ ik
(
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(1)
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mn κ

(m)
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(m)
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(1)
mlb
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(m)
ln

]
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∞∑
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∞∑
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(1)
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A∗
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m,m−1
ln −A∗

m+1,n �
m,m+1
ln

)
+ ib

(1)
ml

(
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m−1n ξ
m,m−1
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ln
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∞∑
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∞∑
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i(n−l)

×
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(1)∗
ml
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(
Am−1,n ξ

m,m−1
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m,m+1
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+ |kcm|2

∞∑
l=m−1

∞∑
n=m−1

i(n−l)

×
[
Am−1,lA

∗
m−1,n

(
2δnl − ω

(m−1)
nl

)
+Am−1,lA

∗
m+1,n χ

m+1,m−1
nl

+Am+1,lA
∗
m−1,n χ

m+1,m−1
nl

+Am−1,lA
∗
m−1,n

(
2δnl − ω

(m+1)
nl

)]]}
,

(5.284)
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Qbk =
4 (ξ20 + sin2 α)2

c2(ξ20 + 1) ξ20

∣∣∣∣∣
∞∑
l=1

ila
(1)
l S1l(−ic, cosα)

−
∞∑

m=1

[ ∞∑
l=m

il+1
(
k a

(1)
ml Sml(−ic, cosα)

− i b
(1)
ml S

′
ml(−ic, cosα)

)
sinα

+ k cm

∞∑
l=m−1

i(l+1)
(
Am−1,l Sm−1,l(ic, cosα)

−Am+1,l Sm+1,l(−ic, cosα)
)
cosα

]∣∣∣∣∣
2

,
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where the coefficients a
(1)
l are (see Eqs. (5.59)–(5.60))

a
(1)
l = −2 il

R
(1)
ml (−ic, iξ0)

R
(3)
ml (−ic, iξ0)

N−2
1l (−ic)S1l(−ic, cosα) (5.286)

for the TE mode and

a
(1)
l = b

(1)
l = −2 il

[
(ξ20 + 1)

1
2 R

(1)
1l (−ic, iξ0)

]′
[
(ξ20 + 1)

1
2 R

(3)
1l (−ic, iξ0)

]′ N−2
1l (−ic)S1l(−ic, cosα) (5.287)

for the TM mode, respectively. The integrals of products of the oblate AFSs and
their derivatives can be expressed through the coefficients of the function expan-
sions in terms of the associated Legendre functions of the first kind (see Ap-
pendix A).

The electromagnetic radiation scattered by an extremely oblate perfectly con-
ducting spheroid and by a perfectly conducting disk coincide with the accuracy of
O(b/a). In the case of the disk, the expansion coefficients are calculated explicitly
through the spheroidal functions from Eqs. (5.268)–(5.269) and (5.275)–(5.276).

Numerical calculations of the scattered radiation characteristics within the
new solution are similar to those discussed above. For perfectly conducting oblate
spheroids with a small aspect ratio a/b both solutions give nearly the same results
for a given number of terms kept in the field expansions. With a growing a/b, the
new solution provides better results and becomes preferable (see Table 5.6). Cor-
rectness of the results obtained with the new solution is confirmed by the fact that
for the parallel incidence the TE and TM characteristics of radiation scattered by a
perfectly conducting disk agree with the accuracy of 10−7 or better (see Table 5.7).

A consideration of data in Table 5.7 shows that in the case when the incident
radiation propagates perpendicular to the disk plane, the extinction efficiency fac-
tors quickly reach the limit of geometrical optics Qsca = 2, while the backscattering
cross-sections for c ≥ 3.5 have the asymptotic dependence on the diffraction pa-
rameter σbk/πa

2 ∼ c2. The quantities (Qsca − 1) and σbk/(πa
2c2) as functions of
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Table 5.6. Efficiency factors for extinction Qext and scattering Qsca for perfectly con-
ducting oblate spheroids with c = 5 (α = 0)

N Qold
ext Qold

sca Qnew
ext Qnew

sca

a/b = 2

8 2.08 2.10 2.077 2.097
12 2.08328 2.08333 2.083324 2.083343
16 2.0833206 2.0833208 2.0833210 2.0833218
20 2.0833211 2.0833211 2.0833211 2.0833211

a/b = 5

20 2.114 2.093 2.1330 2.1337
24 2.1199 2.1144 2.12429 2.12445
28 2.12115 2.11987 2.12216 2.12220
32 2.12144 2.12115 2.12166 2.12168
36 2.12148 2.12134 2.121589 2.121594

Table 5.7. Efficiency factors for extinction Qext, scattering Qsca and backscattering
σbk/(πa

2c2) for perfectly conducting disks (α = 0)

c Qext Qsca σbk/(πa
2c2)

0.5 0.0373775 0.0373775 0.235100
1.0 1.009234 1.009234 1.833089
1.5 3.374781 3.374781 3.431179
2.0 3.007385 3.007385 2.268282
2.5 2.537698 2.537698 1.614415
3.0 2.254616 2.254616 1.279257
3.5 2.071788 2.071788 1.078326
4.0 1.966437 1.966437 0.967271
4.5 1.969446 1.969446 0.971217
5.0 2.080243 2.080243 1.085286
5.5 2.138854 2.138854 1.143930
6.0 2.102719 2.102719 1.105790
6.5 2.040969 2.040969 1.042337
7.0 1.989386 1.989386 0.989802
7.5 1.971303 1.971303 0.971542
8.0 2.006665 2.006665 1.007377
8.5 2.055600 2.055600 1.056684
9.0 2.059054 2.059054 1.059945
9.5 2.031259 2.031259 1.031770

10.0 1.999405 1.999405 0.999619

the parameter c oscillate in concord around the values of 2 and 1, respectively. The
comparison also gives an approximate relation

σbk
πa2c2

≈ Qsca − 1. (5.288)

The relative accuracy of this relation is better than 2% for c ≥ 3.0, about 0.5% for
c ≥ 4.0, and 0.1% for c ≥ 6.5.
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Fig. 5.5. Normalized scattering cross-sections Csca for perfectly conducting disks (solid
line) and oblate spheroids with a/b = 5 (dashed line) in the dependence on the parameter
c for the incidence angle α = 0.

A consideration of the extinction efficiency factors for perfectly conducting disks
and oblate spheroids with the ratio a/b = 5 allows one to approximately determine
the range of the diffraction parameter c for which the results for a disk well describe
the main properties of radiation scattered by extremely oblate perfectly conducting
spheroids. From Fig. 5.5 we see that the largest deviations arise for small values of
c. On the other hand, starting with the c values corresponding to the first maximum
of the extinction curve, the scattering characteristics of a disk well describe those of
the extremely oblate perfectly conducting spheroids already with the ratio a/b = 5.
For small values of the parameter c < 1.5, the agreement of the results obtained
for disks and oblate spheroids becomes better with increasing particle oblateness
(i.e. the ratio a/b).

5.6 Conclusions

We have considered different aspects of the light scattering problem for spheroids,
including construction of the exact solution using non-orthogonal bases of wave
functions and analysis of the infinite systems of linear algebraic equations (ISLAEs)
arisen. The most important results are as follows.

The suggested exact solution to the problem is the most efficient one from the
computational point of view provided a basis of spheroidal wave functions is uti-
lized. This is because the solution basically transforms into an explicit solution
for spheres and allows one to get the principal term of the asymptotics with re-
spect to the small parameter b/a being the aspect ratio for extremely prolate and
oblate dielectric spheroids. Note that to build the basis, we utilize both the vector
functions used to solve the problem for spheres and the vector functions applied



5 Application of non-orthogonal bases in the LS theory 257

to solve the problem for infinite circular cylinders. Numerical tests show that the
number of terms kept in the field expansions necessary to reach a given accuracy
depends only on the maximum dimension of the spheroid and is independent of
its shape characterized by the aspect ratio a/b and the spheroid kind (prolate or
oblate). Thus, the solution suggested is in particular efficient for spheroids whose
shape essentially differs from the spherical one.

The analysis of the ISLAEs has shown that they are quasi-regular and definitely
solvable in the space l2 for any spheroids not degenerated into a segment or a disk.
They can be solved with any accuracy by the reduction method, i.e. by truncating
the infinite systems, which occurs in numerical realization of the solution. Con-
vergence of the field expansions is proved in the space L2(Ω) for any coordinate
surface Ω(ξ = const) up to the spheroid boundary. The found asymptotics of the
matrix elements of the ISLAEs allow one to estimate the behaviour of the truncated
systems arisen in calculations.

The quasi-static approximation, being a generalization of the Rayleigh–Gans
and Rayleigh approximations, is theoretically grounded for extremely prolate and
oblate dielectric spheroids, in which cases it gives the principal term of the asymp-
totics with respect to the small parameter b/a. For extremely prolate perfectly
conducting spheroids, the principal term of the field asymptotics with respect to
the parameter b/a is explicitly expressed through the spheroidal and elementary
functions for the TM mode, and only through elementary functions for the TE
mode. From a numerical comparison of the exact and approximate solutions, we
have found the range of applicability of the latter. The optical properties of the
extremely prolate and oblate perfectly conducting spheroids have been studied in
some detail.

The derived solution to the problem of the plane wave diffraction by an ex-
tremely oblate perfectly conducting spheroid is improved by a special choice of
the scalar potentials so that the Meixner conditions at the disk edge are fulfilled
automatically. Numerical calculations have demonstrated a high efficiency of the
improved solution.
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Appendix A: Integrals of the spheroidal angular functions
and other relations

The prolate spheroidal angular functions S(c, η) are solutions to the problem (Ko-
marov et al., 1976)

d

dη
(1− η2)

d

dη
S(c, η) +

[
λ+ c2(1− η2)− m2

(1− η2)

]
S(c, η) = 0 , (5.289)
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where |S(c, η)| < ∞ for η = ±1, c ≥ 0, and m is an integer number. The bound-
ary conditions can be replaced by the standard requirement that S(c, η) is square
integrable on the interval [−1, 1], i.e. S(c, η) ∈ L2[−1, 1]. The Sturm–Liouville
problem (5.289) has an infinite set of eigenvalues λml and eigenfunctions Sml(c, η)
that for a given m form a complete orthogonal system in the space L2[-1, 1]. The
numeration of the functions Sml(c, η) is selected in such a way that they have (l−m)
roots in the interval [−1, 1], and hence l ≥ m. The condition of normalization of
the prolate SAFs is as follows:

Sml(c, 0) = Pm
l (0) =

(−1)
l−m

2 (l +m)!

2l( l−m
2 ))! ( l+m

2 ))!
, (l −m) = 2q , (5.290)

S ′
ml(c, 0) = Pm ′

l (0) =
(−1)

l−m+1
2 (l +m+ 1)!

2l( l−m−1
2 ))! ( l+m+1

2 ))!
, (l −m) = 2q + 1 , (5.291)

where

Pm
l (η) =

(1− η2)
m
2

2ll!

dl+m

dηl+m
(1− η2)l

are the associated Legendre functions of the first kind.
The normalizing factor for the prolate SAFs is introduced by

Sml(c, η) = Nml(c) S̄ml(c, η) , (5.292)

and the integral of the normalized prolate SAFs is equal to 1∫ 1

−1

S̄2
mn(c, η) dη = 1 . (5.293)

The prolate SAFs can be expanded in terms of the Legendre polynomials

Sml(c, η) =

∞∑
r=0,1

′
dml
r (c)Pm

m+r(η) , (5.294)

where the prime means that the summation is made over the r values whose parity
coincides with that of (l −m).

From the normalization conditions (5.291)–(5.292), we find the normalizing fac-
tor

N2
ml(c) =

∞∑
r=0,1

′ [
dml
r (c)

]2 2

2r + 2m+ 1

(r + 2m)!

r!
, (5.295)

where we used the orthogonality of the prolate SAFs.
For the oblate SAFs, one should make the substitution c→ −ic in the equations

given above for the prolate SAFs.
For complex values of the parameter c, the prolate and oblate SAFs are con-

sidered as analytic continuations of the functions defined above for c ≥ 0. More
information about these functions can be found in the book of Meixner and Schefke
(1954) and the review of Meixner et al. (1980)

Below we consider some integrals of products of the normalized SAFs and their
derivatives. The integrals are expressed through the coefficients of the function
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expansions in terms of the associated Legendre functions of the first kind. Substi-
tution of the expansions of the spheroidal angular functions into the integrals and
use of the recurrence relations for the Legendre functions allow one to obtain the
following formulae:

δmnl(c2, c1) =

∫ 1

−1

S̄mn(c2, η) S̄ml(c1, η) dη = N−1
mn(c2)N

−1
ml (c1)

×
∞∑

r=0,1

′
dmn
r (c2)d

ml
r (c1)

2

2r + 2m+ 1

(r + 2m)!

r!
,

(5.296)

γmnl(c2, c1) =

∫ 1

−1

S̄mn(c2, η) S̄ml(c1, η) η dη = N−1
mn(c2)N

−1
ml (c1)

×
∞∑

r=0,1

′
dmn
r (c2)

[
dml
r+1(c1)

r + 2m+ 1

2r + 2m+ 3

+ dml
r−1(c1)

r

2r + 2m− 1

]
2

2r + 2m+ 1

(r + 2m)!

r!
,

(5.297)

κmnl(c2, c1) =

∫ 1

−1

S̄mn(c2, η)
dS̄ml(c1, η)

dη
(1− η2) dη = N−1

mn(c2)N
−1
ml (c1)

×
∞∑

r=0,1

′
dmn
r (c2)

[
dml
r+1(c1)

(r + 2m+ 1)(r +m+ 2)

2r + 2m+ 3

− dml
r−1(c1)

r(r +m− 1)

2r + 2m− 1

]
2

2r + 2m+ 1

(r + 2m)!

r!
,

(5.298)

σm
nl(c2, c1) =

∫ 1

−1

S̄mn(c2, η)
d
(
ηS̄ml(c1, η)

)
dη

(1− η2) dη = N−1
mn(c2)

×N−1
ml (c1)

∞∑
r=0,1

′ [
(r + 2m+ 2)(r + 2m+ 1)(r +m+ 2)

(2r + 2m+ 3)(2r + 2m+ 5)

×dml
r+2(c1) +

3(r +m)(r +m+ 1)−m2 − 2

(2r + 2m− 1)(2r + 2m+ 3)

×dml
r (c1)− r(r − 1)(r +m− 1)

(2r + 2m− 3)(2r + 2m− 1)
dml
r−2(c1)

]
× dmn

r (c2)
2

2r + 2m+ 1

(r + 2m)!

r!
,

(5.299)
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ωm
nl(c2, c1) =

∫ 1

−1

S̄mn(c2, η) S̄ml(c1, η) (1− η2) dη = −N−1
mn(c2)

×N−1
ml (c1)

∞∑
r=0,1

′ [
(r + 2m+ 2)(r + 2m+ 1)

(2r + 2m+ 3)(2r + 2m+ 5)

×dml
r+2(c1)−

2[(r +m)(r +m+ 1) +m2 − 1]

(2r + 2m− 1)(2r + 2m+ 3)

×dml
r (c1) +

r(r − 1)

(2r + 2m− 3)(2r + 2m− 1)
dml
r−2(c1)

]
× dmn

r (c2)
2

2r + 2m+ 1

(r + 2m)!

r!
,

(5.300)

τmnl (c2, c1) =

∫ 1

−1

[
(1− η2) dS̄mn(c2, η)

dη

S̄ml(c1, η)

dη

+
m2 S̄mn(c2, η) S̄ml(c1, η)

1− η2

]
dη = N−1

mn(c2)N
−1
ml (c1)

×
∞∑

r=0,1

′
dmn
r (c2) d

ml
r (c1)

2(r +m)(r +m+ 1)

2r + 2m+ 1

(r + 2m)!

r!
,

(5.301)

�m,m∓1
nl (−ic2,−ic1) =

∫ 1

−1

S̄mn(−ic2, η) S̄m∓1,l(−ic1, η) (1− η2)
1
2 dη =

−N−1
mn(−ic2)N

−1
m∓1,l(−ic1)

∞∑
r=0,1

′
dmn
r (−ic2)

[
dm∓1,l
r+2 (−ic1)

2r + 2m+ 3

−d
m∓1,l
r (−ic1)

2r + 2m− 1

]
2

2r + 2m+ 1

(r + 2m)!

r!
,

(5.302)

αm,m∓1
nl (−ic2,−ic1) =

∫ 1

−1

S̄mn(−ic2, η)
[±(m∓ 1) η S̄m∓1,l(−ic1, η)

+(1− η2)
dS̄m∓1,l(−ic1, η)

dη

]
dη

(1− η2)
1
2

= N−1
mn(−ic2)N

−1
m∓1,l(−ic1)

×
∞∑

r=0,1

′
dmn
r (−ic2) d

m∓1,l
r+1 (−ic1)

2

2r + 2m+ 1

(r + 2m)!

r!
,

(5.303)
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ϕm,m∓1
nl (−ic2,−ic1) =

∫ 1

−1

S̄mn(−ic2, η) S̄m∓1,l(−ic1, η) η(1− η2) dη =

−N−1
mn(−ic2)N

−1
m∓1,l(−ic1)

∞∑
r=0,1

′
dmn
r (−ic2)

[
dm∓1,l
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(2r + 2m+ 5)(2r + 2m+ 3)
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× 2r − 4m2 − 4mr + 1

(2r + 2m+ 3)(2r + 2m+ 1)(2r + 2m− 1)
− dm∓1,l

r−1 (−ic1)

× r

(2r + 2m− 1)(2r + 2m− 3)

]
2

2r + 2m+ 1

(r + 2m)!

r!
,

(5.304)

ξm,m∓1
nl (−ic2,−ic1) =

∫ 1

−1

[
η
dS̄mn(−ic1, η)

dη
∓m

S̄mn(−ic1, η)

(1− η2)

]
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1
2 dη = N−1

mn(−ic2)N
−1
m∓1,l(−ic1)

×
∞∑

r=0,1

′
dmn
r (−ic2)

[
dm∓1,l
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r +m

(2r + 2m+ 3)
+ dm∓1,l

r (−ic1)

× r +m+ 1

2r + 2m− 1

]
2

2r + 2m+ 1

(r + 2m)!

r!
,

(5.305)

χm+1,m−1
nl (−ic2,−ic1) =

∫ 1

−1

S̄m+1,n(−ic2, η) S̄m−1,l(−ic1, η)

× (1− η2) dη = −N−1
m+1,n(−ic2)N

−1
m−1,l(−ic1)
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r=0,1

′
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r (−ic2)

×
[

dm−1,l
r+4 (−ic1)

(2r + 2m+ 7)(2r + 2m+ 5)
+

dm−1,l
r+2 (−ic1)

(2r + 2m+ 5)(2r + 2m+ 1)

− dm−1,l
r (−ic1)

(2r + 2m+ 1)(2r + 2m− 1)

]
2

2r + 2m+ 3

(r + 2m+ 3)!

r!
.

(5.306)

Further, we assume that c1 ≥ 0, and c2 is a complex number. Let us consider
the differential equations

d

dη
(1− η2)

d

dη
S̄ml(c2, η) +

[
λml(c2) + c22(1− η2)− m2

(1− η2)

]
S̄ml(c2, η) = 0,

d

dη
(1− η2)

d

dη
S̄mn(c2, η) +

[
λmn(c2) + c22(1− η2)− m2

(1− η2)

]
S̄mn(c2, η) = 0 .

(5.307)
We multiply the first equation by S̄mn(c2, η) and the second one by −S̄ml(c2, η),
integrate them over η from −1 to 1 and summarize the results. This gives

[λml(c2)− λmn(c2)]

∫ 1

−1

S̄mn(c2, η) S̄ml(c2, η) dη = 0 , (5.308)
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i.e. the corresponding matrix is the unit one

Δ(c2, c2) = {δ(m)
nl (c2, c2)}∞n,l=m = {δ(m)

nl }∞n,l=m = I . (5.309)

Substitution of the expansions of the functions S̄mn(c, η) and S̄ml(c, η) in terms
of {S̄mj(c1, η)}∞j=m forming a complete orthogonal system into Eq. (5.308) and the

symmetry relative to the indices and parameters (δ
(m)
lj (c2, c1) = δ

(m)
jl (c1, c2)) allow

us to get
∞∑

j=m

δ
(m)
lj (c2, c1) δ

(m)
jl (c1, c2) = δnl , (5.310)

i.e. for the matrices Δ(c2, c1) = {δ(m)
nl (c2, c1)}∞n,l=m, we have

Δ(c2, c1)Δ(c1, c2) = I , (5.311)

or
Δ(−1)(c2, c1) = Δ(c1, c2) . (5.312)

Similarly, one can demonstrate that

Π(c2, c2) = Δ(c2, c1)Π(c1, c1)Δ(c1, c2) , (5.313)

where the matrix Π is any of the matrices under consideration. As all the integrals,
except for Δ, depend on the only parameter c1, further we skip the parameters of
the integrals Π.

Let us consider the integrals σ
(m)
nl . The expansion of the functions η S̄ml(c1, η)

in terms of {S̄mj(c1, η)}∞j=m is as follows:

η S̄ml(c1, η) =

∞∑
j=m

γ
(m)
lj S̄mj(c1, η) . (5.314)

Substitution of this equation into the integral σ
(m)
nl and the relation γ

(m)
lj = γ

(m)
jl

give

σ
(m)
nl =

∞∑
j=m

κ
(m)
nj γ

(m)
jl , (5.315)

i.e.
Σ = K Γ. (5.316)

For the integrals τ
(m)
nl , integration of the first summand by parts and use of the

differential equation (5.307) lead to

τ
(m)
nl (c1) = λml(c1) δ

l
n + c21 ω

(m)
nl . (5.317)
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Similarly, keeping in mind the properties of the SAFs, we get

γ
(m)
nl =

1

2

(
κ
(m)
nl + κ

(m)
ln

)
,

2 δln − τ
(m)
nl = σml + σ

(m)
ln ,

{ϕm,m∓1
nl } = {γ(m)

nj }{ρm,m∓1
jl } = {ϕm∓1,m

ln } ,
�m,m∓1
nl = �m∓1,m

ln ,

αm,m∓1
nl = αm∓1,m

ln ,

ξm,m∓1
nl + ξm∓1,m

ln = 2ρm,m∓1
nl ,

{χm−1,m+1
nl }+ {χm+1,m−1

ln } = {ρm−1,m
nj }{ρm,m+1

jl } .

(5.318)

Eqs. (5.311)–(5.318) can be used for calculations of the integrals or for verification
of such calculations.

To conclude, we consider some properties of the oblate spheroidal functions.
The differential equation for these functions is as follows (Komarov et al., 1976):

d

dξ
(ξ2 + 1)

d

dξ
Rml(−ic, ξ) +

[
−λml(−ic) + c2(ξ2 + 1) +

m2

(ξ2 + 1)

]
R̄ml(−ic, ξ) = 0 .

(5.319)
The function substitution

u = (ξ2 + 1)
R′

ml(−ic, ξ)

Rml(−ic, ξ)
(5.320)

leads to

u′ +
u2

ξ2 + 1
+

[
−λml(−ic) + c2(ξ2 + 1) +

m2

(ξ2 + 1)

]
= 0 . (5.321)

For the oblate SRFs, the function u in the vicinity of the point ξ = 0 can be
represented as (c = O(1))

u =
R

(1)′

ml (−ic, ξ0)

Rml(−ic, ξ0)
=

1

ξ0
+O(ξ0) , l −m = 2q + 1 , (5.322)

or

u =
R

(1)′

ml (−ic, ξ0)

Rml(−ic, ξ0)

=
[−λml(−ic) + c2 +m2

]
ξ0 +O(ξ30) , l −m = 2q .

(5.323)

Here we used the parity properties of the oblate SRFs of the first kind. The co-
efficients can be found after substitution of this equation into Eq. (5.321) and
comparison of the results for the same powers of ξ0.
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Let us multiply the first and second differential equations (5.307) for the oblate
SAFs depending on the parameters c2 and c1 by S̄mn(−ic1, η) and −S̄ml(−ic2, η),
respectively. Then summation of the equations gives

[λml(−ic2)− λmn(−ic1)]

∫ 1

−1

S̄mn(−ic2, η) S̄ml(−ic1, η) dη =

(c22 − c21)

∫ 1

−1

S̄mn(−ic2, η) S̄ml(−ic1, η)(1− η2) dη .

(5.324)

This equation can be written in the matrix form

Λ(−ic2)Δ(−ic2,−ic1)−Δ(−ic2,−ic1)Λ(−ic1) = (c22 − c21)Ω(−ic2,−ic1) , (5.325)

where Ω = {ω(m)
nl }∞n,l=m, Λ is a diagonal matrix whose elements are the eigenvalues

λml.
Using the equations

Δ(−ic2,−ic1) = Δ(−ic2,−ic1)Ω(−ic1,−ic1) ,

Ω(−ic1,−ic1) = I − Γ 2(−ic1,−ic1) ,
(5.326)

and Eqs. (5.322)–(5.323) and (5.317), in the first approximation with respect to ξ0,
we have

R̃r
2 −Rr

0 = −ξ0(c22 − c21)
[
Γ 2(−ic1,−ic1)

]r
, (5.327)

where the index r means that we consider the matrix elements for which the sum
of the row and column numbers is even.
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Part II

Radiative Transfer



6 Radiative transfer and optical imaging in
biological media by low-order transport
approximations: the simplified spherical
harmonics (SPN) approach

Jorge Bouza Domı́nguez and Yves Bérubé-Lauzière

6.1 Introduction

Radiative transfer theory (RTT) is a valuable theoretical framework for describ-
ing the propagation of optical radiation in turbid media (Ishimaru, 1978; Wang
and Wu, 2007). RTT has succeeded in fields such as astronomy and astrophysics
(Chandrasekhar, 1960), remote sensing of the earth surface and atmosphere (Mel-
nikova et al., 2012), heat transfer (Howell et al., 2010; Modest, 2003; Atalay, 2006),
and, particularly, in biomedical optics (Wang and Wu, 2007; Hielscher et al., 2011;
Klose, 2010a). The fundamental equation in RTT is the radiative transfer equation
(RTE) (Wang and Wu, 2007). The RTE is the most accurate model for describing
light propagation in biological tissue, with no approximation regarding the angular,
spatial or temporal dependences (Hielscher et al., 2011). The RTE is an integro-
differential equation that depends on a set of optical parameters (index of refrac-
tion, absorption, scattering and scattering function) that describe the medium (Ishi-
maru, 1978). The validity limits of the RTE rest on the model conceived to describe
light propagation, and should be established for each physical situation (Mart́ı
López et al., 2003). Analytical solutions of the RTE are only known for simple ge-
ometries (Ishimaru, 1978; Liemert and Kienle, 2011b). Thus, numerical techniques
are used in practical situations where complex geometries and/or heterogeneous
optical property distributions need to be considered (Tarvainen, 2006). Solving the
RTE for biological media carries a considerable numerical burden (Tarvainen, 2006;
Klose and Larsen, 2006). In imaging applications, the RTE needs to be solved anew
at each iteration step of an optimization algorithm in order to determine optimal
optical parameters (Dehghani et al., 2009b; Arridge and Schotland, 2009). This is
an implicit limitation of RTE-based image reconstruction algorithms in pre-clinical
and clinical imaging and therapeutics, where the diagnosis time matters.

To reduce computation time, the diffusion equation (DE) is frequently used
instead of the RTE (Wang and Wu, 2007; Dehghani et al., 2009b). The DE is de-
rived from the RTE using the diffusion approximation which assumes that the field
appearing in the RTE is almost isotropic at each point (Ishimaru, 1978; Wang and
Wu, 2007). Unfortunately, there are several practical situations where the DE fails,
as in the vicinity of sources (Mart́ı López et al., 2004) and in the case of small
geometries, low scattering, or high absorption (Hielscher et al., 1998; Chen et al.,

OI 10.1007/978-3-642- - _6, © Springer-Verlag Berlin Heidelberg 2013 Springer Praxis Books, D 32106 1
269 , Light Scattering Reviews 8: Radiative transfer and light scatteringA.A. Kokhanovsky (ed.),
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Fig. 6.1. Molar extinction coefficient (absorption/concentration) of several chromophores.
Arrows at the bottom indicate the emission wavelength of common lasers.

2001). For example, in the so-called therapeutic window (600 to 1000 nm), vascu-
larized tissues present high absorption because of chromophore absorption spectra,
see Fig. 6.1 for the molar extinction coefficient values of common chromophores.

In such circumstances, the radiative field cannot be accurately described by
the DE. Then, DE-based radiation dose calculations will yield wrong estimates
and spatial resolution and quantitativeness of retrieved optical coefficients maps
can be seriously affected. To overcome the drawbacks of the DE and avoid the
RTE’s computational burden, low-order transport models with simplified angular
dependences were recently brought to biomedical optics (Klose and Larsen, 2006;
Chu et al., 2009; Bouza Domı́nguez and Bérubé-Lauzière, 2010; Bouza Domı́nguez
and Bérubé-Lauzière, 2011a). Some of these models are derived from the RTE
using the simplified spherical harmonics approximation (SPN ) (Klose and Larsen,
2006). SPN models have been developed for steady-state – or continuous-wave
(CW) (Klose and Larsen, 2006), frequency-domain (FD) (Chu et al., 2009) and
time-domain (TD) problems (Bouza Domı́nguez and Bérubé-Lauzière, 2010; Bouza
Domı́nguez and Bérubé-Lauzière, 2011a), opening new possibilities in treatment
and imaging applications of biomedical optics.

We herein review the use of SPN models in describing radiative transfer in
biological media. We also survey the outcomes of using SPN models in optical
imaging. With this, we hope to motivate further developments and applications of
SPN models in therapeutics and optical imaging of biological media.
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6.2 Light transport in biological media

In tissue optics, RTT describes the emission, propagation, scattering and absorption
of radiation. It provides a macroscopic view of the propagation of light (Ishimaru,
1978). In RTT, only the flow of energy through the medium is considered. Inter-
ference and diffraction effects are neglected and magnitudes such as the radiance
bear the physical meaning. Through the use of the Stokes vector, polarization can,
however, be accounted for in RTT. Additionally, concepts such as ray, ray congru-
ence and ray divergence can be extrapolated from geometrical optics and employed
to elaborate a mathematical model of light propagation (Mart́ı López et al., 2003).
Applying the law of the conservation of energy in a differential volume element, it
is possible to derive an expression for the radiance variation in terms of the optical
properties of the medium, leading to the RTE. Corresponding boundary conditions
for the radiance can be obtained as well.

In the next section, we write down the expressions for the RTE and its boundary
conditions. We introduce the reduced incident and the diffused radiance its corre-
sponding components and review two well-known approximations: the spherical
harmonics approximation leading to the so-called PN equations, and the diffusion
approximation (DA) leading to the DE.

6.2.1 The radiative transfer equation

The standard way of deriving the RTE1 leads to the following expression (Wang
and Wu, 2007)

η

c

∂

∂t
L(r, ŝ, t) + ŝ · ∇L(r, ŝ, t)

= − [μa(r) + μs(r)]L (r, ŝ, t) + μs(r)

∫
4π

p(r, ŝ, ŝ′)L(r, ŝ′, t) dΩ′ + q (r, ŝ, t) ,

(6.1)

where L(r, ŝ, t) is the radiance at point r in the direction specified by the unit
vector ŝ, η is the refractive index, c is the speed of light in vacuum, μa(r) and
μs(r) are respectively the absorption and scattering coefficients, p(r, ŝ, ŝ′) is the
normalized scattering function (also customarily called the ‘phase function’) which
represents the probability of a photon being scattered in direction ŝ when coming
from direction ŝ′, dΩ′ is a differential element of solid angle, q(r, ŝ, t) is a source
distribution per unit volume and ∇ denotes the gradient operator with respect to
the r coordinates.

Frequently, the radiance is decomposed into collimated and diffuse components
and Eq. (6.1) is posed in terms of the latter (Ishimaru, 1978). This approach is quite
useful when applying low-order transport approximations since the angular depen-
dence of the diffuse radiance is less pronounced than the total radiance. Hence,
low-order transport approximations better reproduce (with the addition of the col-

1In the standard derivation of the RTE, the refractive index is a piecewise constant
function not a continuous function. Besides, ray divergence effects are neglected in the
discussion here (Mart́ı López et al., 2003).
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limated component) the radiative field than full RTE-based low-order transport
approximations. In addition, we point out the fact that measurements in diffuse
optical tomography (DOT) are done in terms of the diffused component only.

The solution of Eq. (6.1) requires the specification of initial and boundary
conditions. For a smooth tissue–air interface ∂V and in the presence of specular
Fresnel reflection, the vacuum boundary condition is substituted by the partly-
reflecting boundary condition (Case and Zweifel, 1967; Duderstadt and Martin,
1979; Ishimaru, 1978)

L(r′, ŝ, t) = BT (r
′, ŝ, t) +RF (n̂ · ŝ′)L(r′, ŝ′, t) , r′ ∈ ∂V, ŝ · n̂ < 0 , (6.2)

where RF is the angle dependent Fresnel coefficient (Born and Wolf, 2003),
BT (r, ŝ, t) is the radiance of the exterior source transmitted inside the medium,
n̂ is the outer normal to the surface ∂V and ŝ′ = ŝ − 2

(
n̂ · ŝ)n̂. Here, ŝ′ is a vec-

tor that points outward and is the specular reflection of vector ŝ. For a smooth
tissue–tissue interface, the flux balance can be expressed as Marshak conditions
(Marshak, 1947; Davidson and Sykes, 1957; Faris, 2002)∫

ŝ·n̂>0

L1(r, ŝ, t) (ŝ · n̂) dΩ =

∫
ŝ·n̂<0

RF,1L1(r, ŝ, t) (−ŝ · n̂) dΩ

+

∫
ŝ·n̂>0

[1−RF,2]L2(r, ŝ, t) (ŝ · n̂) dΩ

(6.3)∫
ŝ·n̂<0

L2(r, ŝ, t) (−ŝ · n̂) dΩ =

∫
ŝ·n̂>0

RF,2L2(r, ŝ, t) (ŝ · n̂) dΩ

+

∫
ŝ·n̂<0

[1−RF,1]L1(r, ŝ, t) (−ŝ · n̂) dΩ

where Li(r, ŝ, t) denotes the radiance in medium i = 1, 2 and RF,i is the angle
dependent Fresnel reflection coefficient for medium i.

6.2.2 Spherical harmonics expansion and the PN approximation

In the spherical harmonics expansion, the transport equation is reduced to a system
of coupled partial differential equations (PDEs) with no angular-dependence (Case
and Zweifel, 1967; Davidson and Sykes, 1957). The angular dependent functions
appearing in Eq. (6.1), such as the radiance L(r, ŝ, t) and the source distribution
q
(
r, ŝ, t

)
, are expanded along spherical harmonics Yl,m(ŝ) ≡ Yl,m(θ, φ) (θ and φ

being respectively the polar and the azimuthal angles of spherical coordinates) as

L(r, ŝ, t) =

∞∑
l=0

l∑
m=−l

(
2l + 1

4π

) 1
2

ψl,m(r, t)Yl,m(ŝ) , (6.4)

q(r, ŝ, t) =

∞∑
l=0

l∑
m=−l

(
2l + 1

4π

) 1
2

ql,m(r, t)Yl,m(ŝ) , (6.5)
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where, following (Case-Zweifel, 1967), the normalization factor
[
(2l + 1)/4π

] 1
2 is

introduced for the convenience that it results in simpler final expressions. Properties
of the spherical harmonics can be found in (Abramowitz and Stegun, 1965).

For the scattering function p(r, ŝ, ŝ′), the reasonable assumption is made that
it only depends on the angular change between the incident and the scattered
directions of a photon, i.e. p(r, ŝ, ŝ′) = p(r, ŝ · ŝ′). In this case, the phase function
can be expanded along Legendre polynomials as

p(r, ŝ · ŝ′) =
∞∑
l=0

l∑
m=−l

(
2l + 1

4π

)
pl(r, t)Pl(ŝ · ŝ′) . (6.6)

Making use of the addition theorem for spherical harmonics, this can be rewritten
as

p(r, ŝ · ŝ′) =
∞∑
l=0

l∑
m=−l

pl(r)Yl,m(ŝ)Yl,m(ŝ′) . (6.7)

Inserting Eqs. (6.4), (6.5) and (6.7) into Eq. (6.1) and after some algebra (see
recurrence relations for Yl,m(ŝ) in (Abramowitz and Stegun, 1965), an infinite set
of coupled PDEs is obtained(

η

c

∂

∂t
+ μtr(r)

)
ψl,m(r, t)

+
1

2l+1

(
∂

∂z

[
(l+1−m)

1
2 (l+1+m)

1
2ψl+1,m(r, t)+(l−m)

1
2 (l+m)

1
2ψl−1,m(r, t)

]
− 1

2

(
∂

∂x
−i ∂
∂y

)[
(l+m)

1
2 (l+m−1)

1
2ψl−1,m−1(r, t)

−(l−m+2)
1
2 (l−m+1)

1
2ψl+1,m−1(r, t)

]
−1

2

(
∂

∂x
+i

∂

∂y

)[
−(l−m)

1
2 (l−m−1)

1
2ψl−1,m+1(r, t)

+(l+m+1)
1
2 (l+m+2)

1
2ψl+1,m+1(r, t)

])
= μs(r)plψl,m(r, t) + ql,m(r, t) , (6.8)

where μtr(r) = μa(r) + μs(r) is the transport coefficient and i =
√−1. Truncating

the series in Eqs. (6.4)–(6.7) at l = N (this is the so-called PN approximation), a
system of (N+1)2 coupled first-order PDEs is obtained. These are known as the PN

equations, which have been used as the forward model for imaging the scattering
and absorption properties of biological media (Wright et al., 2007). Using the finite
element method (FEM) for discretizing the forward model, initial results show an
improvement over reconstructions based on the diffusion equation (Wright et al.,
2007).

6.2.3 P1 and the diffusion approximation

Truncating the expansions in Eqs. (6.4)–(6.7) at l = N = 1 (P1 approximation),
leads to four equations that can be grouped in vector form as (Wang and Wu, 2007)
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η

c

∂ψ0(r, t)

∂t
+∇ · J(r, t) + μa(r)ψ0(r, t) = ε0(r, t) , (6.9)

η

c

∂J(r, t)

∂t
+

1

3
∇ψ0(r, t) + [μa(r) + μ′s(r)]J(r, t) = ε1(r, t) , (6.10)

where μ′s = μs(1− g) is the so-called reduced scattering coefficient and g is known
as the anisotropy coefficient (Ishimaru, 1978; Wang and Wu, 2007), ψ0(r, t) and
J(r, t) are the fluence rate and the radiant current density vector, respectively, with
J given by

J(r, t) =

∫
4π

L(r, ŝ, t) ŝ dΩ =

√
2π

3

(
ψ1,−1 − ψ1,−1,−i(ψ1,−1 + ψ1,−1),

√
2ψ1,0

)
.

(6.11)

The function ε0(r, t) and the vector ε1(r, t) embody the first two orders of the
expansion of the source term (Eq. 6.5), similarly to ψ and J for L. Eqs. (6.9) and
(6.10) are known as the P1 equations and constitute the starting point to derive
the diffusion equation (DE). The DE is considered valid at macroscopic length
scales2 (Van Rossum and Nieuwenhuizen, 1999) and derived under the assumption
that the radiance has a weak angular dependence, originated by a high albedo
scattering medium, i.e. μa 	 μs (Wang and Wu, 2007). To derive the DE, J(r, t)
is algebraically eliminated from Eq. (6.9) by using Eq. (6.10) under the condition
known as the diffusion approximation (DA) (Wang and Wu, 2007)

τ0

∣∣∣∣ ∂∂tJ(r, t)
∣∣∣∣	 |J(r, t)| , τ0 =

η

c [μa(r) + μ′s(r)]
. (6.12)

The DA imposes constraints on the relative time variation of J(r, t), which contains
the odd-order first terms of the series in Eq. (6.4). If in addition to the DA, we have
an isotropic source distribution, then ε1(r, t) = 0, and the classical DE is obtained
(Wang and Wu, 2007)

η

c

∂φ0(r, t)

∂t
+∇ · [D(r)∇φ0(r, t)

]
+ μa(r)φ0(r, t) = ε0(r, t) , (6.13)

where D(r) is the standard diffusion coefficient

D(r) =
1

3 [μa(r) + μ′s(r)]
≈ 1

3μ′s(r)
, (6.14)

and the inequality μa 	 μs has been used to approximate the diffusion coefficient.
Next, we introduce an approximation to the RTE similar to the PN approximation:
the simplified spherical harmonics approximation.

6.3 The simplified spherical harmonics approximation

Additionally to the time variable (or modulation frequency if FD methods are
used), the radiation field is position and direction-dependent. Thus, elaborating
numerical schemes for solving the RTE may involve a discretization method for

2Length scales such as λ� l′tr � ls, where λ is the wavelength, l′tr the transport mean
free path and ls the sample size.
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up to a six-dimensional space. For this reason, RTE approximations that preserve
enough accuracy while reducing computation time are highly desirable for practical
applications. That is the purpose of low-order transport models such as the PN

approximation (Arridge, 1999; Wright et al. 2007). However, the large number and
complexity of the PN equations (as an extra feature, mixed spatial derivatives are
contained in the equations) limit the applicability of the PN approximation. An
alternative is the simplified PN (SPN ) approximation which transforms the RTE
into a system of coupled diffusion equations (elliptic in the steady-state case or
parabolic in the time-dependent case) that depend solely on space and time (Klose
and Larsen, 2006). The SPN equations display a significantly reduced complexity
compared to the PN equations, and allow the application of DE-like numerical
schemes and solvers (Klose and Larsen, 2006; Chu et al., 2009; Bouza Domı́nguez
and Bérubé-Lauzière, 2010, Montejo et al., 2011).

Applying the SPN approximation, a methodology coined the SPN method,
originated in the field of nuclear reactor theory (Fletcher, 1983; de Oliveira, 1986).
In its early days, the SPN method lacked firm theoretical foundations, which ham-
pered its use. Further developments allowed resolving this issue and expanding the
applications of the SPN equations to other fields such as heat transport (Larsen
et al., 2002), coupled electron–photon transport problems (Kotiluoto et al., 2007),
and biomedical optics (Klose and Larsen, 2006).

The SPN equations have been derived in three ways: (i) as a multidimensional
generalization of the PN equations for geometries with planar symmetry – so-called
the formal or heuristic derivation (Gelbard, 1960), (ii) as an asymptotic correction
to the diffusion approximation (Larsen et al., 1996) and (iii) using a rigorous
variational analysis approach (Tomasevic and Larsen, 1996; Brantley and Larsen,
2000). In biomedical optics, it has been demonstrated that SPN equations provide
transport-like solutions for modeling visible and near-infrared light propagation in
small tissue geometries and specially, in the presence of high absorption (∼1 cm−1)
(Klose and Larsen, 2006). In addition, these results are achieved with only a fraction
of the computational cost of a transport calculation and a minimum of twice the
cost of DE calculations (Klose and Larsen, 2006). Moreover, SPN equations have
been introduced in luminescence imaging and provided the inherent advantages
of transport-like solutions in model-based image reconstruction algorithms (Klose,
2009; Klose, 2012).

Subsequently, we first present the heuristic derivation of the SPN equations and
corresponding boundary conditions based on the planar symmetry assumption for
time-independent problems arising in biomedical optics (the more rigorous deriva-
tion based on variational analysis is not discussed here as it would require too much
space, and is beyond the scope of the present work). Following this, we will discuss
the SPN equations for the frequency and time domains.

6.3.1 The steady-state SPN equations

For deriving the SPN equations, we will assume that the optical properties of the
medium vary only along a given axis, and not along directions perpendicular to this
axis (i.e., we have a medium with planar symmetry). This also assumes that there is
azimuthal symmetry (i.e. no dependence on the spherical angle φ, see Fig. 6.2). The
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z axis will then be called the axis of symmetry. For a medium with such symmetry,
the time-independent RTE (or the equivalent, in terms of the diffuse component of
the radiance) has the following form (Klose and Larsen, 2006)


∂

∂z
ψ(z,) = − [μa(z) + μs(z)]ψ (z,)

+

∫ 1

−1

μ̃s(z,,
′)ψ (z,′) d′ +

Q(z)

2
, (6.15)

where ψ(z,) can be either the radiance L(z,) for a medium with embedded
isotropic sources or its diffuse radiance component, z is the coordinate along the axis
of symmetry oriented along the unit vector k̂ and  = ŝ·k̂ is the cosine of the angle
between a given direction of propagation ŝ and k̂, μ̃s(z,,

′) = μsp(z,,
′) is the

differential scattering coefficient (or modified phase function) and Q(z) represents
a time-independent isotropic source.

Fig. 6.2. Planar symmetry in a medium.

The corresponding boundary condition is

ψ(z,) = BT (z,) +RF ()ψ(z,−) , z ∈ S, 0 <  < 1 , (6.16)

where for the diffuse component of the radiance, we can simply assume that
BT (z,) = 0. If we integrate Eq. (6.15) over the interval [−1, 1], we obtain the
exact equation

dψ1(z)

dz
= −μa(z)ψ0(z) +

Q(z)

2
, (6.17)

where ψ0(z) and ψ1(z) are the fluence and the radiant current density for a medium
with planar symmetry. In addition, they are the zeroth and first moments of the
Legendre expansion of ψ(z,) (see below the radiance Legendre expansion).

We may develop the modified phase function μ̃s(z,,
′) and ψ (z,) along

Legendre polynomials as follows (we assume that μ̃s(z,,
′) = μ̃s(z, · ′),

i.e. that scattering only depends on the angle between the incident and scattered
directions)

μ̃s(z,,
′) =

∞∑
n=0

(
2n+ 1

2

)
μs(z)gn(z)Pn()Pn (

′) , (6.18)

ψ (z,) =
∞∑

n=0

(
2n+ 1

2

)
ψn(z)Pn() . (6.19)
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where gn(z) and ψn(z) are the Legendre moments of the phase function and radi-
ance, respectively. In the case of the Henyey–Greenstein phase function, gn(z) =
[g(z)]

n
, where g describes the possibly space-dependent degree of anisotropy of the

scattering (the anisotropy parameter).
Substituting the Legendre expansions into the main equation for ψ(z,), mul-

tiplying both sides by Pn′(), n �= 0, and integrating over the interval [−1, 1], we
obtain

μn(z)ψn(z)+
d

dz

[
n+ 1

2n+ 1
ψn+1(z) +

n

2n+ 1
ψn−1(z)

]
= 0 , n = 1, . . . ,∞ , (6.20)

where the orthogonality property and the recurrence relation of the Legendre poly-
nomials have been used (Abramowitz and Stegun, 1965). Here, we defined the
nth-order transport coefficients as μn(z) = μa(z) + μs(z)[1− gn(z)]. The former
equation allows expressing the moments ψn(z) as

ψn(z) = − 1

μn(z)

d

dz

[
n+ 1

2n+ 1
ψn+1(z) +

n

2n+ 1
ψn−1(z)

]
. (6.21)

If the Legendre expansion of the radiance given in Eq. (6.19) is truncated at a given
order N , which can be selected to be odd, the odd-order PN equations for planar
geometries are obtained. Next, we employ Eqs. (6.21) to algebraically eliminate the
odd-order moments. After some algebra, we obtain final equations for the even-
order moments

μn(z)ψn(z)− n+ 1

2n+ 1

d

dz

{
1

μn+1(z)

d

dz

[
n+ 2

2n+ 3
ψn+2(z) +

n+ 1

2n+ 3
ψn(z)

]}
− n

2n+ 1

d

dz

{
1

μn−1(z)

d

dz

[
n

2n− 1
ψn(z) +

n− 1

2n− 1
ψn−2(z)

]}
= δn,0Q(z) ,

n = 0, 2, . . . , N − 1 . (6.22)

Eq. (6.22) is a system of K = (N +1)/2 coupled one-dimensional elliptic equa-
tions with K unknowns

{
ψn(z)

}
i=0,2,...,N−1

, K being even. As mentioned before,

odd-order moments can be obtained from the solution of Eq. (6.22) and back-
substitution in Eq. (6.21), up to the truncated order N .

The extension of Eq. (6.22) to the three-dimensional case is obtained by replac-
ing z by r, and substituting each operator by its 3-D counterpart in 3-D, i.e. the
partial derivative ∂/∂z becomes the gradient operator ∇ ≡ [∂/∂x, ∂/∂y, ∂/∂z].
Here, the second angular dependence of the spherical harmonics expansion (the
generalization of the PN approximation for 3-D) is neglected. The final simplified
PN equations (SPN equations) for steady-state 3-D problems are thus

μn(r)ψn(r)− n+ 1

2n+ 1
∇ ·

{
1

μn+1(r)
∇
[
n+ 2

2n+ 3
ψn+2(r) +

n+ 1

2n+ 3
ψn(r)

]}
− n

2n+ 1
∇
{

1

μn−1(r)
∇
[

n

2n− 1
ψn(r) +

n− 1

2n− 1
ψn−2(r)

]}
= δn,0Q(r),

n = 0, 2, . . . , N − 1 . (6.23)
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Because of the approximations performed in deriving Eq. (6.23), the solution of
the SPN equations Eq. (6.23) does not converge to the exact transport solution (see
Eqs. (6.15)) as N → ∞. Instead, the solution of Eq. (6.23) converges asymptotically
to the transport solution so there is an optimal order N for each physical situation
(Klose and Larsen, 2006).

To simplify the notation, it is convenient to rewrite Eq. (6.23) in matrix format.
For this, we introduce the column vector of even-order moments Ψ(r) = [ψk′(r)]T ,
k′ = 0, 2, 4, . . . , N−1, which is in turn rewritten in terms of the vector of composite
moments Φ(r) = [ϕk(r)]

T , k = 1, . . . ,K. The relationship between the even-order
moments and the composite moments, and its inverse, can be expressed in a con-
venient matrix notation. Up to N = 7 (higher orders can be obtained as well from
Eq. (6.23)), this relationship is given by

Ψ(r) = TΦ(r), Φ(r) = T−1Ψ(r) , where T−1 =

⎡⎢⎢⎣
1 2 0 0
0 3 4 0
0 0 5 6
0 0 0 7

⎤⎥⎥⎦ .

The composite moments allow diagonalizing the ‘diffusive operator’ containing the
differential operators having the form −∇ · (DK∇). This leads to the matrix form
of the steady-state SPN equations (or CW-SPN model)

(Dr +C)Φ(r) = Q(r) . (6.24)

The term Dr is a diagonal K ×K matrix operator whose elements are all on the
main diagonal and given by

diag(0) (Dr) = [−∇ · (D1∇) −∇ · (D2∇) · · · −∇ · (DK∇)] , k = 1, . . . ,K ,
(6.25)

where Dk = 1/ [(4k − 1)μ2k−1] and the expression diag(0)( ) denotes the list of
the main diagonal elements. Note that we use index (0) for the main diagonal and
positive (negative) values for diagonals located under (below) the main diagonal
(such notation will be used again in the sequel). The components of the (symmetric)
matrix C are linear combinations of the transport coefficients μn. The explicit
expressions for the columns of C in Matlab notation (up to N = 7) are given by

C (:, 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ0(r)

−2

3
μ0(r)

8

15
μ0(r)

−16

35
μ0(r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, C (:, 2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2

3
μ0(r)

4

9
μ0(r) +

5

9
μ2(r)

−16

45
μ0(r)− 4

9
μ2(r)

32

105
μ0(r) +

8

21
μ2(r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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C (:, 3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8

15
μ0(r)

−16

45
μ0(r)− 4

9
μ2(r)

64

225
μ0(r) +

16

45
μ2(r) +

9

25
μ4(r)

−128

525
μ0(r)− 32

105
μ2(r)− 54

175
μ4(r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C (:, 4) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−16

35
μ0(r)

32

105
μ0(r) +

8

21
μ2(r)

−128

525
μ0(r)− 32

105
μ2(r)− 54

175
μ4(r)

256

1225
μ0(r) +

64

245
μ2(r) +

324

1225
μ4(r) +

13

49
μ6(r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.26)

The column vector Q(r) contains the information about the source; it is given by

Q(r) = Q(r)

[
1 −2

3

8

15
−16

35

]T
. (6.27)

6.3.2 SPN boundary conditions and measurement modeling

The boundary conditions (BCs) associated with Eq. (6.24) can be obtained by
inserting Eq. (6.19) into Eq. (6.16) and carrying out integrations similarly to what
was done previously. In a convenient matrix form, these BCs are

AΦ(r) +B
∂

∂n̂
Φ(r) = S(r) , r ∈ ∂V , (6.28)

where ∂/∂n̂ denotes the derivative along the outward-pointing normal n̂ to the
boundary. The boundary matrices A, B and vector S (external source vector)
depend on the reflectivity properties of the boundary and the optical coefficients
of the medium. We assume S = 0 for SPN equations originated from the RTE in
terms of the diffuse component of the radiance, since it is related to the exterior
source. The mentioned terms have the following form (up to N = 7)

A=

⎡⎢⎢⎣
1/2 +A1 −1/8− C1 1/16− E1 −5/128−G1

−1/8− C2 7/24 +A2 −41/384− E2 1/16−G2

1/16− C3 −41/384− E3 407/1920 +A3 −233/2560−G3

−5/128− C4 1/16− E4 −233/2560−G4 3023/17920 +A4

⎤⎥⎥⎦ , (6.29)

B=

⎡⎢⎢⎣
(1 +B1)/3μ1 −D1/μ3 −F1/μ5 −H1/μ7
−D2/3μ1 (1 +B2)/7μ3 −F2/μ5 −H2/μ7
−D3/3μ1 −F3/μ3 (1 +B3)/11μ5 −H3/μ7
−D4/3μ1 −F4/μ3 −H4/μ5 (1 +B4)/15μ7

⎤⎥⎥⎦ . (6.30)
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S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
ŝ·n̂>0

BT (r, ŝ)2 |̂s · n̂| dΩ∫
ŝ·n̂>0

BT (r, ŝ)
[
5|̂s · n̂|3 − 2 |̂s · n̂|

]
dΩ∫

ŝ·n̂>0

BT (r, ŝ)

[
63

4
|̂s · n̂|5 − 35

2
|̂s · n̂|3 + 15

4
|̂s · n̂|

]
dΩ∫

ŝ·n̂>0

BT (r, ŝ)

[
429

8
|̂s · n̂|7 − 693

8
|̂s · n̂|5 + 315

8
|̂s · n̂|3 − 35

8
|̂s · n̂|

]
dΩ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(6.31)

where the coefficients (A1, . . . , H1, A4, . . . , H4) (see Appendix A of Klose and
Larsen (2006) for their explicit expressions) are linear combinations of the angular
moments RF,n of the angle-dependent Fresnel coefficient RF

RF,n =

∫ 1

0

xnRF (x) dx . (6.32)

The Robin-type boundary condition Eq. (6.28) can be considered as the Mar-
shak condition (Davidson and Sykes, 1957) for the vector of composite moments
at a tissue–air interface, where Fresnel reflections occurs. For N = 1, Eq. (6.28)
becomes the common Robin (or Marshak) boundary condition for the DE (Mar-
shak, 1947; Ishimaru, 1978). At tissue–tissue interfaces, the normal component of
the radiant current density vector Jno = J(r, t) · n̂ is continuous (we can just add
both equations appearing in Eq. (6.3)). Then, corresponding boundary conditions
can be found by mere substitution of the expansion Eq. (6.19) in this condition
and grouping of similar terms.

To end up with the derivation of the SPN equations as a forward model in
inverse problems, we need an expression for relating the outgoing light to the vec-
tor of composite moments Φ(r). If we take as measurements a finite collection of
exitance values (outgoing normal component of the radiant current density vector)

J
(out)
no , then

J (out)
no =

[
j1 − j2(B)

−1
A
]
Φ (rd, t) = VμΦ (rd, t) , (6.33)

where Vμ is the measurement operator (vector) that depends on the optical prop-
erties of the medium, rd is a position where a measurement is made (‘detector
position’), and the vectors j1 and j2 have the following expressions (up to N = 7)

j1 =
⎡
⎢⎢⎢⎢⎣

1/4 + J0

(1/4 + J0) (−2/3) + (5/16 + J2) (1/3)

(1/4 + J0) (8/15) + (5/16 + J2) (−4/15) + (−3/32 + J4) (1/5)

(1/4+J0) (−15/35) + (5/16+J2) (8/35) + (−3/32+J4) (−6/35) + (13/256+J6) (1/7)

⎤
⎥⎥⎥⎥⎦

T

,

(6.34)

j2 =

[
−
(
0.5 + J1
3μ1

)
,

(
− J3
7μ3

)
,

(
− J5
11μ5

)
,

(
− J7
15μ7

)]
. (6.35)
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The coefficients (J0, J1, . . .) depend on the angular moments of the angle-dependent
Fresnel reflection coefficient RF,n (Eq. (6.32)), and can be found in (Klose and
Larsen, 2006).

The SPN equations Eqs. (6.24) along with their boundary conditions – Eq. (6.28)
have been numerically implemented and compared with DE-based and transport
(RTE-based) calculations (Klose and Larsen, 2006). The calculations are performed
in small homogeneous geometries: 1 × 1 cm and 2 × 2 cm, that mimic a tomo-
graphic slice of a small animal. The absorption coefficient values are taken from
0.01 to 2 cm−1 (high absorption). The reduced scattering coefficient is kept con-
stant as 10 cm−1 but considering a variation of the scattering coefficient from 10
to 50 cm−1 and the anisotropy factor g from 0 to 0.8. In every case, a medium
with a refractive index value of η = 1.37 is considered as surrounded by air. In a
second round, numerical experiments are carried out in a 2×2 cm diffusive medium
with μa = 0.01 cm−1, μs = 10 cm−1, g = 0 and non-reentry boundary conditions
η = 1. Highly absorbing inclusions (μa = 2 cm−1) are embedded in the diffusive
medium. Following an analysis of the experiment results, see (Klose and Larsen,
2006) for details, the authors concluded that the SPN equations Eqs. (6.24) (i)
can accurately model light propagation in small tissue geometries at visible and
near-infrared wavelengths, (ii) provide transport-like solutions with a considerably
reduced computational cost in comparison with RTE-based calculations and (iii)
improve DE solutions in transport-like domains with high absorption and small
geometries.

6.3.3 Analytical solutions

Analytical solutions are essential for experiments with simple geometries and val-
idation of numerical approaches. Recently, steady-state analytical solutions have
been found for infinite (SP3 and SP5 equations) and semi-infinite (SP3 equations)
homogeneous media (Liemert and Kienle, 2010; Liemert and Kienle, 2011a). In
addition, a methodology for the generalization of the results to the frequency- and
time-domain cases is suggested. The final expressions for the composite moments
are set out as linear combinations of DE free space Green’s functions. Next, we
write down the main results for the aforementioned geometries.

6.3.3.1 Infinite homogeneous medium

An infinite homogeneous medium with an isotropic point source located at the
origin of coordinates Q(r) = δ(r)/4πr2 (r is the distance from the source location)
has an inherent spherical symmetry. This symmetry allows the following spherical
wave expansion of the composite moments and the source

ϕi(r) =
1

2π2r

∫ ∞

0

p ϕ̂i(p) sin(pr) dp , i = 1, 2 (6.36)

Q(r) =
1

2π2r

∫ ∞

0

p sin(pr) dp , i = 1, 2 (6.37)

where the hat over a quantity means the transformed quantity in the p-space.
Introducing Eqs. (6.36) and (6.37) into Eq. (6.24) leads to the following system of
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linear equations
L(μn, p)Φ̂(p) = Q̂ , (6.38)

where Q̂ = [1 − 2/3]T and L (μn, p) is a matrix whose coefficients depend on the
optical properties of the medium (μn) and p. For N = 3 (hereon, following (Liemert
and Kienle, 2010), we show results for N = 3 and 5 only) we get

L (μn, p) =

[
p2
/
3μ1 + μa −2μa/3

−2μa/3 p2
/
7μ3 + 4μa/9 + 5μ2/9

]
. (6.39)

From Eq. (6.38), the composite moment functions ϕ̂i(p), i = 1, 2 are determined
as the ratio of even-order polynomials in p

ϕ̂i(p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F

(1)
i (p2)

p4 + αp2 + β
, i = 1, 2, for N = 3

F
(2)
i (p2)

p6 + αp4 + βp2 + γ
, i = 1, 2, 3 for N = 5

, F
(m)
i (x) =

m∑
j=i−1

aijx
j ,

(6.40)

where the coefficients aij appearing in the definition of the polynomial F
(m)
i (x) are

given by

a10 =
35

3
μ1μ2μ3 , a11 = 3μ1 , a21 = −14

3
μ3 , for N = 3 , (6.41)

a10 =
231

5
μ1μ2μ3μ4μ5 , a11 =

35

3
μ1μ2μ3 + 33μ1μ5

(
16

45
μ2 +

9

25
μ4

)
, a12 = 3μ1 ,

a21 = −462

25
μ3μ4μ5 , a22 = −14

3
μ3 , a32 =

88

15
μ5 , for N = 5 . (6.42)

The coefficients α, β and γ for the polynomials of the denominator are real positive
numbers that depend on the transport coefficients

α = 3μaμ1 +
28

9
μaμ3 +

35

9
μ2μ3 , β =

35

3
μaμ1μ2μ3 , for N = 3 , (6.43)

α = 3μaμ1 +
28

9
μaμ3 +

35

9
μ2μ3 + 11μ5

(
64

225
μa +

16

45
μ2 +

9

25
μ4

)
,

β = μaμ1

(
35

3
μ2μ3 +

176

15
μ2μ5 +

297

25
μ4μ5

)
+ μ3μ4μ5

(
308

25
μa +

77

5
μ2

)
,

γ =
231

5
μaμ1μ2μ3μ4μ5 , for N = 5 . (6.44)

For N = 3, using the expressions for α and β given in Eq. (6.49), it can be

shown that the polynomial discriminant
√
α2 − 4β of the denominator in Eq. (6.40)
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is always positive. Therefore, a partial fractions expansion using the polynomial
zeros λ1,2 =

(−α±
√
α2 − 4β

)
/2 is possible. Thus, the composite moments can be

written as

ϕ̂i(p) =
Ai

p2 + p21
+

Bi

p2 + p22
, pj =

√−λj , j = 1, 2 , (6.45)

where

Ai =
F

(1)
i (λ1)

k22 − k21
, Bi = −F

(1)
i (λ2)

k22 − k21
. (6.46)

In the case of an infinite medium, it is known that the Green’s function G(r)
of the steady-state DE is given by

G(r) =
e−μeff r

4πDr
=

1

2π2r

∫ ∞

0

p sin(pr)

p2 + μeff
dp ,

D =
1

3 (μa + μ′s)
, μeff =

√
3μa(μa + μ′s) . (6.47)

A comparison of Eqs. (6.45) and (6.47) shows that the composite moment functions
ϕi(r), i = 1, 2 can be written as a superposition of two DE free space Green’s
functions G(r) as follows

ϕi(r) = Ai
e−p1r

4πr
+Bi

e−p2r

4πr
, pj =

√−λj , j = 1, 2 . (6.48)

Similarly, for N = 5 the polynomial appearing in the denominator of Eq. (6.40)
can be decomposed into three partial fractions. It is thus possible to demonstrate
that each composite moment function can be expanded into three DE free space
Green’s functions G(r) as

ϕi(r) = Ai
e−p1r

4πr
+Bi

e−p2r

4πr
+ Ci

e−p3r

4πr
, pj =

√−λj , j = 1, 2, 3, (6.49)

where the expressions for the expansion coefficients are

Ai =
F

(2)
i (λ1)

(p22 − p21) (p
2
3 − p21)

, Bi = − F
(2)
i (λ2)

(p22 − p21) (p
2
3 − p22)

,

Ci =
F

(2)
i (λ3)

(p23 − p21) (p
2
3 − p22)

, pj =
√−λj , j = 1, 2, 3 . (6.50)

The zeros of polynomials λj appearing in Eq. (6.50) can be calculated from
Viète’s trigonometric method for obtaining roots of third-degree polynomials as
(see Liemert and Kienle, 2010)

λj = 2

√
ξ

3
cos

[
ν + 2 (j − 1)π

3

]
, ξ =

1

3
α2 − β ,

ν = arccos

[
− 3

2ξ

√
3

p

(
2

27
α3 − 1

3
αβ + γ

)]
, j = 1, 2, 3 . (6.51)
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The analytical solutions provided by Eqs. (6.48) and (6.49) are easy to imple-
ment. The analog expressions for frequency-domain problems can be calculated by
setting μn(z) = μa(z) + μs(z) [1− gn(z)] + i(ηω/c), where η is the refractive index
of the medium, ω is the angular frequency of the intensity modulated source, c is
the speed of light in the vacuum and i =

√−1. By performing the inverse Fourier
transform, we can also obtain analytical formulas in time-domain. In the case of
the SP1 (the DE), an analytical formula for time-domain problems can be directly
derived (Wang and Wu, 2007).

In (Liemert and Kienle, 2010), Eqs. (6.48) and (6.49) are compared with Monte
Carlo simulations (Wang and Wu, 2007) in the steady-state and time domains and
with DE solutions. For the steady-state, the numerical experiments are carried out
with an infinite homogeneous medium. The optical properties of the medium are
μ′s = 1mm−1, g = 0.9 and values of 0.2 and 2mm−1 are used for the absorption
coefficient. An isotropic point source is placed at the origin of coordinates. Then,
the steady-state fluence rate versus distance from the isotropic source is calculated
using the SPN and the corresponding DE solutions and simulated using the Monte
Carlo method. A comparison of the results showed that the SPN solutions are in
much better agreement that the DE-based solutions with the Monte Carlo simu-
lations. Particularly, the SPN solutions accurately reproduce Monte Carlo simula-
tions at all distances from the source including both far and very close (<0.5mm)
to the source. In a second set of experiments, the time-resolved reflectance from a
semi-infinite scattering medium, with a perpendicular incident pencil beam, is cal-
culated using the SPN and the DE solutions. The optical properties of the medium
are μ′s = 1mm−1, g = 0.9, μa = 0.1mm−1 and η = 1.4. The medium is considered
as surrounded by air. The reflectance time-dependence is calculated at distances
of 6.5, 9.5, and 12.5mm from the position where the beam impinges. The results
showed that SPN solutions describe light propagation even for very short time
(<100 ps) values, where the DE fails.

6.3.3.2 Semi-infinite homogeneous medium

In this subsection, we present the analytical solution of the SPN equations for a
semi-infinite geometry with an embedded isotropic point source. This solution is
due to Liemert and Kienle (Liemert and Kienle, 2011a). Contrary to their approach,
we do not use the formalism of bras and kets (i.e. the Dirac formalism of quantum
mechanics), which we find less accessible and can be cumbersome to the non-
initiated, it is also not absolutely necessary to reach the solution as elementary
linear algebra means are sufficient. Although the exposition of the results is carried
out for N = 3, the methodology presented can be used to achieve similar results
for higher orders.

In the present case, the physical situation has an inherent cylindrical symmetry.
Thus, we can expand the composite moments and the δ-source distribution using
the zero-order Hankel transform

ϕi(r) =
1

2π

∫ ∞

0

ϕi (q, z) J0 (qρ) q dq , δ (r− r′) =
δ (z − z′)

2π

∫ ∞

0

J0 (qρ) q dq ,

(6.52)
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where J0(x) is the zeroth-order Bessel function of the first kind. Substituting
Eq. (6.52) into Eq. (6.24) yields a system of second order differential equations
for Φ(r)

d2Φ

dz2
=
(
Mμ + q2I2×2

)
Φ+ δ (z − z′) ε , (6.53)

where the coefficient matrix Mμ and the vector ε are

Mμ =

⎡⎣ 3μaμ1 −2μaμ1

−14μaμ3
28

9
μaμ3 +

35

9
μ2μ3

⎤⎦ , ε =
1

3

[
−9μ1

14μ3

]
, (6.54)

and I2×2 is the 2× 2 identity matrix.
The solution of the boundary value problem Φ(q, z) posed by Eqs. (6.53)

and (6.28) can be obtained by using the superposition principle

Φ (q, z; z′) = Φ(h) (q, z) +Φ(p) (q, z; z′) , (6.55)

where Φ(h) (q, z) is the solution to the source-free problem (homogeneous compo-

nent) and Φ(p) (q, z; z′) is a particular solution of Eq. (6.53).
The solution to the source-free problem

d2Φ(h)

dz2
− (

Mμ + q2I2×2

)
Φ(h) = 0 , (6.56)

will be sought in a form with exponential dependence as follows (similarly to scalar
ODEs with constant coefficients)

Φ(q, z) = eλ(q)zw , (6.57)

with w a two-component vector independent of q. Inserting this solution into
Eq. (6.56) leads to the following[

Mμ − (
λ2 − q2

)
I2×2

]
w = 0 . (6.58)

Hence, for the proposed vector given in Eq. (6.57) to be a solution of the homo-
geneous equation, w must be an eigenvector of Mμ, and λ

2 − q2 must be equal to
an eigenvalue. At this point, the eigenvalues of Mμ must thus be calculated. After
some algebra, these are found to be positive (hence they will be denoted by ς21 and
ς22 ), and given by

ς21/2 = α±
√
α2 − β , (6.59)

with

α =
3

2
μaμ1 +

28

18
μaμ3 +

35

18
μ2μ3 , β =

35

3
μaμ1μ2μ3 . (6.60)

Now that the eigenvalues are found, the associated eigenvectors w1 and w2 can be
calculated. Let wi = [ξi, ηi], i = 1, 2, then ξi and ηi must satisfy(

3μaμ1 − ς2i
)
ξi − (2μaμ1) ηi = 0 . (6.61)
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Hence wi can be taken as follows

wi =

[
2μaμ1

3μaμ1 − ς2i

]
. (6.62)

The spectral decomposition of Mμ will be written as

Mμ = LDL−1 , (6.63)

where
D = diag

(
ς21 , ς

2
2

)
, (6.64)

and L has as its columns the eigenvectors w1 and w2. These eigenvectors being
column vectors, we may thus write

L = [w1w2] =

[
w1;1 w2;1

w1;2 w2;2

]
=

[
2μaμ1 2μaμ1

3μaμ1 − ς21 3μaμ1 − ς22

]
. (6.65)

Here wi;j denotes the jth component of vector wi. Reverting back to λ, we have
that λ2 − q2 can be either equal to ς21 or ς22 . Hence, there will be 4 possible values
for λ, these being ±λi(q) with

λi(q) =
√
q2 + ς2i , i = 1, 2 . (6.66)

Now, since we must have Φ(h) (q, z) → 0 when z → ∞, we can only retain the
possible values of λ, that are negative. Thus, the homogeneous solution can be
expressed as the following superposition

Φ(h) (q, z) = c1(q) e
−λ1(q)zw1 + c2(q) e

−λ2(q)zw2 , (6.67)

where c1(q) and c2(q) will be determined later on using the BCs.

Now, to find the particular solution Φ(p) (q, z; z′), the following Fourier (or
plane wave) decomposition of the particular vector of composite moments, and of
the Dirac delta function are used

Φ(p) (q, z; z′) =
1

2π

∫ ∞

−∞
Φ(p) (q, k) eik(z

′−z) dk , δ (z − z′) =
1

2π

∫ ∞

−∞
eik(z

′−z) dk .

(6.68)

Now, recall that Φ(p) (q, z; z′) must satisfy the following vector differential equation

d2Φ(p)

dz2
− (

Mμ + q2I2×2

)
Φ(p) = δ (z − z′) ε . (6.69)

Inserting the Fourier decompositions into this last equation gives the following
linear vector equation[

Mμ +
(
k2 + p2

)
I2×2

]
Φ(p) (q, k) = −ε . (6.70)

This is similar to the eigenvalue equation encountered before in Eq. (6.58), except
that here the left-hand side is not zero. To solve this equation, we use the spectral
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decomposition of Mμ, giving as solution

Φ(p) (q, k) = L
{[

D+
(
k2 + p2

)
I2×2

]−1
L−1 (−ε)

}
. (6.71)

The quantity in braces is a vector column, and the result on the left-hand side
of the last equation is seen to be a linear superposition (or combination) of the
columns of L, which are the eigenvectors of Mμ.

3 L being a 2 × 2 matrix, its
inverse is easily calculated to be

L−1 =
1

det (L)

[
w2;2 −w2;1

−w1;2 w1;1

]
, (6.72)

where
det(L) = 2μaμ1

(
ς21 − ς22

)
. (6.73)

With these last results, the particular solution given in Eq. (6.16) can be more
explicitly written as

Φ(p) (q, k) =
1

det (L)

(
14μ3w2;1 + 9μ1w2;2

k2 + λ21(q)
w1 − 14μ3w1;1 + 9μ1w1;2

k2 + λ22(q)
w2

)
. (6.74)

Introducing the constants

h1 =
14μ3w2;1 + 9μ1w2;2

3 det (L)
, h2 =

14μ3w1;1 + 9μ1w1;2

3 det (L)
, (6.75)

the last expression for Φ(p) (q, k) can more succinctly be written as

Φ(p) (q, k) =
h1

k2 + λ21(q)
w1 − h2

k2 + λ22(q)
w2 . (6.76)

Taking the inverse Fourier transform of the last expression, we get4

Φ(p) (q, z) =
h1
2

e−λ1(q)|z−z′|
λ1(q)

w1 − h2
2

e−λ2(q)|z−z′|
λ2(q)

w2 . (6.77)

All the pieces to obtain the complete solution Φ decomposed as in Eq. (6.55)
have now been found. The use of the BC given in Eq. (6.28) (using that n̂ = −ẑ)
allows determining the constant coefficients c1(q) and c2(q) appearing in Eq. (6.67)
by solving two equations for these yet two unknowns (we shall not do this explicitly
here). As a final step, inverting the Hankel transform leads to the following final
expression for the composite moments

3That the product of a matrix with a vector on its right is a linear combination of the
columns of the matrix is called the ‘column point of view of matrix multiplication’, see
standard modern texts on linear algebra such as Strang (2005) or Lay (2011).

4Using the 1/2π normalization conventions of the Fourier transforms given in

Eq. (6.68), the inverse Fourier transform of 1/(k2 + a2) is e−a|z−z′|/2a.
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Φ(r) = Φ (ρ, z)

=
h1
4π

e−ς1
√

ρ2+(z−z′)2√
ρ2 + (z − z′)2

w1 − h2
4π

e−ς2
√

ρ2+(z−z′)2√
ρ2 + (z − z′)2

w2

+
1

2π

(∫ ∞

0

c1(q) e
−λ1(q)zJ0 (qp) q dq

)
w1

+
1

2π

(∫ ∞

0

c2(q) e
−λ2(q)zJ0 (qp) q dq

)
w2 . (6.78)

Finally, the fluence ψ0(z) and the reflectance R(ρ) at the boundary z = 0 can
be calculated for N = 3 as

ψ0(z) =
[
1 −2/3

]
Φ = φ1 − 2

3
φ2 , (6.79)

R (ρ) =

[(
1

4
+ J0

)
, −2

3

(
1

4
+ J0

)
+

1

3

(
5

16
+ J2

) ]
Φ+

[
1 + 2J1
6μ1

J3
7μ3

]
dΦ

dz
.

(6.80)

These results for the SP3 equations (derived from the RTE) have been used
to compare reflectance values given in Eq. (6.80) with Monte Carlo simulations
(Wang andWu, 2007) and DE solutions (Liemert and Kienle, 2011a). The numerical
experiments considered an isotropic point source located at one transport mean free
path l′tr = 1/μ1 inside a semi-infinite homogeneous medium (refractive index 1.4)
surrounded by air. For typical values in the near infrared (NIR) (μa = 0.01mm−1,
μs = 10mm−1) and blue or green wavelengths (μa = 1mm−1, μs = 10mm−1)
ranges, the SP3 equations were shown to give results that better agree with those of
Monte Carlo simulations than the DE for distances to the source >1mm. However,
at small distances (<1mm) to the isotropic point source, the SP3 displayed no
improvements compared to the DE (Liemert and Kienle, 2011a). A comparison of
the SP3 solution (and the DE solution) for an isotropic point source as above with
Monte Carlo simulations for an infinitely narrow beam shows that the isotropic
solutions do not match well the Monte Carlo results in this case. This means that
the approximation of such a beam by an isotropic point source is not a good
approximation, contrary to what is pervasively assumed in biomedical optics.

The numerical experiments described in (Liemert and Kienle, 2010; Liemert and
Kienle, 2011a) lead naturally to the questions of which order N to employ in a given
practical situation, and how accurate it can be near sources. First, searching for an
optimalN while exploring higher orders (N = 5, 7) should be attempted (Klose and
Larsen, 2006). In addition, since the radiative field is more anisotropic near sources,
a better accuracy can be achieved with the RTEd as the starting point to apply the
SPN approximation. Despite these recommendations, there is another problem not
covered yet. At short distances to the source, the radiative field is not modified to
much extent by scattering and absorption events, and the source emission pattern
prevails. In the case of an isotropic point source embedded in the medium, the
radiative field propagates along divergent rays starting from the location of the
source. Such a situation is not considered by standard radiative transfer models
where the divergence of rays always has a cylindrical form (Mart́ı López et al.,
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2003). Thus, sources are considered as located at the infinity, presumably a fact
inherited from RTT applications in astronomy and astrophysics. Finally, we want
to stress that in a comparison with real experimental data, modeling the source is
a decisive step, see Ducros (2009) and references therein.

6.3.4 Frequency-domain simplified spherical harmonics equations

Lately, frequency-domain SPN equations (FD-SPN ) have been derived in biomed-
ical optics (Chu et al., 2009). To obtain the FD-SPN , as proposed in the literature,
the Fourier transform is applied to the time-dependent RTE Eq. (6.1). Hence, the
result resembles the time-independent RTE and the previous steps on deriving the
SPN equations Eq. (6.24) are pursued. Finally, the FD-SPN equations have the
same form than that of Eq. (6.24), but with the introduction of the complex-valued
nth-order transport coefficients

μ∗n(r) = μa(r) +
iηω

c
+ μs(r) [1− gn(r)] , (6.81)

The FD-SPN equations and its corresponding BC have thus the same form as
Eqs. (6.24) and by considering μ∗n instead of μn and working in the frequency-
domain (complex magnitudes). Measurements are then related to the quantization
of amplitude, phase and even direct-current exitance (Chu and Dehghani, 2009; Xu
et al., 2010; Xu et al., 2011), as it is common in frequency-domain systems (Wang
et al., 2008).

A finite element method implementation of the FD-SPN equations is available
in the literature (Chu et al., 2009). In that work, several numerical experiments
are performed with a 3-D slab of dimensions 40 × 20 × 30mm. Three different
cases are considered (1) an homogeneous medium where μa = 0.001mm−1, μs =
2mm−1, g = 0.5 and η = 1.37; (2) a similar homogeneous medium with the same
optical properties but a different absorption coefficient of 0.01mm−1 and (3) a
three-layer slab where the upper and the bottom sections have identical optical
properties of μa = 0.001mm−1, μs = 1mm−1, g = 0 and η = 1.37. The middle
layer has the following optical properties μa = 0.2mm−1, μs = 2mm−1, g = 0.5 and
η = 1.37. A comparison of FD-SPN -based and DE-based calculations with Monte
Carlo simulations demonstrate that for N > 1, the FD-SPN model shows increased
accuracy compared with the DE in both the phase and amplitude of boundary data.
Also, a high difference was found between the predicted light distribution by the
DE and the SP7 in regions near the source (modeled as an isotropic point source)
and regions with high absorption (0.2mm−1).

6.3.5 Time-domain simplified spherical harmonics equations

Time-domain SPN equations (TD-SPN ) have been obtained, implemented and
validated to solve problems in radiative transfer and biomedical optics. TD-SPN

models have been derived in three different ways: (i) via formal asymptotic analysis
(Frank et al., 2007), (ii) by direct forward and back-substitution of the moment
functions, leading to an integro-differential final form with temporal convolution
operators (Bérubé-Lauzière et al., 2009) and (iii) imposing diffusive-type conditions
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over odd-order moment functions, similarly to the diffusion approximation (Bouza
Domı́nguez and Bérubé-Lauzière, 2010). These three different approaches lead to
different equations. The last approach has been to the most studied of the three
for problems in biomedical optics. We will thus present the derivation pertaining
to the last approach, leading to the so-called the time-dependent parabolic SPN

equations (TD-pSPN ) (Bouza Domı́nguez and Bérubé-Lauzière, 2010).
For a medium with planar symmetry, the time-dependent RTE only differs from

Eq. (6.15) in the additional term η∂ψ(z,, t)/c∂t. Following the same steps as in
Section 6.3.1, we arrive to an expression identical to Eq. (6.20) for the Legendre
moments of the radiance, except for the additional term η∂ψn(z, t)/c∂t. Now, the
direct back substitution of the odd-orders leads to equations with mixed terms of
spatial and time partial derivatives. These equations are not of the diffusion-type,
but contain convolution operators over the Legendre moment functions (Bérubé-
Lauzière et al., 2009). To preserve the parabolic nature of the equations, we impose
the following diffusive conditions on the time-derivatives of the odd-order moments
(compare with the diffusion approximation Eq. (6.12))

τn

∣∣∣∣ ∂∂tψn(z, t)

∣∣∣∣	 |ψn(z, t)| , τn =
ηln
c
. (6.82)

These last conditions limit the relative time variation of the odd-order moments
within the characteristic time τn. For N = 1, Eq. (6.82) turns out to be the well-
known DA (Eq. (6.12)) for a planar geometry. So far, a complete study of Eq. (6.82)
and therefore, the TD-pSPN model validity, in terms of frequency modulation and
pulse width values in time-resolved problems is pending for completion. An analysis
of the TD-pSPN model validity in the solution of forward and inverse problems
can influence the design of experimental sets specifically built for using this model.

Imposing the diffusive conditions provides an expression similar to Eq. (6.21).
Thus, the algebraic elimination of odd-moments in terms of the even-moments
becomes possible. The extension of these results to 3-D and the introduction of
the time-dependent vector of composite moments Φ(r, t) leads to a system of
K = (N +1)/2 coupled parabolic PDEs. This model, known as the time-dependent
parabolic SPN equations (TD-pSPN ) (Bouza Domı́nguez and Bérubé-Lauzière,
2010), has the same form as Eq. (6.24) except for the introduction of the term
[η∂TΦ(r, t)/c∂t. For N = 1, TD-pSPN equations become the DE. Also, in this
approach, the boundary conditions remain the same as in the steady-state case.

The TD-pSPN model has been numerically implemented using a combined
finite difference – finite element scheme (Bouza Domı́nguez and Bérubé-Lauzière,
2010). In this work, the model (for N = 3) is compared with DE-based numerical
solutions and Monte Carlo simulations. The numerical experiments are carried out
in a 2× 2 cm homogeneous medium (see Fig. 6.3 left) for two different regimes: (1)
a diffusive regime where μa = 0.04 cm−1, μ′s = 20 cm−1 and η = 1 (no refractive
index mismatch) and (2) a near-nondiffusive regime (Hielscher et al., 1998) where
μa = 1 cm−1, μ′s = 10 cm−1 and η = 1 (also, no refractive index mismatch). An
isotropic point source, Dirac delta function in time, is placed at the center of the
medium.

In both cases, the time-dependent fluence values are calculated at the boundary
using the numerical solution provided by the TD-pSP3 equations and the DE.



6 Radiative transfer and optical imaging in biological media 291

Fig. 6.3. Numerical experiment in a 2-D homogeneous medium (left) with η = 1, g = 0.9
and μa/μs

′ = 0.1 (this is a near-nondiffusive regime condition, see Hielscher et al. (1998))
and an isotropic point source, Dirac delta function in time, located at point S. At right,
fluence profile at the detector point D calculated using the DE, the TD-pSP3 equations
and the Monte Carlo method. The TD-pSP3 model better reproduces the Monte Carlo
results than the DE, especially for those parts of the curve corresponding to early arriving
photons and at long times.

For the diffusive regime, the results showed that TD-pSP3 equations accurately
reproduce the Monte Carlo results. For the near-nondiffusive regime, the TD-pSP3

solution better reproduces the Monte Carlo results at the early times and at long
times than the DE, see Fig. 6.3 at right.

In a second round of experiments, an absorptive inclusion is embedded in a
2 × 2 cm homogeneous medium where μa = 0.01 cm−1, μ′s = 10 cm−1 and η = 1,
see Fig. 6.4. Three increasing values are assumed for the inclusion absorption co-
efficient μa = 0.05, 0.1 and 1 cm−1 (last value corresponding to high absorption).
The fluence profile is calculated in the homogeneous medium in the presence and
absence of the absorptive inclusion using the TD-pSP3 equations and the DE. With

Fig. 6.4. Numerical experiments with a 2-D homogeneous medium (η = 1, μa =
0.01 cm−1 and μs

′ = 10 cm−1) with an isotropic point source (as in Fig. 6.3) and an
absorptive inclusion (see small circle in top-left figure) which takes values of 0.05, 0.1 and
1 cm−1 (left to right). Color represents the percentage difference of fluence values with
respect to the results in a medium with no inclusion, for the TD-pSP3 equations (upper
row) and the DE (lower row), at 220 ps. The contrast of the fluence fields is higher for
the TD-pSP3 equations than for the DE. This situation is repeated at different times.
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these values, the percentage difference of fluence values with respect to the results
in a medium with no inclusion is calculated, as a contrast or sensitivity measure, for
each model. In all the cases and times, the TD-pSP3 equations showed a higher sen-
sitivity compared to the DE; see Fig. 6.4. Thus, the TD-pSP3 equations seem more
appropriate for describing light propagation in small geometries in the presence of
absorptive inhomogeneities than the DE (Bouza Domı́nguez and Bérubé-Lauzière,
2010).

6.4 Numerical solutions

In the presence of complex geometries and/or heterogeneous media, it becomes
necessary to resort to numerical methods, either implemented on structured or
unstructured grids (also called meshes with nodes and elements as components (Jin,
2002)). So far, numerical solutions to SPN -based equations for boundary problems
have been achieved with finite-difference (Klose and Larsen, 2006; Bérubé-Lauzière
et al., 2009; Klose and Pöschinger, 2011), finite volume (Montejo et al., 2011) and
finite element (Chu et al., 2009; Bouza Domı́nguez and Bérubé-Lauzière, 2010;
Bouza Domı́nguez and Bérubé-Lauzière, 2011; Lu et al., 2010; Tian et al., 2010;
Zhong et al., 2011) methods.

Next, we make a brief exposition of those methods for the solution of SPN -based
equations.

6.4.1 Finite-difference method

Finite difference methods (FDM) rely on structured grids, which confers them sev-
eral coding advantages as they are less memory demanding (no cell connectivity
information is needed) and function values can be identified with grid indices only
(Agarwal, 2000). At the cell level, a low function approximation is used, which
favors the FDM for regions requiring a large number of cells. On the other hand,
complex boundary conditions are difficult to implement by FDM. In addition, rep-
resentation of irregular (especially curved) geometries by structured grids can be
inexact, unless the grid is especially refined at these locations. An alternative in
such cases is to use blocking-off region methods or block-structured grids (Taluk-
dar, 2006; Klose and Pöschinger, 2011; Montejo et al., 2010). In the blocking-off
method the exterior boundary ∂S is approximated by the junction of grid points
lying in S that best approximate ∂S.

To implement the FDM for SPN—based equations, we consider a regular do-
main S located in the xy-plane (2-D, for simplicity), enclosed by the curve ∂S. A
regular grid composed by 2NS points along the x- and y-axis ri = (xi, yi) can be
defined as

xi = (i− 1)Δx , yi = (j − 1)Δy , i, j = 1, . . . , NS , (6.83)

where Δx and Δy are the grid separations along the x- and y-axis, respectively. We
order the grid by the values of the i-index first and then by the j-index values. Let
the discrete values of each composite moment be denoted by ϕk,i,j ≈ ϕk(xi, yj).
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Then, it is convenient to use centered finite difference approximations for the dif-
ferential operators, see Eq. (6.25), acting over each ϕk as

−∇ · (Dk∇ϕk) ≈ −
(
Dk,i+1,j

Δx2

)
ϕk,i+1,j

+

(
Dk,i+1,j +Dk,i−1,j

Δx2
+
Dk,i,j+1 +Dk,i,j−1

Δy2

)
ϕk,i,j

−
(
Dk,i−1,j

Δx2

)
ϕk,i−1,j −

(
Dk,i,j+1

Δy2

)
ϕk,i,j+1

−
(
Dk,i,j−1

Δy2

)
ϕk,i,j−1 . (6.84)

With this discrete approximation, the discretized equation for the CW-SPN model
is (

K+M
)
Φi,j = Qi,j , Φi,j ≈ Φ (xi, yj) , Qi,j ≈ Q (xi, yj) ,

k = 1, . . . ,K , i, j = 1, . . . , NS , (6.85)

where the vector Φi,j is ordered by the values of the indices i, j and k consecutively.
Here, we have introduced the terms K (a diagonal block matrix) and M (block
matrix). These matrices are composed themselves of block matrices named Kk and
Mk1,k2

which are banded diagonal matrices, respectively. Diagonal entries of Kk

and Mk1,k2
have the following form

diag(0)
(
Kk

)
(i, j) =

Dk,i+1,j +Dk,i−1,j

Δx2
+
Dk,i,j+1 +Dk,i,j−1

Δy2
,

diag(1)
(
Kk

)
(i, j) = −Dk,i+1,j

Δx2
,

diag(−1)

(
Kk

)
(i, j) = −Dk,i−1,j

Δx2
,

diag(Ns−1)

(
Kk

)
(i, j) = −Dk,i,j+1

Δy2
,

diag−(Ns−1)

(
Kk

)
(i, j) = −Dk,i,j−1

Δy2
, (6.86)

diag(0)
(
Mk1,k2

)
= C (k1, k2)|i,j , k1, k2 = 1, . . .K , (6.87)

where C (k1, k2)|i,j means that we evaluate at the grid indices (i, j) the entry
(k1, k2) of the matrix C, see Eq. (6.26). For the FD-SPN model, we obtain a
similar system to Eq. (6.85), but with the complex nth order transport coefficients
(Eq. (6.81)) in the matrix entries of Eqs. (6.86) and (6.87).

To derive a discrete formulation for the time-dependent parabolic SPN equa-
tions, the time derivative can be replaced by a finite difference scheme. For this,
the total time of study T is divided in regular intervals of size Δt and samples tm
for the time variable are generated as

tm = mΔt , Δt =
T

M
, m = 0, . . . ,M − 1 . (6.88)
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Implicit finite difference schemes, such as the forward Euler or the Crank–Nicholson
(CN) schemes (Agarwal, 2000), are preferred to insure unconditional stability. In-
troducing a control parameter θ ∈ [0, 1], the different difference schemes for the
time-dependence can be written in a unified way as( η

cΔt
T+θK+θM

)
Φ

m+1

i,j =
[
(1−θ)K+(1−θ)M]

Φ
m

i,j+θQ
m+1

i,j +(1−θ)Qm

i,j ,

(6.89)

where the matrix T has the same type of structure as M. The value θ = 0 corre-
sponds to the explicit or backward scheme (conditionally stable), θ = 1/2 is the
Crank–Nicholson scheme, and θ = 1 is the full implicit scheme, with the latter two
being unconditionally stable.

Solving Eqs. (6.85) and (6.89) leads to high-dimensional sparse linear systems,
which means that sparse matrix techniques can be used to save storage require-
ments, and solutions can be calculated in highly reduced CPU times compared
to dense matrix techniques (Saad, 2003). Moreover, direct and iterative methods
for solving sparse linear systems are widely available in the literature (Saad, 2003;
Davis, 2006; Press et al., 2007).

6.4.2 Finite volume method

The finite volume method (FVM) is a conservative discretization method (Versteeg
and Malalasekera, 2007). The partial differential equations serving as forward model
are transformed into an integral formulation of the underlying conservation laws
and discretized directly in physical space. The physical volume V is partitioned
into small volumes ΔV called ‘cells’, with such a partition to be denoted by τ here.
The partition τ can be carried in the form of regular or irregular meshes, e.g. a dis-
tribution of cubes or a mesh of tetrahedrae (Versteeg and Malalasekera, 2007). The
magnitudes of interest in the problem to which the FVM is applied are replaced in
the equations by their average values in ‘cells’. This step is carried out after inte-
grating the equations over the partition τ . A cell-centered scheme stores the variable
values at all cell centers whereas a node-centered scheme stores the variable val-
ues at the nodes. The FVM allows the discrete representation of complex volumes
without the implicit FDM implementation mesh refinement on irregular bound-
aries. Furthermore, cell averaging diminishes the problem dimensionality (number
of unknowns) which is convenient for large volumes. As a disadvantage, the FVM
does not provide accurate results in the case of discontinuous (or widely varying)
coefficients that can appear in the forward model. This problem can be avoided if
the coefficient discontinuities coincide with cell boundaries, which can be achieved
by refining the mesh (at the cost of increasing the problem dimensionality).

To apply the FVM to SPN—based equations, we make a partition τ of the
volume of interest V into non-overlapping control volumes ΔVi centered at the
mesh points pi. Next, we follow the node-centered scheme as presented in (Montejo
et al., 2011) for the CW-SPN model. The integration of Eqs. (6.24) over a finite
volume ΔV centered at the mesh point p yields

−
∫∫
∂ΔV

D∇Φ · n̂ dS + [C]p[Φ]pΔV = [Q]pΔV , (6.90)
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where the Gauss–Ostrogradsky Theorem has been applied to obtain the first term,
and where diag(0)

(
D
)
= [D1 D2 · · · DK ], k = 1, . . . ,K (this term can be

approximated by its value at p), ∂ΔV denotes the boundary of ΔV composed of a
number of faces, n̂∂ΔV is the outer normal to ∂ΔV , and the notation [ ]p represents
the discrete approximation of the enclosed magnitude at the center p of a finite
volume element. The vector [Φ]p is ordered by each mesh node p and by the k index,
consecutively, i.e. the values for ϕ1 for all the nodes come first, then followed by
the values of ϕ2, etc.

The first term of Eq. (6.90), i.e.

J
(Φ)
n,ΔV = −

∫∫
∂ΔV

D∇Φ · n̂∂ΔV dS , (6.91)

represents a flux through ∂ΔV . Eq. (6.91) can be approximated by replacing the
gradient operation with finite differences at each face composing ∂ΔV . If such ap-
proximations are used for the flux term for all control volumes (including boundary
conditions in the same way), Eq. (6.90) generates the following matrix system{

K̂+ [C]p

}
[Φ]p = [Q]p , (6.92)

where K̂ is a K×K block diagonal matrix composed of Ak sparse banded matrices
whose explicit form depends on the chosen finite difference scheme at the faces.
Eq. (6.92) is a linear system whose solution can be obtained by the GMRES or
matrix decomposition (if it is advantageous, given the problem dimensionality)
methods (Press et al., 2007).

For the FD-SPN model, the resulting equation will have the same form as
Eq. (6.92), except for considering the complex nth-order transport coefficients (see
Eq. (6.81)) in the matrix entries. For the time-dependent parabolic SPN equations
we obtain a system of differential equations{

K̂+ [Cp +
η

c

d

dt
[T]p

}
[Φ(t)]p = [q]p , (6.93)

which again can be solved using finite differences with a control parameter θ ∈ [0, 1],
(compare with Eq. (6.89)( η

cΔt
[T]p + θK̂+ θ[C]p

)
[Φ]m+1

p

=
[
(1− θ)K̂+ (1− θ)[C]p

]
[Φ]mp + θ[Q]m+1

p + (1− θ)[Q]mp . (6.94)

The structure of Eq. (6.94) suggests the use of matrix decomposition methods
to accelerate the iterative process of finding the solution. Otherwise, the generalized
minimal residual method (GMRES) can be employed. Alternatively for the time
variable, Runge–Kutta techniques can be used.
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6.4.3 Finite element method

The finite element method (FEM) is a highly versatile approach for dealing with
media with intricate geometries and heterogeneous distributions of material (here
optical) properties (Jin, 2002). Boundary conditions are added to the formulation
naturally, no matter the boundarie’s complexity. As with the FVM, the FEM starts
with a partition of the volume of interest into non-overlapping elements. The in-
formation on the partition or mesh takes the form of nodes and elements that
are related by a connectivity matrix. In the FEM, functions representing optical
properties or the light profile in the medium are approximated by piecewise lin-
ear functions or polynomials within each element. Hence, a highly refined mesh is
not needed in regions with spatially slowly varying functions. Compared with the
FVM, the FEM is usually more computationally intensive in terms of the problem
dimensionality. The FEM exclusively deals with functions evaluated at nodes, while
in the FVM it is possible to only deal with point-averaged information.

To implement the FEM for the CW-SPN model, the volume of interest is par-
titioned into l non-overlapping elements τj , j = 1, . . . , l, such that V =

⋃l
j=1 τj .

The elements are defined via d vertex nodes Ñi, i = 1, . . . , d. The nodes can be
separated into d1 internal nodes and d2 boundary nodes where the boundary con-
ditions are satisfied. Thus, d = d1 + d2 and the solution Φ(r) to Eq. (6.24) can be
approximated by the piecewise polynomial and continuous function Φh(r) as

Φ(r) ≈ Φh(r) =

d∑
i=1

Φiui(r) , ui(r) ∈ Ωh , (6.95)

where Ωh is a finite-dimensional subspace spanned by the basis functions ui(r),

i = 1, . . . , d. Hence, we can find Φ̃ = {Φi}, i = 1, . . . , d from which the solution
can be obtained everywhere through the interpolation rule given in Eq. (6.95).
Using the Galerkin method (Jin, 2002; Gockenbach, 2006), we can calculate the

equivalent numerical solution of Eq. (6.24) Φ̃ as[
K̃+ M̃+ Π̃

]
Φ̃ = F̃+ Γ̃ . (6.96)

Here, K̃ represents a ‘compound’ stiffness matrix and can be described as a diagonal
block matrix composed of ‘elemental stiffness matrices’ K̃k, k = 1, . . . ,K, with
entries (i, j) given by the expressions

K̃k (i, j) =

∫
V

1

(4k − 1)μ2k−1
∇ui(r) · ∇uj(r)dV , k = 1, . . . ,K , i, j = 1, . . . , d .

(6.97)

The structure of the ‘compound’ mass matrix M̃ is similar to the matrix M dis-

cussed for the FDMmethod and it is composed of ‘elemental mass matrices’ M̃k1,k2
,

k1, k2 = 1, . . . ,K with the following entries

M̃k1,k2
(i, j) =

∫
V

C (k1, k2)ui(r)uj(r)dV , k1, k2 = 1, . . . ,K , i, j = 1, . . . , d ,

(6.98)
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where C(k1, k2) are the elements of the matrix C (Eq. (6.26)). The structure of

matrix Π̃ is also similar to M and it is composed of matrices Π̃k1,k2
, k1, k2 =

1, . . . ,K, with the following entries

Π̃k1,k2
(i, j) =

∫
∂V

Θ(k1, k2)

(4k1 − 1)μ2k1−1
ui(r)uj(r) dσ ,

k1, k2 = 1, . . . ,K , i, j = 1, . . . , d (6.99)

where dσ is an element of area on the boundary ∂V and Θ(k1, k2) are the elements
of the matrix Θ = B−1A, see the boundary matrices A and B in Eq. (6.28).

The ‘compound’ force load vector F̃ is composed of terms F̃k, k = 1, . . . ,K,
(‘elemental force load vectors’) which are column vectors with the following entries

F̃k =

∫
V

Q(k)ui(r)dV , k = 1, . . . ,K , i = 1, . . . , d , (6.100)

where Q(k) are the components of column vector Q.

The column vector Γ̃ is similar to F̃ and originates from the external source
distribution S at the boundary. This vector is composed of terms Γ̃k, k = 1, . . . ,K,
which are column vectors of length d1 given by

Γ̃k(i) =

∫
∂V

G(k)

(4k − 1)μ2k−1
ui(r)uj(r) dσ , k = 1, . . . ,K , i = 1, . . . , d ,

(6.101)
where G(k) are the elements of the vector G = B−1S.

As for the previous numerical methods discussed, the discretized equations for
the FD-SPN model have the same form as for the steady-state situation, but substi-
tuting the transport coefficient by the complex transport coefficients (Eq. (6.81)).
For the TD-pSPN equations, we can write directly the FEM-discretized equations
as [

K̃+ M̃+ Π̃+
ηT̃

c

d

dt

]
Φ̃(t) = F̃+ Γ̃ , (6.102)

where the matrix T̃ has an expression similar to that of M̃, with analogous entries

T̃k1,k2 (i, j) =

∫
V

T (k1, k2)ui(r)uj(r)dV , k1, k2 = 1, . . . ,K , i, j = 1, . . . , d ,

(6.103)

The solution of Eq. (6.102) can be achieved by a finite difference scheme or Runge–
Kutta methods as previously for the FDM and FVM approaches (Eqs. (6.89)
and (6.94)).
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6.5 Diffuse optical tomography based on SPN models

Diffuse optical tomography is an imaging technique that aims to recover interior
maps based on the transillumination of a biological body and the (generally exte-
rior) measurement of the light that has propagated through the body. DOT involves
the recording of the exiting light and digital data processing, to obtain represen-
tative images of the relevant internal properties of the biological body (Wang and
Wu, 2007). Model-based iterative image reconstruction algorithms in DOT rely
on the accuracy of a discretized forward model to reproduce collected measure-
ments (Klose and Hielscher, 2008; Dehghani et al., 2009; Arridge and Schotland,
2009). Lately, model-based DOT has been attempted with the FD-SPN (Chu and
Dehghani, 2009) and the TD-pSPN equations (Bouza Domı́nguez and Bérubé-
Lauzière, 2011b; Bouza Domı́nguez and Bérubé-Lauzière, 2011c). We now proceed
to describe the main features and results of the implemented DOT algorithms with
these models.

6.5.1 DOT based on the FD-SPN model

For the FEM-discretized FD-SPN model, the inverse problem has been posed as
an unconstrained optimization problem with a regularization term (Chu and De-
hghani, 2009; Wang et al., 2011)

μ = argmin
{μh}

S∑
s=1

D∑
d=1

(Ms,d − Ps,d)
2
+λ

(
μh − μ0

)2
, (6.104)

where ‘argmin’ stands for argument of the minimum. In the last equation, the
vector μ represents the nodal values of an optical parameter set (e.g. absorption
and scattering coefficients); the summation is over the total number of configuration
sources S (modeled as isotropic point sources) and detector positions D, and the
termsMs,d and Ps,d represent the measurements and the forward model predictions,
respectively. Phase and amplitude data are considered in Eq. (6.104). The Tikhonov
regularization parameter λ appears multiplying the L2-regularization term, where
μ0 represents the a priori estimate of μ. The solution to the optimization problem
cast in Eq. (6.104) is found by the Levenberg–Marquardt method (Press et al.,
2007) which employs Jacobian calculations of phase and amplitude with respect
to μ. The Jacobian calculations are performed using the perturbation method and
the reciprocity approach, see (Arridge and Schotland, 2009) for details.

In (Chu and Dehghani, 2009), several numerical experiments are conceived to
test the FD-SPN model performance on retrieving the absorption and scatter prop-
erties. The experiments involve small geometries and tissue typical optical coeffi-
cient values in the NIR spectrum, see the article for details. A distinction in the
retrieved image accuracy, artefact presence (significant near the boundary) and
cross-talk effects is found for different orders N . Particularly, for N = 3 and 5 the
reconstructions performed acceptably well. Errors in the reconstructed values are
within 24% of the expected values and the worse results are obtained by the DE
(SP1) in the absorption coefficient reconstruction. The reported results support the
use of the FD-SPN model (orders N = 3 and 5) in DOT. The authors explained
that further improvements in the image reconstructions can be expected with the
optimization of the regularization parameter and selection of stopping criteria.
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6.5.2 DOT based on the TD-pSPN model

Recently, DOT based on the FDM-FEM discretized TD-pSPN equations has been
carried out (Bouza Domı́nguez and Bérubé-Lauzière, 2011b; Bouza Domı́nguez and
Bérubé-Lauzière, 2011c). This time, the inverse problem is posed as the following
constrained optimization problem

μ = argmin
{μh}

1

2

S∑
s=1

D∑
d=1

M∑
m=1

(
M

(m)
s,d − P

(m)
s,d

σs,d

)2

, P
(m)
s,d = M̂Φ̃

(m)

s

subject to

{
W̃Φ̃

(m)

s =
(
η
c

)
T̃Φ̃

(m−1)

s + Υ̃
(m)

s , m = 1, . . . ,M , s = 1, . . . , S
μl ≤ μ ≤ μu ,

,

(6.105)

The same notation as in Eq. (6.104) is used. An additional summation over the
time steps appears here in the objective function compared to that in Eq. (6.104)

to account for the time dependence of the light field. The quantities σ
(m)
s,d are the

standard deviations of the measurements; which are mainly determined by shot
noise. M̂ is the measurement operator which acts over the time-dependent vector

of composite moments Φ̃
(m)

s . The matrix W̃ = Δt
(
K̃+ M̃+ Π̃

)
+ (η/c)T̃ and

vector Υ̃
(m)

= Δt
[
F̃(m)+Γ̃

(m)]
result from the FDM-FEM numerical discretization

scheme; see Section 6.4 (the Euler finite difference scheme is employed). The vectors
μl and μu are lower and upper bounds over the set of optical coefficients μ to be
recovered.

The inverse problem cast in Eq. (6.105) contains the forward model and bounds
over the optical coefficient values as constraints. In addition, the time-dependence
of the forward model increases the complexity of the optimization problem mainly
because of the necessary time-stepping and the increased dimensionality of the
problem compared to the CW and FD cases. In (Bouza Domı́nguez and Bérubé-
Lauzière, 2011b; Bouza Domı́nguez and Bérubé-Lauzière, 2011c), the authors de-
cided to employ a ‘nested analysis and design’ (NAND) method (Hazra, 2010).
Basically, in the NAND method the implicit dependence of the state constraints

(or Φ̃
(m)

s ; we employ terminology of constrained optimization theory) with the de-
sign variables (or μ) is considered. Then, constraints posed by the forward model
are eliminated. The solution to the optimization problem given in Eq. (6.105) is
obtained through a Sequential Quadratic Programming (SQP) algorithm (Nocedal,
and Wright, 2006). SQP uses the gradient of the objective function in the iteration
process and a Hessian approximation by the damped BFGS method to avoid com-
puting second derivatives. Finally, a time-dependent adjoint differentiation scheme
(see Arridge and Schotland (2009) for the topic of adjoint variables) is utilized to
calculate the gradient and reduce the computation time.

To investigate the performance of the TD-pSPN model in recovering optical
properties of biological media, several numerical experiments are conducted in
(Bouza Domı́nguez and Bérubé-Lauzière, 2011b; Bouza Domı́nguez and Bérubé-
Lauzière, 2011c). The experiments involve a circular two-dimensional medium
(background medium) with a 1.5 cm of radius. The medium is homogeneous with
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optical properties μa = 0.01 cm−1, μs = 80 cm−1, g = 0.9 and η = 1.4 and it is con-
sidered as surrounded by air. In the multi-parameter reconstructions, absorptive
and scattering inclusions are embedded in the background medium; see Fig. 6.5.
Increasing values of μa for the absorptive inclusion are considered: 0.05, 0.1, and
1 cm−1 (high-absorption case) which correspond to diffusion coefficient values of
0.0414, 0.0412 and 0.037 cm. For the scattering inclusion, the value of 120 cm−1 is
assumed for its scattering coefficient. Multi-parameter reconstructions (absorption
and diffusion coefficient maps) were performed with the DE and the TD-pSPN

equations as the forward models and the results compared, see (Bouza Domı́nguez
and Bérubé-Lauzière, 2011b; Bouza Domı́nguez and Bérubé-Lauzière, 2011c) for
details.

Fig. 6.5. Numerical experiments for the multi-parametric inverse problem. Absorption
(only one value of μa = 0.05 cm−1 is represented) and scattering coefficient (120 cm−1)
distribution (top and bottom, left column) and diffusion coefficient distribution for each
type of inclusion (top and bottom, right column).

In all the experiments, the TD-pSPN model (N > 1) recovered accurately
the absorptive and scattering inclusion values; see Bouza Domı́nguez and Bérubé-
Lauzière (2011b) and Bouza Domı́nguez and Bérubé-Lauzière (2011c) for the com-
parison details. Particularly, the results obtained with N = 3 outperformed the
DE. For the reconstructed absorption maps, the errors with respect to the original
values (in percent, taking the maximum of the reconstructed values) for the DE
are of 19%, 16% and 8% (μa = 0.05, 0.1, and 1 cm−1). The corresponding errors for
the TD-pSP3 equations are of 0.1%, 8% and below 1%; see Figs. 6.6 and 6.7 and
compare with Fig. 6.5, to partly appreciate these results. For the reconstructed dif-
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Fig. 6.6. Solution of the inverse problem (absorption coefficient map) for the multi-
parametric inverse problem. The background (circle) optical properties are μa =
0.01 cm−1, μs = 80 cm−1, g = 0.9 and η = 1.4 and the medium is considered as sur-
rounded by air. Values of the absorption coefficient for the absorptive inclusion are: 0.05,
0.1, and 1 cm−1 (left to right). Images are plotted for the orders N = 1, 3, 5 and 7 (first,
second, third and fourth rows).

fusion maps, the DE and the TD-pSP3 equations presented approximately the same
errors in the reconstruction of the scattering heterogeneity in the cases μa = 0.05
and 0.1 cm−1. For the case μa = 1 cm−1, the DE error is greater than 40% while in
the case of the TD-pSP3 equations it is only 6%. A similar behaviour is observed
for the same reconstructed diffusion maps but at the position of the absorptive
inclusion. In addition, reconstructed images presented artifacts (almost negligible
spots, at the boundary) and cross-talk effects which vary with the order N , with
the DE-based reconstructions delivering the worst results. In this work, the authors
concluded that the DOT algorithm based on the TD-pSPN model (N > 1) can
accurately replace DE-based algorithms, especially in the physical situations where
the DE fails.
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Fig. 6.7. Solution of the inverse problem (diffusion coefficient map) for the multi-
parametric inverse problem. The background (circle) optical properties are μa =
0.01 cm−1, μs = 80 cm−1, g = 0.9 and η = 1.4 and the medium is considered as sur-
rounded by air. Images are plotted for the orders N = 1, 3, 5 and 7 (first, second, third
and fourth rows) where the absorptive heterogeneity takes the following values: 0.05, 0.1,
and 1 cm−1 (left to right). At the absorptive heterogeneity (see Fig. 6.5), the diffusion
coefficient takes the following values D = 0.0414, 0.0412 and 0.037 cm. At the scattering
heterogeneity (see Fig. 6.5), the diffusion coefficient has the value D = 0.0277 cm.

6.6 Molecular imaging of luminescence sources based on
SPN models

Optical molecular imaging of luminescence sources (OMI) is a promising discipline
of biomedical optics. OMI allows the study of biological processes and medical
treatment, as well as the diagnosis and follow-up of diseases (Weissleder and Ntzi-
achristos, 2003; Hielscher, 2005; Ntziachristos, 2006; Rao et al., 2007; Willmann et
al., 2008; Klose, 2009; Mitchell et al., 2011; Elwell and Cooper, 2011). Compared to
intrinsic imaging (or DOT), luminescent light increases measurement sensitivity of
experimental systems to specific targets or physiological processes occurring in bi-
ological tissues (Weissleder and Ntziachristos, 2003; Hielscher, 2005; Ntziachristos,
2006). Applications of OMI are mainly focused in small animal imaging, although
clinical imaging has been lately targeted (Burgess et al., 2010; Pleijhuis et al.,
2011). Tomographic methods in OMI would supply researchers and physicians with
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three-dimensional visualization of tissue structure and functions. Current modal-
ities are bioluminescence and fluorescence imaging and, more recently, Cerenkov
luminescence imaging (Mitchell et al., 2011). Tomographic imaging by these meth-
ods involves the solution of an inverse source problem. For solving an inverse source
problem, the optical properties of the medium are needed. Optical properties of lu-
minescence emitting media (or substrate media) can be supplemented by additional
anatomical information from CT/MRI scans and tabulated optical coefficient val-
ues (Alexandrakis et al., 2005; Alexandrakis et al., 2006; Klose et al., 2010). If
no a priori information exists about the substrate medium, or the information is
insufficient, a complementary DOT reconstruction can be carried.

Inverse problems based on deterministic models frequently use the DE (Naser
and Patterson, 2011; Larusson et al., 2011; Zhu et al., 2011). However, in many
practical situations luminescence sources are located deep into small geometries of
tissue, in the presence of high absorption, such as of internal organs. Under those
conditions, the DE fails as a model of light propagation in tissues and transport
calculations are mandatory to gain in accuracy (Hielscher et al., 1998). In this
context, deterministic models based on the SPN approximation are preferred and
used to perform OMI. In this section, we review recent results on the use of SPN -
based models in bioluminescence and fluorescence DOT. We also include the latest
applications of SPN -based models in Cerenkov optical imaging.

6.6.1 Bioluminescence imaging

Bioluminescence originates in chemical reactions and does not require external ex-
citation sources (Klose, 2009; Contag and Bachmann, 2002; Welsh and Kay, 2005;
Vo-Dinh, 2003). The chemical reactions involve the interaction of an administered
light-producing substrate (usually luciferine) and a transfected enzyme (luciferase
from firefly, Renilla, or Aequorin). Luciferase catalyzes the oxidation of luciferine.
causing light emission. The bioluminescent source density changes slowly with time
and the source can be assumed to be steady. Although the DE is frequently used as
the forward model, at emission wavelengths less than <650 nm (Renilla or Gaussia
luciferase) light is strongly absorbed by tissues, violating the limits of DE valid-
ity. In addition, the ratio μ′s/μa at visible and NIR wavelengths varies over a wide
range for some organs such as bone, and for others such as heart and liver, this ratio
does not go beyond 10 (Vo-Dinh, 2003). Hence, physical situations where transport
calculations are necessary can occur (Hielscher et al., 1998). These difficulties are
aggravated in the presence of small geometries and isotropic point-like biolumines-
cence sources, circumstances where the DE is out of its comfort zone (Mart́ı López
et al., 2004; Hielscher et al., 1998; Klose and Larsen, 2006).

To overcome the drawbacks of the DE in such situations, the CW-SPN model
(Eq. (6.24)) has been used as the forward model in bioluminescence imaging (Klose
et al., 2010; Lu et al., 2009; Tian et al., 2010; Klose, 2012). Particularly, the CW-
SP3 equations are frequently chosen, since they can provide transport-like solutions
with low computational cost (Klose et al., 2010). Reconstruction techniques with
the CW-SP3 equations also employ spectrally resolved information in order to
reduce the inherent ill-posedness of inverse source problems (Lu et al., 2009). In the
literature, the following reconstruction techniques for small animal imaging have
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been attempted: (i) a gradient-based optimization method with regularization (Lu
et al., 2009), (ii) the algebraic reconstruction method, with a priori estimation of
the absorption distribution by an evolution strategy (ES) algorithm (Klose et al.,
2010) and a generalized graph cuts optimization method (Tian et al., 2010). Next,
we provide some details on the mentioned source reconstruction techniques.

In (Lu et al., 2009), a FEM discretization of the CW-SP3 equations is used to

calculate the model predictions as the exitance values J
(out)
no . Then, the following

bound-constrained least-squares problem is posed

min
0<Q<Qsup

∥∥A(FEM )Q−M
∥∥+ λη(Q) , (6.106)

where ‖ ‖ represents the L2 or Euclidean norm, Qsup is the upper bound of the
source density distribution Q, the matrix A(FEM ) appears in the FEM discretiza-

tion process and includes the measurement operator M̂ (see Eqs. (6.33) and (6.96)),
M is the vector of measurements, λ is the regularization parameter and η(Q)
is a penalty function. The minimization of Eq. (6.106) is performed by the lim-
ited memory variable metric-bound constrained quasi-Newton method (BLMVM)
(Benson and Moré, 2001). In the BLMVM, an approximate Hessian is calculated
by vector-vector multiplications, which assures easy matrix inversion and reduces
memory and computation time. An implementation of the BLMVM is available in
the Toolkit for Advance Optimization (TAO) (Website TAO, 2012). A fully parallel
version of the reconstruction algorithm including FEM assembly is also provided
in (Lu et al., 2009).

In Klose et al. (2010), an ES algorithm minimizes an objective function similar
to Eq. (6.106) (no regularization term is included this time) to estimate the average
absorption coefficients at each wavelength. The goal is to diminish the inaccuracy on
the determination of the optical parameters which could lead to mislocation of the
source position. The ES is an iterative method that searches for an optimal selection
of parameters by probing the global search parameter space (Beyer and Schwefel,
2002; Dirk, 2002). This method uses selection and mutation as natural-resembling
operations and it is comparatively faster than gradient-based approaches (Dirk,
2002). Average absorption distributions are then used in the inverse source problem.
To find the solution of the inverse source problem, the CW-SP3 equations are
solved by the FDM. A linear relation between model predictions and source density
distribution is derived, P = A(FDM)Q where A(FDM) is an m × n matrix which
appears similarly to A(FEM ), see Eq. (6.106). To speed-up the calculations, the
reciprocity principle is used (Dehghani et al., 2008). The inverse source problem
posed by the linear system of equations A(FDM)Q = M is solved by the algebraic
reconstruction technique (ART) (Natterer, 2001). The ART (or Kaczmarz method)
is a method for solving linear systems of equations that exploit sparseness (Natterer,
2001; Nikazad, 2008). Finally, the ART iteratively computes the solution using the
following formula

Qk+1 = Qk + ξk

(
Mi − 〈ai, Qk〉

‖ai‖2
)
ai , (6.107)

where 〈 , 〉 represents the scalar product, ξk is a relaxation parameter, i =
kmodm + 1, Mi is the ith component of M and ai is the ith row of the matrix
A(FDM).
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In (Tian et al., 2010), the CW-SP3 equations are discretized using the FEM. A
linear relation between the exitance values and the source density distribution is
derived. The solution to the inverse source problem is determined by minimizing
the energy function E(Q)

E(Q) =
∥∥A(FEM )Q−M

∥∥+ λ ‖Q‖ , (6.108)

which is a particular case of the objective function appearing in Eq. (6.106), con-
sidering the penalty function as the L2 norm of Q. To optimize the energy function
given in Eq. (6.108), a gradient-free optimization method called generalized graph
cuts (GGC) is employed. GGC is an efficient optimization tool that is applied in
computer vision and graphics (Boykov and Kolmogorov, 2004; Kolmogorov and
Zabih, 2004; Kolmogorov and Rother, 2007). Lately, GGC has been rediscovered
in other disciplines including bioluminescence imaging (Tian et al., 2010; Liu et
al., 2010). As described in (Tian et al., 2010; Liu et al., 2011), a graph contain-
ing the FEM mesh is built and an equivalent graph expression for Eq. (6.108)
is found. Then, the energy function Eq. (6.108) is minimized using a quadratic
pseudo-boolean optimization method (Kolmogorov and Rother, 2007).

6.6.2 Fluorescence imaging

Fluorescence imaging by direct methods relies on active, or activatable, probes
which are excited by external sources or specific enzymes (Rao et al., 2007; Klose,
2009, 2012). Indirect methods are used in gene activation and regulation with the
introduction of transgenes, which induce the production of fluorescence proteins
(Rao et al., 2007). Fluorescent probes possess their specific properties in terms
of converting excitation light into emitted (fluoresced) light. These are the molar
extinction coefficient ε and the quantum yield ς. In TD methods, the fluorescence
lifetime τ , which characterizes the fluorescence emission dynamics is also included
in the studies. The fluorescence lifetime is sensitive to local metabolite concen-
trations or environmental conditions within tissues (Nothdurft et al., 2009), and
thus provides information about such factors. When distributed into biological
tissues, fluorescent probes contribute to the overall absorption (absorption of a
fluorophore being equal to ε times the concentration C). Fluorescence imaging re-
quires a forward model that maps fluorophore distribution to fluorescence data, as
the straightforwardly used DE (Ntziachristos, 2006; Zacharopoulos et al., 2010; Zhu
et al., 2011). However, in the presence of high absorption, see for example (Comsa
et al., 2008) and references in (Bouza Domı́nguez and Bérubé-Lauzière, 2011a), the
DE cannot compete with quantitativeness of biomarkers offered by nuclear imaging
techniques.

With this perspective, fluorescence tomography has been recently attempted
with the CW-SPN model as the forward model for describing both the excita-
tion (ex ) and the fluorescence (fl) light propagation (Klose, 2010b; Klose and
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Pöschinger, 2011; Klose et al., 2011; Klose, 2012). Thus, the model consists in
a system of two SPN equations as[

D(i)
r +C(i)

]
Φ(i)(r) = Q(i)(r) , i = ex ,fl , (6.109)

where the components of the source vector Q(fl)(r) are proportional to the fluo-
rescence source term Qfl(r), which quantify the interaction between the excitation
light and the fluorescent response

Qfl(r) = ςεCψex
0 (r) . (6.110)

Eq. (6.109) is discretized using the FDM and the resulting algebraic system of equa-
tions is solved by the successive over-relaxation (SOR) method (Klose et al., 2011;
Saad, 2003). Then, the inverse problem is posed similarly to Eq. (6.106) and iter-
atively solved for C using an expectation-maximization (EM) method (Dempster
et al., 1977; Wernick and Aarsvold, 2004). Based on the abovementioned works,
notable improvements have been achieved in the area of hyperspectral excitation-
resolved fluorescence tomography. Here, fluorophores with broad molar extinction
spectra are used as probes, and allow exploiting the spectral properties of tissue
oxy- and deoxy-hemoglobin components in ranges where their molar extinction
varies widely (Klose and Pöschinger, 2011). In another work, the authors employ
the FEM as the discretization method for Eqs. (6.109) (Han et al., 2010). Also, the
usually sparse/spatially-reduced properties of fluorophore distributions are used
in a regularization scheme as a priori information. The solution of the inverse
problem is searched by an iteratively reweighted scheme which approximates the
L1-norm regularization (Han et al., 2010; Wang et al., 2011). A sampling procedure
(visual inspection) is chosen to determine the optimal value for the regularization
parameter.

In FD, a similar formulation to Eq. (6.109) has been derived (Lu et al., 2010),
this time using the FD-SPN equations and introducing the complex-valued nth-
order transport coefficients Eq. (6.81). The resulting equations have been dis-
cretized through the FEM and a parallel adaptive FEM is used. Finally, the quest
for lifetime imaging has recently triggered the development of new TD forward
models based on the TD-pSPN equations (Bouza Domı́nguez and Bérubé-Lauzière,
2011a). In this work, a set of TD-pSPN equations has been obtained for describing
the time-dependent propagation of the excitation light and the ensuing fluores-
cent response. This time, the time-dependent fluorescence source term Qfl(r, t)
quantifies the temporal interaction between the excitation field and the fluores-
cence emission. The coupling between excitation and fluorescence emission can be
described through a convolution operation as

Qfl(r, t) =
ςεC(r)

τ

∫ t′=t

t′=0

ψex(r, t′) exp
(
t′ − t

τ

)
dt′ . (6.111)

A FEM/FDM numerical implementation is described in the same work. Numerical
simulations with three-dimensional biological media provide new information on the
influence of fluorophore distribution on the TD curves, see Fig. 6.8. This approach
should lead, in a near future, to the solution of a nonlinear inverse problem for
recovering lifetime spatial maps τ .
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Fig. 6.8. Numerical simulations for a cylindrical homogeneous medium (η = 1.4, μa =
0.13 cm−1, μs = 100 cm−1 and g = 0.9.) with an absorptive fluorescent inclusion (μa =
3 cm−1 and τ = 0.56 ns) located at point I; see tomographic cut of the cylinder at right.
Plots represent the fluorescence TD curves at point D, the closest point to I. We consider
three different fluorophore distributions (left to right): a point inclusion, a small spherical
inclusion and a Gaussian distributed inclusion. There is a noteworthy change in the shape
of the curve.

6.6.3 Cerenkov luminescence imaging

Cerenkov luminescence imaging (CLI) is an evolving technology that uses optical
photons generated by positron emission tomography (PET) radiotracers (Robert-
son et al., 2009; Liu et al., 2010b; Boschi et al., 2009; Spinelli et al., 2010, Dothager
et al., 2010). Cerenkov radiation is created by high-energy charged particles that
momentarily exceed the speed of light in the medium in which they propagate
(Robertson et al., 2009). PET radionuclides and most of β-emitting radionuclides
with biomedical applications produce measurable Cerenkov radiation in water or
in tissue (Boschi et al., 2009). The Cerenkov light spectrum is continuous, in con-
trast to fluorescence or emission spectra that have characteristic spectral peaks.
The relative intensity is proportional to frequency thus: higher frequencies (ultra-
violet/blue) are most intense. At ultraviolet/blue wavelengths, Cerenkov radiation
is highly absorbed by tissue components (water, hemoglobin, cytochromes, etc.).
Large absorption coefficients make the DE less accurate and transport calculations
are required (Hielscher et al., 1998).

Cerenkov radiation can be detected by current optical imaging methods. Re-
trieving the distribution of Cerenkov optical sources becomes an inverse lumines-
cence source problem, as in bioluminescence tomography. Moreover, radionuclide
activity levels which are necessary to inject and produce detectable optical sig-
nals are typical of small animal imaging (Spinelli et al., 2010; Li et al., 2010).
Therefore, CLI provides considerable advantages regarding drug discovery and in
general, biomedical research. Cerenkov luminescence tomography for small animal
imaging has been attempted with success and even a multispectral approach has
been developed (Spinelli et al., 2011). However, the reconstruction results are lim-
ited by the use of the DE as the forward model (discretized using the FEM) in
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media where large absorption occurs in small geometries. In addition, the inverse
source problem is posed as an unconstrained optimization problem which accen-
tuates the ill-posedness. Typically, a linear least-squares type, objective function
with a Tikhonov regularization term is employed (Spinelli et al., 2011; Zhong et
al., 2011). Then, the solution can be iteratively retrieved by the preconditioned
conjugate gradient (PCG) method (Li et al., 2010) or a non-negative least square
optimization algorithm (Spinelli et al., 2011).

Lately, the FEM-discretized CW-SP3 equations have been used in a model-
based reconstruction algorithm to perform whole-body Cerenkov luminescence to-
mography (Zhong et al., 2011b). The inverse source problem is posed as a linear
least-squares objective function with a regularization term or penalty function sim-
ilarly as in Eq. (6.106). The penalty function is set as a linear combination of L2

(ridge-regression penalty) and L1 (lasso-regression penalty) norms of the source
density distribution Q. This type of regularization is known as elastic net regu-
larization and is used for moderating both smoothing and sparsity effects in the
reconstruction (Friedman et al., 2010; Van der Kooij, 2007). The components of
the vector Q are computed by first applying a soft-threshold operation, to account
for lasso penalty, and consequently a proportional shrinkage, to account for the
ridge penalty. Details of the algorithm and its derivation can be found in (Fried-
man et al., 2010). In (Zhong et al., 2011b), a number of experiments concerning
small animal imaging are performed. A comparison between DE and SP3-based
reconstructions using the mentioned algorithm is carried out. The impact of the
high-absorption tissues (∼1 cm−1) is evaluated. There is a substantial reduction in
the source localization error (more than an order of magnitude) when the CW-SP3

equations serve as the forward model. Thus, the work strongly supports the use
of the CW-SPN model in CLI preclinical studies and opens a pathway to clinics,
where the use radioactive contrast agents is widely accepted. More recently, Klose
has discussed the use of the SP3 equations for Cerenkov light tomography in a
multi-spectral framework (Klose, 2012).

6.7 Summary

Light propagation models based on the SPN approximation have been derived, im-
plemented, and used to solve problems in biomedical optics during the last decade.
In the literature, both the standard RTE and the source-divergence RTE are em-
ployed to obtain low-order transport models by introducing the SPN approxima-
tion. In particular, the equations derived from the source-divergence RTE are able
to correctly describe light propagation near point sources, a common physical situ-
ation in biomedical optics. Applying the SPN approximation to the diffuse compo-
nent of the radiance results in a better description of radiative transport in tissues
since angular dependencies are attenuated with the reduced diffuse components
formulation. SPN equations have been obtained for steady state, frequency and
time domains. Steady-state and frequency-domain SPN equations are equivalent
under a simple transformation of the transport coefficients into complex coefficients.
Time-domain SPN models have different forms in dependence of the derivation. In
particular, the time-domain parabolic SPN equations constitute the light propa-
gation model that has been most studied thus far for applications in biomedical
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optics. SPN models have been extended to describe luminescent light transfer in
biological tissues.

Recently, SPN models have been employed in DOT and luminescence imaging
with significant success. Image reconstructions of absorption and scattering inho-
mogeneities show an appreciable improvement in localization and quantitativeness
in comparison to DE results. Furthermore, the presence of artifacts and cross-
talk effects is reduced by the use of SPN -based DOT algorithms. In inverse source
problems (see references cited in Section 6.6), DE-based results have been improved
through the use of SPN -based algorithms. By accurately modeling Cerenkov light
propagation in biological tissues, the SPN equations have also opened a way to
satisfactory radionuclide and optical images co-registration. Additionally, SPN—
based CLI offers an alternative (with both functional and anatomical information)
to costly PET instrumentation, with no limitations regarding clinically approved
targeted agents as in other luminescence imaging modalities. As a further step
in CLI, optical signals can be reinforced by spectrally coupling Cerenkov radia-
tion at ultraviolet/blue wavelengths to far-red and near-infrared emitting quantum
nanoparticles or fluorophores, resulting in an improvement of reconstructed images
(Dothager et al., 2010).

These results demonstrate that the SPN models are an alternative to com-
putationally costly transport calculations (calculations are speeded-up by near to
two orders of magnitude), and a solution to DE failures in a considerable number
of experimental situations. In general, the reconstructions algorithms that employ
SPN -based forward models have been evolving by including spectral information
and constrained optimization features. Further efforts should be addressed on (i)
improving the numerical schemes for calculating the model predictions, (ii) reduc-
ing the ill-posedness of the inverse problem by imposing constraints in both the
parameter space (optical coefficients) and the forward model, and (iii) augmenting
the robustness of the inverse problem formulation, e.g. in the choice of the objective
function.
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Bouza Domı́nguez, J., and Bérubé-Lauzière, Y., 2011a: Light propagation from fluorescent
probes in biological tissues by coupled time-dependent parabolic simplified spherical
harmonics equations, Biomed. Opt. Express, 2, 817–837.
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7 Transillumination of highly scattering media
by polarized light

Evgenii E. Gorodnichev, Sergei V. Ivliev, Alexander I. Kuzovlev,
and Dmitrii B. Rogozkin

7.1 Introduction

Visualization of various objects hidden in highly scattering turbid media is one
of the most general and important problems of modern statistical and biomedical
optics. Significant interest in this field in the last two decades was stimulated by
diagnostic applications [1–8]. The major difficulty encountered in imaging through
these media is due to the multiple scattering effect. Multiple scattering leads to
loss of directionality of the incident beam, resulting in the image blurring. There
are several approaches to the problem of imaging through highly scattering media
using infrared and visible light [1–8]. Some of them are concentrated on select-
ing ‘image bearing’ photons. Such quasi-straightforward propagating photons were
called ‘snake photons’ and are expected to carry information necessary for the
image reconstruction [9].

Among the techniques based on separating quasi-straightforward propagating
photons, the polarization-gated method, owing to its instrumental simplicity, holds
a particular position (see, e.g., [3, 5, 8, 10–25]). This method relies on the fact that
strongly scattered (i.e. diffusive) photons get depolarized and therefore can be
removed by detecting only the polarized component of transmitted light.

The degree of polarization depends on the number of scattering events and,
correspondingly, on the photon path length in the medium. Therefore the photons
propagating along nearly straight lines and passing the shortest path are the least
depolarized. Polarization of such early arrival photons (the ballistic and snake pho-
tons) remain close to the initial one. Therefore polarization can be used for time-
gating the ballistic and snake components of the output signal with a temporal gate
of the order of the polarization decay time (in accordance with [10, 11] the degree
of polarization, regardless of the sample thickness, is different from zero over the
initial 100 ps after the arrival of the ballistic component).

Depolarization of a linearly polarized pulse was first studied in [26]. From the
results [26] obtained with a Monte Carlo code it follows that the photons trans-
mitted through a thick slab (σtrz � 1, σtr is the transport (or reduced) scattering
coefficient, z is the slab thickness) with delays Δ = ct−z > z are completely depo-
larized. More recently, conclusions drawn in [26] were confirmed by experimental
[10, 11, 27] and numerical [27, 28] results.

OI 10.1007/978-3-642- - _7, © Springer-Verlag Berlin Heidelberg 2013 Springer Praxis Books, D 32106 1
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The fact that the polarization of snake photons differs little from the initial one
has already been used for optical imaging of objects hidden inside turbid media
[3, 5, 12–25]. From published experimental data it follows that the polarization-
gated method enables one to improve the image contrast and resolution and can
be considered as one of the most promising approaches being currently studied for
transillumination of highly scattering biological tissues.

In the polarization-difference techniques (see, e.g., [13–16,19,23–25]) the ‘image-
bearing’ component of light is extracted by subtracting the detected cross-polarized
signal from the co-polarized one. As diffusive photons with completely randomized
polarization make the same contribution to both polarized components of scat-
tered radiation, subtraction of cross-polarized component from the co-polarized
one filters out the diffusive photons from the ballistic and snake photons. The
feasibility of these techniques depends on the depolarization characteristics of the
medium, which, in their turn, are influenced by concentration, size and shape of
scattering particles, their refractive index (the influence of these parameters on
depolarization is experimentally studied with the use of the well-characterized tis-
sue phantoms, e.g. aqueous suspensions of polystyrene microspheres and Intralipid
[5, 10, 11,13,24]).

Transillumination of tissues with visible and near-infrared light relies on the dif-
ferences in optical parameters of an embedded object and surrounding tissues. The
ultimate goal is to image and characterize millimeter-sized objects in the sample
up to several centimeters in thickness (see, e.g., [1, 5, 29–31]). As a rule, the em-
bedded object is characterized by higher absorption [29–33]. The difference in the
transport scattering coefficient between the embedded object and the surrounding
tissue is less significant.

For surrounding tissues, the absorption coefficient is of the order of σa = (1÷3)·
10−3 mm−1. The absorption coefficient of an object embedded in tissue may range
up to 0.1mm−1 [29–33]. The typical values of the transport scattering coefficient
σtr fall in the range between 0.4mm−1 and 1.6mm−1 [29–33]. The transport optical
thickness σtrz of the test samples may vary from a few tenths up to several tens.
The probable values of coefficient σtr for an object usually differ from those for
surrounding tissues by 20÷ 30% (see, e.g., [29–31]).

For different types of tissues, the mean cosine of single-scattering angle 〈cos γ〉
(i.e. the anisotropy factor of scattering) varies in the range between 0.75 and 0.95.
High anisotropy of single scattering, 1 − 〈cos γ〉 	 1, is common to all types of
tissues.

As it is difficult to quantify all the morphological parameters (concentration,
size, shape and refractive index of scatterers) of a complex scattering medium
such as biological tissue, the influence of these parameters on propagation and
depolarization of light is usually studied on well-characterized tissue phantoms.

Samples of monodisperse polystyrene microspheres diluted with water to the
desired concentration are the most frequently used tissue phantoms. The typical
particle diameter varies in the range 0.1 ÷ 2μm (see, e.g., [5, 11, 13, 24–28]). The
relative refractive index of polystyrene particles in water is equal to n = 1.19.

The refractive index of scatterers in actual tissues is, as a rule, lower than that of
polystyrene microspheres. Therefore aqueous suspension of silica microspheres, the
refractive index n = 1.03 of which is comparable to the refractive index fluctuations
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in actual biological tissues, appears to be of interest for modeling tissue properties
[24, 25].

Transport optical coefficients of tissue phantoms are commonly calculated with
the Mie theory [34–37].

In what follows, polarization-difference optical imaging of objects hidden in
highly scattering media is studied. Previous theoretical works devoted to this prob-
lem dealt with numerical simulations (see, e.g., [16, 18–21, 23]). Contrary to these
works, we present a simple analytical theory that makes possible semi-quantitative
describing the image characteristics and gives an insight into their dependence
on optical parameters of the medium. Our approach is based on the basic mode
approximation [38–41] in the vector radiative transfer equation. The results ob-
tained take into account the contribution from the polarized snake-photons of the
output signal, and enable us to reproduce experimental data on the polarization-
gated transillumination of tissue-like media. To develop the model of depolarization
we consider propagation of an ultrashort pulse of polarized light through a turbid
sample. The temporal profiles of the degree of polarization are studied. For linearly
polarized light, the degree of polarization is shown to be different from zero over the
initial temporal interval of the order of the transport mean free time (σtr ·c)−1 (c is
the speed of light). The results of our calculations correlate well with the results of
numerical simulations and experimental data. According to our results the values
of the polarization modes differ from the intensity only by the factors that describe
additional attenuation in the domain of temporal delays. Within our approach, it
takes only some quantities, namely, the transport scattering, absorption and depo-
larization coefficients to describe depolarization of light in the medium. For both
the intensity of the transmitted pulse and the basic modes of polarization, the edge-
spread functions are calculated within the Fokker–Planck model which allows for
highly forward scattering of snake-photons. The results obtained make it possible
to determine the dependence of the polarization-difference image characteristics
(e.g., spatial resolution and contrast) on the time-gate duration. Our calculations
are employed to simulate the images of simple-shaped objects hidden in a highly
scattering medium under conditions of CW illumination. The contributions of the
photons passing by the object and passing through it are taken into account. For
the photons passing through the object, the depth-average scattering and depolar-
ization coefficients are substituted for the depth-dependent ones. Examples of 1-D
and 2-D images are presented. Sensitivity of the image contrast to the polarization
state of light and variations in optical properties of the medium and the object is
discussed.

7.2 General relations

Consider a beam of polarized light incident on a medium normally to its sur-
face. The medium is assumed to be a statistically isotropic disordered ensemble of
large-scale scatterers (size a is larger than wavelength λ). The polarization state of
scattered light is generally described by the Stokes column vector [5, 34–37]
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Ŝ =

⎛⎜⎜⎝
I
Q
U
V

⎞⎟⎟⎠ (7.1)

where the four Stokes parameters are defined by the following relations

I = 〈E‖E∗
‖ + E⊥E∗

⊥〉
Q = 〈E‖E∗

‖ − E⊥E∗
⊥〉

U = 〈E‖E∗
⊥ + E∗

‖E⊥〉
V = i〈E‖E∗

⊥ − E∗
‖E⊥〉 (7.2)

The Stokes parameters and the components E‖ and E⊥

E = e‖E‖ + e⊥E⊥ (7.3)

of the electric field appearing in Eq. (7.2) are defined in the system of unit vectors
e‖ = ∂n/∂θ, e⊥ = [e‖,n], and n. The unit vector n = (sin θ cosϕ, sin θ sinϕ, cos θ)
is the direction of propagation of the transverse electromagnetic wave, the vector e‖
lies in the plane formed by the vectors n0 and n (where n0 is the internal normal
to the surface), the vector e⊥ is perpendicular to this plane. The brackets 〈. . .〉
denote statistical averaging.

As shown in [42], to describe multiple scattering of light in turbid media, it is
more convenient to go from linear basis (7.3) to the circular basis,

E = e+E+ + e−E− (7.4)

where

e± =
1√
2
(e‖ ∓ ie⊥) (7.5)

In this basis, the electric field is the superposition of waves with left (+) and
right (−) circular polarizations.

For the circular representation, the following column vector [36, 42]

Î =

⎛⎜⎜⎝
〈E−E∗

+〉
〈|E+|2〉
〈|E−|2〉
〈E∗

−E+〉
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2
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Q− iU
I − V
I + V
Q+ iU
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1√
2

⎛⎜⎜⎝
I2
I0
I−0

I−2

⎞⎟⎟⎠ (7.6)

is an analog of Stokes vector (7.1).
The nonstationary (time-dependent) vector transfer equation for the parameters

Im (m = ±0,±2) has the form [36,42]{
1

c

∂

∂t
+ n

∂

∂r
+ σtot

}
Im(r,n, t) = σ

∫
dn′ dmk(n,n

′)Ik(r,n′, t) (7.7)

where σtot = σ+ σa is the total extinction coefficient, σ and σa are the coefficients
of elastic scattering and absorption, respectively, c is the speed of light. The phase
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matrix appearing in Eq. (7.7) is given by [36,42]

dmn(n,n
′) =⎛⎜⎜⎜⎝

a
(2,3)
+ exp(2iχ+) b+ exp(−2iβ) b+ exp(−2iβ) a

(2,3)
− exp(2iχ−)

b+ exp(−2iβ′) a
(1,4)
+ a

(1,4)
− b− exp(2iβ′)

b− exp(−2iβ′) a
(1,4)
− a

(1,4)
+ b+ exp(2iβ′)

a
(2,3)
− (−2iχ−) b− exp(2iβ) b− exp(2iβ) a

(2,3)
+ exp(−2iχ+)

⎞⎟⎟⎟⎠ (7.8)

where χ± and β, β′ are defined as

χ± = π − (β ± β′) (7.9)

cos 2β = 1− 2(1− μ′2)(1− cos2 ψ)

1− (nn′)2

sin 2β =
2
√
1− μ′2(μ′

√
1− μ2 − μ

√
1− μ′2 cosψ) sinψ

1− (nn′)2
(7.10)

nn′ = μμ′ +
√

(1− μ2)(1− μ′2) cosψ,
μ = nn0 = cos θ, μ′ = n′n0 = cos θ′, ψ = ϕ− ϕ′ (7.11)

Functions cos 2β′ and sin 2β′ are obtained from functions cos 2β and sin 2β, respec-
tively, by interchanging μ and μ′.

Functions a
(i,j)
± (nn′) (i, j = 1, . . . , 4) and b±(nn′) entering into Eq. (7.8) are

expressed in terms of the elements of the scattering matrix within the standard
linear representation [34–37],⎛⎜⎜⎝

a1(nn
′) b1(nn

′) 0 0
b1(nn

′) a2(nn
′) 0 0

0 0 a3(nn
′) b2(nn

′)
0 0 −b2(nn′) a4(nn

′)

⎞⎟⎟⎠ (7.12)

by the following relations:

a
(i,j)
± =

ai ± aj
2

, b± =
b1 ± ib2√

2
(7.13)

For the forward scattering, n = n′, equalities a2(1) = a3(1), b1(1) = 0, b2(1) = 0

[36] are valid and therefore a
(2,3)
− (1) = 0, b±(1) = 0.

The matrix element a1 appearing in matrix (7.12) is the phase function. It is
normalized by relation ∫

dn′a1(nn′) = 1 (7.14)

In the case of spherical scatterers the diagonal elements of matrix (7.12) satisfy
equalities a1(nn

′) = a2(nn
′) and a3(nn′) = a4(nn

′). For particles of given radius

7 Transillumination of highly scattering media by polarized light
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and refractive index, matrix elements a
(i,j)
± and b± entering into Eq. (7.8) can be

expressed in terms of the scattering amplitudes [35, 36]

a
(1,4)
± (nn′) = a

(2,3)
± (nn′) =

n0
4σ

|A‖(nn′)±A⊥(nn′)|2 (7.15)

b±(nn′) =
n0

2
√
2σ

(A‖(nn′)±A⊥(nn′))(A‖(nn′)∓A⊥(nn′))∗ (7.16)

where A‖ and A⊥ are the scattering amplitudes of the waves polarized, respectively,
parallel and perpendicularly to the scattering plane, n0 is the number of scatterers
per unit volume. The values of A‖ and A⊥ can be calculated with the Mie theory
[34–37]. In the case of the Born spherical scatterers (ka|n−1| 	 1, where k = 2π/λ,
a and n are the radius and the relative refractive index of the scatterers), amplitudes
A‖ and A⊥ are related by the following equation [34,35]:

A‖(nn′) = (nn′)A⊥(nn′) (7.17)

For the forward scattering A‖(1) = A⊥(1).

7.3 Basic mode approximation

Properties of the scattering matrix have been discussed in many publications (see,
e.g., [36, 37]). The interest in this problem is caused by wide applications of op-
tical methods for studying various scattering media (aerosols, seawater, biological
tissues, colloidal suspensions, etc.).

As single scattering by large inhomogeneities occurs predominantly through
small angles (1− 〈cos γ〉 	 1) [34–37], the off-diagonal elements in Eq. (7.8), that

are proportional to a
(2,3)
− and b±, appears to be small as compared to the other

elements of the corresponding phase matrix.
The relationship between the elements of matrix (7.8) allows us to develop an

iterative procedure for solving the vector radiative transfer equation (see Eq. (7.7)).

In the first approximation, neglecting the elements proportional to a
(2,3)
− and b±,

we obtain three independent equations. These equations describe the propagation
of the basic polarization modes [38–41].

The scalar mode, the intensity I, obeys the scalar radiative transfer equation,{
1

c

∂

∂t
+ n

∂

∂r
+ σtot

}
I(r,n, t) = σ

∫
dn′a1(nn′)I(r,n′, t) (7.18)

The fourth Stokes parameter V that corresponds to the basic mode of circular
polarization is governed by the following equation:{

1

c

∂

∂t
+ n

∂

∂r
+ σtot

}
V (r,n, t) = σ

∫
dn′a4(nn′)V (r,n′, t) (7.19)
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Factoring out the azimuth-dependent harmonics exp(±2iϕ) in I±2 (these func-
tions are responsible for the transformation of I±2 under rotations),

I±2 =
1√
2
W (r,n, t) exp(±2iϕ)

we arrive at the following transfer equation for the basic mode of linear polarization
W [38–41]:{

1

c

∂

∂t
+ n

∂

∂r
+ σtot

}
W (r,n, t) = σ

∫
dn′a(2,3)+ (nn′) exp

(
2i(χ+ − ψ)

)
W (r,n′, t)

(7.20)
where χ+ and ψ are defined by Eqs. (7.9), (7.11).

Without resorting to the circular representation, equations (7.19) and (7.20)
were derived also in [43].

The equations for V andW (see Eqs. (7.19), (7.20)) differ from the scalar trans-
fer equation (Eq. (7.18)) by the form of the phase functions. The phase functions

appearing in Eqs. (7.19) and (7.20) are a4 and a
(2,3)
+ exp(2i(χ+−ψ))/2, respectively.

The difference between these phase functions and the phase function a1 entering
into Eq. (7.18) gives rise to nonzero effective ‘absorption’ in Eqs. (7.19) and (7.20)
(even in the absence of true absorption). The effective ‘absorption’ in Eqs. (7.19)
and (7.20) is responsible for the additional attenuation of V andW as compared to
the intensity I and describes the effect of depolarization of circularly and linearly
polarized light .

There are two different, ‘geometrical’ and ‘dynamical’, mechanisms of depolar-
ization of electromagnetic waves in propagation through a random medium. These
mechanisms were first pointed out within the framework of the study of wave prop-
agation through a turbulent atmosphere [44, 45].

The ‘geometrical’ mechanism of depolarization is due to Rytov’s rotation of
the polarization plane. The plane of polarization turns, as the ray of light propa-
gates along a nonplanar curve. Depolarization occurring in multiple scattering of
linearly polarized light is a result of superposition of randomly oriented polariza-
tions of waves propagating along different random paths. Therefore, the ‘geomet-
rical’ depolarization occurs at depths of the order of transport mean free path ltr
(ltr = σ−1

tr ), simultaneously with isotropization of the beam of light over the direc-
tions of propagation [46]. The situation is different in the case of circularly polarized
light . Circularly polarized light can be presented as a superposition of two linearly
cross-polarized waves shifted in phase by π/2 . In multiple scattering, the Rytov
effect results in the turn of the polarization plane of each linearly polarized wave,
but has no effect on the phase shift between them. Therefore, a circularly polarized
wave propagating along any random trajectory is unaffected by the Rytov rotation
(or, what is the same, by the ‘geometrical’ mechanism of depolarization).

The pure geometrical depolarization can be obtained in the limit a1 = a2 = a3
and b1 = b2 = 0 (or, for spherical particles, A‖ = A⊥).

The difference between elements ai, i = 1, . . . , 4 (or, for spherical particles,
the difference between amplitudes A‖ and A⊥) are responsible for the ‘dynamical’
mechanism of depolarization. Physically, the ‘dynamical’ mechanism is due to the
difference in amplitudes between two components of the single-scattered wave that

7 Transillumination of highly scattering media by polarized light
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are polarized, respectively, parallel and perpendicularly to the scattering plane.
By this mechanism, multiply scattered light depolarizes as spread in amplitudes
increases. The ‘dynamical’ depolarization occurs independently of the initial po-
larization of light. In particular, circularly polarized light depolarizes only due to
the ‘dynamical’ mechanism [46]. For linearly polarized light , the role of one or the
other mechanism depends on the relative refractive index of the scatterers, their
size and shape. As a rule, the geometrical mechanism can be either dominant or as
important as the dynamical mechanism of depolarization [38–41,46].

Consider transmission of a wide stationary beam through thick layers of a turbid
medium.

Solutions to Eqs. (7.18)–(7.20) for the basic modes should be sought in the form
of series expansions in generalized spherical harmonics. In the scalar transfer theory,
this approach is known as Pl-approximation [47]. The expansion in generalized
spherical harmonics for the vector transfer equation, originally proposed in [42], was
used in a number of studies as a basis for numerical integration and in analytical
calculations of the Stokes parameters of un polarized light propagating through
optically thick layers (see, e.g., [36, 48]). Recently, this approach was applied to
evaluate spatial moments of the photon distribution from a pulsed source of light
[49].

Functions I(z, μ) and V (z, μ) can be represented as series expansions in Legen-
dre polynomials Pl(μ):

I(z, μ) =
∑
l=0

2l + 1

4π
I(z, l)Pl(μ), V (z, μ) =

∑
l=0

2l + 1

4π
V (z, l)Pl(μ) (7.21)

The coefficients I(z, l) and V (z, l) appearing in expressions (7.21) satisfy equations

l

(2l + 1)

∂I(z, l − 1)

∂z
+

(l + 1)

(2l + 1)

∂I(z, l + 1)

∂z
+ [σ + σa − σa1(l)]I(z, l) = 0 (7.22)

l

(2l + 1)

∂V (z, l − 1)

∂z
+

(l + 1)

(2l + 1)

∂V (z, l + 1)

∂z
+ [σ + σa − σa4(l)]V (z, l) = 0 (7.23)

where

a1,4(l) = 2π

1∫
−1

dμa1,4(μ)Pl(μ) (7.24)

The angular dependence of the integral term in Eq. (7.20) (see, e.g., [36]),
tells that a solution to Eq. (7.20) should be sought as an expansion in generalized
spherical harmonics P l

22(μ):

W (z, μ) =
∑
l=2

2l + 1

4π
W (z, l)P l

22(μ) (7.25)

Detailed definitions and properties of the generalized spherical harmonics can be
found in [36,50]. Substituting Eq. (7.25) into Eq. (7.20), we obtain [39–41]

l2 − 4

l(2l + 1)

∂W (z, l − 1)

∂z
+

4

l(l + 1)

∂W (z, l)

∂z
+

(l + 1)2 − 4

(l + 1)(2l + 1)

∂W (z, l + 1)

∂z
+ [σ + σa − σa

(2,3)
+ (l)]W (z, l) = 0 (7.26)
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where coefficients a
(2,3)
+ (l) are expressed as

a
(2,3)
+ (l) = 2π

1∫
−1

dμ

[
a2(μ) + a3(μ)

2

]
P l
22(μ) (7.27)

We can take advantage of Eqs. (7.23) and (7.26), to evaluate the basic polar-
ization modes in the asymptotic state of propagation at large z (z � ltr). Analysis
of the asymptotic limit is important for various practical applications, because it
highlights the difference in propagation between linearly and circularly polarized
beams (e.g., see [51–62]).

In the asymptotic solution of the vector radiation transfer equation, we can
factor out the angular dependence from the expression describing the decay of
polarization with increasing z.

Substituting V (z, l) and W (z, l) approximated by exponentials V (z, l) =
V (l) exp(−εV z) and W (z, l) = W (l) exp(−εW z) into Eqs. (7.23) and (7.26) we ar-
rive at eigenvalue problems. The attenuation coefficients εV and εW are the smallest
eigenvalues. The corresponding sets of coefficients V (l) and W (l) give the eigen-
vectors.

The asymptotic solutions for basic polarization modes have the form

V (as)(z, μ) = exp (−εV z)
∑
l=0

2l + 1

4π
V (l)Pl(μ) = CV ΦV (μ) exp (−εV z) (7.28)

W (as)(z, μ) = exp (−εW z)
∑
l=2

2l + 1

4π
W (l)P l

22(μ) = CWΦW (μ) exp (−εW z) (7.29)

where coefficients CV and CW are defined as CV = V (l = 0), CW =W (l = 2).
Functions ΦV (μ) and ΦW (μ) appearing in Eqs. (7.28) and (7.29) describe the

asymptotic angular profile of basic modes V andW . In accordance with Eqs. (7.28)
and (7.29), they are normalized by conditions

2π

1∫
−1

dμΦV (μ) = 1 (7.30)

2π

1∫
−1

dμP l=2
22 (μ)ΦW (μ) = 1 (7.31)

The attenuation coefficients of the circularly and linearly polarized modes are
determined by the smallest roots of equation

det

(
[σ(1− a4(l)) + σa]δl,m − εV

(2l + 1)
(lδl−1,m + (l + 1)δl+1,m)

)
= 0 (7.32)

det

(
[σ(1− a

(2,3)
+ (l)) + σa]δl,m − εW

(
l2 − 4

l(2l + 1)
δl−1,m+

4

l(l + 1)
δl,m +

(l + 1)2 − 4

(l + 1)(2l + 1)
δl+1,m

))
= 0 (7.33)
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When the optical properties of the medium are known, solutions to Eqs. (7.32),
(7.33) can be found numerically with the use of the determinants truncated at some
lmax.

The attenuation coefficients of basic modes V andW calculated for suspensions
of polystyrene and silica particles in water are shown in Fig. 7.1. Absorption was

neglected. The values of a4(l) and a
(2,3)
+ (l) entering into Eqs. (7.32) and (7.33) were

calculated with the Mie theory. The insignificant difference between the results
obtained within the l-polynomial approximation for l = 2 and l = 9 illustrates
good convergence of expansions (7.28) and (7.29).
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Fig. 7.1. Attenuation coefficients εW (upper curves) and εV (lower curves) as a function
of radius a of polystyrene (a) and silica (b) microspheres in water. The l-polynomial
approximation (solid and dashed curves correspond to 9 and 2 polynomials, respectively,
k is the wave number of light in water).
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Figure 7.2 illustrates anisotropy of the angular profile of the linearly polar-
ized mode in the asymptotic state. These results were obtained by truncating the
expansion in spherical harmonics at lmax = 3 and 10.
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Fig. 7.2. Angular profile of the linearly polarized mode in the asymptotic state. Suspen-
sion of polystyrene microspheres in water, ka = 5, the l-polynomial approximation (solid
and dashed curves correspond to 9 and 2 polynomials, respectively).

7.4 Pulse propagation

An ultrashort pulse of light propagating in a scattering medium experiences multi-
ple scattering events, resulting in broadening of its temporal profile. Early arrival
photons of the output pulse propagate along nearly straight lines and can be used
to image objects hidden inside the medium (see, e.g., [9–11]). The polarization of
such photons is close to the initial one.

From experimental [10, 11] and numerical [26–28] results it follows that polar-
ization of transmitted light is retained over a small interval near ct = z. This fact
can be used for polarization-gating the ballistic and snake photons with a gate of
the order of polarization decay time.

It what follows the propagation of an ultrashort pulse of polarized light through
a turbid medium is considered within the basic mode approximation. A simple
theoretical model is developed to calculate temporal profiles of the degree of po-
larization and the depolarization ratio for the pulse transmitted through a turbid
slab. It is demonstrated that the degree of polarization of linearly polarized light
differs from zero over the initial interval that is of the order of the transport mean
free time. In the medium with large inhomogeneities (size a is larger than wave-
length λ), the circular polarization exhibits slower decrease with time. The results
of calculations are shown to agree with the experimental data and the results of
numerical simulation.

7 Transillumination of highly scattering media by polarized light
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Consider the normal incidence of an ultrashort pulse of polarized light on the
surface of the medium. The beam spatial width is assumed to be greater than
transverse broadening of the beam in the medium.

For early arrival photons of the output pulse that propagate along nearly
straight lines, the forward peaked angular distribution is to be expected. There-
fore the equations for the basic modes can be transformed within the small-angle
approximation (see, e.g., [38, 39, 41]).

The small-angle transfer equations for the intensity has the form [63](
∂

∂z
+
θ2

2

∂

∂Δ

)
Ĩ(z,θ, Δ) = Ĩst (7.34)

Ĩst = σ

∫
dθ′a1(|θ − θ′|)

(
Ĩ(z,θ′, Δ)− Ĩ(z,θ, Δ)

)
(7.35)

where Ĩ(z,θ, Δ) = c−1 exp(σact)I(z,θ, Δ), vector θ denotes the angle between
vectors n and n0, and Δ = ct − z is the difference between path length ct and
depth z.

The boundary condition for Eq. (7.34) is written as

I(z = 0,θ, Δ) = I0δ(Δ)δ(θ) (7.36)

The small-angle version of Eq. (7.19) for the basic mode of circular polarization
can be represented as [64–66](

∂

∂z
+
θ2

2

∂

∂Δ

)
Ṽ (z,θ, Δ) = Ṽst −

σ
(V )
dep

4π

∫
dθ′Ṽ (z,θ′, Δ) (7.37)

where Ṽ (z,θ, Δ) = c−1 exp(σact)V (z,θ, Δ) and

σ
(V )
dep = σ

∫
dn′(a1(nn′)− a4(nn

′)) (7.38)

The expression for Ṽst is obtained from (7.35) by substitution of Ṽ for Ĩ.
The last term on the right-hand side of Eq. (7.37) is responsible for depolar-

ization of circularly polarized light . Such a form of this term results from the
assumption that a1(nn

′) − a4(nn
′) is a nearly constant function of the angular

variable as compared to V [67].
The boundary condition for Eq. (7.37) is similar to boundary condition (7.36).

When the incident light is circularly polarized, V0 = I0.
Propagation of the basic mode of linear polarization is described by Eq. (7.20).

The small-angle approximation can be applied to Eq. (7.20) in the following way.
Expansion of the angle-dependent coefficients on the left- and right-hand sides of
Eq. (7.20) in terms of small angle θ with allowance for the first nonvanishing terms
yields the following equation [64–66]:(

∂

∂z
+
θ2

2

∂

∂Δ

)
W̃ (z,θ, Δ) =

W̃st − σtrθ
2

2
W̃ (z,θ, Δ)− σ

(W )
dep

4π

∫
dθ′W̃ (z, θ′, Δ) (7.39)
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where W̃ (z,θ, Δ) = c−1 exp(σact)W (z,θ, Δ) and

σ
(W )
dep = σ

∫
dn′(a1(nn′)− a

(2,3)
+ (nn′)) (7.40)

The expression for W̃st is derived from Eq. (7.35) by substitution of W̃ for Ĩ.
Two additional terms on the right-hand side of Eq. (7.39) result from the differ-

ence between functions a
(2,3)
+ (nn′) exp(2iχ+) and a1(nn

′), entering into Eqs. (7.20)
and (7.18), respectively, and are responsible for depolarization of linearly polarized
light .

In accordance with results [40, 41], we can write

a
(2,3)
+ exp(2i(χ+ − ψ)) = a1 − a1[1− exp(2i(χ+ − ψ))]− (a1 − a

(2,3)
+ )

+(a1 − a
(2,3)
+ )[1− exp(2i(χ+ − ψ))] (7.41)

Each term in Eq. (7.41) has a certain physical meaning. In particular, the sec-
ond and third terms are responsible for geometrical and dynamical depolarization,
respectively. The fourth term describes the combined effect of both types of de-
polarization. In highly forward scattering media, the second and third terms in
Eq. (7.41) are less than the first one. The fourth term is the least in Eq. (7.41) as
the term of higher order in the single-scattering angle. Neglecting the last term in
Eq. (7.41), we obtain

σ

∫
dn′a(2,3)+ (nn′) exp(2i(χ+ − ψ))W̃ (z,n′, t)

≈ σ

∫
dn′a1(nn′)W̃ (z,n′, t)− 2σtr

1− cos θ

1 + cos θ
W̃ (r,n, t)

−σ
(W )
dep

4π

∫
dn′W̃ (z,n′, t) (7.42)

The second term in the right-hand side of Eq. (7.42) is derived under the as-
sumption that the scattering phase function is highly forward peaked, and

σ

∫
dn′a1(nn′)(1− exp(2i(χ+ − ψ))) ≈ 2σtr

1− cos θ

1 + cos θ
(7.43)

Within the small-angle approximation, Eq. (7.43) takes the form

2σtr
1− cos θ

1 + cos θ
· W̃ ≈ σtrθ

2

2
· W̃

Figure 7.3 illustrates the accuracy of approximation (7.43). The term under
consideration describes depolarization of light due to the Rytov effect [38–41].

The last term in Eqs. (7.39) and (7.42) describes the dynamic depolarization
and results from the following approximation:

σ

∫
dn′(a1(nn′)− a+(nn

′))W̃ (z,n′, t) ≈ σ
(W )
dep

4π

∫
dn′W̃ (z,n′, t) (7.44)
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Fig. 7.3. Coefficient of geometrical depolarization for aqueous suspension of polystyrene
microspheres (ka = 5, a is the radius of scattering particles and k is the wave num-
ber of light in water) calculated by expression 2σtr

σ
1−cos θ
1+cos θ

(solid line) and by formula∫
dn′a1(nn

′)(1− exp(2i(χ+ − ψ))) (dashed line).

where coefficient σ
(W )
dep is defined by Eq. (7.40). Equality (7.44) is based on the

assumption that the angular dependence of a1(nn
′)−a+(nn′) is virtually isotropic

as compared with W̃ (r,n′, t).
The expressions for the additional terms in Eqs. (7.39) and (7.42) should be con-

sidered as a reasonable approximation for modeling multiple scattering of polarized
light in tissue phantoms (e.g., in aqueous suspension of polystyrene particles).

Equations (7.34), (7.37) and (7.39) enable us to express approximately basic
polarization modes V and W in terms of the intensity [64–66].

To model scattering in tissue-like media, we take advantage of Ĩst within the
Fokker–Planck approximation [47] (see, also [68, 69])

Ĩst =
σtr
2

· 1
θ

∂

∂θ
θ
∂

∂θ
Ĩ (7.45)

where σtr is the transport scattering coefficient. This simple approximation is best
suited to analytical treatment and semi-quantitative description of wave propaga-
tion and depolarization in media with highly forward scattering [70,71].

Within the framework of Eq. (7.45) the relationships between the polarization
modes and the intensity can be written as [64]

V (z, θ,Δ) = exp
(
−2σ

(V )
depΔ

)
I(z, θ,Δ) (7.46)

W (z, θ,Δ) = exp
(
−
(
σtr + 2σ

(W )
dep

)
Δ
)
I(z, θ,Δ) (7.47)
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In accordance with these relationships, photons that propagate along a straight
line (ct = z and Δ = 0) are completely polarized.

The linear polarization is retained only over a short initial interval that is no
longer than the transport mean free time ltr/c (ltr = σ−1

tr is the transport mean
free path). In the case of the propagation through thick samples (z � ltr), the
initial polarization is retained only for the early arrival photons that are scattered
through small angles, the mean square of the multiple-scattering angle at depth z
and time instant t [72], 〈θ2〉z,Δ = 4Δ/z < (σtrz)

−1 	 1. The spatial diffusion of
radiation (Δ� z) is accompanied by complete depolarization.

Depolarization of the circularly polarized light as a rule occurs slower. The

depolarization time is of the order of l
(V )
dep/c, where l

(V )
dep = (σ

(V )
dep )

−1 is the mean free
path between the depolarizing collisions. For media with large inhomogeneities, as a

rule, inequality σ
(V )
dep 	 σtr is valid (see, e.g., [46]). Thus, even the diffusive radiation

can be polarized. This effect is manifested in both transmission and reflection (see,
e.g., [23, 46,51–54]).

In the diffusive limit (Δ� z) Eq. (7.46) should be replaced by

V (z, θ,Δ) = exp
(
−σ(V )

dep ct
)
I(z, θ,Δ) (7.48)

Eqs. (7.46) and (7.48) can be combined into a single formula,

Ṽ (z, θ,Δ) = exp
(
−σ(V )

dep · ct(1− 〈cos θ〉z,t)
)
Ĩ(z, θ,Δ) (7.49)

where 〈cos θ〉z,t is mean cosine of multiple-scattering angle, which can be approxi-
mated by

〈cos θ〉z,t = exp

(
−2Δ

z

)
(7.50)

From Eqs. (7.47) and (7.49) it follows that the degree of polarization of the
linearly and circularly polarized beams can be described by

PL =
W

I
= exp

(
−
(
σtr + 2σ

(W )
dep

)
Δ
)

(7.51)

PC =
V

I
= exp

(
−σ(V )

dep · ct(1− 〈cos θ〉z,t)
)

(7.52)

The depolarization ratios can be easily found from these equations. For example,
the ratio of two cross-polarized components of intensity is equal to

D =
I⊥
I‖

=
I −W

I +W
= tanh

[
1

2

(
σtr + 2σ

(W )
dep

)
Δ

]
(7.53)

Coefficients σtr, σ
(W )
dep and σ

(V )
dep , entering into Eqs. (7.51) and (7.52), depend

on the relative refractive index, size and shape of scattering inhomogeneities. For

spherical particles, coefficients σtr and σ
(W )
dep = σ

(V )
dep/2 can be calculated with the

Mie theory or can be taken from experimental data (coefficients σtr, σ
(W )
dep and σ

(V )
dep

for several media can be found in [40, 41], see also Fig. 7.4). Coefficients σtr and

σ
(W )
dep satisfy inequality σ

(W )
dep < σtr/2.

7 Transillumination of highly scattering media by polarized light
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Fig. 7.4. Dependence of σ
(W )
dep /σtr and 1− 〈cos γ〉 on parameter x = ka (a is the radius

of scattering particles, k is the wave number in the medium) for water suspensions of
polystyrene (solid curves) and silica (dashed curves) microspheres.
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Fig. 7.5. Depolarization ratio I⊥/I‖ as a function of ‘transport optical delay’ σtrΔ
for water suspension of 0.3- (a) and 0.99- (b) μm diameter polystyrene microspheres,
λ = 633 nm. Solid lines are the results of our calculations with Eq. (7.53). Symbols are

the results of Monte Carlo simulation [26]. The values of σ
(W )
dep are determined with the

Mie formulas, σ
(W )
dep /σtr = 0.17 (a) and 0.086 (b).

The theoretical results presented above can be compared to the experimen-
tal and numerical data obtained in [10, 11, 26–28] which describe transmission of
polarized pulses through optically thick turbid samples.

According to Eq. (7.53) depolarization of the linearly polarized wave depends
only on delay Δ and is unaffected by the slab thickness z. This conclusion is con-
firmed by comparison with data of Monte Carlo simulation for aqueous suspension
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of polystyrene microspheres [26]. The depolarization ratio was calculated in [26] for
different values of the transport optical thickness and presented as a function of the
normalized delay Δ/z. When going from Δ/z to delay Δ, the data of simulation
take the form shown in Fig. 7.5. Within the accuracy of the analysis, data [26] tend
to a universal function of delay Δ.

The dependence of the depolarization ratios I⊥/I‖ and I+/I− on delay Δ, as
applied to linearly and circularly polarized waves, is illustrated in Fig. 7.6, where
our results and the results of numerical integration of the vector transfer equation
with the discrete ordinate method [28] are presented. The figure clearly shows the
difference between the linearly and circularly polarized waves in the depolarization
rates.

Fig. 7.6. Depolarization ratios for linearly (upper curve) and circularly (lower curve)

polarized light versus normalized delay from the results of our calculation (σ
(V )
dep =

0.15 ·σtr). Symbols are the results of the discrete ordinate method for aqueous suspension
of 2.0μm diameter polystyrene microspheres, λ = 530 nm [28], the optical thickness of
the sample σz = 10.

For ratio I+/I−, the difference between our results and the data of numerical
calculations [28] may be due to a low accuracy of calculations [28]. As analysis
shows the numerical results [28] contradict equality I‖ + I⊥ = I+ + I−. Inequality
I‖ + I⊥ > I+ + I− gets more clearly defined as Δ increases. This is evidently
demonstrated by the time-dependence of PC at large delays, Δ > z, where the
exponential decay of PC is changed by the anomalous Gaussian dependence (see
Fig. 6 in [28]).

The results of our calculations are also in agreement with data of experimental
measurements [11]. Data [11] were obtained for the different samples identical in
thickness and transport mean free path ltr. Thus the values of the characteristic
time of depolarization in the samples should to be appear of the same order of
magnitude. This is illustrated in Fig. 7.7, where data [11] for the degree of linear
polarization are compared to our calculations with Eq. (7.51).

7 Transillumination of highly scattering media by polarized light
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Fig. 7.7. Temporal profiles of the degree of linear polarization for aqueous suspensions of
0.2μm (closed squares) and 1.07μm (open squares) polystyrene microspheres for a 50mm
thick sample, transport mean free path ltr = 20mm, wavelength λ = 532 nm [11]. Curves

are the results of our calculations for σ
(W )
dep /σtr = 0.34 and 0.08, respectively.

7.5 Model of depolarization

Thus, we arrive at the following model of depolarization within the basic mode
approximation. The polarization state of circularly and linearly polarized radiation
can be described by basic modes I, V , and W . The values of polarization modes V
andW differ from intensity I only by factors that are responsible for attenuation in
the domain of delays Δ = ct− z. The corresponding attenuation factors are deter-
mined by expressions (7.47) and (7.46). In going to continuous (CW) illumination,
the expressions for the basic modes should be integrated with respect to delay Δ:

I(z) =

∞∫
0

dΔ I(z,Δ) = exp (−σaz) Ĩ(z, σa) (7.54)

V (z) =

∞∫
0

dΔ V (z,Δ) = exp (−σaz) Ĩ(z, σa + 2σ
(V )
dep ) (7.55)

W (z) =

∞∫
0

dΔ W (z,Δ) = exp (−σaz) Ĩ(z, σa + σtr + 2σ
(W )
dep ) (7.56)

Here, we factor out the attenuation due to absorption of the straightforward prop-
agating photons and introduce the modified intensity Ĩ = exp (σaz) I.

It is instructive to compare Eqs. (7.55) and (7.56) with the phenomenological
model of depolarization proposed in [20].
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According to [20], the linear polarization is described by the quantity that is
similar to W . This quantity is obtained by integrating the product of the path
distribution P (s) and the attenuation factor exp(−σLs) over paths s. Distribution
P (s) is actually the transmitted pulse profile. Coefficient σL is assumed to describe
depolarization per unit path length. Thus, our results (7.55), (7.56) and the result
of [20] differ essentially in the attenuation factors. In contrast to the corresponding

result of [20], our factor exp(−(σtr + 2σ
(W )
dep )Δ) describes the attenuation as a

function of delay Δ = ct − z and not of path ct, and equals unity at ct = z (i.e.,
the straightforward propagating photons retain their initial polarization).

Let us apply our model of depolarization to studying the degree of polarization
under conditions of CW illumination. To determine the intensity entering into
Eqs. (7.54)–(7.56) we take advantage of the results obtained within the small-
angle Fokker-Planck approximation [69]. This approximation takes into account
highly forward scattering (1− 〈cos γ〉 	 1) of light in biological tissues and tissue-
like media [70, 71] and enables us to elaborate simple semi-quantitative model of
propagation of polarized light .

In accordance with [69] (see also [39]), the intensity of a narrow beam can be
presented in the analytical form

Ĩ(z,ρ,θ) =
1

π2A0(z)Δ2(z)
exp

{
− 1

Δ2(z)
(A1(z)ρ

2 − 2A2(z)ρθ +A3(z)θ
2)

}
(7.57)

where vectors θ = (θx, θy) and ρ = (x, y) characterize the direction of propaga-
tion of scattered photons and their transverse displacement from the beam axis,
respectively,

A0(z) = cosh(z
√
σaσtr), A1(z) = 2

√
σtr
σa

tanh(z
√
σaσtr) (7.58)

A2(z) =
2

σa

(
1− 1

cosh(z
√
σaσtr)

)
, A3(z) =

2z

σa

(
1− tanh(z

√
σaσtr)

z
√
σaσtr

)
(7.59)

Δ2(z) = A1(z)A3(z)− (A2(z))
2, (7.60)

Substituting Eq. (7.57) into Eqs. (7.55) and (7.56) we can obtain the expressions
for the degree of polarization.

Under the conditions that are typical for many experiments (see, e.g., [1,9,20])
the sample surface is illuminated by a narrow beam of light, the beam axis is
perpendicular to both boundaries of the sample. The transmitted light is collected
behind the sample by the on-axis detector with a narrow field of view. In the case
of ‘a narrow beam geometry’ (see, e.g., [20,27]), the area of the detector is assumed
to be much less than the cross-section of the transmitted beam. By contrast, the
case where the transmitted light is collected from the whole cross-section of the
beam corresponds to ‘a wide beam geometry’ (see, e.g., [13, 24]).

As applied to transmission through a medium with no absorption (σa = 0), the
degree of polarization can be written in the form

P =
ξ

sinh ξ
(7.61)

7 Transillumination of highly scattering media by polarized light
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where ξ is equal to

ξL = z

√(
σtr + 2σ

(W )
dep

)
σtr (7.62)

ξC = z

√
2σ

(V )
dep σtr (7.63)

for linearly and circularly polarized light , respectively. Eq. (7.61) is valid for a
wide beam geometry and corresponds to the conditions of experiments [53–56].

For a narrow beam geometry, the depth dependence of the degree of polarization
is described by expression

P =
1

12

ξ4

ξ sinh ξ − 2 cosh ξ + 2
(7.64)

where ξ is determined by Eqs. (7.62) or (7.63).
The validity of our theoretical approach can be tested by comparison with

experimental data [20,53–56].
The results of measurements [20, 53, 54] of the degree of linear polarization in

aqueous suspensions of polystyrene microspheres and the results of our calculations
are illustrated in Figs. 7.8 and 7.9. The coefficients entering into Eq. (7.62) were
calculated with the Mie theory. For the conditions of experiments [53,54] (see Fig.

7.8), the values of ratio σ
(W )
dep /σtr are equal to 0.076 and 0.08, respectively. The

theoretical curves corresponding to such close values of σ
(W )
dep /σtr appear to be

indistinguishable. For the same reason, it is hard to discriminate the theoretical
curves shown in Fig. 7.9.

Fig. 7.8. Degree of linear polarization in aqueous suspension of polystyrene particles
as a function of the transport optical thickness. Solid line is the result of calculations
with Eqs. (7.61) and (7.62). Symbols ◦ and � are the experimental data for 1.05μm
diameter particles (λ = 670 nm) [53] and 1.072μm diameter particles (λ = 633 nm) [54],
respectively. A wide beam geometry.



337

LP

tr zσ
0 1 2 3 4 5 6 7 8 9 10

0,01

0,1

1

Fig. 7.9. Degree of linear polarization in aqueous suspension of polystyrene microspheres
as a function of the transport optical thickness of the sample. Squares and circles are
experimental data [20] for 2.19μm (λ = 532 nm, σ

(W )
dep = 0.070 · σtr) and 1.07μm (λ =

514 nm, σ
(W )
dep = 0.075 · σtr) diameter microspheres, respectively. Solid and dashed lines

are the results of our calculations for a narrow beam geometry (see Eq. (7.64)).

As follows from Figs. 7.8 and 7.9 our theoretical formulae (7.61), (7.64) are in
good agreement with data [20, 53, 54].

Matching values of σ
(W )
dep /σtr, we can fit the theoretical curves to the corre-

sponding experimental data. The results of application of such a procedure to data
of measurements [54–56] are shown in Fig. 7.10. Experimental data [54–56] describe
the depth-dependence of the degree of polarization in biological tissues and tissue
phantoms and enable us to estimate the values of the corresponding depolarization
coefficients. As follows from the results of the fitting procedure, the depolarization

ratio σ
(W )
dep /σtr ranges from 0.1 (polystyrene microsphere suspension, arterial tis-

sue) to 0.75 (Intralipid, myocardial tissue). For the polystyrene microspheres, the
restored value agrees well with the calculated one (see Figs. 7.8 and 7.9).

For circularly polarized light , simple relations (7.61) and (7.63) are also in
agreement with experimental data. Comparison between the measured [53] and
calculated degree of circular polarization is illustrated in Fig. 7.11. Coefficients σtr
and σ

(V )
dep entering into Eq. (7.63) were determined with the Mie theory. The exper-

imental setup of [53] corresponds to a wide beam geometry. Aqueous suspension of
polystyrene microspheres were used as a scattering sample.

In tissue phantoms (suspensions of polystyrene and silica microspheres [24, 25,
53,54], Intralipid [54]) circularly polarized light depolarizes more slowly than light
with linear polarization (compare, e.g., Figs. 7.8 and 7.11). By contrast the rate of
depolarization in actual tissues can be higher for circularly polarized light . This
is illustrated in Fig. 7.12 where experimental data [54–56] and the corresponding
fitting curves are presented.

7 Transillumination of highly scattering media by polarized light
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Fig. 7.10. Degree of linear polarization in various media as a function of the transport
optical thickness of the sample. Symbols (� – suspension of 1.07μm diameter polystyrene
microspheres in water, 	 – arterial tissue, ◦ – Intralipid suspension, 
 – myocardial
tissue) are experimental data (λ = 633 nm) [54–56]. Fitting curves are the results of our

calculations with Eqs. (7.61) and (7.62) for σ
(W )
dep = 0.1 · σtr and σ

(W )
dep = 0.75 · σtr.
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Fig. 7.11. Degree of circular polarization in aqueous suspension of polystyrene micro-
spheres as a function of the transport optical thickness. Symbols are experimental data
[53] for ka = 6.43. Solid line is the result of our calculations for a wide beam geometry

(see Eqs. (7.61) and (7.63), σ
(V )
dep = 0.176 · σtr).
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Fig. 7.12. Degree of circular polarization in various media as a function of the transport
optical thickness of the sample. Symbols (� – suspension of 1.07μm diameter polystyrene
microspheres in water, � – arterial tissue, • – Intralipid suspension, � – myocardial tis-
sue) are experimental data (λ = 633 nm) [54–56], fitting curves are the results of our

calculations with Eqs. (7.61) and (7.63) for σ
(V )
dep = 0.2 · σtr (polystyrene microspheres),

for σ
(V )
dep = 0.75 · σtr (arterial tissue and Intralipid suspension) and σ

(V )
dep = 1.75 · σtr

(myocardial tissue).

7.6 Polarization-difference imaging through highly
scattering media

The degree of polarization depends on the photon path length in the medium.
The quasi-straightforward propagating photons pass the shortest path and are the
least depolarized. This feature underlies polarization-difference imaging of objects
hidden inside turbid media (see, e.g., [13–16,19,23–25]). In this technique the image-
bearing component of light is extracted by subtracting the detected cross-polarized
signal from the co-polarized one. The feasibility of such a technique depends on the
depolarization characteristics of the medium, which, in their turn, are influenced by
concentration, sizes and shape of scattering inhomogeneities, their refractive index.

To investigate potentialities of the polarization-gated imaging of objects hid-
den in highly scattering media, we take advantage of the model of depolarization
developed above within the basic mode approximation. This model has been vali-
dated by comparison with data of experiments and numerical simulation and can
be applied to describe the results of polarization-difference transillumination of
tissue-like phantoms.

As before, we restrict our consideration by the Fokker–Planck model of scatter-
ing. Within the framework of this model, it takes only a few quantities (transport
scattering coefficient σtr , absorption coefficient σa and depolarization coefficients

σ
(W )
dep , σ

(V )
dep ) to calculate the image of an object embedded in the scattering sample.

7 Transillumination of highly scattering media by polarized light
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7.6.1 General relations. Edge spread function

The spatial resolution and the image contrast available by polarization-gated tran-
sillumination of a tissue-equivalent phantom (a turbid medium with an inserted
obstacle) can be evaluated from the line scans across the tested sample. We start
our analysis with a completely absorbing object embedded in a highly scattering
sample.

To describe the shadow from the object, the so-called edge-spread function is
convenient to use. In accordance with definition [13,20,29], the edge-spread function
describes the spatial distribution of radiation passing by the absorbing half-plane
edge versus the position of the source-detector axis (see Fig. 7.13).

0z

z
x

0 h*S D

Fig. 7.13. Source-detector geometry for optical scanning of a scattering sample contain-
ing an absorbing half-plane.

Let us consider a scattering slab with an absorbing half-plane (x < 0). The slab
is assumed to be illuminated by a collimated narrow beam. The source-detector axis
is perpendicular to both boundaries of the slab and the half-plane. The transmitted
light is collected behind the sample by the on-axis detector with a narrow field of
view. Such conditions are typical for many experiments on imaging through turbid
tissues (see, e.g., [1, 9, 13,20,24,25]).

For a δ-pulsed source, the intensity of light passing by the inhomogeneity (the
distance between the absorbing half-plane and the input boundary of the slab is
assumed to be equal z0) can be written in the form [65,66]

E(z, h, t) =

t∫
0

dt′
∞∫
h

dx′
∞∫

−∞
dy′

∫
dθ′

G(z,ρ = 0,θ = θ0, t|z0,ρ′,θ′, t′)I(z0,ρ′,θ′, t′) (7.65)
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where G(z,ρ,θ, t|z0,ρ′,θ′, t′) and I(z,ρ,θ, t) are the Green function of the time-
dependent (or nonstationary) radiative transfer equation and the intensity of light
in the medium with no inhomogeneity, θ0 is the initial direction of the beam prop-
agation (in our case θ0 = 0), ρ = (x, y) is the transverse displacement from the
beam axis, h is the distance between the source-detector axis and the half-plane
edge (h > 0 corresponds to the shadow region). The intensity I(z,ρ,θ, t) entering
into Eq. (7.65) can be expressed in terms of the Green function by relation

I(z,ρ,θ, t) = I0G(z,ρ,θ, t|z′ = 0,ρ′ = 0,θ′ = θ0, t
′ = 0) (7.66)

where I0 is total flux of the incident radiation. Eq. (7.65) is valid under the as-
sumption that the projection of the photon velocity onto z-axis does not change
its sign. Therefore, Eq. (7.65) is fully suitable for calculating the contribution from
the snake photons to the intensity.

With generalization of Eq. (7.65), the image of an arbitrary-shaped screen can
be described by the following formula:

E(z,h, t) =

t∫
0

dt′

⎛⎝ ∞∫
−∞

dx′
∞∫

−∞
dy′ −

∫
S

dx′dy′

⎞⎠
∫
dθ′G(z,ρ = 0,θ = θ0, t|z0,ρ′,θ′, t′)I(z0,ρ′,θ′, t′) (7.67)

where integration is carried out over the whole plane excepting the obstacle area,
vector h denotes the position of the source-detector axis in the (x, y)-plane.

As follows from Eqs. (7.65) and (7.67) calculations of the edge-spread function
reduce to searching for the Green function of the radiative transfer equation for a
homogeneous scattering medium.

Within the small-angle Fokker-Planck approximation, the explicit analytical
expression for the Green function is given by [65,66]

G(z,ρ,θ, Δ|z,ρ′,θ′, Δ′) =
exp(−σa(z − z′))

2πi

·
i∞∫

−i∞
dp

exp(p(ct− (z − z′)))
πa(z − z′)

∫
dq

(2π)2

∫
dk

(2π)2

∫
dk′

(2π)2

· exp (iq(ρ− ρ′) + ikθ + ik′θ′

−q
2(z − z′)
2σa

− q(k+ k′)
σa

− 1

4
((k2 + k′2)b(z, z′) + 2kk′c(z, z′))

)
(7.68)

where

a(z, z′) = sinh
(√

σtrp(z − z′)
)

(7.69)

b(z, z′) = 2

√
σtr
p

cosh
(√

σtrp(z − z′)
)

(7.70)

c(z, z′) = 2

√
σtr
p

1

cosh
(√

σtrp(z − z′)
) (7.71)

7 Transillumination of highly scattering media by polarized light
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The results (7.65), (7.67), (7.68) can be readily generalized to case of a po-
larized beam. Within the model put forward above (see Eqs. (7.55) and (7.56))
the edge-spread functions for circularly and linearly polarized light are derived
from Eqs. (7.68)–(7.71) by substitution of the corresponding ‘effective’ absorption
coefficients.

Expression (7.68) for the Green function and formulas (7.55) and (7.56) for
modes V and W , respectively, are a basis for calculations of the degree of polar-
ization and the intensity of light in a multiply scattering medium.

The results obtained in the small-angle approximation (see Eqs. (7.65), (7.67),
and (7.68)) are valid provided that 1− 〈cos θ〉z,t < 1, where 〈cos θ〉z,t is the mean
cosine of the multiple scattering angle at depth z at instant t. Within the Fokker–
Planck approximation [72] 1 − 〈cos θ〉z,t ≈ 〈θ2〉z,t/2 = 2Δ/z and therefore the
above-mentioned inequality takes the form Δ < z/2.

7.6.2 Time-resolved polarization imaging

According to [5, 10–12], polarization can be used for time-gating the ballistic and
snake photons of the beam transmitted through the scattering sample. However, a
duration of the corresponding time-gate has not been determined until recently. To
evaluate this quantity, we compare the time-gate dependence of the image profiles
obtained, respectively, with the intensity of light and with the difference between
the polarized components.

As applied to a pulsed beam, the edge-spread function can be approximated by
the expression [66]

E(z, h, t) =
1

2
I(z, t)

{
1− erf

(√
z2

z0(z − z0)〈ρ2〉z,Δh
)}

(7.72)

where I(z, t) is the intensity of radiation at large distances from the absorbing half-
plane (or, in the absence of it) and 〈ρ2〉z,Δ is the mean square of the transverse
displacement of the photons, erf(x) is the error function [73]. Quantities I(z, t) and
〈ρ2〉z,Δ are given by [72]

I(z, t) =
cI0 exp(−σact)
(4π)5/2(σtrz2)3

·
(
σtrz

2

Δ

)9/2

· exp
(
−σtrz

2

4Δ

)
(7.73)

〈ρ2〉z,Δ = 8 · Δ
2

σtrz
(7.74)

Eqs. (7.72) and (7.73) can be derived from the general formula (7.68) in the limit
Δ < σtrz

2. In this case, we can use the asymptotic expressions for the functions
entering into Eq. (7.68) at great p and perform integrating in Eq. (7.68) explicitly
(see, e.g., [63,72]). In transmission through an optically thick slab (σtrz > 1), results
(7.72) and (7.73) are always valid for the snake component, which in accordance
with [3, 4, 9] (see, also [74]) can be defined by condition Δ < z/2.

Eqs. (7.72) and (7.73) are valid provided that the field of view and the radius
of the detector are small as compared with

√〈θ2〉z,Δ and
√〈ρ2〉z,Δ, respectively.

These equations are normalized to unit solid angle and area of the detector.
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Eq. (7.72) can be generalized to an obstacle of more complex shape. In partic-
ular, the profile of the shadow from absorbing stripe −a/2 < x < a/2 (a is the
stripe width) is described by

E(z, h, t) =
1

2
I(z, t)

·
{
2− erf

(√
z2

z0(z − z0)〈ρ2〉z,Δ
(a
2
+ h

))

− erf

(√
z2

z0(z − z0)〈ρ2〉z,Δ
(a
2
− h

))}
(7.75)

For a given time-gate, the energy of the detected signal is obtained by integrat-
ing Eqs. (7.72) and (7.75) over the corresponding temporal interval [4, 9, 29]:

ε =

t0+Δt∫
t0

E dt (7.76)

where t0 is the onset of detecting and Δt is the time-gating interval. The image
contrast is defined as

C =
ε(h→ ∞)− ε(h = 0)

ε(h→ ∞) + ε(h = 0)
(7.77)

where ε(h → ∞) is the background signal that is determined from the measure-
ments at large distances from the obstacle and ε(h = 0) is the signal at the center
of the image.

Results (7.65)–(7.75) are generalized to the case of a polarized beam in the fol-
lowing way. For polarized light , we should introduce the edge-spread functions for
the polarization modes V and W . Within the framework of the model put forward
above, the edge-spread functions for the circularly and linearly polarized light can
be derived from Eqs. (7.72) and (7.73) by substitution of the basic polarization
modes V (z, t) and W (z, t) for intensity I(z, t).

As follows from Eqs. (7.55) and (7.56), propagation of polarized light is char-
acterized by the effective attenuation coefficient in the domain of temporal de-
lays Δ. Therefore, the edge-spread functions for the polarization modes differ
from Eqs. (7.72) and (7.73) only by the corresponding Δ-dependent factors (see
Eqs. (7.46) and (7.47)).

In many experiments, detection of the polarization difference is employed (see,
e.g., [13–16,19,21–25]). This method is based on subtracting of the intensity of the
cross-polarized component from the intensity of radiation with the initial polar-
ization. The substraction of one component from the other is assumed to cancel
the contribution from the diffusive (or, strongly scattered) photons. Thus, the dif-
ference I‖ − I⊥ is governed only by the contribution of the quasi-straightforward
propagating photons (i.e., the ballistic and snake photons).

The difference between the intensities of linearly polarized components coincides
with the basic mode W [38–41] and therefore, the polarization-difference image of
an object immersed in a scattering medium is described by the spatial profile

7 Transillumination of highly scattering media by polarized light
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(in particular, by the edge-spread function) of this mode. Correspondingly, the
polarization-difference image for circularly polarized light is determined by the
spatial profile of mode V .

The edge-spread functions for intensity I and polarization mode W are illus-
trated in Fig. 7.14. The calculations are performed within the framework of the
above-proposed model. From the figure it follows that the edge-spread function for
the intensity blurs with increasing Δ. At the same time, the edge-spread function
for the linearly polarized mode exhibits minor variations. Therefore, the polariza-
tion difference, as compared to the intensity, provides higher spatial resolution (or,
sharpness).

-5 0 5
0,0

0,2

0,4

0,6

0,8

1,0

h/l
tr

Fig. 7.14. Edge-spread function for intensity I (solid lines) and for linearly polarized

mode W (dashed lines). Transport optical thickness σtrz = 10, σ
(W )
dep = 0.1 ·σtr, z0 = z/2.

The normalized time-gate Δ/z = 0.3, 0.5, and 1.0 (from upper to lower curves at h < 0),
t0 = z/c.

Combining the corresponding edge-spread functions (see Eq. (7.75)) we can
calculate the shadow profile for an absorbing stripe. The image of the stripe is
illustrated in Fig. 7.15.

Figs. 7.14 and 7.15 show that the difference between the images obtained with
the usual intensity and the polarization difference gets more noticeable as the nor-
malized time-gating interval Δ/z increases.

The effect of polarization on the image contrast (see definition (7.77)) is shown
in Fig. 7.16. From the presented results it follows that the polarization enhances
distinctly the image contrast at time-gates Δ/z > 0.4–0.5. For shorter time-gating
intervals, the image contrast for the intensity does not differ from that obtained
with the polarization-difference method. As the time-gate increases, the contrast
of the polarization-difference image tends to the gate-independent value that cor-
responds to the CW illumination.
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-6 -4 -2 0 2 4 6
0,0
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0,4

0,6

0,8

1,0

/h ltr

Fig. 7.15. Image of an absorbing stripe. The solid and dashed lines correspond to the
intensity and the polarization difference profiles, respectively. The normalized time-gate
Δ/z = 0.3, 0.5, and 1.0 (from lower to upper curves). The transport optical thickness

σtrz = 10, σ
(W )
dep = 0.1 · σtr, stripe width a = 0.2z, and stripe position z0 = z/2.

0,0 0,2 0,4 0,6 0,8 1,0 1,2
0,0

0,2

0,4

0,6

0,8

1,0

CI

CW

/ zΔ

Fig. 7.16. Image contrast of an absorbing stripe versus the normalized time-gate. Solid
and dashed curves describe the contrast of intensity and polarization difference profiles,
respectively. Transport optical thickness σtrz = 10, σ

(W )
dep = 0.1·σtr, stripe width a = 0.2·z,

and stripe position z0 = z/2.
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Fig. 7.17. Ratio CI/CW versus the normalized time-gate (σtrz = 10 (upper curve),

σtrz = 15 (lower curve), σ
(W )
dep = 0.1 · σtr).

This conclusion is confirmed additionally by the results presented in Fig. 7.17.
From the figure it is evident that ratio CI/CW exhibits virtually universal behavior
in the range Δ/z < 0.5 and depends weakly on σtrz at relatively large values of
the normalized time-gate Δ/z.

Based on the above-presented results, we conclude that the polarization differ-
ence is equivalent to time-gating the snake component of the output signal with
the interval of detection of the order of Δ ≈ 0.5 z. For time-gate Δ < 0.5 z there is
no difference between the images obtained with the polarization-sensitive method
and without it. For time-gate Δ > 0.5 z, the polarization-difference image does
not depend on the detection interval and corresponds to the conditions of the CW
illumination. Note that inequality Δ < 0.5 z virtually coincides with the selection
rule for the snake photons (see, e.g., [9, 29, 74]).

7.6.3 Polarization-difference imaging under CW illumination

Experimental and numerical studies [12–25] of polarization-difference imaging
through scattering media deal with the CW illumination. Therefore, to compare
with data [12–25] our results (see Eqs. (7.65) and (7.67)) should be integrated over
time.

For the symmetric position of the inhomogeneity z0 = z/2 (see, e.g., [12,13,20,
24]) the edge-spread function takes the form

E(z, h) =
1

2π2
· exp(−σaz)
A0(z)Δ2(z)

{
1− erf

(
h

δ

)}
, (7.78)
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where

δ =

(
Δ2(z0)

2A1(z0)

)1/2

= (A3(z0/2))
1/2

(7.79)

and functions Ai(z), (i = 0 . . . 3) and Δ2(z) are defined by Eqs. (7.58)–(7.60),
respectively. Eq. (7.78) corresponds to a narrow beam geometry.

For a non-absorbing medium (σa = 0), the quantities entering into Eq. (7.78)
are equal to

A0(z) = 1, Δ2(z) =
1

3
σ2
trz

4, δ =

(
1

12
σtrz0

)1/2

· z0 (7.80)

To obtain the edge-spread function as applied to a wide beam geometry, we
should integrate the Green function appearing in Eqs. (7.65) and (7.67) over trans-
verse displacement ρ. The corresponding result is given by

E(z, h) =
1

2π
· exp(−σaz)
A0(z)A1(z)

{
1− erf

(
h

δ

)}
(7.81)

where

δ =

(
1

2
A3(z0) +A3(z0/2)

)1/2

(7.82)

In Eqs. (7.81) and (7.82), as before, the obstacle position is assumed to be sym-
metric, z0 = z/2. For a non-absorbing medium (σa = 0), we have

A1(z) = 2σtrz, δ =

(
5

12
σtrz0

)1/2

· z0 (7.83)

The image profile for stripe −a/2 < x < a/2 is given by superposition of two
edge-spread functions and obtained from Eqs. (7.78) and (7.81) by substitution of

2− erf

(
a/2 + h

δ

)
− erf

(
a/2− h

δ

)
(7.84)

for (
1− erf

(
h

δ

))
The results presented above are easily generalized to the case of a polarized

beam. For polarized light, in addition to the intensity, the edge-spread functions
for polarization modes V andW should be introduced. Within the framework of the
Fokker–Planck model the corresponding edge-spread functions can be derived from
Eqs. (7.55) and (7.56) by substitution of novel ‘effective’ absorption coefficients for
σa (see Eqs. (7.55) and (7.56))

The effect of polarization on the image contrast is illustrated in Figs. 7.18 and
7.19 where the shadow profile of an absorbing stripe and the dependence of the
image contrast on the sample thickness are shown. From the presented results

7 Transillumination of highly scattering media by polarized light
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Fig. 7.18. Intensity (solid curve) and polarization-difference (dashed curve) profiles of

the image of an absorbing strip. Transport optical thickness σtrz = 10, σ
(W )
dep = 0.1 · σtr.

The stripe of width a = 2 · ltr is positioned in the center plane of the sample, z0 = z/2.
A narrow beam geometry.
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tr zσ

Fig. 7.19. Image contrast versus transport optical thickness σtrz. The objects are same
as in Fig. 7.18. Solid and dashed curves correspond to the intensity and polarization-
difference profiles, respectively.
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Fig. 7.20. Edge-spread function for the normalized intensity. Solid (σtrz = 2.4, z =
40mm) and dashed (σtrz = 4.5, z = 40mm) curves are the results of our calculations
with Eqs. (7.78) and (7.79). Symbols are experimental data [20] for the samples of the
corresponding optical thickness.

Fig. 7.21. Degree of linear polarization in diluted milk as a function of the transport
optical thickness of the sample. Solid curve is the result of our theoretical calculations
with Eq. (7.64) for σ

(V )
dep = 0.1 · σtr, symbols are experimental data [20], λ = 514 nm.

7 Transillumination of highly scattering media by polarized light
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Fig. 7.22. Edge-spread function for the degree of linear polarization PL = W/I. Solid

curve is the result of our calculations for σtrz = 4.0, z = 40mm and σ
(W )
dep = 0.1 · σtr.

Symbols are experimental data [20].
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Fig. 7.23. Edge-spread function for the co- and cross- polarized light (suspension of
1.05μm diameter polystyrene microspheres in water, σtrz = 1.54, z = 10mm, λ =
633 nm). Our calculations of (I + W )/2 and (I −W )/2 are shown by solid and dashed

lines, respectively, σ
(W )
dep = 0.074 σtr. Symbols are data of experiment [13].



351

Fig. 7.24. Image of an absorbing obstacle from data of experiment [24] (a) and our calcu-
lations (b). The solid curve describes the polarization-difference profile V , the dashed and
dotted curves correspond, respectively, to the intensity of light with the initial polariza-
tion (I +V )/2, and to the intensity of de polarized light , (I −V )/2. Aqueous suspension

of 1.08μm diameter polystyrene microspheres, z = 10mm, σtrz = 2, σ
(V )
dep = 0.16 · σtr,

λ = 633 nm. A 1.8mm diameter absorbing wire is placed in the sample center, z0 = z/2.
A wide beam geometry.

it follows that the polarization-difference method distinctly enhances the image
contrast in transillumination of optically thick samples, σtrz � 1.

The results obtained above for the edge-spread function (see Eqs. (7.78),(7.81))
enable us to describe experimental data [13,20,24] on the polarization-gated imag-
ing through scattering media. For the intensity of light transmitted through the
medium with no absorption (σa = 0) this statement is illustrated in Fig. 7.20.

To describe data [20] for the degree of linear polarization, first we match

σ
(W )
dep /σtr from comparison of our theoretical dependence Eq. (7.64) with the corre-

sponding data [20] far away from the obstacle edge (see Fig. 7.21). For the matched

7 Transillumination of highly scattering media by polarized light
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Fig. 7.25. Comparison of the polarization-difference profiles (measured (a) [24] and cal-
culated (b)) for circularly (solid curve) and linearly (dashed curve) polarized light . The
experimental conditions are the same as in Fig. 7.24.

value of σ
(W )
dep /σtr the theoretical edge spread for the degree of polarization corre-

lates well with experimental data [20] (see Fig. 7.22).
The results presented in Fig. 7.23 show how the spatial resolution of the image

depends on the polarization state of light. In Fig. 7.23, the normalized edge spread
functions for the intensity of the co- ((I +W )/2) and cross-polarized ((I −W )/2)

components are shown. Ratio σ
(W )
dep /σtr was calculated with the Mie theory. As

follows from the figure, the results of our calculations are in good agreement with
experimental data [13]. Our results for I and W underlying Fig. 7.23 are obtained
from Eq. (7.81) with no additional fitting parameters.

Our theoretical results correlate also with measurements of the polarization-
difference images of finite-sized objects. Examples of the corresponding profiles for
the intensity of polarized components and the polarization-difference are shown
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in Figs. 7.24 and 7.25. The profiles presented in the figures were measured in
experiment [24] and also calculated within the framework of our approach. The
analytical results obtained for an absorbing stripe were employed. No adjusted
parameters to give a good fit to experimental data [24] were used in our calculations.

7.7 Image simulation

Once the validity of our theoretical approach has been tested by comparison with
experimental and numerical data, let us apply our results to the image simulation
under more realistic conditions.

In the presence of a partially absorbing and scattering inhomogeneity, the in-
tensity of radiation transmitted through the sample can be represented as the sum
of the intensity of radiation passing by the inhomogeneity and the intensity of
radiation passing through it. The first quantity has been calculated above in the
context of studying completely absorbing obstacles.

To calculate the intensity of radiation passing through the inhomogeneity we
take advantage of the model of the depth-average optical properties. Within the
framework of the model [75], the heterogeneous medium is changed for the homoge-
neous medium but with the same values of the total optical thickness with respect
to scattering and absorption,

σeff
tr =

1

z

z∫
0

dz′ σtr(z′), σeff
a =

1

z

z∫
0

dz′ σa(z′) (7.85)

Within this approximation, the intensity of radiation transmitted, for example,
through a strip-like inhomogeneity takes the form

E(t)(z, h) =
1

2
Ĩ

{
erf

(
a/2 + h

δ̃

)
− erf

(
a/2− h

δ̃

)}
(7.86)

where quantities Ĩ and δ̃ are calculated for the medium with optical properties
given by Eq. (7.85). We can obtain the expressions for Ĩ and δ̃ from Eqs. (7.78)
or (7.81) by substituting (σtr(z − Δz) + σtr2Δz)/z and (σa(z − Δz) + σa2Δz)/z
for σtr and σa, respectively. Here σtr2 and σa2 are the optical coefficients of the
inhomogeneity, Δz is its thickness.

To calculate the corresponding contribution for linearly and circularly polarized
modes, W and V , the model of the depth-average optical properties should be

extended with allowance for depolarization coefficients σ
(W )
dep and σ

(V )
dep .

The results obtained above can be used as a basis for simulating the image of
an arbitrary-shaped obstacle.

The cross-section of such an inhomogeneity can be marked off into squares
(or rectangles). The sum of the contributions from each element to the detected

7 Transillumination of highly scattering media by polarized light
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intensity can be written as

E = I +
1

4

∑
i

(
Ĩi · f̃i − I · fi

)
(7.87)

where the sum is taken over all elements. Quantity Ĩi is calculated with the depth-
average absorption and transport scattering coefficients which are calculated along
a straight line passing through ith element. Quantity fi is given by

fi =

{
erf

(
h−x,i
δ

)
+ erf

(
h+x,i
δ

)}
·
{
erf

(
h−y,i
δ

)
+ erf

(
h+y,i
δ

)}
(7.88)

where h±x,i = ai/2± (hx−xi), h±y,i = bi/2± (hy − yi), vector (xi, yi) determines the

position of ith element center. Quantity f̃i differs from fi only by substitution of the
corresponding depth-average optical coefficients for the coefficients of the surround-
ing medium. The E-functions for linearly and circularly polarized modes, E(W ) and
E(V ), respectively, are obtained from Eq. (7.87) with allowance for Eqs. (7.55) and
(7.56).

From Eqs. (7.87) and (7.88) it follows that simulation of 2-D images in
polarization-gated transillumination can be reduced to elementary procedures. The
cross-section of an object is to be represented as a set of squares (or rectangles).
Next we calculate the depth-average optical coefficients for each element. Finally,
summing over all contributions (see Eq. (7.87)), we find the spatial distribution of
the usual intensity or the corresponding differential polarization intensity in 2-D
image.

As an illustration of the approach described above, let us give a number of
examples of 2D-image simulation.

Fig. 7.26 demonstrates an ability to distinguish two objects from their images
with different polarizations. The conditions are similar to those occurring in the

experiments. The depolarization coefficients were chosen equal to σ
(W )
dep = σ

(V )
dep/2 =

0.1 · σtr. These values are typical for the phantoms composed of polystyrene and
silica microspheres.

Examples of 2D-images of an absorbing screen and a low-contrast inhomogeneity
are presented in Figs. 7.27–7.29. The case of low-contrast objects is more frequent
in actual diagnostic conditions (see, e.g., [29–33]). According to [29–33], the ab-
sorption coefficient in the objects is 2÷ 3 times greater than that in the surround-
ing tissue. Variations in the transport scattering coefficient do not exceed 20%.

WI V

Fig. 7.26. 2-D image of two absorbing screens. Screens 2mm×2mm in size are separated
by a 2mm gap and positioned in the center plane of the sample, z0 = z/2. The thickness
and the transport optical thickness of the sample are 10mm and 10, respectively.
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WI V

Fig. 7.27. 2-D image of a completely absorbing screen. Thickness of the sample
z = 10mm. A 2mm×2mm screen is positioned in the center plane of the sample, z0 = z/2.
The transport scattering and absorption coefficients of the sample are σtr = 1.0mm−1,
σa = 0, respectively. The depolarization coefficients of the object and the surrounding
medium equal σ

(W )
dep = 0.5 · σ(V )

dep = 0.1 · σtr.

WI V

Fig. 7.28. 2-D image of a low contrast object. Thickness of the sample z = 10mm. A
2mm× 2mm× 2mm cube is positioned in the center plane of the sample, z0 = z/2. The
transport scattering and absorption coefficients of the sample are σtr = 1.0mm−1, σa = 0,
respectively. The optical coefficients of the object are σtr2 = 1.2mm−1, σa2 = 0.01mm−1.
The depolarization coefficients of the object and the surrounding medium equal σ

(W )
dep =

0.5 · σ(V )
dep = 0.1 · σtr.

WI V

Fig. 7.29. The same as in Fig. 7.28, but σtr2 = 0.8mm−1.

7 Transillumination of highly scattering media by polarized light
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However the difference in σtr between the object and the surrounding medium
exceeds essentially, as a rule, the value of the absorption coefficient. In our cal-
culations, parameters of the objects were chosen close to experimental conditions
[30, 31], σtr = 1mm−1, δσtr = ±0.2mm−1. From Figs. 7.27–7.29 it follows that
the polarization-difference images obtained with the linearly polarized light exhibit
better contrast and spatial resolution. This is particularly true for the phantoms.

A more realistic situation is illustrated in Figs. 7.30, 7.31. The coefficients of
depolarization in the object and the surrounding medium were taken close to those

in biological tissues, σ
(W )
dep = 0.35 · σtr, σ(V )

dep = 0.7 · σtr. In this case the difference
between the images obtained with linearly and circularly polarized light is less
distinctive.

WI V

Fig. 7.30. The same as in Fig. 7.28, but the depolarization coefficients of the object and
the surrounding medium equal σ

(W )
dep = 0.5 · σ(V )

dep = 0.35 · σtr.

WI V

Fig. 7.31. The same as in Fig. 7.30, but σtr2 = 0.8mm−1.

From the results presented above it follows that the polarization-difference tech-
nique provides rather good contrast and spatial resolution. More contrast image is
obtained for more attenuated polarization mode. The above-mentioned feature has
already been noted in a number of experiments (see, e.g., [25]).

Thus, the applicability of the polarization-difference technique is primarily gov-
erned by the threshold of detecting the polarization modes. The threshold value
of the degree of polarization depends both on the polarization sensitivity of the
detector and on the contribution from the polarized component of the diffusive
background (the latter can be estimated as σaθ

2/3σtr, where angle θ is counted
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from the forward direction [39–41]). These conditions restrict the applicability of
the polarization-difference approach by relatively thin layers. The currently avail-
able experimental data relate to the values of the transport optical thickness no
greater than σtrz ∼ 10.

As has been pointed out above the difference in σtr (and, consequently, in σ
(W )
dep

and σ
(V )
dep ) between objects and surrounding tissues exceeds the typical values of the

absorption coefficients. Therefore, the polarization-gating techniques are suited for
measurements of the difference in scattering properties rather than in absorption.

7.8 Conclusions

We have described an approach for calculating the polarization-difference image
of an object embedded in a highly scattering medium. This approach rests on the
basic mode approximation in the vector radiative transfer equation. For additional
simplifications we have taken advantage of the small-angle Fokker-Planck approx-
imation. As a result we have first advanced an analytical model of propagation of
polarized light through tissue-like media. Our model gives an insight into depo-
larization of light in the medium and is suited to semi-quantitative calculations
of the depth-dependence of the degree of polarization and the image profiles. Ac-
cording to this model, the polarization state of radiation can be determined by
the basic modes, namely, by intensity I, circularly and linearly polarized modes, V
and W , respectively. The values of V and W differ from the intensity only by the
factors that are responsible for depolarization and describe attenuation in domain
of temporal delays Δ = ct−z. To go to the case of continuous illumination, the cor-
responding expressions should be integrated over delay Δ. Polarization-difference
imaging has been shown to be equivalent to transillumination with the time-gating
interval of the order of Δ ∼ 0.5 z (i.e. virtually with the interval that separates
the quasi-straightforward propagating (or snake-) photons from the diffusive ones).
Our results relate the image characteristics to the optical properties of the medium
and reproduce the available experimental data for tissue-like phantoms with no ad-
justing parameters. Within the framework of our approach a numerical procedure
has been proposed to simulate polarization-difference images of millimeter-sized
inhomogeneities immersed in highly scattering media. Examples of simulation of
2-D images have been presented for a number of cases which closely resemble actual
conditions in transillumination of biological tissues.
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8 On the application of the invariant embedding
method and the radiative transfer equation
codes for surface state analysis

Victor P. Afanas’ev, Dmitry S. Efremenko and Alexander V. Lubenchenko

8.1 Introduction

The equivalence of equations, describing the various physical phenomena, always
provides a mutual enrichment of theories. For example, the analogy of the force lines
of the electric field and the current lines of a viscous incompressible fluid created
the Ostrogradsky–Gauss theorem. The authors of this chapter have background in
the theory of electron transfer [1–3] and light ion transfer [4]. Atmospheric remote
sensing and electron spectroscopy have much in common in the principle of their
methodology. In both cases the inverse problem is solved on the base of spectra
of the reflected beam of photons or particles. The spectra are formed due to the
interaction between the beam and the investigated medium.

In this chapter our attention is focused on scattering with a highly anisotropic
scattering phase function ω(θ), where θ is the scattering angle. We introduce a
degree of elongation k = ω(0)/ω(π). For considered problems the parameter k
lies between 103 and 1011. Minimum values of the degree of elongation appear in
optical scattering problems with aerosols of a small fraction. Maximum values of
k occur in the description of photon scattering by a coarse fraction aerosol and
light ion scattering with energies of several MeV (1 eV = 1.6 × 10−19 J). Such
high energies are common for Rutherford backscattering spectroscopy (RBS). For
electron scattering the elongation has intermediate values: k � 104–108. The small-
angle approximation is efficiently used for the highest values of k, for instance, in
RBS [5]. Many computational problems have been discovered and solved during the
numerical solution of optical problems. This fact has stimulated the development
of transport equation numerical solutions, excluding as many approximations to
describe the multiple scattering as possible.

Electrons with energies in units of keV, scattered by heavy elements (such as
gold), have k ≈ 104. It is known that calculations based on small-angle approxima-
tion in this situation leads to large errors. Nevertheless small-angle approximation
is acceptable for the description of electron scattering with energy ∼ 10 keV in the
samples of light elements (such as beryllium or carbon).

The verification of all, even the most reliable, solutions proved by all the theo-
rems of existence and uniqueness should be based on comparison with experimental
data. Ideally, the structure and the composition of the sample component should be
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investigated by independent methods. All the above conditions are fulfilled in the
study of angular distributions of elastically scattered electrons. Elastic peak elec-
tron spectroscopy (hereafter EPES) is an actively developed method for sample
composition analysis in near-surface layers. The investigated depth is from 0.5 nm
to 50 nm. The phenomenon of electron elastic reflection has been known since the
Germer/Devison experiment on low-energy electron diffraction – LEED [6]. The
possibility of using the phenomenon of electron elastic reflection was predicted in
[7]. The classical works [8–11] should be referred in the context of the development
of EPES for the surface analysis of solids. However, the EPES method requires
the elastic energy loss spectra measured with high-energy resolution (< 0.5 eV for
the initial energy of some keV). That is why it has been developed only in the
twenty-first century. The EPES method is often called ‘the electron Rutherford
backscattering’. The name indicates the prototype – Rutherford backscattering
(RBS) [12], in which the sample is irradiated not with electrons, but with light
ions. There are less strict requirements on the accuracy of the spectra measure-
ments in the RBS method, but a proton accelerator to MeV energies is required.
Despite this, the RBS method was widely used in the twentieth century, mainly due
to a simple and intuitive classical small-angle model used to interpret the measured
spectra. The main difficulty in the interpretation of reflected electron spectra is the
consideration of multiple scattering.

The main goal of our research is to create an analytical tool to interpret the
EPES spectra. EPES deals with the spectra measured for a reflection and a trans-
mission. The energy of the probing electron beam lies between 103 eV and 105 eV.
For these energies, the interaction between fast electrons and solids can be sepa-
rated into two independent types of scattering according to the Fermi hypothesis.
The following nomenclature is adopted. The electron interaction with the elec-
tronic structure of solids is called ‘an inelastic scattering’. It can be local (ioniza-
tion) and nonlocal (the excitation of the plasmons). The interaction of an electron
beam with a nucleus is called ‘an elastic scattering’. In the range 103–105 eV the
‘bremsstrahlung’ can be neglected. The approximation of a broad beam is used – a
monoenergetic, monodirectional flux of the electrons falls on the sample. The flux
of the reflected electrons will be denoted by the function R.

EPES can be used not only for the diagnosis of a solid surface, but also for the
verification of the computational models. For example, the surface excitation pa-
rameters (SEP) [13, 14] can be extracted from EPES spectra. Accurate description
of the elastic peak shape is used as well for calculations of the spectra measured
on the wider energy loss range 0–100 eV (called ‘the reflection electron energy loss
spectroscopy’ – REELS) [15].

Among the modern methods of the theoretical description of the optical radi-
ation and the particle multiple scattering, there are both analytical and numer-
ical methods based on solution of the radiative transfer equation and statistical
modeling methods (Monte Carlo (MC) methods) [16, 17], providing the numerical
solutions of the transfer equation [18].

The radiative transfer equation (RTE) considers the radiation itself as the en-
ergy flow regardless of its nature. The main characteristic is the radiation intensity.
The RTE can be successfully used not only for optical radiation [19, 20], but also for
particles [21, 22]: electrons, ions, neutrons. The study of optical radiative transfer
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in turbid media is based on photometrical representation and formulated in terms
of ray optics, while the study of electron flow transfer in solids is based on the
classical description of electron–solid interaction. The classical description is only
applicable if the quantum effects can be neglected. This is valid if the de Broglie
wavelength of the moving particle is less than the characteristic dimension of an
‘elementary’ scattering volume. The distance between atoms of the sample is about
a few angstroms. For electrons scattered in a solid, this distance is considered as
a characteristic dimension. The electron wavelength approaches this limit by the
energies less than 150 eV.

The methods of statistical modeling enable us to solve the problem of electron
multiple scattering in inhomogeneous media that approach the real samples as
closely as possible [23–26]. Still for an adequate computing accuracy of the various
characteristics, it is necessary to analyze about 107–109 trajectories. This takes
too much time, even using modern computing machinery. In addition, as a rule,
the problem of the experimental data interpretation includes the inverse radiative
transfer problem. In this case, the statistical modeling appears to be inefficient. The
analytical methods of RTE solving enable us to analyze the experimental data in
terms of simple physical parameters and to solve the ill-posed and inverse problems
of radiative transfer theory.

A detailed description of multiple scattering is required to develop the precise
analytical methods for RTE computations. These methods should be based on an
exact solution of the boundary-value problem of the RTE. The solution complexity
of the boundary-value problem is determined, first of all, by the boundary condi-
tions: the radiation of the source impinges upon the upper bound, while the lower
bound is not illuminated. As shown in [27], such inhomogeneous boundary-value
problem results in that the RTE solution is not a simple function, but it belongs
to the class of generalized functions. This fact complicates the RTE solution sig-
nificantly even in the simplest case – radiation backscattering from a homogeneous
semi-infinite medium with an isotropic single scattering law.

The propagation of radiation in real media (the ocean and atmospheric aerosol)
and the propagation of electrons in solids are characterized by the high anisotropy
of single elastic scattering. The total scattering cross-section exceeds the transport
scattering cross-section considerably. In this case, for the analytical and numeri-
cal solution of RTE boundary-value problems, some special approximate methods
based on small-angle approximation are used [28–30].

The backscattered radiation is traditionally computed in the quasi-single scat-
tering model based on the small-angle approximation [31–35]. The main problem
of the quasi-single scattering approximation is an ambiguity in the separation of
the single scattering phase function into a ‘sharp’ small-angle part describing a
forward motion and a ‘blunt’ part describing a backscattering. The solution of
this problem may not be formalized since it is a subjective decision. A backscat-
tered signal can be interpreted with good precision by a successful separation. On
the other hand, the study of the ray trajectories in turbid media using statistical
modeling programs shows that the small-angle approximation does not describe
the backscattered radiation flow from the real media in some cases. Therefore the
applicability range problem of the small-angle approximation, specifically of the
quasi-single scattering approximation, turns out to be urgent.
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Recently, many numerical methods for optical RTE solution based on the solu-
tion discretization or its expansion by an orthonormal basis into special functions
have been developed [36–39]. Using these methods for the problem of radiation
propagation in media with an anisotropic single scattering law leads to practically
insuperable computation difficulties as the solution instability increases consider-
ably. To overcome this instability, the number of solved equations increases signifi-
cantly. Therefore, the computational time increases as well and it can approach the
computational times of the MC method. It is more effective to solve the problem
of instability using the special methods based on the selection of a singular part,
of an a priori known type, and a regular part. For the regular part, an equation
is deduced from the RTE that is solved numerically thereupon. Such a solution
is more stable and converges more quickly. As a singular part in [40], the Dirac
δ-function was used; in [41] it was the small-angle solution.

Most of the solution methods of the RTE boundary-value problem are devel-
oped for optical radiation scattering. Optical radiation transfer in turbid media and
electron transfer in solids are described by equivalent equations. But the parame-
ters of the scattering medium are of a different physical nature. Optical radiation
and electron propagation are similar due to the purely elastic scattering. Still by
the multiple scattering, the photons are absorbed and the electrons are stopped.
The absorption and stopping are absolutely different physical processes. Whereas
photon absorption supposes just its instantaneous disappearance, electron stopping
never leads to disappearance: the electrons lose energy, slow down and finally stop.
The equations of optical radiation and electron flow transfer differ deeply though
being similar. Therefore, the development of a rapid and precise method for com-
puting the characteristics of multiply scattered electrons with an anisotropic single
scattering law is of current interest.

This research is focused on the development of an analytical tool to inter-
pret EPES spectra taking into account the methodology experience from radiative
transfer theory.

This chapter is organized as follows. The structure of elastically scattered elec-
tron spectra is discussed in the Section 8.2. The radiative transfer models used
for electron spectra interpretation are considered in Section 8.3 and in Section 8.4.
Section 8.5 is devoted to the case of the semi-infinite medium and the formulation
of the synthetic algorithm to solve the Ambartsumyan equation. The verification of
the Rubin–Everhart model and the small-angle approximation on the base of DIS-
ORT, MDOM, NMSS code is shown in Section 8.6. In Section 8.7 the developed
models are applied for surface analysis. The chapter concludes with a summary,
Section 8.8.

8.2 The structure of the elastic peak

8.2.1 The energy shift of elastic peaks

The idea of EPES is based on the term elastic energy loss (also referred as recoil
energy). Consider an electron with initial energy E0, velocity V0 and mass m, that
is incident on the motionless nucleus M . Then the elastic scattering occurs on the
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Fig. 8.1. The scattering of the electron with the mass m on the nuclear with mass M .

electrostatic potential of a nucleus. As a result, the trajectory of the electron is
rotated by the angle θ. The nucleus achieves the velocity U by angle φ (Fig. 8.1)
while the electron gets the velocity V1.

In the case of elastic scattering the energy and momentum conservation laws
can be applied. ⎧⎪⎪⎪⎨⎪⎪⎪⎩

mV 2
0

2
=
mV 2

1

2
+
MU2

2

(x) : mV0 = mV1 cos θ +MU cosφ

(y) : 0 = mV1 sin θ −MU sinφ

(8.1)

From this system the ratio of the incident electron energy and scattered electron
energy is determined as following:

E1

E0
=

(√
M2 −m2 sin2 θ +m cos θ

m+M

)2

(8.2)

The right side is called the ‘kinematic factor’ and depends on the angle of scattering
and the ratio m/M . From (8.2) the relation for energy losses can be achieved
ΔE = E0 − E1. Since M � m, the energy loss reads as:

ΔE =
2m

M
(1− cos θ)E0 (8.3)

Thus, the energy loss depends on the mass of the nucleus, which elastically scatters
the incident electron. Therefore, for instance, the energy spectrum of the elastically
reflected electrons by a two-component system consisting of atoms with the masses
M1 and M2 will be formed by the electrons with energy losses

ΔE1 =
2m

M1
E0 (1− cos θ) and ΔE2 =

2m

M2
E0 (1− cos θ)

The reader can notice that Eq. (8.3) is similar to the expression Δλ = h(mc)−1

(1−cos θ), describing the Compton scattering [42]. That is why the elastic scattering
in the paper [43] is referred as the Compton scattering.

8.2.2 The broadening of elastic peaks

The spectrum of energy losses will be generated not only by electrons with the
energy loss corresponding to (8.3), but also with energies close to it. With a good
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degree of accuracy the energy distribution of the electrons elastically scattered from
the nucleus mass M can be described by a Gaussian distribution

G (Δ,ΔE, σtotal) =
1√

2πσtotal
exp

(
− (Δ−ΔE)

2

2σ2
total

)
(8.4)

Here Δ is the energy loss, ΔE is the elastic energy loss, σtotal is the standard
deviation of the normal distribution. The elastic peak broadening is defined by
four factors:

1. The energy spread of electron guns: the flux of electrons is not strictly
monoenergetic. The energy distribution of the electrons emitted by an electron
gun is described by the function G (Δ, 0, σG).

2. The Doppler effect due to the thermal motion of the target nucleus:
Eq. (8.3) was obtained under the assumption that the nucleus is motionless. If
the electron is moving, then the kinetic energy with respect to the nucleus Eeff

0

can be larger or smaller than E0. Thus, the recoil energy reads as:

ΔE′ =
2m

M
Eeff

0 (1− cos θ) (8.5)

The Doppler effect leads to the additional broadening of the elastic peak, which
is equivalent to the convolution of the spectrum with the function G (Δ, 0, σD).
The value σD depends on the sample temperature and can be reduced by sample
cooling. The molecular-kinetic theory provides an estimation for σD:

σD =
√

2E0RGTm/M (8.6)

here RG is the universal gas constant. The quantum-mechanical theory that
takes into account the influence of phonon excitations on the broadening of the
peaks of elastically scattered electrons, is presented in [44].

3. The resolution of the energy analyzer: the energy analyzer introduces an
additional broadeningσA into measured spectra.

4. The multiple elastic scattering. The theoretical calculations and Monte
Carlo simulations [2] indicate that the multiple elastic scattering leads to a
broadening of the elastic peak and its shift. Usually these effects can be ne-
glected.

The impact of each factor is described by the convolution of the measured spec-
tra with Gaussian function with a broadening σtotal. Due to the normal distribution
properties, the total broadening σtotal can be calculated as

σtotal =
√
σ2
G + σ2

D + σ2
A (8.7)

A criterion of EPES applicability is similar to the Rayleigh criterion in op-
tics. Consider a sample with two the elements (the masses areM1 andM2), forming
the peaks of elastically scattered electrons with broadenings σ1 and σ2. According
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to Eq. (8.3), the position of maxima are determined by relations

ΔE1 =
2m

M1
(1− cos θ)E0 , ΔE2 =

2m

M2
(1− cos θ)E0

The distance between the elastic peaks on the energy axis is |ΔE2 −ΔE1|.
The peaks can be resolved if the distance between them exceeds the half-width
|ΔE2 −ΔE1| > σ1 + σ2. So we have:

E0 >
σ1 + σ2

2m (1− cos θ)

M1M2

|M2 −M1| (8.8)

Thus, for the implementation of EPES one needs:

– the high-energy of an electron probing beam (10–40 keV);
– a large difference between the masses of the sample elements (for instance,

hydrogen in metals);
– a large scattering angle (the scattering angle in the equipment where EPES

spectra were resolved [43] for the first time was 120 degrees);
– a measurement equipment with high-energy resolution (state-of-the-art energy

analyzers have an apparatus function with the broadening ∼0.01 eV).

The way how to extract the information about the sample composition with the
condition (8.8) violated will be described in the next subsection.

8.2.3 Qualitative analysis of the experimental spectra of elastically
scattered electrons

Let us make a qualitative analysis of the spectra measured at the Australian Na-
tional University by M. Vos. Figure 8.2 shows the spectrum of the electrons elas-
tically scattered from a three-layer system Au/(Si + N)/Si. The positions of the
elastic peaks in the experiment coincide with the calculations by Eq. (8.3):

ΔEAu = 0.33 eV, ΔESi = 2.3 eV, ΔEN = 4.6 eV.

The reader can note that the width of the elastic peak is smaller for greater mass
of the nucleus, which corresponds to the Eq. (8.6).

The EPES method is efficient, particularly for the detection of the bound hy-
drogen and its isotopes. Figure 8.3 shows the experimental data from [43]. The
hydrogen elastic peak is located far enough from the second elastic peak, which
makes it easy to resolve them. However, the hydrogen elastic peak is located in
an area in which the inelastic loss background becomes significant. In fact, this
background is formed by the electrons that suffer the inelastic collisions.

The spectrum of elastically reflected electrons R(Δ) can be represented in the
form of Gaussian sum:

R (Δ) =
∑
k

SkG (Δ,ΔEk, σk) (8.9)

where Sk is the area under the peak of kth element, ΔEk is the recoil energy for the
kth element, σk is the broadening of kth element peak. The position of the peaks
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Fig. 8.2. The elastically reflected energy spectrum for the three-layer system (Au)/
(Si +N)/(Si). The scattering angle is θ = 120◦, the probing beam energy is E0 = 40 keV.

 
Fig. 8.3. The spectrum of the electrons elastically scattered by the formvar film containing
hydrogen [43].
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depends on the sample composition (in other words, it depends on the presence of
specific chemical elements). However, the information about the structure sample is
contained in the coefficients Sk. The quantitative EPES requires binding between
coefficients Sk and the scattering medium properties. It can be established by
radiative transfer models. The next section is devoted to the transport models for
electrons in solids.

8.3 Models of elastic electron transport in solids

8.3.1 Review of electron transport models in solids

The calculation of elastically scattered electron intensity can be carried out by
two independent methods. The first method is based on the calculation of the
pass-length distributions taking into account only the elastic scattering and then
applying the Bouguer law for removing particles being scattered inelastically. This
method has been implemented in [45–47]. The disadvantage of this approach is the
need to compute the pass-length distributions.

Monte Carlo simulations (MC) are widely used for theoretical calculations. How-
ever, the MC simulations of the properties of the reflected or transmitted beam
always contain a stochastic error. The efficiency of the local estimation method
[16] is low for electrons since they not only change the direction of motion, but also
lose their energy. The dispersion of the MC method increases drastically in the case
of a strong anisotropy of the single scattering phase function (the case of electron
energy of some kiloelectronvolts). For instance, 107 trajectories are simulated in
[48, 49] to compute the angular distributions of the reflected 1-keV electrons. The
average error of MC simulations is 2%. For 10-keV electrons the error is 15%. The
higher number of trajectories is used to reduce the dispersion. The stochastic error
is proportional to N−0.5, where N is the number of simulated particles. Thus, the
computations appear to be time-consuming. This fact can eliminate all advances
of the MC method.

Analytical solutions are especially valuable for inverse problems. The term in-
verse problem for the electron spectroscopy means a determination of scattering
medium properties from the experimentally measured spectral and spatial charac-
teristics of the scattered electrons. High computational speed can be achieved if
the spectra are determined on the basis of analytical expressions.

We have already mentioned that the method ‘e-Rutherford scattering’ [50, 51]
implies the prototype – the Rutherford backscattering of light ions [52]. This
method needs the accelerator of fast ions. Nevertheless one of the main advan-
tages of RBS is the possibility of using a simple classical model of the small-angle
deflection of Rubin [33]. In this theory, the particle moves straight ahead before
and after the act of the strong scattering. The energy loss occurs during the elastic
scattering. The process of the straight forward motion is accompanied by inelastic
energy losses. This model was used by Everhart [32] for the total reflection coeffi-
cient calculations. It was shown that most adequately the ‘straight forward’ model
describes the reflection coefficients of the sample, whenever the nuclear charge of
sample atoms does not exceed the value of Z < 30 [33].
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The development of the ‘straight ahead’ approach in the elastic scattering
channel is the small-angle approximation, which takes into account the multiple
elastic scattering of the electrons during their motion in the sample. It leads to
the isotropization of the flux. This approach is proposed in the classical paper of
Goudsmit and Saunderson [53]. In the small-angle model used in [50, 54, 55], the
process of the straight-line motion is not accompanied by inelastic energy losses.
Also, it is assumed that all particles move along the initial direction. At least one
‘strong’ scattering is required for the electrons to lose energy. The expression ‘strong
scattering’ means scattering by a large angle. It changes the trajectory of motion
significantly. The multiple small-angle scattering with a ‘strong’ collision called
‘quasi-single scattering approximation’ [56]. The discussion about alternative ana-
lytical methods for calculating the characteristics of the spectra of the elastically
scattered electrons can be found in [57].

Let us show that the energy losses during the small-angle movement are negli-
gibly small comparing to the losses due to the strong single scattering. Consider a
movement along the half-circle due to the multiple elastic scattering (Fig. 8.4(a)).
The electron suffers N collusions during the movement and it changes the direction
by the angle θ/N . Then the total energy loss will be:

ΔĒ′ = E0N

∫ γ

0

2m

M
sin2

θ

2N
dθ (8.10)

For the simplicity, the case of the backscattering (γ = π) is considered. Since
N � 1,

sin2
θ

2N
≈ θ2

4N2

and Eq. (8.10) is simplified

ΔĒ′ = E0
m π3

6MN

The energy loss value for a single backscattering (see Fig. 8.4(b)) is

ΔĒ = E0
4m

M

And the ratio is expressed by
ΔĒ′

ΔĒ
=

π3

24N
(8.11)

So ΔĒ′ 	 ΔĒ whenever N � 1.

 
Fig. 8.4. Two types of the trajectory: (a) half circle, (b) straight-forward-back.
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8.3.2 The model of elastic electron scattering by a single plane layer

Let us consider a theoretical model, which is used for the investigation of multiple
electron scattering in solids. The standard assumption of a flat layer is used. The
sample is considered to be a plane-parallel layer with the thickness d and with
constant scattering properties in the whole volume. Internal sources are absent.
The axis OZ is perpendicular to the upper border inside a medium. Zero of the
coordinate system is placed at the upper border. Then z is the coordinate on the
axis OZ. A mono-energetic and mono-directional electron beam impinges on the
surface along the direction Ω̂0 with density F0 and initial energy E0. The unit
vectors along the corresponding directions are indicated by ‘ˆ’. The direction of
the particle movement Ω̂ = (cos θ sinϕ sin θ sinϕ cosϕ) is defined by the polar
angle θ and the azimuth angle ϕ.

The electrons change direction and lose the energy Δ as a consequence of the
scattering in the medium. Only the elastic energy losses are of interest. Nothing but
the ‘strong’ elastic scattering event changes the propagation direction significantly.
The probability that no inelastic processes occur over a path-length u is given
by exp(−n0σinu), where σin is the inelastic scattering cross-section and n0 is the
atomic concentration. In the following we use:

exp (−n0 σinu) = exp (−u/lin)

where lin is the inelastic mean free path.
As the probability of the large angle scattering (‘strong’ scattering) for electrons

with an energy of a few kiloelectronvols is much smaller than for the small-angle
scattering, the electron movement is well described by the single scattering approx-
imation. Moreover, the electron reflection and transition functions can be separated
by the energy and angular variables.

Given the path-length distribution of the electrons reflected by the layer
AR(u, d, Ω̂0, Ω̂) or transmitted through the layer AT (u, d, Ω̂0, Ω̂), the spectra of elas-
tically reflected electrons are described by the reflection function R(d,E0,Δ, Ω̂0, Ω̂),
while the spectra of the elastically-transmitted particles are described by the trans-
mission function T (d,E0,Δ, Ω̂0, Ω̂):

R
(
d,Δ, Ω̂0, Ω̂

)
= G

(
Δ, Ω̂0 · Ω̂

)
Rel

(
d, Ω̂0, Ω̂

)
= G

(
Δ, Ω̂0 · Ω̂

) ∫ ∞

0

AR

(
u, d, Ω̂0, Ω̂

)
e−n0 σinu du

T
(
d,Δ, Ω̂0, Ω̂

)
= G

(
Δ, Ω̂0 · Ω̂

)
Tel
(
d, Ω̂0, Ω̂

)
= G

(
Δ, Ω̂0 · Ω̂

) ∫ ∞

0

AT

(
u, d, Ω̂0, Ω̂

)
e−n0 σinu du

(8.12)

with G being a Gaussian function which maxima and broadenings are depends on
the geometry, as it has been described in the previous paragraphs.
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8.3.3 The optical similarity

The functions AR(.) and AT (.) are the solutions of the boundary value problem for
the transfer of the elastically scattered electrons in a layer. The description of the
multiple elastic interaction between the electron beam and the scattering medium
is based on the Lewis–Spencer equation [58]:

μ
∂

∂z
A
(
u, z, Ω̂0, Ω̂

)
+

∂

∂u
A
(
u, z, Ω̂0, Ω̂

)
+ n0 σelA

(
u, z, Ω̂0, Ω̂

)
= n0

∫
4π

A
(
u, z, Ω̂0, Ω̂

′)ωel

(
Ω̂ · Ω̂′) dΩ′ (8.13)

with the following boundary conditions⎧⎪⎨⎪⎩
A
(
0, z, Ω̂0, Ω̂

)
= 0, z > 0,

A
(
u, 0, Ω̂0, Ω̂

)
= δ

(
Ω̂0 − Ω̂

)
, μ > 0,

A
(
u, d, Ω̂0, Ω̂

)
= 0, μ < 0,

(8.14)

where u is a path-length, A
(
u, z, Ω̂0, Ω̂

)
is a path-length distribution of electrons

with the angle of incidence Ω0 and moving in the direction Ω̂ at the point z, μ = zΩ̂
is cosine of the angle between the direction of motion Ω̂ and the axis OZ, ωel is
the differential cross-section for the elastic scattering of the electrons in solids. The
particles that escape the inelastic interactions are of interest. The probability of
escaping the inelastic interactions is determined by the exponential law of Bouguer.
Thus, a new function is introduced:

L
(
z, Ω̂0, Ω̂

)
=

∫ ∞

0

A
(
u, z, Ω̂0, Ω̂

)
exp

(− n0 σinu
)
du , (8.15)

which describes the elastically scattered electron flux. Applying this transformation
to (8.13) and (8.14), one can get the following equation:

μ
∂

∂τ
L
(
τ, Ω̂0, Ω̂

)
+ L

(
τ, Ω̂0, Ω̂

)
=

λ

4π

∫
4π

L
(
τ, Ω̂0, Ω̂

′)x(Ω̂ · Ω̂′) dΩ′ (8.16)

with the following boundary condition{
L
(
0, Ω̂0, Ω̂

)
= δ

(
Ω̂0 − Ω̂

)
, μ > 0,

L
(
τ, Ω̂0, Ω̂

)
= 0, μ < 0.

(8.17)

Equation (8.16) is the same as the radiative transfer equation, which was rigor-
ously studied by Chandrasekhar [19] and Sobolev [20]. In optics, the function L is
called the ‘radiance’. The transformation (8.15) reveals the connection between two
branches of radiative transfer: the transfer of the photons in the turbid medium
and the transfer of the elastically scattered electrons. Many theories that describe
the light scattering for all wavelengths ([59–61]) have been developed. However, the
atmospheric parameters (such as the particle size distribution, the composition of
the atmosphere) are poorly known. In the case of electron spectroscopy it is possible
to create the sample with known properties. The elastic scattering cross-sections
are also well-known from quantum mechanics theory and experiments. Therefore,
the radiative transfer models can be verified by means of the electron spectroscopy
[62].
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8.3.4 Equations for elastically reflected and elastically transmitted
electrons derived by the invariant-embedding method

The radiative transfer equation has excessive information about the radiance be-
havior inside the medium. Usually one is interested in the scattered radiance which
escapes from the medium. Ambartsumian [63] obtained a nonlinear integral equa-
tion for the radiance factor in the case of a semi-infinite medium on the basis of
the invariant embedding method. Then, Chandrasekhar [19] developed the ideas of
Ambartsumian and derived four integral-differential equations for the reflectance
and transmittance for a finite layer. These equations are nonlinear and heteroge-
neous. But they are more convenient for the boundary value problem solution from
the numerical point of view.

The general solution of the invariant embedding leads to a system of four equa-
tions for the transmission and the reflection. The equations are derived in the
following way: a layer of the thickness dτ is added at the top (Fig. 8.5) or at the
bottom (Fig. 8.6) of the medium. The thickness of the medium is τ . The added
layer is thin enough for the multiple scattering to be neglected. Furthermore, the
difference of the transmittance and the reflectance due to this addition is derived.
Bearing in mind that only a single scattering is possible in the added layer, one
can get a system of equations, obtained by Chandrasekhar [19]:

Fig. 8.5. The processes that change the transmittance and the reflectance in the layer of
thickness dτ above the medium.

Fig. 8.6. The processes that change the transmittance and the reflectance in the layer of
thickness dτ below the medium.
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∂

∂τ
R(τ,ξ,η,ϕ)+

(
1

ξ
+

1

η

)
R(τ,ξ,η,ϕ) =

a︷ ︸︸ ︷
λx(ξ,−η,ϕ)

+

b︷ ︸︸ ︷
λ

4π

∫ 2π

0

∫ 1

0

x
(
ξ,η′,ϕ′)R(τ,η′,η,ϕ−ϕ′) dη′

η′
dϕ′

+

c︷ ︸︸ ︷
λ

4π

∫ 2π

0

∫ 1

0

R
(
τ,ξ,η′,ϕ′)x(η′,η,ϕ−ϕ′) dη′

η′
dϕ′

+

d︷ ︸︸ ︷
λ

16π2

∫ 2π

0

∫ 2π

0

∫ 1

0
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0
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(
τ,ξ,η′,ϕ′)x(−η′,η′,ϕ′−ϕ′′)R(τ,η′,η,ϕ−ϕ′′) dη′′

η′′
dη′

η′
dϕ′′dϕ′

(8.18)

∂
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1

ξ
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0
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0
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0
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(
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(8.19)
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η
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τ
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0
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(8.20)

D. S. Efremenko,V. P. Afanas’ev, and A. V. Lubenchenko



8 On the application of the invariant embedding method 377

∂

∂τ
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(8.21)

The scattering results in changing the direction of movement and losing the energy.
As has been mentioned above, the reflected particles which suffer only the elastic
scatterings are taken into account. They must suffer at least one ‘strong’ collision,
considerably altering the direction of motion, to be reflected. Since the probability
of scattering at large angles (the ‘strong’ scattering) for the keV energy electrons is
orders of magnitude smaller than at small angles, the electron transfer inside the
medium is properly described in a framework of the quasi-single scattering model.

8.4 The quasi-single scattering approximation and the
quasi-multiple scattering approximation

To solve the derived equations, some approximations are used, which in fact are
the variances of the quasi-single scattering approximation. A quasi-single scattering
approximation [31, 34, 35] applied to Eq. (8.16) leads to a well-known problem. The
single scattering phase function has to be split into the sharp ‘small-angle’ part for
the scattering in a forward direction, and into a smooth part for the scattering in
a backward direction. This separation is not unique, has no rigorous justification
and, hence, is often sophisticated. For Eqs. (8.18) to (8.21) such a separation is un-
necessary. Instead of this, two kinds of multiple scattering are considered. The first
kind (‘strong multiple scattering’) converts a descending flux of the particles into
an ascending flux, while the second kind does not. Such separation is already con-
tained in Eqs. (8.18) to (8.21). Obviously, for the reflection the number of processes
of the first kind should be odd. In the quasi-single scattering approximation only
one strong scattering happens. If the absorption before and after the strong scat-
tering is assumed, then we get the ‘classical quasi-single scattering approximation’.
If a small-angle scattering happens before and after the strong scattering, then
such model is called ‘the small-angle quasi-single scattering approximation’. Now
we derive the analytical solutions for Eqs. (8.18) to (8.21) implying the described
models.
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8.4.1 The single scattering model

Excluding the processes b, c and d in (8.18) and (8.19), we get the system of
equations describing the single scattering model – the particles suffer one and only
one elastic scattering:⎧⎪⎪⎪⎨⎪⎪⎪⎩

d

dτ
R1(τ, ξ, η, ϕ) +

(
1

ξ
+

1

η

)
R1(τ, ξ, η, ϕ) = λ x(ξ,−η, ϕ)

d

dτ
T 1(τ, ξ, η, ϕ) +

1

ξ
T 1(τ, ξ, η, ϕ) = λ exp

(
−τ
η

)
x(ξ, η, ϕ)

(8.22)

The solution of the system of equations (8.22) for flat, mono-directional source
reads as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

R1(τ, ξ, η, ϕ) = λ
ηξ

η + ξ
x(ξ,−η, ϕ)

(
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−
(
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1

ξ

)
τ

))
T 1(τ, ξ, η, ϕ) = λ

ηξ

η − ξ
x(ξ, η, ϕ)

(
exp

(
−1

ξ
τ

)
− exp

(
−1

η
τ

)) (8.23)

8.4.2 Linearization of the system of equations in a model with one
strong collision

If we neglect the process d in Eq. (8.18), and the processes c and d in (8.19) and
b′ and d′ in (8.21), we obtain the linearized system, which describes the transfer
with one strong collusion:

∂
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1
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+

1

η

)
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+
λ

4π

∫ 2π

0

∫ 1

0
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(8.24)

∂
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(8.25)

∂
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−τ
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)
x(ξ, η, ϕ)
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η′
dϕ′

(8.26)

This model (8.24) was investigated in works [3, 4] for the reflectance.

D. S. Efremenko,V. P. Afanas’ev, and A. V. Lubenchenko



8 On the application of the invariant embedding method 379

8.4.3 The classical quasi-single scattering approximation

For the keV energy electron scattering in a solid, the probability of small-angle
scattering is the orders of magnitude higher than that for large-angle scattering.
In other words, the elongation parameter k, presented in Section 8.1, is large. For
40 keV for gold k = 105, for carbon k = 107. This fact allows us to use the classical
quasi-single scattering approximation, also referred as the Rubin–Everhart model
[32, 33]. This model is extensively used for the interpretation of RBS spectra of
fast light ions [30, 31], and for an estimation of the elastically scattered electron
intensity [54, 51]. Since the scattering phase function has a strong forward peak, it
can be replaced by the Dirac function:

x
(
Ω̂ · Ω̂0

)
= 2δ

(
Ω̂0 − Ω̂

)
(8.27)

Substituting the approximation (8.27) in the integrals in (8.24), (8.25), (8.26), one
can get the system of ordinary differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(8.28)

The functions T 1 and T1 describe the symmetric processes: a strong scattering –
then the movement without scattering; on the other hand: the movement without
scattering – then a strong scattering. However, the movement may be accompanied
by inelastic scatterings. This is the difference between the classical quasi-scattering
model and single scattering approximation, where an inelastic scattering is absent.
Since the processes have equal probability, the resulting transmission reads as:

T (τ, ξ, η, ϕ) =
1

2

(
T1(τ, ξ, η, ϕ) + T 1(τ, ξ, η, ϕ)

)
(8.29)

Solving (8.28) using (8.29), one can get the expressions for the transmittance and
the reflectance:

T (τ, ξ, η, ϕ) =
λ

2
ηξ

[
x(ξ, η, ϕ)

η(1− λ)− ξ

(
exp

(
−1

η
τ

)
− exp

(
−1− λ

ξ
τ

))
+

x(ξ, η, ϕ)

ξ(1− λ)− η

(
exp

(
−1

ξ
τ

)
− exp

(
−1− λ

η
τ

))] (8.30)

R(τ, ξ, η, ϕ) =
ξη

ξ+η

λ

1−λ x(ξ,−η, ϕ)
(
1−exp

(
−(1−λ)

(
1

η
+

1

ξ

)
τ

))
(8.31)
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8.4.4 The small-angle quasi-single scattering approximation

The equations (8.24), (8.25), (8.26) can be solved by the spherical harmonics
method [64, 65] taking into account multiple scatterings during the movement
before and after the strong scattering. The scattering phase function x

(
ς, η′, ϕ′)

has a sharp peak for ς near to η′ on the interval −1 ≤ η′ ≤ 1, in other words, for
the small-angle scattering. Therefore, we can extend the limits of integration over
η′ on the interval [−1, 1] and use the saddle-point method:∫ 2π

0

∫ 1

0

x(ς, η′, ϕ′)f(τ, η′, η, ϕ− ϕ′)
dη′

η′
dϕ′

≈ 1

ς̄

∫ 2π

0

∫ 1

−1

x(ς, η′, ϕ′)f(τ, η′, η, ϕ− ϕ′) dη′ dϕ′
(8.32)

The operation (8.32) is the calculation of scattering integrals in a small-angle ap-
proximation. However, the processes a and a′ in Eqs. (8.18) to (8.21) are defined
only on the interval 0 < η′ ≤ 1. Let us define new functions, which are equal to
zero on the interval [−1, 0]:

x+(ξ, η, ϕ) =

{
x(ξ, η, ϕ), η > 0
0, η < 0

x−(ξ, η, ϕ) =
{
x(ξ,−η, ϕ), η > 0
0, η < 0

(8.33)

Then we expand the scattering phase function x, the reflection and transmission
functions R and T by the spherical function series:

x
(
ξ, η, ϕ

)
= x

(
Ω̂0 · Ω̂

)
=
∑
l,m

xml Y m
l

(
Ω̂0

)
Y m
l

(
Ω̂
)

(8.34)

R (ξ, η, ϕ) =
∑
l,m

rml Y m
l

(
Ω̂0

)
Y m
l

(
Ω̂
)
, T

(
ξ, η, ϕ

)
=
∑
l,m

tml Y m
l

(
Ω̂0

)
Y m
l

(
Ω̂
)

(8.35)

where xml , rml , tml are the expansion coefficients of the single scattering phase
function, the reflectance and the transmittance respectively. If a phase function is
highly anisotropic, then there is a good approximation for the functions x+ and
x− in the form of series:

xm+
l

(
ξ, η, ϕ

)
=
∑
l,m

xml +Y m
l

(
Ω̂0

)
Y m
l

(
Ω̂
)
, xm−

l

(
ξ, η, ϕ

)
=
∑
l,m

xml −Y m
l

(
Ω̂0

)
Y m
l

(−Ω̂
)

(8.36)
In [3, 66], the following representation of the highly anisotropic single scattering

phase functions has been proposed:

x−
(
Ω̂0 · Ω̂

) ≈ x
(
Ω̂0 · Ω̂

)− 2δ
(
Ω̂0 · Ω̂

)
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Thus, the expansion coefficients by spherical functions read as:

xm−
l =

(
2− xml

)
, xm+

l = xml (8.37)

Substituting (8.32) to (8.36), one can get a linear system of the ordinary dif-
ferential equations with zero boundary conditions for the expansion coefficients T
and R. Using (8.32) for the transmittance, the solution in the small-angle quasi-
single scattering approximation is derived:

R (τ, ξ, η, ϕ) = λ
ξη

ξ + η

∑
l,m

(2− xml )

(1− λxml /2)

×
(
1− exp

(
−
(
1− λ

2
xml

)(
1

ξ
+

1

η

)
τ

))
Y m
l

(
Ω̂0

)
Y m
l

(− Ω̂
)

(8.38)

T (τ,ξ,η,ϕ) =
λ

2
ξη
∑
l,m

(
λxml

η(1−λxml /2)−ξ
(
exp

(
−τ
η

)
−exp

(
−1−λxml /2

ξ
τ

))
+

λxml
ξ(1−λxml /2)−η

(
exp

(
−τ
ξ

)
−exp

(
−1−λxml /2

η
τ

)))
Y m
l

(
Ω̂0

)
Y m
l

(
Ω̂
)
(8.39)

In the obtained solutions of the boundary problem the singular term (Dirac func-
tion) is included. It does not describes scattered particles. Since the Dirac function
cannot be represented in the form of finite series, it should be analytically sub-
tracted for the numerical computations, implying that T and R expansion coeffi-
cients turn to zero whenever l goes to infinity.

8.4.5 The quasi-multiple small-angle approximation. The nonlinear
term in the radiative transfer equation

In the quasi-single small-angle approximation it is assumed that the particle suffers
only one ‘strong’ scattering. The more the single scattering albedo and the less
the single scattering phase function anisotropy is, the higher is the probability
of ‘strong’ scatterings. In this case the quasi-multiple small-angle approximation
has to be used [67]. There the particle suffers some ‘strong’ scatterings, but the
movement between strong collisions is a small-angle one. There is no limitation on
the number of ‘strong’ scatterings. This model is applicable for particles with a
path-length both less and more than the transport path length.

Let us derive the formulas for this model.
Further the substitute

r : R =
μμ0
μ+ μ0

r

is used. Then, the last nonlinear term in Eq. (8.18) can be rewritten as

ληξ

16π2

∫ 2π

0

∫ 2π

0

∫ 1

0

∫ 1

0

1

(ξ + η′) (η′′ + η)
r (τ, ξ, η′, ϕ′)x (−η′, η′, ϕ′ − ϕ′′)

× r (τ, η′, η, ϕ− ϕ′′) dη′′ η′ dϕ′′ dϕ′
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In the integrand, the function x (−η′, η′, ϕ′ − ϕ′′) has a sharp peak at grazing scat-
tering angles (the flux of electrons moving almost parallel to the upper boundary
layer). In this case the maximum is attained, if η′ → 0 and η → 0, ϕ′′ → ϕ′. In the
region near maximum, one can write following expressions:∫ 2π

0

∫ 1

0

r (τ, ξ, η′ → 0, ϕ′)x (−η′ → 0, η′, ϕ′ − ϕ′′) dη′ dϕ′

=

∫ 2π

0

∫ 0

−1

r (τ, ξ, η′ → 0, ϕ′)x (−η′ → 0, η′, ϕ′ − ϕ′′) dη′ dϕ′
(8.40)

The equality (8.40) allows us to extend the region of integration by the variable η′

in the nonlinear term:∫ 2π

0

∫ 1

0

r (τ, ξ, η′ → 0, ϕ′)x (−η′ → 0, η′, ϕ′ − ϕ′′) dη′ dϕ′

=
1

2

∫ 2π

0

∫ 1

−1

r (τ, ξ, η′ → 0, ϕ′)x (−η′ → 0, η′, ϕ′ − ϕ′′) dη′ dϕ′
(8.41)

Taking into account (8.41), the nonlinear term reads as:

1

4

λ

16π2

∫ 2π

0

∫ 2π

0

∫ 1

−1

∫ 1

−1

r(τ,ξ,η′,ϕ′)x(−η′,η′,ϕ′−ϕ′′)r(τ,η′,η,ϕ−ϕ′′)dη′′dη′dϕ′′dϕ′

Expanding the functions r (τ, ξ, η′, ϕ′) and r (τ, η′, η, ϕ− ϕ′′) into the spherical har-
monics series and using the orthogonality properties for expansion coefficients, one
can get the following equation:

rml (τ ′) +
d

dτ ′
rml (τ ′) =

λ

4
xm −
l +

λ

2
xm +
l rml (τ ′) +

λ

4
(rml (τ ′))2 xm −

l (8.42)

where

τ ′ = τ

(
η + ξ

ηξ

)
(8.43)

with a boundary condition:
rml (0) = 0

After some derivations, one can find the solution of (8.42):

rml (τ ′) = rml (∞)

(
1− 1− fml

exp (τ ′ yml /2)− fml

)
(8.44)

where

rml (∞) = 2
λxm −

l

1− λxm +
l

/
2

⎡⎣1 +
√√√√1−

(
xm −
l λ

)2(
2− λxm +

l

)2
⎤⎦−1

(8.45)
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are the expansion coefficients for the reflection function in the case of the semi-
infinite medium,

yml =

√(
2− λxm +

l

)2 − (
λ2 xm −

l

)2
, fml =

2− λxm +
l − yml

2− λxm +
l + yml

The final solution reads as

R̃M (τ,ξ,η,ϕ) =
ξη

ξ+η

∑
l,m

rml (∞)

⎛⎝1− 1−fml
exp

(
ym
l

2

(
1
η +

1
ξ

)
τ
)
−fml

⎞⎠Y m
l

(
Ω̂0

)
Y m
l

(− Ω̂
)

(8.46)

The expression (8.46) comes to the expression (8.38), if fml → 0, yml → (2−λxm +
l ),√

1− (
xm −
l λ/

(
2− λxm +

l

))2 → 1. It leads us to the following condition:

xm −
l λ

2− λxm +
l

<
x0−0 λ

2− λx0 +
0

<
bλ

1− λ
< ε	 1 (8.47)

where b = x0−0 /2 =
∫ 0

−1
x (η) dη/2 is the probability of the ‘strong’ scattering, ε is

the value much less than 1. From (8.47) one can derive the estimation of the single
scattering albedo when the quasi-single model can be used:

λ < λg ≈ ε

ε+ b
(8.48)

For Henyey–Greenstein single scattering phase function b ≈ (1− q)
3/2
/2. From

(8.48) one can get the condition for applicability of the quasi-single scattering
model:

λ < λg ≈ 2ε

2ε+ (1− q)
3/2

(8.49)

For instance, for ε = 0.1 and q = 0.9 the parameter λg is 0.86, while for q = 0.95
λg is 0.95. The single scattering albedo for electrons of keV energies in solids varies
from 0.5 till 0.8. The scattering is rather anisotropic (q = 1 − σtr/σel > 0.9,
σtr is the transport cross-section, σel is the elastic cross-section). Thus, the in-
equality (8.49) holds true for the case of EPES spectroscopy and the impact of the
nonlinear term derived in the small-angle approximation is not significant. This
conclusion is illustrated in the Fig. 8.7, where the angular distributions of electrons
elastically scattered by a gold sample is considered. The incident angle is normal.
The energy of the incident electrons is 1 keV. Also we apply the code DISORT,
which solves the Eq. (8.16), to compute the ‘etalon’ angular distribution. The sin-
gle scattering approximation has a significant error. The quasi-single small-angle
model also has an error due to the strong influence of the multiple scattering and
the fast isotropization of the electron beam in the gold. The nonlinear term slightly
improves the small-angle solution, but still the error is significant.
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Fig. 8.7. The angular distributions of elastically scattered electrons. The reflection from
the gold sample. The angle of incidence is normal. The initial energy is 1 keV.

8.4.6 Scattering by two-layer systems

Let us consider the scattering by a two-layer sample. The thickness of the first
(upper) layer is τ1 while the thickness of the second (bottom) layer is τ2. In the
quasi-single scattering approximation, the reflectance for the upper layer does not
depend on the properties of lower layers. Thus, all the expressions derived in the
previous paragraphs are suitable for the upper layer. The bottom index ‘1’ is used
whenever we refer to the single-layer solution. Now we are interested in the reflection
function R2(τ1, τ2, ξ, η, ϕ) and in the transmission function T2(τ1, τ2, ξ, η, ϕ) for the
bottom layer. The boundary conditions for the reflection and transmission functions
of the second layer satisfy the following boundary conditions:

R2 (0, τ2, ξ, η, ϕ) = R1 (τ2, ξ, η, ϕ) (8.50)

T2 (0, τ2, ξ, η, ϕ) = T1 (τ2, ξ, η, ϕ) (8.51)

With the boundary conditions (8.50) and (8.51) the solution of the system of equa-
tions (8.24) to (8.26) in the small-angle approximation through the spherical har-
monics method (8.34) to (8.36) has a following form:

R1

(
τ1, Ω̂0, Ω̂

)
=

ξη

ξ + η

∑
l,m

λ1 (2− xm1 l)

(1− λ1 xm1 l/2)

×
(
1− exp

(
−
(
1− λ1

2
xm1 l

)(
1

ξ
+

1

η

)
τ1

))
Y m
l

(
Ω̂0

)
Y m
l

(− Ω̂
) (8.52)
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R2

(
τ1, τ2, Ω̂0, Ω̂

)
=

ξη

ξ + η

∑
l,m

λ2 (2− xm2 l)

(1− λ2 xm2 l/2)

×
(
1− exp

(
−
(
1− λ2

2
xm2 l

)(
1

ξ
+

1

η

)
τ2

))
× exp

(
−
(
1− λ1

2
xm1 l

)(
1

ξ
+

1

η

)
τ1

)
Y m
l

(
Ω̂0

)
Y m
l

(− Ω̂
)

(8.53)

T1
(
τ1,Δ,Ω̂0,Ω̂

)
=
ξη

2

∑
l,m

{
λ1x

m
1l

η (1−λ1xm1l/2)−ξ
(
exp

(
−τ1
η

)
−exp

(
−(1−λ1xm1l/2)

τ1
ξ

))
exp

(
−τ2
η

)
+

λ1x
m
1l

ξ (1−λ1xm1l/2)−η
(
exp

(
−τ1
ξ

)
−exp

(
−(1−λ1xm1l/2)

τ1
η

))
exp

(
−
(
1− λ2

2
xm2l

)
τ2
η

)}
×Y m

l

(
Ω̂0

)
Y m
l

(
Ω̂
)

(8.54)

T2
(
τ1,τ2,Δ,Ω̂0,Ω̂

)
=
ξη

2

∑
l,m

{
λ2x

m
2l

η (1−λ2xm2l/2)−ξ
(
exp

(
−τ2
η

)
−exp

(
−(1−λ2xm2l/2)

τ2
ξ

))
exp

(
−τ1
ξ

)
+

λ2x
m
2l

ξ (1−λ2xm2l/2)−η
(
exp

(
−τ2
ξ

)
−exp

(
−(1−λ2xm2l/2)

τ2
η

))
exp

(
−
(
1− λ1

2
xm1l

)
τ1
ξ

)}
×Y m

l

(
Ω̂0

)
Y m
l

(
Ω̂
)

(8.55)

These solutions contain the singularity as well as (8.38) and (8.39) which should
be subtracted.

From the last equations one can derive the solution for the important case from
the practical point of view – the homogeneous layer τ1 = τ on the semi-infinite
substrate τ2 = ∞. The reflection functions for the layer R1 and the substrate R2

can be expressed as

R1

(
τ, Ω̂0, Ω̂

)
=

ξη

ξ + η

∑
l,m

λ1 (2− xm1 l)

(1− λ1 xm1 l/2)

×
(
1− exp

(
−
(
1− λ1

2
xm1 l

)(
1

ξ
+

1

η

)
τ

))
Y m
l

(
Ω̂0

)
Y m
l

(− Ω̂
)

(8.56)

R2

(∞, Ω̂0, Ω̂
)
=

ξη

ξ + η

∑
l,m

λ2x
m
2 l (λ2 − 1)

(1− λ2 xm2 l/2)

× exp

(
−
(
1− λ1

2
xm1 l

)(
1

ξ
+

1

η

)
τ

)
Y m
l

(
Ω̂0

)
Y m
l

(− Ω̂
)
. (8.57)
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If the spectrum is measured in the relative units, then an informative value is
the ratio R1/R2. This value is a function of the layer thickness τ . Therefore, the
magnitude of the layer thickness can be determined by measuring the reflectance
of the elastically scattered electrons.

The reader might be wondering why we use sophisticated approximations in-
stead of rigorous numerical RTE solutions. The reason is that to analyze the surface
structure we have to divide the reflection function for the whole system into the
reflection functions for each layer. In other words, we have an additional variable
– the energy loss. Thus, the main reason for the usage of approximate models is to
perform such a split but not to solve the boundary problem.

8.4.7 Scattering by a multi-component sample

To calculate the reflectance of the elastically scattered electrons for a two-component
sample, two things should be noticed:

1. The inelastic scattering in the solids with elements A+B is not a superposition
of the inelastic scattering in the single-component solid samples with elements
A and B. It is caused primarily by the inelastic energy losses on the plasmons.

2. The recoil energy in the small-angle scattering is too small to be measured in
the present experiments [2].

That is why the intensity of the elastically scattered electrons for a sample
with elements A and B can be calculated as follows. The total intensity RA+B for
a multi-component layer is derived using the effective elastic cross-sections, while
the inelastic cross-sections are computed by TPP-2M equation [68]. The effective
elastic cross-section is computed in the following way:

σel
A+B =

nAσ
el
A+B + nBσ

el
A+B

nA + nB
(8.58)

Then the total intensity is divided proportionally to the value of the single scatter-
ing phase function for a certain angle and a concentration of the specific element.

RA =
nAxA(Ω,Ω0)

nAxA(Ω,Ω0) + nBxB(Ω,Ω0)
RA+B (8.59)

8.5 Backscattering from a semi-infinite sample

This section is intended to summarize the RTE solutions for semi-infinite medium
as well as to present a synthetic approach. The elastic electron scattering takes
place on atoms of a sample. The potential of those atoms is spherically symmetrical.
Therefore, the single scattering phase function x

(
Ω̂0 ·Ω̂

)
depends only on the cosine

of the scattering angle γ = Ω̂0 · Ω̂. It can be expanded into series by azimuthal
harmonics, as in the case of the optical radiation scattering [19, 20]:

x
(
Ω̂0 · Ω̂

)
=

∞∑
m=0

xm (ξ, η) cos(mϕ) (8.60)
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where xm(ξ, η) are the azimuthal harmonics of the single scattering phase function.
Such representation leads to expansion of the backscattering function into series
by azimuthal harmonics R(τ, ξ, η, ϕ):

R (τ, ξ, η, ϕ) =

∞∑
m=0

Rm (τ, ξ, η) cos (mϕ) (8.61)

In the case of semi-infinite medium, the derivative over optical depth in (8.18)
vanishes. The equation (8.18) implying (8.60) and (8.61) for the reflection by the
semi-infinite medium reads as:

1

ξ
Rm (ξ, η) +Rm (ξ, η)

1

η
=
λ

4
xm (ξ,−η)

+
λ

2

∫ 1

0

xm (ξ, η′) Rm (η′, η)
dη′

η′
+
λ

2

∫ 1

0

Rm (ξ, η′)xm (η′, η)
dη′

η′

+λ

∫ 1

0

∫ 1

0

Rm (ξ, η′)xm (−η′, η′′) Rm (η′, η)
dη′′

η′′
dη′

η′

(8.62)

Eq. (8.62) will be called the Ambartsumian equation.

8.5.1 The expansion by the number of elastic collisions

Let us consider the most natural solution method of Eq. (8.62) from the physical
point of view: the computations of the multiple elastic collisions. This method is
based on the neglect of the elastic collisions of the number more than a certain
number. In the theory of the optical radiative transfer, this method has also been
used [69, 20]. In references [70, 71], the multiple elastic scattering method was used
to solve the problem of the elastic electron backscattering.

Now we apply the multiple elastic scattering method to solve Eq. (8.62). If the
integral terms in (8.62) are removed, we obtain a solution describing backscattering
with the single elastic scattering only. Then, substituting this expression into the
right-hand side of Eq. (8.62), we regard the double elastic backscattering only.
Repeated use of this iterative scheme results in a solution in an expanded Neumann
form:

Rm (ξ, η) =
ηξ

η + ξ

∞∑
k=1

ρmk (ξ, η)λk (8.63)

The physical meaning of the expansion by degrees of λk is a representation
of the universal backscattering function in the expanded series by the number of
elastic collisions.

Using (8.63), the recurrent relations for the functions ρmk (ξ, η) can be derived:
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ρm1 (ξ, η) =
1

4
xm (ξ,−η)

ρm2 (ξ, η) =
η

8

∫ 1

0

xm (ξ, η′)xm (η′,−η) dη′

η′+η
+
ξ

8

∫ 1

0

xm (ξ,−η′)xm (η′, η)
dη′

η′+ξ

ρmk (ξ, η) =
η

2

∫ 1

0

xm (ξ, η′) ρmk−1 (η
′, η)

dη′

η′+η
+
ξ

2

∫ 1

0

ρmk−1 (ξ, η
′)xm (η′, η)

dη′

η′+ξ

+ ηξ
k−2∑
i=1

∫ 1

0

∫ 1

0

ρmi (ξ, η′)xm (η′,−η′′) ρmk−1−i (η
′, η)

dη′

η′+ξ
dη′′

η′′+η
, k > 2

(8.64)
The functions ρmk (ξ, η) determine the probability that the particle changes its mov-
ing direction in the medium exactly k times.

With the modern level of computer engineering, it is easy to perform the cal-
culations by Eq. (8.64) as in [72]. The Neumann series (8.63) converges rapidly
whenever the single albedo λ is small enough. Then the contribution of collisions
of the small numbers is significant while the high orders of scatterings can be ne-
glected. If λ approaches to one, the series (8.63) converges extremely slowly, as the
functions ρmk (ξ, η)(8.64) are slowly decaying by the large numbers of collisions. In
this case, the multiple scattering will dominate over the single scattering, and it
will be necessary to consider the hundreds of the series terms (8.63) to obtain an
acceptable computing accuracy. In addition, if the single scattering phase function
is strongly anisotropic, the numerical integration within the given accuracy in the
iterative formula (8.64) will require many integration nodes. Such difficulties make
computations based on Eqs. (8.63) and (8.64) inefficient.

8.5.2 Expansion by the number of ‘strong’ elastic scatterings

Let us select a plane which is parallel to the sample surface at any depth. Then we
divide the radiation field crossing the plane into upward and downward currents.
For the backscattering at least one ‘strong’ elastic collision takes place. It changes
the direction of the downward current onto upward. Besides ‘strong’ collusions
there are the multiple collisions that do not change the radiation line with respect
to the surface normal. Such separation is unique and relevant for each collision
depending on the scattered radiation direction. For a backscattering, the number
of the ‘strong’ collisions should be odd.

The selection of a ‘strong’ elastic scattering enables to expand the universal
backscattering function by the number of ‘strong’ collisions:

Rm (ξ, η) =

∞∑
k=0

Rm
2k+1 (ξ, η) (8.65)

The series (8.65) converges hundreds times faster than (8.63) (see Fig. 8.8). The
reason is that each term of series relates to the multiple elastic scattering that does
not change the moving direction with respect to the surface normal. The greater the
anisotropy of the single scattering phase function, the less the ‘strong’ scattering
probability and the fewer the terms of Eq. (8.65) that are to be considered to reach
the given accuracy.
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If the expansion by the number of ‘strong’ collisions (8.65) is used, the nonlinear
integral equation (8.62) breaks up into linear equations with a known right-hand
side for each odd number of the ‘strong’ elastic collisions:∫ 1

0

G (ξ, η′) Rm
2k+1 (η

′, η)
dη′

η′
+

∫ 1

0

Rm
2k+1 (ξ, η

′)G (η′, η)
dη′

η′
= Bk (ξ, η) (8.66)

where

Bk (ξ, η) =

k−1∑
i=0

∫ 1

0

∫ 1

0

Rm
2i+1 (ξ, η

′)D (η′, η′′)Rm
2(k−i)−1 (η

′, η)
dη′′

η′′
dη′

η′
for k > 0

D (η′, η′′) = λxm (−η′, η′′) , G (ξ, η) = δ (ξ − η)− λ

2
xm (ξ, η) .

8.5.3 The discrete ordinate method

Eqs. (8.62) and (8.66) are solved by the discrete ordinate method. For the first time,
this method was used in transfer theory by Schuster [73] and Schwarzschild [74]
who studied the RTE with an isotropic single scattering phase function. Separating
the radiation field into the upward and downward flows, they replaced the RTE
by a system of two equations. This method was developed and reworked by Chan-
drasekhar [19]. The discrete ordinate method is based on the quadrature formulae
application. The quadrature formulae adopted for the various integrands can be
found in [75]. To achieve a good accuracy, it is reasonable to choose the quadrature
formulae of high precision order. The best results for smooth solutions are given
by the Gauss or Gauss–Christoffel quadrature formulae. An elementary trapezoidal
formula can be also used by making the grid twice as dense and precising the so-
lution in turn. This also gives a good precision result, but requires considerably
greater number of nodes than in the Gauss formulae.

We substitute the integrals in the integral equations by quadrature sums. For
example: ∫ 1

0

xm (ξ, η′) Rm (η′, η)
dη′

η′
≈

N∑
i=1

xm (ξ, ψi) R
m (ψi, η)

si
ψi

where ψi and si are the nodes and the weights of a quadrature formula. The number
of nodes N in the discrete ordinates method depends on the anisotropy of the
single scattering phase function and the required solution accuracy. The problem
of choosing N will be considered below.

Then a grid {ξi, ηj} of variables ξ and η is introduced:

ξi = ψi, i = 1, . . . , N, ηj = ψj , j = 1, . . . , N.

Also for this grid we determine: the matrix R = Rm (ξi, ηj) of the scattering
function azimuthal harmonics, the matrices G = G (ξi, ψj) sj/ψj , B0 = B0 (ξi, ηj)
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and D = siD (ξi, ψj) sj/ξiψj . The matrices are square and have a size N ×N . The
Ambartsumian equation (8.62) in the grid {ξi, ηj} in the matrix form reads as:

GR+RG′ = B0 +RDR (8.67)

where the sign ‘′’ denotes a transposed matrix. Eq. (8.67) will be called the discrete
Ambartsumian equation (DAE). The equation for the number of elastic collisions
(8.66) in the same grid in the matrix form reads as:

GR2k+1 +R2k+1 G
′ = Bk, Bk =

k−1∑
i=0

R2i+1 DR2(k−i)−1 (8.68)

8.5.4 Solution of the discrete Ambartsumian equation

In control theory, a nonlinear equation of the type (8.67) is called the continuous-
time algebraic Riccati equation and Eq. (8.68) is called the Lyapunov equation.
Some various methods for the solution of such matrix equations have been devel-
oped. The detailed reviews and the comparisons of those methods can be found
in [76–79]. The following solution methods of the Lyapunov equation are assigned:
the Bartels–Stewarts method [80], the Hessenberg–Schur method [81], and the solu-
tion methods of the Riccati equation: the Newton method [82–84], the sign function
method [85], and the Schur vector method [86]. The algorithms, presented in widely
distributed mathematical libraries, are based on these methods, for example, SLI-
COT (Subroutine LIbrary for COntrol Theory) [87].

The methods mentioned above are used, first of all, to solve control theory
problems. To use these methods in transfer theory, they have to be adopted. In
[88, 89], the non-symmetric algebraic Riccati equation (NARE) was derived for the
particle transfer in media with an isotropic single scattering law. This equation
is analogous to the DAE with an isotropic single scattering phase function. The
NARE was solved using the Newton method in these works. In Ref. [90], to solve
the NARE, a special algorithm was designed – the structure-preserving doubling
algorithm (SDA).

Computations of scattered particle angular distributions in media with an
isotropic single scattering law by the SDA method is several times faster than by
the Newton method. As was mentioned above, the isotropic single scattering law is
not valid for electron scattering. In this case, as numerical experiments evidence,
the best result of the mentioned methods is achieved by the Newton method.

In this chapter, a new effective solution method of the DAE based on expansion
by the number of ‘strong’ collisions is presented. We expand the DAE (8.67) by the
number of ‘strong’ collisions. Then we get the Lyapunov equation (8.68) for each
number of collisions. The solution of the Lyapunov equation within the standard
Bartels–Stewarts method [80] is based on the Schur decomposition. In the Newton
method (8.68) the Schur decomposition is performed for each iteration to solve the
Lyapunov equation. For a highly anisotropic single scattering phase function, only
a few iterations are needed. In this case, the standard Bartels–Stewarts method
becomes inefficient. To solve Eq. (8.68), an expansion by the eigenvectors instead
of the Schur decomposition is used. Such expansion has to be performed only once,
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so it increases the computation speed greatly. We will call it the multiple strong
scattering method (MSS).

As [41] shows, the computational speed may increase by the given accuracy if the
solution is divided into a small-angle part and a regular part. The code developed
by V.P. Budak on the basis of this idea is called MDOM. The computational speed
and efficiency can be increased if a combination of different methods is used. The
first step is to calculate the initial approximation using Eq. (8.44). Then MSS is
applied for some number of the strong scattering K1 and a further J iterations are
performed by the Newton method. Then we calculate K2 strong calculations by
MSS. This synthetic method is denoted by ‘Newton and multiple strong scattering
method (NMSS)’.

8.5.5 The computation accuracy and time

The algorithms and the solution methods of the Ambartsumian equation studied
above are based on the discrete ordinates method. The accuracy of the Ambart-
sumian equation solution will be determined by the approximation accuracy of the
integral equation (8.62) by the DAE (8.67). The approximation accuracy depends
on the number of nodes N in the discrete ordinates method. The greater is N ,
the less is the approximation error. However, the greater is N , the longer is the
computation time t, bearing in mind that t ∼ N3. For practical applications the
computational speed cannot be divorced from accuracy considerations. Thus, a
method of choosing the optimal number of nodes, Nopt, is needed to achieve the
given accuracy within the minimal computing time. Nopt depends on the initial
energy of the incident particle, various parameters of the scattering medium, the
quadrature formula and the method of solution of the Ambartsumian equation.

The problem of estimating the accuracy of a nonlinear integral equation, such as
the Ambartsumian equation, seems rather intricate. One solution of this problem
is the following: the derived solution R is compared to an ‘ideal’ solution Rid in the
grid {ξi, ηj}with the given integration nodes number N . Then the mean relative
error is computed:

δR =
‖R−Rid‖

‖Rid‖ (8.69)

where ‖. . .‖ are the norms of the vectors and of the matrices. The ‘ideal’ solution
is found by two different methods. In this chapter, the MDOM [41] and the NMSS
(J = 2, K1 = 10, K2 = 4) methods are used for this purpose. The integration nodes
number, Nid, was set so that the mean relative deviation of solutions Rid derived
by these methods was the smallest. The mean relative deviation of the solutions
obtained by two methods is δRid

∼= 10−6. It has been achieved by Nid = 500. δRid

is limited by the computing accuracy: of the nodes ψi and the weights si of the
quadrature formula, of the phase function expansion coefficients by the Legendre
polynomials, and of the azimuthal harmonics of the phase function.

Since the solution method of the discrete equation (8.67) does not influence on
the solution accuracy of the integral equation (8.62), the numerical integration error
of the DAE should be considerably less than the approximation error of the integral
Ambartsumian equation. The solution accuracy of the DAE (8.67) is estimated by
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the mean relative error using the expression approved in the control theory for the
Riccati equation accuracy:

δRDAE =
‖GR+RG′ −B0 −RDR‖

‖GR‖+ ‖RG′‖+ ‖B0‖+ ‖RDR‖ (8.70)

Given the number of the integration nodes N , the relative computing error of the

phase function in the same grid using the normalizing condition
∫ 1

−1
x(μ) dμ = 2 is

estimated:

δxN =

∣∣∣∣∣ 1−
N∑
i=1

(x (ψi) + x (−ψi)) si/2

∣∣∣∣∣ (8.71)

The relative error δxN can be used to estimate the quality of the computing
method. If δxN is less than the relative error δR for the considered method, the
upcoming errors will be caused by the solution method itself. Thus, many more
integration nodes than necessary will have to be taken to achieve the given accuracy.

To choose an optimal number of integration nodes, Nopt, the upper limit of the
relative error ε has to be specified. For practical needs, an accuracy of about 1%
is enough. For our calculations, let us set the upper limit of the relative error of
0.1%, so ε ≈ 10−3. Summarizing all above, let us write the necessary condition for
choosing Nopt:

δRDAE 	 δR ≤ δxN ≤ ε ≈ 10−3 (8.72)

Let us pass to the numerical experiments. The experiments were performed
for the backscattered and for the elastically backscattered electrons angular dis-
tributions. The single scattering phase functions are computed on the basis of the
ELSEPA code [91], the mean inelastic path lengths are computed by the formula
TPP-2M [92]. The programming environment is MATLAB 7.9, which is conve-
nient for matrix multiplications. For our numerical experiments, the computer was
used with the following features: the processor was Intel(R) Core(TM) 2 Duo CPU
E6750 @ 2.66 GHz, the RAM size was 2∼GB, the OS was Windows XP.

In Fig. 8.8(a), the mean relative error δRDAE(at the left side) and the compu-
tation time t in seconds (at the right side) as functions of the iteration number (or
the highest number of collisions in the calculated sum), K, for the various com-
putation methods are plotted. The calculations were performed for the electrons
of the initial energy E0 = 5keV impinging normally to the surface (in this case,
just the zero harmonic is enough) onto a sample of Al. The number of nodes in
the discrete ordinates method was fixed: N = 100. In Fig. 8.8(a), the computing
results of the Newton method [84] are shown as asterisks, the results of the SDA
method [90] are shown as five-point stars, and the results of the calculations with
the Neumann series (8.63) and (8.64) are shown by the triangles. In the latter case,
K indicates the number of elastic collisions. In Fig. 8.8(a), the results for the MSS
method are shown (rhombs) and as well as for two versions of the NMSS method:
(1) one Newton iteration J = 1 (hollow circles), (2) two Newton iterations J = 2,
K2 = 4 (solid circles). K1 = K shows the number of the ‘strong’ collisions the
calculation was performed up to.

On the basis of the numerical experiments performed for various sample ma-
terials and initial electron energies, it can be concluded that the most effective
(shortest computing time and best accuracy) solution method for the DAE is the
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Fig. 8.8. (a) The comparison of the computation results by various methods: the mean
relative error of the DAE solution (the log vertical scale on the left) and the computing
time in seconds (the linear vertical scale on the right) over the iteration number K and the
integration nodes number N . The computing results obtained by the following methods
are plotted: the Newton method (asterisks), the SDA (five-pointed stars), the Neumann
series (triangles), the MSS method (rhombuses), the NMSS with the parameters J = 1,
K1 = 6 (hollow circles), the NMSS with J = 2, K1 = 3, K2 = 4 (solid circles). (b)
The comparison of the computation results by the various methods: the mean relative
error (the log vertical scale on the left) and the computation time in seconds (the linear
vertical scale on the right) depending on the iteration number K and the integration
nodes number N . The computing results obtained by the following methods are plotted:
the MDOM (squares), the NMSS with the parameters J = 1, K1 = 6 (hollow circles), the
NMSS with J = 2, K1 = 3, K2 = 4 (solid circles); the mean relative error δxN is plotted
by a dashed line.

NMSS method. The Newton method is not worse than the NMSS as regards accu-
racy, but the computation time is few times longer.

There is no need for a relative error δRDAE ≈ 10−15 from the practical point
of view. The accuracy δRDAE ≈ 10−6 is enough not to increase the relative error
δR. In this case, less K is used by calculation and therefore the computing time
decreases. For example, for the NMSS method, parameters may be the following:
J = 1 and K1 = 6.

In Fig. 8.8(b), the mean relative error δR and the computing time versus the
integration nodes number N for the various computation methods are plotted. The
calculations were performed for the electrons with the initial energy E0 = 5 keV
impinging normally onto the surface of a sample made of Al. The results of the
calculations by the MDOM method [41] are plotted by squares; calculations by the
NMSS method with the parameters J = 1 and K1 = 6 are plotted by the hollow
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circles; the calculations by the NMSS method with the parameters J = 2, K1 = 3,
K2 = 4 are plotted by the solid circles. For the MDOM method Nopt ≈ Nδx, for
the NMSS method Nopt < Nδx.

Fig. 8.8(b) shows the optimal integration nodes number Nopt for the NMSS
method with the parameters J = 2, K1 = 3, K2 = 4. Using Nopt the computing
time is: topt = 0.014 s for λ = 0.99364, topt = 0.006 s for λ = 0.649.

8.5.6 Angular distributions of the elastically scattered electrons

For the graphical representation of the angular distribution computation results, it
is convenient to use the planes of the incidence and pickup (see Fig. 8.9). Further we
shall study the angular distributions in the pickup plane. In this case, to indicate
the pickup angles, one variable θ is enough. The magnitude of θ is equal to the
polar pickup angle and the sign of θ shows the azimuthal angle. If θ > 0 (+θ), the
azimuthal angle equals ϕ. If θ < 0 (−θ), the azimuthal angle equals ϕ+ π.

 

Fig. 8.9. The incidence and pickup planes

In Fig. 10, the angular distributions obtained by various methods are shown.
The results of the NMSS method are plotted by a solid line; the results of the
MDOM [41] are plotted by a dashed line; the results of the DISORT [40] are
plotted by a dash-dot line. The DISORT is used in many programs designed for
atmosphere radiation propagation modeling (Streamer, MODTRAN, SBDART).
The DISORT may be downloaded from an FTP server [93]. In the figures, the
angular distributions and the angular distribution absolute error depending on the
pickup angle are shown. The absolute error was computed as the difference of the
solution derived by the method and the ‘ideal’ solution. The solution by the MDOM
method with the integration nodes number Nid = 500 was considered ‘ideal’. For
the comparison the results obtained by the MDOM and DISORT are multiplied by
π cos θ cos θ0. Fig. 8.9 shows the following items for each method: the integration
node number N , the mean relative error δR, and the computation time t in seconds.

The calculations were performed for a pickup plane coinciding with the inci-
dence plane ϕ = 0. In Fig. 8.10, the elastically backscattered electron angular dis-
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Fig. 8.10. The electron angular distributions and the absolute angular distribution error
depending on the pickup angle. The computing results by the following methods are
indicated: the NMSS (solid line), the MDOM (dashed line), the DISORT method (dash-
and-dot line). The mean relative error δR, the integration nodes number N and the
computing time t in seconds are given for each method.

tributions R(ξ, η, ϕ) in the pickup plane and the elastically backscattered electrons
angular distribution absolute error ΔR(ξ, η, ϕ) depending on the pickup angle are
shown.

The efficiency of a method can be estimated by the product Teff = δR · t of the
mean relative error and the computation time. For the NMSS method 10−5 < Teff
< 10−4, for the MDOM 10−4 < Teff < 10−3, for the DISORT 10−2 < Teff < 100.
The method NMSS is synthetic. The NMSS method possesses the best features of
the methods it is based on. This is an explanation for its high efficiency. In this
case, computation time does not exceed a second for a wide range of the sample
materials, for the initial energies from 0.2 to 50 keV and for any angle of incidence.
At the same time, the mean relative error is less than 0.1%.

The NMSS method as any other solution method of the discrete Ambartsum-
ian equation (Neumann series, MSS, Newton, SDA) computes the matrix of the
scattering function values on the initial and on the sighting angle grids directly.
The numerical experiments vividly demonstrate the high efficiency of the NMSS
method among all solution methods of the discrete Ambartsumian equation. The
codes MDOM and DISORT provide the vector on grid by the sighting angles for
a certain initial angle. Thus, it is not quite correct to compare the calculation ef-
ficiency using the MDOM, DISORT and NMSS methods. Moreover, the codes can
be optimized for the semi-infinite medium. The rigorous comparison will be the
subject of complementary investigations exceeding the limits of this work.
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8.6 Approbation of the theoretical models based on the
discrete ordinate method (DISORT, MDOM, NMSS)

8.6.1 The comparison of DISORT, MDOM, NMSS calculations with
Bronstein and Pronin experiments

The angular distributions of the elastically scattered electrons are useful for the
verification of transport models in solids. The measurements of angular distribu-
tions of the elastically scattered electrons in the case of a single-component sample
do not require a high-energy resolution. The problem of the angular distribution
of the elastically scattered electrons is equivalent to the radiative transfer in the
turbid media. Consequently, the single scattering albedo and the single scattering
phase function provide a complete description of this problem. The single scatter-
ing model provides the following expression for the reflection function in the case
of the semi-infinite medium:

R
(
Ω̂0, Ω̂

)
= λ

ξη

ξ + η
x
(
ξ,−η, ϕ) (8.73)

In the Rubin–Everhart model the reflectance is described by the expression:

R
(
Ω̂0, Ω̂

)
= λ

ξη

ξ + η

1

1− λ
x
(
ξ,−η, ϕ) (8.74)

The expression for the angular distribution of the elastically scattered electrons in
the small-angle approximation has the form:

R
(
Ω̂0, Ω̂

)
=

ξη

ξ + η

∑
l,m

xml λ (λ− 1)

(1− λxml /2)
Y m
l

(
Ω̂0

)
Y m
l

(− Ω̂
)

(8.75)

The reader can observe that in the first two cases the shape of the angular
distribution follows the shape of the phase function in a backward direction. That
does not agree with the experiment data. However, for λkk1 the expression (8.74)
becomes (8.73). This case corresponds to a strong absorption (the probability of
inelastic scattering is much higher than the probability of elastic scattering). Conse-
quently, the particles that have experienced only one single elastic scattering dom-
inate in the signal of the elastically scattered particles. The angular dependences
of the single scattering approximation and Rubin–Everhart model are identical.
However, the absolute values of intensities are different by an order of magnitude.

We give an analytical treatment of the pioneering experiments of Bronstein
and Pronin [8] on the basis of the models presented in this chapter. The elastic
scattering cross-sections are taken from [94], the values required to calculate the
single scattering albedo are defined on the basis of a formula TPP-2M [68]. Ta-
ble 8.1 provides the background information on the key parameters for the angular
distributions of the elastically scattered electrons – the transport mean free path,
the inelastic mean free path (IMFP), the elastic mean free path (EMFP), and the
single scattering albedo.

A detailed description of the experimental setup is given in [9]. The energy of
a probe beam is 1000 eV; the incidence angle is normal. Also, our calculations are
compared to Monte Carlo simulations, performed by W. S. M. Werner [48].
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Table 8.1.

E0, Be (Z = 4) Cu (Z = 29) Ag (Z = 47) Au (Z = 79)

keV lin, lel, ltr, λ lin, lel, ltr, λ lin, lel, ltr, λ lin, lel, ltr, λ
nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm

0.5 1.22 1.87 14.8 0.39 1.09 0.45 1.64 0.71 0.91 0.51 1.72 0.64 0.84 0.39 1.57 0.68

1 2.06 3.51 47.9 0.37 1.74 0.64 3.75 0.73 1.47 0.71 3.37 0.67 1.33 0.55 2.36 0.71

2 3.59 6.78 160 0.35 2.93 0.95 9.59 0.76 2.45 1.00 7.80 0.71 2.21 0.75 4.63 0.75

5 7.75 16.5 820 0.32 6.11 1.68 37.4 0.78 5.09 1.66 27.5 0.75 4.58 1.18 14.2 0.80

10 14.0 32.2 2854 0.30 10.91 2.73 111.9 0.80 9.08 2.54 77.4 0.78 8.12 1.71 36.9 0.83

20 25.7 62.1 9964 0.29 19.75 4.60 350.8 0.81 16.4 4.00 228 0.80 14.63 2.55 100 0.85

40 47.4 117.2 32970 0.29 36.20 7.94 1087 0.82 30.1 6.50 667 0.2 26.7 3.89 277 0.87

Figures 8.11–8.14 show the angular distribution for Be, Cu, Ag and Au, respec-
tively. For Be (Fig. 8.11) all angular distributions are in a good agreement. Here we
can also observe that the error of the approximate models is higher for the heavy
elements (Ag, Au). However, the experiment data, the simulations and DISORT,
MDOM, NMSS solutions are in good coincidence. Since the deviance between these
codes is negligibly small, we will not distinguish the solutions of these methods on
the plots by different notations. The common notation ‘DOM’ is used for all of
them.

Fig. 8.11. The angular distributions of the elastically reflected electrons for Be – the
experiment and the calculations; the probing energy is 1000 eV.
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Fig. 8.12. The same as for Fig. 8.11, but for Cu.

Fig. 8.13. The same as for Fig. 8.11, but for Ag.
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Fig. 8.14. The same as for Fig. 8.11, but for Au.

The DOM solution coincides with the experimental data and Monte Carlo simu-
lations (Monte Carlo simulations are taken from [48]). This fact reveals the possibil-
ity of using the discrete ordinate method for the calculations of the elastic electron
reflectance. The solution can be obtained numerically with the accuracy limited by
the accuracy of the phase function and the single scattering albedo. From another
point of view, the discrete ordinate method can be used for the verification of the
approximate transport models.

8.6.2 Influence of multiple scattering on the form of angular
distributions of the elastically scattered electrons

In the 1–10 keV energy range there is a lack of the experimental data on the angular
distributions of the elastically scattered electrons. DOM calculations can be com-
pared to the results of Monte Carlo simulations. Figures 8.15–8.17 show the angular
distributions of the elastically scattered electrons at 2–10 keV. The exact solution
and Monte Carlo simulations agree while the calculations in the quasi-single model
and in the small-angle approximation describe the angular dependence with a sig-
nificant error.

For energies exceeding 10 keV there is no experimental data for angular dis-
tributions of the elastically scattered electrons. Monte Carlo simulations can be
problematic, as the probability of the backscattering due to elastic processes is
low. However, in some works [50, 54] the experiments were carried out for energy
40 keV. And the Rubin–Everhart approximation is used to describe the experi-
mental data [33]. Now we evaluate the error of the Rubin–Everhart model in this
case.
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Fig. 8.15. The angular distributions of the elastically reflected electrons for Au – the
calculations; the probing energy is 2000 eV, the angle of incidence is 60 degrees to the
surface normal.

Fig. 8.16. The same as Fig. 8.15, but for probing energy 5000 eV.

Figures 18 and 19 show the evolution of the angular distributions with increasing
energy. At 40 keV the small-angle approximation and Rubin–Everhart model almost
coincide with the solution DOM.
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Fig. 8.17. The same as Fig. 8.15, but for 10 000 eV.

Fig. 8.18. The angular distributions of the elastically scattered electrons for the different
probing energies – Au, the normal angle of incidence.

Note that Rubin–Everhart model gives the solution, which is near to DOM
solution. For other elements and the finite thicknesses, the error of the approximate
models is even lower. Thus, Figs. 8.18 and 8.19 can be considered as the justification



402

Fig. 8.19. The angular distributions of the elastically scattered electrons for the different
probing energies – Ag, the angle of incidence is normal.

of the usage of Rubin–Everhart model for EPES spectra calculations at rather high
energies.

8.6.3 The asymptotic formula for angular distributions of the
elastically scattered electrons

In the previous paragraphs one can see that the error of the approximate models
is decreasing with the increasing energy. Let us give an explanation. The reflec-
tion function of the elastically reflected electrons is determined only by the albedo
and the scattering phase function. We will analyze these two quantities. The rea-
son for errors of the approximate models is an inaccurate account of the multiple
scatterings. Figure 8.20 shows the single scattering albedo for Be, Ag, Cu, Au as
function of the probing energy. In the energy range of interest 10–100 keV, the
single scattering albedo changes slightly.

Let us analyze the change of the elastic scattering phase function with increasing
energy. The degree of elongation of the phase function is determined by the most im-
portant parameter of particle transport in solids – the transport mean free path ltr –
the distance covered on average by a collimated beam before it has lost the memory
of its original direction. If the energy increases, then the degree of anisotropy of the
phase function also increases (it is becoming more stretched-forward). This means
that the multiple scattering will become dominantly ‘small-angle’. The probability
of large-angle scattering is reduced and negligible as compared to the small-angle
scattering. In addition, it is necessary to take into account the inelastic scattering
(the absorption of the particles). The main quantitative parameter that determines
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the contribution of the multiple scattered particles in the intensity of the scattered
particles is the ratio lin/ltr, which decreases with the increasing energy. It is shown
in Fig. 8.21.

Fig. 8.20. The dependence of the single scattering albedo on the probing energy.

Fig. 8.21. The dependence of ratio lin/ltr versus the probing energy.
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In other words, the pass-length of the elastically reflected electrons is much
smaller than the transport path. Therefore, at high probing energies, the shape
of the angular distributions of the elastically scattered electrons can be described
by the Rubin–Everhart model and by the single scattering model. However, in the
calculations of the intensity absolute values, the single scattering model makes an
error by factor 1 − λ, as it ignores the particles that are scattered in a ‘straight-
forward’ direction. If λ 	 1 then the number of such particles is negligibly small,
and both models give the same results. In the single-scattering model, the shape of
the angular distribution follows the shape of the scattering phase function:

R (ξ,−η, ϕ) = x (ξ,−η, ϕ) ξη

ξ + |η| (8.76)

With increasing energy, the differential elastic scattering cross-section of all ele-
ments (and hence their scattering phase functions) are getting closer to the Ruther-
ford cross-section (as shown in Fig. 8.22):

xR (θ) =

(
Ze2

16πEε0

)2
(
sin

(
θ

2

)2

+ δ2

)−2

(8.77)

where δ is the screening parameter of the Coulomb potential. Consequently, at
sufficiently high energies the angular distributions are described by a universal
dependence for all elements. Since we are interested in the relative values, the rate

Fig. 8.22. The normalized single scattering phase functions for energy 50 000 eV for
different elements.
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(Ze2)/(16πEε0)

]2
is discarded. Then the expression (8.77) is substituted in (8.76)

for the case of the normal incidence (ξ = 1, cos θ = η). Also the screening parameter
can be ignored, since it affects the small-angle scattering and does not affect the
reflection. After some simplifications one can derive an expression which describes
the asymptotic behavior of the angular distribution of the elastically scattered
electrons for the normal angle of incidence:

Ra (θ) =
λ

1− λ

cos θ

cos6 θ
2

(8.78)

The angular distribution for 50 keV is plotted on Fig. 8.23. With the exception of
Au the angular distribution for all elements come to the function (8.78). For gold
the angular distribution does not come to (8.78) also at greater energy. The energy
of the electrons in the Au inner shells is comparable to the energy of the probing
electrons [95]. That is why the differential cross-section of Au is not described by
the Rutherford cross-section with enough accuracy. In addition, the shape of the
differential cross-section is affected by the relativistic effects.

Fig. 8.23. The angular distributions of electrons – asymptotic behavior.
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8.6.4 Effects of the multiple scattering on the total elastic reflection
coefficient

Until now, we have been interested in the shape of angular distributions. Since
the spectra are usually measured in relative units, their normalization could be
arbitrary. However, it is technically difficult, but possible, to measure angular dis-
tributions in absolute values – for a fixed current of the probing electrons for the
different samples. The total reflection coefficient depends on the number Z. Then
the question of the absolute values of the angular distribution becomes relevant.

The simulations are performed for the semi-infinite medium of Cu, Ag and Au
for the normal angle of incidence. We compute the flux of the elastically reflected
electrons using the Rubin–Everhart model and DOM. The error of the Rubin–
Everhart model as the function of the probing energy is shown in Fig. 8.24. The
simulations evidence that the Rubin–Everhart model yields an error level below 5%
at the energy 5–15 keV for medium elements (Cu, Ag) and at the energy 30 keV
for heavy elements (Au).

Fig. 8.24. The error of Rubin-Everhart model for the semi-infinite medium as a function
of the probing energy.

8.6.5 The influence of surface plasmons on the angular distribution of
elastically scattered electrons

Plasmons are the excitations of the electron system of solids. Due to the influence
of the surface plasmons, the effective single scattering albedo can be changed.
Indeed, when the electron approaches the surface of a solid, it loses the energy for
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the excitation of plasmons. In this case elastic scattering is not possible, because
of the screening by the electron gas. That is why the single scattering albedo λ =
σel/(σel+σin) at the surface should be less than at the depth of the sample. In other
words, the inelastic mean free path-length depends on the depth. This conclusion
was also reached by the authors of paper [96], but from the pure quantum-mechanics
approach. To verify this idea, the angular distributions from the paper [97] are used.
They are interpreted in the three-layer model (Fig. 8.25) with different albedo
values in each layer.

Fig. 8.25. Three-layer model of a sample with different values of the single scattering
albedo.

It is difficult to determine the thickness of the layers in nanometers, as the cal-
culation gives only the relative values (the thickness over the inelastic mean free
path). The ‘absolute values’ of the inelastic and elastic mean free paths are some-
times unknown. Table 8.2 provides the recovered albedo dependence on depth. The
code DISORT has been used to compute the angular distributions. The distribu-
tions are plotted in Figs. 8.26 and 8.27.

It is interesting to note that for heavy elements, the angular distributions do
not need ‘the multilayer correction’. They are well described on the basis of the
tabulated values of the single scattering albedo.

Table 8.2. The dependence of the albedo on the depth of the sample.

Si Fe

Layer 1 (surface) λs = λb/2.5, τs = lin/5 λs = λb/2, τs = lin/5

Layer 2 (intermediate) λi = λb/1.2, τi = lin/3 λi = λb/1.4, τi = lin/4

Layer 3 (bulk) λb = 0.57 λb = 0.71
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Fig. 8.26. The angular distributions of the elastically scattered electrons for Si and Fe –
1000 eV.

Fig. 8.27. The same as in Fig. 8.26, but for Ag and Au.

8.7 The practical applications of small-angle models

8.7.1 The comparison with the Monte Carlo simulations for Au+Si
sample

Let us investigate the reliability of the Rubin–Everhart model for determining the
thicknesses of deposited layers. A two-layer model Au/Si for 8 keV is considered.
The purpose of the calculations is to determine the ratio of the number of elec-
trons scattered on Au to the total number of the elastically scattered electrons
RAu/RAu+Si. The parameters of the simulation model are the follows: a layer of
Au: λ = 0.8, τ = 1.0; a substrate Si: λ = 0.6, τ = ∞. The scattering phase functions
are taken from [98]. 109 particles are simulated. The output is the energy spectrum
of the elastically scattered electrons and the angular distribution of the elastically
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scattered electrons. The normal angle of incidence is chosen to avoid the azimuth
differentiation of the spectrum. The spectrum is formed by the particles with the
angle of reflection 45 ± 1 with respect to the normal. The simulated spectrum is
shown in Fig. 8.28. The position of the peak maximum is well described by (8.3).
The elastic peak is asymmetric due to the influence of multiple elastic scattering.
So the spectrum cannot be presented as the sum of Gaussian functions.

Fig. 8.28. The spectrum of the elastically reflected electrons – the Monte Carlo simula-
tions.

Using this plot one can calculate precisely the area under the first peak corre-
sponding to Au, and the sum of the areas under the two peaks.

RAu

RAu+Si
=

13.43

20.03
= 0.67

To determine the ratio RAu/RAu+Si it is convenient to use such a function
(Fig. 8.29):

H(Δ) =

∫ Δ

0

R(ε) dε (8.79)

The physical meaning of function H(Δ) is the number of electrons with energy
losses less than or equal to Δ.

The calculations in the Rubin–Everhart model (8.31), in the small-angle ap-
proximation (8.38) and by the code DISORT differ by less than 3%. Similarly,
the angular dependence of the relations RAu/RAu+Si and RAu/RSi are calculated
(Fig. 8.30). Having DOM as a reference, it is possible to suggest the optimal geom-
etry of the experiment with the minimal error of the simple models. For instance,
for the considered case the deviation is minimal for the angle of scattering 135
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Fig. 8.29. Function H (Δ) for two-layer system (Au+Si)/Au.

Fig. 8.30. The angular dependence of the ratio RAu/(RAu +RSi).

degrees, which corresponds to the reflection angle 45 degrees with respect to the
normal.

8.7.2 The stratified analysis of the samples by means of EPES

Now we apply the Rubin–Everhart approximation for the interpretation of EPES
spectra for the systems ‘carbon on silicon’ and ‘silicon nitride on silicon’. The exper-
iments were performed by the team of M. Vos at the Australian National University.
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The interpretation is implemented in a two-layer model since it is possible to ex-
tract reliably only one parameter from one spectrum. Fig. 8.31 shows the spectrum
of the electrons elastically scattered from a two-layer sample – C layer/substrate
Si. The spectrum was approximated by the sum of two Gaussian functions. The
area ratio is SC/SSi = 0.14. The analytical formulas (8.56) and (8.57) yields the
ratio of the area for an array of the layer thicknesses. The thickness can be easily
found by the fitting procedure, which is very effective due to analytical solutions.
The obtained thickness is 52 nm.

Fig. 8.31. The EPES spectrum for the carbon-silicon sample; the initial energy is 40 keV.

Figure 8.32 shows the experimental spectra and the fitting of the EPES spec-
trum from the system ‘silicon nitride layer on silicon substrate’. From the experi-
ment data, the ratio value is SSi/SN = 5.5 which corresponds to the thickness of
Si3N4 30 nm.

It is possible to interpret N spectra in the N+1-layer model without additional
assumptions. The spectra can be measured in the different geometries and for
different probing beam energies. In both cases the effective probing depth lp of the
sample is changed [99, 100]:

lp ∼ lin (E0)

μ+ μ0
μμ0 (8.80)

where μ0 and μ are the cosines of the incidence and of the reflection. Physically,
the probing depth is a depth from which the elastic scattered electrons come to the
energy analyzer. Thus, this is the sample area investigated by EPES.
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Fig. 8.32. The EPES spectra for two-layer sample Si3N4–Si; the initial energy is 40 keV.

With high accuracy one can assume the inelastic mean free path to be directly
proportional to the probing energy. Thus, increasing the energy, we explore the
deeper layers of the sample – the energy scanning method. And vice versa – the
high-resolution depth is equivalent to the small value of lp (8.80). This fact imposes
an upper limit on the probing beam energy while the relation (8.8) defines the lower
constraint.

The composition of the sample is reconstructed from the EPES spectra based
on the condition (

R1

R2

)exp

=

(
R1

R2

)teor

(8.81)

here R1 is a reflection function for a layer, R2 is a reflection function for a substrate.
However, not just one, but a number of samples, can satisfy the relation (8.81). Let
us consider a model problem: the ratio for Au and Si peaks is

RAu/RSi = 1 (8.82)

We need to find the distribution of Au atoms in a Si substrate. The first layer
is determined by the thickness t1 and the relative concentration r – the number of
gold atoms per one atom of the silicon (Fig. 8.33). By changing both parameters,

Fig. 8.33. The sample ‘layer Si+Aur – substrate Si’.
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Table 8.3. The examples t1 and r, satisfying the condition RAu/RSi = 1.

r t1 (8 keV), nm t1 (15 keV), nm
|T1(8 keV)− T1(15 keV)|

T1(8 keV)
· 100%

0.05 4.2 3.3 21%
0.1 1.61 1.45 9.93%
0.2 0.72 0.68 5.53%
0.4 0.34 0.33 2.9%
1 0.133 0.130 0%

the condition (8.82) can be satisfied. The examples of possible combinations t1 and
r are given in Table 8.3.

The relation (8.82) can also be reached in the model Si-Au-Si. Some examples
are shown in Fig. 8.34.

Fig. 8.34. The sample ‘layer Si + layer Au – substrate Si’.

The values of ratio RAu/RSi are given in Table 8.4 for different probing beam
energies. The difference in ratios RAu/RSi is due to the different probing depth
(8.80).

Thus, the restoration of the multilayer solid structure based on one spectrum
of the elastically scattered electrons is ambiguous – there is an endless number of
options that satisfy condition (8.81). In order to exclude the redundant solutions of
the inverse problem, some additional conditions are needed. These conditions can

Table 8.4. The values of ratio RAu/RSi and thicknesses for different energies.

Values of ratio RAu/RSi

Scheme on Fig. 8.30 8 keV 10 keV 12 keV 15 keV

a 1.00 1.02 1.15 1.02
b 1.00 1.16 1.31 1.33
c 1.00 1.27 1.44 1.59

τSi
lim, nm 5.83 7.08 8.28 10.0

τAu
lim, nm 2.82 3.38 3.95 4.77
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be formulated, for example, from the theoretical distribution functions of particles
in the sample caused by the ion bombardment or diffusing atoms. If there is no prior
information, the additional spectra measured at the different energies or geometry
have to be used. In the case of N spectra the inverse problem is solved on the base
of the following functional minimization:

F =

N∑
i=1

[(
R1

R2

)exp

i

−
(
R1

R2

)teor

i

]
→ min (8.83)

In the research-and-educational center ‘Nanotechnology’ in the Moscow Power En-
gineering institute the spectra of elastically reflected electrons were measured for
the sample ‘layer Au + substrate Si’ [101]. First, the Au layer was deposited on
the Si substrate, and then the sample was subjected to argon ion bombardment.
Such ion mixing changes the initial distribution of Au atoms in the sample. The
problem was to restore the Au atom distribution by means of EPES spectroscopy.
EPES spectra were measured for the energy of incident beam 8 keV, 10 keV, 12 keV
and 15 keV.

To interpret the experiment results, we use the Rubin–Everhart model. The
calculations are performed for a sample with the number of layers from 1 to 5.
The functional minimum is reached in a three-layer model. A further increase in
the number of layers does not decrease the functional (8.83). The calculated and
experimental ratios are plotted in Fig. 8.35. The extracted profile of the Au relative
concentration is presented in Table 8.5.

Fig. 8.35. The ratio of Au and Si for the energy scanning method – the experiment data
and calculations.
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Table 8.5. The dependence of the relative concentration r(z) over the sample depth,
extracted from EPES spectra.

Thickness, nm Relative concentration r

Layer 1 0.41 0.181
Layer 2 0.20 0.077
Substrate 8 0

8.7.3 Determination of the thickness of the deposited layer in the case
of a low-energy resolution

Consider a two-layer system ‘layer Au + substrate Ni’ from [102], when the energy
resolution is low, so that it is not sufficient to separate the peaks with the widths
σAu, σNi of the elastically scattered electrons by the nuclei with the masses MAu,
MNi. In this case the condition (8.8) is violated:

E0 <
σAu + σNi

2m (1− cos θ)

MAuMNi

|MAu −MNi| (8.84)

The elastic peaks formed by the electrons scattered from various elements are
united. Just a single peak of the elastically scattered electrons is observed in the
spectrum. The area beneath the united peak is given by the sum:

RAu+Ni = RAu +RNi (8.85)

where RAu+Ni is the area under the peak; RAu and RNi is the area under the
peaks if they could be separated. In this case an analysis like that described in the
previous paragraphs cannot be performed. However, the thickness of the deposited
layer can be determined if the absolute values of the elastic peak area is known
for the clean substrate. In this case, the following relation contains the information
about the layer thickness:

RAu+Ni/RNi = (RAu +RNi) /RNi (8.86)

The ratio (8.86) is a function of the Au layer thickness and can be calculated in
the small-angle approximation and Monte Carlo. Also DOM provides the exact
solution for RAu+Ni.

In [102] the Au layer thickness was controlled by X-ray Photo-emission Spec-
troscopy (XPS). The experimental and theoretical values of the ratio (8.86) are
plotted in Figs. 8.36 and 8.37. They evidence a good agreement between the ex-
perimental data and the theoretical models.

Note that the behavior of ratio (8.86) is different for energies 500 eV and
2000 eV. At 500 eV the differential elastic cross-section for Au is smaller than the
differential elastic cross-section for Ni by some orders of magnitude for the specific
angle of scattering. This is why the ratio is decreasing. For 2000 eV the situation
is opposite. The differential cross-sections are shown in the Figs. 8.38 and 8.39.
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Fig. 8.36. The dependence of ratio (8.86) over layer thickness. Probing energy is 500 eV.

Fig. 8.37. The same as in Fig. 8.36, but for probing energy 2000 eV.
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Fig. 8.38. The differential cross-section for Au and Ni: 500 eV. The vertical arrow denotes
the scattering angle in [102].

Fig. 8.39. The same as in Fig. 8.38, but for the probing energy 2000 eV.
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8.8 Conclusions

The main motivation of this chapter was to reveal the similarity between the re-
mote sensing and the elastic peak electron spectroscopy. The radiative transfer
codes based on the discrete ordinate method (such as DISORT, MDOM) are used
for verification of the approximate solutions of the radiative transfer equation for
electrons.

The problem of computations of the angular distributions of the particles
backscattered from a semi-infinite sample is considered. This problem is numer-
ically solved with the accuracy limited by the computer representation of numbers
with a floating point by various methods and codes: Neumann series, NMSS, New-
ton, SDA, MDOM, DISORT. It is shown that the most effective of the considered
methods is the NMSS method for electron energy range 0.2 keV to 50 keV, which
is synthetic and inherits the advances of other methods.

The electron transfer in solids with a highly anisotropic single scattering phase
function is considered. The boundary problem for transmission and reflection func-
tions of elastically scattered electrons is solved on the basis of the invariant embed-
ding method. Four integral-differential equations with nonlinear term are derived.
They are linearized and solved analytically due to the high anisotropy in the single
scattering phase-function.

Quantitative electron spectroscopy requires the computations of the reflection
and transmission functions not for the whole system, but for each layer separately.
To derive the analytical relations, some approximations have been used. We ana-
lyzed the following models: the single scattering model, the classical quasi-single
scattering model (Rubin–Everhart model) and the small-angle quasi-single scat-
tering model. The analytical expressions for the last model are derived on the
basis of the spherical harmonics method. The error of the approximate models is
estimated. It depends on the incident electron energy and the nuclear charge of
the sample. Having the discrete ordinate method solution as reference we found
the cases where the Rubin–Everhart model could be used for elastic peak electron
spectra interpretation.

In the future, the authors plan also to interpret X-ray photo-emission experi-
ments on the basis of the invariant embedding method.
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9 On some trends in the progress of astrophysical
radiative transfer

Arthur G. Nikoghosian

9.1 Introduction

The objective of this review is to provide some insight into trends in the develop-
ment of one of the most important fields of theoretical astrophysics – the theory
of radiative transfer. The foundation of the field goes back to the pioneering works
of Schuster, Schwarzschild, Milne and Eddington appearing at the beginning of
the last century in connection with modeling the stellar atmospheres. Since then
the approaches proposed in these works have made rapid progress forming a theory
usually referred to as ‘classical’. Parallel to this an alternative approach was offered
by Ambartsumian with his methods based on the principle of invariance and the
laws of addition of layers. With their deep physical content the methods have been
extremely flexible in applications and efficient in numerical computations. Their
major role in the theory is well-known. However, the modern fundamental results
in this direction make expedient reviewing the most important of them to elucidate
their place in existing theory and significance from the point of view of its further
progress.

The study of the equation of radiation transfer and its solutions in various
forms occupied an important place in the first works aimed at interpreting the
stellar spectra. Of course, the simplest, and therefore rough, models, in which
the medium is assumed to be plane-parallel, stationary, homogeneous and purely
absorbing were investigated first of all. The last assumption substantially simplifies
the problem of finding the field of radiation in the atmosphere, since in this case
the state of the radiating gas obeys the equilibrium laws of Saha and Boltzmann
with the local values of temperature and density. In this approximation, referred
to as the approximation of LTE (local thermodynamic equilibrium), the source
function, appearing in the transfer equation, is given by the Kirchhoff–Planck law.
The situation changes drastically, when one takes into account the scattering of
radiation which is of particular importance in the problem of the spectral line
formation. Now the state of the radiating gas depends not only on the local values
of thermodynamic parameters, but also on the field of radiation at the particular
point, which establishes coupling between different volumes inside the atmosphere.
The equation of radiation transfer in this case is integro-differential and its solution,
in general, encounters great difficulties.
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In spite of the rough assumptions, the first works in this direction in many
respects contributed to the physical understanding of the studied processes and
stimulated the development of theory. The most important articles in this field
were assembled by Menzel [1]. The approach, which was developed in them and
became classical, consisted in finding the source function as a function of the depth
in the atmosphere, which, in its turn, made it possible to determine the field of
radiation in it. In the simplest cases of isotropic and monochromatic scattering
the problem mathematically is reduced to the solution of an integral equation of
Fredholm’s type with the kernel, which is the exponential integral dependent on
the modulus of a difference of the arguments. For instance, in the simplest case
of isotropic scattering the problem of finding the radiation field in a semi-infinite
atmosphere illuminated by a beam of parallel rays at an angle of arccos ς is reduced,
as is well-known, to the solution of the following integral equation

S (τ, ς) =
λ

2

∫ ∞

0

Ei (|τ − τ ′|)S (τ ′, ς) dτ ′ +
λ

4
e−τ/ς , (9.1)

where λ is the single-scattering albedo (or the probability of photon re-radiation
during the elementary act of scattering) and S is the source function. Its solution
allows, in particular, the determination of the intensity of the radiation emerging
from the atmosphere, i.e., the quantity, directly measured during the observations.

In contrast to the conventional approach described above, Ambartsumian pro-
posed the new method, named by him ‘the principle of invariance ’, which allowed
us to find the outgoing intensity without the preliminary determination of the light
regime at all depths. By the principle of invariance , he implies such transformation
of the initial atmosphere, which does not influence the global optical characteristics
of a medium [2–5]. It is obvious that during this determination the term ‘ principle
of invariance ’ can be used only in the singular. The meaning of this remark will
become clear further on. The application of the principle significantly facilitates the
solution of the problems of radiation transfer, revealing from the very beginning
the structure of the desired solutions which, in its turn, is a great help in determin-
ing the field of radiation inside the atmosphere. As was shown subsequently (see
below, Section 9.5, and also [6]), the principle of invariance is a special case of the
more general variational principle connected with the translational transformation
of optical depth. The application of this principle makes it possible to derive for
different quantities in different problems the large number of important relation-
ships, which sometimes are possible to identify immediately, on the basis of simple
physical and/or probabilistic considerations. Such relationships, which follow from
the principle of invariance , can be called the invariance relations.

As a result of Ambartsumian’s studies in 1941–1947 on the theory of radiative
transfer, another rather effective method, named by him the method of addition
of layers, was also proposed [7] (see also [8]). It answers the question, how the
global optical characteristics of the absorbing and scattering media (coefficients of
reflection and transmission) during their joining are added. It is obvious that this
sufficiently general posing of the question appears naturally, if we abandon the re-
quirement that the optical properties of a medium should remain unchanged during
the addition to it of additional layer. The obtained relationships reveal the func-
tional form of the optical characteristics of the composite atmosphere; moreover,
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which is important, all parameters and functions, which describe elementary pro-
cesses, play the role of arbitrary parameters. The method gives a key to the solution
of the transfer problems for inhomogeneous atmospheres, and on the other hand, it
was basis for the so-called method of ‘invariant imbedding’ developed afterwards.

9.2 The principle of invariance

The invariance principle was formulated for the first time by Ambartsumian in
treating the problem of diffuse reflection of light from a semi-infinite homogeneous
atmosphere [3,4]. Considerations underlied the principle based on the apparent fact
that the addition to this medium of a layer of infinitesimal optical thickness Δτ ,
possessing the same properties as the original one, must not change its reflectivity.
This thesis was referred to by Ambartsumian as the principle of invariance . This
implies that the total contribution of processes relevant to the added layer will be
equal to zero.

The reflectance of a medium is characterized by the reflection function ρ (η, ς),
where ς and η are respectively the cosines of the angles of incidence and reflection.
The contribution of all the other possible processes is of a higher order of smallness
with respect to Δτ and may be ignored. Then in the simplest case of isotropic
scattering the condition of invariance of the reflection function for the semi-infinite
atmosphere can be written in the form

(η + ξ) ρ (η, ξ) =
λ

2
ϕ (η)ϕ (ξ) , (9.2)

where the function

ϕ (η) = 1 + η

∫ 1

0

ρ (η, η′) dη′ (9.3)

is referred to as the Ambartsumian ϕ-function. The last two equations implies that
the function ϕ satisfies the following functional equation

ϕ (η) = 1 +
λ

2
η

∫ 1

0

ϕ (η)ϕ (η′)
η + η′

dη′ , (9.4)

usually called the Ambartsumian equation. Eq. (9.2) shows that the reflectance
ρ (η, ς) is expressed through a function of one variable and is a symmetrical func-
tion of its arguments. The quantity ηρ (η, ς) dη possesses a probabilistic meaning,
namely, it gives the probability that the quantum incident on the medium in the
direction ς will be reflected by it in the directional interval η, η + dη.

In the same paper [2] the principle of invariance was applied for solving the
problem of the diffuse reflection and transmission for the medium of finite optical
thickness. In this case the layer of infinitesimal optical thickness Δτ is added to
one of boundaries while just such a layer is subtracted from the opposite side. For
the reflectance ρ (η, ς) and diffuse part of transmittance σ (η, ς) this results in (for
convenience of the further discussion, we adopt here somewhat different notation):

ρ (η, ς) =
λ

2

ϕ (η)ϕ (ς)− ψ (η)ψ (ς)

η + ς
, σ (η, ς) =

λ

2

ψ (η)ϕ (ς)− ϕ (η)ψ (ς)

η − ς
. (9.5)
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The auxiliary functions ϕ (η) and ψ (η) are determined from the following system
of functional equations

ϕ (η) = 1 +
λ

2
η

∫ 1

0

ϕ (η)ϕ (η′)− ψ (η)ψ (η′)
η + η′

dη′ , (9.6)

ψ (η) = e−τ0/η +
λ

2
η

∫ 1

0

ψ (η)ϕ (η′)− ϕ (η)ψ (η′)
η − η′

dη′ , (9.7)

where τ0 is the optical thickness of the medium. These functions are also called
the Ambartsumian functions. It is clear that the reflectance and transmittance as
well as the functions ϕ (η) and ψ (η) depend also on the optical thickness of the
medium, nevertheless, for brevity, τ0 is not indicated explicitly among arguments.

As has already been indicated, the starting point for the determination of the
intensity of radiation outgoing from the medium is here not the equation of transfer,
which allows us to find the required quantity only after the regime of radiation is
found for all depths in the atmosphere. It is obvious that, in view of the linearity
of the problem, knowledge of the functions of reflection and transmission makes
it possible to determine the intensity of the outgoing radiation for any flux falling
on the medium. On the other hand, formulas (9.2) and (9.5) give the solution not
just of one particular problem of diffuse reflection (for the semi-infinite medium) or
the problem of diffuse reflection and transmission (for the finite medium). In fact
they make it possible to reveal the structure of the global optical characteristics
of medium, as such, expressing in this case the unknown quantities through the
functions of one variable. The approach itself in many respects contributed to the
presence of a number of important relations connecting with each other different
characteristics of the radiation field, in the problems of radiative transfer theory
most frequently encountered in astrophysical applications. Such relationships were
obtained at different times by a number of authors (for example, see [6, 9, 10]).

It should be noted that the relations (9.2), (9.4) were obtained by Ambart-
sumian earlier by another method in considering the scattering of light by the
atmospheres of planets [11]. The way, chosen in the mentioned work, consists in
the formal differentiation of the initial integral equation for the source function over
the optical depth. From a purely mathematical point of view the way proposed is
of large importance, since it shows how the solution of the integral equation of
the Fredholm type with the difference kernel can be reduced to the solution of a
functional equation.

The idea on the invariant property of the global optical characteristics of the
scattering and absorbing atmosphere with respect to the layer addition was em-
ployed in the problem of radiation diffusion through the optically thick medium
[12,13]. This research implies that the function ϕ (η) admits a physical interpre-
tation which concerns the angular distribution of the intensity of radiation trans-
mitted through the optically thick atmosphere in the absence of true absorption.
Various meanings can be ascribed to this function, of which the limb-darkening law
for the Sun is one of the astrophysical examples.

In various astrophysical problems one encounters, as is known, the necessity
to find the radiation field within the medium. An important advantage of the
invariance principle is that knowledge of the intensities of radiation outgoing from
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a medium facilitates the solution of this problem essentially (see, e.g., [14–16]).
For instance, being applied to Eq. (9.1), the invariance principle makes it possible
to reduce the solution of this Fredholm-type integral equation to the solution of
following Volterra-type equation for an auxiliary function Φ (τ) related with the
resolvent function of Eq. (9.1)

Φ (τ) = L (τ) +

∫ τ

0

L (τ − τ ′)Φ (τ ′) dτ ′ , (9.8)

where the kernel-function

L (τ) =
λ

2

∫ 1

0

ϕ (ς) e−τ/ς dς

ς
(9.9)

is known well in the radiative transfer theory [17, 18]. An explicit expression for
the function Φ (τ) was obtained in [19].

For illustration, we limited our consideration to the simplest case of monochro-
matic scattering, though the described picture and conclusions remain valid for the
much more general statement of the transfer problem. From the pure mathematical
point of view, the principle of invariance may be considered as a way of reducing the
boundary-value problem usually formulated for the source function to the solution
of the initial-value or Cauchy problem.

9.2.1 Anisotropic scattering

The first works on the principle of invariance concern monochromatic and isotropic
scattering. It was apparent, however, that the principle may also be applied under
much more general assumptions to the elementary act of scattering. That is why as
early as in the paper [20] Ambartsumian handles the problem of diffuse reflection
of light from a semi-infinite plane-parallel atmosphere for anisotropic scattering
with arbitrary phase function. It is noteworthy that here he employs the expansion
of the phase function x (γ) (γ is the angle of scattering) in a series of Legendre
polynomials which was suggested earlier by him in [21, 22]

x (γ) =
∞∑
i=0

xiPi (cos γ) . (9.10)

or with use of the summation theorem for spherical functions

x (η, η′, ϕ− ϕ′) =
∞∑

m=0

cosm (ϕ− ϕ′)
∞∑

i=m

cimP
m
i (η)Pm

i (η′) , (9.11)

where the constants cim are expressed through the coefficients xi, and P
m
i (η) are

the associated Legendre polynomials. Then an expansion similar to (9.11) holds for
the reflection function

ρ (η, η′, ϕ− ϕ′) =
∞∑

m=0

ρm (η, η′) cosm (ϕ− ϕ′) . (9.12)
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Now the solution of the problem is written by means of the functions ϕm
i (η)

ρm (η, η′) =
λ

4

∞∑
i=m

(−1)
i+m

cim
ϕm
i (η)ϕm

i (η′)
η + η′

, (9.13)

which are determined from the following set of functional equations

ϕm
i (η) = Pm

i (η) + 2
(−1)

i+m

2− δ0m

∫ 1

0

ρm (η, η′)Pm
i (η′) dη′ , (9.14)

where δkm is the Kronecker symbol.
In the same paper these results were illustrated in treating two special cases:

scattering with two-term and the Rayleigh phase functions, which are of astrophys-
ical importance.

9.2.2 Partial redistribution over frequencies and directions

It is well known that the multiple scattering of the line radiation in various as-
trophysical media undergoes redistribution over frequencies and directions. The
transfer problem that arises in the general case of partial redistribution is similar
in many respects to that for anisotropic scattering. This analogy is especially dis-
tinct when one uses the bilinear expansions of the redistribution functions. Thus,
for example, in the simplest case of a pure Doppler redistribution rI [23,24] it has
been shown [25] that the expansion

rI (x
′, x, γ) =

1√
π sin γ

exp

{
x2 + x′2 − 2xx′ cos γ

sin2 γ

}
=

∞∑
k=0

cosk γαk (x)αk (x
′)

(9.15)

holds, where x and x′ are the so-called dimensionless frequencies of the incident
and scattered photons measured from the center of the line in units of the Doppler

width and αk (x) =
(
2k
√
πk!

)−1/2
exp

(−x2)Hk (x) is an orthonormal system of

functions with weight exp
(
x2
)
expressed in terms of Hermite polynomials Hk (x).

Analogous bilinear expansion was obtained in [25] also for the case of the combined
Doppler and damping effects, the latter being due to radiation and collision. Let
us consider the directionally averaged redistribution law

rI (x
′, x) =

∫ ∞

max(|x|,|x′|)
exp

(−u2) du =

∞∑
k=0

Akα2k (x
′)α2k (x) , (9.16)

where Ak = 1/ (2k + 1). In this case the one-dimensional problem of the spectral
line formation reduces to solving the infinite set of functional equations for the
functions ϕk (x)

ϕk (x) = α2k (x) +
λ

2

∞∑
m=0

Am

∫ ∞

−∞

ϕm (x)ϕm (x′)
α (x) + α (x′)

α2k (x
′) dx′ , (9.17)

where α(x) is the profile of the absorption coefficient. This is the natural general-
ization of equation (9.4) to the case of partial redistribution over frequencies. Using
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expansions of types (9.15) and (9.16) makes it much easier to solve the correspond-
ing transfer problems for the line-radiation [26–29]. Quasi-analytic and numerical
methods have been developed for solving these problems [29–32]. It was shown that
the accuracy in solving the truncated set of equations (9.17) can be highly increased
in view of the fact that to any fixed value of x there corresponds the number n
beginning of which the functions ϕk(x) may be replaced by the known functions
α2k(x). Physically this reflects the fact that the formation of the far wings of the
spectral line is due to the single scattering.

The invariance principle has played an important role in the theory of radia-
tive transfer. It has been especially effective as applied to relatively complicated
problems in radiative transfer theory. According to the idea suggested in [33], this
theory can be constructed so that it is based on the invariance principle, while the
radiative transfer equation and the invariance relationships follow directly from
it. Subsequently, as the theory developed, the feasibility of this approach became
obvious and the direct use of this approach seemed preferable in some cases. The
advantage of the approach lies in the profound intuitive content of the invariance
principle and the existence of a close connection with the characteristic features of
the physical problem under consideration, the symmetry property, and the bound-
ary and initial conditions. In addition, as is well known from physics, there is the
relationship between invariance principles and conservation laws. In view of the
importance of all these questions, we examine them in more detail in Section 9.5
using radiative transfer in a plane-parallel atmosphere as an example.

9.3 Quadratic and bilinear relations of radiative
transfer theory

As early as in 1977 Rybicky derived quadratic integrals of the transfer equation;
however, some important points that arose there remained unanswered for a long
time [34]. He studied the problems, for which the transfer equation admits inte-
grals that involve quadratic moments of the radiation field. When the boundary
conditions (or other constraints) are required to be met, the integrals convert into
nonlinear relations of specific form for quantities characterizing the radiation field
in the atmosphere. The so-called Q- and R- integrals involve as a particular case a
certain class of ‘surface’ results, some of which are known well in transfer theory.

Further generalization of Rybicki’s results for monochromatic, isotropic scat-
tering in the plane-parallel medium was given in [35]. The so-called ‘two-point’
relations have been found; they couple the intensities of equally directed radiation
at two different depths in the atmosphere. The more general concept of ‘bilinear
integrals’ (or relations) was introduced in [36] for quadratic integrals that connect
the radiation fields of two separate transfer problems but referred to the same opti-
cal depth. Following the given terminology, it was reasonable to introduce also the
concept of ‘two-point bilinear integrals’ for those coupling with each other radia-
tion fields referred to both different transfer problems and diverse optical depths.
Evidently this latter type of relations comprises all other types as the specific cases.
Regardless of the new results, the main question on the physical nature of existence
of quadratic and bilinear relations remained abstruse for a long time until appear-
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ing the mentioned paper [36]. The idea that there must exist some relationship to
the invariance principle suggests itself and is justified if for no other reason than
that the majority of nonlinear equations in transfer theory are associated in some
or other way with the invariance technique. Most commonly these equations admit
a plain physical interpretation and can be established by means of a direct use
of the mathematical model of the physical process. Having this in mind, one may
naturally be tempted to derive the requisite bilinear relations in a similar manner,
thus making clear the physical significance of these relations. This kind of attempt
has been made by Hubeny in [37,38], who provided some intuitive insight into the
physical nature of quadratic results of the transfer theory.

The more general and mathematically rigorous derivation of quadratic and bi-
linear relations was given in [39, 6] on the basis of the principle of invariance . We
elucidated the profound connection between invariance principle, quadratic rela-
tions and conservation laws resulting from general variational principle.

Let us treat the process of monochromatic, isotropic scattering in a semi-infinite,
plane-parallel atmosphere. Suppose also that the atmosphere is homogeneous and
does not contain energy sources. Turning to Eqs. (9.2), (9.3) and making use the
expression for the zero-moment α0 of ϕ(η)

α0 =

∫ 1

0

ϕ (η) dη = 2
(
1−√

1− λ
)
/λ, (9.18)

one can write √
1− λϕ (η) = 1−

∫ 1

0

ρ (η, η′) η′ dη′ (9.19)

and

(1− λ) (η + ξ) ρ (η, ξ) =
λ

2

(
1−

∫ 1

0

ρ (η, η′) η′ dη′
)(

1−
∫ 1

0

ρ (ξ, η′) η′ dη′
)
.

(9.20)

Alongside the reflection coefficient we introduce into consideration the function
Y (τ, η, μ) that characterizes the probability of the photon exit from atmosphere in
the direction μ, if originally it was moving at depth t with the directional cosine
η. The symmetry property of the Y -function follows from the reciprocity principle
and can be represented in the form:

|η|Y (τ, η, μ) = |μ|Y (τ,−μ,−η) = |μ| Ỹ (τ, μ, η) , (9.21)

where for convenience we introduce the function Ỹ with angular arguments refer-
enced from inner normal direction. This function also admits a probabilistic inter-
pretation, namely, Ỹ (τ, η, μ) dη is the probability that a photon incident on the
atmosphere with the directional cosine μ will move (in general, as a result of multi-
ple scattering) at depth τ within the directional interval (η, η+dη). It is clear that
Ỹ (0, μ, η) = ηρ(η, μ) In fact, Ỹ (τ, μ, η)/|η| is none other than the Green function for
the source-free problem called also the surface Green function [18]. This quantity
completely determines the radiation field throughout the semi-infinite atmosphere
that is illuminated by the external monodirectional source of unit intensity.
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It is obvious that

Y (τ,−η, μ) =
∫ 1

0

Y (τ, η′, μ) ρ (η′, η) η′ dη′,

Ỹ (τ, μ,−η) = η

∫ 1

0

Ỹ (τ, μ, η′) ρ (η, η′) dη′ . (9.22)

Now, multiplying equation (9.2) by the product Y (τ, ξ, μ)Y (τ ′, η, μ′) and integrat-
ing over ξ and η from 0 to 1, we arrive at the first fundamental result∫ 1

−1

Y (τ, ξ, μ)Y (τ ′,−ξ, μ′) dξ = λ

2

(∫ 1

−1

Y (τ, ξ, μ) dξ

)(∫ 1

−1

Y (τ ′, ξ, μ′) dξ
)

(9.23)

where the relations (9.22) and symmetry property of the reflection coefficient are
used. We shall see later that the described procedure admits a simple physical
interpretation which makes it possible to obtain the same result directly by means
of some modification of invariance idea. The probabilistic meaning assigned to the
function Y sets one thinking that some statistical explanation may be suggested
for equation (9.23) as well. Indeed, this equation implies that λ/2 can be regarded
as the correlation coefficient of two random events so that this result can be stated
in the probabilistic language as follows.

Two random events of two photons exit from a semi-infinite atmosphere in cer-
tain fixed (diverse, in general) directions, if they were originally moving in opposite
directions at some different optical depths, are correlated with the correlation coef-
ficient equal to λ/2.

The second fundamental result generating quadratic and bilinear R-relations,
can be found by a similar manner from equation (9.20). Multiplying this equation
by Ỹ (τ, μ, η)Ỹ (τ ′, μ′, ξ), and integrating over η and ξ in the range (0, 1), in light of
the second of Eqs. (9.22), we obtain

(1− λ)

∫ +1

−1

Ỹ (τ, μ, ξ) Ỹ (τ ′, μ′,−ξ) dξ

=
λ

2

(∫ +1

−1

Ỹ (τ, μ, ξ) ξ
dξ

|ξ|
)(∫ +1

−1

Ỹ (τ ′, μ′, ξ) ξ
dξ

|ξ|
)
. (9.24)

Utilizing the reversibility property (9.21) in equations (9.23) and (9.24), one can
write out another pair of equations for the functions Ỹ and Y∫ +1

−1

Ỹ (τ, μ, ξ) Ỹ (τ ′, μ′,−ξ, ) dξ
ξ2

=
λ

2

(∫ +1

−1

Ỹ (τ, μ, ξ)
dξ

|ξ|
)(∫ +1

−1

Ỹ (τ ′, μ′, ξ)
dξ

|ξ|
)
, (9.25)

and

(1− λ)

∫ +1

−1

Y (τ, ξ, μ)Y (τ ′,−ξ, μ′, ) ξ2 dξ

=
λ

2

(∫ 1

−1

Y (τ, ξ, μ) ξ dξ

)(∫ 1

−1

Y (τ ′, ξ, μ′) ξ dξ
)
. (9.26)



434 Arthur G. Nikoghosian

Relations (9.23)–(9.26) constitute a wealth of information about radiation fields in
the source-free media. Some of their versatile consequences will be examined below.
Now we present merely the special result following from these relations, when t = t′

and μ = μ′ ∫ 1

0

Y (τ, ξ, μ)Y (τ,−ξ, μ) dξ = λ

4

(∫ +1

−1

Y (τ, ξ, μ) dξ

)2

, (9.27)

(1− λ)

∫ +1

0

Y (τ, ξ, μ)Y (τ,−ξ, μ, ) ξ2 dξ = λ

4

(∫ +1

−1

Y (τ, ξ, μ) ξ dξ

)2

. (9.28)

Thus, we arrived at quadratic Q- and R- relations representing the prototypes of
those obtained in [34]. The derived bilinear and quadratic relations may be applied
to different transfer problems of astrophysical interest to give a number of new
results.

9.3.1 The problem of diffuse reflection

Let us start, for instance, with the problem of diffuse reflection from a semi-infinite
atmosphere, which is illuminated from outside by a parallel beam of radiation of
unit intensity with directional cosine μ. Using superscripts ‘+’ and ‘−’ to denote
the intensities with angular arguments +η and −η, respectively, by virtue of the
probabilistic meaning of function Y given above, one may write

I+ (τ, η, μ) = Ỹ (τ, μ,−η) /η, I− (τ, η, μ) = Ỹ (τ, μ, η) /η (9.29)

Now equations (9.23) and (9.26) correspondingly yield

Q (τ, μ; τ ′μ′) = λJ (τ, μ) J (τ ′, μ′) , (1− λ)R (τ, μ; τ ′μ′) = λH (τ, μ)H (τ ′, μ′) ,
(9.30)

where

J (τ, μ) =
1

2

∫ +1

−1

[
I+ (τ, η, μ) + I− (τ, η, μ)

]
dη ,

H (τ, μ) =
1

2

∫ +1

−1

[
I+ (τ, η, μ)− I− (τ, η, μ)

]
η dη (9.31)

are the mean intensity and flux, respectively; we introduced also two quadratic
moments of the radiation field given by

Q (τ, μ; τ ′μ′) =
1

2

∫ +1

−1

[
I+ (τ, η, μ) I− (τ ′, η, μ′) + I+ (τ ′, η, μ′) I− (τ, η, μ)

]
dη ,

(9.32)

R (τ, μ; τ ′μ′) =
1

2

∫ +1

−1

[
I+ (τ, η, μ) I− (τ ′, η, μ′) + I+ (τ ′, η, μ′) I− (τ, η, μ)

]
η2 dη .

(9.33)

The angular arguments μ and μ′, which specify the directions of incidence, enter
into Eqs. (9.30) as parameters so that the relations of this type can be written for
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arbitrary angular distribution of the illuminating radiation. Moreover, they enable
one to establish the relationship between radiation fields of two diverse problems
with different angular distribution for incident radiation.

To give an important insight into the source-free problem and the group of
related problems we decide upon the simple and physically intelligible formula,
second of Eqs. (9.22) which was employed in deriving Eqs. (9.30). By virtue of
formulas (9.29) it can be rewritten as

I+ (τ, η, μ) = η

∫ 1

0

ρ (η, ς) I− (τ, ς, μ) dς , (9.34)

which states the obvious fact that, in the absence of internal sources, the upward
radiation (and ultimately the radiation field at any optical depth t), is completely
determined by the intensity of inward radiation. Indeed, taking account of that

I− (τ, η, μ) = λ

∫ τ

0

J (τ, μ) e−(ς−t)/η dt

η
+

1

2
δ (η − μ) e−τ/μ (9.35)

and the source function S (τ, μ) = λJ (τ, μ), we insert formula (9.35) into Eq. (9.34)
to obtain

S (τ, μ) =

∫ τ

0

L (τ − t)S (t, μ) dt+
λ

2
ϕ (μ) e−τ/μ . (9.36)

Thus, knowledge of the reflectance of the atmosphere makes it possible to reduce
the classical boundary-value problem of determining the internal field of radiation
to the Volterra-type Eq. (9.36) associated with an initial value problem. This result
is not unexpected, however, and is important in the sense that similar equations
may be written (see below) for some special internal-source problems as well while
formula (9.34) is no more valid. This possibility stems from appropriate quadratic
and bilinear relations to be derived.

9.3.2 Uniformly distributed energy sources

The results obtained above are sufficient to write down easily two-point bilinear
relations for atmospheres with uniformly distributed sources. We assume the initial
sources of energy are due to thermal emission so that the source-function has a form

S (τ) = λJ (τ) + (1− λ)B , (9.37)

where B = const is related to the Planck function. As was shown in [27], the
transfer problem for uniformly distributed sources is closely connected with that
of diffuse reflection. An especially simple relationship exists between the problem
with the source-function (9.37) and the diffuse-reflection problem with isotropic
incident radiation. The plain probabilistic considerations based on the obvious fact
that a photon, moving somewhere in the semi-infinite atmosphere, will either be
destroyed or escape it, lead to the following relations

Ĩ±∗ (τ, η) =

∫ 1

0

I±∗ (τ, η, μ) dμ = 1− I± (τ, η, B) /B , (9.38)
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where intensities relevant to the diffuse-reflection problem are supplied by an as-
terisk. It is customary to mark B explicitly as an argument identifying the problem
under consideration. Incorporating formulas (9.38) in equations (9.27) applied to
the two separate problems with different values of sources (B and B′), we find

Q (τ,B; τ ′, B′) = λS (τ,B)S (τ ′, B′)− (1− λ)BB′ , (9.39)

(1− λ)R (τ,B; τ ′, B′) = λH (τ,B)H (τ ′, B′)
+ (1− λ) [BK (τ ′, B′) +B′K (τ,B)]

− (1− λ)BB′/3 , (9.40)

where

K (τ,B) =
1

2

∫ 1

0

[
I+ (τ, η, B) + I− (τ, η, B)

]
η2 dη (9.41)

is the K-moment and other quantities are given by formulas (9.31)–(9.33) with μ
and μ′ replaced by B and B′, respectively. These two-point bilinear equations ob-
tained are the further generalization of existing results. Similar relations connecting
the radiation fields for the diffuse-reflection problem, and that for an atmosphere
with internal sources, may be readily found. The next question concerns the inte-
gral equation for the source function. Starting again with relation (9.34), we see
that in this case it takes a form

I+ (τ, η, B) = η

∫ 1

0

ρ (η, ς) I− (τ, ς, B) dς +B [2− ϕ (η)] , (9.42)

where the formulas (9.38) and (9.3) are used. Hence for the source-function (9.37)
we have

S (τ,B) = B
√
1− λ+

λ

2

∫ 1

0

ϕ (ς) I− (τ, ς, B) dς . (9.43)

Note that this equation could be found from the first of bilinear relations (9.39) on
setting τ ′ = 0 and B = B′. This result was obtained also in [35]. Now expressing
I− in terms of S yields

S (τ,B) =

∫ τ

0

L (τ − t)S (t, B) dt+B
√
1− λ . (9.44)

Thus, in accordance with what is being said above, this special internal-source
problem as well is reducible to the Volterra-type equation. As a matter of fact, the
mere existence of linking formulas (9.38) indicates that all mathematical results
for the diffuse-reflection problem have their counterparts in the transfer under
consideration.

Now having the appropriate results for the diffuse-reflection problem, one can
with only slightly more effort develop bilinear relations for the problem of exponen-
tially distributed internal energy sources as well as the Milne problem. Referring the
interested reader to the paper [36] for details of derivations, here we limit ourselves
by presenting the final results.
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9.3.3 Exponentially distributed energy sources

For the sources of the form b (τ,m) = (1− λ)B e−mτ we will obtain

λQ (τ,m; τ ′,m′) = S (τ,m)S (τ ′,m′)

− [
b (τ,m) I+

(
τ ′,m−1,m′)+ b (τ ′,m′) I+

(
τ ′,m′−1,m

)]
, (9.45)

where S (τ,m) = λJ (τ,m) + b (τ,m), and

λ (1− λ)R (τ,m; τ ′,m′) = [λH (τ,m)− b (τ,m)] [λH (τ ′,m′)− b (τ ′,m)]

− (1− λ)
[
m−2b (τ ′,m′) I+

(
τ,m′−1,m

)
+m−2b (τ,m) I+

(
τ,m−1,m′)] .

(9.46)

This relation is valid for arbitrary values of m and m′. It is apparent that the
procedure described here may be performed to establish a relationship between
problems that correspond to exponentially and either diffuse-reflection problem or
the problem of uniformly distributed sources: the integral equation for S(τ,m) may
be derived starting again with formulas (9.34) to find

I+ (τ, η,m) = η

∫ 1

0

ρ (η, ς) I− (τ, ς,m) dς + b (τ,m) ηρ
(
η,m−1

)
, (9.47)

which implies the following integral equation

S (τ,m) =

∫ τ

0

L (τ − t)S (t,m) dt+ (1− λ)Bϕ
(
m−1

)
e−mτ . (9.48)

9.3.4 The Milne problem

Two-point quadratic relations for the Milne problem have been derived by Ivanov
in [35], so we limit the discussion to a brief description of our approach to obtain-
ing the bilinear relations with only the final results being presented. Besides, the
solution of the Milne problem is determined to within a constant factor, therefore
bilinear relations connecting two separate Milne problems only trivially differ from
two-point quadratic relations. For simplicity the conservative case (λ = 1) will be
treated.

The starting point is the obvious relation

I+ (τ, η) = I+ (0, η) + η

∫ 1

0

ρ (η, ς) I− (τ, ς) dς , (9.49)

which can be viewed as a counterpart of Eqs. (9.34), (9.42) and (9.47) for the Milne
problem. Now, as is well known (see, e.g., [9,24]).

I+ (0, η) =
(√

3/4
)
Fϕ (η) , (9.50)

where F is the normalizing factor determined by the emergent flux.
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Multiplying invariance equation (9.2) by I+ (τ, η, F ) I− (τ, η, F ′) (parameters F
and F ′ as an additional argument are introduced to distinguish the problem) and
taking account of formulas (9.49) and (9.50), one derives

Q (τ, F ; τ ′, F ′) = J (τ, F ) J (τ ′, F ′)− (3/16)FF ′ , (9.51)

where Q and J are given by formulas (9.32) and the first of (9.31), respectively,
with F, F ′ as parameters. In a similar manner one can obviously write out two-
point bilinear relations linking the Milne problem with any of the problems treated
above. An especially simple relation may be established with the diffuse-reflection
problem (for λ = 1)

Q (τ, μ; τ ′, F ) = J (τ, μ) J (τ ′, F ) . (9.52)

The integral equation for the source function of the Milne problem follows from
both Eqs. (9.49) and (9.51) on setting in the latter τ = 0

S (τ, F ) =

∫ τ

0

L (τ − t)S (t, F ) dt+
(√

3/4
)
F . (9.53)

Thus, again, as in the preceding paragraphs, we arrive at the Volterra-type integral
equation. Scrutinizing the results obtained, we observe that all treated problems
possess some common features, of which the possibility of reduction to the Volterra-
type equation is an example. An alternative important characteristic is that the
radiation fields corresponding to these special distributions of sources are connected
with each other by means of bilinear relations. We shall see below that this class
of problems may be supplemented.

9.4 The modified principle of invariance

In this section, we shall give an important insight into the physical nature of this
kind of nonlinear relations. The preceding considerations suggest the idea that
there must exist a close interconnection between bilinear relations and the invari-
ance principle. For this reason, let us return to the original formulation of the
invariance principle sketched at the outset of the review. We shall consider a semi-
infinite, plane-parallel and source-free homogeneous atmosphere. For simplicity of
exposition, the probabilistic approach to the problem will be adopted.

Let a photon be incident upon the boundary plane τ = 0 of the atmosphere at
an angle cos−1 μ to the inner normal, and we are interested in the probability of
the photon exit at some angle cos−1 μ′ to the upper normal direction. The classical
formulation of the invariance principle assumes the addition (or removal) of a thin
layer to (from) the surface of the atmosphere, presuming the optical properties
of the layer and atmosphere to be the same. It is completely clear, however, that
physically there is no difference whether we add (or remove) the layer to (from)
the top of the atmosphere or do it somewhere within it with some selected layer
(τ, τ+Δ). In the latter case we are interested in the probability of reflection subject
to condition that the level τ was intersected. Recalling the probabilistic meaning of
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functions Y and Ỹ introduced in Section 9.3, it is readily seen that the probability
of the mentioned event is

dμ

∫ 1

0

Y (τ,−ς, μ′) Ỹ (τ, μ, ς) dς . (9.54)

Further, we must determine the same probability accounting of the elementary
processes of interaction with the selected layer (τ, τ + Δτ), and equate to that of
the formula (9.54) in accordance with what has been said. One may distinguish
three types of processes of the first order of Δτ associated with the layer.

(i) The scattering photon passes the selected layer with no interaction. The prob-
ability associated with this possibility is

dμ

∫ 1

0

Y (τ,−ς, μ′) Ỹ (τ, μ, ς) dς −Δτdμ

∫ 1

0

Y (τ,−ς, μ′) Ỹ (τ, μ, ς)
dς

ς

−Δτ dμ

∫ 1

0

Y (τ, η, μ′) dη
∫ 1

0

ρ (η, ς) Ỹ (τ, μ, ς) dς (9.55)

(ii) The photon enters the selected layer by crossing the plane τ and is scattered
in the layer in some direction specified by η. For this process we have

Δτ dμ′
λ

2

(∫ +1

−1

Y (τ, η, μ′) dη
)(∫ +1

−1

Ỹ (τ, μ, ς)
dς

ς

)
. (9.56)

(iii) The photon enters the selected layer from below, i.e. by crossing the plane
τ +Δτ , and is scattered in the layer. The associated probability is

Δτ dμ′
λ

2

(∫ 1

−1

Y (τ, η, μ′) dη
)(∫ 1

0

dη′
∫ 1

0

ρ (η′, ς) Ỹ (τ, μ, ς) dς

)
. (9.57)

Now adding up expressions (9.55)–(9.57) and equating the result to that of (9.54),
by virtue of formulas (9.21) and the second of Eqs. (9.22) finally we obtain∫ +1

−1

Y (τ, ς, μ)Y (τ,−ς, μ′) dς = λ

2

(∫ +1

−1

Y (τ, ς, μ) dς

)(∫ +1

−1

Y (τ, ς, μ′) dς
)
.

(9.58)

Thus we have arrived at the specific version of the bilinear Q-relation (see
Eq. (9.23)) written for τ = τ ′. On setting τ = 0 in (9.58) and taking account
of the boundary condition Y (0, ζ, μ) = δ(ζ − μ), we are led to invariance equation
(9.2) for the reflection coefficient. We see that equation (9.58) is more informative
as compared to Eq. (9.2) and can be regarded as the extension of Ambartsumian’s
equation to all depths in the atmosphere.
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9.5 The variational formalism

As was above said, the theory of radiative transfer can be made to rest on the
principles of invariance. We saw that the invariance equation, being combined with
some simple physical reasoning, makes it possible to derive the more informative
quadratic and bilinear relations, for which the former equation is a special (surface)
result. It turned out that the resulting Q-relations may be envisioned as a manifes-
tation of a somewhat generalized version of the classical principle of invariance and
can be obtained immediately. These facts indicate the fundamental nature of the
invariance property of transfer problems and set one thinking that there must exist
some general formulation of problems that implies both the equation of transfer
and the principles of invariance as kinds of laws.

Now we shall see that the problems of transfer of radiation in the plane-parallel
homogeneous atmosphere admit a variational formulation, the equation of transfer
then being the Euler–Lagrange equation and the bilinear Q-relation being the con-
servation law due to form-invariance of the suitable Lagrangian. In fact, a single
functional comprises all the information on features of the problem and allows a
systematic connection between symmetries and conservation laws. Being the first
integrals of the Euler–Lagrange equation, the conservation laws may facilitate the
solution of the problem under consideration and assist in its interpretation. Two
salient problems, encountered in having recourse to the variational principle, are
the existence of the principle for a given problem and the derivation of appropriate
conservation laws. The former of these problems for systems of partial differential
equations was solved by Vainberg [40], who showed that this problem is equivalent
to determining whether an operator is potential or not. The derivation of the con-
servation laws is based on Noether’s theorem [41], which suggests a systematic pro-
cedure for establishing these laws from a direct study of the variational integral. An
important generalization of Noether’s theorem to encompass the integro-differential
equations was given by Tavel [42].

While the variational approach is widely used in various branches of theoretical
physics, this is not the case in the field of the radiative transfer theory, with the only
exception being the paper of Anderson [43] who employs Tavel’s results to establish
the conservation law suitable for the case of non-isotropic scattering. Krikorian and
Nikoghossian used the results of the rigorous mathematical theory in applying the
Lagrangian formalism to the one-dimensional transfer problem [39].

Let us start with the transfer equations for the function Y

±η dY (τ,±η, μ)
dτ

= −Y (τ,±η, μ) + λ

2

∫ 1

−1

Y (τ, η′, μ) dη′ . (9.59)

From these equations one can easily obtain

η2
d2Φ

dτ2
= −Φ (τ, η, μ)− λ

∫ 1

0

Φ (τ, η′, μ) dη′ , (9.60)

where we introduced notation Φ (τ, η, μ) = Y (τ,+η, μ) + Y (τ,−η, μ).
One may readily check the self-adjointness of this equation so that the vari-

ational formulation is admitted. The Lagrangian density L corresponding to
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Eq. (9.59) was obtained in [43]

L (Φ,Φ′, τ, η, μ) = Φ2 + (ηΦ′)2 − 2ΦU , (9.61)

where

U (τ, μ) =
λ

2

∫ 1

0

Φ (τ, η′, μ) dη′ . (9.62)

In accordance with [43], the Euler–Lagrange equation has a form

∂L

∂Φ
− d

dτ

∂L

∂Φ′ + λ

∫ 1

0

∂L

∂U
dη′ = 0 . (9.63)

One will make sure that insertion of the Lagrangian (9.61) into (9.63) yields the
transfer equation (9.60). It is important that both the transfer equation (9.60) and
the Lagrangian density (9.61) do not depend explicitly on τ , or stated differently,
they are form-invariant under infinitesimal trans-formation

τ → τ ′ = τ + δτ , η = η′ , μ = μ′ , (9.64)

where the quantity δτ is allowed to be an arbitrary infinitesimal function of τ . This
implies that the transformation (9.64), i.e. translation of the optical depth, is the
symmetry transformation for the system (9.59) and suggests a certain conservation
law as follows ∫ 1

0

[
L− ∂L

∂Φ
Φ′
]
dη = const , (9.65)

which, in view of (9.61), takes the form∫ 1

0

[
Φ2 (τ, η, μ)− η2Φ′2 (τ, η, μ)− 2U (τ, μ)Φ (τ, η, μ)

]
dη = const , (9.66)

or ∫ 1

0

Y (τ, ς, μ)Y (τ,−ς, μ) dς = λ

4

(∫ +1

−1

Y (τ, ς, μ) dς

)2

+ const . (9.67)

This relation is, in essence, a prototype of the Q-integral obtained by Rybicki in
[34]. The above considerations imply that by its content the integral (9.67) is an
analog of the momentum conservation law in mechanics and is due to the axes
translation transformation.

For semi-infinite atmosphere Y (τ,±ς, μ) → 0 as τ → ∞ so that, const = 0.
More general relation for this case may be derived if we treat problems differing
with each other by the value of the parameter μ∫ 1

0

Y (τ, ς, μ)Y (τ,−ς, μ′) dς = λ

2

(∫ +1

−1

Y (τ, ς, μ) dς

)(∫ +1

−1

Y (τ, ς, μ′) dς
)
.

(9.68)

This equation was obtained in two different ways, particularly on the basis of non-
complicated physical reasoning. It holds everywhere where λ does not vary with
depth.
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The variational formalism not only allows us to elucidate the physical meaning
of the invariance principle but also enables us to derive along with many known
results a great number of new relations of great importance for the theory and
applications. It allows us also to find out some statistical characteristics of the
diffusion process in the atmosphere [36, 44]. Some of the known nonlinear relations
possess a fairly obvious physical or/and probabilistic meaning and can be written
immediately on the basis of simple arguments. However, as we shall show below,
by no means all of them follow from the variational principle, so they cannot be
recognized as invariance relations or, even less, as invariance principles.

9.5.1 The polynomial distribution of sources

An important question to be answered is the applicability of the Lagrangian formal-
ism to the transfer problems for atmospheres containing energy sources. Inasmuch
as both the diffuse reflection and Milne problems obey the homogeneous integro-
differential equation (9.60), the suitable quadratic and bilinear integrals are possible
to write directly. In the case of the source-containing atmospheres we are led to the
inhomogeneous integro-differential equations with appropriate source terms. Gen-
erally, the self-adjointness of the transfer equations may be violated so that the
direct application of the variational principle becomes impossible. Nevertheless, it
was shown above that in two cases of the uniformly and exponentially distributed
sources this difficulty was surmounted by using the apparent connection between
these two problems and the source-free problem. Now an additional possibility
based on the conservation law (9.66) is appeared to reduce the source-containing
problems to the source-free problem. As an example we shall briefly consider here
the case of polynomial distribution of sources [6]. The first attempt in this direc-
tion was made in [34]. The approach proposed there was successful, however, for
polynomials of the degree not higher than second, whereas, as we show now, the
Q-integrals exist for polynomials for arbitrary high order.

Let us have the transfer equation of the form

η2
d2Φ

dτ2
= −Φ (τ, η)− λ

∫ 1

0

Φ (τ, η′) dη′ − 2g (τ) , (9.69)

where

g (τ) = (1− λ)B (τ) , B (τ) =
N∑
i=0

Biτ
i . (9.70)

Let us introduce the function

FN (τ, η) = 2

[N/2]∑
k=0

B(2k) (τ) p2k (η) (9.71)

where N is the degree of polynomials, B(m) = dmB/dτm, and brackets mean the
integer part. It can be checked by direct substitution that FN is a partial solution
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of Eq. (9.69) if only p2k (η) are polynomials of the order 2k (k = 1, 2, . . . ) defined
as follows

p2k (η) =

k∑
i=0

p2i (0) η
2(k−i) , (9.72)

and

p2k (0) =
λ

1− λ

k∑
i=1

p2(k−i) (0)

2k + 1
, p0 (η) = 1 . (9.73)

Having the rule for construction the function (9.71), one can derive the requisite
Q-integrals for any source term with polynomial depth-dependence. Some results
for small values of N are presented in [6].

9.6 The group of RSF (reducible to the source-free)
problems

Thus, we saw that there exists a group of different frequently occurring radiation
transfer problems of astrophysical interest which admit quadratic and bilinear in-
tegrals. They can be reduced to the source-free problem. This group includes the
Milne problem, the problem of diffuse reflection (and transmission in the case of
the atmosphere of finite optical thickness) as well as the problems with exponential
and polynomial laws for the distribution of internal energy sources. An important
special case of the last type of problem is the problem of radiative transfer in an
isothermal atmosphere (i.e. in atmosphere with homogeneous distribution of inter-
nal sources). This group of problems is characterized at least by three features. First
of all, the invariance principle implies bilinear relations connecting the solutions of
the listed problems. It has been recently shown [45] that the group of the RSF-
problems admits a class of integrals involving quadratic and bilinear moments of
the intensity of arbitrarily high order. Secondly, if the problem can be formulated
for a finite atmosphere then the principle allows us to connect its solution with
that of the proper problem for a semi-infinite atmosphere. Finally, knowledge of
the ϕ-function reduces their solutions to the Volterra-type equation for the source
function with the kernel-function (9.9). We refer to these problems as the group of
RSF-problems.

9.7 Arbitrarily varying sources

For further insight into the point, we shall give the general treatment of the problem
of sources. Consider the transfer of monochromatic radiation through a semi-infinite
homogeneous and plane-parallel atmosphere that contains energy sources varied
arbitrarily with depth g(τ) = (1− λ)B(τ). The source function of this problem, as
is known, satisfies integral equation

S (τ) =
λ

2

∫ ∞

0

Ei (|τ − t|)S (t) dt+ g (τ) . (9.74)
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As was shown in [46, 47], the solution of this equation is equivalent to the solution
of the following coupled pair of the Volterra-type equations

S (τ) = ω (τ) +

∫ τ

0

L (τ − t)S (t) dt , (9.75)

ω (τ) = g (τ) +

∫ ∞

τ

L (τ − t)ω (t) dt . (9.76)

As a matter of fact, the set of equations (9.75), (9.76) represents a kind of split-
ting of the so-called Λ-operator [48] and may become useful in solving the trans-
fer problems. Note that in being applied to this system, the escape probability
approach [49] leads, as could be expected, to sufficiently accurate results. For in-
stance, when B = const, one may easily find for τ = 0 that ω = g/(1 − λ) and
S(0) = ω = B

√
1− λ. For deep interiors of the atmosphere we have

lim
t→∞S (τ) = lim

t→∞
ω

L (τ) +
√
1− λ

= B . (9.77)

Thus in both cases we get the exact values of the source function, whereas the same
approach applied to Eq. (9.74) gives a rather crude estimate for the surface value
S (0) = 2 (1− λ)B/ (2− λ). Moreover, it easy to see that we obtain correct values
of S(0) for all the treated special RSF-problems. This follows from the fact that in
these cases Eq. (9.76) allows exact analytical solution so that the problems resolve
themselves into the solution of a single Volterra-type equation (9.75) for the source
function.

9.8 Finite medium

The approach described for the semi-infinite atmosphere is easy to apply to an
atmosphere of finite optical thickness. In fact, the generalization of previous results
for such an atmosphere is attained trivially and resolves itself into determining the
proper values of the integration constants. To proceed, we introduce by analogy
to the semi-infinite atmosphere the quantities Y (τ,±η, μ; τ0) with similar proba-
bilistic meaning, characterizing the photon’s exit from the boundary τ = 0 of an
atmosphere for the photon moving in direction ±η at depth τ (angular arguments
are referenced with respect to the outward normal to the surface τ = 0). This
implies that

Y (0, η, μ; τ0) = δ (η − μ) , Y (τ0, η, μ; τ0) = μq (μ, η, τ0) ,

Y (0,−η, μ; τ0) = μρ (μ, η, τ0) , Y (τ0,−η, μ; τ0) = 0 , (9.78)

where
q (μ, η, τ0) = η−1δ (η − μ) e−

τ0
η + σ (μ, η, τ0) , (9.79)

is the transmittance of the medium. Since the functions Y (τ,±η, μ; τ0) satisfy the
partition transfer equations (9.59), the variational principle leads to the quadratic
Q-integral (9.67) with the value (λ/4)ψ2 (μ, τ0) for the constant. It is apparent that
with no more effort one may derive many different kinds of bilinear and two-point
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bilinear relations linking with each other different quantities describing the field
of radiation in different depths of the finite media of different optical thickness.
Such relations for some of the RSF-problems for finite atmosphere are given in [6].
Of special interest are the nonlinear relations which establish connection between
characteristics of the radiation transfer in finite and semi-infinite atmospheres. We
limit ourselves to presenting here only two of them which will be mentioned later
on

η′ρ∞ (η′, η) = − ηρ (η, η′, τ) +
∫ 1

0

q (η, ς, τ)Y∞ (τ,−ς, η′) dς

− λ

2
ψ (η, τ)

∫ 1

0

Y∞ (τ, ς, η′) dς − λ

2
ϕ∞ (η′)ϕ (η, τ) , (9.80)

Y∞ (τ, η, η′) = q (η, η′, τ)− η

∫ 1

0

ρ (η, ς, τ)Y∞ (τ,−ς, η′) dς

− λ

2
ϕ (η, τ)

∫ 1

0

Y∞ (τ, ς, η′) dς − λ

2
ϕ∞ (η′)ψ (η, τ) , (9.81)

where quantities pertaining to the semi-infinite atmosphere are marked by the sign
of infinity.

9.9 Statistical description of the radiation diffusion process

The problem usually posed in a study of radiation transport in a medium is to
find the field of radiation at any point in it depending on direction, frequency
and so on. But for many reasons, quantities that give a statistical description
of the scattering process are of great interest. Its importance is due in the first
place to the fact that it facilitates better understanding of the physical essence of a
number of effects predicted by the mathematical solution of the problem. Secondly,
it makes it possible to determine a number of important physical characteristics of
an atmosphere such as the mean radiation intensity, the mean degree of excitation
of atoms and so forth. Note also that the problem of finding the radiation field in
a medium can ultimately also be regarded as a stochastic problem requiring the
determination of the statistical mean of some random variables.

Among the various statistical mean quantities most attention in the literature
is devoted to the mean number of scattering events (MNSE) undergone by photons
diffusing in a medium. Pioneering here is Ambartsumian’s work [3], in which he
proposed for this quantity the formula N = λ∂ ln I/∂λ, where I is the intensity of
radiation in the beam. This quantity was subsequently estimated by many authors
for different special cases, though the general treatment of the problem was given
by Sobolev in a series of papers [50–52]. It was in these papers that the MNSE was
calculated separately for photons that escape the medium as a result of diffusion
and the photons that are trapped (i.e. undergo true absorption) in it. However,
relations obtained by him, like the physical arguments which provide their basis,
cease to hold when allowance is made for absorption and emission in the continuum.
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Nor has there yet been a comprehensive study of the more complicated cases when
the scattering is anisotropic or subject to partial redistribution over frequencies.
Very important also is the statistical description of scattering in its dependence
on the initial characteristics of the photon, for instance, the frequency, direction of
motion, etc.

The problem of finding the MNSE in its general formulations was treated in a
series of our papers [53–56]. A new approach was elaborated for determining any
statistical average characterizing a diffusion process in an atmosphere. It is based
on the invariance principle and extensive use of generating functions. It was shown
that the method is applicable to determining the statistical averages of continuously
distributed random variables as well, though it is then necessary to use appropriate
characteristic functions. As an illustration, the problem of the average time of a
photon travel (ATT) in an atmosphere under the assumption that it spends time
only in traveling between scatterings was treated [57]. In the general case, when the
photons are thermalizing not only in scattering but also in flight, this average makes
it possible to gauge the relative importance of energy dissipation in the medium
and of energy flow through a boundary. Another important application of this
average is associated with the problems, frequently encountered in astrophysical
applications, of the radiation of an atmosphere subject to non-stationary energy
sources. In these problems, knowledge of the ATT makes it possible to ascertain
whether radiative equilibrium in the medium is established. Some special cases of
the ATT problem and problems related with it were treated by a number of authors
[8, 58–61].

Under general assumptions concerning the elementary scattering event, equa-
tions were obtained in [53–57] for determining the MNSE and ATT in a plane-
parallel semi-infinite atmosphere. It was shown that, for moving photons (i.e. not
for those being trapped) the problem simplifies and is reduced to differentiation
over proper parameter. The dependence of these quantities on the initial charac-
teristics of the photon was established. Here we limit ourselves by presenting a few
results obtained on the basis of the invariance principle. Let us consider a photon
with frequency x moving at the optical depth τ in a semi-infinite atmosphere in
some direction specified by ±η referenced from the direction of outward normal to
the surface. We designate 〈N (τ, x, η)〉 the MNSE for this photon irrespective of
whether it exits the medium or undergoes true absorption there. As was shown,
this quantity satisfies the partitioned set of equations

±η ∂ 〈N (τ, x,±η)〉
∂τ

= − v (x) 〈N (τ, x,±η)〉

+
λ

2

∫ +1

−1

dη′
∫ ∞

−∞
γ (x, η;x′, η′) 〈N (τ, x, η′)〉 dx′ + v (x) ,

(9.82)

where v (x) = α (x) + β, β is the ratio of the absorption coefficient in continuum
to that in the line center and γ (x, η;x′, η′) is the function of redistribution over
frequency and direction. The boundary condition is 〈N (0, x,+η)〉 = 0. Other two
quantities of interest are 〈Ω (τ, x,±η)〉 and R0 (τ, x,±η). The first is the dimension-
less ATT measured in units of the average time of travel between two successive
scattering events. The second is the probability of a given photon to thermalize
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somewhere in the atmosphere. It was shown that these two quantities satisfy the
system of equations analogous to those of (9.82) with similar boundary condition
with the only difference being in the free term which correspondingly are 1, and
u (x) = (1− λ)α (x) + β. This implies

(1− λ) 〈N (τ, x,±η)〉+ λβ 〈Ω (τ, x,±η)〉 = R0 (τ, x,±η) . (9.83)

Some results obtained for a semi-infinite atmosphere were generalized in [62] to
encompass the finite media as well. The form of equations (9.82) and those for the
functions 〈Ω (τ, x,±η)〉 and R0 (τ, x,±η), shows that variational formulation can
be applied also to these quantities, making possible to derive quadratic and bilinear
relations for them. These kinds of relations are obtained in [63].

9.10 The layers adding method

Because of importance Ambartsumian’s arguments in deriving the laws of addition
of global optical characteristics of the absorbing and scattering media (coefficients
of reflection and transmission) for further discussion, we renew our acquaintance
with the method and present together with an explanatory figure the starting
auxiliary equations written for the 1-D homogeneous media. Figure 9.1 shows a
medium of optical thickness τ0 divided into two parts with thicknesses τ1 and τ2.
Each of the media is characterized by reflection r and transmission q coefficients.
Based on some simple physical and probability arguments, one can write

I1 = r (τ2) I0 + q (τ2) I3 , (9.84)

I2 = q (τ1) I4 , (9.85)

I3 = r (τ1) I4 , (9.86)

I4 = q (τ2) I0 + r (τ2) I3 . (9.87)

Fig. 9.1. Illustrating the method of adding layers.

In view of the fact that I1 = r (τ1 + τ2) I0, and I2 = q (τ1 + τ2) I0, it is easy to
obtain the requisite addition laws for the reflection and transmission coefficients of
scattering and absorbing media

q (τ1 + τ2) =
q (τ1) q (τ2)

1− r (τ1) r (τ2)
, (9.88)

r (τ1 + τ2) = r (τ2) +
r (τ1) q

2 (τ2)

1− r (τ1) r (τ2)
. (9.89)
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These relations are referred to as the laws of addition for the transmission and
reflection coefficients. The quantities q, r have a probabilistic meaning and may be
correspondingly interpreted as the probabilities of the transmission and reflection
of a photon incident on the medium.

Replacing τ2 by the infinitesimal Δ and passing to the limit when Δ → 0, we
will have

dq

dτ0
= −

(
1− λ

2

)
q (τ0) +

λ

2
q (τ0) r (τ0) , (9.90)

dr

dτ0
=
λ

2
− (2− λ) r (τ0) +

λ

2
r2 (τ0) . (9.91)

The system of nonlinear differential equations we obtain satisfies the initial condi-
tions q (0) = 1, r (0) = 0. Its solution is:

r (τ0) = r0
1− e−2kτ0

1−r20 e−2kτ0
, q (τ0) =

(
1− r20

) e−kτ0

1−r20 e−2kτ0
, (9.92)

where k = (λ/4)
(
1− r20

)
/r0, and r0 is the coefficient of reflection from a semi-

infinite atmosphere.
Thanks to their generality, these relations became a base for various modifica-

tions and stimulated the development of new methods in radiative transfer theory.
Some results obtained in the field are, in essence, nothing but elaboration of some
special cases of the law of the addition of layers. For instance, taking as one of the
layers a semi-infinite atmosphere and for another a layer of infinitesimal optical
thickness, we are led to the problem considered in the previous section, for which
the invariance principle was formulated. When the infinitesimal layer is added to a
finite layer, the requisite optical characteristics are found as the functions of optical
thickness. Thus, the problem becomes ‘imbedded’ in a family of similar problems
differing by the value of optical thickness. The generalization of this approach to the
three-dimensional case was given by Chandrasekhar in [9]. It underlies the method
of ‘invariant imbedding’ developed by Bellman and his co-authors [64, 65]).

Finally, the method of addition of layers plays an important role in solving
the problems of radiation transfer in inhomogeneous atmospheres. In this case the
medium can be divided into a number of layers in such a way as each of them can be
regarded as homogeneous and the addition formulas (9.88), (9.89) are repeatedly
applied (see, e.g., [66–68]). It is noteworthy that in the course of derivation of
requisite optical parameters the fluxes appearing at the interfaces between adjacent
layers are eliminated. Accordingly, in each application of the addition formulas one
deals only with the intensities at the boundaries of the composite atmosphere. This
is pointed out in some papers [69–71] in which the addition formulas are treated in
the case when the component layers are allowed to be inhomogeneous. In the last
two works the law of addition of layers is called ‘the star product’.
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9.10.1 The nature of some nonlinear relations of the radiation
transfer theory

We saw that invariant properties of the problems of radiation transfer in homoge-
neous atmospheres lead to a variety of nonlinear relations. They are widely used
and are especially efficient when they are combined with other methods of solu-
tion. In the light of these comparatively new results, the question arises to what
extent certain nonlinear relations in radiative transfer theory are connected with
the variational principles resulting from invariance with respect to the translational
transformation of the optical depth. Here we are mainly speaking of the relations
used in connection with the invariance principle or with the method of adding
layers,

We begin with noting that Eqs. (9.84)–(9.87) have been written without invok-
ing the invariance principle, to which they are, of course, not related. In fact, these
formulas remain valid in general cases, when it is inappropriate to speak of invari-
ance properties of the problem. For example, these equations remain in force even
when the media are inhomogeneous, with, of course, their polarity property taken
into account (see below). We now examine how Eqs. (9.84)–(9.87) are rewritten for
the plane-parallel atmosphere. We transform the above problem in the following
way: let a parallel beam of radiation with intensity I0 be incident on the boundary
τ = 0 of a medium at an angle of arccos ς to its inner normal (Fig. 9.2). The in-
tensity of the reflected radiation is related to the reflection function ρ (η, ς, τ0) by
I (0, η, ς) = I0ρ (η, ς, τ0) ς. In analogous fashion for transmitted radiation we have
I (τ0, η, ς) = I0q (η, ς, τ0) ς, in which we have retained the customary notation σ
for the diffuse part of the transmitted radiation. For brevity, the dependence of
the intensities on the optical thickness of the medium is left out of the argument.
Since the medium can now be regarded as consisting of two parts with respective
thicknesses τ and τ0 − τ , relations analogous to Eqs. (9.84)–(9.87) can be written
in the form (I0 can be taken equal to unity without loss of generality):

Fig. 9.2. Diffuse reflection of light from a medium of finite thickness.
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ρ (η, ς, τ0) ς = ρ (η, ς, τ) ς+I (τ, η, ς) e−τ/η+

∫ 1

0

σ (η, η′, τ) I (τ, η′, ς) η′ dη′ , (9.93)

σ (η, ς, τ0) ς = σ (η, ς, τ0 − τ) ς e−τ/η + I∗ (τ,−η, ς) e−(τ0−τ)/η

+

∫ 1

0

σ (η, η′, τ0 − τ) I∗ (τ,−η′, ς) η′ dη′ , (9.94)

I (τ, η, ς) = ρ (η, ς, τ0 − τ) ς e−τ/ς +

∫ 1

0

ρ (η, η′, τ0 − τ) I∗ (τ,−η′, ς) η′ dη′ , (9.95)

I∗ (τ,−η, ς) = σ (η, ς, τ) ς +

∫ 1

0

ρ (η, η′, τ) I (τ, η′, ς) η′ dη′ , (9.96)

where the diffuse part of the intensity of the downward-moving radiation is indi-
cated by an asterisk. The limiting case of Eqs. (9.93), (9.95) and (9.96) for τ0 → ∞
are of special interest:

I∞ (0, η, ς) = I (0, η, ς) +

∫ 1

0

q (η, η′, τ) I∞ (τ, η′, ς) η′ dη′ , (9.97)

I (τ, η, ς) = ρ∞ (η, ς) ς e−τ/ς +

∫ 1

0

ρ∞ (η, η′) I∗ (τ,−η′, ς) η′ dη′ , (9.98)

I∗∞ (τ,−η, ς) = σ (η, ς, τ) ς +

∫ 1

0

ρ (η, η′, τ) I∞ (τ, η, η′) η′ dη′ , (9.99)

These equations establish the relationship between the characteristics of the radi-
ation fields in semi-infinite and finite media. We see that all the equations given
above (9.93)–(9.99) have a fairly simple physical significance and can be written
down at once without invoking the invariance principle.

9.10.2 The Chandrasekhar relations

The nonlinear relations written down by Chandrasekhar in the 1950s and called
invariance principles by him [9] are well known in radiative transfer theory. Here
we shall examine these relations from the standpoint of their possible connection
with the invariance principle.

The problem of diffuse reflection and transmission of radiation by a medium of
finite optical depth examined by Chandrasekhar was stated as follows: on a medium
of optical thickness τ0 in direction (−μ0, ϕ0), falls a parallel beam of radiation with
flux πF per unit area perpendicular to the direction of incidence. The reflection
function S and the transmission function T are introduced so that

I (0, μ, ϕ) =
F

4μ
S (τ0, μ, ϕ;μ0, ϕ0) , (9.100)

I∗ (τ0,−μ, ϕ) = F

4μ
T (τ0, μ, ϕ;μ0, ϕ0) . (9.101)
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Chandrasekhar wrote down the following four nonlinear equations:

I (τ, μ, ϕ) =
F

4μ
e−τ/μ0S (τ0 − τ, μ, ϕ;μ0, ϕ0)

+
1

4πμ

∫ 2π

0

dϕ

∫ 1

0

S (τ0 − τ, μ, ϕ;μ′, ϕ′) I∗ (τ,−μ′, ϕ′) dμ′ , (9.102)

I∗ (τ,−μ, ϕ) = F

4μ
T (τ, μ, ϕ;μ0, ϕ0)

+
1

4πμ

∫ 2π

0

dϕ

∫ 1

0

S (τ, μ, ϕ;μ′, ϕ′) I (τ, μ′, ϕ′) dμ′ , (9.103)

F

4μ
S (τ0, μ, ϕ;μ0, ϕ0) =

F

4μ
S (τ, μ, ϕ;μ0, ϕ0) + e−τ/μI (τ, μ, ϕ)

+
1

4πμ

∫ 2π

0

dϕ

∫ 1

0

T (τ, μ, ϕ;μ′, ϕ′) I (τ, μ′, ϕ′) dμ′ , (9.104)

F

4μ
T (τ0, μ, ϕ;μ0, ϕ0) =

F

4μ
e−τ/μ0T (τ0 − τ, μ, ϕ;μ0, ϕ0) + e−(τ0−τ)/μI (τ,−μ, ϕ)

+
1

4πμ

∫ 2π

0

dϕ

∫ 1

0

T (τ0 − τ, μ, ϕ;μ′, ϕ′) I∗ (τ,−μ′, ϕ′) dμ′, (9.105)

An equation for the limiting case of a semi-infinite atmosphere was derived from
Eq. (9.106) with τ0 → ∞

I (τ, μ, ϕ) =
F

4μ
e−τ/μ0S (μ, ϕ;μ0, ϕ0)

+
1

4πμ

∫ 2π

0

dϕ

∫ 1

0

S (μ, ϕ;μ′, ϕ′) I∗ (τ,−μ′, ϕ′) dμ′ . (9.106)

We now set ourselves the task of comparing Eqs. (9.102)–(9.105) with Eqs. (9.93)–
(9.96) of the preceding subsection. To do this we neglect the azimuthal dependence
in Eqs. (9.102)–(9.105), set F = 1, switch to the previous notation, and include the
following easily verified relation between the corresponding coefficients of reflection
and transmission:

(1/2)S (τ0, η, ς) = ηςρ (η, ς, τ0) , (9.107)

(1/2)T (τ0, η, ς) = ηςσ (η, ς, τ0) . (9.108)

Then it is easy to show that Eqs. (9.102)–(9.105) are the same as Eqs. (9.95), (9.96),
(9.93), and (9.94), respectively, of the preceding subsection. Thus, neither these,
nor the previous equations have a direct connection to the invariance principle
associated with a translational transformation of the optical depth, and so they
cannot be derived from the corresponding conservation law. As for Eq. (9.106), it,
in turn, is the same as Eq. (9.98). As noted above, besides Eq. (9.98), Eqs. (9.97)
and (9.99) also specify a connection between the radiation fields in semi-infinite
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and finite media. This type of relation can also be written down for a number of
other quantities which describe the radiation field in semi-infinite and finite media.
For example, based on Eqs. (9.94) and (9.96) we can write

ηρ∞ (η, η′) = ηρ (η, η′, τ) +
∫ 1

0

q (η′, ς, τ)Y∞ (τ,−ς, η) ς dς . (9.109)

Y∞ (τ, η′, η) = q (η, η′, τ) +
∫ 1

0

ρ (η′, ς, τ)Y∞ (τ,−ς, η) ς dς , (9.110)

These relations in the operator form are given also in [10]. Similar formulas that
follow from the invariance principle are much more complicated and cannot be
reduced to the above equations. Two of them, that were derived in [6], we gave in
Section 9.8 (see Eqs. (9.80), (9.81)), We can see that the two quantities are related
to one another by equations of considerably different kinds. These and the other
examples given in this chapter show that the nonlinear relations discussed here can
be divided into two classes. The first includes those formulas which characterize
only the radiative transfer process, itself, in a plane-parallel atmosphere; these have
great generality. Equations (9.84)–(9.87), (9.93)–(9.99), (9.102)–(9.106), (9.109),
and (9.110) belong to this class. The second, narrower class includes equations
that are a consequence of the invariance properties of the specific transfer problem
at hand. Many equations of this type for groups of the RSF-problems have been
derived in the first part of this review.

9.11 Inhomogeneous atmosphere

When interpreting the radiation from objects in space it is usually necessary to
apply various simplifying assumptions regarding their geometry and physical prop-
erties. For example, it is often assumed that a radiating medium is homogeneous
and stationary, although it clearly has a rather complex structure and is subject
to variation in time. This simplifies the problems to a great extent and makes
it possible to estimate some characteristics of the radiating medium averaged in
some sense. However, the high-resolution observational data available nowadays af-
ford an opportunity for a more detailed investigation of astrophysical objects and
analysis of their radiation. This leads to pressure to develop a suitable theory of
radiation transfer trough an inhomogeneous atmosphere, providing new efficient
methods of computations. Such attempts were made by a number of authors (see,
e.g., [72–76]). In connection with solar prominences, in [77–80] we treated the effect
of physical inhomogeneities related to the distribution of internal energy sources
and to geometrical factors. In an analysis of multiple scattering at the line fre-
quencies, the scattering coefficient was usually assumed to be constant inside the
radiating volume. It is, however, evident that such an assumption may be rather
crude for the interpretation of radiation in optically thick lines. Henceforth under
inhomogeneous atmosphere we will mean atmosphere with the scattering coefficient
arbitrarily varying with depth, though methods we develop remain in force also in
the case of variation of other parameters which determine an elementary scattering
event and the distribution of primary energy sources.
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The complexity of the boundary-value transfer problems makes it necessary to
develop appropriate analytical techniques in order to make it somehow easier to
get a numerical solution. In each individual case, depending on the initial assump-
tions about the properties of the medium, of elementary scattering events, etc.,
specialized methods have been developed. One of the first methods of this type
was the method based on the invariance principle, i.e., on the symmetry properties
of the problem, which avoided the above difficulties in the case of homogeneous
atmospheres and allowed us to determine the intensity of the emerging radiation
without prior knowledge of the radiation field in the entire atmosphere. There has
also been a natural drive to find an alternative statement of the classical problems
of radiative transfer theory with the aim of reducing them to initial-value prob-
lems (so-called Cauchy problems). With the development of high-speed electronic
computers, research in this area has become especially important in connection
with the fact that solving this kind of problem is more suited to the computers’
capabilities. Among the first papers in this area, we note those of Bellman [81]
and Sobolev [15, 16, 82], who developed a method based on extensive use of the
‘surface’ resolvent function. The idea of this approach goes back to Krein’s paper
[83].

As was said above, the method of invariant imbedding enables one to readdress
standard problems in a way such as to reduce them to the initial value problems.
Of the extensive literature in this area, besides the above cited works [64, 65], we
note also monographs [84, 85].

The method we propose includes a simple, but, at the same time, universal com-
putational scheme that can be used to determine the radiation field and various
characteristics of the scattering process as solutions of corresponding initial-value
problems. The idea behind this method developed in [68, 86–89] for solving a given
linear problem of radiation transfer involves a preliminary determination of the
global optical properties of an atmosphere – the reflection and transmission coef-
ficients, as well as some other related quantities, for a family of atmospheres with
different optical thicknesses. This makes it possible to determine the radiation field
inside the 1-D inhomogeneous medium without solving any new equations. How-
ever, as we shall see below, there exists another route that allows us to reduce
the computational process to ordinary matrix multiplication. Regardless of the ini-
tial assumptions, the calculations are easily carried out on modern computers and,
most importantly, are numerically stable.

For illustration of the basic idea we begin with the simplest scalar case involv-
ing the transfer of monochromatic radiation in a one-dimensional inhomogeneous
atmosphere. As was shown in [68], the inhomogeneous atmosphere exhibits the so-
called polarity property with respect to the sense of the incoming illumination, i.e.,
its optical properties are described by three parameters: two reflection coefficients
and one transmission coefficient.

Figure 9.3 is a schematic illustration of two cases where a photon is incident from
outside on a composite medium formed as the result of adding two inhomogeneous
scattering and absorbing media with optical thicknesses τ1 and τ2. Here we denote
the reflection coefficient of each medium when illuminated from the left by an
overhead bar.
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Fig. 9.3. Reflection and transmission of a composite atmosphere.

The formulas for addition in the case shown in the upper part of Fig. 9.3 are

q (τ1 + τ2) =
q (τ1) q (τ2)

1− r (τ1) r̄ (τ2)
, r (τ1 + τ2) = r (τ2) +

r (τ1) q
2 (τ2)

1− r (τ1) r̄ (τ2)
. (9.111)

For the reflection coefficient of the composite atmosphere on the left (lower part of
Fig. 9.3) we can write

r̄ (τ1 + τ2) = r̄ (τ1) +
r (τ1) q

2 (τ2)

1− r (τ1) r̄ (τ2)
. (9.112)

It should be noted that, in general, the two components of the composite medium
differ one from another not only by optical thickness, but also by the form of the
scattering coefficient. Even in the case of the scattering coefficient common for
two components, their optical characteristics may differ by the range of variation
of this coefficient. But this should not cause confusion in further discussion since
henceforth τ2 will be replaced by an infinitely thin layer. The layers addition laws
were generalized to the case of inhomogeneous media in [68, 86]. It was also shown
that if a medium is illuminated on the side of the boundary τ0 = τ1 + τ2, then the
ordinary procedure of taking the limit when τ2 tends to 0 yields the differential
equations which coincide by their form with those in the case of homogeneous
atmosphere (see Eqs. (9.90), (9.91)). It is important that r (τ0) satisfies a separate
equation. This is a Riccati equation and can be solved by one of the standard
numerical methods. Note that a fairly high accuracy is obtained even in the simplest
case of solving Eq. (9.91) by the Euler method. It is important that this algorithm
is numerically stable. In fact, for an arbitrary right-hand side of Eq. (9.91), we
have.

λ (τ0) [1− r (τ0)]− 2 ≤ 0 , (9.113)

which implies that partial loss of stability is possible only in the case where λ (τ0)
approaches unity asymptotically, so that r (τ0) → 1, as well. Greater accuracy can
be obtained by using the fourth-order Runge–Kutta procedure in its various modifi-
cations (e.g., by Gill [85]). It is obvious that in the course of solving the initial-value
problem for some fixed values of τ0, we determine the reflectance and transmittance
of a family of atmospheres with intermediate values of optical thicknesses.

After finding the reflectance, r (τ0), the transmission coefficient is determined
explicitly using the formula

q (τ0) = exp

[
−
∫ τ0

0

 (τ) dτ

]
, (9.114)
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where

 (τ0) = 1− λ (τ0)

2
[1 + r (τ0)] . (9.115)

It follows from Eqs. (9.90) and (9.91) that as τ0 → ∞, r (τ0) and q (τ0), respectively,
approach

(
2− λ∞ − 2

√
1− λ∞

)
/λ∞ and zero, where λ∞ is the limiting value of

the scattering coefficient.
To proceed, let us introduce the functions P (τ0) = q−1 (τ0) and S (τ0) =

r (τ0) /q (τ0) = r (τ0)P (τ0). From Eqs. (9.90) and (9.91), it is not difficult to obtain
(see [68, 86])

dP

dτ0
=

[
1− λ (τ0)

2

]
P (τ0)− λ (τ0)

2
S (τ0) , (9.116)

dS

dτ0
=
λ (τ0)

2
P (τ0)−

[
1− λ (τ0)

2

]
S (τ0) , (9.117)

This system of linear equations with the initial conditions P (0) = 1, S (0) = 0 can
be written in vector-matrix notation as

dY

dτ0
= A (τ0)Y (τ0) , (9.118)

where we have introduced notation

Y (τ0) =

(
P (τ0)
S (τ0)

)
, A (τ0) =

(
a (τ0) −b (τ0)
b (τ0) −a (τ0)

)
, (9.119)

a (τ0) = 1− λ (τ0)

2
, b (τ0) =

λ (τ0)

2
. (9.120)

The matrix A has a particular property

A2 (τ0) = (1− λ (τ0)) I , (9.121)

where I is the unit matrix. This implies

A−1 (τ0) = [1− λ (τ0)]
−1

A (τ0) . (9.122)

Another property of A is that the related commutator,

A (τ1)A (τ2)−A (τ2)A (τ1) = [λ (τ1)− λ (τ2)]

(
0 1
1 0

)
, (9.123)

is nonzero. This means that if we seek a solution of Eq. (9.118) in the form of
a matrix exponential, then the corresponding Magnus series [90] is infinite. The
situation is simpler for homogeneous atmosphere, for which

Y (τ0) = exp (Aτ0)Y (0) , (9.124)

so that, given Eq. (9.121),

Y (τ0) = [I ch(kτ0) +A sh(kτ0)]Y (0) , (9.125)
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where k =
√
1− λ. With Eq. (9.120), Eq. (9.125) leads to the results consistent

with the standard expressions for the reflection and transmission coefficients [66, 8],

P (τ0) = ch (kτ0) +
1 + k2

2k
sh (kτ0) , (9.126)

S (τ0) =
1− k2

2k
sh (kτ0) . (9.127)

In conclusion, we note also that P (τ0) and S (τ0), as shown in [66], satisfy linear
equations

d2P

dτ20
− λ′

λ

dP

dτ
−
(
1− λ− λ′

λ

)
P (τ0) = 0 , (9.128)

d2S

dτ20
− λ′

λ

dS

dτ
−
(
1− λ+

λ′

λ

)
S (τ0) = 0 , (9.129)

respectively, for the initial conditions

P (0) = 1 , P ′ (0) = 1− λ (0)

2
, S (0) = 0 , S′ (0) =

λ (0)

2
.

Examples of explicit solutions of these equations in terms of elementary functions
are presented in [68, 89],

9.11.1 The radiative transfer equations

One criticism sometimes raised about the applicability of the methods of adding
layers and invariant imbedding is that the latter are supposedly not effective for
determining the radiation field inside a medium. Here we show that, in fact, these
methods make it easy to determine this field as well as a number of other quantities
which describe the process of multiple scattering inside a medium.

We now write the transfer equations in terms of U (τ, τ0) and V (τ, τ0), which
represent the probabilities that photon will move at the optical depth τ in the
direction of decreasing and increasing optical depths, respectively (see Fig. 9.4):

dU

dτ
=

[
1− λ (τ)

2

]
U (τ, τ0)− λ (τ)

2
V (τ, τ0) , (9.130)

dV

dτ
=
λ (τ)

2
U (τ, τ0)−

[
1− λ (τ)

2

]
V (τ, τ0) , (9.131)

These equations satisfy the boundary conditions U (τ0, τ0) = 1, V (0, τ0) = 0. In
classical astrophysical problems, the transfer equations are usually reduced to just
these kind of boundary-value problems. It is easy to see on comparing the system of
Eqs. (9.130) and (9.131) with Eqs. (9.116) and (9.117) that, as functions of optical
depth, the functions U → V satisfy the same equations as the functions P → S of
the optical thickness. However, in the first case, we have to deal with a boundary-
value problem, and in the second, with an initial-value problem. If we introduce a
vector with components U and V then the system of Eqs. (9.130) and (9.131) can
also be written in the vector-matrix form.
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Fig. 9.4. Schematic illustration of radiative transfer in a one-dimensional medium.

Based on some simple physical arguments it is easy to show that

q (τ0) = q (τ)U (τ, τ0) , V (τ, τ0) = r (τ)U (τ, τ0) . (9.132)

These equations follow mathematically from a comparison of the conditions at the
boundary τ = 0, U (0, τ0) = q (τ0) and V (0, τ0) = 0, with the same conditions
for the functions P and S. Strictly speaking, these equations need no proof, since
the addition rules for the reflection and transmission coefficients have been derived
from them [7].

Using Eq. (9.114), we obtain

U (τ, τ0) = exp

[
−
∫ τ0

τ

 (τ ′) dτ ′
]
, (9.133)

and for V

V (τ, τ0) = r (τ) exp

[
−
∫ τ0

τ

 (τ ′) dτ ′
]
. (9.134)

Thus, for determining the radiation field inside a medium it is sufficient to first
determine the reflectances of a family of atmospheres by solving Eq. (9.91). It
should be noted that, as is clear from the above formulas, the variables τ and τ0
in expressions for U and V are separated:

U (τ, τ0) = q (τ0)P (τ) , V (τ, τ0) = q (τ0)S (τ) . (9.135)

9.11.2 Determination of some other quantities

Knowledge of r makes it possible to find explicit solutions for a whole series of
problems that are frequently encountered in astrophysical applications. Here we
consider a few of them.

(i) Internal energy sources. Suppose that an inhomogeneous atmosphere contains
energy sources of power B (τ) and it is required to determine the intensity of
the radiation emerging from the medium and the radiation field within the
medium. If we denote the intensities emerging from the medium through the
boundaries τ = τ0 and τ = 0 by I1 (τ0) and I2 (τ0), then, after some simple
reasoning, we can write

I1 (τ0) =
1

2
q (τ0)

∫ τ0

0

[1 + r (τ)]B (τ) dτ/q (τ) , (9.136)
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I2 (τ0) =
1

2

∫ τ0

0

[λ (τ) I1 (τ) +B (τ)] q (τ) dτ . (9.137)

Knowledge of the latter is sufficient for determining the intensities I+ (τ, τ0),
I− (τ, τ0) of the radiation directed, respectively, toward decreasing and in-
creasing depths, i.e.,

I+ (τ, τ0) = [I2 (τ0)− I2 (τ)] /q (τ) , (9.138)

I− (τ, τ0) = r (τ) I+ (τ, τ0) + I1 (τ) . (9.139)

(ii) Average number of scattering events. We introduce the notations Nr (τ0),
Nq (τ0) for the MNSE, respectively, for two categories of photons: reflected
and transmitted. It has been shown [68] that these quantities can be com-
pletely expressed in terms of the above reflection and transmission coefficients
for the family of atmospheres by

Nr (τ0) =
1

2

q2 (τ0)

r (τ0)

∫ τ0

0

λ (τ)
[
1 + r2 (τ)

] dτ

q2 (τ)
, (9.140)

Nq (τ0) =
1

2

∫ τ0

0

λ (τ) {1 + r (τ) [1 +Nr (τ)]} dτ . (9.141)

(iii) Reflection from the opposite boundary. For completeness, here we also give the
formula for the reflection coefficient of this medium when it is illuminated from
the side of the boundary τ = 0 in Fig. 9.4. We have shown [68, 86], that

r̄ (τ0) =
1

2

∫ τ0

0

λ (τ) q2 (τ) dτ =
1

2

∫ τ0

0

λ (τ) e−2
∫ τ
0

�(τ ′)dτ ′
dτ . (9.142)

Thus, we can note the major conclusion of this section: in order to solve the
scalar problem of radiation transfer in a homogeneous atmosphere it is enough
to know its reflectivity, since all the other quantities of interest are found
explicitly.

9.12 The group theoretical description of the radiation
transfer

In this section group theory is used to describe a procedure for adding inhomo-
geneous absorbing and scattering atmospheres in a one-dimensional approximation.
The group representations are derived for the composition of media in three dif-
ferent cases inhomogeneous atmospheres in which the scattering coefficient varies
continuously with depth, composite or multicomponent atmospheres, and the spe-
cial case of homogeneous atmospheres [91].

There are at least two reasons for the importance of radiative transfer problems
in one-dimensional atmospheres. First, these problems are usually easier to solve
and are extremely convenient to apply. In addition, despite the approximation,
they can sometimes provide a satisfactory accuracy for estimating one or another
characteristic of a radiation field in a three-dimensional medium with plane-parallel
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symmetry. Second, solutions to problems in this approximation serve an irreplace-
able aid in understanding effects associated with the transfer process, itself, in cases
where they are of primary importance, rather than problems associated.

We introduce the concept of a composition or transformation of scattering and
absorbing atmospheres, which involves the adding of an additional atmosphere to
an initial one in the general case of an inhomogeneous atmosphere (or removing
some part from an initial atmosphere). It is assumed that the added or subtracted
parts do not contain primary energy sources. The transformations induced in this
way form a group if the group product is taken to mean the resultant of two
successive transformations. It is easy to see that the other conditions for formation
of a group are satisfied. In particular, the role of a unit element is the identity
transformation, which leaves the initial atmosphere unchanged, and the inverse
elements are transformations which reverse the effect of one or another already
performed transformation. The associativity of the group product is evident. We
refer to this group of transformations as the GN2 group. It is easy to see that
it is not commutative. Among this type of groups, an important role is played by
groups associated with the formation of a multicomponent atmosphere. In that case,
the transformation is taken to mean the addition (or removal) of a homogeneous
medium characterized by an optical thickness and a scattering coefficient. This
group (we refer to it as GNH2) is a two-parameter, non-commutative group. The
special case where λ is the same for all the added or removed media (group GH2)
yields the case of homogeneous atmospheres. In this case, the group is obviously
commutative, i.e., is Abelian [92]. It is also a one-parameter, infinite, and continuous
group.

Let us now to go back to the composite medium shown in Fig. 9.3 and resultant
addition equations (9.111) and (9.112). Eq. (9.111) yields

P (τ1 + τ2) = P (τ1)P (τ2)− S (τ1) S̄ (τ2) , (9.143)

where S̄ = r̄q−1. Further, dividing the second of Eq. (9.111) by the first one and
making a series of simple transformations we obtain

S(τ1 + τ2) = P (τ1)S (τ2) + S (τ1)M (τ2) , (9.144)

where M (τ) =
[
1− S (τ) S̄ (τ)

]
/P (τ). Similar transformations using the addition

formulas (9.112) yield

S̄(τ1 + τ2) = P (τ2) S̄ (τ1) + S̄ (τ2)M (τ1) , (9.145)

It can be confirmed by direct testing that there is also an addition law for M (τ)

M (τ1 + τ2) =M (τ1)M (τ2)− S (τ1) S̄ (τ2) . (9.146)

On introducing the matrices

A (τ) =

(
P (τ) −S̄ (τ)
S (τ) M (τ)

)
, (9.147)

it is easy to confirm that they also constitute a group and form a representation of
the group GN2. In fact, each element of the group GN2 corresponds to a transfor-
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mation T (g), (
P (τ1 + τ2)
S (τ1 + τ2)

)
=

(
P (τ2) −S̄ (τ2)
S (τ2) M (τ2)

)(
P (τ1)
S (τ1)

)
, (9.148)

if the medium is illuminated from the right, and T ′(g),(
P (τ1 + τ2)
S̄ (τ1 + τ2)

)
=

(
P (τ1) −S (τ1)
S̄ (τ1) M (τ1)

)(
P (τ2)
S̄ (τ2)

)
, (9.149)

in the opposite case. In addition, the product g1⊗g2 corresponds to the matrix prod-
uct A (τ1 + τ2) = A (τ2)A (τ1), i.e., T (g1 ⊗ g2) = T (g2)T (g1) for illumination
from the right, and Ã (τ1 + τ2) = Ã (τ1) Ã (τ2), i.e. T

′ (g1 ⊗ g2) = T ′ (g1)T ′ (g2)
for illumination from the left. (Here the tilde denotes the transposed matrix.) The
identity transformation obviously corresponds to the unit matrix: T (e) = E and
T ′ (e) = E. The matrix A (τ) is nonsingular (its determinant equals 1), so inverse
matrices exist, with

A−1 (τ) =

(
M (τ) S (τ)
−S̄ (τ) P (τ)

)
, Ã−1 (τ) =

(
M (τ) S̄ (τ)
−S (τ) P (τ)

)
. (9.150)

These two group representations are isomorphic, since the correspondence between
the groups GN2 and T (g), as well as between GN2 and T ′(g), are mutually unique.
For the infinitesimal operator of the group T (g) we have

Ξ = lim︸︷︷︸
τ→0

A (τ)

τ
=

⎛⎜⎜⎝ 1− λ

2
−λ
2

λ

2
−
(
1− λ

2

)
⎞⎟⎟⎠ . (9.151)

Then Eqs. (9.143) and (9.144) can be rewritten in differential form to give
Eqs. (9.116) and (9.117).

9.12.1 Radiation field inside a medium

As was shown in the preceding section, knowledge of the reflection coefficient for
1-D inhomogeneous media with different optical thicknesses makes it extremely
simple to determine the radiation field inside an atmosphere with a fixed optical
thickness. We now consider radiative transfer in a medium of optical thickness
τ0 as indicated in the upper part of Fig. 9.4. Let us suppose that the scattering
coefficient varies continuously in the medium. It is evident that if we specify the
incident flux, then knowledge of the functions U (τ, τ0) and V (τ, τ0) allows us to
find the corresponding intensities.

By analogy with the groups introduced above, we introduce the concept of an
optical depth translation group, which involves a transition from one optical depth
to another. It is easy to verify that the necessary conditions for formation of a
group are satisfied here. Everything said above about the properties of the group
GN2 for the optical thickness apply equally to compositions (translations) of the
optical depth. The only limitation is that the value of the total thickness obtained
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as a result of a translation must not exceed the optical thickness of the medium.
Given the probabilistic meaning of the quantities introduced above, we can write
(cf., Eqs. (9.132))

U (τ, τ0) = q (τ0)P (τ) , V (τ, τ0) = q (τ0)S (τ) . (9.152)

It is easy to understand from Eqs. (9.152) that the group T (g) simultaneously is a
representation of the optical depth translation group. In fact, based on Eq. (9.150),
we can write(

U (τ + τ ′, τ0)
V (τ + τ ′, τ0)

)
=

(
P (τ ′) −S̄ (τ ′)
S (τ ′) M (τ ′)

)(
U (τ, τ0)
V (τ, τ0)

)
. (9.153)

Formulas derived from Eq. (9.153) show how the radiation intensities at different
depths in the atmosphere are related to one another. The infinitesimal operator
for the optical thickness translation group representation is evidently the same as
Eq. (9.151) and yields the customary transfer equations, (9.130), (9.131). If the
atmosphere is homogeneous, then there is a conservation law which can be written
directly from these equations as

[U (τ, τ0)− V (τ, τ0)]
2 − (1− λ) [U (τ, τ0) + V (τ, τ0)]

2
= λq2 (τ0) . (9.154)

Although it is obvious, for a long time this relationship was unknown unlike its
special surface manifestation.

We now consider the case when the medium is illuminated from the side of
boundary τ = 0 which is illustrated schematically in the lower part of Fig. 9.4.
Arguments similar to those used to derive Eqs. (9.152) imply that

U (τ, τ0) = q (τ0)P (τ0 − τ) , V (τ, τ0) = q (τ0) S̄ (τ0 − τ) , (9.155)

where it is understood that in the quantities corresponding to the thickness τ0− τ ,
the scattering coefficient varies within the interval [τ, τ0]. Based on Eq. (9.149), we
have (

P (τ0 − τ)
S̄ (τ0 − τ)

)
=

(
P (τ ′) −S (τ ′)
S̄ (τ ′) M (τ ′)

)(
P (τ0 − τ − τ ′)
S̄ (τ0 − τ − τ ′)

)
, (9.156)

whence (
U (τ + τ ′, τ0)
V (τ + τ ′, τ0)

)
=

(
M (τ ′) S̄ (τ ′)
−S (τ ′) P (τ ′)

)(
U (τ, τ0)
V (τ, τ0)

)
. (9.157)

In its differential form this formula transforms to the usual transfer equation
under the condition U (0, τ0) = 1 and V (τ0, τ0) = 0. They are needed to examine
the frequently encountered practical problem of radiative transfer in semi-infinite
atmospheres.
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9.12.2 Semi-infinite medium

We take the limit τ0 → ∞ in Eqs. (9.157). For the limiting values of U and V
which evidently do exist and now depend only on the optical depth, we retain the
previous notation. Given this, we have

U (τ) = P (τ ′)U (τ + τ ′)− S (τ ′)V (τ + τ ′) , V (τ)

= S̄ (τ ′)U (τ + τ ′) +M (τ ′)V (τ + τ ′) . (9.158)

From this one can obtain an entire series of different formulas, some of which
are known from the theory of radiative transfer in homogeneous media. Thus, for
example, the first of Eqs. (9.158) can be written as

U (τ + τ ′) = q (τ ′)U (τ) + r (τ ′)V (τ + τ ′) . (9.159)

Given the second of Eqs. (9.155), we write it in the form V (τ) = r∞U (τ), where
r∞ is the reflection coefficient of a semi-infinite atmosphere. We then find

U (τ + τ ′) = q (τ ′)U (τ) / [1− r∞r (τ ′)] , or U (τ + τ ′) = U (τ)U (τ ′) .
(9.160)

The last equation reflects the semi-group property of the function U (τ). According
to the principle of reversibility, the same property possesses the probability of
emerging from a semi-infinite atmosphere for a photon moving at some depth in
the direction of the surface.

9.12.3 Multicomponent atmosphere

As an example of an inhomogeneous atmosphere we examine a multicomponent
medium consisting of a number of homogeneous media which differ from one an-
other in optical thickness and in the value of the scattering coefficient λ. Besides its
intrinsic interest, the problem of determining the reflection and transmission prop-
erties of this kind of atmosphere is important for developing schemes for numerical
calculation of these quantities in media with continuously varying λ.

As was noted, here we are concerned, in general, with the two-parameter non-
commutative group GNH2. Since here a transformation is understood to be the
addition (or removal) of a homogeneous medium, the group representation can be
written in the form

A (τ, λ) =

(
P (τ, λ) −S (τ, λ)
S (τ, λ) M (τ, λ)

)
. (9.161)

Consider a multicomponent atmosphere containing N layers with optical thickness

τ
(N)
0 . Suppose the medium is illuminated from the side of the boundary τ

(N)
0 , as

shown in Fig. 9.5. Then according to Eq. (9.148), for finding the optical character-
istics of this medium we will have(

P
(
τ
(N+1)
0

)
S
(
τ
(N+1)
0

) ) =

(
P (τN , λN ) −S (τN , λN )

S (τN , λN ) M (τN , λN )

)(
P
(
τ
(N)
0

)
S
(
τ
(N)
0

) ) , (9.162)
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Fig. 9.5. Radiative transfer in a multicomponent atmosphere.

where τN and λN refer to the added homogeneous layer, so that for the correspond-
ing values of P, S and M there are the following explicit expressions [8,86]

P (τN , λN ) =
1

4kN

[
(1 + kN )

2
ekNλN − (1− kN )

2
e−kNλN

]
, (9.163)

S (τN , λN ) =
1− k2N
2kN

sh (kNτN ) , (9.164)

M (τN , λN ) =
1

4kN

[
(1 + kN )

2
e−kNλN − (1− kN )

2
ekNλN

]
, (9.165)

where kN =
√
1− λN . Thus, by accumulation subject to the initial conditions

P
(
τ
(0)
0

)
= 1, S

(
τ
(0)
0

)
= 0, Eq. (9.162) makes it possible to determine the desired

optical characteristics of a multicomponent atmosphere. For completeness, we also
give a formula obtained in [88] for finding the reflectivity of this atmosphere from
its boundary 0.

S̄
(
τ
(N)
0

)
=

1

P
(
τ
(N−1)
0

) [P (τ (N)
0

)
S̄
(
τ
(N−1)
0

)
+ S (τN , λN )

]
. (9.166)

In order to fully evaluate the importance of these formulas, we should note that
they can serve as a starting point in developing an alternative algorithm for finding
the optical characteristics of an atmosphere in which the reflection coefficient varies
continuously in the medium. In particular, taking the optical thickness of the added
homogeneous layers to be the same and sufficiently small, we arrive at an extremely
effective method for numerical solution of the problem. As the calculations show,
in practice it is always possible to provide an accuracy that is entirely sufficient for
applied problems.

The group representations introduced here express the symmetry properties of
the radiative transfer problem with respect to variations in the optical thickness, as
well as in the optical depth when the radiation field inside the medium is considered.
At the same time, they make it possible easily to construct a solution to transfer
problems for an arbitrary variation in the scattering coefficient in an atmosphere.
This allows us to obtain immediately the solution of a family of problems with
high accuracy and over a fairly wide range of variation in the optical thickness.
An examination of the diffusion of radiation in a multicomponent atmosphere is of
special importance for practical problems. The representation of the GNH2 group
in this case essentially involves a simple algorithm for adding the optical properties
of an arbitrary number of absorbing and scattering media.
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9.13 The plane-parallel atmosphere

We devote this section to the problem of radiation transfer in the plane-parallel
inhomogeneous medium of finite optical thickness. Instead of extension of the ap-
proach described in Section 9.11 over this case we propose an alternative way
that allows us to address an initial-value problem. Once again, the central place
in the approach occupies the right-hand side reflectance of the medium (see the
upper picture in Fig. 9.4). For convenience, under reflectance we shall mean
here r (η, ξ, τ0) simply related to that introduced at the outset of the review
r (η, ξ, τ0) = ηξρ (η, ξ, τ0). Simple imbedding arguments yield

dr

dτ0
= −

(
1

η
+

1

ξ

)
r (η, ξ, τ0) +

λ (τ0)

2
ϕ (η, τ0)ϕ (ξ, τ0) , (9.167)

with r (η, ξ, 0) = 0. By analogy, we deal with transmittance q̃ (η, ξ, τ0) =
ηξq (η, ξ, τ0), so that

q̃ (η, ξ, τ0) = ξδ (η − ξ) exp [−τ0/ξ] + σ̃ (η, ξ, τ0) , (9.168)

where the diffuse component, σ̃ (η, ξ, τ0) = ηξσ (η, ξ, τ0), as usual, is separated. As
it is known [8, 9], the latter is found from

dσ̃

dτ0
= −1

ξ
σ̃ (η, ξ, τ0) +

λ (τ0)

2
ψ (η, τ0)ϕ (ξ, τ0) , (9.169)

where the function

ψ (η, τ0) =

∫ 1

0

q̃ (η, η′, τ0)
dη′

η′
= exp

(
−τ0
η

)
+

∫ 1

0

σ̃ (η, η′, τ0)
dη′

η′
(9.170)

satisfies the set of equations (9.6), (9.7). The initial condition is obvious:
σ̃ (η, ξ, 0) = 0.

In fact, having found the transmittance, one can use it as an initial condition
in solving the classical transfer equations [93]. However, there is an alternative and
simpler way of finding the internal field of radiation, of which the transmittance is
a special value. To this end let us introduce the function U (η, τ ; ξ, τ0) similar, in
some sense, to transmittance but with more general probabilistic meaning, namely,
it describes the probability to find the incident photon moving in direction η at
optical depth τ .Here again the diffuse component of U must be separated denoted
henceforth by u. By analogy with (9.168) one may write

U (η, τ ; ξ, τ0) = ξδ (η − ξ) exp [− (τ0 − τ) /ξ] + u (η, τ ; ξ, τ0) . (9.171)

The invariant imbedding approach leads to

du

dτ0
= −1

ξ
u (η, τ ; ξ, τ0) +

λ (τ0)

2
Ψ (η, τ, τ0)ϕ (ξ, τ0) , (9.172)
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where

Ψ (η, τ, τ0) =

∫ 1

0

U (η, τ ; η′, τ0)
dη′

η′
= exp

(
−τ0 − τ

η

)
+

∫ 1

0

u (η, τ ; η′, τ0)
dη′

η′
,

(9.173)
and the initial condition, u (η, τ ; ξ, τ) = δ (η − ξ).

It is obvious that u (η, 0; ξ, τ0) = σ̃ (η, ξ, τ0) and Ψ (η, 0, τ0) = ψ (η, τ0). Thus,
there is no need to solve Eq. (9.169) since Eq. (9.172) allows us to find the rightward-
directed radiation at any depth τ (τ = 0 , in particular) for a family of atmospheres
with τ0 ≥ τ . Having found the function u, it is easy to determine the counterpart
of U for the opposite direction. Simple physical reasoning allows to write

V (η, τ ; η, τ0) = ρ (η, ξ, τ) exp

(
−τ0 − τ

ξ

)
+

∫ 1

0

ρ (η, η′, τ)u (η′, τ ; ξ, τ0)
dη′

η′
.

(9.174)
Now let us envision the case when the medium is illuminated from the opposite
side (the lower picture in Fig. 9.4). The quantities similar to those above, we supply
by bars. Reasoning carried out in deriving the requisite quantities uses again the
imbedding procedure of augmentation of the optical thickness from the right-hand
side of the medium (τ = τ0). So we limit ourselves with presenting the final results
[93].

The reflectance ρ̄ (η, ξ, τ0) satisfies

dr̄

dτ0
=
λ (τ0)

2
ψ (η, τ0)ϕ (ξ, τ0) , (9.175)

subject to the initial condition r̄ (η, ξ, 0) = 0. Since the right-hand side of this
equation can be envisaged as known then its solution is equivalent to calculation
of a finite integral. As for the transmission coefficient, the polarity property yields
¯̃q (η, ξ, τ0) = q̃ (ξ, η, τ0). The quantities which describe the internal field of radiation
are found from

dV̄

dτ0
=
λ (τ0)

2
Ψ (τ, η, τ0)ψ (ξ, τ0) (9.176)

with condition V̄ (η, τ ; ξ, τ) = 0 and from evident relation

Ū (η, τ ; η, τ0) = ψ (ξ, τ) +

∫ 1

0

ρ (η, η′, τ) V̄ (η′, τ ; ξ, τ0)
dη′

η′
. (9.177)

Note that the solution of Eq. (9.176) numerically is also equivalent to calculations of
a finite integral. The interested reader is referred to [93] for illustration of numerical
results.

Thus, solution of two equations (9.167) and (9.172) is sufficient not only to
find the global optical characteristics of an inhomogeneous atmosphere but also
to reproduce the internal field of radiation independent of what boundary of it
is illuminated. Note also that having information on the external and internal
radiation field for one of these two cases is enough to determine the same quantities
for the opposite case. As is shown in [93], only one additional differential equation
of the first order must be treated to solve an important and frequently encountered
in astrophysical applications transfer problem in an atmosphere containing the
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energy sources. The advantage of the approach is that we deal only with the easily
solvable initial-value problems. They have a rather plain physical implication and
is preferred compared to the Riccati transformation method [94]. In contrast to the
scalar 1-D problem, the property of numerical stability of the proper equations in
the vector-matrix case is an important and noticeably difficult point to study.

9.14 Line formation in mesoturbulent atmosphere

The imbedding approach is efficient also in treating the problem of the spectral
line formation in a turbulent atmosphere with a spatially correlated velocity field
[95]. Because of the high occurrence of turbulent phenomena in the universe, the
problem is of extreme importance for astrophysics. Originally, the non-thermal
mechanism due to hydrodynamic motions was invoked in order to achieve satisfac-
tory agreement between the theoretical and observed profiles and equivalent widths
of spectral lines originating in stellar atmospheres, although no directly observable
proofs existed for the hydrodynamic nature (in the customary sense) of this phe-
nomenon. However, the phenomenon of granulation, which is directly observable in
the Sun’s photosphere, as well as motion on different scales in solar prominences,
suggests that this kind of phenomenon is to be expected in other stars as well.
This leads to the question of how random variations in the velocity field within a
radiating atmosphere affect the observed spectra.

As is known, the hydrodynamic characteristic of turbulent motions is the corre-
lation coefficient along the direction of propagation of a ray. It depends significantly
on the type of turbulence and is determined by the degree of correlation between
the variations in the velocity field at different points in the medium. The charac-
teristic parameter which describes this correlation on the average is the correlation
length, Λ. In the two limiting cases of Λ → 0 and Λ → ∞, the problem of spectral
line formation is greatly simplified, so these cases have been most often exam-
ined by astrophysicists in the course of interpreting observed spectra. For values of
smaller than the photon mean free path, random variations in the hydrodynamic
velocity at nearby points of the medium are essentially independent of one another.
In the limit of Λ → 0, the velocities of the motions are independent on an atomic
level, so that in calculating the profile of an observed line only the Doppler-shifted
absorption coefficient in the line is averaged over the velocity. This limiting case
corresponds to microturbulence, In the opposite limiting case of Λ → ∞, known as
macroturbulence, the hydrodynamic velocities at all points vary in unison, so that
the mean profile of the spectrum line is a superposition of profiles that are shifted
by different amounts, as happens when the radiating object is rotating.

Evidently, the micro- and macroturbulence models are only approximations and
do not provide a clear representation of the effect of turbulent motions in the case
of arbitrary average sizes for the turbulence cells. This intermediate case, often
referred to as mesoturbulence [96], has been examined by many authors. Here we
mention only a few of the papers by French and German theorists during the 1970s
and 1980s, when this topic underwent a rapid development. An early paper by Trav-
ing [97] (see also [98]) dealt with a discrete model problem in which absorption by
atoms was replaced by exponential absorption on the part of solid, independently
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moving turbulence cell with finite, but fixed, dimensions. This approach was de-
veloped further [99, 100] under the assumption that the sizes of the cells can vary
randomly, with the interface points distributed in space according to the Poisson
law (the so-called Kubo-Anderson process [101]). With some simplifying assump-
tions, a closed expression was obtained for the statistical mean profile of a spectral
line under LTE.

A fundamentally different method has been developed [102–103] as a continuum
analog of the problem. It reduces to considering a Uhlenbeck–Ornstein process [104]
with a Gaussian velocity distribution. The result is Fokker–Planck-type equations
for the joint distribution function of the velocities and the radiated intensity in the
line. These equations are rather complicated and are solved numerically. In fact,
both of the above approaches are approximate and are not consistent with one
another.

Now we briefly reproduce the approach proposed in [95] which uses the method
of invariant imbedding. Consider an atmosphere of finite optical thickness τ0 mea-
sured at the center of a spectral line in the absence of hydrodynamic motions. We
shall assume that the medium contains energy sources of power, B (τ) (x), where
 (x) = ω (x)+β, ω (x) is the profile of the absorption coefficient and β is the ratio
of the absorption coefficient in the continuum to that at the line center. The quan-
tity B (τ) plays the role of a source function and is related to the Planck function.
We shall assume that a homogeneous turbulence has developed in the atmosphere,
so that the hydrodynamic velocity vector v is a random function that depends on
the depth, while the mean characteristics of the velocity field are independent of
the depth in the atmosphere [105]. In addition, let us suppose that the probability
law according to which the velocity takes one or another value is also independent
of the depth. Finally, we assume that the variations in velocity inside the medium
are correlated with one another. We are interested in the mean intensity of the
radiation of the medium in the direction of the surface normal. emerging from the
boundary τ = τ0.

Let the function 〈I (τ0, x, u)〉 represent the mean intensity of the radiation
emerging from the atmosphere with frequency x under condition that the hydro-
dynamic velocity at the boundary of the medium is equal to u, the latter being
measured in units of thermal velocity. Effect of the radiation on the velocity field
will be neglected. We denote by G (u, u′, ρ (l)) du the probability that if the value
of the velocity at depth τ ′ is u′, then at depth τ it will lie within the interval
u, u + du. Because of the uniformity of the process, the correlation coefficient ρ
depends only on the distance between the points, l = |τ − τ ′|. In the simplest case
of spectral lines under LTE, one can use the rules of addition for statistical mean
intensities developed in [106–108] to write for the mean intensity resulting from
augmentation of the initial turbulent atmosphere of thickness τ0by the small layer
Δ possessing the same properties

〈I (τ0 +Δ, x, u)〉 = e−�(x−u)Δ

∫ ∞

−∞
G (u, u′, ρ (Δ)) 〈I (τ0, x, u′)〉 du′

+B (τ0)
[
1− e−�(x−u)Δ

]
. (9.178)

This equation is crucial for deriving the equations for the random function
〈I (τ0, x, u)〉. Once it has been determined, the unknown value of the statistical
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mean intensity 〈I (τ0, x)〉 can be found by virtue of

〈I (τ0, x)〉 =
∫ ∞

−∞
P (u) 〈I (τ0, x, u)〉 du , (9.179)

where P (u) is the distribution law of turbulent velocities.
One may specify the law governing the variations in the non-thermal velocity at

different depths by assuming that the process is Markovian and consider a Gaussian
distribution in the plane. Then

G (u, u′, ρ) =
1

ut
√
π (1− ρ2)

exp

(
− (u− ρu′)2

u2t (1− ρ2)

)
, (9.180)

where ut =
√
π 〈uturb〉 and 〈uturb〉 is the mean hydrodynamic velocity in units of

thermal velocity. As was proved in [95], there is the bilinear expansion

G (u, u′, ρ) =
1

α0 (u′)

∞∑
k=0

ρkαk (u)αk (u
′) , (9.181)

where

αk (u) =
(
2kπu2tk!

)−1/2
e−(u/ut)

2

Hk

(
u

ut

)
, (9.182)

and Hk (u) are Hermite polynomials. Note that the functions αk (u) represent an

orthonormal set of functions with weight α0 (u)
−1

. For a uniform Markov process
the correlation coefficient varies exponentially with the distance between the depths
being ρ (l) = exp (−l/Λ), where l = |τ − τ ′| and Λ is the mean correlation length.
In fact, if we consider three depth such that τ1 > τ2 > τ3 and take l1 = |τ1 − τ2|
and l2 = |τ2 − τ3|, then, using the expansion (9.181), it is easy to show that

G (u, u′, ρ (l1 + l2)) =

∫ ∞

−∞
G (u, u′′, ρ (l2))G (u′′, u′, ρ (l1)) du′′. (9.183)

This equation is essentially the Kolmogorov-Chapman relation for diffusion Markov
processes and expresses the multiplicative property of the transition probability for
the process (in this case, the conditional velocity distribution function). Of two ways
proposed in [92] for finding 〈I (τ0, x, u)〉, we give here that reducing the problem
to the integral equation

〈I (τ0, x, u)〉 =
∫ ∞

−∞
 (x− u′) du′

∫ τ0

0

K (τ0 − t, u, u′) [B (t)− 〈I (t, x, u′)〉] dt ,
(9.184)

where

K (τ, u, u′) =
∞∑

n=0

αn (u)αn (u
′)

α0 (u)
e−(n/Λ)τ . (9.185)

In two limiting cases of macro- and microturbulence we arrive at known results.
Actually, if Λ → ∞, and K (τ, u, u′) → δ (u− u′), then Eq. (9.184) yields after
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some simple algebra

〈I (τ0, x, u)〉 =
∫ τ0

0

B (t) e−�(x−u)(τ0−t) (x− u) dt , (9.186)

and, having in mind that P (u) = α0 (u), the final result

〈I (τ0, x)〉 =
∫ ∞

−∞
α0 (u) 〈I (τ0, x, u)〉 du . (9.187)

In the opposite case of Λ → 0 and K (τ0, u, u
′) → α0 (u) so that 〈I (τ0, x, u)〉 does

not depend on u and coincides with the requisite quantity 〈I (τ0, x)〉. Finally, we
obtain

〈I (τ0, x)〉 =
∫ τ0

0

B (t) e−γ(x)(τ0−t)γ (x) dt , (9.188)

where

γ (x) =

∫ ∞

−∞
α0 (u) (x− u) du . (9.189)

Solution of Eq. (9.184) for intermediate values of Λ allows us to study the de-
pendence of the line profile, integral intensity, and width on the mean correlation
length and the average value of the hydrodynamic velocity. Referring the inter-
ested reader for details of these results to the mentioned paper [95], here we limit
ourselves to noting that the transition from a microturbulent regime to a macro-
turbulent regime occurs within a comparatively narrow range of variation in the
correlation length. It is important that the proposed approach yields a solution
to the problem for a family of inhomogeneous atmospheres with different optical
thicknesses, which, in its turn, makes it easy to determine the radiation field inside
the turbulent medium. The approach can be generalized in various ways, in partic-
ular, it can be applied without significant changes to the case where the correlation
length depends on position within the atmosphere.
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10 A review of fast radiative transfer techniques

Vijay Natraj

10.1 Introduction

Atmospheric radiative transfer involves gas absorption coupled with molecular
Rayleigh scattering, in addition to scattering and absorption by clouds and aerosols.
Further, computation of heating rates are dependent on absorption and emission
of radiation, processes that have a complex dependence on various quantities. Typ-
ically, spectral regions contain several overlapping lines with intensities varying
over many orders of magnitude. The most accurate method for computing the
radiative terms in a molecular atmosphere involves a detailed line-by-line (LBL)
calculation of the absorption coefficient versus wavenumber. However, direct nu-
merical solution of the radiative transfer equation over frequency is in most cases
too computationally expensive to be used on a routine basis. Therefore a variety of
approximations have been developed to accelerate the computational process. This
chapter discusses several of these techniques.

The outline of the chapter is as follows. Section 10.2 discusses the k-distribution
method, which involves grouping spectral intervals according to absorption coef-
ficient strength, and the correlated-k method. The latter is an extension to inho-
mogeneous atmospheres; it is assumed that the ordering of absorption coefficient
strengths remains the same at all altitudes. In Section 10.3, we introduce a scheme
to fit transmission functions with exponential sums for calculating spectrally in-
tegrated radiative fluxes, especially when both line absorption and scattering are
important. Section 10.4 describes spectral mapping methods, which gain their ef-
ficiency by identifying spectral intervals that have similar optical properties. Sec-
tion 10.5 describes optimum spectral sampling, which is a fast and accurate trans-
mittance parameterization technique that extends the exponential sum fitting of
transmittances and k-distribution techniques to vertically inhomogeneous atmo-
spheres with overlapping absorbing species. Section 10.6 provides an overview of
several techniques that separate single and multiple scattering, with the multiple-
scattering component treated as a function of the absorption optical thickness and
the scattering height. Section 10.7 discusses principal component analysis , which
reduces the dimensionality of the optical properties. Neural networks are the topic
of Section 10.8. Section 10.9 deals with semi-infinite and optically thick media.
Section 10.10 provides a brief discussion of lower-order scattering approximations
with and without consideration of polarization effects.

OI 10.1007/978-3-642- - _10, © Springer-Verlag Berlin Heidelberg 2013 Springer Praxis Books, D 32106 1
475 , Light Scattering Reviews 8: Radiative transfer and light scatteringA.A. Kokhanovsky (ed.),
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10.2 k-distribution and correlated-k methods

Ambartsumian (1936) was the first to explore ways to speed up radiative transfer
calculations. He was interested in studying the effect of absorption lines on the
radiative equilibrium of the outer layers of stars. He recognized that for a homo-
geneous atmosphere, the transmission within a spectral interval is independent of
the LBL variation of the absorption coefficient k with respect to wavenumber ν,
but depends only on the distribution of k within the interval. The k-distribution
requires far fewer points to represent the spectral absorption than is required for
LBL computations. This technique was later used by Arking and Grossman (1972)
to study the effects of line shape and band structure on temperature profiles in
planetary atmospheres, under conditions of radiative equilibrium.

The correlated-k method is an extension of the k-distribution concept to in-
homogeneous atmospheres, and was first proposed by Lacis et al. (1979) and in-
dependently by Chou and Arking (1980). The former were interested in studying
the effects of cirrus clouds on surface temperature while the latter were working on
computing atmospheric cooling rates in infrared water vapor bands. The basic idea
is as follows. When the broadening of lines is primarily due to molecular collisions
(as is the case in the troposphere and lower stratosphere), the line shape can be
approximated by a Lorentzian. In the far wings of the lines (which are important in
typical atmospheric conditions), the absorption cross-section k at a specific pres-
sure p and temperature T can be expressed in terms of its value at a reference
pressure pr and temperature Tr as follows:

k(p, T ) = k(pr, Tr)
p

pr
f(T, Tr) , (10.1)

where f is only a function of temperature. The benefit of using Eq. (10.1) to
represent the absorption cross-section is immediately evident. The first term on the
right-hand side is a function only of the wavenumber and the other two terms are
functions only of pressure and temperature. This leads to very significant savings
in radiative transfer computations since we can now compute k(pr, Tr) offline for
spectral regions of interest.

Figure 10.1 shows a comparison of the monochromatic transmittances with
those calculated using the k-distribution with far-wing scaling. The solid curve was
computed using LBL calculations, and the dashed curve used the far-wing scaling
approximation.

Goody et al. (1989) and Lacis and Oinas (1991) further developed the correlated-
k technique to efficiently solve for radiative transfer in vertically inhomogeneous,
multiple scattering atmospheres. If we denote the frequency distribution of absorp-
tion coefficient strengths in a spectral interval as f(k), the cumulative distribution
function g(k), that defines the fraction of the interval for which the absorption
coefficient is less than k, can be computed as follows:

g(k) =

∫ k

0

f(k′) dk′ . (10.2)

The inverse of the cumulative frequency distribution, k(g), is the k-distribution.
The frequency distribution is normalized to unity; g is in the range [0, 1]. For a
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Fig. 10.1. Transmittance comparison between LBL and far-wing scaling calculations.
The solid curve represents LBL calculations and the dashed curve represents far-wing
scaling calculations [from Chou and Arking, 1980].

homogeneous atmosphere, g is a monotonic function of k and can be uniquely
inverted. Hence, integration in wavenumber space can be replaced by one in g-
space. However, if the atmosphere is inhomogeneous, the function g(k) varies with
altitude and therefore the inversion is not in general unique. Goody et al. (1989)
accounted for vertical inhomogeneity by assuming that the k-distributions correlate
between different pressure levels. They showed that this assumption is justified in
the weak and strong line limits. Goody et al. (1989) and Lacis and Oinas (1991)
found that the correlated-k technique was useful to calculate heating and cooling
rates in the atmosphere.

Variants of the correlated-k scheme have been utilized by several researchers.
Buchwitz et al. (2000) adapted the correlated-k approach to make it applicable
for spectral regions containing two strong overlapping line absorbers and arbitrary
additional minor or continuum absorbers. Boesche et al. (2008) introduced the k-
binning approach. The main difference between k-binning and correlated-k is that
in the former the entire absorption band is simulated whereas the latter requires
separate calculations for each instrument channel. The radiances for each channel
are reconstructed in the k-binning approach from the simulations that represent
the entire spectral band. This technique has the advantage that no assumptions
about the shape of the sensor weighting function need be made a priori for a
given spectral interval. Cao et al. (2011) proposed a new technique to optimize the
number of k-intervals, the equivalent absorption coefficients and the quadrature
weights when using the correlated-k approach for the computation of spectrally
integrated three-dimensional (3-D) atmospheric radiance.
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10.3 Exponential sum fitting of transmittances

While the correlated-k technique results in a speed increase of two to three orders
of magnitude over LBL calculations, further speed increases could be obtained
by optimizing the number of k values. Hunt and Grant (1969) devised a proce-
dure called ‘exponential sum fitting of transmissions’ (ESFT) to perform such an
optimization, and Wiscombe and Evans (1977) provided a detailed mathematical
basis. In ESFT, the spectral mean transmission T (u) is approximated by a sum of
exponentials E(u) at the M monochromatic wavelengths:

T (u) � E(u) =
M∑
i=1

wi exp[−k, u] , (10.3)

where u is the absorber amount, and the weights wi satisfy the following constraint:

M∑
i=1

wi = 1 . (10.4)

The weights are determined as follows. A set un = nΔu, n = 0, . . . , N of equally
spaced values is used to compute the least-squares residual R:

R =

N∑
n=0

wn[T (un)− E(un)]
2 . (10.5)

The best fit is then defined as that which minimizes R.
Kratz (1995) used the ESFT technique to perform calculations for the Ad-

vanced Very High Resolution Radiometer (AVHRR). Kratz et al. (1998) applied
the technique to perform minor trace gas radiative forcing calculations. Chou et
al. (1993) divided the infrared water vapor and CO2 absorption spectrum into 10
bands and used ESFT to compute cooling rates in the troposphere and lower strato-
sphere. Mano (1995) developed a modified procedure to make ESFT suitable for
atmospheric radiation calculations, and applied it to H2O absorption bands in the
infrared and near-infrared. Armbruster and Fischer (1996) made further improve-
ments by considering the pressure- and temperature-dependence of absorption by
atmospheric gases.

Figure 10.2(a) illustrates the cooling rate in the 800–1380 cm−1 spectral region
for the minor trace gases (CO2, N2O, CH4, CFC-11, CFC-12, and HCFC-22) in an
atmosphere without any other absorbers. Both exact LBL and approximate ESFT
results are shown. At the surface, the trace gases have a net cooling effect. Near the
tropopause they warm the atmosphere. Higher in the stratosphere, there is again
a net cooling effect. Figure 10.2(b) illustrates the change in the cooling rates due
to the introduction of the minor trace gases into an atmosphere already containing
H2O and O3. Addition of water vapor reduces the ability of the trace gases to cool
the lower troposphere. This effect is smaller higher up in the atmosphere where the
water vapor concentration is lower. It can be seen that the ESFT technique captures
these features with high accuracy compared to the reference LBL calculations.
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Fig. 10.2. Cooling rate profiles for the 800 to 1380 cm−1 spectral range calculated using
LBL (solid curve) and ESFT (dashed curve) calculations. (a) Cooling rates resulting from
the introduction of the minor trace gases into an atmosphere where no other absorbers
are considered. (b) Change in cooling rates resulting from the introduction of the minor
trace gases into an atmosphere already containing H2O and O3 [from Kratz et al., 1998].

10.4 Spectral mapping

Although spectral properties of a gas are highly correlated from one level to an-
other, the correlation is not strict. While the correlated-k method works reasonably
well for computing heating and cooling rates, it does not generate very accurate
radiances. Besides, there is no way to tune the model to obtain a specified accuracy
for the radiance calculation. To deal with this problem, West et al. (1990) showed
how the correlated-k method can be understood in terms of more general spectral
mapping transformations. They provided a means to calculate mapping transfor-
mations that strictly preserve correlation through all layers of the atmosphere. This
technique enabled calculations to be made arbitrarily close to those from a LBL
calculation by increasing the number of terms. Spectral mapping could also be used
for mixtures of gases, and takes into account spectral variation in the incident solar
flux, something the correlated-k procedure could not do.

The spectral mapping atmospheric radiative transfer (SMART) model (Mead-
ows and Crisp, 1996; Crisp, 1997) was the first numerical implementation of map-
ping techniques. SMART adopts the following procedure. First, it generates a LBL
description of the optical properties in a vertically inhomogeneous, scattering,
absorbing, and emitting atmosphere. Second, it identifies and bins wavelengths
that remain spectrally correlated throughout the atmosphere. Third, it performs
a monochromatic radiative transfer calculation for each bin. Finally, it maps the
radiances computed for each bin back to the original high-resolution spectral grid.

Figure 10.3 shows a synthetic spectrum of the 1.14–1.2μm region generated
using the spectral mapping technique, compared to a high-resolution spectrum of
the Venus atmosphere taken by the Fourier Transform Spectrometer (FTS) on the
Canada France Hawaii Telescope (CFHT) (Meadows and Crisp, 1996). Clearly, the
radiance fit is very reasonable.
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Fig. 10.3. A synthetic spectrum generated using spectral mapping, compared to a high-
resolution spectrum of the Venus atmosphere [from Meadows and Crisp, 1996].

10.5 Optimal spectral sampling

There are two main difficulties associated with the correlated-k and ESFT tech-
niques. First, the assumption that the absorption coefficients at different altitudes
are perfectly correlated breaks down (1) for a single gas, when there are lines with
different strengths or when the line strengths are highly temperature-dependent,
and (2) for gas mixtures, when the relative concentrations of absorbers in the mix-
ture vary with altitude.

Moncet et al. (2008) proposed a method called Optimal Spectral Sampling
(OSS) to solve this problem by selecting a few specific wavelengths in the interval
of interest. The OSS method avoids the basic problems of the correlated-k and
ESFT techniques by rewriting Eq. (10.3) as follows:

T (u) =
N∑
i=1

wi exp[−k(vi)u] . (10.6)

In other words, spectral points are explicitly selected rather than the actual absorp-
tion cross-sections. This makes the extension to inhomogeneous atmospheres with
multiple layers and mixtures of gases easy, because the terms inside the summation
in Eq. (10.6) can be replaced a double sum over layers and gases with no loss of
generality.

The obvious issue then is to select the nodes vi. Moncet et al. (2008) use the
following procedure for node selection. First, M uniformly spaced spectral loca-
tions spanning the channel bandwidth are chosen for every sensor channel. Second,
a LBL model is used to compute radiances at these spectral locations for a rep-
resentative set of atmospheric profiles, surface conditions and viewing geometries.
Third, channel radiances, Rs, for each member s of the set of S training scenes
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are produced by convolving the monochromatic radiances with the instrument re-
sponse function. Fourth, for any given set of N nodes, the rms difference between
Rs and the weighted sum of monochromatic radiances, Rs(vi), associated with the
selected nodes, is computed as follows:

εN =

√√√√ 1

S

S∑
s=1

[
Rs −

N∑
i=1

wiRs(vi)

]2
. (10.7)

The optimal weights are obtained using a robust least squares regression technique,
with the sum of the weights equal to unity. Finally, an automated search is used
to identify the smallest set of N nodes such that the rms difference εN is less than
a prescribed tolerance.

It is to be noted that a large number of LBL calculations may need to be per-
formed to find the optimal wavelengths and associated weights. The OSS method
was tested on the Atmospheric Infrared Sounder spectral channels. Figure 10.4

Fig. 10.4. Comparison between LBLRTM (solid) and OSS (dashed) Jacobians for (a)
temperature, (b) water vapor, and (c) ozone. The derivatives were converted from radiance
to equivalent brightness temperature and, for (b) and (c), they are with respect to the
logarithm of the mixing ratio [from Moncet et al., 2008].
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shows a comparison of Jacobians (derivatives of radiance with respect to atmo-
spheric or surface parameters) calculated analytically (by direct differentiation of
the radiative transfer equation) using OSS with finite difference estimates from the
line-by-line LBLRTM model. There is excellent agreement for temperature, water
vapor and ozone Jacobians.

10.6 Double-k, linear-k and low streams interpolation
approaches

Duan et al. (2005) introduced a double-k approach to account for the uncorrelated
nature of overlapping absorption lines. In this technique, they used, in addition to
the total absorption optical thickness k, the absorption optical thickness k∗ from
the top of the atmosphere to a layer where significant scattering occurs. In this
way they accounted not only for the integrated gaseous absorption but also its
vertical distribution (see Fig. 10.5 for an example of different vertical profiles of
gas absorption) as well as the distribution of scattering material.

Fig. 10.5. Vertical distributions of oxygen absorption at five wave numbers with the same
total absorption optical depth [from Duan et al., 2005].

Further, they took advantage of the fact that the radiative transfer calculations
can be split into single and multiple scattering components. Multiple scattering
is computationally expensive. However, in general it varies very smoothly with
absorption optical thickness. On the other hand, single scattering is not such a
smooth function of absorption optical thickness, but can be calculated very quickly,
as shown in Fig. 10.6. With this is mind, Duan et al. (2005) computed single
scattering exactly at every wavelength using a very fine atmospheric grid. For
multiple scattering, they used a smaller number of layers in the discretization and
computed the radiance Ims as follows:

Ims = g(k)fk(k
∗/k) , (10.8)
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Fig. 10.6. Single-scattering (SS) and multiple-scattering (MS) components of radiances
as a function of oxygen absorption optical depths for the oxygen A-band [from Duan et
al., 2005].

where piecewise analytical functions are used to define g and fk, with the coeffi-
cients obtained by fitting the calculated radiances at selected k and k∗ values.

Hasekamp and Butz (2008) proposed a linear-k approach for efficient and accu-
rate vector multiple scattering calculations in absorption bands. They considered
the multiply scattered radiance as a function of total absorption optical thickness
and its normalized vertical distribution. The basic principle of the linear-k method
is to calculate the multiply scattered radiance for a small set of reference vertical
distributions and then compute the radiance for the actual vertical distribution by
performing a linear Taylor series expansion around the reference distribution. A
second-order polynomial fit is then employed to correct for the total absorption
optical thickness compared to the reference value. Clearly, the linear-k approach
requires derivatives of the Stokes parameters with respect to the absorption optical
thickness in different layers.

O’Dell (2010) introduced the Low Streams Interpolation (LSI) approach, which
is fairly similar to Duan et al. (2005). The main differences between the two methods
are: (1) LSI parameterizes the difference between multiple scattering calculations
made using a low number (2, say) and a high number (24, say) of computational
(quadrature) polar cosine directions (streams), as a function of optical quantities
very similar to those defined by Duan et al. (2005); (2) polarization is considered
by O’Dell (2010) but ignored by Duan et al. (2005). Figure 10.7 shows the errors
in Stokes parameters I and Q for 2-stream calculations relative to high-accuracy
calculations, as a function of the column-integrated gas optical depth. It is evident
that there is a strong relationship between the error and the gas absorption optical



484 Vijay Natraj

Fig. 10.7. Errors in Stokes parameters I and Q for 2-stream calculations compared to
high-accuracy calculations. Errors in I are expressed in percent, while errors in Q are
expressed as a percent of the continuum value of I [from O’Dell et al., 2010].

depth τg. The idea, then, is to perform 2-stream calculations at all wavelengths
and reconstruct the error curve by interpolation using a small number of high-
accuracy calculations. The scatter in Fig. 10.7 implies that the vertical structure of
gas absorption needs to be accounted for. The basic approach of LSI is to perform
a two-dimensional bilinear interpolation of radiance errors in terms of the two
variables of τg and ξ1/2, where ξ is defined similarly to the quantity k∗ defined by
Duan et al. (2005).

ξ =
τ ′g
τg
, (10.9)

where τ ′g is the cumulative gas absorption optical depth down to the layer where
the cumulative scattering optical depth equals a critical value. The critical value
is either unity or half the total scattering optical depth (if this is less than unity).
Finally, once the error εI in Stokes parameter I at a particular wavelength is
computed, the corrected monochromatic value of I can be obtained as follows:

I =
Ilo

1 + εI
. (10.10)



10 A review of fast radiative transfer techniques 485

The corresponding expression for Stokes parameter Q is:

Q = Qlo − εQI . (10.11)

The root mean square (RMS) radiance errors for the LSI technique are typically
less than 0.1%.

10.7 Principal component analysis

Natraj et al. (2005) introduced an approach employing principal component analy-
sis (PCA) of optical properties to speed up LBL computations. PCA is a technique
that reduces multidimensional data sets to lower dimensions by using orthogonal
basis functions. Natraj et al. (2010) improved upon this technique in several ways.

The basic idea is to perform PCA on the optical thickness and single scattering
albedo profiles. First, the spectral intervals are grouped into bins based on the
cumulative gas absorption optical thickness and the single scattering albedo of the
top layer. The gas absorption optical thickness is used rather than the total ex-
tinction optical thickness for two primary reasons: (1) gas absorption has greater
spectral variation than molecular and particulate scattering, and (2) aerosol and
cloud loading can vary substantially from scene to scene; hence, usage of the ex-
tinction optical thickness would necessitate changing binning parameters for every
scene. The purpose of the single scattering albedo parameter is to account for the
vertical structure of gas absorption. Typically, four empirical orthogonal functions
(EOFs) are adequate to capture more than 99.99% of the variance in the optical
properties. Subsequently, radiance calculations are made for mean bin optical prop-
erties and for (positive and negative) perturbations from the mean for the relevant
EOFs (typically the first four). From these results, the following quantities can be
computed:

I0d = ln
(
I0/I02

)
; (10.12a)

I±d,k = ln
(
I±k /I

±
2,k

)
; (10.12b)

Q0
d = Q0 −Q0

1 ; (10.12c)

Q±
d,k = Q±

k −Q±
1,k . (10.12d)

In Eqs. (10.12), k is the EOF index; subscripts 1 and 2 are the single scatter and
two-stream results, respectively (absence of either of these subscripts indicates a
benchmark multiple scattering calculation with a high number of streams); su-
perscripts 0, + and − indicate calculations for mean value, positive and negative
perturbations, respectively.

Finally, a second-order Taylor series expansion is done to obtain the radiance
at the required wavelength.

Il = I2 exp

[
I0d +

∑
k

δId,kPkl +
1

2

∑
k

δ2Id,kP
2
kl

]
; (10.13a)

Ql = Q1 +Q0
d +

∑
k

δQd,kPkl +
1

2

∑
k

δ2Qd,kP
2
kl , (10.13b)
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where l is the wavelength index; and are, respectively, the first- and second-order
central difference operators.

It is to be noted that, like the techniques discussed in Section 10.6, single
scattering is computed exactly at every wavelength and PCA is performed only on
the multiple scattering component. Also, since the Stokes vector components I and
Q are second-order accurate, the Jacobians (with respect to trace gas profiles, for
example) are expected to be first-order accurate.

The intensity and polarization are treated differently in this formulation. PCA
is performed on the logarithm of the ratio of two intensity calculations, one using
a large number of streams and the other using only two streams. Usage of the log-
arithm avoids negative intensities and takes into account exponential extinction in
the absence of scattering. Usage of two-stream calculations reduces the number of
terms needed in the PCA expansion for a fixed accuracy. This is because radiative
transfer calculations are complicated and nonlinear, for which PCA is not very ef-
fective. However, the ratio of n-stream and two-stream intensities is almost linearly
dependent on the optical parameters because scattering effects can be considered
as a perturbation to gaseous absorption and the two-stream model computes the
absorption perfectly in the absence of scattering.

Polarization, on the other hand, is a direct result of scattering (pure absorption
does not contribute to polarization if the incident light is unpolarized). Further,
single scattering often contributes significantly to the total polarization since mul-
tiple scattering is in general depolarizing. Hence, applying PCA directly to the
multiply scattered polarized radiance gives excellent results.

Figures 10.8 and 10.9 show the percentage difference between PCA and LBL
computations for Stokes parameters I and Q, respectively, for a sample scenario
with aerosols, ice and water clouds. The spectral regions considered are the O2

A-band, the 1.61-μm CO2 band and the 2.06-μm CO2 band. There are three inter-
esting features illustrated by these plots. First, there is a clear slope in the results.
This is because aerosol/cloud scattering properties are averaged for each bin. The
slope goes away when a constant phase matrix is used. Second, the errors are higher
for Stokes parameter Q. This is because we use the correlation between two-stream
and n-stream intensities for Stokes parameter I, but do not use a similar procedure
for Q. The results for Q could be improved using a dedicated four-stream model
and using the ratio of n-stream to four-stream values in the analysis. However, it is
the degree of polarization that is usually significant and not the exact value of Q.
In the continuum, this is usually low. In the line cores it can be high. However, this
is a region that can be described by single scattering, which is computed exactly.
Third, the largest errors are in the 2.06-μm CO2 band. This is a region with two
significant absorbers (H2O and CO2). If we require greater accuracy, we would need
to use additional bins for lines with large H2O absorption, which would result in a
mild increase in computation time.

Liu et al. (2006) used PCA to compress channel transmittances or radiances
in the infrared into a set of orthogonal eigenvectors called empirical orthogonal
functions (EOFs). The channel radiances can be projected onto these EOFs to ob-
tain principal component (PC) scores. Liu et al. (2006) found that 100–250 PCs
were sufficient to reproduce channel radiances to 0.01K accuracy for hyperspec-
tral sensors with thousands of channels. The EOFs capture the spectral variations
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Fig. 10.8. Error in Stokes parameter I for PCA calculations compared to LBL calcu-
lations in (top) O2 A-band; (middle) 1.61-μm CO2 band; (bottom) 2.06-μm CO2 band.
The error is defined as (PCA–LBL)/LBL×100 [from Natraj et al., 2010].

Fig. 10.9. Same as Fig. 10.8 but for Stokes parameter Q [from Natraj et al., 2010].
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of the radiances, while the PC scores capture the temperature and composition
dependence.

An ensemble of synthetic spectra were used to generate EOFs and PC scores.
Since the EOFs and the instrument line shape (ILS) do not depend on the atmo-
spheric state, the PC scores for other scenarios can be obtained as projections of
the channel radiance on the EOFs. The channel radiance is a linear combination
of monochromatic radiances within the frequency range of that channel, with the
weights being the normalized ILS at the frequency grid point. Liu et al. (2006) use
a correlation function to select the location of the monochromatic grid points.

10.8 Neural networks

Key and Schweiger (1998) were the first to use neural network techniques to speed
up radiative transfer computations. However, their model was limited to broad-
band calculations since they were mainly interested in radiative heat budgets in
the atmosphere and at the surface. Subsequently, Schwander et al. (2001) developed
a neural network technique that performed narrowband calculations. A radiative
transfer model is used to calculate high-resolution transmittances for a broad range
S of scenarios (on the order of 20,000). These calculations are used as training
sets to calculate transmittance spectra at a large number N of wavelengths from
modeled transmittances at a very small number M of wavelengths. To train the
neural network the input data (transmittances at M wavelengths along with aux-
iliary quantities such as solar zenith angle and total column ozone) is propagated
through the network.

The schematic structure of a neural network is shown in Fig. 10.10. The input
layer has M + 2 neurons, viz., input vector xi consisting of transmittances at M
wavelengths together with the solar zenith angle and the total ozone amount), and
the output layer has N neurons, viz., output vector ok comprising transmittances at
N wavelengths of interest). One hidden layer with J neurons is used to connect the
input and output layers. The neural network is fully interconnected; each neuron in
one layer is connected to all neurons in the adjacent layers. There are no connections

Fig. 10.10. Schematic structure of a neural network used for spectral radiative transfer
modeling [from Schwander et al., 2001].
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between neurons in the same layer. The signal propagating from one neuron to
another is multiplied with a corresponding weight. The weights have to be found
using training examples.

To train the neural network, the input data are propagated successively through
the network. The resulting output vector is compared with the target vector. From
the resulting error between the output and the target vector the weights of the neu-
ral network are refined. In this manner, the entire training set is passed through
the neural network to complete one epoch. Training continues until the mean dif-
ference between the target and output data stops decreasing. Finally, to test the
performance of the neural network, a completely different set of spectra is used as
a test data set and passed through the network. During this phase, the weights are
not adapted.

To test the neural network algorithm, UV indices were calculated on the basis
of both the training and the independent test data set. Two sets of model runs
were made: (1) global irradiance calculated for 153 wavelengths, and (2) global
irradiance calculated for only seven wavelengths between 280 and 700 nm, with the
neural network providing the values for the complete set of 153 wavelengths. The
deviations between the model runs are presented in Fig. 10.11(a) for the training
data set and in Fig. 10.11(b) for the test data set. In both cases, the deviations are
within ±5%; in fact, the majority of the UV indices show deviations within ±1%.

Fig. 10.11. Ratio of UV index calculated with and without use of the neural-network
algorithm for (a) training data set and (b) test data set [from Schwander et al., 2001].

Recently, Takenaka et al. (2011) used neural network methods to develop an
algorithm for estimating solar radiation from space. The neural network algorithm
was applied to data from the Multi-functional Transport Satellite-1 Replacement
(MTSAT-1R) geostationary satellite, and estimations were validated against in situ
observations at four SKYNET sites. The method was also applied to observations
from the Advanced Earth Observing Satellite-II/Global Imager (ADEOS-II/GLI).
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10.9 Parameterizations for semi-infinite and optically
thick media

Ignoring polarization, the reflection function R∞(μ, μ0, φ) for a conservative (non-
absorbing) semi-infinite medium can be expressed as:

R∞(μ, μ0, φ) = Rss(μ, μ0, φ) +Rms(μ, μ0, φ) , (10.14)

where Rss(μ, μ0, φ) and Rms(μ, μ0, φ) are, respectively, the single and multiple
scattering contributions, and μ, μ0 and φ are, respectively, the absolute value of
the cosine of the incident angle, the cosine of the observation angle and the rel-
ative azimuth angle between the observation and incidence directions. The single
scattering contribution is given by the following expression (Chandrasekhar, 1950):

Rss(μ, μ0, φ) =
p(ϑ)

4(μ+ μ0)
, (10.15)

where p(ϑ) is the phase function and ϑ is the scattering angle. The multiple scatter-
ing contribution can be parameterized in the following form (Kokhanovsky, 2002):

Rms(μ, μ0, φ) =
a+ bμμ0 + c(μ+ μ0)

4(μ+ μ0)
, (10.16)

where a, b and c are constants to be obtained from exact radiative transfer com-
putations.

We can now define the function:

D(μ, μ0) = 4(μ+ μ0)R∞(μ, μ0, φ)− p(ϑ) . (10.17)

Using Eqs. (10.14)–(10.17), it follows that:

D(μ, μ0) = a+ bμμ0 + c(μ+ μ0) . (10.18)

For nadir viewing, Eq. (10.18) can be simplified to:

D(1, μ0) = a+ c+ (b+ c)μ0 . (10.19)

Figure 10.12 shows a comparison between exact radiative transfer calculations
and a linear fit to Eq. (10.19) for water droplets with an effective radius of 6μm at
a wavelength λ = 0.65μm. Assuming that c = 0, values for a and b can be derived
from the coefficients of the linear fit.

For nadir viewing, Eq. (10.14) can now be simplified as follows:

R∞(1, μ0, φ) =
a+ bμ0 + c(1 + μ0) + p(π − arccos(μ0))

4(1 + μ0)
, (10.20)

thereby reducing the calculation of the reflection function to that of a phase func-
tion.

Figure 10.13(a) shows a comparison of calculations of the reflection function
for cloudy media with effective droplet radii of 6 and 16μm, using Eq. (10.20)
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Fig. 10.12. Comparison of the function D(1, μ0) as obtained from Eq. (10.17) (symbols)
and a linear fit to Eq. (10.19) (solid curve) [from Kokhanovsky, 2002].

and exact radiative transfer calculations. It is clear that the simple approximation
given by Eq. (10.20) provides very accurate results for the reflection function of
semi-infinite water clouds in the case of nadir observations. Figure 10.13(b) shows
that the error is less than 2% for incidence angles less than 85◦.

For a thick (but not semi-infinite) layer over a black (nonreflecting) surface, the
reflection function can be obtained as follows (Germogenova, 1961, 1963; van de
Hulst, 1980; Sobolev, 1984):

R(b, μ, μ0, φ) = R∞(μ, μ0, φ)− tK0(μ)K0(μ0) , (10.21)

where b is the optical thickness of the layer, K0 is the so-called escape function and
t is the global transmittance, which is related to the asymmetry parameter and the
escape function.

The escape function describes the angular distribution of photons leaving the
semi-infinite non-absorbing layer, and can be computed as follows:

K0(μ) =
3

4π

∫ 2π

0

dφ

∫ 1

0

R∞(μ, μ0, φ)(μ+ μ0)μ0 dμ0 . (10.22)

The global transmittance t can be computed as follows:

t =
1

α+
3

4
b(1− g)

, (10.23)
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Fig. 10.13. (a) Comparison of calculations of the reflection function for cloudy media
with effective droplet radii of 6 and 16μm, using Equation (10.20) and exact radiative
transfer calculations; (b) Difference between calculations using Equation (10.20) and exact
calculations [from Kokhanovsky, 2002].

where g is the asymmetry parameter and:

α = 3

∫
K0(μ)μ

2 dμ . (10.24)

The escape function can be approximately evaluated as follows:

K0(μ) =
3

7
(1 + 2μ) . (10.25)
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Kokhanovsky and Rozanov (2003) found that further accuracy could be obtained
by replacing t in Eq. (10.23) by t∗, where:

t∗ = t− tc , (10.26)

and

tc =
4.86− 13.08μ0 + 12.76μ20

b3
. (10.27)

Using Eqs. (10.20), (10.21), (10.23)–(10.26), we obtain the following expression for
the reflection function for nadir viewing:

R(b, 1, μ0, φ) =
a+ bμ0 + c(1 + μ0) + p(π − arccos(μ0))

4(1 + μ0)

− 27

49

⎛⎜⎝ 1

1.07 +
3

4
b(1− g)

− tc

⎞⎟⎠ (1 + 2μ0) . (10.28)

Again, the calculation of the reflection function is reduced to the evaluation of a
phase function.

The dependence of the reflection function on the incident angle is shown in
Fig. 10.14. The approximation described in Eq. (10.28) works well both for highly
reflecting clouds and those with low reflection. Figure 10.15 shows the error due to
the approximation as a function of incident angle. The error is typically less than
5% and only a weak function of cloud optical thickness, except for very thin clouds.

Fig. 10.14. Dependence of the reflection function of a plane–parallel homogeneous water
cloud on the incident angle for nadir viewing for different values of the cloud optical thick-
ness and effective droplet radius. Exact calculations are represented by the symbols, and
the approximate values calculated using Equation (10.28) by the lines [from Kokhanovsky
and Rozanov, 2003].
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Fig. 10.15. Difference between calculations using Eq. (10.28) and exact calculations as
a function of cloud optical thickness for various incident angles [from Kokhanovsky and
Rozanov, 2003].

If the surface is Lambertian with albedo A, the reflection function RA(b, μ, μ0, φ)
can be expressed as follows (van de Hulst, 1980; Kokhanovsky and Nauss, 2006;
Nauss and Kokhanovsky, 2011):

RA(b, μ, μ0, φ) = R(b, μ, μ0, φ) +
Atd(μ)td(μ0)

1−Ars
, (10.29)

where td is the diffuse transmittance of the cloud layer and rs is the spherical
albedo. The diffuse transmittance is given by:

td(μ) = tK(μ) . (10.30)

Similar equations can be derived for weakly absorbing media and for the general
case of any single scattering albedo (Germogenova, 1961, 1963; van de Hulst, 1980;
Sobolev, 1984; Nauss and Kokhanovsky, 2011).

10.10 Low orders of scattering approximations

Hovenier (1971) provided analytical expressions for single and second-order scatter-
ing by homogeneous layers including polarization. The equations for the reflection,
R1(μ, μ0, φ−φ0), and transmission, T1(μ, μ0, φ−φ0), functions for single scattering
are particularly simple.
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R1(μ, μ0, φ− φ0) =
1

4(μ+ μ0)
Z(−μ, μ0, φ− φ0)

[
1− exp

(
− b

μ
− b

μ0

)]
; (10.31a)

T1(μ, μ0, φ− φ0) =
1

4(μ0 − μ)
Z(μ, μ0, φ− φ0)

[
exp

(
− b

μ0

)
− exp

(
− b

μ

)]
; μ �= μ0

(10.31b)

T1(μ, μ0, φ− φ0) =
b

4μ20
Z(μ, μ0, φ− φ0) exp

(
− b

μ0

)
. (10.31c)

where Z is the phase matrix, and φ− φ0 is the relative azimuth angle between the
viewing and incident directions.

The equations for higher orders of scattering can be obtained using the succes-
sive orders of scattering technique that involves integration of the results for the
previous order of scattering. In particular, the single scattered light acts as a source
for the second order of scattering. The expressions for second-order scattering are
given below:

R2(μ,μ0,φ−φ0) = 1

4π

∫ 1

0

∫ 2π

0

Z(−μ,−μ′,φ−φ′)Z(−μ′,μ0,φ′−φ0)g(μ,μ0,μ′)dμ′dφ′ ;

+
1

4π

∫ 1

0

∫ 2π

0

Z(−μ,μ′,φ−φ′)Z(μ′,μ0,φ′−φ0)h(μ,μ0,μ′)dμ′dφ′ ; (10.32a)

T2(μ,μ0,φ−φ0) = 1

4π

∫ 1

0

∫ 2π

0

Z(μ,−μ′,φ−φ′)Z(−μ′,μ0,φ′−φ0)e(μ,μ0,μ′)dμ′dφ′

+
1

4π

∫ 1

0

∫ 2π

0

Z(μ,μ′,φ−φ′)Z(μ′,μ0,φ′−φ0)f(μ,μ0,μ′)dμ′dφ′ . (10.32b)

Expressions for functions e, f , g and h are given in Appendix A.
Kawabata and Ueno (1988) carried out analytic integrations of the invariant

imbedding equations over optical thickness to obtain reflection and transmission
functions (with polarization neglected) for the first three orders of scattering in
vertically inhomogeneous media. Natraj and Spurr (2007) used the same method to
provide analytic equations for the first two orders of scattering (2OS) for reflection
in inhomogeneous media with polarization effects accounted for.

The azimuth dependence of reflection is expressed by means of a Fourier series
expansion:

R(μ, μ0, φ− φ0) = R1(μ, μ0, φ− φ0) +R0
2,c(μ, μ0)

+ 2

M∑
m=1

[
Rm

2,c(μ, μ0) cosm(φ− φ0) +Rm
2,s(μ, μ0) sinm(φ− φ0)

]
, (10.33)

where the subscripts 1 and 2 refer to the order of scattering, while c and s refer to
the cosine and sine components of the Fourier series, respectively.M is the number
of Fourier components necessary to achieve Fourier series convergence.

Natraj and Spurr (2007) also defined an intensity correction, Icorr, as follows:

Icorr(μ, μ0, φ− φ0) ≡ R(μ, μ0, φ− φ0)
∣∣
(1,1)

−R(μ, μ0, φ− φ0) , (10.34)
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where R(μ, μ0, φ − φ0)
∣∣
(1,1)

is the (1,1) element of R(μ, μ0, φ − φ0) and R(μ, μ0,

φ−φ0) is the (scalar) reflection function computed ignoring polarization. Equation
(10.34) can also be expanded in a Fourier series:

Icorr(τ ;−μ, μ0, φ− φ0) = I0corr(μ, μ0) + 2

M∑
m=1

Imcorr(μ, μ0) cosm(φ− φ0) . (10.35)

The sum of the intensity from a scalar calculation and the intensity correction
computed above approximates the intensity with polarization included.

If the atmosphere is stratified into n layers, starting from the surface, the single
scattering reflection matrix at the top of layer n can be evaluated using the following
recurrence relation:

R1(n+ 1;Ωn+1) = R1(n; Ωn)Ψ(τn+1;μ
−1 + λn)

+
ωnμ

−1λn
4(μ−1 + λn)

[
1−Ψ(τn+1;μ

−1 + λn)
]
Πn(Ωn) . (10.36)

R1(n + 1;Ωn+1) and R1(n; Ωn) are, respectively, the reflection matrices at levels
n + 1 and n. The phase matrix Πn(Ωn) is evaluated using an exact specification
of the scattering law based on the use of complete sets of expansion coefficients at
the geometry Ωn. ωn is the single scattering albedo in layer n, μ is the cosine of
the viewing angle, and λn is an average secant in layer n.

Equation (10.36) is valid in the pseudo-spherical approximation, where all
scattering is regarded as taking place in a plane-parallel medium, but the solar
beam attenuation is treated for a curved atmosphere. The accuracy of the pseudo-
spherical approximation depends on the parameterization used to describe the
direct beam attenuation. For most cases, the average secant parameterization is
sufficient (Spurr, 2002). In a multi-layer atmosphere, slant path transmittances are
taken to be exact at layer boundaries, with a simple exponential in optical thick-
ness to approximate the attenuation across layers. For a plane-parallel attenuation,
λn = 1/μ0. Ψ is defined as follows:

Ψ(τn+1; y) ≡ exp [−y(τn+1 − τn)] . (10.37)

The cosine term for the second order of scattering is given by:

Rm
2,c(τn+1;−μ, μ0) = Rm

2,c(τn;−μ, μ0)Ψ(τn+1;μ
−1 + λn)

+
ωn

2μ

∫ 1

0

Pm
c (−μ,−μ′)Vm

1 (−μ′, μ0) dμ′

+
ωn

2μ

∫ 1

0

Pm
s (−μ,−μ′)Vm

2 (−μ′, μ0) dμ′

+
ωnλn
2

∫ 1

0

Vm
3 (−μ, μ′)Pm

c (μ′, μ0) dμ′

− ωnλn
2

∫ 1

0

Vm
4 (−μ, μ′)Pm

s (μ′, μ0) dμ′ . (10.38)

Expressions for Pm
c , Pm

s , Vm
1 , Vm

2 , Vm
3 and Vm

4 are given in Appendix B.
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The sine-series contributions to the second-order scattering are:

Rm
2,s(τn+1;−μ, μ0) = Rm

2,s(τn;−μ, μ0)Ψ(τn+1;μ
−1 + λn)

+
ωn

2μ

∫ 1

0

Pm
c (−μ,−μ′)Vm

2 (−μ′, μ0) dμ′

− ωn

2μ

∫ 1

0

Pm
s (−μ,−μ′)Vm

1 (−μ′, μ0) dμ′

+
ωnλn
2

∫ 1

0

Vm
3 (−μ, μ′)Pm

s (μ′, μ0) dμ′

− ωnλn
2

∫ 1

0

Vm
4 (−μ, μ′)Pm

c (μ′, μ0) dμ′ . (10.39)

The Fourier components of the intensity correction can be approximated as:

Imcorr(τ ;−μ, μ0) = Rm
2,c(τ ;−μ, μ0)

∣∣
(1,1)

−Rm
2,c(τ ;−μ, μ0) , (10.40)

where Rm
2,c(τ ;−μ, μ0)

∣∣
(1,1)

is the (1,1) element of Rm
2,c(τ ;−μ, μ0).

The reflection function for the intensity correction can be evaluated as follows:

Rm
2,c(τn+1;−μ, μ0) = Rm

2,c(τn;−μ, μ0)Ψ(τn+1;μ
−1 + λn)

+
ωn

2μ

∫ 1

0

Pm
c (−μ,−μ′)V m

1 (−μ′, μ0) dμ′

+
ωnλn
2

∫ 1

0

V m
3 (−μ, μ′)Pm

c (μ′, μ0) dμ′ . (10.41)

Expressions for Pm
c , V m

1 and V m
3 are given in Appendix B.

The Fourier components of the intensity correction at the TOA can be finally
expressed as:

Imcorr(τN+1) = Rm
2,c(τN+1;−μ, μ0)

∣∣
(1,1)

−Rm
2,c(τN+1;−μ, μ0) . (10.42)

The surface boundary condition is the bidirectional reflection distribution function
(BRDF) at the surface; reflection functions for the second order of scattering are
identically zero.

Figure 10.16 shows the relative errors between the 2OS model and an exact
vector model for a sample scenario in the O2 A-band. The solar, viewing and
relative azimuth angles are 50◦, 30◦ and 60◦, respectively. The pseudo-spherical
approximation was employed for the calculations. The results using the 2OS model
are exact in the line cores and most inaccurate (∼ 30% error in the Stokes parameter
Q) in the continuum. However, the continuum is a region dominated by multiple
scattering and polarization is least significant there. This suggests that, while the
2OS model may not always provide Stokes parameter Q with sufficiently high
accuracy, the degree of polarization (−Q/I), or one of its orthogonal components
(I ±Q), can be obtained very accurately.
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Fig. 10.16. Relative (%) errors between the 2OS model and an exact vector model.
(Upper panel) Stokes parameter I; (Lower panel) Stokes parameter Q. The error in the
Stokes parameter I is the difference between the sum of the intensity correction from the
2OS model and the scalar intensity, and the intensity from a full vector multiple scattering
calculation.

10.11 Conclusions

In this chapter we have summarized several techniques to speed up radiative trans-
fer computations. These include the k-distribution and correlated k-distribution
methods, exponential sum fitting of transmittances, spectral mapping methods,
optimal spectral sampling double-k, linear-k and low streams interpolation tech-
niques, principal component analysis , neural networks, asymptotic solutions valid
for semi-infinite and optically thick layers, and low orders of scattering approxi-
mations. The choice of technique depends on the specific application and spectral
range under consideration. For example, correlated-k methods do very well for cal-
culation of heating and cooling rates. For sophisticated radiance calculations in the
presence of gas absorption; however, one would need to resort to more accurate
techniques such as low streams interpolation or principal component analysis .
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Appendix A: Functions relevant to second order of
scattering for homogeneous atmospheres

e, f , g and h can be calculated as follows:

e(μ, μ0, μ
′) =

1

4(μ0 + μ′)
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g(μ, μ0, μ
′) =
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h(μ, μ0, μ
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Appendix B: Functions relevant to second order of
scattering for inhomogeneous atmospheres

Vm
1 , Vm

2 , Vm
3 and Vm

4 can be calculated as follows:

Vm
1 (−μ′, μ0) = Φ(τn+1;μ

−1, x′, λn)Rm
1,c(τn;−μ′, μ0)

+
Pm

c (−μ′, μ0)ωnx
′λn

4(x′+λn)(μ−1+λn)
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1−Ψ(τn+1;μ

−1+λn)−(μ−1+λn)Φ(τn+1;μ
−1, x′, λn)

]
.

(B1)

Vm
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Pm
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Vm
3 (−μ, μ′) = Φ(τn+1;x

′, λn, μ−1)Rm
1,c(τn;−μ, μ′)

+
Pm

c (−μ, μ′)ωnx
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]
.

(B3)
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Vm
4 (−μ, μ′) = Φ(τn+1;x

′, λn, μ−1)Rm
1,s(τn;−μ, μ′)

+
Pm

s (−μ, μ′)ωnx
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]
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(B4)

Pm
c and Pm

s are, respectively, the cosine and sine components of the mth term in
the Fourier expansion of the phase matrix P. Φ and x′ are defined as follows:

Φ(τn+1;α, β, γ) ≡

⎧⎪⎨⎪⎩
Ψ(τn+1;α+ γ)−Ψ(τn+1;β + γ)

β − α
, β �= α

(τn+1 − τn)Ψ(τn+1;α+ γ), β = α

⎫⎪⎬⎪⎭ ; (B5a)

x′ ≡ 1

μ′
. (B5b)

The first order of scattering terms in Eqs. (B1)–(B4) are given below:

Rm
1,c(τn+1;−μ, μ′) = Rm

1,c(τn;−μ, μ′)Ψ(τn+1;μ
−1 + x′)

+
ωnμ

−1x′

4(μ−1 + x′)
[
1−Ψ(τn+1;μ

−1 + x′)
]
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c (−μ, μ′) ; (B6a)
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For the intensity correction, we have the following contributions:

Rm
1,c(τn+1;−μ, μ′) = Rm

1,c(τn;−μ, μ′)Ψ(τn+1;μ
−1 + x′)

+
ωnμ

−1x′
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[
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−1 + x′)
]
Pm
c (−μ, μ′) ; (B7a)
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+
ωnx

′λn
4(x′ + λn)

[1−Ψ(τn+1;x
′ + λn)]P

m
c (−μ′, μ0) . (B7b)

Pm
c is the mth term in the Fourier expansion of the phase function.
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V m
1 and V m

3 can be calculated as follows:

V m
1 (−μ′, μ0) = Φ(τn+1;μ

−1, x′, λn)Rm
1,c(τn;−μ′, μ0)

+
Pm
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11 Dependence of direct aerosol radiative forcing
on the optical properties of atmospheric
aerosol and underlying surface

Claudio Tomasi, Christian Lanconelli, Angelo Lupi, and Mauro Mazzola

11.1 Introduction

Airborne aerosol is a suspension of solid particulate matter and/or liquid particles
in air, which are often observed as dust, haze and smoke. They present an overall
number concentration usually varying between a few hundred per cubic centime-
ter of air in the remote areas of the planet and more than 104 cm−3 in the most
polluted urban areas, with sizes ranging mainly between 0.01 and no more than
100μm, and therefore varying by more than four orders of magnitude (Heintzen-
berg, 1994). Aerosol particles are present in the atmosphere as a result of primary
emissions or are formed through secondary processes involving both natural and
anthropogenic gaseous species. The primary emissions of aerosols are from both
natural and anthropogenic sources, of which the former mainly consist of min-
eral dust mobilized in desert and semi-arid regions, sea-salt from oceans, volcanic
dust from violent eruptions of debris and gases, biogenic aerosols, like viruses, bac-
terial cells, fungi, and spores from plants and animals, and smokes from forest
fires. Conversely, anthropogenic aerosols are mainly composed of industrial dust,
dust mobilized through agricultural activities, and smokes from fossil fuel com-
bustion and waste and biomass burning associated with various human activities.
Secondary aerosols are formed in the atmosphere through chemical (mainly het-
erogeneous) reactions involving sulfur dioxide, nitrogen oxides, biogenic volatile
organic compounds and other chemical species originating from both natural and
anthropogenic activities (Tanré et al., 2003; Seinfeld and Pandis, 2006). The sizes
of aerosol particles are comparable to the wavelengths of incoming solar radiation,
mainly ranging between 0.3 and 4.0μm, and are therefore mostly smaller than the
terrestrial radiation wavelengths, which mainly vary between about 4.0μm and
more than 25μm. Thus, aerosols interact very strongly with the solar (short-wave)
radiation and more weakly with the terrestrial (long-wave) radiation, as clearly
stated by the Mie (1908) scattering theory. Because of such interactions, aerosols
induce important effects on the radiation budget of the land–atmosphere–ocean
system, exerting a powerful influence on the Earth’s climate through strong scatter-
ing and absorption processes of short-wave radiation and, although less intensively,
through extinction (scattering and absorption) of long-wave radiation emitted by
both the terrestrial surface and atmosphere toward space.

OI 10.1007/978-3-642- - _11, © Springer-Verlag Berlin Heidelberg 2013 Springer Praxis Books, D 32106 1
505 , Light Scattering Reviews 8: Radiative transfer and light scatteringA.A. Kokhanovsky (ed.),
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These radiative effects have been studied exhaustively over the past 40 years
through field measurements, satellite-based observations and radiative transfer
model simulations (McCormick and Ludwig, 1967; Vonder Haar and Suomi, 1971;
Coakley et al., 1983; Charlson et al., 1990, 1991, 1992; Schwartz and Andreae,
1996; Ramanathan et al., 2001a; Kaufman et al., 2002a). The cited studies have
shown that the direct aerosol-induced radiative forcing (hereinafter referred to as
DARF) effects are particularly intense in the mid-latitude industrial and more
densely populated regions of the planet, where the anthropogenic aerosol emissions
are particularly strong (Charlson et al., 1991; Kiehl and Briegleb, 1993; Chin et
al., 2007). They are considerably weaker in remote oceanic areas (Takemura et al.,
2005) and polar regions (Blanchet, 1989; Tomasi et al., 2007), where the back-
ground number and mass concentrations of particles are usually much lower than
in densely populated regions.

Direct climatic effects are induced by atmospheric aerosols through the above-
mentioned interactions of the surface–atmosphere system with short- and long-wave
radiation:

(1) Scattering and absorption of incident solar radiation generally cause a marked
decrease in the flux density of direct solar radiation reaching the surface, leading
to an increase in the solar radiation fraction reflected back to space, and an in-
crease in the overall albedo of the climate system (Haywood and Boucher, 2000;
Yu et al., 2006; Quaas et al., 2008). At the same time, scattering by aerosols
cause an increase in the diffuse solar radiation flux reaching the surface and
contribute to the enhancement of the surface–atmosphere system albedo. As
mentioned above, such radiative effects can be evaluated by examining ground-
based and in situ measurements of the columnar aerosol optical parameters and
satellite-borne data (Haywood et al., 1999; King et al., 1999; Yu et al. 2004;
Anderson et al., 2005; Chung et al., 2005; Remer and Kaufman, 2006; Bates
et al., 2006; Bellouin et al., 2005). Absorption of incoming solar radiation is
particularly marked in cases where significant contents of soot substances (con-
taining black carbon (BC) and/or elemental carbon (EC)) are present in the
airborne particulate matter (Andreae and Gelencsér, 2006), inducing appre-
ciable warming effects in the lower part of the troposphere (Kaufman, 1987;
Bellouin et al., 2003; Stott et al., 2006).

(2) Scattering and absorption of long-wave terrestrial radiation (Lubin et al., 2002)
can modify the cooling rate of the atmospheric boundary layer, especially in the
presence of dense layers containing haze particle polydispersions (Grassl, 1973;
Yu et al., 2002). Observations of these radiative effects have been provided by
sensors onboard satellite platforms (Zhang and Christopher, 2003). However,
aerosols are generally estimated to scatter and absorb the infrared radiation
rather weakly on the global scale, only slightly enhancing the greenhouse effect
of the atmosphere, which is mainly generated in the cloudless atmosphere by
the thermal radiation absorption due to H2O, CO2, CH4, N2O and many other
atmospheric gases (Hansen et al., 1997).

For relatively high number concentrations, airborne aerosols can also produce im-
portant indirect effects on the terrestrial climate system, by acting as cloud conden-
sation nuclei and modifying the cloud droplet concentration and size-distribution.
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Therefore, they can change significantly the cloud optical properties, by causing
substantial increases in cloud albedo and modifying the average cloudiness condi-
tions in various areas of the Earth (Ackerman et al., 1994, 2000, 2004; Kaufman and
Fraser, 1997; Feingold et al., 1999; Kruger and Grassl, 2002; Feingold, 2003; Naka-
jima et al, 2003; Ervens et al., 2005; Kaufman and Koren, 2006; Jiang et al., 2006;
Koren et al., 2008). In addition, aerosols can also enhance the liquid water content
of clouds, thus altering cloud lifetime, and strongly influencing the heterogeneous
chemistry of the atmosphere, causing further relevant indirect effects on the Earth’s
climate (Schwartz et al., 1995). The IPCC TAR (2001) report (see also Forster et
al., 2007) stated that ‘the indirect effect is the mechanism by which aerosols mod-
ify the microphysical and, hence, the radiative properties, amount and lifetime of
clouds’. Key parameters for determining the indirect effect are the effectiveness of
an aerosol particle to act as a cloud condensation nucleus, which is a function of
the size, chemical composition, mixing state and ambient environment (e.g., Pen-
ner et al., 2001). The microphysically induced effect on the cloud droplet number
concentration and, hence, the cloud droplet size, with the liquid water content held
fixed has been called the first indirect effect (Ramaswamy et al., 2001), the cloud
albedo effect (Lohmann and Feichter, 2005) or the Twomey effect (Twomey, 1977).
The microphysically induced effect on the liquid water content, cloud height, and
lifetime of clouds has been called the second indirect effect (Ramaswamy et al.,
2001), the cloud lifetime effect (Lohmann and Feichter, 2005) or the Albrecht effect
(Albrecht, 1989). Thus, the IPCC TAR (2001) report classified the indirect effects
into two different types, which are denoted as cloud albedo effect and cloud life-
time effect, respectively, as these terms are more descriptive of the microphysical
processes that occur. The cloud albedo effect was considered to be a radiative forc-
ing mechanism because global model calculations could be performed to describe
the influence of increased aerosol concentration on the cloud optical properties,
while holding the liquid water content of the cloud fixed. It is considered to be
a key uncertainty in the radiative forcing of climate, bearing in mind that a best
estimate of this radiative forcing effect was not assigned by IPCC TAR (2001),
where a range was indicated between 0 and −2Wm−2 for liquid water clouds. The
other indirect effects were not considered to constitute radiative forcing processes,
because the hydrological cycle is invariably altered through feedback processes in
suppressing drizzle, increasing the cloud height and modifying the cloud lifetime
in atmospheric models, without evidence of radiative effects. This is the case of
the impact of anthropogenic aerosols on the formation and modification of the
physical and radiative properties of ice clouds (Penner et al., 2001), although the
quantification of a radiative forcing effect from this mechanism was not considered
appropriate, given the host of uncertainties and unknowns surrounding ice cloud
nucleation and physics. Similarly, the IPCC TAR (2001) report did not include any
assessment of the semi-direct effect (Hansen et al., 1997; Ackerman et al., 2000;
Jacobson, 2002; Menon et al., 2003; Cook and Highwood, 2004; Johnson et al.,
2004), defined as the mechanism by which absorption of short-wave radiation by
tropospheric aerosols leads to heating of the troposphere, which in turn changes
the relative humidity and stability of the troposphere and thereby influences cloud
formation and lifetime. Therefore, the semi-direct effect was not strictly considered
a radiative forcing process in the IPCC TAR (2001) document.
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In reality, the direct and indirect aerosol-induced effects are accomplished with
numerous other important radiation budget changes arising from the variability
of sea-surface temperature, selective absorption by atmospheric water vapor and
other minor gases, and variations in the cloud coverage characteristics occurring at
various tropospheric altitudes as a result of the complex atmospheric circulation
processes. The combination of all such effects renders the radiative behavior of
the surface–atmosphere system even more difficult to comprehend (Waliser and
Graham, 1993; Hansen et al., 1997, 1998; Ramanathan et al., 2001b; Marsden and
Valero, 2004; Takemura et al., 2005).

In addition, the irregular distribution of the aerosol radiative effects on the
global scale is enhanced by the marked presence of anthropogenic aerosol sources
in the industrialized regions of the planet, which tends to render more irregular
the spatial distribution of atmospheric heat released by aerosols after their absorp-
tion of solar radiation. These discontinuities in time and irregularities in space in
turn lead to significant variations in the atmospheric circulation picture (King et
al., 1999). In spite of the great spatial and temporal variability in aerosol concen-
tration and composition features, the regional radiative forcing effects induced by
aerosols are estimated to exceed or be comparable in magnitude to the greenhouse
warming effects occurring in many areas of the Earth, often presenting opposite
signs causing warming and cooling effects in different regions (Takemura et al.,
2002). Therefore, the interactions between aerosol particles and solar radiation are
among the main sources of uncertainty in modeling climate changes within global
circulation models (Hansen et al., 1997, 1998). There are still large knowledge gaps
on this matter, for instance regarding the dependence of aerosol radiative forcing on
surface reflectance for the columnar aerosol polydispersions with different physico-
chemical properties (Charlson et al., 1992). The interactions of solar radiation with
atmospheric aerosols are estimated to cause direct effects on the radiation budget,
modifying the fields of short-wave downwelling radiance and short-wave upwelling
radiance at the Top-of-Atmosphere (ToA) level, usually measured in Wm−2 sr−1.
These changes can vary greatly as a function of numerous parameters, including
the solar zenith angle, the shape-parameters of the columnar aerosol particle size-
distribution, the complex refractive index of particulate matter, the aerosol single
scattering albedo, the intensity of the multiple scattering effects, and the spectral
and directional characteristics of surface reflectance (Chylek and Coakley, 1974;
Coakley and Chylek, 1975; Grassl and Newiger, 1982). The large variability in the
microphysical and chemical composition parameters of aerosols, as well as in the
vertical distribution profiles of aerosol mass concentration and radiative param-
eters, contribute to increase the complexity of the radiative exchange processes
taking place between aerosol layers, the terrestrial surface and absorbing minor
gases of the atmosphere, which frequently take place through nonlinear mecha-
nisms (Feichter et al., 2004).

The main goal of the present work is to illustrate the dependence features of
the instantaneous aerosol direct radiative forcing as a function of the mentioned
parameters, by studying the changes in magnitude and the spectral features of
these radiative effects occurring at the Top-of-Atmosphere (ToA), at the surface
(i.e. at the Bottom-of-Atmosphere, BoA) and inside the atmosphere. Such radi-
ation budget changes depend on (i) the radiative properties of columnar aerosol,
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as defined in terms of aerosol optical thickness τa(λ) and single scattering albedo
ω(λ) (both varying as a function of wavelength λ), (ii) characteristics of surface
reflectance, and (iii) solar zenith angle θo. To provide a general description of
aerosol radiative properties, a set of 40 aerosol extinction models of different ori-
gin are presented in Section 11.2 for use in the DARF calculations, which are in
part chosen among the best-known models proposed in the literature and in part
determined here for providing a more complete picture of aerosol radiative pa-
rameters (including desert dust, volcanic and biomass burning particle polydisper-
sions). A set of surface reflectance models is presented in Section 11.3 for use in the
DARF calculations, including: (i) a sub-set of 16 Bidirectional Reflectance Distri-
bution Function (BRDF) non-lambertian models, and (ii) a corresponding sub-set
of 16 lambertian models adapted to yield equivalent broadband albedo features for
ocean, vegetation-covered, desert/semi-arid, and polar snow-covered surfaces. The
main physical concepts according to which the DARF effects are induced by atmo-
spheric aerosol at the ToA and BoA levels and within the atmosphere are briefly
described in Section 11.4, together with the definitions of these radiative quantities
and the schematic description of the calculation method adopted to calculate the
DARF effects. They are determined for different aerosol compositions and surface
reflectance conditions, with the main purpose of investigating the dependence of
such instantaneous DARF effects on aerosol optical parameters τa(λ) and ω(λ), un-
derlying surface reflectance characteristics and solar zenith angle θo, for different
surfaces, as described by the two sets of 16 BRDF non-lambertian and lambertian
(isotropic) surface reflectance models.

11.2 Aerosol models

The Mie (1908) electromagnetic theory predicts that the volume scattering and ab-
sorption coefficients given by an aerosol polydispersion at a certain wavelength λ
(and hereinafter indicated with symbols βsca(λ) and βabs(λ), respectively) substan-
tially depend on the shape-parameters of the particle size-distribution curve and
the complex refractive index of particulate matter, defined in terms of real part
n(λ) and imaginary part k(λ). Similarly, the phase function P (Θ) of an aerosol
polydispersion [which describes the angular distribution of the radiation scattered
by aerosol particles in a specific direction (i.e. with a certain scattering angle Θ)]
depends on the size-distribution shape parameters and spectral parameters n(λ)
and k(λ). The aerosol optical thickness τa(λ) is given at each wavelength by the
integral of the volume extinction coefficient βext(λ), along the vertical atmospheric
path, with βext(λ) given by the sum of βsca(λ) and βabs(λ). Therefore, this param-
eter provides a measure of the overall extinction effects due to columnar aerosol.
The monochromatic single scattering albedo ω(λ) relative to the atmospheric col-
umn is usually expressed in terms of the analytical form ω[λ, r, n(λ) − ik(λ)] as
a function of wavelength λ, radius r and complex refractive index n(λ) − ik(λ) of
particulate matter. Thus, it is calculated over the entire radius range of the particle
size-distribution curve for well-defined spectral curves of n(λ) and k(λ), obtained
by means of appropriate aerosol extinction models or retrieved from sky-brightness
measurements in almucantar performed with ground-based multi-wavelength sun-
sky/radiometers (Nakajima et al., 1996; Holben et al., 1998; Dubovik and King,
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2000; Dubovik et al., 2000; Gatebe et al., 2010). This columnar quantity is in prac-
tice given by the ratio between the integrals of the volume scattering and extinction
coefficients along the vertical path of the atmosphere, both calculated over the en-
tire radius range of the columnar particle size-distribution (for instance by means
of appropriate aerosol extinction models) and provides a measure of the fraction of
solar radiation extinguished by aerosol particles that is subject to scattering. Con-
versely, the difference between unity and columnar single scattering albedo gives a
measure of the fraction of aerosol-extinguished energy subject to absorption.

For given reflectance characteristics of an underlying surface, the DARF effects
can vary largely as a function of aerosol optical thickness τa(λ) and columnar
single scattering albedo ω(λ). For application studies made by means of aerosol
extinction models, ω(λ) is usually calculated at a limited number of wavelengths,
properly chosen over the solar radiation spectrum at the wavelengths located in
the middle of the so-called atmospheric windows, in such a way to define a limited
spectral series of this parameter and evaluate its optical effects throughout the
solar spectrum. To investigate the dependence features of the DARF effects (and
in particular of the instantaneous direct aerosol-induced radiative forcing at ToA-
level ΔFToA) on the single scattering albedo ω(λ) of the columnar aerosols, it
is useful to make use of different sets of aerosol models characterized by various
radiative properties and therefore presenting a wide range of ω(λ).

For this purpose, a rather high number of aerosol extinction models of different
origins was examined in the present study, partly drawn from the literature and
partly defined originally for different number size-distribution functions N(r), and
various pairs of refractive index parts n(λ) and k(λ), suitable for representing
atmospheric particle polydispersions of diverse origin and, hence, with different
chemical composition features. The radiative characteristics of an overall set of
40 aerosol models of various origins were defined, related to different microphysical,
chemical and optical properties. They are:

– the 3 original aerosol models of the 6S code (Vermote et al., 1997a, b) for dry
air conditions;

– the 2 supplementary 6S models proposed by Vermote et al. (1997a) to repre-
sent the background desert dust (Shettle, 1984), and the El Chichon volcanic
stratospheric aerosol model (King et al., 1984), defined here in greater detail
and with better accuracy;

– the 14 modified (M-type) aerosol models determined in the present study by
using the 6S basic components to simulate a large variety of wet aerosol radiative
properties (in terms of their linear combinations defined for air relative humidity
RH = 50%), which allowed a complete coverage of the range of aerosol single
scattering albedo most commonly observed in reality;

– the 10 OPAC aerosol models defined by Hess et al. (1998) for RH = 50% to
represent various wet aerosol polydispersions of different origin;

– the 4 classical aerosol models proposed by Shettle and Fenn (1979) for RH =
50% to represent the Rural, Maritime, Tropospheric and Urban particle poly-
dispersions used in the SBDART code (Ricchiazzi et al., 1998); and

– the 7 additional aerosol models defined in the present study to represent two
Saharan dust multimodal polydispersions sampled over northern Italy (Tomasi
et al., 1979), three pre- and post-Pinatubo volcanic particle polydispersions
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suspended at various stratospheric altitudes (Pueschel et al., 1993; Tomasi et
al., 1997), and two biomass burning smoke particle polydispersions sampled
by Carr (2005) at Jabiru (Australia) in the free troposphere and atmospheric
boundary layer, respectively.

11.2.1 The three 6S original aerosol models

The 6S aerosol models defined by Vermote et al. (1997a, 1997b) are based on the
spectral properties and microphysical characteristics of the four basic components
established by the International Radiation Commission (WMO, 1983), which con-
sist of dust-like (DL), oceanic (OC), water-soluble (WS) and soot (SO) particulate
matter components, the last of which includes both soluble and insoluble organic
substances. For the four components, the spectral and geometric patterns of the
following main radiative parameters were precisely described in the 6S code (Ver-
mote et al., 1997b): (i) the phase function P (Θ), defined as a function of scattering
angle Θ; (ii) the spectral values of volume extinction, scattering and absorption co-
efficients βext(λ), βsca(λ) and βabs(λ); (iii) the spectral values of asymmetry factor
g(λ); (iv) the particle number size distribution curve N(r) = dN/d(Log r); and (v)
the spectral values of complex refractive index n(λ)− ik(λ). The computations of
these parameters were performed at 11 selected wavelengths of the solar spectrum
from 0.30 to 3.75μm, and for (i) the three scattering angles equal to 0◦, 90◦ and
180◦, and (ii) 80 supplementary Gaussian angles ranging between 0◦ and 180◦. The
number density and volume size-distribution curves of the four 6S basic components
are shown in Fig. 11.1 for dry air conditions over the radius range from 10−4 to
102 μm. The curves of particle number concentration N(r) are represented as a
function of particle radius r in terms of the unimodal log-normal size-distribution
curve having the analytical form,

N(r)=dN(r)/d(Log r)=
No√

2π(ln 10)(Log σ)
exp

[
−1

2

(
Log r − Log rc

Log σ

)2]
, (11.1)

where No is the total particle number concentration (measured in cm−3), ln 10 is
a constant approximately equal to 2.3026, Log is the decadal logarithm (with base
= 10), σ is the geometric standard deviation, and rc is the mode radius (measured
in μm). The shape-parameters of the unimodal size-distribution curves used in
Eq. (11.1) to represent the DL, OC, WS and SO components for dry-air conditions
are given in Table 11.1, together with the corresponding evaluations of the dry-
state particulate mass density ρ (measured in g cm−3) and the parameters defining
their growth processes, the liquid water uptake due to the particle growth by con-
densation, and the single scattering albedo properties. Figure 11.1 shows that the
WS and SO unimodal components present predominant number concentrations of
fine particles, with mode radii equal to 0.005 and 0.0118μm, respectively, while the
OC and DL components consist mainly of coarse particles, with mode radii equal
to 0.30 and 0.50μm, respectively. Conversely, the WS and SO unimodal curves of
particle volume concentration exhibit their maxima at radii ranging between 0.1
and 1μm, whereas those of the OC and DL components describe wide maxima
centred at radii of about 5 and 20μm, respectively, as is typical of polydispersions
with high contents of coarse and giant particles.



512 Claudio Tomasi, Christian Lanconelli, Angelo Lupi, and Mauro Mazzola

T
a
b
le

1
1
.1
.
S
h
a
p
e-
p
a
ra
m
et
er
s
a
n
d

p
a
rt
ic
u
la
te

v
o
lu
m
e
a
n
d

m
a
ss

co
n
ce
n
tr
a
ti
o
n

p
er
ce
n
ta
g
es

o
f
th
e
fo
u
r
6
S

b
a
si
c
co
m
p
o
n
en

ts
W

S
(w

a
te
r-

so
lu
b
le
),

O
C

(o
ce
a
n
ic
),

D
L
(d
u
st
-l
ik
e)

a
n
d
S
O

(s
o
o
t)

u
se
d
fo
r
d
ry
-a
ir

a
n
d
w
et
-a
ir

(R
H

=
5
0
%
)
co
n
d
it
io
n
s
to

d
et
er
m
in
e
th
e
p
h
y
si
co
-c
h
em

ic
a
l

a
n
d
ra
d
ia
ti
v
e
p
ro
p
er
ti
es

o
f
th
e
fo
u
r
6
S
b
a
si
c
a
er
o
so
l
co
m
p
o
n
en
ts

u
se
d
b
y
V
er
m
o
te

et
a
l.
(1
9
9
7
a
,b
)
to

d
efi

n
e
th
e
co
n
ti
n
en
ta
l
(6
S
-C

),
m
a
ri
ti
m
e

(6
S
-M

),
a
n
d
u
rb
a
n
(6
S
-U

)
p
a
rt
ic
le

p
o
ly
d
is
p
er
si
o
n
s,

a
n
d
th
e
1
4
m
o
d
ifi
ed

(M
-t
y
p
e)

a
er
o
so
l
m
o
d
el
s
d
efi

n
ed

in
th
e
p
re
se
n
t
st
u
d
y

6
S

D
ry

G
eo
m
et
ri
c
A
v
er
a
g
e
P
er
ce
n
ta
g
e

V
o
lu
m
e

V
o
lu
m
e

D
ry

W
et

M
a
ss

M
a
ss

M
ea
n

W
ei
g
h
te
d

b
a
si
c

p
a
rt
ic
le

st
a
n
d
a
rd

g
ro
w
th

v
o
lu
m
e

p
er
ce
n
ta
g
e
p
er
ce
n
ta
g
e

p
a
rt
ic
le

p
a
rt
ic
le

p
er
ce
n
ta
g
e

p
er
ce
n
ta
g
e

si
n
g
le

a
v
er
a
g
e
si
n
g
le

co
m
p
o
-

m
o
d
e

d
ev
ia
ti
o
n

ra
d
iu
s

in
cr
ea
se

o
f
d
ry

o
f
li
q
u
id

m
a
ss

m
a
ss

o
f
d
ry

o
f
li
q
u
id

sc
a
tt
er
in
g

sc
a
tt
er
in
g

n
en
t

ra
d
iu
s

σ
fa
ct
o
r

ra
ti
o

p
a
rt
ic
le
s

w
a
te
r

d
en
si
ty

d
en
si
ty

p
a
rt
ic
le
s

w
a
te
r
a
lb
ed
o

a
lb
ed
o

r c
(μ
m
)

G
r

Δ
V
/
V

V
1

V
2

ρ
(g
cm
−
3
)

ρ
w
(g
cm
−
3
)

Γ
1

Γ
2

ω
ω
∗

W
S

0
.0
0
5
0

2
.9
9
0

1
.0
1
8
0

0
.0
5
5
0

0
.9
4
7
9

0
.0
5
2
1

1
.8
6

1
.8
1
5

0
.9
7
1
3

0
.0
2
8
7

0
.9
2
3

0
.9
2
1

O
C

0
.3
0
0
0

2
.5
1
0

1
.0
6
9
4

0
.2
2
2
9

0
.8
1
7
7

0
.1
8
2
3

2
.2
5

2
.0
2
2

0
.9
0
9
9

0
.0
9
0
1

0
.9
9
6

0
.9
9
9

D
L

0
.5
0
0
0

2
.9
9
0

1
.0
0
8
0

0
.0
2
3
2

0
.9
7
7
3

0
.0
2
2
7

2
.3
6

2
.3
2
9

0
.9
9
0
2

0
.0
0
9
8

0
.7
0
2

0
.6
9
0

S
O

0
.0
1
1
8

2
.0
0
0

1
.0
2
8
3

0
.0
8
7
3

0
.9
1
9
7

0
.0
8
0
3

1
.6
2

1
.5
7
0

0
.9
4
8
9

0
.0
5
1
1

0
.1
4
9

0
.1
5
7



11 Dependence of direct aerosol radiative forcing 513

Fig. 11.1. Curves of particle number density size-distribution N(r) (upper part) and
volume size-distribution V (r) (lower part) over the radius range from 10−4 to 102 μm, for
the four dry-air particle polydispersions defined by Vermote et al. (1997b) to represent
the 6S basic aerosol components. The four components are all normalized to provide a
value of the overall particle number concentration Ntot = 1000 cm−3.

The radiative parameters of the four 6S basic components were calculated
over the 0.30–3.75μm wavelength range, using the four monomodal particle size-
distribution curves shown in Fig. 11.1. The spectral curves of the following parame-
ters are presented in Fig. 11.2: (i) real part n(λ) of dry particulate matter refractive
index, (ii) imaginary part k(λ) of dry particulate matter refractive index, (iii) vol-
ume extinction coefficient βext(λ), and (iv) single scattering albedo ω(λ), as given
by the ratio βsca(λ)/βext(λ). The comparison shows that the highest spectral values
of n(λ) in the visible are provided by the SO component, and the lowest ones by
the OC component. The SO component also has the highest values of k(λ) over
the entire spectral range, while the lowest are given by the OC component in the
visible and near-infrared range λ < 1.7μm, and by the DL component in the in-
frared range λ > 1.7μm. Table 11.2 reports the values of n(λ) and k(λ) at the
11 selected wavelengths from 0.30 to 3.75μm, showing that the maritime particles
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Fig. 11.2. Spectral curves of (a) real part n(λ) of dry particulate matter refractive index,
(b) imaginary part k(λ) of dry particulate matter refractive index, (c) volume extinction
coefficient βext(λ) , and (d) single scattering albedo ω(λ) over the 0.30–3.75μm wavelength
range of the four 6S basic aerosol components of Vermote et al. (1997b), all normalized
to give a value of the overall particle number concentration Ntot = 1000 cm−3.

represented by the OC component provide very low values of k(λ) at all visible
wavelengths, clearly indicating that they absorb the visible solar radiation very
weakly. The spectral patterns of βext(λ) calculated at the 11 selected wavelengths
appear to be nearly constant with wavelength for the DL and OC components and
slowly decreasing for the WS and SO components throughout the whole visible and
near-infrared range. Consequently, the OC component exhibits values of ω(λ) close
to unity at all these wavelengths, whereas the WS component has values of ω(λ)
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Table 11.2. Values of the real part n(λ) and imaginary part k(λ) of the dry-air aerosol
particles that constitute the four 6S basic aerosol components of Vermote et al. (1997a,b)
at 11 selected wavelengths over the 0.30–3.75μm spectral range

Wavelength DL WS OC SO

λ (μm) n(λ) k(λ) n(λ) k(λ) n(λ) k(λ) n(λ) k(λ)

0.300 1.530 8.00 10−3 1.530 5.00 10−3 1.388 1.00 10−8 1.750 0.470
0.400 1.530 8.00 10−3 1.530 5.00 10−3 1.385 9.90 10−9 1.750 0.460
0.488 1.530 8.00 10−3 1.530 5.00 10−3 1.382 6.41 10−9 1.750 0.450
0.515 1.530 8.00 10−3 1.530 5.00 10−3 1.381 3.70 10−9 1.750 0.450
0.550 1.530 8.00 10−3 1.530 6.00 10−3 1.381 4.26 10−9 1.750 0.440
0.633 1.530 8.00 10−3 1.530 6.00 10−3 1.377 1.62 10−8 1.750 0.430
0.694 1.530 8.00 10−3 1.530 7.00 10−3 1.376 5.04 10−8 1.750 0.430
0.860 1.520 8.00 10−3 1.520 1.20 10−2 1.372 1.09 10−6 1.750 0.430
1.536 1.400 8.00 10−3 1.510 2.30 10−2 1.359 2.43 10−4 1.770 0.460
2.250 1.220 9.00 10−3 1.420 1.00 10−2 1.334 8.50 10−4 1.810 0.500
3.750 1.270 1.10 10−2 1.452 4.00 10−3 1.398 2.90 10−3 1.900 0.570

gradually decreasing from about 0.96 to around 0.80 as the wavelength increases
from 0.30 to 3.75μm. Rather low values of ω(λ) characterize the DL component,
which slowly increase with wavelength from nearly 0.6 in the visible to around 0.8
at the two longer infrared wavelengths. The SO component shows very low values
of ω(λ) at all wavelengths, decreasing from about 0.3 in the visible to less than
0.05 at wavelengths λ > 1.5, as a result of its strong absorption properties.

Using different volume percentages of the four 6S basic components, the follow-
ing three tropospheric aerosol models were defined by Vermote et al. (1997b):

(a) Continental (6S-C) aerosol (trimodal) model, consisting of volume percentages
of the three 6S components equal to 70% for DL, 29% for WS and 1% for SO.

(b) Maritime (6S-M) aerosol (bimodal) model, consisting of volume percentages
equal to 95% for OC and 5% for WS.

(c) Urban (6S-U) aerosol (trimodal) model, consisting of volume percentages equal
to 61% for WS, 22% for SO and 17% for DL.

The shape parameters of the various modes giving form to the size-distribution
curves of the three 6S original aerosol models are given in Table 11.3, with their
multimodal values of number density concentration No normalized to yield an over-
all particle number concentration of 103 cm−3. The mean dry-air particulate mass
density ρ of the 6S-C, 6S-M and 6S-U models were calculated as linear combinations
of the dry-air mass density values of the 6S basic components, weighted by their
mass percentage contents given in Table 11.3. The number size-distributions N(r)
and volume size-distributions V (r) of the three 6S dry-air aerosol models are shown
in Fig. 11.3 over the 10−4 – 102 μm radius range, according to the Vermote et al.
(1997b) data. The comparison provides evidence of the main differences existing in
particle number concentration and volume contributions due to fine particles (with
r ≤ 1μm) and coarse particles (with r > 1μm), showing that the 6S-C, 6S-U and
6S-M models present comparable number concentrations in the radius range lower
than 0.1μm, and appreciably different values of N(r) within the 0.1 ≤ r ≤ 1μm
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rö

m
’s

a
e
ro

so
l

a
ti
c

sc
a
tt
e
ri
n
g

e
x
p
o
n
e
n
t

m
o
d
e
ls

β
e
x
t

β
s
c
a

β
a
b
s

ω
a
lb
e
d
o

N
1

σ
r
c

N
2

σ
r
c

N
3

σ
r
c

ρ
(0

.5
5
μ
m
)

(0
.5
5
μ
m
)

(0
.5
5
μ
m
)

(0
.5
5
μ
m
)

ω
ω

∗
α

(c
m

−
3
)

(μ
m
)

(c
m

−
3
)

(μ
m
)

(c
m

−
3
)

(μ
m
)

(g
c
m

−
3
)

(k
m

−
1
)

(k
m

−
1
)

(k
m

−
1
)

6
S
-C

7
4
1
.3
9
6

2
.9
9
0

0
.0
0
5

2
5
8
.5
9
8

2
.0
0
0

0
.0
1
1
8

0
.0
0
6

2
.9
9
0

0
.5
0

2
.2
0
8

5
.7
7
1
0
−

4
5
.1
5
1
0
−

4
6
.2
6
1
0
−

5
0
.8
9
2

0
.8
5
0

0
.8
8
3

1
.2
4
9

6
S
-M

9
9
7
.2
0
1

2
.9
9
0

0
.0
0
5

2
.7
9
9

2
.5
0
0

0
.3
0
0

–
–

–
2
.2
3
1

2
.0
6
1
0
−

3
2
.0
4
1
0
−

3
2
.2
0
1
0
−

5
0
.9
8
9

0
.9
8
6

0
.9
8
9

0
.2
2
9

6
S
-U

9
6
7
.6
8
3

2
.9
9
0

0
.0
0
5

3
2
.2
4
9

2
.0
0
0

0
.0
1
1
8

0
.0
6
8

2
.9
9
0

0
.5
0

1
.8
9
2

5
.4
6
1
0
−

4
3
.5
3
1
0
−

4
1
.9
3
1
0
−

4
0
.6
4
6

0
.5
5
3

0
.6
3
2

1
.4
5
9

6
S
-D

5
4
2
.1
4
2

2
.1
0
4

0
.0
0
1

4
5
7
.8
5
7

3
.1
2
0

0
.0
2
1
8

0
.0
0
1

1
.8
6
0

6
.2
4

2
.5
0
0

2
.3
6
1
0
0

2
.1
9
1
0
0

0
.1
7
1
0
0

0
.9
3
1

0
.9
3
8

0
.9
3
2

0
.3
0
7

(*
)

6
S
-V

5
9
2
.0
0
0

2
.5
0
0

0
.1
1
0

4
0
0
.0
0
0

1
.5
0
0

0
.2
7
0

8
.0
0
0

1
.1
0
0

1
.0
0

1
.6
5
0

6
.3
5
1
0
−

1
6
.3
5
1
0
−

1
0
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

0
.2
1
4

(*
*
)

(*
)
V
o
lz

(1
9
7
3
);

(*
*
)
K
in
g
e
t
a
l.

(1
9
8
4
).



11 Dependence of direct aerosol radiative forcing 517

Fig. 11.3. As in Fig. 11.1, for the three original aerosol models of continental (6S-C),
maritime (6S-M) and urban (6S-U) origins defined by Vermote et al. (1997a, 1997b) for
dry air conditions, and the two supplementary models 6S-D (background desert dust), ac-
cording to Shettle (1984), and 6S-V (El Chichon volcanic stratospheric aerosol), according
to King et al. (1984). The five multimodal size-distribution curves are all normalized to
give a value of the overall particle number concentration Ntot = 1000 cm−3.

range, with higher number concentrations for the 6S-M model than those of the
6S-C and 6S-U models. Fig. 11.3 also shows that the 6S-M model provides values
of N(r) higher by more than one order of magnitude than those of the 6S-U model,
and by nearly two orders of magnitude than those of the 6S-C model in the range
typical of coarse particles. The volume size-distribution curves of the 6S-C, 6S-U
and 6S-M models exhibit slightly different values over the radius range r < 0.1μm,
and clearly higher values of the 6S-M model than those of the 6S-U and 6S-C mod-
els over both the fine particle radius range from 0.1 to 1μm and the coarse particle
range from about 1μm to more than 10μm.

Figure 11.4 shows the spectral curves of dry particulate matter refractive index
parts n(λ) and k(λ) relative to the 6S-C, 6S-M, and 6S-U aerosol models, both
calculated at each wavelength and for each model as a linear combination of the
values of the 6S basic component concentration parameters defined by Vermote et
al. (1997b). It turns out that the values of n(λ) vary in the visible between less
than 1.40 (6S-M model) and more than 1.55 (6S-U model), and then all decrease
at longer wavelengths, presenting the most marked variations for the 6S-C model,
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Fig. 11.4. As in Fig. 11.2, for the five 6S aerosol models shown in Fig. 11.3, all normalized
to give a value of the overall particle number concentration Ntot = 1000 cm−3.

until becoming lower than 1.32 at wavelengths λ > 2μm. A large range of k(λ) is
shown by the 6S original models, with values varying between 10−4 (6S-M model)
and 10−1 (6S-U model) at visible and infrared wavelengths. The spectral curves of
coefficient βext(λ) and single scattering albedo ω(λ) are also displayed in Fig. 11.4,
offering evidence of their more significant variations over the 0.30–3.75μm wave-
length range. It can be seen that βext(λ) varies rather slowly as a function of λ
in the 6S-M model and more rapidly in the 6S-C and 6S-U models. By contrast,
parameter ω(λ) in the 6S-M model assumes values very close to unity at all wave-
lengths, that of the 6S-C model presents values gradually decreasing from about
0.90 in the visible to less than 0.80 in the infrared, and that of the 6S-U model
exhibits values considerably decreasing from around 0.70 in the visible to less than
0.40 at wavelengths λ > 2μm. Table 11.3 gives the values of the following ra-
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diative parameters of the three original dry-air 6S models defined by Vermote et
al. (1997b): (i) the volume extinction, scattering and absorption coefficients calcu-
lated at the 0.55μm wavelength, (ii) the monochromatic single scattering albedo
ω(0.55μm) given by ratio βsca(0.55μm)/βext(0.55μm); (iii) the arithmetic mean
single scattering albedo ω, calculated over the 0.30 – 3.75μm spectral range; (iv) the
weighted average single scattering albedo ω∗, calculated using as weight-function
the spectral curve of direct solar irradiance reaching the surface after its passage
through the U. S. Standard Atmosphere (Anderson et al., 1986) for m = 2; and
(v) the best-fit value of Ångström’s exponent α calculated for the spectral series of
βext(λ) determined at 7 selected wavelengths over the 0.40 – 0.86μm range (i.e. at
wavelengths λ = 0.400, 0.488, 0.515, 0.550, 0.633, 0.694 and 0.860μm).

11.2.2 The 6S supplementary aerosol models

Two supplementary aerosol models were proposed by Vermote et al. (1997a) in
the 6S code, providing a pair of aerosol extinction models that are difficult to
reproduce using a mix of the four 6S basic components. They were defined to
represent (i) a desert dust particle polydispersion (6S-D model) based on the Shettle
(1984) measurements, and (ii) a volcanic stratospheric particle polydispersion (6S-
V model) based on the measurements analyzed by King et al. (1984). Both models
were here defined with improved accuracy as follows:

(a) The background desert dust aerosol model (hereinafter referred to as 6S-D
model) represents a polydispersion of particles, which remain suspended in the
atmosphere for days or weeks after their mobilization in arid regions, and can be
transported over very long distances by intercontinental winds. Its particle number
size-distribution was assumed to consist of three log-normal curves having the form
of Eq. (11.1). The values of geometric standard deviation σ and mode radius rc
characterizing each log-normal curve of the 6S-D model are given in Table 11.3, to-
gether with the corresponding unimodal values of particle number concentration Ni

yielding an overall multimodal particle number density Ntot = 103 cm−3. The dry-
air particulate mass density ρ was assumed to be equal to 2.50 g cm−3, according to
the Volz (1973) evaluations made for Saharan dust transported over the Caribbean
region. The size-distribution curves of N(r) and V (r) for the dry-air 6S-D aerosol
model are shown in Fig. 11.3 over the 10−4–102 μm radius range, to permit their
comparison with the 6S-C, 6S-M and 6S-U curves. The values of N(r) determined
for the 6S-D model are seen to be considerably lower than those of the 6S-C and
6S-M models throughout the entire fine particle radius range r < 0.1μm, and to be
comparable with those of the 6S-U model within the given size range, while they
differ by less than one order of magnitude from those of the three 6S original mod-
els over the 0.1–1μm radius range. For radii varying between 1μm and more than
20μm, the 6S-D values of N(r) were in general found to be lower than those of the
6S-M model and comparable with those of the 6S-C model. Correspondingly, the
6S-D size-distribution curve of V (r) yields values that are (i) considerably lower
than those of the three 6S original models over the radius range r < 0.1μm, (ii)
comparable with them over the 0.1–1μm radius range, and (iii) lower than those
of the 6S-M model and comparable with those of the 6S-C model over the higher
radius range.
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The complex refractive index of the 6S-D model was determined according to
the Shettle (1984) assumptions: (i) the spectral values of n(λ) were calculated ac-
cording to the evaluations made by Carlson and Benjamin (1980) at wavelengths
λ < 0.6μm, and to those determined by Volz (1973) at longer wavelengths, by in-
tegrating these data with those of the 6S dust-like (DL) basic component; and (ii)
the spectral values of k(λ) were correspondingly determined using the estimates
provided by Volz (1973), Carlson and Caverly (1977), Patterson et al. (1977), Pat-
terson (1977, 1981) and Carlson and Benjamin (1980). The spectral curves of n(λ)
and k(λ) obtained for this model are shown in Fig. 11.4 for comparison with those
of the three 6S original aerosol models: the values of n(λ) are very similar to those
of the 6S-C model in the visible and then gradually decrease at infrared wavelengths
until becoming appreciably lower than those of the 6S-C model at around 3.00μm
wavelength. Correspondingly, the values of k(λ) decrease rapidly with wavelength
in the visible and are comparable with those of the 6S-C and 6S-M models for
λ > 0.8μm. Using the size-distribution shape-parameters given in Table 11.3 and
the refractive index data assumed above, calculations of the spectral values of
βext(λ) and ω(λ) were made for the 6S-D model, obtaining the values shown in
Fig. 11.4 over the 0.30–3.75μm wavelength range. The 6S-D values of βext(λ) were
found to be higher by nearly three orders of magnitude than those of the three
6S original models, since this multimodal model (assumed to have a total number
concentration Ntot = 103 cm−3) exhibits considerably more marked relative con-
centrations of both fine particles with greater sizes and coarse particles than those
of the 6S classical models. The values of ω(λ) obtained for the 6S-D model are
slightly higher than those of the 6S-C model at visible wavelengths, and gradually
increasing with wavelength to become comparable with those of the 6S-M model
at the 3.75μm wavelength. The 6S-D monochromatic values of the volume scatter-
ing, absorption and extinction coefficients at the 0.55μm wavelength are given in
Table 11.3, together with those calculated for the three 6S original models.

(b) The El Chichón stratospheric volcanic aerosol model (hereinafter referred to as
6S-V model) was defined on the basis of the King et al. (1984) measurements made
at the Mauna Loa Observatory to analyze the optical and microphysical parameters
of the columnar content of the El Chichon volcanic particles. The size-distribution
of the aerosol loading was assumed by King et al. (1984) to consist of three modes:
(i) the first was represented in terms of the modified gamma function having the
analytical form,

dN(r)/d (Log r) = C1r
2 exp (−1.98r/rc) , (11.2)

with columnar particle number C1 = 1.674×1011 cm−2 μm−2, radius r measured in
μm, and mode radius rc = 0.11μm, as defined by McClatchey et al. (1980) for rep-
resenting the background unperturbed (i.e. without volcanic particles) conditions
of the Standard Radiation Atmosphere; and (ii) the second and third were assumed
to have analytical forms similar to the log-normal curve given in Eq. (11.1), with
columnar particle number constants C2 = 50C3, and C3 = 3.869×105 cm−2 μm−2,
respectively, and values of σ equal to 1.5 and 1.1, respectively, as derived by King
et al. (1984) examining the balloon-borne data recorded by Hofmann and Rosen
(1983a,b) for particle samples taken at altitudes of 21.5 to 24.5 km. above the
Mauna Loa Observatory, a few months after the El Chichon eruption. However, for
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reasons of uniformity, we decided here to substitute the first monomodal modified
gamma curve with a log-normal curve (as in the second and third modes), which
was defined with shape-parameters obtained by applying a best-fit procedure to the
original concentration data of McClatchey et al. (1980). The values of the shape-
parameters for the three log-normal modes are given in Table 11.3, for the value of
the overall multimodal number density concentration Ntot = 103 cm−3. The corre-
sponding size-distribution curves of N(r) and V (r) calculated for dry-air conditions
of the 6S-V trimodal model are presented in Fig. 11.3, where their comparison with
the size-distributions of the other 6S models indicates that the particle number con-
centration N(r) of 6S-V particles is very low at radii smaller than 10−2 μm with
respect to the three 6S original aerosol models. It becomes comparable with them
in the radius range from 10−2 to 10−1 μm, subsequently increasing to predominate
markedly on the particle number concentration of the 6S original models over the
range from about 0.1 to nearly 70μm. The size-distribution of V (r) obtained for
the 6S-V model describes a large multimodal maximum, with considerably higher
values than those of the other 6S models over the 0.05 ≤ r ≤ 60μm radius range.
This multimodal maximum is substantially given in Fig. 11.3 by the linear combi-
nation of the first two modes centered at radii of 0.11 and 0.27μm, respectively.
The slight peak appearing in both the number and volume size-distribution curves
shown in Fig. 11.3 is clearly due to the third mode of volcanic particles centred at
radius rc = 1μm (see Table 11.3).

The ‘long-lived’ sulfate aerosols forming in the stratosphere after the El Chichon
eruption of spring 1982 were primarily generated through chemical transformation
and condensation of SO2 injected at stratospheric altitudes by the violent volcanic
eruption (Turco et al., 1982). These particles were nearly spherical liquid water
droplets having a 75% concentration by weight of sulphuric acid, as indicated by
the balloon-borne boiling point measurements performed by Hoffman and Rosen
(1983) and the residual percentage of liquid water. Therefore, the spectral values
of n(λ) were directly determined for this aerosol model using the values proposed
by Palmer and Williams (1975) for a 75% (by weight) aqueous solution of H2SO4,
while those of k(λ) were assumed according to Palmer and Williams (1975) at
wavelengths λ > 0.70μm and taking into account (i) the estimates of Hummel et
al. (1988) at wavelenths from 0.35 to 0.70μm, and (ii) those of Burley and Johnston
(1992) within the 0.25 ≤ λ ≤ 0.34μm wavelength range. Their spectral features
are shown in Fig. 11.4 over the 0.30–3.75μm spectral interval, together with the
corresponding spectral curves of radiative parameters βext(λ) and ω(λ). As can be
seen, the values of n(λ) are more similar to those of the 6S-M model, while those of
k(λ) are smaller than those of the other 6S models by several orders of magnitude
at wavelengths λ < 1.5μm, due to the negligible absorption properties of these
stratospheric particles. Very high values of βext(λ) were obtained for the 6S-V
model with respect to the three 6S original models, due to the considerably higher
content of coarse particles. By contrast, the spectral curve of ω(λ) provides nearly
unit values (as in the case of the 6S-M model) over the wavelength range from
0.30 to about 2.5μm. The monochromatic values of the main radiative parameters
obtained for the 6S-V model are given in Table 11.3.
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11.2.3 The 6S modified (M-type) aerosol models

The five 6S models described in the previous two subsections were calculated for
dry-air conditions of particulate matter. However, the relative humidity (RH) con-
ditions of air usually observed at tropospheric altitudes for cloudless and clean-air
conditions differ appreciably from those observed for dry-air conditions, presenting
values of RH often no lower than 50%. Taking into account that moist air condi-
tions with RH ≈ 50% favor a very limited growth of particle sizes by condensation,
estimated to be equal to a few percentage points only by Hänel (1976), it seems
plausible to assume that such wet aerosol models yield slightly higher values of
βext(λ) and ω(λ) than those shown in Fig. 11.4 for dry-air conditions, due to the
moderate uptake of liquid water mass by each particle. To obtain more realistic
simulations of the wet aerosol radiative properties, it was decided to calculate also
the spectral values of volume extinction, scattering and absorption coefficients of
the four 6S basic components for RH = 50%. The aim was to derive a set of wet
aerosol extinction models, where the changes in the size-distribution curves and
complex refractive index due to the particle growth by condensation were properly
taken into account. For this purpose, we assumed that the aerosol particles were
grown for RH increasing from 0% to 50%, as indicated by the average particle
growth simulation models defined by Hänel (1976) and Hänel and Bullrich (1978)
for aerosol polydispersions of different origins (sea-spray particle samples from the
North Atlantic, maritime aerosol samples from the Atlantic and containing Saha-
ran dust, urban aerosol samples from the industrialized area of Mainz (Germany),
and background continental aerosol samples from the top of the Hohenpeissenberg
mountain in summer). The estimates of the growth radius factor Gr defined by
Hänel (1976) and Hänel and Bullrich (1978) were taken into consideration for both
increasing and decreasing RH = 50%. They were used to represent with a good
approximation the hygroscopic properties of the WS, OC, DL and SO components
in the 6S code, together with the values of growth radius factor Gr proposed by
Shettle and Fenn (1979) for rural, maritime, urban and free-tropospheric aerosol
polydispersions.

Using the above-mentioned growth factor estimates, the average values of Gr

given in Table 11.1 were determined for the WS, OC, DL and SO components,
relative to RH = 50%. Correspondingly, the particle size-distribution curves of the
four 6S basic components were modified with respect to those shown in Fig. 11.1
for dry-air conditions, by (i) assuming new values of the mode radius rc, calcu-
lated by multiplying the mode radii of the dry-air 6S basic polydispersions by the
corresponding factor Gr given in Table 11.1, and (ii) assuming the same values of
geometric standard deviation σ adopted by Vermote et al. (1997a, 1997b) and given
in Table 11.1, for which the log-normal size-distribution curves of wet particles (for
RH = 50%) were defined. Calculating the overall particle volumes V of the origi-
nal 6S log-normal size-distribution curves for dry-air particles and the total grown
particle volumes Vg = V + ΔV of the new log-normal size-distribution curves of
grown particles (as given in Table 11.1), the percentage volume ratios ΔV/V of
such growth processes were then determined, as given in Table 11.1, separately for
the WS, OC, DL and SO basic components. For these calculations, the volume
percentages V1 and V2 of dry particulate matter and liquid water fractions were
subsequently determined and given in Table 11.1.
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According to the above evaluations, appreciable changes in the particle mass
density are expected to occur. Their calculations were made for (i) the values of
dry particulate matter density ρ obtained by Hänel (1976) and Hänel and Bullrich
(1978) for the sea-spray, maritime, continental, and urban particle models, and (ii)
the values of ρ proposed by Volz (1972a, 1972b, 1973) for water soluble substances,
soot particles, Saharan dust, and coal-fire dust. The values of dry particle density
ρ given in Table 11.1 were first determined for the four 6S basic components.
Multiplying these values of ρ by the corresponding volume percentages V1 and V2
given in Table 11.1, the mass percentages Γ1 of dry particles and Γ2 of liquid water
droplets were then calculated, from which the values of wet particle mass density
ρw were obtained for liquid water mass density equal to g cm−3. The results are
given in Table 11.1.

For the values of Γ1 and Γ2 used as weights, the spectral values of the real
part n(λ) and imaginary part k(λ) of wet particulate matter refractive index were
subsequently determined for the four 6S basic components. The weighted values
were obtained by assuming the dry-air particulate values of n(λ) and k(λ) provided
by Vermote et al. (1997a) and those of liquid water refractive index calculated
according to Irvine and Pollack (1968) and Hale and Querry (1973). The spectral
patterns of n(λ) and k(λ) obtained for the four 6S basic components are shown in
Fig. 11.5 for both dry-air (RH = 0%) and wet-air (RH = 50%) conditions. Fig. 11.5
provides evidence that only negligible variations take place in the optical properties
of particulate matter for such variations in RH, except for those of n(λ) relative to
the soot (SO) component and those of k(λ) at the 3.75μm wavelength for the WS
and DL components. For the values of n(λ) and k(λ) shown in Fig. 11.5 and for the
size-distribution curves of the four 6S basic components obtained for wet particles
(i.e. for RH = 50%), we calculated the spectral values of the single scattering
albedo ω(λ) at the 11 wavelengths selected above between 0.30 and 3.75μm. It was
found that: (i) the values of ω(λ) determined for the OC component are all very
close to unity, giving a mean value higher than 0.99 at visible and near-infrared
wavelengths; (ii) values of the WS component are relatively high at all wavelengths
λ ≤ 1μm (giving a mean value of ∼ 0.92), and appreciably lower at wavelengths
λ > 1μm; (iii) values of the DL component are relatively low at visible wavelengths
and gradually increase with λ to assume a mean value of ∼ 0.70 at the near-infrared
wavelengths; and (iv) values of the SO component are rather low in the visible,
and decrease with λ until becoming very small at mid-infrared wavelengths, where
a mean value of ∼ 0.15 was assumed. Using these evaluations, the mean values of
ω(λ) were calculated for wet particles over the 0.30–3.75μm wavelength range. The
results are presented in Table 11.1, showing that the OC and SO wet components
yield the extreme values of this optical parameter, which are nearly unit for the OC
wet particle component and smaller than 0.15 for the SO one. The above estimates
were employed to calculate a set of 14 aerosol models as linear combinations of the
four 6S wet particle components and the liquid water (LW) fraction. The average
values of ω were calculated in Table 11.1 as simple arithmetic averages made over
the 0.30–3.75μm wavelength range. They were found to decrease gradually from
∼1.00 in the first M-type model (pure oceanic aerosol) to about 0.65 in the last
M-type (M-14) model (heavy polluted aerosol). Such a low value of ω was obtained
for a mixed polydispersion of particles, mainly consisting of sulfate substances, and



524 Claudio Tomasi, Christian Lanconelli, Angelo Lupi, and Mauro Mazzola

Fig. 11.5. Comparison between the spectral curves of real part n(λ) (upper part) and
imaginary part k(λ) (lower part) obtained for the four 6S basic components of Vermote et
al. (1997b) over the 0.30–3.75μm wavelength range, as calculated for dry-air (RH = 0%)
and wet-air (RH = 50%) conditions.

containing moderate concentrations of dust-like (DL) and soot (SO) particulate
matter.

Using the single scattering albedo properties of the above aerosol models, it is
important to take into account that about 87.8% of the extraterrestrial solar irradi-
ance Io(λ) belongs to the 0.30–1.60μm wavelength range, presenting the maximum
at ∼ 0.48μm wavelength (Iqbal, 1983). In order to evaluate realistically the single
scattering albedo effects induced by aerosol polydispersions on solar radiation, it
is therefore of basic importance to bear in mind that the aerosol scattering and
absorption effects occurring at visible and near-infrared wavelengths are particu-
larly significant in evaluating the DARF effects. Thus, considering that aerosols
are mainly concentrated within the lower part of the troposphere, it was decided
to use the weighted average single scattering albedo ω∗ as key parameter in the



11 Dependence of direct aerosol radiative forcing 525

calculations of the DARF effects. It was calculated by weighting the spectral values
of ω(λ) in Fig. 11.5 by the model-based function I∗(λ), which defines the spectral
curve of direct solar irradiance I(λ) measured at sea level for relative optical air
mass m = 2, i.e. for θo ≈ 60◦ (Tomasi et al., 1998), after its passage through the U.
S. Standard Atmosphere 1976 (Anderson et al., 1986). The choice of θo = 60◦ was
made bearing in mind that the Sun never sinks below the solar elevation angle of
30◦ during the middle part of the day throughout the entire year at mid-latitude
observation sites. In order to determine a realistic spectral curve of weight function
I∗(λ), it was assumed that atmospheric particulate extinction of direct solar irra-
diance was due to the rural aerosol model of Kneizys et al. (1996), normalized to
the 23 km visual range at surface-level, thus representing background particulate
extinction features of columnar aerosol in a relatively clean-air atmosphere. The
values of ω∗ obtained following the above procedure are given in Table 11.1, where
they vary between ∼1.00 (OC component) and 0.152 (SO component). In practice,
they can be used as mean spectral evaluations of the broadband single scattering
albedo of columnar aerosol over the visible and near-infrared wavelength range.

The results presented in Fig. 11.5 and in Table 11.1 indicate that linear combi-
nations of the four 6S wet-particle basic components and of the LW component ac-
counting for the liquid water uptake can be suitably used to represent the radiative
properties of wet aerosol polydispersions of different origin for RH = 50%. These
aerosol models present single scattering albedo characteristics that fully cover the
variety of radiative properties usually observed in the Earth’s atmosphere. For the
volume percentages and the mass density values given in Tables 11.1 and 11.4 for
the WS, OC, DL, SO and LW components, the four following 6S modified (M-type)
aerosol models were determined:

(1) Model M-1, which represents a ‘pure oceanic’ aerosol polydispersion consist-
ing of the OC component for 81.77% and the LW component for 18.23%, thus
yielding a value of ω∗ = 0.999. The size-distribution curve of this wet-air aerosol
polydispersion is unimodal, with mode radius rc ≈ 0.32μm and, hence, a very high
contribution (∼ 5%) of coarse particles to the total particle number density, leading
to the predominance of their extinction effects over those of fine particles.

(2) Model M-2, which represents a traditional ‘maritime’ aerosol polydispersion
very similar to that of the 6S Maritime particle model. It consists of a volume
percentages of 77.61% for the OC component, 4.08% for the WS component (with
rc ≈ 5.1×10−3 μm) and 18.31% for the LW component, providing values of complex
refractive index and volume scattering and absorption coefficients at the 11 above-
selected wavelengths giving a value of ω∗ = 0.987.

(3) Model M-8, which defines a traditional ‘continental’ aerosol polydispersion con-
sisting of volume percentages equal to 67.29% for DL (with rc ≈ 5.04× 10−1 μm),
27.88% for OC, 0.96% for SO (with rc ≈ 1.9× 10−2 μm) and 3.87% for LW, yield-
ing values of refractive index and volume scattering and absorption coefficients for
which ω∗ = 0.852 was obtained.

(4) Model M-14, which represents a ‘heavy polluted’ aerosol polydispersion con-
sisting of 55.60% WS, 18.00% SO, 11.60% DL, and 14.80% LW, yielding a value
of ω∗ = 0.651. The SO concentration agrees very well with that chosen by Ver-
mote et al. (1997a) for their 6S-U model and is very close to that obtained by
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Å
n
g
st
rö
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Bush and Valero (2002) for aerosol samples collected in the equatorial region of
the Indian Ocean during the INDOEX experiment on days characterized by heavy
anthropogenic pollution.

The volume percentages of the four 6S basic and LW components were modified
step by step to determine the intermediate values of the volume percentages of
the five components, in such a way as to determine a further 10 aerosol extinction
models, which have been labeled using acronyms from M-3 to M-7 and from M-
9 to M-13. The respective volume percentages are given in Table 11.4, while the
corresponding values of mass density are reported in Table 11.1, from which the
mass percentages of the above-mentioned five components were calculated to define
the corresponding spectral series of n(λ) and k(λ). For these optical parameters and
the size-distribution curves given in Fig. 11.6, the values of ω∗ were then determined
for all 14 M-type wet aerosol models, as given in Table 11.4, showing that the values
of ω∗ are (i) near unity in models M-1 and M-2 relative to maritime aerosols, where
water-soluble particles occupy a relative volume fraction of a few percentage points
only; (ii) regularly decreasing from about 0.96 to less than 0.88 in models M-3
to M-7, consisting of increasing volume fractions of both WS and DL components,
together with decreasing volume fractions of the OC component and null or slightly
increasing percentages of the SO component; (iii) close to 0.85 in the M-8 model,
in agreement with the characteristics of the 6S components relative to the WS, DL
and SO substances; and (iv) gradually decreasing from 0.82 to about 0.65 in the six
remaining models from M-9 to M-14, consisting of increasing volume fractions of
both WS and SO components, together with gradually decreasing volume fractions
of the DL components and null percentages of the OC component.

Table 11.4 also presents the values of wet particulate mass density ρp relative to
the 14 M-type aerosol models, which are (i) close to 2 g cm−3 for models M-1 and
M-2, (ii) slowly increasing from 2.05 to 2.17 g cm−3 for models from M-3 to M-8,
and (iii) decreasing from 2.09 to 1.84 g cm−3, for models from M-9 to M-14, these
variations being mainly due to the gradual increase in the soot particulate mass
fraction. Table 11.4 also reports the mean values of the Ångström (1964) exponent
α(0.40–0.86μm), each obtained from the negative slope coefficient of the best-fit
line drawn for each spectral series of the natural logarithms of βext(λ) (calculated
at the 0.400, 0.488, 0.515, 0.550, 0.633, 0.694 and 0.860μm wavelengths for each
of the 14 M-type wet-air aerosol models) plotted versus the natural logarithm of
wavelength. Exponent α(0.40–0.86μm) assumes the lowest value for model M-1
(pure oceanic particles), and gradually increase for the subsequent M-type models,
because (i) the coarse particle mass fraction decreases as the OC component mass
fraction diminishes passing from M-1 to M-7 model, and (ii) the fine particle mass
fraction increases for the gradually higher contents of the WS and SO components.
It can be clearly seen in Fig. 11.6 that the number and volume size-distribution
curves of the 14 M-type aerosol models determined for wet air (RH = 50%) con-
ditions, present variable multimodal features, with more pronounced variations
within the coarse particle radius range of the aeolian (DL) and anthropogenic (SO)
particle components.

The corresponding spectral curves of refractive index parts n(λ) and k(λ), vol-
ume extinction coefficient βext(λ), and single scattering albedo ω(λ) are shown in
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Fig. 11.6. As in Fig. 11.1, for the 14 modified (M-type) aerosol models defined in the
present study as linear combinations of the 6S basic aerosol components. Models are
labeled with letter M and increasing numbers from 1 to 14, all normalized to give a value
of the overall particle number concentration Ntot = 1000 cm−3.

Fig. 11.7. It presents an exhaustive picture of the gradual and well-spaced variations
of the four radiative parameters occurring from one model to another at the visible
and infrared wavelengths. In particular, the spectral values of βext(λ) obtained for
the M-1 model are greater by about three orders of magnitude than those deter-
mined for the other 13 M-type models at all wavelengths, due to the relatively high
number concentration of coarse particles (∼ 50 cm−3, i.e about 5%) compared to
that of fine particles (∼ 950 cm−3). At the same time, the size-distribution curves
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Fig. 11.7. As in Fig. 11.2, for the 14 modified (M-type) aerosol models shown in
Fig. 11.6, all normalized to give a value of the overall particle number concentration
Ntot = 1000 cm−3.

of the other M-type models are multimodal, with a more greatly prevailing num-
ber concentrations of fine particles and gradually lower number concentrations of
coarse particles. In fact, the relative coarse particle number concentration is equal
to about 1.5× 10−3% in the M-2 model, about 3× 10−4% in the M-3 model, and
gradually even lower in the subsequent M-type models, as can be clearly verified
in Fig. 11.6 by examining the particle number density and volume size-distribution
curves of the 14 aerosol M-type models. Fig. 11.7 also shows that the spectral series
of ω(λ) exhibit slowly decreasing values with wavelength, passing from the M-1 to
the M-14 model, with discrete percentage variations from the near unity values of
the M-1 model to the spectral values of the M-14 model, which are approximately
equal to 0.70 in the visible.
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11.2.4 The OPAC aerosol models

OPAC is a software package containing a set of aerosol models defining the ra-
diative properties of various atmospheric particles (water droplets, aerosol, and
ice crystals) over the spectral range including both the solar and terrestrial radi-
ation. Airborne aerosol particles were assumed to consist of mixtures of different
components, in which particle sizes vary as a function of RH. The OPAC optical
parameters were calculated at 61 wavelengths selected between 0.3 and 40μm and
for 8 values of ambient RH equal to 0%, 50%, 70%, 80%, 90%, 95%, 98%, and 99%,
respectively. The conception and the first design of the OPAC models are due to
d’Almeida et al. (1991), while the revision of the code was carried out by Hess et al.
(1998), who defined 10 aerosol components suitable for use to determine externally
mixed compositions and simulate a wide variety of tropospheric aerosol radiative
parameters, calculated as linear combinations of those evaluated for the 10 basic
components and modeled under the assumption of particle sphericity. Each of the
10 components is attributed to a particular origin and represented using an indi-
vidual log-normal particle size-distribution and adopting specific spectral features
of complex particulate matter refractive index. The 10 basic components of the
OPAC aerosol models were defined on the basis of older descriptions (Shettle and
Fenn, 1979; Deepak and Gerber, 1983; d’Almeida et al. 1991; Koepke et al. 1997).
They are:

(1) The water-insoluble (INS) component, consisting mainly of soil particles with
a certain amount of organic substances.

(2) The water-soluble (WAS) component that mainly originates from gas-to-particle
conversion and consists of various kinds of sulfates (of anthropogenic origin, with
mass density equal to only about half that of the water-soluble component), ni-
trates, and other (mainly organic) substances mixed together, for which the optical
effects of the dimethyl sulfide-related aerosol forming in the oceanic regions were
also modeled.

(3) The soot (SOO) component, mainly containing black carbon (BC), which
strongly absorbs the solar radiation and is assumed to be unsoluble. Several as-
sumptions were made in defining this component: (i) the particles do not grow
with increasing RH; (ii) the density of soot is equal to 1 g cm−3, because the soot
particles sampled on filters and used to determine aerosol weight per air volume
are in general fluffy particles with space inside; (iii) the optical properties were
evaluated by neglecting the chainlike character of these particles, while the size
distribution contains a significant amount of very small particles, with particulate
matter density ρ = 2.3 g cm−3; and (iv) no coagulation of soluble aerosol and soot
was considered in the formation of the soot particle component.

(4 and 5) The two sea-salt particle components, both consisting of various kinds of
salt contained in sea-water, and presenting the first a sea-salt accumulation particle
mode (SAM), and the second a sea-salt coarse particle mode (SCM), as originated
by different wind-speed dependent effects on the particle number density in the
various size ranges (Koepke et al. 1997).

(6, 7 and 8) The three mineral aerosol components, consisting of mixtures of quartz
and clay minerals and modeled using three different monomodal curves for the
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nucleation (MNM), accumulation (MAM) and coarse (MCM) particle components,
which present relative amounts of large particles varying with the atmospheric
turbidity conditions.

(9) The mineral particle (MTR) component of desert origin, used to describe the
properties of desert dust transported over long distances, and consisting mainly of
(i) mineral aerosol particles not growing with increasing RH, and (ii) a reduced
amount of large particles.

(10) The sulphate (SDR) component, consisting of 75% H2SO4 and used to de-
scribe the sulfate particles found in the Antarctic aerosol and in the stratospheric
background aerosol layers consisting mainly of sulphuric acid droplets.

The upper and lower limits of the monomodal particle size-distributions given in
Table 11.5 for the 10 OPAC components were taken into account in the Mie cal-
culations of the aerosol radiative parameters. The overall mass concentration M∗

of each size-distribution was measured in μg cm−3 per unit number concentration
N , and calculated with a cutoff radius equal to 7.5μm. For the aerosol particle
polydispersions subject to condensation growth, the mode radius and the two ra-
dius range limits were assumed to increase with increasing RH (Hänel and Zankl,
1979). Each log-normal size-distribution was determined for RH = 50% by calcu-
lating the mode radius increase according to Hänel and Zankl (1979) and assuming
that the standard deviation σ given in Table 11.5 remains unchanged as RH varies.
The main shape-parameters of the log-normal size-distributions characterizing the
10 OPAC components are also given in Table 11.5, together with the values of
wet particulate matter density ρw calculated on the basis of the growth factors
determined by Hänel and Zankl (1979) for the various components.

Figure 11.8 shows the the size-distribution curves of particle number density
N(r) and particle volume V (r), as obtained for an overall number concentration
Ntot = 103 cm−3, highlighting the widely varying values of mode radius rc used
by d’Almeida et al. (1991) and Hess et al. (1998) to define the curve of N(r),
which were assumed in Table 11.5 to vary between a minimum of 1.18× 10−2 μm
(for the SOO (soot) component) and a maximum of 1.90μm (for the MCM (min-
eral dust, coarse mode) component. Fig. 11.8 shows that the mode radius of V (r)
varies between a minimum of 5.0× 10−2 μm (for the SOO (soot) component) and
a maximum of 11.00μm (for the MCM (mineral dust, coarse mode) component).

The real and imaginary parts of the refractive index were calculated for wet
(RH = 50%) aerosol components, obtaining the spectral values shown in Fig. 11.9,
which indicate that the real part n(λ) varies between 1.33 and more than 1.70
at visible wavelengths, while the imaginary part k(λ) presents particularly marked
variations over the 0.30–1.50μm wavelength range. The spectral patterns of volume
extinction coefficient βext(λ) and single scattering albedo ω(λ) are presented in
Fig. 11.9, showing that βext(λ) varies by several orders of magnitude passing from
one component to another (for constant particle number concentration), and that
ω(λ) varies at visible wavelengths between near unity values (for the WAS, SCM
and SDR components) to a value lower than 0.3 (for the SOO component).

The 10 OPAC aerosol models were determined using the above 10 aerosol com-
ponents and their optical, composition and microphysical characteristics, and as-
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Fig. 11.8. As in Fig. 11.1, for the 10 OPAC aerosol components listed in Table 11.5,
calculated for RH = 50% and normalized to give a value of the overall particle number
concentration Ntot = 1000 cm−3.

suming the presence of soot particles (SOO component) in the polluted aerosol
models only:

(1) The Continental clean (CC) aerosol model represents the aerosol polydis-
persion monitored in remote continental areas, with very low anthropogenic
influences and, consequently, a very low mass concentration of soot substances
(< 0.1μgm−3). The composition assumed in Table 11.6 does not contain soot
substances, thus constituting a lower benchmark with respect to absorption
in the solar spectral range.
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Fig. 11.9. As in Fig. 11.2, for the 10 OPAC aerosol components listed in Table 11.5,
calculated for RH = 50% and normalized to give a value of the overall particle number
concentration Ntot = 1000 cm−3.

(2) The Continental average (CA) aerosol model is used in cases where anthro-
pogenic particles are present together with continental aerosols, this kind of
particulate matter containing soot substances with lower concentrations of
insoluble and water-soluble substances.

(3) The Continental polluted (CP) aerosol model represents the particle poly-
dispersion usually sampled in highly polluted areas, mainly due to man-made
activities, with mass density of soot matter assumed as equal to 2μgm−3, and
that of water-soluble substances more than double the mass density usually
found in continental average aerosol.

(4) The Urban (UR) aerosol model represents cases of strong pollution in ur-
ban areas, with the soot mass concentration assumed to be relatively high
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Table 11.6. Values of the particle number concentration Nj and mass percentage Γj

of the basic components giving form to the 10 OPAC wet aerosol models defined in the
present study for RH = 50% (Hess et al., 1998), in which the total particle number
concentration was assumed to be equal to Ntot = 1000 cm−3

OPAC models with their Components Particle number Mass
acronyms (in brackets) concentrations percentages

Nj (cm−3) of Γj of the
the components components

Continental clean (CC) Water soluble 999.940 0.591
Insoluble 0.060 0.409

Continental average (CA) Soot 542.470 0.021
Water soluble 457.504 0.583
Insoluble 0.026 0.396

Continental polluted (CP) Soot 686.000 0.044
Water soluble 313.999 0.658
Insoluble 0.001 0.298

Urban (UR) Soot 822.785 0.079
Water soluble 177.214 0.563
Insoluble 0.001 0.358

Desert (DE) Water soluble 869.511 0.018
Mineral dust (nucleation) 117.167 0.033
Mineral dust (accumulation) 13.260 0.747
Mineral dust (coarse) 0.062 0.202

Maritime clean (MC) Water soluble 986.840 0.071
Sea salt (accumulation) 13.158 0.908
Sea salt (coarse) 0.002 0.021

Maritime polluted (MP) Soot 575.5556 0.006
Water soluble 422.222 0.160
Sea salt (accumulation) 2.222 0.814
Sea salt (coarse) 0.0004 0.019

Maritime tropical (MT) Water soluble 983.333 0.058
Sea salt (accumulation) 16.6668 0.928
Sea salt (coarse) 0.0002 0.014

Arctic (AR) Soot 802.798 0.044
Water soluble 196.913 0.382
Sea salt (accumulation) 0.2875 0.544
Insoluble 0.0015 0.029

Antarctic (AN) Sulphate 998.783 0.910
Sea salt (accumulation) 1.094 0.045
Mineral transported 0.123 0.045

(∼ 7.8μgm−3) and the mass concentrations of both water soluble and insolu-
ble substances about twice those assumed in the continental polluted aerosol,
as it was often found in aerosol samples collected in central urban areas.

(5) The Desert (DE) aerosol model is used to describe aerosol suspended over
the desert areas of the world, consisting of the mineral aerosol components in
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a combination that is representative for average atmospheric turbidity con-
ditions, together with a certain mass fraction of the water-soluble (WAS)
component.

(6) The Maritime clean (MC) aerosol model represents particle polydispersions
sampled in undisturbed remote maritime areas without anthropogenic influ-
ences, with no soot and a limited mass concentration of water-soluble (WAS)
aerosol used for representing the non-sea-salt (nss) sulfate particles. In gen-
eral, maritime aerosol polydispersions contain sea salt particles in amounts
depending on the wind speed: for instance, a concentration of 20 sea-salt par-
ticles per cubic meter was assumed in this model for a wind speed of 8.9m s−1.

(7) The Maritime polluted (MP) aerosol model refers to a maritime environment
under anthropogenic influence, with highly variable amounts of soot (SOO)
and anthropogenic water-soluble (WAS) particles having mass density equal
to 0.3 and 7.6μgm−3, respectively, and both sea-salt components kept un-
changed compared to clean maritime conditions.

(8) The Maritime tropical (MT) aerosol model was assumed to have a very low
mass concentration of water-soluble (WAS) substances and was defined for a
lower wind speed (5m s−1) than those assumed in the previous two models
and, hence, a lower number concentration of sea-salt particles.

(9) The Arctic (AR) aerosol model represents the airborne particles found in
the Arctic region at latitudes higher than 70◦N, and describes atmospheric
turbidity conditions characterized by the presence of a relatively high amount
of soot (SOO) particles transported from the mid-latitude continental areas
to the Arctic. This model is therefore particularly suitable for representing
the aerosol characteristics during springtime, while it is less appropriate for
representing the Arctic aerosol radiative properties during the other seasons,
when single scattering albedo was found to range on average between about
0.93 and 0.95 (Tomasi et al., 2012).

(10) The Antarctic (AN) aerosol model represents the airborne particles found
over the Antarctic continent, and consists mostly of sulfate droplets, contain-
ing also lower concentrations of mineral and sea-salt particles (typical of the
coastal sites) and rather high number concentrations of nss sulfate aerosols
(typical of the inner region), these composition features being valid especially
for summer conditions, when average values of ω of around 0.96–0.98 were
found (Tomasi et al., 2012).

The particle size-distribution curves of N(r) and V (r) determined for the 10 OPAC
wet aerosol models are presented in Fig. 11.10, showing that all the curves of
N(r), except that of the AN model exhibit similar features over the radius range
r < 10−1 μm, while they differ appreciably one model from another over the up-
per radius range, where the DE (desert) model has the highest content of coarse
particles and the UR (urban) model the lowest one. The size-distribution curves
of V (r) more clearly show that marked differences exist between the fine particle
and coarse particle contents of the 10 aerosol models over the whole radius range,
evidencing their multimodal characteristics. Fig. 11.11 shows the spectral curves
of parameters n(λ), k(λ), βext(λ), and ω(λ) determined for the 10 OPAC models,
indicating that (i) the values of n(λ) range between 1.38 and 1.50 in the visible;
(ii) the values of k(λ) vary between 10−3 and about 0.5 in the visible; (iii) βext(λ)
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Fig. 11.10. As in Fig. 11.1, for the 10 OPAC aerosol models listed in Table 11.6, calculated
for RH = 50% and normalized to give a value of the overall particle number concentration
Ntot = 1000 cm−3.

decreases more or less rapidly as a function of wavelength λ, substantially depend-
ing on the variable percentage contents of fine and coarse particles; and (iv) ω(λ)
assumes values ranging between 0.74 and near unity in the visible.

Table 11.7 presents the values of the most significant radiative parameters of
the 10 OPAC aerosol models calculated for RH = 50%:

– the monochromatic values of volume extinction coefficient βext(0.55μm), vol-
ume scattering coefficient βsca(0.55μm), and volume absorption coefficient
βabs(0.55μm), as calculated for the total particle number concentration Ntot =
103 cm−3;
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Fig. 11.11. As in Fig. 11.2, for the 10 OPAC aerosol models listed in Table 11.6, calculated
for RH = 50% and normalized to give a value of the overall particle number concentration
Ntot = 1000 cm−3.

– the Ångström exponent defined over the 0.40–0.86μm wavelength range, found
to vary between 0.13 (MC model) and ∼ 1.43 (CP model);

– the monochromatic single scattering albedo ω(0.55μm), estimated to vary be-
tween 0.742 (UR model) and 0.997 (MT model);

– the mean single scattering albedo ω calculated over the 0.40–3.70μmwavelength
range and evaluated to vary between 0.686 (UR model) and 0.993 (MC and MT
models);

– the weighted average single scattering albedo ω∗, ranging between 0.741 (UR
model) and 0.998 (AN model);
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– the monochromatic asymmetry factor g(0.55μm), varying between 0.665 (CP
model) and 0.764 (AN model); and

– the particulate mass density (for RH = 50%), varying between 1.30 g cm−3 (MT
model) and 2.56 g cm−3 (UR model).

11.2.5 The Shettle and Fenn (1979) aerosol models

Four classical aerosol models (hereinafter referred to as SF) were proposed by Shet-
tle and Fenn (1979) to represent the extinction characteristics of rural, maritime,
tropospheric and urban particle polydispersions for different RH values (0%, 50%,
70%, 80%, 95%, 98% and 99%). The size-distribution curves of the four aerosol
models were represented by means of monomodal or bimodal log-normal size-
distributions to define the particle number density size-distribution function N(r).
Each mode has the analytical form defined in Eq. (11.1), for the values of mode
radius rc (μm) and geometric standard deviation σi, and the unimodal values of
particle number density Ni (cm−3) given in Table 11.8 for RH = 50%. These
log-normal curves give form to the Rural (bimodal), Urban (bimodal), Maritime
(unimodal) and Tropospheric (unimodal) size-distributions of Shettle and Fenn
(1979). Their main characteristics are as follows:

(1) The Rural (SF-R) aerosol model represents an aerosol polydispersion not di-
rectly influenced by urban and/or industrial sources, whose particles are assumed
to be composed of a mixture of 70% of water-soluble substances (ammonium and
calcium sulfates, with organic compounds) and 30% of dust-like aerosols. The num-
ber density and volume size-distribution curves of the SF-R model are presented
in Fig. 11.12, as grown for RH = 50%, providing evidence of their bimodal fea-
tures associated with the small rural and large rural particle modes. The spectral
curves of n(λ) and k(λ) were determined as a function of RH over the 0.25–3.75μm
wavelength range according to Volz (1972a, 1973) and are shown in Fig. 11.13 for
RH = 50%. The spectral curves of βext(λ) and ω(λ) obtained for this bimodal
size-distribution are also shown in Fig. 11.13 over the same wavelength range.

(2) The Urban (SF-U) aerosol model is given by a linear combination of two
size-distribution curves, where the first represents a monomodal polydispersion
of background rural aerosols consisting of water-soluble substances only, and the
second represents a secondary aerosol polydispersion originating from combustion
products and industrial sources. Therefore, such a model consists of a mixture
of rural aerosol (80%) and carbonaceous soot-like particles (20%). The two size-
distributions of small urban and large urban aerosol components were assumed to
have the same values of number density N(r) and geometric standard deviation σ
adopted to give form to the bimodal rural SF-R model. The number density and
volume size-distribution curves of the SF-U model are presented in Fig. 11.12 for
RH = 50%. The spectral values of the soot-like particulate matter refractive index
were calculated on the basis of the soot data provided by Twitty and Weinman
(1971), while their variations as a function of RH were determined using the growth
factors proposed by Hänel (1976) for his urban aerosol model (model 5). The spec-
tral curves of n(λ) and k(λ) evaluated for RH = 50% are shown in Fig. 11.13
over the 0.25–3.75μm range, together with those of parameters βext(λ) and ω(λ)
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Fig. 11.12. As in Fig. 11.1, for the four aerosol models SF-R (rural), SF-M (maritime),
SF-U (urban) and SF-T (tropospheric) defined by Shettle and Fenn (1977) for RH =
50%, The four models are all normalized to give a value of the overall particle number
concentration Ntot = 1000 cm−3.

obtained for this bimodal model (and for RH = 50%), which clearly evidence that
the patterns of βext(λ) are very similar to those of the SF-R model, while those of
ω(λ) are considerably lower, due to the greater relative content of soot substances.

(3) The Maritime (SF-M) aerosol model is represented with a monomodal size-
distribution curve of particles consisting of sea-salt particles formed through the
evaporation of sea-spray droplets that were subsequently grown as a result of water
aggregation. The composition of these particles was assumed to be given mainly
by (i) a component of oceanic origin, and (ii) a continental component with a
higher number concentration than the previous one, added to constitute a back-
ground particle polydispersion. The linear combination of these two polydispersions
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Fig. 11.13. As in Fig. 11.2, for the four aerosol models SF-R (rural), SF-M (maritime),
SF-U (urban) and SF-T (tropospheric) defined by Shettle and Fenn (1977) for RH = 50%.
The black circles of the SF-R model are in part hidden by the overlapping yellow diamonds
used to label the SF-T (tropospheric) model data.

of marine and continental particles constitute a fairly uniform maritime aerosol
model, which is representative of the marine aerosol usually sampled within the
atmospheric boundary layer of 2–3 km depth over the oceans. The number den-
sity and size-distribution shape-parameters of the SF-M aerosol model are given
in Table 11.8. The spectral features of the complex refractive index of the SF-M
particulate matter were primarily defined taking into account the Volz (1972b)
data, while its variations as a function of RH were evaluated using the evaluations
of the growth factor made by Hänel (1976) for a sea-spray aerosol polydispersion.
Fig. 11.13 shows the spectral curves of the optical parameters n(λ), k(λ), βext(λ)
and ω(λ) obtained over the 0.25–3.75μm wavelength range for such a unimodal
aerosol model defined for RH = 50%. The first parameter has values slightly higher
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than 1.40 in the visible, while the second has very low values close to 10−8, due to
the very weak absorption of solar radiation by these particles. The spectral curve
of βext(λ) exhibits values higher by more than two orders of magnitude than those
of the other three SF models, this marked difference being due to the considerably
higher relative concentration of coarse particles, as shown in Fig. 11.12. The spec-
tral curve of ω(λ) has values very close to unity throughout the whole wavelength
range, due to the very poor absorption properties of these particles.

(4) The Tropospheric (SF-T) aerosol model represents a particle polydispersion
suspended in the troposphere above the boundary layer. These background tropo-
spheric particles were therefore assumed to have the same composition as that of
the SF-R aerosol model, forming a dry particle polydispersion consisting of 70%
water-soluble and 30% dust-like substances. The size-distribution was assumed to
be unimodal. Thus, the SF-T model was obtained by removing the second mode
of large particles from the SF-R model and using the shape-parameters presented
in Table 11.8 to give form to the unique mode consisting mainly of fine particles.
In fact, because of the longer residence time of fine particles above the boundary
layer and the consequent differential loss of larger particles, only one log-normal
size-distribution consisting of accumulation particles was considered by Shettle and
Fenn (1979) in defining this unimodal aerosol model, as can be seen in Fig. 11.12.
The dependence of particle sizes on RH is described by the same analytical func-
tions adopted for the small particle component of the SF-R model. For this reason,
the spectral curves of n(λ) and k(λ) shown in Fig. 11.13 for the SF-T model are
similar to those determined for the small component of the SF-R model. The spec-
tral variations of parameters βext(λ) and ω(λ) are also shown in Fig. 11.13 for
RH = 50%, over the 0.25–3.75μm. Their comparison with the curves of the two
parameters determined for the bimodal SF-R model gives evidence of the differ-
ences arising from the absence in the SF-T model and the presence in the SF-R
model of a second mode of large rural aerosols.

The monochromatic values of volume extinction coefficient βext(0.55μm), vol-
ume scattering coefficient βsca(0.55μm) and volume absorption coefficient
βabs(0.55μm) are given in Table 11.9 for the four SF aerosol models, together
with those of (i) Ångström’s exponent α calculated over the 0.40–0.86μm wave-
length range, (ii) monochromatic single scattering albedo ω(550 nm), (iii) mean
single scattering albedo ω determined over the 0.40–3.70μm wavelength range,
(iv) weighted average single scattering albedo ω∗, and (v) monochromatic asym-
metry factor g(0.55μm). The results indicate that α(0.40–0.86μm) varies between
0.028 (SF-M) and 1.355 (SF-T), while ω(0.55μm) ranges between 0.644 (SF-U)
and 1.000 (SF-M), ω between 0.585 (SF-U) and 0.996 (SF-M), ω∗ between 0.637
(SF-U) and 0.999 (SF-M), and g(0.55μm) between 0.640 (SF-T) and 0.753 (SF-
M). Table 11.9 also provides the values of wet particulate mass density obtained
for decreasing RH = 50%, as determined: (i) for the SF-R and SF-T models, using
the particle growth estimates made by Hänel (1976) for his model 6 sampled at
Hohenpeissenberg (Germany) in summer 1970; (ii) for the SF-U model, using the
evaluations of Hänel (1976) for his model 5 derived from an urban aerosol sample
collected at Mainz (Germany) in January 1970; and (iii) for the SF-M model, using
the estimates of Hänel (1976) for his model 2 of sea-spray aerosol.
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Table 11.9. Values of the main radiative and physical parameters of the four SF aerosol
models of Shettle and Fenn (1979), calculated in the present study for RH = 50% and
total particle number concentration Ntot = 1000 cm−3

Radiative and Shettle and Fenn (1979) aerosol models for RH = 50%

physical parameters SF-R SF-U SF-M SF-T
(Rural) (Urban) (Maritime) (Tropospheric)

Volume extinction coefficient 1.011 10−2 9.268 10−3 1.262 100 9.171 10−3

βext(0.55μm)
Volume scattering coefficient 9.528 10−3 5.982 10−3 1.262 100 8.809 10−3

βsca(0.55μm)
Volume absorption coefficient 5.800 10−4 3.286 10−3 0.000 3.620 10−4

βabs(0.55μm)
Ångström exponent 1.193 1.050 0.028 1.355

α(0.40–0.86μm)
Single scattering albedo 0.943 0.644 1.000 0.960

ω(0.55μm)
Mean single scattering albedo 0.914 0.585 0.996 0.904

ω over the 0.40–3.70μm range
Weighted average single 0.933 0.637 0.999 0.953

scattering albedo ω∗

Asymmetry factor g(0.55μm) 0.652 0.668 0.753 0.640
Wet particulate mass density 1.778 2.677 1.878 1.408

ρw (g cm−3)

11.2.6 The seven additional aerosol models

Seven additional aerosol models were prepared in the present study to represent (i)
a pair of multimodal polydispersions defined by examining two Saharan dust sam-
ples collected by Tomasi et al. (1979) in Northern Italy; (ii) one pre- and two post-
Pinatubo volcanic particle polydispersions determined from samples performed at
different stratospheric altitudes by Pueschel et al. (1993); and (iii) two polydis-
persions of biomass burning smoke particles sampled by Carr (2005) at Jabiru
(Australia), the first in the free troposphere and the second within the atmospheric
boundary layer:

(1, 2) The two Saharan Dust SD-1 and SD-2 models are based on the size-
distribution curves defined by Tomasi et al. (1979) analysing a pair of particle sam-
ples collected at Sestola (Apennines, Northern Italy) during two transport episodes
of desert dust from North Africa. Both size-distribution curves were found to con-
sist of three modes, each represented in terms of the Deirmendjian (1969) modified
gamma function. It has the analytical form:

dN(r)/d r = CrD exp

[
−D
γ

(r/Rc)
γ

]
, (11.3)



546 Claudio Tomasi, Christian Lanconelli, Angelo Lupi, and Mauro Mazzola

for the following values of shape-parameters D, γ and mode radius Rc:

(a) In the SD-1 model: D = 2, γ = 0.815, and Rc = 0.051μm for the 1st mode;
D = 5, γ = 1.515, and Rc = 0.554μm for the 2nd mode; and D = 6, γ = 2.490,
and Rc = 1.535μm for the 3rd mode.

(b) In the SD-2 model: D = 4, γ = 1.533, and Rc = 0.120μm for the 1st mode;
D = 2, γ = 1.294, and Rc = 0.449μm for the 2nd mode; and D = 6, γ = 2.959,
and Rc = 2.018μm for the 3rd mode.

To represent the size-distribution models by means of the same analytical log-
normal function adopted for the other aerosol models considered in the present
study, the original number concentration data recorded by Tomasi et al. (1979)
were examined through a best-fit procedure, determining the six corresponding
log-normal curves having the analytical form of Eq. (11.1). The best-fit values of
the shape-parameters are given in Table 11.10 for the six modes giving form to the
SD-1 and SD-2 size-distribution curves, which are normalized to yield an overall
particle number concentration Ntot = 103 cm−3. The multimodal size-distributions
of N(r) and V (r) of the two SD models determined for dry-air conditions are
presented in Fig. 11.14, showing very large differences from one to the other in the
coarse and giant particle contents.

The spectral values of n(λ) were calculated at 23 selected wavelengths chosen
over the 0.25–3.70μm range using the evaluations proposed by (i) Hänel (1968,
1972) for his aerosol model sampled over the Atlantic in April 1969 and contain-
ing Saharan dust, (ii) Volz (1973) for Saharan dust samples collected over the
Caribbean region, and (iii) Vermote et al. (1997b) for the 6S DL component. Sim-
ilarly, the spectral values of k(λ) were determined at the same 23 wavelengths
according to the estimates of Hänel (1968, 1972), Volz (1973), Patterson (1977)
and Patterson et al. (1977) for Saharan dust particles. The mass density was as-
sumed to be equal to 2.60 g cm−3 in both the SD aerosol models, according to Hänel
(1968, 1972), this value being in good agreement with that of 2.50 g cm−3 found by
Volz (1973) for dry-air conditions.

(3) The background stratospheric PV-1 aerosol model was represented using a uni-
modal log-normal size-distribution of aerosol particles, as observed over the Antarc-
tic continent in 1987 during a long volcanic quiescence period and assumed by
Pueschel et al. (1989) to describe realistically the stratospheric turbidity condi-
tions preceding the Pinatubo eruption. The size-distribution of the PV-1 aerosol
model assumes the analytical form in Eq. (11.1) for the shape-parameters given in
Table 11.10. In defining the radiative properties of this aerosol model, it was taken
into account that Pueschel et al. (1989) highlighted the predominance of sulphuric
acid in the stratospheric particulate matter, finding that the chemical composition
of these particles was given by mass fractions of 72% sulphuric acid, 24% liquid
water, and 4% water-soluble (nitrate) substances. Therefore, the spectral values of
n(λ) and k(λ) were first calculated over the 0.36–3.70μm range for a 75% solution
of sulphuric acid, using (i) the values of n(λ) defined by Palmer and Williams (1975)
over the entire range; (ii) the values of k(λ) given by Palmer and Williams (1975)
over the 0.70–3.70μm range; and (iii) the values of k(λ) given by Hummel et al.
(1988) over the 0.36–0.70μm range. The values were then appropriately reduced to
a 72% solution of sulphuric acid and integrated with mass fractions equal to 24%
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Fig. 11.14. As in Fig. 11.1, for the seven additional aerosol models defined in the present
study for Sahara dust particles (SD-1 and SD-2), background stratospheric aerosol during
volcanic quiescence periods in Antarctica (VQ), 2-month age Pinatubo volcanic strato-
spheric particles (PV-1), 9-month aged Pinatubo volcanic stratospheric particles (PV-2),
biomass burning smoke particles in free troposphere (FT), and biomass burning smoke
particles in the boundary layer (BL). All the additional models are normalized to give a
value of the overall particle number concentration Ntot = 1000 cm−3.

of liquid water (using the Hale and Querry (1973) estimates) and 4% of nitrates,
as given by Vermote et al. (1997b) for the 6S WS component.

(4, 5) The volcanic stratospheric PV-2 and PV-3 aerosol models were determined by
adopting the log-normal multimodal size-distribution curves defined by Pueschel et
al. (1993) from in situ sampling measurements performed at stratospheric altitudes
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to represent the post-Pinatubo volcanic particle polydispersions forming 2 and 9
months after the Mt. Pinatubo eruption of June 15, 1991 at the 16.5 km and 12.5
km heights, respectively. The shape-parameters of the log-normal modes of the
PV-2 (bimodal) and PV-3 (trimodal) size-distributions, all having the analytical
forms in Eq. (11.1), are given in Table 11.10. The complex refractive index of
these stratospheric particles was defined according to Pueschel et al. (1993), who
assumed that particulate matter consisted of complementary mass fractions of 75%
sulphuric acid and 25% liquid water. Therefore, the spectral values of n(λ) and
k(λ) were determined at the selected wavelengths over the 0.36–3.70μm range for
both the PV-2 and PV-3 models, using the data of Palmer and Williams (1975)
defined for an aqueous solution of 75% sulphuric acid. Considering that the values of
k(λ) proposed by Palmer and Williams (1975) are lacking within the 0.36–0.70μm
wavelength range, use was made of the values given by Hummel at al. (1988) within
the 0.36 ≤ λ ≤ 0.70μm range.

(6, 7) Two biomass burning smoke FT and BL aerosol models were derived from
the data obtained by Carr (2005) for aerosol samples collected at Jabiru (Australia)
in September 2003 within the free troposphere (FT model) and the atmospheric
boundary layer (BL model), for nearly dry-air conditions. The first consists of
fine particles only, including both Aitken nuclei and accumulation particles, which
form a unimodal log-normal size-distribution having the form of Eq. (11.1) for the
values of shape-parameters No, rc and σ given in Table 11.10. An average fine
particle density of 1.48 g cm−3 was estimated by Carr (2005) for the FT model.
Correspondingly, the spectral values of n(λ) and k(λ) were determined by assuming
a chemical composition of particulate matter consisting of a mass fraction of water-
soluble substances equal to 92%, and complementary percentages equal to 5% of
mineral dust containing quartz and silicates, 1.9% of sea-salt and 1.1% of soot
substances, for which an average value of n(λ) close to 1.552 and an average value
of k(λ) slightly higher than 0.01 were found in the visible, which agree closely with
the average values of n = 1.558 and k = 1.06 × 10−2 measured directly by Carr
(2005) in the visible.

The BL model was assumed mainly to consist of coarse particles and to have
a trimodal size-distribution curve including three log-normal curves containing
Aitken nuclei, accumulation particles and coarse particles, respectively, with the
shape-parametersNo, rc and σ reported in Table 11.10. The average particle density
of fine and coarse particles was estimated by Carr (2005) to be equal to 1.48 g cm−3

and 1.49 g cm−3, respectively. The spectral values of n(λ) were determined by as-
suming a chemical composition of particulate matter consisting of a 46% mass
fraction of mineral dust containing quartz and silicates, 35% water-soluble sub-
stances, 15% sea salt, and 4% soot substances, finding an average value of n close
to 1.565 in the visible and, hence, only slightly higher than n = 1.546 measured
by Carr (2005). The spectral values of k(λ) were derived from the Carr (2005)
measurements, finding an average value of around 4.75× 10−3 in the visible.

The size-distribution curves of N(r) and V (r) presently defined for the seven
additional models are shown in Fig. 11.14. The comparison shows that large differ-
ences exist among the various number density and particle volume size-distributions
of the polydispersions, especially over the coarse particle radius range. With respect
to the other five models, considerably higher values of N(r) and V (r) are presented
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Fig. 11.15. As in Fig. 11.2, for the seven additional aerosol models defined in the present
study for Sahara dust particles (SD-1 and SD-2), background stratospheric aerosol during
volcanic quiescence periods in Antarctica (PV-1), 2-month aged Pinatubo volcanic strato-
spheric particles (PV-2), 9-month aged Pinatubo volcanic stratospheric particles (PV-3),
biomass burning smoke particles in free troposphere (FT), and biomass burning smoke
particles in the boundary layer (BL). All models are normalized to give a value of the
overall particle number concentration Ntot = 1000 cm−3.

by the SD-1 and SD-2 models over the radius range typical of coarse and giant par-
ticles with respect to the other five models. The PV-1, PV-2, PV-3 and BL models
all exhibit important contents of coarse particles but with radii smaller than 1μm,
while the FT model results to consist predominantly of fine particles. The spectral
curves of n(λ) and k(λ) and those of radiative parameters βext(λ) and ω(λ) are
presented in Fig. 11.15 over the 0.30–3.70μm wavelength range, showing that: (i)
n(λ) varies mainly between 1.40 and 1.60 at all visible and infrared wavelengths;
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(ii) k(λ) assumes values varying between about 10−8 (PV-2 and PV-3 models) and
around 10−2 (SD-1, SD-2 and FT models); (iii) βext(λ) presents values ranging
mainly between 10−5 km−1 (FT model) and more than 1 km−1 (SD-2 model) at
visible wavelengths, such a large variability being due to the different contents of
coarse and giant particles characterizing the various models; and (iv) single scat-
tering albedo ω(λ) determined at visible wavelengths for the FT and BL models
was evaluated to assume values varying between 0.6 and 0.8, while those of the
three PV models were found to be very close to unity and those of the two SD
models to vary between 0.8 and 0.9.

11.2.7 Comparison among the radiative properties of the 40 aerosol
models

A comparison among the 40 aerosol models of different origin described above is pre-
sented in Fig. 11.16, showing the values of weighted average single scattering albedo
ω∗ as a function of the corresponding Ångström’s exponent α(0.40–0.86μm) calcu-
lated over this narrow visible and near-infrared spectral range. Values of ω∗ very
close to unity characterize the maritime models, which exhibit values of α(0.40–
0.86μm) lower than 0.5, while values of ω∗ ranging between 0.88 and 0.94 pertain
to the desert dust models. The mixed maritime-continental aerosol models exhibit
gradually decreasing values of ω∗, from more than 0.96 to less than 0.88 as the rel-
ative content of continental particles increases, while α(0.40–0.86μm) correspond-
ingly increases from 0.5 to more than 1.0, until assuming spectral characteristics
similar to those of the aerosols present in the Arctic and Antarctic regions. The

Fig. 11.16. Scatter plots of the weighted average single scattering albedo ω∗ versus the
Ångström’s exponent α(0.40–0.86μm) defined in Tables 11.3, 11.4, 11.7, 11.9 and 11.10,
as obtained for (i) the five 6S dry-air aerosol models (blue circles), (ii) the 14 M-type
wet-air (RH = 50%) aerosol models (black circles), (iii) the 10 OPAC wet (RH = 50%)
aerosol models (red circles), (iv) the 4 SF (Shettle and Fenn, 1979) wet-air (RH = 50%)
aerosol models (green diamonds), and (v) the 7 present additional aerosol models (fuchsia
circles). The FT additional model is not shown in the graph, because it yields a value of
α(0.40–0.86μm) = 2.48.
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continental models obtained for various atmospheric turbidity conditions present
gradually lower values of ω∗, from 0.85 to less than 0.60, as the mass fraction of
polluted aerosol increases, while the corresponding values of α(0.40–0.86μm) con-
tinue to increase gradually until exceeding the value of 1.50 in cases pertaining
to the most marked anthropogenic pollution conditions characterizing the urban
areas. The additional FT (Free Troposphere) model derived from samples taken
in the part of the atmosphere located above the boundary layer does not appear
in the graph since its value of α(0.40–0.86μm) is equal to 2.48, and hence, much
higher than the values defined over the whole atmospheric column for the other 39
models. Fig. 11.16 clearly shows that all such aerosol models cover a large variety of
airborne aerosol extinction features observed at various latitudes, as generated by
different sources, thus allowing the calculation of a large number of DARF terms
induced by aerosol polydispersions in real cases.

11.3 Underlying surface reflectance characteristics

Using the two-stream approximation procedure (Coakley and Chylek, 1975) for sim-
ulating the radiative transfer processes in a plane atmosphere containing a layer
of aerosol particles with well-defined absorptance and reflectance characteristics,
Chylek and Coakley (1974) demonstrated that the aerosol particle layer can induce
cooling or warming effects in the atmosphere, depending on the surface albedo con-
ditions for each ratio between absorptance and reflectance of such aerosol particles.
This implies that the DARF effects induced at the ToA level by a certain parti-
cle load tends to change sign from negative (cooling) to positive (warming) as the
aerosol particles under investigation are transported from oceanic areas, typically
presenting relatively low surface albedo conditions, to polar regions covered by
snow fields and glaciers, e.g. the interior of Greenland and the Antarctic Plateau,
which generally present very high surface albedo properties. The Chylek and Coak-
ley (1974) calculations also evidenced that for each surface albedo value, the DARF
effect at the ToA level tends to change sign from cooling to warming, as the absorp-
tance properties of particulate matter increase with respect to reflectance, until ex-
ceeding a critical value of the absorptance/reflectance ratio. In order to investigate
the dependence features of the DARF effects on the surface reflectance properties,
as they occur at the ToA and BoA levels as well as in the atmosphere, a set of
16 surface reflectance models were determined in the present analysis, using four
classes of bidirectional reflectance distribution functions (BRDF) to improve the
representations of the geometrical and spectral characteristics of surface reflectance
defined in the 6S code (Vermote et al., 1997a). A bidirectional reflectance distribu-
tion function is determined in terms of ratio fe = dL↑ (η, φ)/dF ↓ (θo, φo) between
the radiance dL↑ reflected upward by the surface in the direction individuated by
the pair of polar zenith and azimuth angles η and φ, and the incident irradiance
dF ↓ coming from the direction (θo, φo). It is measured in sr−1, and assumes a con-
stant value equal to 1/π for an ideal lambertian reflector. An exhaustive analysis
of the BRDF function and its derived quantities is available in Nicodemus et al.
(1977). The first surface reflectance models were developed in the 80s (Jupp, 2000),
when it became of crucial importance to represent the anisotropic features of the



11 Dependence of direct aerosol radiative forcing 553

reflected solar radiation field for analyzing more correctly the Earth observation
data recorded from space-borne platforms (Kriebel, 1978; Hapke 1986). Therefore,
the BRDF models were implemented during those years by retrieving the surface
reflectance and atmospheric transmittance characteristics from satellite-based data.
In addition, in order to determine with improved accuracy the spectral and geo-
metrical dependence features of the BRDF parameters, more realistic approaches
were implemented through numerous tests and specific applications (Vermote at
al, 1997b; Wanner et al., 1997), which allowed the determination of bidirectional
reflectance models suitable for use to perform DARF calculations for different sur-
face reflectance characteristics. For practical purposes, it is useful to insert the con-
cept of bidirectional reflectance factor R(λ, θo, φo, η, φ), which is commonly used to
represent the ratio between the real BRDF surface reflectance and the BRDF re-
flectance of an ideal (100%) lambertian reflector. This factor is assumed to depend
not only on wavelength λ but also on the four angular coordinates of the Sun-
surface–external viewer system. Varying as a function of such angular parameters,
factor R provides the ratio between (i) the upwelling irradiance F ↑ (η, φ) reflected
by the surface in a certain upwelling direction (defined by nadir angle η and az-
imuth angle φ) and (ii) the incident flux of a collimated incoming radiation beam
with direction defined by solar zenith angle θo and azimuth angle φo. The plane
perpendicular to the surface, containing both the Sun and the ground-level refer-
ence spot, defines the principal plane of reflection. Function R(λ, θo, φo, η, φ) used
to represent the surface relectance is commonly assumed to exhibit a cylindrical
symmetry with respect to the principal plane of reflection. Thus, its mathematical
representation is in general made considering only the difference between the two
angles φo and φ, which will be hereinafter named as angular difference φ′.

To obtain precise calculations of DARF at the ToA-level for each geometrical
configuration of the surface–atmosphere system defined by the angular parameters
θo, η and φ′, it was decided to use a set of BRDF models based on rigorous physi-
cal concepts, allowing us to perform the calculations of the DARF terms planned
in the present study. This choice allowed us to achieve realistic simulations of the
deep surface–atmosphere coupling effects induced by the complex radiative transfer
processes occurring inside the surface–air interface layer. Various parameterization
criteria were adopted for this purpose, based on both hyperspectral (H type) and
non-hyperspectral (N-H type) models, where the reflected radiance fields gener-
ated by surfaces having various characteristics are represented at each wavelength
of the 0.30–4.00μm spectral range as a function of the above-mentioned angular
coordinates, to totally cover the 2π upward solid angle. To represent the surface
reflectance properties characterized by various spectral and angular dependence
features, the BRDF models were determined in terms of the following functions
typical of each surface:

(1) The spectral directional hemispherical reflectance (black-sky albedo) Rbs(λ, θo),
obtained through integration of the BRDF function R(λ, θo, φo = 0◦, η, φ) over the
2π upward solid angle, to represent the spectral curve of surface reflectance as a
function of solar zenith angle θo (Nicodemus et al., 1977; Román et al., 2010). The
function is considered to be valid in the ideal case in which the diffuse component
of the global (direct + diffuse) solar radiation field is assumed to be null. It is worth
remarking that this spectral function provides the spectral curve of the so-called
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black-sky albedo for θo = 0◦, expressed in terms of the following analytical form,

Rbs(λ, θo = 0◦) =
1

π

∫ 2π

0

∫ π/2

0

R(λ, θo, φo, η, φ) cos η sin η dη dφ . (11.4a)

(2) The spectral bi-hemispherical reflectance (white-sky albedo) Rws(λ), obtained
by integrating the function Rbs(λ, θo) over the 2π upward solid angle, and assum-
ing that the incoming solar radiation field consists only of the diffuse component
D↓ (λ) characterized by isotropic features. Therefore, function Rws(λ) in practice
represents the spectral curve of surface albedo relative to the diffuse component of
incoming solar radiation:

Rws(λ) =
1

π

∫ 2π

0

∫ π/2

0

Rbs(λ, θo) cos θo sin θo dθo dφo . (11.4b)

Bearing in mind that the white-sky albedo is given in Eq. (11.4b) by the dou-
ble integral of the black-sky albedo Rbs(λ, θo) over the entire intervals of the two
downwelling polar angles, and that Rbs(λ, θo) is obtained in Eq. (11.4a) through
the double hemispherical integration of the birectional reflectance factor R over
the entire ranges of the two upwelling polar angles, it is evident that Rws(λ) does
not depend on the geometrical configuration of the Sun-surface–external viewer
system. In cases of isotropic surface reflectance conditions, white sky albedo can
be assumed to be that of an equivalent lambertian reflector. Its features can be
better defined employing satellite data derived from the observations of the Sun-
synchronous multispectral sensors mounted on the Terra polar platform, such as
MISR (Diner et al., 1998; Bothwell et al., 2002) and MODIS (Christopher and
Zhang, 2002).

(3) The spectral curve of surface albedo RL(λ, θo), which is obtained as the weighted
average of the spectral surface reflectance contributions, associated with the black-
sky and white-sky albedo conditions of the solar radiation field, respectively (Lewis
and Barnsley, 1994; Lucht et al., 2000). This approximate function can be calculated
in terms of the analytical form of the Lewis (1995) function defined by the following
equation,

RL(λ, ϑo) = Rbs(θo) [1−D↓ (λ)] +Rws(θo)D↓ (λ) , (11.4c)

where D ↓ (λ) is the spectral curve of the diffuse fraction of downwelling (global)
solar radiation I ↓ (λ) reaching the surface, which can be calculated as a function of
solar zenith angle θo using the 6S code (Vermote et al., 1997b) for any atmospheric
content of aerosol particles.

In order to obtain realistic evaluations of the DARF effects occurring inside the
surface–atmosphere system, the BRDF models need to (A) be completely defined
over the whole spectral range of the incoming solar radiation from about 0.30 to
4.0μm, and (B) represent exhaustively the variety of surface albedo conditions
most commonly observed in the various regions of the Earth, presenting average
values of surface albedo ranging from less than 0.1 over the oceans to more than
0.8 over the ice-covered polar regions.

– With regard to the first point (A), it is worth noting that the BRDF surface
reflectance models commonly used in the literature need to be defined with
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a good spectral accuracy over the 0.40–2.50μm wavelength range. This range
includes 88.8% of incoming extra-terrestrial solar radiation, while only limited
percentages pertain to the wavelength intervals below 0.40μm (8.0%) and be-
yond 2.50μm (3.2%) (Iqbal, 1983). On this matter, it can be noted that: (i)
surface reflectance usually causes an overall reflected irradiance flux within the
range λ > 2.50μm, which is so small as to be totally negligible for practical pur-
poses; (ii) aerosol effects are in general very weak at wavelengths λ > 2.50μm;
and (iii) calculation errors made in evaluating the differences between the ra-
diation fluxes passing through turbid and pristine atmospheres are often of
opposite sign and tend to annul each other. Therefore, it was decided to limit
the present surface reflectance calculations to the wavelength range from 0.40
to 2.50μm.

– With regard to the second point (B), different self-adapted BRDF models were
considered in the present study (Morel, 1988; Rahman et al., 1993; Kuusk, 1994)
over the entire spectral range chosen above, to realistically represent the surface
reflectance characteristics of different surfaces, such as those typical of various
sea-water areas, vegetation-covered and agricultural land regions, bare soil and
arid areas, and snow- and ice-covered polar regions.

11.3.1 The non-lambertian surface reflectance models

A set of BRDF non-lambertian surface reflectance models were defined to constitute
a finite lattice of spectral surface albedo values, increasing gradually from less than
0.05 to more than 0.9. For the present analysis, four classes of surface reflectance
models were determined pertaining to the ocean surfaces (OS class), vegetated
surfaces (VS class), bare soils and arid terrain (BS class), and polar surfaces (PS
class). The spectral and angular characteristics of these reflectance models are
described for each class as follows:

(1) OS class (Ocean Surfaces), which consists of four BRDF surface reflectance
models representing the typical oceanic surface reflectance conditions described by
the OCEAN hyperspectral model (Morel, 1988) and developed using the OCEAN
subroutine given in the 6S code (Vermote et al., 1997b). The four models also take
into account the characterictics defined by the whitecaps model of Koepke (1984)
(improved modeling features of spectral reflectance of whitecaps were most recently
proposed by Kokhanovsky (2004)), including the sun glint reflectance effects (Cox
and Munk, 1954) and effects due to Fresnel’s reflection (Born and Wolf, 1975).
The OCEAN subroutine was used to calculate the BRDF function curves for all
the triplets of angular coordinates θo, η and φ’, as a function of the wind speed
Vw, and for other constant pre-fixed values of the following supplemental param-
eters: (i) the wind direction Dw, assumed to lie on the vertical plane φo = 0◦

for all the OS models; (ii) the sea-water pigment concentration Cp, equal to
0.1mg/m3, this assumption being made considering that variations in Cp of more
than four orders of magnitude can cause only relatively small changes in the surface
reflectance leading to relative variations in the reflectance that do not exceed 10%;
and (iii) sea-water salt concentration Cs equal to 34.3 ppt, this value being assumed
taking into account that an increase in Cs from 0 to 48 ppt is estimated to induce
surface reflectance changes much smaller than 1%. For the above characteristics,
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the following four OS models were obtained: (i) OS1 for Vw = 2ms−1; (ii) OS2 for
Vw = 5ms−1; (iii) OS3 for Vw = 10m s−1; and (iv) OS4 for Vw = 20m s−1.

The corresponding spectral curves of surface albedo RL(λ, θo = 60◦) are shown
in Fig. 11.17, while the monochromatic values of this parameter are reported in
Table 11.11 for 21 selected wavelengths over the spectral range from 0.40 to 2.50μm,
as obtained for the four OS models, for their use in application studies of the surface
albedo characteristics. Table 11.12 provides the values of reflectance parameters
Rbs(θo = 0◦) and Rws, and those of broadband albedo A(θo) calculated for 9
increasing values of θo taken in steps of 10◦ over the 0◦–80◦ range for each of the four
OS models. The values of A(θo) were calculated through integration of RL(λ, θo)
over the 0.40–2.50μm wavelength range. They are reported in Table 11.12, as
determined for the M-8 continental aerosol model and aerosol optical thickness
τa = 0.10 in the visible. Due to the fact that A(θo) is calculated in terms of the
following equation,

A(θo) =

∫ 2.5μm

0.4μm
RL(λ, θo)I ↓ (λ, θo) dλ∫ 2.5μm

0.4μm
I ↓ (λ, θo) dλ

, (11.4d)

Fig. 11.17. Spectral curves of surface albedoRL(λ) (Lewis and Barnsley, 1994), as defined
in Eq. (11.4c) over the 0.40–2.50μm wavelength range for the 16 BRDF surface reflectance
models considered in the present study. All the reflectance models were determined for the
radiance field features defined for (i) the optical characteristics of the US62 atmosphere
model (Dubin et al., 1966), (ii) the scattering and absortion properties of the M-8 aerosol
model (as described in Figs. 11.6 and 11.7), consisting of pure continental particles (see
Table 11.4), (iii) aerosol optical depth τa(0.55μm) = 0.10, and (iv) solar zenith angle
θo = 60◦. Note that the range of RL is from 0 to 1 for the VS, BS and PS models, and
from 0 to 0.3 for the OS models.
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by integrating the spectral quantities RL(λ, θo)× I ↓ (λ, θo) and I ↓ (λ, θo) over the
0.40–2.50μm wavelength range, some minor variations in the broadband albedo
A(θo) can arise from the changes affecting the diffuse fraction D ↓ of the incom-
ing solar irradiance (see Eq. (11.4c)) which are associated with variations in the
columnar contents of the atmospheric constituents.

It is worth noting in Table 11.12 that the values of A(θo) found for the four
OS models (a) slowly increase passing from OS1 to OS4 for low values of θo, and
(b) decrease appreciably for θo ≥ 30◦, presenting even more rapid variations as
one passes from the OS1 model to the OS4 one, as θo assumes gradually higher
values. This behavior is presumably due to an increasing specular reflectance effect
occurring for calm wind conditions (Vw = 2ms−1).

(2) VS class (Vegetated Surfaces), which consists of four BRDF reflectance mod-
els relative to vegetated surfaces, as derived from the AK subroutine reported by
the 6S code (Vermote et al., 1997b), used to evaluate the reflectance properties of
vegetated surfaces in terms of the hyperspectral Kuusk (1994) model simulations.
This subroutine utilizes the PROSPECT code (Jacquemoud and Baret, 1990) for
simulating the chlorophyll absorption features, and the Nilson and Kuusk (1989)
algorithm for representing the reflectance anisotropy characteristics of the one-layer
canopy coverage. The angular BRDF values were calculated as a function of (i) vari-
ous optical parameters characterizing the physical, optical and biological properties
of vegetation (i.e. chlorophyll content CAB , leaf water equivalent thickness Cw, ef-
fective number Ne of elementary layers inside a leaf, ratio Cn of refractive indices
of the leaf surface wax and internal material, and weight S1 of the first Price (1990)
function for the soil reflectance), and (ii) structural parameters (i.e. Leaf Area Index
UL, elliptical eccentricity Ee of the leaf angle distribution, modal inclination Qm

of the leaf distribution, and relative leaf size SL with respect to the canopy depth).
Varying the above parameters, the following four VS models were obtained: (i) VS1,
derived from the Kuusk (1994) corn model for CAB = 100μg/cm2, Cw = 0.04 cm,
Ne = 1.09, Cn = 0.9, S1 = 0.213, UL = 0.1, Ee = 0.972, Qm = 10.7◦, and SL = 0.1;
(ii) VS2, derived from the Kuusk (1994) corn model for CAB = 100μg/cm2,
Cw = 0.026 cm, Ne = 1.09, Cn = 0.9, S1 = 0.213, UL = 1.5, Ee = 0.972,
Qm = 10.7◦, and SL = 0.1; (iii) VS3, derived from the Kuusk (1994) soybean
model for CAB = 82.2μg/cm2, Cw = 0.005 cm, Ne = 1.24, Cn = 0.9, S1 = 0.225,
UL = 2.5, Ee = 0.965, Qm = 45.8◦, and SL = 0.1; and (iv) VS4, derived from the
Kuusk (1994) soybean model for CAB = 82.2μg/cm2, Cw = 0.005 cm, Ne = 1.24,
Cn = 0.9, S1 = 0.225, UL = 5.0, Ee = 0.965, Qm = 45.8◦, and SL = 0.1. The
four spectral curves of albedo RL(λ, θo = 60◦) obtained for the VS models are
shown in Fig. 11.17 over the 0.40–2.50μm wavelength range, while the values of
broadband albedo A(θo) are given in Table 11.12 for each model, as obtained for
values of θo increasing in steps of 10◦ from 0◦ to 80◦. The typical spectral signature
of a vegetation-covered surface, given by the typical sharp increase of reflectance
at around 0.70μm wavelength, and commonly called ‘red edge’, is well reproduced
by the Kuusk (1994) model. Model VS1 appears to be suitable for representing a
canopy clearly affected by drought conditions, for which the soil spectral signature
emerges from the background, while the VS2 to VS4 models can be more confi-
dently adopted to represent vegetation-coverages with increasing Leaf Area Index
UL, and the gradually more enhanced features of the ‘red edge’. The monochro-
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matic values of surface albedo RL(λ, θo = 60◦) obtained for the four VS models
are reported in Table 11.11 at the 21 selected wavelengths over the 0.40–2.50μm
range, for their use by the readers. As shown in Table 11.12, the white-sky albedo
Rws increases from 0.15 to nearly 0.30 passing from the VS1 model to the VS4 one.

(3) BS class (Bare Soil), which consists of four bare soil BRDF surface reflectance
models derived from the non-hyperspectral model proposed by Rahman et al.
(1993) and used as subroutine to implement the 6S code (Vermote et al., 1997a).
These models are based on four spectral curves of surface reflectance defined for
surfaces covered by (i) dry sand (BS1), as directly taken from the 6S code; (ii)
illite (BS2), as represented by a mixing of clay minerals having crystal structures
very similar to that of muscovite; (iii) alunite (BS3), as derived by assuming the
spectral properties of a mineral consisting of a hydrous potassium aluminum sul-
fate and presenting massive forms mixed with rhombohedral crystals, and (iv)
montmorillonite (BS4), as represented by a soft clay mineral consisting mainly of
a hydrous aluminum silicate in which aluminum was exchanged abundantly with
magnesium and other bases. The last three curves were taken from the USGS Li-
brary (http://speclab.cr.usgs.gov), giving the wavelength-dependence features of
surface reflectance Ro(λ, θo = 0◦) shown in Fig. 11.17 over the 0.40–2.50μm spec-
tral range. The angular-dependence characteristics of the above BRDF surface
reflectance functions were defined by (i) assuming that they are similar to those
determined by Rahman et al. (1993), and (ii) using the pair of parameters K and
ξ, of which the first serves to define the anisotropy degree of surface reflectance,
and the second to evaluate its asymmetry degree, which allows us to regulate the
relative intensities of forward and backward scattering. In the four BS models: (a)
parameter K was assumed to be equal to 0.648 within the wavelength intervals
λ < 0.630μm and to 0.668 for λ > 0.915μm, respectively, and (b) asymmetry
parameter ξ was kept as equal to −0.290 and −0.268 within the two above-defined
wavelength intervals, respectively. These assumptions were made in agreement with
the results obtained by Rahman et al. (1993) from the data sets recorded by Kimes
et al. (1985) for a bare soil surface (ploughed field): at intermediate wavelengths
from 0.630 to 0.915μm, the values of K and ξ were calculated through a linear
interpolation procedure in wavelength between the values established above. The
spectral patterns of the four BS models are shown in Fig. 11.17, while (a) the
monochromatic values of RL(λ, θo = 60◦) determined for the four BS models are
given in Table 11.11 at the 21 above-chosen wavelengths for application studies,
and (b) the corresponding values of broadband albedo A(θo) relative to 9 values of
θo increasing in steps of 10◦ from 0◦ to 80◦ are given in Table 11.12, as obtained
using the above values of parameters K and ξ. The white-sky albedo is approxi-
mately equal to 0.24 for the BS1 model (and, hence, very similar to that of the BS3
model) and assumes values equal to 0.45 and 0.48 for the BS2 and BS4 models,
respectively, as shown in Table 11.12.

(4) PS class (Polar Surfaces), which consists of four surface reflectance models
suitable to represent snow and glacier surfaces, as derived from the hyperspectral
model describing the surface reflectances relative to (i) the direct component of the
spectral directional hemispherical reflectance (black-sky albedo) Rbs(λ, θo) defined
in Eq. (4a), and (ii) the diffuse component of spectral bi-hemispherical reflectance

http://speclab.cr.usgs.gov
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(white-sky albedo) Rws(λ, θo) of incoming solar radiation defined in Eq. (4b). The
main parameters of the PS models are the size-distributions of the snow and black
carbon grains, represented by means of log-normal size-distribution functions, and
the concentration of dust and/or black carbon in the snow surface layer (Wis-
combe and Warren, 1980; Warren and Wiscombe, 1980). In modeling such surface
reflectance features, it was taken into account that the effects produced on re-
flectance by a volume concentration of black carbon particles equal to 1 ppb are
comparable with those produced by a volume concentration of dust particles equal
to 100 ppm. Both types of this particulate matter have been observed to cause a
relevant reduction of albedo over the λ < 1μm range of solar radiation spectrum,
where soot particles produce a rather flat spectral curve of reflectance, and dust
particles cause an appreciable increase in albedo at the 0.6–0.7μm wavelengths.
Snow grains with sizes varying between 50 and 500μm were found to produce only
weak variations in the visible part of the solar spectrum. These features agree in
general with the recent results found by Kokhanovsky and Breon (2012), who in-
vestigated the anisotropic characteristics of the snow BRDF reflectance, defining
a semi-empirical spectral model based on detailed representations of the forward
scattering maximum dependence on view zenith angle and azimuthal reflectance
variations.

Thus, various simulations of surface albedo were made by assuming that dif-
ferent additional concentrations of soot particles are present (having log-normal
size-distribution curves centred at radius r = 0.1μm) together with the main com-
ponent of the surface layer constituted by snow grains having a mean radius of
100mm. A Mie algorithm was defined to calculate the spectral values of single scat-
tering albedo ω(λ) and asymmetry factor g(λ) of such a snow grain size-distribution
at 217 selected wavelengths over the 0.40–2.50μm range (Warren and Wiscombe,
1980). The two parts of the complex refractive index of snow grains were deter-
mined according to the Warren (1984) estimates, while those of black carbon were
calculated at the same 217 wavelengths by applying an interpolation procedure in
wavelength for the 11 monochromatic values provided by the 6S (Vermote et al.,
1997b) parameterization for the aerosol soot component. Following this procedure,
values of the real part ranging between 1.75 and 1.90 were obtained, together with
values of the imaginary part varying between 0.43 and 0.57 over the entire solar
spectrum, according to the values of n(λ) and k(λ) given in Table 11.2 for the SO
(soot) component of Vermote et al. (1997b). The direct and diffuse solar radiation
components were then calculated following the semi-empirical parameterization
method of Wiscombe and Warren (1980), based on the use of the above-calculated
values of optical parameters ω(λ) and g(λ) of the bi-modal size-distribution consist-
ing of soot particles and snow grains. Four models have been obtained following the
above procedure, by assuming gradually increasing values of the soot volume con-
centration Cs equal to 0.002, 0.04, 0.40 and 2.0 ppm, which cause a gradual decrease
in albedo. They are: (1) the PS1 model for almost pure snow (Cs = 0.002 ppm), (2)
the PS2 model for slightly contaminated snow (Cs = 0.04 ppm), (3) the PS3 model
for simulating the experimental observations performed at South Pole (Grenfell
and Maycut, 1977) for a snow coverage with Cs = 0.4 ppm, and (4) the PS4 model
for heavy carbon contaminated snow (Cs = 2ppm). The spectral curves of surface
albedo RL(λ, θo = 60◦) are shown in Fig. 11.17, while the monochromatic values of
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Fig. 11.18. Spectral curves of the upwelling irradiance IBoA ↑ (λ) at the BoA-level, given
by the product of spectral surface albedo RL(λ, θo = 60◦) by the incoming global (direct +
diffuse) irradiance I ↓ at the BoA-level, as obtained for the 16 surface reflectance models
shown in Fig. 11.17 for θo = 60◦. All the reflectance models were determined for the
radiance field features defined for (i) the optical characteristics of the US62 atmosphere
model (Dubin et al., 1966), (ii) the scattering and absortion properties of the M-8 aerosol
model (as described in Figs. 11.6 and 11.7), consisting of pure continental particles (see
Table 11.4), and (iii) aerosol optical depth τa(0.55μm) = 0.10. Note the variable range of
IBoA ↑ (λ) is adopted for the four sets of surface reflectance models.

this parameter obtained for the four PS models are given in Table 11.11 at the 21
above-selected wavelengths over the 0.40–2.50μm spectral range. The correspond-
ing values of the broadband albedo A(θo) determined at 9 values of θo from 0◦ to
80◦ for the four PS models are reported in Table 11.12. The spectral signature of
snow surface is characterized by an appreciable decrease in reflectance as λ increases
throughout the middle infrared range beyond 1μm wavelength, with well-defined
features of the water absorption bands labeled with the Greek capital letters Ψ
(over the 1.25–1.54μm spectral range) and Ω (over the 1.69–2.08μm range), which
are well reproduced by the model. Broadband white-sky albedo varies between 0.30
for extremely polluted snow cover (PS4 model) to nearly 0.85 for clean snow cover
(PS1 model). In order to calculate the DARF effects, it is necessary to calculate
the differences between the irradiance relative to pristine atmospheric transparency
conditions and the irradiance relative to a turbid atmosphere. Therefore, it is useful
to have a clear picture of the spectral dependence features of the upwelling irradi-
ance IBoA ↑ (λ) reflected at the surface, as it results from the combined effects of
the incoming solar irradiance reaching the surface (characterized by the spectral
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Fig. 11.19. Spectral curves of the normalized cumulative upwelling irradiance at the
BoA-level, calculated as the ratio

∫ λ

0.4
IBoA ↑ (λ) dλ

/ ∫ 2.5

0.4
IBoA ↑ (λ) dλ over the 0.40–

2.50μm wavelength range, as determined for eight of the 16 BRDF non-lambertian surface
reflectance models defined in the present study. All the curves are normalized to give a
unit value of upwelling irradiance over the entire spectral range.

extinction features of the atmosphere) with those related to the spectral signature
characteristics of each surface reflectance model. The spectral curves of the up-
welling irradiance IBoA ↑ (λ) are shown in Fig. 11.18, each obtained in terms of the
product of the global (including both direct and diffuse components) downwelling
irradiance by spectral surface albedo RL(λ, θo). To integrate such an information,
Fig. 11.19 shows the cumulative upwelling irradiance at the BoA-level, normalized
to the whole broadband irradiance obtained through the spectral integration of the
product RL×I↓. It is interesting to note that about 50% of such a cumulative curve
of upwelling irradiance is already available at nearly 0.60μm wavelength in the po-
lar surface cases, while this half percentage is reached at around 0.80μm for the
vegetated surfaces (VS models), which present the lowest reflectivity characteristics
over the visible spectral range. It is also evident in Fig. 11.19 that about 90% of
the cumulative curve of upwelling irradiance is reached at wavelengths λ > 1.0μm
for the PS reflectance models, and only at wavelengths ranging between 1.4 and
1.6μm for the VS and BS reflectance models.

Fig. 11.20 shows the spectral curves of white-sky albedo Rws(λ), which will be
further used for determining the reflectance conditions of the equivalent lambertian
reflectance models belonging to the OS, VS, BS and PS classes. The monochromatic
values of Rws(λ) obtained at 21 wavelengths chosen over the spectral range from
0.40 to 2.50μm are presented in Table 11.13 for the 16 BRDF surface reflectance
models of the OS, VS, BS and PS classes defined above, since these data could be
suitable for application studies on the white-sky albedo of various surfaces. Param-
eter Rws(λ) assumes values very close to those of Rbs(λ) calculated for solar zenith
angle θo = 60◦, as is typical of natural surfaces. In other works, this quantity was
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Fig. 11.20. Spectral curves of white-sky albedo Rws(λ) defined in Eq. (11.4b) over the
0.40–2.50μm spectral range for the four OS, VS, BS and PS classes of surface reflectance
models. Note that the range of Rws(λ) is from 0 to 1 for the VS, BS and PS models, and
from 0 to 0.1 for the OS models.

used as a comparison term for evaluating the effects of the lambertian assumption
on the DARF calculations (Ricchiazzi et al., 2005). However, the white-sky albedo
is here preferably used, considering that (i) it is independent of the geometric con-
figuration of the Sun-surface–external viewer system, and (ii) it can be conveniently
determined on the basis of satellite-based products, as mentioned above.

The effects of the assumption of non-lambertian surface reflectance conditions
are summarized in Fig. 11.21 for the four OS3, VS3, BS3 and PS3 surface models
chosen as examples. The graph shows the spectral curves of surface albedo RL(λ, θo)
for solar zenith angles increasing from 0◦ to 80◦ in step of 10◦, compared with the
corresponding white-sky albedo. For each model the curve of Rws was found to lie
between the two black-sky albedo curves Rbs(λ, θo = 50◦) and Rbs(λ, θo = 60◦).
Thus, in order to weight the single scattering albedo effects on solar radiation, the
scattering and absorption effects occurring at visible and near-infrared wavelengths
were taken into account, bearing in mind that aerosols are mostly present within
the lower part of the troposphere. On this basis, we decided to use the weighted
average single scattering albedo ω∗ as key parameter for evaluating the relevance
of the aerosol radiative effects in inducing the DARF processes. For this purpose,
the spectral curve I∗(λ) was used as weight function, as defined above in sub-
section 11.2.3 adopting the spectral distribution curve of direct solar irradiance
passing through the U.S. Standard Atmosphere (1976) (Anderson et al., 1986) and
reaching the sea-level for θo = 60◦ (i.e. for relative optical air mass m = 2 (Tomasi
et al., 1998)).
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Fig. 11.21. Spectral curves of surface albedo RL(λ, θo) defined in Eq. (11.4c) over the
0.40–2.50μm spectral range, as obtained for different values of solar zenith angle θo (in
steps of 10◦ from 0◦ to 80◦) and for the OS3, VS3, BS3 and PS3 surface reflectance models
in a surface–atmosphere system, where the atmosphere is assumed to have (i) the optical
characteristics of the US62 atmosphere model (Dubin et al., 1966), (ii) the scattering
and absortion properties of the M-8 aerosol model (illustrated in Figs. 11.6 and 11.7),
consisting of pure continental particles (see Table 11.4), and (iii) aerosol optical depth
τa(0.55μm) = 0.10. Note that the spectral curve of RL(λ, θ0) for the OS3 reflectance
model at θ0 = 80◦ assumes values higher than 0.9 for such a very high value of solar
zenith angle and, hence, is not reported in the OS3 graph.

11.3.2 The isotropic (lambertian) surface reflectance models

It was assumed in subsection 11.3.1 that the instantaneous DARF terms can
be properly evaluated by taking into account the spectral features of the non-
lambertian (anisotropic) surface reflectance models. However, the isotropic surface
reflectance models are often used to calculate such instantaneous DARF terms,
generally obtaining less realistic evaluations in the cases presenting high values of
τa(λ) in the visible and solar zenith angles θo > 70◦ (Chyleck and Wong, 1995;
Russell et al., 1997). In order to achieve a measure of the relative differences be-
tween the evaluations made using isotropic surface reflectance models in place of
BRDF non-lambertian models, calculations of the DARF terms were performed by
assuming that the reflector is lambertian and, hence, using a set of 16 isotropic sur-
face reflectance models having average values of surface reflectance (over the visible
and near-infrared wavelength range) equal to those obtained in subsection 11.3.1
for the 16 BRDF non-lambertian reflectance models. For this purpose, the spectral
curve of white-sky albedo Rws defined in Eq. (11.4b) was determined through a
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bi-hemispherical integration of each of the 16 BRDF non-lambertian surface re-
flectance models described in subsection 11.3.1.

Applying this procedure to the lambertian surface reflectance models, the white-
sky albedo Rws was found to assume average values that are in practice independent
of θo. The evaluations of Rws obtained for these 16 equivalent lambertian surface
reflectance models were used to calculate the aerosol-induced change flux terms for
isotropic characteristics of surface reflectance. To achieve this goal, each isotropic
(lambertian) spectral reflectance model was defined by using the geometrically
integrated reflectance output originated from the BRDF scheme applied to the non-
lambertian models in subsection 11.3.1. Following the calculation scheme shown in
Fig. 11.22, the variations in the radiation flux density were then calculated for (i)
the pristine geometrical Sun-surface–atmosphere (without aerosol) configuration,
and (ii) the configuration of the Sun-surface–atmosphere system (with aerosol).
Adopting this procedure, the influence of surface isotropic reflectance (assumed
in the lambertian models) on the calculations of the DARF terms was evidenced,
providing the results presented in Fig. 11.23, as obtained for different pairs of
surface models and various wavelengths, and for θo = 30◦, the 6S-C aerosol model,
and τa(0.55μm) = 0.10. The examined cases were shown in three separate columns
pertaining to (i) the VS1 model and λ = 0.55μm, (ii) the VS1 model and λ =
0.75μm, and (iii) the OS2 model and λ = 0.75μm. Each column is subdivided into
four panels relative to as many radiation quantities, to highlight their variations

Fig. 11.22. Calculation scheme adopted to evaluate the effects of anisotropic (BRDF,
non-lambertian) and isotropic (ISO, lambertian) surface reflectance models on the in-
stantaneous direct aerosol-induced radiative forcing terms ΔFToA, ΔFBoA, and ΔFAtm,
as defined in Eqs. (11.5), (11.9) and (11.13), respectively.
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Fig. 11.23. Dependence curves of parameters R, L ↑, dI ↑, and δF ↑ on the view nadir
angle η ranging from −80◦ to +80◦ in the principal plane of reflection (φ′ = 0◦) for three
cases with: (11.1) θo = 30◦, λ = 0.55μm, VS2 surface reflectance model, and 6S-C (conti-
nental aerosol) extinction model (left column); (11.2) θo = 30◦, λ = 0.75μm, VS2 surface
reflectance model, and 6S-C (continental aerosol) extinction model (middle column); and
(11.3) θo = 30◦, λ = 0.75μm, OS2 surface reflectance model, and 6S-C (continental
aerosol) extinction model (right column). For each surface reflectance model, solid curves
refer to the BRDF non-lambertian version, dashed curves represent Rbs(θo = 30◦) for the
isotropic reflectance version, and dotted curves represent Rws for the isotropic reflectance
version. Each column is subdivided into four panels relative to the following parameters:
(a) surface reflectance R for non-lambertian models, and corresponding isotropic param-
eters Rbs(θo = 30◦) and Rws; (b) upwelling radiance L ↑ at the ToA-level; (c) upwelling
differential irradiance dI ↑ at the ToA-level; and (d) aerosol-induced differential change
δF ↑ in the net outgoing flux F ↑ (λ, θo, η, φ′ = 0◦) at the ToA-level. Red curves in panel
(c) refer to the pristine atmosphere without aerosols, and black curves to the turbid at-
mosphere with aerosol optical thickness τa(0.55μm) = 0.10. Yellow curves in panel (d)
refer to the perpendicular reflection plane with respect to the Sun-target plane.

as a function of the view nadir angle η over its range from −80◦ to +80◦ (whose
positive values refer to the backward reflection, i.e. the direction containing the
source of illumination). The four radiation quantities are:

(a) the surface bidirectional reflectance factor R, calculated for the BDRF non-
lambertian version of the surface reflectance models, and compared with the
black-sky albedo Rbs(θo = 30◦) and white-sky albedo Rws, both determined
for the isotropic version of the surface reflectance models;
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(b) the upwelling radiance L↑, determined at the ToA-level;
(c) the upwelling differential irradiance dI ↑ at the ToA-level; and
(d) the aerosol-induced differential change δF ↑ in the net outgoing flux F ↑

(λ, θo, η, φ
′ = 0◦) at the ToA-level.

The reflectance panels labeled with letter (a) in the three columns of Fig. 11.23
clearly show the existence of hot-spot effects on vegetated surfaces, reaching a
local maximum of bidirectional reflectance R at η = θo, and give evidence of
sun glint features in the sea surface cases presenting a reflectance maximum in
the forward direction for η = −θo. Panels (b) show that the anisotropy features
of the surface reflectance are not completely masked by the upwelling radiance
passing through the atmosphere. Such an atmospheric effect depends obviously
on the magnitude of the total optical thickness τ of the atmosphere, being the
anisotropy less evident for higher values of τ . To describe these aerosol-induced
effects exhaustively, panels (c) show the angular dependence patterns of upwelling
irradiance dI ↑= L ↑ cos η sin η dη dφ, defined for both turbid (with aerosol) and
pristine (without aerosol) atmospheric transparency conditions. It was found that
the strongest contributions to the upwelling irradiance are given in the directions
with η = 45◦, due to the fact that dI ↑ is proportional to the product cos η × sin
η. The three panels (d) of Fig. 11.23 present the angular features of the aerosol-
induced change flux differential terms as a function of η, showing that a strong
difference can arise from the use of the reflectance scheme shown in Fig. 11.22 to
carry out the present calculations. It is also worth noting that the present lam-
bertian approach can cause different marked effects with respect to those obtained
using the full BRDF scheme, which in general vary rather considerably as a func-
tion of angle η. Consequently, the integration made to obtain the spectral irradiance
term generally masks the BRDF effects characterizing the DARF calculations.

In cases of very low reflectance conditions, such as those occurring in the visible
for green vegetation (as in the case of the VS2 model shown in Fig. 11.23), the
absolute differences arising from the two non-lambertian and isotropic calculation
schemes are very low (and, hence, negligible in practice) with respect to the errors
made in defining the aerosol and surface parameters (as can be seen, for instance,
in panel (d) of Fig. 11.23). In fact, as the wavelength increases from the visible
to about 0.75μm, the vegetation reflectance increases as well, and the absolute
differences become more pronounced. Actually, panel (c) exhibits different values
in the upwelling irradiance dI ↑, which are close to 15Wm−2 μm−1, while the
value of 50Wm−2 μm−1 was obtained for θo = −40◦ (forward direction). These
changes are even more evident in the case of ocean surface reflectance, as clearly
shown by the results given in Fig. 11.23 for the OS2 model, where neglecting the
sun glint features leads to obtain underestimated values of dI ↑ equal to nearly
−25Wm−2 μm−1 with respect to the absolute value of 40Wm−2 μm−1 found for
the anisotropy assumption. In this case, the error made in estimating the differential
forcing change δF ↑ leads to a positive value of +5Wm−2 μm−1 in place of a slightly
negative value (see panel (d) of Fig. 11.23).

For lambertian surface reflectance features, more evident changes were found
with respect to the non-lambertian configurations in all cases where pristine atmo-
sphere conditions (red curves) were considered, while less pronounced variations
were obtained in cases presenting turbid atmosphere conditions (black curves).
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Fig. 11.24. As in Fig. 11.23, for the following three cases: (11.1) θo = 30◦, λ = 0.55μm,
BS1 surface reflectance model, and 6S-C (continental aerosol) extinction model defined for
aerosol optical thickness τa(0.55μm) = 0.10 (left column); (11.2) θo = 30◦, λ = 0.55μm,
BS1 surface reflectance model, and 6S-C (continental aerosol) extinction model defined
for aerosol optical thickness τa(0.55μm) = 0.05 (middle column); and (11.3) θo = 60◦,
λ = 0.55μm, BS1 surface reflectance model, and 6S-C (continental aerosol) extinction
model defined for aerosol optical thickness τa(0.55μm) = 0.10 (right column). For each
surface reflectance model, solid curves refer to the BRDF non-lambertian version, dashed
curves represent Rbs(θo = 30◦) for the isotropic reflectance version, and dotted curves
represent Rws for the isotropic reflectance version. Each column is subdivided into four
panels relative to the following parameters: (a) surface reflectance R for non-lambertian
models, and corresponding isotropic parametersRbs evaluated at θo = 30◦ (left and middle
columns) or θo = 60◦ (right column) and Rws; (b) upwelling radiance L ↑ at the ToA-
level; (c) upwelling differential irradiance dI ↑ at the ToA-level; and (d) aerosol-induced
differential change δF ↑ in the net outgoing flux F ↑ (λ, θo, η, φ

′ = 0◦) at the ToA-level.
Red curves in panel (c) refer to the pristine atmosphere without aerosols, and black curves
to the turbid atmosphere with aerosol optical thickness τa(0.55μm) = 0.10. Yellow curves
in panel (d) refer to the perpendicular reflection plane with respect to the Sun-target
plane.

The changes are associated with atmospheric turbidity conditions, which in gen-
eral mask the anisotropic features of the surface reflectance, because the product
Rws(θo) × D ↓ (λ) in the second term of Eq. (11.4c) turns out to be enhanced
by the increase in the diffuse fraction D ↓ (λ) of downwelling irradiance at the
BoA-level originating from the increase in aerosol optical thickness τa. These as-
pects are clearly shown in Fig. 11.24, where the calculations of the radiation flux
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terms are reported for the BS1 surface reflectance model and the 6S-C continen-
tal aerosol model, considering the following configurations of the geometric and
atmospheric conditions: (i) θo = 30◦ and τa(0.55μm) = 0.10; (ii) θo = 30◦ and
τa(0.55μm) = 0.50; and (iii) θo = 60◦ and τa(0.55μm) = 0.10. The increase in
the diffuse fraction D↓ (λ) is thus produced by the increase in τa (second column)
or the increase in θo (third column). In both such cases, the absolute values of
the differences between the evaluations of dL and, hence, of dI ↑, both performed
for isotropic (ISO) surface reflectance models, were found to be considerably lower
than those obtained for BRDF non-lambertian (anisotropic) reflectance models.

11.4 Instantaneous direct aerosol-induced radiative forcing
(DARF)

The net flux of short-wave radiation at the ToA-level (or at another level close
to the tropopause) is given by the difference between the incoming flux F ↓ and
the outgoing flux F ↑, both measured in Wm−2. In all cases where this quantity
varies as a result of scattering and/or absorption of radiation by an atmospheric
constituent, the energy available for ‘governing’ the Earth’s climate is subject to
change, and the net flux variation is referred to as the radiative forcing of climate. It
implies the concept that climate is consequently subject to a cooling (or warming)
trend, depending on the negative (or positive) sign of the net flux change. In fact,
the conventional definition of aerosol-induced radiative forcing establishes that it is
due to a perturbation in the content and optical properties of columnar particulate
matter and is evaluated as the net radiative flux change induced at the tropopause
(or at the ToA) level, keeping the concentrations of all the other atmospheric
constituents constant (WMO, 1986). In other words, radiative forcing is an imposed
change in the net (downwelling minus upwelling) radiation flux at the tropopause
altitude (or at ToA-level) (IPCC, 1996; Hansen et al., 1997). Therefore, in the case
of atmospheric aerosol, the ToA-level DARF term gives a measure of the energy
input provided by such an atmospheric constituent to the climate system. This
energy deficit or surplus at the ToA-level depends not only on the magnitude of
the radiation flux change at ToA-level but also on the vertical profiles of the aerosol
radiative parameters (Hansen et al., 1997).

11.4.1 Definitions

Because of the predominance of the short-wave effects produced by aerosol poly-
dispersions over those occurring throughout the long-wave radiation spectrum, as
indicated by the Mie (1908) theory, DARF is commonly evaluated considering only
the short-wave (solar) radiation flux change, and neglecting the radiative effects
produced by aerosols on the long-wave radiation. These short-wave evaluations
are suitable for providing quantitative estimates of the overall change induced by
columnar aerosols in the net radiative budget of the atmosphere, with the required
precision and accuracy. They are generally evaluated instantaneously for pre-fixed
hours of the day, and then calculated as diurnal averages over the 24-hour period
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(Bush and Valero, 2003). Instantaneous DARF term ΔFToA can be simply deter-
mined at ToA-level as the difference between (i) the net radiative flux for the turbid
atmosphere containing a certain columnar content of aerosol particles, and (ii) the
same quantity in a pristine atmosphere without aerosols. Thus, the instantaneous
forcing ΔFToA induced at a certain time by aerosol particles can be represented in
terms of the following formula:

ΔFToA = Fnet − F ∗
net , (11.5)

where (i) the ToA-level net flux Fnet is given by the difference between the short-
wave downwelling flux F ↓ and the short-wave upwelling flux F ↑, both determined
at the ToA-level for an atmosphere including all its constituents, i.e.:

Fnet = F ↓ −F ↑ , (11.6)

where the downwelling flux F ↓ is obviously independent of the aerosol extinction
processes taking place in the atmosphere, and (ii) the net flux F ∗

net at ToA-level
is given by the difference between the corresponding short-wave downwelling flux
F ↓∗ and short-wave upwelling flux F ↑∗, both calculated in the pristine atmosphere
without aerosols, i.e.:

F ∗
net = F ↓∗ −F ↑∗ , (11.7)

where the downwelling flux F ↓∗ is not altered by atmospheric aerosols.
Therefore, flux F ↓∗ in Eq. (11.7) is equal to flux F ↓ given in Eq. (11.6).

Consequently, the instantaneous term ΔFToA calculated from Eqs. (11.5), (11.6)
and (11.7) is directly given by the difference,

ΔFToA = F ↑∗ −F ↑ , (11.8)

which shows that this DARF term can be correctly evaluated by simply subtracting
the upward solar radiation flux emerging from the real atmosphere with aerosols
from the upwelling solar radiation flux emerging from the pristine atmosphere with-
out aerosols (Hänel et al., 1999). According to the WMO (1986) conventional def-
inition of radiative forcing in the atmosphere, negative values of ΔFToA indicate
that aerosols cause an increase in the upwelling flux of solar radiation and, hence,
an increase in the albedo of the surface–atmosphere system, producing direct cool-
ing effects on the climate system. Conversely, positive values of ΔFToA indicate
that lower upwelling solar radiation fluxes are induced by aerosols, leading to a
decrease in the overall albedo and, consequently, causing significant atmospheric
warming effects (Loeb and Manalo-Smith, 2005; Christopher et al., 2006; Zhao et
al., 2008).

The aerosol radiative forcing ΔFBoA at the surface (i.e. BoA-level) gives a mea-
sure of the perturbation in the net flux reaching the surface, which is induced
by airborne aerosols. Therefore, ΔFBoA can be defined as the difference between
the net flux at surface-level in the atmosphere with aerosols and the net flux at
surface-level in the same atmosphere assumed without aerosols (Satheesh and Ra-
manathan, 2000; Bush and Valero, 2002, 2003). It can be expressed at a given time
as the difference:

ΔFBoA = Φnet − Φ∗
net , (11.9)



11 Dependence of direct aerosol radiative forcing 573

where, the net flux Φnet at the surface is given by the difference between the
downwelling flux Φ↓ and the upwelling flux Φ↑, i.e.

Φnet = Φ↓ −Φ↑ . (11.10)

Assuming that A is the average surface albedo over the short-wave spectral range,
the upwelling flux Φ↑ at the surface can be expressed as the product,

Φ↑= A× Φ↓ . (11.11)

Therefore, combining Eqs. (11.10) and (11.11), the net flux Φnet at the surface can
be written in the following form:

Φnet = (1−A)Φ↓ . (11.12)

To evaluate the downwelling flux of solar radiation reaching the Earth’s surface af-
ter its passage through the pristine atmosphere without aerosols and that passing
through the turbid atmosphere (and, hence, to calculate the net flux Φnet), vari-
ous radiative transfer codes can be used, such as the MODTRAN 4.0 atmospheric
model of Kneizys et al. (1996)) or the 6S (Second Simulation of the Satellite Sig-
nal in the Solar Spectrum) code of Vermote et al. (1997a,b), applied for instance
to the U.S. Standard Atmosphere models defined by Anderson et al. (1986) or to
sets of vertical profiles of temperature, pressure, and water vapor partial pressure
obtained from local meteorological radiosounding measurements. In such calcula-
tions, however, it is important to take into account that the field measurements of
aerosol composition, optical parameters and particle size-distribution are affected
by not negligible errors, and their use in clear-sky radiative transfer calculations
can lead to significant errors in estimating the radiative forcing effects, as pointed
out by Valero and Bush (1999).

The occurrences of radiative forcing effects at the ToA- and BoA-levels imply
that an aerosol thermodynamic forcing ΔFAtm is produced by aerosols within the
atmosphere. It can be evaluated as an instantaneous effect equal to the difference
between ΔFToA, as defined in Eq. (11.8), and ΔFBoA, as defined in Eq. (11.9),
according to Ramanathan et al. (2001b):

ΔFAtm = ΔFToA −ΔFBoA . (11.13)

Radiative forcing ΔFAtm constitutes a change in the atmospheric energy budget
that is not explicitly caused by aerosol-induced radiative effects. Unlike the DARF
terms determined at the ToA- and BoA-levels, this DARF term does not modify
the net energy budget of the surface–atmosphere system, but rather redistributes
it internally and then affects temperature gradients and atmospheric circulation.
In fact, the main contribution to ΔFAtm is given by the change in the amount
of latent heat released by aerosol-induced changes in clouds and precipitations.
Therefore, it can be expressed as a variation in the latent heat flux passing through
the atmosphere, which is measured in Wm−2, as done for the other DARF terms
ΔFToA and ΔFBoA.

As pointed out above, large uncertainties still exist regarding the role of colum-
nar aerosol loading in causing climate change effects within global circulation mod-
els (Hansen et al., 1997, 1998). In particular, large gaps remain in the knowledge
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of (i) the dependence of the aerosol radiative effects on the microphysical and
composition characteristics of the particle polydispersions suspended in the verti-
cal atmospheric column, (ii) the vertical distribution curves of both number and
mass concentration and those of the columnar aerosol radiative parameters, of-
ten characterized by multi-layered features, and (iii) the spectral and directional
characteristics of surface reflectance. Concerning this point, it is of crucial impor-
tance to take into account that surface reflectance plays a fundamental role in the
DARF calculations, since its effects are combined with those induced by airborne
aerosols through interactions varying with surface reflectance and single scattering
albedo of aerosols, as clearly shown by Chylek and Coakley (1974). In addition,
the lambertian reflection models commonly used to calculate the energy budget of
the surface–atmosphere system do not realistically describe the reflectance char-
acteristics of land and ocean surfaces. Thus, their use can lead to biases in the
model calculations of aerosol radiative forcing, especially for high values of solar
zenith angle θo (Ricchiazzi et al., 2005). For this reason, it seems more realistic and
appropriate to use the so-called Bidirectional Reflectance Distribution Function
(BRDF) models for representing the characteristics of surface reflectance, which
are in general non-lambertian in real cases. Using the BRDF models, it is also im-
portant to represent the spectral albedo curves of the various surfaces as the sum
of two terms, relative to the so-called black-sky and white-sky albedo concepts of
Lewis (1995), as defined in Eqs. (11.4a) and (11.4b), respectively. These schematic
representations allow us to consider the two distinct albedo contributions of the
surface albedo separately, as appropriately evaluated using the spectral percentages
of the direct and diffuse components as weight functions in Eq. (11.4c). It must
also be taken into account that such two contributions are differently subject to
vary as a function of the numerous radiative parameters characterizing the colum-
nar aerosol polydispersions (such as the shape-parameters of the particle number
size-distribution and the complex refractive index of columnar particulate matter).

11.4.2 Theory

The upwelling and downwelling solar radiation fluxes F ↑ and F ↓ at ToA-level
(used to determine the net flux in Eq. (11.6)) are given by the integrals of the
monochromatic fluxes over the entire short-wave spectrum. As pointed out above,
flux F ↓ at ToA-level is independent of the atmospheric composition parameters,
while flux F ↑ is given by the upwelling radiation passing once through the at-
mosphere, and subsequently reflected by the surface to pass again through the
atmosphere until reaching outer space. Therefore, flux F ↑ closely depends on
both the surface reflectance characteristics and scattering and absorption prop-
erties of the atmosphere, which in turn strongly depend on the airborne aerosol
particles. This implies that the instantaneous forcing ΔFToA at ToA-level defined
in Eq. (11.8) can be realistically evaluated at a given time only in cases where
the radiative parameters of atmospheric columnar aerosol and the geometrical and
spectral characteristics of surface reflectance are known with good accuracy.

The incoming flux F ↓ of solar radiation at ToA-level presents a spectral
distribution very similar to that of a black-body having a temperature close to
about 6000 ◦K, with a maximum centred at about 0.480μm wavelength. Its in-
tegral is commonly referred to as the ‘solar constant’, which has been estimated
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to be equal to 1367Wm−2 in the ‘80s (Iqbal, 1983), and found to decrease from
1365.4± 1.3Wm−2 in the 1990’s to 1360.8± 0.5Wm−2 in 2008 (Kopp and Lean,
2011). About 8% of solar radiation belongs to the 0.25–0.40μm wavelength range,
about 81% to the 0.4–1.6μm range, and only 10% to the 1.6–3.75μm range, while
the remaining 1% pertains to wavelengths λ > 3.75μm.

Similarly, the upwelling and downwelling solar radiation fluxes Φ ↑ and Φ ↓ at
the BoA-level, used to determine the net flux at the surface in Eq. (11.10), can be
calculated by integrating the spectral distribution curves of these radiation terms
over the whole spectral range. Flux Φ ↓ mainly depends on the scattering and
absorption properties of the atmosphere, including those of the columnar aerosol,
and, to a considerably lesser extent, on the surface reflectance effects and the sub-
sequent multiple scattering effects occurring in the lower part of the atmosphere.
Thus, flux Φ ↑ strongly depends on the surface reflectance characteristics. During
its passage through the cloudless atmosphere, solar radiation is attenuated by an
intense absorption due to various atmospheric gases (mainly water vapor, and less
strongly ozone, carbon dioxide, nitrogen dioxide, and other minor gases), scattering
by air molecules (Rayleigh scattering), and scattering and absorption by aerosols.
Therefore, the incoming flux Φ ↓ of solar radiation reaching the Earth’s surface
consists of a direct component and a diffuse component. The former can be cal-
culated as the product of extraterrestrial solar irradiance I0(λ) by atmospheric
transmissivity T (λ, θo), which varies rapidly as a function of wavelength λ over
the spectral intervals where numerous and strong absorption bands of water vapor
and other weaker bands of the above-mentioned atmospheric gases are active. As a
result of these absorption processes, combined with Rayleigh molecular scattering
and aerosol extinction, the direct solar irradiance flux at the BoA-level tends to
vary quite slowly in time throughout the day, as a function of the so-called relative
optical air mass m. This dimensionless quantity is given by the length of the at-
mospheric path described by the solar radiation parallel beam passing through the
atmosphere, and is calculated as the integral of the atmospheric medium density
along the sun-path, which is approximately equal to the inverse of the cosine of
solar zenith angle θo (Kasten and Young, 1989; Tomasi et al., 1998). The diffuse
component of solar radiation reaching the Earth’s surface for cloudless-sky condi-
tions arises from Rayleigh and aerosol scattering processes. Therefore, it increases
as (i) the solar elevation angle equal to 90◦ − θo decreases, and (ii) relative optical
air mass m increases. As shown in Eq. (11.11), the upwelling flux Φ ↑ of solar ra-
diation at the surface depends strongly on the surface reflectance characteristics.
Thus, the angular distribution and spectral characteristics of the direct and diffuse
components of flux Φ↑ do not depend only on those of the two components of in-
coming flux Φ↓, but are also considerably influenced by the spectral characteristics
of surface reflectance. After the surface reflection, both direct and diffuse compo-
nents of Φ↑ again cross the atmosphere to reach outer space. They are even more
extinguished during the second passage, because of the same absorption and scat-
tering processes that have attenuated the incoming flux F ↓ during its first passage
through the atmosphere. Consequently, the upwelling flux F ↑ of solar radiation
measured at ToA-level consists of both direct and diffuse components, which are
both strongly attenuated not only by the gaseous absorption (mainly within the
spectral intervals occupied by the strong absorption bands of water vapor) but



576 Claudio Tomasi, Christian Lanconelli, Angelo Lupi, and Mauro Mazzola

also by the Rayleigh-scattering and aerosol extinction processes, both character-
ized by continuous features over the entire spectrum, presenting intensity features
gradually decreasing with wavelength.

As previously mentioned, the simulation of the absorption and scattering pro-
cesses affecting both the downwelling flux Φ ↓ at the surface and the upwelling
flux F ↑ at ToA-level can be realistically made using the 6S code (Vermote et al.,
1997a,b). On this matter, Russell et al. (1997) attempted to define a simplified
formula for estimating the instantaneous change in the upwelling flux F ↑ at ToA-
level due to an absorbing aerosol layer. They took into account the dependence of
aerosol layer transmission and reflection on the aerosol radiative properties, and of
surface albedo on solar zenith angle θo, obtaining the following equation:

ΔRe F (μo) =
τa {ω [βa(μo)(1−Rs(μo))− 2μoBaRs(μo) (1−A)]}

μo {1 + [βa(μo)τa/μo]}
− τa {(1− ω)Rs(μo)(1 + 2μo)}

μo {1 + [βa(μo)τ/μo]} , (11.14)

for representing the variation in the ratio Re F (μo) = F ↑ /F ↓ as a function of
μo = cos θo, aerosol optical thickness τa, single scattering albedo ω of columnar
aerosol, aerosol hemispherical upward scattering fraction βa(μo) (in practice the
fraction of incoming solar radiation scattered by the columnar aerosol and directed
into the upward hemisphere), and surface reflectance Rs(μo). Eq. (11.14) was ob-
tained after the introduction of some simplifications, using parameter Ba to indi-
cate the average aerosol hemispheric upward scattering fraction, and parameter A
adopted in Eq. (11.11) to indicate the average surface albedo over the entire wave-
length range of solar radiation. Eq. (11.14) states that the instantaneous DARF
term at ToA-level induces cooling effects in all cases where the first term (minuend)
prevails over the second term (subtrahend) giving a positive value of ΔRe F (μo),
while heating effects are produced in the opposite cases where ΔRe F (μo) < 0.

Although obtained employing averaging simplifications, the formula in
Eq. (11.14) appears to be quite complex, even neglecting the multi-layered features
of the vertical profile of aerosol number and mass concentrations. Eq. (11.14) pro-
vides evidence of the difficulties encountered in parameterizing the instantaneous
DARF terms ΔFToA in Eq. (11.8), ΔFBoA in Eq. (11.9) and ΔFAtm in Eq. (11.13)
for the variety of aerosol polydispersions generally found in the atmosphere, be-
cause the atmospheric content of airborne aerosol particles is often characterized by
very different values of parameters ω and βa from one layer to another or from one
case to another, and for different surface reflectance characteristics over sea and
land regions. Therefore, it appears suitable to investigate the dependence features
of the DARF terms on the aerosol radiative parameters by considering a certain
number of aerosol models presenting different radiative properties together with a
set of various surface reflectance models.

Ramanathan et al. (2001a) found that significant variations in ω due to changes
in the chemical composition and, hence, in the aerosol radiative parameters of air-
borne aerosol particles can induce important changes in the radiation fluxes within
and below the aerosol layers. They can induce thermodynamic forcing effects that
do not substantially modify the net energy budget of the surface–atmosphere sys-
tem, but rather cause an internal redistribution of the energy surplus, thus altering
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the amount of latent heat released by aerosol-induced changes in clouds and pre-
cipitations. Because of these exchanges, mainly related to aerosol indirect effects,
the atmospheric stability conditions may be considerably altered, influencing heat-
ing rates, surface temperatures, and cloud formation and persistence, all of which
contribute to cause appreciable changes in the local cooling and warming processes
occurring in the atmosphere.

The aerosol radiative parameters tend to vary considerably in cases where the
chemical composition of particulate matter changes as a result of variations in
the transport mechanisms of aerosol particles from different sources. Therefore, it
is important to bear in mind that the atmospheric aerosol content maintains in
general stable radiative properties only over short periods of a few days, and is
then influenced and altered rapidly by the dynamic patterns of the atmosphere
over the observation site and by the so-called indirect effects.

In the present study, the calculations of instantaneous upwelling fluxes F ↑∗ and
F ↑ at ToA-level and fluxes Φ↓, Φ↑, Φ↓∗ and Φ↑∗ at BoA-level were made using
the 6S code (Vermote et al., 1997a, 1997b) to obtain reliable simulations of such
radiative transfer episodes, in which:

(i) Rayleigh scattering was taken into account using a single scattering approxi-
mation for air molecules, which guarantees a relative accuracy of the transmis-
sion function better than 0.70% in all cases where the differences between the
exact computations of spherical albedo and the 6S code expression are around
0.003 for total atmospheric optical thickness τ equal to 0.35 in the visible,
corresponding to the most unfavorable conditions (Vermote et al., 1997a);

(ii) aerosol scattering properties were defined using the Sobolev (1975) approxi-
mation for the reflectance, the approach of Zdunkowski et al. (1980) for rep-
resenting the transmission funtion, and a semi-empirical formula for defining
the spherical albedo. For these approximations, aerosol scattering calculations
were made by Vermote et al. (1997a) using the 6S code, obtaining for these
calculations a relative accuracy better than ± 1% (in reflectance units), es-
pecially at large view and Sun angles or for high values of aerosol optical
thickness τa(λ);

(iii) integrations of downward and upward radiation fluxes were made over the 2π
solid angle, in each case determining the radiance at more than 14 scattering
angles over the scattering angle range from −90◦ to +90◦, and then calculating
the overall flux through integration over the whole angular field;

(iv) the calculations of radiative transfer through the atmosphere were performed
by defining the optical properties of the atmosphere within several layers of
variable geometrical depth along the vertical path, and subdividing the atmo-
sphere into at least 13 layers, in which the scattering properties of the columnar
aerosol loading and those of the Rayleigh-scattering system were determined
from the surface up to the ToA-level;

(v) scattering–absorption coupling was taken into account, especially the contri-
bution arising from the coupling between water vapor absorption and aerosol
scattering;

(vi) the spectral resolution used to define the aerosol radiative parameters and the
radiative properties of the atmosphere (Rayleigh scattering, gaseous absorp-
tion, atmospheric transmittance, etc.) was generally equal to 2.5 nm over the
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entire solar radiation wavelength range from 0.25 to 4.00μm, directly given by
the 6S database or calculated through spectral interpolation procedures; and

(vii) the surface reflectance effects were taken into account in the calculations of
upwelling radiance fluxes at the BoA- and ToA-levels by using appropriate
surface reflectance models to represent non-lambertian and lambertian (i. e.
isotropic) angular configurations in terms of Bidirectional Reflectance Distri-
bution Function (BRDF) models.

The present calculations of the instantaneous DARF effects were made for (a)
the 40 aerosol models described in Section 11.2, and (b) the two sub-sets of surface
reflectance models defined in Section 11.3. Each sub-set consisted of 16 models,
the first representing the BRDF non-lambertian surface reflectance features, and
the second defining the less realistic lambertian surface reflectance characteristics.
The two sub-sets of reflectance models are described in detail in Section 11.3,
each sub-set consisting of four OS, VS, BS and PS surface reflectance models.
It is worth noting that the 16 lambertian reflectance models were defined for the
same surface characteristics of the corresponding BRDF non-lambertian models, by
appropriately adjusting the surface reflectance characteristics to provide the same
average surface albedo values over the whole solar spectrum that were obtained for
the BRDF models.

11.4.3 Dependence of instantaneous DARF on aerosol properties

The absorptance and reflectance characteristics of a columnar atmospheric load
of aerosol particles are calculated as a function of the shape-parameters of the
size-distribution curve and radiative parameters of particulate matter. The higher
the columnar mass content of aerosol particles is, the more marked the scattering
and absorption effects produced by them along the atmospheric path of incoming
solar radiation. This implies that the DARF effects occurring at the ToA level
are expected to increase as the atmospheric content of aerosol mass becomes more
pronounced and aerosol optical thickness assumes in general higher values. On
the other hand, taking into account the two-stream approximation evaluations of
Chylek and Coakley (1975), it is evident that the DARF effects at the ToA level are
strongly influenced by the single scattering albedo characteristics of atmospheric
aerosol particles in relation to the local surface albedo conditions. These aspects
are analysed in the two following subsections.

11.4.3.1 Aerosol optical thickness influence

Numerous works are available in the literature (Chyleck and Coakley, 1974; Charl-
son et al., 1990; Chyleck and Wong, 1995; Russell et al., 1997; Remer and Kaufman,
2006), showing that the DARF effects at the ToA-level vary almost linearly (and
without modifying the sign) as the aerosol optical thickness τa at a chosen visible
wavelength increases, in all cases where this parameter is no higher than 0.10 at
visible wavelengths. Conversely, nonlinear dependence features are usually observed
for atmospheric turbidity conditions presenting values of τa considerably greater
than 0.1. For such atmospheric turbidity conditions, ΔFToA is given by the com-
bined radiative effects due to the columnar content of atmospheric aerosol, varying
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with the optical properties (mainly as a function of the single scattering albedo
ω(λ) of columnar aerosol), and surface reflectance effects (substantially varying as
a function of the spectral and geometrical characteristics of surface). In the present
analysis of the dependence of instantaneous DARF terms on τa, the calculations of
the radiative forcing parameters were performed for each of the 40 aerosol models
defined in Tables 11.1–11.10, and for 5 values of τa increasing from 0.1 to 0.9 in
steps of 0.2, in addition to its null value used to illustrate the pristine atmosphere
conditions. The choice allowed us to evaluate with good accuracy the dependence
features of the DARF terms on τa, as determined at the ToA- and BoA-levels
and within the atmosphere, for various aerosol polydispersions presenting different
composition and optical characteristics, and for considerably different surface re-
flectance models. Figure 11.25a shows three examples of the dependence features
of instantaneous ΔFToA on τa(0.55μm) and θo, made for the VS3 surface model
and the three M-1, M-8 and M-14 aerosol models defined in Table 11.4, selected to
span the large range of weighted average single scattering albedo ω∗ from 1.00 (M-1
model) to 0.65 (M-14 model). The BRDF non-lambertian calculations of ΔFToA are
compared in Fig. 11.25a with those determined for the equivalent isotropic surface
reflectance models, showing that important variations in their isopleths arise from
the use of the simplified isotropic reflectance models in place of equivalent BRDF
non-lambertian models. It is also interesting to note that pronounced discrepancies
were evident between the values of ΔFToA obtained for the M-8 (pure continen-
tal) aerosol model and the M-1 (pure oceanic) aerosol model, while the evaluations
of ΔFToA made for the M-14 (heavy polluted) aerosol model and BRDF non-
lambertian surface reflectance conditions are less marked than those determined
for the combination of the same aerosol model with isotropic surface reflectance
conditions, especially within the θo < 50◦ range and for τa(0.55μm) > 0.40.

The calculations of the instantaneous DARF terms were made for each pair of
the above-selected fixed values of parameters τa and θo. A database consisting of
34,560 files (9× 6× 40× 16) was therefore collected for the BRDF non-lambertian
surface models, and an equivalent database consisting of as many files for the
corresponding lambertian surface reflectance models. The pair of datasets will be
referred to hereinafter as the ‘Look Up Table (LUT)’ of DARF evaluations, each
one containing spectrally integrated data over the 0.4–2.5μm wavelength range.
These computational simulation data are available to the scientific community on
the ISAC-CNR Bologna website (http://www.isac.cnr.it/∼radiclim/), consulting
the AEROCLOUDS folder that will be accessible on request of a password to the
corresponding author. Each of the six panels presented in Fig. 11.25a describes an
ensemble of 54 files (obtained for 9 values of θo and 6 values of τa, including the
null one), from which the vertical and horizontal cross sections of each LUT repre-
sentation can be extracted, determining the dependence features of instantaneous
ΔFToA on parameters θo and τa, respectively.

In order to more deeply investigate the dependence features of the three in-
stantaneous DARF terms ΔFToA, ΔFBoA and ΔFAtm on aerosol optical thickness
τa(0.55μm), the dependence curves of these three DARF terms are presented in
Figs. 11.25b and 11.25c, as obtained for (i) three values of θo equal to 0◦, 30◦ and
60◦, (ii) a set of aerosol models chosen among the 40 models defined in the present
study, and (iii) some selected pairs of BRDF non-lambertian and isotropic sur-

http://www.isac.cnr.it/%E2%88%BCradiclim/
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Fig. 11.25a. Mesh plots of the instantaneous short-wave direct aerosol-induced radiative
forcing ΔFToA defined in Eq. (11.5) as a function of aerosol optical thickness τa(0.55μm)
and solar zenith angle θo, for the BRDF non-lambertian VS3 surface reflectance model
(left) and the equivalent isotropic (ISO, lambertian) VS3 surface reflectance model (right)
and the three M-type aerosol models labeled M-1 (pure oceanic aerosol, upper part), M-8
(pure continental aerosol, middle part) and M-14 (heavy polluted aerosol, lower part).
The colour scale of ΔFToA is measured in Wm−2 and reported on the right site of each
graph.
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Fig. 11.25b. Dependence curves of instantaneous direct aerosol-induced radiative forc-
ing terms ΔFToA (upper part), ΔFBoA (middle part) and ΔFAtm (lower part) plotted as
a function of aerosol optical thickness τa(0.55μm), as obtained for (i) the solar zenith
angles θo = 0◦ (left), θo = 30◦ (middle) and θo = 60◦ (right), (ii) the M-1 (plus signs),
M-8 (up triangles) and M-14 (pentagons) aerosol models defined in Table 11.4, and (iii)
the OS3 (blue) and PS1 (gray) models used to represent the non-lambertian surface re-
flectance characteristics (light colors) and the corresponding equivalent lambertian surface
reflectance models (dark colors), as given in Table 11.12.

face reflectance models. Figure 11.25b shows the dependence patterns of the three
DARF terms on τa(0.55μm), as determined for the the M-1 (pure oceanic), M-
8 (pure continental) and M-14 (heavy polluted) aerosol models, and the OS3 (sea
surface with wind speed of 10m s−1) and PS1 (almost totally pure snow) surface re-
flectance models. The results show quite linear patterns for all three instantaneous
DARF terms derived for (a) the OS3 cases associated with the M-1 (non-absorbing,
pure oceanic) and the M-8 (weakly absorbing, continental) aerosol models, and (b)
the PS1 case combined with the M-1 aerosol model. At the same time, markedly
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Fig. 11.25c. Dependence curves of instantaneous direct aerosol-induced radiative forcing
terms ΔFToA (upper part), ΔFBoA (middle part) and ΔFAtm (lower part) plotted as a
function of aerosol optical thickness τa(0.55μm), as obtained for (i) the solar zenith angles
θo = 0◦ (left), θo = 30◦ (middle) and θo = 60◦ (right), (ii) the 6S-C continental (plus
signs) and the 6S-M maritime (ics crosses) aerosol models defined in Table 11.3, and (iii)
the OS2 (blue), VS2 (green) and BS1 (red) models used to represent the non-lambertian
surface reflectance characteristics, as given in Table 11.12.

convex patterns were described by the ΔFBoA and ΔFAtm determined for the OS3
case associated with the M-14 (strongly absorbing) heavy polluted aerosol model,
and the PS1 cases combined with the M-8 and M-14 aerosol models. Correspond-
ingly, the forcing term ΔFToA was found to assume negative and positive values
for the OS3 and PS1 surface reflectance models, respectively, presenting an evi-
dent shift to more positive (warming) values, passing from pure oceanic to heavy
polluted aerosol models. The average slope coefficients of the various dependence
curves give a measure of the ΔFToA efficiency (i.e. of such DARF term per unit
τa(0.55μm)), estimated to vary between −80Wm−2 for the M-1 non-absorbing
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aerosol polydispersion suspended over the OC3 surface, and +400Wm−2 for the
M-14 strongly absorbing aerosol polydispersion over the PS1 snow surface, which
is particularly suitable for representing the very high surface reflectance features in
the visible and near-infrared that are most frequently observed over the Antarctic
Plateau.

More closely linear dependence patterns were obtained in Fig. 11.25c for all
the three above-selected values of θo, where the 6S-C (continental) and 6S-M (mar-
itime) aerosol models were combined with the OS2 (sea surface, with wind speed of
5m s−1), VS2 (corn field surface) and BS1 (dry sand) surface reflectance models. In
these cases, approximately linear dependence patterns of instantaneous ΔFToA were
obtained, with average slope coefficient gradually decreasing from slightly positive
to markedly negative values, passing from the 6S-C to the 6S-M model and from
the BS1 to the OS2 model. The instantaneous forcing term ΔFBoA was also found
to present nearly linear patterns, characterized by gradually more pronounced neg-
ative slope coefficients, passing from the 6S-M to 6S-C model and from the BS1
to OS2 model. Increasing patterns of ΔFAtm as a function of τa(0.55μm) can be
noted in Fig. 11.25c for all three surface reflectance models, with a higher slope
coefficient found for the 6S-C aerosol model. Therefore, it can be stated that in gen-
eral the instantaneous DARF terms vary almost linearly as τa(0.55μm) increases
over the lower range of this optical parameter, and for poorly absorbing aerosol
particles giving values of single scattering albedo not far from unity. Measurements
and modeling evaluations of the radiative flux changes induced by aerosols over
the North Atlantic coast of the United States were performed by Russell et al.
(1999) during the TARFOX experiment, yielding instantaneous daytime uwpelling
flux changes ranging between +14 and +48Wm−2 for average values of mid-visible
aerosol optical depth (measured over the 0.30–0.70μm spectral range) varying be-
tween 0.20 and 0.55. The changes in the instantaneous upwelling flux were found
to be approximately proportional to aerosol optical thickness, while they decreased
considerably as ω(0.550μm) diminished from 1.00 to 0.86. These results confirmed
that the DARF effects may depend on aerosol optical thickness with features vary-
ing largely with the single scattering albedo characteristics of atmospheric aerosol
loading. Bush and Valero (2002) also applied this concept to the DARF forcing at
the BoA-level during the INDOEX (Indian Ocean) Experiment conducted at the
Kaashidhoo Climate Observatory (Republic of Maldives), finding a diurnal aver-
age value of atmospheric forcing at the surface equal to −72.2 ± 5.5Wm−2 per
unit aerosol optical depth, over the total solar broadband spectrum, subject to
vary appreciably as a function of single scattering albedo ω(0.50μm), evaluated
to be on average equal to 0.874 ± 0.028. The above results clearly demonstrate
that the DARF terms depend closely on the single scattering albedo properties of
atmospheric particles.

11.4.3.2 Single scattering albedo influence

The influence of single scattering albedo of columnar aerosol polydispersions on
the DARF effects occurring at ToA-level has been highlighted in numerous works
(Schwarz et al., 1995; Russell et al., 1997, 1999; Takemura et al., 2002). These
dependence features are here analysed by evaluating the DARF effects for the sur-
face reflectance models defined in Section 11.3 and the number of aerosol models
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Fig. 11.26. Legend of the 40 aerosol models used in the calculations of the DARF terms
presented in Figs. 11.27 to 11.30. Solid lines refer to the series of 14 M-type aerosol models,
dashed lines to the 5 6S models, short-dashed lines to the 10 OPAC models, dotted lines
to the four SF models, and dot-dashed lines to the seven additional models defined in the
present work.

described in Section 11.2. Fig. 11.16 provides evidence that the single scattering
albedo of the aerosol models considered in the present study covers with contin-
uous features the range of weighted single scattering albedo ω∗ from about 0.6
to 1.0, which is commonly observed in various areas of the Earth. Figure 11.26
shows the legend of the symbols used to represent the 40 aerosol models defined
in Section 11.2, for which the DARF effects have been evaluated in the following
Figs. 11.27–11.30, here shown to illustrate the dependence patterns of DARF on
(i) single scattering albedo by means of aerosol models, (ii) surface reflectance by
means of surface reflectance models, and (iii) solar zenith angles taken over the
range from 0◦ to 80◦, in steps of 10◦.

The examples shown in Fig. 11.16 for maritime, continental and urban aerosol
polydispersions indicate that the absorptance/reflectance ratio of columnar par-
ticles increases as the absorption properties of particulate matter become gradu-
ally stronger (mainly due to the increase in the mass content of soot substances)
and, hence, the weighted average single scattering albedo ω∗ calculated over the
short-wave range gradually tends to decrease. The results obtained by Chylek and
Coakley (1974) indicate that aerosol particles causing cooling effects over relatively
low-albedo surfaces, such as oceanic areas and vegetated land regions, can gener-
ate warming effects in the atmosphere when transported over high-albedo surfaces,
such as those of the polar regions covered by snow fields and glaciers, thus causing
a change in the sign of radiative forcing ΔFToA.

To emphasize the crucial importance of these climatic effects dependent on
aerosol single scattering albedo, the variations in the instantaneous DARF terms
ΔFToA, ΔFBoA and ΔFAtm occurring as a result of changes in parameter ω∗ are
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presented in Figs. 11.27a to 11.27e over the 0.6 ≤ ω∗ ≤ 1.0 range for (a) solar
zenith angles θo = 30◦ and θo = 60◦, (b) both BRDF non-lambertian and isotropic
configurations of the OS1, VS2, BS3 and PS1 surface reflectance models defined in
Table 11.12, and (c) the following five sets of aerosol models, each presented in:

(i) Figure 11.27a, for the five 6S-M, 6S-C, 6S-U, 6S-D and 6S-V 6S aerosol models
defined in Table 11.3;

(ii) Figure 11.27b, for the four SF-R, SF-U, SF-M and SF-T aerosol models defined
in Tables 8 and 9;

(iii) Figure 11.27c, for the 14 M-type aerosol models defined in Table 11.4;
(iv) Figure 11.27d, for the 10 OPAC models defined in Tables 11.6 and 11.7; and
(v) Figure 11.27e, for the 7 additional aerosol models defined in Table 11.10.

All the graphs present similar results, showing that:

(a) Instantaneous ΔFToA exhibits decreasing patterns for all the considered aerosol
models as ω∗ increases from ∼ 0.60 to about 1.00, with (i) values mainly ranging
between −10Wm−2 and +175Wm−2 for ω∗ varying between 0.63 and about
0.75, and (ii) values mainly ranging between −40Wm−2 and no more than
+5Wm−2 for ω∗ close to 1.00.

(b) Instantaneous ΔFBoA presents negative values for ω∗ lower than 0.75, ranging
mainly between around −130Wm−2 and −5Wm−2, which were evaluated to
gradually increase as ω∗ approaches the unity, until reaching values ranging
mainly between −40Wm−2 and +5Wm−2 for nearly unit values of ω∗.

(c) Instantaneous ΔFAtm assumes mainly positive values over the total range of
ω∗, varying between +40Wm−2 and +180Wm−2 for ω∗ < 0.75, and further
decreasing as ω∗ increases until assuming weakly positive or slightly negative
values for ω∗ ≈ 1.00, varying within the range of ± 5Wm−2 for θo = 30◦, and
within the range of ± 25Wm−2 for θo = 60◦.

The above patterns indicate that the aerosol polydispersions of oceanic or volcanic
origins, consisting mainly of weakly absorbing particulate matter (with ω∗ > 0.95)
generally induce negative (cooling) values of both ΔFToA and ΔFBoA, thus provid-
ing very low values of ΔFAtm with both signs. Conversely, aerosol polydispersions
containing strong contents of soot substances and, hence, presenting values of ω∗

no higher than 0.75, are evaluated to induce (i) weakly negative values of ΔFToA

leading to only very weak cooling effects over the oceanic surfaces, (ii) moderate
warming effects ranging between around + 20 and +30Wm−2 over all the land
regions covered by vegetation, (iii) intense warming effects varying between about
+70 and +90Wm−2 over the arid regions, and (iv) particularly marked warming
effects often exceeding the value of +100Wm−2 over the polar regions covered by
snow fields and glaciers. The values of ΔFBoA for ω∗ ≈ 0.63 are negative in all
cases, being equal to around −15Wm−2 over polar areas, −50Wm−2 over bare
soils, −70Wm−2 over vegetated surfaces, and −100Wm−2 over oceanic areas.
Correspondingly, instantaneous ΔFAtm is estimated to be very weak over all the
surfaces for aerosol particles presenting values of ω∗ close to unity. Conversely, for
ω∗ ≈ 0.63, average evaluations of ΔFAtm of around +180Wm−2 were obtained
over polar snow-covered regions, +135Wm−2 over bare soils and arid terrains,
+110Wm−2 over vegetation-covered surfaces, and +95Wm−2 over oceans.
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Fig. 11.27a. Instantaneous direct aerosol-induced radiative forcing terms ΔFToA (upper
part), ΔFBoA (middle part) and ΔFAtm (lower part) plotted as a function of weighted
average single scattering albedo ω∗, as obtained for (i) the five 6S aerosol models defined
in Table 11.3 (labeled using the symbols given in Fig. 11.26), and giving aerosol optical
thickness τa(0.55μm) = 0.30, (ii) solar zenith angles θo = 30◦ (left) and θo = 60◦ (right),
and (iii) the OS1 (blue), VS2 (green), BS3 (red) and PS1 (gray) BRDF lambertian sur-
face reflectance models (light colors) and the corresponding equivalent lambertian surface
reflectance models (dark colors), as given in Table 11.12.
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Fig. 11.27b. As in Fig. 11.27a, for (i) the four SF aerosol models defined in Tables 11.8
and 11.9 (labeled using the symbols given in Fig. 11.26), giving aerosol optical thick-
ness τa(0.55μm) = 0.30, (ii) solar zenith angle θo = 30◦ (left) and θo = 60◦ (right),
and (iii) the OS1 (blue), VS2 (green), BS3 (red) and PS1 (gray) BRDF lambertian sur-
face reflectance models (light colors) and the corresponding equivalent lambertian surface
reflectance models (dark colors), as given in Table 11.12.
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Fig. 11.27c. As in Fig. 11.27a, for (i) the 14 M-type aerosol models defined in Ta-
ble 11.4 (labeled using the symbols given in Fig. 11.26), giving aerosol optical thickness
τa(0.55μm) = 0.30, (ii) solar zenith angles θo = 30◦ (left) and θo = 60◦ (right), and (iii)
OS1 (blue), VS2 (green), BS3 (red) and PS1 (gray) BRDF lambertian surface reflectance
models (light colors) and the corresponding equivalent lambertian surface reflectance mod-
els (dark colors), as given in Table 11.12.
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Fig. 11.27d. As in Fig. 11.27a, for (i) the 10 OPAC wet aerosol models defined in Ta-
bles 11.6 and 11.7 (labeled using the symbols given in Fig. 11.26), giving aerosol optical
thickness τa(0.55μm) = 0.30, (ii) solar zenith angles θo = 30◦ (left) and θo = 60◦ (right),
and (iii) the OS1 (blue), VS2 (green), BS3 (red) and PS1 (gray) BRDF lambertian sur-
face reflectance models (light colors) and the corresponding equivalent lambertian surface
reflectance models (dark colors), as given in Table 11.12.
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Fig. 11.27e. As in Fig. 11.27a, for (i) the seven additional aerosol models defined in
Table 11.10 (labeled using the symbols given in Fig. 11.26), giving aerosol optical thick-
ness τa(0.55μm) = 0.30, (ii) solar zenith angles θo = 30◦ (left) and θo = 60◦ (right),
and (iii) the OS1 (blue), VS2 (green), BS3 (red) and PS1 (gray) BRDF lambertian sur-
face reflectance models (light colors) and the corresponding equivalent lambertian surface
reflectance models (dark colors), as given in Table 11.12.
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To better evaluate the variability of ΔFToA as a function of ω∗, as described
in Figs. 11.27a to 11.27e, the average slope coefficients of the patterns of ΔFToA

plotted versus ω∗ were calculated for the two cases θo = 30◦ and θo = 60◦. In the
first case, the slope coefficient calculated for the set of additional models defined
in Table 11.10 varied between −16.1Wm−2 (OS1 model) and −522.1Wm−2 (PS1
model) per unit variation of ω∗. In the second case, this average slope coefficient
per unit variation in ω∗ was estimated to vary between (i) −32.9Wm−2 (OS1
model) for the set of OPAC aerosol models defined in Tables 11.6 and 11.7, and (ii)
−346.0Wm−2 (PS1 model) for the set of additional models defined in Table 11.10.
No evidence of large variations in the forcing terms ΔFToA, ΔFBoA and ΔFAtm

arose from the analysis of the data presented in Figs. 11.27a to 11.27e over the range
of ω∗ determined for the various sets of aerosol models giving τa(0.55μm) = 0.30,
confirming the results presented in Tables 11.14a, 11.14b and 11.14c for the 18
above-chosen aerosol extinction models.

11.4.4 Dependence of instantaneous DARF on underlying surface
reflectance

The results presented in Fig. 11.25a offer clear evidence of the appreciably differ-
ent evaluations of instantaneous forcing terms ΔFToA, ΔFBoA and ΔFAtm that
can be obtained for the same aerosol model characterized by a certain value of sin-
gle scattering albedo, using different pairs of BRDF non-lambertian and isotropic
surface reflectance models. To analyse the dependence of such radiative forcing
effects on surface reflectance characteristics more closely, the calculations of the
instantaneous DARF terms are shown in Figs. 11.28a to 11.28e as a function of
the broadband surface albedo A(θo) defined in Eq. (11.4d), as determined for solar
zenith angles θo = 30◦ and θo = 60◦. These two values of θo were chosen bearing
in mind that they are representative of the two distinct ranges of θo, within which
substantial differences were found to exist between the angular dependence features
of instantaneous DARF terms. Figures 11.28a to 11.28e were drawn for different
combinations of the most representative aerosol models chosen among the 40 mod-
els defined in Tables 11.1 to 11.10, and the BRDF non-lambertian and isotropic
surface reflectance models defined in Section 11.3. More precisely, the instantaneous
terms ΔFToA, ΔFBoA and ΔFAtm are presented as follows:

(i) in Fig. 11.28a, for the 6S-M, 6S-C and 6S-U aerosol models defined in Ta-
ble 11.3 and the non-lambertian and isotropic versions of the OS1, VS1, BS1
and PS1 surface reflectance models defined in Table 11.12;

(ii) in Fig. 11.28b, for the SF-M, SF-R, SF-T and SF-U aerosol models defined
in Tables 11.8 and 11.9, and the OS1, VS1, BS1 and PS1 surface reflectance
models;

(iii) in Fig. 11.28c, for the M-1, M-8 and M-14 aerosol models defined in Ta-
ble 11.4 and the OS2, VS2, BS2 and PS2 surface reflectance models defined
in Table 11.12;

(iv) in Fig. 11.28d, for the 6S-M, 6S-C and 6S-U aerosol models defined in Ta-
ble 11.3 and the OS3, VS3, BS3 and PS3 surface reflectance models defined
in Table 11.12; and
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Fig. 11.28a. Instantaneous direct aerosol-induced radiative forcing terms ΔFToA (upper
part), ΔFBoA (middle part) and ΔFAtm (lower part) plotted as a function of broadband
surface albedo A(θo), for aerosol optical depth τa(0.55μm) = 0.30 and solar zenith an-
gles θo = 30◦ (left) and θo = 60◦ (right), as calculated for the 6S-M (maritime), 6S-C
(continental) and 6S-U (urban) aerosol models defined in Table 11.3 (labeled using the
symbols given in Fig. 11.26), and using both the BRDF non-lambertian (light colors) and
the equivalent isotropic lambertian (dark colors) versions of the OS1 (blue), VS1 (green),
BS1 (red) and PS1 (gray) surface reflectance models defined in Table 11.12.
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Fig. 11.28b. As in Fig. 11.28a, for aerosol optical depth τa(0.55μm) = 0.30 and solar
zenith angles θo = 30◦ (left) and θo = 60◦ (right), as calculated for the SF-M, SF-R, SF-T
and SF-U aerosol models defined in Tables 11.8 and 11.9 (labeled using the symbols given
in Fig. 11.26), and using both the BRDF non-lambertian (light colors) and the equivalent
isotropic lambertian (dark colors) versions of the OS1 (blue), VS1 (green), BS1 (red) and
PS1 (gray) surface reflectance models defined in Table 11.12.
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Fig. 11.28c. As in Fig. 11.28a, for aerosol optical depth τa(0.55μm) = 0.30 and solar
zenith angles θo = 30◦ (left) and θo = 60◦ (right), as calculated for the M-1, M-8 and
M-14 aerosol models defined in Table 11.4 (labeled using the symbols given in Fig. 11.26),
and using both the BRDF non-lambertian (light colors) and the equivalent isotropic lam-
bertian (dark colors) versions of the OS2 (blue), VS2 (green), BS2 (red) and PS2 (gray)
surface reflectance models defined in Table 11.12.
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Fig. 11.28d. As in Fig. 11.28a, for aerosol optical depth τa(0.55μm) = 0.30 and solar
zenith angles θo = 30◦ (left) and θo = 60◦ (right), as calculated for the MC, CC and
UR aerosol models chosen among the 10 OPAC wet aerosol models defined in Tables 11.6
and 11.7 (labeled using the symbols given in Fig. 11.26), and using both the BRDF non-
lambertian (light colors) and the equivalent isotropic lambertian (dark colors) versions of
the OS3 (blue), VS3 (green), BS3 (red) and PS3 (gray) surface reflectance models defined
in Table 11.12.
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Fig. 11.28e. As in Fig. 11.28a, for aerosol optical depth τa(0.55μm) = 0.30 and solar
zenith angles θo = 30◦ (left) and θo = 60◦ (right), as calculated for the seven additional
models defined in Table 11.10 (labeled using the symbols given in Fig. 11.26), and using
both the BRDF non-lambertian (light colors) and the equivalent isotropic lambertian
(dark colors) versions of the OS4 (blue), VS4 (green), BS4 (red) and PS4 (gray) surface
reflectance models defined in Table 11.12.
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(v) in Fig. 11.28e, for the seven additional aerosol models defined in Table 11.10
and the OS4, VS4, BS4 and PS4 surface reflectance models defined in Ta-
ble 11.12.

It can be noted in Fig. 11.28a that:

(i) ΔFToA clearly increases with A(θo) defined for the two above-selected values
of θo, passing from negative to positive values, where the positive values were
mainly obtained for combinations of oceanic and vegetated surfaces with mar-
itime and continental aerosols, implying the occurrence of cooling effects in
the surface–atmosphere system, and the positive values were found for bare
soil and polar snow surfaces associated with urban aerosol, causing warming
effects;

(ii) ΔFBoA assumes negative values, thus inducing cooling effects at the surface,
which become gradually more intense as A(θo) increases; the most marked
negative values were obtained for aerosol polydispersions that absorb more
strongly the solar radiation and, therefore, exhibit rather low values of single
scattering albedo, while the nearly null values were obtained for the maritime
aerosol polydispersions having single scattering albedo close to unity; and

(iii) ΔFAtm was evaluated to assume mainly positive values, therefore causing more
or less marked warming effects in the atmosphere, which slowly increase with
A(θo) and, hence, provide the lowest forcing value for maritime aerosols (with
ω∗ = 0.989) and the highest one for urban aerosols (with ω∗ = 0.632).

Similar features to those of Fig. 11.28a were also determined in (a) Fig. 11.28b
for the Maritime (SF-M), Tropospheric (SF-T), Rural (SF-R) and Urban (SF-
U) aerosol models defined by Shettle and Fenn (1979), giving values of ω∗ equal
to 0.999, 0.953, 0.933, and 0.697, respectively, and (b) Fig. 11.28c for the M-1
(pure oceanic), M-8 (pure continental) and M-14 (heavy polluted urban) aerosol
models, giving values of ω∗ equal to 0.999, 0.855 and 0.651, respectively. Similar
results were also found in Fig. 11.28d for the three MC, CC and UR OPAC aerosol
models (giving values of ω∗ equal to 0.997, 0.952 and 0.741, respectively). In these
cases, appreciably higher values of ΔFToA were achieved at both θo = 30◦ and
θo = 60◦ than those correspondingly obtained in the previous applications for
lower values of A(θo). The results suggest that more intense warming effects are
induced within the surface–atmosphere system by aerosol polydispersions having
comparable values of ω∗, when they are suspended over surfaces characterized by
higher reflectance properties. The evaluations of the DARF terms in Fig. 11.28e
were made for all the seven additional aerosol models giving values of ω∗ ranging
between 0.616 (FT model) and 0.999 (PV-2 and PV-3 models). They substantially
agree with the evaluations of ΔFToA shown in Figs. 11.28a to 11.28d, suggesting
that an aerosol polydispersion consisting of non-absorbing or weakly absorbing
particulate matter, and leading to a negative (cooling) value of this DARF term
for low surface reflectance properties, can cause an effect of opposite sign (warming)
when it is transported over a surface characterized by very high surface reflectance
conditions.

The physical meaning of these trends can be better understood considering that
the instantaneous absorptance/reflectance ratio Y of an aerosol polydispersion can
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vary greatly if the columnar aerosol is associated with gradually higher values of
broadband surface albedo A(θo). This concept is illustrated in Fig. 11.29, where
ratio Y is plotted versus A(θo = 30◦). In the graph, the curve of ratio Y was
calculated using the analytical form

Y = [(1−A(θo)2] /2A(θo) , (11.15a)

defined by Chylek and Coakley (1974) (see also Chylek and Wong, 1995) applying
the two-stream approximation to the radiative transfer equation in the surface–
atmosphere (with aerosol) system for incident isotropically diffused radiation. Thus,
ratio Y in Eq. (11.15a) can be defined for a certain aerosol polydispersion in terms
of the following equation,

Y = (1− ω∗)/ω∗βa(cos θo) , (11.15b)

providing the ratio between (i) the fraction of incoming short-wave radiation ab-
sorbed by atmospheric aerosols, equal to the difference 1−ω∗, and (ii) the fraction
ω∗βa(cos θo) of incoming solar radiation scattered backward by airborne aerosols
for solar zenith angle θo, where βa is the fraction of radiation scattered into the
backward hemisphere by aerosols (as defined in Eq. (14)), calculated in terms of
the asymmetry factor g(0.55μm) and using the Wiscombe and Grams (1976) for-
mula for mean daily data. The values of A(θo = 30◦) relative to 7 of the 16 BRDF
non-lambertian models described in Table 11.12 are presented in Fig. 11.29 to cover
the whole broadband albedo range from the nearly null value of 0.035 (OS1 model)
to 0.834 (PS1 model). The values of ratio Y calculated for three of the OPAC
aerosol models described in Table 11.7 are also shown in Fig. 11.29, relative to
the Maritime Clean (MC) (ω∗ = 0.997), Continental Average (CA) (ω∗ = 0.884)
and Urban (UR) (ω∗ = 0.741) aerosol polydispersions, so as to cover the most
commonly observed range of ω∗.

Examining the three examples shown in Fig. 11.29, it can be seen that the MC
aerosol polydispersion suspended over an oceanic surface produces marked cool-
ing effects and can induce gradually less pronounced negative values of ΔFToA

when transported over the high-reflectance regions covered by unpolluted glaciers,
such as those of the Antarctic Plateau, without causing appreciable warming ef-
fects even for the highest albedo conditions of the remote polar regions. The CC
aerosol polydispersion situated over the VS1 surface was estimated to cause cool-
ing effects also, although less pronounced than in the first example. Here, more
marked cooling effects could be induced in all cases where these aerosol particles
were transported over the oceanic regions, while gradually less pronounced cooling
effects would be produced if these aerosol polydispersions were transported over
surfaces presenting higher albedo characteristics, yielding nearly null radiative ef-
fects for A(θo = 30◦) ≈ 0.45, and gradually more intense warming effects over polar
surfaces covered by snow fields and glaciers presenting values of A(θo = 30◦) > 0.50.
The UR (urban) aerosol model associated with the BS1 surface (estimated to pro-
vide a value of A(θo = 30◦) not largely different from those of the most populated
urban areas) turns out to induce only moderate warming effects. However, it could
cause neutral effects if transported over vegetated surfaces presenting albedo condi-
tions similar to those of the VS1 surface, and marked cooling effects if transported
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Fig. 11.29. Dependence curve (red colour) of ratio Y (between columnar absorptance and
columnar reflectance) as a function of broadband surface albedo A(θo) obtained for solar
zenith angle θo = 30◦ over the entire range of A(θo) usually observed over the Earth’s
surface, for which no radiative forcing effects at the ToA-level appear to be induced
by the columnar aerosol loading. The values of ratio Y were calculated as a function
A(θo) in terms of Eq. (15a) derived by Chylek and Coakley (1974) using the two-stream
approximation form applied to radiative transfer through the atmosphere. Red curve
divides the domain (Y , A(θo)) into two sub-domains, where aerosol effects are estimated to
induce cooling (light blue background colour) and warming (brownish background colour)
effects. Three aerosol models are represented in the domain for values of Y calculated in
terms of Eq. (15b) for the three following OPAC wet models: (i) Maritime Clean (MC)
aerosol model (ω∗ = 0.997) at A(θo = 30◦) = 0.035 (OS1 model); (ii) Continental Clean
(CC) aerosol model (ω∗ = 0.884) at A(θo = 30◦) = 0.139 (VS1 model); and (iii) Urban
(UR) aerosol model (ω∗ = 0.741) at A(θo = 30◦) = 0.228 (BS1 model).

over the oceanic regions. In all cases of transport over vegetated surfaces and arid
lands presenting higher albedo features or over the polar regions, this polluted
aerosol polydispersion is expected to cause marked warming effects that gradually
increase for higher surface albedo conditions.

To give a measure of the variability in ΔFToA shown in Figs. 11.28a to 11.28e,
it is important to note that the average slope coefficients of the patterns of ΔFToA

plotted versus A(θo) vary between +4.2Wm−2 (MC model) and +235.5Wm−2

(6S-U) per unit variation of A(θo = 30◦), and between +20.8Wm−2 (MC) and
+176.3Wm−2 (6S-U) per unit variation of A(θo = 60◦), with intercept values
varying between −5.1Wm−2 (CC model) and −32.1Wm−2 (PV-3) for θo = 30◦,
and between −6.9Wm−2 (MC) and −37.6Wm−2 (PV-3) for θo = 60◦. These
results arise from the fact that the MC and 6S-U models yield the lowest and the
highest absorption features of solar radiation, respectively. The intercept values
were determined for null surface albedo conditions, and are therefore indicative of
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the role of the aerosol polydispersions in scattering the incoming solar radiation
toward space during the first passage through the atmosphere, thus contributing to
provide an overall negative (cooling) effect. These findings suggest that the most
moderate aerosol scattering effects are produced by the CC columnar particles,
and the strongest ones by the PV-3 long-age volcanic particles generated by the
Pinatubo eruption, which were characterized by very high scattering properties
(Valero and Pilewskie, 1992).

Finally, Figs. 11.28a to 11.28e show that only slight differences were obtained
between the evaluations of the three DARF terms made for θo = 30◦ using the
isotropic surface reflectance models and those obtained using the BRDF non-
lambertian models for the same broadband albedo characteristics, which are in
general within a few Wm−2 for all the 16 surface reflectance models defined here
for relatively low values of aerosol optical thickness τa. This can be also verified
by examining the values of forcing terms ΔFToA, ΔFBoA and ΔFAtm given in Ta-
bles 11.14a, 11.14b and 11.14c, respectively, as calculated for 18 aerosol models
selected among the 40 models defined in the present work, for τa(0.55μm) = 0.10.
Figures 11.28a to 11.28e reveal even more limited differences between the DARF
terms calculated at θo = 60◦ for the two sets of isotropic and BRDF non-lambertian
models of surface reflectance relative to the VS, BS and PS surface models. By
contrast, more marked discrepancies were obtained for the OS surface reflectance
models, presumably because of the marked sun glint effects occurring at this rather
high solar zenith angle.

11.4.5 Dependence of instantaneous DARF on solar zenith angle

The dependence patterns shown in Figs. 11.25a, 11.25b and 11.25c indicate that
the instantaneous DARF terms vary greatly as a function of solar zenith angle θo
for all the pairs of an aerosol model (chosen among the 40 aerosol models listed in
Fig. 11.26) and one of the surface reflectance models defined in the present study.
The variability of the instantaneous DARF terms as a function of θo is crucial for the
calculations of the daily average DARF effects over the 24-hour period, because θo
varies regularly throughout the day, generally presenting rather low values at noon,
but can vary considerably with latitude and season. In order to evaluate how great
the variations in DARF are, due to such changes in θo, the dependence patterns of
instantaneous ΔFToA, ΔFBoA and ΔFAtm are shown in Figs. 11.30a to 11.30f, as
calculated for (i) τa(0.55μm) = 0.30, (ii) 9 selected values of θo taken in steps of
10◦ from 0◦ to 80◦, (iii) a large number of aerosol models chosen among the above
40 aerosol models defined in Section 11.2, and (iv) various sets of surface reflectance
models defined above for both BRDF non-lambertian and isotropic (ISO) surface
reflectance characteristics. Figures 11.30a to 11.30f also provide the evaluations
of the absolute differences between the estimates of instantaneous DARF terms
obtained for ISO and BRDF non-lambertian surface reflectance conditions (and
reported as ISO–BDRF differences in the Figs. 11.30a to 11.30f), as performed for
the following combinations of aerosol and surface reflectance models:
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Fig. 11.30a. Instantaneous direct aerosol-induced radiative forcing terms ΔFToA (up-
per part), ΔFBoA (middle part) and ΔFAtm (lower part) calculated for aerosol optical
depth τa(0.55μm) = 0.30, and for nine selected values of solar zenith angle θo (in steps
of 10◦ from 0◦ to 80◦), as calculated for (i) the 6S-M (maritime), 6S-C (continental) and
6S-U (urban) aerosol models defined in Table 11.3 (labeled using the symbols given in
Fig. 11.26), and (ii) the OS1 (blue) and PS1 (gray) models represented for both the non-
lambertian (left column) and the corresponding equivalent lambertian (middle column)
surface reflectance characteristics, as given in Table 11.12. The absolute differences be-
tween the lambertian and non-lambertian evaluations of the DARF terms are shown in
the three graphs of the right column.

(i) the 6S-M (maritime), 6S-C (continental) and 6S-U (urban) aerosol models
with the OS1 and PS1 models in Fig. 11.30a;

(ii) the 6S-M, 6S-C and 6S-U aerosol models with the VS1 and BS1 models in
Fig. 11.30b;

(iii) the SF-R (rural), SF-U (urban), SF-M (maritime) and SF-T (tropospheric)
aerosol models with the VS1 and BS1 models in Fig. 11.30c;

(iv) the M-1 (pure oceanic) and M-14 (heavy polluted) aerosol models with the
OS2, VS2, BS2, and PS2 models in Fig. 11.30d;
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Fig. 11.30b. As in Fig. 11.30a, for τa(0.55μm) = 0.30, and nine selected values of solar
zenith angle θo (in steps of 10◦ from 0◦ to 80◦), as calculated for (i) the 6S-M (maritime),
6S-C (continental) and 6S-U (urban) aerosol models defined in Table 11.3 (labeled us-
ing the symbols given in Fig. 11.26a), and (ii) the VS1 (green) and BS1 (red) models
represented for both the non-lambertian (left column) and the corresponding equivalent
lambertian (middle column) surface reflectance characteristics, as given in Table 11.12.
The absolute differences between the lambertian and non-lambertian evaluations of the
DARF terms are shown in the three graphs of the right column.

(v) the OPAC UR (urban) and MC (maritime clean) aerosol models with the OS3,
VS3, BS3, and PS3 models in Fig. 11.30e; and

(vi) the FT (Free Troposphere) and PV-2 (Post Pinatubo stratospheric particle)
aerosol models with the OS4, VS4, BS4, and PS4 models in Fig. 11.30f.

The results presented in Figs. 11.30a to 11.30f were generally obtained for gradually
higher reflectance characteristics of the surface. To avoid confusion in the graphs,
the results achieved for surface reflectance models belonging to the same class were
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Fig. 11.30c. As in Fig. 11.30a, for τa(0.55μm) = 0.30 and nine selected values of solar
zenith angle θo (in steps of 10◦ from 0◦ to 80◦), as calculated for (i) the four SF aerosol
models defined in Tables 11.8 and 11.9 (labeled using the symbols given in Fig. 11.26), and
(ii) the VS1 (green) and BS1 (red) models represented for both the non-lambertian (left
column) and the corresponding equivalent lambertian (middle column) surface reflectance
characteristics, as given in Table 11.12. The absolute differences between the lambertian
and non-lambertian evaluations of the DARF terms are shown in the three graphs of the
right column.

not compared one with the other in the same graphical representation, in such a way
as to identify univocally the various surface model classes (relative to sea surface,
vegetation-covered, bare soil and snow- and ice-covered areas) by using clearly
different colors. This extensive analysis of the variability of instantaneous DARF
terms as a function of θo provides a detailed picture of how the DARF effects tend to
vary as a function of this key-parameter over the 0◦–80◦ range. Fig. 11.30a reports
the results obtained for the three above-mentioned 6S-type aerosol models covering
the 0.63–0.99 range of weighted average single scattering albedo ω∗, and for extreme
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Fig. 11.30d. As in Fig. 11.30a, for τa(0.55μm) = 0.30 and nine selected values of solar
zenith angle θo (in steps of 10◦ from 0◦ to 80◦), as calculated for (i) the pair of M-
1 and M-14 aerosol models defined in Table 11.4 (labeled using the symbols given in
Fig. 11.26), and (ii) the OS2 (blue), VS2 (green), BS2 (red) and PS2 (gray) models
represented for both the non-lambertian (left column) and the corresponding equivalent
lambertian (middle column) surface reflectance characteristics, as given in Table 11.12.
The absolute differences between the lambertian and non-lambertian evaluations of the
DARF terms are shown in the three graphs of the right column.

surface reflectance features represented by the OS1 model (giving Rws = 0.07) and
the PS1 model (Rws = 0.85). The instantaneous forcing term ΔFToA relative to
the OS1 model was found to assume negative values varying between a few Wm−2

for the 6S-U model and about −25Wm−2 for the 6S-M model, while that relative
to the PS1 surface assumed positive values varying between a few Wm−2 (6S-M
model) and about +180Wm−2 (6S-U model) at θo = 0◦. Forcing term ΔFToA

was estimated to decrease monotonically with increasing θo over the polar snow
surface, and to exhibit a wide minimum over the ocean surface, at θo ≈ 60◦. It can
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Fig. 11.30e. As in Fig. 11.30a, for τa(0.55μm) = 0.30 and nine selected values of solar
zenith angle θo (in steps of 10◦ from 0◦ to 80◦), as calculated for (i) the UR and MC
models chosen among the 10 OPAC wet aerosol models defined in Tables 11.6 and 11.7
(labeled using the symbols given in Fig. 11.26), and (ii) the OS3 (blue), VS3 (green),
BS3 (red) and PS3 (gray) models represented for both the non-lambertian (left column)
and the corresponding equivalent lambertian (middle column) surface reflectance charac-
teristics, as given in Table 11.12. The absolute differences between the lambertian and
non-lambertian evaluations of the DARF terms are shown in the three graphs of the right
column.

be also noted in Fig. 11.30a that the isotropic surface reflectance conditions cause
in general an overestimation of ΔFToA over the 0◦ ≤ θo ≤ 60◦ range, until yielding
values very close to those obtained for BRDF non-lambertian surface reflectance
models, and slightly underestimated values at θo > 60◦. This can be reasonably
explained by the fact that white-sky albedo Rws assumes a value comparable with
that of albedo RL over the 50◦ ≤ θo ≤ 60◦ range, as can be seen in Fig. 11.21.
Because of the different surface reflectance properties, the values of the difference
between the isotropic and BRDF non-lambertian values of ΔFToA were estimated
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Fig. 11.30f. As in Fig. 11.30a, for τa(0.55μm) = 0.30 and 9 selected values of solar zenith
angle θo (in steps of 10◦ from 0◦ to 80◦), as calculated for (i) the FT and PV-2 aerosol
models chosen among the seven additional aerosol models defined in Table 11.10 for the
extreme values of weighted average single scattering albedo ω∗ (labeled using the symbols
given in Fig. 11.26), and (ii) the OS4 (blue), VS4 (green), BS4 (red) and PS4 (gray) models
represented for both the non-lambertian (left column) and the corresponding equivalent
lambertian (middle column) surface reflectance characteristics, as given in Table 11.12.
The absolute differences between the lambertian and non-lambertian evaluations of the
DARF terms are shown in the three graphs of the right column.

to vary between ±3 and ±12Wm−2 in the range of θo from 0◦ to 20◦, and then
to decrease gradually as θo increases, until becoming negative for θo ≥ 60◦. The
dependence patterns of ΔFToA on θo showed greatly varying values, which can be
of opposite signs depending on both surface reflectance properties and the more or
less distant values from unity of albedo ω∗ given by the various aerosol models.

Instantaneous forcing ΔFBoA was evaluated to exhibit negative values for both
non-lambertian and isotropic surface reflectance models over the range of θo from
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0◦ to more than 60◦, providing values of the isotropic-minus-BRDF differences
that are all positive and varying between 0 and +10Wm−2 over the 0◦ ≤ θo ≤ 45◦

range, and negative in the upper range, where they decrease very rapidly to less
than −80Wm−2 at θo = 70◦. Correspondingly, instantaneous ΔFAtm was found to
assume positive values ranging between 0 and +200Wm−2 over the 0◦ ≤ θo ≤ 50◦

range, followed by mainly negative values for the BRDF non-lambertian models
and by appreciably lower positive values for the isotropic models. Consequently,
the isotropic-minus-BRDF differences of ΔFAtm turn out to be nearly null for all
the aerosol extinction and surface reflectance models over the 0◦ ≤ θo ≤ 45◦ range,
but become positive over the upper range, increasing gradually to reach a value
exceeding +90Wm−2 at θo = 70◦.

Similar dependence features of instantaneous terms ΔFToA, ΔFBoA and ΔFAtm

on θo are shown in Figs. 11.30b to 11.30f for further sets of combinations of aerosol
models with surface reflectance models, highlighting the various trends of these
DARF terms, which tend often to change significantly throughout the day as a
function of θo, presenting features that vary with the angular and spectral charac-
teristics of surface reflectance as well as with the scattering and absorption prop-
erties of the aerosol polydispersions characterized by different values of ω∗.

Examining the sequence of Figs. 11.30a to 11.30f, without taking into account
the variations in the aerosol optical properties, it can be stated in general that the
variations in the absolute values of ΔFToA and ΔFBoA gradually increase as sur-
face reflectance increases, passing from the set of OS1, VS1, BS1 and PS1 models
considered in Figs. 11.30a and 11.30b to the set of OS4, VS4, BS4 and PS4 models
chosen in Fig. 11.30f. Correspondingly, it can be noticed that the evaluations of
ΔFAtm become appreciably higher as the surface reflectance properties increase. In
general, the ISO-minus-BRDF differences of ΔFToA and ΔFBoA were both found
to decrease more or less rapidly as θo increases, passing from positive values for
θo < 50◦ to negative values for θo > 60◦, while the ISO-minus-BRDF differences
of ΔFAtm were evaluated to vary considerably with θo, presenting both negative
and positive values for θo < 50◦ and more frequently positive values for θo > 55◦.
As a result of these variations throughout the range of θo < 50◦, the ISO-minus-
BRDF differences of ΔFToA generally assumed: (i) values ranging between +2 and
+8Wm−2 for relatively low reflectance conditions, and (ii) values varying between
+10 and +25Wm−2 for the high-reflectance conditions of the PS models. Con-
versely, the ISO-minus-BRDF differences of ΔFBoA were found to assume negative
values for θo > 50◦, mainly ranging between −10 and −100Wm−2. It is interesting
to note that the most negative values of this quantity were obtained for sea-surface
reflectance conditions, leading to predominantly positive values of ΔFAtm. Cor-
respondingly, the ISO-minus-BDRF differences of ΔFAtm were found to assume
values close to null for θo < 50◦, varying mainly between −5 and +10Wm−2.

Therefore, the patterns of the ISO-minus-BRDF differences calculated for the
three DARF terms turn out to be quite regular over the 0◦ ≤ θo ≤ 50◦ and are
subject to vary in sign over the upper range of θo. Figures 11.30a to 11.30f show that
the instantaneous DARF terms sometimes describe negative or positive trends over
the range θo, presumably due to opposite effects induced by the diverse influences
of surface albedo and aerosol single scattering albedo.
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11.5 Concluding remarks

A set of 40 aerosol models determined for different multimodal size-distributions
of particles and various radiative properties associated with diverse chemical com-
position and different origins of both dry and wet particulate matter, was used as
basis of an exhaustive analysis of the evaluations of instantaneous DARF terms
at the ToA- and BoA-levels and within the atmosphere. For this purpose, use was
made of two separate sets of surface reflectance models for oceanic, vegetated land,
bare soil (arid) areas and snow and ice-covered regions, which were determined
for both BRDF non-lambertian and isotropic reflectance characteristics yielding
comparable values of broadband albedo. Thus, the dependence patterns of instan-
taneous forcing terms ΔFToA, ΔFBoA and ΔFAtm were carefully investigated to
study how they vary as a function of (i) aerosol optical thickness determined for
different aerosol models, (ii) single scattering albedo of columnar aerosols, (iii) sur-
face reflectance characteristics and broadband albedo, and (iv) solar zenith angle
θo for different surface reflectance models. The results clearly indicate that:

(a) the three instantaneous DARF terms increase almost linearly as a function
of τa(0.55μm) over the various surfaces in all cases presenting poorly absorbing
aerosol polydispersions, and describe convex patterns (particularly marked for the
ΔFBoA and ΔFAtm terms), not only when strongly absorbing particles are com-
bined with oceanic surface reflectance models but also in cases where weakly ab-
sorbing aerosols are associated with high surface reflectance conditions. For greatly
variable aerosol and surface reflectance characteristics, the corresponding DARF
efficiency relative to ΔFToA was evaluated to range between −80Wm−2 per unit
variation of aerosol optical thickness τa(0.55μm) due to non-absorbing maritime
aerosol over oceans, and +400Wm−2 for heavy polluted urban aerosol polydis-
persions suspended over high-reflectance surfaces. In general, it was found that all
the three instantaneous DARF terms vary almost linearly for relatively low val-
ues of τa(0.55μm), especially in the presence of non-absorbing maritime or only
slightly absorbing continental aerosol particles (presenting values of ω∗ close to
unity) suspended over oceanic surfaces.

(b) The three instantaneous DARF terms were evaluated to vary almost linearly
as a function of weighted average parameter ω∗ for all the surface reflectance con-
ditions, evidencing that instantaneous forcing ΔFToA decreases as ω∗ increases
from ∼ 0.60 to about 1.00, with slope coefficient per unit variation of ω∗ that
was estimated to range between about −16Wm−2 and −520Wm−2 as one passes
from oceanic surfaces to polar ice-covered surfaces. Similarly, instantaneous forcing
ΔFBoA was evaluated to increase gradually as ω∗ increases until reaching nearly
null values for non-absorbing aerosols combined with all the surface reflectance con-
figurations defined in the present study. In contrast, instantaneous forcing ΔFAtm

was estimated to vary as a function of ω∗ and decrease gradually from values some-
times higher than + 150Wm−2 for the most absorbing aerosol polydispersions to
around null values for very poorly absorbing aerosols.

(c) The three instantaneous DARF terms were evaluated to vary considerably as a
function of surface reflectance characteristics and broadband albedo, with average
rates found for BRDF non-lambertian models that differ only slightly from those
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estimated for equivalent isotropic surface reflectance models. The increasing rate of
ΔFToA per unit variation in broadband albedo A(θo = 30◦) was estimated to range
between about +4Wm−2 for maritime clean aerosol and more than +230Wm−2

for polluted urban aerosol. Similar patterns were also determined for instantaneous
ΔFBoA presenting more pronounced rates, while more limited variations were esti-
mated to affect the instantaeous ΔFAtm, as shown in Figs. 11.28a to 11.28e.

(d) The three instantaneous DARF terms are subject to different rates of variation
as a function of solar zenith angle θo for different surface reflectance characteris-
tics. The dependence patterns of ΔFToA vary considerably throughout the day,
depending on both surface albedo conditions and aerosol single scattering albedo,
but do not present relevant differences between the estimates made for BDRF non-
lambertian models and those obtained for isotropic surface reflectance models in all
cases where θo does not appreciably exceed 50◦. Instantaneous forcing ΔFBoA was
found to exhibit generally negative values for both such surface reflectance config-
urations at values of θo increasing from 0◦ to around 50◦, while ΔFAtm assumed
positive values ranging between 0 and +200Wm−2 over the same range of θo.

The calculations made to estimate the instantaneous DARF terms ΔFToA, ΔFBoA

and ΔFAtm given in Tables 11.14a, 11.14b and 11.14c indicate that the discrepan-
cies between the evaluations made for the BRDF non-lambertian surface reflectance
models and those for isotropic (lambertian) models are not relevant for solar zenith
angle θo = 30◦. Considering the radiative transfer processes occurring during the
middle part of a measurement day at mid-latitude sites far from intense anthro-
pogenic aerosol sources and, hence, for τa(0.55μm) ≈ 0.10, it can be plausibly
assumed that the instantaneous DARF evaluations made at this measurement site
during the central hours of the day should do not differ appreciably from the evalu-
ations given in Tables 11.14a, 11.14b and 11.14c. For the purpose of evidencing the
relevance of the discrepancies between isotropic and BRDF non-lambertian evalua-
tions of the instantaneous DARF terms, a comparison was made in Figs. 11.31a and
11.31b showing the isotropic estimates of these three quantities versus the BRDF
non-lambertian evaluations, as obtained for a set of aerosol models giving values of
τa(0.55μm) equal to 0, 0.1, 0.3, 0.5, 0.7 and 0.9, and the values of θo = 0◦, 30◦, 60◦

and 70◦. The results shown in Fig. 11.31a pertain to the M-1 pure oceanic aerosol
model and the M-14 heavy polluted aerosol model, and clearly indicate that a close
relationship exists between the evaluations of ΔFToA, ΔFBoA and ΔFAtm made
for the isotropic and BRDF non-lambertian configurations of the four OS models
and four BS models. Appreciable underestimations of the isotropic evaluations of
ΔFToA (by more than 10Wm−2) were found at θo = 0◦ and θo = 30◦ mainly over
the negative range of this BRDF DARF term, followed by a closer agreement over
the residual positive range. Instantaneous isotropic evaluations of ΔFBoA agree
very well with those estimated using the BRDF non-lambertian models at both
θo = 0◦ and θo = 30◦, but turn out to be much overestimated for all the four OS
surface reflectance models to a variable extent decreasing from OS1 to OS4, while
a substantial agreement was found for all the four BS surface reflectance models,
also at θo = 60◦ and θo = 70◦. Similarly a close agreement was found between
isotropic and non-lambertian evaluations of instantaneous ΔFAtm at both θo = 0◦

and θo = 30◦, while more marked underestimations of isotropic ΔFAtm were found



610 Claudio Tomasi, Christian Lanconelli, Angelo Lupi, and Mauro Mazzola

T
a
b
le

1
1
.1
4
a
.
V
a
lu
es

o
f
in
st
a
n
ta
n
eo
u
s
D
A
R
F

te
rm

Δ
F
T
o
A
(m

ea
su
re
d
in

W
m
−
2
),

a
s
ca
lc
u
la
te
d
u
si
n
g
th
e
1
6
B
R
D
F

n
o
n
-l
a
m
b
er
ti
a
n
su
rf
a
ce

re
fl
ec
ta
n
ce

m
o
d
el
s
a
n
d

th
e
co
rr
es
p
o
n
d
in
g
eq

u
iv
a
le
n
t
is
o
tr
o
p
ic

su
rf
a
ce

re
fl
ec
ta
n
ce

m
o
d
el
s
(i
n

b
ra
ck
et
s)

d
efi

n
ed

in
th
e
p
re
se
n
t
st
u
d
y
fo
r
1
8

a
er
o
so
l
ex

ti
n
ct
io
n
m
o
d
el
s
ch
o
se
n
a
m
o
n
g
th
e
4
0
m
o
d
el
s
p
re
se
n
te
d
in

T
a
b
le
s
1
1
.1
–
1
1
.1
0
a
n
d
o
b
ta
in
ed

fo
r
so
la
r
ze
n
it
h
a
n
g
le

θ o
=

3
0
◦
a
n
d
a
er
o
so
l

o
p
ti
ca
l
th
ic
k
n
es
s
τ a
(0
.5
5
μ
m
)
=

0
.1
0

A
e
ro

so
l

S
u
rf
a
c
e
re
fl
e
c
ta

n
c
e
m
o
d
e
l

M
o
d
e
l

O
S
1

O
S
2

O
S
3

O
S
4

V
S
1

V
S
2

V
S
3

V
S
4

B
S
1

B
S
2

B
S
3

B
S
4

P
S
1

P
S
2

P
S
3

P
S
4

6
S
-C

-4
.2

-4
.2

-4
.2

-3
.7

-1
.6

-0
.1

0
.8

2
.0

1
.3

1
0
.7

1
1
.1

9
.1

2
2
.6

2
0
.5

1
3
.9

5
.4

(−
6
.8
)

(−
6
.9
)

(−
6
.7
)

(−
5
.7
)

(−
2
.6
)

(−
1
.6
)

(−
0
.9
)

(0
.3
)

(0
.6
)

(9
.1
)

(9
.5
)

(7
.6
)

(2
1
.7
)

(1
8
.7
)

(1
0
.4
)

(1
.3
)

6
S
-M

-5
.8

-5
.8

-5
.8

-5
.5

-4
.1

-3
.4

-3
.0

-5
.3

-2
.6

0
.9

1
.0

0
.4

1
.3

1
.8

1
.5

-1
.2

(−
8
.1
)

(−
8
.2
)

(−
8
.0
)

(−
7
.3
)

(−
5
.1
)

(−
5
.1
)

(−
4
.9
)

(−
4
.5
)

(−
3
.3
)

(−
0
.5
)

(−
0
.5
)

(−
1
.1
)

(0
.2
)

(−
0
.2
)

(−
2
.3
)

(−
5
.4
)

M
-1

-5
.7

-5
.7

-5
.7

-5
.5

-4
.0

-3
.5

-3
.2

-3
.0

-2
.8

-0
.3

-0
.3

-0
.6

-1
.5

-0
.7

-0
.2

-2
.0

(−
7
.9
)

(−
8
.0
)

(−
7
.9
)

(−
7
.2
)

(−
5
.1
)

(−
5
.3
)

(−
5
.2
)

(−
5
.0
)

(−
3
.6
)

(−
1
.8
)

(−
1
.8
)

(−
2
.1
)

(−
2
.8
)

(−
2
.9
)

(−
4
.1
)

(−
6
.3
)

M
-8

-4
.2

-4
.2

-4
.2

-3
.6

-1
.5

-0
.1

0
.8

2
.1

1
.3

1
0
.7

1
1
.1

9
.1

2
2
.5

2
0
.4

1
3
.9

5
.4

(−
6
.8
)

(−
6
.8
)

(−
6
.6
)

(−
5
.6
)

(−
2
.5
)

(−
1
.6
)

(−
0
.9
)

(0
.4
)

(0
.6
)

(9
.1
)

(9
.5
)

(7
.6
)

(2
1
.6
)

(1
8
.6
)

(1
0
.3
)

(1
.3
)

M
-1
4

-0
.5

-0
.5

-0
.5

0
.4

3
.3

5
.8

7
.3

9
.6

8
.1

2
5
.9

2
6
.6

2
2
.4

5
5
.6

4
9
.3

3
3
.2

1
6
.2

(−
3
.9
)

(−
3
.9
)

(−
3
.7
)

(−
2
.2
)

(2
.2
)

(4
.1
)

(5
.3
)

(7
.7
)

(7
.3
)

(2
4
.0
)

(2
4
.5
)

(2
0
.5
)

(5
4
.6
)

(4
7
.2
)

(2
9
.0
)

(1
1
.3
)

O
P
A
C
-U

R
3
.5

3
.4

3
.4

4
.0

6
.1

8
.0

9
.1

1
0
.9

9
.4

2
2
.1

2
2
.7

1
9
.6

4
6
.8

4
1
.2

2
7
.8

1
4
.9

(0
.6
)

(0
.4
)

(0
.6
)

(1
.6
)

(5
.0
)

(6
.1
)

(7
.1
)

(9
.0
)

(8
.6
)

(2
0
.3
)

(2
0
.7
)

(1
7
.9
)

(4
6
.0
)

(3
9
.5
)

(2
4
.3
)

(1
1
.0
)

O
P
A
C

M
P

0
.2

0
.2

0
.2

0
.3

0
.7

1
.1

1
.3

1
.6

1
.4

3
.5

3
.6

3
.1

7
.3

6
.5

4
.4

2
.3

(−
1
.9
)

(−
2
.2
)

(−
2
.2
)

(−
1
.8
)

(−
0
.5
)

(−
1
.1
)

(−
0
.8
)

(−
0
.3
)

(0
.6
)

(1
.8
)

(1
.7
)

(1
.4
)

(6
.5
)

(4
.9
)

(1
.5
)

(−
1
.1
)

O
P
A
C

A
R

2
.1

2
.1

2
.1

2
.5

3
.8

5
.1

5
.8

6
.9

6
.0

1
4
.5

1
4
.8

1
2
.8

3
0
.7

2
7
.0

1
8
.2

9
.7

(−
0
.5
)

(−
0
.7
)

(−
0
.6
)

(0
.2
)

(2
.7
)

(3
.0
)

(3
.8
)

(5
.1
)

(5
.3
)

(1
2
.7
)

(1
2
.9
)

(1
1
.0
)

(2
9
.9
)

(2
5
.3
)

(1
4
.9
)

(6
.0
)

O
P
A
C

A
N

-0
.3

-0
.3

-0
.3

-0
.3

-0
.2

-0
.2

-0
.2

-0
.2

-0
.1

0
.1

0
.1

0
.1

0
.1

0
.1

0
.2

0
.0

(−
2
.0
)

(−
2
.2
)

(−
2
.2
)

(−
2
.0
)

(−
1
.1
)

(−
1
.9
)

(−
1
.8
)

(−
1
.6
)

(−
0
.7
)

(−
1
.3
)

(−
1
.4
)

(−
1
.3
)

(−
0
.5
)

(−
1
.1
)

(−
2
.2
)

(−
2
.7
)

S
F
-R

-5
.0

-5
.1

-5
.1

-4
.6

-3
.0

-1
.8

-1
.2

-2
.2

-0
.8

6
.1

6
.4

5
.0

1
2
.7

1
1
.9

8
.2

2
.3

(−
7
.4
)

(−
7
.5
)

(−
7
.3
)

(−
6
.4
)

(−
3
.8
)

(−
3
.2
)

(−
2
.8
)

(−
1
.9
)

(−
1
.4
)

(4
.7
)

(4
.9
)

(3
.6
)

(1
1
.9
)

(1
0
.2
)

(4
.9
)

(−
1
.5
)

S
F
-U

1
.7

1
.6

1
.6

2
.6

6
.2

9
.2

1
1
.0

1
1
.3

1
1
.7

3
1
.5

3
2
.4

2
7
.9

6
6
.2

5
8
.6

3
9
.6

2
0
.2

(−
2
.0
)

(−
2
.0
)

(−
1
.8
)

(−
0
.2
)

(5
.0
)

(7
.3
)

(8
.8
)

(1
1
.6
)

(1
0
.7
)

(2
9
.4
)

(3
0
.2
)

(2
5
.9
)

(6
5
.0
)

(5
6
.3
)

(3
5
.1
)

(1
5
.0
)

S
F
-M

-6
.1

-6
.1

-6
.1

-5
.9

-4
.4

-3
.9

-3
.5

-3
.3

-3
.1

-0
.2

-0
.2

-0
.6

-1
.2

-0
.4

0
.0

-2
.0

(−
8
.4
)

(−
8
.5
)

(−
8
.3
)

(−
7
.6
)

(−
5
.4
)

(−
5
.5
)

(−
5
.4
)

(−
5
.2
)

(−
3
.8
)

(−
1
.6
)

(−
1
.7
)

(−
2
.1
)

(−
2
.4
)

(−
2
.5
)

(−
3
.8
)

(−
6
.3
)

S
F
-T

-5
.6

-5
.6

-5
.6

-5
.3

-4
.0

-3
.2

-2
.7

-3
.7

-2
.1

3
.9

4
.0

2
.8

8
.3

8
.0

5
.6

0
.8

(−
7
.8
)

(−
7
.8
)

(−
7
.7
)

(−
6
.9
)

(−
4
.7
)

(−
4
.4
)

(−
4
.1
)

(−
3
.4
)

(−
2
.6
)

(2
.6
)

(2
.7
)

(1
.5
)

(7
.6
)

(6
.5
)

(2
.5
)

(−
2
.7
)

S
D
-1

-4
.2

-4
.3

-4
.2

-3
.6

-0
.2

2
.1

3
.4

5
.1

3
.5

1
5
.3

1
6
.0

1
3
.5

3
2
.7

2
9
.3

1
9
.6

8
.1

(−
7
.7
)

(−
7
.8
)

(−
7
.6
)

(−
6
.3
)

(−
1
.7
)

(−
0
.3
)

(0
.6
)

(2
.4
)

(2
.5
)

(1
3
.2
)

(1
3
.7
)

(1
1
.3
)

(3
1
.2
)

(2
6
.6
)

(1
4
.7
)

(2
.7
)

P
V
-1

-5
.5

-5
.5

-5
.5

-5
.3

-4
.5

-4
.2

-4
.1

-3
.9

-3
.3

0
.2

0
.2

-0
.6

0
.1

0
.9

0
.9

-1
.4

(−
7
.3
)

(−
7
.3
)

(−
7
.2
)

(−
6
.6
)

(−
5
.1
)

(−
5
.2
)

(−
5
.1
)

(−
4
.9
)

(−
3
.8
)

(−
0
.9
)

(−
0
.9
)

(−
1
.6
)

(−
0
.4
)

(−
0
.4
)

(−
1
.7
)

(−
4
.4
)

P
V
-2

-5
.0

-5
.1

-5
.1

-4
.8

-3
.8

-3
.4

-3
.2

-5
.1

-2
.7

0
.1

0
.1

-0
.4

-0
.9

-0
.0

0
.5

-1
.3

(−
6
.9
)

(−
6
.9
)

(−
6
.8
)

(−
6
.2
)

(−
4
.5
)

(−
4
.6
)

(−
4
.6
)

(−
4
.4
)

(−
3
.2
)

(−
1
.0
)

(−
1
.1
)

(−
1
.5
)

(−
1
.7
)

(−
1
.7
)

(−
2
.7
)

(−
5
.0
)

P
V
-3

-7
.4

-7
.4

-7
.4

-7
.1

-5
.5

-4
.9

-4
.5

-7
.2

-4
.0

-0
.3

-0
.2

-0
.9

-1
.1

-0
.2

0
.2

-2
.4

(−
9
.9
)

(−
1
0
.0
)

(−
9
.9
)

(−
9
.0
)

(−
6
.6
)

(−
6
.7
)

(−
6
.6
)

(−
6
.3
)

(−
4
.8
)

(−
1
.9
)

(−
1
.9
)

(−
2
.5
)

(−
2
.3
)

(−
2
.3
)

(−
3
.8
)

(−
6
.9
)

B
L

-7
.1

-7
.1

-7
.1

-6
.7

-5
.3

-4
.5

-4
.1

-3
.5

-3
.2

4
.0

4
.1

2
.4

9
.8

9
.3

6
.1

0
.4

(−
9
.6
)

(−
9
.7
)

(−
9
.5
)

(−
8
.6
)

(−
6
.2
)

(−
6
.0
)

(−
5
.7
)

(−
5
.0
)

(−
3
.8
)

(2
.4
)

(2
.4
)

(1
.0
)

(9
.0
)

(7
.6
)

(2
.8
)

(−
3
.4
)



11 Dependence of direct aerosol radiative forcing 611

T
a
b
le

1
1
.1
4
b
.
V
a
lu
es

o
f
in
st
a
n
ta
n
eo
u
s
D
A
R
F

te
rm

Δ
F
B
o
A
(m

ea
su
re
d
in

W
m
−
2
),

a
s
ca
lc
u
la
te
d
u
si
n
g
th
e
1
6
B
R
D
F

n
o
n
-l
a
m
b
er
ti
a
n
su
rf
a
ce

re
fl
ec
ta
n
ce

m
o
d
el
s
a
n
d

th
e
co
rr
es
p
o
n
d
in
g
eq

u
iv
a
le
n
t
is
o
tr
o
p
ic

su
rf
a
ce

re
fl
ec
ta
n
ce

m
o
d
el
s
(i
n

b
ra
ck
et
s)

d
efi

n
ed

in
th
e
p
re
se
n
t
st
u
d
y
fo
r
1
8

a
er
o
so
l
ex

ti
n
ct
io
n
m
o
d
el
s
ch
o
se
n
a
m
o
n
g
th
e
4
0
m
o
d
el
s
p
re
se
n
te
d
in

T
a
b
le
s
1
–
1
0
a
n
d
o
b
ta
in
ed

fo
r
so
la
r
ze
n
it
h
a
n
g
le

θ o
=

3
0
◦
a
n
d
a
er
o
so
l

o
p
ti
ca
l
th
ic
k
n
es
s
τ a
(0
.5
5
μ
m
)
=

0
.1
0

A
e
ro

so
l

S
u
rf
a
c
e
re
fl
e
c
ta

n
c
e
m
o
d
e
l

M
o
d
e
l

O
S
1

O
S
2

O
S
3

O
S
4

V
S
1

V
S
2

V
S
3

V
S
4

B
S
1

B
S
2

B
S
3

B
S
4

P
S
1

P
S
2

P
S
3

P
S
4

6
S
-C

-1
6
.3

-1
6
.3

-1
6
.3

-1
5
.9

-1
4
.4

-1
3
.4

-1
2
.9

-1
2
.2

-1
2
.4

-6
.4

-6
.1

-7
.4

-0
.9

-1
.6

-4
.6

-9
.7

(−
1
8
.8
)

(−
1
8
.9
)

(−
1
8
.8
)

(−
1
8
.1
)

(−
1
5
.2
)

(−
1
4
.9
)

(−
1
4
.5
)

(−
1
3
.8
)

(−
1
3
.0
)

(−
7
.9
)

(−
7
.7
)

(−
8
.7
)

(−
1
.7
)

(−
3
.1
)

(−
7
.7
)

(−
1
3
.4
)

6
S
-M

-7
.4

-7
.5

-7
.4

-7
.2

-5
.4

-4
.6

-4
.1

-6
.6

-3
.8

-0
.1

0
.1

-0
.5

0
.4

0
.9

0
.4

-2
.5

(−
1
0
.7
)

(−
1
0
.8
)

(−
1
0
.7
)

(−
1
0
.0
)

(−
6
.8
)

(−
7
.0
)

(−
6
.8
)

(−
6
.3
)

(−
4
.7
)

(−
2
.0
)

(−
2
.0
)

(−
2
.4
)

(−
0
.8
)

(−
1
.3
)

(−
3
.6
)

(−
7
.1
)

M
-1

-5
.9

-6
.0

-6
.0

-5
.7

-3
.8

-3
.1

-2
.5

-2
.2

-2
.3

0
.8

1
.0

0
.6

0
.5

1
.1

1
.0

-1
.5

(−
9
.5
)

(−
9
.6
)

(−
9
.5
)

(−
8
.7
)

(−
5
.4
)

(−
5
.7
)

(−
5
.6
)

(−
5
.1
)

(−
3
.3
)

(−
1
.3
)

(−
1
.2
)

(−
1
.5
)

(−
0
.9
)

(−
1
.3
)

(−
3
.3
)

(−
6
.4
)

M
-8

-1
6
.2

-1
6
.2

-1
6
.2

-1
5
.8

-1
4
.3

-1
3
.4

-1
2
.8

-1
2
.1

-1
2
.3

-6
.3

-6
.1

-7
.3

-0
.9

-1
.6

-4
.6

-9
.7

(−
1
8
.7
)

(−
1
8
.8
)

(−
1
8
.8
)

(−
1
8
.0
)

(−
1
5
.2
)

(−
1
4
.8
)

(−
1
4
.5
)

(−
1
3
.7
)

(−
1
2
.9
)

(−
7
.9
)

(−
7
.7
)

(−
8
.7
)

(−
1
.7
)

(−
3
.1
)

(−
7
.7
)

(−
1
3
.3
)

M
-1
4

-2
8
.9

-2
8
.9

-2
8
.9

-2
8
.4

-2
6
.6

-2
5
.3

-2
4
.5

-2
3
.4

-2
4
.1

-1
5
.6

-1
5
.2

-1
7
.1

-2
.6

-5
.2

-1
2
.3

-2
0
.4

(−
3
1
.3
)

(−
3
1
.4
)

(−
3
1
.4
)

(−
3
0
.5
)

(−
2
7
.4
)

(−
2
6
.7
)

(−
2
6
.0
)

(−
2
4
.9
)

(−
2
4
.7
)

(−
1
7
.1
)

(−
1
6
.7
)

(−
1
8
.4
)

(−
3
.3
)

(−
6
.7
)

(−
1
5
.4
)

(−
2
4
.0
)

O
P
A
C
-U

R
-1
9
.7

-1
9
.7

-1
9
.7

-1
9
.5

-1
8
.5

-1
7
.6

-1
7
.1

-1
6
.4

-1
7
.2

-1
2
.7

-1
2
.4

-1
3
.4

-2
.5

-4
.9

-1
0
.6

-1
5
.5

(−
2
2
.1
)

(−
2
2
.2
)

(−
2
2
.1
)

(−
2
1
.6
)

(−
1
9
.3
)

(−
1
9
.0
)

(−
1
8
.6
)

(−
1
7
.8
)

(−
1
7
.8
)

(−
1
4
.2
)

(−
1
3
.9
)

(−
1
4
.7
)

(−
3
.1
)

(−
6
.4
)

(−
1
3
.6
)

(−
1
9
.1
)

O
P
A
C

M
P

-3
.5

-3
.5

-3
.5

-3
.4

-3
.1

-2
.9

-2
.8

-2
.7

-2
.8

-1
.9

-1
.8

-2
.0

-0
.4

-0
.7

-1
.6

-2
.5

(−
6
.6
)

(−
6
.6
)

(−
6
.6
)

(−
6
.0
)

(−
4
.4
)

(−
5
.0
)

(−
5
.2
)

(−
4
.9
)

(−
3
.6
)

(−
3
.7
)

(−
3
.8
)

(−
3
.8
)

(−
1
.4
)

(−
2
.7
)

(−
5
.3
)

(−
6
.8
)

O
P
A
C

A
R

-1
2
.9

-1
2
.9

-1
2
.9

-1
2
.8

-1
2
.1

-1
1
.5

-1
1
.2

-1
0
.7

-1
1
.2

-8
.2

-8
.0

-8
.7

-1
.6

-3
.2

-6
.8

-1
0
.1

(−
1
5
.6
)

(−
1
5
.7
)

(−
1
5
.6
)

(−
1
5
.1
)

(−
1
3
.0
)

(−
1
3
.2
)

(−
1
3
.0
)

(−
1
2
.5
)

(−
1
1
.9
)

(−
9
.8
)

(−
9
.7
)

(−
1
0
.2
)

(−
2
.4
)

(−
4
.9
)

(−
1
0
.2
)

(−
1
4
.0
)

O
P
A
C

A
N

-0
.4

-0
.4

-0
.4

-0
.4

-0
.3

-0
.3

-0
.3

-0
.2

-0
.2

0
.0

0
.0

0
.0

0
.0

0
.1

0
.1

-0
.1

(−
3
.0
)

(−
3
.1
)

(−
3
.0
)

(−
2
.6
)

(−
1
.2
)

(−
1
.8
)

(−
2
.0
)

(−
1
.9
)

(−
0
.8
)

(−
1
.5
)

(−
1
.6
)

(−
1
.4
)

(−
0
.7
)

(−
1
.5
)

(−
3
.1
)

(−
3
.8
)

S
F
-R

-1
2
.2

-1
2
.2

-1
2
.2

-1
1
.9

-1
0
.5

-9
.7

-9
.3

-1
0
.5

-8
.7

-3
.5

-3
.3

-4
.4

-0
.3

-0
.4

-2
.2

-6
.3

(−
1
4
.7
)

(−
1
4
.8
)

(−
1
4
.7
)

(−
1
4
.0
)

(−
1
1
.3
)

(−
1
1
.1
)

(−
1
0
.9
)

(−
1
0
.2
)

(−
9
.3
)

(−
5
.0
)

(−
4
.9
)

(−
5
.7
)

(−
1
.0
)

(−
1
.9
)

(−
5
.3
)

(−
9
.9
)

S
F
-U

-3
2
.2

-3
2
.3

-3
2
.2

-3
1
.8

-2
9
.7

-2
8
.1

-2
7
.2

-2
7
.6

-2
7
.1

-1
8
.3

-1
7
.7

-1
9
.6

-3
.4

-6
.6

-1
4
.8

-2
3
.6

(−
3
4
.8
)

(−
3
4
.9
)

(−
3
4
.8
)

(−
3
4
.0
)

(−
3
0
.6
)

(−
2
9
.6
)

(−
2
8
.9
)

(−
2
7
.5
)

(−
2
7
.7
)

(−
1
9
.8
)

(−
1
9
.3
)

(−
2
1
.0
)

(−
4
.1
)

(−
8
.2
)

(−
1
8
.0
)

(−
2
7
.3
)

S
F
-M

-6
.5

-6
.6

-6
.6

-6
.3

-4
.4

-3
.6

-3
.1

-2
.7

-2
.8

0
.7

0
.9

0
.4

0
.6

1
.2

1
.1

-1
.7

(−
9
.9
)

(−
1
0
.0
)

(−
9
.9
)

(−
9
.1
)

(−
5
.8
)

(−
6
.1
)

(−
5
.9
)

(−
5
.4
)

(−
3
.7
)

(−
1
.3
)

(−
1
.2
)

(−
1
.6
)

(−
0
.7
)

(−
1
.0
)

(−
3
.1
)

(−
6
.4
)

S
F
-T

-1
0
.5

-1
0
.5

-1
0
.5

-1
0
.2

-9
.0

-8
.4

-8
.1

-9
.2

-7
.4

-2
.4

-2
.2

-3
.3

0
.0

0
.2

-1
.1

-4
.9

(−
1
2
.9
)

(−
1
3
.0
)

(−
1
2
.9
)

(−
1
2
.2
)

(−
9
.8
)

(−
9
.7
)

(−
9
.4
)

(−
9
.0
)

(−
7
.9
)

(−
3
.8
)

(−
3
.7
)

(−
4
.5
)

(−
0
.6
)

(−
1
.2
)

(−
4
.0
)

(−
8
.3
)

S
D
-1

-2
1
.2

-2
1
.2

-2
1
.2

-2
0
.8

-1
7
.8

-1
6
.1

-1
5
.0

-1
4
.0

-1
5
.2

-8
.7

-8
.2

-9
.2

-1
.3

-2
.6

-7
.0

-1
3
.4

(−
2
4
.8
)

(−
2
4
.9
)

(−
2
4
.8
)

(−
2
3
.8
)

(−
1
9
.3
)

(−
1
8
.8
)

(−
1
8
.1
)

(−
1
6
.9
)

(−
1
6
.2
)

(−
1
0
.8
)

(−
1
0
.4
)

(−
1
1
.3
)

(−
2
.7
)

(−
4
.9
)

(−
1
1
.3
)

(−
1
8
.3
)

P
V
-1

-6
.3

-6
.3

-6
.3

-6
.0

-5
.2

-4
.8

-4
.7

-4
.4

-3
.9

0
.1

0
.1

-0
.8

0
.5

1
.1

0
.9

-1
.7

(−
8
.5
)

(−
8
.6
)

(−
8
.6
)

(−
7
.9
)

(−
5
.9
)

(−
5
.9
)

(−
5
.8
)

(−
5
.5
)

(−
4
.4
)

(−
1
.3
)

(−
1
.3
)

(−
1
.9
)

(−
0
.0
)

(−
0
.2
)

(−
1
.8
)

(−
5
.0
)

P
V
-2

-5
.5

-5
.5

-5
.5

-5
.2

-3
.9

-3
.3

-3
.0

-4
.9

-2
.6

0
.8

0
.9

0
.3

0
.7

1
.4

1
.4

-1
.0

(−
8
.2
)

(−
8
.3
)

(−
8
.2
)

(−
7
.5
)

(−
5
.0
)

(−
5
.2
)

(−
5
.1
)

(−
4
.7
)

(−
3
.2
)

(−
0
.8
)

(−
0
.8
)

(−
1
.2
)

(−
0
.1
)

(−
0
.3
)

(−
2
.0
)

(−
5
.0
)

P
V
-3

-8
.0

-8
.0

-8
.0

-7
.7

-5
.6

-4
.7

-4
.1

-6
.9

-3
.7

0
.7

0
.9

0
.2

0
.9

1
.6

1
.4

-2
.0

(−
1
1
.5
)

(−
1
1
.6
)

(−
1
1
.5
)

(−
1
0
.6
)

(−
7
.1
)

(−
7
.3
)

(−
7
.1
)

(−
6
.5
)

(−
4
.7
)

(−
1
.4
)

(−
1
.3
)

(−
1
.8
)

(−
0
.4
)

(−
0
.7
)

(−
3
.0
)

(−
7
.0
)

B
L

-1
2
.8

-1
2
.8

-1
2
.8

-1
2
.4

-1
1
.0

-1
0
.3

-9
.9

-9
.4

-9
.1

-3
.2

-3
.1

-4
.4

0
.0

0
.1

-1
.7

-6
.2

(−
1
5
.4
)

(−
1
5
.5
)

(−
1
5
.4
)

(−
1
4
.6
)

(−
1
1
.9
)

(−
1
1
.8
)

(−
1
1
.5
)

(−
1
0
.9
)

(−
9
.7
)

(−
4
.8
)

(−
4
.7
)

(−
5
.7
)

(−
0
.7
)

(−
1
.5
)

(−
4
.9
)

(−
9
.9
)



612 Claudio Tomasi, Christian Lanconelli, Angelo Lupi, and Mauro Mazzola

T
a
b
le

1
1
.1
4
c
.
V
a
lu
es

o
f
th
e
d
iff
er
en

ce
s
b
et
w
ee
n
th
e
va
lu
es

o
f
in
st
a
n
ta
n
eo
u
s
D
A
R
F

te
rm

Δ
F
A
tm

(m
ea
su
re
d
in

W
m
−
2
),

a
s
ca
lc
u
la
te
d
u
si
n
g

th
e
1
6
B
R
D
F

n
o
n
-l
a
m
b
er
ti
a
n
su
rf
a
ce

re
fl
ec
ta
n
ce

m
o
d
el
s
a
n
d
th
e
co
rr
es
p
o
n
d
in
g
eq

u
iv
a
le
n
t
is
o
tr
o
p
ic

su
rf
a
ce

re
fl
ec
ta
n
ce

m
o
d
el
s
(i
n
b
ra
ck
et
s)

d
efi

n
ed

in
th
e
p
re
se
n
t
st
u
d
y
fo
r
1
8
a
er
o
so
l
ex

ti
n
ct
io
n
m
o
d
el
s
ch

o
se
n
a
m
o
n
g
th
e
4
0
m
o
d
el
s
p
re
se
n
te
d
in

T
a
b
le
s
1
–
1
0
a
n
d
o
b
ta
in
ed

fo
r
so
la
r

ze
n
it
h
a
n
g
le

θ o
=

3
0
◦
a
n
d
a
er
o
so
l
o
p
ti
ca
l
th
ic
k
n
es
s
τ a
(0
.5
5
μ
m
)
=

0
.1
0

A
e
ro

so
l

S
u
rf
a
c
e
re
fl
e
c
ta

n
c
e
m
o
d
e
l

M
o
d
e
l

O
S
1

O
S
2

O
S
3

O
S
4

V
S
1

V
S
2

V
S
3

V
S
4

B
S
1

B
S
2

B
S
3

B
S
4

P
S
1

P
S
2

P
S
3

P
S
4

6
S
-C

1
2
.1

1
2
.1

1
2
.1

1
2
.2

1
2
.8

1
3
.3

1
3
.7

1
4
.2

1
3
.7

1
7
.1

1
7
.3

1
6
.4

2
3
.5

2
2
.1

1
8
.5

1
5
.1

(1
2
.0
)

(1
2
.0
)

(1
2
.1
)

(1
2
.4
)

(1
2
.7
)

(1
3
.3
)

(1
3
.6
)

(1
4
.1
)

(1
3
.6
)

(1
7
.0
)

(1
7
.2
)

(1
6
.3
)

(2
3
.4
)

(2
1
.8
)

(1
8
.1
)

(1
4
.7
)

6
S
-M

1
.6

1
.6

1
.6

1
.6

1
.4

1
.2

1
.1

1
.2

1
.2

1
.0

0
.9

0
.9

1
.0

0
.9

1
.0

1
.3

(2
.7
)

(2
.7
)

(2
.7
)

(2
.7
)

(1
.7
)

(1
.9
)

(1
.9
)

(1
.7
)

(1
.3
)

(1
.5
)

(1
.4
)

(1
.3
)

(1
.0
)

(1
.1
)

(1
.3
)

(1
.7
)

M
-1

0
.3

0
.3

0
.3

0
.2

-0
.2

-0
.5

-0
.7

-0
.9

-0
.5

-1
.1

-1
.2

-1
.2

-2
.0

-1
.8

-1
.2

-0
.5

(1
.6
)

(1
.6
)

(1
.6
)

(1
.5
)

(0
.3
)

(0
.4
)

(0
.4
)

(0
.1
)

(-
0
.3
)

(-
0
.5
)

(-
0
.6
)

(-
0
.6
)

(-
1
.8
)

(-
1
.6
)

(-
0
.7
)

(0
.1
)

M
-8

1
2
.0

1
2
.0

1
2
.0

1
2
.2

1
2
.7

1
3
.3

1
3
.6

1
4
.2

1
3
.6

1
7
.0

1
7
.2

1
6
.4

2
3
.4

2
2
.0

1
8
.5

1
5
.1

(1
2
.0
)

(1
2
.0
)

(1
2
.1
)

(1
2
.4
)

(1
2
.6
)

(1
3
.3
)

(1
3
.6
)

(1
4
.1
)

(1
3
.5
)

(1
7
.0
)

(1
7
.1
)

(1
6
.2
)

(2
3
.3
)

(2
1
.8
)

(1
8
.1
)

(1
4
.6
)

M
-1
4

2
8
.4

2
8
.3

2
8
.3

2
8
.8

2
9
.9

3
1
.1

3
1
.8

3
3
.0

3
2
.3

4
1
.5

4
1
.8

3
9
.4

5
8
.3

5
4
.5

4
5
.5

3
6
.6

(2
7
.5
)

(2
7
.5
)

(2
7
.7
)

(2
8
.3
)

(2
9
.6
)

(3
0
.8
)

(3
1
.4
)

(3
2
.5
)

(3
2
.0
)

(4
1
.0
)

(4
1
.2
)

(3
8
.9
)

(5
7
.9
)

(5
4
.0
)

(4
4
.4
)

(3
5
.3
)

O
P
A
C
-U

R
2
3
.1

2
3
.1

2
3
.1

2
3
.5

2
4
.5

2
5
.6

2
6
.2

2
7
.2

2
6
.6

3
4
.8

3
5
.1

3
3
.0

4
9
.3

4
6
.1

3
8
.3

3
0
.5

(2
2
.7
)

(2
2
.7
)

(2
2
.7
)

(2
3
.2
)

(2
4
.2
)

(2
5
.1
)

(2
5
.7
)

(2
6
.8
)

(2
6
.4
)

(3
4
.5
)

(3
4
.6
)

(3
2
.6
)

(4
9
.1
)

(4
5
.9
)

(3
7
.9
)

(3
0
.0
)

O
P
A
C

M
P

3
.7

3
.7

3
.7

3
.7

3
.9

4
.0

4
.1

4
.3

4
.2

5
.5

5
.5

5
.2

7
.7

7
.2

6
.0

4
.8

(4
.6
)

(4
.4
)

(4
.4
)

(4
.2
)

(3
.9
)

(3
.9
)

(4
.4
)

(4
.6
)

(4
.2
)

(5
.5
)

(5
.5
)

(5
.2
)

(7
.9
)

(7
.6
)

(6
.8
)

(5
.7
)

O
P
A
C

A
R

1
5
.0

1
5
.0

1
5
.0

1
5
.3

1
5
.9

1
6
.6

1
7
.0

1
7
.6

1
7
.3

2
2
.7

2
2
.8

2
1
.5

3
2
.3

3
0
.2

2
5
.0

1
9
.8

(1
5
.2
)

(1
5
.0
)

(1
5
.1
)

(1
5
.3
)

(1
5
.7
)

(1
6
.2
)

(1
6
.8
)

(1
7
.5
)

(1
7
.1
)

(2
2
.5
)

(2
2
.6
)

(2
1
.2
)

(3
2
.3
)

(3
0
.2
)

(2
5
.1
)

(2
0
.0
)

O
P
A
C

A
N

0
.1

0
.1

0
.1

0
.1

0
.1

0
.1

0
.1

0
.1

0
.1

0
.1

0
.1

0
.1

0
.0

0
.0

0
.1

0
.1

(1
.1
)

(0
.9
)

(0
.8
)

(0
.6
)

(0
.1
)

(-
0
.0
)

(0
.2
)

(0
.3
)

(0
.1
)

(0
.2
)

(0
.1
)

(0
.1
)

(0
.2
)

(0
.4
)

(0
.9
)

(1
.1
)

S
F
-R

7
.2

7
.2

7
.2

7
.2

7
.5

7
.9

8
.1

8
.3

8
.0

9
.7

9
.8

9
.4

1
3
.0

1
2
.3

1
0
.4

8
.7

(7
.3
)

(7
.3
)

(7
.4
)

(7
.6
)

(7
.5
)

(7
.9
)

(8
.1
)

(8
.4
)

(7
.9
)

(9
.7
)

(9
.8
)

(9
.3
)

(1
2
.9
)

(1
2
.1
)

(1
0
.2
)

(8
.5
)

S
F
-U

3
3
.9

3
3
.9

3
3
.9

3
4
.4

3
5
.9

3
7
.3

3
8
.2

3
8
.9

3
8
.7

4
9
.8

5
0
.2

4
7
.5

6
9
.5

6
5
.2

5
4
.4

4
3
.8

(3
2
.8
)

(3
2
.9
)

(3
3
.1
)

(3
3
.8
)

(3
5
.5
)

(3
6
.9
)

(3
7
.7
)

(3
9
.2
)

(3
8
.4
)

(4
9
.2
)

(4
9
.5
)

(4
6
.8
)

(6
9
.2
)

(6
4
.5
)

(5
3
.1
)

(4
2
.3
)

S
F
-M

0
.4

0
.4

0
.4

0
.4

-0
.0

-0
.3

-0
.4

-0
.6

-0
.3

-0
.9

-1
.1

-1
.0

-1
.8

-1
.6

-1
.1

-0
.4

(1
.6
)

(1
.6
)

(1
.7
)

(1
.6
)

(0
.4
)

(0
.6
)

(0
.5
)

(0
.2
)

(-
0
.1
)

(-
0
.4
)

(-
0
.5
)

(-
0
.5
)

(-
1
.7
)

(-
1
.5
)

(-
0
.7
)

(0
.1
)

S
F
-T

4
.9

4
.9

4
.9

4
.9

5
.1

5
.2

5
.3

5
.5

5
.3

6
.2

6
.3

6
.0

8
.2

7
.8

6
.7

5
.7

(5
.1
)

(5
.1
)

(5
.2
)

(5
.3
)

(5
.0
)

(5
.3
)

(5
.4
)

(5
.5
)

(5
.3
)

(6
.4
)

(6
.4
)

(6
.0
)

(8
.2
)

(7
.7
)

(6
.5
)

(5
.6
)

S
D
-1

1
7
.0

1
7
.0

1
7
.0

1
7
.2

1
7
.6

1
8
.2

1
8
.5

1
9
.1

1
8
.7

2
4
.0

2
4
.1

2
2
.7

3
4
.0

3
1
.8

2
6
.5

2
1
.5

(1
7
.0
)

(1
7
.1
)

(1
7
.2
)

(1
7
.5
)

(1
7
.7
)

(1
8
.5
)

(1
8
.8
)

(1
9
.3
)

(1
8
.6
)

(2
4
.0
)

(2
4
.1
)

(2
2
.6
)

(3
3
.9
)

(3
1
.6
)

(2
6
.1
)

(2
1
.0
)

P
V
-1

0
.8

0
.8

0
.8

0
.8

0
.7

0
.6

0
.6

0
.5

0
.6

0
.1

0
.1

0
.2

-0
.3

-0
.3

-0
.0

0
.4

(1
.3
)

(1
.3
)

(1
.4
)

(1
.4
)

(0
.7
)

(0
.7
)

(0
.7
)

(0
.6
)

(0
.6
)

(0
.4
)

(0
.3
)

(0
.3
)

(-
0
.4
)

(-
0
.2
)

(0
.1
)

(0
.5
)

P
V
-2

0
.4

0
.4

0
.4

0
.4

0
.1

-0
.1

-0
.2

-0
.2

-0
.2

-0
.7

-0
.8

-0
.8

-1
.6

-1
.4

-0
.9

-0
.3

(1
.4
)

(1
.4
)

(1
.5
)

(1
.4
)

(0
.4
)

(0
.6
)

(0
.5
)

(0
.2
)

(-
0
.0
)

(-
0
.2
)

(-
0
.3
)

(-
0
.3
)

(-
1
.6
)

(-
1
.3
)

(-
0
.7
)

(0
.0
)

P
V
-3

0
.6

0
.6

0
.6

0
.5

0
.1

-0
.2

-0
.4

-0
.3

-0
.2

-1
.0

-1
.1

-1
.0

-2
.0

-1
.8

-1
.1

-0
.3

(1
.5
)

(1
.6
)

(1
.7
)

(1
.6
)

(0
.5
)

(0
.6
)

(0
.5
)

(0
.2
)

(-
0
.1
)

(-
0
.5
)

(-
0
.6
)

(-
0
.6
)

(-
1
.9
)

(-
1
.6
)

(-
0
.9
)

(0
.0
)

B
L

5
.7

5
.7

5
.7

5
.7

5
.7

5
.8

5
.8

5
.9

5
.9

7
.2

7
.2

6
.8

9
.8

9
.2

7
.8

6
.6

(5
.8
)

(5
.8
)

(5
.9
)

(6
.0
)

(5
.6
)

(5
.8
)

(5
.8
)

(5
.9
)

(5
.9
)

(7
.2
)

(7
.1
)

(6
.7
)

(9
.7
)

(9
.1
)

(7
.6
)

(6
.5
)



11 Dependence of direct aerosol radiative forcing 613

at θo = 60◦ over the OS surfaces (by no more than 50Wm−2) and at θo = 70◦,
with discrepancies exceeding 150Wm−2 over the oceanic surfaces.

Similar results were obtained in Fig. 11.31b, prepared for the same aerosol
extinction models associated with the four VS and the four PS surface models
(presenting considerably higher surface reflectance properties than in Fig. 11.31a)
and the same set of four solar zenith angles. The instantaneous isotropic values of
ΔFToA determined at θo = 0◦ and θo = 30◦ were found to be greatly underesti-
mated with respect to the BRDF non-lambertian values over the negative range of
such a BRDF DARF term (by more than 60Wm−2 in the worst case, relative to a
polar surface) as well as over the residual positive range (by more than 40Wm−2 for
the polar surfaces). Similar although less marked discrepancies were also achieved
for the other cases with θo equal to 30◦, 60◦ and 70◦. The instantaneous isotropic
evaluations of ΔFBoA were found to agree closely with those obtained for the BRDF
non-lambertian surface reflectance models at both θo = 60◦ and θo = 70◦, but ex-
hibit values underestimated by around 10 to 20Wm−2 on average for θo = 30◦

and even more marked discrepancies for θo = 0◦, especially in the cases pertain-
ing to polar surfaces. A closer agreement was found for the instantaneous forcing
term ΔFAtm at all four angles θo, with discrepancies no greater than a few Wm−2

throughout its range from −50 to +300Wm−2.
The present calculation of the three instantaneous forcing terms appears to

be useful also for calculating the 24-hour average DARF terms applied to field
measurements of aerosol optical thickness performed using multi-wavelength sun-
photometer techniques and simultaneous in situ measurements of the particle size-
distribution curves and aerosol radiative parameters, from which the single scat-
tering albedo of airborne particulate matter can be experimentally derived. In
order to define more accurately the discrepancies between isotropic and BRDF
non-lambertian evaluations of ΔFToA, like those that could be used for determin-
ing the 24-hour average DARF terms (as planned in a further paper), the scatter
plots of isotropic ΔFToA versus the BDRF non-lambertian ΔFToA are presented in
Fig. 11.32. They were determined for (i) the 18 aerosol models shown in Figs. 11.27a
to 11.27e, (ii) the surface reflectance models OS2 (ocean surface), BS2 (bare soil
surface), VS2 (vegetated surface) and PS2 (polar surface), (iii) τa(0.55μm) = 0.10,
relative to a background content of columnar aerosols for clean-air atmospheric
transparency conditions, giving a visual range of more than 20 km, and (iv) solar
zenith angle θo = 30◦. The data clearly indicate that a close correlation exists be-
tween these evaluations of instantaneous isotropic and non-lambertian forcing term
ΔFToA for low atmospheric turbidity conditions, with only weakly underestimated
values of isotropic ΔFToA with respect to the corresponding non-lambertian esti-
mates, graphically evidenced along the bisecting lines of the four graphs. In fact,
the root-mean-square standard errors of estimate (SEE) are very small for such
low atmospheric turbidity conditions, being equal to ± 0.62Wm−2 for the OS2
ocean surface, ± 0.38Wm−2 for the BS2 arid terrain, ± 0.40Wm−2 for the VS2
vegetated surface, and ± 0.44Wm−2 for the PS2 polar surface.

However, bearing in mind that field measurements of aerosol optical thickness
can vary considerably throughout a field measurement day, due to the transport
of large desert aerosol loads suspended over both land and oceanic sites or that of
heavy columnar loads of polluted urban aerosols over remote regions, the present re-
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Fig. 11.32. Scatter plots of the values of instantaneous forcing ΔFToA calculated at
solar zenith angle θo = 30◦ for (i) the 18 aerosol models listed in Tables 11.14a, 11.14b
and 11.14c (with τa(0.55μm) = 0.10), and (ii) the four isotropic models OS2 (ocean
surface), BS2 (bare soil surface), VS2 (vegetated surface) and PS2 (polar surface) versus
the corresponding values of instantaneous ΔFToA calculated for the four equivalent BRDF
non-lambertian models. The values of the root-mean-square standard errors of estimate
(SEE) are also given in each panel.

sults indicate that the most reliable calculations of the instantaneous DARF terms
have to be performed using BRDF non-lambertian models of surface reflectance de-
fined with great accuracy, as recommended by Ricchiazzi et al. (2005). Using these
non-lambertian surface reflectance models, more suitable evaluations of the direct
radiative forcing effects induced by aerosols in the surface–atmosphere system can
be derived from the sets of field measurements of aerosol optical thickness and the
experimental evaluations of the main radiative parameters of columnar aerosol.
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Kaufman, Y. J., D. Tanré and O. Boucher (2002a), A satellite view of aerosols in the
climate system, Nature, 419, 6903, 215–223, doi:10.1038/nature01091.

Kaufman, Y. J. and I. Koren (2006), Smoke and pollution aerosol effect on cloud cover,
Science, 313, 5787, 655–658, doi: 10.1126/science.1126232.

Kiehl, J. T. and B. P. Briegleb (1993), The relative roles of sulfate aerosols and
greenhouse gases in climate forcing, Science, 260, 5106, 311–314, doi: 10.1126/sci-
ence.260.5106.311.

Kimes, D., W. W. Newcomb, C. J. Tucker, I. S. Zonneveld, W. Van Wijngaarden, J.
De Leeuw and G. F. Epema (1985), Directional reflectance factor distributions for
cover types of Northern Africa, Remote Sens. Environ., 18, 1–19, doi: 10.1016/0034-
4257(85)90034-3.

King, M., D. Harshvardhan and A. Arking (1984), A model of the radiative properties of
the El Chichon stratospheric aerosol layer, J. Clim. Appl. Meteor., 23, 7, 1121–1137.
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