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Preface

This volume presents the revised lecture notes of selected talks given at the fourth
Central European Functional Programming School, CEFP 2011, held during
June 14–24, in Budapest (Hungary) at Eötvös Loránd University, Faculty of
Informatics.

The summer school was organized in the spirit of the advanced programming
schools. CEFP involves an ever-growing number of students, researchers, and
teachers from across Europe, providing opportunities especially for students from
Central, and Eastern European countries.

The intensive program offered a creative, inspiring environment for presen-
tations and exchange of ideas on new specific programming topics. The lec-
tures covered a wide range of distributed and multicore functional programming
subjects.

We are very grateful to the lecturers and researchers for the time and effort
they devoted to their talks and lecture notes. The lecture notes were each care-
fully checked by reviewers selected from experts on functional programming. The
papers were revised by the lecturers based on the reviews. This revision process
guaranteed that only high-quality papers were accepted for the volume.

The last two papers in the volume are selected papers of the PhD Workshop
organized for the participants of the summer school.

We would like to express our gratitude for the work of all the members of the
Program Committee and the Organizing Committee.

The website for the summer school can be found at: http://plc.inf.elte.hu/cefp/.

March 2012 Viktória Zsók
Zoltán Horváth

Rinus Plasmeijer
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A Programming Tutor for Haskell

Johan Jeuring1,2, Alex Gerdes1, and Bastiaan Heeren1

1 School of Computer Science, Open Universiteit Nederland,
P.O. Box 2960, 6401 DL Heerlen, The Netherlands

{jje,age,bhr}@ou.nl
2 Department of Information and Computing Sciences, Universiteit Utrecht

Abstract. In these lectures we will introduce an interactive system that
supports writing simple functional programs. Using this system, students
learning functional programming:

– develop their programs incrementally,
– receive feedback about whether or not they are on the right track,
– can ask for a hint when they are stuck,
– see how a complete program is stepwise constructed,
– get suggestions about how to refactor their program.

The system itself is implemented as a functional program, and uses
fundamental concepts such as rewriting, parsing, strategies, program
transformations and higher-order combinators such as the fold. We will
introduce these concepts, and show how they are used in the implemen-
tation of the interactive functional programming tutor.

1 Introduction

How do you write a functional program? How can I learn it? Our answer to these
questions depends on who is asking. If it is a first-year bachelor computer science
student who just finished an introductory object-oriented programming course,
we would start with explaining the basic ideas of functional programming, and
set many small functional programming exercises for the student to solve. If it is
a starting computer science Ph.D. student with a basic knowledge of functional
programming, we would take a serious piece of software developed in a functional
programming language, analyse it, discuss the advanced concepts used in the
implementation, and set a task in which the software is extended or changed.
These answers are based on our (and others) experience as teachers: there is no
final answer (yet) to the question how programming is learned best, and what
makes programming hard [Fincher and Petre, 2004]. We borrow from research
that studies how complex cognitive skills are learned, in which the importance of
providing worked-out examples [Merriënboer and Paas, 1990], giving hints, and
giving immediate feedback on actions of students [Hattie and Timperley, 2007]
is emphasised.

These lecture notes address the question ‘How do you write a functional pro-
gram’ with the audience of advanced graduate students or starting Ph.D. stu-
dents in mind. The serious piece of software addresses the same question: ‘How

V. Zsók, Z. Horváth, and R. Plasmeijer (Eds.): CEFP 2011, LNCS 7241, pp. 1–45, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 J. Jeuring, A. Gerdes, and B. Heeren

do you write a functional program?’, but now with a first-year bachelor stu-
dent computer science in mind. We will introduce an intelligent functional pro-
gramming tutoring system for Haskell [Peyton Jones et al., 2003], using which a
student can:

– develop a program incrementally,
– receive feedback about whether or not she is on the right track,
– ask for a hint when she is stuck,
– can see how a complete program is stepwise constructed,
– get suggestions about how to refactor her program.

As far as we are aware, this is the first intelligent tutoring system for Haskell.
The implementation of the intelligent functional programming tutor uses

many advanced functional programming concepts. To support incremental de-
velopment of programs and refactoring, the tutor uses rewrite and refinement
rules. To give feedback about whether or not a student is on the right track
the tutor uses strategies to describe the various solutions, and parsing to follow
the student’s behaviour. To give hints to a student that is stuck, the system
uses several analysis functions on strategies, viewing a strategy as a context-free
grammar. These notes will introduce all of these concepts.

These notes are organised as follows. Section 2 introduces our intelligent func-
tional programming tutor by means of some example interactions. Section 3 gives
the architecture of the software for the tutor. Section 4 discusses rewrite and re-
finement rules and shows how they are used in the tutor. Section 5 introduces
strategies for solving functional programming problems. Section 6 introduces
our strategy language. Section 7 shows how we use techniques from parsing to
follow student behaviour, and to give hints to a student that is stuck. Section 8
discusses related and future work, and concludes.

2 A Programming Tutor for Haskell

This section introduces our intelligent functional programming tutoring system
by means of some interactions of a hypothetical student with the tutor. The
functional programming tutor is an example of an intelligent tutoring system
for the domain of functional programming. An intelligent tutoring system is an
environment that sets tasks for a student, and offers support to the student
when solving these tasks, by means of hints, corrections, and worked-out so-
lutions [VanLehn, 2006]. So the intelligent functional programming tutor sets
small functional programming tasks, and gives feedback in interactions with the
student.

2.1 Reverse

Elisa just started a course on functional programming, and has attended lectures
on how to write simple functional programs on lists. Her teacher has set a couple
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Fig. 1. The web-based functional programming tutor

of exercises from H-99: Ninety-nine Haskell Problems1, in particular problem 5:
reverse a list.

We now show a couple of possible scenarios in which Elisa interacts with the
tutor to solve this problem. A screenshot of the tutor is shown in Figure 1. At
the start of a tutoring session the tutor gives a problem description: Write a
function that reverses a list. For example:

Data.List〉 reverse "A man, a plan, a canal, panama!"

"!amanap ,lanac a ,nalp a ,nam A"

Data.List〉 reverse [1, 2, 3, 4 ]
[4, 3, 2, 1 ]

and displays the name of the function to be defined:

reverse = ⊥

The task of a student is to refine the incomplete parts, denoted by ⊥, of the
program. The symbol ⊥ is used as a placeholder for a hole in a program that
needs to be refined to a complete program. A student can use such holes to defer
the refinement of parts of the program. After each refinement, a student can ask
the tutor whether or not the refinement is bringing him or her closer to a correct
solution, or, if the student doesn’t know how to proceed, ask the tutor for a hint.
Besides holes, a student can also introduce new declarations, function bindings,
alternatives, and refine patterns.

1 http://www.haskell.org/haskellwiki/99_Haskell_exercises

http://www.haskell.org/haskellwiki/99_Haskell_exercises


4 J. Jeuring, A. Gerdes, and B. Heeren

Suppose Elisa has no idea where to start and asks the tutor for help. The
tutor offers several ways to help a student. For example, it can list all possible
ways to proceed solving an exercise. In this case, the tutor would respond with:

There are several ways you can proceed:
– Introduce a helper function that uses an accumulating parameter.
– Implement reverse using the foldl function.
– Use explicit recursion.

We assume here that a student has some means to obtain information about
concepts such as accumulated parameters that are mentioned in the feedback
texts given by the tutor. This information might be obtained via lectures, an
assistant, or lecture notes, or might even be included in the tutor at some later
stage. Among the different possibilities, the tutor can make a choice, so if Elisa
doesn’t want to choose, but just wants a single hint to proceed, she gets:

Introduce a helper function that uses an accumulating parameter.

Here we assume that the teacher has set up the tutor to prefer the solution that
uses a helper function with an accumulating parameter. Elisa can ask for more
detailed information at this point, and the tutor responds with increasing detail:

Define function reverse in terms of a function reverse’, which takes an
extra parameter in which the reversed list is accumulated.

with the final bottom-out hint:

Define:

reverse = reverse′ ⊥
where reverse′ acc = ⊥

At this point, Elisa can refine the function at multiple positions. In this exercise
we do not impose an order on the sequence of refinements. However, the tutor
offers a teacher the possibility to enforce a particular order of refinements. Sup-
pose that Elisa chooses to implement reverse′ by pattern matching on the second
argument, which is a list, starting with the empty list case:

reverse = reverse′ [ ]
where

reverse′ acc [ ] = ⊥

Note that this step consists of two smaller steps: the argument to reverse′ has
been instantiated to [ ], and the definition of reverse′ got an extra argument. She
continues with:

reverse = reverse′ [ ]
where

reverse′ acc [ ] = [ ]

The tutor responds with:

Incorrect [ ] in the right hand side of reverse’ on line 3
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Correcting the error, Elisa enters:

reverse = reverse′ [ ]
where

reverse′ acc [ ] = acc

which is accepted by the tutor. If Elisa now asks for a hint, the tutor responds
with:

Define the non-empty list case of reverse’

She continues with

reverse = reverse′ [ ]
where

reverse′ acc [ ] = acc
reverse′ acc (x : xs) = ⊥

which is accepted, and then

reverse = reverse′ [ ]
where

reverse′ acc [ ] = acc
reverse′ acc (x : xs) = reverse′ (y : acc) ⊥

which gives:

Error: undefined variable y

This is an error message generated by the compiler for the programming lan-
guage. Elisa continues with:

reverse = reverse′ [ ]
where

reverse′ acc [ ] = acc
reverse′ acc (x : xs) = reverse′ (x : acc) xs

Done! You have correctly solved the exercise.

The third model solution described at an abstract level in the hint at the start
of the exercise is the naive, quadratic time solution for reverse, implemented by
means of an explicit recursive definition:

reverse [ ] = [ ]
reverse (x : xs) = reverse xs ++ [x ]

If a student implements this version of reverse, the tutor can tell the student that
this is a correct definition of reverse, but that it is a quadratic time algorithm,
and that a linear-time algorithm is preferable.
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2.2 Integers within a Range

The next example we show is problem 22 from the Haskell 99 questions: Create
a list containing all integers within a given range. For example:

Data.List〉 range 4 9
[4, 5, 6, 7, 8, 9 ]

The Haskell 99 questions mentions six solutions to this problem; here is one:

range x y = unfoldr (λi → if i succ y then Nothing else Just (i, succ i)) x

This solution uses the unfoldr function defined by:

unfoldr :: (b → Maybe (a, b)) → b → [a ]
unfoldr f b = case f b of

Just (a, new b) → a : unfoldr f new b
Nothing → [ ]

Our system prefers the solution using unfoldr. If a student asks for a worked-out
solution, the system would respond with the derivation given in Figure 2.

These interactions show that our tutor can

– give hints about which step to take next, in various levels of detail,
– list all possible ways in which to proceed,
– point out that an error, such as a parse error, a dependency error (such as

using an unbound variable), or a type error has been made, and where the
error appears to be,

– show a complete worked-out example.

3 The Architecture of the Tutor

Our tutor can be accessed via a browser2. On the main page, a student selects an
exercise to work on (such as reverse). The tutor provides a starting point (⊥), and
the student can then start refining the ⊥ step-wise to a complete program that
implements reverse.While developing the program, a student can check that (s)he
is still on a path to a correct solution, ask for a single hint or all possible choices on
how to proceed at a particular stage, or ask for a worked-out solution.

The feedback thatwe offer, such as giving a hint, is derived froma strategy. Strat-
egies have a central role in our approach. We use strategies to capture the proce-
dure of how to solve an exercise. A strategy describes which basic steps have to be
taken, and how these steps are combined to arrive at a solution. In case of a func-
tional programming exercise, the strategy outlines how to incrementally construct
a program.We have developed an embedded domain-specific language for defining
such strategies. Our strategy language is described in detail in Section 6.

2 http://ideas.cs.uu.nl/ProgTutor/

http://ideas.cs.uu.nl/ProgTutor/
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range = ⊥
⇒ { Introduce parameters }

range x y = ⊥
⇒ { Use unfoldr }

range x y = unfoldr ⊥ ⊥
⇒ { Start at x }

range x y = unfoldr ⊥ x
⇒ { Introduce a lambda-abstraction }

range x y = unfoldr (λi → ⊥) x
⇒ { Introduce an if-then-else to specify a stop criterion }

range x y = unfoldr (λi → if ⊥ then ⊥ else ⊥) x
⇒ { Introduce the stop criterion }

range x y = unfoldr (λi → if i succ y then ⊥ else ⊥) x
⇒ { Return Nothing for the stop criterion }

range x y = unfoldr (λi → if i succ y then Nothing else ⊥) x
⇒ { Give the output value and the value for the next iteration }

range x y = unfoldr (λi → if i succ y then Nothing else Just (i, succ i)) x

Fig. 2. Derivation of the definition of range

The feedback functionality, which is based on strategies, is provided to exter-
nal environments as a web-service. Each time a student clicks a button such as
Check or Hint, our programming environment (the front-end) sends a service re-
quest [Gerdes et al., 2008] to our functional programming domain reasoner (the
back-end). The domain reasoner is stateless: all information the domain reasoner
needs is included in the service request. For example, a request to check a pro-
gram sends the strategy for solving the exercise (the strategy for reverse), and
the previous and new expression of the student to the diagnose feedback-service.
The following table describes the most relevant feedback services:

allfirsts. The allfirsts service returns all next steps that are allowed by a strat-
egy.

onefirst. The onefirst service returns a single possible next step that follows a
strategy. The functional programming domain reasoner offers the possibility
to specify an order on steps, to select a single step among multiple possible
steps.

derivation. The derivation service returns a worked-out solution of an exercise
starting with the current program.

finished. The finished service checks whether or not the program is accepted as
a final answer.

stepsremaining. The stepsremaining service returns the number of steps that
remain to be done according to the strategy. This is achieved by calculating
the length of the derivation returned by the derivation service.

diagnose. The diagnose service diagnoses a program submitted by a student.
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The diagnose feedback-service (and all our other feedback-services) uses the
Helium compiler for Haskell to calculate feedback. The Helium compiler has
been developed to give better feedback to students on the level of syntax and
types [Heeren et al., 2003]. We reuse Helium’s error messages when a student
makes a syntax-mistake, or develops a wrongly typed program. If a student
submits a syntax- and type-correct program, we analyse the submitted program
using the diagnose-service.

The diagnose-service takes the strategy, the previous program, and the current
program as arguments. It determines if the current program can be derived from
the previous program using any of the rules that are allowed by the strategy. The
diagnose service is flexible in the sense that a student may use different names
for locally defined entities, and different syntactic constructs for the same ex-
pression (let versus where, and many other equivalences). The diagnose-service
calculates a normal form of both the expected and the submitted programs, and
checks that the submitted program appears in the set of expected programs.
If the submitted program appears in the set of expected programs, the tutor
accepts the step, and responds positively. If it doesn’t, the tutor checks if the
program can be recognised by any of the known wrong approaches (typical er-
roneous solutions that we have encountered in student solutions), and if it can
reports this to student. Finally, if the student program cannot be recognised the
student is asked to try again3.

4 Rewriting and Refining

As the examples in the Section 2 show, a student develops a program by making
small, incremental, changes to a previous version of the program. Other common
scenarios in teaching programming are to give a student an incomplete program,
and ask him to complete the program, or to give a student a program, and
ask him to change the program at a particular point. In such assignments, a
student refines or rewrites a program. Rewriting preserves the semantics of a
program; refining possibly makes a program more precise. This section discusses
how students can refine and rewrite functional programs.

We offer a number of refinement rules to students. Section 2 already gives
some examples:

⊥ ⇒ λ⊥ → ⊥ Introduce lambda abstraction
⊥ ⇒ if ⊥ then ⊥ else ⊥ Introduce if-then-else
⊥ ⇒ v Introduce variable v

A hole represents a value, and such values may have different types. For exam-
ple, a hole may represent an expression, as in all of the above examples, or a
declaration, as in

⊥ ⇒ f ⊥ = ⊥ Introduce function binding

3 In Section 8 on future work we explain how we intend to relax this restriction in the
future.
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A refinement rule replaces a hole with a value of its type, which possibly contains
holes again. Internally, such a value is represented by a value of the datatype
representing the abstract syntax of a type. For example, the abstract syntax for
expressions would typically contain the following constructors:

data Expr = Lambda Pattern Expr
| If Expr Expr Expr
| App Expr Expr
| Var String
| Hole

and more. A refinement rule takes the same number of arguments as its ab-
stract syntax constructor. So the refinement rule introducing an if-then-else
expression takes three expression arguments. The arguments may be holes or
terms containing holes. As another example, the refinement rule that introduces
a lambda abstraction takes a pattern, and an expression (the body of the lambda
expression) as arguments. As a final example, the refinement rule that introduces
a variable takes the name of that variable (such as v in Figure 3) as an argument,
and returns an expression that does not contain a hole anymore. Note that the
variable introduced might be bound or unbound; refinement rules are unaware
of the binding structure of the language. The refinement rules are kept simple
and basically encapsulate a constructor.

A refinement rule refines a program on the level of the context-free syntax,
and not on the level of tokens, so, for example, we don’t have a rule that says
the⊥ ⇒ then.

Holes are the central concept in our refinement rules. Where can they appear?
Refinement rules refine:

– expressions, such as the ⊥ in λi → ⊥,
– declarations (the second ⊥ in reverse = reverse′ ⊥ where ⊥),
– function bindings (f [ ] = 0 ⇒ f [ ] = 0; f⊥ = ⊥),
– alternatives (case xs of [ ] → 0 ⇒ case xs of [ ] → 0; ⊥ → ⊥),
– patterns (case xs of ⊥ → ⊥ ⇒ case xs of [ ] → ⊥).

We do not introduce refinement rules for other syntactic categories such asmodules
or classes, because these concepts hardly show up in our beginners’ programs. Of
course, this might change when the range of applications of the tutor is extended.

How do we come up with a set of refinement rules? A simple solution would be
to take the context-free description of Haskell, and turn all productions into refine-
ment rules. However, this general approach leads to all kinds of unnecessary and
undesirable rules. For example, deriving a literal integer 4 using the context-free
grammar for Haskell takes many steps, but a student would only see ⊥ ⇒ 4. Our
leading argument is that a refinement rule should be useful to a student, in the
sense that it changes the way a program looks. Furthermore, the set of refinement
rules should completely cover the programming language constructs we want the
students to use, so that any program can be constructed using refinement rules.
Complete coverage of a set of rewrite rules is verified by checking that for every
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Declarations
patBind: ⊥ ⇒ ⊥ = ⊥
funBinds: ⊥ ⇒ ⊥

⊥
Function bindings

funBind: ⊥ ⇒ f⊥ = ⊥
Expressions

var: ⊥ ⇒ v
lit: ⊥ ⇒ l
app: ⊥ ⇒ ⊥ ⊥
lambda: ⊥ ⇒ λ⊥ → ⊥
case : ⊥ ⇒ case ⊥ of ⊥

Alternatives
alt: ⊥ ⇒ ⊥ → ⊥

Patterns
pVar: ⊥ ⇒ v
pWildcard: ⊥ ⇒

Fig. 3. Some refinement rules for functional programming in Haskell

datatype containing holes in the abstract syntax of programs (datatypes for ex-
pressions, declarations, function bindings, alternatives, and patterns, in our case),
there exist refinement rules from a hole to any other constructor of the datatype.
These refinement rules should be as ‘small’ as possible, in the sense that if wewould
further split such a rule, we cannot represent the corresponding programanymore,
since we cannot build an abstract syntax tree for a program that is halfway com-
pleting an abstract-syntax tree construction. For example, the if-then-else ex-
pression cannot be split into an if-then and an else part in Haskell. Preferably,
the refinement rules are derived from looking at interactions of students in an ed-
itor, but lacking a tutor, we use our experience as programmers and teachers as
a first approximation of the set of desirable refinement rules. We list some refine-
ment rules that are often used in Figure 3.

Some refinement steps are performed silently, and are combined with one or
more other refinement steps in a hint. For example, introducing an application
in a Haskell program amounts to typing a space. We expect that few beginning
students will view an application introduction as a step on its own, but instead
always supply either a function or an argument name. Our domain reasoner
offers the possibility to annotate a rule that is performed silently, by declaring
it as a minor rule. We use these minor rules to increase the step size, and avoid
showing steps like ⊥ ⇒ ⊥ ⊥. If application is declared to be a minor rule, a
user can refine a hole to an application of a particular function, such as unfoldr,
to one or more as yet unknown arguments. Minor rules are not only used for
increasing the step size, to avoid showing steps that make no sense to students,
but also to perform administrative tasks, such as modifying an environment that
we maintain next to the program.
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At the moment, our tutor mainly supports the incremental construction of a
program by means of refinement. However, it can also be used to rewrite a pro-
gram, preserving its semantics, but changing some other aspects. For example,
we might want to ask a student to change her program from using an explicit
recursive definition of reverse to a definition using foldl, as in

reverse = reverse′ [ ]
where

reverse′ acc [ ] = acc
reverse′ acc (x : xs) = reverse′ (x : acc) xs

⇒ { Definition of flip }
reverse = reverse′ [ ]

where
reverse′ acc [ ] = acc
reverse′ acc (x : xs) = reverse′ (flip (:) acc x) xs

⇒ { Definition of foldl }
reverse = reverse′ [ ]

where
reverse′ acc = foldl (flip (:)) acc

⇒ { Inline and β-reduce }
reverse = foldl (flip (:)) [ ]

To support such an exercise, each of our rewrite rules works both ways: we can
remove flip (:) by applying the definition of flip, or we can introduce it as in the
above derivation.

In the code for the tutor4, rules are specified in the file Domain/FP/Rules.hs.
The rules are specified as functions taking terms, which may contain holes, as
arguments. The rule introCase looks as follows:

case :: Expr → [Alt ] → Rule Expr
case e =

toRefinement "Introduce case" "case" ◦ Case e

where Case is a constructor of the datatype Expr, and toRefinement turns a de-
scription ("Introduce case"), an identifier (”case”), and a value of some type
into a Rule of that type. The precise definitions of the Rule, Expr and Alt data-
types are not important for these notes.

5 Strategies in Functional Programming

The basic steps for constructing a solution for a programming task are program
refinement rules introduced in the previous section. These rules typically replace
an unknown part, a hole, by some term. A program refinement rule can introduce
one or more new unknown parts. We are finished with an exercise as soon as

4 See http://ideas.cs.uu.nl/trac/wiki/Download

Domain/FP/Rules.hs
http://ideas.cs.uu.nl/trac/wiki/Download
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all unknown parts have been completed. How do we guide a student in making
progress to a complete solution?

Whatever aspect of intelligence you attempt to model in a computer program,
the same needs arise over and over again [Bundy, 1983]:

– The need to have knowledge about the domain.

– The need to reason with that knowledge.

– The need for knowledge about how to direct or guide that reasoning.

Our tutor is built for the domain of functional programming. It supports rea-
soning about functional programs by means of refinement and rewrite rules.
The knowledge about how to guide this reasoning is often captured by a so-
called procedure or procedural skill. A procedure describes how basic steps may
be combined to solve a particular problem. A procedure is often called a stra-
tegy (or meta-level reasoning, meta-level inference [Bundy, 1983], procedural
nets [Brown and Burton, 1978], plans, tactics, etc.), and we have chosen to use
this term.

A strategy for a functional program describes how a student should construct
a functional program for a particular problem. Some well-known approaches to
constructing correct programs are:

– specify a problem by means of pre- and post-conditions, and then calculate
a program from the specification, or provide an implementation and prove
that the implementation satisfies the specification [Hoare, 1969, Dijkstra,
1975],

– refine a specification by means of refinement rules until an executable pro-
gram is obtained [Back, 1987, Morgan, 1990],

– specify a problem by means of a simple but possibly very inefficient pro-
gram, and transform it to an efficient program using semantics-preserving
transformation rules [Bird, 1987, Meertens, 1986].

If we would use one of the first two approaches in a programming tutor that
can give hints to students on how to proceed, we would have to automatically
construct correctness proofs, a problem that is known to be hard. The last ap-
proach has been studied extensively, and several program transformation systems
have been developed. However, our main goal is to refine instead of transform
programs, since this better reflects the activities of beginning programmers. To
support program refinement in a tutor, we limit the solutions that are accepted
by the tutor.

Our tutor supports the incremental construction, in a top-down fashion, of
model solutions. It recognises incomplete versions of these solutions, together
with all kinds of syntactical variants. We support the refinement of programs,
but instead of showing that a program ensures a post-condition, we assume a
program to be correct if we can determine it to be equal to a model solution.

This section introduces strategies, and shows how we formulate strategies for
functional programming.
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5.1 Strategies for Procedural Skills

A procedure often consists of multiple steps. For example, developing a function
for reverse requires developing the complete program, which in the case of an
explicit recursive definition consists of a case distinction between the empty list
and the non-empty list, and a recursive call in the non-empty list case, amongst
others. A procedure may also contain a choice between different (sequences of)
steps. For example, we can choose to either use foldl, or an explicit recursive
definition for reverse. Sometimes, the order in which the steps are performed is
not relevant, as long as they are performed at some point.

We have developed a strategy language for describing procedures as rewrite
strategies [Heeren et al., 2008]. Our strategy language is domain independent, and
has been used to describe strategies for exercises in mathematics, logic, biology,
and programming. The basic elements of the strategy language are rewrite rules
or refinement rules. We use rewrite rules for exercises in mathematics, logic, and
biology. Refinement rules are rewrite rules that may contain holes, and are used in
the programming domain. The strategy language supports combining strategies by
means of strategy combinators. For example, if s and t are strategies, then so are:

s <|> t choice: do either s or t
s <�> t sequence: do s before t
s <%> t interleave: steps from s and t are performed in some order

Furthermore, we have a strategy fail, which always fails (the unit of choice), and
a strategy succeed, which always succeeds (the unit of sequence). Section 6 gives
a complete description of our strategy language and combinators. The contents
of this section is not necessary for understanding the contents of Section 6, and
readers interested in the strategy language only can skip this section.

5.2 Strategies for Functional Programs

For any programming problem, there are many solutions. Some of these solutions
are syntactical variants of each other, but other solutions implement different
ideas to solve a problem. We specify a strategy for solving a functional program-
ming problem by means of model solutions for that problem. We can automat-
ically derive a strategy from a model solution. A model solution is compiled
into a programming strategy by inspecting its abstract syntax tree (AST), and
matching the refinement rules with the AST. This is a standard tree matching
algorithm, which yields a strategy that can later be adapted by a teacher for his
own purposes. The strategies for the various model solutions are then combined
into a single strategy using the choice combinator. So, for the reverse exercise
from Section 2 we would get a single strategy combining the three strategies for
the model solutions. For example, here is a strategy that is compiled from the
definition of reverse in terms of foldl:

patBind
<�> pVar "reverse"
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<�> app <�> var "foldl"
<�> ( (paren <�> app <�> var "flip"

<�> infixApp <�> con "(:)"

)
<%> con "[]"

)

There are several things to note about this strategy. The ordering of the rules by
means of the sequence combinator <�> indicates that this strategy for defining
reverse recognises the top-down construction of reverse. Since we use the inter-
leave combinator <%> to separate the arguments to foldl, a student can develop
the arguments to foldl in any order. This strategy uses three rules we did not
introduce in the previous section, namely infixApp, which introduces an infix
application, con, which introduces a constructor of a datatype, and paren. The
rule paren ensures that the first argument of foldl is in between parentheses. The
hole introduced by this rule is filled by means of the strategy that introduces
flip (:). The rule paren is minor, so when we give a hint for this part of the
program, we don’t just introduce parentheses, but also the function flip (and the
invisible application operator, which is also introduced by a minor rule). Since
rules correspond to abstract syntax tree constructors, this shows that our ab-
stract syntax also contains constructors that represent parts of the program that
correspond to concrete syntax, such as parentheses. This way we can also guide
a student in the concrete syntax of a program. However, we might also leave
concrete syntax guidance to the parsing and type-checking phase of Helium.

If the above strategy would be the complete strategy for defining reverse, then
a student would only be allowed to construct exactly this definition. This would
almost always be too restrictive. Therefore, we would typically use a strategy
that combines a set of model solutions. However, our approach necessarily limits
the solutions accepted by the tutor: a solution that uses an approach funda-
mentally different from the specified model solutions will not be recognised by
the tutor. Depending on the model solutions provided, this might be a severe
restriction. However, in experiments with lab exercises in a first-year functional
programming course [Gerdes et al., 2010], we found that our tutor recognises
almost 90% of the correct student programs by means of a limited set of model
solutions. The remaining 10% of correct solutions were solutions ‘with a smell’:
correct, but using constructs we would never use in a model solution. We expect
that restricting the possible solutions to programming problems is feasible for
beginning programmers. It is rather uncommon that a beginning programmer
develops a new model solution for a beginners’ problem.

We discuss how to recognise as many variants of a solution as possible in the
next two subsections. Subsection 5.3 describes strategies for Haskell’s prelude,
and Subsection 5.4 discusses a canonical form of Haskell programs.

5.3 Strategies for Haskell’s Prelude

To recognise as many syntactic variants as possible of (a part of) a solution
to a programming problem, we describe a strategy for functional programming
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at a high abstraction level. For example, we define special strategies foldlS and
flipS for recognising occurrences of foldl and flip in programs. The strategy flipS
not only recognises flip itself, but also its definition, which can be considered
an inlined and β-reduced version of flip. The strategy flipS takes a strategy as
argument, which recognises the argument of flip.

flipS fS = app <�> var "flip" <�> fS
<|> lambda <�> pVar x <�> pVar y

<�> app <�> fS <�> (var y <%> var x)

The variable names x and y, used in the lambda-abstraction, are fresh and do
not appear free in fS, in order to avoid variable capturing. The flipS (con "(:)")
strategy recognises both flip (:) itself, and the β-reduced, infix constructor, form
λxs x → x : xs. The flipS strategy is used in a strategy reverseS for a model
solution for reverse as follows:

reverseS = foldlS (paren <�> flipS consS) nilS
where

consS = infixApp <�> con "(:)"

nilS = con "[]"

It is important to specify model solutions for exercises using abstractions avail-
able in Haskell’s prelude like foldl, foldr, flip, etc, if applicable. In the reverseS
example we have for example used both foldlS and flipS. If a student would
use these abstractions in a solution, where a model solution wouldn’t, then the
student’s program wouldn’t be accepted. A large part of the Haskell prelude is
available in our strategy language. For any function in the prelude, a student
may either use the function name itself in her program, such as for example (◦),
or its implementation, such as λf g x → f (g x). The strategies for functions in
the prelude also contain some conversions between abstractions, such as

foldl op e foldr (flip op) e ◦ reverse

So, if a function that is specified by means of a foldl is implemented by means
of a foldr together with reverse, this is also accepted. Of course, students can
introduce their own abstractions.

A strategy cannot capture all variations of a program that a student can
introduce. For example, the fact that a student uses different names for variables
is hard, if not impossible, to express in a strategy. However, we do want to give
a student the possibility to use her own variable names. We use normalisation
to handle such kinds of variations. If a student introduces her own foldr, possibly
using a different name, normalisation will successfully compare this against a
model solution using the prelude’s foldr.

5.4 A Canonical Form for Haskell Programs

The diagnose service checks whether or not a student submissions follows a strat-
egy. To verify that a program submitted by a student follows a strategy, we apply
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all rules allowed by the strategy to the previous submission of the student (which
is also passed to the diagnose service), normalise the programs thus obtained, and
compare each of these programs against the normalised submitted student pro-
gram. Using normalisation, which returns a canonical form of a program, we want
to recognise as many syntactical variants of Haskell programs as possible. For ex-
ample, sometimes a student doesn’t explicitly specify all arguments to a function,
and for that purpose we use η-reduction when analysing a student program:

λx → f x ⇒ f

Normalisation uses various program transformations to reach a canonical form
of a Haskell program. We use amongst others inlining, α-renaming, β- and η-
reduction, and desugaring program transformations. Our normalisation proce-
dure starts with α-renaming, which gives all bound variables a fresh name. Then
it desugars the program, restricting the syntax to a (core) subset of the full
abstract syntax. The next step inlines local definitions, which makes some β-
reductions possible. Finally, normalisation performs β- and η-reductions in ap-
plicative order (leftmost-innermost) and normalises a program to β-normal form.

In the remainder of this section we show some of the program transformations
and discuss the limitations of our normalisation.

Desugaring. Desugaring removes syntactic sugar from a program. Syntactic su-
gar is usually introduced to conveniently write some kind of programs, such as
writing λx y → . . . for λx → λy → . . . Syntactic sugar does not change the
semantics of a program. However, if we want to compare a student program
syntactically against (possibly partially complete) model solutions we want to
ignore syntactic sugar. Desugaring consists of several program transformations
such as removing superfluous parentheses, rewriting a where expression to a let
expression, moving the arguments of a function binding to a lambda abstraction
(e.g., f x = y ⇒ f = λx → y), and rewriting infix operators to (prefix) functions.
The following derivation shows how a somewhat contrived example is desugared:

reverse = foldl f [ ] where f x y = y : x
⇒ { where to let }

reverse = let f x y = y : x in foldl f [ ]
⇒ { Infix operators to (prefix) functions }

reverse = let f x y = (:) y x in foldl f [ ]
⇒ { Function bindings to lambda abstractions }

reverse = let f = λx → y → (:) y x in foldl f [ ]
In the following paragraph on inlining we will see how the declaration of f is
inlined in the foldl-expression.

Inlining. Inlining replaces a call to a user-defined function by its body. We
perform inlining to make β-reduction possible. For example,

reverse = let f = λx → λy → (:) y x in foldl f [ ]
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⇒ { Inline }
reverse = foldl (λx → λy → (:) y x) [ ]

Constant arguments. An argument is constant if it is passed unchanged to all
recursive function calls. Compilers often optimise such constant arguments away,
to save space and increase speed. Consider the following naive implementation
of the higher-order function foldr:

foldr op b [ ] = b
foldr op b (x : xs) = x ‘op‘ foldr op b xs

This implementation has two constant arguments: op and b. A better implemen-
tation is:

foldr op b = f
where f [ ] = b

f (x : xs) = x ‘op‘ f xs

The above definition is the standard definition for foldr from the Haskell prelude.
Our goal with this transformation is not to optimise programs, but instead to
increase the number of possibilities to apply β-reduction. Note that we do not
inline recursive functions. Recursive functions are rewritten in terms of fix, which
does not get β-reduced. However, the constant arguments of a recursive function
can be β-reduced. The optimisation of a recursive function with constant argu-
ments, such as the naive foldr function, separates the recursive (f in the example)
from the non-recursive part of a function. Therefore, only after optimising con-
stant arguments away does it help to inline the function. The optimised version
of foldr will be inlined, but the recursive help function f will not be inlined.

Lambda calculus reductions. At the heart of our normalisation are program trans-
formations based on the λ-calculus.

We use α-conversion to rename bound variables. To check that a program is
syntactically equivalent to a model solution, we α-convert both the submitted
student program as well as the model solution. α-conversion ensures that all
variable names are unique. This simplifies the implementation of other program
transformation steps, such as β-reduction, due to the fact that substitutions
become capture avoiding.

η-reduction reduces a program to its η-short form, trying to remove as many
lambda abstractions as possible. η-reduction replaces λx → f x by f if x does
not appear free in f .

Finally, we apply β-reduction. β-reduction takes the application of a lambda
abstraction to an argument, and substitutes the argument for the lambda-ab-
stracted variable: (λx → expr) y ⇒β expr[x := y]. The substitution [x := y ]
replaces all free occurrences of the variable x by the expression y. For example,
using β-reduction we get:

(λf x y → f y x) (:) ⇒ λx y → (:) y x
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Although we don’t expect a student to write a program containing a β-redex,
this happens in practice.

Discussion. Correctness of a normalisation procedure depends on several as-
pects [Filinski and Korsholm Rohde, 2004]. A normalisation procedure is

– sound if the output term, if any, is β-equivalent to the input term,
– standardising if equivalent terms are mapped to the same result,
– complete if normalisation is defined for all terms that have normal forms.

We claim that our normalisation procedure is sound and complete but not stan-
dardising, but we have yet to prove this. The main reason for our normalisation
procedure to be non-standardising is that we do not inline and β-reduce recur-
sive functions. For example, while the terms take 3 [1 . . ] and [1, 2, 3 ] are equiva-
lent, the first will not be reduced by normalisation. Therefore, these terms have
different normalisation results. We do not incorporate β-reduction of recursive
function because this might lead to non-terminating normalisations.

We could extend our normalisation procedure with several other transforma-
tions, such as permuting function arguments, or swapping components of pairs,
but haven’t done so yet.

Normalisation by evaluation (NBE) [Berger et al., 1998] is an alternative ap-
proach to normalisation. NBE evaluates a λ-term to its (denotational) semantics
and then reifies the semantics to a λ-term in β-normal and η-long form. The
difference with our, more traditional, approach to normalisation is that NBE
appeals to the semantics (by evaluation) of a term to obtain a normal form.
The main goal of NBE is to efficiently normalise a term. We are not so much
interested in efficiency, but it may well be that NBE improves standardisation
of normalisation.

5.5 Relating Strategies to Locations in Programs

A program is constructed incrementally, in a top-down fashion. When starting
the construction of a program there is usually a single hole. During the devel-
opment, refinement rules introduce and refine many holes. For example, the app
refinement rule introduces two new holes: one for an expression that is of a func-
tion type, and one for an expression that is the argument of that function. When
used in a strategy for developing a particular program, a refinement rule always
targets a particular location in the program. For example, the refinement rule
that introduces the base argument expression in an foldl application cannot be
applied to an arbitrary expression hole, but should be applied at exactly the
location where the argument is needed in the program. In the next example this
is the second expression hole (counted from left to right):

foldl (flip ⊥) ⊥ ⇒ foldl (flip ⊥) some argument

To target a particular location in a program, every refinement rule is extended
with information about the location of the hole it refines. A rewrite rule, on the
other hand, may be applicable to more than one location in the AST.
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When defining a strategy for developing a functional program, we need to
relate the holes that appear in the refinement rules to the strategies that are used
to refine these holes. For example, the holes introduced by the app refinement
rule need to be connected to rules that refine them. Recall that our refinement
rules just encapsulate a constructor of an abstract syntax datatype in a rule. For
instance, the app rule encapsulates the App constructor from the Expr datatype
in an expression refinement rule:

app :: Expr → Expr → Rule Expr
app f x = toRefinement "Introduce application" "app" (App f x)

The app refinement rule applies App to two expression holes. These holes should
be connected to the rules that are going to refine them. The first might for
example be a var :: String → Expr refinement rule that introduces a prelude
function, as in var "length". The hole expression and the var rule have to
be connected. We achieve this connection by giving a hole an identifier and
specialising a rule only to be applicable to a hole with that particular identifier.
We extend the Hole constructors of the various abstract syntax datatypes with
an identifier field. For example, the Hole constructor of the Expr data type is
extended as follows:

type HoleID = Int
data Expr = Hole HoleID | . . .

When combining refinement rules in a strategy, we do not only specify the re-
finement rule, but also the identifier of the hole it is going to refine. We define
a datatype that combines a term containing one or more holes and a strategy
that refines the holes in that term:

data Refinement a = Ref {term :: a, strat :: Strategy a}

Here is an example value of this datatype for a strategy that introduces the
application of the prelude function length to the empty list [ ]:

Ref (App (Hole 1) (Hole 2)) (var1 "length" <%> con2 "[]")

The refinement rule is annotated with the identifier of the hole it should refine.
So, the refinement rule var1 is only applicable to a hole with identifier 1. The
actual numbering of holes takes place in a state monad:

type RefinementS a = State Int (Refinement a)

After evaluating the state monad, every hole has a unique number. We define a
function bindRefinement to bind a rule to a hole:

bindRefinement :: Rule a → RefinementS a

This function takes a rule and returns, in the state monad, a term together
with the strategy consisting of the argument rule. The bindRefinement function
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ensures that the refinement rule is applied to the right hole. We use generic
programming techniques to locate a particular hole in an AST, but we omit the
details.

Since strategy combinators combine rules, the combinators have to be aware of
the relations between refinement rules and holes, and adapt them appropriately
whenever rules are combined. For example, when combining two programming
strategies by means of the choice combinator, both substrategies should refine
the same hole. Since the concepts of refinement rules and holes are special for the
programming domain, and do not appear in most of the other domains we have
studied, we define lifted versions of the combinators introduced in Subsection 5.1
that deal with the relations between refinement rules and holes. For example, the
lifted version of the choice combinator uses a ‘plain’ choice combinator to com-
bine the substrategies, and updates the relation between holes and substrategies.
A refinement rule is only applicable when the holes it refines are present in the
AST. For instance, in the strategy for the application of the length function to
the empty list, the app refinement rule is applied before the var "length" rule.
We use the sequence combinator to enforce the order in which the refinements
have to take place. When sequencing two programming substrategies, we ensure
that the first substrategy refines to a term that can be refined by the second
substrategy.

Relating holes and refinement rules using holes with identifiers has some conse-
quences for the implementation of our functional programming domain reasoner.
For the other domains we have developed, the domain reasoners operate on the
term that has been submitted by the student. In the functional programming
domain reasoner, however, we get an AST with holes without identifiers when
we parse a student submission, due to the fact that the concrete syntax does
not contain hole identifiers. Since we need holes with identifiers as specified in
the strategy, we use information about the steps that a student has taken so
far. We use the strategy and these steps to reconstruct the AST with the cor-
rect hole identifiers, which we can compare against the program of the student.
Reconstructing the AST is easy because information about previous steps is
maintained and communicated back and forth between the front- and back-end.

6 A Strategy Language

In the previous section we introduced strategies and strategy combinators infor-
mally. This section defines the semantics of these combinators, and the laws they
satisfy. Our strategy language is very similar to the language for specifying
context-free grammars (CFGs), and we will describe the equivalent concepts when
applicable. This strategy language has been used extensively in domain reasoners
for various mathematical domains [Heeren et al., 2008, Heeren and Jeuring, 2008,
2009, 2010, 2011].

We use a collection of standard combinators to combine strategies, result-
ing in more complex strategy descriptions. The semantics of the combinators
is given in terms of the language of a strategy. The language of a strategy is
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a set of sentences, where each sentence is a sequence of refinement or rewrite
rules. We use a, b, c,... to denote symbols, and x, y, z for sentences (sequences of
such symbols). As usual, we write ε for the empty sequence, and xy (or ax) for
concatenation. Function L generates the language of a strategy, by interpreting
it as a context-free grammar.

6.1 Rules

The basic components of our strategy language, the alphabet, are the rewrite
and refinement rules. The language of a strategy consisting of a single rule is
just that rule:

L (r) = {r}

6.2 Choice

The choice combinator <|> allows solving a problem in two different ways.
In CFGs, choice is introduced by having multiple production rules for a non-
terminal symbol, which can be combined by means of the |-symbol, which ex-
plains our notation. The language generated by choice is the union of the lan-
guages of the arguments:

L (s <|> t) = L (s) ∪ L (t)

The fail combinator is a strategy that always fails. Its set of sentences is empty:

L (fail) = ∅

It is a unit element of <|>:
fail <|> s = s
s <|> fail = s

6.3 Sequence

Often, a program is developed in a particular order: when developing the ap-
plication of a function to an argument, we usually first develop the function,
and only then the argument. So if fS is a strategy for developing f , and eS is a
strategy for developing e, to develop f e, we first perform fS and then eS. Thus
the development of this program follows a particular order. The sequence combi-
nator, denoted by <�>, applies its second argument strategy after its first, thus
allowing programs that require multiple refinement steps to be applied in some
order. The right-hand side of a production rule in a CFG consists of a sequence
of symbols. The sentences in the language of sequence are concatenations of
sentences from the languages of the component strategies:

L (s <�> t) = {xy | x ∈ L (s), y ∈ L (t)}
The succeed combinator is a strategy that always succeeds. Its set of sentences
contains just the empty sentence:

L (succeed) = {ε}
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The fail combinator is a zero element of <�>, and succeed is a unit element:

fail <�> s = fail
s <�> fail = fail

succeed <�> s = s
s <�> succeed = s

6.4 Interleave

In a case-expression like

case xs of
[ ] → ⊥
x : xs → ⊥

a student may refine any of the two right-hand sides, in any order. She may even
interleave the refinement of the two right-hand sides. To support this behaviour,
we introduce the interleave combinator, denoted by <%>. This combinator ex-
presses that the steps of its argument strategies have to be applied, but that the
steps can be interleaved. For example, the result of interleaving a strategy abc
that recognises the sequence of three symbols a, b, and c, with the strategy de
that recognises the sequence of two symbols d and e (that is, abc <%> de) results
in the following set:

{abcde, abdce, abdec, adbce, adbec, adebc, dabce, dabec, daebc, deabc}

Interleaving sentences. To define the semantics of interleave, we first define an
interleave operator on sentences. The interleaving of two sentences (x <%> y)
can be defined conveniently in terms of left-interleave (denoted by x %> y,
and also known as the left-merge operator [Bergstra and Klop, 1985]), which
expresses that the first symbol should be taken from the left-hand side operand.
The algebra of communicating processes field traditionally defines interleave in
terms of left-interleave (and “communication interleave”) to obtain a sound and
complete axiomatisation [Fokkink, 2000].

ε <%> x = {x}
x <%> ε = {x}
x <%> y = x %> y ∪ y %> x (x 
 ε ∧ y 
 ε)

ε %> y = ∅
ax %> y = {az | z ∈ x <%> y}

The set abc %> de (where abc and de are now sentences) only contains the
six sentences that start with symbol a. It is worth noting that the number of

interleavings for two sentences of lengths n and m equals
(n+m)!

n!m! . This number
grows quickly with longer sentences. An alternative definition of interleaving two
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sequences, presented by Hoare in his influential book on CSP [Hoare, 1985], is
by means of three laws:

ε ∈ (y <%> z) ⇔ y = z = ε
x ∈ (y <%> z) ⇔ x ∈ (z <%> y)

ax ∈ (y <%> z) ⇔ (∃ y′ : y = ay′ ∧ x ∈ (y′ <%> z))
∨ (∃ z′ : z = az′ ∧ x ∈ (y <%> z′))

Interleaving sets. The operations for interleaving sentences can be lifted to work
on sets of sentences by considering all combinations of elements from the two
sets. Let X, Y, and Z be sets of sentences. The lifted operators are defined as
follows:

X <%> Y =
⋃ {x <%> y | x ∈ X, y ∈ Y}

X %> Y =
⋃ {x %> y | x ∈ X, y ∈ Y}

For instance, {a, ab} <%> {c, cd} yields a set containing 14 elements:

{abc, abcd, ac, acb, acbd, acd, acdb, ca, cab, cabd, cad, cadb, cda, cdab}

From these definitions, it follows that the lifted operator for interleaving is com-
mutative, associative, and has {ε} as identity element. The left-interleave op-
erator is not commutative nor associative, but has the interesting property that
(X %> Y) %> Z is equal to X %> (Y <%> Z).

Atomicity. Interleaving assumes that there exist atomic steps, and we introduce
a construct to introduce atomic blocks within sentences. In such a block, no
interleaving should occur with other sentences. We write 〈x〉 to make sequence x
atomic: if x is a singleton, the angle brackets may be dropped. Atomicity obeys
some simple laws:

〈ε〉 = ε (the empty sequence is atomic)
〈a〉 = a (all primitive symbols are atomic)

〈x〈y〉z〉 = 〈xyz〉 (nesting of atomic blocks has no effect)

In particular, it follows that 〈〈x〉〉 = 〈x〉. Atomic blocks nicely work together with
the definitions given for the interleaving operators, including the lifted operators:
sentences now consist of a sequence of atomic blocks, where each block itself is
a non-empty sequence of symbols. For instance, a〈bc〉 <%> 〈de〉f will return:

{abcdef , adebcf , adef bc, deabcf , deaf bc, defabc}

In the end, when no more interleaving takes place, the blocks have no longer any
meaning, and can be discarded.

The interleaving operators. The semantics of the interleaving operators is defined
in terms of the lifted operators:

L (〈s〉) = {〈x〉 | x ∈ L (s)}
L (s <%> t) = L (s) <%> L (t)
L (s %> t) = L (s) %> L (t)
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The interleave combinator satisfies several laws: it is commutative and associa-
tive, and has succeed as identity element:

s <%> t = t <%> s
s <%> (t <%> u) = (s <%> t) <%> u
s <%> succeed = s

Because interleaving distributes over choice

s <%> (t <|> u) = (s <%> t) <|> (s <%> u)

we have a second semi-ring. Also left-interleave distributes over choice. The op-
erator that makes a strategy atomic is idempotent, and distributes over choice
〈s <|> t〉 = 〈s〉 <|> 〈t〉. Many more properties can be found in the literature on
ACP [Bergstra and Klop, 1985].

6.5 Label

When developing a program, a student may ask for a hint at any time. Of
course, the tutor should take the actions of the student until he asks for a hint
into account. We mark positions in the strategy with a label, which allows us
to describe feedback. The label combinator takes a string (or a value of another
type that is used for labelling purposes) and a strategy as arguments, and offers
the possibility to attach a text to the argument strategy.

L (label � s) = {Enter� x Exit� | x ∈ L (s)}

This interpretation introduces the special rules Enter and Exit (parameterised
by some label �) that show up in sentences. These rules are minor rules that
are only used for tracing positions in strategies. Except for tracing, the label
combinator is semantically the identity function.

6.6 Recursion

One aspect we haven’t discussed yet is recursion. Recursion is used for example
to specify that a user replaces all occurrences of a particular expression in a
program by another expression. Recursion is specified by means of the fixed-
point operator fix, which takes as argument a function that maps a strategy to
a new strategy. The language of fix is defined by:

L (fix f ) = L (f (fix f ))

The fix operator is mainly used in traversals over the abstract syntax tree. It is
the responsibility of the user to specify meaningful fixed-points. In our recogniser
for the strategy language we specify a cutoff for the fixed-point operator.
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6.7 Overview

We list the components of our strategy language introduced in the previous
subsection in the following definition.

A strategy is an element of the language of the following grammar:

s ::= r
| s <|> s | fail
| s <�> s | succeed
| label � s
| fix f
| 〈s〉 | s <%> s | s %> s

where r is a rewrite rule or a refinement rule, � is a label, and f is a function
that takes a strategy as argument, and returns a strategy.

The language of a strategy is defined by:

L (r) = {r}
L (s <|> t) = L (s) ∪ L (t)
L (fail) = ∅
L (s <�> t) = {xy | x ∈ L (s), y ∈ L (t)}
L (succeed) = {ε}
L (label � s) = {Enter� x Exit� | x ∈ L (s)}
L (fix f ) = L (f (fix f ))
L (〈s〉) = {〈x〉 | x ∈ L (s)}
L (s1 <%> s2) = L (s1) <%> L (s2)
L (s1 %> s2) = L (s1) %> L (s2)

This definition can be used to tell whether a sequence of rules follows a strategy
or not: the sequence of rules should be a sentence in the language generated by
the strategy, or a prefix of a sentence, since we solve exercises incrementally. Not
all sequences make sense, however. An exercise gives us an initial term (say t0),
and we are only interested in sequences of rules that can be applied successively
to this term. Suppose that we have terms (denoted by ti) and rules (denoted by
ri), and let ti+1 be the result of applying rule ri to term ti by means of function
apply. Function apply takes a refinement or a rewrite rule and a term, tries to
unify the term with the left-hand side of the rule, and, if it succeeds, applies
the substitution obtained from unification to the right-hand side of the rule to
obtain the rewritten or refined rule. A possible derivation that starts with t0 can
be depicted in the following way:

t0
r0−→ t1

r1−→ t2
r2−→ t3

r3−→ . . .

To be precise, applying a rule to a term can yield multiple results, but most
domain rules, such as the refinement rules for functional programs in Figure 3,
return at most one term. Running a strategy with an initial term returns a set
of terms, and is specified by:
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run s t0 = { tn+1 | r0 . . rn ∈ L (s), ∀i∈0...n : ti+1 ∈ apply ri ti}

Recognising a strategy amounts to tracing the steps that a student takes, but
how does a tutor get the sequence of rules? In a tutor that offers free input,
such as our functional programming tutor, students submit intermediate terms.
Therefore, the tutor first has to determine which of the known rules has been
applied, or even which combination of rules has been used. Discovering which
(sequence of) rule(s) has been used is obviously an important part of a tutor,
and it influences the quality of the generated feedback. It is, however, not the
topic of these notes, more information can be found in Gerdes et al. [2012]. An
alternative to free input is to let students select a rule, which is then applied
automatically to the current term. In this setup, it is no longer a problem to
detect which rule has been used.

6.8 Applications of Strategies in Other Domains

Using our strategy language we can specify strategies for an arbitrary domain in
which procedures are expressed in terms of rewriting and refinement rules. In this
subsection we introduce two examples not related to the domain of functional
programming in which we use our strategy language. The first example shows
a general pattern that occurs in many different domains, the second example
describes a procedure for calculating with fractions.

Example 1. Repetition, zero or more occurrences of something, is a well-known
recursion pattern. We can define this pattern using our fixed point recursion
combinator:

many s = fix (λx → succeed <|> (s <�> x))

The strategy that applies transformation rule r zero or more times would thus
be:

many r
= succeed <|> (r <�> many r)
= succeed <|> (r <�> (succeed <|> (r <�> many r)))
= . . .

Example 2. Consider the problem of adding two fractions, for example, 2
5 and

2
3 : if the result is an improper fraction (the numerator is larger than or equal
to the denominator), then it should be converted to a mixed number. Figure 4
displays four rewrite rules on fractions. The three rules at the right (B1 to B3)
are buggy rules that capture common mistakes. A possible strategy to solve this
type of exercise is the following:

– Step 1. Find the least common denominator (LCD) of the fractions: let this
be n
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Rules

Add:
a
c
+

b
c
=

a + b
c

Mul:
a
b
× c

d
=

a × c
b× d

Rename:
b
c
=

a × b
a × c

Simpl:
a + b

b
= 1 +

a
b

Buggy rules

B1:
a
b
+

c
d

= a + c

b + d

B2: a× b
c

= a × b

a × c

B3: a +
b
c

= a + b

c

Fig. 4. Rules and buggy rules for fractions

– Step 2. Rename the fractions such that n is the denominator
– Step 3. Add the fractions by adding the numerators
– Step 4. Simplify the fraction if it is improper

We use the strategy combinators to turn this informal strategy description into
a strategy specification:

addFractions = label �0 ( label �1 LCD

<�> label �2 (repeat (somewhere Rename))
<�> label �3 Add

<�> label �4 (try Simpl)
)

The strategy contains the labels �0 to �4, and uses the transformation rules given
in Figure 4. The transformation LCD is somewhat different: it is a minor rule
that does not change the term, but calculates the least common denominator
and stores this in an environment. The rule Rename for renaming a fraction
uses the computed lcd to determine the value of a in its right-hand side.

The definition of addFractions uses the strategy combinators repeat, try, and
somewhere. In an earlier paper [Heeren et al., 2008], we discussed how these com-
binators, and many others, can be defined conveniently in terms of the strategy
language. The combinator repeat is a variant of the many combinator: it applies
its argument strategy exhaustively. The check that the strategy can no longer
be applied is a minor rule. The try combinator takes a strategy as argument,
and tries to apply it. If the strategy cannot be applied, it succeeds.

The combinator somewhere changes the focus in an abstract syntax tree by
means of one or more minor navigation rules, before it applies its argument
strategy. The navigation rules are inspired by the operations on the zipper data
structure [Huet, 1997]. These rules, usually called Down (go to the left-most
child), Right, Left, and Up, are used to navigate to a point of focus. Until
now we have used holes to denote locations in terms, instead of a zipper. Using
navigation rules and the zipper in the functional programming domain is less
convenient. Whereas the strategy for adding fractions given above applies to
any fraction, so that we do not know up front where our rules will be applied,
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our functional programming strategies describe the construction of a particular
functional program, and recognise the construction of alternative versions. A
strategy for a functional program describes exactly where all substrategies should
be applied. For example, for the strategy for reverse, only the second argument
to foldl should be refined to the empty list [ ]. This refinement is not applied
bottom-up or somewhere: it is exactly applied at the location of the second
argument of foldl. We could have specified this location by means of navigation
rules, in which case we would have obtained a strategy for reverse consisting of
amongst others:

. . . foldlS
<�> Down

<�> (flipS consS)
<�> Right

<�> nilS
<�> Up

and similarly for all other strategies. Since this information can be inferred au-
tomatically, as explained in Section 5, we use holes to denote locations in the
functional programming domain.

6.9 Restrictions

To use strategies for tracking student behaviour and give feedback, we impose
some restrictions on the form of strategies. These restrictions are similar to some
of the restrictions imposed by parsing algorithms on context-free grammars.

Left-recursion. A context-free grammar is left-recursive if it contains a non-
terminal that can be rewritten in one or more steps using the productions of
the grammar to a sequence of symbols that starts with the same nonterminal.
The same definition applies to strategies. For example, the following strategy is
left-recursive:

leftRecursive = fix (λx → x <�> Add)

The left-recursion is obvious in this strategy, since x is in the leftmost position
in the body of the abstraction. Left-recursion is not always this easy to spot.
Strategies with leading minor rules may or may not be left-recursive. Strictly
speaking, these strategies are not left-recursive because the strategy grammar
does not differentiate between minor and major rules. However, in our seman-
tics these strategies sometimes display left-recursive behaviour. For example, if
we use a minor rule that increases a counter in the environment, which is an
action that always succeeds, the strategy is left-recursive. On the other hand, in
leftRecursive′:

leftRecursive′ = fix (λx → Down <�> x <�> Add)
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the minor rule Down is applied repeatedly until we reach the leaf of an expres-
sion tree, and stop. This strategy is not left-recursive. However, this is caused
by a property of Down that is not shared by all other minor rules.

We use top-down recursive parsing to track student behaviour and give feed-
back, because we want to support the top-down, incremental construction of
derivations (programs, but also derivations for other exercises). However, top-
down recursive parsing using a left-recursive context-free grammar is difficult.
A grammar expressed in parser combinators [Hutton, 1992] is not allowed to
be left-recursive. Similarly, for a strategy to be used in our domain reasoner, it
should not be left-recursive. In particular, trying to determine the next possible
symbol(s) of a left-recursive strategy will loop. This problem would probably
disappear if we would use a bottom-up parsing algorithm, but that would lead
to other restrictions, which sometimes are harder to spot and repair (compare
determining whether or not a grammar is LR(1) with determining whether or
not a grammar is left-recursive). Left-recursion can sometimes be solved by using
so-called chain combinators [Fokker, 1995].

Left-recursive strategies are not the only source of non-terminating strategy
calculations. The fact that our strategy language has a fixed-point combinator
(and hence recursion) implies that we are vulnerable to non-termination. The
implementation of our strategy language has been augmented with a ‘time-out’
that stops the execution of a strategy when a threshold is reached, and reports
an error message.

Left-factoring. Left-factoring is a grammar transformation that is useful when
two productions for the same nonterminal start with the same sequence of ter-
minal and/or nonterminal symbols. This transformation factors out the com-
mon part, called left-factor, of such productions. In a strategy, the equivalent
transformation factors out common sequences of rewrite rules from substrategies
separated by the choice combinator.

At the moment, a strategy that contains left-factors may lead to problems.
Consider the following, somewhat contrived, strategy:

leftFactor = label �1 (Add <�> Simpl)
<|> label �2 (Add <�> Rename)

The two sub-strategies labelled �1 and �2 have a left-factor: the rewrite rule Add.
After the application of Add, we have to decide which sub-strategy to follow.
Either we follow sub-strategy �1, or we follow sub-strategy �2. Committing to a
choice after recognising that Add has been applied is unfortunate, since it will
force the student to follow the same sub-strategy. For example, if �1 is chosen
after a student applies Add, and a student subsequently performs the Rename

step, we erroneously report that that step does not follow the strategy. Left-
factoring a strategy is essential to not commit early to a particular sub-strategy.
The example strategy is left-factored as follows:

leftFactor′ = Add <�> (Simpl <|> Rename)
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It is clear how to left-factor (major) rewrite rules, but how should we deal with
labels, or minor rules in general? Pushing labels inside the choice combinator,

leftFactor′′ = Add <�> (label �1 Simpl <|> label �2 Rename)

or making a choice between the two labels breaks the relation between the label
and the strategy. Labels are used to mark positions in a strategy, and have
corresponding feedback text, which very likely becomes inaccurate if labels are
moved automatically.

At the moment we require strategies to be left-factored, so that we can decide
which production to take based on the next input symbol, as in LL(1) gram-
mars. However, this is very undesirable, since it makes it hard if not impossible
to generate functional programming strategies from model solutions. We intend
to use parallel top-down recursive parsing techniques to solve this problem. If we
encounter a left-factor, i.e., the firsts set contains duplicates, we fork the parser
into two or more parsers, depending on the number of duplicates, that run in
parallel. Whenever a parsing branch fails, it is discarded. We have started im-
plementing this approach, and the first results indicate that it is indeed possible
to solve this problem [Gerdes et al., 2012].

7 Design of a Strategy Recogniser

The function run, defined in the previous section, specifies how to run a strat-
egy. For this, it enumerates all sentences in the language of a strategy, and then
applies the rules in such a sentence in sequence, starting with some initial term.
Enumerating all sentences does not result in an efficient implementation be-
cause the number of sentences quickly becomes too large, making this approach
infeasible in practice. Often, the language of a strategy is an infinite set. In our
domain reasoners we take a different, more efficient approach to recognise stu-
dent steps against a strategy definition. In this section we discuss the design of
such a strategy recogniser.

Instead of designing our own recogniser, we could reuse existing parsing li-
braries and tools. There are many excellent parser generators and various parser
combinator libraries around [Hutton, 1992, Swierstra and Duponcheel, 1996],
and these are often highly optimised and efficient in both their time and space
behaviour. However, the problem we are facing is quite different from other pars-
ing applications. To start with, efficiency is not a key concern as long as we do
not have to enumerate all sentences. Because we are recognising applications
of rewrite or refinement rules applied by a student, the length of the input is
very limited. Our experience until now is that speed poses no serious constraints
on the design of the library. A second difference is that we are not building an
abstract syntax tree.

The following issues are important for a strategy recogniser, but are not (suf-
ficiently) addressed in traditional parsing libraries:

1. We are only interested in sequences of transformation rules that can be ap-
plied successively to some initial term, and this is hard to express in most
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libraries. Parsing approaches that start by analysing the grammar for con-
structing a parsing table will not work in our setting because they cannot
take the current term into account.

2. The ability to diagnose errors in the input highly influences the quality of the
feedback services. It is not enough to detect that the input is incorrect, but
we also want to know at which point the input deviates from the strategy, and
what is expected at this point. Some of the more advanced parser tools have
error correcting facilities, which helps diagnosing an error to some extent.

3. Exercises are solved incrementally, and therefore we do not only have to
recognise full sentences, but also prefixes. We cannot use backtracking and
look-ahead because we want to recognise strategies at each intermediate step.
If we would use backtracking, we might give a hint that does not lead to a
solution, which is very undesirable in learning environments.

4. Labels help to describe the structure of a strategy in the same way as non-
terminals do in a grammar. For a good diagnosis it is vital that a recogniser
knows at each intermediate step where it is in the strategy.

5. Current parsing libraries do not offer parser combinators for interleaving
parsers, except for a (rather involved) extension implemented by Doaitse
Swierstra on top of his parser combinator library [Swierstra, 2009].

6. A strategy should be serialisable, for instance because we want to commu-
nicate with other on-line tools and environments.

In earlier attempts to design a recogniser library for strategies, we tried to reuse
an existing error-correctingparser combinator library [Swierstra and Duponcheel,
1996], but failed because (some) of the reasons listed above.

7.1 Representing Grammars

Because strategies are grammars,we startbyexploring a suitable representation for
grammars. The datatype for grammars is based on the alternatives of the strategy
language discussed in Section 6, except that there is no constructor for labels.

data Grammar a = Symbol a
| Succeed
| Fail
| Grammar a :|: Grammar a
| Grammar a :�: Grammar a
| Grammar a :%: Grammar a
| Grammar a :%>: Grammar a
| Atomic (Grammar a)
| Rec Int (Grammar a) -- recursion point
| Var Int -- bound by corresponding Rec

The type variable a in this definition is an abstraction for the type of symbols:
for strategies, the symbols are rules, but also Enter and Exit steps that are
associated with a label. For now we will postpone the discussion on labels in
grammars.
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Another design choice is how to represent recursive grammars, for which we
use the constructors Rec and Var. A Rec binds all the Vars in its scope that
have the same integer. We assume that all our grammars are closed, i.e., there
are no free occurrences of variables. This datatype makes it easy to manipulate
and analyse grammars. Alternative representations for recursion are higher-order
fixed point functions, or nameless terms using De Bruijn indices.

We use constructors such as :�: and :|: for sequence and choice, respectively,
instead of the combinators <�> and <|> introduced earlier. Haskell infix con-
structors have to start with a colon, but the real motivation is that we use <�>
and <|> as smart constructors later.

Example 3. The repetition combinator many, which we defined in Example 1,
can be encoded with the Grammar datatype in the following way:

many :: Grammar a → Grammar a
many s = Rec 0 (Succeed :|: (s :�: Var 0))

Later we will see that the smart constructors are more convenient for writing
such a combinator.

7.2 Empty and Firsts

We use the functions empty and firsts to recognise sentences. The function empty
tests whether the empty sentence is part of the language: empty (s) = ε ∈ L (s).
The direct translation of this specification of empty to a functional program,
using the definition of language L, gives a very inefficient program. Instead, we
derive the following recursive function from this characterisation, by performing
case analysis on strategies:

empty :: Grammar a → Bool
empty (Symbol a) = False
empty Succeed = True
empty Fail = False
empty (s :|: t) = empty s ∨ empty t
empty (s :�: t) = empty s ∧ empty t
empty (s :%: t) = empty s ∧ empty t
empty (s :%>: t) = False
empty (Atomic s) = empty s
empty (Rec i s) = empty s
empty (Var i) = False

The left-interleave operator expresses that the first symbol is taken from its
left-hand side operand. Hence, such a strategy cannot yield the empty sentence.
The definition for the pattern Rec i s may come as a surprise: it calls empty
recursively on s without changing the Vars that are bound by this Rec. We
define empty (Var i) to be False. Note that there is no need to inspect recursive
occurrences to determine the empty property for a strategy.
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Given some strategy s, the function firsts returns every symbol that can start
a sentence for s, paired with a strategy that represents the remainder of that
sentence. This is made more precise in the following property (where a represents
a symbol, and x a sequence of symbols):

∀a, x : ax ∈ L (s) ⇔ ∃s′ : (a, s′) ∈ firsts (s) ∧ x ∈ L (s′)

As for the function empty, the direct translation of this specification into a func-
tional program is infeasible. We again derive an efficient implementation for firsts
by performing a case analysis on strategies.

Defining firsts for the two interleaving cases is somewhat challenging: this is
exactly where we must deal with interleaving and atomicity. More specifically, we
cannot easily determine the firsts for strategy s %> t based on the firsts for s and
t (i.e., in a compositional way) since that would require more information about
the atomic blocks in s and t. For a strategy s %> t, we split s into an atomic
part and a remainder, say Atomic s′ <�> s′′. After s′ without the empty sentence,
we can continue with s′′ <%> t. This approach is summarised by the following
property, where the use of symbol a takes care of the non-empty condition:

(〈a <�> s〉 <�> t) %> u = 〈a <�> s〉 <�> (t <%> u)

The function split transforms a strategy into triples of the form (a, x, y), which
should be interpreted as 〈a <�> x〉 <�> y. We define split for each case of the
Grammar datatype.

split :: Grammar a → [ (a, Grammar a, Grammar a) ]
split (Symbol a) = [(a, Succeed, Succeed) ]
split Succeed = [ ]
split Fail = [ ]
split (s :|: t) = split s ++ split t
split (s :�: t) = [(a, x, y :�: t) | (a, x, y)← split s ] ++

if empty s then split t else [ ]
split (s :%: t) = split (s :%>: t) ++ split (t :%>: s)
split (s :%>: t) = [(a, x, y :%: t) | (a, x, y)← split s ]
split (Atomic s) = [(a, x :�: y, Succeed) | (a, x, y)← split s ]
split (Rec i s) = split (replaceVar i (Rec i s) s)
split (Var i) = error "unbound Var"

For a sequence s :�: t, we determine which symbols can appear first for s, and we
change the results to reflect that t is part of the remaining grammar. Furthermore,
if s can be empty, then we also have to look at the firsts for t. For choices, we simply
combine the results for both operands. If the grammar is a single symbol, then this
symbol appears first, and the remaining parts are Succeed (we are done). To find
the firsts for Rec i s, we have to look inside the body s. All occurrences of this
recursion point are replaced by the grammar itself before we call split again. The
replacement is performed by a helper-function: replaceVar i s t replaces all free
occurrences of Var i in t by s. Hence, if we encounter a Var, it is unbound, which
we do not allow. Recall that we assume our grammars to be closed.
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We briefly discuss the definitions for the constructs related to interleaving,
and argue why they are correct:

– Case (Atomic s). Because atomicity distributes over choice, we can consider
the elements of split s (the recursive call) one by one. The transformation

〈〈a <�> x〉 <�> y〉 = 〈a <�> (x <�> y)〉 <�> succeed

is proven by first removing the inner atomic block, and basic properties of
sequence.

– Case (s1 :%: s2). Expressing this strategy in terms of left-interleave is jus-
tified by the definition of L (s1 <%> s2). For function split, we only have to
consider the non-empty sentences.

– Case (s1 :%>: s2). Left-interleave can be distributed over the alternatives.
Furthermore, (〈a <�> x〉 <�> y) %> t = 〈a <�> x〉 <�> (y <%> t) follows
from the definition of left-interleave on sentences (with atomic blocks).

With the function split, we can now define the function firsts, which is needed
for most of our feedback services:

firsts :: Grammar a → [ (a, Grammar a) ]
firsts s = [(a, x :�: y) | (a, x, y)← split s ]

In Section 6.9 we discussed restrictions that are imposed on strategies. It should
now be clear from the definition of firsts why left-recursion is problematic. For
example, consider the many combinator. A strategy writer has to use this combi-
nator with great care to avoid constructing a left-recursive grammar: if grammar
s accepts the empty sentence, then running the grammar many s can result in
non-termination. The problem with left recursion can be partially circumvented
by restricting the number of recursion points (Recs and Vars) that are unfolded
in the definition of split (Rec i s).

7.3 Dealing with Labels

The Grammar datatype lacks an alternative for labels. Nevertheless, we can use
label information to trace where we are in the strategy by inserting Enter

and Exit steps for each labelled substrategy. These labels enable us to attach
specialised feedback messages to certain locations in the strategy.

The sentences of the language generated for a strategy contain rules, Enter
steps, and Exit steps, for which we introduce the following datatype:

data Step l a = Enter l | Step (Rule a) | Exit l

The type argument l represents the type of information associated with each
label. For our strategies we assume that this information is only a string. The
type Rule is parameterised by the type of values on which the rule can be applied.
With the Step datatype, we can now specify a type for strategies:
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type LabelInfo = String

data Strategy a = S {unS :: Grammar (Step LabelInfo a)}

The Strategy datatype wraps a grammar, where the symbols of this grammar are
steps. The following function helps to construct a strategy out of a single step:

fromStep :: Step LabelInfo a → Strategy a
fromStep = S ◦ Symbol

The (un)wrapping of strategies quickly becomes cumbersome when defining func-
tions over strategies. We therefore introduce a type class for type constructors
that can be converted into a Strategy:

class IsStrategy f where
toStrategy :: f a → Strategy a

instance IsStrategy Rule where
toStrategy = fromStep ◦ Step

instance IsStrategy Strategy where
toStrategy = id

In addition to the Strategy datatype, we define the LabeledStrategy type for strat-
egies that have a label. A labelled strategy can be turned into a (normal) strategy
by surrounding its strategy with Enter and Exit steps.

data LabeledStrategy a = Label { labelInfo :: LabelInfo, unlabel :: Strategy a}
instance IsStrategy LabeledStrategy where

toStrategy (Label a s) = fromStep (Enter a) <�> s <�> fromStep (Exit a)

In the next section we present smart constructors for strategies, including the
strategy combinator <�> for sequences used twice in the instance declaration for
LabeledStrategy.

7.4 Smart Constructors

A smart constructor is a function that in addition to constructing a value per-
forms some checks, simplifications, or conversions. We use smart constructors for
simplifying grammars. We introduce a smart constructor for every alternative
of the strategy language given in Section 6.7. Definitions for succeed and fail are
straightforward, and are given for consistency:

succeed, fail :: Strategy a
succeed = S Succeed
fail = S Fail

The general approach is that we use the IsStrategy type class to automatically
turn the subcomponents of a combinator into a strategy. As a result, we do not
need a strategy constructor for rules, because Rule was made an instance of the
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IsStrategy type class. It is the context that will turn the rule into a strategy, if
required. This approach is illustrated by the definition of the label constructor,
which is overloaded in its second argument:

label :: IsStrategy f ⇒ LabelInfo → f a → LabeledStrategy a
label s = Label s ◦ toStrategy

All other constructors return a value of type Strategy, and overload their strategy
arguments. We define helper-functions for lifting unary and binary constructors
(lift1 and lift2, respectively). These lift functions turn a function that works on
the Grammar datatype into an overloaded function that returns a strategy.

-- Lift a unary/binary function on grammars to one on strategies
lift1 op = S ◦ op ◦ unS ◦ toStrategy
lift2 op = lift1 ◦ op ◦ unS ◦ toStrategy

For choices, we remove occurrences of Fail, and we associate the alternatives to
the right.

(<|>) :: (IsStrategy f , IsStrategy g) ⇒ f a → g a → Strategy a
(<|>) = lift2 op

where
op :: Grammar a → Grammar a → Grammar a
op Fail t = t
op s Fail = s
op (s :|: t) u = s ‘op‘ (t ‘op‘ u)
op s t = s :|: t

The smart constructor <�> for sequences removes the unit element Succeed, and
propagates the absorbing element Fail.

(<�>) :: (IsStrategy f , IsStrategy g) ⇒ f a → g a → Strategy a
(<�>) = lift2 op

where
op :: Grammar a → Grammar a → Grammar a
op Succeed t = t
op s Succeed = s
op Fail = Fail
op Fail = Fail
op (s :�: t) u = s ‘op‘ (t ‘op‘ u)
op s t = s :�: t

The binary combinators for interleaving, <%> and %>, are defined in a similar
fashion. The smart constructor atomic, which was denoted by 〈·〉 in Section 6,
takes only one argument. It is defined in the following way:

atomic :: IsStrategy f ⇒ f a → Strategy a
atomic = lift1 op
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where
op :: Grammar a → Grammar a
op (Symbol a) = Symbol a
op Succeed = Succeed
op Fail = Fail
op (Atomic s) = op s
op (s :|: t) = op s :|: op t
op s = Atomic s

This definition is based on several properties of atomicity, such as idempotence
and distributivity over choice.

The last combinator we present is for recursion. Internally we use numbered
Recs and Vars in our Grammar datatype, but for the strategy writer it is much
more convenient to write the recursion as a fixed-point, without worrying about
the numbering. For this reason we do not define direct counterparts for the Rec
and Var constructors, but only the higher-order function fix. This combinator is
defined as follows:

fix :: (Strategy a → Strategy a) → Strategy a
fix f = lift1 (Rec i) (make i)
where

make = f ◦ S ◦Var
is = usedNumbers (unS (make 0))
i = if null is then 0 else maximum is + 1

The trick is that function f is applied twice. First, we pass f a strategy with
the grammar Var 0, and we inspect which numbers are used (variable is of type
[Int ]). Based on this information, we can now determine the next number to use
(variable i). We apply f for the second time using grammar Var i, and bind these
Vars to the top-level Rec. Note that this approach does not work for fixed-point
functions that inspect their argument.

Example 4. We return to Example 3, and define the repetition combinator many
with the smart constructors. Observe that many’s argument is also overloaded
because of the smart constructors.

many :: IsStrategy f ⇒ f a → Strategy a
many s = fix $ λx → succeed <|> (s <�> x)

7.5 Running a Strategy

So far, nothing specific about recognising strategies has been discussed. A strat-
egy is a grammar over rewrite rules and Enter and Exit steps for labels. We first
define a type class with the method apply: this function was already used in
the run method defined in Section 6.7. It returns a list of results. Given that
rules can be applied, we also give an instance declaration for the Step datatype,
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where the Enter and Exit steps simply return a singleton list with the current
term, i.e., they do not have an effect.

class Apply f where
apply :: f a → a → [a ]

instance Apply Rule -- implementation provided in framework

instance Apply (Step l) where
apply (Step r) = apply r
apply = return

We can now give an implementation for running grammars with symbols in the
Apply type class (see Section 6.7 for run’s specification). The implementation is
based on the functions empty and firsts.

run :: Apply f ⇒ Grammar (f a) → a → [a ]
run s a = [a | empty s ] ++ [c | (f , t)← firsts s, b ← apply f a, c ← run t b ]

The list of results returned by run consists of two parts: the first part tests
whether empty s holds, and if so, it yields the singleton list containing the term
a. The second part takes care of the non-empty alternatives. Let f be one of the
symbols that can appear first in strategy s. We are only interested in f if it can
be applied to the current term a, yielding a new term b. We run the remainder
of the strategy (that is, t) on this new term.

Now that we have defined the function run we can also make Strategy and
LabeledStrategy instances of class Apply:

instance Apply Strategy where
apply = run ◦ unS

instance Apply LabeledStrategy where
apply = apply ◦ toStrategy

The function run can produce an infinite list. In most cases, however, we are
only interested in a single result (and rely on lazy evaluation). The part that
considers the empty sentence is put at the front to return sentences with few
rewrite rules early. Nonetheless, the definition returns results in a depth-first
manner. We define a variant of run which exposes breadth-first behaviour:

runBF :: Apply f ⇒ Grammar (f a) → a → [ [a ] ]
runBF s a = [a | empty s ] : merge [runBF t b | (f , t) ← firsts s, b ← apply f a ]

where merge = map concat ◦ transpose

The function runBF produces a list of lists: results are grouped by the number
of rewrite steps that have been applied, thus making explicit the breadth-first
nature of the function. The helper-function merge merges the results of the re-
cursive calls: by transposing the list of results, we combine results with the same
number of steps.
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7.6 Tracing a Strategy

The run functions defined in the previous section do nothing with the labels.
However, if we want to recognise (intermediate) terms submitted by a student,
and report an informative feedback message if the answer is incorrect, then
labels become important. Fortunately, it is rather straightforward to extend
run’s definition, and to keep a trace of the steps that have been applied:

runTrace :: Apply f ⇒ Grammar (f a) → a → [ (a, [ f a ]) ]
runTrace s a =
[(a, [ ]) | empty s ] ++
[(c, (f : fs)) | (f , t) ← firsts s, b ← apply f a, (c, fs) ← runTrace t b ]

In case of a strategy, we can thus obtain the list of Enter and Exit steps seen so
far. We illustrate this by means of an example.

Example 5. We return to the strategy for adding two fractions (addFractions,
defined in 6.8). Suppose that we run this strategy on the term 2

5 + 2
3 . This

would give us the following derivation:

2
5
+

2
3

=
6

15
+

2
3

=
6
15

+
10
15

=
16
15

= 1
1
15

The final answer, 1 1
15 , is indeed what we would expect. In fact, this result is

returned twice because the strategy does not specify which of the fractions should
be renamed first, and as a result we get two different derivations. It is much more
informative to step through such a derivation and see the intermediate steps.

[ Enter �0, Enter �1, Step LCD, Exit �1, Enter �2
, Step down(0), Step Rename, Step up, Step down(1), Step Rename

, Step up, Step not, Exit �2, Enter �3, Step Add

, Exit �3, Enter �4, Step Simpl, Exit �4, Exit �0
]

The list has twenty steps, but only four correspond to actual steps from the
derivation: the rules of those steps are underlined. The other rules are admin-
istrative: the navigation rules up and down are introduced by the somewhere
combinator, whereas not comes from the use of repeat. Also observe that each
Enter step has a matching Exit step. In principle, a label can be visited multiple
times by a strategy.

The example clearly shows that we determine at each point in the derivation
where we are in the strategy by enumerating the Enter steps without their cor-
responding Exit step. Based on this information we can fine-tune the feedback
messages that are reported when a student submits an incorrect answer, or when
she asks for a hint on how to continue. For reporting textual messages, we use
feedback scripts, which is explained in the next section.
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7.7 Feedback Scripts

All textual messages are declared in so-called feedback scripts. These scripts are
external text files containing appropriate responses for various situations. De-
pending on the diagnosis that was made (e.g., a common mistake was recognised,
or the submitted term is correct and complies with the specified strategy), a feed-
back message is selected from the script and reported back to the student. One
of the criteria on which this selection can be based is the current location in the
strategy, i.e., one of the labels in the strategy. Other selection criteria are the
name of the rule that was recognised (possibly a buggy rule), or the submitted
term being correct or not.

For the functional programming tutor, we give three levels of hints, which can
be categorised as follows [Vanlehn et al., 2005]:

– general: a general, high-level statement about the next step to take;
– specific: a more detailed explanation of the next step in words;
– bottom-out: the exact next step to carry out, possibly accompanied with

some literal code.

The level of the message is another available selection criterion in the feedback
scripts. All textual messages are assigned to one of these three levels.

Having only static texts in the feedback scripts (that is, texts that appear
verbatim in the script) severely restricts the expressiveness of the messages that
can be reported. We allow a variety of attributes in the textual messages of a
script, and these attributes are replaced by dynamic content depending on the
situation at hand. In this way, messages can for instance contain snippets of code
from the original student program, or report on the number of steps remaining.
Feedback scripts contain some more constructs to facilitate the writing of feed-
back messages, such as local string definitions and an import mechanism. These
topics are work in progress, and lie outside the scope of these lecture notes.

An important advantage of external feedback scripts is that they can be
changed easily, without recompiling the tutoring software. This approach also
allows us to add feedback scripts that support new (programming) exercises.
A final benefit is that the support of multiple languages (as opposed to only
English) comes quite natural, since each supported language can have its own
feedback script.

8 Conclusions, Related and Future Work

We have discussed the design and implementation of a tutoring system for func-
tional programming. The distinguishing characteristics of our tutoring system
are:

– it supports the incremental development of programs: students can submit
incomplete programs and receive feedback and/or hints.

– it calculates feedback automatically based on model solutions to exercises.
A teacher does not have to author feedback.
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– correctness is based on provable equivalence to a model solution, based on
normal forms of functional programs.

The tutoring system targets students at the starting academic, or possibly end
high-school, level.

8.1 Related Work

If ever the computer science education research field [Fincher and Petre, 2004]
finds an answer to the question of what makes programming hard, and how
programming environments can support learning how to program, it is likely
to depend on the age, interests, major subject, motivation, and background
knowledge of a student. Programming environments for novices come in many
variants, and for many programming languages or paradigms [Guzdial, 2004].
Programming environments like Scratch and Alice target younger students than
we do, and emphasise the importance of constructing software with a strong
visual component, with which students can develop software to which they can
relate. We target beginning computer science students, who expect to work with
real-life programming languages instead of ‘toy’ programming languages.

The Lisp tutor [Anderson et al., 1986] is an intelligent tutoring system that
supports the incremental construction of Lisp programs. At any point in the
development a student can only take a single next step, which makes the inter-
action style of the tutor a bit restrictive. Furthermore, adding new material to
the tutor is still quite some work. Using our approach based on strategies, the
interaction style becomes flexible, and adding exercises becomes relatively easy.
Soloway [1985] describes programming plans for constructing Lisp programs.
These plans are instances of the higher-order function foldr and its companions.
Our work structures the strategies described by Soloway.

In tutoring systems for Prolog, a number of strategies for Prolog programming
have been developed [Hong, 2004]. Hong also uses the reverse example to exem-
plify his approach to Prolog tutoring. Strategies are matched against complete
student solutions, and feedback is given after solving the exercise. We expect
that these strategies can be translated to our strategy language, and can be
reused for a programming language like Haskell.

Our work resembles the top-down Pascal editors developed in the Genie
project [Miller et al., 1994]. These series of editors provide structure editing
support, so that student don’t have to remember the particular syntax of a
programming language. In our case students do have to write programs using
the syntax of Haskell, but the intermediate steps are comparable. The Genie
editors did not offer strategical support.

Our functional programming tutoring system grew out of a program assess-
ment tool, which automatically assesses student programs based on model so-
lutions [Gerdes et al., 2010] and program transformations to rewrite programs
to normal form. Similar transformations have been developed for C++-like lan-
guages [Xu and Chee, 2003].
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8.2 Future Work

The functional programming tutor grew out of our work on assessing functional
programs, and on providing feedback, mainly in learning environments for math-
ematics. The version presented at this school is the first public release of our
tutor. We still need to work on several aspects.

First of all, we want to use the tutor in several courses, to receive feedback from
students and teachers. We will start with obtaining feedback about usability and
appreciation. For example, do the refinement rules we offer correspond to the re-
finement rules applied by students? At a later stage, we want to study the learning
effect of our tutor together with researchers from the domain of learning sciences.

The restriction that a student cannot proceed if an intermediate solution
does not follow a model solution is rather severe. This disallows, for example,
a bottom-up approach to developing a program, where first a component is de-
veloped, without specifying how the component is used in the final solution. We
want to investigate if we can specify properties for a program, which are used to
check that a student solution is not provably wrong. We can then let a student
go on developing a program as long as the properties specified cannot be falsi-
fied. Once a student connects the developed components to the main program,
strategy checking kicks in again to see if the program is equivalent to a model
solution. This approach is orthogonal to our current approach: using our tutor
we can ensure that a student solution is equivalent to a model solution, and
hence correct. However, if a student does not implement a model solution, we
don’t know if the student is wrong. On the other hand, using property checking
we can prove that a student solution is wrong, but the absence of property viola-
tions does not necessarily imply that the student program is correct. We would
achieve a mixed approach if we determine the propagation of post-conditions to
components in our rewrite rules, and verify that the composition of the rewrite
rules performed by the student results in a proof that a specified post-condition
holds for a given program. However, we would need to manually support a prover
to construct the proof in many cases, which might not be desirable for beginning
programmers.

Teachers prefer different solutions, and sometimes want students to use par-
ticular constructs when solving a programming exercise (‘use foldr to implement
a function to ...’). It is important to offer teachers the possibility to adapt the
tutor. We see two ways in which teachers can adapt the tutor. First, additional
equalities satisfied by a particular component of a model solution can be spec-
ified separately, and can then be used in the normal form calculation. Second,
a teacher can annotate a model solution with ‘switches’ to enforce or switch off
particular ways to solve a problem, or to change the order in which subproblems
have to be solved. For example, a teacher may want to enforce usage of foldr in-
stead of its explicit recursive alternative. Or a teacher may allow the interleaved
development of the then and else branches of an if-then-else expression. We
want to add these facilities to our tutoring system.

Developing a function is an important part of functional programming. But
so are testing a function, describing its properties, abstracting from recurring
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patterns, etc. [Felleisen et al., 2002]. We want to investigate how much of the
program design process can be usefully integrated in an intelligent tutoring sys-
tem for functional programming.

Our approach is not bound to functional programming: we could use the
same approach to develop tutoring systems for other programming languages or
paradigms. We think that our programming tutor is language generic, and we
want to investigate the possibilities for automatically generating large parts of a
programming tutor, based on a (probably annotated) grammatical description.

Acknowledgements. Peter van de Werken contributed to a first version of the
programming tutor described in these notes. An anonymous reviewer suggested
many improvements to these notes.
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Abstract. In these lecture notes we explain how multi-user web applica-
tions can be developed in a programming style that favors tasks as main
building block for the construction of such systems. A task is work that
has to be performed by human-beings and computers working together
on the internet. This concept has been implemented in the iTask frame-
work as a monadic combinator library that is embedded in the pure and
lazy functional programming language Clean. These lecture notes con-
sist of many examples and exercises, and also discusses the foundation
of both the iTask system and task-oriented programming.

1 Introduction

In these CEFP lecture notes we explain how multi-user web applications can be
defined in the iTask system [16]. An iTask program is focussed on the notion of
tasks: work that has to be performed by human-beings and computers working
together on the internet. One describes the tasks people collaborating with each
other using the internet have to do, and the resulting iTask application creates,
coordinates and monitors the work accordingly.

Workflow Management Systems (WFMS) are also software systems intended
to coordinate work (examples are Business Process Manager, COSA Workflow,
FLOWer, i-Flow 6.0, Staffware, Websphere MQ Workflow, BPEL, and YAWL).
The iTask system, however, is not a WFMS application, but a toolbox which can
also be used to create WFMS applications. It distinguishes itself from traditional
WFMSs in many ways:

– The iTask system is a monadic [22] combinator library in the pure and lazy
functional programming language Clean. The constructed WFMS applica-
tion is embedded in Clean where the combinators are used to define how
tasks are composed. Tasks are defined by higher-order functions which are
pure and self contained.

– Most WFMSs take a workflow description specified in a workflow description
language (WDL) and generate a partial workflow application that still re-
quires substantial coding effort. An iTask specification on the other hand de-
notes a full-fledged, web-based, multi-user workflow application. It strongly
supports the view that a WDL should be considered as a complete
specification language rather than a partial description language.

V. Zsók, Z. Horváth, and R. Plasmeijer (Eds.): CEFP 2011, LNCS 7241, pp. 46–92, 2012.
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– Despite the fact that an iTask specification denotes a complete workflow
application, the workflow engineer is not confronted with boilerplate pro-
gramming (data storage and retrieval, GUI rendering, form interaction, and
so on) because this is all dealt with using generic programming techniques
under the hood.

– The structure of an iTask workflow evolves dynamically, depending on user-
input and results of subtasks.

– In addition to the host language features, the iTask system adds first-class
tasks (workflow units that create and accept other workflow units) and re-
cursion to the modelling repertoire of workflow engineers.

– In contrast with the large catalogue of common workflow patterns [1], iTask
workflows are captured by means of a small number of core combinator
functions.

The original iTask system [16] focussed on the concept of a typed task: a unit
of work, which, when it finishes, delivers the result of the task, a value of type
Task T. The result can be passed, in a monadic way, to the next task. Several
papers on applying and improving the iTasks system have appeared since then.

– The iTask system has been used to describe complex workflows such as the
Search and Rescue activities as undertaken by the Dutch coast guard [12].

– Client side evaluation of tasks [10,18] has been made possible by compiling
Clean code to Javascript [5] making use of a SAPL interpreter [9]. SAPL,
Simple Application Programming Language, is a core intermediate language
that uses only (higher-order) functions. It comes with an interpreter that
has competitive performance when compared with other functional language
interpreters such as Hugs, Helium, GHCi, and Amanda.

– Workflows being executed can be changed while the work is going on [17].
– Tasks can become web applications including GUI elements like buttons,

dialogues, windows and menus [15].
– The semantics of iTask combinators has been formally described [11,17].

One may conclude that the iTask system is growing into a huge and complex
system. Still, even more functionality is needed. For instance, when a task is
delegated, someone might want to monitor its progress. In the old system the
delegator gets this information and she also obtains the power to change the
properties of the delegated task, such as its priority, or, she can move the task to
the desk of someone else. This is often useful, but is not always what is wanted.
Perhaps one would like to inform other people involved as well. One also would
like to define what kind of information is shown to a particular person and define
what a manager can do with the tasks she is viewing. In the new iTask system,
one can define such management tasks as well [19]. The view on and handling
of tasks is not hard-wired in the system, but can defined as desired, just as any
other task.

Adding all these extensions to the iTask system could easily have lead to a
huge system. This leads to high maintenance costs and hampers formal reason-
ing. We therefore, once again, redesigned and re-implemented the iTask system
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(version 3). We managed to build the iTask system on only a very few core
functions.

An important class of basic tasks in the iTask system are the editors. Editors
are tasks demanding input from end-users. The iTask system offers many differ-
ent flavors of editors (see Section 2, Section 4, and Section 5), which all have in
common that the type of the task is used to render the demanded interactive
view. All different editors are constructed with only one Swiss-Army-Knife core
editor function (see Section 10).

Tasks are compositional. The iTask system offers several convenient combi-
nators for combining task. However, the iTask system is based on only two core
combinators (see Section 10). There is one combinator, a monadic bind (see Sec-
tion 3), to express that two tasks have to be executed sequentially. With the
parallel combinator (see Section 8 and Section 9) one can create a set of parallel
tasks which can be dynamically extended. New in the iTask system is that tasks
may share information, which can be used to communicate the state of affairs
between tasks while the tasks are being performed.

With these few core functions, the simplicity of the iTask system can be
retained and the maintainability can be improved. On top of these core functions
we have defined a library with useful editors and combinators to facilitate the
creation of workflows in a declarative, understandable style.

In this paper we introduce the new iTask system by giving several examples
and exercises. Section by section we introduce more functionality. In Section
2 we start with the unit of user-interaction, the editor tasks. In Section 3 we
show how results of tasks can be passed to one another by means of sequential
composition and recursion, thus creating more complex applications. In Section
4 we extend tasks with actions, which moves the generated applications more
towards GUI applications that deploy menus. In Section 5 we make applications
aware of their context and each other by introducing shared data. In Section
6 we show how editor tasks can be enhanced with a model-view abstraction,
thereby customizing the user-experience with these tasks. In Section 7 we take
the step to distributed systems, and show how users can be assigned to tasks.
Related to task distribution is parallel execution. We first show how to deal with
parallel execution of fixed numbers of tasks in Section 8, and extend it with a
dynamic number of tasks in Section 9. This concludes the part in which the iTask
system is discussed from an external point of view. In Section 10 we proceed from
an internal point of view and explain how all of the discussed elements can be
defined in terms of an extremely small core of basic combinators and concepts.
Finally, we discuss related work in Section 11 and conclude in Section 12.

Finally, here are a number of organizational remarks about the remainder of
these lecture notes.

– Although iTask system is heavily making use of generic programming tech-
niques, one does not need these skills here. We do assume that you have some
experience with functional programming, preferably in Clean or Haskell, and
that you are comfortable in working with recursive (higher-order) functions,
algebraic data types and record types, and lists.
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– For readability, all type signatures in these lecture notes omit strictness
annotations (!) and uniqueness attribute variables (u: and .).

– Library types and function signatures are displayed as code fragments and are
displayed in a frame. Example code fragments are numbered.

– All examples that are shown in these lecture notes are present in the iTask
distribution under the directory Examples / CEFP2011. For each section n,
a subdirectory with similar name has been created that contains a module
Sectionn.dcl and Sectionn.icl. Each such module defines a function flowsn
that exports the example workflows in these lecture notes. The main module
CEFP.icl of the CEFP.prj project imports all section modules and their example
workflows and integrates them in a single workflow application.

– These lecture notes have been written to encourage you to experiment with
the system. For this reason, there are many small exercises to demonstrate
parts of the system. However, it is still possible to comprehend the system
when deciding to skip the exercises. The iTask system can be downloaded
from http://wiki.clean.cs.ru.nl/ITasks.

2 Generic Editors

The iTask system is a generic toolkit. The simplest function that illustrates this
is the task that displays information to the user (see module InteractionTasks.dcl):

viewInformation :: d [LocalViewOn m] m → Task m | descr d & iTask m

The parameters of type d and m are not polymorphic, but they are constrained.
The type class descr is used to generate simple string information to users (in
most cases, we use a String value). The iTask system pivots upon the generic type
class iTask: it contains the entire generic machinery to serialize, deserialize, ren-
der, update, and store values of arbitrary first order type. The second argument
of viewInformation can be used to define an alternative view, and can be used to
influence how the value is presented to the end user. It does not concern us right
now, the standard view is fine, and we will therefore keep the alternative view
empty ( [ ]) for the time being. The third argument is the value to be rendered.

Let us start with the ubiquitous “Hello world” example:

Example 1. Hello world in iTask

1module Section2

2

3import iTasks

4

5Start :: *World → *World

6Start world = startEngine myTask World

7

8myTask = viewInformation "Press Ok to terminate" [ ] "Hello world!"

http://wiki.clean.cs.ru.nl/ITasks
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Fig. 1. A screenshot of Example 1: “Hello World.”

The code shown in Example 1 is complete and generates a working iTask web
server application after compilation (see Figure 1). In the module one has to
import the iTask library (line 3) and define a Start rule (lines 5-6) that starts
the task to do, which is myTask in this case (line 8).

To run this example separately, the code has to be stored in a file with the
same name as the module, Section2.icl in this case. When you compile it, you
need to make a project first (settings are stored in Section2.prj), and select the
iTask environment in the IDE. After compilation and linking, an executable
application is generated, called Section2.exe. When this application is started,
it will include a web server. Visit http://localhost/ with your browser and
you will see what has been generated. For more detailed information, look at
directions included in the iTask-CEFP distribution.

The iTask system always starts with the execution of one specific task, but
this one can be a very complicated one. In Section 7 we show how several tasks
can be started interactively and how tasks can be handled by multiple users.
In the CEFP distribution we used this method to collect and test all examples
given in this lecture notes in one iTask application. See also Section 1.

Exercise 1. More basic types
Alter the String value "Hello world!" of Example 1 to the Int value 42. Recompile
and launch the application. What is changed? Do the same for the other basic
types Bool, Real, and Char.

Note: do not forget to terminate the previously running instance, or you are
likely to encounter the following linker-error message:

Linker error: could not create ’. . ..exe’

In that case, close the instance and then bring the application up-to-date. �

The key advantage of the generic foundation is that an instance of the generic
functions can be generated automatically for any value of any first order type.
The only thing required of you, the programmer, is that you need to ask the
compiler to derive these instances using the derive class keywords.

http://localhost/
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Example 2. Custom types
We add Person and Gender as custom types to Example 1 and request the avail-
ability of their generic instances at line 8:

1:: Person = { firstName :: String

2, surName :: String

3, dateOfBirth :: Date

4, gender :: Gender

5}
6:: Gender = Male | Female

7

8derive class iTask Person, Gender

Alter the String value "Hello world!" of Example 1 to an arbitrary Person value,
say yourself. If we recompile and run this new application, we obtain a new view
of this value.

Moving your mouse over the little icons attached to each form field informs
you about their status. A blue icon means that the field has not been filled in
yet. If you point on it, it tells you what kind of value is expected. A red icon
indicates that you typed in something unexpected. A green icon indicates that
the value typed in is of expected type. It is mandatory to fill in all fields because
undefined values can not be displayed. If you want an optional field, you can
use the type Maybe, which is defined as: :: Maybe a = Just a | Nothing. The value
Nothing can be used to indicate that no value has been defined yet.

Although Date is not a basic Clean type, you do not have to request the generation
of instances of the generic functions for values of this type. The iTask system
uses specialization for this purpose: with specialization, you can overrule the
generic instance for a type that would normally be generated, and instead define
your preferred instance.

Exercise 2. Specialized types
The iTask system has specialized the iTask class functions for quite a few types.
Some of them can be found in the SystemTypes.dcl module. Change, in a similar
way as in Example 2, the displayed value to a value of type Currency, Time, Note,
Choice, and MultipleChoice respectively, and observe the changes in the resulting
application. (Note that in SystemTypes.dcl a number of functions are defined to
easily create Choice and MultipleChoice values.) �

The viewInformation function displays information to the user. In order to ob-
tain information from the user, iTask provides a number of functions. Before
discussing all of them, we start with two dual functions of viewInformation:

updateInformation :: d [LocalViewOn m] m → Task m | descr d & iTask m

enterInformation :: d [LocalViewOn m] → Task m | descr d & iTask m
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Although the signature of updateInformation is identical to that of viewInformation,
its behavior is radically different: in addition to showing its third parameter
to the user, it allows her to update the value and change it to a new value of
the same type (see also Figure 2). The update functions expect an initial value

Fig. 2. Entering or updating a value of type Person

that the user can work on. Sometimes it makes more sense not to provide an
initial value, and instead expect the user just to enter one. When the function
enterInformation is used, a blanc form to be filled in is offered to the user. The
only difference is that an initial value is missing. Because of this, the type of
the value you want to obtain from the user, must be clear from the context, or
otherwise your program won’t compile. In such cases you probably get a compile
time error such as:

Overloading error [location ]: internal overloading of "f " could not be solved

In general, it is sufficient to add a type signature to the (local) function definition.

Exercise 3. Updating values
Replace viewInformation in Example 1 with updateInformation and replace once
more the third parameter with suitable values of the basic types of Exercise 1,
the custom types of Example 2, and the specialized types of Exercise 2.

Exercise 4. Entering values
Same as Exercise 3, but replace updateInformation with enterInformation. Instead
of offering a value of the requested type, add the desired type signature of myTask.

Exercise 5. Entering list values
Same as Exercise 4. Use enterInformation, and change the desired type signature
of myTask in lists. Test the application with [Int], [Bool], [Note], [Person]. �

Besides updateInformation, iTask offers four functions (update(Multiple)Choice and
enter(Multiple)Choice) to choose values, without further editing. Before delving
into their types, we first discuss a simplified version of enterChoice and
enterMultipleChoice:

enterChoice :: d [LocalViewOn o] [o] → Task o | descr d & iTask o

enterMultipleChoice :: d [LocalViewOn o] [o] → Task [o] | descr d & iTask o
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Fig. 3. A screenshot of Exercise 5: Entering A List of Persons

Here, [o] in the argument list is a list to choose from. The editor enterChoice

returns the chosen item, while enterMultipleChoice returns a list of chosen items.
An example of their use is:

Example 3. Choice and Multiple Choice

chooseNumber :: Task Int

chooseNumber = enterChoice "Choose a number" [ ] [0..10]

pizzaWith :: Task [String]
pizzaWith = enterMultipleChoice "What do you like on your pizza ?" [ ]

["Cheese" ,"Tomato" ,"Ansjofish","Salami"]

The function chooseNumber lets the user select a number. The function pizzaWith

Fig. 4. A screenshot of Example 3: View on MultipleChoice
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lets the user select what she wants on her pizza. Notice that editors such as
updateChoice and enterMultipleChoice not only work for basic types, but allow you
to make choices for any (first order) type.

Exercise 6. Choose from user defined types
Change the function pizzaWith such that it returns a task of type Task [Pizza-
Ingredient], where PizzaIngredient is a user defined algebraic datatype with well
chosen alternatives. �

The actual types of updateChoice, and its friends enterChoice, updateMultipleChoice,
and enterMultipleChoice as defined in the iTask library, are more general than
shown above. The reason is that they allow fine tuning by the programmer who
can specify how the options to choose from are presented to the user.

Table 1. Customizing editor tasks

:: ChoiceType = AutoChoiceView

| ChooseFromRadioButtons

| ChooseFromComboBox

| ChooseFromTable

| ChooseFromTree

:: MultiChoiceType = AutoMultiChoiceView

| ChooseFromCheckBoxes

:: ChoiceView choiceType o =∃v: ChoiceContext v & iTask v

|∃v: ChoiceView (choiceType, (o → v)) & iTask v

updateChoice :: d [ChoiceView ChoiceType o] (c o) o → Task o

| descr d & iTask o & iTask (c o) & OptionContainer c

enterChoice :: d [ChoiceView ChoiceType o] (c o) → Task o

| descr d & iTask o & iTask (c o) & OptionContainer c

updateMultipleChoice :: d [ChoiceView MultiChoiceType o] (c o) [o] → Task [o]
| descr d & iTask o & iTask (c o) & OptionContainer c

enterMultipleChoice :: d [ChoiceView MultiChoiceType o] (c o) → Task [o]
| descr d & iTask o & iTask (c o) & OptionContainer c

The function signatures in Table 1 clearly demonstrate that overloading is
used intensively to make the functions more general. It allows the programmer
not only to make a choice from a list [o] as is the case in the simplified version,
but from other container types c of kind * → * to hold values of type o as well
(c o). Furthermore, one can influence the view on this type, i.e. how the options
to choose from are presented to the end user. This is indicated by the second
parameter of the choice functions. By default, when the view is just an empty
list, some suitable representation is chosen (AutoChoiceView). For example, if one
offers a short list to chooseNumber it may offer the choice via radio buttons, in
other cases it may use a pull-down menu.
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When desired, one can influence the representation, indicated by ChoiceView

ChoiceType o. Choices can be offered via radio buttons (ChooseFromRadioButtons), a
pull-down menu (ChooseFromComboBox), a table (ChooseFromTable) or a tree (Choose-
FromTree) to choose from, or one can present checkboxes (ChooseFromCheckBoxes,
multiple choice only). The overloading mechanism enables adding other repre-
sentations later on if needed.

To give an example of an application, look at chooseNumber2.

Example 4. Choosing from a tree

chooseNumber2 :: Task Int

chooseNumber2= enterChoice "Choose a number"

[ChoiceView (ChooseFromTree, (<+++) "choose ")] [0..10]

It presents the choices in a tree structure, with each option i labeled as "choose i".

Exercise 7. Google maps
Make the following further changes to Example 1: add the line import GoogleMaps,
and alter the type of myTask to Task GoogleMap. What is changed in the resulting
application? Click on the picture and see what happens. �

Fig. 5. A screenshot of Exercise 7: A Google Map

When creating an editor for a value, you do not always want to allow the
end-user to have access to the entire value. In iTask, a couple of types have been
specialized for this purpose (see module SystemTypes.dcl).
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Table 2. Creating partial access to values

:: VisualizationHint a = VHEditable a | VHDisplay a | VHHidden a

:: Editable a = Editable a

:: Display a = Display a

:: Hidden a = Hidden a

fromVisualizationHint :: (VisualizationHint a) → a

toVisualizationHint :: a → VisualizationHint a

fromEditable :: (Editable a) → a

toEditable :: a → Editable a

fromDisplay :: (Display a) → a

toDisplay :: a → Display a

fromHidden :: (Hidden a) → a

toHidden :: a → Hidden a

In Table 2, the type VisualizationHint and its data constructors are intro-
duced that are useful when manipulating (parts of) values that can be edited
(VHEditable), or only displayed (VHDisplay), or even not shown at all (VHHidden). For
each of these cases, separate type and data constructors exist (Editable, Display,
and Hidden), as well as conversion functions.

Exercise 8. Editable, Display, and Hidden values
Same as Exercise 4, but now edit values of type (Editable Person), (Display Person),
and (Hidden Person). �

3 Combinators

In the previous section we have shown how to display information of arbitrary
type to the user and how to obtain information of arbitrary type from the user.
However, in order to do something useful with this information, you need to
pass the result of one task to another. For this purpose, the usual monadic
combinators are used (see module CoreCombinators.dcl):

(>>=) infixl 1 :: (Task a) (a → Task b) → Task b | iTask a & iTask b

return :: a → Task a | iTask a

(>>|) infixl 1 :: (Task a) (Task b) → Task b | iTask a & iTask b

The (t >>= λx → tf x) task is a composite task that first executes task t. When
t has finished it returns a value that is bound to variable x of some type a. If tf
:: a → Task b, then (tf x) computes a new task of type (Task b). This new task is
then executed. Its return value, of type b, is also the return value of the composite
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task. The (t >>| u) task is a composite task that first executes task t and then
task u, while ignoring the result of task t. Hence, >>| is a derived combinator
which can be expressed in terms of the bind operator >>=. The (return x) task is
a basic task that immediately terminates with value x. You use it typically as
the last task in a composition of tasks to return the correct value.

As an example, we create a slightly more interesting hello world example that
combines enterInformation and viewInformation to first ask the user her name, and
then welcome her:

Example 5. Hello world in iTask

1hello :: Task String

2hello

3= enterInformation "Please enter your name" [ ]
4>>= λname → viewInformation ("Hello " +++ name +++ "!") [ ] name

The hello task first executes the enterInformation task on line 3. Because it is
clear from the context that a String value is required (+++ :: String String →
String), we know that the entered value name is of type String. The task then
executes viewInformation and greets the user with the entered name.

Exercise 9. Sequence
Write a workflow that asks the user to first enter her first name, then her sur-
name, then her date of birth (a value of predefined type Date), and her gender
(the custom type Gender). The workflow must return the result as a Person value.
Person and Gender were defined in Example 2. �

iTask is embedded in Clean. This implies that you can use normal choice (if and
case expressions) and recursion to create composite tasks. As a simple example,
we define a workflow that allows the user to enter positive numbers, whose sum
is returned as soon as the user enters a non-positive number.

Example 6. Choice and recursion in iTask

1numbers :: Task Int

2numbers = viewInformation "number entered:" [ ] (numbers‘ 0)
3where
4numbers‘ :: Int → Task Int

5numbers‘ sum

6= enterInformation "Please enter a positive number" [ ]
7>>= λn → if (n > 0) (numbers‘ (sum + n)) (return sum)

Here, numbers‘ is a recursive task. Its integer argument accumulates the sum
of the entered positive numbers. In line 6, the user is asked to enter a positive
number. With if it is decided whether to continue recursively (in case the en-
tered number is positive), or whether to terminate the recursive task and return
the accumulated sum.
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Exercise 10. Persons recursively
Write a workflow in which the user can enter a number of Person values. The
result of this workflow must be of type [Person].

Exercise 11. Persons as a list
Write a workflow in which the user can enter a [Person] value. Compare this to
Exercise 10. �

In iTask, tasks are first-class citizens, i.e. tasks can be arguments as well as
results of task functions. This is extremely useful to capture common workflow
patterns. We start with a simple example:

Example 7. A simple first-class task function

1view :: (Task a) → Task a | iTask a

2view t

3= t

4>>= λresult → viewInformation "The result is:" [ ] result

(view t) is a function that takes an arbitrary task t of type Task a as argument
which is executed first (line 3). Whenever t terminates, its result value of type
a is displayed to the user (line 4).

For completeness, we show two alternative ways to define the same function
below. The first, view2, uses η-conversion to eliminate the need to write down
the intermediate result. The second, view3, uses the standard flip function to
move the task argument to the back, and thus apply η-conversion one more time
and obtain a point-free version of view. Because in Clean the arity of functions
is explicit in their type, view3 has a different function type than view2 and view.

view2 :: (Task a) → Task a | iTask a

view2 t = t >>= viewInformation "The result is:" [ ]

view3 :: ((Task a) → Task a) | iTask a

view3 = flip (>>=) (viewInformation "The result is:" [ ])

Here is an example of first-class tasks as a result.

Example 8. Working with first-class task results

1personList :: Task [Person]
2personList

3= enterInformation "Please fill in the form" [ ]
4>>= λp → enterChoice "One more ? " [ ]
5[("Yes" ,Hidden (personList >>= λps → return [p:ps]))
6,("No" , Hidden (return [p] ))
7]
8>>= λ(_,Hidden continuation) → continuation

In Example 8, the user enters a Person value on line 3, the value of which is
bound to variable p (line 4), and then decides whether she wants to add more
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persons (line 5) or whether she is done (line 6). The choices not only contain the
possible answers (the strings "Yes" and "No"), but also the task that should be
continued with as a Hidden value. In case the answer is "Yes", then more persons
ps are entered, and p and ps are returned (line 5). In case the answer is "No", then
only p is returned (line 6).

Another, more classical approach would be to leave out the continuation in
the enterChoice editor as probably is chosen in Exercise 10. In that case one needs
to make a case distinction to find out whether "Yes" or "No" has been chosen. For
every possible choice a case alternative has to be defined with the proper task to
do next. The advantage of the continuation style approach shown in Example 8
is that the choice and the task to do when the choice is made are combined. If
a case distinction is used these two are separated which can more easily lead to
a programming error.

The iTask system defines many first-class task combinator functions. You can
find quite a number of them in module CommonCombinators.

Table 3. Some predefined first-class task combinator functions

(>>̂ ) infixl 1 :: (Task a) (Task b) → Task a | iTask a & iTask b

(>>?) infixl 1 :: (Task (Maybe a))
(a → Task (Maybe b)) → Task (Maybe b) | iTask a & iTask b

(<!) infixl 6 :: (Task a) (a → Bool) → Task a | iTask a

(-||-) infixr 3 :: (Task a) (Task a) → Task a | iTask a

( ||-) infixr 3 :: (Task a) (Task b) → Task b | iTask a & iTask b

(-|| ) infixl 3 :: (Task a) (Task b) → Task a | iTask a & iTask b

Exercise 12. Gathering behavior from types
It is instructive to guess the likely behavior of the combinators from Table 3.
Try this yourself. You can check your answers below. �

– (t >>̂ u) first executes t and then u, and yields the result of t.
– (t >>? tf) first executes t. Only if that task returns a (Just x) value, then

the second task (tf x) is computed, executed, and its result returned.
– (t <! p) executes t at least once. Each time predicate p yields false, t is

executed again, and its new result is tested. The composite task terminates
as soon as p yields true.

– (t -||- u) executes both t and u and terminates as soon as either task
finishes and returns that result.

– (t ||- u) and (u -|| t) are similar and return the result of task u as soon
as it terminates.
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One can imagine many more useful combinators. In Section 10, we explain that
such combinators like the ones displayed in Table 3, are actually derived combi-
nators. As iTask programmer, you can define your own combinators to capture
often occurring working patterns. Here is an example of a custom combinator
that repeats a task as long as the current user is not satisfied with its result:

Example 9. A first-class task pattern

1repeatUntilApproved :: (Task a) → Task a | iTask a

2repeatUntilApproved t

3= t

4>>= λv → enterChoice "Approve result: " [About v]
5[("Yes" ,Hidden (return v))
6,("No" , Hidden (repeatUntilApproved t))
7]
8>>= λ(_,Hidden c) → c

The same continuation technique is used as in Example 8. A new aspect in this
example is the [About v] option that has been added to enterChoice. With this
option, you can display any additional type that is a generic iTask class instance.
Here it is used to display the return value of t.

Exercise 13. While pattern
Write a workflow pattern while that has the following signature:

while :: (a → Bool) (a → Task a) a → Task a | iTask a

with the following meaning: (while c t a) repeats a task t as long as the predicate
c is valid for the initial value a and subsequent values produced by applying t.
Test this workflow pattern with:

positive :: Task Int

positive = while ((≥) 0) (updateInformation "Please enter a positive number" [ ]) 0

�

4 Enriching Tasks with GUI

Editors, created with enterInformation and updateInformation, are tasks that create
an interface to the end user to enter or update a value of first order type. In this
section we extend these tasks with actions. An action is a value of type Action

(defined in module SystemTypes).
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Table 4. Actions

:: Action = Action ActionName | ActionFinish | ActionClose

| ActionOk | ActionContinue | ActionHelp

| ActionCancel | ActionNew | ActionAbout

| ActionYes | ActionOpen | ActionFind

| ActionNo | ActionSave | ActionDelete

| ActionNext | ActionSaveAs | ActionEdit

| ActionPrevious | ActionQuit

:: ActionName :== String

Except for the very first, all data constructors in Table 4 have a default ap-
pearance in iTask. With (Action name), an action with name name is created.
By default, an action is rendered as a button. However, if name is shaped as
"m/s1/. . . /sn/c" (n ≥ 0), then m is rendered as a menu, the si are rendered
as hierarchical sub menus, and c as the final menu command. Actions with
identical prefixes are mapped to identical menu structures. Actions are most
useful in combination with the following multi-bind combinator (see module
CommonCombinators.dcl.

Table 5. The multi-bind combinator

(>?*) infixl 1 :: (Task a) [(Action,TaskContinuation a b)] → Task b | iTask a

& iTask b

:: TaskContinuation a b = Always (Task b)
| IfValid (a → Task b)
| Sometimes ((InformationState a) → Maybe (Task b))

:: InformationState a = { modelValue :: a

, localValid :: Bool

}

The composition (t >?* [(a1 ,c1). . . (an ,cn )]) (n ≥ 0) performs task t. If t is an
editor task (one of the enter- and update- combinators introduced in Section 2),
then its current value x is inspected by >?* using the continuation criteria ci. If
ci = Always t’, then action ai is always enabled and can be selected by the user,
in which case task t’ is continued with. If ci = IfValid ft, then action ai is only
enabled if x is valid. Selecting ai causes continuation of the task computed by
(ft x). Finally, if ci = Sometimes ft, then the select state of action ai is determined
by ft. The function is given value x as well as a boolean v telling whether x is
valid in the record value st = {modelValue = x, localValid = v}. If (ft st) yields
Nothing, then action ai is not enabled; if it yields Just t’, then t’ is the task that
is continued with if the user selects action ai. If t is not an editor task, then its
return value x is inspected exactly once.
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Example 10. Using multi-bind to add actions

1absolute :: Task Int

2absolute = enterInformation "Enter a number" [ ]
3>?* [(Action "Always" , Always (return 42))
4,(Action "If valid" , IfValid (λx → return (abs x)))
5,(Action "Sometimes" , Sometimes (onlyIf (λx → x ≥ 0) return))
6]
7

8onlyIf :: (a → Bool) (a → Task b) (InformationState a) → Maybe (Task b)
9onlyIf pred taskf s

10| s.localValid && pred s.modelValue = Just (taskf s.modelValue)
11| otherwise = Nothing

This task enhances the enterInformation task on line 2 with three actions:

1. The action labeled "Always" is continuously available to the user. Selecting it
causes absolute to return value 42.

2. The action labeled "If valid" is only available if the user has edited a legal Int
value. Initially, the editor is empty, and hence this task is disabled. Whenever
a number is entered, the action becomes enabled. If selected, it returns the
absolute entered value.

3. The action labeled "Sometimes" is enabled only if the user has entered a posi-
tive number, which is also the return value of the action that is chosen. The
function onlyIf is a handy utility function which checks whether a valid value
has been typed in obeying a given predicate.

Fig. 6. A screenshot of Example 10: Conditional Selectable Action Buttons

As another example, consider this variation of Example 8:

Example 11. Using multi-bind to enter Persons

1personList :: Task [Person]
2personList

3= enterInformation "Please fill in the form" [ ]
4>?* [(Action "Add one", IfValid (λp → personList >>= λps → return [p:ps]))
5,(Action "Done" , IfValid (λp → return [p]))
6,(ActionQuit, Always (return [ ]))
7]
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Fig. 7. Screenshot of Example 11: Different Ways to Continue Work

Exercise 14. Repeat until approved revisited
Change the repeatUntilApproved combinator from Example 9 such that it uses
actions instead of the choice-construct with hidden continuation tasks.

Exercise 15. Palindrome
Use >?* to enhance a String editor task with three actions:

1. an action labeled "No text" that is enabled only if no text has been entered;
2. an action labeled "Palindrome!" that is enabled only if text has been entered

and is a palindrome;
3. conversely, an action labeled "Nope!" that is enabled only if text has been

entered and is not a palindrome.

�

5 Shared Data

In any workflow management system it is vital to keep track of time in order
to enforce deadlines and coordinate work. Earlier, we have seen that Date is a
predefined type in iTask. Similarly, Time and DateTime are predefined. You can
obtain the current date and time as follows:

Example 12. A task to obtain the current date and time

1getDateAndTime :: Task DateTime

2getDateAndTime= get currentDateTime

In a similar way, get currentDate and get currentTime return the current date and
time individually.

During execution of a workflow, time progresses. This is illustrated by turning
Example 12 into a repetitive workflow:
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Example 13. A repetitive task to illustrate progress of time

1repeatDateAndTime :: Task DateTime

2repeatDateAndTime= repeatUntilApproved (show getDateAndTime)

As long as the user does not approve of the current result, she will see new
date and time values.

The values currentDate, currentTime, and currentDateTime are examples of read-
only shared data. In iTask, a shared data is a reference to a value with a typed
read -interface and typed write-interface.

Table 6. The shared data API

:: RWShared r w

:: Shared a :==RWShared a a

:: ROShared a :==RWShared a Void

get :: (RWShared r w) → Task r | iTask r

set :: w (RWShared r w) → Task w | iTask w

update :: (r → w) (RWShared r w) → Task w | iTask r & iTask w

Table 6 enumerates the types and tasks that can be found in module CoreTasks.
A shared data of type (RWShared r w) can be read with the get function, which
returns of value of type r, and it can be overwritten with the set function, which
takes a value of type w. Reading and writing can be done atomically with the
function update f, when f :: r → w. A read-only shared data is a shared data in
which the write-interface has type Void. Symmetric shared data have identical
read-write interface types (see module CoreTasks).

Shared data is useful for two reasons: it can be used to serve as unstructured
many-to-many communication between tasks that are evaluated in parallel, and
for storing data persistently. The unstructured nature of shared data impedes
reasoning. For this reason it has been ‘tamed’ when working with parallel tasks,
as will be discussed in Section 8. In the remainder of this section, we discuss
only its application for storing purposes. We do this by means of an example.

Example 14. A persistent ‘to-do list’

1:: ToDo = { name :: String, deadline :: Date, remark :: Maybe Note, done :: Bool }
2derive class iTask ToDo

3

4toDoList :: Shared [ToDo]
5toDoList = sharedStore "My to-do list" [ ]
6

7updateToDoList :: Task [ToDo]
8updateToDoList= get toDoList

9>>= λoldList → updateInformation "Your to-do list" [ ] oldList

10>>= λnewList → set newList toDoList
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First of all, we design a data type, ToDo, that contains a description of something
to do (line 1) and generate a generic instance of the iTask class (line 2). Second,
we need a reference to the store, which is created by the function sharedStore (line
5). In order to allow the user to update her to-do list, the task updateToDoList

first reads the current content of the shared data (line 8), allow her to edit the
list (line 9), and finally write it to persistent store (line 10).

Exercise 16. Enhancing the to-do list
Enhance the updateInformation task in Example 14 with the following actions:

1. sort the to-do list by name or deadline;
2. remove all to-do items which deadline has passed;
3. remove all to-do items that have been done.

�
In Section 2 we have presented the basic editor tasks to show, enter, and update
values generically. For each of these basic editors, a basic shared editor task exists.

Table 7. The basic shared editor tasks

viewSharedInformation

:: d [ViewOn l r w] (RWShared r w) l → Task (r,l)
| descr d & iTask l & iTask r & iTask w

updateSharedInformation

:: d [ViewOn l r w] (RWShared r w) l → Task (r,l)
| descr d & iTask l & iTask r & iTask w

enterSharedInformation

:: d [ViewOn l r w] (RWShared r w) → Task (r,l)
| descr d & iTask l & iTask r & iTask w

updateSharedChoice

:: d [ChoiceView ChoiceType o] (RWShared (c o) w) o → Task o

| descr d & iTask o & iTask w & iTask (c o) & OptionContainer c

enterSharedChoice

:: d [ChoiceView ChoiceType o] (RWShared (c o) w) → Task o

| descr d & iTask o & iTask w & iTask (c o) & OptionContainer c

updateSharedMultipleChoice

:: d [ChoiceView MultiChoiceType o] (c o) [o] → Task [o]
| descr d & iTask o & iTask (c o) & OptionContainer c

enterSharedMultipleChoice

:: d [ChoiceView MultiChoiceType o] (c o) → Task [o]
| descr d & iTask o & iTask (c o) & OptionContainer c

The main difference between editor tasks and shared editor tasks is that the
latter operate on shared data in addition to a local value. Shared editor tasks
can be enhanced with the >?* operator in the same way as editor tasks can
(Section 4). As a consequence, the updateToDoList function in Example 14 can
also be implemented with a one-liner:
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Example 15. A shared editor for a persistent ‘to-do list’

updateSharedToDoList :: Task ([ToDo] ,Void)
updateSharedToDoList= updateSharedInformation "Your to-do list" [ ] toDoList Void

viewSharedToDoList :: Task ([ToDo] ,Void)
viewSharedToDoList= viewSharedInformation "Your to-do list" [ ] toDoList Void

Because no local data is required we use value Void of type Void.

Fig. 8. Screenshot of Example 15: An Editor on a Shared ToDo List

It is important to notice that there is a big difference in behaviour between
the two approaches. In updateToDoList a copy of the list is made first. This copy
is edited by the end user. When the end user is happy with the changes made,
the editing task is finished, and the result is written back to the shared state.
In updateSharedToDoList no copy is made. Every change is applied directly to the
shared to-do list, and therefore is also directly visible by any other task looking
at the same to-do list (!). Hence, when one is working on a task, one can use
shared data to communicate information with other tasks.

For example, if task viewSharedToDoList would be executed in parallel with
updateSharedToDoList (see Section 8), any modification made in the todo-list with
the editor is directly visible for someone viewing this to-do list at the same time.
One can also imagine that several workers are working at the same time on
the same shared to-do list. The iTask system will automatically report editing
conflicts to the workers when they occur.
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Fig. 9. Screenshot of Example 15: A View on the Shared ToDo List

6 Views on Local and Shared Data

The view parameter of the editors has been ignored so far. It makes it possible to
present the information in the editor model in a desired format. Hence an editor
is an instance of the model-view paradigm: the model is defined by the task
type returned by an editor while the view is what is shown to the end-user. By
default, when the view is defined as an empty list, model and view are identical.
If one wants a different view, one has to think about what the format of the
view has to be, which types can be used to express this, and one has to define
a bidirectional transformation (bimap) between the view values and the model
data the editor is actually applied on.

For example, an editor such as updateInformation allows the end user to modify
data (of some type l) which is only locally available for the particular editor.
When the editing task is finished, the final value is made public and passed to the
next tasks to do. An editor such as updateSharedInformation allows to modify both
local data and shared data. When shared data is being modified, the changes are
automatically made visible to all other end users who are looking at the same
shared data as well.

updateSharedInformation :: d [ViewOn l r w] (RWShared r w) l → Task (r,l)
| descr d & iTask l & iTask r & iTask w

updateInformation :: d [LocalViewOn l] l → Task l

| descr d & iTask l

:: LocalViewOn a :== ViewOn a Void Void

By default, model and view are the same. In the case of updateInformation, by de-
fault an editable form is created for type l. In the case of updateSharedInformation,
by default an additional editable form is created for the shared type r as well.
Hence, in that case two editable forms are shown to the end user.

However, in particular when shared data is involved, this default view may
not be very suitable. Let’s have a look at the following example.
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Example 16. Twitter with an ill-chosen view

1:: Tweet :== (User,String)
2

3twitterCEFP = get currentUser >>= join

4where
5name = "CEFP"

6tweets = sharedStore ("Twitter with " +++ name) [ ]
7

8join :: User → Task Void

9join user

10= updateSharedInformation ("Tweets of " +++ name) view tweets ""

11>?* [ (ActionQuit, Always (return Void))
12, (ActionOk, IfValid (λ(_,message) → commit (user, message)))
13]
14where
15view = []
16

17commit :: Tweet → Task Void

18commit tweet = update (append tweet) tweets >>| join user

19

20append x xs = xs ++ [x]

The function join (line 9) allows a user to follow messages (tweets) which are
posted by someone or which are focussed on a certain topic area. In this case
the topic is the "CEFP" summer school. Tweets are of type [(User, String)] which
are stored in a shared store, tweets (line 6), that is initially empty.

In join a shared editor is created (updateSharedInformation, line 10) for the
shared tweets as well as for entering a string. The idea is that the end user can
see the tweets passing by which are being committed while she can type in a
reaction as well. When the OK button is pressed (line 12), the entered message
is committed, and the tweet store is updated by appending this message (line
18), after which this whole process is repeated by a recursive call of join. When
a user no longer wants to follow the discussion, she can simply quit (line 11).

The updateSharedInformation editor, by default, provides an editor with which
one can update both the shared value and the local value. In this case, this
is not what we want (see Fig. 10). The shared value here are the tweets (of
type [(User, String)]) being committed, which one actually only wants to see
as text passing by, and one does not want to alter it at all. For entering a
reaction, one would rather like to use a text box, as is being generated for type
:: Note = Note String.

Example 17. A proper view for Twitter

1view = [ DisplayView (GetShared id)
2, EnterView (SetLocal (λ(Note reaction) _ _ → reaction))
3]
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Fig. 10. Screenshot of Example 16: The Ill-Chosen View

Fig. 11. Screenshot of Example 17: A Well-Chosen View

A proper representation (see Fig. 11) can be obtained by defining a dedicated
view instead of the default view ( [ ] ) which states that the tweets have to be
shown as text only (line 1 of view) while an editable textbox is created, which,
when changed, will be copied back to the local string (line 2 of view). While
looking at the screen or entering a reaction, the list of tweets being displayed
will be updated constantly showing the new tweets committed by others.

:: ViewOn l r w =∃v: About v & iTask v

|∃v: EnterView (SetFunc l r w v) & iTask v

|∃v: UpdateView (GetFunc l r v, SetFunc l r w v) & iTask v

|∃v: DisplayView (GetFunc l r v) & iTask v

| UpdateTrigger String (UpdateFunc l r w)
:: GetFunc l r v = GetLocal (l → v)

| GetShared (r → v)
| GetCombined (l r → v)

:: SetFunc l r w v = SetLocal (v l r → l)
| SetShared (v l r → w)
| SetCombined (v l r → (Maybe l, Maybe w))

:: UpdateFunc l r w = UpdateLocal (l → l)
| UpdateShared (r → w)
| UpdateCombined (l r → (Maybe l, Maybe w))
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The algebraic data type ViewOn defines how views can be defined on the data
model of interaction tasks. Zero or more of these views can be defined as element
in a list. If no views are defined (view = [ ]) the identity is taken, and view and
model will be the same. Each view presents a mapping ViewOn l r w between the
local data of type l, the shared data of type r which can be read, and shared
data of type w which can be written. A view can be of arbitrary type v, and is
therefore existentially quantified (∃v) to allow these different view types v to be
collected in a list.

With About additional information can be presented independent from the data
model being used. With UpdateView one defines how to turn the model into a view,
and one defines what the consequences are for the model when view values are
modified. For turning a model into a view one can look at the current value of
the local data (GetLocal), the global data (GetShared), or both (GetCombined). Any
change made may have consequences for the local data (SetLocal), the global
data (SetShared), or both (SetCombined). With DisplayView a view is created from the
model which cannot be updated by the end-user. With EnterView an editable view
is created independent from the current model, and any change made is mapped
back into the data model. The UpdateTrigger introduces a trigger (typically a
button) which, when pressed, is used to update the data model.

The twitter Example 16 with the adjusted view works nicely. To demonstrate
what one can and cannot do with a view, we present an alternative definition of
join which is given in join2.

Example 18. Alternative definition for join, twittering too much

1join2 :: User → Task Void

2join2 user

3= updateSharedInformation ("Enter tweet for " +++ name) view tweets ""

4>?* [ (ActionQuit,Always (return Void))
5]
6where
7view = [ UpdateView

8( GetCombined (λtxt tweets

9→ (Display tweets, Note txt))
10, SetShared (λ(_,Note reaction) _ tweets

11→ append (user,reaction) tweets)
12)
13]

Even though the OK button is removed, and the definition is no longer recursive,
tweets are added constantly. An UpdateView is defined which maps the model, the
local value of type String and shared data of type [Tweet] into the desired view
of type (Display [Tweet] , Note) using GetCombined. The view is mapped back using
SetShared which appends the entered text to the tweet store.
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Although the view looks fine, the behaviour is unexpected: whenever a change
is encountered, either in the shared data or in a view, the model is updated after
which a new view is calculated and shown. As a result, while entering a string,
parts of it are taken away and moved into the tweet store, even though the user
has finished typing. This is clearly not what is wanted. So, when writing views
one must be aware that mapping from model to view and backwards is hap-
pening regularly when changes are being made by someone in the underlying
models.

Example 19. Alternative definition for join

1join3 :: User → Task Void

2join3 user

3= updateSharedInformation ("Enter tweet for " +++ name) view tweets ""

4>?* [ (ActionQuit, Always (return Void))
5]
6where
7view = [ DisplayView (GetShared id)
8, UpdateView (GetLocal Note

9,SetLocal (λ(Note reaction) _ _ → reaction)
10)
11, UpdateTrigger "Commit"

12(UpdateData (λreaction tweets →
13(Just ""

14,Just (append (user,reaction) tweets)
15)
16))
17]

A non-recursive version of join that exposes the desired behavior is given in
Example 19 (join3). Here, to show the latest tweets, the shared tweet model is
constantly displayed (DisplayView, line 7) while the local model of type String is
constantly mapped (UpdateView, line 8-10) to and from a textbox of type Note.
Only when the "Commit" button is hit, the reaction stored in the local model is
added as tweet to the tweets store and this local store is reset to the empty
string to allow a new reaction to be entered (UpdateTrigger, line 11-16).

7 Task Distribution

So far we have ignored the fact that tasks are typically distributed over several
users working together on the internet. In this section we explain how tasks can
be distributed over a number of workers.
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Example 20. Managing Multi-User Tasks

1module Section7

2

3import iTasks

4derive bimap ( ,) , Maybe

5

6Start :: *World → *World

7Start world = startEngine (manageWorkflows myWorkFlows) world

8

9myWorkFlows = [ workflow "view all users" "view users" viewAllUserNames

10, workflow "edit to-do list" "edit to-do" updateSharedToDoList

11, workflow "view to-do list" "view to-do" viewSharedToDoList

12]

Clearly, if we want to do this, we need a different web interface. So far, an
end user only had to handle one task. Now we need a web interface where every
worker can work on several tasks and new tasks can be started and distributed to
any other iTask worker working on the internet. Such a more fancy web interface
can be defined “just” as an iTask task in the iTask system. It can be user defined
as desired, but for doing so one needs more knowledge about the iTask system
than we have explained so far, therefore we do not define such an iTask task
here on this spot.

Instead, we simply make use of a task we have predefined for you. It is “just”
an iTask task called manageWorkflows, which takes a list of tasks that can interac-
tively be started by the end-user (see Example 20). For each task in the list a
description is added which explains what the purpose of the task is.

In Fig. 12 this predefined task manager is shown with all CEFP exercises
included. In the left-upper task pane all tasks which can be started are displayed
in a tree structure. If one clicks on one of these tasks, it is displayed left-below
what the purpose of that task is. The tasks to do are displayed in the right-upper
pane, much alike incoming emails in an email application. These are task which
the end-user either started herself or tasks to-do which are given to the end-user
by someone else. The end-user can work on several tasks at the same time in the
right-below pane, by choosing one of the tabs.

Before you enter the task manager, you have to login. In the beginning there
is only one user administrated, the administrator named root. Before we start,
you need to ‘employ’ a number of workers.

Exercise 17. Setting up your user-base
When logged in as root, you can start the Admin/Users task in the task pane
which is only visible for the administrator. With this administrative task, you
can add users to your workflow management system. This is needed for the re-
maining exercises of these lecture notes. Add a positive number of users to your
workflow management system. �
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Fig. 12. The Predefined iTask Task Manager Task Showing All CEFP Examples

Once users are registered, you can access them with a number of operations.
Just like date and time, as explained in Section 5, this is done via shared data.

Table 8. Accessing the user base

users :: ROShared [User]
usersWithRole :: Role → ROShared [User]
currentUser :: ROShared User

userDetails :: User → Shared UserDetails

currentUserDetails :: ROShared (Maybe UserDetails)

:: UserDetails = { userName :: UserId

, password :: Password

, displayName :: String

, emailAddress :: EmailAddress

, roles :: Maybe [Role]
}

:: UserId :== String

:: Password = Password String

:: EmailAddress = EmailAddress String

:: Role :== String

Table 8 enumerates the functions with which (a subset of) the current users
can be retrieved. For the purpose of the lecture notes, the User data type is not
very interesting, but the UserDetails record is. It contains the information that
you have entered in Exercise 17. Because you do not have to be logged in to use
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the iTask system, the function currentUserDetails returns a Maybe value. Due to
their special status, Password and EmailAddress are defined as new types. Because
access is done via shared data, it is straightforward to select one or more users,
or display all user names (the function displayName extracts the corresponding
field from the details record):

Example 21. Tasks to access the user-base

1selectUser :: Task User

2selectUser = enterSharedChoice "Select a user:" [ ] users

3

4selectUsers :: Task [User]
5selectUsers = enterSharedMultipleChoice "Select users:" [ ] users

6

7viewAllUserNames :: Task [String]
8viewAllUserNames= get users

9>>= λus → let names = map displayName us in
10viewInformation "The current users are: " [ ] names

Exercise 18. Reading your user-base
Add the viewAllUserNames task as a workflow to your system and run it. This
should display the names of the users that you have entered in Exercise 17. �

With the @: operator, a task can be assigned to a user:

(@:) infix 3 :: User (Task a) → Task a | iTask a

As an example, consider the delegate workflow:

Example 22. A delegate task pattern to distribute work

1delegate :: (Task a) → Task a | iTask a

2delegate task

3= selectUser

4>>= λuser → user @: task

5>>= λresult → updateInformation "Check result" result

Exercise 19. Question user
Create a workflow that first selects an arbitrary user, then edits a question, and
finally asks the selected user to answer the entered question. The answer must
be displayed to the user who asked the question.

Exercise 20. A 2-person number guessing game
Use delegate to write a workflow that first asks the current user to enter a secret
number, then to select two other users who are going to try and guess the secret
number. The user who guesses the number first wins. Use one of the combinators
of Table 3 to distribute the work in parallel.



Defining Multi-user Web Applications with iTasks 75

Exercise 21. A 2-person dialogue
Write a workflow in which the current user contacts another user, and initi-
ates a dialogue with that user. In turn, each user enters a line of text. The
history of the conversation must be displayed, but should not be editable. The
conversation is terminated as soon as either user enters an empty line of text.
The result of the workflow must be a value of type [(User,String)] that collects
the entire conversation, with the most recent line of text at the head of the list. �

8 Parallel Tasks I: A Fixed Number of Tasks

So far all examples involved at most two registered workflow users. Naturally,
one wants to generalize over the number of users. The iTask system provides
a single, swiss army knife combinator for this purpose, called parallel. In this
section we explain how to use this versatile combinator for an arbitrary, yet
constant, number of users. In Section 9 we continue our discussion and show
how it can be used to accommodate a dynamic number of users.

The signature of parallel is:

parallel :: d s (ResultFun s a) [TaskContainer s] → Task a | iTask s & iTask a

& descr d

We briefly discuss its parameters first. The first parameter is the usual descrip-
tion argument that we have encountered many times so far. It plays the same role
here: a description to the user to inform her about the purpose of this particular
parallel task in the workflow.

The second argument is the initial value of the state of the parallel task: the
state is a shared data (as discussed in Section 5) that can be inspected and
altered only by the tasks that belong to this parallel task.

The third argument is a function of type:

:: ResultFun s a :==TerminationStatus s → a

:: TerminationStatus= AllRunToCompletion | Stopped

The purpose of the ResultFun function is to turn the value of the state of the
parallel task at termination into the final value of the parallel task itself. They
need not have the same type, so the state is converted to the final value when the
parallel task is finished. The parallel combinator can terminate in two different
ways. It can be the case that all subtasks are finished (AllRunToCompletion). But, as
we will see later, a subtask can also explicitly kill the whole parallel construction
(Stopped). This information can be used to create a proper final value of parallel.

Finally, the fourth argument is the initial list of task (container)s that con-
stitute the parallel task. A task container consists of two parts: a task type
representation (ParallelTaskType) defining how the subtask relates to its super-
task, and the subtask itself (defined on shared state s) to be run in parallel with
the others (ParallelTask s):
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:: TaskContainer s :== (ParallelTaskType, ParallelTask s)
:: ParallelTaskType= Embedded

| Detached ManagementMeta

The ParallelTaskType is either one of the following:

– Embedded basically ‘inlines’ the task in the current task.
– Detached meta displays the task computed by the function as a distinct new

task for the user identified in the worker field of meta. ManagementMeta is a
straightforward record type that enumerates the required information:

:: ManagementMeta=
{ worker :: Maybe User

, role :: Maybe Role

, startAt :: Maybe DateTime

, completeBefore :: Maybe DateTime

, notifyAt :: Maybe DateTime

, priority :: TaskPriority

}
:: TaskPriority = HighPriority | NormalPriority | LowPriority

It should be noted that the u @: combinator is simply expressed as a parallel

combination of two tasks. One of type Detached with the worker set, and an-
other of type Embedded that displays progress information.

:: ParallelTask s :== (TaskList s) → Task ParallelControl

:: TaskList s

:: ParallelControl = Stop | Continue

The task creation function takes as argument an abstract type, TaskList s, where
s is the type of the data the subtasks share. Every subtask has to yield a task
of type ParallelControl to tell the system, when the subtask is finished, whether
the parallel task as a whole is also finished (by yielding Stop) or not (by yielding
Continue.)

As will be explained in Section 9, the number of subtasks in the task list can
change dynamically. One can enquire its status, using the following functions on
the abstract type TaskList s:

taskListState :: (TaskList s) → Shared s | TC s

taskListProperties :: (TaskList s) → Shared [ParallelTaskInfo]

With the function taskListState one can retrieve the data shared between the
tasks of the parallel combinator. As discussed in Section 5, you can use get,
set, and update to access its value. There is another function, taskListProperties,
which can be used to retrieve detailed information about the current status of
the parallel tasks created. This can be used to control the tasks, and is explained
in more detail in the next section.
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We first illustrate the static use of parallel by a number of examples. In the
first example, we create a variant of Exercise 19.

Example 23. Question N users

1questions :: Task [(User,String)]
2questions

3= updateInformation "Pose a question" [ ] "...?"

4>>= λquestion → selectUsers

5>>= λusers → parallel "parallel" [ ] (λ_ s → s)
6[ (DetachedTask (normalTask u) , answer u question)
7\\ u←users

8]
9where
10answer u question tasks

11= updateInformation question [ ] "...!"

12>>= λa → update (λanswers → [(u,a):answers]) (taskListState tasks)
13>>| return Continue

14

15normalTask :: User → ManagerProperties

16normalTask u = { worker = u

17, priority = NormalPriority

18, deadline = Nothing

19, status = Active

20}

Example 23 first asks the current user to enter a question (line 3), and then
make a selection of the current set of registered users (line 4). For each user (line
7), a detached task is created (line 6) that asks the user to answer the question
(line 10). This task simply adds the given answer to the shared data of the par-
allel construct (line 12) and returns Continue. The parallel construction therefore
will end when all subtasks are finished in this way (yielding AllRunToCompletion).
The function normalTask is a useful convenience function. Notice that an update

of shared data is performed in one atomic action, such that no concurrency
problems can occur when multiple subtasks are finishing up.

Finally, we develop a chat example in which an arbitrary number of people
communicate with each other.

Example 24. Chat infrastructure

1:: ChatState :== [String]
2

3initChatState :: ChatState

4initChatState = []
5

6addLine :: User String ChatState → ChatState

7addLine me line s = s ++ [me +++> ": " +++ line]
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The conversation is to be stored as a simple list of strings (of type ChatState),
and there are two trivial access function to create an initial value, and to add a
new line of text to the conversation. (The operators +++>and <+++ are convenient
to convert the first and second argument respectively to text and concatenate it
with their String argument.)

Example 25. A naive parallel chat example without menus

1naive_chat :: Task ChatState

2naive_chat

3= get currentUser

4>>= λme → selectUsers

5>>= λothers → let chatters = [me : others]
6in parallel "Naive chat" initChatState (λ_ chats → chats)
7[ (DetachedTask (normalTask who) , chat who chatters)
8\\ who←chatters

9]
10where
11chat :: User [User] (TaskList ChatState) → Task ParallelControl

12chat me chatters tasks

13= forever ( get chatState

14>>= λxs → updateInformation header [ ] (Display xs, Note "")
15>>= λ(_,Note n) → update (addLine me n) chatState

16)
17>>| return Stop

18where
19chatState = taskListState tasks

20header = "Chat with " +++ join "," (map toString chatters)

The chat example first selects a number of users (lines 3-4), and continues with
the parallel creation of tasks (lines 6-9). These are created as menu-less detached
chat tasks (normalTask was defined in Example 23). The chat task is an infinite
task (using the forever combinator) that reads the current conversation (line 13),
allows the current user to enter a new line of text (line 14), and that adds the
new line of text to the current conversation (line 15). The forever constructor
is followed by the task return Stop to ensure that the definition of chat is type
correct yielding a value of type Task ParallelControl, even though it is known
that this return will never be reached. The join function concatenates a list of
strings, using an infix string given as first argument (it is actually overloaded,
see Text.dcl).

Exercise 22. Naive chat
Run the naive chat Example 25, and test it with several users. Does the example
run as you would expect? Adapt the example in such a way that the chat task is
inlined for the me user, and displayed as detached task for the others users. What
is changed in the interface? �
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Running the naive chat example demonstrates that the shared state is only up-
dated after a user has entered text. For a chat example, this does not make much
sense: you want to monitor the shared value in order to be informed of changes
to that value. In iTask, this can be achieved with the viewSharedInformation inter-
action task combinator:

viewSharedInformation :: d [ViewOn l r w] (RWShared r w) l → Task (r,l)
| descr d & iTask l & iTask r & iTask w

We can use this in the task below to create a more realistic chat example.

Example 26. A monitoring parallel chat example without menus

1monitor_chat :: Task ChatState

2monitor_chat

3= ...same body as naive chat ...

4where
5chat :: User [User](TaskList ChatState) → Task ParallelControl

6chat me chatters tasks

7= viewSharedInformation headerMonitor [ ] chatState Void

8||-

9forever enterLine

10>>| return Continue

11where
12headerEditor = "Chat with " +++ join "," (map toString chatters)
13headerMonitor = "Conversation of " +++ join "," (map toString chatters)
14enterLine = enterInformation headerEditor [ ]
15>>= λ(Note n) → update (addLine me n) chatState

16

17chatState = taskListState tasks

The difference with the naive chat example is that we use the viewSharedInformation
task combinator to display the current content of the conversation (line 10), and
an infinite task for each user to enter text lines (lines 9 and 14-15).

9 Parallel Tasks II: A Dynamic Number of Tasks

Parallel tasks can inspect each other’s status by applying the function taskList-
Meta to the TaskList. It returns a shared data of type [ParallelTaskMeta]. This can
be used to read the status (via a get), but also to change the properties (via a
set or update) of the subtasks running in parallel.
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Table 9. Parallel task meta-information

taskListMeta :: (TaskList s) → Shared [ParallelTaskMeta]

:: ParallelTaskMeta= { index :: Int

, taskId :: TaskId

, taskMeta :: TaskMeta

, progressMeta :: Maybe ProgressMeta

, managementMeta :: Maybe ManagementMeta

}

:: ProgressMeta = { issuedAt :: DateTime

, issuedBy :: User

, status :: TaskStatus

, firstEvent :: Maybe DateTime

, latestEvent :: Maybe DateTime

}
:: TaskStatus = Running | Finished | Excepted

In Table 9, ParallelTaskMeta is shared data which can be inspected by all tasks in
the parallel construction to get meta-information of all tasks. This is comparable
to a process table in an operating system, except that only the subtasks are
shown which belong to this particular parallel combinator. This shared data
structure provides useful information to monitor the running tasks, but also to
change them. For example, the meta-data of a task, such as the ManagementMeta

can be altered on-the-fly using a set. We will not pursue this further in these
lecture notes.

In this section it is shown how the taskList can be used to dynamically alter
the number of subtasks running in parallel. The following operations are offered
to the programmer.

appendTask :: (TaskContainer s) (TaskList s) → Task Int | TC s

removeTask :: Int (TaskList s) → Task Void | TC s

Tasks can be appended to the list of tasks running under this parallel construc-
tion using appendTask. In a similar way, removeTask terminates the indicated task
from the list of tasks, even if it has not run to completion.
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Example 27. A Petition Campaign

1:: Petition = { titlePetition :: String

2, deadlineSubmission :: DateTime

3, description :: Note

4}
5:: Signer = { name :: String

6, profession :: Maybe String

7, emailAddress :: String

8, comments :: Maybe Note

9}
10derive class iTask Petition, Signer

11

12myPetition :: Task (Petition, [Signer])
13myPetition = enterInformation "Describe the petition" [ ]
14>>= λp → campaign p p.titlePetition p.deadlineSubmission

15>>= viewInformation "The petition has been signed by:" [ ]

To illustrate their use, we show as example a workflow for coordinating a petition
campaign. In myPetition a concrete description (of type Petition) of the petition
has to be given by the end user first (line 13). Then, the petition campaign is
started (line 14). The idea of this campaign is to get the petition signed by
as many people as possible before the specified deadline has been reached (see
Figure 13).

When the campaign is finished, it is shown by whom the petition has been
signed (line 17). To sign the petition, a supporter has to fill in a form, in this
particular case of type Signer. All signed petitions are collected in a list which is
returned by the campaign task, together with the petition itself.

1campaign :: pet String DateTime → Task (pet, [signed]) | iTask pet & iTask signed

2campaign pet title deadline

3= enterSharedMultipleChoice "Invite people to sign" [ ] users

4>>= λsigners → parallel ("Sign Petition: " +++ title) [ ]
5(λ_ signed → (pet,signed))
6[ (Embedded, waitForDeadline deadline)
7: [ (Detached (normalTask signer) ,sign pet)
8\\ signer←signers

9]
10]

Notice that the campaign task can be used for any kind of petition as well as for
any kind of form to be signed by the supporters. The campaign starts by letting
the organizer select an initial set of users (line 3) who all in parallel will be
asked to sign the petition (lines 7-9). The signed petitions are collected in the
shared state of parallel, which is of type [Signed]. In addition also a hidden task
is started to watch the deadline (line 6). When the parallel construct is finished,
either because the deadline has been passed or all users who have been asked
have finished signing, the signed petitions together with the petition itself is
returned (line 5).
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Fig. 13. A Petition Campaign

1waitForDeadline dateTime list

2= waitForDateTime dateTime

3>>| return Stop

The subtask waitForDeadline waits until the indicated date and time are passed.
It returns Stop to indicate that the entire parallel construct ends. All users who
want to sign the petition after the deadline get a message that this task is no
longer needed.

1sign :: pet (TaskList [signed]) → Task ParallelControl | iTask pet & iTask signed

2sign pet list

3= enterInformation ("Please sign the following petition:") [About pet]
4>?* [(Action "Decline", Always (return Continue))
5,(Action "Sign" , IfValid signAndAskFriends)
6]
7where
8signAndAskFriends signed

9= update (λlist → [signed:list]) (taskListState list)
10>>| viewInformation "Thanks for signing !" [ ] Void

11>>| enterSharedMultipleChoice "Invite other people too" [ ] users

12>>= askSigners
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13

14askSigners [ ] = return Continue

15askSigners [c:cs] = appendTask (Detached (normalTask c) , sign pet) list

16>>| askSigners cs

In task sign a user is first asked to sign the petition shown (line 3) by filling in
the presented form. She can decline (line 4) after which the subtask is ended.
She can also "Sign" the petition after filling in the presented form (line 5). After
being so supportive, she on her turn is asked to invite other people to sign as
well (line 11). For all people additionally invited in this way, askSigners appends
a new subtask for signing to the parallel construct.

To illustrate that the parallel construct can also be used to make a single user
multi-window web application, we show how a simple text editor can be defined.

Example 28. Editor Application

1:: EditorState = { mytext :: String

2, replace :: Bool

3, statistics :: Bool

4}
5initEditor text = { mytext = text

6, replace = False

7, statistics = False

8}
9updateText f = update (λs → {s & mytext = f s.mytext})
10updateReplace b = update (λs → {s & replace = b})
11updateStat b = update (λs → {s & statistics = b})
12

13noReplace s = not s.replace

14noStatistics s = not s.statistics

15

16:: FileName :== String

17readTextFile :: FileName → Task (Bool, String)
18saveTextFile :: FileName String → Task Bool

First we define some types and utility functions. In this example there are three
different windows offering three different views on the same text. In addition to
the main text editor, there are two additional, optional, windows. One can op-
tionally be opened allowing to search for substrings to be replaced. Another one
can be opened to display statistics of the current text, such as the number of char-
acters, words, and lines. The EditorState is used as shared data in which the text
being edited is stored (mytext). The state also administrates whether the replace

and statistics tasks are running. This is used to prevent the creation of mul-
tiple instances. There are utility functions for accessing (noReplace, noStatistics)
and updating the specific fields in the EditorState (updateText, updateReplace, and
updateStat). The tasks saveTextFile and readTextFile can be used for writing and
reading text to a file.
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Fig. 14. Screenshot of Example 28: A Simple Text Editor

1editorApplication :: Task Void

2editorApplication

3= enterInformation "Give name file to edit..." [ ]
4>>= λfileName → readTextFile fileName

5>>= λ(_,text) → parallel "Editor" (initEditor text) (_ _ → Void)
6[(BodyTask, editor fileName)]

In the editorApplication the end user is asked for the name of the file to edit (line
3), after which its content is read from disk (line 4). In the parallel (line 5-6) the
content is stored in the shared editor state, and initially just one task is created,
the editor itself.

1editor fileName ls

2= updateSharedInformation (fileName,"Edit " +++ fileName) views myState Void

3>?* [(ActionSave, IfValid save)
4,(ActionReplace, Sometimes (onlyIf (noReplace o fst) replace))
5,(ActionStatistics, Sometimes (onlyIf (noStatistics o fst) statistics))
6,(ActionQuit, Always quit)
7]
8where
9views = [UpdateView ( GetShared (λs → Note s.mytext)
10, SetShared (λ(Note text) _ s → {s & mytext = text})
11)
12]
13

14save (val,_)
15= saveTextFile fileName val.mytext

16>>| editor fileName ls

17

18replace _

19= updateReplace True myState

20>>| appendTask ( Embedded

21, replaceTask {search = "", replaceBy = ""}
22) ls

23>>| editor fileName ls

24

25statistics _

26= updateStat True myState

27>>| appendTask ( Embedded, statisticsTask) ls

28>>| editor fileName ls
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29

30quit

31= return Stop

32

33myState = taskListState ls

34

35ActionReplace :== Action "File/Replace"

36ActionStatistics :== Action "File/Statistics"

In the main parallel task, editor, the editing of the text stored in the shared
state is realized by the iTask editor updateSharedInformation (line 2). A value of
type Note is used as view on the shared text string and any update made by the
end-user is directly be mapped back in this shared state (lines 8-11). It provides
four options to the end user, labeled ActionSave, ActionReplace, ActionStatistics,
and ActionQuit (lines 3-7).

With ActionSave, she can choose to save the current text (line 3), after which
the text is stored to file and the editor is recursively called to allow to continue
editing (line 14-16). The update of the browser page is optimized such that such
recursive calls are not visually noticeable to the end user.

With ActionReplace, the end user can replace text (line 5). This creates a new
task, replaceTask, to run in parallel with the text editor (line 23). The option is
available only if the replaceTask task is not already running (line 5). If this is
indeed the case, the corresponding Boolean value is set in the shared state (line
21), to mark that a replacement task is created, after which this task is indeed
appended (line 21-24). After forking off this task, the editor is recursively called
to allow to continue editing.

1:: Replace = { search :: String

2, replaceBy :: String

3}
4

5replaceTask :: Replace (TaskList EditorState) → Task ParallelControl

6replaceTask replacement ls

7= updateInformation ("Replace" ,"Define replacement...") [ ] replacement

8>?* [(ActionOk, IfValid replace)
9,(Action "Close" , Always close)
10]
11where
12replace repl

13= updateText (replaceSubString repl.search repl.replaceBy) myState

14>>| replaceTask repl ls

15close

16= updateReplace False myState

17>>| return Continue

The replaceTask uses a local iTask editor on type Replace allowing the end user to
type in a string to search for with its replacement (line 7). When the OK button is
hit (line 8), the text in the shared state will be searched and updated (line 13),
after which replaceTask calls itself again (line 14) to allow more replacements to
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Fig. 15. Screenshot of Example 28: The Replace Dialogue

be made. All other tasks looking at the shared state, such as the main editor and
possibly the statistics task, immediately get the update made and change their
view accordingly. When the end user chooses Close (line 9), it is administrated
in the shared state that the task has ended (line 16), and this tasks ends (line
17).

Analogous to replacing text, ActionStatistics keeps track whether it is active
or not, and triggers the statisticsTask if not (line 6, 27-30).

1:: TextStatistics= { lines :: Int

2, words :: Int

3, characters :: Int

4}
5

6statisticsTask :: (TaskList EditorState) → Task ParallelControl

7statisticsTask ls

8= viewSharedInformation ("Statistics" ,"Statistics of your document")
9views (taskListState ls) Void

10>?* [(Action "Close" , Always close)]
11where
12views = [DisplayView (GetShared showStatistics)]
13

14showStatistics state

15= { lines = length (split "\n" state.mytext)
16, words = length (split " " (replaceSubString "\n" " " state.mytext))
17, characters = textSize state.mytext

18}
19close

20= updateStat False myState

21>>| return Continue

22

23myState = taskListState ls

The statisticsTask has a read-only view on the text stored in the shared state
(lines 8-9,13). Any change made in the shared text by the end user, either made
by using the editor, or by using the replaceTask will directly lead to an update of
the statistic information displayed. When the statistic window is closed, this is
administrated (line 20) to allow it to be opened again in the main editor.



Defining Multi-user Web Applications with iTasks 87

Fig. 16. Screenshot of Example 28: The Statistics Dialogue

Finally, with ActionQuit, the end user quits the application by Stopping the
parallel construct which closes any remaining windows.

10 The Core Pillars of iTasks

The iTask system is a special combinator library written in Clean to support the
construction of interactive applications with an emphasis on the task concept.
In these lecture notes we have focussed on an important class of basic tasks, the
iTask editors. Tasks can be composed from others using iTask combinators. Edi-
tors and combinators are two important concepts in the iTask system. Although
we have seen many different editors and many different combinators, they are
actually all variants of the same. In the core of the iTask system we have defined
one function which can take care of all editor variants. For combining tasks, we
only need two: the monadic bind for sequencing tasks and the parallel combina-
tor for creating a dynamically extensible number of parallel tasks. From these
functions all other editors and all other combinators shown can be derived. These
core functions therefore form the pillars of the iTask core system. They deserve
some special attention in this concluding section of the lecture notes.

The fact that we can express such a complicated functionality with only a
few functions illustrates the expressive power of a functional language such as
Clean. An advantage is that we need less code, errors are less likely to occur,
and the maintenance effort is reduced significantly.

10.1 The Core iTask Editor

The core iTask editor interact (see below) has many similarities with update-
SharedInformation, that we already have seen in Section 6. The main difference
with updateSharedInformation is that interact is even more general and contains
more information for the construction of views. In these lecture notes, many
different variant of editors are presented, but they can all be expressed in terms
of this core editor.
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Table 10. The core interaction task

interact :: d (l r Bool → [InteractionPart l w]) l (RWShared r w) → Task (l,r)
| descr d & iTask l & iTask r & iTask w

:: InteractionPart l w

=∃v: FormPart (FormView v) ((Maybe v) → (l,Maybe w)) & iTask v

|∃v: DisplayPart v & iTask v

| UpdatePart String (l,Maybe w)

:: FormView v = FormValue v

| Blank

| Unchanged (FormView v)

With interact, one can edit two different kinds of given values at the same
time: a local value, which is only accessible for this specific editor, say of type l,
and shared data, which can be accessed by other editors or systems at the same
time as well. Reading and writing to shared data can be of different type, say a
value of type r can be read, while a value of type w can be written. Different users
of an iTask system can play a different role in an organization. One therefore
needs to be able to present the information in a proper way, depending on the
role to play. As usual one can therefore define different Views On the local and
shared data. This actually means that one defines a bidirectional map between
the demanded view v and the local data l and shared data r and w.

A view is just a value of some type. The iTask system presents the value to
the browser which renders the information in such a way that the end user can
do her work and edit the information. Any change made in any view is mapped
back to a change in the local and shared data. These changes are communicated
immediately to the other users or systems looking at this data and may lead to
an update of their view. When the edit action is ended, the final values of local
and shared data are communicated to the next tasks to be done.

The views to show can be defined as follows. The interactive rendering to
create can be an editable form (FormPart), a non-editable form (DisplayPart), or it
can be a trigger such as a button (UpdatePart). For a smooth interaction it needs
to know what to do when a form is not yet filled in (Blank), changed (FormValue),
or left unchanged (Unchanged). One can define as many views as wanted, such that
certain information can be shown editable, and others not. Also the number and
kind of views can be calculated dynamically using a function yielding the list of
views to show, given the current value of local and shared state. The Boolean
value which is given as additional parameter to this function is internally set by
the iTask engine. It indicates whether the shared state has recently been altered
by someone else, which is used to trigger a recalculation of the rendering, even
though the end-user did not change anything with this editor.
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10.2 The Core iTask Combinators

We already have explained the core iTask combinators in the previous sections.
Here we summarize them once again.

(>>=) infixl 1 :: (Task a) (a → Task b) → Task b | iTask a & iTask b

return :: a → Task a | iTask a

The iTask library uses on the top level a monadic approach to hide the state
transformation for the iTask programmer. The monad we use is called the Task

monad. Internally, in the core implementation, however, uniqueness typing is
being used instead [2]. This gives us the best of two worlds: internally it makes
it easier to handle all the different kind of state information which has to be
maintained, while on the top level this is all hidden.

One can define a sequence of two tasks with the monadic bind operator (>>=).
As usual, the result of the first operand (of type Task a) is passed as argument to
the second argument, a function of type a → Task b. With return any value can
be lifted to the task domain.

parallel :: d s (ResultFun s a) [TaskContainer s] → Task a

| iTask s & iTask a & descr d

:: TaskContainer s :== (ParallelTaskType, ParallelTask s)
:: ParallelTask s :== (TaskList s) → Task ParallelControl

taskListState :: (TaskList s) → Shared s | TC s

taskListProperties :: (TaskList s) → Shared [ParallelTaskInfo]

appendTask :: (TaskContainer s) (TaskList s) → Task Int | TC s

removeTask :: Int (TaskList s) → Task Void | TC s

With parallel an arbitrary number of tasks can be created to work on in parallel.
Each parallel task has two components: the task to do and a GUI container defin-
ing what the purpose of a task is, such that it can be presented to the end-user
in the proper way.

It is observed that parallel tasks can be used for different purposes. One can
use a task to take care of some computer system, device driver, web server or
application. But a parallel task can also be used to handle multiple tasks to be
performed by the same end user, or to handle some task to be performed by
someone else. For all these different purposes, a suitable GUI container can be
specified (see Section 8).

TaskList is an abstract type which manages a kind of process table adminis-
tration. It is administrated which subtasks have been created for this particular
parallel combinator. One can enquire the administration (using taskListProperties)
and ask which processes (tasks) are known and what their status is. One can get
hold of the shared state (using taskListState) the subtasks are using to commu-
nicate with each other. One can add new tasks (using appendTask) or kill existing
ones (using removeTask). Hence the iTask system behaves much like an operating
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system where new processes can be created or stopped as demanded. Instead
of one flat process administration as common in an operating system, the iTask
system has a hierarchical one. A new level is made when a subtask uses the
parallel combinator.

11 Related Work

The iTask system is a toolbox to create WFMS applications. These applications
are distributed, multi-user, and persistent. The iTask system deploys contempo-
rary web technology to create this as well as to generate rich content and GUI
elements for the end-user. In Section 1, we have already compared the system
with contemporary WFMS systems. The other core aspect of the iTask system,
programming rich web applications in a functional style, has not been compared
yet. This is the topic in this section. Many solutions that have been inspiring
for our work have been proposed to program web applications. We mention just
a few of them in a number of languages: the Haskell cgi library [14]; the Curry
approach [8]; writing xml applications [6] in SMLserver [7], and the WashCGI
[21], based on Haskell. In these lecture notes we have shown that programming
interactive applications in iTask is generic, allowing application developers to
focus on creating proper models of interactive programs, instead of program-
ming the visualization. This is also the key difference with the above mentioned
approaches.

Links [3] and formlets [4] were developed in roughly the same period as the
iTask system. Links compiles to JavaScript for rendering html pages, and SQL
to communicate with a back-end database. A Links program stores its session
state at the client side. In a Links program, the keywords client and server
force a top-level function to be executed at the client or server respectively.
Both systems, as well as iTask, use Ajax technology to implement the communi-
cation between client and server. The iTask system generalizes the opportunity
to perform client-side computation to arbitrary expressions of a workflow.

Finally, in the Hop [20,13] web programming language, only the GUI part is
compiled to JavaScript, whereas the other part runs natively. Hop is a strati-
fied language and maintains a strict separation between programming the user
interface and the logic of an application. The programmer is forced to express
the required functionality in the proper stratum. In contrast, in iTask there is
no such distinction, and the client is, in principle, able to perform any server-
side computation that does not rely on server-side properties such as access to
back-end databases.

12 Conclusions

In these lecture notes we have presented the iTask system. Although originally
designed to be a WFMS programming language, it has evolved gradually into a
more general approach that is based on the concept of tasks. In our view, there
are two key reasons for this development:
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– The use of a functional host programming language stimulates abstraction
and hence the creation of general purpose building blocks. In these lecture
notes we have illustrated this approach by many examples and exercises to
show how to apply well-known functional programming techniques such as
polymorphism and higher-order functions to obtain such applications.

– The use of generic programming techniques increases the degree of abstrac-
tion even further and allows the specification of interactive programs in terms
of models instead of programming views. This is illustrated extensively in
these lecture notes in the way interactive applications are constructed.

We have shown in Section 10 that the entire system is founded on three primitive
functions, viz. the interact task to handle user-system-interaction, the parallel

combinator to coordinate cooperating tasks, and the monadic >>= combinator
to sequentially compose tasks. Finally, the concept of shared state (Section 5)
abstracts from handling persistent and volatile data. In short, a task-oriented
language should liberate the programmer from these programming chores. We
think that the iTask system is a first step towards achieving this goal.

Acknowledgements. The authors thank the anonymous referees for their con-
structive comments.
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Abstract. We look at formalisms for reasoning about the effects of I/O
in pure functional programs, covering both the monadic I/O of Haskell
and the uniqueness-based framework used by Clean. The material will
cover comparative studies of I/O reasoning for Haskell, Clean and a C-
like language, as well as describing the formal infrastructure needed and
tool support available to do such reasoning.

1 Introduction

This tutorial focusses on techniques for reasoning about the input-output be-
haviour of pure functional programs, and is largely based on material published
at IFL on the issue [BS01, BDS02].

The key points to be made are that: (1) ultimately users are only interested in
the I/O behaviour of their programs; (2) it is possible to apply formal reasoning
techniques to give useful results in this area; (3) and yes, it does require a
considerable degree of “real-world” modelling.

As ever, it is the choice of a suitable abstraction that makes such reasoning
both tractable and useful. The focus of this tutorial is on pure (lazy) functional
languages with referentially transparent I/O, such as Haskell and Clean, but
the ideas presented here (particularly in the latter part) are also applicable to
impure languages such as Scheme or ML.

1.1 Motivation

An often cited advantage of functional programming languages is that they
are supposed to be easier to reason about than imperative languages [BW88,
p1],[PJ87, p1],[Bd87, p23],[BJLM91, p17],[Hen87, pp6–7],[Dav92, p5] with the
property of referential transparency getting a prominent mention and the no-
tion of side-effect being deprecated all round. For a long time, a major disad-
vantage of functional programming languages was their inability to adequately
handle features where side-effects are an intrinsic component, such as file or
other I/O operations [BJLM91, p139],[Gor94, p-xi]. However, two methodolo-
gies have emerged in the last two decades to combine the side-effect world of
I/O with the referentially transparent world of functional programming, namely
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the uniqueness type system of the programming language Clean [BS96] and the
use of monads in the Haskell language [Gor94],[BW88, Chp 10, pp326–359].

In [BS01, BDS02] we explored some of the consequences of these developments
for formal reasoning about I/O behaviour.

Our first concern was that the technical machinery necessary to handle I/O in
pure functional languages, may have led to a situation where correctness proofs
would have the same difficulty as found in imperative programs. Fortunately, this
proved not to be the case. In technical terms, the reason why reasoning about I/O
in pure functional languages is still easier than for imperative ones is the fact that
the variables in a Haskell “do” or Clean “#-let” are all different (look carefully at
the scope rules for those language constructs) even if they have the same name,
whereas the repeated use in C of the same variable name denotes successive
side-effects to the same memory location. Despite appearances, Haskell’s do-
notation using “<-” is not a sequence of assignments, but a series of nested
function-call bindings, and similarly for Clean’s #-let. In essence, both monads
and uniqueness-typing are designed to ensure that I/O does not break referential
transparency.

A second issue concerns the relative ease of reasoning when using either of
the two technical alternatives, namely uniqueness typing and/or monads. The
uniqueness typing approach uses the type-system to ensure that the external
“world” is accessed in a single-threaded fashion, so that an underlying imple-
mentation can safely implement operations on the world using side-effects, while
still maintaining referential transparency. From the programmer’s perspective
nothing changes in the program, except that it must satisfy the type-checker.
The monadic approach uses an abstract datatype which enforces single-threaded
use of world resources, but which also requires the programmer to explicitly make
use of this datatype and its operations. In effect, the monad acts as a wrapper
around the potentially unsafe operations. We asked if the monad wrapper was a
significant extra overhead, relative to the uniquely typed program when it came
to doing formal reasoning. In [BS01] we concluded there was a small overhead.
However, in subsequent work [BDS02], we discovered that the ability of monads
to help in structuring I/O actions, and its well-documented facility for structur-
ing large programs [Esp95, LHJ95, HK98], carried over to giving proofs a better
structure. It also proved to be quite easy to carry over this aspect to the proofs
about Clean I/O.

The focus in [BS01] was on comparing a simple program written in Haskell,
Clean and C, while the work in [BDS02] looked at a more complex program —
a simplified version of the unix make command. This was to explore the fact
that real-world programs of interest typically combine I/O and computation in
essential and non-trivial ways. The concern here was how to develop reasoning
techniques that scale when applied to complex programs which perform arbitrary
I/O actions. This has to be done carefully —we need to make intelligent use
of abstraction, and ensure the continuing adequacy of the resulting simplified
models.
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Some of the approaches discussed used simplified or unified versions of the
corresponding languages, but we also dealt with full-blown Clean and Haskell
programs and deal explicitly with the issue of error and exception handling,
rather than ignoring it.

This tutorial basically delivers evidence to back up the conclusions of [BS01,
BDS02], as discussed above.

1.2 The Practicality of I/O Proofs

One issue raised at IFL’02 concerned the possibility or practicality of doing any
kind of formal proofs involving I/O. This was on foot of our talk about proving
the correctness of a simplified version of the Unix make utility, implemented in
either Haskell or Clean. This seemed to accompany a concern regarding the lack
of concurrency in our model. Here, for convenience, we reproduce the discussion
about this matter in the IFL 2002 paper [BDS02].

The gist of the argument went as follows:

On a real machine with a real OS there are many other processes running
concurrently, so your I/O model needs to deal with these. In any case,
some other process may make arbitrary changes to the filesystem while
make is running so it becomes impossible to give a formal proof of any
property, even in the unlikely event of having a complete formal model
covering all possible concurrent processes.

We first address the issue of the impossibility/impracticality of doing formal
proofs of the I/O behaviour of make (or any other similar program). First, con-
sider the reaction of a make user if someone was to replace their make program
with a broken version, or even go to such extremes as to substitute a completely
different program (renaming cat to make, for example). The user would rapidly
become aware that something was up. The point is, in typical uses of the make
program, users have reasonable expectations for its behaviour, which are gener-
ally met, by and large. The main reason is that most users rely on an operating
system to ensure that there aren’t arbitrary and destructive changes to the col-
lection of files being manipulated by make. Despite the theoretical possibility
of concurrent processes making arbitrary changes to a user’s files, the common
practical use of make occurs in a much more controlled environment.

If informally we know what to expect of make, then it is possible to consider
formal proofs of its properties. If arbitrary concurrent behaviour elsewhere in
the system makes it impossible to reason formally about its behaviour, then it
is just as impossible to reason informally about its behaviour, and its behaviour
in that context will appear arbitrary.

A final comment is also required about the perception that formal proof is
useless unless it is somehow “complete”, i.e. covering every aspect of the system
being modelled. This view was encouraged by early formal methods research
which sought to produce systems which were completely verified “head-to-toe”
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h <- openFile "a" ReadMode

s <- hGetContents h

i <- readIO s::IO Int

hClose h

h <- openFile "a" WriteMode

hPutStr h (show ((i+1)*(i-1)-1))

hClose h

(a)

h <- openFile "a" ReadMode

s <- hGetContents h

i <- readIO s::IO Int

hClose h

h <- openFile "a" WriteMode

hPutStr h (show (i*i))

hClose h

(b)

Fig. 1. Simple Haskell I/O Programs

(e.g. [Bjø92]). However formal proof is much more practical when it focuses
on aspects of interest (usually safety critical), by exploiting suitable choices of
abstractions.

1.3 Tutorial Structure

The remainder of this document is arranged as four sections, addressing the
themes of formalisms for API modelling (Section 2), integration with language
semantics (Section 3), increasing the modelling complexity (Section 4), and look-
ing beyond the Haskell language and the VDM♣ formalism discussed in the
previous three sections (Section 5). The focus in Section 2 is on a brief descrip-
tion of a formalism called VDM♣[Mac91], a functional dialect of VDM [Jon89],
and its application to a simple filesystem API model. In Section 3, we explore
how to formalise the connection between the API model, and a semantics for
the programming language (in this case, Haskell). Here we introduce the use of
monads as a key structuring concept. The emphasis switches in Section 4 into
looking at examples of more realistic, and hence more complex filesystem APIs.
Finally, in Section 5 we discuss broadening out from Haskell to other functional
languages (most notably Clean), and also mention more powerful formalisms
that are available, and point to a key challenge that remains: reasoning effec-
tively about concurrency and state. Appendix A lists the class definitions and
instances found in the Haskell implementation of the VDM♣ toolkit.

2 Formalism and API Modelling

2.1 Motivation

Consider two Haskell programs whose top-level “do-actions” are shown in Figure
1. Both programs clearly have the same behaviour, because (i+1)(i−1)−1 = i2,
assuming we ignore any issues to do with overflow.We can prove this with varying
degrees of rigour and formality in a number of ways.

For example, we can simply argue that the equality stated above holds, invoke
the principle of referential transparency, and then convert one program above
so its looks syntactically identical to the other. Given that I/O in general raises



Reasoning about I/O in Functional Programs 97

n ∈ N = {0, 1, 2, . . .}
v ∈ V ar variables

e ∈ E ::= n | v | plus(e, e) | mul(e, e) | app(f, e)
f ∈ F ::= v ↪→ e

Fig. 2. The language E

concerns in Haskell about referential transparency, perhaps we might prefer to
do a more rigourous proof, by using the monad laws (see Section 3.1), in which
we can convert one program into the other, albeit by ending up invoking the
above equality.

However, knowing that the two programs above have the same behaviour (in
this case sequences of I/O action side-effects), is not the same as being able to
demonstrate rigourously, that the effect of running either program is to:

– Open file “a” and read an integer from it
– Overwrite file “a” so it now contains only that integer squared.

The simple fact is that most users do not care if two programs are “equal”:

prog1 = prog2,

or if one is an “improvement” or “refinement” of another:

spec � prog.

Instead, their concern is that the program does the right thing, where “doing”
covers the interactions of the program with its users and environment. However,
most formal approaches to program correctness focus on relationships between
“program design texts” (specifications, programs), rather than looking at the
relationship between program and environment behaviours.

The focus in this tutorial is on techniques that support formal reasoning
about the effects that functional programs have on their environments, via their
I/O facilities. By the term environment we mean whatever is external to the
program/system, which depends on context. Program/system environments may
include: file-systems, network sockets, sensors or effectors, including keyboards,
screens, or even other software artifacts: components, APIs, etc.

The key to all reasoning is Abstraction: simplify, reduce, focus on what is
important. What we shall do here is demonstrate that it is possible to abstract
I/O to an effective degree, simple enough to make formal reasoning possible, but
complex enough to allow useful properties to be proven.

2.2 Formal Semantics

As we are going to be looking at developing formal semantics for I/O behaviours,
it is worth exploring the key notions behind programming language semantics.
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ρ � n → n ρ � v → ρ(v)
ρ � e1 → n1 ρ � e2 → n2

ρ � plus(e1, e2) → n1 + n2

ρ � e1 → n1 ρ � e2 → n2

ρ � mul(e1, e2) → n1 × n2

ρ � ea → na ρ † {v �→ na} � ef → nf

ρ � app(v ↪→ ef , ea) → nf

Fig. 3. E : Natural Semantics

Program and I/O model semantics will have to be tied together in order to
reason about a program’s I/O behaviour. Specifically, we are looking at using
mathematics to provide a rigourous meaning to our programs and models, to the
extent that they are amenable to mechanized reasoning, at least in principle.

For program languages, formal semantics belong broadly to one of three dis-
tinctive “flavours”: Operational, Denotational, or Axiomatic. We will illustrate
these by using all three to give a semantics to a simple expression language
(Figure 2).

Language E has numbers (n), variables (v), binary operators plus and mul
and a function application operator app. Functions are described anonymously,
using the binder notation v ↪→ e, read as the “function taking v as input and
returning e”. We deliberately avoid using familiar notations such as +, × or
λv • e here, as we want to have these available to describe the semantics, not the
syntax, and to keep these two aspects separate for clarity.

Operational Semantics. The key idea behind operational semantics, is to
describe the meaning of a program by describing its execution on some form of
symbolic mechanism that evaluates or runs the program. In many ways it is the
most natural way to describe a programming language, as most programmers
intuition is focussed on the effects of their programming language constructs.
For this reason, it is also the favoured semantics for language implementors as
it gives a clear specification of what the interpreter and/or compiled code must
do.

Operational semantics comes in a number of varieties, of which the most preva-
lent today is the so-called Structural Operational Semantics (SOS), whose main
principle is that the operational rules are defined inductively over the structure of
the language syntax [Plo81, Hen90]. Another common distinction in operational
semantics is the difference between big-step and small-step: the former describes
the final outcome of running any fragment, whilst the latter describes the next
single atomic action performed by any such fragment. SOS is typically small-
step, whilst a large-step semantics based on the language structure is usually
referred to as a Natural Semantics [Kah87].

A big-step (natural) semantics for language E is shown in Figure 3.
The natural semantics is defined as a set of inference rules about a judgement

of the form
ρ � e → n
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(ρ, v) → (ρ, ρ(v)) (ρ, plus(n1, n2)) → (ρ, n1 + n2)

(ρ,mul(n1, n2)) → (ρ, n1 × n2)
(ρ, e1) → (ρ′, e′1)

(ρ, plus(e1, e2)) → (ρ, plus(e′1, e2))

(ρ, e2) → (ρ′, e′2)

(ρ, plus(e1, e2)) → (ρ, plus(e1, e
′
2))

(ρ, e1) → (ρ′, e′1)

(ρ,mul(e1, e2)) → (ρ,mul(e′1, e2))

(ρ, e2) → (ρ′, e′2)

(ρ,mul(e1, e2)) → (ρ,mul(e1, e
′
2))

(ρ, ea) → (ρ′, e′a)

(ρ, app(v ↪→ ef , ea)) → (ρ′, app(v ↪→ ef , e
′
a))

(ρ † {v �→ na}, ef ) → (ρ′, n′
r)

(ρ, app(v ↪→ ef , na)) → (ρ, n′
r)

Fig. 4. E : SOS Semantics

which is read as saying: “Given environment ρ, expression e evaluates to number
n”. Here ρ : V ar → N is a mapping of variables to their values, and the rule for
function application uses the notation ρ†{v �→ n} which describes map ρ having
its value for v overwritten to now be n.

Note that this semantics defines function application as strict: arguments are
evaluated before the call.

A small-step (SOS) semantics works with a different judgement:

(ρ, e)→ (ρ′, e′)

which asserts that a single step of the evaluation of e in environment ρ results in
new environment ρ′ and new expression e′. A small-step SOS semantics for E is
shown in Figure 4. The main differences here are that small step semantics gives
more control over evaluation order, and that we have to talk about the notion
of when evaluation/execution halts, if at all. In this case it halts when none of
the above rules apply, and the execution is successful if the final expression is a
pure number. Note also that this semantics is non-deterministic, in that a plus
or mul can evaluate each of its arguments using any interleaving of the small
steps required. Non-determinism is not forced upon us here, but, for example,
if we wanted to force operator mul argument evaluation in left to right order,
then we could change the rules as follows:

(ρ, e1) → (ρ′, e′1)
(ρ,mul(e1, e2))→ (ρ,mul(e′1, e2))

(ρ, e2)→ (ρ′, e′2)
(ρ,mul(n1, e2)) → (ρ,mul(n1, e

′
2))

We now only allow the second argument to evaluate when the first one is a
number. Non-determinism in SOS is quite common, giving the implementor free-
dom to alter evaluation orders if that helps optimise the result. When reasoning
about concurrent languages, non-determinism becomes an essential abstraction
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ρ ∈ Env = V ar → N

[[·]] : E → (Env → N)

[[n]]ρ =̂ n

[[v]]ρ =̂ ρ(v)

[[plus(e1, e2)]]ρ =̂ [[e1]]ρ + [[e2]]ρ

[[mul(e1, e2)]]ρ =̂ [[e1]]ρ × [[e2]]ρ

[[app(v ↪→ ef , ea)]]ρ =̂ [[ea]]ρ†{v �→[[ef ]]ρ}

Fig. 5. Denotational Semantics of E

tool. Another advantage of the SOS semantics as formulated above, is that it
effectively defines a labelled transition system (LTS) and these are the basis of a
large number of automated analysis tools, of which model-checkers are probably
the most important in contemporary industrial-scale verification [CGL92].

While good for specifying implementations, and animating or model-checking
programs, operational semantics are not as well suited as denotational semantics
when it comes to validating axiomatic semantics, nor are they good compared to
axiomatic semantics for reasoning about general properties of a given program.
This is because, typically, we are forced to prove properties via some form of
induction over the language syntax or the SOS rules. and this does not scale
well.

Denotational Semantics. The denotational approach to semantics [Sto77,
Sch86] describes meaning as a function over an appropriate (often complex)
mathematical structure (“domain”). A key principle here is that the meaning of
composite language forms is as a function of the meanings of their subcompo-
nents, so that the semantics is compositional (also a feature of SOS and natural
semantics).

For our simple language E, the meaning of an expression is as a function from
environments to numbers, and its denotational semantics is shown in Figure 5.
From a functional programmers perspective, a denotational semantics seems a
very natural way to talk about meaning, namely as a function. Admittedly, the
denotational semantics of a pure functional language can appear almost trivial
(it looks like the language “is” its own semantics), except that the treatment
of recursion is decidedly non-trivial [Sto77]. For languages with recursion or
iteration, the mathematical domain needs to have enough structure to allow the
determination of solutions to fixed-point equations, and a whole sub-discipline
of semantics called fixed-point theory has been developed to support this.

A denotational semantics can be viewed as a model (in the logical sense)
for an operational semantics, which, with its inference rules, looks like a logical
system. In general a denotational semantics can serve as a basis for proving the
soundness of other semantic flavours. In particular, proving the soundness of an
axiomatic semantics is often most easily done w.r.t. a denotational view.



Reasoning about I/O in Functional Programs 101

plus(e, 0) = e

plus(e1, plus(e2, 1)) = plus(plus(e1, e2), 1)

plus(e1, e2) = plus(e2, e1)

plus(e1, plus(e2, e3)) = plus(plus(e1, e2), e3)

similar for mul

app(v ↪→ ef , ea) = ea[ef/v]

plus(n1, n2) = n1 + n2

mul(n1, n2) = n1 × n2

Fig. 6. Axiomatic Semantics for E

The main disadvantages of denotational semantics are: it can be very difficult
to identify the proper domain, particularly in languages involving concurrency;
the treatment of recursion can be problematical; there is often no obvious map-
ping to a language implementation, and like operational semantics, it is poor at
reasoning about general properties of specific programs, when compared against
axiomatic semantics.

Axiomatic Semantics. The third flavour, axiomatic semantics, gives a lan-
guage meaning by providing laws that define relationships among program
texts. These relationships may include some notion of equality (usually be-
havioural equivalence) or of inequality w.r.t to some ordering (typically re-
finement/reification). An axiomatic semantics for E is shown in Figure 6, that
declares expressions to be equal if, for any environment, they always deliver the
same result. In effect we obtain a set of “laws of E”.

The notation e[e′/v] denotes the substitution of e′ for free v in e.
Axiomatic semantics are a series of laws relating program texts, and so are

very useful for reasoning formally at that level, without having to change to some
underlying semantic notation. We need to be careful, however, to ensure that the
laws are consistent and sound. It is in this regard that a denotational semantics
makes a good complement to an axiomatic one. Also difficult is the question of
completeness: do we have enough laws to be able to prove/disprove the equality
of any two arbitrary programs? For example, the axiomatic semantics in Figure
6 has more than a minimal set of laws: the top four laws can be proven given
the last three, plus the laws of arithmetic. As each axiomatic law only captures
a small aspect of a relationship between program texts, such a semantic flavour
is not much help to language implementors.

Semantics Summary. We can summarise the strengths of the three main
flavours of semantics as follows:

Operational. Intuitive capture of program execution; highly suited for lan-
guage implementors; underlying LTS framework useful for automated ex-
haustive checking (where feasible).
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Denotational. Solid basis for soundness proofs in other semantic flavours.
Axiomatic. Provides laws that allow reasoning about programs at the level of

the program texts themselves.

For all languages we consider in this tutorial, we will use a suitable axiomatic
semantics where possible For I/O systems of interest we will generally develop
a semantics by:

1. constructing an appropriate mathematical “domain”
2. Building a denotational semantics of an I/O language (“API”)
3. Formulating some I/O axioms on top of the denotation.

The development of a domain and the corresponding API denotation we cover
under the term “Modelling”.

Challenge 1. We are now going to set a challenge, to give focus to the rest of
this section:

Problem 1. Build enough formal machinery to prove that program

main = do

s <- readFile "a"

let i = read s

writeFile "a" (show (i*i))

opens file “a”, reads an integer from it, and then overwrites “a” so it only contains
that integer squared.

Solution 1. We shall solve Problem 1 by carrying out the following steps

1. Determine modelling assumptions
2. Choose appropriate mathematical constructions
3. Model API behaviour in the mathematics
4. Extend language semantics to cover API
5. State desired property
6. Prove it

We shall adopt a pre-existing modelling approach for the first 3 steps, namely
the so-called “Irish School” of the VDM (VDM♣) [Mac91]. It is a variant of the
Vienna Development Method (VDM) [Jon89] that is functional in style, rather
than imperative, and uses equational reasoning in classical logic, rather than
natural deduction in 3-valued logic. Its main modelling technique is based on in-
variant preserving functions, with pre-conditions, and refinements characterised
by retrieval functions from concrete state spaces to more abstract ones. It em-
ploys a mathematical toolkit that provides definitions for sets, sequences, and
maps, and makes extensive use of abstract algebra ideas, most notably monoids
and their homomorphisms, as a basis for those definitions.

We now proceed to look at the toolkit in some more detail.
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P type-constructor
P1 non-empty Sets
× Cross-Product

{a, b, c, . . .} : PA Enumeration
{}, ∅ : PA Empty
∩,∪ : PA× PA → PA Intersection, Union
\,	 : PA× PA → PA Difference, Symmettric
�−, � : PA → PA → PA Removal, Restriction


 : PA× PA
p→ PA Disjoint Union

# : PA → N Cardinality

Fig. 7. VDM♣ Sets

2.3 Formal Toolkit

We give a brief introduction to the notation, of the VDM♣ Toolkit which provides
formal definitions for sets, sequences and maps. We shall spend a little more time
on the latter as they are key, and our treatment of them is more extensive than
most. How the mathematical toolkit is used for building formal models will be
described later, when we use it to build our own theories of I/O.

Sets in VDM♣. The notation used for sets is shown in Figure 7. A lot of the
mathematical notation in VDM♣conforms to that of standard VDM. We will
mainly focus on the non-standard notation and concepts here.

The most unusual operator in VDM♣ is its so-called “disjoint union” (�), or
“set extension operator”. It is a partial operator, that captures the notion of
a set being extended by adding on a new/disjoint part, and so A � B is only
defined if A ∩B = ∅. When defined, it behaves exactly like set union:

A ∩B = ∅⇒ A �B = A ∪B

Its main use is in pattern-matching, to split a set, e.g.:

#∅ =̂ 0

#(S � {x}) =̂ #S + 1 (1)

Here the pattern in (1) will match any non-empty set, with x being bound to
an arbitrary element of that set, and S bound to the rest of the set. This latter
binding results from the requirement that the pattern, when instantiated with
that binding, is well-defined. So, for example, matching the above pattern against
{a, b} can result in the following two bindings:

x �→ a , S �→ {b}
x �→ b , S �→ {a}

as both {b} � {a} and {a} � {b} are well-defined, and equal to {a, b}. However
the binding

x �→ a, S �→ {a, b} (2)

is not valid, because {a, b} � {a} is not defined.
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If by contrast, we had the pattern S ∪ {x}, then the binding (2) would be
acceptable, as {a, b}∪{a} is defined, and equal to {a, b}. However, such a pattern
does not help, as the “definition”

#(S ∪ {x}) =̂ #S + 1

can lead to an infinite regress, if S keeps matching the whole set, and in any
case, if viewed as an assertion it is simply not true in general, holding only if
x /∈ S.

The importance of any pattern of the form S�{x}, is that none of its pattern
variables can match the whole, with S necessarily being smaller that the set
against which this match is made. We can say that the pattern is well-founded
in some sense, whereas S ∪ {x} is not.

Note also, that unlike pattern matching in Haskell, which is essentially syn-
tactic (i.e. over the structure of algebraic datatype), this pattern matching is
against a (partial) binary operator, and so has to be viewed as a form of semantic
pattern matching.

Such patterns are non-deterministic in general. The following defines a partial
“function” that returns an arbitrary member of a non-empty set.

arbChoice : PA→ A

arbChoice(S � {x}) =̂ x

In general it is very hard to reason about such entities in a simple fashion. For
example, we can no longer rely on the following apparently obvious truth:

e = e.

To see this, consider the following instance:

arbChoice{1, 2} = arbChoice{1, 2}

Do the two instances of arbChoice above represent the same, or different calls? If
the latter, then both calls can return different values, and so the above equality
may, or may not hold. We also lose other nice laws—the above is no longer the
same as

x = x where x = arbChoice{1, 2}.
If we decide that both calls to arbChoice above represent a single call, then we
get our nice equality law, but now have the effect that all instances everywhere
of the application of arbChoice to the set {1, 2} are that one call returning that
one unknown value. If we are using arbChoice extensively to model some system
then we have a behaviour that is unfeasibly global.

Our use of this non-deterministic pattern will avoid this issue, by ensuring
that, despite any non-determinism, the result of any call always results in the
same result. This can happen if all that the non-determinism is doing is selecting
the order in which sub-computations are carried out. If these computations are
associative and commutative in some sense, then the final outcome will be the
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same, regardless of computation order. For example, looking at the rhs of (1),
we see that we recurse over the remaining set (S), and add 1. This terminates
because the remaining set is smaller, and defines a function because the order in
which xs are pulled out is immaterial to the final result, due to the properties of
(+1) being used here. All our uses of partial non-deterministic pattern matching
will be safe in this manner.

An important aspect to note here is that the VDM♣ approach described here
is based on the notion of sets (and sequences, and maps, see later) as being
finite. This naturally raises the question of how this fits with, for example, the
list datastructure of Haskell, which can be infinite, given the laziness of the
language. We point out that will be using VDM♣ here to model the relevant
structures of the external world, and not to present a semantics for Haskell.
We view these external structures as being finite, i.e. artifacts built up in a
constructive fashion from basic building blocks. This approach is sufficiently
powerful for most modelling purposes. If a model of an API behaviour requires
infinite structures, then more powerful formalisms are required (co-algebraic,
rather than algebraic), but these are beyond the scope of this tutorial.

The other operators that need explaining are the set removal (�−) and set
restriction (�) operators. In effect these are just recasting set difference and
intersection in a different form:

�−AB = B \A
�AB = B ∩ A

Why adopt this apparently redundant notation? The answer has two aspects:
algebraically, an operator like set intersection, can be viewed as a binary operator
( ∩ : PA × PA → PA) that forms a monoid, but alternatively, in its curried
form (� : PA → PA → PA), as a monoid homomorphism. We shall see that
this latter aspect captures a pattern that is common to not just sets, but also
sequences and maps.

Definition 1. Monoids
A Monoid (M,⊕, ι) is a carrier set M with a binary operator ⊕ : M ×M →M
and a special (identify) element ι ∈M satisfying the following laws:

ι⊕m = m = m⊕ ι Identity
m1 ⊕ (m2 ⊕m3) = (m1 ⊕m2)⊕m3 Associativity

Monoids are ubiquitous — almost all the common mathematical operators par-
ticipate in some form of monoidal structure:

(N,+, 0) (Z,×, 1) (PA,∪, ∅) (PA,∩, A) (PA,�, ∅) (A�,�, 〈〉)

If ⊕ is partial, then we have a partial monoid. where laws hold when all uses
of ⊕ are defined, e.g. (PA,�, ∅). Describing an operator with an element as a
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� type-constructor
+ non-empty

〈a, b, c, . . .〉 : A� Enumeration
〈〉, Λ : A� Empty

: A× A� → A+ Cons
� : A� × A� → A� Concatenation

�−, � : PA → A� → A� Removal, Restriction
elems : A� → PA Elements

len : A� → N Length

Fig. 8. VDM♣ Sequences

monoid is just a shorthand, so for example, the entry above asserting that union
and the set form a monoid is shorthand for:

S ∪ ∅ = S

∅ ∪ T = T

S ∪ (T ∪ U) = (S ∪ T ) ∪ U

Definition 2. Monoid Homomorphisms
A monoid homomorphism h : (M,⊕, ι) → (N,⊗, ε) is a function h : M → N
satisfying the following laws:

h(ι) = ε

h(m1 ⊕m2) = h(m1)⊗ h(m2)

Essential a monoid homomorphism is a function from the carrier set of one
monoid to that of another, that respects the monoid structure. In other words
identity elements are mapped to identities, and applying a binary operator and
mapping the result is the same as mapping the two argument first, and apply-
ing the other operator afterwards. SO, for sets, we can identify the following
homomorphisms:

�−A : (PA,∪, ∅)→ (PA,∪, ∅)
�A : (PA,∪, ∅)→ (PA,∪, ∅)
# : (PA,�, ∅)→ (N,+, 0)

The last one above is defined from a partial monoid, into a total one.

Sequences in VDM♣. The notation for lists and sequences is shown in Figure
8. Note that we overload operators �− and � to act on sequences, where here they
act as filters (here filter is analagous to Haskell’s filter):

�−As =̂ filter ( /∈ A) s

�As =̂ filter ( ∈ A) s

Concatenation forms a monoid

(A�,�, 〈〉)
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and we have a number of homomorphisms:

len : (A�,�, 〈〉) → (N,+, 0)

sum : (N�,�, 〈〉) → (N,+, 0)

elems : (A�,�, 〈〉) → (PA,∪, ∅)
�−A : (A�,�, 〈〉) → (A�,�, 〈〉)
�A : (A�,�, 〈〉) → (A�,�, 〈〉)

Note that sum and len on N� differ from each other in how they treat the
singleton list:

sum〈n〉 = n

len〈n〉 = 1

Stating that a function is a homomorphism is just a shorthand for listing a
collection of laws. So the line above regarding elems, for example, simply states
that:

elems 〈〉 = {} (3)

elems(s � t) = elems s ∪ elems t (4)

If we add the following law, we then have a complete definition of elems:

elems〈x〉 = {x} (5)

Exercise 1. Write out all the laws for len, and #, and for each, an extra law
similar to that in (5) above

Exercise 2 (tricky). Explain why the above three laws for elems (3,4,5) define
it completely. Does your line of reasoning generalise to say the same for len and
#?

Our treatment of sequences is very similar to that of Haskell lists, so we do not
elaborate further here.

Maps in VDM♣. A key concept in VDM♣, and indeed in theoretical computer
science as a whole, is the notion we present here of maps. Maps are partial
functions defined for a finite number of values, and are ideal for modelling keyed-
data lookup-tables, environments, etc. The basic components of our view of maps
are shown in Figure 9. Maps are functions, so any value to the left of �→ can
only occur once in any given map. The key aspect of maps is not so much that
they are partial functions, but that we view them as being manipulable in a
particular way. We use θ to denote the empty map, and {a �→ b} to denote the
singleton map from a to b. We can also enumerate maps by listing their mappings
explicitly, e.g.

{a �→ b, c �→ d, e �→ f}
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m→ type-constructor

{}, θ : A
m→ B Empty

{a �→ b} : A
m→ B Singleton Map

{a1 �→ b1, a2 �→ b2, . . .} Enumeration

( ) : (A
m→ B) → (A → B) Lookup

(μ 
 {a �→ b})(a′) =̂ if a′ = a then b else μ(a′)
dom : (A

m→ B) → PA Domain

rng : (A
m→ B) → PB Range


 : (A
m→ B)× (A

m→ B) → (A
m→ B) (Disjoint) Map Union

† : (A
m→ B)× (A

m→ B) → (A
m→ B) Override

Fig. 9. VDM♣ Map Basics

Map application takes a map of type A
m→ B and a value of type A, and re-

turns the corresponding value of type B, and is written using the usual function
application notation:

{a �→ b, c �→ d, e �→ f}(c) = d

If the argument value is not present, then the application result is undefined.
Given a map A

m→ B, its domain is the set of all values from A that appear,
while its range is the values of type B that are present:

dom{a �→ b, c �→ d, e �→ f} = {a, c, e}
rng{a �→ b, c �→ d, e �→ f} = {b, d, f}

There are various ways to combine two maps of the same type. We will look at
the most important two. The first is disjoint map union, analagous to disjoint
set union, which is undefined the domains of the two maps overlap:

{a �→ b, e �→ f} � {c �→ d} = {a �→ b, c �→ d, e �→ f}

It is most commonly used for pattern matching, as already described for sets.
The second is map override, where overlapping domain conflicts are resolved

by taking the second map as having precedence:

{a �→ b, c �→ d} † {c �→ g, e �→ f} = {a �→ b, c �→ g, e �→ f}

There are other ways to resolve overlap conflicts, but we do not need them here.
Analagously to both sets and sequences, we also ways to remove and restrict

map elements by specify sets of domain values to be removed (�−A) or kept (�A).

�−{c}{a �→ b, c �→ d, e �→ f} = {a �→ b, e �→ f}
�{c}{a �→ b, c �→ d, e �→ f} = {c �→ d}
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Table 1. Sets in Haskell (excerpt)

Name VDM♣ Haskell

Constructor PA Set a

Empty or Null ∅ nullSet

Singleton {a} iSet a

Extension 
 sextend

Characteristic Fn., Membership χ,∈ chrf, mOf
Subset ⊆ subSet

Cardinality # card

Union ∪ union

Restriction/Intersection �,∩ srestrict, intersect
Set Filter �[p] sfilter

Removal/Difference �−, \ sremove, setdiff
Symmetric Difference 	 symdiff

Choice S 
 {x} sChoose

We can summarise the laws by stating that both disjoint union and override
form monoids, and noting that domain, range, removal and restriction are all
homomorphisms:

(A
m→ B,�, θ) (A

m→ B, †, θ)
dom : (A

m→ B, †, θ) → (PA,∪, ∅)
dom{a �→ b} = {a}

rng : (A
m→ B,�, θ) → (PB,∪, ∅)

rng{a �→ b} = {b}
�−, � : PA→ (A

m→ B, †, θ) → (A
m→ B, †, θ)

�−R{a �→ b} = if a ∈ R then θ else {a �→ b}
�R{a �→ b} = if a ∈ R then {a �→ b} else θ

Exercise 3. Write out explicitly all the laws regarding � contained in the above
set of equations. Explain why they are enough to completely define �.

The single most important law of maps is that which connects override and
lookup:

(μ1 † μ2)(a) = if a ∈ domμ2 then μ2(a) else μ1(a)

Override can also be expressed with restrict, remove and extend:

μ1 † μ2 = �−(domμ2)μ1 � μ2

Assuming a 
= a′ and {a, a′} ⊆ dom μ, then we can see that maps obey the
following laws:
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Lookup after Override with same key :
(μ † {a �→ b})(a) = b

Lookup after Override with different key :
(μ † {a �→ b})(a′) = μ(a′)

Later overrides overwrite earlier ones :
(μ † {a �→ b}) † {a �→ b′} = μ † {a �→ b′}

Disjoint overrides commute :
(μ † {a �→ b}) † {a′ �→ b′} = (μ † {a′ �→ b′}) † {a �→ b}

Maps are basically just an abstract model of addressed memory, or of state
change were state has independent named components. This is the reason they
are so important in modelling.

2.4 VDM♣ in Haskell

There is a simple implementation of the VDM♣ toolkit in Haskell that: im-
plements sets as ordered non-unique lists; implements sequences as lists; and
implements maps as ordered key-unique association lists. Overloading similar to
that shown above for the toolkit is implemented using the Haskell classes feature

This is done by defining four classes: Container (CT ), Sngl (SL), Dbl (DL)
and Partition (PT ), that capture basic notions of containment, membership,
singleton construction, and partitioning or splitting.

Definition 3. A container type CT is a type-constructor, such that CT T de-
notes some form of structure containing elements drawn from type T , support-
ing notions of emptiness (θ), membership (�−), merging (�) and underlying set
(uset), satisfying laws as detailed below:

θ : CT T

�− : T × CT T → B

� : CT T × CT T → CT T

uset : CT T → P T

x 
�− θ

x �− (C �D) ≡ x �− C ∨ x �− D

uset θ = ∅
uset(C �D) = uset C ∪ uset D

Definition 4. A single-element singleton type SL is a CT type-constructor that
supports the construction of a singleton from a single datum (ι), satisfying the
laws:

ι : T → CT T

x �− ι y ≡ x = y

uset(ιx) = {x}
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Table 2. Maps in Haskell (excerpt)

Name VDM♣ Haskell

Constructor A
m→ B Map a b

Empty or Null θ nullMap

Singleton {a �→ b} iMap a b

Extension 
 mextend

Application μ(a) mApp m a

Domain dom dom

Range rng rng

Override † override

Glueing ∪ glue

Restriction � mrestrict

Removal �− mremove

Definition 5. A double-element singleton type DL is a 2-argument type-
constructor that supports the construction of a singleton from a pair of datums
(γ), satisfying the laws:

γ : T1 → T2 → CT T2T1

x �− γ y z ≡ x = y

uset(γ x y) = {x}

Definition 6. A partition type PT is a type-constructor that is an instance
of CT , such that PT T is a container supporting three ways of being split: by
selecting a singleton component ( � (ι )); or doing the same but with a predicate
to limit the selection ( �p (ι )); or splitting into two smaller chunks, using a
predicate ( �p ), satisfying laws as detailed below:

x �− (C �D) = x �− C ∧ x 
�− D ∨ x �− D ∧ x 
�− C

x �− (C �p D) = p x ∧ x �− C ∨ ¬p x ∧ x �− D

The instantiation of sets, lists and maps as these classes is shown in Table 3.
The Haskell implementation of these classes and instances is summarised in

Appendix A.
In effect we are able to take an VDM♣ model and transcribe it into a Haskell

equivalent. This provides type-checking support, and then allows the models
to be animated, by loading it into the GHCi interpeter and then applying the
reelvant functions to examples. QuickCheck integration is also provided, for both
QuickChecks I & II, so it can be used to test properties of any models developed
in this way. However, no kind of proof or automated reasoning is supported.

It is not currently available on hackage/cabal, but can be accessed via a
Mercurial repository hosted at: https://bitbucket.org/andrewbutterfield/
irishvdm

https://bitbucket.org/andrewbutterfield/irishvdm
https://bitbucket.org/andrewbutterfield/irishvdm
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Table 3. Instantiating Sets, Sequences and Maps

CT A PA A∗ A
m→ B

C S σ μ

θ ∅ 〈〉 {}
a �− C a ∈ S a ∈ elems σ a ∈ dom μ

C1 � C2 S1 ∪ S2 σ1
� σ2 μ1 † μ2

uset C S elems σ dom μ

ι x {x} 〈x〉
γ x y {x �→ y}
C 
 ιx S 
 {x} s � 〈x〉 μ 
 {a �→ b}
C 
D S 
 T s � t μ 
 ν

2.5 Simple Filesystem, Formal Model

We now turn to building a formal model of a (Very) Simple Filesystem (VSFS).
This file-system supports the following Haskell API functions:

readFile :: FilePath -> IO String

writeFile :: FilePath -> String -> IO ()

The important question to be answered here is about the required level of de-
tail. We want to be able to talk about the file contents, associated with the
appropriate filename, and to understand the relationship between strings and
integers.

VDM♣ provides some basic types, including characters: A, so both file-paths
and contents we can treat as character sequences

n ∈ FP = A�

s ∈ Str = A�

We start with a very simple filesystem, that maps file-paths to file contents:

φ ∈ VSFS = FP
m→ Str

We assume that all API functions have the same general format:

Input→ VSFS → VSFS ×Output

where Input and/or Output may be omitted. This shape embodies that of the
state monad, and this is no coincidence (of this, much more later . . . ). We are
going to adopt a principle here that there is no need for the API function and
the corresponding formal model function to have their arguments in the same
order, or even exactly the same number of input and output values. This is fine
because we formally define the meaning of the API call in terms of the model
function, and that will explicitly describe the relationship between the two.
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rdF : FP → VSFS → VSFS × Str

rdF n φ =̂ if n ∈ dom φ then (φ, φ(n)) else (φ, 〈〉)
wrF : FP → Str → VSFS → VSFS

wrF n s φ =̂ φ † {n �→ s}
read : A∗ → Z

show : Z → A∗

read ◦ show = id

Fig. 10. VSFS Formal Model Functions

For our two file API functions, we provide the following formal model functions

rdF : FP → VSFS → VSFS × Str

wrF : FP → Str → VSFS → VSFS

The meanings of readFile and writeFile are given in terms of rdF and wrF
respectively, as follows:

[[readF ile fp]] φ =̂ rdF [[fp]] φ

[[writeF ile fp str]] φ =̂ wrF [[fp]] [[str]] φ

Why does φ suddenly appear here like this? Its use here is reasonable, in that
we need to talk about applying the API model function to a file-system object,
as required by their signatures. We shall justify this formally in Section 3.

We can now formally define the model functions, shown in Figure 10. We
don’t give a formal definition of either read or show but just assert they are
total1, and give the one property we require. For reading, we note:

– If a file is missing, we return an empty string
– The filesystem itself is unchanged
– The operation is viewed as atomic
– We note the following immediate law:

π1(rdF n φ) = φ

(Here πi selects the ith component of a tuple).

Similarly, for writing:

– If the file does not exist, it is created.
– If the file already exists, it is overwritten.
– The operation is viewed as atomic.

1 This is just for simplicity, to avoid having a side condition in our challenge that
requires the initial file to contain a string that does denote an integer.
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We can state our desired property as:

“a” ∈ dom φ provided the file is present
⇓

read(φ′′ “a”) = (read(φ “a”))2 reading after is square of reading before
where
(φ′, s) = rdF “a” φ read file

i = read s get integer
φ′′ = wrF “a” (show(i2)) φ′ write its square

We can prove this by transforming the lefthand-side (LHS) into the righthand-
side (RHS):

read(φ′′ “a”)
= read((wrF “a” (show(i2))φ′) “a”)
= read(φ′ † {“a” �→ show(i2)}) “a”
= read(show(i2))

= i2

= (read s)2

= (read π2(rdF “a” φ))2

= (read π2(if “a” ∈ dom φ then (φ, φ(“a”)) else (φ, 〈〉)))2

= (read π2(φ, φ(“a”))))
2

= (read (φ “a”))2

This is all a bit ad-hoc: the property statement looks right and the proof is
formal, and fairly easy, but is harder than it needs to be. However, it is not fully
formalised, because:

– We wrote the property in an ad-hoc manner by reading the program and
“figuring it out”. The proof is formal, but the link to the program is not.

– For full formality, we need to integrate our API model with the program
language’s formal semantics.

We should also build an “API Theory” that allows us to simplify the proofs—
doing a number of ad-hoc proofs like the above will rapidly reveal a number of
proof-step patterns, which can be encapsulated by appropriate formal laws2.

We consider a theory here to be a collection of laws/properties about some
subject, that are useful when doing proofs involving that subject. The laws are
derived from the relevant formal model, and they allow us to reason at the API
level without always having to unwrap/rewrap formal definitions.

We want to do this for our simple VSFS API, and what is of interest here are
the various ways in which rdF and wrF can interact.

2 No prizes for guessing that the monad laws may play a part here!
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Assuming n 
= n′ and {n, n′} ⊆ dom φ, we posit the following set of laws:

π1(rdF n φ) = φ [FRFSId]
π2(rdF n (wrF n s φ)) = s [FWRSame]
π2(rdF n′ (wrF n s φ)) = π2(rdF n′ φ) [FWRDiff]
(wrF n s′) ◦ (wrF n s) = wrF n s′ [FWWSame]
(wrF n s) ◦ (wrF n′ s′) = (wrF n′ s′) ◦ (wrF n s) [FWWDiff]

Proof of [FWWDiff]

Goal:

(wrF n s) ◦ (wrF n′ s′) = (wrF n′ s′) ◦ (wrF n s)

Strategy: Apply extensionality, and rewrite ◦.

wrF n s (wrF n′ s′ φ) = wrF n′ s′ (wrF n s φ)

and transform LHS into RHS:

wrF n s (wrF n′ s′ φ)
= 〈 defn. wrF 〉

wrF n s (φ † {n′ �→ s′})
wrF n s (φ † {n′ �→ s′})

= 〈 defn. wrF 〉
(φ † {n′ �→ s′}) † {n �→ s}

= 〈 disjoint overrides commute 〉
(φ † {n �→ s}) † {n′ �→ s′}

= 〈 defn. wrF , backwards 〉
wrF n′ s′ (φ † {n �→ s})

= 〈 defn. wrF , backwards 〉
wrF n′ s′ (wrF n s φ)

Exercise 4. Prove the remaining Laws.

3 Integration

We now turn our attention to exploring a more rigourous way to link any formal
API model we may develop, to the formal semantics of the programming lan-
guage we are using. The key to this turns out to be to use monads, regardless
of what paradigm is used by the functional programming language itself. For
Haskell we have a close match, but even for Clean, with its uniqueness types,
and explicit state, it is possible for us to use the monadic framework.
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�= :: m a → (a → m b) → m b
� :: m a → m b → m b

return :: a → m a
fail :: A� → m a

m �= return = m [MonRId]
return a �= f = f a [MonLId]
(m �= f) �= g = m �= (λx@f x �= g) [MonAssoc]

m � n = m �= (λ @n) [MonThen]

Fig. 11. Monads (as per Haskell)

3.1 Monads

Haskell uses the IO Monad to interact with its environment, and we will effec-
tively “implement” IO using our VSFS model. In essence, we will implement
IO as a state monad, using VSFS as the state. The Monad class in Haskell, and
the laws that any instance should obey are shown in Figure 11. Symbol �= is
pronounced “bind” while � is pronounced “then”.

The Haskell “do-notation” is syntactic sugar for the most common usage of
�= and �:

m : M A

d ∈ DO ::= do {act; act; . . .}
act = m | x←m | let x = e

The meaning of do-notation is given as a translation into the appropriate com-
bination of binds, seqs and returns:

dom = m

dom ; acts = m � acts

dox←m ; acts = m �= (λx • do acts)

do let x = e ; acts = let x = e in do acts

The monad laws can then be restated for do-notation, as laws over action se-
quences:

x← return a ; f x = f a

x←m ; return x = m

let x = e ; return x = return e

let x = e ; f x = f e

The associativity law works on full do-expressions:

do x← (do y←m ; f y) ; g x = do y←m ; x← f y ; g x

In addition to bind, seq and return, common to all monads, any given monad
instantiation will have its own bespoke monad action functions that take some
input and return a monadic value:

action : b → m a
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3.2 State Monads

We can instantiate a monad that manages state change, the so-called State
Monad (ST ). It is a function from an (initial) state to a pair consisting of a
(final) state and the monad result type.

ST A = S → S ×A

Here we take S to denote a constant type, that denotes the form of the state of
interest. The precise nature of S will always be clear from context.

We define “return” and “bind” as follows:

(return a) s =̂ (s, a)

(m �= f)s =̂ f a′ s′ where (s′, a′) = m s

Exercise 5. Prove that return and �= as defined above for ST obey the monad
laws.

Sometimes we do not want to return a result from a monad, and are just inter-
ested in the hidden (state-change) effect. In Haskell the so-called “void” type3

(), with one member, also written (), is used. In our mathematical notation we
denote the type containing one element as 1, and its sole value as ∗.

With the state monad two special actions are usually introduced to get and
set the state, of which the following is a possible example, using functions g and
p to get a part of the state or transform it respectively.

get : ST S

get g s =̂ (s, s)

put : (S → S)→ ST 1

put p s =̂ (p s, ∗)

We supply function arguments to get and set simply for flexibility — in partic-
ular, for put, it makes it easier to describe state changes that depend on the old
state. We should also point out that while the whole purpose of using a state-like
monad for I/O is in order to hide the mutable state, here we are modelling those
mutation effects in our formalism which why we are looking “under the hood”.
The programmers use of get and put would be limited to writing calls of the
form get g and put p — the state parameter s would never appear explicitly.
We cannot emphasise this enough: whilst the programmers use of get and put
will never mention s explicitly, in order to reason about the effect of such a pro-
gram on the environment, here we need not only to mention s, but to model its
internals explicitly. If make our formal reasoning “monadic”, in the sense that
we cannot see the state, then we are back to only being able to prove that two

3 It’s not void, because it contains one value!
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programs have the same I/O behaviour. We will be unable to reason about what
effect that common behaviour has on the outside world.

If we are working in a state monad M A = S → S×A then the following law
holds:

(do x←m; f x)s = (do f x′) s′ [StateDo]
where (s′, x′) = m s

In state monads, as used in programs, the state (before or after) is hidden, so
there is no way to explicitly refer to the state at any point in time. The state
monad “is” instead a function that describes the relevant state change. The IO
monad in Haskell is inspired by the state monad, and in GHC it is implemented
as

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

The IO world is hidden from the programmer, so it cannot be mentioned, and
so the (ordinary4) use of the IO monad in Haskell is referentially transparent
and is part of the pure language (provided that the whole of the ordinary IO
implementation actually obeys the monad laws!).

3.3 VSFS Monad Model

In order to “implement” the IO monad, we shall follow GHC’s lead and define
IO as a state monad over VSFS

IOVSFS A =̂ VSFS → VSFS ×A

We immediately get �=, �, etc for free.
We can now give the semantics of the program API calls in terms of our new

IO monad and API model (here we model our API calls as monadic actions,
rather than as pure functions which are then used with put and get):

rdFIO : FP → IOVSFS Str

rdFIO n =̂ λφ • rdF n φ

wrFIO : FP → Str → IO 1

wrFIO n s =̂ λφ • (wrF n s φ, ∗)

We note that the main program of type IOVSFS 1 is now a function over VSFS

– If φ is the initial filesystem, and φ′ is the final filesystem, then we can now
assert

φ′ = main φ

At this point, those familiar with either Haskell’s monadic I/O, or Clean’s
uniqueness type system may feel that the last assertion above makes no sense !

4 The use of “unsafe” functions is not “ordinary”.
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The objection from a Haskell perspective is that you can’t use the IO monad like
that, as the whole point is that the state is hidden. As for Clean, the uniqueness
type system is designed to explicitly forbid any expressions that require simulta-
neous access to both an original and modified state, so the assertion above does
not typecheck.

However neither of the above objections is pertinent here. This is a reasoning
framework, and in order to reason about changes to a hidden state, we have to
make it visible, and be able to see both before- and after-states. Another way
to view the above, is that it is a proposition about a program, and not itself a
program, and hence not bound by the Haskell or Clean typing rules, and that it
should be viewed as that IOVSFS is a formal specification of IO.

3.4 Challenge 1, Formally

We can now conclude Challenge 1, as we have done the following:

– Determined modelling assumptions
– Chosen appropriate mathematical constructions
– Modelled API behaviour in the mathematics
– Extended language semantics to cover API

We now have to do the rest:

– State desired property
– Prove it

The program opens file “a”, reads an integer from it, and then overwrites “a”,
so it only contains that integer squared.

Ad-Hoc statement:

a ∈ dom φ⇒ read(φ′′ a) = (read(φ a))2

Formal statement:

a ∈ dom φ

⇓
read( (main φ)(a) ) = ( read(φ(a)) )2

Our ad-hoc statement was quite close to the formal one, with the only change
now being that we have a model function main that captures formally how the
I/O infrastructure is plumbed in.

Challenge 1 : Formal Proof We transform

read( (main φ)(a) )

into

( read(φ(a)) )2

using assumption a ∈ dom φ to simplify as required
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First, we reduce main φ, as a lemma

main φ

= 〈 defn main 〉
( do s← rdFIO a

let i = read s

wrFIO a (show(i2)) ) φ

= 〈 defn rdFIO,rdF ,assumption,[StateDo] 〉
( do let i = read (φ(a))

wrFIO a (show(i2)) ) φ

= 〈 defn of let 〉
( do wrFIO a (show((read (φ(a)))2)) ) φ

= 〈 defn wrFIO,wrF ,[StateDo] 〉
φ † {a �→ (show((read (φ(a)))2))}

Now, the main property

read( (main φ)(a) )

= 〈 previous lemma 〉
read((φ † {a �→ (show((read (φ(a)))2))})(a))

= 〈 map lookup 〉
read( (show((read (φ(a)))2)) )

= 〈 read-show-identity 〉
( read(φ(a)) )2

The proofs were quite short, but we did a lot of work to set it up. However this
setup work only needs to be done once for any API, and the resulting laws can
be reused for lots of program proofs, so it is a worthwhile investment, provided
we get the abstraction right.

Exercise 6. Lab Challenge 1

1. Implement VSFS in Haskell
2. Implement new IO monad using VSFS as state
3. Use it to run that program on a simulated VSFS.

4 Increasing Realism

4.1 Using VDM♣

VDM♣ is more than just functions and equational reasoning, as it has an associ-
ated modelling approach, based on invariants. An invariant is a well-formedness
property of a system, that should hold for a running/live system and which
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should be preserved by any system operation. In some sense invariants char-
acterise the safe configurations of a system, and they form a hierarchy, from
those that must hold at all times, e.g. keeping an aircraft within its safe per-
formance envelop, to those that only need to hold at certain key points during
system execution. Many of the latter are concerned with ensuring that system
data-structures are consistent at the start and end of system operations, while
allowing them to be in an inconsistent state during an operation, as it is typically
impossible to maintain such invariants in the middle of certain changes. To see
this, consider an example of a data-type consisting of a list along with its length
(xs, len) with an invariant length xs = len. Adding an element x requires this
to change to (x : xs, len+1), but in most sequential programming languages we
cannot change both components simultaneously. The add operation will have an
intermediate state, either (x : xs, len) or (xs, len+ 1), where the invariant does
not hold.

The VDM♣ methodology supports this approach by allowing us to define
invariants. Given a definition of some system type:

s ∈ System =̂ . . . some type

we may choose to define well-structured ones with an invariant predicate

inv-System : System→ B

inv-System(s) =̂ . . .

A key property of interest is Invariant Preservation Consider an API operation
on our system:

Op : Input→ System→ System×Output

Op i s =̂ (s′, o′) where . . .

We now have a proof obligation to show that Op preserves the invariant:

inv-System(s)⇒ inv-System(π1(Op i s))

This proof obligation is part of the model-building exercise, and supports the
second level of hierarchy mentioned above.

Simple type systems, i.e. Hindley-Milner, are not rich enough in general to
capture data-dependent well-formedness conditions, so some extra power is re-
quired. VDM and VDM♣ use the invariant predicate approach just mentioned,
whilst another very active area of research uses dependent types to allow invari-
ant properties to be expressed as part of the operator types [McK06].

We shall illustrate the invariant approach using our existing model, and
constraining it a little.

Example 1. Very Simple Integer File System (VSIFS) Imagine we want a file
system to have file content strings restricted to those that can be read as valid
integers. We shall define VSIFS to be such a filesystem:
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φ ∈ VSIFS = FP
m→ Str

inv-VSIFSφ =̂ ∀s ∈ rng φ • valid s

valid s =̂ s 
= 〈〉 ∧ s = takeWhile isDigit s

The definitions of rdF and wrF look the same as before (we are using the non-
monadic VSFS model here for illustrative purposes—the ideas extend to the
monadic IOVSFS model in the obvious way).

We now need to check that wrF preserves the VSIFS invariant, as it changes
the state.

inv-VSIFSφ ⇒ inv-VSIFS(wrF n s φ)

We shall assume the antecedent inv-VSIFSφ is true, and seek to reduce the
consequent to true:

inv-VSIFS(wrF n s φ)

≡ “ defn. wrF ”

inv-VSIFS(φ † {n �→ s})
≡ “ defn. inv-VSIFS ”

∀f ∈ rng(φ † {n �→ s}) • valid f

≡ “ rng applied to map override ”

∀f ∈ rng(�−{s}φ) ∪ {s}) • valid f

≡ “ ∀ range split ”

(∀f ∈ rng(�−{s}φ • valid f) ∧ (∀f ∈ {s}) • valid f)

≡ “ assumption’s range covers �−{s}φ ”

True ∧ (∀f ∈ {s}) • valid f)

≡ “ x ∈ {y} ≡ x = y, one-point rule ”

True ∧ valid s

After all that effort, the proof fails because we cannot show valid s5. Why not?
Because, in order to ensure the invariant is preserved, either s must itself be
valid, or wrF should check it and then take some appropriate action.

Just as we wanted/needed to associate invariants with systems, we need to
attach pre-conditions to operations:

Op : Input→ System→ System×Output

pre-Op : Input→ System→ B

pre-Op i s =̂ . . .

Op i s =̂ (s′, o′) where . . .

5 Should have QuickChecked first !
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The proof obligation is changed to require the pre-condition:

inv-System(s) ∧ pre-Op i s ⇒ inv-System(π1(Op i s))

Effectively we are describing the error-free usage for our API. We can now give
a complete definition of wrF for our integer file-system:

wrF : FP → Str → VSIFS → VSIFS

pre-wrF n s φ =̂ valid s

wrF n s φ =̂ φ † {n �→ s}

There is also an obvious pre-condition for rdF in either filesystem model:

pre-rdF n φ =̂ n ∈ dom φ

The file being read must already exist. In the above example, our antecedent
would have been extended to assert valid s, and so the above proof could have
been completed successfully.

Assume inv-VSIFSφ and pre-wrF n s φ and reduce:

inv-VSIFS(wrF n s φ)

...

True ∧ valid s

≡ “ pre-condition assumption, simplify ”

True

The invariant and pre-conditions allows us to formally document key underlying
correctness assumptions for our system. We can prove that our API functions
work sensibly w.r.t. these assumptions. What does this say about situations were
the conditions fail? VDM’s proof system takes the view that system behaviour
is unpredictable if invariants or pre-conditions fail. In most safety-critical appli-
cations major effort is taken to “design out” those situations—we do not rely on
formal techniques to fix these situations, but instead rely on the application to
detect and flag them if present, or confirm all is well if they are absent.

4.2 Real-World Filesystems

Just before we plunge into more realistic file-system models, it is worth noting
that the real world is interested in fully formally verifying the correctness of a
filesystems. As part of the Verified Software Initiative — a grand challenge to
see software routinely formally verified in future real-world software engineering
practise —NASA JPL suggested, as a mini-challenge, a full formal verification of
a POSIX filesystem down to the underlying flash memory hardware [HJ05]. This
was motivated by their experience of a close shave with 3rd-party FS software
on the Mars rovers, which they hope not to have to repeat.
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data Handle

data IOMode = ReadMode | WriteMode ...

openFile :: FilePath -> IOMode -> IO Handle

hClose :: Handle -> IO ()

hIsEOF :: Handle -> IO Bool

hGetChar :: Handle -> IO Char

hPutChar :: Handle -> Char -> IO ()

Fig. 12. Extract from System.IO

Filesystems are built on top of operating systems, and NICTA in Australia did
the first formal verification of an OS microkernel (sel4), from specification down
to C code, using Haskell to model the specification level [KEH+09]. Another VSI
mini-challenge is looking at verifying the freeRTOS (real-time) kernel[DGM09],
and a book describing the verification of OpenComRTOS has just been published
[VBF+11].

4.3 Modelling Handle-Based Filesystems

We now look at modelling a more realistic filesystem, in particular at a level of
granularity that is more realistic than the read/write whole file view we have
taken up to this point. Of particular interest is dealing with the situation where
files are opened first, then read or written in an incremental manner, and finally
closed once their contents have been processed. The challenge here will be coming
up with a notion of open file handles, and being able to support the sharing of
files as appropriate.

Our task now will be to build a formal model that covers the extract from
Haskell’s System.IO module shown in Figure 12. In addition to some new enu-
meration types like IOMode, we also have to decide just what is involved in
defining the notion of Handle. A Handle records, for the corresponding open file
(System.IO documentation on Hackage):

– whether it manages input or output or both;
– whether it is open, closed or semi-closed;
– whether the object is seekable;
– whether buffering is disabled, or enabled on a line or block basis;
– a buffer (whose length may be zero).

At this point we need to decide the level of detail we require. Some of the aspects
recorded for handles are very low level (line/block buffering), while others are
fairly high level and general (input/output direction). What level is appropriate
for our needs?

In this case, we plan to model the extract of file I/O shown in Figure 12.
We must describe input/output direction, because we have included the IOMode
type covering those two aspects. However as the extract has no mention of types,
parameters or API calls to do with buffering, there seems little point in modelling
it. This is a useful general principle:



Reasoning about I/O in Functional Programs 125

The level of detail used in a formal model should be just enough to reason
about the behaviours covered by the subset of the relevant API.

Applying this principle here, we shall just focus on Handles that:

– are open or closed;
– manage input or output;
– note current position;
– support shared reading

4.4 HFS: Formal Model

The key decisions we have to make in modelling a Handle File System (HFS) are
the precise nature of handles, and how they are manifested in a running system.
The important observation is that handles are dynamic entities that come to life
when a file is opened, and disappear once a file has been closed. They contain
all the information about the opened file as already discussed. Their support
for sharing is implicit—each shared access to one file has its own handle. An
implication of this that we need a way to track sharing in a manner that is
independent of each handle. We achieve this by associating meta-data about
file-open status and sharing with the files themselves.

HFS Filesystem. We consider a file-system as a mapping between names and
file-data:

ϕ ∈ HFS = FP
m→ FData

File-data (δ) is split into two portions, the file state (Ξ), and the data (s):

δ, (Ξ, s) ∈ FData = (FState× A�)

The file-state records the fact that a file is either closed, opened for reading by
a number of readers, or opened exclusively for writing. If opened for (shared)
reading, we record the number of read handles associated with that file.

Ξ ∈ FState = Clsd |OpRd N |OpWr

HFS Handles. When a file is opened, the program gets a file handle (h), which
records the filename, and the current state of the data. If the file is open for
writing, then we record the characters written so far (HWr cs). For reading, we
record what has been read so far, and what remains (HRd sofar rest), allowing
us to have a notion of seek (even though the API shown doesn’t provide this
feature).

h ∈ Hndl = FP ×HData

� ∈ HData = HWr A� |HRd A� A�
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HFS File Opening. When opening a file we need to specify a mode, either
reading or writing:

m ∈ OMode = MRd |MWr

Opening a file requires supplying a name and mode:

Opn : FP →OMode→HFS →HFS ×Hndl

Our pre-conditions are described by two (pattern-matching) cases, one for each
OMode. We open a file for writing if it doesn’t exist or is closed, for reading
provided it exists and hasn’t been opened for writing:

pre-Opn n MWr ϕ =̂ n /∈ ϕ ∨ ϕ(n) ! (Clsd, )

pre-Opn n MRd ϕ =̂ n ∈ ϕ ∧ ϕ(n) 
! (OpWr, )

The notation ϕ(n) ! (Clsd, ) is a form of pattern matching, and is equivalent
to π1(ϕ(n)) = Clsd, with the underscore acting as a do-not-care pattern.

Opening a file for writing (it doesn’t exist or is closed) involves updating the
filesystem to record that file as open for writing, with contents initialised to
empty (OpWr, 〈〉). The handle returned also has empty contents (HWr 〈〉).

Opn n MWr (ϕ) =̂ (ϕ † {n �→ (OpWr, 〈〉)}, (n,HWr 〈〉))

Opening a file for reading (it exists and hasn’t been opened for writing) involves
updating the filesystem to record either the first read, or if another read is taking
for that place, returning a file handle with the full file-contents to be read. The
auxiliary function incr modifies the file-status appropriately, depending on if the
file was closed or already opened for reading.

Opn n MRd ϕ =̂ (ϕ † {n �→ incr(ϕ(n))}, (n,HRd 〈〉 s))
where s = π2(ϕ(n))

incr(Clsd, s) = (OpRd 1, s)

incr(OpRd i, s) = (OpRd (i + 1), s)

HFS File Closing. Closing a file requires the file-handle

Cls : Hndl→HFS → HFS

We close a file if it is open (in the appropriate mode):

pre-Cls(n,HWr )ϕ =̂ n ∈ ϕ ∧ ϕ(n) ! (OpWr, )

pre-Cls(n,HRd )ϕ =̂ n ∈ ϕ ∧ ϕ(n) ! (OpRd , )

Closing a file that is being written involves flushing the data in the handle into
the filesystem, and then marking the file as closed:

Cls(n,HWr s)ϕ =̂ ϕ † {n �→ (Clsd, s)}
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Closing a file that is being read simply means noting in the filesystem that
one read handle has now gone, and marking the file as closed if the number of
remaining handles drops to zero:

Cls(n,HRd )ϕ =̂ ϕ † {n �→ decr(ϕ(n))}
where decr(OpRd 1, s) = (Clsd, s)

decr(OpRd (i+ 1), s) = (OpRd i, s)

HFS End-of-File. We are at the end of file if the handle is reading and no
data is left:

EoF : Hndl→ B

EoF( ,HWr ) =̂ False

EoF( ,HRd ω) =̂ ω = 〈〉

HFS Read. We can read from a file-handle if it is in reading mode, and there
is data left:

Rd : Hndl→Hndl × A

pre-Rd(n, �) =̂ � ! HRd ω ∧ ω 
= 〈〉
Rd(n,HRd α ω) =̂ ((n,HRd (α � 〈d〉) ω′), d)

where

(〈d〉� ω′) = ω

HFS Write. We write to a file-handle if it is in writing mode:

Wr : A→Hndl → Hndl

pre-Wrd(n, �) =̂ � ! HWr

Wrd(n,HWr s) =̂ (n,HWr (s � 〈d〉))

HFS Discussion

Question 1. Is the HFS model as just presented adequate ?

It is a good first approximation, however it is lacking in a few areas.
The first thing to note is that we did not give a system invariant. There were

no constraints on the file contents, and as we did not have notation for “all
the file handles” in the model, we could not talk about an invariant relating
file handles to file states. Also, there is no notion of error returns, so the caller
program has to just get it right.
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Also there are various forms of abuse of file-handles that are possible. Once a
file is closed, it cannot be accessed with an old handle because the pre-conditions
forbid it, but if a file is re-opened in the same mode as used previously, old file
handles for that mode will now be active once more. A key issue here is that
the system doesn’t have a global view of existing file handles or some way of
marking them as stale.

We will not discuss error reporting further here, apart from noting that we
can either add some error state components, a la the UNIX errno facility ,
and provide means to test these values, or we can decide to model exceptions.
Modelling exceptions requires us to re-visit the programming language semantics
and add in support for reasoning about exception raising and handling.

4.5 Improved Handle File System (IHFS)

Instead we shall focus on how to make our modelling of handles more robust.
We do this by adding on a table as part of the filesystem that records and tracks
file handles.

The Haskell Handle is now just a numeric reference to a hidden record

hn ∈ HndlNo = N

A Handle table maintains a binding between handle numbers and handle records:

� ∈ HTab = HndlNo
m→ Hndl

File opening in IHFS requires us to formalise the notion of generating new handle
numbers. Ideally a handle number returned from file opening will not be one that
has been seen before. At the very least, it should not be a number currently in
use. There are a number of ways to do this, at various levels of abstraction,
noting that preventing handle number re-use requires a notion of the history of
all previous file openings. We shall adopt the simple approach of maintaining
a seed number (hs) used to generate new handles—it effectively abstracts the
history by declaring that no handle number equal to or greater than it has been
used.

IHFS Invariant. Our file system brings together handles, the handle seed and
files

(ϕ, hs,�), H ∈ IHFS = HFS × N×HTab

We expect that the seed is larger than any live handle number, every handle
corresponds to a file in the appropriate mode, and for every file open for writing,
there is only one handle
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inv-IHFS(ϕ,hs,�) =̂ hs > max(dom �)

∧ (∀hn ∈ � • validH(�(hn), ϕ))

∧ (∀n ∈ ϕ • ϕ(n) � (OpWr, )⇒ hcount(n)� = 1)

validH : Hndl ×HFS → B

validH((n,HWr ), ϕ) =̂ n ∈ ϕ ∧ ϕ(n) � (OpWr, )

validH((n,HRd ), ϕ) =̂ n ∈ ϕ ∧ ϕ(n) � (OpRd , )

hcount : FP → HTab → N

hcount n {} =̂ 0

hcount n (� 
 {hn �→ (n′, )} =̂ (hcount n �) + (if n = n′ then 1 else 0)

The invariant is complex, but the structure chosen does have the advantage of
making pre-condition checks simpler. Checking for appropriate file-states and
valid handles can now be separated, because the invariant ensures their mutual
consistency.

In the HFS model, opening returned a handle which was retained by the
caller and then used for subsequent file operations. In the IHFS model, we now
get a new handle number back to the caller, which is used to de-reference the
internal table. The main changes to the operation models are this extra layer of
indirection for handles.

IHFS Initial State. Another part of the VDM♣ methodology is to define the
initial state of the system, and to show that it satisfies the invariant. We did
not present this for HFS because, given the lack of any invariant, or rather the
presence of the trivial invariant True, any instance of HFS would satisfy it. For
IHFS we have a complex invariant, so demonstrating a simple initial system
that satisfies it is important to show that the invariant isn’t so strong as to be
unsatisfiable.

We propose an initial system with no files, no handles and the seed set to 1:

IHFS0 : IHFS

IHFS0 =̂ ({}, 1, {})

This may seem a little sparse, to say the least, but it satisfies an important
technical objective. It establishes a file-system that satisfies the invariant. Since
our operations are (hopefully) invariant-preserving, then we can ensure that
any filesystem that results from any sequence of such operations starting with
IHFS0 also satisfies the invariant. We could propose a large, more complex (more
“realistic”) initial filesystem, but then we are left with a much harder job to show
it satisfies the invariant.
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We want to show inv-IHFS0, by reducing it to true:

inv-IHFS0

≡ “ expand defns ”

1 > max(dom {})
∧ (∀hn ∈ {} • validH({}(hn), ϕ))
∧ (∀n ∈ {} • {}(n) ! (OpWr, )⇒ hcount(n){} = 1)

≡ “ ∀ on empty ranges reduce to true ”

1 > max(dom {})
≡ “ max of empty set is 0 ”

1 > 0

≡ “ arithmetic ”

True

We now turn our attention to defining the API operators. We will overload the
names used for HFS to avoid either yet another set of new names or the use of
subscripts.

IHFS File Opening. We simply present the full definition in one go, noting
the big change is the adding of the handle to the internal table and returning
the seed value (post-incremented) as the handle identifier to the caller:

Opn : FP →OMode→ IHFS → IHFS ×HndlNo

pre-Opn(n) MWr (ϕ, hs,�) =̂ n /∈ ϕ ∨ ϕ(n) ! (Clsd, )

pre-Opn(n)MRd(ϕ, hs,�) =̂ n ∈ ϕ ∧ ϕ(n) 
! (OpWr, )

Opn(n) MWr (ϕ) =̂ ( (ϕ † {n �→ (OpWr, 〈〉)},
hs+ 1, � � {hs �→ (n,HWr 〈〉)})
, hs )

Opn(n)MRd(ϕ) =̂ ( (ϕ † {n �→ incr(ϕ(n))},
hs+ 1, � � {hs �→ (n,HRd 〈〉 s)}),
, hs )

where incr(Clsd, s) = (OpRd 1, s)

incr(OpRd i, s) = (OpRd (i + 1), s)

The pre-conditions are unchanged, and the main complexity lies in updating the
handle table, which is just a simple map extension with the new handle.

IHFS File Closing. When a file is closed, change the file state as appropriate,
and remove the handle from the table. The pre-condition is simple—we just
ensure the handle number is currently in the table. The consistency between
handle and file is guaranteed by the invariant.
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Cls : HndlNo→ IHFS → IHFS

pre-Cls hn (ϕ, hs,�) =̂ hn ∈ �

Cls hn (ϕ, hs,�) =̂ Cls′ hn (�(hn))(ϕ, hs,�)

Cls′ hn (n,HWr s)(ϕ, hs,�) =̂ (ϕ † {n �→ (Clsd, s)}, hs, �−hn�)

Cls′ hn (n,HRd )(ϕ, hs,�) =̂ (ϕ † {n �→ decr(ϕ(n))}, hs, �−hn�)

where decr(OpRd 1, s) = (Clsd, s)

decr(OpRd (i+ 1), s) = (OpRd i, s)

IHFS End-of-File. In HFS, given the explicit file-handles returned to the
caller, we were lazy in defining the end-of-file predicate, as there was no need to
refer back to the filesystem. In IHFS we do not have that luxury:

EoF : HndlNo→ IHFS → IHFS × B

pre-EoF hn (ϕ, hs,�) =̂ hn ∈ �

EoF hn (ϕ, hs,�) =̂ ((ϕ, hs,�), �(hn) ! ( ,HRd ω) ∧ ω = 〈〉)

We return true if the referenced handle matches a read handle, and the remaining
data is empty. If the handle is for writing, or for reading with data left over we
return false.

IHFS Read. Again, the revised definition for read is largely about plumbing
to access the handle table:

Rd : HndlNo→ IHFS → IHFS × A

pre-Rd hn (ϕ, hs,�) =̂ hn ∈ � ∧�(hn) ! HRd ω ∧ ω 
= 〈〉
Rd hn (ϕ, hs,�) =̂ Rd′ hn (�(hn))(ϕ, hs,�)

Rd′ hn (n,HRd α (〈d〉� ω′))(ϕ, hs,�) =̂ ((ϕ, hs,� † hn(n,HRd (α � 〈d〉) ω′), d)

IHFS Write. Write is no different:

Wr : A→ HndlNo→ IHFS → IHFS × 1

pre-Wr d hn (ϕ, hs,�) =̂ hn ∈ � ∧�(hn) ! HWr

Wr d hn (ϕ, hs,�) =̂ Wr′ d hn (�(hn)) (ϕ, hs,�)

Wr′ d hn (n,HWr s) (ϕ, hs,�) =̂ ((ϕ, hs,� † {hn �→ (n,HWr (s � 〈d〉))}), ∗)

4.6 Summary

We have seen two handle-based models, one, HFS, is based on explicit handles
and is quite simple, but exposed those handles in way that makes them very
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vulnerable to unsafe patterns of use. This does not mean that HFS has no
utility. It is a useful model to get the basic processes of opening,reading/writing
and closing worked out. It can also be used to do lightweight proofs of desired
properties—for example proving that reading a file that was previously written
results in the same data.

The second model, IHFS, protects handles by keeping the critical data inside
the model, and only handing out references to that data. This comes with the
price of extra model complexity. However we feel the complexity is manageable,
as the model was developed by building on HFS and then folding the handle
data in under the hood, as it were.

Exercise 7. Prove that all the IHFS operations preserve the invariant

Exercise 8. Encode the IHFS model in Haskell, which gives a means to animate
the model for free, explore it, and then develop some suitable QuickCheck tests.

5 Beyond Haskell and VDM♣

Haskell is not the only lazy functional language that has pure I/O, and monads
are not the only technique available for managing side-effects in a functional set-
ting. In the programming language Clean there are explicit references to the ex-
ternal world, but purity is maintained by requiring such references to be uniquely
typed [BS96]. This uniqueness typing ensures that the use of external resources
is single-threaded, in that there is no simultaneous access to both the before-
and after-values of the resource. The I/O API calls have been carefully anno-
tated with appropriate uniqueness attributes (∗) and the type-checker ensures
single-threadedness.

So, for example, a simplified6 type signature for file-opening in Clean is

fopen :: String FileMode *World -> (Bool,*File,*World)

So fopen takes three arguments: a file name string, a read/write mode indicator,
and a unique reference to the outside world. It returns a boolean success flag,
a unique reference to a file (handle) and a unique reference to the “rest of the
world”. Any attempt to retain access to both before- and after-versions of the
world results in a type error, e.g.:

let (ok,f,w’) = fopen "a.txt" FReadText w in (w,w’) // type-error !

So in Clean, the I/O objects (world, files) are explicitly mentioned, but type-
checking prevents unsafe use, whereas Haskell’s monads solve the problem of
unsafe side-effects by making it impossible to mention the I/O objects at all
—they are implicit, hidden under the hood in the IO monad. Another differ-
ence between Clean and Haskell becomes evident when we consider file reading
(simplified type signature):

6 fopen is in fact a class method, and we have left out strictness annotations.
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freadc :: *File -> (Bool,Char,*File)

We take and return unique file references, but no mention is made of the world.
—in Haskell, all I/O is done in the single global I/O monad. With Clean’s
uniqueness typing we can effectively partition I/O state and effectively encapsu-
late the handling of different state fragments. In Haskell, by contrast, every I/O
access is against the global I/O monad, and hence such operations have to be
over-sequentialised[PJ01] by comparison with Clean.

5.1 Clean Syntax

Clean syntax is similar to Haskell, with a few variations:

haskellFunction :: a -> b -> c -> d

cleanFunction :: a b c -> d

haskellCons = (x:xs)

cleanCons = [x:xs]

Clean does not have do-notation, but provides a special let syntax (#-let) de-
signed to make I/O coding easier:

id, p, b ident, patterns, boolexpr

h ∈ HL ::= id p {act; act; . . .} = e

act = #p = e

| |b = e

– #p = e evaluates e and binds variables in pattern p to the result. These
variables are in scope in all subsequent act and the final e.

– |c = e evaluates its condition, and if true, returns e, and all subsequent act
and the final e are skipped. If condition c is false, we skip to the next act.

– When all act have been done, we evaluate the final e, with all the pattern
bindings and return its value as the overall result.

Clean uses the offside syntax rule in a similar manner to Haskell, so a function
to read the contents of an open file can be written as follows:

fileRead :: *File -> (String,*File)

fileRead f

# (eof,f) = fend f

| eof = ([],f)

# (ok,c,f) = freadc f

# (cs,f) = fileRead f

= ([c:cs],f)

This function checks for end of file and quits, returning the empty string in that
case, and otherwise, reads a character, recurses, and returns the final string.
The (fully read) file is also returned, but as access to f is singly threaded, this
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function is safe (and pure). The important thing to note is that each of the
lefthand side occurrences of f are distinct variables (nested scopes).

A program that reads character data from file “data.in” and outputs that
data transformed to file “clean-data.out”:

rdTxWr w

# ((_,fin),w) = fileOpen "data.in" FReadText w

# (indata,fin) = fileRead fin

# (_,w) = fclose fin w

# ((_,fout),w) = fileOpen "clean-data.out" FWriteText w

# fout = fwrites (toString (transform indata)) fout

# (_,w) = fclose fout w

= w

Note that fileOpen “pulls” the file out of the world w. The file read only
works on that file (w is not mentioned), and fclose “puts” the final file back
“into” w.

5.2 Formalising Clean’s I/O

The question now arises: how do we formalise I/O in Clean? It turns out that
we can re-use almost all the work done up to this point. The first key thing to
note is that all the I/O operation type signatures can be re-arranged slightly to
match that of the state monad:

open :: {#Char} Int *World -> (Bool,*File,*World)

Opn : FP → OMode → IHFS → IHFS × (B×HndlNo)

fclose :: *File *World -> (Bool,*World)

Cls : HndlNo→ IHFS → IHFS × B

freadc :: *File -> (Bool,Char,*File)

Rd : HndlNo→ IHFS → IHFS × (B× A×HndlNo)

fwritec :: Char *File -> *File

Wr : A→ HndlNo→ IHFS → IHFS ×HndlNo

The HndlNo becomes a proxy for the file, hidden in IHFS. Essentially we can
view the Clean and Haskell I/O models as essentially the same underneath, just
with slightly different plumbing to make the connection to the programming lan-
guage level. We can then take advantage of the monad laws to simplify reasoning
for Clean programs as well. While there are some Clean programs that cannot
be expressed in monadic style, and we lose some of the ability to encapsulate the
reasoning about a small part of partitioned state, we find most Clean programs
fit with the monadic style.
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The #-let notation has a straightforward translation:

[[id p acts=e]] =̂ id(p) = [[acts, e]]

[[#p=e; acts, e]] =̂ let p = e in [[acts, e]]

[[|c=e; acts, e]] =̂ if c then e else [[acts, e]]

[[#p=e1, e]] =̂ let p = e1 in e

[[|c=e1, e]] =̂ if c then e1 else e

In effect we find that there is very little difference in the formalisms needed to
reason about I/O for both Haskell and Clean, and indeed the monadic style of
presentation can be fruitfully used for reasoning about both. Based on these
observations, a prototype tool for reasoning about I/O was constructed using
the Sparkle theorem prover [dMvEP01, dMvEP07, dM09] which developed a
monadic framework that supported limited deterministic concurrency
[DBvEdM04, DB06].

5.3 Process Algebras

VDM♣ is not the only formalism suited for reasoning about functional I/O. The
material discussed to this point could equally well have been captured using
other state-oriented imperative specification languages such as standard VDM
(VDM-SL [Com92]), Z [Spi92] or B [Abr91]. However, so far we have avoided a
discussion of concurrency, although we have nodded in that direction in HFS
with its shared reads. Formalisms like VDM♣, VDM, Z, B are all sequential in
character, and provide little or no support for concurrent behaviour modelling.

The best formalisms for concurrent reasoning are those developed with it in
mind, most notably the so-called Process Algebras : CSP [Hoa90], CCS [Mil80],
ACP [BK85], π-calculus [Mil99]. The strength of these formalisms lie in their
ability to model and reason concurrent processes, with communication abstracted
as events that denote the exchange of messages. Essentially systems can be
viewed as so-called labelled transition systems (LTS) of states connected by tran-
sition arrows marked with events. However while process algebras are good for
modelling concurrency, and also support good automated techniques for dead-
lock and livelock detection, their use for I/O modelling is a bit reminiscent of
using the monad laws to reason about I/O. We can show that two system de-
scriptions have the same behaviour, in terms of sequences of I/O events, but we
cannot talk about the effect of those events on the I/O world state.

What is needed to reason about the effects of I/O on world state is a pro-
cess algebra with support for state. Most have it to some degree, by allowing
processes to be parameterised, but the formal semantics and tool support can
be relatively weak. Model-checking, the automated proof technique that does
exhaustive search of LTSs, has to deal with the state explosion problem, which
gets exacerbated when extra state parameters are added. A full treatment of
I/O’s effects on the outside world, along with concurrency features as seen
in Parallel Haskell, for example, still require further theoretical development,
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integrating process algebras with VDM♣-like state modelling. Recent work on
so-called “state-rich” process algebras is in progress, of which Circus[OCW06] is
a good exemplar.

References

[Abr91] Abrial, J.-R., Lee, M.K.O., Neilson, D.S., Scharbach, P.N., Sørensen, I.H.:
The B Method. In: Prehn, S., Toetenel, H. (eds.) VDM 1991. LNCS,
vol. 552, pp. 398–405. Springer, Heidelberg (1991)

[Bd87] Bird, R., de Moor, O.: Algebra of Programming. Series in Computer Sci-
ence. Prentice Hall International, London (1987)

[BDS02] Butterfield, A., Dowse, M., Strong, G.: Proving Make Correct: I/O Proofs
in Haskell and Clean. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS,
vol. 2670, pp. 68–83. Springer, Heidelberg (2003)
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[DGM09] Déharbe, D., Galvão, S., Moreira, A.M.: Formalizing FreeRTOS: First
Steps. In: Oliveira, M.V.M., Woodcock, J. (eds.) SBMF 2009. LNCS,
vol. 5902, pp. 101–117. Springer, Heidelberg (2009)

http://www.cs.kun.nl/research/reports/


Reasoning about I/O in Functional Programs 137

[dM09] de Mol, M.: Reasoning about Functional Programs: Sparkle, a proof as-
sistant for Clean. PhD thesis, Institute for Programming research and
Algorithmics, Radboud University Nijmegen (2009)

[dMvEP01] de Mol, M., van Eekelen, M., Plasmeijer, R.: Theorem Proving for Func-
tional Programmers. In: Arts, T., Mohnen, M. (eds.) IFL 2001. LNCS,
vol. 2312, pp. 55–71. Springer, Heidelberg (2002)

[dMvEP07] de Mol, M., van Eekelen, M., Plasmeijer, R.: Proving Properties of Lazy
Functional Programs with Sparkle. In: Horváth, Z., Plasmeijer, R., Soós,
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A Haskell Classes for VDM♣

Here we simply extract all the class and instance definitions from the IVDM
sources. They differ from the description in the main body of the tutorial, in
that we have two classes, Container and Partition

A.1 Classes

Basic Containers are types for which notions of membership, insertion and
merging are paramount.

class Container c where

mof :: Ord a => a -> c a -> Bool

chrf :: Ord a => c a -> a -> Bool

x ‘mof‘ cs = chrf cs x

chrf cs x = x ‘mof‘ cs

nil :: c a

isNil :: c a -> Bool

distinctFrom :: Ord a => c a -> c a -> Bool

union :: Ord a => c a -> c a -> c a

forget :: Ord a => c a -> Set a

For some containers, singletons are defined on a single element type:

class Container c => Sngl c where

sngl :: a -> c a

But for other containers, singletons are defined over pairs:
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class Dbl m where

dbl :: a -> b -> m b a

A Container belongs to the Partition class if it also supports ways of breaking
it apart:

class Container c => Partition c where

select :: c a -> (a, c a)

pselect :: (a -> Bool) -> c a -> (a, c a)

split :: (a -> Bool) -> c a -> (c a, c a)

pRestrict, pRemove :: (a -> Bool) -> c a -> c a

pRestrict p = fst . split p

pRemove p = snd . split p

sRestrict, sRemove :: Ord a => (Set a) -> c a -> c a

sRestrict s = pRestrict (chrf s)

sRemove s = pRemove (chrf s)

cRestrict, cRemove :: (Ord a, Container d) => d a -> c a -> c a

cRestrict c = sRestrict (forget c)

cRemove c = sRemove (forget c)

We show the instances for sets, lists and maps below. See the sources and
documentation at https://bitbucket.org/andrewbutterfield/irishvdm for
details.

A.2 Set Instances

Sets as Containers

instance Container Set where

-- mof = mOf

chrf = sChrf

nil = nullSet

isNil = isNullSet

sngl = iSet

distinctFrom c1 c2 = isNullSet (c1 ‘intersect‘ c2)

union = sUnion

forget = id

Singleton Sets:

instance Sngl Set where

sngl = iSet

Sets as splittable.

instance Partition Set where

select = sChoose

pselect = sPChoose

split = sPSplit

https://bitbucket.org/andrewbutterfield/irishvdm
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A.3 List Instances

Lists as Containers

instance Container [] where

mof = elem

chrf = flip elem

nil = []

isNil = null

s1 ‘distinctFrom‘ s2 = (elems s1) ‘distinctFrom‘ (elems s2)

union = (++)

forget = elems

Singleton Lists

instance Sngl [] where

sngl x = [x]

Lists as splittable.

instance Partition [] where

select = lChoose

pselect = lPChoose

split = partition

A.4 Map Instances

Maps do not exactly fit the Container/Partition model, because of the way the
map constructor takes two types, whose roles are asymmetrical.

However we shoehorn maps into these classes in the Haskell implementation to
support overloading of features such a membership (so we can write a ‘mof‘ mp

rather than a ‘mof‘ (dom mp)). In particular, we generally characterise mem-
bership in terms of domain elements, ignoring the range values, and consider
splitting maps by partition entries according to their domains.

We want to define Container and Partition instances parameterised on the
domain type, so we devise a type-constructor Pam that takes the range type
argument first, and then define Map as a flipping of Pam:

newtype Pam r d = MkM [(d,r)]

type Map d r = Pam r d

Maps as Containers, with a domain-centric bias:

instance Container (Pam r) where

d ‘mof‘ m = d ‘mof‘ dom m

chrf = flip mof

nil = nullMap

isNil = isNullMap

distinctFrom = pre_mextend

union = mextend

forget = dom
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We also find that a “singleton” map ({a �→ b}) actually has two components, so
the Sngl class is not adequate. Instead we use the Dbl class.

instance Dbl Pam where

dbl x y = iMap x y

Maps as splittable (lossy—loses range information).

instance Partition (Pam r) where

select m = let (d,_,m’) = mChoose m in (d,m’)

pselect p m = let (d,_,m’) = mPChoose (p . fst) m in (d,m’)

split p = mPSplit (p . fst)
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Abstract. Eden is a parallel functional programming language which
extends Haskell with constructs for the definition and instantiation of par-
allel processes. Processes evaluate function applications remotely in
parallel. The programmer has control over process granularity, data distri-
bution, communication topology, and evaluation site, but need not man-
age synchronisation and data exchange between processes. The latter are
performed by the parallel runtime system through implicit communica-
tion channels, transparent to the programmer. Common and sophisticated
parallel communication patterns and topologies, so-called algorithmic
skeletons, are provided as higher-order functions in a user-extensible
skeleton library written in Eden. Eden is geared toward distributed set-
tings, i.e. processes do not share any data, but can equally well be used
on multicore systems. This tutorial gives an up-to-date introduction
into Eden’s programming methodology based on algorithmic skeletons,
its language constructs, and its layered implementation on top of the
Glasgow Haskell compiler.

1 Introduction

Functional languages are promising candidates for effective parallel program-
ming, because of their high level of abstraction and, in particular, because of
their referential transparency. In principle, any subexpression could be evalu-
ated in parallel. As this implicit parallelism would lead to too much overhead,
modern parallel functional languages allow the programmers to specify paral-
lelism explicitly.

In these lecture notes we present Eden, a parallel functional programming
language which extends Haskell with constructs for the definition and instantia-
tion of parallel processes. The underlying idea of Eden is to enable programmers
to specify process networks in a declarative way. Processes evaluate function
applications in parallel. The function parameters are the process inputs and the
function result is the process output. Thus, a process maps input to output
values. Inputs and outputs are automatically transferred via unidirectional one-
to-one channels between parent and child processes. Programmers need not think
about triggering low-level send and receive actions for data transfer between par-
allel processes. Furthermore, process inputs and outputs are always completely

V. Zsók, Z. Horváth, and R. Plasmeijer (Eds.): CEFP 2011, LNCS 7241, pp. 142–206, 2012.
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evaluated before being sent in order to enable parallelism in the context of a
host language with a demand-driven evaluation strategy. Algorithmic skeletons
which specify common and sophisticated parallel communication patterns and
topologies are provided as higher-order functions in a user-extensible skeleton
library written in Eden. Skeletons provide a very simple access to parallel func-
tional programming. Parallelization of a Haskell program can often simply be
achieved by selecting and instantiating an appropriate skeleton from the skeleton
library. From time to time, adaptation of a skeleton to a special situation or the
development of a new skeleton may be necessary.

Eden is tailored for distributed memory architectures, i.e. processes work within
disjoint address spaces and do not share any data. This simplifies Eden’s imple-
mentation as there is e.g. no need for global garbage collection. There is, how-
ever, a risk of loosing sharing, i.e. it may happen that the same expression is
redundantly evaluated by several parallel processes.

Although the automatic management of communication by the parallel run-
time system has several advantages, it also has some restrictions. This form of
communication is only provided between parent and child processes, but e.g. not
between sibling processes. I.e. only hierarchical communication topologies are
automatically supported. For this reason, Eden also provides a form of explicit
channel management. A receiver process can create a new input channel and pass
its name to another process. The latter can directly send data to the receiver
process using the received channel name. An even easier-to-use way to define
non-hierarchical process networks is the remote data concept where data can be
released by a process to be fetched by a remote process. In this case a handle is
first transferred from the owner to the receiver process (maybe via common pre-
decessor processes). Via this handle the proper data can then directly transferred
from the producer to the receiver process. Moreover, many-to-one communica-
tion can be modeled using a pre-defined (necessarily non-deterministic) merge
function. These non-functional Eden features make the language very expres-
sive. Arbitrary parallel computation schemes like sophisticated master-worker
systems or cyclic communication topologies like rings and tori can be defined in
an elegant way. Eden supports an equational programming style where recursive
process nets can simply be defined using recursive equations. Using the recently
introduced PA (parallel action) monad, it is also possible to adopt a monadic
programming style, in particular, when it is necessary to ensure that series of
parallel activities are executed in a given order.

Eden has been implemented by extending the runtime system of the Glasgow
Haskell compiler [24], a mature and efficient Haskell implementation, for parallel
and distributed execution. The parallel runtime system (PRTS) uses suitable
middleware (currently PVM [52] or MPI [43]) to manage parallel execution.
Recently, a special multicore implementation which needs no middleware has
been implemented [48]. Traces of parallel program executions can be visualised
and analysed using the Eden Trace Viewer EdenTV.
This tutorial gives an up-to-date introduction into Eden’s programming method-
ology based on algorithmic skeletons, its language constructs, and its layered
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implementation on top of the Glasgow Haskell compiler. Throughout the tuto-
rial, exercises are provided which help the readers to test their understanding
of the presented material and to experiment with Eden. A basic knowledge of
programming in Haskell is assumed. The Eden compiler, the skeleton library,
EdenTV, and the program code of the case studies are freely available from the
Eden web pages, see

http://www.mathematik.uni-marburg.de/~eden/

Plan of This Tutorial. The next section provides a quick start to Eden pro-
gramming with algorithmic skeletons. Section 3 introduces the basic constructs
of Eden’s coordination language, i.e. it is shown how parallelism can be expressed
and managed. The next section presents techniques for reducing the communi-
cation costs in parallel programs. Section 5 shows how non-hierarchical com-
munication topologies can be defined. In particular, a ring and a torus skeleton
are presented. Section 6 explains how master-worker systems can be specified.
An introduction to explicit channel management in Section 7 leads to Section 8
which introduces Eden’s layered implementation. Hints at more detailed mate-
rial on Eden are given in Section 9. After a short discussion of related work in
Section 10 conclusions are drawn in Section 11. Appendix A contains a short
presentation of how to compile, run, and analyse Eden programs. In particular,
it presents the Eden trace viewer tool, EdenTV, which can be used to analyse the
behaviour of parallel programs. Appendix B contains the definitions of auxiliary
functions from the Eden Auxiliary library that are used in this tutorial.

The tutorial refers to several case studies and shows example trace visuali-
sations. The corresponding traces have been produced using the Eden system,
version 6.12.3, on the following systems: an Intel 8-core machine (2 × Xeon Quad-
core @2.5GHz, 16 GB RAM) machine and two Beowulf clusters at Heriot-Watt
University in Edinburgh (Beowulf I: 32 Intel P4-SMP nodes @ 3 GHz 512MB
RAM, Fast Ethernet and Beowulf II: 32 nodes, each with two Intel quad-core
processors (Xeon E5504) @ 2GHz, 4MB L3 cache, 12GB RAM, Gigabit Ether-
net).

2 Skeleton-Based Programming in Eden

Before presenting the Eden programming constructs we show how a quick and
effective parallelization of Haskell programs can be achieved using pre-defined
skeletons from the Eden skeleton library. (Algorithmic) skeletons [16] define com-
mon parallel computation patterns. In Eden they are defined as higher-order
functions. In the following we look at two typical problem solving schemes for
which various parallel implementations are provided in the Eden skeleton library:
map-and-reduce and divide-and-conquer.

2.1 Map-and-Reduce

Map-and-reduce is a typical data-parallel evaluation scheme. It consists of a map

and a subsequent reduce.
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Fig. 1. Basic map evaluation scheme

Map, Parallel Map and Farm. The map function applies a function to each
element of a list. In Haskell it can simply be expressed as follows

map :: (a → b) → [a] → [b]

map f [] = []

map f (x:xs) = (f x) : (map f xs)

The map function is inherently parallel because in principle all function appli-
cations (f x) can be evaluated in parallel. It presents a simple form of data
parallelism, because the same function is applied to different data elements (see
Figure 1).

Eden’s skeleton library contains several parallel implementations of map. The
simplest parallel version is parMap where a separate process is created for each
function application, i.e. as many processes as list elements will be created.
The input parameter as well as the result of each process will be transmitted
via communication channels between the generator process and the processes
created by parMap. Therefore parMap’s type is

parMap :: (Trans a, Trans b) ⇒ (a → b) → [a] → [b]

The Eden-specific type context (Trans a, Trans b) indicates that both types a

and b must belong to the Eden Trans type class of transmissible values. Most
predefined types belong to this type class. In Haskell, type classes provide a
structured way to define overloaded functions. Trans provides implicitly used
communication functions.

If the number of list elements is much higher than the number of available
processing elements, this will cause too much process creation overhead. Another
skeleton called farm takes two additional parameter functions

distribute :: [a] → [[a]] and combine :: [[b]] → [b].
It uses the distribute-function to split the input list into sublists, creates a
process for mapping f on each sublist and combines the result lists using the
combine-function. Of course, a proper use of farm to implement another parallel
version of map requires that the following equation is fulfilled1:

map f = combine ◦ (map (map f)) ◦ distribute.

1 The programmer is responsible for guaranteeing this condition.
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Fig. 2. Parallel farm evaluation scheme

Replacing the outer map-application with parMap leads to the definition of the
farm skeleton in Eden:

farm :: (Trans a, Trans b) ⇒
([a] → [[a]]) -- ^ distribute

→ ([[b]] → [b]) -- ^ combine

→ (a → b) → [a] → [b] -- ^ map interface

farm distribute combine f

= combine ◦ (parMap (map f)) ◦ distribute

The farm skeleton creates as many processes as sublists are generated by the
parameter function distribute (see Figure 2, dotted lines indicate processes).
In Eden’s Auxiliary library the following functions for distributing and (re-
)combining lists are defined. For the reader’s convenience we have also put to-
gether the pure Haskell definitions of these functions in Appendix B.

– unshuffle :: Int → [a] → [[a]] distributes the input list in a round robin
manner into as many sublists as the first parameter indicates.

– shuffle :: [[a]] → [a] shuffles the given list of lists into the output list.
It works inversely to unshuffle.

– splitIntoN :: Int → [a] → [[a]] distributes the input list blockwise into
as many sublists as the first parameter determines. The lengths of the output
lists differ by at most one. The inverse function of splitIntoN is the Haskell
prelude function concat :: [[a]] → [a] which simply concatenates all lists
in the given list of lists.



Eden – Parallel Functional Programming with Haskell 147

Eden provides a constant

noPe :: Int

which gives the number of available processing elements. Thus, suitable parallel
implementations of map using farm are e.g.

mapFarmS , mapFarmB :: (Trans a, Trans b) ⇒
(a → b) → [a] → [b]

mapFarmS = farm (unshuffle noPe ) shuffle

mapFarmB = farm (splitIntoN noPe ) concat

Reduce and Parallel Map-Reduce. In many applications, a reduction is
executed after the application of map, i.e. the elements of the result list of map

are combined using a binary function. In Haskell list reduction is defined by
higher-order fold-functions. Depending on whether the parameter function is
right or left associative, Haskell provides folding functions foldr and foldl. For
simplicity, we consider in the following only foldr:

foldr :: (a → b → b) → b → [a] → b

foldr g e [] = e

foldr g e (x:xs) = g x (foldr g e xs)

Accordingly, the following composition of map and foldr in Haskell defines a
simple map-reduce scheme:

mapRedr :: (b → c → c) → c → (a → b) → [a] → c

mapRedr g e f = (foldr g e) ◦ (map f)

This function could simply be implemented in parallel by replacing map with
e.g. mapFarmB, but then the reduction will completely and sequentially be per-
formed in the parent process. If the parameter function g is associative with type
b → b → b and neutral element e, the reduction could also be performed in par-
allel by pre-reducing the sublists within the farm processes. Afterwards only the
subresults from the processes have to be combined by the main process (see Fig-
ure 3). The code of this parallel map-reduce scheme is a slight variation of the
above definition of the farm-skeleton where the distribution and combination of
values is fixed and mapRedr is used instead of map as argument of parMap:

parMapRedr :: (Trans a, Trans b) ⇒
(b → b → b) → b → (a → b) → [a] → b

parMapRedr g e f

= if noPe == 1 then mapRedr g e f xs else

(foldr g e) ◦ (parMap (mapRed g e f)) ◦ (splitIntoN noPe )

Note that parallel processes are only created if the number of available proces-
sor elements is at least 2. On a single processor element the sequential scheme
mapRedr is executed.

With this skeleton the input lists of the processes are evaluated by the par-
ent process and then communicated via automatically created communication
channels between the parent process and the parMap processes. In Eden, lists
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Fig. 3. Parallel map-reduce evaluation scheme

are transmitted as streams which means that each element is sent in a separate
message. Sometimes this causes a severe overhead, especially for very long lists.
The following variant offline_parMapRedr avoids the stream communication of
the input lists at all. Only a process identification number is communicated and
used to select the appropriate part of the input list. The whole (unevaluated)
list is incorporated in the worker function which is mapped on the identification
numbers. As each process evaluates now the (splitIntoN noPe) application, this
may cause some redundancy in the input evaluation but it substantially reduces
communication overhead. In Subsection 4.2, we discuss this technique in more
detail.

offline_parMapRedr :: (Trans a, Trans b) ⇒
(b → b → b) → b → (a → b) → [a] → b

offline_parMapRedr g e f xs

= if noPe == 1 then mapRedr g e f xs else

foldr g e (parMap worker [0.. noPe -1])

where worker i = mapRed g e f (( splitIntoN noPe xs)!!i)

Example: The number π can be calculated by approximating the integral

π =
∫ 1

0

f(x) dx where f(x) =
4

1 + x2

in the following way:

π = lim
n→∞ pi(n) with pi(n) =

1
n

n∑
i=1

f

(
i − 0.5

n

)
.
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module Main where

import System

import Control.Parallel.Eden

import Control.Parallel.Eden.EdenSkel.MapRedSkels

main :: IO ()

main = getArgs >>= \ (n:_) →
print (cpi (read n))

-- compute pi using integration

cpi :: Integer → Double

cpi n = offline_parMapRedr (+) 0 (f ◦ index) [1..n] /
fromInteger n

where

f :: Double → Double

f x = 4 / (1 + x∗x)
index :: Integer → Double

index i = (fromInteger i - 0.5) / fromInteger n

Fig. 4. Eden program for parallel calculation of π

The function pi can simply be expressed in Haskell using our mapRedr function:

cpi :: Integer → Double

cpi n = mapRedr (+) 0 (f ◦ index) [1..n] / fromInteger n

where

f :: Double → Double

f x = 4 / (1 + x∗x)
index :: Integer → Double

index i = (fromInteger i - 0.5) / fromInteger n

The Haskell prelude function fromInteger converts integer numbers into double-
precision floating point numbers.

A parallel version is obtained by replacing mapRed with offline_parMapRedr.
The complete parallel program is shown in Figure 4. It is important that each
Eden program imports the Eden module Control.Parallel.Eden. In addition,
the program imports the part of the Eden skeleton library which provides par-
allel map-reduce skeletons. How to compile, run and analyse Eden programs is
explained in detail in the appendix of this tutorial. Figure 5 shows on the left
the visualisation of a trace file by EdenTV and on the right some statistical data
of this program run also provided by EdenTV. The trace has been produced for
the input 1000000 with the parallel MPI-based runtime system on the Beowulf
II. When using MPI the start-up time of the parallel runtime system is incor-
porated in the trace. The start-up time depends on the number of processor
elements which are started. In the program run underlying the trace in Figure 5
the start-up took 1.14 seconds. Thus, it dominates the overall runtime which
has been 1.62 seconds. The actual parallel runtime of the program has been 0.48
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input size 1000000
total runtime 1.62s
start up time 1.14s
parallel runtime 0.48s
sequential runtime 3.74s
speedup 7.79 8 machines
9 processes
17 threads
29 messages

Fig. 5. Pi trace on 8 PEs, parallel map-reduce with 8 processes

seconds. The sequential program takes 3.74 seconds with the same input on the
same machine. The fraction

sequential runtime
parallel runtime

is called the speed-up of the parallel evaluation. The speed-up is usually bounded
by the number of processor elements. In this example the speed-up has been 7.79
which is very good on 8 PEs.

The trace visualisation on the left shows the parallel program behaviour. It
consists of 9 horizontal bars, the timelines for the 9 processes that have been
executed. On the x-axis the time is shown in seconds. On the y-axis the process
numbers are given in the form P i:j where i is the number of the processor
element or machine, on which the process is executed and j is the local number
of the process per machine. Note that the timelines have been moved to the left
to omit the start-up time, i.e. the x-axis starts at 1.14 seconds.

The colours of the bars indicate the status of the corresponding process. Green
(in grayscale: grey) means that the process is running. Yellow (light grey) shows
that a process is runnable but not running which might be due to a garbage
collection or another process running on the same PE. Red (dark grey) indicates
that a process is blocked, i.e. waiting for input. Messages are shown as black
lines from the sender to the receiver process where the receiver is marked by a
dot at the end of the line. The program starts 9 processes. Process P 1:1, i.e.
Process 1 on PE 1 executes the main program. The offline_parMapRedr skeleton
starts noPe = 8 processes which are placed by default in a round-robin manner
on the available PEs, starting with PE 2. Thus, the last process has also been
allocated on PE 1 and is numbered P 1:2.
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The trace picture shows that the child processes are always running (green)
while the main process is blocked (red) most of the time waiting for the results
of the child processes. 17 threads have been generated: one thread runs in the
9 processes each to compute the process output. In addition, 8 (short-living)
threads have been started in the main process to evaluate and send the input
(identification numbers) to the 8 child processes. In total 29 messages have been
sent: In the beginning, 8 process creation messages and 7 acknowledgement mes-
sages are exchanged. Messages between P 1:2 and P 1:1 are not counted because
they are not really sent, as both processes are executed on the same PE. More-
over, the main process P 1:1 sends 7 input messages to the 7 remote processes.
When the remote child processes terminate, they send their result back to the
main process. Finally the main process computes the sum of the received values,
divides this by the original input value and prints the result. �

Exercise 1: The following Haskell function summePhi sums Euler’s totient or φ
function which counts for parameter value n the number of positive integers
less than n that are relatively prime to n:

summePhi :: Int → Int

summePhi n = sum (map phi [1..n])

phi :: Int → Int

phi n = length (filter (relprime n) [1..(n-1)])

relprime :: Int → Int → Bool

relprime x y = gcd x y == 1

sum and gcd are Haskell prelude function, i.e. predefined Haskell function.
sum sums all elements of a list of numbers. It is defined as an instance of the
folding function foldl’, a strict variant of foldl:

sum :: Num a ⇒ [a] → a

sum = foldl ’ (+) 0

gcd computes the greated common divisor of two integers.
1. Define summePhi as instance of a map-reduce scheme.
2. Parallelise the program using an appropriate map-reduce skeleton of the

Eden skeleton library.
3. Run your parallel program on i machines, where i ∈ {1, 2, 4, ...} (runtime

option -Ni) and use the Eden trace viewer to analyse the parallel program
behaviour.

2.2 Divide-and-Conquer

Another common computation scheme is divide-and-conquer. Eden’s skeleton
library provides several skeletons for the parallelisation of divide-and-conquer
algorithms. The skeletons are parallel variants of the following polymorphic
higher-order divide-and-conquer function dc which implements the basic scheme:
If a problem is trivial, it is solved directly. Otherwise, the problem is divided or
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Fig. 6. Divide-and-conquer call tree with default process placement

(splitted) into two or more subproblems, for which the same scheme is applied.
The final solution is computed by combining the solutions of the subproblems.

type DivideConquer a b

= (a → Bool) → (a → b) -- ^ trivial? / solve

→ (a → [a]) → (a → [b] → b) -- ^ split / combine

→ a → b -- ^ input / result

dc :: DivideConquer a b

dc trivial solve split combine = rec_dc

where

rec_dc x = if trivial x then solve x

else combine x (map rec_dc (split x))

The easiest way to parallelise this dc scheme in Eden is to replace map with
parMap. An additional integer parameter lv can be used to stop the parallel
unfolding at a given level and to use the sequential version afterwards:

parDC :: (Trans a, Trans b) ⇒
Int → -- depth

DivideConquer a b

parDC lv trivial solve split combine

= pdc lv

where

pdc lv x

| lv == 0 = dc trivial solve split combine

| lv > 0 = if trivial x then solve x

else combine x (parMap (pdc (lv -1)) (split x))

In this approach a dynamic tree of processes is created with each process con-
nected to its parent. With the default round robin placement of child processes,
the processes are however not evenly distributed on the available processing el-
ements (PEs). Note that each PE i places new locally created child processes in
a round-robin manner on the PEs (i mod noPe)+1, ((i+1) mod noPe)+1 etc.

Example: If 8 PEs are available and if we consider a regular divide-and-conquer
tree with branching degree 2 and three recursive unfoldings, then 14 child pro-
cesses will be created and may be allocated on PEs 2 to 8 as indicated by the
tree in Figure 6. The main process on PE 1 places its two child processes on
PEs 2 and 3. The child process on PE2 creates new processes on PEs 3 and
4, the one on PE 3 accordingly on PEs 4 and 5. The second process on PE 3
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allocates its children on PE 6 and 7, where we assume that the two processes on
PE 3 create their child processes one after the other and not in an interleaved
way. In total, PEs 3, 4 and 5 would get two processes each, three processes would
be allocated on PEs 6 and 7, while only one process would be placed on PE 8.
Thus, the default process placement leads to an unbalanced process distribution
on the available PEs. �

The Eden skeleton library provides more elaborated parallel divide-and-conquer
implementations. In the following example, we use the disDC skeleton. In Sub-
section 3.3 we show the implementation of this skeleton in Eden. The disDC

skeleton implements a so-called distributed expansion scheme. This works in a
similar way like the above parallelization with parMap except for the following
differences:

1. The skeleton assumes a fixed-degree splitting scheme, i.e. the split function
always divides a problem into the same number of subproblems. This num-
ber, called the branching degree, is the first parameter of the disDC skeleton.

2. The creation of processes and their allocation is controlled via a list of PE
numbers, called ticket list. This list is the second parameter of the skeleton.
It determines on which PEs newly created processes are allocated und thus
indirectly how many processes will be created. When no more tickets are
available, all further evaluations take place sequentially. This makes the use
of a level parameter to control parallel unfolding superfluous. Moreover, it
allows to balance the process load on PEs. The ticket list [2..noPe] leads
e.g. to the allocation of exactly one process on each PE. The main process
starts on PE1 and noPe-1 processes are created on the other available PEs.
If you want to create as many processes as possible in a round-robin manner
on the available PEs, you should use the ticket list cycle ([2..noPe]++[1]).
The Haskell prelude function cycle :: [a] → [a] defines a circular infinite
list by repeating its input list infinitely.

3. Each process keeps the first subproblem for local evaluation and and creates
child processes only for the other subproblems.

Example: A typical divide-and-conquer algorithm is mergesort which can be
implemented in Haskell as follows:

mergeSort :: Ord a ⇒ [a] → [a]

mergeSort [] = []

mergeSort [x] = [x]

mergeSort xs = sortMerge (mergeSort xs1) (mergeSort xs2)

where [xs1 ,xs2] = splitIntoN 2 xs

The function mergeSort transforms an input list into a sorted output list by sub-
sequently merging sorted sublists with increasing length. Lists with at least two
elements are split into into their first half and their second half using the auxiliary
function splitIntoN from Eden’s Auxiliary library (see also Appendix B). The
sublists are sorted by recursive instantiations of mergeSort processes. The sorted
sublists are coalesced into a sorted result list using the function sortMerge which
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is an ordinary Haskell function. The context Ord a ensures that an ordering is
defined on type a.

sortMerge :: Ord a ⇒ [a] → [a] → [a]

sortMerge [] ylist = ylist

sortMerge xlist [] = xlist

sortMerge xlist@(x:xs) ylist@(y:ys)

| x ≤ y = x : sortMerge xs ylist

| x > y = y : sortMerge xlist ys

In order to derive a simple skeleton-based parallelization one first has to define
mergeSort as an instance of the dc scheme, i.e. one has to extract the parameter
functions of the dc scheme from the recursive definition:

mergeSortDC :: Ord a ⇒ [a] → [a]

mergeSortDC = dc trivial solve split combine

where

trivial :: [a] → Bool

trivial xs = null xs | | null (tail xs)

solve :: [a] → [a]

solve = id

split :: [a] → [[a]]

split = splitIntoN 2

combine :: [a] → [[b]] → [b]

combine _ (xs1:xs2:_) = sortMerge xs1 xs2

A parallel implementation of mergeSort is now achieved by replacing dc in the
above code with disDC 2 [2..noPe]. Figure 7 shows the visualisation of a trace
produced by a slightly tuned version of this parallel program for an input list with
1 million integer numbers. The tuning concerns the communication of inputs and
outputs of processes. We will discuss the modifications in Subsection 4.3 after
the applied techniques have been introduced.

The trace picture shows that all processes have been busy, i.e. in mode running
(green / grey), during all of their life time. Processes are numbered P i:1 where
i is the number of the PE on which the process is evaluated and the 1 is the local
process number on each PE. As exactly one process has been allocated on each
PE, each process has the local process number 1. The whole evaluation starts
with the main process on PE 1 whose activity profile is shown by the lowest bar.
The recursive calls are evaluated on the PEs shown in the call tree on the left
in Figure 8. With ticket list [2..noPe] seven child processes will be created. The
main process is allocated on PE 1 and executes the skeleton call. It splits the
input list into two halves, keeps the first half for local evaluation and creates
a child process on PE 2 for sorting the second half. The remaining ticket list
[3..noPe] is unshuffled into the two lists [3,5,7] and [4,6,8]. The first sublist
is kept locally while the child process gets the second one. The main process
and the child process on PE 2 proceed in parallel creating further subprocesses
on PE 3 and PE 4, respectively, and unshuffling their remaining ticket lists into
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input size 1000000
runtime 3 s
8 machines
8 processes
22 threads
32 conversations
258 messages

Fig. 7. Parallel mergeSort trace on 8 PEs, disDC skeleton
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Fig. 8. Call tree (left) and process generation tree (right) of parallel mergesort

execution

two sublists etc. The process generation tree on the right hand side in Figure 8
shows which process creates which other processes. As there is a one-to-one
correspondence between processes and PEs processes are simply marked with
the PE number.

In Figure 7 single messages are shown as black lines with a big dot at the
receiver side while the communication of streams is shown as a shaded area. A
stream communication consists of a series of messages. Only the last message of a
stream is shown as a black line. The other messages are only indicated by a very
short black line on the receiver side. In the statistics, messages and conversations
are counted. A stream communication is counted as a single conversation and as
many messages as have been needed to communicate the stream. Thus in this
example, we have only 32 conversations but 258 messages.

After about half of their runtime the upper half of processes (i.e. the leaf
processes of the process generation tree in Figure 8) start to return their results
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in streams to their generator processes which merge the received lists with their
own results using sortMerge. The whole merge phase occurs level-wise. Each
process performs as many merge phases as its number of direct child processes.
This can clearly be observed when relating the process generation tree and the
message flow in the trace picture. Moreover, the trace clearly shows that after
half of the overall runtime, the upper half of the processes finish already. In total,
the PEs are badly utilised. This is the reason for the rather poor speedup which
is only about 3 with 8 PEs, the runtime of the original sequential mergeSort with
input size 1000000 being 9 sec in the same setting. �

Exercise 2: 1. Implement the following alternative parallelisation of the func-
tion mergeSort: Decompose the input list into as many sublists as pro-
cessor elements are available. Create for each sublist a parallel process
which sorts the sublist using the original mergeSort function. Merge the
sorted sublists. Which skeleton(s) can be used for this parallelisation?

2. Run your parallel program on different numbers of processor elements,
analyse the runtime behaviour using EdenTV, and compare your re-
sults with those achieved with the parallel divide-and-conquer version
described before.

2.3 Eden’s Skeleton Library

The functions parMap, farm, mapFarmS, mapFarmB, parMapRedr, and parDC defined
above are simple examples for skeleton definitions in Eden. As we have seen,
there may be many different parallel implementations of a single computation
scheme. Implementations may differ in the process topology created, in the gran-
ularity of tasks, in the load balancing strategy, or in the communication policy.
It is possible to predict the efficiency of skeleton instantiations by providing a
cost model for skeleton implementations [38]. This aspect will however not be
considered in this tutorial.

While many skeleton systems provide pre-defined, specially supported sets of
skeletons, the application programmer has usually not the possibility of creating
new ones. In Eden, skeletons can be used, modified and newly implemented,
because (like in other parallel functional languages) skeletons are no more than
polymorphic higher-order functions which can be applied with different types
and parameters. Thus, programming with skeletons in Eden follows the same
principle as programming with higher-order functions. Moreover, describing both
the functional specification and the parallel implementation of a skeleton in
the same language context constitutes a good basis for formal reasoning and
correctness proofs, and provides greater flexibility.

In a way similar to the rich set of higher-order functions provided in Haskell’s
prelude and libraries, Eden provides a well assorted skeleton library

Control.Parallel.Eden.EdenSkel:

– Control.Parallel.Eden.EdenSkel.Auxiliary provides useful auxiliary func-
tions like unshuffle and shuffle (see also Appendix B).
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– Control.Parallel.Eden.EdenSkel.DCSkels comprises various divide and con-
quer skeletons like parDC or disDC.

– Control.Parallel.Eden.EdenSkel.MapSkels provides parallel map-like skele-
tons like parMap, farm or offline_farm.

– Control.Parallel.Eden.EdenSkel.MapRedSkels supplies parallel implementa-
tions of the map-reduce scheme like parMapRedr or a parallel implementation
of Google map-reduce [6].

– Control.Parallel.Eden.EdenSkel.TopoSkels collects topology skeletons like
pipelines or rings.

– Control.Parallel.Eden.EdenSkel.WPSkels puts together workpool skeletons
like the master worker skeleton defined in Section 6.2.

3 Eden’s Basic Constructs

Although many applications can be parallelised using pre-defined skeletons, it
may be necessary to adjust skeletons to special cases or to define new skeletons.
In these cases it is important to know the basic Eden coordination constructs
for

– for defining and creating processes
– for generating non-hierarchical process topologies
– for modeling many-to-one communication.

Eden’s basic constructs are defined in the Eden module Control.Parallel.Eden

which must be imported by each Eden program.

3.1 Defining and Creating Processes

The central coordination constructs for the definition of processes are process
abstractions and instantiations :

process :: (Trans a, Trans b) ⇒ (a → b) → Process a b

( # ) :: (Trans a, Trans b) ⇒ Process a b → a → b

The purpose of function process is to convert functions of type a → b into pro-
cess abstractions of type Process a b where the type context (Trans a, Trans b)

indicates that both types a and b must belong to the Trans class of transmissible
values. Process abstractions are instantiated by using the infix operator ( # ).
An expression (process funct) # arg leads to the creation of a remote process
for evaluating the application of the function funct to the argument arg. The
argument expression arg will be evaluated concurrently by a new thread in the
parent process and will then be sent to the new child process. The child pro-
cess will evaluate the function application funct arg in a demand driven way,
using the standard lazy evaluation scheme of Haskell. If the argument value is
necessary to complete its evaluation, the child process will suspend, until the
parent thread has sent it. The child process sends back the result of the function
application to its parent process. Communication is performed through implicit
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parent process

child process

creates

result of arg

result of
funct $ arg

Fig. 9. Process topology after evaluating (process funct) # arg

1:1 channels that are established between child and parent process on process
instantiation (see Figure 9). Process synchronisation is achieved by exchanging
data through the communication channels, as these have non-blocking sending,
but blocking reception. In order to increase the parallelism degree and to speed
up the distribution of the computation, process in- and outputs will be evaluated
to normal form before being sent (except for expressions with a function type,
which are evaluated to weak head normal form). This implements a pushing
approach for communication instead of a pulling approach where remote data
would have to be requested explicitly.

Because of the normal form evaluation of communicated data, the type class
Trans is a subclass of the class NFData (Normal Form Data) which provides a
function rnf to force the normal form evaluation of data. Trans provides com-
munication functions overloaded for lists, which are transmitted as streams,
element by element, and for tuples, which are evaluated component-wise by
concurrent threads in the same process. An Eden process can thus comprise a
number of threads, which may vary during its lifetime. The type class Trans will
be explained in more detail in Section 8. A channel is closed when the output
value has been completely transmitted to the receiver. An Eden process will end
its execution as soon as all its output channels are closed or are detected to be
unnecessary (during garbage collection). Termination of a process implies the
immediate closure of its input channels, i.e., the closure of the output channels
in the corresponding producer processes, thus leading to a termination cascade
through the process network.

The coordination functions process and ( # ) are usually used in combination
as in the definition of the following operator for parallel function application:

( $# ) :: (Trans a, Trans b) ⇒ (a → b) → a → b

f $# x = process f # x -- ( $# ) = ( # ) ◦ process

The operator ($#) induces that the input parameter x, as well as the result value,
will be transmitted via channels. The types a and b must therefore belong to the
class Trans.

In fact, this simple operator would be enough for extending Haskell with par-
allelism. The distinction of process abstraction and process instantiation may
however be useful from a didactic point of view. A process abstraction de-
fines process creation on the side of the child process while a process instan-
tiation defines it on the side of the parent process. This is also reflected by the
implementation of these constructs, shown in Section 8.
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input size 1000
par. time 0.95s
seq. time 0,004s
8 machines
1999 processes
31940 messages

Fig. 10. Trace visualisation of simple parallel mergesort, machines view

It is tempting to parallelise functional programs simply by using this parallel
application operator at suitable places in programs. Unfortunately, in most cases
this easy approach does not work. The reasons are manyfold as shown in the
following simple example.

Example: In principle, a simple parallelisation of mergeSort could be achieved by
using the parallel application operator ($#) in the recursive calls of the original
definition of mergeSort (see above):

mergeSort xs = sortMerge (mergeSort $# xs1)

(mergeSort $# xs2)

where [xs1 ,xs2] = unshuffle 2 xs

In this definition, two processes are created for each recursive call as long as
the input list has at least two elements. In Figure 10 the activity profile of the
8 processor elements (machines view of EdenTV, see Appendix B) is shown
for the execution of this simple parallel mergesort for an input list of length
1000. The processor elements are either idle (small blue bar), i.e. they have no
processes to evaluate, busy with system activity (yellow/light grey bar), i.e. there
are runnable processes but no process is being executed or blocked (red/dark
grey bar), i.e. all processes are waiting for input. The statistics show that 1999
processes have been created and that 31940 messages have been sent. The parallel
runtime is 0.95 seconds, while the sequential runtime is only 0.004 seconds, i.e.
the parallel program is much slower than the original sequential program. This is
due to the excessive creation of processes and the enourmous number of messages
that has been exchanged. Moreover, this simple approach has a demand problem,
as the processes are only created when their result is already necessary for the
overall evaluation. In the following sections, we will present techniques to cope
with these problems. �

Eden processes exchange data via unidirectional one-to-one communication chan-
nels. The type class Trans provides implicitly used functions for this purpose. As
laziness enables infinite data structures and the handling of partially available
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data, communication streams are modeled as lazy lists, and circular topologies
of processes can be created and connected by such streams.

Example: The sequence of all multiples of two arbitrary integer values n and m

〈nimj | i, j ≥ 0〉
can easily be computed using the following cyclic process network:

multiples n m �
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This network can be expressed in Eden as follows:

multiples :: Integer → Integer → [Integer]

multiples n m = ms

where ms = 1: sm (map (∗n) $# ms) (map (∗m) $# ms)

The ordinary Haskell function sm works in a similar way as the sortMerge function
used in the mergesort example but it eliminates duplicates when merging its
sorted input lists:

sm :: [Int] → [Int] → [Int]

sm [ ] ys = ys

sm xs [ ] = xs

sm xl@(x:xs) yl@(y:ys)

| x < y = x : sm xs yl

| x == y = x : sm xs ys

| otherwise = y : sm xl ys

In this example two child processes will be created corresponding to the two
applications of ($#). Each of these processes receives the stream of multiples
from the parent process, multiplies each element with n or m, respectively, and
sends each result back to the parent process. The parent process will evaluate the
application of sm to the two result streams received from the two child processes.
It uses two concurrent threads to supply the child processes with their input.
Streaming is essential in this example to avoid a deadlock. The parallelism is
rather fine-grained with a low ratio of computation versus communication. Thus,
speedups cannot be expected when this program is executed on two processors.

�

Exercise 3: Define a cyclic process network to compute the sorted sequence
of Hamming numbers 〈2i3j5k | i, j, k ≥ 0〉. Implement the network in Eden
and analyse its behaviour with EdenTV.
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3.2 Coping with Laziness

The laziness of Haskell has many advantages when considering recursive process
networks and stream-based communication as shown above. Even though, it is
also an obstacle to parallelism, because pure demand-driven (lazy) evaluation
will activate a parallel evaluation only when its result is already needed to con-
tinue the overall computation, i.e. the main evaluation will immediately wait
for the result of a parallel subcomputation. Thus, sometimes it is necessary to
produce additional demand in order to unfold certain process systems. Other-
wise, the programmer may experience distributed sequentialism. This situation
is illustrated by the following attempt to define parMap using Eden’s parallel
application operator ($#):

Example: Simply replacing the applications of the parameter function in the map

definition with parallel applications leads to the following definition:

parMap_distrSeq :: (Trans a, Trans b) ⇒
(a → b) → [a] → [b]

parMap_distrSeq f [] = []

parMap_distrSeq f (x:xs) = (f $# x) : parMap_distrSeq f xs

The problem with this definition is that for instance the expression
sum (parMap_distrSeq square [1..10])

will create 10 processes, but only one after the other as demanded by the sum

function which sums up the elements of a list of numbers. Consequently, the com-
putation will not speed up due to “parallel” evaluation, but slow down because
of the process creation overhead added to the distributed, but sequential eval-
uation. Figure 11 shows the trace of the program for the parallel computation
of π in which parMap has been replaced with parMap_distrSeq in the definition
of the skeleton offline_parMapRedr. The input parameter has been 1000000 as
in Figure 5. The distributed sequentialism is clearly revealed. The next process
is always only created after the previous one has terminated. Note that the 8th
process is allocated on PE 1. Its activity bar is the second one from the bottom.

�

To avoid this problem the (predefined) Eden function spawn can be used to ea-
gerly and immediately instantiate a complete list of process abstractions with
their corresponding inputs. Neglecting demand control, spawn can be denotation-
ally specified as follows:

spawn :: (Trans a, Trans b) ⇒ [Process a b] → [a] → [b]

spawn = zipWith ( # ) -- definition without demand control

The actual definition is shown in Section 8. The variant spawnAt additionally
locates the created processes on given processor elements (identified by their
number).

spawnAt :: (Trans a, Trans b) ⇒
[Int] → [Process a b] → [a] → [b]
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Fig. 11. Trace visualisation of pi program with parMap_distrSeq

In fact, spawn is defined as spawnAt [0]. The parameter [0] leads to the default
round-robin process placement.

The counter part spawnF with a purely functional interface can be defined as
follows:

spawnF :: (Trans a, Trans b) ⇒ (a → b) → [a] → [b]

spawnF = spawn ◦ (map process )

The actual definition of parMap uses spawn:

parMap :: (Trans a, Trans b) ⇒ (a→ b) → [a] → [b]

parMap f = spawn (repeat (process f))

The Haskell prelude function repeat :: a → [a] yields an infinite list by re-
peating its parameter.

Although spawn helps to eagerly create a series of processes, it may some-
times be necessary to add even more additional demand to support parallelism.
For that purpose one can use the evaluation strategies provided by the library
Control.Parallel.Strategies [41]. The next subsection and Section 5.2 contain
examples.

3.3 Implementing the Divide-and-Conquer Skeleton disDC

The skeleton disDC which we have used in Section 2 to parallelise the mergeSort

algorithm implements a distributed expansion scheme, i.e. the process tree ex-
pands in a distributed fashion: One of the tree branches is processed locally, while
the others are instantiated as new processes, as long as processor elements (PEs)
are available. These branches will recursively produce new parallel subtasks.
Figure 12 shows the binary tree of task nodes produced by a divide-and-conquer
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Fig. 12. Distributed expansion divide and conquer skeleton for a binary task tree

strategy splitting each non-trivial task into two subtasks, in a context with 8
PEs. The boxes indicate which task nodes will be evaluated by each PE. This
tree corresponds with the call tree of the parallel mergeSort execution shown in
Figure 8.

For the distributed expansion scheme explicit placement of processes is essen-
tial to avoid that too many processes are placed on the same PE while leaving
others unused. Therefore spawnAt is used for process creation in the Eden imple-
mentation of the disDC skeleton shown in Figure 13.

Two additional parameters are used: the branching degree k and a tickets list
with PE numbers to place newly created processes. As explained above, the left-
most branch of the task tree is solved locally (myIn), other branches (theirIn)
are instantiated using the Eden function spawnAt.

The ticket list is used to control the placement of newly created processes:
First, the PE numbers for placing the immediate child processes are taken from
the ticket list; then, the remaining tickets are distributed to the children in a
round-robin manner using the unshuffle function. Computations corresponding
to children will be performed locally (localIns) when no more tickets are avail-
able. The explicit process placement via ticket lists is a simple and flexible way
to control the distribution of processes as well as the recursive unfolding of the
task tree. If too few tickets are available, computations are performed locally.
Duplicate tickets can be used to allocate several child processes on the same PE.

The parallel creation of processes is explicitly supported using the explicit
demand control function

childRes ‘pseq‘ rdeepseq myRes ‘pseq‘

The function pseq :: a → b → b evaluates its first argument to weak head nor-
mal form before returning its second argument. Note that ‘pseq‘ denotes the
infix variant of this function. The strategy function rdeepseq forces the complete
evaluation of its argument (to normal form) [41]. Both functions are originally
provided in the library Control.Deepseq but re-exported from the Eden mod-
ule. The above construct has the effect that first the child processes are created
because the expression childRes is an application of spawnAt. As soon as all pro-
cesses have been created, the strategy rdeepseq forces the evaluation of myRes,
i.e. the recursive unfolding and generation of further processes. Using pseq the
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disDC :: (Trans a, Trans b) ⇒
Int → [Int] → -- ^ branch degree / tickets

DivideConquer a b

disDC k tickets trivial solve split combine x

= if null tickets then seqDC x

else recDC tickets x

where

seqDC = dc trivial solve split combine

recDC tickets x =
if trivial x then solve x

else childRes ‘pseq ‘ -- explicit demand

rdeepseq myRes ‘pseq ‘ -- control

combine x ( myRes:childRes ++ localRess )

where

-- child process generation

childRes = spawnAt childTickets childProcs procIns

childProcs = map (process ◦ recDC) theirTs

-- ticket distribution

(childTickets , restTickets ) = splitAt (k-1) tickets

(myTs: theirTs) = unshuffle k restTickets

-- input splitting

(myIn:theirIn) = split x

(procIns , localIns )

= splitAt (length childTickets ) theirIn

-- local computations

myRes = recDC myTs myIn

localRess = map seqDC localIns

Fig. 13. Definition of distributed-expansion divide-and-conquer skeleton

evaluation order of subexpressions is explicitly determined. Only then, the stan-
dard Haskell evaluation strategy is used to evaluate the overall result expression
combine x ( myRes:childRes ++ localRess ).

4 Controlling Communication Costs

In many cases, it is not sufficient to simply instantiate a skeleton like parMap,
parMapRedr, farm or disDC to parallelise a program. Often it is necessary to ap-
ply some techniques to reduce the communication costs of parallel programs,
especially, when big data structures have to be transmitted between processes.
In the following subsections, we explain two such techniques. We use a simple
case study, raytracer, to show the effectiveness of these techniques. Details on
the case study, especially the complete programs, can be found on the Eden web
pages.

4.1 Reducing Communication Costs: Chunking

The default stream communication in Eden produces a single message for each
stream element. This may lead to high communication costs and severely delimit
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2D image 3D scene

Fig. 14. Raytracing

the performance of the parallel program, as we have already mentioned in the
examples discussed in Section 2.

Case Study (Raytracer): Ray tracing is a technique in computer graphics for
generating a two-dimensional image from a scene consisting of three-dimensional
objects. As the name indicates rays are traced through pixels of the image plane
calculating their impacts when they encounter the objects (see Figure 14). The
following central part of a simple raytracer program can easily be parallelised
using the farm skeleton.

raytrace :: [Object] → CameraPos → [Impact]

rayTrace scene viewpoint

= map impact rays

where rays = generateRays viewPoint

impact ray = fold earlier (map (hit ray) scene)

By replacing the outer map with mapFarmS (defined in Section 2, see page 147)
we achieve a parallel ray tracer which creates as many processes as processing
elements are available. Each process computes the impacts of a couple of rays.
The rays will be computed by the parent process and communicated to the
remote processes. Each process receives the scene via its process abstraction.
If the scene has not been evaluated before process creation, each process will
evaluate it.

Figure 15 shows the trace visualisation (processes’ activity over time) and
some statistics produced by our trace viewer EdenTV (see Section A.3). The
trace has been generated by a program run of the raytracer program with input
size 250, i.e. 2502 rays on an Intel 8-core machine (2 × Xeon Quadcore @2.5GHz,
16 GB RAM) machine using the PVM-based runtime system. As PVM works
with a demon which must be started before any program execution the startup
time of the parallel program is neglectable. The result is disappointing, because
most processes are almost always blocked (red/dark grey) and show only short
periods of activity (green/grey). 9 processes (the main process and 8 farm pro-
cesses) and 17 threads (one thread per farm process and 9 threads in the main
process, i.e. the main thread and 8 threads which evaluate and send the input
for the farm processes) have been created. Two processes have been allocated
on machine 1 (see the two bottom bars with process numbers P 1:1 and P 1:2) .
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input size 250
runtime 6.311s
8 machines
9 processes
17 threads
48 conversations
125 048 messages

Fig. 15. Raytracer trace on 8 PEs, farm with 8 processes

Alarming is the enormous number of 125048 messages that has been exchanged
between the processes. When messages are added to the trace visualisation, the
graphic becomes almost black. It is obvious that the extreme number of mes-
sages is one of the reasons for the bad behaviour of the program. Most messages
are stream messages. A stream is counted as a single conversation. The number
of conversations, i.e. communications over a single channel, is 48 and thus much
less than the number of messages. �

In such cases it is advantageous to communicate a stream in larger segments.
Note that this so-called chunking is not always advisable. In the simple cyclic
network shown before it is e.g. important that elements are transferred one-by-
one — at least at the beginning — because the output of the network depends
on the previously produced elements. If there is no such dependency, the de-
composition of a stream into chunks reduces the number of messages to be sent
and in turn the communication overhead. The following definition shows how
chunking can be defined for parallel map skeletons like parMap and farm. It can
equally well be used in other skeletons like e.g. disDC as shown in Subsection 4.3.
The auxiliary function chunk decomposes a list into chunks of the size deter-
mined by its first parameter. See Appendix B for its definition which can be im-
ported from the Auxiliary library. The function chunkMap applies chunk on the
input list, applies a map skeleton mapscheme with parameter function (map f)

and finally concatenates the result chunks using the Haskell prelude function
concat :: [[a]] → [a].

chunkMap :: Int

→ (([a] → [b]) → ([[a]] → [[b]]))

→ (a → b) → [a] → [b]

chunkMap size mapscheme f xs

= concat (mapscheme (map f) (chunk size xs))
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input size 250
chunk size 250
runtime 0.235s
8 machines
9 processes
17 threads
48 conversations
548 messages

Fig. 16. Raytracer trace on 8 PEs, farm with 8 processes and chunking

Case Study (Raytracer continued): In our raytracer case study, we replace the
mapFarmS skeleton with chunkMap chunksize mapFarmS where chunksize is an extra
parameter of the program. Chunking substantially reduces communication costs,
as the number of messages drops drastically when chunking is used. With input
size 250, which means that 2502 stream elements have to be sent to the farm
processes and to be returned to the main process, and chunk size 250 the number
of messages drops from 125048(= 125000 + 48) downto 548(= 500 + 48). This
leads to much better results (see Figure 16). It becomes clear that processes
are more active, but still are blocked a lot of time waiting for input from the
main process. Only the main process (see bottom bar) is busy most of the time
sending input to the farm processes. The number of messages has drastically
been reduced, thereby improving the communication overhead and consequently
the runtime a lot. A speedup of 26,86 in comparison to the previous version
could be achieved. Nevertheless, the program behaviour can still be improved.

�
Exercise 4: Give an alternative definition of the mapFarmB skeleton using

chunkMap size parMap

with a suitable size parameter. Assume that the length of the input list is
a multiple of the number of processor elements.

We can even act more radically and reduce communication costs further for data
transfers from parent to child processes.

4.2 Communication vs Parameter Passing:
Running Processes Offline

Eden processes have disjoint address spaces. Consequently, on process instantia-
tion, the process abstraction will be transferred to the remote processing element
including its whole environment, i.e. the whole heap reachable from the process
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abstraction will be copied. This is done even if the heap includes non-evaluated
parts which may cause the duplication of work. A programmer is able to avoid
work duplication by forcing the evaluation of unevaluated subexpressions of a
process abstraction before it is used for process instantiation.

There exist two different approaches for transferring data to a remote child
process. Either the data is passed as a parameter or subexpression (without prior
evaluation unless explicitly forced) or data is communicated via a communication
channel. In the latter case the data will be evaluated by the parent process before
sending.

Example: Consider the function fun2proc defined by

fun2proc :: (Trans b, Trans c) ⇒
(a → b → c) → a → Process b c

fun2proc f x = process (\ y → f x y)

and the following process instantiation:

fun2proc fexpr xarg # yarg︸ ︷︷ ︸
evaluated by child process

︸︷︷︸
evaluated and sent

(lazy evaluation of fexpr and xarg) by parent process

When this process instantiation is evaluated, the process abstraction
fun2proc fexpr xarg

(including all data referenced by it) will be copied and sent to the processing
element where the new process will be evaluated. The parent process creates a
new thread for evaluating the argument expression yarg to normal form and a
corresponding outport (channel). Thus, the expressions fexpr and xarg will be
evaluated lazily if the child process demands their evaluation, while the expres-
sion yarg will immediately be evaluated by the parent process. �

If we want to evaluate the application of a function h :: a → b by a remote pro-
cess, there are two possibilities to produce a process abstraction and instantiate
it:

1. If we simply use the operator ($#), the argument of h will be evaluated by
the parent process and then passed to the remote process.

2. Alternatively, we can pass the argument of h within the process abstraction
and use instead the following remote function invocation.

rfi :: Trans b ⇒ (a → b) → a → Process () b

rfi h x = process (\ () → h x)

Now the argument of h will be evaluated on demand by the remote process
itself. The empty tuple () (unit) is used as a dummy argument in the process
abstraction. If the communication network is slow or if the result of the argument
evaluation is large, instantiation via rfi h x # () may be more efficient than
using (h $# x). We say that the child process runs offline.
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offline_farm :: Trans b ⇒
Int → -- ^ number of processes

([a] → [[a]]) → -- ^ input distribution

([[b]] → [b]) → -- ^ result combination

(a → b) → [a] → [b] -- ^ map interface

offline\_farm np distribute combine f xs

= combine $ spawn (map (rfi (map f))

[select i xs | i ← [0..np -1])

(repeat ())

where select i xs = ( distribute xs ++ repeat []) !! i

Fig. 17. Definition of offline_farm skeleton

input size 250
chunk size 250
runtime 0.119s
8 machines
9 processes
17 threads
40 conversations
290 messages

Fig. 18. Raytracer trace on 8 PEs, offline farm with 8 processes and chunking

The same technique has been used in Section 2 to define the
offline_parMapRedr skeleton. In a similar way, the previously defined farm can
easily be transformed into the offline farm defined in Figure 17, which can
equally well be used to parallelise map applications. In contrast to the farm skele-
ton, this skeleton needs to know the number of processes that has to be created.
Note that the offline farm will definitely create as many processes as determined
by the first parameter. If input distribution does not create enough tasks, the
selection function guarantees that superfluous processes will get an empty task
list.

Although the input is not explicitly communicated to an offline_farm, chunk-
ing may still be useful for the result stream.

Case Study (Raytracer continued 2): Using the offline farm instead of the farm in
our raytracer case study eliminates the explicit communication of all input rays
to the farm processes. The processes now evaluate their input by themselves.
Only the result values are communicated. Thus, we save 8 stream communica-
tions and 258 messages. Figure 18 shows that the farm processes are now active
during all their life time. The runtime could further be reduced by a factor of
almost 2. �
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Fig. 19. Numbering of call tree nodes in offline divide-and-conquer skeleton

4.3 Tuning the Parallel Mergesort Program

The tuning techniques “offline processes” and “chunking” have also been used
to tune the parallel mergesort program presented in Section 2. Avoiding in-
put communication using the offline technique requires slightly more modifica-
tions which can however be defined as a stand-alone offline distributed-expansion
divide-and-conquer skeleton offline_disDC. The idea is to pass unique numbers
to the processes which identify its position in the divide-and-conquer call tree.
The processes use these numbers to compute the path from the root to their
positions and to select the appropriate part of the input by subsequent applica-
tions of the split function starting from the original input. Figure 19 shows the
node numbering of a call tree with branching degree k = 3. Auxiliary functions
successors and path are used to compute the successor node numbers for a given
node number and the path from the root node to a given node:

successors :: Int → Int → [Int]

successors k n = [nk + i | let nk = n∗k, i ← [1..k]]

path :: Int → Int → [Int]

path k n | n == 0 = []

| otherwise = reverse (factors k n)

factors :: Int → Int → [Int]

factors k n

| n ≤ 0 = []

| otherwise = (n+k-1) ‘mod ‘ k : factors k ((n-1) ‘div ‘ k)

For the example tree in Figure 19 we observe that successors 3 2 = [7,8,9]

and path 3 9 = [1,2].
If we neglect the case that the problem size might not be large enough to

supply each process with work, the offline divide-and-conquer skeleton can be
defined as follows:

offline_disDC :: Trans b ⇒
Int → [Int] → DivideConquer a b

offline_disDC k ts triv solve split combine x

= disDC k ts newtriv newsolve newsplit newcombine 0

where

seqDC = dc triv solve split combine
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offline_disDC :: Trans b ⇒
Int → [Int] → DivideConquer a b

offline_disDC k ts triv solve split combine x

= snd (disDC k ts newtriv newsolve newsplit newcombine 0)

where

seqDC = dc triv solve split combine

newsplit = successors k

newtriv n = length ts ≤ k^( length (path k n))

newsolve n = (flag , seqDC localx)

where (flag , localx) = select triv split x (path k n)

newcombine n bs@(( flag ,bs1):_)

= if flag then (True , combine localx (map snd bs))

else (lab , bs1)

where (lab , localx) = select triv split x (path k n)

select :: (a → Bool) → (a → [a]) -- ^ trivial / split

→ a → [Int] → (Bool ,a)

select trivial split x ys = go x ys

where go x [] = (True , x)

go x (y:ys) = if trivial x then (False , x)

else go (split x !! y) ys

Fig. 20. Offline version of the divide-and-conquer skeleton disDC

newsplit = successors k

newtriv n = length ts ≤ k^( length (path k n))

newsolve n = seqDC (select split x (path k n))

newcombine n bs

= combine (select split x (path k n)) bs

select :: (a → [a]) → a → [Int] → a

select split x ys = go x ys

where go x [] = x

go x (y:ys) = go (split x !! y) ys

The skeleton will create as many processes as the length of the ticket list. The
successors function is used as split function for the offline divide-and-conquer
skeleton. The initial input is set to zero, the root node number of the call tree.
The predicate newtriv stops the parallel unfolding as soon as number of leaves in
the generated call tree is greater than the length of the ticket list, i.e. the num-
ber of processes that has to be generated. When the parallel unfolding stops, the
skeleton applies the normal sequential divide-and-conquer function dc to solve
the remaining subproblems. The auxiliary function select computes the sub-
problem to be solved by node with number n. It successively applies the original
split function and selects the appropriate subproblems with the Haskell list
index operator (!!) :: [a] → Int → a, thereby following the path path k n

from the root node to the current node. The combine function is also modified
to locally select the current subproblem. In most cases this simplified version
of the offline divide-and-conquer skeleton will work satisfactorily. However, the
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skeleton will bounce whenever the problem size is not large enough to allow for
the series of split applications. Therefore, Figure 20 presents a modified version
of the skeleton definition which checks whether splitting is still possible or not.
If no more splitting is possible, the process has no real work to do, because one
of its predecessor processes has the same problem to solve. In principle, it need
not produce a result. Changing the internal result type of the skeleton to e.g. a
Maybe type is however not advisable because this would e.g. de-activate chunking
or streaming, if this is used for the result values in the original skeleton. Instead,
the skeleton in Figure 20 internally produces two results, a flag that indicates
whether the process created a valid subresult or whether it already the result
its parent process simply can pass. In fact, all superfluous processes compute
the result of a trivial problem which is assigned to one of its predecessor. The
corresponding predecessor can then simply overtake the first of the (identical)
results of its child processes. This offline divide-and-conquer skeleton has been
used to produce the trace file in Figure 7. In addition, chunking of the result
lists has been added by adapting the parameter functions of the offline_disDC

skeleton, i.e. composing the function chunk size with the result producing pa-
rameter functions solve and combine and unchunking parameter list elements
of combine as well as the overall result using concat. Note that the parameter
functions trivial, solve, split, and combine are the same as in the definition of
the function mergeSortDC (see Page 154, Section 2). Finally, the actual code of
the parallel mergesort implementation is as follows:

par_mergeSortDC :: (Ord a, Trans a) ⇒ Int → [a] → [a]

par_mergeSortDC size

= concat ◦
(offline_disDC 2 [2.. noPe ] trivial

((chunk size) ◦ solve) split

(\ xs → (chunk size) ◦ (combine xs) ◦ (map concat )))

where

-- the same as in mergeSortDC

Exercise 5: Change the parallel mergesort implementation in such a way that
the branching degree of the recursive call tree can be given as an additional
parameter to the function par_mergeSortDC.

5 Defining Non-hierarchical Communication Topologies

With the Eden constructs introduced up to now, communication channels are
only (implicitly) established during process creation between parent and child
processes. These are called static channels and they build purely hierarchical pro-
cess topologies. Eden provides additional mechanisms to define non-hierarchical
communication topologies.

5.1 The Remote Data Concept

A high-level, natural and easy-to-use way to define non-hierarchical process net-
works like e.g. rings in Eden is the remote data concept [1]. The main idea is to
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Fig. 21. A simple process graph

replace the data to be communicated between processes by handles to it, called
remote data. These handles can then be used to transmit the real data directly
to the desired target. Thus, a remote data of type a is represented by a handle
of type RD a with interface functions release and fetch. The function release

produces a remote data handle that can be passed to other processes, which will
in turn use the function fetch to access the remote data. The data transmission
occurs automatically from the process that releases the data to the process which
uses the handle to fetch the remote data.

The remote data feature has the following interface in Eden [20]:

type RD a -- remote data

-- convert local data into remote data

release :: Trans a ⇒ a → RD a

-- convert remote data into local data

fetch :: Trans a ⇒ RD a → a

The following simple example illustrates how the remote data concept is used to
establish a direct channel connection between sibling processes.

Example: Given functions f and g, the expression ((g ◦ f) a) can be calculated
in parallel by creating a process for each function. One just replaces the function
calls by process instantiations

(g $# (f $# inp)).

This leads to the process network in Figure 21 (a) where the process evaluating
the above expression is called main. Process main instantiates a first process for
calculating g. In order to transmit the corresponding input to this new process,
main instantiates a second process for calculating f, passes its input to this
process and receives the remotely calculated result, which is passed to the first
process. The output of the first process is also sent back to main. The drawback
of this approach is that the result of the process calculating f is not sent directly
to the process calculating g, thus causing unnecessary communication costs.
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ring :: (Trans i, Trans o, Trans r) ⇒
((i,r) → (o,r)) --^ ring process function

→ [i] → [r] --^ input - output mapping

ring f is = os

where

(os,ringOuts ) = unzip (parMap f (lazyzip is ringIns ))

ringIns = rightRotate ringOuts

lazyzip :: [a] → [b] → [(a,b)]

lazyzip [] _ = []

lazyzip (x:xs) ~(y:ys) = (x,y) : lazyzip xs ys

rightRotate :: [a] → [a]

rightRotate [] = []

rightRotate xs = last xs : init xs

Fig. 22. Definition of ring skeleton

In the second implementation, we use remote data to establish a direct channel
connection between the child processes (see Figure 21 (b)):

(g ◦ fetch) $# ((release ◦ f) $# inp)

The output produced by the process calculating f is now encapsulated in a
remote handle that is passed to the process calculating g, and fetched there.
Notice that the remote data handle is treated like the original data in the first
version, i.e. it is passed via the main process from the process computing f to
the one computing g. �

5.2 A Ring Skeleton

Consider the definition of a process ring in Eden given in Figure 22. The number
of processes in the ring is determined by the length of the input list. The ring
processes are created using the parMap skeleton.

The auxiliary function lazyzip corresponds to the Haskell prelude function zip

but is lazy in its second argument (because of using the lazy pattern ~(y:ys)).
This is crucial because the second parameter ringIns will not be available when
the parMap function creates the ring processes. Note that the list of ring inputs
ringIns is the same as the list of ring outputs ringOuts rotated by one element
to the right using the auxiliary function rightRotate. Thus, the program would
get stuck without the lazy pattern, because the ring input will only be produced
after process creation and process creation will not occur without the first input.

Unfortunately, this elegant and compact ring definition will not produce a
ring topology but a star (see Figure 23). The reason is that the channels for
communication between the ring processes are not established in a direct way,
but only indirectly via the parent process. One could produce the ring as a chain
of processes where each ring process creates its successor but this approach would
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Fig. 23. Topology of process ring (left: intended topology, right: actual topology)

ringRD :: (Trans i, Trans o, Trans r) ⇒
((i,r) → (o,r)) --^ ring process function

→ [i] → [r] --^ input - output mapping

ringRD f is = os

where

(os,ringOuts ) = unzip (parMap (toRD f)

(lazyzip is ringIns ))

ringIns = rightRotate ringOuts

toRD :: (Trans i, Trans o, Trans r) ⇒
((i,r) → (o,r)) -- ^ ring process function

→ ((i, RD r) → (o, RD r)) -- ^ -- with remote data

toRD f (i, ringIn) = (o, release ringOut)

where (o, ringOut) = f (i, fetch ringIn)

Fig. 24. Ring skeleton definition with remote data

cause the input from and output to the parent process to run through the chain
of predecessor processes. Moreover it is not possible to close this chain to form
a ring.

Fortunately, the process ring can easily be re-defined using the remote data
concept as shown in Figure 24. The original ring function is embedded using the
auxiliary function toRD into a function which replaces the ring data by remote
data and introducing calls to fetch and release at appropriate places. Thus,
the worker functions of the parallel processes have a different type. In fact,
the star topology is still used but only to propagate remote data handles. The
proper data is passed directly from one process to its successor in the ring.
This transfer occurs via additional so-called dynamic channels, which are not
reflected in the worker function type. This is the mechanism used to implement
the remote data concept in Eden. We will introduce Eden’s dynamic channels
and the implementation of remote data using dynamic channels in Section 7.
Before we present a case study with the ring skeleton ringRD.
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2.922803s
(b) with demand

Runtimes are shown above. The other statistics are the same for both versions:
input size 500, 8 machines, 9 processes, 41 threads, 72 conversations, 4572 messages

Fig. 25. Warshall trace on 8 PEs, ring with 8 processes and chunking

Case Study (Warshall’s algorithm): Warshall’s algorithm for computing shortest
paths in a graph given by an adjacency matrix can be implemented using the
ring skeleton. Each ring process is responsible for the update of a subset of rows.
The whole adjacency matrix is rotated once around the process ring. Thus,
each process sees each row of the whole adjacency matrix. The kernel of the
implementation is the iteration function executed by the ring processes for each
row assigned to them. Note that the final argument of this function is the one
communicated via the ring.

ring_iterate :: Int → Int → Int →
[Int] → [[Int]] → ( [Int], [[Int]])

ring_iterate size k i rowk (rowi:xs)

| i > size = (rowk , []) -- Finish Iteration

| i == k = (rowR , rowk:restoutput ) - send own row

| otherwise = (rowR , rowi:restoutput ) - update row

where

(rowR , restoutput ) = ring_iterate size k (i+1) nextrowk xs

nextrowk | i == k = rowk -- no update , if own row

| otherwise = updaterow rowk rowi (rowk !!(i-1))

In the kth iteration the process with row k sends this row into the ring. During
the other iterations each process updates its own row with the information of
the row received from its ring predecessor.

Unfortunately, a trace analysis reveals (see Figure 25(a)) that this program has
a demand problem. In a first part, an increasing phase of activity runs along the
ring processes, until the final row is sent into the ring. Then all processes start to
do their update computations. By forcing the immediate evaluation of nextrowk,
i.e. the update computation, the sequential start-up phase of the ring can be com-
pressed. The additional demand can be expressed by rdeepseq nextrowk ‘pseq‘

which has to be included before the recursive call to ring iterate:

(rowR , restoutput ) = rdeepseq nextrowk ‘pseq ‘

ring_iterate size k (i+1) nextrowk xs
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Fig. 26. Torus topology

This forces the evaluation of nextrowk to normal form before the second argument
of pseq is evaluated. The effect of this small code change is enormous as shown
in Figure 25(b). Note the different scaling on the x-axes in both pictures. The
improved program version needs only a sixth of the runtime of the first version.

�

Exercise 6: Define a ring skeleton in such a way that each process creates its
successor processor. Use remote data to close the ring and to establish the
communication with the process which executes the ring skeleton.

5.3 A Torus Skeleton

A torus is a two-dimensional topology in which each process is connected to
its four neighbours. The first and last processes in each row and column are
considered neighbours, i.e. the processes per row and per column form process
rings (see Figure 26). In addition, each process has two extra connections to send
and receive values to/from the parent. These are not shown in Figure 26. The
torus topology can be used to implement systolic computations, where processes
alternate parallel computation and global synchronisation steps. At each round,
every node receives messages from its left and upper neighbours, computes, and
then sends messages to its right and lower neighbours.

The implementation that we propose in Eden uses lists instead of synchroniza-
tion barriers to simulate rounds. The remote data approach is used to establish
direct connections between the torus nodes. The torus function defined in Fig-
ure 27 creates the desired toroidal topology of Figure 26 by properly connecting
the inputs and outputs of the different ptorus processes. Each process receives
an input from the parent, and two remote handles to be used to fetch the values
from its predecessors. It produces an output to the parent and two remote han-
dles to release outputs to its successors. The shape of the torus is determined by
the shape of the input.
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torus :: (Trans a, Trans b, Trans c, Trans d) ⇒
((c,[a],[b]) → (d,[a],[b])) --^ node function

→ [[c]] → [[d]] --^ input -output mapping

torus f inss = outss

where

t_outss = zipWith spawn (repeat (repeat (ptorus f))) t_inss

(outss ,outssA ,outssB) = unzip3 (map unzip3 t_outss)

inssA = map rightRotate outssA

inssB = rightRotate outssB

t_inss = lazyzipWith3 lazyzip3 inss inssA inssB

-- each individual process of the torus

ptorus :: ( Trans a, Trans b, Trans c, Trans d) ⇒
((c,[a],[b]) → (d,[a],[b])) →
Process (c,RD [a],RD [b])

(d,RD [a],RD [b])

ptorus f

= process (\ (fromParent , inA , inB) →
let (toParent , outA , outB)

= f (fromParent , fetch inA , fetch inB)

in (toParent , release outA , release outB ))

lazyzipWith3 :: (a → b → c → d)

→ [a] → [b] → [c] → [d]

lazyzipWith3 f (x:xs) ~(y:ys) ~(z:zs)

= f x y z : lazyzipWith3 f xs ys zs

lazyzipWith3 _ _ _ _ = []

lazyzip3 :: [a] → [b] → [c] → [(a,b,c)]

lazyzip3 = lazyzipWith3 (\ x y z → (x,y,z))

Fig. 27. Definition of torus skeleton

Fig. 28. Trace of parallel matrix multiplication with torus skeleton
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The size of the torus will usually depend on the number of available processors
(noPe). A typical value is e.g. �√noPe
. In this case each torus node can be placed
on a different PE. The first parameter of the skeleton is the worker function,
which receives an initial value of type c from the parent, a stream [a] from the
left predecessor and a stream [b] from its upper predecessor, and produces a
final result d for its parent as well as result streams of type [a] and [b] for its
right and lower successors, respectively. Functions lazyzip3 and lazyzipWith3

are lazy versions of functions of the zip family, the difference being that these
functions use irrefutable patterns for parameters, corresponding to the torus
interconnections.

Case Study (Matrix Multiplication): A typical application of the torus skeleton is
the implementation of a block-wise parallel matrix multiplication [23]. Each node
of the torus gets two blocks of the input matrices to be multiplied sequentially.
It passes its blocks to the successor processes in the torus, the block of the
first matrix to the successor in the row and the block of the second matrix to
the successor in the column. It receives corresponding blocks from its neighbour
processes and proceeds as before. If each process has seen each block of the input
matrices which are assigned to its row or column, the computation finishes. The
torus can be instantiated with the following node function:

nodefunction :: Int --^ torus dimension

→ ((Matrix ,Matrix), [Matrix], [Matrix]) --^ process input

→ ([ Matrix], [Matrix], [Matrix]) --^ process output

nodefunction n ((bA,bB), rows , cols)

= ([ bSum], bA:nextAs , bB:nextBs)

where bSum = foldl ’ matAdd (matMult bA bB)

(zipWith matMult nextAs nextBs)

nextAs = take (n-1) rows

nextBs = take (n-1) cols

The result matrix block is embedded in a singleton list to avoid its streaming
when being returned to the main process. Figure 28 shows a trace of the torus
parallelisation of matrix multiplication created on the Beowulf cluster II for
input matrices with dimension 1000. Messages are overlayed. In total, 638 mes-
sages have been exchanged. It can be seen that all communication takes place
in the beginning of the computation. This is due to Eden’s push policy. Data is
communicated as soon as it has been evaluated to normal form. As the processes
simply pass matrix blocks without manipulating them, communication occurs
immediately. Afterwards, the actual computations are performed. Finally the
processes return their local result blocks to the main process on PE 1 (bottom
bar). �

6 Workpool Skeletons

Workpool skeletons provide a powerful and general way to implement problems
with irregular parallelism, which are decomposed into tasks of varying complex-
ity. For such problems it is feasible to implement a task or work pool which is
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processed by a set of worker processes. The tasks are dynamically distributed
among the workers to balance the work load. Often a master process manages the
task pool, distributes the tasks to the worker processes, and collects the results.
Then the work pool is organised as a master-worker system. In such systems it
is important that the master reacts immediately on the reception of a worker
result by sending a new task to the respective worker, i.e. the master must re-
ceive worker results as soon as they arrive. Thus, many-to-one communication
is necessary for the communication from the workers to the master.

6.1 Many-to-One Communication: Merging Communication
Streams

Many-to-one communication is an essential feature for many parallel applica-
tions, but, unfortunately, it introduces non-determinism and, in consequence,
spoils the purity of functional languages. In Eden, the predefined function

merge :: [[a]] → [a]

merges (in a non-deterministic way) a list of streams into a single stream. In fact,
merging several incoming streams guarantees that incoming values are passed
to the single output stream as soon as they arrive. Thus, merging the results
streams of the worker processes allows the master in a master-worker system
to react quickly on the worker results which are also interpreted as requests
for new tasks. As the incoming values arrive in an unpredictable order, merge
introduces non-determinism. Nevertheless functional purity can be preserved in
most portions of an Eden program. It is e.g. possible to use sorting in order
to force a particular order of the results returned by a merge application and
thus to encapsulate merge within a skeleton and save the deterministic context.
In the next subsection we show how a determinstic master-worker skeleton is
defined although the merge function is internally used for the worker-to-master
communication.

6.2 A Simple Master-Worker Skeleton

The merge function is the key to enable dynamic load balancing in a master-
worker scheme as shown in Figure 29. The master process distributes tasks to
worker processes, which solve the tasks and return the results to the master.

The Eden function masterWorker (evaluated by the “master” process) (see
Figure 30) takes four parameters: np specifies the number of worker processes
that will be spawned, prefetch determines how many tasks will initially be
sent by the master to each worker process, the function f describes how tasks
have to be solved by the workers, and the final parameter tasks is the list of
tasks that have to be solved by the whole system. The auxiliary pure Haskell
function distribute :: Int → [a] → [Int] → [[a]] is used to distribute the
tasks to the workers. Its first parameter determines the number of output lists,
which become the input streams for the worker processes. The third param-
eter is the request list reqs which guides the task distribution. The request
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Fig. 29. Master-worker process topology

masterWorker :: (Trans a, Trans b) ⇒
Int → Int → (a→ b) → [a] → [b]

masterWorker np prefetch f tasks

= orderBy fromWs reqs

where

fromWs = spawn workers toWs

workers = [process (map f) | n ← [1.. np]]

toWs = distribute np tasks reqs

newReqs = merge [ [i | r ← rs]

| (i,rs) ← zip [1.. np] fromWs]

reqs = initReqs ++ newReqs

initReqs = concat (replicate prefetch [1.. np])

Fig. 30. Definition of a simple master worker skeleton

list is also used to sort the results according to the original task order (func-
tion orderBy :: [[b]] → [Int] → [b]). Note that the functions distribute and
orderBy can be imported from Eden’s Auxiliary library. Their definitions are also
given in Appendix B.

Initially, the master sends as many tasks as specified by the parameter prefetch
in a round-robin manner to the workers (see definition of initReqs in Figure 30).
The prefetch parameter determines the behaviour of the skeleton, between
a completely dynamic (prefetch 1) and a completely static task distribution
(prefetch ≥ # tasks

# workers ). Further tasks are sent to workers which have deliv-
ered a result. The list newReqs is extracted from the worker results which are
tagged with the corresponding worker id. The requests are merged according
to the arrival of the worker results. This simple master worker definition has
the advantage that the tasks need not be numbered to re-establish the origi-
nal task order on the results. Moreover, worker processes need not send explicit
requests for new work together with the result values. Note that we have assumed
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Fig. 31. Mandelbrot traces on 25 PEs, offline farm (left) vs master-worker (right)

a statically fixed task pool, which, in essence, results in another parallel map
implementation with dynamic assignment.

Case Study (Mandelbrot): The kernel function of a program to compute a two-
dimensional image of the Mandelbrot set for given complex coordinates ul (upper
left) and lr (lower right) and the number of pixels in the horizontal dimension
dimx as a string can be written as follows in Haskell:

image :: Double -- ^ threshold for iterations

→ Complex Double → Complex Double

-- ^ coordinates

→ Integer -- ^ size

→ String

image threshold ul lr dimx

= header ++ (concat $ map xy2col lines)

where

xy2col :: [Complex Double] → String

xy2col line

= concatMap (rgb.( iter threshold (0.0 :+ 0.0) 0)) line

(dimy , lines) = coord ul lr dimx

The first parameter is a threshold for the number of iterations that should be
done to compute the color of a pixel.

The program can easily be parallelised by replacing map in the expression
map xy2col lines with a parallel map implementation. Figure 31 shows two
traces that have been produced on the Beowulf cluster I at Heriot-Watt Univer-
sity in Edinburgh. The Mandelbrot program was evaluated with an input size of
2000 lines with 2000 pixels each using 25 PEs.

The program that produced the trace on the left hand side replaced map by
(offline_farm noPe (splitInto noPe) concat). The program yielding the trace
on the right hand side replaced map by masterWorker noPe 8, where in both cases
noPe = 25. In the offline farm, all worker processes are busy during their life
time, but we observe an unbalanced workload which reflects the shape of the
mandelbrot set. To be honest, the uneven workload has been enforced by using
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version number of processes task transfer task distribution

parMap number of tasks communication one per process
mapFarm{S/B} noPe communication static

offline farm mostly noPe local selection static
masterWorker mostly noPe communication dynamic

Fig. 32. Classification of parallel map implementations

splitInto noPe for a block-wise task distribution instead of unshuffle 25. The
latter would lead to a well-balanced workload with the farm which is however
a special property of this example problem. In general, general irregular par-
allelism cannot easily be balanced. The master-worker system uses a dynamic
task distribution. In our example a prefetch value of 8 has been used to initially
provide 8 tasks to each PE. The trace on the right hand side in Figure 31 reveals
that the workload is better balanced, but worker processes are often blocked
waiting for new tasks. Unfortunately, the master process on machine 1 (lowest
bar) is not able to keep all worker processes busy. In fact, the master-worker par-
allelisation needs more time than the badly balanced offline farm. In addition,
both versions suffer from a long end phase in which the main or master process
collects the results. �

Exercise 7: Define a master-worker skeleton mwMapRedr which implements a
map-reduce scheme.

mwMapRedr :: Int -- ^ number of processes

→ Int -- ^ prefetch

→ (b → b → b) -- ^ reduce function

→ b -- ^ neutral element

→ (a → b) -- ^ map function

→ [a] → b -- ^ input - output mapping

The worker processes locally reduce their results using foldr and return
requests to the master process to ask for new input values (tasks). When
all tasks have been solved (how can this be detected?), the worker processes
return their reduction result to the master who performs the final reduction
of the received values.

6.3 Classification of Parallel Map Implementations

In Section 2 we have defined several parallel implementations of map, a simple
form of data parallelism. A given function has to be applied to each element of
a list. The list elements can be seen as tasks, to which a worker function has to
be applied. The parallel map skeletons we developed up to now can be classified
as shown in Figure 32. The simple parMap is mainly used to create a series of
processes evaluating the same function. The static task distribution implemented
in the farm variants is especially appropriate for regular parallelism, i.e. when
all tasks have same complexity or can be distributed in such a way that the
workload of the processes is well-balanced. The master worker approach with
dynamic task distribution is suitable for irregular tasks.
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Exercise 8: Write parallel versions of the Julia-Set program provided on the
Eden web pages using the various parallel map skeletons. Use EdenTV to
analyse and compare the runtime behavior of the different versions.

6.4 A Nested Master-Worker Skeleton

The master worker skeleton defined above is a very simple version of a workpool
skeleton. It has a single master process with a central workpool, the worker
processes have no local state and cannot produce and return new tasks to be
entered into the workpool. Several more sophisticated workpool skeletons are
provided in the Eden skeleton library. We will here exemplarily show how a
hierarchical master worker skeleton can elegantly be defined in Eden. For details
see [7,50]. As a matter of principle, a nested master-worker system can be defined
by using the simple master worker skeleton defined above as the worker function
for the upper levels. The simple master worker skeleton must only be modified in
such a way that the worker function has type [a] → [b] instead of a → b. The
nested scheme is then simply achieved by folding the zipped list of branching
degrees and prefetches per level. This produces a regular scheme. The proper
worker function is used as the starting value for the folding. Thus it is used
at the lowest level of worker processes. Figure 33 shows the definition of the
corresponding skeleton mwNested.

mwNested :: (Trans a, Trans b) ⇒
[Int] -- ^ branching degrees per level

→ [Int] -- ^ prefetches per level

→ ([a] → [b]) -- ^ worker function

→ [a] → [b] -- ^ tasks , results

mwNested ns pfs wf = foldr fld wf (zip ns pfs)

where

fld :: (Trans a, Trans b) ⇒
(Int ,Int) → ([a] → [b]) → ([a] → [b])

fld (n,pf) wf = masterWorker ’ n pf wf

Fig. 33. Definition of nested workpool skeleton

Case Study (Mandelbrot continued): Using a nested master-worker system helps
to improve the computation of Mandelbrot sets on a large number of processor
elements. Figure 34 shows an example trace produced for input size 2000 on 25
PEs with a two-level master worker system comprising four submasters serving
five worker processes each. Thus, the function mwNested has been called with
parameters [4,5] and [64,8]. The trace clearly shows that the work is well-
balanced among the 20 worker processes. Even the post-processing phase in
the main process (top-level master) could be reduced, because the results are
now collected level-wise. The overall runtime could substantially be reduced in
comparison to the simple parallelisations discussed previously (see Figure 31).

�
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branching degrees [4,5]:
1 master, 4 submasters, 5 workers per
submaster
prefetches [64,8]:
64 tasks per submaster, 8 tasks per
worker

Fig. 34. Mandelbrot trace on 25 PEs with hierarchical master-worker skeleton (hier-
archy shown on the right)

7 Explicit Channel Management

In Eden, process communication occurs via unidirectional one-to-one channels.
In most cases, these channels are implicitly created on process creation. This
mechanism is sufficient for the generation of hierarchical communication topolo-
gies. In Section 5, we have seen how non-hierarchical process topologies and
corresponding skeletons like rings can easily be defined using the remote data
concept. This concept is based on the lower-level mechanism of dynamically
creating channels by receiver processes.

7.1 Dynamic Channels

Eden provides functions to explicitly create and use dynamic channel connections
between arbitrary processes:

new :: Trans a ⇒ (ChanName a → a → b) → b

parfill :: Trans a ⇒ ChanName a → a → b → b

By evaluating new ( name val → e) a process creates a dynamic channel name
of type ChanName a in order to receive a value val of type a. After creation,
the channel should be passed to another process (just like normal data) inside
the result expression e, which will as well use the eventually received value val.
The evaluation of (parfill name e1 e2) in the other process has the side-effect
that a new thread is forked to concurrently evaluate and send the value e1 via
the channel. The overall result of the expression is e2.

These functions are rather low-level and it is not easy to use them appropri-
ately. Let us suppose that process A wants to send data directly to some process
B by means of a dynamic channel. This channel must first be generated by the
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ringDC :: (Trans i, Trans o, Trans r) ⇒
((i,r) → (o,r)) -- ^ ring process function

→ [i] → [r] -- ^ input -output mapping

ringDC f is = os

where

(os,ringOuts ) = unzip (parMap (plink f)

(lazyzip is ringIns ))

ringIns = leftRotate ringOuts

leftRotate :: [a] → [a]

leftRotate [] = []

leftRotate (x:xs) = xs ++ [x]

plink :: ( Trans i, Trans o, Trans r) ⇒
((i,r) → (o,r)) -- ^ ring process function

→ ((i, ChanName r) → (o, ChanName r))

-- ^ -- with dynamic channels

plink f (i, outChan)

= new (\ inChan ringIn →
parfill outChan ringOut (o, inChan))

where (o, ringOut) = f (i, ringIn)

Fig. 35. Definition of ring skeleton with dynamic channels

process B and sent to A before the proper data transfer from A to B can take
place. Hence, the dynamic channel is communicated in the direction opposite to
the desired data transfer.

Example: It is of course also possible to define the ring skeleton directly using
dynamic channels. Again, the ring function f is replaced with a modified version
plink f which introduces dynamic channels to transfer the ring input. Instead
of passing the ring data via the parent process, only the channel names are now
passed via the parent process from successor to predecessor processes in the ring.
The ring data is afterwards directly passed from predecessors to successors in
the ring. Note the the orientation of the ring must now be changed which is done
by using leftrotate instead of rightrotate in the definition of ringDC given in
Figure 35.

Each ring process creates an input channel which is immediately returned to
the parent process and passed to the predecessor process. It receives from the
parent a channel to send data to the successor in the ring and uses this channel to
send the ring output ringOut to its successor process using a concurrent thread
created by the parfill function. The original ring function f is applied to the
parent’s input and the ring input received via the dynamic ring input channel.
It produces the output for the parent process and the ring output ringOut for
the successor process in the ring.
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type RD a = ChanName (ChanName a) -- remote data

-- convert local data into remote data

release :: Trans a ⇒ a → RD a

release x = new (\ cc c → parfill c x cc)

-- convert remote data into local data

fetch :: Trans a ⇒ RD a → a

fetch cc = new (\ c x → parfill cc c x)

Fig. 36. Definition of remote data with dynamic channels

Although this definition also leads to the intended topology, the correct and
effective use of dynamic channels is not as obvious as the use of the remote data
concept. �

7.2 Implementing Remote Data with Dynamic Channels

Remote data can be implemented in Eden using dynamic channels [20] as shown
in Figure 36.

Notice how the remote data approach preserves the direction of the commu-
nication (from process A to process B) by introducing another channel transfer
from A to B. This channel will be used by B to send its (dynamic) channel name
to A, and thus to establish the direct data communication. More exactly, to
release local data x of type a, a dynamic channel cc of type RD a, i.e. a channel
to transfer a channel name, is created and passed to process B. When process
A receives a channel c (of type ChanName a) from B via cc, it sends the local
data x via c to B. Conversely, in order to fetch remote data, represented by the
remote data handle cc, process B creates a new (dynamic) channel c and sends
the channel name via cc to A. The proper data will then be received via the
channel c.

8 Behind the Scenes: Eden’s Implementation

Eden has been implemented by extending the runtime system (RTS) of the
Glasgow Haskell compiler (GHC) with mechanisms for process management and
communication. In principle, it shares its parallel runtime system (PRTS) with
Glasgow parallel Haskell [58] but due to the disjoint address spaces of its pro-
cesses does not need to implement a virtual shared memory and global garbage
collection in contrast to GpH. In the following, we abstract from low-level im-
plementation details like graph reduction and thread management which are
explained elsewhere [47,58,14,34] and describe Eden’s implementation on top of
the module

Control.Parallel.Eden.ParPrim.
This module provides primitive monadic operations which are used to implement
the Eden constructs on a higher-level of abstraction [10].
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Eden Programs

Skeleton Library

Eden Module

Primitive Operations

Parallel Runtime System (PRTS)

Fig. 37. Layer structure of the Eden system

8.1 Layered Parallel Runtime Environment

Eden’s implementation has been organised in layers (see Figure 37) to achieve
more flexibility and to improve the maintainability of this highly complex system.
The main idea has been to lift aspects of the runtime system (RTS) to the
level of the functional language, i.e. defining basic workflows on a high level of
abstraction in the Eden module and concentrating low-level RTS capabilities in
a couple of primitive operations. In this way, part of the complexity has been
eliminated from the imperative RTS level.

Every Eden program must import the Eden module, which contains Haskell
definitions of Eden’s language constructs. These Haskell definitions use primitive
operations which are functions implemented in C that can be accessed from
Haskell. The extension of GHC for Eden is mainly based on the implementation
of these primitive operations, which provide the elementary functionality for
Eden and form a low-level coordination language by themselves.

The Eden module contains Haskell definitions of the high-level Eden con-
structs, thereby making use of the primitive operations shown in Figure 38.
The primitive operations implement basic actions which have to be performed
directly in the runtime system of the underlying sequential compiler GHC2.

Each Eden channel connects an outport of the sender process to an inport of
the receiver process. There is a one-to-one correspondence between the threads
of a process and its outports. Each thread of a process evaluates some expres-
sion to normal form and sends the result via its outport. The primitive channels
within the parallel runtime system are identified by three primitive integer values
identifying the receiver side, i.e. the inport connecting a channel with a process.

2 Note that, in GHC, primitive operations and types are distinguished from common
functions and types by # as the last sign in their names.
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Channel Administration:
– createC# creates a placeholder and an inport for a new communication channel
– connectToPort# connects a communication channel in the proper way

Communication:
– sendData# sends data on a communication channel

Thread Creation:
– fork# forks a concurrent thread

General:
– noPE# determines number of processing elements in current setup
– selfPE# determines own processor identifier

Fig. 38. Primitive operations

The three integers are (1) the processor element number, (2) the process number
and (3) a specific port number:

data ChanName ’ a = Chan Int# Int# Int#

This type is only internally visible and used by the primitive channel adminis-
tration functions. The wrapper functions of the primitive operations have the
following types:

createC :: IO ( ChanName ’ a, a )

connectToPort :: ChanName ’ a → IO ()

Note that the wrapper functions always yield a result in the IO monad. Func-
tion createC creates a primitive imput channel and a handle to access the data
received via this channel. Function connectToPort connects the outport of the
thread executing the function call to a given channel i.e. the corresponding in-
port.

There is only a primitive for sending data but no one for receiving data. Re-
ceiving is done automatically by the runtime system which writes data received
via an inport immediately into a placeholder in the heap. The wrapper function
of the primitive sendData# has the following type:

sendData :: Mode → a → IO ()

data Mode = Connect | Stream | Data | Instantiate Int

There are four send modi and corresponding message types. Note that the mes-
sages are always sent via the outport associated with the executing thread. A
Connect message is initially sent to connect the outport to the corresponding
inport. This makes it possible to inform a sender thread when its results are no
longer needed, e.g. when the placeholders associated with the inport are identi-
fied as garbage.

A Data message contains a data value which is sent in a single message. The
mode Stream is used to send the values of a data stream. The Instantiate i

message is sent to start a remote process on PE i.
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class NFData a ⇒ Trans a where

write :: a → IO ()

write x = rnf x ‘pseq ‘ sendData Data x

createComm :: IO (ChanName a, a)

createComm = do (cx,x) ← createC

return (Comm (sendVia cx) , x)

-- Auxiliary send function

sendVia :: (NFData a, Trans a) ⇒
(ChanName ’ a) → a → IO()

sendVia c d = do connectToPort c

sendData Connect d

write d

Fig. 39. Type class Trans

8.2 The Type Class Trans

As explained in Section 3, the type class Trans comprises all types which can
be communicated via channels. It is mainly used to overload communication for
streams and tuples. Lists are transmitted in a stream-like fashion, i.e. element by
element. Each component of a tuple is communicated via a separate primitive
channel. This is especially important for recursive processes which depend on
part of their own output (which is re-fed as input).

On the level of the Eden module, a channel is represented by a communicator,
i.e. a function to write a value into the channel:

newtype ChanName a = Comm (a → IO())

This simplifies overloading of the communication function for tuple types. The
definition of the Trans class is given in Figure 39. The context NFData (normal
form data) is needed to ensure that transmissible data can be fully evaluated
(using the overloaded function rnf (reduce to normal form)) before sending it. An
overloaded operation write :: a → IO ()) is used for sending data. Its default
definition evaluates its argument using rnf and sends it in a single message using
sendData with mode Data.

The function createComm creates an Eden channel and a handle to access the
values communicated via this channel. The default definition creates a single
primitive channel. The default communicator function is defined using the aux-
iliary function sendVia which connects to the primitive channel before sending
data on it. Note that the communicator function will be used by the sender
process while the channel creation will take place in the receiver process. The
explicit connection of the sender outport to the inport in the receiver process
helps to guarantee that at most one sender process will use a channel.

For streams, write is specialized in such a way that it evaluates each list
element to normal form before transmitting it using sendData Stream. The cor-
responding instance declaration for lists is shown in Figure 40. For tuples (up to



Eden – Parallel Functional Programming with Haskell 191

instance Trans a ⇒ Trans [a] where

write list@[] = sendData Data list

write (x:xs) = do rnf x ‘pseq ‘ sendData Stream x

write xs

instance ( Trans a, Trans b) ⇒ Trans (a,b) where

createComm = do (cx,x) ← createC

(cy,y) ← createC

return (Comm (write2 (cx,cy)),(x,y))

-- auxiliary write function for pairs

write2 :: ( Trans a, Trans b) ⇒
(ChanName ’ a, ChanName ’ b) → (a,b) → IO ()

write2 (c1,c2) (x1,x2) = do fork (sendVia c1 x1)

sendVia c2 x2

Fig. 40. Trans instance declarations for lists and pairs

9 components), channel creation is overloaded as shown exemplarily for pairs in
Figure 40. Two primitive channels are created. The communicator function cre-
ates two threads to allow the concurrent and independent transfer of the tuple
components via these primitive channels. For tuples with more than 9 compo-
nents, the Eden programmer has to provide a corresponding Trans instance by
himself or the default communicator will be used, i.e. a 10-tuple would be sent
in a single message via a single channel.

For self-defined data structures that are input or output of processes, the
Eden programmer must provide instance declarations for the classes NFData and
Trans. In most cases, it is sufficient to use the default definition for the Trans

class and to define a normal form evaluation function rnf.

Example: For binary trees the following declarations would be sufficient:

data Tree a = Leaf a | Node a (Tree a) (Tree a)

instance NFData a ⇒ NFData (Tree a) where

rnf (Leaf x) = rnf x

rnf (Node x l r) = rnf x ‘seq ‘ rnf l ‘seq ‘ rnf r

instance Trans a ⇒ Trans (Tree a)

With these declarations, trees will be completely evaluated before being sent in
a single message. �

8.3 The PA Monad: Improving Control over Parallel Activities

The Eden module provides a parallel action monad which can be used to improve
the control of series of parallel actions. The parallel action monad wraps the IO
monad. In particular, it is advantageous to define a sequence of side-effecting
operations within the PA monad and unwrap the parallel action only once. The
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newtype PA a = PA { fromPA :: IO a }

instance Monad PA where

return b = PA $ return b

(PA ioX) >>= f = PA $ do

x ← ioX

fromPA $ f x

runPA :: PA a → a

runPA = unsafePerformIO ◦ fromPA

Fig. 41. PA monad definition

definition of the PA monad is given in Figure 41. Note that the data constructor
PA of the PA monad is not exported from the Eden module. Thus, the ordinary
programmer can only use return and bind to specify series of parallel actions.

In Section 7, the remote data concept has been implemented using Eden’s
dynamic channel operations. In fact, the implementation immediately uses the
primitive operations and provides definition variants in the PA monad as shown
in Figure 42.

In the PA variants of fetch and release, a channel is created, a thread is forked
and in the release case the channel and in the fetch case the value received via
the channel is returned.

The PA monad is especially advantageous when defining series of parallel ac-
tivities like e.g. when each component of a data structure has to be released or
fetched. In particular, this keeps the compiler from applying optimising trans-
formations that are not safe for side-effecting operations.

Example: The following definitions transform a list of local data into a corre-
sponding remote data list and vice versa:

releaseAll :: Trans a

⇒ [a] -- ^ The original list

→ [RD a] -- ^ List of Remote Data handles ,

-- ^ one for each list element

releaseAll as = runPA $ mapM releasePA as

fetchAll :: Trans a

⇒ [RD a] -- ^ The Remote Data handles

→ [a] -- ^ The original data

fetchAll ras = runPA $ mapM fetchPA ras

Note that the predefined Haskell function
mapM :: (Monad m) ⇒ (a → m b) → [a] → m [b]

lifts a monadic function to lists. �

Exercise 9: Define functions releaseTree and fetchTree to release node-wise
the data elements in binary trees:
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type RD a = ChanName (ChanName a)

releasePA :: Trans a

⇒ a -- ^ The original data

→ PA (RD a) -- ^ The Remote Data handle

releasePA val = PA $ do

(cc, Comm sendValC) ← createComm

fork (sendValC val)

return cc

release :: Trans a ⇒ a -- ^ The original data

→ RD a -- ^ The Remote Data handle

release = runPA ◦ releasePA

fetchPA :: Trans a ⇒ RD a → PA a

fetchPA (Comm sendValCC ) = PA $ do

(c,val) ← createComm

fork (sendValCC c)

return val

fetch :: Trans a

⇒ RD a -- ^ The Remote Data handle

→ a -- ^ The original data

fetch = runPA ◦ fetchPA

Fig. 42. Implementation of Remote Data using the PA monad

data Tree a = Leaf a | Node a (Tree a) (Tree a)

releaseTree :: Trans a ⇒ Tree a → Tree (Rd a)

fetchTree :: Trans a ⇒ Tree (Rd a) → Tree a

8.4 Process Handling: Defining Process Abstraction and
Instantiation

Process abstraction with process and process instantiation with ( # ) are imple-
mented in the Eden module. While process abstractions define process creation
on the side of the newly created process, process instantiation defines the ac-
tivities necessary on the side of the parent process. Communication channels
are explicitly created and installed to connect processes using the primitives
provided for handling Eden’s dynamic input channels.

A process abstraction of type Process a b is implemented by a function
f_remote (see Figure 43) which will be evaluated remotely by a corresponding
child process. It takes two arguments: the first is an Eden channel (comprising a
communicator function sendResult) via which the result of the process should be
returned to the parent process. The second argument is a primitive channel inCC
(of type ChanName’ (ChanName a)) to return its input channels (communicator
function) to the parent process. The exact number of channels between parent



194 R. Loogen

data (Trans a, Trans b) ⇒
Process a b =

Proc (ChanName b → ChanName ’ ( ChanName a) → ())

process :: (Trans a, Trans b) ⇒
(a → b) → Process a b

process f = Proc f_remote

where

f_remote (Comm sendResult ) inCC

= do (sendInput , invals) = createComm

connectToPort inCC

sendData Data sendInput

sendResult (f invals)

Fig. 43. Implementation of process abstraction

( # ) :: (Trans a, Trans b) ⇒ Process a b → a → b

pabs # inps

= runPA $ instantiateAt 0 pabs inps

instantiateAt :: (Trans a, Trans b) ⇒
Int → Process a b → a → PA b

instantiateAt pe (Proc f_remote ) inps

= PA $

do (sendresult , result) ← createComm

(inCC , Comm sendInput ) ← createC

sendData (Instantiate pe) (f_remote sendresult inCC)

fork (sendInput inps)

return result

Fig. 44. Implementation of process instantiation

and child process does not matter in this context, because the operations on
dynamic channels are overloaded. The definition of process shows that the re-
motely evaluated function, f_remote, creates its input channels via the function
createComm. Moreover, it connects to the primitive input channel of its parent
process and sends the communicator function of its input channels to the par-
ent. Finally the process output, i.e. the result of evaluating the function within
the process abstraction f to the inputs received via its input channels invals.
The communicator function sendResult will trigger the evaluation of the process
result to normal form before sending it.

Process instantiation by the operator ( # ) defines process creation on the
parent side. The auxiliary function instantiateAt implements process instan-
tiation with explicit placement on a given PE which are numbered from 1 to
noPe. Passing 0 as a process number leads to the default round robin placement
policy for processes. Process creation on the parent side works somehow dually
to the process creation on the child side, at least with respect to channel man-
agement. First a new input channel for receiving the child process’ results is
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spawnAt :: [Int] → [Process a b] → [a] → [b]

spawnAt pos ps is

= runPA $ sequence

[instantiateAt st p i |
(st,p,i) ← zip3 (cycle pos) ps is]

spawn = spawnAt [0]

Fig. 45. Definition of spawn

generated. Then a primitive channel for receiving the child process’ input chan-
nel(s) is created. The process instantiation message sends the application of the
process abstraction function f_remote applied to the created input channels to
the processor element where the new child process should be evaluated. Finally
a concurrent thread is forked which sends the input for the child process using
the communicator function received from the child process. The result of the
child process is returned to the environment.

The functions spawnAt and spawn can easily be defined using the PA monad
and the primitive function instantiateAt, see Figure 45. Note that it is not
necessary to provide a processor number for each process abstraction. The list
with PE numbers is cycled to guarantee sufficient PE numbers.

Exercise 10: Define a function spawnTree to instantiate process abstractions
given in a binary tree structure together with their inputs:

data Tree a = Leaf a | Node a (Tree a) (Tree a)

spawnTree :: (Trans a, Trans b) ⇒
Tree (Process a b, a) → Tree b

9 Further Reading

Comprehensive and up-to-date information on Eden is provided on its web site

http://www.mathematik.uni-marburg.de/~eden.

Basic information on its design, semantics, and implementation as well as the
underlying programming methodology can be found in [39,13]. Details on the
parallel runtime system and Eden’s concept of implementation can best be found
in [8,10,4]. The technique of layered parallel runtime environments has been fur-
ther developed and generalised by Berthold, Loidl and Al Zain [3,12]. The Eden
trace viewer tool EdenTV is available on Eden’s web site. A short introduc-
tory description is given in [11]. Another tool for analysing the behaviour of
Eden programs has been developed by de la Encina, Llana, Rubio and Hidalgo-
Herreo [21,22,17] by extending the tool Hood (Haskell Object Observation De-
bugger) for Eden. Extensive work has been done on skeletal programming in
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Eden. An overview on various skeleton types (specification, implementation,
and cost models) have been presented as a chapter in the book by Gorlatch
and Rabhi [38,54]. Several parallel map implementations have been discussed
and analysed in [33]. An Eden implementation of the large-scale map-and-reduce
programming model proposed by Google [18] has been investigated in [6,4]. Hi-
erarchical master-worker schemes with several layers of masters and submasters
have been presented in [7]. A sophisticated distributed workpool has been pre-
sented in [19]. Definitions and applications of further specific skeletons can be
found in the following papers: topology skeletons [9], adaptive skeletons [25],
divide-and-conquer schemes [5,36]. Special skeletons for computer algebra algo-
rithms are developed with the goal to define the kernel of a computer algebra
system in Eden [37,35]. Meta-programming techniques have been investigated in
[51]. An operational and a denotational semantics for Eden have been defined
by Ortega-Mallén and Hidalgo-Herrero [28,29,27]. These semantics have been
used to analyze Eden skeletons [31,30]. A non-determinism analysis has been
presented by Segura and Peña [44,55].

10 Other Parallel Haskells (Related Work)

Several extensions of the non-strict functional language Haskell [26] for parallel
programming are available. These approaches differ in the degree of explicitness
when specifying parallelism and the control of parallel evaluations. The spec-
trum reaches from explicit low-level approaches where the programmer has to
specify and to control parallel evaluations on a low level of abstraction to im-
plicit high-level approaches where in the extreme the programmer does not have
to bother about parallelism at all. Between the extremes there are approaches
where the programmer has to specify parallelism explicitly but parallel execu-
tion is managed by sophisticated parallel runtime systems. It is a challenge to
find the right balance between control and abstraction in parallel functional
programming. The following enumeration sketches some parallel extensions of
Haskell from explicit to implicit approaches:

Haskell plus MPI uses the foreign function interface (FFI) of Haskell to pro-
vide the MPI [43] functionality in Haskell [49]. It supports an SPMD style, i.e.
the same program is started on several processing elements (PEs). The differ-
ent instances can be distinguished using their MPI rank and may exchange
serializable Haskell data structures via MPI send and receive routines.

The Par Monad [56] is a monad to express deterministic parallelism in Haskell.
It provides a fork to create parallel processes and write-once mutable ref-
erence cells called IVars for exchanging data between processes. A skeleton-
based programming style is advocated to abstract from the low-level basic
constructs. It is notable that the Par monad is completely implemented as
a Haskell library including a work-stealing scheduler written in Haskell.

Eden (the subject of these lecture notes) abstracts from low-level sending and
receiving of messages. Communication via channels is automatically provided
by the parallel runtime system. It allows, however, to define processes and
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communication channels explicitly and thus to control parallel activity and
data distribution. Eden has been designed for distributed memory systems
but can equally well be used on multicore systems.

Glasgow parallel Haskell (GpH) [58] and Multicore Haskell [42] share
the same language definition (basic combinators par and pseq and evaluation
strategies) but differ in their implementations. While GpH with its paral-
lel runtime system GUM can be executed on distributed memory systems,
Multicore Haskell with its threaded runtime system is tailored to shared-
memory multicore architectures. The language allows to mark expressions
using the simple combinator par for parallel evaluation. These expressions
are collected as sparks in a spark pool. The runtime system decides which
sparks will be evaluated in parallel. This is out of control of the program-
mer. Moreover, access to local and remote data is automatically managed
by the runtime system. Evaluation strategies [57,41] abstract from low-level
expression marking and allow to describe patterns for parallel behaviour on
a higher level of abstraction.

Data Parallel Haskell [46] Data Parallel Haskell extends Haskell with support
for nested data parallelism with a focus to utilise multicore CPUs. It adds
parallel arrays and implicitly parallel operations on those to Haskell. This
is the most implicit and easy-to-use approach, but restricted to the special
case of data parallelism.

Note that we excluded from this overview approaches to concurrent programming
like Concurrent Haskell [45] and distributed programming like Cloud Haskell [32]
or HdpH [40]. Although not dedicated to parallel programming these languages
can also be used for that purpose but on a rather low level of abstraction.

11 Conclusions

These lecture notes have given a comprehensive overview of the achievements and
the current status of the Eden project with a focus on Eden’s skeleton-based pro-
gramming methodology. Eden extends Haskell with constructs for the explicit
definition and creation of processes. Communication between these processes
occurs via uni-directional one-to-one channels which will be established auto-
matically on process creation between parent and child processes, but can also
be explicitly created for direct data exchange between arbitrary processes. Eden
provides an elaborated skeleton library with various parallel implementations of
common computation schemes like map, map-reduce, or divide-and-conquer, as
well as skeletons defining communication topologies and master-worker systems.
Communication costs are crucial in distributed systems. Techniques like chunk-
ing, running processes offline and establishing direct communication channels
using remote data or dynamic channels can be used to reduce communication
costs substantially. Application programmers will typically find appropriate pre-
defined skeletons for parallelising their Haskell programs, but also have the pos-
sibility to modify and adapt skeletons for their special requirements. The Eden
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project is ongoing. Current activities comprise the further development of the
Eden skeleton library as well as the investigation of further high-level parallel
programming constructs.
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A Compiling, Running, Analysing Eden Programs

The Eden compiler, an extension of the Glasgow Haskell compiler (GHC), is
available from the Eden homepage under URL

http://www.mathematik.uni-marburg.de/~eden

Prerequisites and installation instructions are provided.
Typical command lines for compiling, running and analysing the simple pro-

gram for computing π shown in Figure 4 are e.g.

prompt> ghc -parmpi --make -O2 -eventlog pi.hs

prompt> pi 1000000 +RTS -N8 -ls

prompt> edentv loogen=pi_1000000_+RTS_-N8_-ls.parevents

Because of the option -parmpi code for the MPI version of the parallel runtime
system (PRTS) is produced. The option -eventlog enables the code to produce
traces at runtime. The code is then run with input parameter 1000000. The
runtime system options after +RTS have the effect that the runtime system is
started on 8 processing elements (option -N8) and that a trace file is produced
(option -ls). Finally the trace viewer EdenTV (see Section A.3) is started to
visualise and analyse the produced trace file.

A.1 Compile Time Options

To compile Eden programs with parallel support one has to use the options
-parpvm to use PVM [52] or -parmpi to use MPI [43] as middleware. The option
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-eventlog allows for the production of trace files (event logs) when compiled
Eden programs are executed. All GHC options, e.g. optimisation flags like -O2,
can equally well be used with the Eden version of GHC.

A.2 Runtime Options

A compiled Eden program accepts in addition to its arguments runtime system
options enclosed in

+RTS <your options> -RTS

With these options one can control the program setup and behaviour, e.g. on
how many (virtual) processor elements (PEs) the program should be executed,
which process placement policy should be used etc. The following table shows
the most important Eden specific runtime options. All GHC RTS options can
also be used. By typing ./myprogram +RTS -? a complete list of available RTS
options is given.

RTS option effect default
-N<n> set number of PEs number of PVM/MPI nodes

-MPI@<file> specify MPI hostfile mpihosts

-qQ<n> set buffer size for messages 32K
-ls enable event logging3

-qrnd random process placement round-robin placement

A.3 EdenTV: The Eden Trace Viewer

The Eden trace viewer tool (EdenTV) [11] provides a post-mortem analysis of
program executions on the level of the computational units of the parallel run-
time system (PRTS). The latter is instrumented with special trace generation
commands activated by the compile-time option -eventlog and the run-time
option +RTS -ls. In the space-time diagrams generated by EdenTV, machines
(i.e. processor elements), processes or threads are represented by horizontal bars,
respectively, with time on the x-axis.

The machines diagrams correspond to the view of profiling tools observing
the parallel machine execution, if there is a one-to-one correspondence between
virtual and physical processor elements which will usually be the case. The
processes per machine diagrams show the activity of Eden processes and their
placement on the available machines. The threads diagrams show the activity
of all created threads, not only the threads of Eden processes but also internal
system threads.

The diagram bars have segments in different colours, which indicate the ac-
tivities of the respective logical unit (machine, process or thread) in a period
during the execution. Bars are

– green when the logical unit is running,
– yellow when it is runnable but currently not running, and
– red when the unit is blocked.
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(a) Machines View (b) Processes View

(c) Thread View (d) Processes with Message Overlay

Fig. 46. Examples of EdenTV diagrams

If trace visualisations are shown in greyscale, the colors have the following cor-
respondences: light grey = yellow, grey = green, dark grey = red. In addition, a
machine can be idle which means that no processes are allocated on the machine.
Idleness is indicated by a small blue bar. The thread states are immediately de-
termined from the thread state events in the traces of processes. The states of
processes and machines are derived from the information about thread states.

Figure 46 shows examples of the machines, processes and threads diagrams for
a divide-and-conquer program implementing the bitonic-merge-sort algorithm
[2]. The trace has been generated on 8 Linux workstations connected via fast
Ethernet. The program sorted a list of 1024 numbers with a recursion depth
limit of 4.

The example diagrams in Figure 46 show that the program has been executed
on 8 machines (virtual processor elements). While there is some activity on
machine 1 (where the main program is started) during the whole execution,
machines 6 to 8 are idle most of the time (smaller blue bar). The corresponding
processes graphic (see Figure 46(b)) reveals that several Eden processes have
been allocated on each machine. The activities in Machine 2 have been caused
by different processes. The diagrams show that the workload on the parallel
machines was low — there were only small periods where threads were running.
The yellow-colored periods indicate system activity in the diagrams. The threads
view is not readable because too many threads are shown. It is possible to zoom
the diagrams to get a closer view on the activities at critical points during the
execution.
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Messages between processes or machines are optionally shown by grey arrows
which start from the sending unit bar and point at the receiving unit bar (see
Figure 46(d)). Streams can be shown as shadowed areas. The representation of
messages is very important for programmers, since they can observe hot spots
and inefficiencies in the communication during the execution as well as control
communication topologies.

When extensive communication takes places, message arrows may cover the
whole activity profile. For this reason, EdenTV allows to show messages se-
lectively, i.e. between selectable (subsets of) processes. EdenTV provides many
additional information and features, e.g. the number of messages sent and re-
ceived by processes and machines is recorded. More information is provided on
the web pages of EdenTV:
http://www.mathematik.uni-marburg.de/~eden/?content=trace main&navi=trace

B Auxiliary Functions

This section contains the definitions of the auxiliary functions which have been
used in the examples of this tutorial. These pure Haskell functions are provided
in the Eden module Control.Parallel.Eden.EdenSkel.Auxiliary.

B.1 Unshuffle and Shuffle

The function unshuffle :: Int → [a] → [[a]] distributes the input list in a
round robin manner into as many sublists as the first parameter determines.

unshuffle :: Int -- ^ number of sublists

→ [a] -- ^ input list

→ [[a]] -- ^ distributed output

unshuffle n xs = [takeEach n (drop i xs) | i ← [0..n-1]]

takeEach :: Int → [a] → [a]

takeEach n [] = []

takeEach n (x:xs) = x : takeEach n (drop (n-1) xs)

The inverse function shuffle :: [[a]] → [a] shuffles the given list of lists into
the output list.

shuffle :: [[a]] -- ^ sublists

→ [a] -- ^ shuffled sublists

shuffle = concat ◦ transpose

Note that the function transpose is predefined in the standard library Data.List.
The Haskell prelude function concat :: [[a]] → [a] simply concatenates all
lists of the given list of lists.

The function unshuffle has the advantage that the result lists grow uniformly.
Consequently, the function works incrementally in the sense that it produces
values on all output lists even if the input list is not completely available or an
infinite stream. In the same way, shuffle is able to produce output even if the
input lists are incomplete or infinite.
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B.2 SplitIntoN and Chunk

The function splitIntoN :: Int → [a] → [[a]] distributes the input list block-
wise into as many sublists as the first parameter determines. The lengths of the
output lists differ by at most one. This property is achieved by using the fol-
lowing function bresenham which follows an idea from the Bresenham algorithm
from computer graphics [15]. The function bresenham computes takes two inte-
ger parameters n and p and computes [i1, ..., ip] such that i1 + ... + ip = n and
|ij − ik| ≤ 1 for all 1 ≤ j, k ≤ n.

bresenham :: Int -- ^n

→ Int -- ^p

→ [Int] -- ^[i1 ,...,ip]

bresenham n p = take p ( bresenham1 n)

where

bresenham1 m = (m ‘div ‘ p) : bresenham1 ((m ‘mod ‘ p)+ n)

splitIntoN :: Int -- ^ number of blocks

→ [a] -- ^ list to be split

→ [[a]] -- ^ list of blocks

splitIntoN n xs = f bh xs

where bh = bresenham (length xs) n

f [] [] = []

f [] _ = error "some�elements �left�over"

f (t:ts) xs = hs : (f ts rest)

where (hs,rest) = splitAt t xs

The Haskell prelude function splitAt :: Int → [a] → ([a],[a]) splits a list
into a prefix of the length determined by its first parameter and the rest list.

Note that splitIntoN works only for finite lists. Moreover, it does not work
incrementally, i.e. the whole input list must be available before any output will
be produced.

While splitIntoN divides a list into the given number of sublists, the following
function chunk decomposes a list into sublists of the size given as first parameter.
All sublists except of the last one have the given size.

chunk :: Int → [a] → [[a]]

chunk k [] = []

chunk k xs = ys : chunk k zs

where (ys ,zs) = splitAt k xs

In contrast to splitIntoN, chunk works incrementally and can also be applied to
incomplete or infinite lists.

Note that the inverse function to splitIntoN and to chunk is the Haskell pre-
lude function concat :: [[a]] → [a].

B.3 Distribute and OrderBy

The functions distribute and orderBy are used in the definition of the master-
worker skeleton (see Section 6.2). The function distribute distributes a task
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list into several task lists for the worker processes in the order determined by a
stream of worker id’s which are the workers’ requests for new tasks.

distribute :: Int -- ^ number of workers

→ [Int] -- ^ request stream with worker IDs

→ [t] -- ^ task list

→ [[t]] -- ^ each inner list for one worker

distribute np reqs tasks

= [taskList reqs tasks n | n← [1.. np]]

where taskList (r:rs) (t:ts) pe

| pe == r = t:( taskList rs ts pe)

| otherwise = taskList rs ts pe

taskList _ _ _ = []

The function orderBy combines the worker results in the order determined by a
stream of worker id’s.

orderBy :: [[r]] -- ^ nested input list

→ [Int] -- ^ request stream gives distribution

→ [r] -- ^ ordered result list

orderBy rss [] = []

orderBy rss (r:reqs)

= let (rss1 ,(rs2:rss2 )) = splitAt r rss

in (head rs2): orderBy (rss1 ++ ((tail rs2):rss2 )) reqs
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Abstract. We present the ins and outs of the purely functional, data
parallel programming language SaC (Single Assignment C). SaC defines
state- and side-effect-free semantics on top of a syntax resembling that
of imperative languages like C/C++/C# or Java: functional program-
ming with curly brackets. In contrast to other functional languages data
aggregation in SaC is not based on lists and trees, but puts stateless
arrays into the focus.

SaC implements an abstract calculus of truly multidimensional arrays
that is adopted from interpreted array languages like Apl. Arrays are
abstract values with certain structural properties. They are treated in a
holistic way, not as loose collections of data cells or indexed memory ad-
dress ranges. Programs can and should be written in a mostly index-free
style. Functions consume array values as arguments and produce array
values as results. The array type system of SaC allows such functions to
abstract not only from the size of vectors or matrices but likewise from
the number of array dimensions, supporting a highly generic program-
ming style.

The design of SaC aims at reconciling high productivity in software
engineering of compute-intensive applications with high performance in
program execution on modern multi- and many-core computing systems.
While SaC competes with other functional and declarative languages on
the productivity aspect, it competes with hand-parallelised C and For-
tran code on the performance aspect. We achieve our goal through strin-
gent co-design of programming language and compilation technology.

The focus on arrays in general and the abstract view of arrays in
particular combined with a functional state-free semantics are key ingre-
dients in the design of SaC. In conjunction they allow for far-reaching
program transformations and fully compiler-directed parallelisation.
From literally the same source code SaC currently supports symmetric
multi-socket, multi-core, hyperthreaded server systems, CUDA-enables
graphics accelerators and the MicroGrid, an innovative general-purpose
many-core architecture.

The CEFP lecture provides an introduction into the language design
of SaC, followed by an illustration of how these concepts can be har-
nessed to write highly abstract, reusable and elegant code. We conclude
with outlining the major compiler technologies for achieving runtime
performance levels that are competitive with low-level machine-oriented
programming environments.
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1 Introduction and Motivation

The on-going multi-core/many-core revolution in processor architecture has ar-
guably more radically changed the world’s view on computing than any other
innovation in microprocessor architecture. For several decades the same program
could be expected to run faster on the next generation of computers than on the
previous. The trick that worked so well and so cheaply all the time is clock fre-
quency scaling. Gordon Moore’s famous prediction (also known as Moore’s law)
says that the number of transistors in a chip doubles every 12–24 months [1]. In
other words, the number of transistors on a single chip was predicted to grow ex-
ponentially. Surprisingly, this prediction has been fairly accurate since the 1960s.
Beyond all clever tricks in microprocessor architecture that were enabled by ever
growing transistor counts the probably most important impact of Moore’s law
lies in the miniaturisation of the logical structures within a processor. The time it
takes for an electrical signal to advance from one gate to the next is linear in the
distance. With the distance shrinking exponentially, processors were able to run
on higher and higher clock frequencies, moving from kilo-Hertz to giga-Hertz.

But now this “free lunch” of programs automatically running faster on a new
machine is over [2]. What has happened? Unlike Moore’s law, which is rather
a prediction than a law, there are also true laws of physics, and according to
them the energy consumption of a processor grows quadratically with the clock
frequency. Consequently, energy cost has become a relevant factor in computing
these days. Another law of physics, the law of conservation of energy, says that
energy neither appears from nothing nor does it disappear to nothing; energy
only changes its physical condition. In the case of processors, the electrical energy
consumed is mostly dissipated as heat, thus requiring even more energy for
cooling. These cause the technical and economic challenges we face today.

Circumstances have fostered two technological developments: the multi-core
revolution and the many-core revolution. The former means that general-purpose
processors do not run at any higher clock frequency than before, but the con-
tinuing miniaturisation of structures is used to put multiple cores, fully-fledged
processors by themselves, into a single chip. While quad-core processors are
already common place in the consumer market, server processors often have al-
ready 6, 8 or even 12 cores today. It is generally anticipated that Moore’s law of
exponential growth will continue for the foreseeable future, but that instead of
the clock frequency the number of cores will benefit.

The many-core revolution has its origin in a similar technological progress in
the area of graphics cards. With their specialised designs graphics cards have de-
veloped into highly parallel, extremely powerful co-processors. They can compute
fitting workloads much faster than state-of-the-art general-purpose processors.
And, increasingly relevant, they can do this with a fraction of the energy budget.
With the fairly general-purpose CUDA programming model, particularly NVidia
graphics cards have become integral parts of many high-performance comput-
ing installations [3]. But even on the other end of the scale, in the personal
computing domain, GPGPUs (or general-purpose graphics processing units)
have become relevant for computing beyond computer graphics. After all, every
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computer does have a graphics card, and its full potential is not always needed
for merely controlling the display.

Looking into the future (which is always dangerous) one can anticipate a
certain symbiosis of general-purpose multi-core processors and GPU-style accel-
erators into unified processor designs with a few general-purpose fat cores and
a large number of restricted thin cores. AMD’s Fusion and Intel’s Knights Ferry
architectures are precursors of this development.

The radical paradigm shift in computer architecture from increasing clock
frequencies to duplicating computing devices on chip incurs a paradigm shift in
software engineering that is at least as revolutionary. As said before, programs
no longer automatically benefit from a new generation of computers. A sequen-
tial program does not run any faster on a quad-core system than on a uni-core
system, and it is very unlikely that it takes advantage of a computer’s graphics
card. Software at any level must be parallelised to effectively take advantage of
today’s computers. Harnessing the full power of increasingly concurrent, increas-
ingly diverse and increasingly heterogeneous chip architectures is a challenge for
future software engineers.

The multicore revolution must have a profound impact on the practice of soft-
ware engineering. While parallel programming per sé is hardly new, until very
recently it was largely confined to the supercomputing niche. Consequently, pro-
gramming methodologies and tools for parallel programming are geared towards
the needs of this domain: squeezing the maximum possible performance out of
an extremely expensive computing machinery through low-level machine-specific
programming. Programming productivity concerns are widely ignored as running
code is often more expensive than writing it.

What has changed with the multi-/many-core revolution is that any kind of
software and likewise any programmer is affected, not only specialists in high
performance computing centers with a PhD in computer science.

What has also changed thoroughly is the variety of hardware. Until recently,
the von-Neumann model of sequential computing was all that most software
engineers would need to know about computer architecture. Today’s computer
landscape is much more varied and with existing programming technology this
variety immediately affects programming. A computer today may just have a
single dual-core or quad-core processor, but it may likewise be a 4-processor
system with 4, 6 or 12 cores per processor [4,5]. So, already today the number of
cores in a general-purpose system can differ by more than one order of magnitude.
Technologies such as Intel’s hyperthreading [6] further complicate the situation:
they are often presented as real cores by the operating system, yet they require
a different treatment.

Non-x86 based processor architectures like Oracle’s Niagara range offer even
more parallelism. The T3-4 server system [7,8] shipped in 2011, for instance,
features 4 processors with 16 cores each while each core supports 8 hardware
threads. Such a system totals in 512 hardware threads and adds another order
of magnitude to the level of parallelism that software needs to effectively take
advantage of. A similar variety of technologies can be seen in the GPGPU market.
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Now any multi-core system can freely be combined with one or even multiple
GPGPU accelerators leading to a combinatorial explosion of possibilities. This,
at the latest, makes it technologically and economically challenging to write
software that makes decent use of a large variety of computing systems.

The quintessential goal of the SaC project lies in the co-design of program-
ming language technology and the corresponding compiler technology that ef-
fectively and efficiently maps programs to a large variety of parallel comput-
ing architectures [9,10]. In other words, SaC aims at reconciling programming
productivity with execution performance in the multi-/many-core era.

Our fundamental approach is abstraction. In analogy to the von Neumann
architecture of sequential computing machines SaC abstracts from all concrete
properties of computing systems and merely allows the specification of concur-
rent activities without any programmer control as to whether two concurrent
activities are actually evaluated in parallel or sequentially. This decision is en-
tirely left to the compiler and runtime system. The guiding principle is to let the
programmer define what to compute, not how exactly this is done. Our goal is to
put expert knowledge, for instance on parallel processing or computer architec-
ture, once into compiler and runtime system and not repeatedly into low-level
implementations of many application programs. This approach is particularly
geared towards the overwhelming number of software engineers who are neither
experts in parallel programming nor appreciate being forced to develop such
skills. Nonetheless, it is particularly this target group that wants or must exploit
the capabilities of modern multi-core and many-core computing systems with
limited software engineering effort.

Specifying what to compute, not exactly how to compute sounds very fa-
miliar to functional programmers. And indeed, SaC is a purely functional lan-
guage with a state- and side-effect-free semantics. Thus, SaC programs deal
with values, and program execution computes new values from existing values
in a sequence of context-free substitution steps. How values actually manifest
in memory, how long they remain in memory and whether they are created at
all is left to the language implementation. Abstracting from all these low-level
concerns makes SaC programs expose the algorithmic aspects of some compu-
tation because they are not interspersed with organisational aspects of program
execution on some concrete architecture.

In order to make exclusively compiler-directed parallelisation feasible, SaC
embraces a data-parallel agenda. More precisely, SaC is an array programming
language in the tradition of Apl [11,12], J [13] or Nial [14]. In fact, multi-
dimensional arrays are the basic data aggregation principle in SaC. Operations
on arrays are defined not exclusively but overwhelmingly following a data-parallel
approach. Before we look closer into SaC, let us first illustrate why the data-
parallel approach is crucial for our goal of supporting a wide range of parallel
architectures solely through compilation. We do this by means of an example
algorithm that clearly is none of the usual suspects in (data-)parallel computing.
Fig. 1 shows three different implementations of the factorial function: an imper-
ative implementation using C, a functional implementation in OCaml and a
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data-parallel implementation in SaC. It is characteristic for both the imperative
and the functional definition of the factorial function that they do not expose
any form of concurrency suitable for compiler-directed parallelisation. The im-
perative code is sequential by definition, but its functional counterpart likewise
leads to a purely sequential computation.

int fac( int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

fac n = if n <= 1

then 1

else n * fac (n - 1)

int fac( int n)

{

return prod( 1 + iota( n));

}

Fig. 1. Three definitions of the factorial function: imperative using C (top), functional
using OCaml (middle) and data-parallel using SaC (bottom)

In contrast, the array-style SaC implementation of the factorial function does
expose a wealth of concurrency to compiler and runtime system to exploit for
automatic parallelisation. However, this admittedly warrants some explanation
of the SaC code in Fig. 1. The iota function (the name is inspired by the corre-
sponding Apl operation) yields a vector (a one-dimensional array) of n elements
with the values 0 to n-1. Adding the value 1 to this vector yields the n-element
vector with the numbers 1 to n. Computing the product of all elements of this
vectors yields the factorial of n. While this definition of the factorial function
may be unusual at first glance, it offers one significant advantage over the other
definitions of Fig. 1: it exposes concurrency. Each of the three conceptual steps
is a data-parallel operation. For appropriate values of n the data-parallel formu-
lation of the factorial function exposes a high degree of fine-grained concurrency.

Fig. 2 illustrates why this is highly relevant. In the example we compute the
factorial of 10. The data-parallel specification based on iota, element-wise addi-
tion and prod exposes a 10-fold concurrency in computing the factorial number.
This, however, does not mean that the computation is split into 10 independent
tasks, processes or threads. It is merely an option for the compiler and run-
time system to exploit this fine-grained concurrency. Depending on the target
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Fig. 2. Design choices in compiling a data-parallel program

architecture this may or may not be the case. If the target architecture, for in-
stance, supports very light-weight concurrent activities, the compiler may indeed
decide to expose the full amount of concurrency to the hardware. The MicroGrid
many-core architecture [15] is such an example.

On the other end of the spectrum compiler and runtime system may equally
well decide to run the entire computation sequentially. Maybe we utilise sequen-
tial legacy hardware; maybe we have already exhausted our parallel computing
capabilities on an outer application level. If so, it is fairly simple not to make
use of the apparent concurrency and generate sequential binary code instead.

Between these two extremes, exploiting all concurrency available or exploiting
no concurrency at all, we find an almost contiguous design space for compiler and
runtime system to make appropriate decisions. The right choice depends on a
variety of concerns including properties of the target architecture, characteristics
of the code and attributes of the data being processed. For example, in the center
of Fig. 2 we can identify a solution that is presumably well-suited for a dual-core
system. The compiler generates two independent tasks that each take care of one
half of the intermediate vector. Both threads can run without synchronisation
until the final multiplication of the partial reduction results.

A compiler could even generate multiple alternative code versions and post-
pone any decision until runtime when complete information about hardware
capacities, data sizes, etc, are available to make a much more educate choice.

Of course, the factorial function is merely an example to illustrate the princi-
ple of data-parallel array programming, not at all a relevant application. Neither
is the factorial function particularly interesting to be computed in parallel for
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large argument numbers, nor do the concrete implementations of Fig. 1, based
on machine-width integer representations, support sufficiently large values.

As the name Single Assignment C suggests and the factorial example already
reveals to some extent, SaC does not follow regular syntactic conventions of
established functional languages. Neither do we invent a completely new syntax
from scratch. Instead, we aim at providing imperative programmers with the
warm feeling of a familiar programming environment. After all, the majority of
programmers suddenly confronted with the multi-core revolution has not used
Haskell, OCaml or Clean before but rather C, C++, C# or Java. We will
later see how imperative appearance and functional semantics can make a very
beneficial symbiosis.

Last but certainly not least, SaC aims at combining high-level, problem-
oriented programming not only with fully automatic parallelisation but likewise
with competitive sequential performance. And competition here means estab-
lished imperative programming languages, not high-level, declarative or func-
tional ones. If we aim at converting imperative programmers to SaC, we must
be able to generate absolute performance gains through automatic parallelisa-
tion. In other words SaC aims at outperforming sequential imperative codes on
parallel hardware. For that it is paramount to deliver sequential performance
that is close to imperative programs. After all, we cannot expect more than a
linear performance increase from parallelisation. To support the performance
demands, SaC dispenses with a number of programming features typical for
main-stream, general-purpose functional languages. For instance, SaC neither
supports higher-order functions, nor currying or partial applications. SaC also
follows a strict evaluation regime.

MicroGrid
Architecure

Amsterdam Systems
on a
ChipProcessors

Functional Array Programming

Advanced Compiler Technology

FPGAs ClustersGPGPU
Accelerators

Multi−
Multi−Core

SAC

SAC2C

Fig. 3. The SaC compilation challenge: past, present and future work

Fig. 3 illustrates the compilation challenge taken by SaC. Based on compet-
itive sequential performance, we aim at compiling a single SaC source program
to a variety of computing architectures. At the moment SaC supports symmet-
ric (potentially hyper-threaded) multi-core multi-processor systems with shared
memory, i.e. today’s bread-and-butter server systems. Moreover, SaC also sup-
ports general-purpose graphics processing units (GPGPUs) as accelerators as
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well as the MicroGrid [15], an innovative general-purpose many-core processor
architecture developed at the University of Amsterdam. Work is currently on-
going to combine multi-core and many-core code generators to support hybrid
systems-on-chip. Support for reconfigurable hardware on one end of the spectrum
and network-interconnected clusters of multi-core servers with accelerators on
the other mark up-coming challenges that we have only started exploring.

The rest of the article is organised as follows: We begin with the core lan-
guage design of SaC and explain the relationship between imperative syntax and
functional semantics in Section 2. Section 3 elaborates on the calculus of multi-
dimensional arrays and discusses its implementation by SaC. We then introduce
the array type system of SaC and the associated programming methodology in
Section 4. Sections 5 and 6 illustrate programming in SaC by means of two
case studies: variations of convolution and numerical differentiation. Sections 7,
8 and 9 complete the introductory text on SaC and explain the module system,
SaC’s approach to functionally sound input/output and the foreign language
interfaces, respectively. Last not least, we discuss essential aspects of the SaC
compiler and runtime system in Section 10. A small selection of related work is
sketched out in Section 11 before we conclude with a short summary and outlook
on current and future research directions in Section 12.

2 Core Language Design

In this section we describe the core language design of SaC. First, we identify
the syntactical subset of C for which we can define a functional semantics as
language kernel for SaC (Section 2.1). Afterwards, we explain the relationship
between the imperative, C-inspired syntax and its truly functional semantics in
detail (Section 2.2).

2.1 A Functional Subset of ISO C

The core of SaC is the subset of ANSI/ISO C [16] for which functional semantics
can be defined (surprisingly straightforwardly). Fig. 4 illustrates the similarities
and differences between SaC and C. In essence, SaC adopts from C the names of
the built-in types, i.e. int for integer numbers, char for ASCI characters, float
for single precision and double for double precision floating point numbers.
Conceptually, SaC also supports all variants derived by type specifiers such as
short, long or unsigned, but for the time being we merely implements the
above standard types. Unlike C, SaC properly distinguishes between numerical,
character and Boolean values and features a built-in type bool for the latter.

As a functional language SaC uses type inference instead of C-style type
declarations. This requires a strict separation of values of different basic types.
While type bool is, as expected, inferred for the Boolean constants true and
false and character constants like ’a’ are obviously of type char, the situation
is less clear for numerical constants. Here, we decide that any number constant
without decimal point or exponent specification is of type int. Any floating
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Fig. 4. Similarities and differences between SaC and C

point constant with decimal point or exponent specification is by default of type
double. A trailing f character makes any numerical constant a single precision
floating point constant, and a trailing d character a double precision floating
point constant. For example, 42 is of type int, 42.0 is of type double, 42.0f
and 42f are of type float and 42d is again of type double. SaC requires explicit
conversion between values of different basic types by means of the overloaded
conversion functions toi (conversion to integer), toc conversion to character,
tof (conversion to single precision floating point), tod (conversion to double
precision floating point) and tob (conversion to Boolean).

Despite these minor differences in details, SaC programs generally look in-
triguingly similar to C programs. SaC adopts the C syntax for function defini-
tions and function applications that clearly distinguishes between functions and
values. Function bodies are essentially sequences of assignments of expressions
to variables. While C-style variable declarations are superfluous due to type in-
ference, they are nonetheless permitted and may serve documentation purposes.
If present declared types are checked against inferred types.

In addition to constants as explained above, expressions are made up of iden-
tifiers, function applications and operator applications. SaC supports most op-
erators from C, among them all arithmetic, relational and logical operators. As
usual, Boolean conjunction and disjunction only evaluate their right operand
expression if necessary. Furthermore, SaC does also support the tertiary condi-
tional expression operator from C (question mark and colon, in other words a
proper functional conditional), operator assignments (e.g. += and *=) as well as
pre and post increment and decrement operators (i.e. ++ and --). For the time
being, SaC does not support the bitwise operations of C.

SaC adopts almost all of C’s structured control flow constructs: branches
with and without alternative (else), loops with leading (while) and with trailing
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(do...while) predicate and, last not least, counted loops (for). All of these
constructs feature exactly the same syntax as C proper. In case of the for-loop
we even adopt the definition of exact semantics as a (preprocessor) transforma-
tion into a while-loop [17]. Given the proper separation between Boolean and
numerical values, predicates in branches, conditional expressions and loops must
be expressions of type bool, not int as in C.

We do not mention C’s switch-construct in Fig. 4. While the SaC compiler
does not implement this for the time being, our choice is not motivated by any
conceptual issues, but solely by engineering effort concerns. In contrast, C does
have a number of quintessentially imperative features that we definitely do not
want to adopt: pointers, global variables and side effects in general. Moreover,
C-style control flow manipulation features, such as goto, break and continue,
make no sense in SaC because the functional semantics dispenses with any form
of control flow.

int gcd( int high , int low)

{

if (high < low) {

mem = low;

low = high;

high = mem;

}

while (low != 0) {

quotient , remainder = diffmod( high , low);

high = low;

low = remainder ;

}

return high;

}

int , int diffmod( int x, int y)

{

quot = x / y;

remain = x % y;

return (quot , remain);

}

int main ()

{

return gcd( 22, 27);

}

Fig. 5. Example of a core SaC program that illustrates the similarities and differences
between SaC and C: greatest common denominator following Euclid’s algorithm
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The language kernel of SaC is enriched by a number of features as illus-
trated in Fig. 4. Some of these features are characteristic for SaC, e.g. the
multi-dimensional, stateless arrays. Others are mere programming conveniences
or state-of-the-art modernisations of C, e.g. a proper module system with infor-
mation hiding or an I/O system that combines the simplicity of imperative I/O
(e.g. simply adding a print statement where one is needed) with a save integra-
tion of state manipulation into the purely functional context of SaC “under the
hood”. Unlike C but in the tradition of C++ SaC also supports function and
operator overloading (ad-hoc polymorphism). Syntactically, SaC allows func-
tions to instantaneously yield multiple values. As functions can (of course) take
multiple arguments, support for multiple return values creates a nice symmetry
between domain and codomain.

Fig. 5 illustrates the (scalar) language kernel of SaC by means of a simple
example: Euclid’s algorithm to determine the greatest common denominator of
two natural numbers. The code in Fig. 5 mainly highlights the syntactical simi-
larity (if not identity) between SaC and C (at least for such simple programs).
The code, nonetheless, is not legal C code as it also showcases a SaC-specific
language feature: functions with multiple return values. The auxiliary function
diffmod instantaneously yields the quotient and the remainder of two integers.
Consequently, the function diffmod is defined to yield two integer values and
its return-statement contains two expressions. Parentheses are required around
multiple return expressions. The application of diffmod demonstrates instan-
taneous variable binding. Like in C and other languages, a function with the
reserved name main defines the starting point of program execution. One may
note the complete absence of local variable declarations in Fig. 5.

2.2 Functional Semantics vs C-Like Syntax

Despite its imperative appearance, SaC is a purely functional programming lan-
guage. While we refrain from any attempt to define a formal functional semantics
for the language kernel, we nonetheless illustrate the main ideas behind combin-
ing an imperative syntax with a purely functional semantics. The examples in
Figs. 6, 7 and 8 show relevant fragments of SaC code and explain their exact
meaning by semantically equivalent OCaml code.

int add1( int a, int b)

{

c = a + b;

x = 1;

c = c + x;

return c;

}

⇐⇒
let add1 (a,b) =

let c = a + b

in let x = 1

in let c = c + x

in c

Fig. 6. Semantic equivalence between SaC and OCaml: simple function definitions
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Fig. 6 shows a very simple SaC function add1 whose body merely consists
of a sequence of assignments of expressions to variables and a trailing return-
statement. Semantically, we interpret a sequence of assignments as a sequence
of nested let-expressions with the return expression serving as the final goal
expression of the let-cascade. This transformational semantics easily clarifies
why and how SaC, despite prominently featuring the term single assignment in
its name, does actually allow repeated assignment to the “same” variable. Any
assignment to a previously defined variable or function parameter is actually an
assignment to a fresh variable that merely happens to bear the same name as
the variable defined earlier. Standard scoping and visibility rules, even familiar
to imperative programmers, clarify that the previously assigned variable can no
longer be accessed.

int fac( int n)

{

if (n>1) {

r = fac( n-1);

f = n * r;

}

else {

f = 1;

}

return f;

}

⇐⇒

let fac n =

if n>1

then let r = fac (n-1)

in let f = n * r

in f

else let f = 1

in f

Fig. 7. Semantic equivalence between SaC and OCaml: branching

The functional interpretation of imperative branching constructs is shown in
Fig. 7 by means of a recursive definition of the factorial function. In essence, we
“copy” the common code following the branching construct including the trailing
return-statement into both branches. By doing so we transform the C branching
statement into a functional OCaml conditional expression. For consistency with
the equivalence defined in Fig. 6 we also transform both branches into cascading
let-expressions.

The functional interpretation of loops requires slightly more effort, but it is
immediately apparent that imperative loops are mainly syntactic sugar for tail
recursion. Fig. 8 demonstrates this analogy by means of a standard imperative
definition of the factorial function using a while-loop. Here, we need to turn
the loop into a tail-recursive auxiliary function (fwhile) that is applied to the
argument n and the start value f. Upon termination the auxiliary function yields
the factorial.
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int fac( int n)

{

f = 1;

while (n>1) {

f = f * n;

n = n - 1;

}

return f;

}

⇐⇒

let fac n =

let f = 1

in let fwhile (f,n) =

if n>1

then let f = f * n

in let n = n - 1

in fwhile (f,n)

else f

in let f = fwhile (f,n)

in f

Fig. 8. Semantic equivalence between SaC and OCaml: while-loops

3 Multidimensional Stateless Arrays

On top of the scalar kernel SaC provides genuine support for truly multidimen-
sional stateless arrays. The section begins with introducing the array calculus
and its incorporation into a concrete programming language (Section 3.1) and
proceeds to the built-in array functions supported by SaC (Section 3.2). The
rest of the section is devoted to with-loops, the SaC array comprehension con-
struct. We first introduce the principles (Section 3.3), then we show a complete
example (Section 3.4) and finally we provide a complete reference of features
(Section 3.5).

3.1 Array Calculus

On top of this language kernel SaC provides genuine support for truly multi-
dimensional arrays. In fact, SaC implements an array calculus that dates back
to the programming language Apl[18,11]. This calculus was later adopted by
other array languages, e.g. J[19,13,20] or Nial[14,21] and also theoretically in-
vestigated under the name ψ-calculus [22,23]. In this array calculus any multi-
dimensional array is represented by a natural number, named the rank, a vector
of natural numbers, named the shape vector, and a vector of whatever data type
is stored in the array, named the data vector. The rank of an array is another
word for the number of dimensions or axes. The elements of the shape vector
determine the extent of the array along each of the array’s dimensions. Hence,
the rank of an array equals the length of that array’s shape vector, and the prod-
uct of shape vector elements equals the length of the data vector and, thus, the
number of elements of an array. The data vector contains the array’s elements
along ascending axes with respect to the shape vector, sometimes referred to as
row-major ordering. Fig. 9 shows a number of example arrays and illustrates the
relationships between rank, shape vector and data vector.
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Fig. 9. Truly multidimensional arrays in SaC and their representation by data vector,
shape vector and rank scalar

More formally, let A be an n-dimensional array represented by the rank scalar
n, the shape vector sA = [s0, . . . , sn−1] and the data vector dA = [d0, . . . , dm−1].
Then the equation

m =
n−1∏
i=0

si

describes the correspondence between the shape vector and the length of the
data vector. Moreover, the set of legal index vectors of the array A is defined as

IVA := { [iv0, . . . , ivn−1] | ∀j ∈ {0, . . . , n − 1} : 0 ≤ ivj < sj} .

An index vector iv = [iv0, . . . , ivn−1] denotes the element dk of the data vector
dA of array A if iv is a legal index vector of A, i.e. iv ∈ IVA, and the equation

k =
n−1∑
i=0

(ivi ∗
n−1∏

j=i+1

sj)

holds. Two arrays A and B are conformable iff they have the same element type
and the same number of elements:

|dA| = |dB|
A vector of natural numbers s is shape-conformable to an array A iff the product
of the elements of the vector equals the number of elements of the array:

n−1∏
i=0

si = |dA|
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As already shown in Fig. 9 the array calculus nicely extends to scalars. A scalar
value has the rank zero and the empty vector as shape vector; the data vector
contains a single element, the scalar value itself. This is completely consistent
with the rules sketched out before. The rank determines the number of elements
in the shape vector. As the rank of a scalar is zero, so is the number of elements
in the shape vector. The product of all elements of the shape vector determines
the number of elements in the data vector. The product of an empty sequence
of values is one, i.e. the neutral element of multiplication.

Unifying scalars and arrays within a common calculus allows us to say that
any value in SaC is an array, and as such it has a rank, a shape vector and a
data vector. Furthermore, we achieve a complete separation between data and
structural information (i.e. rank and shape).

3.2 Built-In Operations on Arrays

In contrast to all its ancestors, from Apl to the ψ-calculus, SaC only defines a
very small number of built-in operations on multidimensional arrays. They are
directly related to the underlying calculus:

– dim( a )
yields the rank scalar of array a ;

– shape( a )
yields the shape vector of array a ;

– sel( iv, a )
yields the element of array a at index location iv , provided that iv is a
legal index vector into array a according to the definition above;

– reshape( sv, a )
yields an array that has shape sv and the same data vector as array a ,
provided that sv and a are shape-conformable;

– modarray( a, iv, v )
yields an array with the same rank and shape as array a , where all elements
are the same as in array a except for index location iv where the element
is set to value v .

For the convenience of programmers SaC supports some syntactic sugar to ex-
press applications of the sel and modarray built-in functions:

sel( iv, a ) ≡ a [iv ]
a = modarray( a, iv, v ); ≡ a [iv ] = v ;

Fig. 10 further illustrates the SaC array calculus and its built-in functions by a
number of examples. Most notably, selection supports any prefix of a legal index
vector. The rank of the selected subarray equals the difference between the rank
of the argument array and the length of the index vector. Consequently, if the
length of the index vector coincides with the rank of the array, the rank of the
result is zero, i.e. a single element of the array is selected.
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vec ≡ [4,5,6,7]

mat ≡
⎛
⎝ 0 1 2 3

4 5 6 7
8 9 10 11

⎞
⎠

dim( mat) ≡ 2

shape( mat) ≡ [3,4]

dim( vec) ≡ 1

shape( vec) ≡ [4]

mat[[1,2]] ≡ 6

vec[[3]] ≡ 7

mat[[]] ≡ mat

mat[[1]] ≡ vec

mat ≡ reshape( [3,4], [0,1,2,3,4,5,6,7,8,9,10,11])

[[4,5],[6,7]] ≡ reshape( [2,2], vec)

Fig. 10. SaC built-in functions in the context of the array calculus

3.3 With-Loop Array Comprehension

With only five built-in array operations (i.e. dim, shape, sel, reshape and
modarray) SaC leaves the beaten track of array-oriented programming lan-
guages like Apl and Fortran-90 and their derivatives. Instead of providing
dozens if not a hundred or more hard-wired array operations such as element-
wise extensions of scalar operators and functions, structural operations like shift
and rotate along one or multiple axes and reduction operations with eligible
built-in and user-defined operations like sum and product, SaC features a single
but versatile array comprehension construct: the with-loop.

With-loops can be used to implement all the above and many more array
operations in SaC itself. We make intensive use of this feature and provide a
comprehensive standard library of array operations. Compared to hard-wired
array support this approach offers a number of advantages. For instance, we can
keep the language design of SaC fairly lean, the library implementations of array
operations do not carve their exact semantics in stone and SaC users can easily
extend and adapt the array library to their individual needs.

With-loops facilitate the specification of map- and reduce-like aggregate ar-
ray operations. They come in three variants, named genarray, modarray and
fold, as illustrated by means of simple examples in Figs. 11, 12 and 13, respec-
tively. Since the with-loop is by far the most important and most extensive
syntactical extension of SaC, we also provide a formal definition of the syntax
in Fig. 14. For didactic purposes we begin with a simplified form of with-loops
here and discuss a number of extensions in the following section.

We start with the genarray-variant in Fig. 11. Any with-loop array com-
prehension expression begins with the key word with (line 1) followed by a
partition enclosed in curly brackets (line 2), a colon and an operator that defines
the with-loop variant, here the key word genarray. The genarray-variant is
an array comprehension that defines an array whose shape is determined by the
first expression following the key word genarray. By default all element values
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A = with {
([1,1] <= iv < [4,4]) : e(iv);

}: genarray( [5,4], def );

[0,0] [0,1] [0,2] [0,3]

[1,0] [1,1] [1,2] [1,3]

[2,0] [2,1] [2,2] [2,3]

[3,0] [3,1] [3,2] [3,3]

[4,0] [4,1] [4,2] [4,3]

=⇒

�def� �def� �def� �def�

�def� �e[iv ← [1, 1]� �e[iv ← [1, 2]� �e[iv ← [1, 3]�

�def� �e[iv ← [2, 1]� �e[iv ← [2, 2]� �e[iv ← [2, 3]�

�def� �e[iv ← [3, 1]� �e[iv ← [3, 2]� �e[iv ← [3, 3]�

�def� �def� �def� �def�

Fig. 11. The genarray-variant of the with-loop array comprehension

are defined by the second expression, the so-called default expression. The shape
expression (i.e. the first expression after the key word genarray) must evalu-
ate to a non-negative integer vector. The example with-loop in Fig. 11, hence,
defines a matrix with 5 rows and 4 columns.

The middle part of the with-loop, the partition (line 2 in Fig. 11), defines a
rectangular index subset of the defined array. A partition consists of a generator
and an associated expression. The generator defines a set of index vectors along
with an index variable representing elements of this set. Two expressions, which
must evaluate to non-negative integer vectors of the same length as the value of
the shape expression, define lower and upper bounds of a rectangular range of
index vectors. For each element of this index vector set defined by the generator,
the associated expression is evaluated with the index variable instantiated ac-
cording to the index position. In the case of the genarray-variant the resulting
value defines the element value at the corresponding index location of the array.

The default expression itself is optional with an element type dependent de-
fault default value, i.e. the fitting variant of zero (false, ’\0’, 0, 0f, 0d for types
bool, char, int, float, double, respectively). If possible the compiler adds the
appropriate value. A default expression may not even be needed if the generator
already covers the entire index set.

The second with-loop-variant is the modarray-variant illustrated in Fig. 12.
While the partition (line 2) is syntactically and semantically equivalent to the
genarray-variant, the definition of the array’s shape and the default rule for
element values that are not contained in the generator-defined index set are
different. The key word modarray is followed by a single expression. The newly
defined array takes its shape from the value of that expression, i.e. we define
an array that has the same shape as a previously defined array. Likewise, the
element values at index positions not covered by the generator are obtained
from the corresponding elements of that array. It is important to note that the
modarray-with-loop does not destructively overwrite the element values of the
existing array, as it would be common in the imperative world. Since SaC is a
purely functional language, we semantically define a new array value that lives
aside the existing one.
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B = with {
([1,1] <= iv < [4,4]) : e(iv);

}: modarray( A);

[0,0] [0,1] [0,2] [0,3]

[1,0] [1,1] [1,2] [1,3]

[2,0] [2,1] [2,2] [2,3]

[3,0] [3,1] [3,2] [3,3]

[4,0] [4,1] [4,2] [4,3]

=⇒

�A[[0, 0]]� �A[[0, 1]]� �A[[0, 2]]� �A[[0, 3]]�

�A[[1, 0]]� �e[iv ← [1, 1]� �e[iv ← [1, 2]� �e[iv ← [1, 3]�

�A[[2, 0]]� �e[iv ← [2, 1]� �e[iv ← [2, 2]� �e[iv ← [2, 3]�

�A[[3, 0]]� �e[iv ← [3, 1]� �e[iv ← [3, 2]� �e[iv ← [3, 3]�

�A[[4, 0]]� �A[[4, 1]]� �A[[4, 2]]� �A[[4, 3]]�

Fig. 12. The modarray-variant of the with-loop array comprehension

The third with-loop-variant supports the definition of reduction operations.
It is characterised by the key word fold followed by the name of an eligible
reduction function or operator and the neutral element of that function or op-
erator. For certain built-in functions and operators the compiler is aware of the
neutral element, and an explicit specification can be left out. SaC requires fold
functions or operators to expect two arguments of the same type and to yield
one value of that type. Fold functions must be associative and commutative.
These requirements are stronger than in other languages with explicit reduc-
tions (e.g. foldl and foldr in many mainstream functional languages). This is
motivated by the absence of an order on the generator defined index subset and
ultimately by the wish to facilitate parallel implementations of reductions.

B = with {
([1,1] <= iv < [4,4]) : e(iv);

}: fold( ⊕, neutr );

[1,1] [1,2] [1,3]

[2,1] [2,2] [2,3]

[3,1] [3,2] [3,3]

=⇒
�neutr� ⊕ �e[iv ← [1, 1]� ⊕ �e[iv ← [1, 2]� ⊕ �e[iv ← [1, 3]�

⊕ �e[iv ← [2, 1]� ⊕ �e[iv ← [2, 2]� ⊕ �e[iv ← [2, 3]�
⊕ �e[iv ← [3, 1]� ⊕ �e[iv ← [3, 2]� ⊕ �e[iv ← [3, 3]�

Fig. 13. The fold-variant of the with-loop array comprehension

Note that the SaC compiler cannot verify associativity and commutativity
of user-defined functions. It is the programmer’s responsibility to ensure these
properties. Using a function or operator in a fold-with-loop acts as an implicit
assertion of the required properties. To be precise, neither floating point nor
integer machine arithmetic is strictly speaking associative. It is up to the pro-
grammer to judge whether or not overflow/underflow in integer computations
or numerical stability issues in floating point computations are relevant. If so
and the exact order in which a reduction is performed does matter, the fold-
with-loop is not the right choice. Instead, sequential loops as in C should be
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used. This is not a specific problem of SaC, but is owed to parallel reduction in
general. The same issues appear in all programming environments that support
parallel reductions, e.g. the reduction clause in OpenMP[24,25] or the collective
operations in Mpi[26].

WithLoopExpr ⇒ with { Partition } : Operator

Partition ⇒ Generator : Expr ;

Generator ⇒ ( Expr RelOp Identifier RelOp Expr )

RelOp ⇒ <= | <

Operation ⇒ genarray ( Expr [ , Expr ] )
| modarray ( Expr )
| fold ( FoldOp [ , Expr ] )

FoldOp ⇒ Identifier | BinOp

Fig. 14. Formal definition of the (simplified) syntax of with-loop expressions

3.4 With-Loop Examples

Following the rather formal introduction of with-loops in the previous section
we now illustrate the concept and its use by a series of examples. For instance,
the matrix

A =

⎛
⎜⎜⎜⎜⎝

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49

⎞
⎟⎟⎟⎟⎠

can be defined by the following with-loop:

A = with {

([0,0] <= iv < [5,10]) : iv [[0]] * 10 + iv[[1]];

}: genarray ( [5 ,10]);

Note here that the generator variable iv denotes a 2-element integer vector.
Hence, the scalar index values need to be extracted through selection prior to
computing the new array’s element value.

The following modarray-with-loop defines the new array B that like A is a
5 × 10 matrix where all inner elements equal the corresponding values of A
incremented by 50 while the remaining boundary elements are obtained from A
without modification:
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B = with {

([1,1] <= iv < [4,9]) : A[iv] + 50;

}: modarray ( A);

This example with-loop defines the following matrix:

B =

⎛
⎜⎜⎜⎜⎝

0 1 2 3 4 5 6 7 8 9
10 61 62 63 64 65 66 67 68 19
20 71 72 73 74 75 76 77 78 29
30 81 82 83 84 85 86 87 88 39
40 41 42 43 44 45 46 47 48 49

⎞
⎟⎟⎟⎟⎠

Last not least, the following fold-with-loop computes the sum of all elements
of array B:

sum = with {

([0,0] <= iv < [5,10]) : B[iv];

}: fold( +, 0);

which yields 2425.

3.5 Advanced Aspects of With-Loops

So far, we have focussed on the principles of with-loops and restricted ourselves
to a simplified view. In fact, with-loops are much more versatile; Fig. 15 defines
the complete syntax that we now explain step by step.

We begin with a major extension: a with-loop may have multiple partitions
instead of a single one. With multiple partitions, disjoint index subsets of an
array may be computed according to different specifications. For example, the
with-loop

A = with {

([0,0] <= iv < [5, 8]) : iv[[0]] * 10 + iv[[1]];

([0,8] <= iv < [5,10]) : iv [[0]] + iv [[1]];

}: genarray ( [5,10], 0);

yields the matrix

A =

⎛
⎜⎜⎜⎜⎝

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 9 10
20 21 22 23 24 25 26 27 10 11
30 31 32 33 34 35 36 37 11 12
40 41 42 43 44 45 46 47 12 13

⎞
⎟⎟⎟⎟⎠

where the left 8 columns are defined according to the first partition and the
right 2 columns according to the second partition. One question that imme-
diately arises when defining multiple partitions is what happens if the index
sets defined by the generators are not pairwise disjoint. Since this question is
generally undecidable for the compiler, we define that the in textual order last
partition that covers a certain index defines the corresponding value.
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WithLoopExpr ⇒ with { [Partition ]+ } : OperatorList

Partition ⇒ Generator [Block ] : ExprList ;

Generator ⇒ ( Bound RelOp GenVar RelOp Bound [Filter ] )

Bound ⇒ Expr | .

RelOp ⇒ <= | <

GenVar ⇒ Identifier
| IdentifierVector
| Identifier = IdentifierVector

IdentifierVector ⇒ [ [ Identifier [ , Identifier ]* ] ]

Filter ⇒ step Expr [ width Expr ]

ExprList ⇒ Expr [ , Expr ]*

OperatorList ⇒ Operator

| ( Operator [ , Operator ]* )

Operator ⇒ genarray ( Expr [ , Expr ] )
| modarray ( Expr )
| fold ( FoldOp [ , Expr ] )

FoldOp ⇒ Identifier | BinOp

Fig. 15. Formal definition of the full syntax of with-loop-expressions

As in the previous example, it is often handy to access the scalar elements of
the generator variable directly, instead of explicitly selecting elements inside the
associated expression:

A = with {

([0,0] <= [i,j] < [5, 8]) : i * 10 + j;

([0,8] <= [i,j] < [5,10]) : i + j;

}: genarray ( [5 ,10]);

In fact, one can even use the generator variable in vector and scalar form in the
same partition.

A significant extension of all with-loop variants concerns the generators.
Rather than defining dense rectangular index spaces, extended generators may
also define sparse periodic patterns of indices. For example, the with-loop

A = with {

([0,0] <= [i,j] < [5,10] step [1,2]) : i * 10 + j;

}: genarray ( [5,10], 0);
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yields the matrix ⎛
⎜⎜⎜⎜⎝

0 0 2 0 4 0 6 0 8 0
10 0 12 0 14 0 16 0 18 0
20 0 22 0 24 0 26 0 28 0
30 0 32 0 34 0 36 0 38 0
40 0 42 0 44 0 46 0 48 0

⎞
⎟⎟⎟⎟⎠

An additional width specification allows generators to define generalised periodic
grids as in the following example where

A = with {

([0,0] <= iv < [5,10] step [4,4] width [2 ,2]) : 9;

([0,2] <= iv < [5,10] step [4,4] width [2 ,2]) : 0;

([2,0] <= iv < [5,10] step [4,1] width [2 ,1]) : 1;

}: genarray ( [5 ,10]);

yields ⎛
⎜⎜⎜⎜⎝

9 9 0 0 9 9 0 0 9 9
9 9 0 0 9 9 0 0 9 9
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
9 9 0 0 9 9 0 0 9 9

⎞
⎟⎟⎟⎟⎠

Expressions that define step and width vectors must evaluate to positive integer
vectors of the same length as the other vectors of the generator. The full range
of generators can be used with all with-loop variants.

In order to give a formal definition of index sets, let a, b, s, and w denote
expressions that evaluate to appropriate vectors of length n. Then, the generator

( a <= iv < b step s width w )

defines the following set of index vectors:

{ iv | ∀j∈{0,...,n−1} : aj ≤ ivj < bj ∧ (ivj − aj) mod sj < wj } .

The last major extension concerns the operator. Actually, with-loops may come
with a list of operators, and a single with-loop may combine multiple variants.
For instance the with-loop

mini , maxi = with {

([0,0] <= iv < [5,10]) : A[iv], A[iv];

}: (fold( min), fold( max ));

simultaneously defines the minimum and the maximum value of the previously
defined array A. Each generator is associated with a comma-separated list of
expressions that correspond to the comma-separated list of operators. As this
example illustrates, it is often handy to have the generator-associated expressions
be preceded by a local block of assignments to abstract away complex or common
subexpressions. Hence, the above example could also be written as

mini , maxi = with {

([0,0] <= iv < [5,10]) {

a = A[iv];

}: a, a;

}: (fold( min), fold( max ));
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In practice, with-loops are often much simpler than they could be. Quite com-
monly they define homogeneous array operations where all elements of the in-
dex space are treated in the same way: a single generator covers the whole index
space. To facilitate specification of the common case, dots may replace the bound
expressions in generators. A dot as lower bound represents the least and a dot
as upper bound represents the greatest legal index vector with respect to the
shape vector of a genarray-with-loop or the shape of the referenced array in a
modarray-with-loop. The lack of a reference shape restricts this feature in the
case of a fold-with-loop to the lower bound. Here, a dot represents a vector of
zeros with the same length as the vector defining the upper bound.

4 Programming Methodology

So far we have introduced the most relevant language features of SaC. In this
section, we explain the methodology of programming in SaC, i.e. how the lan-
guage features can be combined to write actual programs. We begin with the
array type system of SaC (Section 4.1) and proceed to explain overloading (Sec-
tion 4.2) and user-defined types (Section 4.3). At last, we explain the two major
software engineering principles advocated by SaC: the principle of abstraction
(Section 4.4) and the principle of composition (Section 4.5).

4.1 Array Type System

In Section 2 we introduced the basic types mostly adopted from C (i.e. int,
float, double, char and bool). In Section 3 we discussed how to create arrays,
but we carefully avoided any questions regarding the exact type of some integer
matrix or double vector. We catch up with this deficit now.

...

... ... ......int int[1] int[42]

int[.]

int[  ]

int[.,.]

int[1,1] int[3,7]

rank: dynamic
AUD Class:

shape: static

shape: dynamic

AKD Class:
rank: static
shape: dynamic

AKS Class:
rank: static

*

Fig. 16. The SaC array type system with the subtyping hierarchy

While SaC is monomorphic in scalar types including the base types of arrays,
any scalar type immediately induces a hierarchy of array types with subtyping.
Fig. 16 illustrates this type hierarchy for the example of the base type int.
The shapely type hierarchy has three levels characterised by different amounts
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of compile time knowledge about shape and rank. On the lowest level of the
subtyping hierarchy (i.e. the most specific types) we have complete compile time
knowledge on the structure of an array: both rank and shape are fixed. We call
this class AKS for array of known shape.

On an intermediate level of the subtyping hierarchy we still know the rank of
an array, but abstract from its concrete shape. We call this class AKD for array
of known dimension. For example, a vector of unknown length or a matrix of
unknown size fall into this category. Note the special case for arrays of rank zero
(aka scalars). Since there is only one vector of length zero, the empty vector, the
shape of a rank-zero array is automatically known and the type int[] is merely
an uncommon synonym for int.

Each type hierarchy also has a most common supertype that neither prescribes
shape nor rank at compile time. We call such types AUD for array of unknown
dimension. The syntax of array types is motivated by the common syntax for
regular expressions: the Kleene star in the AUD type stands for any number of
dots, including none.

4.2 Overloading

SaC supports overloading with respect to the array type hierarchy. The example
in Fig. 17 shows three overloaded instances of the subtraction operator, one for
20× 20-matrices, one for matrices of some shape and one for arrays of any rank
and shape. As usual in subtyping there is a monotony restriction. For any two
instances F1 and F2 of some function F with the same number of parameters
and the same base types for each parameter either each parameter type of F1

is a subtype of the corresponding parameter type of F2 or vice versa. Function
instances with different numbers of parameters are distinguished syntactically
and there is no such restriction.

int[20,20] (-) (int [20,20] A, int [20,20] B) {...}

int[.,.] (-) (int[.,.] A, int[.,.] B) {...}

int[*] (-) (int[*] A, int[*] B) {...}

Fig. 17. Overloading with respect to the array type hierarchy

If necessary, function applications are dynamically dispatched to the most
specific instance available. For example, if we apply the subtraction operator,
under the definition of Fig. 17, to two integer matrices of unknown shape (AKD
class), we can statically rule out the third instance because the second instance
fits and is more specific. However, we can not rule out the first instance as the
argument matrices at runtime could turn out to be of shape 20 × 20 and then
the more specific first instance must be preferred over the more general second
instance.
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4.3 User-Defined Types

SaC supports user-defined types in very much the same way as many other
languages: any type can be abstracted by a name. Following our general design
principles, SaC adopts the C syntax for type definitions. For example, a type
complex for complex numbers can be defined as a two-element vector by the
following type definition:

typedef double [2] complex;

This type definition induces a further complete subtyping hierarchy with over-
loading. In contrast to C, however, SaC user-defined types are real data types
and not just type synonyms. Values require explicit conversion between the defin-
ing type and the defined type or vice versa. Such conversions use the familiar
syntax of C type casts. In fact, this notation is mainly intended as an implemen-
tation vehicle for proper conversion functions. Fig. 18 illustrates programming
with user-defined types by an excerpt from the standard library’s module for
complex arithmetic.

typedef double [2] complex;

complex toc( double real , double imag)

{

return (complex) [real , imag ];

}

double real( complex cpx)

{

return (( double [2]) cpx )[[0]];

}

double imag( complex cpx)

{

return (( double [2]) cpx )[[1]];

}

complex (+) (complex a, complex b)

{

return toc( real(a) + real (b), imag(a) + imag(b));

}

complex (*) (complex a, complex b)

{

return toc( real(a) * real(b) - imag(a) * imag(b),

real(a) * imag(b) + imag(a) * real(b));

}

Fig. 18. Basic definitions for complex numbers: type definition, conversion functions
making use of the type cast notation and overloaded definitions of arithmetic operators
based on the conversion functions introduced before
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A few restrictions apply to user-defined types. The defining type must be an
AKS type, i.e. another scalar type or a type with static shape, as in the case of
type complex defined above. We have been working on removing this restriction
and supporting truly nested arrays, i.e. arrays where the elements are again
arrays of different shape and potentially different rank. For now, however, this
is an experimental feature of SaC; details can be found in [27].

4.4 The Principle of Abstraction

As pointed out in Section 3.2 SaC only features a very small set of built-in array
operations. Commonly used aggregate array operations are defined in SaC itself
in a completely generic way. Although not built-in, aggregate array operations
are applicable to arguments of any rank and shape. A prerequisite for this design
are the shape-generic programming capabilities of with-loops. As introduced in
Sections 3.3 and 3.5, all relevant syntactic positions of with-loops may host
arbitrary expressions. In the examples so far we merely used constant vectors
for the purpose of illustration. In practice, with-loops are key to shape- and
rank-generic definitions of array operations.

Fig. 19 demonstrates the transition from a shape-specific implementation
over a shape-generic implementation to a rank-generic implementation taking
element-wise subtraction of two arrays as a running example. The first (over-
loaded) instance of the subtraction operator is defined for 20× 20 integer matri-
ces. It makes use of a single with-loop and essentially maps the built-in scalar
subtraction operator to all corresponding elements of the two argument arrays.
As the shape of the matrix is fixed, we can simply use constant vectors in the
syntactic positions for result shape, lower bound and upper bound.

Of course, it is neither productive nor elegant or even possible to explicitly
overload the subtraction operator for each potential argument array shape. The
second instance in Fig. 19 sticks to the two-dimensional case, but abstracts from
the concrete size of argument matrices. This generalisation immediately raises an
important question: how to deal with argument arrays of different shape? There
are various plausible answers to this question, and the solution adopted in our
example is to compute the element-wise minimum of the shape vectors of the
two argument arrays. With this solution we safely avoid out-of-bound indexing
while at the same time restricting the function domain as little as possible. The
resulting vector shp is used both in the shape expression of the genarray-with-
loop and as upper bound in the generator. Since indexing in SaC always starts at
zero, we can stick to a constant vector as lower bound. Note that the generator-
associated expression remains unchanged from the shape-specific instance.

One could argue that in practice, it is very rare to encounter problems that
require more than 4 dimensions, and, thus, we could simply define all relevant
operations for one, two, three and four dimensions. However, for a binary oper-
ator that alone would already require the definition of 16 instances. Hence, it is
of practical relevance and not just theoretical beauty to also abstract from the
rank of argument arrays, not only the shapes, and to support fully rank-generic
programming.
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int[20,20] (-) (int [20,20] A, int [20,20] B)

{

res = with {

([0,0] <= iv < [20 ,20]) : A[iv] - B[iv];

}: genarray( [20,20], 0);

return res;

}

int[.,.] (-) (int[.,.] A, int[.,.] B)

{

shp = min( shape(A), shape(B));

res = with {

([0,0] <= iv < shp) : A[iv] - B[iv];

}: genarray( shp , 0);

return res;

}

int[*] (-) (int[*] A, int[*] B)

{

shp = min( shape(A), shape(B));

res = with {

(0*shp <= iv < shp) : A[iv] - B[iv];

}: genarray( shp , 0);

return res;

}

Fig. 19. Three overloaded instances of the subtraction operator for arrays of known
shape (AKS, top), arrays of known dimension (AKD, middle) and arrays of unknown
dimension (AUD, bottom)

The third instance of the subtraction operator in Fig. 19 demonstrates this
further abstraction step. Apart from using the most general array type int[*],
the rank-generic instance is surprisingly similar to the rank-specific one. The
main issue is an appropriate definition of the generator’s lower bound, i.e. a
vector of zeros whose length equals that of the shape expression. We achieve this
by multiplying the shape vector with zero.

So far, we expected argument arrays to be at least of the same shape. With a
rank-generic type, however, we must also consider argument arrays of different
rank. What would happen if we apply the subtraction operator to a 10-element
vector and a 5×5-matrix? The shapes of the argument arrays are, consequently,
[10] and [5,5], respectively. Assuming an implementation of the minimum
function along the lines of the subtraction operator discussed here, we obtain
[5] as the minimum of the two vectors. Thus, the with-loop defines a 5-element
vector whose elements are homogeneously defined as the subtraction of the cor-
responding elements from the argument arrays A and B. Since A is a vector and
we select using a 1-element index vector, selection yields a scalar. As array B
is a matrix, selection with a 1-element index vector yields a (row) vector. As
a consequence, the subtraction in the body of the with-loop does not refer to
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the built-in scalar subtraction, but recursively back to the rank-generic instance.
Whereas the type of this instance suggests to support a scalar and a vector argu-
ment, the definition inevitably leads to non-terminating recursion. We can easily
avoid this by defining two more overloaded instances of the subtraction operator
that cover the cases where one argument is scalar, as shown in Fig. 20.

int[*] (-) (int A, int [*] B)

{

shp = shape(B);

res = with {

(0*shp <= iv < shp) : A - B[iv];

}: genarray( shp , 0);

return res;

}

int[*] (-) (int[*] A, int B)

{

shp = shape(A);

res = with {

(0*shp <= iv < shp) : A[iv] - B;

}: genarray( shp , 0);

return res;

}

Fig. 20. Additional overloaded instances of the subtraction operator as they are found
in the SaC standard library

It is one of the strengths of SaC that the exact behaviour of array operations
is not hard-wired into the language definition. This sets SaC apart from all
other languages with dedicated array support. Alternative to our above solution
with the minimum shape, one could argue that any attempt to subtract two
argument arrays of different shape is a programming error as in Fortran-90
or Apl. The same could be achieved in SaC by comparing the two argument
shapes and raising an exception if they differ. The important message here is
that SaC does not impose a particular solution on its users: anyone can provide
an alternative array module implementation with the desired behaviour.

A potential wish for future versions of SaC is support for a richer type system,
in which shape relations like equality can be properly expressed in the array
types. For example, matrix multiplication could be defined with a type signature
along the lines of

double[a,c] matmul( double[a,b] X, double[b,c] Y)

This leads to a system of dependent array types that we have studied in the
context of the dependently typed array language Qube [28,29]. However, how
to carry these ideas over to SaC in the presence of overloading and dynamic
dispatch requires a plethora of future research.
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4.5 The Principle of Composition

The generic programming examples of the previous section open up an avenue
to define a large body of array operations by means of with-loops. For instance,
Fig. 21 shows the definition of a generic convergence check. Two argument arrays
new and old are deemed to be convergent if for every element (reduction with
logical conjunction) the absolute difference between the new and the old value
is less than a given threshold eps.

bool is_convergent (double [*] new , double [*] old , double eps)

{

shp = min( shape(new), shape(old));

res = with {

(. <= iv < shp) : abs(new[iv] - old[iv]) < eps;

}: fold( &&);

return res;

}

Fig. 21. Rank-generic definition of a convergence check

While defining the convergence check as in Fig. 21 is a viable approach, it lacks
a certain elegance: we indeed re-invent the wheel with the minimum shape com-
putation, that is actually only needed for the element-wise subtraction, for which
we have already solved the issue with the code shown in Fig. 20. A closer look
into the with-loop quickly reveals that we deal with a computational pipeline
of basic operations on array elements. This can be much more elegantly and
concisely expressed following the other guiding software engineering principle in
SaC: the principle of composition.

bool is_convergent (double [*] new , double [*] old , double eps)

{

return all( abs( new - old) < eps);

}

Fig. 22. Programming by composition: specification of a generic convergence check

As demonstrated in Fig. 22, the compositional specification of the conver-
gence check is entirely based on applications of predefined array operations from
the SaC standard library: element-wise subtraction, absolute value, element-
wise comparison and reduction with Boolean conjunction. This example demon-
strates how application code can be designed in an entirely index-, loop-, and
comprehension-free style.

Ideally the use of with-loops as versatile but accordingly complex language
construct would be confined to defining basic array operations like the ones used
in the definition of the convergence check. And, ideally all application code would
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solely be composed out of these basic building blocks. This leads to a highly
productive software engineering process, substantial code reuse, good readability
of code and, last not least, high confidence into the correctness of programs. The
case study on generic convolution developed in Section 5 further demonstrates
how the principle of composition can be applied in practice.

5 Case Study: Convolution

In this section we illustrate the ins and outs of SaC programming by means of a
case study: convolution. Following a short introduction to the algorithmic princi-
ple (Section 5.1) we show a variety of implementations of individual convolution
steps that illustrate the principles of abstraction and composition. (Sections 5.2–
5.5). Finally, we extend our work to an iterative process (Section 5.6).

5.1 Algorithmic Principle

Convolution follows a fairly simple algorithmic principle. Essentially, we deal
with a regular, potentially multidimensional grid of data cells, as illustrated in
Fig. 23. Convolution is an iterative process on this data grid: in each iteration
(often referred to as temporal dimension in contrast to the spatial dimensions
of the grid) the value at each grid point is recomputed as a function of the
existing old value and the values of a certain neighbourhood of grid points. This
neighbourhood is often referred to as stencil, and it very much characterises the
convolution.

Fig. 23. Algorithmic principle of convolution, shown is the 2-dimensional case with a
5-point stencil (left) and a 9-point stencil (right)

In Fig. 23 we show two common stencils. With a five-point stencil (left) only
the four direct neighbours in the two-dimensional grid are relevant. By includ-
ing the four diagonal neighbours we end up with a nine-point stencil (right) and
so on. In the context of cellular automata these neighbourhoods are often re-
ferred to as von Neumann neighbourhood and Moore neighbourhood, respectively.
With higher-dimensional grids, we obtain different neighbourhood sizes, but the
principle can straightforwardly be carried over to any number of dimensions.

Since any concrete grid is finite, boundary elements leaves essentially two
choices: cyclic boundary conditions and static boundary conditions. In the former
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case the neighbourship relation is defined round-robin, i.e., the left neighbour of
the leftmost element is the rightmost element and vice versa. In the latter case
the grid is surrounded by a layer of elements that remain constant throughout
the convolution process.

In principle, any function from a set of neighbouring data points to a single
new one is possible, but in practice variants of weighted sums prevail. The algo-
rithmic principle of convolution has countless applications in image processing,
computational sciences, etc.

5.2 Convolution Step with Cyclic Boundary Conditions

As a first step in our case study of implementing various versions of convolution
in SaC, we restrict ourselves to nearest neighbours and to the arithmetic mean
of these neighbour values as the compute function, i.e. a weighted sum where all
weights are identical. Furthermore, we use cyclic boundary conditions for now
and leave static boundary conditions for later. With these fairly simple convolu-
tion parameters, we aim at shape- and rank-generic SaC implementations that
are based on the software engineering principles of abstraction and composition.
Whenever possible we employ an index-free programming style that treats arrays
in a holistic way rather than as loose collections of elements.

double[.] convolution_step (double[.] A)

{

R = A + rotate( 1, A) + rotate( -1, A);

return R / 3.0;

}

Fig. 24. 1-dimensional index-free convolution step

With the code example in Fig. 24 we start with an index-free and shape-
but not rank-generic implementation of a single convolution step. The function
convolution step expects a vector of double precision floating point numbers
and yields a (once) convolved such vector. The implementation is based on the
rotate function from the SaC standard library. It rotates a given vector by a
certain number of elements towards ascending or descending indices. Rotation
towards ascending indices means moving the rightmost element of the vector (the
one with the greatest index) to the leftmost index position (the one with the
least index). This implements cyclic boundary conditions almost for free. Adding
up the original vector, the left-rotated vector and the right-rotated vector yields
the convolved vector. The only task left is the division of each element by 3.0 to
obtain the arithmetic mean. This implementation of 1-dimensional convolution
makes use of a total of five data-parallel operations: two rotations, two element-
wise additions and one element-wise division.
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double[*] convolution_step (double[*] A)

{

R = A;

for (i=0; i<dim(A); i++) {

R = R + rotate( i, 1, A) + rotate( i, -1, A);

}

return R / tod( 2 * dim(A) + 1);

}

Fig. 25. Rank-generic convolution step

We now generalise the one-dimensional convolution to the rank-generic con-
volution shown in Fig. 25. We use the same approach with rotation towards
ascending and descending indices, but now we are confronted with a variable
number of axes along which to rotate the argument array. We solve the problem
by using a for-loop over the number of dimensions of the argument array A,
which we obtain through the built-in function dim. In each dimension we ro-
tate A by one element towards ascending and towards descending indices. Here,
we use an overloaded, rank-generic version of the rotate function that takes
the rotation axis as the first argument in addition to the rotation offset and the
array to be rotated as second and as third argument, respectively.

The original argument array and the various rotated arrays are again summed
up as in the one-dimensional solution. To eventually compute the arithmetic
mean we still need to divide array R by the number of arrays we summed up. This
number can easily be obtained through the dim function, as shown in Fig. 25.
Since the SaC standard library currently restricts itself to defining arithmetic
operators on identical argument types, we must explicitly convert the resulting
integer to double using the conversion function tod. Of course, we could extend
the standard library by all kinds of type combinations, but we refrain from this
for two reasons. Firstly, it would substantially increase the size of the corre-
sponding module due to combinatorial explosion. Secondly, it would reduce the
programmer’s reflection on the types involved.

5.3 Convolution Step with Static Boundary Conditions

With a rank-generic, index-free convolution step for cyclic boundary conditions
at hand we aim at carrying over these ideas to the case of static boundary
conditions. For didactic purposes we again begin with the one-dimensional case
shown in Fig 26. While the signature of the convolution step function remains
as before, we now consider only the inner elements of the argument array A to
be proper grid points and all boundary elements to form the constant halo.

Implementation-wise, we simply replace the applications of the rotate function
in the code of Fig. 24 by corresponding applications of the shift function. The
shift function is very similar to the rotate function with the exception that
vector elements are not moved round-robin. Instead, elements moved out of the
vector on one side are discarded while default values are moved into the vector
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double[.] convolution_step (double[.] A)

{

conv = (A + shift( 1, A) + shift( -1, A)) / 3.0;

inner = tile( shape( conv) - 2, [1], conv );

res = embed( inner , [1], A);

return res;

}

Fig. 26. 1-dimensional convolution step with static boundary conditions

from the other side. The default value in the version of shift used here is zero;
other overloaded variants of the shift function in the SaC standard library
allow the programmer to explicitly provide a default value.

Unlike the cyclic boundary case, however, we are not yet done with the com-
putation in line 3. Treating all arrays in a holistic way, that computation includes
the boundary elements of the arrays in the computation. This is algorithmically
wrong as the halo elements shall remain constant throughout all iterations. To
achieve this, we explicitly “correct” the boundary elements in lines 5 and 6. We
do this by first creating the array of all inner elements (i.e. the “real” grid points)
and then embedding this array within the original array A. We make use of two
more functions from the SaC standard array library:

– double[*] tile( int[.] shp, int[.] offset, double[*] array)
yields the subset of array of shape shp beginning at index offset ;

– double[*] embed( double[*] small, int[.] offset, double[*] big )
yields an array of the same shape as big . The elements are those of big ex-
cept for the elements from index offset onwards for the shape of small

which are taken from small .

In Fig. 27 we generalise the one-dimensional convolution kernel with static
boundary conditions to a rank-generic implementation. We adopt the same ap-
proach as in the case of cyclic boundary conditions in Section 5.2 and make use
of a for-loop over the rank of the argument array. The 3-ary, multidimensional
variant of the shift function is an extension of the 2-ary, one-dimensional func-
tion used so far that is fully analogous to the corresponding extension of the
rotate function used previously.

The correction of the boundary elements can be carried over from the one-
dimensional to the multidimensional case with almost no change, thanks to the
rank-invariant definitions of the library functions tile and embed. The only
modification stems from the need to use a vector of ones whose length equals
the rank of the argument array. For any rank-specific implementation we could
simply use the corresponding vector constant as in Fig. 26, but for a rank-generic
solution we need a small trick: we multiply the shape vector of the argument
array by zero, which yields an appropriately sized vector of zeros, and then add
one to obtain the desired vector of ones.
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double[*] convolution_step (double[*] A)

{

conv = A;

for (i=0; i<dim(A); i++) {

conv = conv + shift( i, 1, A) + shift( i, -1, A);

}

conv = conv / tod( 2 * dim(A) + 1));

vector_of_ones = shape(conv) * 0 + 1;

inner = tile( shape(conv) - 2, vector_of_ones , conv );

res = embed( inner , vector_of_ones , A);

return res;

}

Fig. 27. Rank-generic convolution step with static boundary conditions

5.4 Red-Black Convolution

An algorithmic variant of convolution is called red-black convolution. In red-
black convolution the grid is bipartite with each grid point either belonging to
the red or to the black set. Convolution is then computed alternatingly on the
red and on the black grid points while the other values are simply carried over
from the previous iteration. Typically, the red and black sets are not randomly
distributed over the index set of the grid, but themselves follow some regular
alternating pattern along one or multiple axes.

double[*] redblack_step (bool [*] mask , double[*] A)

{

A = where( mask , convolution_step ( A), A);

A = where( !mask , convolution_step ( A), A);

return A;

}

Fig. 28. Red-black convolution

Fig. 28 shows a highly generic SaC implementation of a red-black convolu-
tion step where the choice of red and black grid points is abstracted into an
additional parameter in form of a Boolean mask. We consecutively apply the
convolution step function to the red and to the black elements by restricting
its effect using the where function from the SaC standard library:

– double[*] where( bool[*] mask, double[*] then, double[*] else )
yields the array of the same shape as the Boolean array mask whose elements
are taken from the corresponding elements of array then where the mask is
true and from else where not.
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The where function resembles the Fortran-90 language construct of the same
name: Our implementation of red-black convolution can easily be combined with
static and with cyclic boundary conditions.

5.5 Stencil-Generic Convolution

In all examples so far we have anticipated a direct-neighbour stencil, i.e., we
had two neighbours in the one-dimensional case, four neighbours in the two-
dimensional case, six neighbours in the three-dimensional case and so on. In this
final escalation step we aim at abstracting from the concrete shape of the stencil
and support arbitrary dynamic neighbourhoods. We return to cyclic boundary
conditions for simplicity, but the idea for correcting the boundary elements for
static boundary conditions, as introduced in Section 5.3 can be carried over
straightforwardly.

double[*] convolution_step (double[*] A, double[*] weights)

{

R = with {

( 0*shape(weights) <= iv < shape(weights) ) :

weights[iv] * rotate( shape(weights )/2-iv, A);

} : fold( +);

return R;

}

Fig. 29. Neighbourhood-generic, rank-generic convolution step

The convolution step function shown in Fig. 29 is parameterised over a
multidimensional array of weights. Although the type system of SaC does not
allow us to express this restriction formally, we anticipate that the argument
array A and the array weights have the same rank. For example, let us consider
to convolve a matrix. Then the weight matrix⎛

⎝0.0 0.2 0.0
0.2 0.2 0.2
0.0 0.2 0.0

⎞
⎠

would represent the 5-point stencil that we have used so far. The weight matrix
allows us to easily define any neighbourhood and, of course, to give different
weights to different neighbourship relations. The weight array is also not re-
stricted to three elements per axis; we could easily include neighbourship rela-
tions including the left-left neighbour, etc.

The algorithmic idea behind the code in Fig. 29 is a generalisation of the
approach taken so far using a for-loop over the rank of the argument array. We
use a with-loop over the shape of the weight array. For instance, the weight
matrix above would induce a 3×3 index space for the fold-with-loop. For each
element of this index space (i.e. for each element of the weight array) we rotate
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the argument array into the direction of that weight’s position in the array of
weights. Returning to the above example, we rotate the argument array one
element up and one element left for the upper left element of the weight matrix.
For the central element of the weight matrix (index [1,1]) we do not rotate the
argument at all, etc.

double[*] rotate( int[.] offsets , double [*] A)

{

for (i=0; i < min( shape(offsets )[0], dim(A))) {

A = rotate( i, offsets [i], A);

}

return A;

}

Fig. 30. Generically defined multidimensional rotation

The alert reader will have noticed that the rotation function used in Fig. 29
is again an overloaded variant of the rotation functions used so far; we show its
definition in Fig. 30. This function makes use of a vector of rotation offsets. The
first element of the offset vector determines the rotation offset along the first
axis of the argument array and so on. Accordingly, we use a for-loop over the
minimum of the length of the offset vector and the argument array rank. For
each rotation offset we apply the previous version of rotate on the corresponding
array axis. If the offset vector length is less than the argument array rank, trailing
axes of the argument array remain unrotated; surplus offsets are ignored. We
end up with a total of nine rotated and weighted arrays. The fold-with-loop
eventually sums them up using the overloaded element-wise plus operator on
arrays, which yields the convolved array.

5.6 Multiple Convolution Steps

Until now we have only looked at individual convolution steps. Convolution,
however, is an iterative process of such steps. In the simplest case the number of
iterations is given and thus known a-priori. Fig. 31 shows the SaC implementa-
tion of this scenario: we simply employ a for-loop to repeatedly apply individual
convolution steps to the grid.

Computing an a-priori known number of convolution steps is a typical bench-
mark situation. In practice, it is often relevant to continue with the convolution
until a certain fixed point is reached, i.e. continue until for no grid point the
current iteration’s value differs from the previous iteration’s value by more than
a given threshold. Fig. 32 shows our SaC implementation. As the number of
convolution steps to be performed is a-priori unknown, we use a do-while-loop.
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double[*] convolution (double [*] A, int iter)

{

for (i=0; i<iter; i++) {

A = convolution_step ( A);

}

return A;

}

Fig. 31. Convolution with given number of iteration steps

Of course, the argument array could in principle meet the convergence crite-
rion right away, which would call for a while-loop instead of a do-while-loop,
but we consider this a pathological case and, hence, stick to the do-while-loop.
As the loop predicate we use the is convergent function introduced in Sec-
tion 4.5. The convergence test needs to refer to both the old and the new version
of the data grid, hence we introduce the local variable A old.

double[*] convolution (double [*] A, double eps)

{

do {

A_old = A;

A = convolution_step ( A_old);

}

while (! is_convergent ( A, A_old , eps ));

return A;

}

Fig. 32. Convolution with convergence test

6 Case Study: Differentiation

Our second case study looks into numerical differentiation along one or two axes.
We begin with simple SaC definitions (Section 6.1). They motivate a language
extension of SaC called the axis control notation (Section 6.2). Finally, we apply
this notation to numerical differentiation (Section 6.3).

6.1 Differentiation in 1 and 2 Dimensions

In its simplest form numerical differentiation is based on a function, given as
a vector of function values, and the constant difference between two argument
values. The first derivation of the function is then defined as a vector that is one
element shorter than that representing the function itself. The values are the
differences between neighbouring function values divided by their distance.
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double[.] dfDx( double [.] vec , double delta)

{

return ( drop( [1], vec) - drop( [-1], vec) ) / delta;

}

Fig. 33. 1-dimensional numerical differentiation

Fig. 33 shows a straightforward implementation of 1-dimensional differenti-
ation as a SaC function dfDx. Rather than making use of a with-loop for its
definition we follow the SaC methodology and apply the principles of abstrac-
tion (Section 4.4) and composition (Section 4.5). The principle of abstraction
mainly materialises itself in the form of the function drop that we introduce
alongside its counterpart, the take function:

– double[*] drop( int[.] dv, double[*] a )
drops as many elements from each axis of the argument array a as given
by the drop vector dv . The first element of the drop vector determines how
many elements to drop from the outermost axis of the array and so on.
Positive drop values drop leading elements while negative drop values drop
trailing elements. If the length of the drop vector exceeds the rank of the
array, excess drop values are ignores; if the drop vector is shorter than the
rank of the array, trailing axes of the array remain untouched. Dropping
more elements than an array has along any axis results in zero elements
alongside that axis and in an overall empty result array.

– double[*] take( int[.] tv, double[*] a )
takes as many elements from each axis of the argument array a as given
by the take vector tv . All small prints are equivalent to those of the drop
function.

double[.,.] dfDy( double[.,.] mat , double delta)

{

return with {

(. <= xv <= .): dfDx( mat[xv], delta);

}: genarray( take( [1], shape( mat )));

}

double[.,.] dfDx( double[.,.] mat , double delta)

{

return transpose ( dfDy( transpose ( mat), delta));

}

Fig. 34. 2-dimensional numerical differentiation
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In the same way as a unary function can be represented as a vector of function
values, a binary function can be represented as a matrix of values. This gives
us two directions for numerical differentiation, typically referred to as x and y.
Fig. 34 shows SaC functions to differentiate a binary function with respect to
the first parameter (dfDx) and the second parameter (dfDy).

Differentiating a binary function with respect to the second parameter means
computing differences alongside the inner dimension of the matrix mat. In other
words we interpret the matrix as a column vector of row vectors, apply our 1-
dimensional differentiation function dfDx (Fig. 33) to each row vector and end
up with a column vector of derivatives. Differentiating a binary function with
respect to the first parameter (dfDx in Fig. 34) could be achieved in a similar
way, but we instead advertise the SaC methodology and define it based on the
dfDy function and matrix transposition.

6.2 Axis Control Notation

The definition of the function dfDy in the previous section represents a common
pattern in array programming that can be generalised as a three step process:

1. interpret a rank k array as an array of rank m of (equally shaped) arrays of
rank n with m + n = k;

2. individually apply some function to each of the inner arrays;
3. laminate the partial results to form the overall result array.

Fig. 35 illustrates this pattern by a 3-dimensional example. We start with a
4 × 4 × 4-cube of elements. We then (re-)interpret this cube as 4 × 4-matrix of
4-element vectors, apply some function individually to each of the 16 vectors
and laminate the 16 result vectors back into a 4 × 4 × 4-cube.

split
some
function laminate

Fig. 35. The split-compute-laminate algorithmic pattern

In Fig. 35 we assume the function to be uniform, i.e. shape-preserving. This is
not required, and Fig. 36 illustrates the split-compute-laminate principle with a
reduction operation. In this example we interpret the 4× 4× 4-cube as a vector
of four 4 × 4-matrices. In the second step each matrix is individually reduced
to a scalar value, and in the third step these scalar values are laminated into
a 4-element vector. While compute functions do not need to preserve the shape of
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split laminate
some
function

Fig. 36. The split-compute-laminate pattern with non-uniform function

the argument, they are nonetheless restricted: the shape of the result must not
depend on anything but the shape of the argument.

SaC provides specific support for the common algorithmic pattern of split-
compute-laminate through the axis control notation [30]. We sketch out the two
syntactic extensions in Fig. 37. First, we extend array selection such that an
index vector may contain dots instead of expressions. Semantically, a dot in
an index vector means to select all elements in the corresponding dimension of
the array selected from. This extension allows us to select entire subarrays of an
array not only in trailing dimensions (as with index vectors that are shorter than
the array’s rank), but in any choice of dimension. Note that vectors containing
dots are not first-class values, but are exclusively permitted in index position.

Expr ⇒ ...

| Expr [ SelVec ]
| { FrameVec -> Expr }

SelVec ⇒ [ DotOrExpr [ , DotOrExpr ]* ]

FrameVec ⇒ Id | [ DotOrId [ , DotOrId ]* ]

DotOrExpr ⇒ . | Expr

DotOrId ⇒ . | Id

Fig. 37. Syntax of axis control notation

The other extension shown in Fig. 37 is an expression in curly brackets that
defines a particular mapping from a set of indices represented by the vector left of
the arrow to a set of values defined by the expression on the right hand side of the
arrow. The extent of the index set is implicitly derived from the corresponding
variables appearing in index position in the right hand side expression.

We illustrate the axis control notation the very concise definition of the
transpose function shown in Fig. 38. The frame vector [i,j] defines a 2-
dimensional index space whose boundaries are given by the reversed shape of mat
through i and j appearing in index position on the right hand side. A complete
account of the axis control notation can be found in [30].
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double[.,.] transpose ( double [.,.] mat)

{

return {[i,j] -> mat[[j,i]]};

}

Fig. 38. Definition of matrix transpose with axis control notation

6.3 Differentiation with Axis Control Notation

In this section we demonstrate how the definitions of our differentiation functions
from Section 6.1 benefit from the axis control notation as shown in Fig. 39.
Both functions, dfDY and dfDx, clearly benefit from the axis control notation
that enables much conciser and more readable definitions. In particular, the
definitions now expose the same symmetries as the underlying mathematical
problem they implement. In dfDy we interpret the argument matrix as a column
vector of row vectors and apply 1-dimensional differentiation to each row vector.
In dfDx we interpret the argument matrix as row vector of column vectors and
accordingly apply 1-dimensional differentiation to each column vector.

double[.,.] dfDy( double[.,.] mat , double delta)

{

return {[i,.] -> dfDx( mat[[i,.]], delta)};

}

double[.,.] dfDx( double[.,.] mat , double delta)

{

return {[.,j] -> dfDx( mat[[.,j]], delta)};

}

Fig. 39. 2-dimensional differentiation with axis control notation

7 Modules

This section introduces the module system of SaC, that provides the necessary
features for programming-in-the-large. Since SaC only provides very few built-
in operations, the SaC standard library with its extensive support for high-
level array operations is instrumental for writing even short programs. Hence,
some familiarity with the module system is essential. We start with introducing
the concept of name spaces (Section 7.1). We proceed with explaining several
ways of making symbols from other name spaces available and discuss their
differences in the context of function overloading (Sections 7.2 and 7.3). At last,
we show how to write modules and make symbols available to other name spaces
(Section 7.4).
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7.1 Name Spaces

Name spaces are a common mechanism to resolve name clashes when symbols
with the same name are defined in different modules of an application. In SaC
every module defines a name space. Any program (featuring a main function),
adds a name space main. In a multi-module application any symbol can uniquely
be identified by its qualified name consisting of the name space and the symbol
name connected by a double colon (as in C++).

double , double sincos( double val)

{

return (Math ::sin(val), Math ::cos(val));

}

Fig. 40. Using symbols from other name spaces with qualified identifiers

Fig. 40 shows a simple example: we define a function sincos that simultane-
ously yields the sine and the cosine of a given value by applying the correspond-
ing individual functions from the SaC standard library, more precisely the Math
module. Functions sin and cos are identified by their qualified names.

7.2 The Use Directive

Qualified names quickly become unhandy if symbols are frequently used, in par-
ticular when names are not as short as in the previous example. Therefore, SaC
supports ways to automatically resolve name spaces and let the compiler gener-
ate qualified identifiers internally. The programmer, still, needs to define a search
space for the compiler to look for symbols. By means of the directive

use name_space all;

preceding all definitions in a module/program all symbols defined in the given
module are made known locally. With this technique our sincos function can
be re-written as in Fig. 41.

use Math: all;

double , double sincos( double val)

{

return (sin(val), cos(val));

}

Fig. 41. Making all symbols from another module available in the current name space
with the use directive

Symbols must not have multiple definitions within the search space as that
would make their resolution ambiguous. An exception are functions with different
argument counts or different argument base types. In the presence of overloading
such functions are considered different symbols.
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Nonetheless, more stringent control over which symbols to make available
from what modules is required in practice. Therefore, the key word all in the
use-directive can be replaced by a comma-separated list of identifiers embraced
in curly brackets. Alternatively, the key words all except followed by a list of
symbols allows us to explicitly exclude a set of named symbols from the search
space. Fig. 42 illustrates these features by a further variation of the running ex-
ample. We now explicitly choose the symbols sin and tan from the Math module
while all other math support comes from an alternative FastMath module.

use Math: {sin , tan};

use FastMath : all except {sin , tan};

double , double sincos( double val)

{

return (sin(val), cos(val));

}

Fig. 42. Making specific symbols from different name spaces available in the current
name space with the qualified use directive

Functions can only be added to or removed from the symbol search space
by their name. The module system does currently not distinguish overloaded
instances of a function based on the number or the types of parameters.

7.3 The Import Directive

The use-directive adds symbols to the search space of the SaC compiler. While
very handy in practice, it needs to be used with some care in order to avoid
ambiguities (and thus compiler error messages) in the resolution of function
symbols. Such an ambiguity arises whenever the same function name is defined
in two name spaces, and both are used from a third name space. If the two
function definitions differ in the number or the base types of parameters, function
applications in the third name space can still be disambiguated. In contrast,
purely shapely overloading can generally not be resolved at compile time, but
warrants a runtime decision. Combining multiple shapely overloaded instances of
the same function across name space boundaries, thus, may change the meaning
of a function a-posteriori, potentially violating the intentions of the developers of
the original modules. Therefore, we disallow using shapely overloaded functions.

Nonetheless, shapely overloading across module boundaries when used cor-
rectly and consciously, can be a very powerful mechanism, and the import-
directive supports exactly this. Whereas the use-directive makes symbols from
another name spaces accessible in the current name space, the import-directive
clones symbols from other name spaces in the current name space. As a conse-
quence, the compiler constructs a completely new dispatch tree that takes all
imported instances as well as the locally defined instances equally into account.
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import foomod: {foo};

int [42] foo( int[42] x) { ... }

int[.] foo( int[.] x) { ... }

int bar( int[*] a)

{

...

b = foo( a);

...

}

Fig. 43. Shapely overloading across name spaces with the import-directive

Fig. 43 illustrates this be means of a small example. We first import the
potentially already overloaded definition of foo from the name space foomod.
Afterwards, we further overload the function foo with two more definitions, one
for integer vectors of length 42 and one for integer vectors of arbitrary length.
When we dispatch the application of foo in the body of function bar all instances
of foo are equally considered, regardless whether they are locally defined or
imported. The import-directive supports the same syntactic variations as the
use-directive; both directives can be freely interspersed.

7.4 Defining Modules

A SaC module differs from a program in two aspects: the absence of a main
function and a module header consisting of the key word module, the module
name and a semicolon. Fig. 44 shows a simple example. We pick our convolution
case study from Section 5 up and provide a module Convolution defining two
overloaded instances of a function convolution computing either a fixed number
of iterations or a variable number of iterations with convergence check as in
Figs. 31 and 32, respectively. Before actually defining the new function instances,
however, we need to make a number of functions defined elsewhere available that
we need to define convolution, e.g. the various implementations of individual
convolution steps or the convergence check. And of course, we require the basic
array support from the standard library. The choice of selective or general use or
import of symbols into the current name space is mainly motivated to showcase
the various syntactic options.

The most interesting aspect of a module is the question which symbols are
made available outside and which are kept hidden within the module . Two
directive, provide and export, give programmers fine-grained control over this
question. By default any symbol defined in a module is only accessible in the
module itself. The provide directive makes symbols available to be used in
other name spaces; the export directive makes symbols available for both use
or import. Thus, the owner of a module decides whether or not functions can
be shapely overloaded later with all consequences on semantics. The provide
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module Convolution ;

use Array: all;

import ConvolutionStep : all;

use Convergence : {is_convergent };

provide all except {convolution };

export {convolution };

double[*] convolution (double [*] A, int iter) {...}

double[*] convolution (double [*] A, double eps) {...}

Fig. 44. Example of a module implementation that bundles the two generic convolution
functions developed in Section 5.6

and export directives support the same features for symbol selection as the
corresponding use and import directives.

In the example of Fig. 44 we export the two instances of the convolution
function. More for didactic purposes we choose also to provide all other symbols
defined in the current module. Note that we import (not use) the symbols from
module ConvolutionStep. As a consequence, they are cloned in the current
module and hence can be provided as genuine symbols of module Convolution.
Again, our example rather illustrates the various options our module system
provides; in practice one would rather only provide the convolution functions.

8 Input and Output

In this chapter we sketch out the principles of SaC’s support for input/output
in particular and for stateful computations in general. We begin with the user
perspective on basic file I/O (Section 8.1), then shown how imperative-appearing
I/O constructs can safely be integrated into the functional context of SaC (Sec-
tion 8.2) and conclude with a complete I/O example with proper error checking
and handling (Section 8.3).

8.1 Basic File I/O

Integration of I/O facilities into SaC is guided by two seemingly conflicting
design principles. On the one hand, we aim at extending to look-and-feel of C
programming to I/O-related SaC code; on the other hand, it is crucial to retain
SaC’s status as a pure functional language on the semantic level and not to
restrain any optimisation potential.

Just as with the language kernel, programmers with a background in imper-
ative programming should not be bothered by the conceptual troubles of ma-
nipulating the state of devices in a state-free environment. We certainly do not
want our programmers to familiarise themselves with theoretically demanding
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concepts such as monads [31,32] and uniqueness types [33,34]. And we definitely
do not want to rely on our programmers being experts in category theory to
write a hello world program in SaC. Instead, any C programmer should be able
to write I/O-related code in SaC even without the need to learn a new API.

import StdIO: all;

import ArrayIO: all;

int main ()

{

a = 42;

b = [1,2,3,4,5];

errcode , outfile = fopen( "filename ", "w");

fprintf( outfile , "a = %d\n", a);

fprint( outfile , b);

fclose( outfile);

return 0;

}

Fig. 45. Example for doing file input/output in SaC

Fig. 45 shows a simple file I/O example written in SaC. For now, we ignore
all potential semantic issues of the code and merely emphasise the similarities
between SaC and C proper. First, we import all symbols from the two relevant
SaC modules of the standard library. In the main function we begin with opening
a file using a clone of C’s fopen function. Like its C counterpart fopen expects
two character strings as arguments. The first denotes the name of the file to be
opened, and the second determines the file mode. In the example, we open the
file filename for writing. The supported file modes are identical with C proper.
In fact, the SaC fopen function is merely a wrapper for the C fopen function
called through SaC’s foreign language interface [35].

Unlike C, the SaC fopen function makes use of the support for multiple
return values and yields two values: a file handle (outfile) and an error code
(errcode). For the sake of simplicity, we expect the opening of the file to succeed
and ignore the error code for now. We will discuss a complete example with
proper error checking in Section 8.3.

Having opened the file, we write some text and a scalar value to the file using
the fprintf function, that again is a clone of the corresponding C function. Next
we write an entire array to the file using the SaC-specific function fprint. Since
the C fprintf family of functions have no support for array-related conversion
specifiers, we add the fprint family of functions for array output. Finally, we
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close the file using the usual fclose function. The example demonstrates how
well we achieve our first aim: supporting I/O in way that is familiar to C pro-
grammers.

8.2 Imperative I/O vs Functional Semantics

Right now, it seems much less clear how we achieve our second aim: functionally
sound I/O. After all, many I/O functions do not even yield a value and would
be dead code in a purely functional interpretation. Worse, the textual order of
statements now matters: there is an implicit execution order not enforced by
data dependencies. The solution is surprisingly simple, nonetheless. In analogy
to the interpretation of C-style loops as syntactic sugar for tail recursion code
like in Fig. 45 is nothing but an imperative illusion of a purely functional code.
Fig. 46 shows its functional interpretation. In essence, the compiler automatically
establishes the necessary data dependencies that describe the intended execution
order in a functionally sound way.

FileSystem , int main( FileSystem theFileSystem )

{

a = 42;

b = [1,2,3,4,5];

theFileSystem , errcode , outfile

= fopen( theFileSystem , "file_name ", "w");

outfile = fprintf( outfile , "a = %d\n", a);

outfile = fprint( outfile , b);

theFileSystem = fclose( theFileSystem , outfile );

return (theFileSystem , 0);

}

Fig. 46. Functional interpretation of the I/O code in Fig. 45, compiler-inserted inter-
mediate code typeset in italics

The main function has an extended signature: it now receives a representation
of the file system and yields, in addition to the usual integer return code, a
potentially modified representation of the file system. Likewise, all I/O-related
functions in the body of main receive additional arguments and yield additional
values. The fopen function takes the file system as an additional argument
and yields a modified file system (representation). Assuming opening of the
file succeeds, the new file system differs from the old file system in exactly this
property: the named file was closed and is now open for writing.
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The two output functions fprintf and fprint take the file handle as before,
but additionally return the file handle. This creates a data dependency from
the call to fopen over fprintf and fprint to the final closing of the file by
fclose. In analogy to fopen, the fclose function takes the file system as an
additional parameter and yields a modified file system, in which the file is no
longer open but closed. This final state of the file system is eventually returned
to the execution environment.

The SaC compiler actually does these transformations to deal with a proper
functional representation of code when it comes to optimisation. Conceptually
and technically, our solution is based on a variant of uniqueness types [34,36] as
developed for I/O in the functional language Clean. The types of theFileSystem
and outfile are uniqueness types, and one can easily verify that every definition
(left hand side use) of one these variables has exactly (at most) one reference
(right hand side use). The main difference to uniqueness types in Clean lies in the
fact that the entire conceptual complexity of dealing with state in a functional
context is hidden in a number of modules from the SaC standard library (and
of course corresponding compiler support). Actually doing I/O in an application
program is as simple as in imperative languages while under the hood everything
is safe and clean. The non-expert programmer does not need to understand the
ins and outs of safe functional I/O.

The SaC compiler does check the uniqueness property, but for the normal
user it is close to impossible to produce a uniqueness violation. As long as a
programmer merely makes use of the various I/O modules of the SaC standard
library, the automatic (internal) expansion of code along the lines of Fig. 46 prior
to uniqueness checking almost inevitably leads to correct code. Thus, program-
mers are usually not bothered with cryptic uniqueness-related error messages. In
some cases the uniqueness checker can, however, detect common programming
errors, e.g. missing or repeated closing of files. A more complete coverage of SaC
I/O can be found in [36].

A particular issue is the combination of input/output, where a particular exe-
cution order is important, with SaC’s data-parallel with-loops, where a concrete
execution order is deliberately not guaranteed, nor even defined. Due to space
limitations we refer the interested reader to [37] for a comprehensive discussion
of this aspect of SaC.

8.3 File I/O with Error Checking

In our initial I/O example in Fig. 45 we deliberately skipped all error checking
and crossed fingers that opening the file succeeds. We now extend the simple
file I/O example with proper error checking making use of the SysErr module
from the standard library. This module essentially replaces C’s errno variable.
Fig. 47 shows the complete example.

We remember that the fopen function yields an error code in addition to
the file handle Unlike in Fig. 45, we now check this error code before making
use of the file handle. The fail function discriminates success codes from failure
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import StdIO: all;

import ArrayIO: all;

import SysErr: all;

int main ()

{

a = 42;

b = [1,2,3,4,5];

errcode , outfile = fopen( "file_name ", "w");

if (fail(errcode )) {

fprintf( stderr , "%s\n", strerror ( errcode ));

}

else {

fprintf( outfile , "a = %d\n", a);

fprint( outfile , b);

fclose( outfile );

}

return 0;

}

Fig. 47. Complete I/O example with error checking

codes and yields a Boolean value suitable for use in a predicate. Upon failure
we print a message to stderr. Just as in C, stdout, stdin and stderr are file
handles that are always open for writing or reading. In SaC they are so-called
global objects : stateful entities that follow the same visibility and scoping rules as
functions. They can be accessed anywhere in function bodies and are subject to
use/import from other name spaces and provide/export to other name spaces.
For more information on global objects we refer the interested reader to [36].
The strerror function is identical to its C counterpart and yields a problem
description in the string form. Note that we do not close the file in the first
branch as we have not (successfully) opened it either. The second branch is
analogous to Fig. 45.

9 Foreign Language Interfaces

This section describes SaC’s foreign language interfaces. They allow SaC code
to interoperate with existing or yet to be developed C code. Two such interfaces
exist that are equally important in practice: the c4sac interface allows SaC
code to call C functions (Section 9.1) while the sac4c interface supports the
compilation of SaC modules such that they can be embedded within larger C
applications (Section 9.2).
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9.1 Calling C from SAC

The c4sac interface is an indispensable feature for making SaC communicate
with the outside world. Most I/O functions introduced in Section 8 are merely
SaC wrappers for the corresponding C functions. It would not only be very
cumbersome to re-implement I/O support from scratch in SaC, we would also
inevitably re-invent the wheel and simply waste engineering effort. Instead, we
aim at reusing existing implementations as much as possible and seek to excel
in core areas of SaC.

external double cos( double x);

#pragma linkwith "m"

#pragma linksign [0,1]

external double , double sin_cos( double x);

#pragma linksign [1,2,3]

#pragma linkobj "src/Math/mymath"

external syserr , File fopen( string filename , string mode );

#pragma linkobj "src/File/fopen.o"

#pragma effect theFileSystem

#pragma linkname "SACfopen "

#pragma linksign [0,1,2,3]

external int , ... scanf( string format);

#pragma linkobj "src/File/scanf.o"

#pragma effect stdin

external void fprint( File &file ,

int dim , int[.] shp , int[*] array)

#pragma refcounting [4]

Fig. 48. Examples of foreign function declarations from the SaC standard library

Fig. 48 illustrates the c4sac foreign language interface by three examples from
different modules of the SaC standard library. Foreign function declarations
like the ones in Fig. 48 may appear interspersed with SaC function definitions
throughout SaC modules. In principle, a pure declaration starting with the key
word external followed by standard SaC function header and terminated by a
semicolon suffices. In practice, the SaC compiler often needs some more infor-
mation to seamlessly integrate an imperative foreign function into the functional
world of SaC. Several pragmas serve this purpose.

Our first example is the cos function from SaC’s Math module, obviously a
foreign declaration for the corresponding cos function from the C math library
libm. Most math functions are easy targets for SaC’s foreign language inter-
face as they directly expose a functional interface computing a new scalar value
from an existing scalar value with call-by-value parameter passing. Nonetheless,
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someone needs to tell the SaC compiler to link an executable program with libm
as soon as the cos function is used anywhere. This is done with the linkwith-
pragma.

The linksign-pragma is more complex. It describes a mapping of SaC pa-
rameters and results to those of the corresponding C function. A vector defines
for each result and parameter in textual order from left to right onto which
position of the C function it is mapped. This pragma allows us to map C func-
tions that return multiple values through reference parameters into proper SaC
functions with multiple return values. The numbers in the vector stand for the
positional parameters of the corresponding C function, where zero represents the
explicit return position.

So, in the case of the sin function the linksign-pragma merely specifies
the expected, i.e. the SaC function is mapped to a C function with the same
function type. To illustrate the linksign-pragma Fig. 48 also contains a foreign
declaration of an artificial function sin cos that simultaneously yields the sine
and the cosine of a given value. While in SaC this can elegantly by expressed
with two return types, there is no equivalent C type. The linksign-pragma
makes the SaC compiler expect the existence of a C function

void sin_cos( double *sin , double *cos , double x)
and generate corresponding function calls. It is even possible to map one return
value and one parameter onto the same parameter location of the C function.
In this way C functions that take a pointer and manipulate the data behind the
pointer can properly be used from SaC.

Unlike sin and cos, no function sin cos is defined in libm. Hence, the SaC
compiler needs to be informed where to locate code order to generate appropriate
linker calls. This is the purpose of the linkobj-pragma.

The third declaration in Fig. 48 makes the fopen function, extensively dis-
cussed in Section 8.1, available in SaC. The effect-pragma tells the SaC
compiler that this function makes an implicit side effect on the global object
theFileSystem. This information is essential for the compiler to generate ex-
plicit data dependencies as shown in Section 8.2.

More adaptation between C and SaC is required due to the different ap-
proaches to error reporting. The SaC fopen function explicitly yields an error
condition while the C fopen function yields NULL and sets the global errno
variable. This difference requires a thin wrapper layer implemented in C. This
wrapper can obviously not be named fopen. Thus, the linkname-pragma allows
us to manipulate the name of the function that is actually called by the SaC
compiler in place of fopen. The linksign-pragma again merely describes the
default: the error condition is returned via the C function’s result while the file
handle is implemented as a reference parameter in the first parameter position
and the other parameters follow in order.

The foreign declaration of the scanf function demonstrates how variable argu-
ment lists from C are mapped to SaC. Three dots on the left hand side indicate
that scanf yields an unknown number of results in addition to the usual inte-
ger value returned by C’s scanf function. These are always mapped to trailing
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reference parameters of the corresponding C function and, thus, to the expected
type signature of scanf in C.

Our last example shows the declaration of a rank-generic print function for
arrays. We use a function like this to implement the fprint function for arrays
that we used throughout our examples in Section 8. Here, we expose the struc-
tural properties of the argument array explicitly. The ampersand marks the first
parameter as a reference parameter. This triggers the addition of a correspond-
ing result value as explained in Section 8.2. The refcounting-pragma declares
the function to take care of reference counting for the fourth argument, i.e. the
array to be printed. In this case the anticipated prototype of the C function
changes such that 2 C parameters implement the one SaC parameter, the first
being a pointer to the array itself (in flat, contiguous representation), the other
being a pointer to an integer number that exposes the reference counter of the
array. While this feature obviously requires in-depth understanding of the SaC
memory management subsystem, it allows the expert user to safely implement
destructive array updates and take similar advantages of reference counting as
the SaC compiler itself does. In Section 10.4 we explain SaC memory manage-
ment in greater detail.

With the facilities of the c4sac language interface we have made most of the
standard C library functions from libc and libm available in SaC. These are
extended by a range of array-specific functions implemented in C, e.g. for inout
and output of arrays.

9.2 Calling SAC from C

Equally important to the c4sac interface, though for different reasons, is the
sac4c interface that makes entire SaC modules available within otherwise C-
implemented applications. Of course, we promote to use SaC to implement whole
applications, but we must acknowledge that transition to SaC is substantially
eased if programmers can choose to only implement parts of an application in
SaC. This also allows us to concentrate on application aspects like compute-
intensive kernels, for which SaC is tailor-made, and avoid engineering effort to
be directed into directions that are not the core of our research, say for example
support for GUI-based applications.

In principle, any standard SaC module can be used from C code, but it needs
some mending to expose and publish a C-compatible interface. For this purpose
we provide a separate tool as part of the SaC installation: sac4c. This tool
takes a compiled SaC module as an argument and generates among others a C
header file with the type and function declarations exposed by the module. Fur-
thermore, sac4c generates the necessary linker information regarding all directly
and indirectly needed SaC modules as well as all further object files dependent
through the c4sac interface.

Fig. 49 shows a simple example of C code making use of the Convolution
module defined in Section 7.4. At first, we include two header files, one pro-
viding the necessary generic declarations of the sac4c interface, the other being
generated by the sac4c tool. In the example we compute 99 convolution steps
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#include "sac4c.h"

#include "Convolution.h"

int main( int argc , char *argv [])

{

double *matrix;

SACarg *arg , *iter , *res;

int rank;

matrix = C_code_that_creates_matrix( 1024, 1024);

SACinit( argc , argv);

arg = SACARGconvertFromDoublePointer( matrix , 2, 1024, 1024);

iter = SACARGconvertFromIntScalar( 99);

Convolution__convolution2( &res , arg , iter);

rank = SACARGgetDim( res);

assert( rank ==2);

matrix = SACARGconvertToDoubleArray( res);

plot( matrix );

SACfinalize ();

return 0;

}

Fig. 49. Example C code making use of the sac4c foreign language interface

on a 1024 × 1024 double precision floating point matrix. Before starting any
computations, however, we must initialise the SaC runtime system by a call to
the SACinit function; upon completion the runtime system should be shutdown
by a call to SACfinalize.

At the center of Fig. 49 we can identify the call to our SaC-implemented
convolution function. The C function name has automatically been derived from
the SaC module name and the SaC function name with two underscores in
between (double underscores are not permitted in SaC identifiers). The trailing
number 2 helps to resolve SaC function overloading with different arity and
declares the function to be binary. The C prototype of the function is

void Convolution__convolution2(

SACarg **res , SACarg *mat , SACarg *iter );

Functions made available through the sac4c interface are always void-functions
and exchange arguments and results with the C world through a dedicated ab-
stract type SACarg. This type helps us to expose SaC overloading both on base
type and on shape to the C world. The sac4c interface comes with a range of func-
tions that convert C arrays (contiguous, uniform chunks of memory) into SaC
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arrays and vice versa. Towards SaC the naked C pointer is equipped with SaC-
style multidimensional shape information. On the way back structural properties
of result arrays can be queried and, eventually, flat C arrays extracted for fur-
ther analysis or processing. C arrays handed over to SaC must not be touched
thereafter; C arrays obtained from SaC are guaranteed to be alias-free.

10 Compilation Technology

In this section we discuss the fundamental challenges of compiling SaC source
code into competitive executable code for a variety of parallel computing ar-
chitectures and outline how compiler and runtime system address these issues.
Following an overview of the compiler architecture (Section 10.1) we concentrate
on type inference and specialisation (Section 10.2), optimisation (Section 10.4)
and code generation for various parallel architectures (Section 10.5). In place of
a proper evaluation, Section 10.6 provides an annotated bibliography covering
programmability, productivity and performance issues across a wide range of
problems and target architectures.

10.1 The SAC Compiler at a Glance

Despite the intentional syntactic similarities, SaC is far from merely being a
variant of C. SaC is a complete programming language, that only happens to
resemble C in its look and feel. A fully-fledged compiler is needed to implement
the functional semantics and to address a series of challenges when it comes to
achieving high performance.

Fig. 50 shows the overall internal organisation of the SaC compiler sac2c. It
is a many-pass compiler around a central slowly morphing abstract intermedi-
ate code representation. We chose this design to facilitate concurrent compiler
engineering across multiple individuals and institutions. Today, we have around
200 compiler passes, and Fig. 50 only shows a macroscopic view of what is really
going on behind the scenes. The SaC compiler, however, is very verbose with
respect to its efforts: the interested programmer can stop compilation after any
pass and have the internal representation printed as annotated SaC source code.

As a first step, usual lexicographic and syntactic analyses transform textual
source code into an abstract syntax tree. All remaining compilation steps work
on this internal representation, that is subject to a number of lowering steps.
Over the years, we have developed a complete, language-independent compiler
engineering tool suite, that has successfully been re-used in other projects [38]
as well as in a series of courses on compiler construction at the University of
Amsterdam. In the following, however, we leave out such engineering concerns
and rather take a conceptual view on the SaC compilation process.

The first major code transformation shown in Fig. 50 is named functionalisa-
tion. Here, we turn the imperative(-looking) source code into a more functional
representation. For instance, C-style branches turn into functional condition-
als, and C-style loops become proper tail-recursive functions, as explained in
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Fig. 50. Organisation of the compilation process

Section 2.2. Likewise, we augment state-based code with the missing data de-
pendencies, as outlined in Section 8.2. All these transformations are eventually
undone prior to code generation in a de-functionalisation step.

10.2 Type Inference and Specialisation

This part of the compiler implements the array type system outlined in Sec-
tion 4.1. It annotates types to local variables and checks type declarations pro-
vided. Furthermore, the type inference system resolves function dispatch in the
context of subtyping and overloading. Where possible function applications are
dispatched statically; where necessary appropriate code is generated to make the
decision at runtime. More information on this aspect of the SaC compiler can
be found in [39].

The other important aspect handled by this part of the compiler is function
specialisation. Shape- and rank-invariant specifications are a key feature of SaC.
It is sort of obvious that the less we know at compile time about structural prop-
erties of arrays, the less efficiently will the generated code perform at runtime.
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We are faced with the classical trade-off between abstraction and performance.
Specific concerns are, for instance, how to generate code to operate on arrays
whose rank is unknown at compile time and, hence, for whom no static nesting
of loops can be derived, or how to generate efficient code from lists of generators
when cache hierarchies demand arrays to be traversed in linear storage order.

From a software engineering point of view, all code should be written in a
rank-generic (AUD) or at least shape-generic (AKS) way. From a compiler per-
spective, however, shape-specific code offers much better optimisation opportu-
nities, can do with a much leaner runtime representation and generally shows
considerably better performance. A common trick to reconcile abstract program-
ming with high runtime performance is specialisation. In fact, the SaC compiler
aggressively specialises rank-generic code to rank-specific (shape-generic) code
and again shape-generic code into shape-specific code.

double[*] convolution (double [*] A, int iter) {...}

double[*] convolution (double [*] A, double eps) {...}

specialize convolution (double [1024 ,1024] A, int iter)

specialize convolution (double [1024 ,1024] A, double eps)

Fig. 51. Helping the compiler with specialisation directives: while both instances of the
convolution function (see Section 5.6) are defined in a rank-generic way, the compiler
is advised to generate specialisations for 1024 × 1024-matrices

Specialisation can only be effective to the extent that rank and shape infor-
mation is somehow accessible by the compiler. While sac2c makes every effort
to infer the shapes needed, there are scenarios in which the required informa-
tion is simply not available in the code. For instance, argument arrays could be
read from files. Other common examples arise from any use of the sac4c for-
eign language interface described in Section 9.2. Hence, full compiler support for
generating shape-generic and rank-generic executable code cannot be avoided.

More than occasionally, however, programmers do know or can at least make
an educated guess as to which array shapes will be relevant at runtime. Spe-
cialisation directives, as shown in Fig. 51, allow us to give hints to the compiler
which shapes will be relevant at runtime without compromising the rank- and
shape-generic programming methodology and code base. The compiler creates
the recommended specialisations in addition to those that it would generate by
itself and transparently integrates them into the function dispatch mechanism.

The code in Fig. 51 completes our running example on convolution. Starting
out in Section 5.6 we defined the two instances of the convolution function that
either compute a given number of iterations or continue to iterate until a given
convergence threshold is reached. In Section 7.4 we showed how these functions
can be abstracted into a SaC module. We then demonstrated in Section 9.2
how this SaC module can be made available to be used from a C-implemented
application. In the example of Fig. 49 we ran convolution on 1024×1024-matrices.
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In this scenario the shape of the array to be convolved is statically known in the
C code, but there is no way for the SaC compiler to know. Hence, it is forced to
execute a rank-generic implementation of convolution, which is likely to deliver
poor performance. The specialisation directives of Fig. 51 turn the tide and make
the sac4c interface dynamically select the highly optimised binary convolution
code for 1024 × 1024-matrices.
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Fig. 52. Architecture of the SaC adaptive compilation framework

There are a number of scenarios, however, that rule out the helping hand of
the programmer as well. For instance, the provider of some module and the user
of that module could simply be distinct, or the nature of an application rules
out the availability of shape information until the application is actually run.
To address these cases we have devised the adaptive compilation infrastructure
sketched out in Fig. 52.

The essential idea is to postpone specialisations until application runtime.
When generic functions execute, they file a specialisation request that includes
the full set of array shapes appearing in the concrete application. One or more
specialisation controllers asynchronously take care of such requests, retrieve the
partially compiled intermediate code from the corresponding SaC (binary) mod-
ules, run essential parts of the SaC compilation tool chain with all knowledge
available at application runtime and eventually generate a specialised and highly
optimised binary implementation of the function that initiated the request.

The running application is then dynamically linked with that new code, and
the function dispatch mechanism is updated to include the new specialisation.
When the same function is applied again to arguments of the same shapes, the
specialised implementation will be chosen by the dispatch mechanism instead of
the generic one. The whole approach is based on the (realistic) assumption that
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in many applications the number of different array shapes actually appearing is
limited, even though at compile time no educated guess can be made on which
shapes may and may not be relevant. A complete description and evaluation of
our adaptive compilation framework can be found in [40]

10.3 High-level Optimisations

As apparent from a short glimpse at Fig. 50, high-level program optimisations
constitute a major part of the SaC compiler and account for a substantial frac-
tion of compiler engineering. Only the most prominent and/or relevant trans-
formations are actually included in Fig. 50. They can coarsely be classified into
two groups: (variations of) standard textbook optimisations and SaC-specific
optimisations related to arrays.

The compositional programming methodology advocated by SaC creates a
particular compilation challenge. Without dedicated compiler support it inflicts
the creation of many temporary arrays at runtime, which adversely affects per-
formance: large quantities of data must be moved through the memory hierar-
chy to perform almost negligible computations per array element. We quickly
hit the memory wall and see our cores mainly waiting for data from memory
rather than computing. With individual with-loops as basis for parallelisation,
compositional specifications also incur high synchronisation and communication
overhead.

As a consequence, the major theme of the array optimisation lies in condens-
ing many light-weight array operations, more technically with-loops, into much
fewer heavy-weight with-loops. Such techniques universally improve a number
of ratios that are crucial for performance: the ratio between computations and
memory operations, the ratio between computations and loop overhead and,
in case of parallel execution, the ratio between computations and synchronisa-
tion and communication overhead. We identified three independent optimisation
cases and address each one with a tailor-made program transformation:

– with-loop-folding [41] identifies computational pipelines where the result
of one with-loop is referenced in a subsequent with-loop. If so, the ref-
erence in the second with-loop is replaced by the corresponding element
definition from the first with-loop. Multi-generator with-loops and offset
computations on index vectors make this a non-trivial undertaking. A good
example is the convergence check in Fig. 22. Naive compilation would yield
three temporary intermediate arrays before the final reduction is computed.
With-loop-folding transforms the code into a single with-loop similar to
the one shown in Fig. 21.

– with-loop-fusion [42] aims at with-loops that compute (data-)independent
values based on a common or overlapping argument set. A typical exam-
ple would be searching for the least and for the greatest value in an ar-
ray. Naive compilation would yield one with-loop each, and the common
argument array would be pumped through the entire memory hierarchy
twice. With-loop-fusion, as the name suggests, fuses such with-loops into a
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single multi-operator with-loop traversing argument arrays only once. For
instance, with-loop-fusion manages to fuse the convolution step and the
convergence check in Fig. 32 into a single with-loop after properly resolv-
ing the data dependency between the convolution step and the convergence
check

– with-loop-scalarisation [43] joins nested with-loops, where the element value
of an outer with-loop is itself a with-loop-defined array. Naive compilation
would materialise a temporary array for each index of the outer with-loop.
Arrays of complex numbers, for instance, lead to this situation as each com-
plex number itself again is an array, i.e. a 2-element vector (see Section 4.3).

These optimisations are essential for making the compositional programming
style advocated by SaC feasible in practice; a survey can be found in [44].

Other array-specific optimisations aim at avoiding the creation of small vec-
tors used for indexing purposes (index vector elimination [45]) or optimise the
cache utilisation in the context of densely stored multi-dimensional arrays (array
padding [46]) to name just two. Moreover, the SaC compiler puts considerable
effort into compiling complex generator sets of with-loops, potentially with mul-
tiple strided generators, etc, into an abstract representation that traverses the
involved arrays in linear storage order whenever possible. This technique [47] is
crucial to effectively utilise cache hierarchies essential for achieving good perfor-
mance on modern systems.

The textbook optimisations first and foremost act as enablers of the array-
specific optimisations. They create larger optimisation contexts (e.g. function in-
lining, loop unrolling), do all sorts of partial evaluation (e.g. constant folding and
propagation, loop unrolling, algebraic simplification) or aim at avoiding superflu-
ous computations (e.g. dead code removal, common subexpression elimination,
loop invariant removal). While these optimisations are common in industrial-
strength C compilers, the functional semantics of SaC allows us to apply them
much more aggressively than what is possible in imperative environments.

10.4 Memory Management

Stateless arrays require memory resources to be managed automatically at run-
time. This is a key ingredient of any functional language, and it is well under-
stood how to design and implement efficient garbage collectors [48,49,50]. So, the
stress here is rather on arrays. In serious applications arrays often require large
contiguous chunks of memory, easily hundreds of MegaBytes and more. Such
sizes require many design decisions in memory management to be reconsidered,
e.g. they rule out copying garbage collectors.

On a more conceptual level we need to deal with the aggregate update prob-
lem [51]. Often an array is computed from an existing array by only changing
a few elements. Or, imagine a recurrence relation where vector elements are
computed in ascending index order based on their left neighbour. A straight-
forward functional implementation would need to copy large quantities of data
unchanged from the “old” to the “new” array. As any imperative implemen-
tation would simply overwrite array elements as necessary, the functional code
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could never achieve competitive performance. Of course, one could also question
the unboxed, dense in-memory representation silently assumed here, but this is
likewise well known to be no solution.

As a domain-specific solution for array processing, SaC uses non-deferred
reference counting [52] for garbage collection. Each array is augmented with
a reference counter, and the generated code is likewise augmented with refer-
ence counting instructions that dynamically keep track of how many conceptual
copies of an array exist. Compared with other garbage collection techniques
non-deferred reference counting has the unique advantage that memory can im-
mediately be reclaimed as soon as it turns into garbage. All other techniques
in one way or another decouple the identification and reclamation of dead data
from the last operation that makes use of the data.

Only non-deferred reference counting supports a number of optimisations that
are crucial for achieving high performance in functional array programming. The
ability to dynamically query the number of references of an array prior to some
eligible operation creates opportunities for immediate memory reuse. Take for
example a simple arithmetic operator overloaded for arrays like subtraction as
discussed in Section 4.4. The definition of subtraction on arrays is point-wise
and the result array requires exactly the same amount of memory as any of the
two argument arrays. If one of them shows a reference counter value of one prior
to computing subtraction, that argument array’s memory can immediately be
reused to store the result array. As a consequence, not only a costly memory
allocation is avoided, but also the memory footprint of the operation is reduced
by one third leading to much better cache hierarchy utilisation on typical cache-
based computing systems.

In other cases we may not only be able to reuse memory but also to reuse the
data already present in that memory. Consider a with-loop as in the following
SaC code fragment:

b = with {

(. <= iv < shape(a) / 2) : a[iv] + 1;

}: modarray (a);

Here, an array b is computed from an existing array a such that the upper left
corner (in the 2-dimensional case) is incremented by one while the remaining
elements are copied from a proper. If we can reuse the memory of a to store b,
we can effectively avoid to copy all those elements that remain the same in b as
in a. Such techniques are important prerequisites to compete with imperative
languages in terms of performance. A survey on SaC memory management can
be found in [53].

Unlike other garbage collection techniques, non-deferred reference counting
still relies on a heap manager for allocations and de-allocations. Standard heap
managers are typically optimised for memory management workloads charac-
terised by many fairly small chunks. In array processing, however, extremely
large chunks are common, and they are often handled inefficiently by standard
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heap managers. Therefore, SaC comes with its own heap manager tightly in-
tegrated with compiler and runtime system and properly equipped for multi-
threaded execution [54].

10.5 Parallelisation and Code Generation

An important (non-coincidental) property of with-loops is that evaluation of
the associated expression for any element of the union of index sets is completely
independent of all others. This allows the compiler to freely choose any suitable
evaluation order. We thoroughly exploit this property in the various with-loop-
optimisations described above, but in the end the main motivation for this design
is ease of parallelisation.

In contrast to auto-parallelisation in the imperative world, our problem is
not to decide where code can safely be executed in parallel, but we still need
to decide where and when parallel execution is beneficial to reduce program
execution times. The focus on data-parallel computations and arrays helps here
(which is among others why we chose this path in the first place). We do know
the index space size of an operation before actually executing it, which is better
than in typical divide-and-conquer scenarios.

It is crucial to understand, the with-loop does not prescribe parallel execu-
tion, it merely opens up opportunities for compiler and runtime system. They
still need to make an autonomous decision as whether to make use of this op-
portunity or not. This sets us apart from many other approaches, may they be
as explicit as OpenMP directives or as implicit as par and seq in Haskell.

Different target architectures require entirely different code generators. In all
cases, the SaC compiler does not generate architecture-specific machine code
but rather architecture-specific variations of C code. The final step of machine
code generation is left to a highly customisable backend compiler tailor-made for
a given computing platform. While this design choice foregoes certain machine-
level optimisation opportunities, we found it to be a reasonable compromise
between engineering effort and support for a variety of computing architectures
and operating systems.

The SaC compiler currently supports four different compilation targets. The
default target is plain sequential execution. Any ISO/ANSI-compliant C com-
piler may serve as backend code generator. This flexibility allows us to choose
the best performing C compiler on each target architecture, e.g. the Intel com-
piler for Intel processors, the Oracle compiler for Niagara systems or GNU gcc
for AMD Opteron based systems. It would be extremely challenging to compete
with these compilers in terms of binary code quality.

For symmetric multi-core multi-processor systems we again target standard
ANSI/ISO C with occasional calls to the PThread library. Conceptually, the
SaC runtime system follows a fork-join approach, where a program is gener-
ally executed by a single master thread. Only computationally-intensive kernels,
in intermediate SaC code conveniently represented by with-loops already en-
hanced and condensed through high-level optimisation, are effectively run in
parallel by temporarily activating a set of a-priori created worker threads. The



268 C. Grelck

synchronisation and communication mechanisms implementing the transition
between single-threaded and multi-threaded execution modes and vice versa are
highly optimised to exploit properties of cache coherence protocols found in to-
day’s multi-core multi-processor systems. Compilation for these kinds of parallel
systems is thoroughly described in [55,56].

As our approach to organising multithreaded execution is not dissimilar from
implementations of OpenMP, we recently experimented with alternatively gen-
erating C code with OpenMP directives [57]. One result of this work is that
(maybe not surprisingly) the tailor-made and highly tuned synchronisation mech-
anisms of the PThread-based implementation yield slightly better performance.
The OpenMP-based code generator may still prove handy for supporting future
chip architectures that may not meet our assumptions on cache coherence and
memory consistency, but are supported by OpenMP. In either case, PThread-
or OpenMP-based code generation, we benefit from the same range of choices
to select the most appropriate backend C compiler for binary code generation.

Our support for GPGPUs, the SaC compiler’s third target architecture, is
based on the CUDA framework [58]. In this case, our design choice to leave
binary code generation to an independent C compiler particularly pays off: one is
effectively bound to NVidia’s custom-made CUDA compiler for code generation.

A number of issues need to be taken into account when targeting graphics
cards in general and the CUDA framework in particular that are quite different
from generating multithreaded code as before. First CUDA kernels, i.e. the code
fragments that actually run on the accelerator, are restricted by the absence of a
runtime stack. Consequently, with-loops whose bodies contain function applica-
tions that cannot be eliminated by the compiler, e.g. through inlining, disqualify
for being run on the graphics hardware. Likewise, there are tight restrictions on
the organisation of C-style loop nestings that rule out the transformations for
traversing arrays in linear order that are vital on standard multi-core systems.
This requires a fairly different path through the compilation process early on.
Last but certainly not least, data must be transferred from host memory to
device memory and vice versa before the GPU can participate in any computa-
tions, effectively creating a distributed memory. It is crucial for achieving good
performance to avoid superfluous memory transfers. The SaC compiler takes all
this into account and drastically facilitates the utilisation of many-core graphics
accelerators in practice. Details can be found in [59].

The fourth and final target architecture currently supported by the SaC com-
piler is the MicroGrid architecture [15]. While fairly different from GPGPUs
from a computer architecture point of view, it is not dissimilar to CUDA from
a code generator perspective. Like CUDA it comes with an architecture-specific
programming language embedded into the C language, named μTC, and the
corresponding compiler toolchain [60]. The MicroGrid exposes less restrictions
on generated C code, but it requires us to expose fine-grained concurrency to the
hardware. In essence, the right hand side of Fig. 2 can be seen to illustrate this
approach. Whereas in the multithreaded approach the SaC compiler takes con-
siderable effort to adapt the fine-grained concurrency exposed on the program
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level to the generally much coarser-grained actually available concurrency on the
executing hardware platform, the MicroGrid efficiently deals with fine-grained
concurrency in hardware. Details can be found in [61,62].

10.6 Experimental Evaluation

To the potential disappointment of our readers space limitations prevent us
from any decent analysis as to what extent the SaC compiler achieves its aim
of competing with C and Fortran in terms of runtime performance. Instead
we refer the interested reader to a number of publications that have exactly
this intention. Typically, they put software engineering concerns into context
with runtime performance on diverse computing machinery comparing SaC with
various other programming languages.

[63] experiments with anisotropic filters and single-class support vector ma-
chines from an industrial image processing pipeline. Performance figures are
reported from standard commodity multi-core servers and GPGPUs and show
competitive performance with respect to hand-coded C implementations and
highly customised image processing libraries. [64] investigates scalability issues
of the SaC multithreaded runtime system for a number of smaller benchmarks
on the Oracle T3-4 server with up to 512 hardware threads. [59] analyses the
performance of the GPGPU code generator for a variety of benchmarks.

[65] compares SaC with Fortran-90 in terms of programming productiv-
ity and performance on multi-core multi-processor systems for unsteady shock
wave interactions. [66] again compares SaC with Fortran-90, this time based
on the Kadomtsev-Petiviashvili-I equations (KP-I) that describe the propaga-
tion of non-linear waves in a dispersive medium. Last not least, [67] and [68]
describe SaC implementations of the NAS benchmarks [69] FT (3-dimensional
fast-Fourier transforms) and MG (multigrid), respectively. They show sequen-
tial performance for the SaC code that is competitive with the hand-optimised
Fortran-77 reference implementations of the two benchmarks and good scala-
bility on multi-processor systems of the pre-multi-core era.

11 Related Work

Given the wide range of topics around the design and implementation of SaC
that we have covered in this article, there is a plethora of related work that
is impossible to do justice in this section. Hence, the selection inevitably is
subjective and incomplete.

General-purpose functional languages such as Haskell, Clean, Sml or
OCaml all support arrays in one way or another on the language level. Or
more precisely, they support (potentially nested) vectors (1-dimensional arrays)
in our terminology. However, as far as implementations are concerned, arrays are
rather side issues and design decisions are taken in favour of list- and tree-like
data structures. This rules out to achieve competitive performance on array-
based compute-intensive kernels.
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The most radical step is taken by the ML family of languages: arrays come
as stateful, not as functional data structures. To the same degree as this choice
facilitates compilation, it looses most appealing characteristics of a functional
approach. The lazy functional languages Haskell and Clean both implement
fully functional arrays, but investigations have shown that in order to achieve
acceptable runtime performance arrays must not only be strict and unboxed (as
in SaC), but array processing must also adhere to a stateful regime [70,71,72],
i.e. state monads[31] or uniqueness types[33]. While conceptually more elaborate
than the ML approach to arrays, monads and uniqueness types likewise enforce
an imperative programming style where arrays are explicitly created, copied and
removed.

Data Parallel Haskell [73] is an extension of vanilla Haskell with particular
support for nested vectors (arrays in Haskell speak). Data Parallel Haskell
mainly aims at irregular and sparse array problems and inhomogeneous nested
vectors in the tradition of Nesl[74]. Likewise, it adopts Nesl’s flattening opti-
misation that turns nested vectors into flat representations.

One project that must be acknowledged in the context of SaC is Sisal[75,76].
Sisal was the first approach to high-performance functional array programming,
and, arguably, it is the only other approach that aims at these goals as strin-
gently as SaC. Sisal predates SaC by about a decade, and consequently, we
studied Sisal closely in the early years of the SaC project. Unfortunately, the
development of Sisal effectively ended with version 1.1 around the time the first
SaC implementation was available. Further developments, such as Sisal 2.0[77]
and Sisal-90 [78], were proposed, but have never been implemented.

SaC adopted several ideas of Sisal, e.g. the dispense of many great but
implementation-wise costly functional features from currying to higher-order
functions and lazy evaluation or non-deferred reference counting to address the
aggregate update problem. In many aspects, however, SaC goes far beyond
Sisal. Examples are support for truly multi-dimensional arrays instead of 1-
dimensional vectors (where only vectors of the same length can be nested in
another vector), the ability to define generic abstractions on array operations
or the compositional programming style. This list could be extended, but then
the comparison is in a sense both unfair and of limited relevance given that
development of Sisal ended many years ago.

An interesting offspring from the Sisal project is SaC’s namesake SA-C also
called Sassy[79,80]. Independently of us and around the same time the originators
of SA-C had the idea of a functional language in the spirit of Sisal but with
a C-inspired syntax. Thus, we came up with same name: Single Assignment C.
Here, the similarities end, even from a syntactic perspective. Despite the almost
identical name, SaC and SA-C are very different programming languages.

SaC’s implementation of the calculus of multi-dimensional arrays is closely
related to interpreted array languages like Apl[11,12], J [13] or Nial[14]. In [81]
Bernecky argues that array languages are in principle well suited for data parallel
execution and thus should be appropriate for high-performance computing. In
practice, language implementations have not followed this path. The main show
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stopper seems to be the interpretive nature of these languages that hinders
code-restructuring optimisations as prominently featured by SaC (Section 10.3).
While individual operations could be parallelised, the ratios between productive
computation and organisational overhead are often infavourable.

Dynamic (scripting) languages like Python are very popular these days. Con-
sequently, there are serious attempts to establish such languages for compute-
intensive applications[82,83]. Here, however, it is very difficult to achieve high
performance. Like the Apl-family of languages the highly dynamic nature of
programs renders static analysis ineffective. It seems that outside the classical
high-performance community, programmers are indeed willing to sacrifice per-
formance in exchange for a more agile software engineering process. Often this
is used to explore the design space, and once a proper solution is identified, it
is re-implemented with low-level techniques to equip production code with the
right performance levels. This is exactly where we see opportunities for SaC:
combine agile development with high runtime performance through compilation
technology and save the effort of re-implementation and the corresponding con-
sistency issues. Much of the above likewise holds for the arguably most used
array language of our time: MatLab and its various clones.

12 Conclusions and Perspectives

We have presented the ins and outs of the programming language Single Assign-
ment C (SaC), covering the whole range of issues from general motivation over
language design to programming methodology. In essence, SaC combines array
programming technology with functional programming principles and a C-like
look-and-feel. In two cases studies on convolution and numerical differentiation
we have demonstrated how the SaC methodology supports the engineering of
concise, abstract, high-level, reusable code.

However, language design is just one side of the coin. One may even say that
this is the easy part. The flip side of the coin is do develop the necessary compiler
technology to meet our over-arching objective: competing with the performance
of C and Fortran throughout a variety of parallel computing platforms. How
to achieve this goal is the real research question behind the SaC project.

An important insight to this end is that before even looking into generating
parallel code competitive sequential performance is of paramount importance.
Sequential performance is crucial because we aim at exploiting parallel hardware
to generate actual performance gains over existing implementations, not to over-
come our own shortcomings in sequential performance. While this sounds more
than plausible, it truly is a challenge, and a challenge more often avoided than
one may think.

Nonetheless, the ability to fully automatically generate code for various paral-
lel architectures, from symmetric multi-core multi-processors to GPGPU accel-
erators is arguably one of SaC’s major assets. In a standard software engineering
process the job is less than half done when a first sequential prototype yields
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correct results. Every targeted parallel architecture requires a different paralleli-
sation approach using different APIs, tools and expertise. Explicit parallelisa-
tion is extremely time-consuming and error-prone. Typical programming errors
manifest themselves in a non-deterministic way that makes them particularly
hard to find. Targeting different kinds of hardware, say multi-core systems and
GPGPU-accelerators inevitably clutters the code and creates particular mainte-
nance issues. With SaC the job is done as soon as a sequential program is ready.
Multiple parallel target architectures merely require recompilation of the same
source code base with different compiler flags.

Much has been achieved since the principal ideas of SaC were first pro-
posed [84]. In Section 10 we sketched out the most important aspects of com-
pilation technology that we have developed to the present day. A series of case
studies, further more, A lot of work, nonetheless, lies ahead of us. The contin-
uous development of new parallel architectures keeps us busy just as further
improvements of the language and of our compilation infrastructure. Work is
currently on-going in many directions, small and large. We conclude this article
with sketching out a few of them.

For now, the choice of a target architecture is exclusive. We can either gener-
ate code to make use of multiple CPU cores or code to exploit a single GPGPU
accelerator. One of our current threads of work is to combine these technolo-
gies to make use of multiple GPGPUs and multi-core CPUs at the same time.
This work also accounts for current hardware trends to combine CPU and GPU
technologies on-chip.

Another area of on-going work is to exploit the capabilities of vector regis-
ters and vector operations available in most of today’s processors. The most
prominent example are Intel’s Streaming SIMD Extensions (SSE) for the x86
architecture, but similar features are included in all modern processor designs.
At the moment, SaC does not explicitly exploits these facilities and leaves their
potential to be exploited by the backend compiler. Since the SaC compiler has
a much better understanding of its intermediate code than any backend C com-
piler could ever derive from the generated code, it would be desirable to generate
vector instructions explicitly in sac2c. Unfortunately, the multitude of ISA ex-
tensions and APIs is rather cumbersome. We also need to extend the set of SaC
base types to take full advantage of vector registers. Currently, we explore ways
to support user-defined bit widths for numerical values.

Fig. 3 in the very beginning of this article already outlined two directions of
on-going work. As of now, SaC does not support network-interconnected clusters
or, generally, distributed memory architectures. Despite the multicore revolution,
it is always attractive to combine multiple complete systems for even larger com-
putational tasks. On the other end of the design space we envision a growing
relevance of reconfigurable hardware to address tomorrow’s demands on energy
efficiency. One can even think of reconfigurable areas in general-purpose pro-
cessors. Right now, programming reconfigurable hardware requires a completely
different tool and mind set than conventional software engineering. However,
SaC intermediate code appears to be a suitable starting point for compilation.
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Our namesake SA-C/Sassy (see Section 11) took a similar approach about a
decade ago, but was presumably ahead of its time. It is fair to say that our
efforts into both directions are still in their infancy.

On the language level a number of features are highly desirable. As the partic-
ipants of the CEFP summer school (painfully) learned during the lab sessions,
the monomorphic type system for array base types is suboptimal. While it is
easy to define new types in SaC, dealing with arrays of user-defined types is
less easy. All support for our advocated compositional programming methodol-
ogy is based on shape-generic but base-type-monomorphic function definitions
in the SaC standard library. These are, of course, not available to (arrays of)
user-defined types and need to be provided for each such type by its originator.
Polymorphism on base types would immediately solve this issue, but realisation
in the context of shapely polymorphism, overloading and the strong desire not to
loose on the performance side of the coin create a challenging research question
that is currently under investigation.

Another type system issue has been discussed already: the SaC array type sys-
tem does not support the specification of relationships of the shapes of function
arguments and results. For example, matrix multiplication can only be specified
for 2-dimensional arrays of any shape, whereas the algorithm requires the y-axis
extent of the first argument to coincide with the x-axis extent of the second ar-
gument. Furthermore, the algorithm reveals that the result matrix has the same
size along the x-axis as the first argument matrix and the same size on the y-axis
as the second argument matrix. This knowledge is lost in the type system due to
a lack of expressiveness. Similar shape relations are common place across SaC
standard array operations, e.g. take, drop or where. Capturing such shape rela-
tions in the type system leads to dependent array types that we have studied in
the context of (more experimental) array language Qube [28,29]. However, how
to carry these ideas over to SaC in the presence of overloading and dynamic
dispatch is non-trivial.

Of course, as functional programmers we have a longer wish list for the feature
set of SaC. While SaC will always put the emphasis on arrays, it would be
highly desirable to support tuples, lists and trees, nonetheless. Likewise, higher-
order functions are certainly worthwhile some implementation effort. Currently,
the fold-with-loop are the only place where functions appear in an (almost)
expression position, but this is very restricted and does not allow for abstractions
like a general reduction function or operator. Not adopting the general concept of
higher-order functions was an early design decisions to facilitate compilation into
efficient code. However, restricted support for higher-order functions such that
the compiler could in practice resolve them may nonetheless bring a considerable
gain in expressiveness.
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Abstract. The box calculus is a formalism for reasoning about the prop-
erties of multi-process systems which enables account to be taken of
pragmatic as well as computational concerns. It was developed for the
programming language Hume which explicitly distinguishes between co-
ordination, based on concurrent boxes linked by wires, and expressions,
based on polymorphic recursive functions. This chapter introduces Hume
expressions and surveys classic techniques for reasoning about functional
programs. It then explores Hume coordination and the box calculus, and
examines how Hume programs may be systematically transformed while
maintaining computational and pragmatic correctness.

1 Overview

Having constructed programs that meet their specifications, we often want to
change them to take advantage of changing operating environments. For exam-
ple, we might want to migrate a program from environments with smaller to
larger numbers of processors to improve performance, in particular as the num-
ber of cores grows in new generations of the same CPU architecture. In changing
programs, we want to ensure not only they still meet their original specifications,
but also that their pragmatic (i.e. time, space, sequencing) behaviours change in
well understood ways. In particular, in making what appear to be local improve-
ments to a program, for example by introducing parallelism, we want to avoid
unexpected global impacts that make overall performance worse, for example as
a result of unanticipated additional communication or scheduling costs. Thus,
we need some means of reasoning about changes to programs that can account
for pragmatic as well as computational program properties.

Most software is constructed in imperative programming languages; abstrac-
tions from von Neumann architectures1 based on sequences of state changes
mediated by mutable memory. Here, different program components interact
by manipulating the same memory areas. Thus, changing the order of com-
ponent execution often changes the sequence of memory manipulation, changing
what the program does. This complicates reasoning about imperative programs
because the state change sequencing must be made explicit in the reasoning

1 And also Harvard architectures.

V. Zsók, Z. Horváth, and R. Plasmeijer (Eds.): CEFP 2011, LNCS 7241, pp. 279–338, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



280 G. Michaelson and G. Grov

rules. While there are mature systems like Floyd-Hoare logic[Hoa69] and weak-
est preconditions[Dij75] for establishing properties of imperative programs, they
require considerable mathematical sophistication, scale poorly with program size
and lack mature automated or semi-automated tool support.

In contrast, declarative languagesdonothaveanynotionof state change through
mutable memory. Instead, programcomponents interact by passing each other val-
ues. Thus, in principle, components may be executed in arbitrary order without
changing what the programdoes. This is alleged to make it simpler to reason about
declarative programs, comparedwith imperative ones, as the reasoning rules do not
require any notion of sequenced state change. Nonetheless, reasoning about func-
tional programs is not really much easier than for imperative programs: once again,
the mathematics is hard, scalability is poor and tools are lacking.

The introduction of parallelism further complicates reasoning about programs.
Parallelismrequires interactionbetweenprocessors, either through sharedmutable
memory access or distributed memory message passing, and that interaction must
takeplace in someorder andat someadditional performance cost.Thedevelopment
of tools and technologies for reasoning about parallelism is hampered by factors
quite orthogonal to those constraining reasoning about sequential programs.

In particular, despite the explosive growth in deployment of multi-processor
architectures, there is effectively no standardisation of parallel programming
languages. This is hardly surprising. Given the vast investments in software tools
and technologies for sequential imperative languages, it is really hard to make a
commercial case for adapting unproven extensions to extant languages, let alone
new parallel languages: the rise and fall of occam[Inm88] is an object lesson.
Instead, extant languages tend to be augmented with libraries like MPI[MF94],
for message passing, and OpenMP[CJP07], for shared memory. As yet, there is
little formalisation of these libraries and so scant theoretical or practical support
for formal reasoning about practical parallelism.

There are, of course, mature formalisms for reasoning about abstract paral-
lelism, for example CSP[Hoa78], CCS[Mil82] and the π calculus[Mil99]. However,
while well suited to reasoning about coordination, these take little account of
the computations that are being coordinated, and share the same constraints as
sequential formalisms.

It has long been claimed [Weg68] that declarative programs are ideal for par-
allelism as the absence of sequences state change enables implicit parallelism at
all levels of programs. Indeed, parallelism formalisms share strong roots with
declarative languages. In practice, such implicit parallelism is almost invariably
too fine grain to be exploited efficiently. That is, the cost of the interaction be-
tween newly parallel program components outweighs any benefit from executing
them in parallel. Thus, there is considerable research into developing new declar-
ative languages for parallelism, such as Eden[BLOMP97], or extending extant
languages, such as Haskell[eAB+99], again without any wide adoption of a sin-
gle language or stable standardisation of extensions. Nonetheless, as we shall
see, declarative languages do offer valuable abstractions for parallelism in higher
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order functions (HOFS) which generalise common patterns of computation en-
abling their efficient realisation as standard patterns of coordination.

Hume[HM03] is a general purpose programming language which was designed
to enable the construction and analysis of systems where strong assurances are
required that resource bounds are met. This language has deep roots in contem-
porary functional languages and is based on concurrent finite state automata
with transitions controlled by pattern matching over inputs to invoke recursive
expressions to generate outputs.

To meet Hume’s design objectives, an explicit distinction is made amongst
the expression, coordination and control layers:

– The expression layer is based on a strict, polymorphic functional language
with a rich type system, reminiscent of Standard ML[MTHM97] or Haskell.
This layer is used to define computations that return values for use in box
transitions.

– The coordination layer is based on concurrent generalised finite state au-
tomata consisting of boxes linked by wires. This layer is used to define boxes
and wiring, and box and wiring templates.

– The declaration layer is used to define common auxiliary constructs for use
throughout programs, for example: constants; functions; type aliases; type
signatures; exceptions and constructed data types.

To further facilitate resource analysis complementing system development, Hume
supports the notion of language level with different formal properties, depending
on the types of values on wires between boxes, and the forms of expressions
within boxes. Thus:

– full Hume is a Turing complete language with undecidable time and space
behaviour;

– PR-Hume restricts recursion to primitive recursion. Thus, time and space
are decidable though not necessarily well bound;

– Template-Hume prohibits user defined recursion but provides a repertoire
of higher order functions with well characterised behaviours. Here, time and
space bounds may be well bound.

– FSM-Hume corresponds to a richly typed finite state machine abstraction.
There is no recursion and all repetition is through iteration over boxes.
Furthermore, only types of known size may be passed on wires. FSM-Hume
enables accurate time and space analysis.

– HW-Hume is an impoverished language oriented to hardware at the bit lev-
els, supporting pattern matching on tuples of bits to produce tuples of bits.
HW-Hume enables precise time and space analysis.

It is unrealistic to expect programmers to restrict themselves to one level. In-
stead, Hume supports a methodology of transformational software development.
An initial system is built and analysed. If satisfactory bounds cannot be estab-
lished then problematic loci may be changed into a lower level, typically by mov-
ing activity from within boxes to between boxes. Clearly, reasoning about and
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changing programs at the coordination layer almost invariably requires reasoning
and change at the expression layer. Thus, the box calculus strongly reflects this
language design, and is novel in enabling movements between layers in search of
optimal programs.

In the rest of this chapter we will:

– introduce the Hume expression layer;
– survey classical techniques for reasoning about functional programs;
– introduce the Hume coordination layer;
– explore the foundations of the box calculus;
– apply the box calculus to systematically deriving a range of multi-box pro-

grams from single box programs.

2 Hume Expression Language

2.1 Base Types and Expressions

Base Types. For our purposes, the main Hume base types are integer, floating
points, words, characters and booleans. All base types are sized, that is they
have fixed ranges of values which are related to the number of bits that instances
occupy. For numeric types, the size is specified explicitly. For example, the integer
type constructor is:

– int size - signed integer;

where size is some multiple of 82.

Type Aliases. In practice, it is usual to use type aliases, rather than raw type
constructors, of the form:

type id = type;

where id is an identifier composed of upper and lower case letters and digits,
starting with a letter or , and type is a type expression, in the first instance
a type constructor. Thereafter, id may be used in any context where a type
expression is appropriate. For example:

type integer = int 64;

defines integer to be an alias for int 64.

Base Values. Hume has the standard base value representations:

– integers are sequences of possibly negative decimal digits: e.g. 12345,-678910;
– floats are sequences of decimal digits separated by a decimal point: e.g.

123.456, -789.1011;
– words are sequences of hexadecimal digits preceded by 0x: e.g. 0xabcdef;
– characters are letters or escaped letters within single quotes: e.g. ’a’, ’\n’

(newline);
– booleans are true or false.

2 In practice, current Hume implementations tie all sizes to some C equivalent.
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Base Expressions. All expressions may be structured by brackets (...).
The integer infix operators are + (addition), - (subtraction), * (multiplica-

tion), div (division) and mod (remainder). All integer operators take two integer
operands. The precedence, in descending order, is: (...); unary -; +, -; *, mod,
div.

The float infix operators are + (addition), - (subtraction), * (multiplication)
and / (division). All float operators take two float operands. The precedence, in
descending order, is: (...); unary -; +, -; *, /.

The boolean operators are not (prefix negation), && (infix conjunction) and
|| (infix disjunction). All boolean operators take boolean operands. The prece-
dence, in descending order, is: (...), not, ||, &&.

The comparison operators are == (equals), != (not equals), < (less than),
<= (less than or equal), >= (greater than or equal) and > (greater than). All
comparison operators take operands of the same type.

Constant Declaration. Constants may be declared by:

id = expression;

Here, id is associated with the value of expression and may be used in subsequent
expressions. For example:

cost = 35;
quantity = 12;
total = cost * quantity;

associates cost with 35, quantity with 12 and total with 420.

2.2 Functions

Function Declaration. At simplest, Hume functions are declared as:

id pattern = expression;

where idnames the function,pattern introduces formalparameters andexpression
is the function body. To begin with, a pattern may just be an id. For example:

inc x = x+1;
isZero y = y==0;

declares inc to be function that increments its argument x and isZero to be a
function that checks if it’s argument y is zero.

Function Type and Type Signature. If pattern is type1 and expression is
type2 then id is: type1 -> type2.

Types may be nominated explicitly through a type signature of the form:

id :: type;
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For example, we could make the types of inc and isZero explicit as:

inc :: int 32 -> int 32
isZero :: int 32 -> bool

Hume supports polymorphic type inference and it is not a requirement to specify
the function type if it is inferable from the context of declaration or use. However,
it may be necessary to provide a type signature to disambiguate overloaded
operators which may appear in different type contexts. For example:

sq :: integer -> integer;
sq x = x*x;

In sq, * is overloaded so x’s type cannot be inferred. Here, the type signature
makes it explicit that sq operates on integers so * must be an integer operator.

Explicit Parameter Type. An alternative to deploying a type signature is to
explicitly nominate the type of a formal parameter using:

(pattern::type)

instead of pattern. For example:

sq (x::integer) = x*x;

makes it explicit that x is integer in sq.

Function Call. Functions are called with expressions of the form:

id expression

Here, id is a name associated with a function and expression is the actual
parameter. If id is associated with a type1->type2 function and expression is
type1 then the call returns a value of type2.

For a function call: where id’s function has formal parameter pattern, con-
sisting in the first instance of a single id1, and body expression1, then:

– the actual parameter expression is evaluated to value;
– value is matched with pattern i.e. id1 is bound to value;
– the function body expression1 is evaluated with all free occurrences of the

formal parameter id1
3 replaced by value.

Note that Hume does not support anonymous functions.
Note that this is a substitutive model of function call evaluation. For example:

1. inc 41
2. → x+1 with x bound to 41
3. → 41+1
4. → 42

3 i.e. occurrences outwith the scope of some other declaration of id1 in expression1
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For example:

1. isZero (inc 3)
2. → x+1 with x bound to 3
3. → 3+1
4. → 4
5. → y==0 with y bound to 4
6. → 4==0
7. → false

A function call has precedence higher than numeric operators and lower than
(...).

2.3 Tuples

Tuple Form. A tuple is a fixed sized sequence of elements of possibly different
types. A tuple has the form:

(exp1,exp2...expN)

If expi is of typei then this tuple has type:

(exp1,exp2...expN) :: (type1,type2,...typeN)

For example:

(1,2.0,true) :: (int 32,float 32,bool)
(1,(2,3),4) :: (int 32,(int 32,int 32),int 32)

Tuple Pattern. Tuple patterns may be used for multi-parameter functions.
These take the form:

(patt1,patt2...pattN)

In:

id (patt1,patt2...pattN) = expression

if patti is typei and expression is typeN+1 then the function type is:

(type1,type2...typeN) -> typeN+1

Then, a function call:

id expression1

proceeds as:

– evaluate expression1 to:
(value1,value2...valueN)

– match patti with valuei i.e. bind idi from patti to valuei;
– evaluate the body expression with these bindings.
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For example, given:

quad :: (integer,integer,integer,integer) -> integer;
quad (a,b,c,x) = a*x*x+b*x+c;

then:

1. quad (1,2,1,3)
2. → a*x*x+b*x*c with a=1, b=2, c=1 and x=3
3. → 1*3*3+2*3+1
4. → 16

2.4 Multi-case Functions

Multi-case Function Declaration. Multi-case functions may be declared as:

id pattern1 = expression1;
id pattern2 = expression2;
...
id patternN = expressionN;

All cases must have same id. All patterni must be same type1. All expressioni

must be the same type2. The function then has type: type1->type2.
As we shall see, case order is significant. The patterni should be disjoint and

cover all possible values of type1. Thus, it is usual, for functions that do not have
exhaustive cases, to provide a final case with a catch-all id pattern.

Constant Pattern. Patterns may include constant values in any positions
where id may appear. For example, we might define boolean negation as:

Not false = true;
Not true = false;

and natural number decrement as:

natDec 0 = 0;
natDec x = x-1;

For a constant pattern match to succeed, the same constant must appear in the
same structural position in the formal parameter pattern and actual parameter
value.

Multi-case Function Call. For:

id expression

– expression is evaluated to some value;
– value is matched against each pattern in turn from first to last.
– if a match with patterni succeeds then expressioni is evaluated;
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For example, for:

Not true

then:

1. try Not false - false does not match true;
2. try Not true - true matches true;
3. → false

For example, for:

natDec 3

then:

1. try natDec 0 - 0 does not match 3;
2. try natDec x - x binds to 3;
3. → x-1
4. → 3-1
5. → 2

2.5 Recursion

Recursive Function Declaration. As in all functional languages, Hume func-
tions may call themselves. At simplest, a recursive function has the typical struc-
ture:

– base case match constant and return final value;
– recursion case match id and call function again with modified id.

The recursion case should make progress towards the base case by changing the
recursion parameter id.

For example, consider summing a sequence of integers from N to 0:

N + (N − 1) + ... + 2 + 1 + 0

We can write this as:

sum 0;
sum N = n+sum (N-1);

so:

sum 3 → 3+sum 2 → 3+2+sum 1 → 3+2+1+sum 0 → 3+2+1+0 → 6

For example, consider summing a sequence of squares from N to 0:

N2 + (N − 1)2 + ... + 22 + 12 + 0

We can write this as:

sumSq 0;
sumSq N = sq n+sumSq (N-1);

so:

sumSq 3 → sq 3+sumSq 2 → sq 3+sq 2+sumSq 1 →
sq 3+sq 2+sq 1+sumSq 0 → sq 3+sq 2+sq 1+0 → 9+4+1+0 → 14
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2.6 Higher Order Functions 1

As a first definition, a higher order function takes other functions as parameters.
For example, consider summing some function f over the range from N to 0:

f N + f (N − 1) + ...f 2 + f 1 + 0

We may write this as:

sumF :: (integer->integer,integer)->integer;
sumF (f,0) = 0;
sumF (f,N) = f N+sumF (f,n-1);

Then we may sum squares from N to 0 with:

sumF (sq,3) → sq 3+sumF (sq,2) → sq 3+sq 2+sumF (sq,1) →
sq 3+sq 2+sq 1+sumF (sq,0) → sq 3+sq 2+sq 1+0 → 9+4+1+0 →
14

2.7 Curried Functions

Functions with tuple formal parameters may be written as nested or Curried
functions. Thus:

id::(type1,type2...typeN)->type;
id (patt1,pat2...pattN) = expression;

has equivalent nested function:

id::type1->type2...typeN->type;
id patt1 patt2 ... pattN = expression;

For example:

quad::(integer,integer,integer,integer)->integer;
quad (a,b,c,x) = a*x*x+b*x+c;
⇔
quadC::integer->integer->integer->integer->integer;
quadC a b c x = a*x*x+b*x+c;

Curried functions are called as:

id exp1 exp2 ... expN

For example:

quadC 1 2 1 3;

Currying is a matter of style. Its use lies in support for partial application where a
function of N parameters is applied to M < N parameters to return a function
of N − M parameters with the first M parameters bound to specific values.
However, Hume does not support partial application.
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2.8 Constructed Types 1

New types with distinct constant values may be declared by:

data id = id1 | id2 | ... ;

Here, id is the new type, and the idi are new constructors returning values idi

of type id.
For example:

data STATE = ON | OFF;

declares a new type STATE with values ON and OFF.
Type constructors may be used as constants in patterns. For example, to flip

STATE:

change ON = OFF;
change OFF = ON;

Here, change has type STATE->STATE.

2.9 Higher Order Functions 2

A second definition of a higher order function is one that returns a function. For
example, consider:

data FN = INC | SQ;
getFN :: FN -> (integer->integer);
getFN INC = inc;
getFN SQ = sq;

Here, getFN returns either inc or sq, depending on the actual parameter. Thus:

getFn SQ 3 → sq 3 → 9

As always, the functions returned in different cases must have the same type, in
this instance integer->integer.

2.10 Polymorphism

The ability to abstract over types is termed polymorphism, from the Greek for
“many forms”. In Hume, type expressions may include type variables with single
lower-case letter identifiers: a, b, c etc.

In a type expression, all occurrences of a type variable must be capable of being
replaced consistently with the same type. For example, consider the identity
function:

identity :: a -> a;
identity x = x;

In:

identity 42 → 42



290 G. Michaelson and G. Grov

the type variable a is replaced consistently by int 32. In:

identity (’a’,’b’,’c’) → (’a’,’b’,’c’)

the type variable a is replaced consistently by (char,char,char).

2.11 Lists

List Representation. A list is an arbitrary length sequence of the same type.
A list whose elements are of type has type [type].

Lists are formed using the infix concatenation operator : of effective type
(a,[a])->[a]. That is, if exp1 is of type and exp2 is a list of type, i.e. [type],
then exp1:exp2 is of type [type].

The empty list is [] of effective type [a] and must end every list.
For example:

1:2:3:[] :: [int 32]
(’a’,true):(’b’,false):(’c’,false):[] :: [(char,bool)]
inc:sq:[] :: [int 32->int 32]

In exp1:exp2, exp1 is called the list head and exp2 the list tail.
The simplified notation:

exp1:exp2:...:expN:[] ⇔ [exp1,exp2,...,expN]

is often used. For example:

1:2:3:[] ⇔ [1,2,3]
(’a’,true):(’b’,false):(’c’,false):[] ⇔
[(’a’,true),(’b’,false),(’c’,false)]

inc:sq:[] ⇔ [inc,sq]

Note that:

[exp] ⇔ exp:[]

List Pattern and List Recursion. Formal parameter patterns may include
the forms:

patt1:patt2
[exp1,exp2...expN]

For both forms, the actual parameters must have corresponding structures. Then,
elements of the list pattern are matched against corresponding values in the
actual parameter.

List recursion then has the typical structure:

– base case [] - return final value;
– recursion case (id1:id2) - recurse on id2 and combine with modified id1.



Reasoning about Multi-process Systems with the Box Calculus 291

For example, to find the length of a list:

Length :: [a] -> integer;
Length [] = 0;
Length (h:t) = 1+Length t;

so:

Length [1,2,3] → 1+Length [2,3] → 1+1+Length [3] → 1+1+1+
Length [] → 1+1+1+0 → 3

For example, to sum the elements of a list:

sumL [] = 0;
sumL (h:t) = h+sumL t;

so:

sumL [1,2,3] → 1+sumL [2,3] → 1+2+sumL [3] → 1+2+3+sumL []
→ 1+2+3+0 → 6

To square all in a list:

sqList [] = [];
sqList (h:t) = sq h:sqList t;

so:

sqList [1,2,3] → sq 1:sqList [2,3] → sq 1:sq 2:sqList [3] →
sq 1:sq 2:sq 3:sqList [] → sq 1:sq 2:sq 3:[] → 1:4:9:[] →
[1,4,9]

2.12 List Higher Order Functions

We will now survey a number of list higher order functions which we will use in
later sections.

Sum Function over List. To sum a function over a list:

sumFL :: (a->integer)->[a]->integer;
sumFL f [] = 0;
sumFL f (h:t) = f h+sumFL f t;

so:

sumFL sq [1,2,3] → sq 1+sumFL sq [2,3] → sq 1+sq 2+sumFL sq
[3] → sq 1+sq 2+sq 3+sumFL sq [] → sq 1+sq 2+sq 3+0 → 1+4+9
→ 14

Map. To map a function over a list, that is apply a function to every element:

map :: (a->b)->[a]->[b];
map f [] = [];
map f (h:t) = f h:map f t;
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so to square every element in a list:

map sq [1,2,3] → sq 1:map sq [2,3] → sq 1:sq 2:map sq [3] →
sq 1:sq 2:sq 3:map sq [] → sq 1:sq 2:sq 3:[] → 1:4:9:[] →
[1,4,9]

Append. To append one list onto another, that is join the lists end to end:

append :: [a]->[a]->[a];
append [] l2 = l2;
append (h1:t2) l2 = h1:append t1 l2;

For example:

append [1,2,3] [4,5,6] → 1:append [2,3] [4,5,6] → 1:append
[2,3] [4,5,6] → 1:2:append [3] [4,5,6] → 1:2:3:append [] [4,5,6]
→ 1:2:3:[4,5,6] → [1,2,3,4,5,6]

append l1 l2 may be written l1++l2.

2.13 String

A string is a sequence of letters within "...". For example:

"this is not a string"

The string type constructor is string. A string is the same as a list of char so:

"hello" ⇔ ’h’:’e’:’l’:’l’:’o’:[] ⇔ [’h’,’e’,’l’,’l’,’o’]

and:

"hello"++" "++"there" ⇔ "hello there"

2.14 Conditional Expression

Pattern matching can only determine the presence or absence of a constant value.
To establish other properties of values a conditional expression may be used:

if expression1 then expression2 else expression3

expression1 must return a bool, and expression2 and expression3 must return
the same type.

expression1 is evaluated. If it is true then expression2 is evaluated. Other-
wise expression3 is evaluated.

For example, to select all the even values in an integer list:

isEven y = y div 2==0;
getEven [] = [];
getEven (h:t) =
if isEven h
then h:getEven t
else getEven t;
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so:

getEven [1,2,3,4] → getEven [2,3,4] → 2:getEven [3,4] →
2:getEven[4] → 2:4:getEven [] → 2:4:[] → [2,4]

Filter. For example, to find all the elements of a list satisfying some property:

filter :: (a->bool)->[a]->[a];
filter p [] = [];
filter p (h:t) =
if p h
then h:filter p t
else filter p t;

so:

filter isEven [1,2,3,4] → filter isEven [2,3,4] → 2:filter
isEven [3,4] → 2:filter isEven[4] → 2:4:filter isEven [] →
2:4:[] → [2,4]

2.15 Case Expression

The case expression provides an expression form which is equivalent to a multi-
case function declaration. For:

case expression of
pattern1 -> expression1 |
pattern2 -> expression2 |
...
patternN -> expressionN

expression and all patterni must have the same type, and all expressioni must
have the same type. As with multi-case functions, the patterns should be disjoint
and there should be full coverage for the corresponding type, so a final case with
a catch-all variable pattern is common.

expression is evaluated and matched against each pattern in turn from 1 to
N . If the match with patterni succeeds then the value of expressioni is returned.

For example:

fib 0 = 1;
fib 1 = 1;
fib n = fib (n-1)+fib (n-2);
⇔
fib n =
case n of
0 -> 1 |
1 -> 1 |
n -> fib (n-1)+fin (n-2);
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As we will see, the case expression is used in the box calculus to move activity
between functions and boxes.

2.16 Constructed Types 2

The constructed type form is generalised to enable the declaration of structured
types. For:

data id = id1 type1 | id2 type2 | ... idN typeN;

each idi typei is a type constructor of typei->id.
The equivalent form idi patterni may then be used in patterns. For a match to

succeed, the actual parameter idj expressionj must have the same constructor
idj as idi and the expressionj must match patterni.

For example, to declare integer lists:

data LIST = NIL | CONS (integer,LIST);

Here, the new type is LIST with constant value NIL and structured values of the
form CONS (h,t) where h is an integer and t is a LIST. For example:

CONS(1,CONS(2,CONS(3,NIL)))

Then, we might declare a function to flatten a LIST into a [integer] as:

flatten NIL = [];
flatten (LIST(h,t)) = h:flatten t;

so:

flatten (CONS (1,CONS(2,CONS(3,NIL)))) →
1:flatten (CONS (2,CONS(3,NIL))) →
1:2:flatten (CONS(3,NIL)) →
1:2:3:flatten NIL → 1:2:3:[] → [1,2,3]

3 Reasoning about Functional Programs

3.1 Introduction

Our starting point was that we have a correct program, that is one that satisfies
its specification, and we wish to change it in various ways without compromising
that correctness. In the widely used Floyd-Hoare paradigm, we assume that we
have proved that:

{P}program{Q}
That is, for some program, given a precondition P , which is true at the start of
the program, then we can prove that some post-condition Q is true at the end
of the program, using an appropriate proof theory. If we then change program
to program′ we then need to prove:
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{P}program′{Q}

That is we must prove that the new program still satisfies the original
specification.

Proving program correctness requires considerable sophistication in both con-
structing the specification and deriving the proof. This is a very time consuming
process, despite partial automation through theorem provers.

An alternative is to deploy formal program transformation, using rules that
are known to preserve correctness. That is, given a transformation T , if we can
prove that:

∀ P ,Q,program: {P}program{Q} ⇒ {P}T (program){Q}
then we can deploy T to change programs without any further need to re-prove
the changes.

In practice, the deployment of transformation assumes referential transparency
[Qui64], that is that substitution of equalities preserves meaning. So, mathemat-
ical or logical techniques are used to establish that transformations establish
equality and then the transformations may be applied to localised program frag-
ments.

For functional programs, reasoning about program transformation draws on
classical propositional and predicate calculi, set theory, Peano arithmetic and
the theory of computing. We will next survey these sources and then carry out a
number of proofs of basic transformations for use when we meet the box calculus
proper.

3.2 Propositional Calculus

Inference. Propositional calculus[Nid62] is a system for reasoning about truth
formula made up of:

– constants true and false;
– variables;
– operators such as: ¬ (not), ∧ (and), ∨ (or), ⇒ (implies), ≡ (equivalent);
– (...) (brackets)

Proofs are based on axioms, that is formula that are always true and rules of

inference of the form:
assumptions
conclusion

The proof that a proposition is a theorem, that is always true, then proceeds
by starting from axioms, and established theorems, which have already been
proved to be true, and applying rules of inference until the truth or falsity of the
proposition is established.

Truth Tables. We may give semantics to propositional operators in terms of
truth tables that spell out explicitly their values for all possible combinations of
operands. Figure 1 shows the tables for ¬, ∧, ∨ and ⇒.
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X Y ¬ X X ∧ Y X ∨ Y X ⇒ Y
false false true false false true

false true false true true

true false false false true false

true true true true true

Fig. 1. Truth tables for ¬, ∧, ∨ and ⇒

We may then prove a theorem by constructing the truth table to demonstrate
that it is true for all combinations or arguments. For example, Figure 2 shows a
proof that:

X ⇒ Y ≡ ¬ X ∨ Y

X Y ¬ X ¬ X ∨ Y X ⇒ Y
false false true true true

false true true true true

true false false false false

true true false true true

Fig. 2. X ⇒ Y ≡ ¬ X ∨ Y

Rewriting. Rewriting involves using proven equivalences of the form:

formula1 ≡ formula2

by substituting instances of formula2 for formula1 and vice versa, consistently
replacing common meta-variables. There are many well known equivalences for
cancelling out, reordering and expanding/grouping terms - see Figure 3.

We will meet many of these forms again when we consider other roots for
reasoning about functional programs.

3.3 Predicate Calculus

Where propositional calculus is concerned with properties of propositions about
truth values, predicate calculus[Hod77] is used to reason about properties of some
universe of discourse. It extends propositional calculus with:

– constant values from a universe of some type;
– predicates capturing properties of values from the universe, from that type

to boolean;
– functions between values in the universe, from type to type;

Most important, predicate calculus introduces quantifiers for expressing proper-
ties of the entire universe. Universal quantification (all):

∀var : P (var)

states that P holds for all var from the universe. Existential quantification
(exists):

∃var : P (var)

states that P holds for some var from the universe.
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Constant Negation
P ∧ true ≡ P P ∨ ¬P ≡ true

P ∧ false ≡ false P ∧ ¬P ≡ false

P ∨ true ≡ true Idempotency
P ∨ false ≡ P P ∨ P ≡ P

P ∧ P ≡ P

Associativity Commutativity
P ∨ (Q ∨R) ≡ (P ∨Q) ∨ R P ∨Q ≡ Q ∨ P
P ∧ (Q ∧R) ≡ (P ∧Q) ∧ R P ∧Q ≡ Q ∧ P

(P ≡ Q) ≡ (Q ≡ P )

Distributivity De Morgan’s Laws
P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧ R) ¬(P ∧Q) ≡ ¬P ∨ ¬Q
P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨ R) ¬(P ∨Q) ≡ ¬P ∧ ¬Q

Implication Equivalence
P ⇒ Q ≡ ¬P ∨Q (P ≡ Q) ≡ (P ⇒ Q) ∧ (Q⇒ P )
P ⇒ Q ≡ ¬Q⇒ ¬P (P ≡ Q) ≡ (P ∧Q) ∨ (¬P ∧ ¬Q)
P ∧Q⇒ R ≡ P ⇒ (Q⇒ R) (P ≡ Q) ≡ (P ⇒ Q) ∧ (¬P ⇒ ¬Q)

Fig. 3. Propositional equivalences

Pure predicate calculus is used to establish properties of arbitrary universes
and we will not consider it further here. However, we will look at applied predi-
cate calculus in more detail.

3.4 Set Theory

Set theory[Hal60] formalise properties of sets of constants, characterised either
exhaustively or by some predicate. Finite sets are written as:

{element1, element2, ...elementN}
where each elementi is some atomic entity. The empty set is {}. The principle
set operations are: ∈ (member), ∪ (union), ∩ (intersection), ⊂ and ⊆ (subset)
and \ (difference).

Set theory also offers a rich collection of equivalences for cancelling, reordering,
expanding and grouping terms in set expressions, summarised in Figure 4.

Set Theoretic Predicate Calculus. Quantification may be specialised to
specific sets, so:

∀var ∈ S : P (var)

states that P holds for all var in S, and:

∃var ∈ S : P (var)

states that P holds for some var in S.



298 G. Michaelson and G. Grov

Constant Idempotency
X ∪ {} ≡ X A ∪A ≡ A
X ∩ {} ≡ {} A ∩A ≡ A
X\{} ≡ X

Associativity Commutativity
A ∪ (B ∪ C) ≡ (A ∪B) ∪ C A ∪B ≡ B ∪ A
A ∩ (B ∩ C) ≡ (A ∩B) ∩ C A ∩B ≡ B ∩ A

Distributivity
A ∩ (B ∪ C) ≡ (A ∩B) ∪ (A ∩ C)
A ∪ (B ∩ C) ≡ (A ∪B) ∩ (A ∪ C)

Fig. 4. Set equivalences

We may then note the equivalence:
∀var ∈ S : P (var) ∧ P (s) ≡ ∀var ∈ S ∪ {s} : P (var)

which states that if P holds for all in S and for s, then P holds for all of S
augmented with s.

Similarly
∃var ∈ S : P (var) ∨ P (s) ≡ ∃var ∈ S ∪ {s} : P (var)

which states that if P holds for some member of S or for s, then P holds for
some member of S augmented with s.

3.5 Peano Arithmetic

We come even closer to functional reasoning with Peano arithmetic[Kne63] which
formalises properties of natural numbers, that is numbers greater than or equal
to zero. Peano arithmetic is based on constructing numbers from 0 and the
successor function succ i.e. succ(X) = X + 1. The axioms are:
1. 0 is a natural number;
2. if N is a natural number then succ(N) is a natural number;
3. if N is a natural number then ¬(0 = succ(N));
4. if M and N are natural numbers and if M = N then succ(M) = succ(N).

Note that here we use the numeric notion of equality rather than boolean equiv-
alence.

Induction. Peano arithmetic introduces the fundamental technique of proof by
induction which underlies all recursive proof techniques. If:
– P (0) can be proved;
– assuming P (N) then P (succ(N)) can be proved.

then it may be concluded that P holds for all natural numbers.

Recursion. Complementing inductive proof, Peano arithmetic also introduces
recursion already familiar from functional programming. That is, a recursive
function may be defined in terms of:
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– base case where the argument is 0 and some value is returned;
– recursion case where the argument is succ(N) and the function is called with

possibly modified N .

For example, we define addition and multiplication in Figure 5.

X + 0 = X X ∗ 0 = 0
X + succ(Y ) = succ(X + Y ) X ∗ succ(Y ) = X + X ∗ Y

Fig. 5. Addition and multiplication

Inductive Proof. We may then use inductive proof to establish properties of
recursive functions. We first number and state the theorem. We next state and
prove the base case, where one argument is 0. Then, we state the recursion case
and the assumed induction hypothesis, where one argument involves succ, before
proving the recursion case. We write proof steps systematically from one side of
the equality to the other of the equality we wish to establish, one step to a line,
noting the justification for the step. The justification is usually a reference to
the definition of a function, the induction hypothesis or a theorem.

For example:

Theorem 1. 0 + X = X

Proof. By induction on X

Base case: 0 + 0 = 0
0 → (+ )
0 + 0

Recursion case: 0 + succ(X) = succ(X)
Assumption 0 + X = X [induction hyp.]

0 + succ(X) → (+ )
succ(0 + X) → (induction hyp.)
succ(X)

For example:

Theorem 2. X + succ(Y ) = succ(X) + Y

Proof. By induction on Y

Base case: X + succ(0) = succ(X) + 0
X + succ(0) → (+ )
succ(X + 0) → (+ )
succ(X) → (+ )
succ(X) + 0

Recursion case: X + succ(succ(Y )) = succ(X) + succ(Y )
Assumption X + succ(Y ) = succ(X) + Y [induction hyp.]

X + succ(succ(Y )) → (+ )
succ(X + succ(Y )) → (induction hyp.)
succ(succ(X) + Y ) → (+ )
succ(X) + succ(Y )
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Theorem 3. X + Y = Y + X:

Proof. By induction on Y

Base case: X + 0 = 0 + X
X + 0 → (+ )
X → (Theorem 1)
0 + X

Recursion case: X + succ(Y ) = succ(Y ) + X
Assumption X + Y = Y + X [induction hyp.]

X + succ(Y ) → (+ )
succ(X + Y ) → (induction hyp.)
succ(Y + X) → (+ )
Y + succ(X) → (Theorem 2)
succ(Y ) + X

Non-inductive. Peano arithmetic does not require us to stick to the induction
form for defining functions. For example, we give recursive definitions of com-
parison operators in Figure 6, and could prove the usual transitive properties:

0 < succ(N) succ(N) > 0
succ(X) < succ(Y ) = X < Y succ(X) > succ(Y ) = X > Y

Fig. 6. Comparison

A = B ∧ B = C ⇒ A = C
A < B ∧ B < C ⇒ A < C
A > B ∧ B > C ⇒ A > C

We may then use the comparison operators to qualify other definitions. For
example, we define subtraction and division in Figure 74.

X ≤ Y ⇒ X − Y = 0 X < Y ⇒ X/Y = 0
X − 0 = X X/0 = 0
succ(X)− succ(Y ) = X − Y X/Y = succ((X − Y )/Y )

Fig. 7. Subtraction and division

Arithmetic Equivalences. We could then prove the standard arithmetic
equalities shown in Figure 8, using 1 ≡ succ(0).

3.6 λ Calculus

With recursive function theory[Pet67], Church’s λ calculus[Chu36] is the bedrock
of functional programming. λ calculus is based on pure abstractions over names,
with three very simple expression forms:
4 Note that, to make / total, we define division by 0 to be 0 not ⊥.
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Constant Associativity
X + 0 = X (A + B) + C = A + (B + C)
X − 0 = X (A ∗ B) ∗ C = A ∗ (B ∗ C)
X ∗ 0 = 0
X ∗ 1 = X Commutativity
X/1 = X A + B = B + A
X/X = 1 A ∗ B = B ∗A
−(−X) = X

Distributivity
A ∗ (B + C) = A ∗ B + A ∗ C
A ∗ (B − C) = A ∗ B −A ∗ C

Fig. 8. Arithmetic equivalences

– id - variable;
– (λid.expression) - function abstraction: id is the bound variable (formal

parameter) and expression is the body;
– expression1 expression2 - function application: expression1 is a function

and expression2 is the argument (actual parameter).

β Reduction. λ expressions are evaluated through a process of substitution of
argument expressions for bound variables in function bodies called β reduction.
Before we can formulate this, we need to clarify the notions of a variable being
bound or free in an expression.

A variable id is bound in an expression if the expression is:

– (λid′.expressions) - id is the bound variable id′ or id is bound in the body
expression;

– expression1 expression2 - id is bound in expression1 or in expression2.

A variable id is free in an expression if the expression is:

– id′ - id is id′;
– (λid′.expressions) - id is not id′ and id is free in the expression;
– expression1 expression2 - id is free in expression1 or in expression2.

Then to β reduce:

(λid.expression1) expression2

in normal order, where the actual parameter expression2 is not evaluated:

– replace all free occurrences of id in expression1 with expression2;
– β reduce the resulting expression.
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We indicate a β reduction step with →β .
For example:

((λx.λy.x y) (λs.s s)) (λz.z) →β

(λy.(λs.s s) y) (λz.z) →β

(λs.s s) (λz.z) →β

(λz.z) (λz.z) →β

λz.z

For applicative order β reduction, the argument expression2 is evaluated before
substitution in the body expression1.

α Renaming. A potential problem with β reduction lies in free variable capture
where a free variable in an argument expression, which should not be the site of
further substitutions, is moved into the scope of a bound variable with the same
identifier, where it may subsequently be replaced. For example, in:

((λx.λy.x) y) (λx.x) →β (λy.y) (λx.x) →β (λx.x)

y was free in the original expression but is bound in the reduced expression λy.y
and so is replaced by λx.x.

To α rename an expression (→α), all id free in an expression are replaced
with a new unique id′. For example:

((λx.λy.x) y) (λx.x) →α ((λx.λy.x) a) (λx.x) →β (λy.a) (λx.x) → a

Here, λx.x is discarded as there are now no occurrences of the bound variable y
in the renamed body a.

α renaming assumes that we have an inexhaustible supply of new names.

η Reduction. η reduction is a common special case of β reduction:

λ x.f x →η f

where abstracting over applying some function f to some argument x is simply
equivalent to just the function f .

Example Proof. We may use β reduction to carry out equivalence proofs for
the λ calculus. For example, given functions to convert between Curried and
un-Curried forms:

curry f x y = f (x,y)
uncurry f (x,y) = f x y

we may show:

Theorem 4. curry(uncurryf) = f
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Proof.
curry(uncurryf) → (uncurry )
curry((λf.λ(x, y).f x y) f) →β

curry(λ(x, y).f x y) → (curry )
(λf.λx.λy.f (x, y))(λ(x, y).f x y) →β

λx.λy.(λ(x, y).f x y)(x, y) →β

λx.λy.f x y →η

λx.f x →η

f

and:

Theorem 5. uncurry(curryf) = f

Proof.

uncurry(curry f) → (curry )
uncurry((λf.λx.λy.f (x, y)) f) →β

uncurry(λx.λy.f (x, y)) → (uncurry definitiion)
(λf.λ(x, y).f x y)(λx.λy.f (x, y)) →β

λ(x, y).(λx.λy.f (x, y)) x y →β

λ(x, y).(λy.f (x, y)) y →β

λ(x, y).f (x, y) →η

f

3.7 Structural Induction

Burstall’s widely used structural induction[Bur69] is a generalisation of Mc-
Carthy’s recursion induction on recursive functions[McC62] to compositional
recursive structures, that is structures whose properties may be characterised
in terms of properties of their components. For example, lists are defined in
terms of the empty list ([]) and the concatenation of a head and a tail (h : t), so
proving P (h : t) by structural induction involves:

– base case: prove P ([]);
– recursion case: assume P (t) and prove P (h : t).

As we shall see, structural induction is a mainstay of reasoning about functional
programs.

3.8 Fold and Unfold

The other mainstay of reasoning about functional programs is Burstall and Dar-
lington’s fold/unfold approach[BD77]. This is based on five rules:

1. instantiation: substitute for actual parameter in function body;
2. unfolding: replace function call in expression by equivalent instantiation of

function body;
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3. folding: replace instance of function body by equivalent function call;
4. abstraction: introduce let (or where) by replacing instance with variable

and defining variable to be instance.

Rules 1. and 2. are reminiscent of β reduction and rule 3. of its reverse.
Of their fifth rule, termed laws, they say:

“We may transform an equation by using on its right hand side any laws
we have about the primitives K,l...(associativity, commutativity etc)....”
(p48)

thus advocating use of the equivalences and equalities we have already surveyed.

3.9 Bird-Meertens Formalism

The Bird-Meertens Formalism (BMF)[BdM97] is a general calculi of functional
programs. Here we will consider the theory of lists[Bir87], which applies rules
drawn from fold/unfold and structural induction to programs built from higher
order functions like map, fold, append and compose. 5

For example, to prove the associativity of ++:

Theorem 6. a++(b++c) = (a++b)++c

Proof. By induction on a

Base case: []++(b++c) = ([]++b)++c
[]++(b++c) → (++ )
b++c → (++ )
([]++b)++c

Recursion case: (h : t)++(b++c) = ((h : t)++b)++c
Assumption t++(b++c) = (t++b)++c [induction hyp.]

(h : t)++(b++c) → (++ )
h : (t++(b++c)) → (induction hyp.)
h : ((t++b)++c) → (++ )
(h : (t++b))++c → (++ )
((h : t)++b)++c

We will now carry out a number of proofs which we will use when we explore
the box calculus.

We start with a generic definition of fold which applies some function f to
the head of a list and the result of doing so recursively to the tail of the list,
given some initial value r:

fold :: (b->a->b)->b->[a]->b
fold f r [] = r
fold f r (x:xs) = fold f (f r x) xs

5 Note that in presenting proofs we assume that all variables are universally quantified.
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We assume that f is associative so:

f a (f b c) = f (f a b) c

We next introduce additional functions to take the first n elements of a list:

take _ [] = []
take 0 xs = []
take (1+n) (x:xs) = x:take n xs

drop the first n elements of a list:

drop _ [] = []
drop 0 xs = xs
drop (1+n) (x:xs) = drop n xs

There now follow a number of simple BMF proofs which we will use when we
come to consider a substantive box calculus example below.

First of all, we show that take and drop cancel:

Theorem 7. take n xs++drop n xs = xs

Proof. By induction on xs

Base case: take n []++drop n [] = []
take n []++drop n [] → (take/drop )
[]++[] → (++ )
[]

Recursion case: take n (x : xs)++drop n (x : xs) =
x : xs

Assumption take n xs++drop n xs = xs [induction hyp.]
By induction on n
Base case: take 0 (x : xs)++drop 0 (x : xs) =

x : xs
take 0 (x : xs)++drop 0 (x : xs) → (take/drop )
[]++(x : xs) → (++ )
x : xs

Recursion case: take (y + 1) (x : xs)++
drop (y + 1) (x : xs) = x : xs

take (y + 1) (x : xs)++
drop (y + 1) (x : xs) → (take/drop )

(x : take y xs)++
drop y xs → (++ )

x : (take y xs++
drop y xs) → (induction hyp.)

x : xs

Note that we could have established the second induction by case analysis with
n equal to 0.

We also show:
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Theorem 8. f a (fold f r b) = fold f a (r : b)

Proof. By induction on b

Base case: f a (fold f r []) = fold f a (r : [])
f a (fold f r []) → (fold )
f a r → (fold )
fold f (f a r) [] → (fold )
fold f a (r : [])

Recursion case: f a (fold f r (x : b)) =
fold f a (r : (x : b))

Assumption f a (fold f r b) = fold f a (r : b) [induction hyp.]
f a (fold f r (x : b)) → (fold )
f a (fold f (f r x) b) → (induction hyp.)
fold f a ((f r x) : b) → (fold )
fold f (f a (f r x)) b → (f associativity)
fold f (f (f a r) x) b → (fold )
fold f (f a r) (x : b) → (fold )
fold f a (r : (x : b))

Finally, we show that fold distributes over ++, assuming that e is an identity
element for f so:

f e x = x = f x e

Theorem 9. fold f r (a++b) = f (fold f r a) (fold f e b)

Proof. By induction on a

Base case: fold f r ([]++b) =
f (fold f r []) (fold f e b)

fold f r ([]++b) → (++ )
fold f r b → (e identity)
fold f (f r e) b → (fold )
fold f r (e : b) → (Theorem 8)
f r (fold f e b) → (fold )
f (fold f r []) (fold f e b)

Recursion case: fold f r ((x : a)++b) =
f (fold f r (x : a)) (fold f e b)

Assumption fold f r (a++b) =
f (fold f r a) (fold f e b) [induction hyp.]

fold f r ((x : a)++b) → (++ )
fold f r (x : (a++b)) → (fold )
fold f (f r x) (a++b) → (induction hyp.)
f (fold f (f r x) a) (fold f e b) → (fold )
f (fold f r (x : a)) (fold f e b)

We will see in subsequent sections both how the BMF enables us to reason about
computational aspects of parallel programs and its limitations in accounting for
pragmatic effects of parallel program transformation.
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4 Hume Coordination Layer

We have met the Hume expression layer as a pure functional programming lan-
guage and surveyed techniques for reasoning about functional programs. We
will now look at the Hume coordination layer before considering requirements
for reasoning about coordination in the next section.

4.1 Boxes and Wires

As we noted above, Hume programs are built from boxes connected to each
other, the wider environment and themselves by input and output wires.

Boxes are generalised finite state automata which pattern match on their
inputs and generate corresponding outputs with expression layer constructs.
Boxes are repeated one-shot and stateless. So a box can be thought of as a
non-terminating while loop which loses all the values of its local variables on
each iteration.

Wires connect input and output links on boxes and streams to the operating
environment. Wires are uni-directional, single buffered FIFOs which can hold
any matchable construct. They retain information between box iterations and
so are the sole locus of state in Hume programs.

4.2 Execution Model

Boxes execute repeatedly for ever in a two-phase execution cycle. In the local
phase, each box attempts to match its inputs and generate outputs. Then in the
global super-step phase, the consumption of input values from, and assertion of
output values to, wires is resolved.

At the start of each execution cycle a box may be:

– READY : all outputs from the previous cycle have been consumed and so
new inputs may be sought;

– BLOCKED : some outputs from the previous cycle have not been consumed
and so new outputs cannnot be generated.

Then the execution model is:

for each box:
STATE ← READY

forever
for each READY box:
if match inputs then:
consume inputs from wires
generate and buffer outputs
STATE ← BLOCKED

for each BLOCKED box:
if previous outputs consumed then:
assert outputs from buffer on wires
STATE ← READY



308 G. Michaelson and G. Grov

In the model, the local and global phases may be conducted concurrently with
an intervening barrier synchronisation.

4.3 Box, Wire and Steam Declarations

Box Declaration. A box is declared by:

box id
in (idI1::typeI1,...idIM::typeIM)
out (idO1::typeO1,...idON::typeON)
match

pattern1 -> expression1 |
...

patternP -> expressionP ;

id is the name of the box, and idIx/typeIx and idOy/typeOy are the names and
types of the input and output links.

All the patterni must have the same type as the input links and all the
expressioni must have the same type as the output links.

Note that the link name space and the pattern name space are disjoint so the
same identifiers may be used in both.

Wire Declaration. A wire declaration takes the form:

wire id (linkI1,...linkIM) (linkO1,...linkON);

id is the name of the box, and linkIx and linkOy are the names of the links (and
streams) to which the corresponding box inputs and outputs are connected.

A link name may be boxid.in − outid, where boxid is the name of a box and
in− outid is the name of one of that box’s input or output links, or the name of
a stream streamid.

All wires must make type-consistent connections.

Wire Initialisation. Wires which are not connected to an environmental input
may require an initial value to enable pattern matching to commence. This may
be achieved by using a wiring link of the form:

id.id initially constant

Stream Declaration. Streams convey character sequences from and to the op-
erating environment. In principle they may be associated with arbitrary sources
and sinks but currently only files and sockets are supported.

Streams are declared by:

input stream: stream id from “path”;
output stream: stream id to “path”;

where id is the stream name and path is a path.
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Automatic Input/Output. Stream text is automatically converted to and
from appropriate representations for any bounded type associated with a box
link. For an input stream, the type is used as a grammar to parse the text to
the corresponding value. For an output stream, the type is used to guide flat,
unbracketed pretty printing of the value. The conventions are the same as for
the expression layer type conversion: expression as string.

4.4 Examples

Consider a box that copies input from the keyboard to output on the display
without change:

1. type integer = int 32;

2. box identity
3. in (x::integer)
4. out (y::integer)
5. match
6. p -> p;

7. stream input from "std_in";
8. stream output to "std_out";

9. wire identity (input) (output);

where line numbers are purely to aid narrative.
Lines 2 to 6 declare a box called identity with input link x and output link y

which both carry integers as declared in line 1. The match in line 6 indicates that
pattern p matches input on x to generate the corresponding value on output y.

Lines 7 and 8 declare the streams input and output connected to standard
input and standard output respectively.

Line 9 wires link identity.x to input and identity.y to output.
When the program is run, the interaction is as follows:

$ identity
1
1 2
2 3
3...

We may next change the program to generate squares of successive outputs on
new lines:

1. type integer = int 32;

2. sq::integer -> integer;
3. sq x = x*x;
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4. box square2
5. in (x::integer)
6. out (y::(integer,char))
7. match
8. p -> (sq p,’\n’);

9. stream input from "std_in";
10. stream output to "std_out";

11. wire square2 (input) (output);

Now, output from line 8 is a tuple of a square and a newline character so the
type of the output link on line 6 changes accordingly.

Interaction is now as:

$ square2
1
1
2
4
3
9...

Finally, consider inputting a simple sum of the form: number operator number
where operator is one of +,-,* or /, and displaying the sum and result:

box sums
in (xy::integer,char,integer)
out (s::(integer,char))
match
(x,’+’,y) -> (x+y,’\n’) |
(x,’-’,y) -> (x-y,’\n’) |
(x,’*’,y) -> (x*y,’\n’) |
(x,’/’,y) -> (x div y,’\n’) ;

so interaction is as:

$ sums
1 + 1
2
6 / 2
3
4 * 8
32 ...

4.5 Feedback Wiring

It is often useful to wire a box back to itself to maintain intermediate state.
For example, to generate successive integers from 0:
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box gen
in (n::integer)
out (n’::integer,s::(integer,char))
match
(x) -> (x+1,(x,’\n’));

wire gen (gen.n’ initially 0) (gen.n,output);

Here, input n is wired to n’ and initialised to 0. Note that output n’ is also
wired back to n.

On each execution cycle, n gets the next integer from n’, sends n+1 to n’ and
outputs n:

$ gen
0
1
2
...

For example, consider parity checking a sequence of bits to show at each stage
if there is an odd or even number of 1s:

type BIT = word 1;

data STATE = ODD | EVEN;

box parity
in (oldstate::STATE,input::BIT)
out (newstate::STATE,output::string)
match
(ODD,0) -> (ODD,"ODD\n") |
(ODD,1) -> (EVEN,"EVEN\n") |
(EVEN,0) -> (EVEN,"EVEN\n") |
(EVEN,1) -> (ODD,"ODD\n") ;

wire parity
(parity.newstate initially EVEN, input)
(parity.oldstate, output);

Here, oldstate and newstate are wired reflexively to each others, with newstate
initialised to EVEN.

On each execution cycle, the output to newstate flips if the input value is a
1. This which runs as:

$ parity 1 0 1 1 0
ODD
ODD
EV EN
ODD
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ODD
...

4.6 From One Box to Multiple Boxes

Consider a box to find X NAND Y :

box NAND
in (x::BIT,y::BIT)
out (z::BIT)
match
(0,0) -> 1 |
(0,1) -> 1 |
(1,0) -> 1 |
(1,1) -> 0;

We could wire this into a test program that receives a pair of bits from a single
wire from standard input and passes them on two wires to NAND:

box getIn
in (xy:(BIT,BIT))
out (x::BIT,y::BIT)
match
(x,y) -> (x,y);

wire getIn (input) (NAND.x,NAND.y);
wire NAND (getIN.c,getIn.y) (output);

We might, as an alternative, implement this as an AND box:
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box AND
in (x::BIT,y::BIT)
out (z::BIT)
match
(0,0) -> 0 |
(0,1) -> 0 |
(1,0) -> 0 |
(1,1) -> 1;

feeding a NOT box:

box NOT
in (x::BIT)
out (y::BIT)
match
0 -> 1 |
1 -> 0;

wired with:

wire getIn (input) (And.x,AND.y);
wire AND(getIn.x,getIn.y) (NOT.x);
wire NOT (AND.x) (output);

In a later section, we will look at using the box calculus to justify this change.
Now, consider a program for IMPLIES:

box IMPLIES
in (x::BIT,y::BIT)
out (z::BIT)
match
(0,0) -> 1 |
(0,1) -> 1 |
(1,0) -> 0 |
(1,1) -> 1;

X ⇒ Y is equivalent to ¬X ∨ Y , so we could also implement this as an OR box
fed with a NOT ed X and unchanged Y :



314 G. Michaelson and G. Grov

box OR
in (x::BIT,y::BIT)
out (z::BIT)
match
(0,0) -> 0 |
(0,1) -> 1 |
(1,0) -> 1 |
(1,1) -> 1;

wire getIn (input) (NOT.x,OR.y);
wire NOT (getIn.x) (OR.x);
wire OR (NOT.y,getIN.y) (output);

Again, in a later section, we will look at using the box calculus to justify this
change.

4.7 * Pattern and Expression

The programs we’ve considered so far are synchronous where boxes execute
in locked-step. To enable asynchronicity, Hume introduces the * pattern and
expression.

The * pattern ignores its input. If there is no input then the match succeeds
and if there is input then the match succeeds but the input is not consumed.
The * pattern may only be used in box matches, not in functions.

Similarly, the * expression ignores its output. This may be used in expressions
returning final values from box transitions, including in conditional and case
expressions, and in function bodies. However, there is no associated value and
so it is meaningless to attempt to pass a * as, say, an actual parameter to a
function call.

4.8 Recursive Functions and Iterative Boxes

An important feature of boxes is that all space is retrieved on each execution
cycle. If space is at a premium, for example in an embedded application, then
it may be advantageous to convert stack consuming recursion within a box to
constant space iteration using a feedback wire.

For example, consider finding the sum of the integers from 1 to N :

sum 0 = 0;
sum N = N+sum (N-1);

This may be re-written to use an accumulation variable:

sum’ s 0 = s;
sum’ s N = sum’ (s+N) (N-1);
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sum N = sum’ 0 N;

where the partial sum s is passed from call to call. In turn, this is equivalent to
the iteration:

sum(N)
{ int s;

s = 0;
while(N>0)
{ s = s+N;

N = N-1;
}
return s;

}

where s is the partial sum and N is the next value to be summed.
We may reformulate this as a box with feedback wires for the partial sum and

the next value. Suppose the inputs are i for the original input, s for the partial
sum and N for the next value. Suppose the outputs are o for the final result, s’
for the incremented partial sum and N’ for the decremented next value. Then
we may distinguish three possibilities:

1. there is a new initial value with no partial sum or current value. The sum is
initialised to 0, the current value is initialised to the initial value, and there
is no final output:

(i,*,*) -> (*,0,i)
2. the current value is 0. Any next initial value is ignored. The partial sum is

the final output and there are no new values for the partial sum or current
value:

(*,s,0) -> (s,*,*)
3. the current value is not 0. Any next initial value is ignored. The current

value is added to the partial sum and the current value is decremented, with
no final output:

(*,s,N) -> (*,s+N,N-1)

Thus, the final program is:

box itersum
in (i::integer,s::integer,N::integer)
out (o::integer, s’::integer,N::integer)
match
(*,s,0) -> (s,*,*) |
(*,s,N) -> (*,s+N,N-1) |
(i,*,*) -> (*,0,i);

wire itersum
(input,itersum.s’,itersum.N’)
(output,itersum.s,itersum.N);
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Note the order of the matches. We start with the “termination case” when N is
0, followed by the “iteration case” when N is non-zero, followed by the case for
a new input.

5 The Box Calculus

The box calculus[GM08, Gro09, GM11] contains rules for transforming the co-
ordination layer of a Hume program. In most cases this involves changes to the
expression layer through functional reasoning techniques, especially rewriting.

5.1 Rules of the Calculus

We will now describe the rules used in the examples in the next section. Some
of these rules are atomic, i.e. they can be seen as the axioms, while other are
derived. Note that some of them have rather complicated formulations for which
we will not give the formal syntax and semantics in full detail – for this we refer
to [GM11].

Rename. The simplest family of rules are those that just rename a compo-
nent. The calculus has two such rules: Rename which renames a box; and
RenameWire which renames a given input or output wire of a box. Renam-
ing of functions is considered to be independent of the calculus, and can be
incorporated by the ESub rule.

Expression Substitution (ESub). The first rule of the calculus enables the
use of the BMF reasoning discussed in Section 3.9. For any match

p -> e1

if we can show that
e1 = e26

then we can replace e1 with e2, which results in the following new match

p -> e2

Expression/Function Folding. A special, but very common, case of the
ESub rule is folding and unfolding as discussed in 3.8. Here we may create or
delete functions during this process. Assume you have a match of the following
form:

p -> e p

We then fold e into a function f (with a parameter x):

f x = e x;

It is then trivial to show that f x = e x, thus creating the new match:

p -> f p

6 We rely on extensional equality, meaning that two function f and g are the same if
they return the same values: ∀x. e1 x = e2 x.
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This rule, which creates a new function f from the expression and replaces
the expression with a call to f, is called expression folding introduction
(EFoldI).

Its dual, which unfold the function definition of f in the expression is called
expression folding elimination (EFoldE).

Note that in applications where EFoldI creates a function which is equivalent
to an existing function, then a new function is created. A subsequent step can
then replace this new function with the existing one using ESub and BMF
reasoning.

Match Composition. We can fold a set of adjacent matches

p1 -> e1 | p2 -> e2 | ... | pn -> en

into one match with a case expression for each match

p -> case p of p1 -> e1 | p2 -> e2 | ... | pn -> en

if and only if p will always match (and consume) whenever p1, · · · , pn will. This
rule is called match composition introduction (MCompI). A special case
of this rule is when the * pattern is not used in any pattern, and the matches are
total (will never fail if input are available on all wires). In this case we can fold
all matches into one match,which we will do in several of the example below.

The dual of this rule, match composition elimination (MCompE) turns
a case expression into a match for each case. The same precondition applies to
this rule.

Tuple Composition. If there are more than one wire from a box to another
then these wires can be combined into a single wire containing a tuple, where
each element of this wire correspond to one of the original wires. A proviso for
this is that the * pattern is used either for each or none of the tuple elements for
each expression/pattern. This rule is called tuple composition introduction
(TupleI), and is illustrated on the left below:

In order to apply the rule the patterns of S must change accordingly, and so
must the expression of F. For simplicity, we can only apply this rule when each
expression of F can be decomposed syntactically (e.g. the expression cannot be
a function application)
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Dually, tuple composition elimination (TupleE) is the process of splitting
a tuple into mant wires – one for each element of the tuple. This is illustrated
on the right above.

Vertical Box Composition. Vertical box composition introduction
(VCompI) lifts function composition to the box level, and dually, vertical box
composition elimination) (VCompE) lifts function de-composition into the
box level.

VCompI takes two connected boxes and turn them into one. A proviso for
such transformation is that all outputs of the first box are connected to the
inputs of the second7. This is shown on the left hand side below:

The proviso for it’s dual, VCompE, is that the box being transformed only has
one match which is of the form of a function composition (i.e. f 0 g). This is
illustrated on the r.h.s. above.

Horizontal Box Composition. Two independent boxes can be joined together
if it is never the case that one of them is blocked when the other is not. This is
illustrated on the top below, where A and B are composed into box C. This rule
is called horizontal box composition introduction (HCompI).

Its dual, horizontal box composition elimination (HCompE), shown on
the bottom above, decomposes a box C into two separate boxes A and B. In order
to do this, we need to be able decompose input/output wires of the box so that
7 This can in principle be relaxed but will add more complexities.
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they are independent of each others, as well as ensuring that the boxes blocks at
the same time. This principle is best illustrated by example, which we will show
in the following section.

Identity Boxes. An identity box is a box with one input and one output with
one match of the form x -> x, that is a box which introduces a one step latency
for one wire. If such delay has no impact on the rest of the program, an arbitrary
number of identity boxes can be introduced and eliminated, called identity box
introduction (IdI) and identity box elimination (IdE) respectively:

Introducing Wires. Wires which does ‘nothing’ can be eliminated. Syntacti-
cally, these are cases where all the source expressions and target patterns only
contains *. Semantically, this can be generalised to cases where there are not
only *, but it is provable that this behaves like *. This rule is known as wire
elimination (WireE) and is shown on the right below.

Dually, we can introduce a wire where both the source and targets are only
*s without changing the semantics of the program. This rule is known as wire
introduction (WireI) and is shown in the left above.

Wire Duplication. We can also duplicate wires and eliminate such dupli-
cations, known as wire duplication introduction (WireDupI) and wire
duplication elimination (WireDupE), shown on the left and right below,
respectively.
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In these cases we must show that the wires are indeed proper duplications,
i.e. initially the wires are the same, the same values are always written and
consumed.

5.2 A Note on Preconditions

We have informally discussed some of the preconditions of applying the rules,
however there are additional complications in the presence of asynchronous wires
(the use of *) due to the concurrent nature of the box scheduling. To illustrate,
consider a box with matches

1. (x,y) -> ... |
2. (*,y) -> ... | ...

In a configuration where the match at line 1 always succeeds, introduction of
an identity box on the first input wire may result in the value on this wire
arriving a step later, which may cause match 2 to succeed instead. This can
have global impact on correctness. The * pattern is not used for any examples
in the following section, so we have ignored this potentially complicated issue.

6 Reasoning about Hume Programs with the Box
Calculus

In this section we will illustrate use of the box calculus. Sections 6.1 and 6.2
use the calculus for the transformations informally shown in Section 4.6, while
Section 6.3 shows how to parallelise the fold function for multi-core applications.
This examples uses many of the properties we proved about fold in Section 3.9.

6.1 Decomposing NAND into AND and NOT

Consider again the NAND box from Section 4.6:

box NAND
in (x::BIT,y::BIT)
out (z::BIT)
match
(0,0) -> 1 |
(0,1) -> 1 |
(1,0) -> 1 |
(1,1) -> 0;

Firstly note that all cases are handled by the matches. Our first transformation
step composes all matches into one match (with a case expression) by applying
the MCompI rule. This creates the following box:

box NAND
in (x::BIT,y::BIT)
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out (z::BIT)
match

(x,y) -> case (x,y) of
(0,0) -> 1 |
(0,1) -> 1 |
(1,0) -> 1 |
(1,1) -> 0;

Next we fold the case expression into a function using the EFoldI rule, which
creates the new function8:

nand (x,y) = case (x,y) of
(0,0) -> 1 |
(0,1) -> 1 |
(1,0) -> 1 |
(1,1) -> 0;

and the new box:

box NAND
in (x::BIT,y::BIT)
out (z::BIT)
match

(x,y) -> nand (x,y);

Using BMF style reasoning, similar to MCompE at the expression layer, the
case expression can be replaced by pattern matching:

nand (0,0) = 1;
nand (0,1) = 1;
nand (1,0) = 1;
nand (1,1) = 0;

Logical AND can be represented by the following function:

and (0,0) = 0;
and (0,1) = 0;
and (1,0) = 0;
and (1,1) = 1;

and logical NOT by the following function:

not 0 = 1;
not 1 = 0;

Next, we can see that NAND is the same as AND followed by NOT
8 Strict calculus use is unlikely to come up with names that “makes sense”, so many

steps are followed by a renaming application. However, to ease the reading we are
using more descriptive names directly.
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Theorem 10.
nand(x, y) = not(and(x, y))

Proof. This equality can easily be proven by drawing up the truth table:

x y nand (x,y) and(x,y) not(and(x,y))
0 0 1 0 1
0 1 1 0 1
1 0 1 0 1
1 1 0 1 0

With Theorem 10 we can apply the ESubst rule to replace nand (x,y) by
not(and(x,y)) in the NAND box:

box NAND
in (x::BIT,y::BIT)
out (z::BIT)
match

(x,y) -> not(and (x,y));

not(and(x,y)) is the same as (not o and) (x,y), thus we can apply the
VCompE rule to decompose this box into two sequential boxes. We then re-
name the boxes (by rule Rename) to AND and NOT, and input and output wires
(using RenameWire), which creates the following configuration:

box AND
in (x::BIT,y::BIT)
out (z::BIT)
match

(x,y) -> and (x,y) ;

box NOT
in (x::BIT)
out (y::BIT)
match

x -> not x;

wire AND(...) (NOT.x);
wire NOT (AND.z) (...);

Next we unfold the definition of the not function into a case expression using
BMF style reasoning

not x = case x of 0 -> 1 | 1 -> 0;

and show that it is identical to the original (pattern matching) version. We then
unfold this function in the NOT box using the EFoldE rule:

box NOT
in (x::BIT)
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out (x’::BIT)
match

x -> case x of 0 -> 1 | 1 -> 0;

and split the case expression up into several matches using the MCompE rule:

box NOT
in (x::BIT)
out (x’::BIT)
match
0 -> 1 |
1 -> 0;

The exact same strategy can be applied to the AND box, giving:

box AND
in (x::BIT,y::BIT)
out (z::BIT)
match

(0,0) -> 0 |
(0,1) -> 0 |
(1,0) -> 0 |
(1,1) -> 1;

which completes the transformation.

6.2 Decomposing IMPLIES into NOT and OR

We will now apply the box calculus to the transformation of IMPLIES into NOT
followed by OR as illustrated in Section 4.6. We start with the IMPLIES box:

box IMPLIES
in (x::BIT,y::BIT)
out (z::BIT)
match
(0,0) -> 1 |
(0,1) -> 1 |
(1,0) -> 0 |
(1,1) -> 1;

First we apply the MCompI rule to turn the matches into a case expression.
We then apply the EFoldI rule to separate this case expression into a function
we call implies and unfolds the case expression in the function using BMF
reasoning. As a result the IMPLIES box is replaced by the following box:

box IMPLIES
in (x::BIT,y::BIT)
out (z::BIT)
match

(x,y) -> implies (x,y);
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which uses the function:

implies (0,0) = 1;
implies (0,1) = 1;
implies (1,0) = 0;
implies (1,1) = 1;

Next, we define OR in the expression layer as a function:

or (0,0) = 0;
or (0,1) = 1;
or (1,0) = 1;
or (1,1) = 1;

and introduce the following auxiliary function:

negatefirst (0,0) = (1,0);
negatefirst (0,1) = (1,1);
negatefirst (1,0) = (0,0);
negatefirst (1,1) = (0,1);

We then show that

Theorem 11.

implies(x, y) = or(negatefirst(x, y))

Proof. This can be shown by a truth table:

x y implies (x,y) negatefirst(x,y) or(negatefirst(x,y))
0 0 1 (1,0) 1
0 1 1 (1,1) 1
1 0 0 (0,0) 0
1 1 1 (0,1) 1

By applying Theorem 11 we can replace implies with or(negatefirst(x,y))
in the IMPLIES box using the ESubst rule:

box IMPLIES
in (x::BIT,y::BIT)
out (z::BIT)
match

(x,y) -> or (negatefirst (x,y));

We then apply sequential decomposition (VCompE):
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box NEGATEFIRST
in (x::BIT,y::BIT)
out (x’::BIT,y’::BIT)
match

(x,y) -> negatefirst (x,y);

box OR
in (x::BIT,y::BIT)
out (z::BIT)
match

(x,y) -> or (x,y);

wire NEGATEFIRST (..) (OR.x, OR.y);
wire OR (NEGATEFIRST.x’, NEGATEFIRST.y’) (..);

Next, we apply BMF reasoning to replace the patterns in the or function with
a case expression. We then unfold this function in the OR box by applying
the EFoldE rule. Then we move the case expression into the match with the
MCompE rule, creating the following new OR box:

box OR
in (x::BIT,y::BIT)
out (z::BIT)
match

(0,0) -> 0 |
(0,1) -> 1 |
(1,0) -> 1 |
(1,1) -> 1;

We now want to transform the NEGATEFIRST box. Firstly, we observe that the
first argument is always negated. We then observe that the second argument is
left unchanged. Thus, we have the following fact:

Theorem 12.
negatefirst (x, y) = (not x, y)

Proof. This can be easily shown by a truth table.

Using Theorem 12 we apply ESub to the NEGATEFIRST box, which gives us the
following box:

box NEGATEFIRST
in (x::BIT,y::BIT)
out (x’::BIT,y’::BIT)
match

(x,y) -> (not x,y);
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We then observe that the box has one match with two arguments, and the expres-
sion can be decomposed such that the first argument in the expression only uses
the first input, and the second only uses the second input. This means that we
can horizontally decompose the box into two parallel boxes using the HCompE
rule. We then rename the boxes accordingly (using the Rename rule), creating
the following box configuration:

box NOT
in (x::BIT)
out (y::BIT)
match

x -> not x;

box Id
in (x::BIT)
out (y::BIT)
match

y -> y;

box OR ...

wire NOT (..) (OR.x);
wire Id (..) (OR.y);
wire OR (NOT.y,Id.y) (..);

Next we unfold the definition of the not function into a case expression using
BMF style reasoning and show that it is identical to the original (pattern match-
ing) version. We then unfold this function in the NOT box using the EFoldE rule,
before we move the case expression into the match by MCompE creating the
new NOT box:

box NOT
in (x::BIT)
out (y::BIT)
match
0 -> 1 |
1 -> 0;

Finally, we observe that, as the name implies, the Id box behaves as an identity
box and can therefore be eliminated by the IdE rule. We then have the following
box configuration:
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box NOT
in (x::BIT)
out (y::BIT)
match

0 -> 1 |
1 -> 0;

box OR
in (x::BIT,y::BIT)
out (z::BIT)
match

(0,0) -> 0 |
(0,1) -> 1 |
(1,0) -> 1 |
(1,1) -> 1;

wire NOT (..) (OR.x);
wire OR (NOT.y,..) (..);

which completes the transformation.

6.3 Parallelising Fold

Our final application of the box calculus relates to the very timely problem of
parallelising programs, for example to explore multi-core architectures. We will
address the problem of parallelising the fold combinator which we described
previously. We make the same assumptions about the function being folded as
in Section 3.9 and we utilise several of the theorems proved there.

Two-Box Fold. First we will address the problem of splitting one fold into two
parallel applications, and after that generalise to N boxes. Obviously, there is
a cost of parallelisation, thus this would only make sense when the function f
:: a -> b -> b which we fold over performs some heavy and time-consuming
computations over a list xs and we want to fold the result of each computation.
Assuming an initial value r::b, we start with the following box:

box foldbox
in (i :: [a])
out (o :: b)
match
xs -> fold f r xs;

Henceforth we will not give such Hume code for boxes and separate diagrams,
but integrate the matches into the diagram. In this notation the foldbox looks
as follows:
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Firstly, we define some abbreviations to make the code more readable :

append’ (xs,ys) = append xs ys;
left xs = take ((Length xs) div 2) xs;
right xs = drop (Length xs) div 2) xs;
split2 xs = (left xs, right xs);

With these definition it follows from Theorem 7 that:

fold f r xs = fold f r (append’(left xs, right xs))

Then, from Theorem 9 we have that:

fold f r (append’(left xs, right xs)) =

f (fold f r left xs) (fold f e right xs)

Thus, by transitivity of = we know that

fold f r xs = f (fold f r (left xs)) (fold f e (right xs)) (1)

Further from the definition of uncurry we know that

f x y = (uncurry f) (x, y)

from before. Using this (1) becomes by BMF:

fold f r xs = (uncurry f) (fold f r (left xs), fold f e (right xs))

Using this fact, we apply the ESub rule creating the following new match for
foldbox:

xs -> (uncurry f) (fold f r (left xs), fold f e (right xs))

This is sequential application of two function, which we lift to the box level by
the VCompE rule, together with some box renaming9:

9 Note that a single wire label means that this name is used for both the output of
the first box (applyfold box) and input of the second box (combine box).
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We know that the output wire of the applyfold box is a pair which can be split
by the TupleE rule. After this split the match of combine box becomes:

(a,b) -> (uncurry f) (a,b)

Next, we curry this function, which by the ESub rule gives us the match:

(a,b) -> (curry(uncurry f)) a b

From Theorem 4 we have that:

curry(uncurry f) = f

Using this theorem we apply the ESub rule to get the following new configura-
tion:

We have now completed the transformation of combine box. Next we start trans-
forming applyfold box. First we apply EFoldI to fold the expression into a new
function h:

h xs = (fold f r (left xs), fold f e (right xs));

and the box match becomes:

xs -> h xs
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Next, we define a new function

g (a,b) = (fold f r a, fold f e b);

and show that

h xs = g (left xs, right xs)

which hold by unfolding both function definitions. We apply ESub to create a
new match:

xs -> g (left xs, right xs)

We know that:

(left xs, right xs) = split2 xs

by the definition of split2. Using this we apply the ESub rule creating the
following new match:

xs -> g (split2 xs)

Again, this is sequential composition of two function, which we can lift to the
box level by rule VCompE. By making some suitable renaming we obtain the
following box configuration:

As above, the wire between the two new boxes is a pair which we can split by
the TupleE rule:
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The transformation of the split box box is now completed. and we start on
applyfold box. First, we unfold the g function by rule EFoldE creating the
new match:

(a,b) -> (fold f r a, fold f e b)

Next we observe that the first element of the expression only uses the first
pattern, while the second element only uses the second pattern, hence we can
apply the horizontal box decomposition, that is rule HCompE, creating the
following final box configuration

which completes the transformation.
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N-Box Fold. We now outline how to generalise this into N cores. We assume
that N is fixed for ease of presentation (but we can also abstract over N). First
we generalise left, right and split2 with an additional argument n specifying
the size of the chunks:

left n x = take ((length x) div n) x;
right n x = drop ((length x) div n) x;
splitN n x = (left n x,right n x);

Note that the previous definitions would be equivalent to setting n to 2. The
idea is that we we want to split a given list x into length x

N chunks and apply
(a slight adaption of) the transformation from above N − 1 times, so that each
chunk is executed on a core with equal load balancing.

The difference for each transformation is that we use the more general version
splitN. Firstly, we apply the transformation with N given as argument, i.e.
splitN N. The first output wire will then contain the first 1

N parts of the list
and this will be sent to the first core. The remaining N−1

N parts of the list are
sent down the second wire. Since we have used one core (the first wire), we have
N − 1 cores left. Thus, we reapply this transformation to the second wire with
splitN (N-1) to get a chunk equal to to the first wire. This transformation is
recursively applied N − 1 times, which will create an “arrow-headed” shape

where we need to flatten the “top” and “bottom”, creating the following shaped
box configuration:
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The top can be flatten by a sequence of the transformations discussed next,
which shows how two boxes at the ath (2 < a ≤ N) step can be combined (after
unfolding splitN):

First we apply IdI to introduce an identity box on the first output wire:

Then we horizontally merge this box with the second box by the HCompI rule
which creates the following configuration:
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We can then vertically compose these two boxes with VCompI, creating

Notice that the result of the transformation is to make a copy of the last element
e of the tuple in the expression of the box, so (...,e) becomes (...,e,e). If
we are at level k, then the first e is replaced by left (N-k) e and the second e
is replaced by right (N-k) e – so the tuple is now (...,left (N-k) e,right
(N-k) e).

Reverting to our transformation. If we assume that a > 3, the result of incor-
porating the “split box” at the next level down, is the following match:

x -> (left a x,
left (a-1) (right a x),
left (a-2) (right (a-1) (right a x)),
right (a-2) (right (a-1) (right a x)))

Note that we start at the top of the “arrow-head” diagram when combining
boxes.

When merging the results, the match of each box looks as follows:

(x,y) -> f x y

Two such boxes can be combined with exactly the same approach of introduc-
ing an identity box (IdI), followed by horizontal (HCompI) and then vertical
composition VCompI, giving a new box with the match

(x1,x2,x3) -> f x1 (f x2 x3)

Since we assume that f is associative this can be rewritten to:

(x1,x2,x3) -> f (f x1 x2) x3

Applying the associative rewrite to the next box it becomes
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(x1,x2,x3,x4) -> f (f (f x1 x2) x3) x4

and so on. At the end the box will have the following match schema:

(x1,x2,x3,x4,...,xn) -> f (...(f (f x1 x2) x3) x4 ...) xn

This is the result of applying the fold function!

Theorem 13.
f x y = fold f x [y]

Proof. Firstly, remember that [y] is shorthand for (y : []). The proof follows from
two unfoldings of the definition of fold:

fold f x (y : []) → fold f (f x y) [] → f x y

Next we prove the following property about fold:

Theorem 14.

f (fold f x ys) z = fold f x (ys++[z])

Proof. By structural induction on ys:

Base case: f (fold f x []) z = fold f x ([]++[z])
fold f x ([]++[z]) → (++ )
fold f x [z] → (fold def (twice))
f x z → (fold def )
f (fold f x []) z

Recursion case: f (fold f x (y : ys)) z =
fold f x ((y : ys)++[z])

Assumption: f (fold f x ys) z = fold f x (ys++[z]) [induction hyp.]
fold f x ((y : ys)++[z]) → (++ )
fold f x (y : (ys++[z])) → (fold )
fold f (f x y) (ys++[z]) → (induction hyp.)
f (fold f (f x y) ys) z → (fold )
f (fold f x (y : ys)) z

By first applying Theorem 13 to the innermost f application, and then reapplying
Theorem 14 until we are left with a large fold expression we end up with the
following property:

f (...(f (f x1 x2) x3) x4 ...) xn = fold f x1 [x2,...,xn]

With this we apply ESub to get the following match:

(x1,x2,x3,x4,...,xn) -> fold f x1 [x2,...,xn]

This completes the following transformation:
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7 Conclusion

We have surveyed the Hume programming language and shown how the explicit
separation of coordination and computation aids formal reasoning about pro-
grams. In particular, we have introduced the box calculus for reasoning about
coordination and shown how, in conjunction with extant reasoning systems for
computation, it is possible to construct robust proofs of substantial program
constructs for parallelism through systematic transformation.

We envisage two important avenues for future activity. First of all, effective
box calculus deployment clearly requires a graphical tool-set to support, and
ultimately automate, scalable program transformation. Secondly, there are ex-
cellent opportunities in complementing the box calculus with resource analysis
to enable resource directed program development in a “costing by construction”
style. Here again, this should be supported by an integrated tool-set which can
flexibly account for different resource modalities such as time, space and power
consumption.

Acknowledgements. We would like to thank our collaborators Kevin Ham-
mond of the University of St Andrews, Hume’s co-designer, Andrew Ireland of
Heriot-Watt University, who helped develop the box calculus, and the anony-
mous reviewer for very constructive feedback.

Hume Resources

The Hume home page is:

http://www-fp.cs.st-andrews.ac.uk/hume/index.shtml.

Hume tools and documentation may also be found at:

http://www.macs.hw.ac.uk/~greg/hume/.

The Hume Report is at:

http://www.macs.hw.ac.uk/~greg/hume/hume11.pdf

and the Hume Manual is at:

http://www.macs.hw.ac.uk/~greg/hume/manual.pdf
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Parallel and Concurrent Programming in Haskell
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Abstract. Haskell provides a rich set of abstractions for parallel and
concurrent programming. This tutorial covers the basic concepts involved
in writing parallel and concurrent programs in Haskell, and takes a de-
liberately practical approach: most of the examples are real Haskell pro-
grams that you can compile, run, measure, modify and experiment with.
We cover parallel programming with the Eval monad, Evaluation Strate-
gies, and the Parmonad. On the concurrent side, we cover threads, MVars,
asynchronous exceptions, Software Transactional Memory, the Foreign
Function Interface, and briefly look at the construction of high-speed
network servers in Haskell.

1 Introduction

While most programming languages nowadays provide some form of concurrent
or parallel programming facilities, very few provide as wide a range as Haskell.
The Haskell language is fertile ground on which to build abstractions, and con-
currency and parallelism are no exception here. In the world of concurrency and
parallelism, there is good reason to believe that no one size fits all programming
model for concurrency and parallelism exists, and so prematurely committing to
one particular paradigm is likely to tilt the language towards favouring certain
kinds of problem. Hence in Haskell we focus on providing a wide range of ab-
stractions and libraries, so that for any given problem it should be possible to
find a tool that suits the task at hand.

In this tutorial I will introduce the main programming models available for
concurrent and parallel programming in Haskell. The tutorial is woefully incom-
plete — there is simply too much ground to cover, but it is my hope that future
revisions of this document will expand its coverage. In the meantime it should
serve as an introduction to the fundamental concepts through the use of prac-
tical examples, together with pointers to further reading for those who wish to
find out more.

This tutorial takes a deliberately practical approach: most of the examples are
real Haskell programs that you can compile, run, measure, modify and experi-
ment with. For information on how to obtain the code samples, see Section 1.1.
There is also a set of accompanying exercises.

In order to follow this tutorial you should have a basic knowledge of Haskell,
including programming with monads.

V. Zsók, Z. Horváth, and R. Plasmeijer (Eds.): CEFP 2011, LNCS 7241, pp. 339–401, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Briefly, the topics covered in this tutorial are as follows:

– Parallel programming with the Eval monad (Section 2.1)
– Evaluation Strategies (Section 2.2)
– Dataflow parallelism with the Par monad (Section 2.3)
– Basic Concurrent Haskell (Section 3)
– Asynchronous exceptions (Section 3.3)
– Software Transactional Memory (Section 3.4)
– Concurrency and the Foreign Function Interface (Section 3.5)
– High-speed concurrent servers (Section 3.6)

One useful aspect of this tutorial as compared to previous tutorials covering
similar ground ([12; 13]) is that I have been able to take into account recent
changes to the APIs. In particular, the Eval monad has replaced par and pseq

(thankfully), and in asynchronous exceptions mask has replaced the old block

and unblock.

1.1 Tools and Resources

To try out Parallel and Concurrent Haskell, and to run the sample programs
that accompany this article, you will need to install the Haskell Platform1. The
Haskell Platform includes the GHC compiler and all the important libraries,
including the parallel and concurrent libraries we shall be using. This version
of the tutorial was tested with the Haskell Platform version 2011.2.0.1, and
we expect to update this tutorial as necessary to cover future changes in the
platform.

Section 2.3 requires the monad-par package, which is not currently part of the
Haskell Platform. To install it, use the cabal command:

$ cabal install monad-par

(The examples in this tutorial were tested with monad-par version 0.1.0.3).
Additionally, we recommend installing ThreadScope2. ThreadScope is a tool

for visualising the execution of Haskell programs, and is particularly useful for
gaining insight into the behaviour of parallel and concurrent Haskell code. On
some systems (mainly Linux) ThreadScope can be installed with a simple

$ cabal install threadscope

but for other systems refer to the ThreadScope documentation at the aforemen-
tioned URL.

While reading the article we recommend you have the following documenta-
tion to hand:

– The GHC User’s Guide3,

1 http://hackage.haskell.org/platform/
2 http://www.haskell.org/haskellwiki/ThreadScope
3 http://www.haskell.org/ghc/docs/latest/html/users_guide/

http://hackage.haskell.org/platform/
http://www.haskell.org/haskellwiki/ThreadScope
http://www.haskell.org/ghc/docs/latest/html/users_guide/
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– The Haskell Platform library documentation, which can be found on the
main Haskell Platform site4. Any types or functions that we use in this
article that are not explicitly described can be found documented there.

It should be noted that none of the APIs described in this tutorial are standard
in the sense of being part of the Haskell specification. That may change in the
future.

Sample Code. The repository containing the source for both this document
and the code samples can be found at https://github.com/simonmar/

par-tutorial . The current version can be downloaded from http:

//community.haskell.org/~simonmar/par-tutorial-1.2.zip.

1.2 Terminology: Parallelism and Concurrency

In many fields, the words parallel and concurrent are synonyms; not so in pro-
gramming, where they are used to describe fundamentally different concepts.

A parallel program is one that uses a multiplicity of computational hardware
(e.g. multiple processor cores) in order to perform computation more quickly.
Different parts of the computation are delegated to different processors that
execute at the same time (in parallel), so that results may be delivered earlier
than if the computation had been performed sequentially.

In contrast, concurrency is a program-structuring technique in which there
are multiple threads of control. Notionally the threads of control execute “at the
same time”; that is, the user sees their effects interleaved. Whether they actu-
ally execute at the same time or not is an implementation detail; a concurrent
program can execute on a single processor through interleaved execution, or on
multiple physical processors.

While parallel programming is concerned only with efficiency, concurrent pro-
gramming is concerned with structuring a program that needs to interact with
multiple independent external agents (for example the user, a database server,
and some external clients). Concurrency allows such programs to be modular ;
the thread that interacts with the user is distinct from the thread that talks to
the database. In the absence of concurrency, such programs have to be written
with event loops and callbacks—indeed, event loops and callbacks are often used
even when concurrency is available, because in many languages concurrency is
either too expensive, or too difficult, to use.

The notion of “threads of control” does not make sense in a purely functional
program, because there are no effects to observe, and the evaluation order is
irrelevant. So concurrency is a structuring technique for effectful code; in Haskell,
that means code in the IO monad.

A related distinction is between deterministic and nondeterministic program-
ming models. A deterministic programming model is one in which each program
can give only one result, whereas a nondeterministic programming model ad-
mits programs that may have different results, depending on some aspect of the

4 http://hackage.haskell.org/platform/

https://github.com/simonmar/par-tutorial
https://github.com/simonmar/par-tutorial
http://community.haskell.org/~simonmar/par-tutorial-1.2.zip
http://community.haskell.org/~simonmar/par-tutorial-1.2.zip
http://hackage.haskell.org/platform/
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execution. Concurrent programmingmodels are necessarily nondeterministic, be-
cause they must interact with external agents that cause events at unpredictable
times. Nondeterminism has some notable drawbacks, however: programs become
significantly harder to test and reason about.

For parallel programming we would like to use deterministic programming
models if at all possible. Since the goal is just to arrive at the answer more
quickly, we would rather not make our program harder to debug in the process.
Deterministic parallel programming is the best of both worlds: testing, debug-
ging and reasoning can be performed on the sequential program, but the program
runs faster when processors are added. Indeed, most computer processors them-
selves implement deterministic parallelism in the form of pipelining and multiple
execution units.

While it is possible to do parallel programming using concurrency, that is
often a poor choice, because concurrency sacrifices determinism. In Haskell, the
parallel programming models are deterministic. However, it is important to note
that deterministic programming models are not sufficient to express all kinds of
parallel algorithms; there are algorithms that depend on internal nondetermin-
ism, particularly problems that involve searching a solution space. In Haskell,
this class of algorithms is expressible only using concurrency.

Finally, it is entirely reasonable to want to mix parallelism and concurrency
in the same program. Most interactive programs will need to use concurrency to
maintain a responsive user interface while the compute intensive tasks are being
performed.

2 Parallel Haskell

Parallel Haskell is all about making Haskell programs run faster by dividing the
work to be done between multiple processors. Now that processor manufactur-
ers have largely given up trying to squeeze more performance out of individual
processors and have refocussed their attention on providing us with more pro-
cessors instead, the biggest gains in performance are to be had by using parallel
techniques in our programs so as to make use of these extra cores.

We might wonder whether the compiler could automatically parallelise pro-
grams for us. After all, it should be easier to do this in a pure functional language
where the only dependencies between computations are data dependencies, and
those are mostly perspicuous and thus readily analysed. In contrast, when effects
are unrestricted, analysis of dependencies tends to be much harder, leading to
greater approximation and a large degree of false dependencies. However, even
in a language with only data dependencies, automatic parallelisation still suffers
from an age-old problem: managing parallel tasks requires some bookkeeping
relative to sequential execution and thus has an inherent overhead, so the size
of the parallel tasks must be large enough to overcome the overhead. Analysing
costs at compile time is hard, so one approach is to use runtime profiling to
find tasks that are costly enough and can also be run in parallel, and feed this
information back into the compiler. Even this, however, has not been terribly
successful in practice [1].
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Fully automatic parallelisation is still a pipe dream. However, the parallel pro-
gramming models provided by Haskell do succeed in eliminating some mundane
or error-prone aspects traditionally associated with parallel programming:

– Parallel programming in Haskell is deterministic: the parallel program always
produces the same answer, regardless how many processors are used to run
it, so parallel programs can be debugged without actually running them in
parallel.

– Parallel Haskell programs do not explicitly deal with synchronisation or com-
munication. Synchronisation is the act of waiting for other tasks to complete,
perhaps due to data dependencies. Communication involves the transmission
of results between tasks running on different processors. Synchronisation is
handled automatically by the GHC runtime system and/or the parallelism
libraries. Communication is implicit in GHC since all tasks share the same
heap, and can share objects without restriction. In this setting, although
there is no explicit communication at the program level or even the runtime
level, at the hardware level communication re-emerges as the transmission
of data between the caches of the different cores. Excessive communication
can cause contention for the main memory bus, and such overheads can be
difficult to diagnose.

Parallel Haskell does require the programmer to think about Partitioning. The
programmer’s job is to subdivide the work into tasks that can execute in parallel.
Ideally, we want to have enough tasks that we can keep all the processors busy
for the entire runtime. However, our efforts may be thwarted:

– Granularity. If we make our tasks too small, then the overhead of managing
the tasks outweighs any benefit we might get from running them in parallel.
So granularity should be large enough to dwarf the overheads, but not too
large, because then we risk not having enough work to keep all the processors
busy, especially towards the end of the execution when there are fewer tasks
left.

– Data dependencies between tasks enforce sequentialisation. GHC’s two
parallel programming models take different approaches to data dependencies:
in Strategies (Section 2.2), data dependencies are entirely implicit, whereas
in the Par monad (Section 2.3), they are explicit. This makes programming
with Strategies somewhat more concise, at the expense of the possibility that
hidden dependencies could cause sequentialisation at runtime.

In this tutorial we will describe two parallel programming models provided
by GHC. The first, Evaluation Strategies [8] (Strategies for short), is well-
established and there are many good examples of using Strategies to write paral-
lel Haskell programs. The second is a dataflow programming model based around
a Par monad [5]. This is a newer programming model in which it is possible to
express parallel coordination more explicitly than with Strategies, though at the
expense of some of the conciseness and modularity of Strategies.
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2.1 Basic parallelism: The Eval Monad

In this section we will demonstrate how to use the basic parallelism abstractions
in Haskell to perform some computations in parallel. As a running example that
you can actually test yourself, we use a Sudoku solver5. The Sudoku solver is
very fast, and can solve all 49,000 of the known puzzles with 17 clues6 in about
2 minutes.

We start with some ordinary sequential code to solve a set of Sudoku problems
read from a file:

import Sudoku

import Control.Exception

import System.Environment

main :: IO ()

main = do

[f] <- getArgs

grids <- fmap lines $ readFile f

mapM_ (evaluate . solve) grids

The module Sudoku provides us with a function solve with type

solve :: String -> Maybe Grid

where the String represents a single Sudoku problem, and Grid is a representa-
tion of the solution. The function returns Nothing if the problem has no solution.
For the purposes of this example we are not interested in the solution itself, so
our main function simply calls evaluate . solve on each line of the file (the
file will contain one Sudoku problem per line). The evaluate function comes
from Control.Exception and has type

evaluate :: a -> IO a

It evaluates its argument to weak-head normal form. Weak-head normal form just
means that the expression is evaluated as far as the first constructor; for example,
if the expression is a list, then evaluate would perform enough evaluation to
determine whether the list is empty ([]) or non-empty (_:_), but it would not
evaluate the head or tail of the list. The evaluate function returns its result in
the IO monad, so it is useful for forcing evaluation at a particular time.

Compile the program as follows:

$ ghc -O2 sudoku1.hs -rtsopts

[1 of 2] Compiling Sudoku ( Sudoku.hs, Sudoku.o )

[2 of 2] Compiling Main ( sudoku1.hs, sudoku1.o )

Linking sudoku1 ...

and run it on 1000 sample problems:

5 The Sudoku solver code can be found in the module Sudoku.hs in the samples that
accompany this tutorial.

6 http://mapleta.maths.uwa.edu.au/~gordon/sudokumin.php

http://mapleta.maths.uwa.edu.au/~gordon/sudokumin.php
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$ ./sudoku1 sudoku17.1000.txt +RTS -s

./sudoku1 sudoku17.1000.txt +RTS -s

2,392,127,440 bytes allocated in the heap

36,829,592 bytes copied during GC

191,168 bytes maximum residency (11 sample(s))

82,256 bytes maximum slop

2 MB total memory in use

Generation 0: 4570 collections, 0 parallel, 0.14s, 0.13s elapsed

Generation 1: 11 collections, 0 parallel, 0.00s, 0.00s elapsed

Parallel GC work balance: -nan (0 / 0, ideal 1)

MUT time (elapsed) GC time (elapsed)

Task 0 (worker) : 0.00s ( 0.00s) 0.00s ( 0.00s)

Task 1 (worker) : 0.00s ( 2.92s) 0.00s ( 0.00s)

Task 2 (bound) : 2.92s ( 2.92s) 0.14s ( 0.14s)

SPARKS: 0 (0 converted, 0 pruned)

INIT time 0.00s ( 0.00s elapsed)

MUT time 2.92s ( 2.92s elapsed)

GC time 0.14s ( 0.14s elapsed)

EXIT time 0.00s ( 0.00s elapsed)

Total time 3.06s ( 3.06s elapsed)

%GC time 4.6% (4.6% elapsed)

Alloc rate 818,892,766 bytes per MUT second

Productivity 95.4% of total user, 95.3% of total elapsed

The argument +RTS -s instructs the GHC runtime system to emit the statistics
you see above. These are particularly helpful as a first step in analysing parallel
performance. The output is explained in detail in the GHC User’s Guide, but
for our purposes we are interested in one particular metric: Total time. This
figure is given in two forms: the first is the total CPU time used by the program,
and the second figure is the elapsed, or wall-clock, time. Since we are running on
a single processor, these times are identical (sometimes the elapsed time might
be slightly larger due to other activity on the system).

This program should parallelise quite easily; after all, each problem can be
solved completely independently of the others. First, we will need some ba-
sic functionality for expressing parallelism, which is provided by the module
Control.Parallel.Strategies:

data Eval a

instance Monad Eval

runEval :: Eval a -> a
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rpar :: a -> Eval a

rseq :: a -> Eval a

Parallel coordination will be performed in a monad, namely the Eval monad.
The reason for this is that parallel programming fundamentally involves ordering
things: start evaluating a in parallel, and then evaluate b. Monads are good for
expressing ordering relationships in a compositional way.

The Eval monad provides a runEval operation that lets us extract the value
from Eval. Note that runEval is completely pure - there’s no need to be in the
IO monad here.

The Eval monad comes with two basic operations, rpar and rseq. The rpar
combinator is used for creating parallelism; it says “my argument could be eval-
uated in parallel”, while rseq is used for forcing sequential evaluation: it says
“evaluate my argument now” (to weak-head normal form). These two operations
are typicaly used together - for example, to evaluate A and B in parallel, we could
apply rpar on A, followed by rseq on B.

Returning to our Sudoku example, let us add some parallelism to make use of
two processors. We have a list of problems to solve, so it should suffice to divide
the list in two and solve the problems in each half of the list in parallel. Here is
some code to do just that7:

1 let (as,bs) = splitAt (length grids ‘div ‘ 2) grids

3 evaluate $ runEval $ do

4 a <- rpar (deep (map solve as))

5 b <- rpar (deep (map solve bs))

6 rseq a

7 rseq b

8 return ()

line 1 divides the list into two equal (or nearly-equal) sub-lists, as and bs. The
next part needs more explanation:

3 We are going to evaluate an application of runEval
4 Create a parallel task to compute the solutions to the problems in the sub-
list as. The expression map solve as represents the solutions; however, just
evaluating this expression to weak-head normal form will not actually com-
pute any of the solutions, since it will only evaluate as far as the first (:) cell
of the list. We need to fully evaluate the whole list, including the elements.
This is why we added an application of the deep function, which is defined
as follows:

deep :: NFData a => a -> a

deep a = deepseq a a

deep evaluates the entire structure of its argument (reducing it to normal
form), before returning the argument itself. It is defined in terms of the
function deepseq, which is available from the Control.DeepSeq module.

7 Full code in sample sudoku2.hs
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Not evaluating deeply enough is a common mistake when using the rpar

monad, so it is a good idea to get into the habit of thinking, for each rpar,
“how much of this structure do I want to evaluate in the parallel task?”
(indeed, it is such a common problem that in the Parmonad to be introduced
later, we went so far as to make deepseq the default behaviour).

5 Create a parallel task to compute the solutions to bs, exactly as for as.
6-7 Using rseq, we wait for both parallel tasks to complete.
8 Finally, return (for this example we aren’t interested in the results them-
selves, only in the act of computing them).

In order to use parallelism with GHC, we have to add the -threaded option,
like so:

$ ghc -O2 sudoku2.hs -rtsopts -threaded

[2 of 2] Compiling Main ( sudoku2.hs, sudoku2.o )

Linking sudoku2 ...

Now, we can run the program using 2 processors:

$ ./sudoku2 sudoku17.1000.txt +RTS -N2 -s

./sudoku2 sudoku17.1000.txt +RTS -N2 -s

2,400,125,664 bytes allocated in the heap

48,845,008 bytes copied during GC

2,617,120 bytes maximum residency (7 sample(s))

313,496 bytes maximum slop

9 MB total memory in use

Gen 0: 2975 collections, 2974 parallel, 1.04s, 0.15s elapsed

Gen 1: 7 collections, 7 parallel, 0.05s, 0.02s elapsed

Parallel GC work balance: 1.52 (6087267 / 3999565, ideal 2)

MUT time (elapsed) GC time (elapsed)

Task 0 (worker) : 1.27s ( 1.80s) 0.69s ( 0.10s)

Task 1 (worker) : 0.00s ( 1.80s) 0.00s ( 0.00s)

Task 2 (bound) : 0.88s ( 1.80s) 0.39s ( 0.07s)

Task 3 (worker) : 0.05s ( 1.80s) 0.00s ( 0.00s)

SPARKS: 2 (1 converted, 0 pruned)

INIT time 0.00s ( 0.00s elapsed)

MUT time 2.21s ( 1.80s elapsed)

GC time 1.08s ( 0.17s elapsed)

EXIT time 0.00s ( 0.00s elapsed)

Total time 3.29s ( 1.97s elapsed)

%GC time 32.9% (8.8% elapsed)

Alloc rate 1,087,049,866 bytes per MUT second

Productivity 67.0% of total user, 111.9% of total elapsed
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Note that the Total time now shows a marked difference between the CPU time
(3.29s) and the elapsed time (1.97s). Previously the elapsed time was 3.06s, so
we can calculate the speedup on 2 processors as 3.06/1.97 = 1.55. Speedups are
always calculated as a ratio of wall-clock times. The CPU time is a helpful metric
for telling us how busy our processors are, but as you can see here, the CPU
time when running on multiple processors is often greater than the wall-clock
time for a single processor, so it would be misleading to calculate the speedup
as the ratio of CPU time to wall-clock time (1.67 here).

Why is the speedup only 1.55, and not 2? In general there could be a host of
reasons for this, not all of which are under the control of the Haskell programmer.
However, in this case the problem is partly of our doing, and we can diagnose it
using the ThreadScope tool. To profile the program using ThreadScope we need
to first recompile it with the -eventlog flag, run it with +RTS -ls, and then
invoke ThreadScope on the generated sudoku2.eventlog file:

$ rm sudoku2; ghc -O2 sudoku2.hs -threaded -rtsopts -eventlog

[2 of 2] Compiling Main ( sudoku2.hs, sudoku2.o )

Linking sudoku2 ...

$ ./sudoku2 sudoku17.1000.txt +RTS -N2 -ls

$ threadscope sudoku2.eventlog

Fig. 1. Sudoku2 ThreadScope profile

The ThreadScope profile is shown in Figure 1; this graph was generated by
selecting “export to PNG” from ThreadScope, so it includes the timeline graph
only, and not the rest of the ThreadScope GUI. The x axis of the graph is
time, and there are three horizontal bars showing how the program executed
over time. The topmost bar is known as the “activity” profile, and it shows
how many processors were executing Haskell code (as opposed to being idle or
garbage collecting) at a given point in time. Underneath the activity profile there
is one bar per processor, showing what that processor was doing at each point in
the execution. Each bar has two parts:: the upper, thicker bar is green when that
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processor is executing Haskell code, and the lower, narrower bar is orange or
green when that processor is performing garbage collection.8

As we can see from the graph, there is a period at the end of the run where
just one processor is executing, and the other one is idle (except for participating
in regular garbage collections, which is necessary for GHC’s parallel garbage
collector). This indicates that our two parallel tasks are uneven: one takes much
longer to execute than the other, and so we are not making full use of our 2
processors, which results in less than perfect speedup.

Why should the workloads be uneven? After all, we divided the list in two,
and we know the sample input has an even number of problems. The reason for
the unevenness is that each problem does not take the same amount of time to
solve, it all depends on the searching strategy used by the Sudoku solver9. This
illustrates an important distinction between two partitioning strategies:

– Static Partitioning, which is the technique we used to partition the Sudoku
problems here, consists of dividing the work according to some pre-defined
policy (here, dividing the list equally in two).

– Dynamic Partitioning instead tries to distribute the work more evenly, by
dividing the work into smaller tasks and only assigning tasks to processors
when they are idle.

The GHC runtime system supports automatic distribution of the parallel tasks;
all we have to do to achieve dynamic partitioning is divide the problem into
small enough tasks and the runtime will do the rest for us.

The argument to rpar is called a spark. The runtime collects sparks in a pool
and uses this as a source of work to do when there are spare processors available,
using a technique called work stealing [7]. Sparks may be evaluated at some
point in the future, or they might not — it all depends on whether there is spare
processor capacity available. Sparks are very cheap to create (rpar essentially
just adds a reference to the expression to an array).

So, let’s try using dynamic partitioning with the Sudoku problem. First we
define an abstraction that will let us apply a function to a list in parallel, parMap:

1 parMap :: (a -> b) -> [a] -> Eval [b]

2 parMap f [] = return []

3 parMap f (a:as) = do

4 b <- rpar (f a)

5 bs <- parMap f as

6 return (b:bs)

This is rather like a monadic version of map, except that we have used rpar to lift
the application of the function f to the element a into the Eval monad. Hence,
parMap runs down the whole list, eagerly creating sparks for the application of

8 The distinction between orange and green during GC has to do with the kind of GC
activity being performed, and need not concern us here.

9 In fact, we ordered the problems in the sample input so as to clearly demonstrate
the problem.



350 S. Marlow

f to each element, and finally returns the new list. When parMap returns, it will
have created one spark for each element of the list.

We still need to evaluate the result list itself, and that is straightforward with
deep:

evaluate $ deep $ runEval $ parMap solve grids

Running this new version10 yields more speedup:

Total time 3.55s ( 1.79s elapsed)

which we can calculate is equivalent to a speedup of 3.06/1.79 = 1.7, approaching
the ideal speedup of 2. Furthermore, the GHC runtime system tells us how many
sparks were created:

SPARKS: 1000 (1000 converted, 0 pruned)

we created exactly 1000 sparks, and they were all converted (that is, turned into
real parallelism at runtime). Sparks that are pruned have been removed from
the spark pool by the runtime system, either because they were found to be
already evaluated, or because they were found to be not referenced by the rest
of the program, and so are deemed to be not useful. We will discuss the latter
requirement in more detail in Section 2.2.

Fig. 2. Sudoku3 ThreadScope profile

The ThreadScope profile looks much better (Figure 2). Furthermore, now
that the runtime is managing the work distribution for us, the program will
automatically scale to more processors. On an 8 processor machine, for example:

Total time 4.46s ( 0.59s elapsed)

which equates to a speedup of 5.2 over the sequential version.

10 Code sample sudoku3.hs
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Fig. 3. Sudoku3 (zoomed) ThreadScope profile

If we look closely at the 2-processor profile there appears to be a short section
near the beginning where not much work is happening. In fact, zooming in on this
section in ThreadScope (Figure 3) reveals that both processors are working, but
most of the activity is garbage collection, and only one processor is performing
most of the garbage collection work. In fact, what we are seeing here is the
program reading the input file (lazily) and dividing it into lines, driven by the
demand of parMap which traverses the whole list of lines.

Since reading the file and dividing it into lines is a sequential activity anyway,
we could force it to happen all at once before we start the main computation,
by adding

evaluate (length grids)

(see code sample sudoku4.hs). This makes no difference to the overall runtime,
but it divides the execution into sequential and parallel parts, as we can see in
ThreadScope (Figure 4).

Now, we can read off the portion of the runtime that is sequential: 33ms.
When we have a sequential portion of our program, this affects the maximum
parallel speedup that is achievable, which we can calculate using Amdahl’s law.
Amdahl’s law gives the maximum achievable speedup as the ratio

1

(1− P ) + P
N

where P is the portion of the runtime that can be parallelised, and N is the
number of processors available. In our case, P is (3.06 − 0.033)/3.06 = 0.9892,
and the maximum speedup is hence 1.98. The sequential fraction here is too
small to make a significant impact on the theoretical maximum speedup with 2
processors, but when we have more processors, say 64, it becomes much more
important: 1/((1−0.989)+0.989/64) = 38.1. So no matter what we do, this tiny
sequential part of our program will limit the maximum speedup we can obtain
with 64 processors to 38.1. In fact, even with 1024 cores we could only achieve
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Fig. 4. Sudoku4 ThreadScope profile

around 84 speedup, and it is impossible to achieve a speedup of 91 no matter how
many cores we have. Amdahl’s law tells us that not only does parallel speedup
become harder to achieve the more processors we add, in practice most programs
have a theoretical maximum amount of parallelism.

2.2 Evaluation Strategies

Evaluation Strategies [14; 8] is an abstraction layer built on top of the Eval

monad that allows larger parallel specifications to be built in a compositional
way. Furthermore Strategies allow parallel coordination to be described in a
modular way, separating parallelism from the algorithm to be parallelised.

A Strategy is merely a function in the Eval monad that takes a value of type
a and returns the same value:

type Strategy a = a -> Eval a

Strategies are identity functions; that is, the value returned by a Strategy is
observably equivalent to the value it was passed. Unfortunately the library can-
not statically guarantee this property for user-defined Strategy functions, but
it holds for the Strategy functions and combinators provided by the module
Control.Parallel.Strategies.

We have already seen some simple Strategies, rpar and rseq, although we
can now give their types in terms of Strategy:

rseq :: Strategy a

rpar :: Strategy a

There are two further members of this family:

r0 :: Strategy a

r0 x = return x

rdeepseq :: NFData a => Strategy a

rdeepseq x = rseq (deep x)
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r0 is the Strategy that evaluates nothing, and rdeepseq is the Strategy that
evaluates the entire structure of its argument, which can be defined in terms of
deep that we saw earlier. Note that rseq is necessary here: replacing rseq with
return would not perform the evaluation immediately, but would defer it until
the value returned by rdeepseq is demanded (which might be never).

We have some simple ways to build Strategies, but how is a Strategy actually
used? A Strategy is just a function yielding a computation in the Eval monad,
so we could use runEval. For example, applying the strategy s to a value x would
be simply runEval (s x). This is such a common pattern that the Strategies
library gives it a name, using:

using :: a -> Strategy a -> a

x ‘using ‘ s = runEval (s x)

using takes a value of type a, a Strategy for a, and applies the Strategy to the
value. The identity property for Strategy gives us that

x ‘using‘ s == x

which is a significant benefit of Strategies: every occurrence of ‘using‘ s can be
deleted without affecting the semantics. Strictly speaking there are two caveats
to this property. Firstly, as mentioned earlier, user-defined Strategy functions
might not satisfy the identity property. Secondly, the expression x ‘using‘ s

might be less defined than x, because it evaluates more structure of x than
the context does. So deleting ‘using‘ s might have the effect of making the
program terminate with a result when it would previously throw an exception
or fail to terminate. Making programs more defined is generally considered to
be a somewhat benign change in semantics (indeed, GHC’s optimiser can also
make programs more defined under certain conditions), but nevertheless it is a
change in semantics.

A Strategy for Evaluating a List in Parallel. In Section 2.1 we defined a
function parMap that would map a function over a list in parallel. We can think
of parMap as a composition of two parts:

– The algorithm: map
– The parallelism: evaluating the elements of a list in parallel

and indeed with Strategies we can express it exactly this way:

parMap f xs = map f xs ‘using ‘ parList rseq

The benefits of this approach are two-fold: not only does it separate the algo-
rithm from the parallelism, but it also reuses map, rather than re-implementing
a parallel version.

The parList function is a Strategy on lists, defined as follows:

parList :: Strategy a -> Strategy [a]

parList strat [] = return []

parList strat (x:xs) = do
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x’ <- rpar (x ‘using ‘ strat)

xs’ <- parList strat xs

return (x’:xs ’)

(in fact, parList is already provided by Control.Parallel.Strategies so you
don’t have to define it yourself, but we are using its implementation here as an
illustration).

The parList function is a parameterised Strategy, that is, it takes as an
argument a Strategy on values of type a, and returns a Strategy for lists of a.
This illustrates another important aspect of Strategies: they are compositional,
in the sense that we can build larger strategies by composing smaller reusable
components. Here, parList describes a family of Strategies on lists that evaluate
the list elements in parallel.

On line 4, parList calls rpar to create a spark to evaluate the current element
of the list. Note that the spark evaluates (x ‘using‘ strat): that is, it applies
the argument Strategy strat to the list element x.

As parList traverses the list sparking list elements, it remembers each value
returned by rpar (bound to x’), and constructs a new list from these values.
Why? After all, this seems to be a lot of trouble to go to, because it means that
parList is no longer tail-recursive — the recursive call to parList is not the
last operation in the do on its right-hand side, and so parList will require stack
space linear in the length of the input list.

Couldn’t we write a tail-recursive version instead? For example:

parList :: Strategy a -> Strategy [a]

parList strat xs = do go xs; return xs

where go [] = return ()

go (x:xs) = do

rpar (x ‘using ‘ strat)

go xs

This typechecks, after all, and seems to call rpar on each list element as required.
The difference is subtle but important, and is best understood via a diagram

(Figure 5). At the top of the diagram we have the input list xs: a linked list of
cells, each of which points to a list element (x1, x2, and so forth). At the bottom
of the diagram is the spark pool, the runtime system data structure that stores
references to sparks in the heap. The other structures in the diagram are built
by parList (the first version). Each strat box represents (x ‘using‘ strat)

for an element x of the original list, and xs’ is the linked list of cells in the
output list. The spark pool contains pointers to each of the strat boxes; these
are the pointers created by the rpar calls.

Now, the spark pool only retains references to objects that are required by
the program. If the runtime finds that the spark pool contains a reference to an
object that the program will never use, then the reference is dropped, and any
potential parallelism it represented is lost. This behaviour is a deliberate policy;
if it weren’t this way, then the spark pool could retain data indefinitely, causing
a space leak (details can be found in Marlow et al. [8]).
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Fig. 5. parList heap structures

This is the reason for the list xs’. Suppose we did not build the new list xs’,
as in the tail-recursive version of parList above. Then, the only reference to each
strat box in the heap would be from the spark pool, and hence the runtime
would automatically sweep all those references from the spark pool, discarding
the parallelism. Hence we build a new list xs’, so that the program can retain
references to the sparks for as long as it needs to.

This automatic discarding of unreferenced sparks has another benefit: suppose
that under some circumstances the program does not need the entire list. If the
program simply forgets the unused remainder of the list, the runtime system will
clean up the unreferenced sparks from the spark pool, and will not waste any
further parallel processing resources on evaluating those sparks. The extra par-
allelism in this case is termed speculative, because it is not necessarily required,
and the runtime will automatically discard speculative tasks that it can prove
will never be required - a useful property!

While the runtime system’s discarding of unreferenced sparks is certainly
useful in some cases, it can be tricky to work with, because there is no language-
level support for catching mistakes. Fortunately the runtime system will tell us
if it garbage collects unreferenced sparks; for example:

SPARKS: 144 (0 converted, 144 pruned)
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A large number of sparks being “pruned” is a good indication that sparks are
being removed from the spark pool before they can be used for parallelism.
Sparks can be pruned for several reasons:

– The spark was a dud : it was already evaluated at the point it was sparked.
– The spark fizzled : it was evaluated by some other thread before it could be

evaluated in parallel.
– The spark was garbage collected, as described above.

In fact, GHC from version 7.2.1 onwards separates these different classifications
in its output from +RTS -s:

SPARKS: 144 (0 converted, 0 dud, 144 GC’d, 0 fizzled)

Unless you are using speculation, then a non-zero figure for GC’d sparks is
probably a bad sign.

All of the combinators in the library Control.Parallel.Strategies behave
correctly with respect to retaining references to sparks when necessary. So the
rules of thumb for not tripping up here are:

– Use using to apply strategies: it encourages the right pattern, in which the
program uses the results of applying the Strategy.

– When writing your own Eval-monad code, remember to bind the result of
rpar, and use its result.

Using Parlist: The K-Means Problem. The parList Strategy covers a
wide range of uses for parallelism in typical Haskell programs; in many cases, a
single parList is all that is needed to expose sufficient parallelism.

Returning to our Sudoku solver from Section 2.1 for a moment, instead of our
own hand-written parMap, we could have used parList:

evaluate $ deep $ map solve grids ‘using ‘ parList rseq

Let’s look at a slightly more involved example. In the K-Means problem, the
goal is to partition a set of data points into clusters. Finding an optimal solution
to the problem is NP-hard, but there exist several heuristic techniques that
do not guarantee to find an optimal solution, but work well in practice. For
example, given the data points shown in Figure 6, the algorithm should discover
the clusters indicated by the circles. Here we have only shown the locations of
the clusters, partitioning the points is achieved by simply finding the closest
cluster to each point.

The most well-known heuristic technique is Lloyd’s algorithm, which finds a
solution by iteratively improving an initial guess, as follows:

1. Pick an initial set of clusters by randomly assigning each point in the data
set to a cluster.

2. Find the centroid of each cluster (the average of all the points in the cluster).
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Fig. 6. The K-Means problem

3. Assign each point to the cluster to which it is closest, this gives a new set of
clusters.

4. Repeat steps 2–3 until the set of clusters stabilises.

Of course the algorithm works in any number of dimensions, but we will use 2
for ease of visualisation.

A complete Haskell implementation can be found in the directory kmeans in
the sample code; Figure 7 shows the core of the algorithm.

A data point is represented by the type Vector, which is just a pair of Doubles.
Clusters are represented by the type Cluster, which contains its number, the
count of points assigned to this cluster, the sum of the Vectors in the cluster,
and its centre. Everything about the cluster except its number is derivable from
the set of points in the cluster; this is expressed by the function makeCluster.
Essentially Cluster caches various information about a cluster, and the reason
we need to cache these specific items will become clear shortly.

The function assign implements step 3 of the algorithm, assigning points to
clusters. The accumArray function is particularly useful for this kind of bucket-
sorting task. The function makeNewClusters implements step 2 of the algorithm,
and finally step combines assign and makeNewClusters to implement one com-
plete iteration.
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1 data Vector = Vector Double Double

3 addVector :: Vector -> Vector -> Vector
4 addVector (Vector a b) (Vector c d) = Vector (a+c) (b+d)

6 data Cluster = Cluster
7 {
8 clId :: !Int,
9 clCount :: !Int,

10 clSum :: !Vector,
11 clCent :: !Vector
12 }

14 sqDistance :: Vector -> Vector -> Double
15 sqDistance (Vector x1 y1) (Vector x2 y2)
16 = ((x1-x2)^2) + ((y1-y2)^2)

18 makeCluster :: Int -> [Vector] -> Cluster
19 makeCluster clid vecs
20 = Cluster { clId = clid ,
21 clCount = count ,
22 clSum = vecsum ,
23 clCent = centre }
24 where
25 vecsum@ (Vector a b) = foldl ’ addVector (Vector 0 0) vecs
26 centre = Vector (a / fromIntegral count)
27 (b / fromIntegral count)
28 count = fromIntegral (length vecs)

30 -- assign each vector to the nearest cluster centre
31 assign :: Int -> [Cluster ] -> [Vector ] -> Array Int [Vector]
32 assign nclusters clusters points =
33 accumArray (flip (:)) [] (0, nclusters -1)
34 [ (clId (nearest p), p) | p <- points ]
35 where
36 nearest p = fst $ minimumBy (compare ‘on‘ snd)
37 [ (c, sqDistance (clCent c) p)
38 | c <- clusters ]

40 -- compute clusters from the assignment
41 makeNewClusters :: Array Int [Vector] -> [Cluster ]
42 makeNewClusters arr =
43 filter ((>0) . clCount ) $
44 [ makeCluster i ps | (i,ps) <- assocs arr ]

46 step :: Int -> [Cluster ] -> [Vector] -> [Cluster ]
47 step nclusters clusters points =
48 makeNewClusters (assign nclusters clusters points)

Fig. 7. Haskell code for K-Means

To complete the algorithm we need a driver to repeatedly apply the step

function until convergence. The function kmeans_seq, in Figure 8, implements
this.

How can this algorithm be parallelised? One place that looks straightforward
to parallelise is the assign function, since it is essentially just a map over the
points. However, that doesn’t get us very far: we cannot parallelise accumArray
directly, so we would have to do multiple accumArrays and combine the results,
and combining elements would mean an extra list append. The makeNewClusters
operation parallelises easily, but only in so far as each makeCluster is indepen-
dent of the others; typically the number of clusters is much smaller than the
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kmeans_seq :: Int -> [Vector] -> [Cluster] -> IO [Cluster]

kmeans_seq nclusters points clusters = do

let

loop :: Int -> [Cluster] -> IO [Cluster]

loop n clusters | n > tooMany = return clusters

loop n clusters = do

hPrintf stderr "iteration %d\n" n

hPutStr stderr (unlines (map show clusters))

let clusters ’ = step nclusters clusters points

if clusters ’ == clusters

then return clusters

else loop (n+1) clusters ’

--

loop 0 clusters

Fig. 8. Haskell code for kmeans seq

number of points (e.g. a few clusters to a few hundred thousand points), so we
don’t gain much scalability by parallelising makeNewClusters.

We would like a way to parallelise the problem at a higher level. That is, we
would like to divide the set of points into chunks, and process each chunk in
parallel, somehow combining the results. In order to do this, we need a combine

function, such that

points == as ++ bs

==>

step n cs points == step n cs as ‘combine‘ step n cs bs

Fortunately defining combine is not difficult. A cluster is a set of points, from
which we can compute a centroid. The intermediate values in this calcuation
are the sum and the count of the data points. So a combined cluster can be
computed from two independent sub-clusters by taking the sum of these two
intermediate values, and re-computing the centroid from them. Since addition is
associative and commutative, we can compute sub-clusters in any way we wish
and then combine them in this way.

Our Haskell code for combining two clusters is as follows:

combineClusters c1 c2 =

Cluster {clId = clId c1 ,

clCount = count ,

clSum = vecsum ,

clCent = Vector (a / fromIntegral count)

(b / fromIntegral count)}

where count = clCount c1 + clCount c2

vecsum@(Vector a b) = addVector (clSum c1) (clSum c2

)
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In general, however, we will be processing N chunks of the data space indepen-
dently, each of which returns a set of clusters. So we need to reduce the N sets
of sets of clusters to a single set. This is done with another accumArray:

reduce :: Int -> [[ Cluster ]] -> [Cluster]

reduce nclusters css =

concatMap combine $ elems $

accumArray (flip (:)) [] (0, nclusters )

[ (clId c, c) | c <- concat css]

where

combine [] = []

combine (c:cs) = [foldr combineClusters c cs]

Now, the parallel K-Means implementation can be expressed as an application of
parList to invoke step on each chunk, followed by a call to reduce to combine
the results from the chunks:

1 kmeans_par :: Int -> Int -> [Vector] -> [Cluster]

2 -> IO [Cluster]

3 kmeans_par chunks nclusters points clusters = do

4 let chunks = split chunks points

5 let

6 loop :: Int -> [Cluster] -> IO [Cluster]

7 loop n clusters | n > tooMany = return clusters

8 loop n clusters = do

9 hPrintf stderr "iteration %d\n" n

10 hPutStr stderr (unlines (map show clusters))

11 let

12 new_clusterss =

13 map (step nclusters clusters ) chunks

14 ‘using ‘ parList rdeepseq

16 clusters ’ = reduce nclusters new_clusterss

18 if clusters ’ == clusters

19 then return clusters

20 else loop (n+1) clusters ’

21 --

22 loop 0 clusters

the only difference from the sequential implementation is at lines 11–14, where
we map step over the chunks applying the parList strategy, and then call
reduce.

Note that there’s no reason the number of chunks has to be related to the
number of processors; as we saw earlier, it is better to produce plenty of sparks
and let the runtime schedule them automatically, since this should enable the
program to scale over a wide range of processors.

Figure 9 shows the speedups obtained by this implementation for a randomly-
generated data set consisting of 4 clusters with a total of approximately 170000
points in 2-D space. The Haskell normaldistribution package was used to
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generate the data, in order to generate realistically clustered points11. For this
benchmark we used 1000 for the chunk parameter to kmeans_par.

The results show the algorithm scaling reasonably well up to 6 cores, with
a drop in performance at 8 cores. We leave it as an exercise for the reader to
analyse the performance and improve it further!

Fig. 9. Scaling of parallel K-Means

Further Reading. We have barely scratched the surface of the possibilities
with the Eval monad and Strategies here. Topics that we have not covered
include:

– Sequential strategies, which allow greater control over the specification of
evaluation degree than is provided by rseq and rdeepseq. See the documen-
tation for the Control.Seq module 12.

– Clustering, which allows greater control over granularity.
– parBuffer: a combinator for parallelising lazy streams.

To learn more, we recommend the following resources:

– The documentation for the Control.Parallel.Strategies module 13.
– Marlow et al. [8], which explains the motivation behind the design and im-

plementation of Eval and Strategies.

11 The program used to generate the data is provided as kmeans/GenSamples.hs in the
sample code distribution, and the sample data we used for this benchmark is provided
in the files kmeans/points.bin and kmeans/clusters (the GenSamples program will
overwrite these files, so be careful if you run it!)

12 http://hackage.haskell.org/packages/archive/parallel/3.1.0.1/doc/

html/Control-Seq.html
13 http://hackage.haskell.org/packages/archive/parallel/3.1.0.1/doc/html/

Control-Parallel-Strategies.html

http://hackage.haskell.org/packages/archive/parallel/3.1.0.1/doc/html/Control-Seq.html
http://hackage.haskell.org/packages/archive/parallel/3.1.0.1/doc/html/Control-Seq.html
http://hackage.haskell.org/packages/archive/parallel/3.1.0.1/doc/html/Control-Parallel-Strategies.html
http://hackage.haskell.org/packages/archive/parallel/3.1.0.1/doc/html/Control-Parallel-Strategies.html
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– Peyton Jones and Singh [13], an earlier tutorial covering basic parallelism in
Haskell (beware: this dates from before the introduction of the Evalmonad).

– Trinder et al. [14], which has a wide range of examples. However beware: this
paper is based on the earlier version of Strategies, and some of the examples
may no longer work due to the new GC behaviour on sparks; also some of
the names of functions and types in the library have since changed.

2.3 Dataflow Parallelism: The Par Monad

Sometimes there is a need to be more explicit about dependencies and task
boundaries than it is possible to be with Eval and Strategies. In these cases the
usual recourse is to Concurrent Haskell, where we can fork threads and be explicit
about which thread does the work. However, that approach throws out the baby
with the bathwater: determinism is lost. The programmingmodel we introduce in
this section fills the gap between Strategies and Concurrent Haskell: it is explicit
about dependencies and task boundaries, but without sacrificing determinism.
Furthermore the programming model has some other interesting benefits: for
example, it is implemented entirely as a Haskell library and the implementation
is readily modified to accommodate alternative scheduling strategies.

As usual, the interface is based around a monad, this time called Par:

newtype Par a

instance Functor Par

instance Applicative Par

instance Monad Par

runPar :: Par a -> a

As with the Eval monad, the Par monad returns a pure result. However, use
runPar with care: internally it is much more expensive than runEval, because
(at least in the current implementation) it will fire up a new scheduler instance
consisting of one worker thread per processor. Generally speaking the program
should be using runPar to schedule large-sale parallel tasks.

The purpose of Par is to introduce parallelism, so we need a way to create
parallel tasks:

fork :: Par () -> Par ()

fork does exactly what you would expect: the computation passed as the argu-
ment to fork (the “child”) is executed concurrently with the current computa-
tion (the “parent”).

Of course, fork on its own isn’t very useful; we need a way to communicate
results from the child of fork to the parent, or in general between two parallel Par
computations. Communication is provided by the IVar type14 and its operations:

data IVar a -- instance Eq

14 IVar is so-called because it is an implementation of I-Structures, a concept from the
Parallel Haskell variant pH.
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new :: Par (IVar a)

put :: NFData a => IVar a -> a -> Par ()

get :: IVar a -> Par a

new creates a new IVar, which is initially empty; put fills an IVar with a value,
and get retrieves the value of an IVar (waiting until a value has been put if
necessary). Multiple puts to the same IVar result in an error.

The IVar type is a relative of the MVar type that we shall see later in the
context of Concurrent Haskell (Section 3.2), the main difference being that an
IVar can only be written once. An IVar is also like a future or promise, concepts
that may be familiar from other parallel or concurrent languages.

Together, fork and IVars allow the construction of dataflow networks. The
nodes of the network are created by fork, and edges connect a put with each
get on that IVar. For example, suppose we have the following four functions:

f :: In -> A

g :: A -> B

h :: A -> C

j :: (B,C) -> Out

Composing these functions forms the following dataflow graph:

There are no sequential dependencies between g and h, so they could run in
parallel. In order to take advantage of the parallelism here, all we need to do is
express the graph in the Par monad:

do

[ia,ib,ic] <- replicateM 4 new

fork $ do x <- get input

put ia (f x)

fork $ do a <- get ia

put ib (g a)

fork $ do a <- get ia

put ic (h a)
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fork $ do b <- get ib

c <- get ic

put output (j b c)

For each edge in the graph we make an IVar (here ia, ib and so on). For
each node in the graph we call fork, and the code for each node calls get on
each input, and put on each output of the node. The order of the fork calls is
irrelevant — the Par monad will execute the graph, resolving the dependencies
at runtime.

While the Par monad is particularly suited to expressing dataflow networks,
it can also express other common patterns too. For example, we can build an
equivalent of the parMap combinator that we saw earlier in Section 2.1. First,
we build a simple abstraction for a parallel computation that returns a result:

spawn :: NFData a => Par a -> Par (IVar a)

spawn p = do

i <- new

fork (do x <- p; put i x)

return i

The spawn function forks a computation in parallel, and returns an IVar that
can be used to wait for the result.

Now, parallel map consists of calling spawn to apply the function to each
element of the list, and then waiting for all the results:

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b]

parMapM f as = do

ibs <- mapM (spawn . f) as

mapM get ibs

Note that there are a couple of differences between this and the Eval monad
parMap. First, the function argument returns its result in the Par monad; of
course it is easy to lift an arbitrary pure function to this type, but the monadic
version allows the computation on each element to produce more parallel tasks,
or augment the dataflow graph in other ways. Second, parMapM waits for all
the results. Depending on the context, this may or may not be the most useful
behaviour, but of course it is easy to define the other version if necessary.

A Parallel Type Inferencer. In this section we will parallelise a type inference
engine using the Par monad. Type inference is a natural fit for the dataflow
model, because we can consider each binding to be a node in the graph, and
the edges of the graph carry inferred types from bindings to usage sites in the
program.

For example, consider the following set of bindings that we want to infer types
for:

f = ...

g = ... f ...

h = ... f ...

j = ... g ... h ...
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This pattern gives rise to a dataflow graph with exactly the shape of the example
4-node graph in the previous section: after we have inferred a type for f, we can
use that type to infer types for g and h (in parallel), and once we have the types
for g and h we can infer a type for j.

Building a dataflow graph for the type inference problem allows the maximum
amount of parallelism to be extracted from the type inference process. The actual
amount of parallelism present depends on the structure of the input program,
however.

The parallel type inferencer can be found in the directory parinfer of the
code samples, and is derived from a (rather ancient) type inference engine written
by Phil Wadler. The types from the inference engine that we will need to work
with are as follows:

1 type VarId = String -- variables

3 data Env -- environment for the type inferencer

5 -- build environments

6 makeEnv :: [(VarId ,Type)] -> Env

8 data MonoType -- monomorphic types

9 data PolyType -- polymorphic types

11 -- Terms in the input program

12 data Term = Let VarId Term Term | ...

The input to this type inferencer is a single Termwhich may contain let bindings,
and so to parallelise it we will strip off the outer let bindings and typecheck them
in parallel. The inner term will be typechecked using the ordinary sequential
inference engine. We could have a more general parallel type inference algorithm
by always typechecking a let binding in parallel with the body, rather than just
for the outer lets, but that would require threading the Par monad through
the type inference engine, so for this simple example we are only parallelising
inference for the outer bindings.

We need two functions from the inference engine. First, a way to infer a
polymorphic type for the right-hand side of a binding:

inferTopRhs :: Env -> Term -> PolyType

and secondly, a way to run the inference engine on an arbitrary term:

inferTopTerm :: Env -> Term -> MonoType

The basic idea is that while the sequential inference engine uses an Env that
maps VarIds to PolyTypes, the parallel part of the inference engine will use
an environment that maps VarIds to IVar PolyType, so that we can fork the
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inference engine for a given binding, and then wait for its result later15. The
environment for the parallel type inferencer is called TopEnv:

type TopEnv = Map VarId (IVar PolyType )

All that remains is to write the top-level loop. We will write a function inferTop

with the following type:

inferTop :: TopEnv -> Term -> Par MonoType

There are two cases to consider. First, when we are looking at a let binding:

1 inferTop topenv (Let x u v) = do

2 vu <- new

4 fork $ do

5 let fu = Set.toList (freeVars u)

6 tfu <- mapM (get . fromJust . flip Map.lookup topenv

) fu

7 let aa = makeEnv (zip fu tfu)

8 put vu (inferTopRhs aa u)

10 inferTop (Map.insert x vu topenv) v

On line 2 we create a new IVar vu to hold the type of x. Lines 4–8 implement
the typechecking for the binding:

4 We fork here, so that the binding is typechecked in parallel,
5 Find the IVars corresponding to the free variables of the right-hand side
6 Call get for each of these, thus waiting for the typechecking of the binding
corresponding to each free variable

7 Make a new Env with the types we obtained on line 6
8 Call the type inferencer for the right-hand side, and put the result in the
IVar vu.

The main computation continues (line 10) by typechecking the body of the let
in an environment in which the bound variable x is mapped to the IVar vu.

The other case of inferTop handles all other expression constructs:

1 inferTop topenv t = do

2 let (vs,ivs) = unzip (Map.toList topenv)

3 tvs <- mapM get ivs

4 let aa = makeEnv (zip vs tvs)

5 return (inferTopTerm aa t)

This case is straightforward: just call get to obtain the inferred type for each
binding in the TopEnv, construct an Env, and call the sequential inferencer on
the term t.

15 We are ignoring the possibility of type errors here; in a real implementation the IVar
would probably contain an Either type representing either the inferred type or an
error.
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This parallel implementation works quite nicely. For example, we have con-
structed a synthetic input for the type checker, a fragment of which is given
below (the full version is in the file code/parinfer/example.in). The expres-
sion defines two sequences of bindings which can be inferred in parallel. The first
sequence is the set of bindings for x (each successive binding for x shadows the
previous), and the second sequence is the set of bindings for y. Each binding for
x depends on the previous one, and similarly for the y bindings, but the x bind-
ings are completely independent of the y bindings. This means that our parallel
typechecking algorithm should automatically infer types for the x bindings in
parallel with the inference of the y bindings, giving a maximum speedup of 2.

let id = \x.x in

let x = \f.f id id in

let x = \f . f x x in

let x = \f . f x x in

let x = \f . f x x in

...

let x = let f = \g . g x in \x . x in

let y = \f.f id id in

let y = \f . f y y in

let y = \f . f y y in

let y = \f . f y y in

...

let y = let f = \g . g y in \x . x in

\f. let g = \a. a x y in f

When we type check this expression with one processor, we obtain the following
result:

$ ./infer <./example.in +RTS -s

...

Total time 1.13s ( 1.12s elapsed)

and with two processors:

$ ./infer <./example.in +RTS -s -N2

,..

Total time 1.19s ( 0.60s elapsed)

representing a speedup of 1.87.

The Par Monad Compared to Strategies. We have presented two different
parallel programming models, each with advantages and disadvantages. Below
we summarise the trade-offs so that you can make an informed decision for a
given task as to which is likely to be the best choice:

– Using Strategies and the Eval monad requires some understanding of the
workings of lazy evaluation. Newcomers often find this hard, and diagnosing
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problems can be difficult. This is part of the motivation for the Par monad:
it makes all dependencies explicit, effectively replacing lazy evaluation with
explicit put/get on IVars. While this is certainly more verbose, it is less
fragile and easier to work with.

Programming with rpar requires being careful about retaining references
to sparks to avoid them being garbage collected; this can be subtle and
hard to get right in some cases. The Par monad has no such requirements,
although it does not support speculative parallelism in the sense that rpar
does: speculative paralelism in the Par monad is always executed.

– Strategies allow a separation between algorithm and parallelism, which al-
lows more reuse in some cases.

– The Par monad requires threading the monad throughout a computation
which is to be parallelised. For example, to parallelise the type inference of
all let bindings in the example above would have required threading the Par
monad through the inference engine (or adding Par to the existing monad
stack), which might be impractical. Par is good for localised parallelism,
whereas Strategies can be more easily used in cases that require parallelism
in multiple parts of the program.

– The Par monad has more overhead than the Eval monad, although there is
no requirement to rebuild data structures as in Eval. At the present time,
Eval tends to perform better at finer granularities, due to the direct runtime
system support for sparks. At larger granularities, Par and Eval perform
approximately the same.

– The Par monad is implemented entirely in a Haskell library (the monad-par
package), and is thus readily modified should you need to.

3 Concurrent Haskell

Concurrent Haskell [11] is an extension to Haskell 2010 [9] adding support for
explicitly threaded concurrent programming. The basic interface remains largely
unchanged in its current implementation, although a number of embellishments
have since been added, which we will cover in later sections:

– Asynchronous exceptions [3] were added as a means for asynchronous can-
cellation of threads,

– Software Transactional Memory was added [2], allowing safe composition of
concurrent abstractions, and making it possible to safely build larger con-
current systems.

– The behaviour of Concurrent Haskell in the presence of calls to and from
foreign languages was specified [6]

3.1 Forking Threads

The basic requirement of concurrency is to be able to fork a new thread of
control. In Concurrent Haskell this is achieved with the forkIO operation:
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forkIO :: IO () -> IO ThreadId

forkIO takes a computation of type IO () as its argument; that is, a computa-
tion in the IO monad that eventually delivers a value of type (). The computa-
tion passed to forkIO is executed in a new thread that runs concurrently with
the other threads in the system. If the thread has effects, those effects will be
interleaved in an indeterminate fashion with the effects from other threads.

To illustrate the interleaving of effects, let’s try a simple example in which
two threads are created, once which continually prints the letter A and the other
printing B16:

1 import Control.Concurrent

2 import Control.Monad

3 import System.IO

5 main = do

6 hSetBuffering stdout NoBuffering

7 forkIO (forever (putChar ’A’))

8 forkIO (forever (putChar ’B’))

9 threadDelay (10^6)

Line 6 puts the output Handle into non-buffered mode, so that we can see the
interleaving more clearly. Lines 7 and 8 create the two threads, and line 9 tells
the main thread to wait for one second (10^6 microseconds) and then exit.

When run, this program produces output something like this:

AAAAAAAAABABABABABABABABABABABABABABABABABABABABABABAB

ABABABABABABABABABABABABABABABABABABABABABABABABABABAB

ABABABABABABABABABABABABABABABABABABABABABABABABABABAB

ABABABABABABABABABABABABABABABABABABABABABABABABABABAB

Note that the interleaving is non-deterministic: sometimes we get strings of a
single letter, but often the output switches regularly between the two threads.
Why does it switch so regularly, and why does each thread only get a chance to
output a single letter before switching? The threads in this example are contend-
ing for a single resource: the stdout Handle, so scheduling is affected by how
contention for this resource is handled. In the case of GHC a Handle is protected
by a lock implemented as an MVar (described in the next section). We shall see
shortly how the implementation of MVars causes the ABABABA behaviour.

We emphasised earlier that concurrency is a program structuring technique,
or an abstraction. Abstractions are practical when they are efficient, and this
is where GHC’s implementation of threads comes into its own. Threads are
extremely lightweight in GHC: a thread typically costs less than a hundred bytes
plus the space for its stack, so the runtime can support literally millions of them,
limited only by the available memory. Unlike OS threads, the memory used by
Haskell threads is movable, so the garbage collector can pack threads together
tightly in memory and eliminate fragmentation. Threads can also expand and

16 This is sample fork.hs
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shrink on demand, according to the stack demands of the program. When using
multiple processors, the GHC runtime system automatically migrates threads
between cores in order to balance the load.

User-space threading is not unique to Haskell, indeed many other languages,
including early Java implementations, have had support for user-space threads
(sometimes called “green threads”). It is often thought that user-space threading
hinders interoperability with foreign code and libraries that are using OS threads,
and this is one reason that OS threads tend to be preferred. However, with some
careful design it is possible to overcome these difficulties too, as we shall see in
Section 3.5.

3.2 Communication: MVars

The lowest-level communication abstraction in Concurrent Haskell is the MVar,
whose interface is given below:

data MVar a -- abstract

newEmptyMVar :: IO (MVar a)

newMVar :: a -> IO (MVar a)

takeMVar :: MVar a -> IO a

putMVar :: MVar a -> a -> IO ()

An MVar can be thought of as a box that is either empty or full. The operation
newEmptyMVar creates a new empty box, and newMVar creates a new full box
containing the value passed as its argument. The putMVar operation puts a
value into the box, but blocks (waits) if the box is already full. Symmetrically,
the takeMVar operation removes the value from a full box but blocks if the box
is empty.

MVars generalise several simple concurrency abstractions:

– MVar () is a lock ; takeMVar acquires the lock and putMVar releases it.17 An
MVar used in this way can protect shared mutable state or critical sections.

– An MVar is a one-place channel, which can be used for asynchronous com-
munication between two threads. In Section 3.2 we show how to build un-
bounded buffered channels from MVars.

– An MVar is a useful container for shared mutable state. For example, a com-
mon design pattern in Concurrent Haskell when several threads need read
and write access to some state, is to represent the state value as an ordinary
immutable Haskell data structure stored in an MVar. Modifying the state con-
sists of taking the current value with takeMVar (which implicitly acquires a
lock), and then placing a new value back in the MVar with putMVar (which
implicitly releases the lock again).

We can also use MVars to do some simple asynchronous I/O. Suppose we want
to download some web pages concurrently and wait for them all to download
before continuing. We are given the following function to download a web page:

17 It works perfectly well the other way around too, just be sure to be consistent about
the policy.
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getURL :: String -> IO String

Let’s use this to download two URLs concurrently:

1 do

2 m1 <- newEmptyMVar

3 m2 <- newEmptyMVar

5 forkIO $ do

6 r <- getURL "http ://www.wikipedia .org/wiki/Shovel"

7 putMVar m1 r

9 forkIO $ do

10 r <- getURL "http ://www.wikipedia .org/wiki/Spade"

11 putMVar m2 r

13 r1 <- takeMVar m1

14 r2 <- takeMVar m2

15 return (r1,r2)

Lines 2–3 create two new empty MVars to hold the results. Lines 5–7 fork a new
thread to download the first URL; when the download is complete the result is
placed in the MVar m1, and lines 9–11 do the same for the second URL, placing
the result in m2. In the main thread, line 13 waits for the result from m1, and line
14 waits for the result from m2 (we could do these in either order), and finally
both results are returned.

This code is rather verbose. We could shorten it by using various existing
higher-order combinators from the Haskell library, but a better approach would
be to extract the common pattern as a new abstraction: we want a way to
perform an action asynchronously, and later wait for its result. So let’s define an
interface that does that, using forkIO and MVars:

1 newtype Async a = Async (MVar a)

3 async :: IO a -> IO (Async a)

4 async io = do

5 m <- newEmptyMVar

6 forkIO $ do r <- io; putMVar m r

7 return (Async m)

9 wait :: Async a -> IO a

10 wait (Async m) = readMVar m

Line 1 defines a datatype Async that represents an asynchronous action that
has been started. Its implementation is just an MVar that will contain the result;
creating a new type here might seem like overkill, but later on we will extend
the Async type to support more operations, such as cancellation.

The wait operation uses readMVar, defined thus18:

18 readMVar is a standard operation provided by the Control.Concurrent module.
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readMVar :: MVar a -> IO a

readMVar m = do

a <- takeMVar m

putMVar m a

return a

that is, it puts back the value into the MVar after reading it, the point being that
we might want to call wait multiple times, or from different threads.

Now, we can use the Async interface to clean up our web-page downloading
example:

1 do

2 a1 <- async $ getURL "http ://www.wikipedia .org/wiki /

Shovel"

3 a2 <- async $ getURL "http ://www.wikipedia .org/wiki /

Spade"

4 r1 <- wait a1

5 r2 <- wait a2

6 return (r1,r2)

Much nicer! To demonstrate this working, we can make a small wrapper that
downloads a URL and reports how much data was downloaded and how long it
took19:

sites = ["http ://www.google.com",

"http ://www.bing .com",

... ]

main = mapM (async.http) sites >>= mapM wait

where

http url = do

(page , time) <- timeit $ getURL url

printf "downloaded : %s (%d bytes , %.2fs)\n"

url (B.length page) time

which results in something like this:

downloaded: http://www.google.com (14524 bytes, 0.17s)
downloaded: http://www.bing.com (24740 bytes, 0.18s)
downloaded: http://www.wikipedia.com/wiki/Spade (62586 bytes, 0.60s)
downloaded: http://www.wikipedia.com/wiki/Shovel (68897 bytes, 0.60s)
downloaded: http://www.yahoo.com (153065 bytes, 1.11s)

Channels. One of the strengths of MVars is that they are a useful building block
out of which larger abstractions can be constructed. Here we will use MVars to
construct a unbounded buffered channel, supporting the following basic interface:

data Chan a

newChan :: IO (Chan a)

readChan :: Chan a -> IO a

writeChan :: Chan a -> a -> IO ()

19 The full code can be found in the sample geturls.hs
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Second value Third valueFirst value

Item Item Item

Channel

Read end Write end

Fig. 10. Structure of the buffered channel implementation

This channel implementation first appeared in Peyton Jones et al. [11] (al-
though the names were slightly different), and is available in the Haskell module
Control.Concurrent.Chan. The structure of the implementation is represented
diagrammatically in Figure 3.2, where each bold box represents an MVar and the
lighter boxes are ordinary Haskell data structures. The current contents of the
channel are represented as a Stream, defined like this:

type Stream a = MVar (Item a)

data Item a = Item a (Stream a)

The end of the stream is represented by an empty MVar, which we call the “hole”,
because it will be filled in when a new element is added. The channel itself is a
pair of MVars, one pointing to the first element of the Stream (the read position),
and the other pointing to the empty MVar at the end (the write position):

data Chan a

= Chan (MVar (Stream a))

(MVar (Stream a))

To construct a new channel we must first create an empty Stream, which is
just a single empty MVar, and then the Chan constructor with MVars for the read
and write ends, both pointing to the empty Stream:

newChan :: IO (Chan a)

newChan = do

hole <- newEmptyMVar

readVar <- newMVar hole

writeVar <- newMVar hole

return (Chan readVar writeVar)

To add a new element to the channel we must make an Item with a new hole,
fill in the current hole to point to the new item, and adjust the write-end of the
Chan to point to the new hole:

writeChan :: Chan a -> a -> IO ()

writeChan (Chan _ writeVar ) val = do
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new_hole <- newEmptyMVar

old_hole <- takeMVar writeVar

putMVar writeVar new_hole

putMVar old_hole (Item val new_hole )

To remove a value from the channel, we must follow the read end of the Chan

to the first MVar of the stream, take that MVar to get the Item, adjust the read
end to point to the next MVar in the stream, and finally return the value stored
in the Item:

1 readChan :: Chan a -> IO a

2 readChan (Chan readVar _) = do

3 stream <- takeMVar readVar

4 Item val new <- takeMVar stream

5 putMVar readVar new

6 return val

Consider what happens if the channel is empty. The first takeMVar (line 3) will
succeed, but the second takeMVar (line 4) will find an empty hole, and so will
block. When another thread calls writeChan, it will fill the hole, allowing the
first thread to complete its takeMVar, update the read end (line 5) and finally
return.

If multiple threads concurrently call readChan, the first one will successfully
call takeMVar on the read end, but the subsequent threads will all block at this
point until the first thread completes the operation and updates the read end.
If multiple threads call writeChan, a similar thing happens: the write end of
the Chan is the synchronisation point, only allowing one thread at a time to
add an item to the channel. However, the read and write ends being separate
MVars allows concurrent readChan and writeChan operations to proceed without
interference.

This implementation allows a nice generalisation to multicast channels with-
out changing the underlying structure. The idea is to add one more operation:

dupChan :: Chan a -> IO (Chan a)

which creates a duplicate Chan with the following semantics:

– The new Chan begins empty,
– Subsequent writes to either Chan are read from both; that is, reading an item

from one Chan does not remove it from the other.

The implementation is straightforward:

dupChan :: Chan a -> IO (Chan a)

dupChan (Chan _ writeVar ) = do

hole <- takeMVar writeVar

putMVar writeVar hole

newReadVar <- newMVar hole

return (Chan newReadVar writeVar)
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Both channels share a single write-end, but they have independent read-ends.
The read end of the new channel is initialised to point to the hole at the end of
the current contents.

Sadly, this implementation of dupChan does not work! Can you see the prob-
lem? The definition of dupChan itself is not at fault, but combined with the
definition of readChan given earlier it does not implement the required seman-
tics. The problem is that readChan does not replace the contents of a hole after
having read it, so if readChan is called to read values from both the channel
returned by dupChan and the original channel, the second call will block. The
fix is to change a takeMVar to readMVar in the implementation of readChan:

1 readChan :: Chan a -> IO a

2 readChan (Chan readVar _) = do

3 stream <- takeMVar readVar

4 Item val new <- readMVar stream -- modified

5 putMVar readVar new

6 return val

Line 4 returns the Item back to the Stream, where it can be read by any duplicate
channels created by dupChan.

Before we leave the topic of channels, consider one more extension to the
interface that was described as an “easy extension” and left as an exercise by
Peyton Jones et al. [11]:

unGetChan :: Chan a -> a -> IO ()

the operation unGetChan pushes a value back on the read end of the channel.
Leaving aside for a moment the fact that the interface does not allow the atomic
combination of readChan and unGetChan (which would appear to be an impor-
tant use case), let us consider how to implement unGetChan. The straightforward
implementation is as follows:

1 unGetChan :: Chan a -> a -> IO ()

2 unGetChan (Chan readVar _) val = do

3 new_read_end <- newEmptyMVar

4 read_end <- takeMVar readVar

5 putMVar new_read_end (Item val read_end )

6 putMVar readVar new_read_end

we create a new hole to place at the front of the Stream (line 3), take the current
read end (line 4) giving us the current front of the stream, place a new Item in
the new hole (line 5), and finally replace the read end with a pointer to our new
item.

Simple testing will confirm that the implementation works. However, consider
what happens when the channel is empty, there is already a blocked readChan,
and another thread calls unGetChan. The desired semantics is that unGetChan
succeeds, and readChan should return with the new element. What actually
happens in this case is deadlock: the thread blocked in readChan will be holding
the read-end MVar, and so unGetChan will also block (line 4) trying to take the
read end. As far as we know, there is no implementation of unGetChan that has
the desired semantics.
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The lesson here is that programming larger structures with MVar can be much
trickier than it appears. As we shall see shortly, life gets even more difficult when
we consider exceptions. Fortunately there is a solution, that we will describe in
Section 3.4.

Despite the difficulties with scaling MVars up to larger abstractions, MVars do
have some nice properties, as we shall see in the next section.

Fairness. Fairness is a well-studied and highly technical subject, which we do
not attempt to review here. Nevertheless, we wish to highlight one particularly
important guarantee provided by MVars with respect to fairness:

No thread can be blocked indefinitely on an MVar unless another thread
holds that MVar indefinitely.

In other words, if a thread T is blocked in takeMVar, and there are regular
putMVar operations on the same MVar, then it is guaranteed that at some point
thread T ’s takeMVar will return. In GHC this guarantee is implemented by
keeping blocked threads in a FIFO queue attached to the MVar, so eventually
every thread in the queue will get to complete its operation as long as there are
other threads performing regular putMVar operations (an equivalent guarantee
applies to threads blocked in putMVar when there are regular takeMVars). Note
that it is not enough to merely wake up the blocked thread, because another
thread might run first and take (respectively put) the MVar, causing the newly
woken thread to go to the back of the queue again, which would invalidate the
fairness guarantee. The implementation must therefore atomically wake up the
blocked thread and perform the blocked operation, which is exactly what GHC
does.

Fairness in practice Recall our example from Section 3.1, where we had two
threads, one printing As and the other printing Bs, and the output was often
perfect alternation between the two: ABABABABABABABAB. This is an example
of the fairness guarantee in practice. The stdout handle is represented by an
MVar, so when both threads attempt to call takeMVar to operate on the handle,
one of them wins and the other becomes blocked. When the winning thread
completes its operation and calls putMVar, the scheduler wakes up the blocked
thread and completes its blocked takeMVar, so the original winning thread will
immediately block when it tries to re-acquire the handle. Hence this leads to
perfect alternation between the two threads. The only way that the alternation
pattern can be broken is if one thread is pre-empted while it is not holding the
MVar; indeed this does happen from time to time, as we see the occasional long
string of a single letter in the output.

A consequence of the fairness implementation is that, when multiple threads
are blocked, we only need to wake up a single thread. This single wakeup property
is a particularly important performance characteristic when a large number of
threads are contending for a single MVar. As we shall see later, it is the fairness
guarantee together with the single-wakeup property which means that MVars are
not completely subsumed by Software Transactional Memory.
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3.3 Cancellation: Asynchronous Exceptions

In an interactive application, it is often important for one thread to be able
to interrupt the execution of another thread when some particular condition
occurs. Some examples of this kind of behaviour in practice include:

– In a web browser, the thread downloading the web page and the thread
rendering the page need to be interrupted when the user presses the “stop”
button.

– A server application typically wants to give a client a set amount of time to
issue a request before closing its connection, so as to avoid dormant connec-
tions using up resources.

– An application in which a compute-intensive thread is working (say, render-
ing a visualisation of some data), and the input data changes due to some
user input.

The crucial design decision in supporting cancellation is whether the intended
victim should have to poll for the cancellation condition, or whether the thread
is immediately cancelled in some way. This is a tradeoff:

1. If the thread has to poll, there is a danger that the programmer may forget
to poll regularly enough, and the thread will become unresponsive, perhaps
permanently so. Unresponsive threads lead to hangs and deadlocks, which
are particularly unpleasant from a user’s perspective.

2. If cancellation happens asynchronously, critical sections that modify state
need to be protected from cancellation, otherwise cancellation may occur
mid-update leaving some data in an inconsistent state.

In fact, the choice is really between doing only (1), or doing both (1) and (2),
because if (2) is the default, protecting a critical section amounts to switching
to polling behaviour for the duration of the critical section.

In most imperative languages it is unthinkable for (2) to be the default, be-
cause so much code is state-modifying. Haskell has a distinct advantage in this
area, however: most code is purely functional, so it can be safely aborted or
suspended, and later resumed, without affecting correctness. Moreover our hand
is forced: purely functional code cannot by definition poll for the cancellation
condition, so it must be cancellable by default.

Therefore, fully-asynchronous cancellation is the only sensible default in
Haskell, and the design problem reduces to deciding how cancellation appears
to code in the IO monad.

It makes sense for cancellation to behave like an exception, since exceptions
are already a fact of life in the IO monad, and the usual idioms for writing IO

monad code include exception handlers to release resources and clean up in the
event of an error. For example, to perform an operation that requires a temporary
file, we would use the bracket combinator to ensure that the temporary file is
always removed, even if the operation raises an exception:
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bracket (newTempFile "temp")

(\file -> removeFile file)

(\file -> ...)

where bracket is defined thus:

bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c

bracket before after during = do

a <- before

c <- during a ‘onException ‘ after a

after a

return c

and onException executes its first argument, and if an exception is thrown,
executes its second argument before re-throwing the exception.

onException :: IO a -> IO b -> IO a

We want exception handlers to run in the event of cancellation, so cancella-
tion should be an exception. However, there’s a fundamental difference between
the kind of exception thrown by openFile when the file does not exist, for ex-
ample, and an exception that may arise at any time because the user pressed
the “stop” button. We call the latter kind an asynchronous exception, for obvi-
ous reasons. (We do not review the Haskell support for synchronous exceptions
here; for that see the Haskell 2010 report [9] and the documentation for the
Control.Exception module).

To initiate an asynchronous exception, Haskell provides the throwTo primitive
which throws an exception from one thread to another [3]:

throwTo :: Exception e => ThreadId -> e -> IO ()

the Exception constraint requires that the exception value being thrown is an
instance of the Exception class, which implements a simple hierarchy [4]. The
ThreadId is a value previously returned by forkIO, and may refer to a thread in
any state: running, blocked, or finished (in the latter case, throwTo is a no-op).

To illustrate the use of throwTo, we now elaborate the earlier example in
which we downloaded several web pages concurrently, to allow the user to hit
’q’ at any time to stop the downloads.

First, we will extend our Async mini-API to allow cancellation. We add one
operation:

cancel :: Async a -> IO ()

which cancels an existing Async. If the operation has already completed, cancel
has no effect. The wait operation cannot just return the result of the Async

any more, since it may have been cancelled. Therefore, we extend wait to re-
turn Either SomeException a, containing either the exception raised during
the operation, or its result:

wait :: Async a -> IO (Either SomeException a)

(SomeException is the root of the exception hierarchy in Haskell.) In order to
implement the new interface, we need to extend the Async type to include the
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ThreadId of the child thread, and the MVar holding the result must now hold
Either SomeException a.

data Async a = Async ThreadId (MVar (Either SomeException a))

Given this, the implementation of cancel just throws an exception to the thread:

cancel :: Async a -> IO ()

cancel (Async t var) = throwTo t ThreadKilled

(ThreadKilled is an exception provided by the Haskell exception library and is
typically used for cancelling threads in this way.) The implementation of wait
is trivial. The remaining piece of the implementation is the async operation,
which must now include an exception handler to catch the exception and store
it in the MVar:

async :: IO a -> IO (Async a)

async io = do

m <- newEmptyMVar

t <- forkIO $ (do r <- io; putMVar m (Right r))

‘catch ‘ \e -> putMVar m (Left e)

return (Async t m)

Now, we can change the main function of the example to support cancelling the
downloads:

1 main = do

2 as <- mapM (async.http) sites

4 forkIO $ do

5 hSetBuffering stdin NoBuffering

6 forever $ do

7 c <- getChar

8 when (c == ’q’) $ mapM_ cancel as

10 rs <- mapM wait as

11 printf "%d/%d finished\n" (length (rights rs)) (length

rs)

Line 2 starts the downloads as before. Lines 4–8 fork a new thread that repeatedly
reads characters from the standard input, and if a q is found, calls cancel on
all the Asyncs. Line 10 waits for all the results (complete or cancelled), and line
11 emits a summary with a count of how many of the operations completed
without being cancelled. If we run the sample20 and hit ‘q‘ fast enough, we see
something like this:

downloaded: http://www.google.com (14538 bytes, 0.17s)

downloaded: http://www.bing.com (24740 bytes, 0.22s)

q2/5 finished

20 Full code is in the sample geturlscancel.hs
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Note that this works even though the program is sitting atop a large and com-
plicated HTTP library that provides no direct support for either cancellation or
asynchronous I/O. Haskell’s support for cancellation is modular in this respect:
most library code needs to do nothing to support it, although there are some
simple and unintrusive rules that need to be followed when dealing with state,
as we shall see in the next section.

Masking Asynchronous Exceptions. As we mentioned earlier, the danger
with fully asynchronous exceptions is that one might fire while we are in the
middle of updating some shared state, leaving the data in an inconsistent state,
and with a high probability leading to mayhem later.

Hence, we certainly need a way to control the delivery of asynchronous excep-
tions during critical sections. But we must tread carefully: it would be easy to
provide the programmer with a way to turn off asynchronous exception delivery
temporarily, but such a facility is in fact not what we really need.

Consider the following problem: a thread wishes to call takeMVar, perform an
operation depending on the value of the MVar, and finally put the result of the
operation in the MVar. The code must be responsive to asynchronous exceptions,
but it should be safe: if an asynchronous exception arrives after the takeMVar,
but before the final putMVar, the MVar should not be left empty, instead the
original value should be replaced.

If we code up this problem using the facilities we already seen so far, we might
end up with something like this:

1 problem m f = do

2 a <- takeMVar m

3 r <- f a ‘catch ‘ \e -> do putMVar m a; throw e

4 putMVar m r

There are at least two points where, if an asynchronous exception strikes, the
invariant will be violated. If an exception strikes between lines 2 and 3, or be-
tween lines 3 and 4, the MVar will be left empty. In fact, there is no way to shuffle
around the exception handlers to ensure the MVar is always left full. To fix this
problem, Haskell provides the mask combinator21:

mask :: ((IO a -> IO a) -> IO b) -> IO b

The type looks a bit confusing, but it isn’t really22. The mask operation defers
the delivery of asynchronous exceptions for the duration of its argument, and is
used like this:

1 problem m f = mask $ \restore -> do

2 a <- takeMVar m

3 r <- restore (f a) ‘catch ‘ \e -> do putMVar m a; throw e

4 putMVar m r

21 Historical note: the original presentation of asynchronous exceptions used a pair of
combinators block and unblock here, but mask was introduced in GHC 7.0.1 to
replace them as it has a more modular behaviour.

22 For simplicity here we are using a slightly less general version of mask than the real
one in the Control.Exception library.



Parallel and Concurrent Programming in Haskell 381

mask is applied to a function, that takes as its argument a function restore,
that can be used to restore the delivery of asynchronous exceptions to its present
state. If we imagine shading the entire argument to mask except for the expression
(f a), asynchronous exceptions cannot be raised in the shaded portions.

This solves the problem that we had previously, since now an exception can
only be raised while (f a) is working, and we have an exception handler to
catch any exceptions in that case. But a new problem has been introduced:
takeMVar might block for a long time, but it is inside the mask and so the
thread will be unresponsive for that time. Furthermore there’s no good reason
to mask exceptions during takeMVar; it would be safe for exceptions to be raised
right up until the point where takeMVar returns. Hence, this is exactly the
behaviour that Haskell defines for takeMVar: we designate a small number of
operations, including takeMVar, as interruptible. Interruptible operations may
receive asynchronous exceptions even inside mask.

What justifies this choice? Think of mask as “switching to polling mode” for
asynchronous exceptions. Inside a mask, asynchronous exceptions are no longer
asynchronous, but they can still be raised by certain operations. In other words,
asynchronous exceptions become synchronous inside mask.

All operations which may block indefinitely23 are designated as interruptible.
This turns out to be the ideal behaviour in many situations, as in problem above.

In fact, we can provide higher level combinators to insulate programmers
from the need to use mask directly. For example, the function problem above
is generally useful when working with MVars, and is provided under the name
modifyMVar_ in the Control.Concurrent.MVar library.

Asynchronous-Exception Safety. All that is necessary for most code to
be safe in the presence of asynchronous exceptions is to use operations like
modifyMVar_ instead of takeMVar and putMVar directly. For example, consider
the buffered channels that we defined earlier. As defined, the operations are not
asynchronous-exception-safe; for example, writeChan was defined like this:

1 writeChan :: Chan a -> a -> IO ()

2 writeChan (Chan _ writeVar) val = do

3 new_hole <- newEmptyMVar

4 old_hole <- takeMVar writeVar

5 putMVar writeVar new_hole

6 putMVar old_hole (Item val new_hole)

there are several windows here where if an asynchronous exception occurs, an
MVar will be left empty, and subsequent users of the Chan will deadlock. To make
it safe, we use modifyMVar_:

1 writeChan (Chan _ writeVar) val = do

2 new_hole <- newEmptyMVar

3 modifyMVar_ writeVar $ \old_hole -> do

4 putMVar old_hole (Item val new_hole)

5 return new_hole

23 Except foreign calls, for technical reasons
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We saw a use of the bracket function earlier; in fact, bracket is defined with
mask in order to make it asynchronous-exception-safe:

1 bracket before after during =

2 mask $ \restore -> do

3 a <- before

4 r <- restore (during a) ‘catch ‘ \e -> after a; throw e

5 _ <- after a

6 return r

Timeouts. A good illustration of programming with asynchronous exceptions
is to write a function that can impose a time limit on a given action. We want
to provide the timeout wrapper as a combinator of the following type:

timeout :: Integer -> IO a -> IO (Maybe a)

where timeout t m has the following behaviour:

1. timeout t m behaves exactly like fmap Just m if m returns a result or
raises an exception (including an asynchronous exception), within tmicrosec-
onds.

2. otherwise, m is sent an asynchronous exception of the form Timeout u.
Timeout is a new datatype that we define, and u is a unique value of type
Unique, distinguishing this particular instance of timeout from any other.
The call to timeout then returns Nothing.

The implementation is not expected to implement real-time semantics, so in
practice the timeout will only be approximately t microseconds. Note that (1)
requires that m is executed in the context of the current thread, since m could
call myThreadId, for example. Also, another thread throwing an exception to
the current thread with throwTo will expect to interrupt m.

The code for timeout is shown in Listing 1.1; this implementation was taken
from the library System.Timeout (with some cosmetic changes for presentation
here). The implementation is tricky to get right. The basic idea is to fork a new
thread that will wait for t microseconds and then call throwTo to throw the
Timeout exception back to the original thread; that much seems straightforward
enough. However, we must ensure that this thread cannot throw its Timeout ex-
ception after the call to timeout has returned, otherwise the Timeout exception
will leak out of the call, so timeout must kill the thread before returning.

Here is how the implementation works, line by line:

1–2 Handle the easy cases, where the timeout is negative or zero.
5 find the ThreadId of the current thread

6–7 make a new Timeout exception, by generating a unique valuewith newUnique
8-14 handleJust is an exception handler, with the following type:

handleJust :: Exception e

=> (e -> Maybe b) -> (b -> IO a) -> IO a

-> IO a
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Listing 1.1. Implementation of timeout

1 timeout n m

2 | n < 0 = fmap Just m

3 | n == 0 = return Nothing

4 | otherwise = do

5 pid <- myThreadId

6 u <- newUnique

7 let ex = Timeout u

8 handleJust

9 (\e -> if e == ex then Just () else Nothing)

10 (\_ -> return Nothing)

11 (bracket (forkIO $ do threadDelay n

12 throwTo pid ex)

13 (\t -> throwTo t ThreadKilled )

14 (\_ -> fmap Just m))

Its first argument (line 9) selects which exceptions to catch: in this case,
just the Timeout exception we defined on line 7. The second argument (line
10) is the exception handler, which in this case just returns Nothing, since
timeout occurred.
Lines 11–14 are the computation to run in the exception handler. bracket
(Section 3.3) is used here in order to fork the child thread, and ensure that
it is killed before returning.

11-12 fork the child thread. In the child thread we wait for n microseconds
with threadDelay, and then throw the Timeout exception to the parent
thread with throwTo.

13 always kill the child thread before returning.
14 the body of bracket: run the computation m passed in as the second

argument to timeout, and wrap the result in Just.

The reader is encouraged to verify that the implementation works by thinking
through the two cases: either m completes and returns Just x at line 14, or, the
child thread throws its exception while m is still working.

There is one tricky case to consider: what happens if both the child thread
and the parent thread try to call throwTo at the same time (lines 12 and 13
respectively)? Who wins?

The answer depends on the semantics of throwTo. In order for this implementa-
tion of timeout to work properly, it must not be possible for the call to bracket

at line 11 to return while the Timeout exception can still be thrown, otherwise
the exception can leak. Hence, the call to throwTo that kills the child thread at
line 13 must be synchronous: once this call returns, the child thread cannot throw
its exception any more. Indeed, this guarantee is provided by the semantics of
throwTo: a call to throwTo only returns after the exception has been raised in the
target thread24. Hence, throwTomay block if the child thread is currentlymasking

24 Note: a different semantics was originally described in Marlow et al. [3].
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asynchronous exceptions with mask, and because throwTomay block, it is there-
fore interruptible and may itself receive asynchronous exceptions.

Returning to our “who wins” question above, the answer is “exactly one of
them”, and that is precisely what we require to ensure the correct behaviour of
timeout.

Asynchronous Exceptions: Reflections. Abstractions like timeout are cer-
tainly difficult to get right, but fortunately they only have to be written once.
We find that in practice dealing with asynchronous exceptions is fairly straight-
forward, following a few simple rules:

– Use bracket when acquiring resources that need to be released again.
– Rather than takeMVar and putMVar, use modifyMVar_ (and friends) which

have built-in asynchronous exception safety.
– If state handling starts getting complicated with multiple layers of exception

handlers, then there are two approaches to simplifying things:
• Switching to polling mode with mask can help manage complexity. The
GHC I/O library, for example, runs entirely inside mask. Note that inside
mask it is important to remember that asynchronous exceptions can still
arise out of interruptible operations; the documentation contains a list
of operations that are guaranteed not to be interruptible.

• Using Software Transactional Memory (STM) instead of MVars or other
state representations can sweep away all the complexity in one go. We
will describe STM in Section 3.4.

The rules are usually not onerous: remember this only applies to code in the IO
monad, so the vast swathes of purely-functional library code available for Haskell
is all safe by construction. We find that most IO monad code is straightforward
to make safe, and if things get complicated falling back to either mask or STM
is a satisfactory solution.

In exchange for following the rules, however, Haskell’s approach to asyn-
chronous exceptions confers many benefits.

– Many exceptional conditions map naturally onto asynchronous exceptions.
For example, stack overflow and user interrupt (e.g. control-C at the console)
are mapped to asynchronous exceptions in Haskell. Hence, control-C not only
aborts the program but does so cleanly, running all the exception handlers.
Haskell programmers have to do nothing to enable this behaviour.

– Constructs like timeout always work, even with third-party library code.
– Threads never just die in Haskell, it is guaranteed that a thread always gets

a chance to clean up and run its exception handlers.

3.4 Software Transactional Memory

Software Transactional Memory (STM) is a technique for simplifying concurrent
programming by allowing multiple state-changing operations to be grouped to-
gether and performed as a single atomic operation. Strictly speaking, “Software
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Listing 1.2. The interface provided by Control.Concurrent.STM

1 data STM a -- abstract

2 instance Monad STM -- amongst other things

4 atomically :: STM a -> IO a

6 data TVar a -- abstract

7 newTVar :: a -> STM (TVar a)

8 readTVar :: TVar a -> STM a

9 writeTVar :: TVar a -> a -> STM ()

11 retry :: STM a

12 orElse :: STM a -> STM a -> STM a

14 throwSTM :: Exception e => e -> STM a

15 catchSTM :: Exception e => STM a -> (e -> STM a) -> STM a

Transactional Memory” is an implementation technique, whereas the language
construct we are interested in is “atomic blocks”. Unfortunately the former term
has stuck, and so the language-level facility is called STM.

STM solves a number of problems that arise with conventional concurrency
abstractions, that we describe here through a series of examples. For reference
throughout the following section, the types and operations of the STM interface
are collected in Listing 1.2.

Imagine the following scenario: a window manager that manages multiple
desktops. The user may move windows from one desktop to another, while at the
same time, a program may request that its own window moves from its current
desktop to another desktop. The window manager uses multiple threads: one to
listen for input from the user, one for each existing window to listen for requests
from those programs, and one thread that renders the display to the user.

How should the program represent the state of the display? One option is to
put it all in a single MVar:

type Display = MVar (Map Desktop (Set Window))

and this would work, but the MVar is a single point of contention. For example,
the rendering thread, which only needs to look at the currently displayed desktop,
could be blocked by a window on another desktop moving itself.

So perhaps we can try to allow more concurrency by having a separate MVar
for each desktop:

type Display = Map Desktop (MVar (Set Window))

unfortunately this approach quickly runs into problems. Consider an operation
to move a window from one desktop to another:
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moveWindow :: Display -> Window -> Desktop -> Desktop -> IO

()

moveWindow disp win a b = do

wa <- takeMVar ma

wb <- takeMVar mb

putMVar ma (Set.delete win wa)

putMVar mb (Set.insert win wb)

where

ma = fromJust (Map.lookup disp a)

mb = fromJust (Map.lookup disp b)

Note that we must take both MVars before we can put the results: otherwise
another thread could potentially observe the display in a state in which the
window we are moving does not exist. But this raises a problem: what if there is
concurrent call to moveWindow trying to move a window in the opposite direction?
Both calls would succeed at the first takeMVar, but block on the second, and
the result is a deadlock. This is an instance of the classic Dining Philosophers
problem.

One solution is to impose an ordering on the MVars, and require that all agents
take MVars in the correct order and release them in the opposite order. That is
inconvenient and error-prone though, and furthermore we have to extend our
ordering to any other state that we might need to access concurrently. Large
systems with many locks (e.g. Operating Systems) are often plagued by this
problem, and managing the complexity requires building elaborate infrastructure
to detect ordering violations.

Transactional memory provides a way to avoid this deadlock problem without
imposing a requirement for ordering on the programmer. To solve the problem
using STM, we replace MVar with TVar:

type Display = Map Desktop (TVar (Set Window))

TVar stands for “transactional variable”, and it is a mutable variable that can
only be read or written within a transaction. To implement moveWindow, we
simply perform the necessary operations on TVars in the STM monad, and wrap
the whole sequence in atomically:

moveWindow :: Display -> Window -> Desktop -> Desktop -> IO

()

moveWindow disp win a b = atomically $ do

wa <- readTVar ma

wb <- readTVar mb

writeTVar ma (Set.delete win wa)

writeTVar mb (Set.insert win wb)

where

ma = fromJust (Map.lookup a disp)

mb = fromJust (Map.lookup b disp)

The code is almost identical to the MVar version, but the behaviour is quite
different: the sequence of operations inside atomically happens indivisibly as
far as the rest of the program is concerned. No other thread can observe an
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intermediate state; the operation has either completed, or it has not started yet.
What’s more, there is no requirement that we read both TVars before we write
them, this would be fine too:

moveWindow :: Display -> Window -> Desktop -> Desktop -> IO

()

moveWindow disp win a b = atomically $ do

wa <- readTVar ma

writeTVar ma (Set.delete win wa)

wb <- readTVar mb

writeTVar mb (Set.insert win wb)

where

ma = fromJust (Map.lookup disp a)

mb = fromJust (Map.lookup disp b)

So STM is far less error-prone here. The approach also scales to any number of
TVars, so we could easily write an operation that moves the windows from all
other desktops to the current desktop, for example.

Now suppose that we want to swap two windows, moving window W from
desktop A to B, and simultaneously V from B to A. With the MVar representation
we would have to write a special-purpose operation to do this, because it has
to take the MVars for A and B (in the right order), and then put both MVars
back with the new contents. With STM, however, we can express this much
more neatly as a composition. First we need to expose a version of moveWindow
without the atomically wrapper:

moveWindowSTM :: Display -> Window -> Desktop -> Desktop

-> STM ()

moveWindowSTM disp win a b = do ...

and then we can define swapWindows by composing two moveWindowSTM calls:

swapWindows :: Display

-> Window -> Desktop

-> Window -> Desktop

-> IO ()

swapWindows disp w a v b = atomically $ do

moveWindowSTM disp w a b

moveWindowSTM disp v b a

This demonstrates the composability of STM operations: any operation of type
STM a can be composed with others to form a larger atomic transaction. For this
reason, STM operations are usually provided without the atomically wrapper,
so that clients can compose them as necessary, before finally wrapping the entire
operation in atomically.

So far we have covered the basic facilities of STM, and shown that STM can
be used to make atomicity scale in a composable way. STM confers a qualitative
improvement in expressibility and robustness when writing concurrent programs.
The benefits of STM in Haskell go further, however: in the following sections
we show how STM can be used to make blocking abstractions compose, and
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how STM can be used to manage complexity in the presence of failure and
interruption.

Blocking. An important part of concurrent programming is dealing with block-
ing; when we need to wait for some condition to be true, or to acquire a particular
resource. STM provides an ingenious way to do this, with a single operation:

retry :: STM a

the meaning of retry is simply “run the current transaction again”. That seems
bizarre - why would we want to run the current transaction again? Well, for one
thing, the contents of some TVars that we have read may have been changed by
another thread, so re-running the transaction may yield different results. Indeed,
there’s no point re-running the transaction unless it is possible that something
different might happen, and the runtime system knows this, so retry waits until
a TVar that was read in the current transaction has been written to, and then
triggers a re-run of the current transaction. Until that happens, the current
thread is blocked.

As a concrete example, we can use retry to implement the rendering thread
in our window-manager example. The behaviour we want is this:

– One desktop is designated as having the focus. The focussed desktop is the
one displayed by the rendering thread.

– The user may request that the focus be changed at any time.
– Windows may move around and appear or disappear of their own accord,

and the rendering thread must update its display accordingly.

We are supplied with a function render which handles the business of render-
ing windows on the display. It should be called whenever the window layout
changes25:

render :: Set Window -> IO ()

The currently focussed desktop is a piece of state that is shared by the render-
ing thread and some other thread that handles user input. Therefore we represent
that by a TVar:

type UserFocus = TVar Desktop

Next, we define an auxiliary function getWindows that takes the Display and
the UserFocus, and returns the set of windows to render, in the STM monad.
The implementation is straightforward: read the current focus, and look up the
contents of the appropriate desktop in the Display:

getWindows :: Display -> UserFocus -> STM (Set Window)

getWindows disp focus = do

desktop <- readTVar focus

readTVar (fromJust (Map.lookup desktop disp))

25 We are assuming that the actual window contents are rendered via some separate
means, e.g. compositing
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Finally, we can implement the rendering thread. The general plan is to re-
peatedly read the current state with getWindows and call render to render it,
but use retry to avoid calling render when nothing has changed. Here is the
code:

1 renderThread :: Display -> UserFocus -> IO ()

2 renderThread disp focus = do

3 wins <- atomically $ getWindows disp focus

4 loop wins

5 where

6 loop wins = do

7 render wins

8 next <- atomically $ do

9 wins ’ <- getWindows disp focus

10 if (wins == wins ’)

11 then retry

12 else return wins ’

13 loop next

First we read the current set of windows to display (line 3) and use this as the
initial value for the loop (line 4). Lines 6-13 implement the loop. Each iteration
calls render to display the current state (line 7), and then enters a transaction
to read the next state. Inside the transaction we read the current state (line 9),
and compare it to the state we just rendered (line 10); if the states are the same,
there is no need to do anything, so we call retry. If the states are different, then
we return the new state, and the loop iterates with the new state (line 13).

The effect of the retry is precisely what we need: it waits until the value
read by getWindows could possibly be different, because another thread has
successfully completed a transaction that writes to one of the TVars that is read
by getWindows. That encompasses both changes to the focus (because the user
switched to a different desktop), and changes to the contents of the current
desktop (because a window moved, appeared, or disappeared). Furthermore,
changes to other desktops can take place without the rendering thread being
woken up.

If it weren’t for STM’s retry operation, we would have to implement this
complex logic ourselves, including implementing the signals between threads
that modify the state and the rendering thread. This is anti-modular, because
operations that modify the state have to know about the observers that need to
act on changes. Furthermore, it gives rise to a common source of concurrency
bugs: lost wakeups. If we forgot to signal the rendering thread, then the display
would not be updated. In this case the effects are somewhat benign, but in a
more complex scenario lost wakeups often lead to deadlocks, because the woken
thread was supposed to complete some operation on which other threads are
waiting.

Implementing Channels with STM. As a second concrete example, we shall
implement the Chan type from Section 3.2 using STM. We shall see that using
STM to implement Chan is rather less tricky than using MVars, and furthermore
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Listing 1.3. Implementation of TChan

1 data TChan a = TChan (TVar (TVarList a))

2 (TVar (TVarList a))

4 type TVarList a = TVar (TList a)

5 data TList a = TNil | TCons a (TVarList a)

7 newTChan :: STM (TChan a)

8 newTChan = do

9 hole <- newTVar TNil

10 read <- newTVar hole

11 write <- newTVar hole

12 return (TChan read write)

14 readTChan :: TChan a -> STM a

15 readTChan (TChan readVar _) = do

16 listhead <- readTVar readVar

17 head <- readTVar listhead

18 case head of

19 TNil -> retry

20 TCons val tail -> do

21 writeTVar readVar tail

22 return val

24 writeTChan :: TChan a -> a -> STM ()

25 writeTChan (TChan _ writeVar ) a = do

26 new_listend <- newTVar TNil

27 listend <- readTVar writeVar

28 writeTVar writeVar new_listend

29 writeTVar listend (TCons a new_listend )

we are able to add some more complex operations that were hard or impossible
using MVars.

The STM version of Chan is called TChan26, and the interface we wish to
implement is as follows:

data TChan a

newTChan :: STM (TChan a)

writeTChan :: TChan a -> a -> STM ()

readTChan :: TChan a -> STM a

that is, exactly the same as Chan, except that we renamed Chan to TChan. The
full code for the implementation is given in Listing 1.3. The implementation is
similar in structure to the MVar version in Section 3.2, so we do not describe it
line by line, however we shall point out a few important details:

26 The implementation is available in the module Control.Concurrent.STM.TChan

from the stm package.
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– All the operations are in the STM monad, so to use them they need to be
wrapped in atomically (but they can also be composed, more about that
later).

– Blocking in readTChan is implemented by the call to retry (line 19).
– Nowhere did we have to worry about what happens when a read executes

concurrently with a write, because all the operations are atomic.

Something worth noting, although this is not a direct result of STM, is that the
straightforward implementation of dupChan does not suffer from the problem
that we had in Section 3.2, because readTChan does not remove elements from
the list.

We now describe three distinct benefits of the STM implementation compared
to using MVars.

More operations are possible. In Section 3.2 we mentioned the unGetChan oper-
ation, which could not be implemented with the desired semantics using MVars.
Here is its implementation with STM:

unGetTChan :: TChan a -> a -> STM ()

unGetTChan (TChan read _write) a = do

listhead <- readTVar read

newhead <- newTVar (TCons a listhead )

writeTVar read newhead

The obvious implementation does the right thing here. Other operations that
were not possible with MVars are straightforward with STM. For example, it
was not possible to define an operation for testing whether a Chan is empty
without suffering from the same problem as with unGetChan, but we can define
this operation straightforwardly on TChan:

isEmptyTChan :: TChan a -> STM Bool

isEmptyTChan (TChan read _write) = do

listhead <- readTVar read

head <- readTVar listhead

case head of

TNil -> return True

TCons _ _ -> return False

Composition of blocking operations. Suppose we wish to implement an operation
readEitherTChan that can read an element from either of two channels. If both
channels are empty it blocks; if one channel is non-empty it reads the value from
that channel, and if both channels are non-empty it is allowed to choose which
channel to read from. Its type is

readEitherTChan :: TChan a -> TChan b -> STM (Either a b)

We cannot implement this function with the operations introduced so far, but
STM provides one more crucial operation that allows blocking transactions to
be composed. The operation is orElse:



392 S. Marlow

orElse :: STM a -> STM a -> STM a

The operation orElse a b has the following behaviour:

– First a is executed. If a returns a result, then that result is immediately
returned by the orElse call.

– If a instead called retry, then a’s effects are discarded, and b is executed
instead.

We can use orElse to compose blocking operations atomically. Returning to our
example, readEitherTChan could be implemented as follows:

readEitherTChan :: TChan a -> TChan b -> STM (Either a b)

readEitherTChan a b =

fmap Left (readTChan a)

‘orElse ‘

fmap Right (readTChan b)

This is a straightforward composition of the two readTChan calls, the only com-
plication is arranging to tag the result with either Left or Right depending on
which branch succeeds.

In the MVar implementation of Chan there is no way to implement the opera-
tion readEitherChan without elaborating the representation of Chan to support
the synchronisation protocol that would be required (more discussion on imple-
menting choice with MVars can be found in Peyton Jones et al. [11]).

One thing to note is that orElse is left-biased; if both TChans are non-empty,
then readEitherChan will always return an element from the first one. Whether
this is problematic or not depends on the application: something to be aware
of is that the left-biased nature of orElse can have implications for fairness in
some situations.

Asynchronous exception safety. Up until now we have said nothing about how
exceptions in STM behave. The STM monad supports exceptions much like the
IO monad, with two operations:

throwSTM :: Exception e => e -> STM a

catchSTM :: Exception e => STM a -> (e -> STM a) -> STM a

throwSTM throws an exception, and catchSTM catches exceptions and invokes
a handler, just like catch in the IO monad. However, exceptions in STM are
different in one vital way:

– In catchSTM m h, if m raises an exception, then all of its effects are dis-
carded, and then the handler h is invoked. As a degenerate case, if there is
no enclosing catchSTM at all, then all of the effects of the transaction are
discarded and the exception is propagated out of atomically.

This behaviour of catchSTM was introduced in a subsequent amendment of
Harris et al. [2]; the original behaviour in which effects were not discarded being
generally regarded as much less useful. An example helps to demonstrate the
motivation:
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readCheck :: TChan a -> STM a

readCheck chan = do

a <- readTChan chan

checkValue a

checkValue imposes some extra constraints on the value read from the channel.
However, suppose checkValue raises an exception (perhaps accidentally, e.g.
divide-by-zero). We would prefer it if the readTChan had not happened, since an
element of the channel would be lost. Furthermore, we would like readCheck to
have this behaviour regardless of whether there is an enclosing exception handler
or not. Hence catchSTM discards the effects of its first argument in the event of
an exception.

The discarding-effects behaviour is even more useful in the case of asyn-
chronous exceptions. If an asynchronous exception occurs during an STM trans-
action, the entire transaction is aborted (unless the exception is caught and
handled, but handling asynchronous exceptions in STM is not something we
typically want to do). So in most cases, asynchronous exception safety in STM
consists of doing absolutely nothing at all. There are no locks to replace, so no
need for exception handlers or bracket, and no need to worry about which
critical sections to protect with mask.

The implementation of TChan given earlier is entirely safe with respect to
asynchronous exceptions as it stands, and moreover any compositions of these
operations are also safe.

STM provides a nice way to write code that is automatically safe with respect
to asynchronous exceptions, so it can be useful even for state that is not shared
between threads. The only catch is that we have to use STM consistently for all our
state, but having made that leap, asynchronous exception safety comes for free.

Performance. As with most abstractions, STM has a runtime cost. If we un-
derstand the cost model, then we can avoid writing code that hits the bad cases.
So in this section we give an informal description of the implementation of STM
(at least in GHC), with enough detail that the reader can understand the cost
model.

An STM transaction works by accumulating a log of readTVar and writeTVar

operations that have happened so far during the transaction. The log is used in
three ways:

– By storing writeTVar operations in the log rather than applying them to
main memory immediately, discarding the effects of a transaction is easy;
we just throw away the log. Hence, aborting a transaction has a fixed small
cost.

– Each readTVar must traverse the log to check whether the TVar was written
by an earlier writeTVar. Hence, readTVar is an O(n) operation in the length
of the log.

– Because the log contains a record of all the readTVar operations, it can be
used to discover the full set of TVars read during the transaction, which we
need to know in order to implement retry.
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When a transaction reaches the end, the STM implementation compares the log
against the contents of memory using a two-phase locking protocol (details in
Harris et al. [2]). If the current contents of memory matches the values read by
readTVar, the effects of the transaction are committed to memory atomically,
and if not, the log is discarded and the transaction runs again from the beginning.
The STM implementation in GHC does not use global locks; only the TVars
involved in the transaction are locked during commit, so transactions operating
on disjoint sets of TVars can proceed without interference.

The general rule of thumb when using STM is never to read an unbounded
number of TVars in a single transaction, because the O(n) cost of readTVar then
gives O(n2) for the whole transaction. Furthermore, long transactions are much
more likely to fail to commit, because another transaction will probably have
modified one or more of the same TVars in the meantime, so there is a high
probability of re-execution.

It is possible that a future STM implementation may use a different data
structure to store the log, reducing the readTVar overhead to O(log n) or better
(on average), but the likelihood that a long transaction will fail to commit would
still be an issue. To avoid that problem intelligent contention-management is
required, which is an area of active research.

Summary. To summarise, STM provides several benefits for concurrent pro-
gramming:

– Composable atomicity. We may construct arbitrarily large atomic oper-
ations on shared state, which can simplify the implementation of concurrent
data structures with fine-grained locking.

– Composable blocking. We can build operations that make a choice be-
tween multiple blocking operations; something which is very difficult with
MVars and other low-level concurrency abstractions.

– Robustness in the presence of failure and cancellation. A transac-
tion in progress is aborted if an exception occurs, so STM makes it easy to
maintain invariants on state in the presence of exceptions.

Further Reading. To find out more about STM in Haskell:

– Harris et al. [2], the original paper describing the design of Haskell’s STM in-
terface (be sure to get the revised version27 which has the modified semantics
for exceptions).

– “Beautiful Concurrency” a chapter in Wilson [15].

3.5 Concurrency and the Foreign Function Interface

Haskell has a foreign function interface (FFI) that allows Haskell code to call,
and be called by, foreign language code (primarily C) [9]. Foreign languages also

27 http://research.microsoft.com/people/simonpj/

http://research.microsoft.com/people/simonpj/
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have their own threading models — in C there is POSIX or Win32 threads, for
example — so we need to specify how Concurrent Haskell interacts with the
threading models of foreign code.

The details of the design can be found in Marlow et al. [6], in the following
sections we summarise the behaviour the Haskell programmer can expect.

All of the following assumes that GHC’s -threaded option is in use. Without
-threaded, the Haskell process uses a single OS thread only, and multi-threaded
foreign calls are not supported.

Threads and Foreign Out-Calls. An out-call is a call made from Haskell
to a foreign language. At the present time the FFI supports only calls to C, so
that’s all we describe here. In the following we refer to threads in C (i.e. POSIX
or Win32 threads) as “OS threads” to distinguish them from Haskell threads.

As an example, consider making the POSIX C function read() callable from
Haskell:

foreign import ccall "read "

c_read :: CInt -- file descriptor

-> Ptr Word8 -- buffer for data

-> CSize -- size of buffer

-> CSSize -- bytes read , or -1 on error

This declares a Haskell function c_read that can be used to call the C function
read(). Full details on the syntax of foreign declarations and the relationship
between C and Haskell types can be found in the Haskell report [9].

Just as Haskell threads run concurrently with each other, when a Haskell
thread makes a foreign call, that foreign call runs concurrently with the other
Haskell threads, and indeed with any other active foreign calls. Clearly the only
way that two C calls can be running concurrently is if they are running in two
separate OS threads, so that is exactly what happens: if several Haskell threads
call c_read and they all block waiting for data to be read, there will be one OS
thread per call blocked in read().

This has to work despite the fact that Haskell threads are not normally
mapped one-to-one with OS threads; as we mentioned earlier (Section 3.1), in
GHC, Haskell threads are lightweight and managed in user-space by the run-
time system. So to handle concurrent foreign calls, the runtime system has to
create more OS threads, and in fact it does this on demand. When a Haskell
thread makes a foreign call, another OS thread is created (if necessary), and the
responsibility for running the remaining Haskell threads is handed over to the
new OS thread, meanwhile the current OS thread makes the foreign call.

The implication of this design is that a foreign call may be executed in any
OS thread, and subsequent calls may even be executed in different OS threads.
In most cases this isn’t important, but sometimes it is: some foreign code must
be called by a particular OS thread. There are two instances of this requirement:

– Libraries that only allow one OS thread to use their API. GUI libraries often
fall into this category: not only must the library be called by only one OS
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thread, it must often be one particular thread (e.g. the main thread). The
Win32 GUI APIs are an example of this.

– APIs that use internal thread-local state. The best-known example of this is
OpenGL, which supports multi-threaded use, but stores state between API
calls in thread-local storage. Hence, subsequent calls must be made in the
same OS thread, otherwise the later call will see the wrong state.

For this reason, the concept of bound threads was introduced. A bound thread
is a Haskell thread/OS thread pair, such that foreign calls made by the Haskell
thread always take place in the associated OS thread. A bound thread is created
by forkOS:

forkOS :: IO () -> IO ThreadId

Care should be taken when calling forkOS: it creates a complete new OS thread,
so it can be quite expensive.

Threads and Foreign In-Calls. In-calls are calls to Haskell functions that
have been exposed to foreign code using foreign export. For example, if we
have a function f of type Int -> IO Int, we could expose it like this:

foreign export ccall "f" f :: Int -> IO Int

This would create a C function with the following signature:

HsInt f(HsInt);

here HsInt is the C type corresponding to Haskell’s Int type.
In a multi-threaded program, it is entirely possible that f might be called by

multiple OS threads concurrently. The GHC runtime system supports this (at
least with -threaded), with the following behaviour: each call becomes a new
bound thread. That is, a new Haskell thread is created for each call, and the
Haskell thread is bound to the OS thread that made the call. Hence, any further
out-calls made by the Haskell thread will take place in the same OS thread that
made the original in-call. This turns out to be important for dealing with GUI
callbacks: the GUI wants to run in the main OS thread only, so when it makes
a callback into Haskell, we need to ensure that GUI calls made by the callback
happen in the same OS thread that invoked the callback.

Further Reading

– The full specification of the Foreign Function Interface (FFI) can be found
in the Haskell 2010 report [9];

– GHC’s extensions to the FFI can be found in the GHC User’s Guide28;
– Functions for dealing with bound threads can be found in the documentation

for the Control.Concurrent module.

28 http://www.haskell.org/ghc/docs/latest/html/users_guide/

http://www.haskell.org/ghc/docs/latest/html/users_guide/
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3.6 High-Speed Concurrent Server Applications

Server-type applications that communicate with many clients simultaneously
demand both a high degree of concurrency and high performance from the I/O
subsystem. A good web server should be able to handle hundreds of thousands
of concurrent connections, and service tens of thousands of requests per second.

Ideally, we would like to write these kinds of applications using threads. A
thread is the right abstraction: it allows the developer to focus on programming
the interaction with a single client, and then to lift this interaction to multiple
clients by simply forking many instances of the single-client interaction in sepa-
rate threads. To illustrate this idea we will describe a simple network server29,
with the following behaviour:

– The server accepts connections from clients on port 44444.
– If a client sends an integer n, the service responds with the value of 2n
– If a client sends the string "end", the server closes the connection.

First, we program the interaction with a single client. The function talk defined
below takes a Handle for communicating with the client. The Handle is typically
bound to a network socket, so data sent by the client can be read from the
Handle, and data written to the Handle will be sent to the client.

1 talk :: Handle -> IO ()

2 talk h = do

3 hSetBuffering h LineBuffering

4 loop

5 where

6 loop = do

7 line <- hGetLine h

8 if line == "end"

9 then hPutStrLn h ("Thank you for using the " ++

10 "Haskell doubling service.")

11 else do hPutStrLn h (show (2 * (read line ::

Integer)))

12 loop

Line 3 sets the buffering mode for the Handle to line-buffering; if we don’t do
that then output sent to the Handle will be buffered up by the I/O layer until
there is a full block (which is more efficient for large transfers, but not useful for
interactive applications). Then we enter a loop to respond to requests from the
client. Each iteration of the loop reads a new line of text (line 7), and then checks
whether the client sent "end". If so, we emit a polite message and return (line
8). If not, we attempt to interpret the line as an integer and to write the value
obtained by doubling it. Finally we call loop again to read the next request.

Having dealt with the interaction with a single client, we can now make this
into a multi-client server using concurrency. The main function for our server is
as follows:

29 The full code can be found in sample server.hs
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1 main = do

2 s <- listenOn (PortNumber 44444)

3 forever $ do

4 (h,host ,_) <- accept s

5 printf "new client: %s\n" host

6 forkIO (talk h ‘finally ‘ hClose h)

On line 2 we create a network socket to listen on port 44444, and then we enter
a loop to accept connections from clients (line 3). Line 4 accepts a new client
connection: accept blocks until a connection request from a client arrives, and
then returns a Handle for communicating with the client (here bound to h) and
some information about the client (here we bind host to the client’s hostname).
Line 5 reports the new connection, and on line 6 we call forkIO to create a new
thread to handle the request. A little explanation is needed for the expression
passed to forkIO:

talk h ‘finally ‘ hClose h

talk is the single-client interaction that we defined above. The function finally

is a standard exception-handling combinator. It is rather like a specialised version
of bracket, and has the following type

finally :: IO a -> IO b -> IO a

with the behaviour that a ‘finally‘ b behaves exactly like a, except that b

is always performed after a returns or throws an exception. Here we are using
finally to ensure that the Handle for communicating with the client is always
closed, even if talk throws an exception. If we didn’t do this, the Handle would
eventually be garbage collected, but in the meantime it would consume resources
which might lead to the program failing due to lack of file descriptors. It is always
a good idea to close Handles when you’re finished with them.

Having forked a thread to handle this client, the main thread then goes back
to accepting more connections. All the active client connections and the main
thread run concurrently with each other, so the fact that the server is han-
dling multiple clients will be invisible to any individual client (unless the server
becomes overloaded).

So, making our concurrent server was simple - we did not have to change the
single-client code at all, and the code to lift it to a concurrent server was only a
handful of lines. We can verify that it works: in one window we start the server

$ ./server

in another window we start a client, and try a single request30:

$ nc localhost 44444

22

44

Next we leave this client running, and start another client:

30 nc is the netcat program, which is useful for simple network interaction
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$ ghc -e ’mapM_ print [1..]’ | nc localhost 44444

2

4

6

...

this client exercises the server a bit more by sending it a continuous stream of
numbers to double. For fun, try starting a few of these. Meanwhile we can switch
back to our first client, and observe that it is still being serviced:

$ nc localhost 44444

22

44

33

66

finally we can end the interaction with a client by typing end:

end

Thank you for using the Haskell doubling service.

This was just a simple example, but the same ideas underly several high-
performance web-server implementations in Haskell. Furthermore, with no addi-
tional effort at all, the same server code can make use of multiple cores simply
by compiling with -threaded and running with +RTS -N.

There are two technologies that make this structure feasible in Haskell:

– GHC’s very lightweight threads mean that having one thread per client is
practical.

– The IO manager [10] handles outstanding blocked I/O operations using effi-
cient operating-system primitives (e.g. the epoll call in Unix), which allows
us to have many thousands of threads doing I/O simultaneously with very
little overhead.

Were it not for lightweight threads and the IO manager, we would have to resort
to collapsing the structure into a single event loop (or worse, multiple event loops
to take advantage of multiple cores). The event loops style loses the single-client
abstraction, instead all clients have to be dealt with simultaneously, which can
be complicated if there are different kinds of client with different behaviours.
Furthermore we have to represent the state of each client somehow, rather than
just writing the straight-line code as we did in talk above. Imagine extending
talk to implement a more elaborate protocol with several states — it would be
reasonably straightforward with the single client abstraction, but representing
each state and the transitions explicitly would quickly get complicated.

We have ignored many details that would be necessary in a real server appli-
cation. The reader is encouraged to think about these and to try implementing
any required changes on top of the provided sample code:
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– What should happen if the user interrupts the server with a control-C?
(control-C is implemented as an asynchronous exception Interruptedwhich
is sent to the main thread).

– What happens in talk if the line does not parse as a number?
– What happens if the client cuts the connection prematurely, or the network

goes down?
– Should there be a limit on the number of clients we serve simultaneously?
– Can we log the activity of the server to a file?

4 Conclusion

We hope you have found this tutorial useful! To recap, here are the main points
and areas we have covered.

Haskell provides several different programming models for multiprogramming,
broadly divided into two classes: parallel programming models where the goal is
to write programs that make use of multiple processors to improve performance,
and concurrency where the goal is to write programs that interact with multiple
independent external agents.

The Parallel programming models in Haskell are deterministic, that is, these
programming models are defined to give the same results regardless of how many
processors are used to run them. There are two main approaches: Strategies,
which relies on lazy evaluatation to achieve parallelism, and the Parmonad which
uses a more explicit dataflow-graph style for expressing parallel computations.

On the Concurrency side we introduced the basic programming model involv-
ing threads and MVars for communication, and then described Haskell’s support
for cancellation in the form of asynchronous exceptions. Finally we showed how
Software Transactional Memory allows concurrent abstractions to be built com-
positionally, and makes it much easier to program with asynchronous exceptions.
We also covered the use of concurrency with Haskell’s Foreign Function interface,
and looked briefly at how to program concurrent server applications in Haskell.
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Abstract. The Feldspar project aims to develop a domain specific lan-
guage for Digital Signal Processing algorithm design. From functional
descriptions, imperative code (currently C) is generated. The project
partners are Ericsson, Chalmers and ELTE, Budapest. The background
and motivation for the project have been documented elsewhere [3]. We
aim to raise the level of abstraction at which algorithm developers and
implementors work, and to generate, from Feldspar descriptions, the kind
of code that is currently written by hand.

These lecture notes first give a brief introduction to Feldspar and the
style of programming that it encourages. Next, we document the imple-
mentation of Feldspar as a domain specific language (DSL), embedded
in Haskell. The implementation is built using a library called Syntac-
tic that was built for this purpose, but also designed to be of use to
other implementors of embedded domain specific languages. We show
the implementation of Feldspar in sufficient detail to give the reader an
understanding of how the use of the Syntactic library enables the modu-
lar construction of an embedded DSL. For those readers who would like
to apply these techniques to their own DSL embedded in Haskell, further
instructions are given in section 5.

The programming examples are available in the CEFP directory of the
Feldspar package, version 0.5.0.1:
http://hackage.haskell.org/package/feldspar-language-0.5.0.1

The code can be fetched by running:

> cabal unpack feldspar-language-0.5.0.1

All code is written in Haskell, and has been tested using the Glasgow
Haskell Compiler (GHC), version 7.0.2, and the packages

– syntactic-0.8

– feldspar-language-0.5.0.1

– feldspar-compiler-0.5.0.1

1 Programming in Feldspar

Feldspar is domain specific language for DSP algorithm design, embedded in
Haskell. It currently generates sequential C code for individual functions and it is
this Data Path part that is presented here. The part of Feldspar that coordinates
and deploys these kernels in parallel is still under development.

The aim of this part of the notes is to give the reader a brief introduction to pro-
gramming algorithmic blocks in Feldspar.We first present the core language, which

V. Zsók, Z. Horváth, and R. Plasmeijer (Eds.): CEFP 2011, LNCS 7241, pp. 402–439, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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is a purely functional C-like language deeply embedded in Haskell. Next, we show
how the constructs of the Vector library bring the user closer to a Haskell-like style
of programming.TheVector library is built upon the core, via a shallow embedding.
The combination of shallow and deep embedding is characteristic of the Feldspar
implementation, and has proved fruitful. It is discussed further in section 2.1. Fi-
nally, we illustrate the use of Feldspar in exploring a number of implementations of
the Fourier Transform. Our aim in designing Feldspar was to build an embedded
language that makes programming DSP algorithms as much like ordinary Haskell
programming as possible, while still permitting the generation of efficient C code.
As we shall see in the sections on implementation, the main emphasis in the design
has been on gainingmodularity, and onmaking the language easily extensible. The
most noticeable sacrifice has been the omission of recursion in Feldspar. Feldspar
users canmake use ofHaskell’s recursion in programdefinitions, but such recursion
must be completely unrolled during code generation.

1.1 The Core of Feldspar

The basis of Feldspar is a core language with some familiar primitive functions
on base types, and a small number of language constructs. A program in the
core language has type Data a, where a is the type of the value computed by the
program. Primitive constructs have types similar to their Haskell counterparts,
but with the addition of the Data constructor to the types.

For example, the Haskell functions

(==) : : Eq a ⇒ a → a → a
(&&) : : Bool → Bool → Bool
exp : : Floating a ⇒ a → a

are matched by the Feldspar functions

(==) : : Eq a ⇒ Data a → Data a → Data a
(&&) : : Data Bool → Data Bool → Data Bool
exp : : Floating a ⇒ Data a → Data a

The point to remember is that the type Bool, for instance, indicates a Haskell
value, while Data Bool indicates a Feldspar one.

Feldspar functions are defined using Haskell’s function abstraction:

square : : Data WordN → Data WordN
square x = x∗x

WordN is meant to represent an unsigned integer whose bit-width is determined
by the target platform. However, in the current implementation, WordN is im-
plemented as a 32-bit word. We also provide the following two aliases:

type Length = WordN
type Index = WordN

The conditional construct in Feldspar is similar to that in C. For instance, the
function f below doubles its input if it is odd.
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f : : Data Int32 → Data Int32
f i = ( testBit i 0) ? (2∗ i , i )

Applying the eval function gives

∗Main> eval ( f 3)
6
∗Main> eval ( f 2)
2

The abstract syntax tree of the function can be drawn using drawAST f:
*Main> drawAST f

Lambda 0

|

‘- condition

|

+- testBit

| |

| +- var:0

| |

| ‘- 0

|

+- (*)

| |

| +- var:0

| |

| ‘- 2

|

‘- var:0

and the result is a lambda function of one variable (numbered 0).
The generated C code (resulting from the call icompile f) is

=============== Source ================
#include ”feldspar c99 .h”
#include ”feldspar array .h”
#include <stdint .h>
#include <string .h>
#include <math.h>
#include <stdbool .h>
#include <complex .h>

/∗
∗ Memory information
∗
∗ Local : none
∗ Input : signed 32−bit integer
∗ Output: signed 32−bit integer
∗
∗/
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void test ( struct array ∗ mem, int32 t v0 , int32 t ∗ out)
{

i f ( testBit fun int32 (v0 , 0))
{

(∗ out) = (v0 << 1);
}
else
{

(∗ out) = v0 ;
}

}

The additional mem parameter that appears in all generated C code is not used
in the code body in this case. We will return to it in a later example. The
remaining two parameters correspond to the input and output of the Feldspar
function. (We will not in future show the #includes that appear in all generated
C functions.)

Core Arrays. Arrays play a central role in the Digital Signal Processing do-
main, and so they pervade Feldspar. Core arrays come in parallel and sequential
variants, but we will concentrate on the parallel version here. Core parallel arrays
are created with the parallel function:

para l l e l : : Type a ⇒ Data Length → (Data Index → Data a) → Data [a ]

The type Data [a] is the type of core arrays. The two parameters to parallel give
the length of the array, and a function from indices to values.

arr1n : : Data WordN → Data [WordN]
arr1n n = para l l e l n (λ i → ( i+1))

∗Main> eval (arr1n 6)
[1 ,2 ,3 ,4 ,5 ,6]

evens : : Data WordN → Data [WordN]
evens n = para l l e l n (∗2)

∗Main> eval (evens 6)
[0 ,2 ,4 ,6 ,8 ,10]

Feldspar core arrays become blocks of memory in the generated C code. Although
the current version of Feldspar generates sequential C code for the parallel con-
struct, the key attribute of parallel is that it is a data parallel construct, in
that the values at different indices are independent of each other. This opens
for future exploitation of parallelism, and also for optimisations based on array
fusion.

The types of the remaining functions on core arrays are shown in Figure 1
These functions have the expected semantics. For example, the following function
squares each element of its input array:
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append : : Type a ⇒ Data [a ] → Data [a ] → Data [a ]

getLength : : Type a ⇒ Data [a] → Data Length

setLength : : Type a ⇒ Data Length → Data [a] → Data [a ]

getIx : : Type a ⇒ Data [a ] → Data Index → Data a

setIx : : Type a ⇒ Data [a ] → Data Index → Data a → Data [a ]

Fig. 1. Functions on core arrays

squareEach : : Data [WordN] → Data [WordN]
squareEach as = para l l e l (getLength as) (λ i → square (getIx as i ))

The resulting C code is

/∗
∗ Memory information
∗
∗ Local : none
∗ Input : unsigned 32−bit integer array
∗ Output : unsigned 32−bit integer array
∗
∗/
void test ( struct array ∗ mem, struct array ∗ v0 , struct array ∗ out)
{

uint32 t len0 ;

len0 = getLength (v0) ;
for (uint32 t v1 = 0; v1 < len0 ; v1 += 1)
{

at(uint32 t , out , v1) = (at(uint32 t ,v0 ,v1) ∗ at(uint32 t ,v0 ,v1)) ;
}
setLength (out , len0 ) ;

}

The array inputs have been represented by structs of the form

struct array
{

void∗ buffer ; /∗ pointer to the buffer of elements ∗/
int32 t length ; /∗ number of elements in the array ∗/
int32 t elemSize ; /∗ s ize of elements in bytes ; (−1) for nested arrays ∗/
uint32 t bytes ; /∗ The number of bytes the buffer can hold ∗/

};

and the at macro indexes into the actual buffer.
For completeness, we also introduce the sequential construct:

sequential : : (Type a , Syntax s) ⇒
Data Length → s → (Data Index → s → (Data a , s ))
→ Data [a ]
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Sequential arrays are defined by a length, an initial state and a function from
index and state to a value (for that index) and a new state. For instance, the
following program computes successive factorials:

sfac : : Data WordN → Data [WordN]
sfac n = sequential n 1 g
where

g ix st = ( j , j )
where j = ( ix + 1) ∗ st

∗Main> eval ( sfac 6)
[1 ,2 ,6 ,24 ,120 ,720]

Loops. The two important remaining constructs in the core language are the
for and while loops1:

forLoop : : Syntax a ⇒ Data Length → a → (Data Index → a → a) → a

whileLoop : : Syntax a ⇒ a → (a → Data Bool) → (a → a) → a

The loop forLoop n i f takes a number of iterations, n, an initial state, i , and a
function f from index and state to a new state. Thus, fib n computes the nth

Fibonacci number.
f ib : : Data Index → Data Index
f ib n = f s t $ forLoop n (1 ,1) $ λ i (a ,b) → (b,a+b)

This example also illustrates that it is possible, in Feldspar, to have ordinary
Haskell tuples both in patterns and in expressions, due to the overloading pro-
vided by the Syntax class.

void test ( struct array ∗ mem, uint32 t v0, uint32 t ∗ out)
{

struct s uint32 t uint32 t e0 ;
struct s uint32 t uint32 t v2;

e0 .member1 = 1;
e0 .member2 = 1;
for (uint32 t v1 = 0; v1 < v0 ; v1 += 1)
{

v2 .member1 = e0 .member2;
v2 .member2 = (e0 .member1 + e0 .member2) ;
e0 = v2;

}
(∗ out) = e0 .member1;

}

In the current version of Feldspar, tuples become structs when compiled into C.
In programs, such as fib , where tuples are just used to group state variables, it
would make more sense to compile them into separate variables. This behavior
is planned for future versions.

1 There are also monadic versions of these loops, but we will not consider this extension
of the language in this introduction
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In similar style, the integer log base 2 function can be computed using a while
loop:

intLog : : Data WordN → Data WordN
intLog n = f s t $ whileLoop (0 ,n)

(λ( ,b) → (b > 1))
(λ(a ,b) → (a+1, b ‘ div ‘ 2))

The Feldspar user has access to the constructs of the core language, and this
gives fine control over the generated C code when this is required. However, our
intention is to raise the level of abstraction at which programmers work, and to
do this, we must move away from the low level primitives in the core.

1.2 Above the Core: Vectors

The core constructs of Feldspar are augmented by a number of additional li-
braries, implemented as shallow embeddings. This eases experiments with lan-
guage design, without demanding changes to the backends. Here, we illustrate
this idea using the library of Vectors, which are symbolic or virtual arrays. Vec-
tors are intended both to give a user experience resembling the look and feel of
Haskell list programming and to permit the generation of decent imperative array
processing code. We call vectors symbolic because they do not necessarily result
in the use of allocated memory (arrays) in the generated C code. A program that
uses the vector library should import it explicitly using import Feldspar .Vector.

Vectors are defined using an ordinary Haskell type:

−− Symbolic vector
data Vector a

= Empty
| Indexed

{ segmentLength : : Data Length
, segmentIndex : : Data Index → a
, continuation : : Vector a
}

A vector is defined, for its first segment, by a segment length and by a function
from indices to values (as we saw in core parallel arrays). However, it also has a
continuation vector (possibly empty) corresponding to its remaining segments.
The overall length of a vector (given by the function length) is the sum of the
lengths of its segments. Such segmented vectors are used in order to allow efficient
vector append. Note, however, that taking the sum of a segmented array results
in one for loop per segment.

tstLApp n = sum (squares n ++ squares (n+2))

void test ( struct array ∗ mem, uint32 t v0, uint32 t ∗ out
{

uint32 t len0 ;
uint32 t v2;
uint32 t v4;
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len0 = (v0 + 2);
(∗ out) = 0;

for (uint32 t v1 = 0; v1 < v0 ; v1 += 1)
{

uint32 t v5;

v5 = (v1 + 1);
v2 = ((∗ out) + (v5 ∗ v5)) ;
(∗ out) = v2;

}
for (uint32 t v3 = 0; v3 < len0 ; v3 += 1)
{

uint32 t v6;

v6 = (v3 + 1);
v4 = ((∗ out) + (v6 ∗ v6)) ;
(∗ out) = v4;

}
}

We will, in the remainder of these notes, only use vectors whose continuation is
Empty. Such single segment vectors are built using the indexed function.

For example, W k
n = e−2πik/n (also known as a twiddle factor) is a primitive

nth root of unity raised to the power of k. For a given n, we can place all the
powers from zero to (n-1) of Wn into a vector tws as follows:

tw : : Data WordN → Data WordN → Data (Complex Float )
tw n k = exp (−2 ∗ pi ∗ iun it ∗ i2n k / i2n n)

tws n = indexed n (tw n)

Here, i2n converts from an integer to a floating-point number.
In the following calls to the tws function, the reader is encouraged to examine

the results for interesting patterns. How do tws 4 and tws 8 relate and why?

∗Main> tws 2
[1.0 :+ 0.0 , (−1.0) :+ 8.742278e−8]
∗Main> eval (tws 4)
[1.0 :+ 0.0 , (−4.371139e−8) :+ (−1.0),
(−1.0) :+ 8.742278e−8, 1.1924881e−8 :+ 1.0]
∗Main> eval (tws 8)
[1.0 :+ 0.0 , 0.70710677 :+ (−0.70710677),
(−4.371139e−8) :+ (−1.0), (−0.70710677) :+ (−0.70710677),
(−1.0) :+ 8.742278e−8,(−0.70710665) :+ 0.7071069,
1.1924881e−8 :+ 1.0 , 0.707107 :+ 0.70710653]

To make a program that takes an integer as input and returns the corresponding
array of twiddle factors, we simply call icompile tws. Because the output of the
program is a vector, an array will indeed be manifest in memory in the resulting
C code.
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void test ( struct array ∗ mem, uint32 t v0 , struct array ∗ out)
{

f loat complex v2 ;

v2 = complex fun float (( f loat )(v0) , 0.0 f ) ;
for (uint32 t v1 = 0; v1 < v0 ; v1 += 1)
{

at( f loat complex , out , v1) = cexpf (((0.0 f+0.0 f i )
− (( complex fun float (( f loat )(v1) , 0.0 f ) ∗

(0.0 f+6.2831854820251465 f i )) / v2 ))) ;
}
setLength (out , v0) ;

}

But if we (somewhat perversely) sum the vector, then the resulting C code does
not have a corresponding array:

void test ( struct array ∗ mem, uint32 t v0, f loat complex ∗ out)
{

f loat complex v3;
f loat complex v2;

v3 = complex fun float(( f loat )(v0) , 0.0 f ) ;
(∗ out) = (0.0 f+0.0 f i ) ;
for (uint32 t v1 = 0; v1 < v0 ; v1 += 1)
{

v2 = ((∗ out) + cexpf (((0.0 f+0.0 f i ) −
(( complex fun float(( f loat )(v1) , 0.0 f ) ∗
(0.0 f+6.2831854820251465 f i )) / v3)))) ;

(∗ out) = v2;
}

}

Mapping a function over a vector behaves as we expect:

squares : : Data WordN → Vector1 WordN
squares n = map square (1 . . . n)

∗Main> eval (squares 4)
[1 ,4 ,9 ,16]

f l ipBi t : : Data Index → Data Index → Data Index
f l ipBi t i k = i ‘ xor ‘ ( bit k)

f l i p s : : Data WordN → Vector1 WordN → Vector1 WordN
f l i p s k = map (λe → f l ipBi t e k)

∗Main> eval $ f l i p s 2 (0. . .15)
[4 ,5 ,6 ,7 ,0 ,1 ,2 ,3 ,12 ,13 ,14 ,15 ,8 ,9 ,10 ,11]

∗Main> eval $ f l i p s 3 (0. . .15)
[8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,0 ,1 ,2 ,3 ,4 ,5 ,6 ,7]
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The function flips k flips bit number k of each element of a vector.
The type Vector1 a is shorthand for Vector (Data a). The (1... n) construction

builds the vector from 1 to n. This could also have been done using the vector

function and a Haskell list:
∗Main> eval (vector [1. .3 : :WordN])
[1 ,2 ,3]

Indexing into a vector is done using the infix (!) function. So, for example, the
head of a vector is its zeroth element.

head : : Syntax a ⇒ Vector a → a
head = (!0)

The API of the Vector library is much inspired by Haskell’s standard list-processing
functions, with functions like map, zip, take, drop splitAt and zipWith.

Composing vector operations results in fusion: intermediate data structures
are fused away in the resulting generated code. One might expect the following
function to produce code with two or even three loops, but it has only one:

sumSqVn : : Data WordN → Data WordN
sumSqVn n = fold (+) 0 $ map square (1 . . . n)

void test ( struct array ∗ mem, uint32 t v0, uint32 t ∗ out)
{

uint32 t v2;

(∗ out) = 0;
for (uint32 t v1 = 0; v1 < v0 ; v1 += 1)
{

uint32 t v3;

v3 = (v1 + 1);
v2 = ((∗ out) + (v3 ∗ v3)) ;
(∗ out) = v2;

}
}

This code embodies one of the main aims of Feldspar. We want to write code
that looks a lot like Haskell, but to generate efficient imperative code, of a
quality acceptable within our domain. The key to succeeding in this is to make
the language only just expressive enough for our domain! Now is the point to
remember that we have no recursion in the embedded language. This pushes
us towards a style of functional programming that relies heavily on familiar list
functions like map, fold and zipWith, but in variants that work on vectors.

In return for limited expressiveness, the user is given very strong guarantees
about fusion of intermediate vectors (and users should, in general, be program-
ming using vectors rather than core arrays). In Feldspar, a vector may become
manifest in generated code only in the following circumstances
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1. when it is explicitly forced using the function force2

2. when it is the input or output of a program
3. when it is accessed by a function outside the vector library API, for example,

a conditional or a for loop

These are strong guarantees, and they permit us to advocate a purely functional
programming style, even when performance is important. When performance
and memory use are over-riding concerns, we have the option of resorting to
monads and mutable arrays (see [15]). Our hope, which we will try to confirm in
an up-coming case study of part of an LTE uplink processing chain, is that some
key kernels will have to be finely tuned for performance and memory use, but
that the combination of such kernels will still be possible in a modular data-flow
style that uses higher order functions to structure programs.

Although we have shown only the Vector library, Feldspar contains a variety
of libraries implemented similarly as shallow embeddings. Examples include a
clone of the Repa library [14] and libraries for building filters and stream process-
ing functions. Work is also ongoing on dynamic contract checking for Feldspar,
and on improving feedback to users by trying to relate points in the generated
code with points in the source (a notoriously difficult problem for embedded
languages).

1.3 Case Study: Programming Transforms

Discrete Fourier Transform. The discrete Fourier Transform (DFT) can be
specified as

Xk = Σn−1
j=0 xjW

jk
n

where W j
n is an nth root of unity raised to the power of j that we saw earlier,

and encoded in the function tw n j. Using vectors and summation, it is straight-
forward to translate the above specification of DFT into Feldspar.

dft : : Vector1 (Complex Float ) → Vector1 (Complex Float )
dft xs = indexed n (λk → sum (indexed n (λj → xs ! j ∗ tw n ( j∗k))))
where

n = length xs

It is also clear that there are n summations, each of n elements, giving the well
known O(n2) complexity of the operation.

Fast Fourier Transforms. Any algorithm that gives O(n log n) complexity
in computing the same result as the DFT is known as a Fast Fourier Transform
or FFT. That one can make such a reduction in complexity is due to the rich
algebraic properties of the W k

n terms – the so-called twiddle factors, and to the
sharing of intermediate computations. FFT plays a central role in Digital Signal
Processing, where it is one of the most used algorithmic blocks. There are many
different FFT algorithms, suited to different circumstances, see reference [10] for
an entertaining and informative tutorial.

2 A vector can also be explicitly forced using the function desugar (see section 4.3), but
this function is mostly for internal use.
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Radix 2 Decimation in Frequency FFT. The best known (and simplest)
FFT algorithms are those due to Cooley and Tukey [8]. In the radix two, Dec-
imation in Frequency (DIF) algorithm, for input of length N , the even and
odd-numbered parts of the output are each computed by a DFT with N/2 in-
puts. The inputs to those two half-sized DFTs can be computed by N/2 2-input
DFTs. This decomposition can be used recursively, giving huge savings in the
cost of implementing the algorithm.

We will visualise FFT algorithms by showing how small 2-input, 2-output
DFT components are composed, and by indicating where multiplication by twid-
dle factors happen, see Figure 2. In this style, the structure of the radix 2 DIF
FFT is visualised in figure 3.

  

  

tt

a a+b

a−bb

Fig. 2. Introducing the style used to visualise FFT algorithms. The vertical lines are
2-input DFT components, with inputs on the left and outputs on the right. They are
drawn linking the elements of the array on which they operate. Thus, the arrange-
ment of vertical lines to the left of the triangle indicates that DFTs are performed
between array elements 0 and 8, 1 and 9 and so on. The triangle is intended to suggest
multiplication by twiddle factors of increasing powers. A triangle of height n indicates
multiplication by W 0

2n, W
1
2n, and so on, up to W n−1

2n . The first of these is indicated by
zero blobs, and the last by 7.

The Components of the FFT. Let us set about describing the components
of the DIF algorithm in Feldspar. Consider first the butterflies, which are made
of small (2-input) DFTs. To describe multiple small DFTs, each operating on
pairs of values 2k apart, we might be tempted to first construct a component
that works on 2(k+1) inputs and then to realise a combinator that allows this
component to be applied repeated to sub-parts of an input array. This is how
we would have described the construction in Lava (our earlier work on hardware
description in Haskell [5]) and indeed the aforementioned paper contains such
descriptions of FFT algorithms. Here, we choose a slightly different approach
(inspired by our recent work on data-parallel GPU programming in Haskell [7]).
We take the repeated application of a function on sub-parts of the input array
of a given size to be the default! So, for example, we don’t define vector reverse
as taking a vector and returning its reverse, but rather revp k, which reverses
sub-parts of its inputs, each of length 2k.
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Fig. 3. An illustration of the radix 2 DIF FFT algorithm (for 16 inputs). The box on
the right indicates the application of the bit reversal permutation. From left to right,
the groups of 2-input DFTs (indicated by the vertical lines) correspond to bfly 3,
bfly 2,bfly 1 and bfly 0 in the Feldspar code.

premap : : (Data Index → Data Index) → Vector a → Vector a
premap f (Indexed l ix f Empty) = indexed l ( ix f ◦ f )

revp : : (Bits a) ⇒ Data Index → Vector1 a → Vector1 a
revp k = premap ( ‘ xor ‘ (2ˆk − 1))

∗Main> eval (revp 3 (0. . .15))
[7 ,6 ,5 ,4 ,3 ,2 ,1 ,0 ,15 ,14 ,13 ,12 ,11 ,10 ,9 ,8]
∗Main> eval (revp 2 (0. . .15))
[3 ,2 ,1 ,0 ,7 ,6 ,5 ,4 ,11 ,10 ,9 ,8 ,15 ,14 ,13 ,12]

We assume here that if a function like revp k is applied to an input then that
input must be of length 2(k+j), for j a natural number. (We could check this
and return an appropriate error message.)

So now we would like to make (repeated) butterflies, each consisting of inter-
leaved 2-input DFTs:

bfly : : Data Index → Vector1 (Complex Float )
→ Vector1 (Complex Float )

bfly k as = indexed ( length as) ix f
where

i x f i = ( testBit i k) ? (b−a , a+b)
where

a = as ! i
b = as ! ( f l ipBi t i k)

Each individual group of butterflies is of length 2k+1 For any index i into the
output array, we examine bit k of the index to determine if this output is to
be given by an addition or a subtraction. If the bit is high, there should be a
subtraction, and as! i , which we call a, should be subtracted from its partner, b
which is at a lower index because its index differs from that of a only in bit k.
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Note that the bfly function is a judicious mixture of core functions (including
bit manipulations) and vector operations. It is perhaps the explicit indexing into
vectors that feels least Haskell-like, but it reflects the mathematics and seems
also to bring brevity.

For the multiplication by twiddle factors of increasing power, which takes
place only on the second half of the input array, it is again bit k of index i that
decides whether or not a multiplication should happen. In calculating the twiddle
factor, it is i ‘mod‘ (2ˆk) that gives the required increasing powers ranging from
0 to 2k − 1.

twids0 : : Data Index → Vector1 (Complex Float )
→ Vector1 (Complex Float )

twids0 k as = indexed ( length as) ix f
where

i x f i = ( testBit i k) ? ( t∗(as ! i ) , as ! i )
where

t = tw (2ˆ(k+1)) ( i ‘mod‘ (2ˆk))

A First Recursive FFT. Now we are in a position to compose our first recur-
sive FFT. Remember that the variable that is recursed over must be a Haskell
level variable, known at (this first) compile time. For each sub-block of length 2n,
we perform the interleaved butterflies and then the multiplication by twiddles
factors. The recursive call that corresponds to two half-size transforms is simply
a call of the recursive function with a parameter that is one smaller. We must
be careful to convert Haskell values to Feldspar ones (using the value function)
where necessary.

f f t r0 : : Index → Vector1 (Complex Float ) → Vector1 (Complex Float )
f f t r0 0 = id
f f t r0 n = f f t r0 n’ ◦ twids0 vn ’ ◦ bfly vn ’

where
n’ = n − 1
vn ’ = value n’

This recursive construction demands that the bit-reversal permutation be ap-
plied to its output array if it is to produce exactly the same results as the original
dft funtion that is now our specification (see [10] for further discussion of this).
For blocks of length 2k, bit reversal should reverse the k least significant bits of
the binary representation of each index of the array, leaving all other bits alone.

∗Main> eval $ bitRev 4 (0. . .15)
[0 ,8 ,4 ,12 ,2 ,10 ,6 ,14 ,1 ,9 ,5 ,13 ,3 ,11 ,7 ,15]
∗Main> eval $ bitRev 3 (0. . .15)
[0 ,4 ,2 ,6 ,1 ,5 ,3 ,7 ,8 ,12 ,10 ,14 ,9 ,13 ,11 ,15]
∗Main> eval $ bitRev 2 (0. . .15)
[0 ,2 ,1 ,3 ,4 ,6 ,5 ,7 ,8 ,10 ,9 ,11 ,12 ,14 ,13 ,15]

For completeness, we give a possible implementation, inspired by the bithacks
web site, see http://graphics.stanford.edu/~seander/bithacks.html. How-
ever, we also encourage the reader to investigate ways to implement this function.

http://graphics.stanford.edu/~seander/bithacks.html
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In addition, we note that such permutations of FFT inputs or outputs will some-
times in reality not be performed, but instead the block following the FFT may
adjust its access pattern to the data accordingly.

oneBitsN : : Data Index → Data Index
oneBitsN k = complement ( shiftLU (complement 0) k)

b it r : : Data Index → Data Index → Data Index
bit r n a = let mask = (oneBitsN n) in

(complement mask .&. a) . | . rotateLU ( reverseBits (mask .&. a)) n

bitRev : : Data Index → Vector a → Vector a
bitRev n = premap ( b it r n)

Finally, we have a first full FFT implementation:

f ft0 : : Index → Vector1 (Complex Float ) → Vector1 (Complex Float )
fft0 n = bitRev (value n) ◦ f f t r0 n

We can compare to the small example simulation of an FFT written in Lava
shown in reference [5]. Doing so, we find that we have here made a different (and
we think reasonable) assumption about the order of elements of an array, so that
some calls of reverse are required if we are to mimic the calculation in the Lava
paper.

dt4 = zipWith (+. ) (vector [1 ,2 ,3 ,1 : : Float ]) (vector [4 ,−2,2 ,2])

∗Main> eval dt4
[1.0 :+ 4.0 ,2.0 :+ (−2.0),3.0 :+ 2.0 ,1.0 :+ 2.0]

∗Main> eval ( reverse ( fft0 2 ( reverse dt4)))
[1.0 :+ 6.0,(−1.0000007) :+ (−6.0),(−3.0) :+ 2.0000002,7.0 :+ 6.0]

Of course, much more extensive testing should be employed, including checking
that the composition with an inverse FFT is close enough to the identity. This
is beyond the scope of thse notes.

An Iterative FFT. From the recursive description of fft0 , it is not difficult to
infer a corresponding iterative description:

f ft1 : : Data Index → Vector1 (Complex Float ) → Vector1 (Complex Float )
fft1 n as = bitRev n $ forLoop n as (λk → twids0 (n−1−k) ◦ bfly (n−1−k))

The observant reader may wonder why we didn’t just add the multiplication by
the twiddle factors directly into the definition of bfly , which would allow us to
define the entire FFT as

f ft2 : : Data Index → Vector1 (Complex Float ) → Vector1 (Complex Float )
fft2 n as = bitRev n $ forLoop n as (λk → bfly2 (n−1−k))
where

bfly2 k as = indexed ( length as) ix f
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where
i x f i = ( testBit i k) ? ( t∗(b−a) , a+b)
where

a = as ! i
b = as ! ( f l ipBi t i k)
t = tw (2ˆ(k+1)) ( i ‘mod‘ (2ˆk))

This is indeed quite a short and readable FFT definition. However, this kind
of manual merging of components is not always desirable. There are two main
reasons for this. The first is that it can be easier to replace individual components
with modified versions if the components are kept separate and can be modified
in isolation. (This kind of modularity is a typical benefit of working in a purely
functional language.) The second is that keeping components separate allows
easier experiments with new ways of combining them (and such experiments
are particularly relevant in the context of FFT, which is known to have many
interesting decompositions).

Playing with Twiddle Factors. We would like, eventually, to avoid unnec-
essary recomputation of twiddle factors. This takes two steps. First, we modify
the code so that all stages compute twiddle factors that have the same subscript.
Next, we force computation of an array of these twiddle factors, which later parts
of the program can access, avoiding recomputation.

Let us consider the component twids0 in isolation (and later we will look at new
ways of combining the resulting components). One of the important algebraic
properties of the twiddle factors is the following: W k

n = W 2k
2n . (You may have

had an inkling of this when you examined the values of tws 2, tws 4 and tws 8

earlier.) This fact gives us the opportunity to change the twids0 program so that
all twiddle factors used in an entire FFT have the same subscript (rather than
having different subscripts for each different parameter k in different stages of
the computation).

Defining twids1 as follows means that twids1 j k has the same behaviour as
twids0 k, as long as j is strictly greater than k.

twids1 : : Data Index → Data Index → Vector1 (Complex Float )
→ Vector1 (Complex Float )

twids1 n k as = indexed ( length as) ix f
where

i x f i = ( testBit i k) ? ( t ∗ (as ! i ) , as ! i )
where

t = tw (2ˆn) (( i ‘mod‘ (2ˆk)) .<<. (n−1−k) )

This is because we have multiplied both parameters of tw by 2n−1−k (the first
by relacing 2k+1 by 2n and the second by shifting left by 2n−1−k bits).

Forcing Computation of Twiddle Factors. Now, all stages of the 2n-input
FFT use tw (2ˆn) when calculating twiddle factors. We can compute the 2n−1

twiddle factors needed before starting the FFT calculation, using the force func-
tion to ensure that they get stored into an array ts. Then the call of tw (2ˆn) is
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simply replaced by ts !. This approach avoids repeated computation, which can
be the downside of fusion.

twids2 : : Data Index → Data Index → Vector1 (Complex Float )
→ Vector1 (Complex Float )

twids2 n k as = indexed ( length as) ix f
where

ts = force $ indexed (2ˆ(n−1)) (tw (2ˆn))
ix f i = ( testBit i k) ? ( t ∗ (as ! i ) , as ! i )
where

t = ts ! (( i ‘mod‘ (2ˆk)) .<<. (n−1−k))

The resulting FFT is then

f ft3 : : Data Index → Vector1 (Complex Float ) → Vector1 (Complex Float )
fft3 n as = bitRev n $ forLoop n as (λk → twids2 n (n−1−k) ◦ bfly (n−1−k))

and it gives C code that starts as follows:

void test ( struct array ∗ mem, uint32 t v0, struct array ∗ v1 , struct array ∗
out)
{

uint32 t v13;
f loat complex v14;
uint32 t len0 ;
uint32 t v24;
uint32 t v25;
uint32 t len2 ;

v13 = (v0 − 1);
v14 = complex fun float(( f loat )((1 << v0)) , 0.0 f ) ;
len0 = (1 << v13);
for (uint32 t v6 = 0; v6 < len0 ; v6 += 1)
{
at( f loat complex,&at( struct array ,mem,0) ,v6) =
cexpf (((0.0 f+0.0 f i ) − (( complex fun float(( f loat )(v6) , 0.0 f ) ∗
(0.0 f+6.2831854820251465 f i )) / v14))) ;

}
setLength(&at( struct array ,mem,0) , len0 ) ;

Note how one of the C arrays in the mem parameter is used to store the twid-
dle factors, for use by the remainder of the program. This is the role of that
parameter: to provide storage for local memory in the function. Our generated
functions do not themselves perform memory allocation for the storage of arrays.
The necessary memory must be given to them as the first input. For the twiddlle
factor array, another option would be simply to pass it as an input to the FFT
function.

Radix 2 Decimation in Time FFT The final FFT that we will program in
Feldspar is the Decimation in Time (DIT) radix two variant of the algorithm.
One can think of it as being almost the result of running the data-flow graph
that we just built for the DIF algorithm backwards. That is, we start with the
bit reversal, then twid2 n 0, then bfly 0, then twids2 n 1 and so on. Note that we
do twiddle multiplications before butterflies in this case.
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Fig. 4. An illustration of radix 2 DIT FFT algorithm (for 16 inputs). This diagram
was (literally) produced from that for the DIF algorithm by flipping it vertically.

f ft4 : : Data Index → Vector1 (Complex Float ) → Vector1 (Complex Float )
fft4 n as = forLoop n (bitRev n as) (λk → bfly k ◦ twids2 n k)

The resulting C code is reproduced in the Appendix. It is reasonably satisfac-
tory, but contains one annoying array copy inside the outer loop of the main
FFT calculation. This copying could be avoided by using ping-ponging between
two arrays, perhaps using a specially designed for loop. This would be easy to
arrange, and is the approach used in the Obsidian embedded language for GPU
programming [7] (although there all loops are unrolled). To get completely sat-
isfactory performance, we would need to make an in place implementation using
monads. The structure of the bflys component is well prepared for this, since
each 2-input DFT has its inputs and outputs at the same indices.

The duality between the decimation in frequency (DIF) and in time (DIT)
variants can be seen by examining the definitions of fft2 and fft4 and by studying
the diagrams illustrating these constructions (Figures 3 and 4).

Many FFT algorithms remain to be explored. Readers wishing to experiment
with Feldspar will find a wealth of interesting algorithms to program in the
FFT survey in reference [10]. We should be clear that DSP algorithm designers
most likely expect to be provided with fast FFT components, rather than to
have to write them. However, FFT algorithms can help us to develop useful
programming idioms. The development of new programming idioms is part of
our current research on Feldspar. We welcome input (and code snippets) from
the readers of this document.

This concludes your introduction to programming in Feldspar.

Exercise 1. Implement Batcher’s bitonic sort in Feldspar [4]. See http://

www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/

bitonicen.htm. Note that the Radix 2 DIF FFT (as shown in Figure 3) has
recursive structure similar to Batcher’s bitonic merger. If you ignore the blobs
in that diagram, and consider the vertical lines to be 2-input, 2-output compara-

http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm
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tors, you have exactly the bitonic merger. So you may find some inspiration in
the bfly and fft1 functions.

2 Implementation

The development of Feldspar has not only focused on the problem of making a
language for the embedded signal processing domain. Feldspar has also served
as a workbench for experimenting with different implementation techniques for
embedded languages in general. This has been partly motivated by the fact that
there are several partners involved in the project, and we need a very flexible
design in order to make collaboration easier. In this part we will look at the
general implementation techniques that have emerged out of Feldspar, and show
an implementation of Feldspar based on the general techniques.

2.1 Overview

A convenient way to implement a domain-specific language (DSL) is to embed it
within an existing language [13]. Often, the constructs of the embedded language
are then represented as functions in the host language. In a shallow embedding,
the language constructs themselves perform the interpretation of the language
[12]. In a deep embedding, the language constructs produce an intermediate
representation of the program. This representation can then be interpreted in
different ways.

In general, shallow languages are more modular, allowing new constructs to be
added independently of each other. In a deep implementation, each construct has
to be represented in the intermediate data structure, making it much harder to
extend the language. Embedded languages (both deep and shallow) can usually
be interpreted directly in the host language. This is, however, rather inefficient.
If performance is an issue, code generation can be employed, and this typically
done using a deep embedding [11].

The design of Feldspar tries to combine the advantages of shallow and deep
implementations. The goal is to have the modularity and extensibility of a shal-
low embedding, while retaining the advantages of a deep embedding in order
to be able to generate high-performance code. A nice combination was achieved
by using a deeply embedded core language and building high-level interfaces
as shallow extensions on top of the core. The low-level core language is purely
functional, but with a small semantic gap to machine-oriented languages, such
as C. Its intention is to be a suitable interface to the code generator, while being
flexible enough to support any high-level interfaces.

The architecture of Feldspar’s implementation is shown in figure 5. The deeply
embedded core language consists of an intermediate representation (the “Core
expression” box) and a user interface (“Core language”). Additionally, the user
interface consists of a number of high-level libraries with shallow implementation
(their meaning is expressed in terms of the core language constructs). The most
prominent high level library is the vector library (section 4.3). There are also
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Fig. 5. Feldspar architecture

some more experimental libraries for synchronous streams, bit vectors, etc. The
user’s program generates a core expression, the internal data structure used as
interface to the back ends. At the moment, there is only one back end – a code
generator producing C code.

This architecture gives us certain kinds of modularity, as indicated in figure 5:
high-level interfaces and back ends can be added independently of everything
else. However, the core language expression type has, so far, been hard-coded in
the implementation. This has made the implementation quite inflexible when it
comes to changing the core language.

2.2 Early Implementations

The implementation style of the initial Feldspar versions is described in reference
[2]. There, the core language expressions are defined using the data type in
figure 6. Ignoring some details, this is a standard abstract syntax tree, where
each constructor corresponds to a specific language construct. It is worth noting
the (:�) type, which captures the notion of variable binding. For example, the
second argument of Parallel is a representation of a function λi → body, where
body is an expression of the element at index i.

data Expr a where
Value : : Storable a ⇒ a → Expr a
Function : : String → (a → b) → Expr (a → b)
Application : : Expr (a → b) → Data a → Expr b
Variable : : Expr a
IfThenElse : : Data Bool → (a :� b) → (a :� b) → (Data a → Expr b)
While : : (a :� Bool) → (a :� a) → (Data a → Expr a)
Para l le l : : Storable a ⇒ Data Int → ( Int :� a) → Expr [a]

data a :� b = Lambda (Data a → Data b) (Data a) (Data b)

data Data a = Typeable a ⇒ Data (Ref (Expr a))

Fig. 6. Previous core language representation
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Even though the definition in figure 6 is quite simple, it lacks the desired
modularity. We do have the ability to extend the library with new high-level
types by providing a translation to Data a:

frontEnd1 : : MyType1 a → Data a
frontEnd2 : : MyType2 a → Data a
. . .

(A more general translation mechanism is provided by the Syntactic class de-
scribed in section 3.3.) We can also add any number of back ends:

backEnd1 : : Data a → Back1
backEnd2 : : Data a → Back2
. . .

But adding a constructor to Expr/Data requires editing the module containing
their definition as well as the modules of all back ends to handle the new con-
structor.

Most of the constructors in the Expr type are general language constructs
that are likely to be useful in other languages than Feldspar. This is especially
true for variable binding, which is a tricky concept that gets reimplemented
over and over again in various embedded languages. If we managed to make the
language definition more modular, it should also be possible to put the most basic
constructs in a library so that they can be reused in many different language
implementations.

We have developed a library, Syntactic [1], that provides the extensibility and
reuse described above. Section 3 introduces the Syntactic library, and section 4
gives an overview of how Feldspar is implemented using Syntactic.

3 Syntactic Library

When implementing deeply embedded DSLs in Haskell, a syntax tree is typically
defined using an algebraic data type [11,2]. As an example, consider a small
expression language with support for literals and addition:

data Expr1 a
where

Lit1 : : Num a ⇒ a → Expr1 a
Add1 : : Num a ⇒ Expr1 a → Expr1 a → Expr1 a

Expr1 a is a generalized algebraic data type (GADT) [16] whose parameter a is
used to denote the type of the value computed by the expression. It is easy to
add a user friendly interface to this language by adding smart constructors and
interpretation functions.

lit1 : : Int → Expr1 Int
lit1 x = Lit1 x

add1 : : Expr1 Int → Expr1 Int → Expr1 Int
add1 x y = Add1 x y
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eval1 : : Expr1 Int → Int
eval1 (Lit1 x) = x
eval1 (Add1 x y) = eval1 x + eval1 y

(In this case, the smart constructors only serve to hide implementation details
and constraining the type, but in later implementations they will also take care
of some tedious wrapping.)

The eval1 function is just one possible interpretation of the expressions; we
can easily extend the implementation with, say, pretty printing or any kind of
program analysis. This can be done even without changing any existing code.
However, adding a new construct to the language is not so easy. If we would
like to extend the language with, say, multiplication, we would need to add a
constructor to the Expr1 type as well as adding a new case to eval1 (and other
interpretations). Thus, with respect to language extension, a simple GADT rep-
resentation of a language is not modular. This limitation is one side of the
well-known expression problem [18].

There are several reasons why modularity is a desired property of a language
implementation. During the development phase, it makes it easier to experiment
with new language constructs. It also allows constructs to be developed and
tested independently, simplifying collaboration. However, there is no reason to
limit the modularity to a single language implementation. For example, Lit1 and
Add1 are conceptually generic constructs that might be useful in many different
languages. In an ideal world, language implementations should be assembled
from a library of generic building blocks in such a way that only the truly
domain-specific constructs need to be implemented for each new language.

The purpose of the Syntactic library is to provide a basis for such modular
languages. The library provides assistance for all aspects of an embedded DSL
implementation:
– A generic AST representation that can be customized to form different lan-

guages.
– A set of generic constructs that can be used to build custom languages.
– A set of generic functions for interpretation and transformation.
– Generic functions and type classes for defining the user interface of the DSL.

3.1 Using Syntactic

The idea of the Syntactic library is to express all syntax trees as instances
of a very general type AST3, defined in Figure 7. Sym introduces a symbol
from the domain dom, and (:$) applies such a constructor to one argument.

3 The Typeable constraint on the (: $) constructor is from the standard Haskell module
Data.Typeable, which, among other things, provides a type-safe cast operation. Syn-
tactic uses type casting to perform certain syntactic transformations whose type-
correctness cannot be verified by the type system. The Typeable constraint on (:$)

leaks out to functions that construct abstract syntax, which explains the occur-
rences of Typeable constraints throughout this paper. It is possible to get rid of the
constraint, at the cost of making certain AST functions more complicated.
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data AST dom a
where
Sym : : Signature a ⇒ dom a → AST dom a
( :$) : : Typeable a ⇒ AST dom (a :→ b) → AST dom (Full a)

→ AST dom b

type ASTF dom a = AST dom (Full a)

i n f i x l 1 :$

Fig. 7. Type of generic abstract syntax trees

newtype Full a = Full { resu lt : : a }
newtype a :→ b = Partial (a → b)

in f i x r :→

class Signature a
instance Signature (Full a)
instance Signature b ⇒ Signature (a :→ b)

Fig. 8. Types of symbol signatures

By instantiating the dom parameter with different types, it is possible to use
AST to model a wide range of algebraic data types. Even GADTs can be mod-
eled.

To model our previous expression language using AST, we rewrite it as follows:

data NumDomain2 a
where

Lit2 : : Num a ⇒ a → NumDomain2 (Full a)
Add2 : : Num a ⇒ NumDomain2 (a :→ a :→ Full a)

type Expr2 a = ASTF NumDomain2 a

The result type signatures of Lit2 and Add2 have a close correspondence to the
Lit1 and Add1 constructors. In general, a constructor of type

C2 : : T2 (a :→ b :→ . . . :→ Full x)

represents an ordinary GADT constructor of type

C1 : : T1 a → T1 b → . . . → T1 x

Types built using (:→) and Full are called symbol signatures, and they are defined
in Figure 8.

In this encoding, the types Expr1 and Expr2 are completely isomorphic (up to
strictness properties). The correspondence can be seen by reimplementing our
smart constructors for the Expr2 language:



Feldspar: Application and Implementation 425

lit2 : : Int → Expr2 Int
lit2 a = Sym (Lit2 a)

add2 : : Expr2 Int → Expr2 Int → Expr2 Int
add2 x y = Sym Add2 :$ x :$ y

The implementation of eval2 is left as an exercise to the reader. Note that, in
contrast to Add1, the Add2 constructor is non-recursive. Types based on AST

normally rely on (:$) to handle all recursion.
Part of the reason for using the somewhat unnatural AST type instead of an

ordinary GADT is that it directly supports definition of generic tree traversals.
Generic programming using AST is not the subject of these notes, but the basic
idea can be seen from a simple function returning the number of symbols in an
expression:

s ize : : AST dom a → Int
s ize (Sym ) = 1
size ( s :$ a) = s ize s + s ize a

Note that this function is defined for all possible domains, which means that
it can be reused in all kinds of language implementations. Such traversals are
the basis of the generic interpretation and transformation functions provided by
Syntactic.

3.2 Extensible Syntax

Support for generic traversals is one of the key features of the AST type. Another
– equally important – feature is support for extensible syntax trees. We can note
that Expr2 is closed in the same way as Expr1: Adding a constructor requires
changing the definition of NumDomain2. However, the AST type turns out to be
compatible with Data Types à la Carte [17], which is a technique for encoding
open data types in Haskell.4

The idea is to create symbol domains as co-products of smaller independent
domains using the (:+:) type operator (provided by Syntactic). To demonstrate
the idea, we split NumDomain2 into two separate sub-domains and combine them
into NumDomain3, used to define Expr3:

data Lit3 a where Lit3 : : Int → Lit3 ( Full Int )
data Add3 a where Add3 : : Add3 ( Int :→ Int :→ Full Int )

type NumDomain3 = Lit3 :+: Add3

type Expr3 a = ASTF NumDomain3 a

The new type Expr3 is again isomorphic Expr1.

4 The original Data Types à la Carte uses a combination of type-level fixed-points and
co-products to achieve open data types. Syntactic only adopts the co-products, and
uses the AST type instead of fixed-points.
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Now, the trick to get extensible syntax is to not use a closed domain, such as
NumDomain3, but instead use constrained polymorphism to abstract away from
the exact shape of the domain. The standard way of doing this for Data Types à
la Carte is to use the inj method of the (:<:) type class (provided by Syntactic).
Using inj , the smart constructors for Lit3 and Add3 can be defined thus:

lit3 : : (Lit3 :<: dom) ⇒ Int → ASTF dom Int
lit3 a = Sym ( in j (Lit3 a))

add3 : : (Add3 :<: dom) ⇒ ASTF dom Int → ASTF dom Int → ASTF dom Int
add3 x y = Sym ( in j Add3) :$ x :$ y

The definition of smart constructors can even be automated by using the function
appSym (provided by Syntactic). The following definitions of lit3 and add3 are
equivalent to the ones above:

lit3 : : (Lit3 :<: dom) ⇒ Int → ASTF dom Int
lit3 a = appSym (Lit3 a)

add3 : : (Add3 :<: dom) ⇒ ASTF dom Int → ASTF dom Int → ASTF dom Int
add3 = appSym Add3

A constraint such as (Lit3 :<: dom) can be read as “dom contains Lit3”, which
simply means that dom should be a co-product chain of the general form

( . . . :+: Lit3 :+: . . . )

One domain of this form is NumDomain3, but any other domain that includes Lit3
is also valid.

The fact that we have now achieved a modular language can be seen by
noting that the definitions of Lit3/lit3 and Add3/add3 are completely independent,
and could easily live in separate modules. Obviously, any number of additional
constructs can be added in a similar way.

3.3 Syntactic Sugar

It is not very convenient to require all embedded programs to have the type AST.
First of all, one might want to hide implementation details by defining a closed
language:

type MyDomain = Lit3 :+: Add3

newtype Data a = Data {unData : : ASTF MyDomain a}

In fact this is exactly how Feldspar’s Data type (see section 1) is defined (although
with a different symbol domain).

Secondly, it is sometimes more convenient to use more “high-level” represen-
tations as long as these representations have a correspondence to an AST. Such
high-level types are referred to as “syntactic sugar”. Examples of syntactic sugar
used in Feldspar are:
– The Data type
– Haskell tuples
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– The Vector type (section 1.2)
One illustrating example is the fib function from section 1.1:

f ib : : Data Index → Data Index
f ib n = f s t $ forLoop n (1 ,1) $ λ i (a ,b) → (b,a+b)

Here, the initial state is the ordinary Haskell pair (1,1) . The body matches on
the state a Haskell pair and constructs a new one as the next state. Finally, the
fst function selects the first part of the state as the final result.

class Typeable (Internal a) ⇒ Syntactic a dom | a → dom
where

type Internal a
desugar : : a → ASTF dom (Internal a)
sugar : : ASTF dom (Internal a) → a

instance Typeable a ⇒ Syntactic (ASTF dom a) dom
where

type Internal (ASTF dom a) = a
desugar = id
sugar = id

Fig. 9. Syntactic sugar

Syntactic sugar is defined by the class in Figure 9. The desugar method con-
verts from a high-level type to a corresponding AST representation, and sugar

converts back. The associated type function Internal maps the high-level type
to its internal representation. Note that this type function does not need to be
injective. It is possible to have several syntactic sugar types sharing the same
internal representation.

The Syntactic instance for Data looks as follows:
instance Typeable a ⇒ Syntactic (Data a) MyDomain
where

type Internal (Data a) = a
desugar = unData
sugar = Data

In order to make a user interface based on syntactic sugar, such as Data, we
simply use the function sugarSym instead of appSym that was used in section 3.1:

l i t : : Int → Data Int
l i t a = sugarSym (Lit3 a)

add : : Data Int → Data Int → Data Int
add = sugarSym Add3

As we can see, sugarSym is a highly overloaded function. But as long as it is given
a sufficiently constrained type signature (that is compatible with the signature
of the given symbol), it will just do “the right thing”.
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4 Feldspar Implementation

In this section, we give an overview of Feldspar’s implementation. Although the
back-end is a large part of the implementation (Figure 5), it will not be treated
in this text. See reference [9] for more information about the back-end.

To make the presentation simpler and to highlight the modularity aspect, we
will focus on a single language construct: parallel arrays.

4.1 Parallel Arrays

The syntactic symbols of Feldspar’s array operations are defined in the Array

type:

data Array a
where

Para l le l : : Type a ⇒ Array (Length :→ ( Index → a) :→ Full [ a ])
Append : : Type a ⇒ Array ([a ] :→ [ a ] :→ Full [a ])
GetIx : : Type a ⇒ Array ([a ] :→ Index :→ Full a)
SetIx : : Type a ⇒ Array ([a ] :→ Index :→ a :→ Full [a ])
. . .

As we saw in section 1.1, we use [a] to denote an array with elements of type
a. From now on, we will focus on the implementation of Parallel , and just note
that the other constructs are implemented in a similar way.

After we have defined the syntactic symbol, we need to give it semantics. This
is done by declaring the following instances:

instance Semantic Array
where

semantics Para l le l = Sem ”para l l e l”
(λlen ix f → genericTake len $ map ix f [ 0 . . ] )

. . .

instance Render Array where renderPart = renderPartSem
instance Eval Array where evaluate = evaluateSem
instance EvalBind Array where evalBindSym = evalBindSymDefault

The Semantic instance says that Parallel has the name ” parallel ”, and that it
is evaluated using the given lambda expression. The succeeding instances give
access to functions like drawAST and eval , by deriving their behavior from the
Semantic instance. This means that whenever we run something like:

∗Main> eval $ para l l e l 10 (∗2)
[0 ,2 ,4 ,6 ,8 ,10 ,12 ,14 ,16 ,18]

it is the function in the above semanticEval field that does the actual evaluation.
The implementation contains a number of other trivial class instances, but we

will omit those from the presentation.
Now it is time to define the user interface to Parallel . This follows the exact

same pattern as we saw in section 3.3:
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para l l e l : : Type a ⇒ Data Length → (Data Index → Data a) → Data [a ]
para l l e l = sugarSym Para l le l

Note how the function (Index → a) in the signature for Parallel became a function
(Data Index → Data a) in the user interface. All of this is handled by the sugarSym

function.
In addition to the above simple declarations, the implementation of parallel

also consists of optimization rules and code generation, which are out of the
scope of these notes. However, it is important to look at what we get from those
few lines of code that we have given so far. It turns out to be quite a lot:

We have defined a typed abstract syntax symbol Parallel and its corresponding
user function parallel . We have derived various interpretation functions (evalua-
tion, rendering, alpha-equivalence, etc.) by providing very minimal information
about the specific nature of parallel . We even get access to various syntactic
transformations (constant folding, invariant code hoisting, etc.) without adding
any additional code. All of this is due to the generic nature of the Syntactic
library. Note also that the implementation of parallel is completely independent
of the other constructs in the language, a property due to the extensible syntax
provided by Syntactic (section 3.2).

Having seen the important bits of how the core language is implemented we
can now move on to see how the vector library is implemented on top of the core
(recall Figure 5).

4.2 Assembling the Language

Once a number of symbol types (such as Array above) have been defined, they
are assembled using the same pattern as in section 3.3,

newtype Data a = Data {unData : : ASTF FeldDomainAll a}

where FeldDomainAll is the complete symbol domain. Additionally, to make type
signatures look nicer, we define the Syntax class recognized from the examples in
section 1:

class
( Syntactic a FeldDomainAll
, SyntacticN a (ASTF FeldDomainAll ( Internal a))
, Type ( Internal a)
) ⇒
Syntax a

instance Type a ⇒ Syntax (Data a)

Syntax does not have any methods; it is merely used as an alias for its super-class
constraints. The most important constraint is Syntactic a FeldDomainAll, which
can now be written more succinctly as Syntax a. In other words, all functions
overloaded by Syntax get access to the syntactic sugar interface described in
section 3.3.
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The Type class is the set of all value types supported by Feldspar (for example,
Bool, Int32, (Float , Index), etc.). The SyntacticN class is beyond the scope of these
notes; interested readers are referred to the API documentation [1].

4.3 Vector Library

The vector library (module Feldspar .Vector) provides a type for “virtual” vectors
– vectors that do not (necessarily) have any run-time representation. Vectors are
defined as:

data Vector a
= Empty
| Indexed

{ segmentLength : : Data Length
, segmentIndex : : Data Index → a
, continuation : : Vector a
}

This recursive type can be seen as a list of segments, where each segment is
defined by a length and an index projection function. The reason for having
vectors consisting of several segments is to allow efficient code generation of
vector append. However, in this presentation, we are going to look at a simpler
vector representation, consisting only of a single segment:5

data Vector a
= Indexed

{ length : : Data Length
, index : : Data Index → a
}

This is essentially a pair – at the Haskell-level – of a length and an index pro-
jection function. The meaning of a non-nested vector is given by the following
function:

freezeVector : : Type a ⇒ Vector (Data a) → Data [a ]
freezeVector vec = para l l e l ( length vec) ( index vec)

That is, a Vector with a given length and index projection has the same meaning
as a parallel with the same length and projection function. A small example:

∗Main> eval $ freezeVector $ Indexed 10 (∗2)
[0 ,2 ,4 ,6 ,8 ,10 ,12 ,14 ,16 ,18]

With this simple representation of vectors, it becomes straightforward to define
many of Haskell’s standard operations on lists. Some examples are given in
figure 10.

Does it work? Let us check:
∗Main> eval $ freezeVector $ map (∗2) $ Indexed 10 (∗2)
[0 ,4 ,8 ,12 ,16 ,20 ,24 ,28 ,32 ,36]

5 Note that for programs that do not use the (++) operation (which is the case for all
but one of the examples in this document), there will only ever be a single segment,
in which case the two representations are equivalent.
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take : : Data Length → Vector a → Vector a
take n (Indexed l ix f ) = Indexed (min n l ) ix f

map : : (a → b) → Vector a → Vector b
map f ( Indexed len ix f ) = Indexed len ( f ◦ i x f )

zip : : Vector a → Vector b → Vector (a ,b)
zip a b = Indexed ( length a ‘min‘ length b)

(λ i → ( index a i , index b i ))

zipWith : : (a → b → c) → Vector a → Vector b → Vector c
zipWith f a b = map (uncurry f ) $ zip a b

fold : : Syntax a ⇒ (a → b → a) → a → Vector b → a
fold f a (Indexed len ix f ) = forLoop len a (λ i st → f st ( ix f i ))

sum : : (Num a, Syntax a) ⇒ Vector a → a
sum = fold (+) 0

Fig. 10. Definition of some vector operations

This is all very well, but things start to get really interesting when we note that
we can actually make Vector an instance of Syntactic . A first attempt at doing
this might be:

instance Type a ⇒ Syntactic (Vector (Data a)) FeldDomainAll
where

type Internal (Vector (Data a)) = [a ]
desugar = desugar ◦ freezeVector
sugar = thawVector ◦ sugar

thawVector : : Type a ⇒ Data [a ] → Vector (Data a)
thawVector arr = Indexed (getLength arr ) ( getIx arr )

The function thawVector is the inverse of freezeVector . This works, but only for
non-nested vectors. A better solution is given in figure 11. This instance works
for elements of any Syntax type, which means that it even handles nested vectors.

instance Syntax a ⇒ Syntactic (Vector a) FeldDomainAll
where

type Internal (Vector a) = [ Internal a ]
desugar = desugar ◦ freezeVector ◦map (sugar ◦ desugar)
sugar = map (sugar ◦ desugar) ◦ thawVector ◦ sugar

instance Syntax a ⇒ Syntax (Vector a)

Fig. 11. Syntactic instance for Vector
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Having a Syntactic instance for Vector means that they can now work seam-
lessly with the rest of the language. Here is an example of a function using (?)

to select between two vectors:
f : : Vector (Data Index) → Vector (Data Index)
f vec = length vec > 10 ? (take 10 vec , map (∗3) vec)

Since Feldspar’s eval function is also overloaded using Syntax,

eval : : Syntax a ⇒ a → Internal a

we can even evaluate vector programs directly just like any other Feldspar
program:

∗Main> eval f [5 ,6 ,7]
[15 ,18 ,21]

It is important to note here that Vector is an ordinary Haskell type that is not
part of Feldspar’s core language. Relating to figure 5, Vector lives in one of the
top boxes of the API, and is not part of the core language. This means that
the back ends have no way of knowing what a Vector is. The reason vectors are
still useful is that we have an automatic translation between vectors and core
expressions via the Syntactic class. This technique provides a very powerful, yet
very simple, way of extending the language with new constructs.

Vector Fusion. The fact that vectors are not part of the core language, has the
nice consequence that they are guaranteed to be removed at compile time. This
is the underlying explanation for the kind of fusion that was seen in section 1.2.
Take, for example, the scalar product function:

scalarProd : : (Num a , Syntax a) ⇒ Vector a → Vector a → a
scalarProd as bs = sum (zipWith (∗) as bs)

Using the definitions of sum, zipWith, zip and map in figure 10, scalarProd can be
transformed in the following sequence of steps:

−− Definition of zipWith and zip
scalarProd2 as bs

= sum (
map (uncurry (∗)) (

Indexed
( length as ‘min‘ length bs)
(λ i → ( index as i , index bs i ))

)
)

−− Definition of map
scalarProd3 as bs

= sum (
Indexed

( length as ‘min‘ length bs)
(λ i → index as i ∗ index bs i )

)
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−− Definition of sum
scalarProd4 as bs

= forLoop
( length as ‘min‘ length bs)
0
(λ i st → st + index as i ∗ index bs i )

As we can see, the end result is a single forLoop, where the multiplication and the
accumulation have been fused together in the body. Note that these reductions
are performed by Haskell’s evaluation, which is why we can guarantee statically
that expressions of this form will always be fused.

The only exception to this static guarantee is the function freezeVector which
will compute the vector using parallel (which is not guaranteed to be fused).
Functions outside of the vector API (such as forLoop) can only access vectors
using desugar/sugar. Since desugar implicitly introduces freezeVector , this means
that functions outside of the vector API will not be able to guarantee fusion.

We have chosen to implement vectors as an additional high-level library. It
would have been possible to express all vector operations directly in the core
language, and implement fusion as a syntactic transformation. However, then
we would not have been able to guarantee fusion in the same way as we can
now. Imagine we had this core-level implementation of reverse (available in the
vector library):

rev : : Type a ⇒ Data [a ] → Data [a]
rev arr = para l l e l l (λ i → getIx arr ( l−i−1))
where

l = getLength arr

Then we would generally not be able to tell whether it will be fused with the
array arr . If arr is produced by another parallel , fusion is possible, but if arr is
produced by, for example, sequential (section 1.1), fusion is not possible. This
is because sequential can only produce its element in ascending order, while
rev indexes in reverse order. The vector library reverse , on the other hand, will
unconditionally fuse with its argument.

5 Discussion

We have presented Feldspar, an embedded language for DSP algorithm design.
One key aspect of Feldspar is that it is purely functional, despite the fact that
what we wish to do is to provide an alternative to C, which is currently used
for DSP programming. We have shown how Feldspar consists of a small core at
about the same abstraction level as C, and libraries built upon the core that
raise the level of abstraction at which the programmer works. Thus we intend to
bring the benefits of functional programming to a new audience. As a result we
do not really have a novel language design to present, but rather a new setting in
which functional programming with a strong emphasis on higher order functions
can be used. Doing array programming in a relatively simple, purely functional
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language allows the Feldspar user to construct algorithmic blocks from smaller
components. The purely functional setting gives a kind of modularity that is
just not present in C. It is easy to explore algorithms by plugging components
together in new ways. One can remove just part of an algorithm and replace
it with a function with the same input-output behaviour, but perhaps different
performance. The fact that Feldspar programs are compact is important here.
In the first part of these notes, we tried to illustrate this aspect of Feldspar. Our
hope is that this ease of algorithm exploration will be a key benefit of taking the
step from C to Feldspar.

In the implementation sections, we tried to convey the most important parts
of Feldspar’s implementation, focusing mainly on the underlying principles (the
Syntactic library), but also showing concrete details of the implementation of
parallel and the vector library.
There was not enough room to go into all details of the implementation.

Readers who are interested more details are encouraged to look at NanoFeldspar,
a small proof-of-concept implementation of Feldspar shipped with the Syntactic
package. To download NanoFeldspar, simply run:
> cabal unpack syntactic-0.8

> cd syntactic-0.8/Examples/NanoFeldspar

NanoFeldspar contains simplified versions of Feldspar’s core language and the
vector library. There is no back-end, but it is possible to print out the syntax
tree to get an idea of what the generated code would look like. NanoFeldspar
follows the modular implementation style described in section 3.2, and it should
be perfectly possible to use NanoFeldspar as a basis for implementing other
embedded languages.

Some additional details of the Feldspar implementation can be found in our
report on adding support for mutable data structures to Feldspar [15]. This
paper gives a very nice example of modular language extension using Syntactic.

An important part of Feldspar’s implementation is the ability to add new
libraries, such as the vector library, without changing the existing core language
or the code generator. In addition to the vector library, Feldspar has (more or
less experimental) libraries for synchronous streams, Repa-style arrays [14], bit
vectors and fixed-point numbers, etc.

5.1 Limitations

Feldspar currently only generates pure algorithmic functions. What is missing
in order to develop a complete application in Feldspar is the ability to coordi-
nate the generated functions. This requires language support for parallelism and
concurrency, memory management, real-time scheduling, etc. We are currently
working on adding such support to the language.

Syntactic. Although Syntactic has worked very well for the implementation of
Feldspar, we do not expect it to be suitable for all kinds of embedded languages.
While the AST type can model a wide range of data types, it does not handle
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mutually recursive types. For example, AST is not suited to model the following
pair of data types:

type Var = String

data Expr a where
Var : : Var → Expr a
Lit : : Num a ⇒ a → Expr a
Add : : Num a ⇒ Expr a → Expr a → Expr a
Exec : : Stmt → Var → Expr a

data Stmt where
Assign : : Var → Expr a → Stmt
Seq : : Stmt → Stmt → Stmt
Loop : : Expr Int → Stmt → Stmt
. . .

Here, Expr is an expression language capable of embedding imperative code using
the Exec constructor. Stmt is an imperative language using the Expr type for pure
expressions. In the AST type, all symbols are “first-class”, which means that we
cannot easily group the symbols as in the example above.

Note, however, that the above language can easily be modeled as a single data
type with monadic expressions. In fact, the latest Feldspar release has support
for mutable data structures with a monadic interface. Their implementation is
described in [15].

It is also important to be aware that many of the reusable components pro-
vided by Syntactic (syntactic constructs, interpretations, transformations, etc.)
assume that the language being implemented has a pure functional semantics.
However, this is not a limitation of the AST type itself, but rather of the sur-
rounding utility library. There is nothing preventing adding utilities for different
kinds of languages if the need arises.

5.2 Related Work

Work related to Feldspar and its implementation has been covered by previous
publications [3,2].

Syntactic shares common goals with a lot of related work on implementation
of domain-specific languages. However, in the context of strongly typed em-
bedded languages, Syntactic is rather unique in providing a library of reusable
building blocks for language implementation. Its support for language extension
is derived from Data Types à la Carte [17]. A quite different approach to exten-
sible embedded languages is Finally Tagless [6]. Although very elegant, neither
of these techniques provides libraries of reusable implementation tools.

6 Conclusion

Feldspar is a slightly strange beast: an embedded language in Haskell that tries
to be as much like Haskell (or at least a simple subset of Haskell) as possible.
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Once one has chosen this direction, the hard work is not in language design
but in finding ways to present the user with this illusion, while generating high
performance C code. We have (so far) performed only one brief test in which
Ericsson engineers used Feldspar. The generated code was of satisfactory qual-
ity but what was most striking about the experiment was the realisation, by
observing the reactions of our Ericsson colleagues, that it is purely functional
programming, with all its familiar benefits, that we are trying to sell, and not a
new language called Feldspar!

Building on the Syntactic library, Feldspar has a modular, easily extensible
implementation. Much of its functionality is derived from the generic building
blocks provided from Syntactic. This has been demonstrated concretely in the
implementation of parallel (section 4.1):

– The implementation of parallel is independent of other language constructs.
– The implementation of parallel is covered by a few tens of lines of code,

mostly in declarative form.
– A lot of details are handled by the Syntactic library: evaluation, rendering,

alpha-equivalence, certain optimizations, etc. Very little extra code is needed
to make these generic functions work for parallel .

Furthermore, the vector library (section 4.3) is implemented as an additional
library completely separate from the core language. This design allows us to
implement many of Haskell’s list processing functions in just a few lines each, and
still be able to generate high-performance C code from vector-based programs.

Appendix: C Code from the fft4 Function

The first page of code contains loops for computing twiddle factors and for doing
bit reversal. The second page contains the two nested for loops that do the FFT
calculation. (The code is split only for display purposes.)

/∗
∗ Memory information
∗
∗ Local : complex f loat array , complex f loat array
∗ Input : unsigned 32−bit integer , complex f loat array
∗ Output : complex f loat array

∗
∗/
void test ( struct array ∗ mem, uint32 t v0, struct array ∗ v1 , struct array ∗
out)
{

uint32 t v19;
uint32 t v20;
f loat complex v21;
uint32 t len0 ;
uint32 t v23;
uint32 t len1 ;
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v19 =∼(∼((4294967295 << v0))) ;
v20 =∼((4294967295 << v0)) ;
v21 = complex fun float(( f loat )((1 << v0)) , 0.0 f ) ;
len0 = (1 << (v0 − 1));
for (uint32 t v15 = 0; v15 < len0 ; v15 += 1)
{

at( f loat complex,&at( struct array ,mem,0) ,v15) =
cexpf (((0.0 f+0.0 f i ) − (( complex fun float(( f loat )(v15) , 0.0 f ) ∗

(0.0 f+6.2831854820251465 f i )) / v21))) ;
}
setLength(&at( struct array ,mem,0) , len0 ) ;
v23 = (v0 − 1);
len1 = getLength (v1) ;
for (uint32 t v11 = 0; v11 < len1 ; v11 += 1)
{

at( f loat complex , out ,v11) = at( f loat complex ,v1, ((v19 & v11) |
rotateL fun uint32( reverseBits fun uint32 ((v20 & v11)) , v0))) ;

}

setLength (out , len1 ) ;
for (uint32 t v12 = 0; v12 < v0; v12 += 1)
{

uint32 t v24;
uint32 t v25;
uint32 t v26;
uint32 t len2 ;

v24 = (1 << v12);
v25 = pow fun uint32(2 , v12) ;
v26 = (v23 − v12);
len2 = getLength (out ) ;
for (uint32 t v14 = 0; v14 < len2 ; v14 += 1)
{

uint32 t v27;
uint32 t v28;
f loat complex v29;
f loat complex v30;

v27 = testBit fun uint32(v14, v12) ;
v28 = (v14 ˆ v24);
i f ( testBit fun uint32(v28, v12))
{

v29 = (at( f loat complex,&at( struct array ,mem,0) ,
((v28 % v25) << v26)) ∗ at( f loat complex , out ,v28)) ;

}
else
{

v29 = at( f loat complex , out ,v28) ;
}
i f (v27)
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{
v30 = (at( f loat complex,&at( struct array ,mem,0) ,

((v14 % v25) << v26)) ∗ at( f loat complex , out ,v14)) ;
}
else
{

v30 = at( f loat complex , out ,v14) ;
}
i f (v27)
{

at( f loat complex,&at( struct array ,mem,1) ,v14) = (v29 − v30);
}
else
{

at( f loat complex,&at( struct array ,mem,1) ,v14) = (v30 + v29);
}

}
setLength(&at( struct array ,mem,1) , len2 ) ;
copyArray(out , &at( struct array ,mem,1)) ;

}
}
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Abstract. Static software analyser tools use different levels of interme-
diate source code representations that depend on the syntax and seman-
tics of the language to be analysed. Most of the analyser tools use graph
representation to efficiently retrieve information. Building such graphs
for dynamically typed languages, such as Erlang, is not straightforward.
In this paper we present static analysis methods to define the Depen-
dency Graph representation of Erlang programs. The introduced meth-
ods cover the data-, control-, behaviour-flow and dependency analyses
for sequential and parallel language constructs.

1 Introduction

Static analysis of the software products is a widely used technique to support
different phases of the software development lifecycle. These analysis techniques
can help in software development and maintenance tasks like: debugging, testing,
code comprehension, cost estimation, model visualisation of programs, coding
convention checking, or detecting possible errors. The common part of them is
the analysis of the source code without actually executing the target program.

To perform a static analysis, an intermediate representation of the source code
is required. The efficiency of the analysis highly depends on this representation.
For this reason different intermediate source code representations have to be
developed for different static analysis purposes. For instance, more detailed in-
formation is required for source code transformation and manipulation (in case
of a refactoring tool) than for extracting the model of a live code. For source
code transformation, beside the semantic information, the lexical and syntactic
information is essential. For model extraction, only the high-level entities and
the connection between them is required. Depending on the required information
for the analysis, first we need to build the basic representation from the source
code (e.g. AST). Then we extend the basic representation with the information
of higher-level of abstraction (e.g. semantic information).

In this paper we define various forms of intermediate source code represen-
tations for the programs written in Erlang [7]. The language was designed to
develop highly concurrent, distributed, fault tolerant systems with soft real-time
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characteristics such as telecommunication systems. The language is dynamically
typed, which makes the static analysis even harder.

We introduce a Semantic Program Graph to represent lexical, syntactic and
different semantic information about the source code. We also give a formal
description of the language and formalise the rules for the building of Data-
Flow Graph and Control-Flow Graph. The data-flow is analysed from different
aspects: zeroth and first order analysis, and the concurrent data-flow through
message passing. Besides the data-flow analysis, the paper covers the control
dependency relations, and some examples are given to the usage.

The information derived from the presented analyses can be used in several
applications. Dependency Graphs are widely used in program slicing algorithms
to perform change impact analysis. We have defined the impact analysis for
Erlang programs [4] to select the subset of the program containing those expres-
sions that are potentially affected by a change on the source code. Based on the
result we can determine the test cases that are affected by the change on the
source code and should be rechecked.

The Dependency Graph includes the control and data dependencies among
expressions. Based on these dependencies we can perform further analysis to find
the parallelisable components that can be run in parallel efficiently and with-
out high synchronisation costs. Hence we have to calculate strongly connected
components on the dependency graph, and analyse the resulted components.

The presented intermediate source code representations and the result of the
analyses are integrated to the source code analyser and transformer tool, Refac-
torErl [2,3]. We briefly introduce the semantic query language of RefactorErl,
which is applicable to query the result of the presented analyses during the soft-
ware development, maintenance or testing. The data-flow analysis is also used
in some of the refactoring steps. To ensure safe transformation, the source code
has to be analysed and allow the transformation if every precondition holds.
The changes have to be propagated in the source code, so data-flow analysis is
required to detect those expressions where further transformations are necessary.

The paper is structured as follows. In Section 1.1, we introduce the syntax
of Erlang programs. In Section 2, we present the Semantic Program Graph to
represent the Erlang programs. In Section 3, we describe the data-, behaviour-
and control-flow graph building rules and further analysis based on the built
graphs: data-flow reaching, concurrent data-flow analysis, control dependency
analysis, program slicing. Section 4 describes the static analysis in RefactorErl
and a query language to support querying the result of the presented analysis
by the user. Section 5 discusses related work and Section 6 concludes the paper.

1.1 The Syntax of Erlang Programs

Our research focuses on the Erlang programs. Erlang is a dynamically typed
functional programming language that was designed for building highly concur-
rent, fault-tolerant, distributed systems with soft-real time characteristic. In its
syntax the functional style is mixed with some Prolog like elements.
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In addition to the functional language constructs, the language has built in
support for concurrency. The Erlang Virtual Machine handles the light-weight
processes that communicate with asynchronous message passing.

We formalised the rules of our static analysis and the built graphs according
to the syntax and semantics of language elements. We introduce the detailed
syntax description of the language in Appendix A, and in Figure 1 we give a
short overview of it.

An Erlang function (F ) contains several function clauses. Each clause intro-
duces the name of the function, the formal parameters of the function (patterns),
optionally a guard expression and a sequence of expressions to be executed. The
expression (E) types are detailed in Appendix A. In Figure 1 we show the syn-
tax of the match expression (P = E), the tuple constructor ({E, ..., E}) and
the function call (E(E, ..., E)). Patterns (P ) are restricted to constant values,
variables and tuple and list selectors.

V ::= variables (including the underscore pattern ( ))
A ::= atoms
I ::= integers
K ::= A | I | other constants (e.g. string, float, char)
P ::= K | V | {P,. . .,P} | [P,. . .,P|P]

F ::= A(P,. . .,P) when E -> E,. . .,E;
...
A(P,. . .,P) when E -> E,. . .,E.

E ::= K | V | {E,. . .,E} | EList | P = E | E(E,. . .,E) | ...

Fig. 1. Erlang syntax (partial)

2 Source Code Representation

Different source code analysis techniques exist, and themost common part of them
is the usage of some intermediate source code representation for the analysis.

The most simple and the most current representation is the Abstract Syntax
Tree (AST) of the program. The AST of a program contains the syntactic struc-
ture of the program without representing every detail about the source code.
The main disadvantage of using an AST in further program analysis is the high
cost of information retrieval: in most cases a whole AST traversal is needed to
gather the required information about the source code. For instance, if we want
to know where a function is called, you have to scan the AST of every mod-
ule. Therefore, we choose a graph to represent the syntax and also the semantic
information about the source code.

2.1 Semantic Program Graph

The Semantic Program Graph (SPG) is a rooted, directed, labelled and indexed
graph that represents the Erlang source code in three different layers:
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– Lexical layer – contains the token information about the source code. This
layer stores information about the whitespaces and comments, and contains
both the original and the preprocessed version of tokens.

– Syntactic level – contains the syntax tree of the source code.
– Semantic layer – contains extra calculated semantic information about the

source code, such as module, function references, variable binding.

The SPG contains nodes and directed edges among the nodes. There are
different node classes and edge types. The graph has a special starting node,
the root node, the only element of the root node class. The root node is the
starting point of the most of the queries on the graph. The other nodes of the
SPG are the lexical (lex ), syntactic (file, form, clause, expr, typexp) and semantic
(module, func, record, field, variable) entities of the language. Every graph node
has a set of attributes based on its class, e.g. the function has a name and an
arity attribute. The directed edges represent the relations among the language
entities. Each edge is labelled to represent different kinds of the certain relations
between the nodes, thus we can say that the labels are the types of the edges.
Each edge type points from a certain graph node class to another node class.
For instance, the edge moddef links a module semantic node to a file syntactic
node. The edges are also indexed, so links with the same tag and starting from
the same node are maintained in their order.

We have defined the my module in Figure 2. The module contains a macro
(EOL/1) and a function (f/1). The macro EOL has a string parameter and it
simply appends a newline character to the end of the string. The function f has
a parameter S and it calls the put_chars function from the io module with its
parameter S.

-module(my).

-define(EOL(X), X ++ "\n").

f(S) ->

io:put_chars(?EOL(S)).

Fig. 2. Example of Erlang source code

The syntax tree of the module my is shown in Figure 3. The syntax tree is built
from the preprocessed source code, so all the macro applications are substituted
(as {expr, 8} shows it in Figure 3).

The syntax tree is the base of the SPG. The syntactic and semantic levels of
the SPG are shown in Figure 4. The oval boxes form the syntactic level of the
graph (that contains the syntax tree of the program) and the hexagonal nodes
and the dashed links form the semantic level of the SPG. There are semantic
nodes for each defined and referred module (my, io), function (f, put_chars)
and variable (S). These nodes are linked to the syntactic nodes to represent
the definition or the reference to these entities (e.g. varref, varbind, moddef,
fundef).
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Fig. 3. Syntax tree for module my

2.2 Building the Semantic Program Graph

The first step in creating the SPG is to build the syntax tree. The syntax tree
is built of the scanned token list of the program. Before building the syntax
tree we have to take into account the preprocessor directives and perform the
file inclusion and macro substitution. We build the syntax tree of the programs
from the preprocessed tokens. However, scanners and parsers can be generated
based on the grammar of the language, but the preprocessing mechanisms in
most of the cases are hard coded to the system.

The necessary information for the building of the semantic level of the graph
is calculated by traversing the AST. The AST (and the SPG built from the AST)
can be traversed by using path expressions. A path expression is a sequence
of graph edge labels to be followed from a starting node. For instance, if we
want to find the defined functions in the system, we have to start the query
from the root node, and ask first the defined modules (module edge) and from
the modules we can ask the defined functions of the modules (func edge), i.e.
we have to follow the [module, func] sequence of labels from the root node. The
syntax of path expressions is described in Figure 5. The main advantage of the
graph representation is that the most frequently used queries have a fixed length,
and there is no need to traverse the whole graph.

The structure of the path expressions and the filters are written according
to the Erlang EDoc type specification syntax [6] in Figure 5. The type path()

is a sequence of PathElem. The PathElem can be a graph edge label (Tag)
or a graph edge label with filtering options ({Tag, Index} or {Tag, Filter}).
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Fig. 4. Semantic Program Graph – Syntactic and Semantic Level
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path() = [PathElem]

PathElem = Tag | {Tag, Index} | {Tag, Filter}

Tag = atom() | {atom(), back}

Index = integer() | {integer(), integer()} | {integer(), last}

Filter = {Filter, ’and’, Filter} | {Filter, ’or’, Filter} |

{’not’, Filter} | {Attrib, Op, term()}

Attrib = atom()

Op = ’==’ | ’/=’ | ’=<’ | ’>=’ | ’<’ | ’>’

Fig. 5. The syntax of path expression

The former case represents the labelled graph edges to follow during graph
traversal, and the latter one makes it possible to select a subset of graph nodes
during the graph traversal according to the given filtering options. It is possible
to filter the result with syntactic or semantic information ({Tag, Filter}) and
also with the indices of edges in the graph ({Tag, Index}). For instance, the
pair {esub, {6,8}} denotes the sixth, seventh and eighth subexpressions of a
graph node. The graph edges can be traversed both forward (Tag = atom())
and backward direction (Tag = {atom(), ’back’}).

The building of the semantic level of the graph has two phases: to gather
information about the source code and to add new semantic nodes and edges
to the graph. Different semantic analysers can add several kinds of semantic
information about the source code:

– Module analyser – adds a new semantic module node to the graph when a
module definition or reference is found in the syntax tree and links them
to the node (moddef, modref ). Once a module node is added for a specific
module, its definition or its references are linked to this node. Each module
is linked to the root node (module).

– Function analyser – adds a new semantic function node to the graph when
the first reference or the definition of the function is found in the syntax
tree and links it to the semantic node. Afterwards, each found reference is
linked to the semantic function node. For instance, local calls are linked with
the funlref labelled edge, external calls are linked with funeref edge, import
or export references are linked with funexp, funimp edges. The semantic
function node is also linked to the semantic module node of the defining
module (func) and the defining syntactic function form (fundef ).

– Record analyser – similar to the function analyser, creates a semantic record
node and links the definition and references to it (recref, recdef ). The anal-
yser creates semantic record field nodes to each field given in the record
definition and links them with their references and definitions (fielddef, fiel-
dref ). The semantic field nodes are linked to the defining semantic record
node (field) and the semantic record node is linked to the semantic module
node of the containing module (record).

– Context analyser – to help in further analysis and speed up queries on the
graph, the SPG introduces some structural context edges. Every clause has
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a link to its direct subexpressions (visib), and each compound expression has
a clause edge to its clauses. The subexpressions are linked to their topmost
super-expression with top edges. The clauses also have a hierarchy as the
subexpressions do. Each clause is linked to its containing scope clause with
a scope edge, and the scope clauses are linked to the containing function
clause with a functx edge.

– Variable analyser – variables are analysed upon their containing scope in-
formation. Once a variable is found in the syntax tree, its scope has to be
determined. The semantic variable node is linked to its scope clause with
a vardef edge and it is linked to every clause where it is visible (varvis).
The references and the bindings are linked to the variable node with varref,
varbind edges.

Further semantic analysis can be performed based on the syntax tree and the
listed semantic information, such as interprocedural data-flow analysis, dynamic
function call analysis or control-flow analysis.

3 Source Code Analysis

Based on the syntactic and semantic information stored in the Semantic Program
Graph of Erlang programs, further analyses can be applied to calculate flow or
dependency information. In this section we present data-, control- and behaviour-
flow analysis towards creating a Dependency Graph of Erlang programs.

When we have defined the Data-Flow, Control-Flow and Dependency Graphs,
we had to consider the main features of the language. Some properties of the lan-
guage make the analysis simpler (such as the limited number of data constructors
and selectors, or the single assignment variables), but there are more properties
that make the analysis complicated (the lack of documented evaluation strategy,
the dynamic nature of the language: dynamic function calls, dynamic process
starting, communication via message passing).

3.1 Data-Flow Analysis

The Data-flow analysis is a technique for gathering information about how a
program manipulates its data and what are the possible sets of values calculated
at various points in a program. Several classical data-flow analysis applications
exist, such as constant-propagation analysis, liveness analysis, available expres-
sion analysis, reaching definition analysis, etc. In case of the Reaching Definition
Analysis we are interested in each program point, which assignments may have
been made and not overwritten, when execution reaches this point along some
path [14], so we should statically determine which definitions may reach a certain
point in the program.

Erlang is a single assignment language, so we are interested in reaching defi-
nition analysis and finding those program points which value can be a copy of a
certain expression or variable. Therefore, in this section we introduce the reach-
ing definition data-flow analysis. The analysis builds up the Data-Flow Graph
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(DFG) of an Erlang program. The DFG contains direct data-flow information
among expressions and the reaching relation defines the direct and indirect data-
flow among them.

The DFG is a part of the Semantic Program Graph of RefactorErl. The anal-
ysis adds data-flow edges to the SPG based on the syntax and semantics of the
language. The DFG is a directed labelled graph (DFG = (N , E)), its nodes are
the Erlang expressions (ni ∈ N) and its edges represent the direct data-flow
among them.

We can distinguish four kinds of data-flow edges:

–
f→ (flow edge): n1

f→ n2 represents that the result of n2 can be a copy of
the result of n1. Their value is exactly the same, and changing the value of
n1 results in the same change of the value of n2.

–
ci→ (constructor edge): n1

ci→ n2, represents that the result of n2 can be a
compound value that contains n1 as the ith element.

–
si→ (selector edge): n1

si→ n2, represents that the result of n2 can be the
ith element of the compound data n1.

–
d→ (dependency edge): n1

d→ n2, represents that the result of n2 can
directly depend on the result of n1.

We build the DFG with a compositional syntax based on the formal data-flow
rules. These rules are presented and detailed in Appendix B in Figures 24 – 26.
During the data-flow analysis we traverse the syntax tree part of the SPG and
try to apply one of the data-flow rules. When a syntactic element matches to
a left hand side of a rule we apply the right hand side of that rule and add
the given edges to the graph. This rule-based graph building method results in
the Interprocedural Data-Flow Graph containing the direct data-flow edges. The
indirect data-flow can be obtained by traversing the DFG and calculating the
transitive closure of the graph. We can define this closure with the Data-Flow
Reaching relation. We have defined the zeroth order (Section 3.2) and the first
order reaching (Section 3.5).

To give the basic idea behind the rules we show some example rules in Figure 6.
The (V ariable) rule describes that the value bound to a certain variable flows
to all occurrences of the same variable. Rules (Tuple exp.) and (Tuple pat.)
describe the constructor and selector operations of tuples. The edge ci denotes
that the value is the ith element of the tuple, and si means that we select the
ith element of the compound pattern. The (Fun. call) rule defines the data-flow
from the actual parameters to the patterns of the function definition, and the
flow of the result of the function back to the function application.

3.2 Zeroth Order Data-Flow Reaching

We have already defined the direct edges of the Data-Flow Graph, but we have
to define the indirect data-flow relation based on this graph as well. The Data-

Flow Reaching is defined by the
0f
� relation, where n1

0f
� n2 means that the

value of the expression represented by n1 in the DFG can be a copy of the value
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Expression Direct Graph Edges

(Variable)
p binding of a variable
n occurrence of a variable p

f→ n

(Tuple exp.)
e0:

{e1, . . . , en} e1
c1→ e0, . . . , en

cn→ e0

(Tuple pat.)
p0:

{p1, . . . , pn} p0
s1→ p1, . . . , p0

sn→ pn

(Fun. call)

e0:
m : g(e1, . . . , en) or
g(e1, . . . , en)

m:g/n:
g(p11, . . . , p

1
n) when g1 →

e11, . . . , e
1
l1
;

...
g(pm1 , . . . , pmn ) when gm →

em1 , . . . , emlm .

e1
f→ p11, . . . , e1

f→ pm1
...

en
f→ p1n, . . . , en

f→ pmn

e1l1
f→ e0, . . . , e

m
lm

f→ e0

Fig. 6. Static Data-Flow Graph building rules

of n2 – their values are equal. During defining the reaching we have to consider
the followings:

– n1
0f
� n1 always holds, because the value of an expression reaches itself

(reflexive rule)

– If there is a flow edge
f→ between nodes n1 and n2, then the value of n1

reaches n2 (f rule)
– A compound data structure preserves the data in its elements. When we

put an element n1 into a data structure n2 and the compound data reaches
another node n3 and we take out the element from the compound data to
n4, then the packed value n1 reaches n4 (c-s rule)

– If the value of an expression n1 reaches n2 and the value of n2 reaches n3,
then the value of n1 reaches n3, their values are equal (transitive rule)

Based on these, we can formalise the zeroth order data-flow reaching. We call it
zeroth order, because it does not handle any context information, for instance
about the calling context of functions.

Definition 1: Zeroth order data-flow relation The zeroth order data-flow
reaching relation (

0f
�) is the minimal relation that satisfies the following rules:

n
0f
� n (reflexive)

n1
f→ n2

n1
0f
� n2

(f rule)

n1
ci→ n2, n2

0f
� n3, n3

si→ n4

n1
0f
� n4

(c-s rule)
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n1
0f
� n2, n2

0f
� n3

n1
0f
� n3

(transitive)

For some application of the data-flow reaching the relevant information is the last
element of a flow chain. Thus, we introduce the forward and backward compact
data-flow reaching. For instance, when applying the data-flow analysis for the
dynamic function call detection [8], we have to detect whether the value of a
variable is unambiguously defined in the source code or it can be the result of
some operation.

Definition 2: Zeroth order compact forward data-flow relation The

compact forward data-flow reaching (
0fcf
� ) is the minimal relation that satisfies

the following rules:

n1
0f
� n2, �n3, n3 
= n2 : n2

0f
� n3

n1
0fcf
� n2

(f-compact)

Definition 3: Zeroth order compact forward data-flow relation The

compact backward data-flow reaching (
0fcb
� ) is the minimal relation that satisfies

the following rules:

n1
0f
� n2, �n0, n0 
= n1 : n0

0f
� n1

n1
0fcb
� n2

(b-compact)

3.3 Zeroth Order DFG and Reaching Example

Let us consider the following Erlang module in Figure 7. The function swap/2

swaps the values of a two-tuple. The function get_1st/1 takes a tuple as an
argument and swaps its values, then returns the first element of the swapped
tuple. Finally, the function cons/0 calls the function get_1st/1 with the actual
parameter {1,2} and returns the result of the function call.

The Data-Flow Graph of this module is shown in Figure 8. The result of the
function cons/0 is the value of the variable Y. It can be traced in the graph that

the constant 2 can be the value of Y: e25
0f
� e32 (the notation ei denotes the

DFG graph node and i is the index of nodes in Figure 8). We pack the integer
2 into the tuple as its second element and pass the tuple to the argument of the
function get_1st/1 that also passes that value to the parameter of swap/2. The
last function unpacks the values from the tuple and packs them into a new tuple
in reverse order. Thus, the second element of the tuple (the integer 2) becomes
the first element. Then get_1st/1 unpacks the resulted tuple and returns the
first element of the tuple, that is the integer 2. The function cons/0 binds
the result of the function call to the variable Y and returns that value. Thus, the
result is the integer 2.
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-module(dataflow).

swap({A, B}) ->

{B, A}.

get_1st(X) ->

{E1, E2} = swap(X),

E1.

const()->

Y = get_1st({1,2}),

Y.

Fig. 7. Example of Erlang code

Using the data-flow reaching relation we can formalise the traversal of the
graph:

e22
f→ e32, e30

f→ e22, e20
f→ e30, p10

f→ e20

e22
0f
� e32, e30

0f
� e22, e20

0f
� e30, p10

0f
� e20

(f rule (4 times))

p10
0f
� e20, e20

0f
� e30, e30

0f
� e22, e22

0f
� e32

p10
0f
� e32

(transitive rule (3 times))

e18
f→ e12, e7

f→ e18

e18
0f
� e12, e7

0f
� e18

(f rule (2 times))

e7
0f
� e18, e18

0f
� e12

e7
0f
� e12

(transitive rule)

p2
f→ e6

p2
0f
� e6

(f rule)

e16
f→ p4, e9

f→ e16, e26
f→ e9

e16
0f
� e4, e9

0f
� e16, e26

0f
� e9

(f rule (3 times))

e29
f→ e9, e9

f→ e16, e16
f→ p4

e26
0f
� p4

(transitive rule (2 times))

e6
c1→ e7, e7

0f
� e12, e12

s1→ p10

e6
0f
� p10

(c-s rule)
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Fig. 8. Data-Flow Graph example
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e25
c2→ e26, e26

0f
� p4, p4

s2→ p2

e25
0f
� p2

(c-s rule)

e25
0f
� p2, p2

0f
� e6, e6

0f
� p10, p10

0f
� e32

e25
0f
� e32

(transitive rule (3 times))

3.4 First Order Data-Flow Analysis

The zeroth order reaching is calculated based on the DFG. It does not con-
sider the calling context of functions, thus the zeroth order reaching is an over-
approximation (the DFG contains false positive data-flow edges). To address this
problem we defined the First order Data-Flow Reaching. The first order analysis
extends the DFG with context information about function calls to denote the
entry point of the function from a given function call and the return point of the
function to the same function call with the same index.

We will illustrate the calling context problem with an example and demon-
strate how the first order analysis can avoid some false positive hints.

We can extend our previous example from Section 3.3 with another function,
which calls the function get_1st. The result of the data-flow reaching changes
according to the extension (Figure 9).

const2()->

Z = get_1st({3,4}),

Z.

In this case both the tuples {3,4} and {1,2} flow to the pattern X, and the
result of the function get_1st/1 can be either integer 2 or 4 after the swapping.
The result of this function (e20) flows to the applications (e30, e41), so these can
be the values of variables Y and Z. However, it is obvious that when we call the
function from const/0, the result is 2 and from const2/0 the result is 4.

The problem with the zeroth order data-flow graph is that it does not store any
context information about the source code. Therefore, we can refine this analysis
by adding some context information about the calling context of functions and
distinguish the different function call and return points.

Extended First Order Rules To achieve the first order analysis, the 0th

order data-flow rules have to be extended with calling context information. Our
motivating example indicates that we should distinguish the different calls to a
function. Therefore, we store additional information on the entry and exit points
of a function rather than considering only the flow of the parameters.

Our first order analysis introduces new data-flow relations:
call(g)→ for entering

and
ret(g)→ for leaving the function g. The context information is added to the

edge as an index:
call(g,i)→ means the ith call of the function, and

ret(g,i)→ means
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Fig. 9. Extended Data-Flow Graph example

the return point of the ith call. Figure 10 shows the compositional data-flow rule
for a function call.

3.5 Extended First Order Data-Flow Relation

The presented data-flow rules describe direct flow information among Erlang
expressions. Since data could flow from node n1 to n2, and from n2 to n3, we are
curious whether the value of n1 flows indirectly to n3. The 1st order data-flow
relation returns those nodes in the graph where the value of a given node can
flow through a sequence of the data-flow edges.

We derive the first order data-flow relation from the zeroth order data-flow
relation considering the followings:

–
0f ′
� denotes the zeroth order data-flow relation calculated on the data-flow
graph defined by the extended data-flow rules. The zeroth order flow rela-

tion operates on
f→ edges, but the first order function call rule replaces the
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Expressions Graph edges

(Fun. call)

e0:
m : g(e1, . . . , en)

m:g/n:
g(p11, . . . , p

1
n) when g1 →

e11, . . . , e
1
l1
;

...
g(pm1 , . . . , pmn ) when gm →

em1 , . . . , emlm .

e0 is the ith analysed call
to function m : g/n

e1l1
ret(g,i)→ e0, . . . , e

m
lm

ret(g,i)→ e0

e1
call(g,i)→ p11, . . . , e1

call(g,i)→ pm1
...

en
call(g,i)→ p1n, . . . , en

call(g,i)→ pmn

Fig. 10. First order function call rule

corresponding
f→ edges with

call→ and
ret→ edges. The zeroth order reaching

cannot use the new edges. This results in a smaller intrafunctional
0f ′
� rela-

tion.

–
1f [μ]
� denotes the first order data-flow relation.

– In the first order relation (
1f [μ]
� ) μ is a list of call (

call(g,i)→ ) and return (
ret(h,j)→ )

points. We have to record the names and the indices of the called functions,
because later we have to find the corresponding exit points.

– Each node (ni) that is reachable in the extended representation with the
0th order data-flow relation is reachable by the first order relation (0th flow
rule).

– Similarly to the 0th order relation, if a data constructor packs (
ci→) the node

n1 into n2 and the value of n2 flows (with a first order flow) into the node

n3 and another data constructor unpacks (
si→) the value into n4, then the

value of n1 flows into n4 (1st c-s rule).

– The call (
call(g,i)→ ) and the return (

ret(h,j)→ ) edges behave similarly as the flow
f→ edges, so the data flows through them (call rule and return rule).

– The data can flow through any function call (call concat. rule).
– If the value of the node n1 flows into the node n2 through the return value

of a function call and the value of n2 flows into the node n3 through the
return value of another function call, then the value of n1 transitively flows
into the node n3 (return concat. rule).

– If we enter the function through the edge
call(g,i)→ , then we have to leave the

function through the
ret(g,i)→ edge (reduce rule) and leaving the function body

through an
ret(g,j)→ (j 
= i) edge is not allowed (Lemma 3).

In Definition 4 we use the following notations:

– μ denotes a list;
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– hd(μ) results the head (first) element of a list;
– last(μ) stands for the last element of a list;
– μ++ρ denotes the concatenation of list μ and list ρ;
– μn denotes the nth element of list μ.

Definition 4: First order data-flow relation The data-flow relation (
1f
�) is

the minimal relation that satisfies the following rules:

n1
0f ′
� n2

n1
1f []
� n2

(0th flow rule)

n1
ci→ n2, n2

1f [μ]
� n3, n3

si→ n4

n1
1f [μ]
� n4

(1st c-s rule)

n1
call(g,i)→ n2

n1

1f [call(g,i)]
� n2

(call rule)

n1
ret(h,j)→ n2

n1

1f [ret(h,j)]
� n2

(return rule)

n1
1f [μ]
� n2, n2

1f [ρ]
� n3

n1
1f [μ++ρ]

� n3

if (∃f ∃i : (hd(ρ) = call(g,i))) or ρ = []

(call concat. rule)

n1
1f [μ]
� n2, n2

1f [ret(h,j)|ρ]
� n3

n1

1f [μ++[ret(h,j)|ρ]]
� n3

if (∃f ∃i : (last(μ) = ret(g,i))) or μ = []

(return concat. rule)

n1

1f [μ++[call(h,i)]]
� n2, n2

1f [ret(h,i)]
� n3

n1
1f [μ]
� n3

(reduce rule)

N th Order Analysis. Based on the defined first order analysis, where we have
stored the calling context in the DFG in one depth, we can generalise the second
order analysis and store the calling context in two steps [19]. For example, in case
of a higher order function (Figure 11), a dynamic function call in the body of the
function depends on the parameter of the higher order call, thus it depends on
the calling context of the higher order function. In Figure 11 we have defined the
function func/2 that applies its first argument on its second argument: when
we call this function from call pear/0 it calls the function pear/1, and when we
call this function from call apple/0 it calls the function apple/1.

Based on this we can add the
call(pear,i)→ and the

call(apple,j)→ first order flow
edges from the node of Fun(Data), and also the

ret∗→ edges. Calculating first
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func(Fun, Data)->

Fun(Data).

call_pear()->

f(fun pear/1, [pear]).

call_apple()->

f(fun apple/1, [apple]).

Fig. 11. Higher order functions

order reaching on the DFG from the body of call pear/0 results in that both
function apple/1 and function pear/1 were called and their return values were
reached. A solution to that problem could be to store two depth calling context:
call((func,1);(pear,i))→ and

call((func,2);(apple,j))→ .
This analysis could be generalised iteratively to an nth order flow analysis

(
call((func1,i1); ... ;(funcn,in))→ ).

3.6 First Order DFG and Reaching Examples

The first order DFG of the previously mentioned example is shown in Figure 12.
It can be traced that the integers 2 and 4 can be the result of the function

get_1st/1 (e25
1f [call(get 1st,1)]

� e20 and e37
1f [call(get 1st,2)]

� e20), but only the
integer 2 can flow to variable Y (because of the reduce rule).

e25
1f [call(get 1st,1)]

� e20, e20
1f [ret(get 1st,1)]

� e32

e25
1f []
� e32

(reduce rule)

3.7 Concurrent Data-Flow Analysis

Besides the function parameters there is another way to exchange data between
functions (and also between different processes), that is message passing. There-
fore, a naive approximation of calculating data-flow through message passing can
be similar to the zeroth order data-flow through function calls. We can link each
passed message to all of the receive expressions. That results a huge DFG con-
taining lots of false flow edges. To avoid this, we should restrict the set of possible
receivers of messages using context information about the message passing.

Concurrent Erlang Processes and Message Passing. The language was
designed for developing concurrent and distributed applications. Spawning a
processes on remote nodes is as easy as spawning it on a single node. Since Erlang
uses light-weight processes and processes are spawned at the virtual machine
level, the spawning and destroying of processes is quite fast. The processes are
separated from operating system processes and behave in the same way on every
platform. The virtual machine takes care of spawning, destroying and scheduling
of processes. The processes are independent and do not share memory, as they
communicate only through message passing. Message passing is asynchronous
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Fig. 12. First Order Data-Flow Graph example
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and the messages arrive at a message queue of the process. Messages are waiting
in a message queue until they are processed.

The following functions work in the same way on a local node, or even if
there is a set of interconnected nodes. In this paper we will describe the message
passing in case of a local node. The analysis can be extended easily to apply for
distributed applications as well.

The basic language elements for concurrency are spawn, register, receive and
send.

Spawning processes. With the spawn function we can create new processes. We
can spawn a lambda expression, an exported function on a local node, or even on
the remote Erlang node. There are some versions for this BIF (Built in Function):

spawn – The function spawn/n spawns a separate process with the given
function and returns its process identifier (PID). The creating process will not
be notified if the created process has terminated abnormally. The function is
available with different arities: n=1,2,3,4.

spawn_link – The function spawn link/n spawns the given function, but
creates a link between the parent and the spawned process. The creating process
will be notified if the created process terminates abnormally and will cause to
crash the creating process if the exit is not trapped. The functions are available
with different arities: n=1,2,3,4.

spawn_monitor – The function spawn monitor/n spawns the given function
and returns a tuple of a PID and a reference for the process. With this reference
we can monitor the created process. The creating process will be notified if the
created process terminates normally even if it crashes, but will not cause the
creating process to terminate. The function is available with different arities:
n=1,3.

Registering processes. With the function register/2 we can associate a local
process identifier with a given name. The function will fail if there is a process
registered with the same name, or the local process does not exist.

If we have several nodes connected and communicating with each other, we
can also register the process globally with the function global:register name/n

(n=2,3).
If the process is registered it can be accessed by its name instead of the PID

when sending it a message.

Sending messages. Since the spawned processes are independent, the only way
of communication is message passing, either through the network, or only on
a local node. The process can be accessed by its process identifier obtained by
spawning the process, or by the given name, if it has been registered. There are
some alternatives for sending messages, but we describe only the most common
cases, as the other functions behave similarly.

The right-associative infix send operator ! (exclamation mark) and its func-
tion version send/2 are used most commonly. The operator takes two
operands: the right operand, which is the message to be send, and the left
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operand, which is the destination process. As a result, the send operator re-
turns the message. The destination can be a PID, a registered process name, or
even a registered process on a remote node.

The operator ! and the send/n (n=1,2) send the message to the mailbox
(or message queue) of the processes. To send a message to a globally registered
process we can use the function global:send/2.

Receiving messages. The messages arrive at the mailbox of the process. We can
extract messages with the receive expression. The receive expression looks like
a case expression (or switch in other languages), except it suspends until it can
extract a message form the mailbox, or the given timeout has elapsed. We can
extract messages with pattern-matching and proceed with execution according
to the received message.

Detecting Spawned Processes. Since the process identifiers are created dy-
namically or passed to the functions as parameters, statically detecting the re-
cipient of a message is not straightforward and sometimes it is impossible to
calculate. Let us consider the following Erlang function:

send_data(Pid) ->

Data = do_some_computation(),

Pid ! {"Sending computed data", Data}.

In this example, if we do not have further knowledge about the function pa-
rameter Pid, we cannot detect where the actual message can flow. Thus we
concentrate on the analysing of process identifiers and on calculating the set of
functions that can be executed as processes. To solve the latter mentioned prob-
lem we have to analyse process spawning. For the sake of simplicity we describe
in more detail only the function spawn/3 hereinafter (the functions spawn*/n

can be handled similarly):

Pid = spawn(ModName, FunName, ArgList)

The function spawn/3 executes the given function in the new independent pro-
cess and returns its unique identifier. The spawn/3 function takes three argu-
ments: the name of the implementing module, the name of the function to be
spawned and the list of the actual parameters for this function. Thus the follow-
ing triple {ModName, FunName, length(ArgList)} identifies the function that
is spawned in a new process.

To calculate the possible values of the identifying triple we can use the se-
quential first order data-flow reaching defined in Section 3.4. The following sets
define the possible values of the elements of the triple, where mn ∈ V denotes
the node representing the module name, fn ∈ V denotes the node representing
the function name and arg ∈ V denotes the node representing the argument list
in the Data-Flow Graph – DFG = (V,E):

– MN = {n ∈ V |n 1f
� mn, �n′, n′ ∈ V, n′ 
= n : n′ 1f

� n}
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– FN = {n ∈ V |n 1f
� fn, �n′, n′ ∈ V, n′ 
= n : n′ 1f

� n}

– Arg = {n ∈ V |n 1f
� arg, �n′, n′ ∈ V, n′ 
= n : n′ 1f

� n}

For instance, the set MN contains those expressions which values can flow into
mn, i.e. we perform static backward data-flow reaching starting from mn. When
the node mn is a variable, we need only the binding of the variable and neglect
its references, because only the origin of the variable holds useful information
for us. We select only the source nodes from the DFG, which has zero indegree.

Ideally, the type of the elements in MN and FN are atom and the type of the
elements ofArg is an n-element list expression. In this case we can unambiguously
identify the spawned function. Otherwise we can use some heuristic to narrow the
possible set of functions that can be executed in the spawned process which receive
the sent messages (for details see Section Heuristics for process detection).

Hereinafter SFPid denotes the set of functions that could be executed by the
process Pid: SFPid = {{val(M), val(F ), size(A)}|M ∈MN,F ∈ FN,A ∈ Arg}

Function val/1 returns the value of an expression instead of its node identifier
in the DFG. Function size/1 returns the estimated size of a list expression.
Lists have a variable length, so statically calculating the length of a list is not
straightforward.

For the sake of simplicity we present the introduced sets in a simple example:

-module(mymod).

start(Fun, Args) ->

Pid = spawn(?MODULE, Fun, Args).

Pid ! start,

Pid.

init() ->

start(loop1, [init, []]).

process(Data) ->

start(loop2, [proc, Data]).

loop1(State, Data) ->

...

loop2(Tag, Data) ->

...

The presented Erlang module mymod defines the function start/2, which spawns
a process and then sends a message to the newly spawned process. The name
and the parameters of the function to be executed by the process are the pa-
rameters of the function start/2, so they are not defined in the function.
The first parameter of spawn/3 is given by a predefined macro application
?MODULE, the substitution of that macro is the name of the current module mymod.
The function init/0 calls the function start/2 with the actual parameters
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loop1 and a two-element list. The function process/1 calls start/2with the ac-
tual parameters loop2 and a two-element list. The body of the function loop*/2

is not important yet.
Using backward first order data-flow analysis we obtain the following node

sets, where $Expr$ means the node representing expression Expr in the data-
flow ($Expr$ ∈ V ):

– MN = {$?MODULE$}
– FN = {$loop1$, $loop2$}
– Arg = {$[init, []]$, $[proc,Data]$}
– SFPid = {{mymod, loop1, 2}, {mymod, loop2, 2}}

We have identified two possible functions (SFPid) that can be spawned in
start/2, and these are the recipients of the message passed in expression
Pid ! start.

Since we can refer to any registered processes with the associated alias, we
have to analyse the calls of function register/2 too:

_True = register(Alias, PidExpr)

In this case we have to calculate the possible values of the expression Alias

and to identify the function that has been spawned in a process with identifier
PidExpr. To detect the possible values of these expressions, in both cases we
require backward data-flow reaching:

– AN = {n ∈ V |n 1f
� an, �n′, n′ ∈ V, n′ 
= n : n′ 1f

� n}

– AtomAN = {n ∈ V | ∃n′, n′ ∈ AN, ∃n′′, n′′ ∈ V, n′′ 1f
� n, val(n′′) =

val(n), type(n′) = atom, n ∈ MPass}

– PN = {n ∈ V |n 1f
� pn, type(n) = spawn app}

In the former sets an denotes the node representing the Alias in the data-flow
graph; pn represents the process identifier expression PidExpr in the data-flow
graph and MPass represents the elements of the message passing expression.
The function type/1 returns the type on an expression; type(n) = spawn app
means that node n is an application of function spawn.

To calculate the function executed in the process referred by the given Alias

we have to select the nodes representing a function call to spawn*/n. This set
of nodes is denoted by PN . We have to calculate the possible functions to be
executed by the processes SFPidi for every element of PN . Since the name Alias
could refer to all of these processes, SFAlias will denote the union of these sets.

The main point in registering a process with an atom atom alias is that the
registered process can be accessed with the registered name atom at different
points of the program without having any information about its PID. Thus an
atom used in a message passing may refer to a process spawned in another
function from another module, even if there is no data-flow connection between
them. Therefore, we have to identify the atoms in message passing that could
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refer to the same process: AtomAN . The elements of AtomAN should identify
the same triples as the Alias: ∀A ∈ AtomAN : SFA = SFAlias.

Consider the modified version of the previous example, where the function
init/1 registers the spawned process with a given alias Alias. The function
reg_proc calls init/1 with the actual parameter proc1 and then sends a mes-
sage using the registered alias.

start(Fun, Args) ->

Pid = spawn(?MODULE, Fun, Args).

Pid ! start,

Pid.

init(Alias) ->

P = start(loop1, [init, []]),

register(Alias, P).

loop1(State, Data) ->

...

reg_proc() ->

init(proc1),

proc1 ! some_message.

We can calculate that the atom proc1 refers to the function mymod:loop1/2 in
message passing expressions:

– AN = {$proc1$}
– from function call init(proc1)

– AtomAN = {$proc1$}
– from expression proc1 ! some_msg

– PN = {$spawn(?MODULE,Fun,Args)$}
– SFAlias = SFPid = {{mymod, loop1, 2}}
– SFproc1 = SFAlias = {{mymod, loop1, 2}}

Heuristics for Process Detection. Ideally the setsMN , FN and Arg contain
atom nodes and list nodes with finite length, but it is not the case for industrial
sized code. Therefore, we have studied some heuristics that can help to detect
the possible functions to be executed in a process.

These heuristics are approximations of concurrent data-flow. The value of a
variable representing the module name, the function name or the parameter list
often cannot be calculated statically, therefore we want to approximate them
based on the analysed source code. These heuristics are approximations of the
dynamic/runtime information that is not available at compile time.

For instance, we can calculate the name of the module and the function to be
spawned, but we cannot calculate the length of the parameter list. Since we have
analysed the modules and functions before the message passing analysis, we can
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search for functions in the module without regarding the arity of the function. If
we have found only one function, this must be the spawned function, otherwise
there are more candidates to be spawned and we will scan each function body
for the corresponding receive expressions.

These kinds of heuristics over-approximate the concurrent data-flow edges and
the resulted DFG contains some false positive hints.

The used heuristics are based on the partial knowledge about the module
name, function name and arity, and we extend this knowledge with information
about the source code base. The used heuristics are:

1. when the name of the module (m) and the name of the function (f) are
atoms – we select all functions with the name f from the module without
regarding its arity ni and we add {m, f, ni} to SF∗;

2. when the name of the module (m) is an atom – we select all functions
from the module without regarding its name fi and its arity ni and we add
{m, fi, ni} to SF∗ for each function fi/ni;

3. when the name of the module (m) is an atom and we can calculate the length
of the parameter list (a) – we select all functions fi from the module with
the calculated arity a and we add {m, fi, a} to SF∗;

4. when the name of the function (f) is an atom and we can calculate the
length of the parameter list (a) – we select every module (mi) that defines
a function f/n and we add {mi, f, a} to SF∗.

It is possible to use other heuristics (for instance, when only the arity of the
function is known), but most of them result in a huge set of possible functions
and thus we should generate lots of edges to the Data-Flow Graph.

Consider the following variation of our example, when the name of the function
is a parameter of the function init/2.

start(Fun, Args) ->

Pid = spawn(?MODULE, Fun, Args).

Pid ! start,

Pid.

init(Alias, FunName) ->

P = start(FunName, [init, []]),

register(Alias, P).

loop1(State, Data) ->

...

loop2(Tag, Data) ->

...

We can deduce that:

– MN = {$?MODULE$}
– FN = {$FunName$}
– Arg = {$[init, []]$, $[proc,Data]$}
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Since the name of the function is unknown, we should use a heuristic. The
name of the module is mymod and the arity of the function is 2, so we can
use the first heuristic from the listing. We are searching for the described func-
tions (fi) in the module: loop1/2 and loop1/2, and we add {{mymod, loop1, 2},
{mymod, loop2, 2}} to SFPid.

Data-Flow through Message Passing. In the followings we concentrate on
message passing expressions using the send operator (!): e1 ! e2. The left subex-
pression is a process identifier or an alias of a registered process stored in a
variable or a simple atom. The right subexpression is the message to be sent.

The built-in function send/2 can be analysed similarly. For the sake of sim-
plicity we do not explain the case when the origin of the recipient of the message
passing is a registered process on another node, because it is possible to extend
our analysis to handle it.

To analyse a send expression we have to identify the recipient of the message,
so we have to find the origin of the left-hand side subexpression e1. We use back-
ward data-flow reaching to find the spawn expression that returns the process
identifier e1 or to find the expression that is registered as e1 (alias):

– Spawn = {n ∈ V |n 1f
� e1, type(n) = spawn app}

– Reg = {n ∈ V |n 1f
� e1, type(sup(n)) = reg app}

sup(n) denotes the superior expression of node n, i.e. n is a subexpression of
sup(n). If the spawning (Spawn) or registering (Reg) expressions are found, we
can use the previously defined algorithm to calculate SFe1 .

When e1 is an atom or the backward reaching from e1 returns an atom, we
cannot use reaching to detect the SFe1 , hence there is no data-flow connection
between the used alias and the registering expression. At this point of the analysis
we need the sets AN and SFA for every register expression where A ∈ AtomAN ,
thus it is required to calculate them in a previous stage of the analysis. In this
case we have to calculate the possible atom values of e1 – name1, ..., namek –
and select SFnamei from the previously constructed sets. In this case SFe1 =⋃k

i=1 SFnamei .
Message passing indicates data-flow edges between the sender and the receiver

expression. Therefore, after identifying the possible functions (SFe1) we have to
find the possible receiver expressions. We have to collect the receiver expressions
from the body of the executed function and from the body of the functions that
are transitively called from the executed function:
Rec = {n ∈ V | type(n) = receive expr, F ∈ tr closure(SFe1), n ∈ body(F )}

The function tr_closure/1 returns the transitive closure of the
call→ relation,

where f1
call→ f2 means that function f1 calls function f2 and fi is represented by

the previously defined triple. The function body/1 returns the expressions from
the body of a function.

We apply the data-flow rule presented in Figure 13 for every e′ ∈ Rece1 receive
expression. The sent message e2 flows into the different patterns (p1, ..., pn) of
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Expressions Graph edges

(Send exp.)

e0:
e1 ! e2

e′:
receive

p1 when g1 →
e11, . . . , e

1
l1
;

...
pn when gn →

en1 , . . . , e
n
ln

after
e → e1, . . . , es

end

e2
f→ e0

e2
f→ p1, . . . , e2

f→ pn

e1l1
f→ e′, . . . , enln

f→ e′

es
f→ e′

Fig. 13. Concurrent data-flow rule

the selected receive expression, i.e. e2
f→ pi. The result of the receive expression

can be the value of the last expression of its clauses (eij
f→ e′) and the result of

the send expression is the message itself (e2
f→ e0).

Let us consider another extension of the previous example, where we extend
the body of function loop1/2 with a receive statement.

loop1(State, Data) ->

receive

start ->

Data = initial_steps(),

loop(started, Data);

Msg ->

NewData = process_msg(Msg, Data),

loop(State, NewData);

stop ->

closing_steps()

end.

There were two send expressions in the previous example: Pid ! start and
proc1 ! some_message. In the former case we have to calculate
the Spawn set: Spawn = {$spawn(?MODULE,Fun,Args)$} and then
SFPid = {{mymod, loop1, 2}}. There is only one receive expression in the body
of the function mymod:loop1/2, so we link the sent message to its patterns:

$start$
f→ p, where p ∈ {$start$, $Msg$, $stop$}. To analyse the latter send

expression we have to calculate SFproc1 = {{mymod, loop1, 2}}, then find the
receive expressions and create the link among the message and the patterns in

the Data-Flow Graph: $some message$
f→ pi.

Refining the Processes Analysis. We overestimate the concurrent data-flow
edges, since the introduced static concurrent data-flow calculation algorithm
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does not consider the order of the sent messages or the liveness of processes.
Further analyses should be performed to refine the resulted graph. The order of
sent messages should be stored as context information.

It is possible to unregister the name of a process in Erlang programs, and
after unregistering the process name we cannot send a message to the process
by referring to its name. To detect the liveness of processes at a given point of
the program we should improve our concurrent data-flow analysis and we have
to use the control-flow analysis (Section 3.9) to calculate the execution paths of
the program. Similarly, exit signals also have to be considered.

Improving the 1st Order Data-Flow Analysis. Beforehand we have in-
troduced the process and message passing analysis for Erlang. Both sections
assume that we have a data-flow reaching relation. Therefore, we split the data-
flow graph building algorithm into two parts. In the first stage we calculate the
sequential Data-Flow Graph based on the rules from Sections 3.1–3.4.

In the second stage we calculate the concurrent data-flow edges based on
the analysis described in Sections Detecting Spawned processes and Data-Flow
through Message Passing. This analysis extends the DFG with new data-flow
edges, thus calculating 1st order reaching could result in a more accurate result
set. Therefore, running the process analysis on the refined concurrent data-flow
graph could generate new data-flow edges. It is possible to run the process analy-
sis algorithm iteratively until it reaches its fixed point. The algorithm terminates
when there is no more new message passing expression that we can analyse or
we found the recipient for every message passing expression. When the analysis
terminates, the resulted graph contains the possible statically calculable data-
flow connections among Erlang statements. Unfortunately, with static analysis
and the used heuristics we cannot avoid false hits.

Since we do not introduce new edge types for the Data-Flow Graph (only
f→

edges are generated), the definition of the reaching relation remains the same as
it was in the sequential case.

The following example demonstrates the necessity of the iterative application
of the algorithm.

start() ->

Pid1 = spawn(?MODULE, fun1, []),

Pid2 = spawn(?MODULE, fun2, []).

Pid1 ! {pid, Pid2}.

fun1() ->

receive

{pid, Pid} -> Pid ! some_message

end.

fun2(Tag, Data) ->

receive

A -> do_sth(A)

end.
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The function start/0 spawns two processes and sends the process identifier of
the second process to the first process. The first process executes the function
fun1/0, i.e. waits for a message that contains a process identifier and sends a
message to the received Pid. The second process executes the function fun2/0,
i.e. waits for a message and executes a function call do_sth/1 after the message
is received.

It is obvious that a backward reaching on the sequential data-flow graph does
not find the origin of Pid in the message passing, so we cannot deduce that it
refers to function fun2/0. However, we can perform the second stage of the data-
flow analysis for the send expression Pid1 ! {pid, Pid2} and add a flow edge

between the sent message and the receive pattern in fun1/0: ${pid, P id1}$ f→
${pid, P id}$. Then by performing a backward reaching on the concurrent Data-
Flow Graph we get the origin of Pid and we can deduce that it refers to fun2/0.

Now, we can add the flow edge: $some message$
f→ $A$.

3.8 Behaviour-Flow Analysis

The behaviour-flow or Behaviour-Dependency Graph [18] describes a potential
data related dependency among expressions. A data dependency relation be-
tween two graph nodes (n1 � n2) means that the behaviour of n2 depends
on the result/behaviour of n1, so the change of node n1 may have an impact
on n2. This kind of information is essential when we want to follow the evo-
lution of software systems and help the developers to maintain the program.
The result of this analysis can provide some information about the expressions
(or functions/modules) that could be affected by a change on the source code.
Based on this information the developer can decide whether the planned change
on the source code is performable. The behaviour dependency relation can be
computed using the data flow, data dependency and the behaviour dependency
edges (described in [18]).

Definition 5. The behaviour dependency relation
b
� is defined as the minimal

relation that satisfies the following rules:

n1
1f
� n2

n1
b
� n2

(d-rule)

n1
b
� n2, n2

b→ n3, n3
b
� n4

n1
b
� n4

(b-rule)

Definition 6. The data and behaviour dependency relation � is defined as the
minimal relation that satisfies the following rules:

n1
1f
� n2

n1 � n2
(data-rule)
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n1
1f
� n2, n2

d→ n3, n3
b
� n4

n1 � n4
(b-dep-rule)

To informally explain these definitions we use some simple expressions examples:

func(...) ->

...

A = 1 + 2,

X = A,

B = A * A,

...

Definition 5 describes that data-flow and the behaviour dependency edges (
b→)

propagate behaviour dependency among expressions (d-rule, b-rule). In our ex-
ample the value of A reaches X , so when we change A that has an impact on
X , changing the behaviour of A affects X too.

Definition 6 presents that data-flow reaching holds a special dependency, be-
cause those nodes from the Data-Flow Graph which could be a copy of node n1

are affected by changing the value of n1, so modifying n1 could have an impact
on them (n1 � n2).

Considering the expression A = 1+2we can notice that changing the expression 1
to an atom something_else results that the expression something_else+2 could
not be evaluated and that it results a run-time error. Then each expression which
behaviour depends on the value of 1+2 could not be evaluated. Therefore, when

there is a data dependency connection between two nodes (n1
d→ n2 – 1

d→ 1+2),
changing the data in n1 may have an impact on the behaviour of n2, and those
nodes which behaviour may depend on n2 (B = A * A), also may alter the behaviour
from the same data change (b-dep-rule).

3.9 Control-Flow Analysis

The Control-Flow Graph (CFG) represents all the possible execution/evaluation
paths of the program that can be chosen for every possible input. The CFG is a
language dependent representation of the program as it is based on the semantics
of the language.

We have defined control-flow rules for Erlang programming language based
on its semantics. The language has strict evaluation, which means that before
evaluating a compound expression, its subexpressions have to be evaluated. In
every case the subexpressions are evaluated in left to right order. The defined
control-flow rules are compositional, thus the graph can be composed from the
previously computed subgraphs. We use the SPG of RefactorErl and use the
same identifiers for the vertices in the CFG and we extend the set of nodes with
some dummy vertices for joining branches, error nodes, etc. The rules are defined
and described in more detail in Appendix C in Figures 29–32.

The notations in the figures are the followings: e, ei ∈ E are expressions,
g, gj ∈ E are guard expressions, p, pk ∈ P are patterns and f/n ∈ F stands
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for functions. The e′0 ∈ E is a dummy node in the control flow graph, which
represents an entry point of the compound expression or a joining of dummy
nodes (ret) to represent the return of conditional branching expressions. The
relation → represents the control-flow between the nodes. The edges that have
no labels represent sequences, and edges with labels represent:

– conditional branching and pattern matching with (
yes→ ), (

no→) edges

– returning to a previous expression (
ret→),

– function calls/applications with (
call→ ),

– receive expression with (
rec→),

– send expression with (
send→ ).

The relations (
call→ ), (

rec→), (
send→ ) represent special relations which indicate the

possible dependency between the nodes of different functions (for details, see
Section 3.10). In the rest of this section we describe a small example to give a
general overview about the control flow in Erlang. The reader can find the listing
and discussion of formal rules in Appendix C.

A Simple CFG Example The simple factorial computing function is described
in Figure 14. The function gets a non negative number and returns its factorial.
By definition the factorial of 0 is 1 and for larger number we can calculate the
factorial by multiplying N with the factorial of N-1.

fact(0) -> 1;

fact(N) when N > 0 ->

N * fact(N - 1).

Fig. 14. Definition of the factorial function

Figure 15 shows the CFG for this simple factorial function. The graph is built
on the formal rules described in Appendix C.

The entry point of the function is the node FORM(1). The actual parameter

is matched against the first formal parameter 0. If it succeeds, the
YES→ edge is

followed and the constant 1 value is returned, otherwise the control flows to the

next pattern through the
NO→ edge. As the next pattern is a variable, the pattern

matching will succeed (N
YES→ N > 0). The next step is to evaluate the guard

expression (N > 0). If the guard expression holds for the actual value, the body
of the function is evaluated. The programming language has strict evaluation,
and the subexpressions are evaluated first in left-to-right order. First the left
operand of the multiplication (N) is evaluated. As it is a variable, the evaluation
may proceed to the next subexpression. After that, the right operand of the
multiplication is evaluated, a function application fact(N − 1). As the function
name may come form a compound expression that is evaluated in runtime, first
the name of the function should be computed, and then the argument of the
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Fig. 15. The CFG for the factorial function: fact/1 (in Figure 14)

function application (analogously to the multiplication). The step between the
return of the function application and the multiplication is marked with a special

edge (fact(N−1)
funcall→ N∗fact(n−1)) as the evaluation of the function call may

affect the return of the function (if the called function fails). This information
will be used during the composition of the separately computed parts of the
graph.

The graph includes a special error node ERROR(form, 1), because the function
is a partial function and may produce a runtime error if none of the patterns
and guards match. In the current example the function fails, if it gets a negative
number as an argument.
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3.10 Dependency Analysis

The Dependency Graph is a labelled directed graph containing the Erlang ex-
pressions as its nodes, and data and control dependency among the expressions
as its edges. We have introduced three kinds of control dependency edges, one
data and one behaviour dependency edge:

– n1
dd→ n2 denotes that n2 is directly control dependent from n1

– n1
resdep→ n2 (resumption dependent) means that the node n2 depends on

the return of a given function

– n1
inhdep→ n2 represent that node n2 inherits the dependencies from n1 based

on a function call

– n1
datdep→ n2 represents that n2 is data dependent from n1

– n1
behdep→ n2 represents the behaviour dependency

To build the Dependency Graph the first step is to determine which functions are
potentially involved in a dependency analysis. We select functions for the initial
set and calculate the transitive closure on the call-graph of the functions. Thus
we obtain a set of functions, and for these functions we build the Dependency
Graph. We have to consider other types of dependencies than function calls as
well, which dependencies are message passing and message receiving. When we
perform impact analysis, the initial set contains the changed functions.

For the calculated set of functions we build the CFG based on the formal
rules described in Appendix C. The CFG is built separately for every function,
thus we obtain the intrafunctional CFG for every function. This CFG does not

follow the function calls, but denotes the fact of the function call (
call→ ), and this

information will be used while building the Postdominator Tree (PDT) and the
Control Dependency Graph (CDG). This edge is called potential control-flow
edge.

Postdominator Tree. The Control Dependency Graph is defined with the help
of the PostDominator Tree (PDT). A node from the CFG n1 postdominates n2,
if every execution path from n2 to exit includes n1, where exit is the return
node in the CFG of a function. Therefore, we extend the Control-Flow Graphs
with a special node, which represents the absolute exit point of the function.
We connect the return node and the possible error point of the function with
this special node. We build the PDT using the extended CFG. Using the PDT
and the extended CFG, we calculate the Immediate Postdominator Tree using
the algorithm described in [13]. A node from the CFG n1 immediate postdom-
inates n2, if and only if n1 postdominates n2 and � n3, n2 
= n3, n3 
= n1: n1

postdominates n3 and n3 postdominates n2.

Immediate Postdominator Tree for function fact/1. Figure 16 shows the Imme-
diate Postdominator Tree of the factorial function introduced in Figure 14. The
(n1 → n2) relation in the graph means that the node n1 immediately postdomi-
nates the node n2. The root of the tree is the special exit node
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Fig. 16. The postdominator tree for the function fact/1 (in Figure 14)

dummy exit node. The entry point of the CFG (FORM(1)) is postdominated
by this special exit node, which means that the function may exit other than
normally.

Control Dependency Graph. To determine the control dependencies among
the expressions we follow the approach described in [13]. We select those edges
from the CFG (n1 → n2) that are not present in the Immediate Postdominator
Tree (n1 is not postdominated by n2). With finding the lowest common ancestor
of these nodes we can determine dependencies. The nodes on the path starting
from the common ancestor ended in the node n2 (except the starting node) are
control dependent on node n1.

We want to reduce the cost of rebuilding the Dependency Graph as much as
possible. We follow a compositional approach described in [16]. We build Control-
Flow Graphs, Postdominator Trees and Control Dependency Graphs separately
for each function and compose the CDGs as the last step in the building of the
Composed Control Dependency Graph.

Using this approach, the Control Dependency Graphs (CDG) can be main-
tained separately, and only the composing of the Control Dependency Graphs
should be recalculated if something has changed in a subset of functions.
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The next level in building the CDG for the entire program is to compose
the intrafunctional CDG of the functions. The function calls, send and receive
expressions should be examined at this stage. There is a potential dependency
among a function application and its postdominators that comes up if there is
a potential of not returning from the called function (when the execution of
the called function returns abnormally). The dependency among the send and
receive expressions must be also considered. These dependencies can be resolved
at the composition stage of the CDGs.

Fig. 17. The Control Dependency Graph for the function fact/1 (in Figure 14)

Control Dependency Graph for the function fact/1 Figure 18 shows the Control
Dependency Graph for the function fact/1 in Figure 14. In this graph the
potential dependencies were eliminated and were resolved as real dependencies.
Let us come up with an example, how the dependencies are determined for

the function fact/1. There is an edge (N > 0
YES→ N) in the CFG, where

N does not postdominate the node N>0. The lowest common ancestor of these
nodes in the Postdominator Tree is the node dummy exit node, thus nodes on
the path from the ancestor to the node N (RETURN(form, 1), N*fact(N-1),
fact(N-1), . . ., fact and N) are control dependent from N>0. Now that we have
the intrafunctional CDG of the factorial function, the next step is to resolve the
function calls.

There is a function application in the body of the function (as it is a recursive
function) to itself. The called function may fail, since it has an error node for
the cases if the actual parameter does not satisfy the pattern, or guards. Two
new edges are inserted to the CDG

– (fact(N−1)
inhdep→ FORM(1)), since the application is a recursive call, and

– (RETURN(form, 1)
resdep→ N ∗ fact(N − 1)), since the evaluation of the

(N ∗ fact(N − 1)) depends on the return from the function call.

The old dependency (fact(N > 0)
inhdep→ N ∗ fact(N − 1)) is removed from the

CDG, since the resolution of the function call has introduced a new dependency.
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Fig. 18. The resolved Control Dependency Graph for the function fact/1 (in
Figure 14)

Fig. 19. The Dependency Graph for the function fact/1 (in Figure 14)

Improving the Accuracy of the Dependency Graph. To reveal real depen-
dencies among the statements of the program, data-flow and data dependency
information is also required. The data dependency is calculated from the Data-
Flow Graphs of Erlang programs described in Sections 3.1-3.7. The composed



476 M. Tóth and I. Bozó

CDG is extended with additional data dependencies, thus we obtain the Depen-
dency Graph (DG) presented in Figure 19.

This graph can be extended with additional information like behaviour de-
pendencies from Section 3.8. This will provide information how the behaviour
of the function or the entire program is affected, if the data is changed at some
statement. With these additional edges we make the DG more accurate. The
draft algorithm for creating the Dependency Graph is presented in Figure 20.

calc_dg(SPG)->

Functions = determine_funs(SPG)

CFG_List = lists:map(fun calc_cfg/1, Functions),

CDG_List = lists:map(fun calc_cdg/1, CFG_List),

Comp_CDG = compose_cdg(CDG_List),

DCDG = add_data_dep(CDG)

BDCDG = add_behav_and_data_dep(DCDG).

Fig. 20. Draft algorithm for creating the Dependency Graph

Usage of Dependency Graphs. The previously described flow and depen-
dency analyses are widely used techniques in compiler optimisations and other
static analysis techniques.

We use these Dependency Graphs for static forward slicing [4] of Erlang pro-
grams and for finding prallelisable program parts [17].

The slicing is a well known technique to perform static change impact analysis.
For slicing we select an expression or a set of expressions and this set will be the
slicing criterion. This set can be defined as a result of any change or sequence
of changes in the source code. To perform slicing we traverse the Dependency
Graph to select the reachable nodes, starting from the criterion set. Performing
static forward slicing from these expressions the result can be used to perform
impact analysis. As a result of the impact analysis, a subset of the test cases
can be selected from the test suite that is possibly affected by the changes. This
subset of test cases should be scheduled to run first, because there were changes
in the functionalities that the selected test cases are intended to check.

4 Static Analysis in RefactorErl

RefactorErl is a static source code analyser and transformer tool for Erlang.
Besides 24 available refactorings, it provides several facilities to support code
comprehension tasks and to query information about the source code.

RefactorErl stores the Erlang programs in a Semantic Program Graph (Sec-
tion 2.1). The lexical level of the graph stores whitespace and comment informa-
tion, so it can preserve the original layout and comments of the programs during
the transformations. The tool has an incremental semantic analyser framework
to provide a platform to implement efficient static semantic analyses. Refactor-
Erl stores the SPG in a database, so after a change on the source the stored
Semantic Program Graph must be updated. Therefore, the incremental analysis
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is important, because it has a high cost to reanalyse the whole code base. After
each refactoring (or manual change on the source code) only the changed parts
are analysed and the necessary information is restored in their context.

The analyser framework is asynchronous and modular: each Erlang form is
analysed by a separate Erlang process, and different types of analyses (module,
function, variable, record, context, data-flow) are implemented in separate anal-
ysers. During the initial analysis the analysers of RefactorErl are executed in a
predefined order: an Erlang process is started for every Erlang form, and each
process runs the different analysers one by one sequentially. In some cases this
ordering is not required (for instance, the record and variable analysers are inde-
pendent). However some analysers depend on each other, such as the data-flow
analyser cannot be performed without the information provided by the variable
analyser or the function analyser. The order of the analysers is: context anal-
yser, variable analyser, module analyser, function analyser, record analyser and
data-flow analyser. The control-flow analyser runs after the initial loading.

Some analysers can run asynchronously on different forms without any inter-
action (variables are local to a function clause, so there is no communication
between two variable analyser processes), but for analysers using global infor-
mation synchronisation is required (to create a reference and a definition to a
semantic function node must be synchronised).

The data-, control- and behaviour-flow analyses are based on the SPG of
RefactorErl. The data and behaviour flow graphs are built during the initial
analysis and its edges are added to the SPG. The control-flow graph is built as
a separate graph, but it uses the same node identifiers, so the mapping between
them is straightforward. We decided to perform the control-flow analysis after
the initial loading for efficiency reason. The initial static analysis, without the
control-flow analysis, takes almost twelve hours for one and a half million LOC
and has 8.5 GB memory footprint. Running control-flow analysis has an extra
memory and time cost. The most often used features of RefactorErl could be used
without the result of control-flow analysis, so the user can only optionally run
this analysis and obtain its result. Currently RefactorErl builds the Dependency
Graph only when the slicing application is loaded. In this case the tool monitors
the changes made by the performed refactorings on the source code and build
the DG of the changed functions. Then it performs the static program slicing to
detect the test cases affected by the change on the source code.

Contrarily, the result of data-flow analysis is required for several applications
of the tool, therefore the DFG is a part of the semantic level of the SPG. The
result of data-flow reaching is used in refactorings: the Introduce Record refactor-
ing (transform the tuple parameter of a function to a record) calculates reaching
on the selected tuple, and transform all reached expressions. The result of the
data-flow reaching is available for the users through a Semantic Query Language,
and can help in the maintenance task: asking the value of a certain expression
(backward reaching) can help to detect and fix failures in the software.
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RefactorErl introduces a user level Semantic Query Language for Erlang de-
velopers to ask information about the source code and to support program com-
prehension tasks [11,20].

The language was designed to provide help in the software development pro-
cess. It uses a formalism close to the Erlang language concepts, thus a developer
can easily learn and adopt it.

semantic_query ::= initial_selection [’.’ query_sequence]

query_sequence ::= query [’.’ query_sequence]

query ::= selection | iteration | closure |

property_query

initial_selection ::= initial_selector [’[’ filter ’]’]

selection ::= selector [’[’ filter ’]’]

iteration ::= ’{’ query_sequence ’}’ int [’[’ filter ’]’]

closure ::= ’(’ query_sequence ’)’ int [’[’ filter ’]’] |

’(’ query_sequence ’)+’ [’[’ filter ’]’]

property_query ::= property [’[’ filter ’]’]

Fig. 21. The structure of the semantic queries

The language concept were designed according to the semantic entities of the
language, thus it introduces the following entities : module, function, variable,
record, expression, macro, file. Each entity has a set of selectors and properties.
A selector is a binary relation between two entity types, which selects a set
of entities that meet the given requirements. A property is a function, which
describes some properties of an entity type. For instance, a module has a selector
funs to select the function defined in the module, and has a property name
that defines the name of the module. The result of the query can be filtered. A
semantic query is a sequence of queries starting with an initial selector. There
are global initial selectors such as module, to select every module form the source
code as a starting point of the query, and there are position-based initial selectors
(starting with ’@’) to select the pointed entity in the editor: @var, @fun, @expr.
It is also possible to iterate queries or calculate the closure of a query.

The list of usable selectors and properties for each entity type can be found in
the manual of RefactorErl [2]. Here we present only a few examples of queries.

Call Chain – @fun.(calls)+ or @fun.(called by)+ queries return the forward
and backward call chain starting from the pointed function. It is also possi-
ble to ask the same result starting from the modules of the analysed program:
mods[name=mymod].funs[name=myfun].(calls)+

References and Definitions – @fun.refs, @fun.def, @record.refs, and similar
queries for each entity type return the references or the definition of a given
entity. @fun.dynrefs returns all the dynamic references to a function.

Original Value of an Expression – @expr.origin results in a list of expressions
which value can be flown to the pointed expression. The query
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@expr.origin[type=atom] filters out the atoms from the result. In case of de-
bugging, these queries can be useful. For instance, when we get a badmatch
exception we can find the value of the non matching expression. This query uses
the result of the defined data-flow reaching.

Following an Expression – @expr.reach lists all of the expressions which value
can be a copy of the pointed expression based on the defined data-flow reaching.

Asking dependent nodes – @expr.dep, @fun.dep lists all of the expression nodes
that depend on the pointed expression or function.

Considering the Erlang code from Figure 7, one can select the variable Y from
the body of function cons/0 and query @expr.origin[type = integer]. The result
contains the integer values that can reach Y; in this example this is the integer 2.

5 Related Work

The usage of static analysis techniques was studied in several papers and books.
Most of them are closely related to concrete languages or language types.

The book [14] gives a short overview of static analysis techniques and their
usage to address different kinds of problems.

Dependency graphs are originally designed and used in compilers to prevent
the statement execution in wrong order, i.e. the order that changes the meaning
of the program [13]. This book concentrates on high level of optimisations, while
our purpose was not the optimisation of Erlang programs, rather to make the
information available to the developers. We have utilised some algorithms (e.g.
building the postdominator tree) and ideas from this book in our analyses.

Lots of research has been done on the topic of flow analysis. These techniques
are mainly used in compiler optimisations, liveness analysis, automatic paral-
lelisation, program slicing, and so on. For instance, Olin Shiver [15] presented
a general model for control-flow analysis in Scheme via abstract interpretation
of a denotational semantics. The flow analysis was applied to optimisation of
higher-order languages such as described in the paper [12]. In case of optimisa-
tions, data and control-flow information are calculated simultaneously, but we
separate these analyses. Since RefactorErl stores the calculated information in a
database, our analyses took more time than an in-memory analysis. Therefore,
we decided to calculate only the data-flow information at the initial loading of
files and to calculate the control-flow information upon request (e.g. when slicing
has to be performed).

It is hard to compare the defined Data-Flow Graphs with flow graphs from
other languages. Most of the techniques are based on solving data-flow equations.
Those algorithms mainly operate on control-flow graphs, while our algorithm is
based on the syntax of Erlang and operates on the extended syntax tree of
Erlang programs (i.e. on the Semantic Program Graph of RefactorErl). Using
the control-flow graphs they define a set of data-flow equations at the entry
and exit point of the basic blocks of the programs and evaluate the flow of
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data between pred/succ basic blocks [14]. Contrary to this, Erlang is a single
assignment language, thus the values of the variables cannot be changed. From
this point of view calculating the data-flow reaching in Erlang is a less complex
task.

The defined flow graphs and the Dependency Graph can be used in depen-
dency graph based program slicing methods [9]. Most of these algorithms are
using compound program or system dependency graphs, which are built from
the control- and data-flow graphs of the procedures.

There are static analyser tools for Erlang such as Dialyzer [1]. The goal of this
tool is to identify software discrepancies and defects, such as type mismatches,
race condition defects, etc. Besides the different goals of Dialyzer and Refac-
torErl, there is another difference. Dialyzer analyses the Core Erlang code [5]
instead of the Erlang source file. Core Erlang is an intermediate representation
for Erlang programs, and it has a less complex syntax than Erlang. We decided
to analyse the source code and store it in a custom semantic program graph, be-
cause RefactorErl aims to preserve the original layout of the unmodified program
parts between the refactoring steps.

The refactoring tool Wrangler [10] annotates the Abstract Syntax Tree pro-
vided by the Syntax Tools library of Erlang. The Semantic Program Graph
representation is more efficient in information retrieval, since instead of syntax
tree traversals most of the information about the source code can be gathered
by using fixed length queries.

6 Conclusions

The usage of various static analysis methods is getting widespread in different
stages of the software development lifecycle. Most of the analysers work on an
intermediate source code representation and the abstraction of the representation
depends on the target of the static analysis. In this paper we described static
semantic knowledge representation about Erlang source code in different forms.

We present a model to represent the lexical, syntactic and semantic infor-
mation about the Erlang source code, the Semantic Program Graph. Besides
the graph, we present a formal model for Erlang programs that is used later
to describe formal data-, behaviour- and control-flow rules of Erlang programs.
We can build flow graphs based on these rules from the SPG, and further anal-
ysis can be performed based on them. We have defined reaching relations on
flow graphs. We have described how to build a Dependency Graph using the
flow graphs, and how these graphs can be used for program slicing, or to detect
parallelisable components in the source code.

The presented graphs are integrated with the RefactorErl tool, that is a static
source code analyser and a refactoring tool for Erlang. We have presented a query
language which is applicable to query flow and dependency information about
the software for developers.
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4. Bozó, I., Tóth, M.: Selecting erlang test cases using impact analysis. In: Proceedings
of Symposium on Computer Languages, Implementations and Tools, Kassandra,
Halkidiki, Greece (2011)

5. Carlsson, R.: An introduction to core erlang. In: Proceedings of the PLI 2001
Erlang Workshop (2001)

6. Ericsson, A.B.: EDOC – Erlang program documentation generator. Latest version,
http://www.erlang.org/documentation/doc5.4.2.1/lib/edoc-0.1/

doc/html/index.html

7. Ericsson, A.B.: Erlang Reference Manual,
http://www.erlang.org/doc/reference_manual/part_frame.html
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A The Syntax of Erlang Programs

We introduce the Erlang language in this section.
The source code of Erlang applications is organised to modules. Each module

contains a set of function, record and macro definitions and some attributes (e.g.
module declaration, exported/imported functions, specifications). We introduce
the syntax of the Erlang functions in Figures 22 and 23. We do not introduce the
syntax of the whole Erlang in these figures; we concentrate on those language
elements that are used in the further applied complex semantic analysis such as
data-flow or control-flow analyses. During the semantic analysis we consider the

V ::= variables (including the underscore pattern ( ))
A ::= atoms
I ::= integers
K ::= A | I | other constants (e.g. string, float, char)
P ::= K | V | {P,. . .,P} | [P,. . .,P|P]

F ::= A(P,. . .,P) when E -> E,. . .,E;
...
A(P,. . .,P) when E -> E,. . .,E.

E ::= K | V | {E,. . .,E} | EList |
P = E | E ◦E | E ! E | ◦E | (E) | E(E,. . .,E) |
case E of

P when E -> E,. . .,E;
...
P when E -> E,. . .,E

end |
if

E -> E,. . .,E;

. . .
E -> E,. . .,E

end |
receive

P when E -> E,. . .,E;
...
P when E -> E,. . .,E

after

E -> E,. . .,E
end | E2

EList ::= [E,. . .,E|E] | [E||P<-E,. . .,P<-E,E,. . .,E]

Fig. 22. Erlang syntax



Static Analysis of Complex Software Systems Implemented in Erlang 483

Erlang programs as a set of functions. Another simplification of the presented
syntax is that the guard expressions are represented as regular Erlang expres-
sions, however there are only a few restricted language constructs that can be
used as guards. For example, no user defined functions can be used in guards.

E2::= try E, . . . , E of

P when E -> E,. . .,E;

. . .
P when E -> E,. . .,E

catch

P : P when E -> E,. . .,E;

. . .
P : P when E -> E,. . .,E

after

E -> E,. . .,E
end |
catch E |
begin

E,. . .,E
end |
fun

(P,. . .,P) when E -> E,. . .,E;

. . .
(P,. . .,P) when E -> E,. . .,E

end

fun E/I

Fig. 23. Erlang syntax (cont.)

In Figures 22 and 23 we use the following notations:

– V denotes the variables
– K denotes the atoms (A), integers (I) and other constants such as strings,

floats, etc.
– P is a pattern that can be any constant, variable or a tuple or list of patterns
– F is a function that has one or more function clauses separated by semicolons.

A function clause has a name represented by an atom and has n formal
parameters (n ∈ N,n ≥ 0) represented by patterns. Optionally, the function
clauses have a guard expression after the keyword when. The body of the
function is a sequence of expressions separated by commas.

– E denotes the expressions. Several kinds of expressions are listed in Fig-
ures 22 and 23. An expression can be a constant (K), a variable (V ), a
tuple ({E, ..., E}), a list (EList) or can be a compound expression. A list is
a sequence of elements optionally followed by the tail of the list in squared
brackets and also can be a list comprehension that produces the elements
of the list using some generators and filters. A tuple is an ordered list of a
fixed number of elements in curly brackets.
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The simplest compound expression is the pattern matching expression
(P = E), which binds a value to a variable. There are infix operators in
Erlang (+,−, and, or, etc). One of them has a special role: ! is the mes-
sage passing operator in Erlang. There are also unary operators (◦E), and
parenthesis expressions ((E)).

There are different kinds of function applications in Erlang (E(E, ..., E)).
An application can refer to a fun-expression (lambda expression) or a named
function. The named functions can be called by using local or qualified func-
tion calls. The latter one refers to the called function with the implementing
module name and the called function name (Mod : Fun(Par1, ..., Parn)).

There are several branching expressions in the language: case, if, receive,
try expression, containing some clauses. Their clauses are similar to func-
tion clauses. The main difference is that an if clause does not contain any
patterns, it only evaluates a guard, and try and receive expression have an
optional after clause. Besides the try expression, a simple catch expression
was introduced to handle runtime errors.

The begin-end expression is the block expression to group a sequence of
expressions into a block.

Finally, like other functional languages, Erlang also introduces unnamed
functions as expressions (fun-expression, lambda expression). There are ex-
plicit and implicit forms of these expressions. The explicit fun expressions
are similar to function definitions and have n clauses (n ∈ N,n ≥ 1). The
fun expressions begin with the keyword fun and are closed with the keyword
end. The implicit fun expressions refers to named functions.

We note here that during the implementation of the Semantic Program Graph
we have extended this syntax description to generate the syntax tree of Erlang
modules (details in Section 2.1).

B Data-Flow Rules

We build Data-Flow Graphs for Erlang programs using formal rules. We describe
these rules in this section. We use the following notations in the data-flow rules
in Figures 24–26:

– p, pi ∈ P are patterns,
– e, ei ∈ E are Erlang expressions;
– a

∗→ b (a, b ∈ P ∪ E, ∗ ∈ {f, ci, si, d}) denotes that there is a ∗ type of
data-flow edges between nodes a and b

Variables. Erlang binds a value to a variable in a match expression or in a
pattern. This value cannot be changed during the execution of the program.
Therefore, the bound value of a variable flows directly to all occurrences of that
variable – Figure 24: (Variable) rule.
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Expression Direct Graph Edges

(Variable)
p binding of a variable
n occurrence of a variable p

f→ n

(Match exp.)
e0:

p = e
e

f→ e0

e
f→ p

(Pattern)
p0:

p1 = p2

p0
f→ p1

p0
f→ p2

(Unary op.)
e0:

◦ e1
e1

d→ e0

(Infix op.)
e0:

e1 ◦ e2
e1

d→ e0

e2
d→ e0

(Parenthesis)
e0:

(e) e
f→ e0

(Tuple exp.)
e0:

{e1, . . . , en} e1
c1→ e0, . . . , en

cn→ e0

(Tuple pat.)
p0:

{p1, . . . , pn} p0
s1→ p1, . . . , p0

sn→ pn

(List exp.)
e0:

[e1, . . . , en|en+1]

e1
ce→ e0, . . . , en

ce→ e0

en+1
f→ e0

(List gen.)
e0:

[e1||p ← e2]
e1

ce→ e0, e2
se→ p

(List pat.)
p0:

[p1, . . . , pn|pn+1]

p0
se→ p1, . . . , p0

se→ pn

p0
f→ pn+1

(BIF 1)
e0:

hd(e1)
e1

se→ e0

(BIF 2)
e0:

tl(e1)
e1

f→ e0

(BIF 3)
I constant,
e0:

element(I, e1)
e1

sI→ e0

Fig. 24. Static Data-Flow Graph building rules

Match Expressions. When we bind a value to a variable in a match expression
both the value of the pattern expression and the result of thematch expression itself
are the same as the right hand side expression – Figure 24: (Match exp.) rule.

Operators. There is no direct data-flow in operator expressions, because an
operator does not copy the value of its argument. It evaluates some function
using the value on the operands, so the result of the operator expression depends
on the value of its operands – Figure 24: (Unary op.) and (Infix op.) rules.

Compound Expressions and Patterns. Compound expressions, such as tu-
ples and lists, preserves the value of their elements. For instance, packing some
data into a tuple, then forwarding the tuple somewhere in the program (copy-
ing its value), and then unpacking the data from the tuple result in the same
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data. We have to consider only the index of the elements in the compound data
structure.

The rules Figure 24: (Tuple exp.) and (Tuple pat.) describe that we construct

(
ci→) the tuple from its elements and we can select (

si→) the elements of the tuple.
The tuple constructor and selector edges are indexed by natural numbers (i ∈ N)
to denote the position of the elements in the tuple, and the same index in the
constructor and in the selector edges represents the same data-flow.

The rule Figure 24: (List exp.) describes that we construct the list from some

value (
ce→) and optionally a list (

f→) – so, we create it from the head elements

and the tail of the list. Like construction, we can select head elements (
se→) and

a tail list (
f→) from a pattern list expression – Figure 24: (List pat.) rule. Lists

are variable sized data structures and the typical use of them makes precise
index-based data-flow calculating useless, so we only distinguish the elements of
the list (denoted with the index e) and the tail of the list. In general, the tail of
the list contains almost every element of the list, thus we approximate this by
adding the flow edge from the tail to the list.

The rule Figure 24: (List gen.) shows another way for constructing a list.
We select an element (p) from a list (e2) and push a new element (e1) to the
constructed list (e0). Most of the time the head expression and the new element
depends on the value of the selected element.

BIF – Built in Functions. The rules Figure 24: (BIF 1), (BIF 2) and (BIF
3) present the selector and constructor data-flow edges based on background
knowledge about the given built in functions. The function hd/1 selects the first
element of a list, the function tl/1 selects the tail of the list and the function
element/2 selects the Ith element of a tuple.

Branching Expressions. Conditional expressions branch the control based
on pattern matching (case expression) or guard evaluation (if expression). The
result of such an expression is always the result of the last expression of the
branch evaluated at runtime. Since potentially any branch can be evaluated, the
value of each last expression can flow to the case/if expression. Besides this, the
result of the head expression of the case expression is matched to the patterns
of each branch, thus it has data-flow among them – Figure 25: (Case exp.) and
(If exp.) rules.

Function Calls. There are two different function call rules – Figure 25: (Fun.
call 1) and (Fun. call 2). The difference between the two rules is that in the
former case we can unambiguously identify the called function and its body, but
in the latter we cannot detect the called function body (because the AST of
the implementing module is not available or the module or the function name is
dynamic).

If the body of the called function is available in our representation, we can
preform an interprocedural data-flow reaching; otherwise we can only denote the
dependency from the called function and the parameters of the call (denoted by
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Expressions Direct Graph Edges

(Case exp.)

e0:
case e of

p1 when g1 → e11, . . . , e
1
l1
;

...
pn when gn → en1 , . . . , e

n
ln

end

e
f→ p1, . . . , e

f→ pn

e1l1
f→ e0, . . . , e

n
ln

f→ e0

(If exp.)

e0:
if

g1 → e11, . . . , e
1
l1
;

...

gk → ek1 , . . . , e
k
lk

end

e1l1
f→ e0, . . . , e

n
lk

f→ e0

(Fun. call 1)

e0:
m : g(e1, . . . , en) or
g(e1, . . . , en)

m:g/n:
g(p11, . . . , p

1
n) when g1 →

e11, . . . , e
1
l1
;

...
g(pm1 , . . . , pmn ) when gm →

em1 , . . . , emlm .

e1
f→ p11, . . . , e1

f→ pm1
...

en
f→ p1n, . . . , en

f→ pmn

e1l1
f→ e0, . . . , e

m
lm

f→ e0

(Fun. call 2)

e0:
em : eg(e1, . . . , en)

em or eg not constant or
em : eg/n not defined

em
d→ e0, eg

d→ e0

e1
d→ e0, . . . , en

d→ e0

Fig. 25. Static Data-Flow Graph building rules (cont.)

(
d→) edges). In the former case we can find the actual parameters of the called

function and add flow edges form the formal parameters to the corresponding
actual parameter of each function clause. The result of a function call is the
result of the last expression of the executed function body, therefore we add flow
edges from the last expressions to the function call expression.

Error Handling Expressions. The try expression rule (Figure 26: (Try exp.))
is similar to the case rule. The head of the try expression containsmore expressions
and the result of the last expression is matched to the patterns of the try, but it does
notmatch the patterns of the catch clauses.These are evaluatedwhen a runtime ex-
ception occurs and the exceptionmatches them. Thus, there is no data-flow among
the last expressions and the patterns of the catch clauses. The result of the try ex-
pression is the result of the evaluated clause, so the values of the last expressions
(including the values of the catch clauses) flow to the try expression. The result of
the after clause is simply omitted, it does not flow anywhere.
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Expressions Direct graph Edges

(Try exp.)

e0:
try e1, . . . , ekof

p1 when g1 →
e11, . . . , e

1
l1
;

...
pn when gn →

en1 , . . . , e
n
ln

catch
pn+1 when gn+1 →

en+1
1 , . . . , en+1

ln+1
;

...
pm when gm →

em1 , . . . , emlm
after

em+1 →
em+1
1 , . . . , em+1

lm+1

end

e
f→ p1, . . . , e

f→ pn

e1l1
f→ e0, . . . , e

n
ln

f→ e0

en+1
ln+1

f→ e0, . . . , e
m
lm

f→ e0

(Catch exp.)
e0:

catch e e
f→ e0

(Begin-end)

e0:
begin

e1, . . . , en
end

en
f→ e0

(Send exp.)

e0:
e1 ! e2

e′:
receive

p1 when g1 →
e11, . . . , e

1
l1
;

...
pn when gn →

en1 , . . . , e
n
ln

after
e → e1, . . . , es

end

e2
f→ e0

e2
f→ p1, . . . , e2

f→ pn

e1l1
f→ e′, . . . , enln

f→ e′

es
f→ e′

Fig. 26. Static Data-Flow Graph building rules (cont.)

The catch expression rule (Figure 26: (Catch exp.)) describes that the result
of its body flows to the catch. In case of a runtime exception , the result of the
catch is the error report of the exception.

Message Sending and Receiving. The message sending operator (!) differs
from the other infix operators. Its return value is the value of its right hand
side expression, so the value of the sent massage – Figure 26: (Send exp.) rule.
The message flows to the addressed process and tries to match one of its receive



Static Analysis of Complex Software Systems Implemented in Erlang 489

expressions, so the message flows to the patterns of the corresponding receive
expressions. A naive data-flow algorithm should add a flow edge to the patterns
of each receive expression to represent the potential data-flow. This could result
in a huge amount of edges in the graph. Instead of this, we try to calculate the
corresponding receive expressions and connect them with the sent messages (for
details see Section 3.7).

The receive expression is similar to other branching expressions, so its return
value is the last expression of the evaluated clause. Therefore, the value of the
last expression of each clause flows to the receive expression.

Implicit and Explicit Fun Expressions (Lambda Expressions). The rules
of fun expressions (Figure 27: (Fun. exp. 1) and (Fun. exp. 2)) express similar

Expressions Direct Graph Edges

(Fun exp. 1)

e:
fun(p11, . . . , p

1
n) when g1 →

e11, . . . , e
1
l1
;

...
(pm1 , . . . , pmn ) when gm →

em1 , . . . , emlm
e0:

e(e1, . . . , en)
e can be calculated
by data-flow analysis

e1
f→ p11, . . . , e1

f→ pm1
...

en
f→ p1n, . . . , en

f→ pmn

e1l1
f→ e0, . . . , e

m
lm

f→ e0

(Fun exp. 2.)

m:g/n:
g(p11, . . . , p

1
n) when g1 →

e11, . . . , e
1
l1
;

...
g(pm1 , . . . , pmn ) when gm →

em1 , . . . , emlm .
e:

fun m : g/n or fun g/n
e0:

e(e1, . . . , en)
e can be calculated
by data-flow analysis

e1
f→ p11, . . . , e1

f→ pm1
...

en
f→ p1n, . . . , en

f→ pmn

e1l1
f→ e0, . . . , e

m
lm

f→ e0

(Fun. exp 3)

e0:
e(e1, . . . , en)

e cannot be
detected by data-flow reaching
or e is m:g/n or g/n
by data-flow reaching
but m:g/n or g/n not defined

e
d→ e0

e1
d→ e0, . . . , en

d→ e0

Fig. 27. Static Data-Flow Graph building rules (cont.)
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parameter value and result copying as functions and function calls, but in the
most of the cases identifying them is not straightforward. The fun expressions are
defined in the body of functions and they can spread among functions as data,
so data-flow analysis is required to identify the definitions of fun expressions.

If it is possible to identify the definition of the explicit fun expression –
(Fun. exp 1) rule – we link the actual parameter of the call and the correspond-
ing formal parameter of each fun expression clause with a flow edge, and add a

Expressions Direct Graph Edges

(Dyn. call 1)

e0:
e1 : e2(e3, . . . , en+2)

e1 : e2/n is m:g/n
by data-flow reaching

m:g/n:
g(p11, . . . , p

1
n) when g1 →

e11, . . . , e
1
l1
;

...
g(pm1 , . . . , pmn ) when gm →

em1 , . . . , emlm .

e3
f→ p11, . . . , e3

f→ pm1
...

en+2
f→ p1n, . . . , en+2

f→ pmn

e1l1
f→ e0, . . . , e

m
lm

f→ e0

(Dyn. call 2)

e0:
apply(e1, e2, e3)

e1 is m, e2 is g,
e3 is [e4, . . . en+3]
by data-flow reaching

m:g/n:
g(p11, . . . , p

1
n) when g1 →

e11, . . . , e
1
l1
;

...
g(pm1 , . . . , pmn ) when gm →

em1 , . . . , emlm .

e4
f→ p11, . . . , e4

f→ pm1
...

en+3
f→ p1n, . . . , en+3

f→ pmn

e1l1
f→ e0, . . . , e

m
lm

f→ e0

(Dyn. call 3)

e0:
e1 : e2(e3, . . . , en+2)

e1, . . . en+2 cannot be
detected by data-flow reaching

e1
d→ e0, . . . , en+2

d→ e0

(Dyn. call 4)

e0:
apply(e1, e2, e3)

e1, e2, e3 cannot be
detected by data-flow reaching

e1
d→ e0, e2

d→ e0, e3
d→ e0

Fig. 28. Static Data-Flow Graph building rules (cont.)
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flow edge from the last expression of each function body to the call representing
the return value.

If data-flow reaching detects that the defining expression of the fun expres-
sion is an implicit fun expression, we have to find the definition of the re-
ferred function. Similar to the (Fun. call 2.) rule (Figure 26), if the AST is
not available, we have to add the dependency edges to the Data-Flow Graph
(Figure 27: (Fun. exp. 3)), otherwise we add the flow edges among the parame-
ters and the return values (Figure 27: (Fun. exp. 2)).

The rule Figure 27: (Fun. exp. 3) describes the dependency edges when no
information can be calculated about the referred function or fun expression using
data-flow analysis.

Dynamic Function Calls. The rules of dynamic function calls (Figure 28)
are also based on the reuse of data-flow analysis. When it is possible to detect
the referred functions by data-flow analysis we link the actual parameters to
the formal parameters and the return value to the function call by flow edges.
The (Dyn. call. 1) rule describes the MFA-s (qualified function calls where the
name of the module and/or the name of the function are not atoms) when the
module name and the function name is statically detectable. The (Dyn. call. 2)
rule describes that in case of an apply call the parameter list of the actual call
also has to be detected. We have to calculate the arity of the function and it is
also necessary to link them to the formal parameters of the referred function.

If one of the necessary information is not reachable, we only have to add the
data dependency edges – (Dyn. call. 3) and (Dyn. call. 4) rules.

C Control-Flow Rules

The Control-Flow Graph (CFG) represents all the possible execution/evaluation
paths of the program that can be chosen for every possible input. The CFG is a
language dependent representation of the program as it is based on the semantics
of the language.

We have defined the control-flow rules for Erlang programming language based
on its semantics. The language has strict evaluation, which means that before
evaluating a compound expression its subexpressions have to be evaluated. In
every case the subexpressions are evaluated in left to right order. The defined
control-flow rules are compositional, thus the graph can be composed from the
previously computed subgraphs. We use the SPG of RefactorErl and use the
same identifiers for the vertices in the CFG. We extend the set of nodes with
additional dummy vertices for joining branches, error nodes, etc. The rules are
defined in Figures 29–32.

The notation in the figures are: e, ei ∈ E is an expression, g, gj ∈ E is a guard
expression, p, pk ∈ P is a pattern and f/n ∈ F stands for function. The e′0 ∈ E
is a dummy node in the control flow graph, which represents the entry point
of the compound expression and joining dummy nodes (ret) to represent the
return value for the conditional branching expressions. The relation→ represents
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the control-flow between the nodes. The edges that have no labels represent
sequences, and edges with labels represent:

– conditional branching and pattern matching with (
yes→ ), (

no→) edges

– returning to a previous expression (
ret→),

– function calls/applications with (
call→ ),

– receive expression with (
rec→),

– send expression with (
send→ ).

The relations (
call→ ), (

rec→), (
send→ ) represent special relations, which indicate a

possible dependency between the nodes of different functions (for details, see
Section 3.10). In the rest of this section we describe the formal rules for different
expression and discuss the rules in more detail.

Expressions Control-Flow Edges

(Unary op.)
e0:

◦ e1
e′0 → e1, e1 → e0

(Left assoc. op.)
e0:

e1 ◦1 e2 ◦2 ...
◦n−2 en−1 ◦n−1 en

e′0 → e1,
e1 → e2, e2 → ◦1, ◦1 → e3 . . . en → ◦n−1,
◦n−1 → e0

(Right assoc. op.)
e0:

e1 ◦1 e2 ◦2 . . .
◦n−2 en−1 ◦n−1 en

e′0 → e1,
e1 → e2 ... en−1 → en,
en → ◦n−1,
◦n−1 → ◦n−2, ..., ◦2 → ◦1,
◦1 → e0

(Comp. infix op.)
e0:

e1 ◦ e2 e′0 → e1, e1 → e2, e2 → e0

(Andalso op.)
e0:

e1 ◦ e2

e′0 → e1,

e1
yes→ e2,

e1
no→ e0,

e2 → e0

(Orelse op.)
e0:

e1 ◦ e2

e′0 → e1,

e1
no→ e2,

e1
yes→ e0,

e2 → e0

(Send op.)
e0:

e1 ! e2
e′0 → e1, e1 → e2,

e2
send→ e0

(Parenthesis)
e0:

(e1)
e′0 → e1, e1 → e0

(Tuple exp.)
e0:

{e1, . . . , en}

e′0 → e1,
e1 → e2, . . . , en−1 → en,
en → e0

(List exp.)
e0:

[e1, . . . , en|en+1]

e′0 → e1,
e1 → e2, . . . , en → en+1,
en+1 → e0

Fig. 29. Control-Flow Graph building rules
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Expressions Control-Flow Edges

(List gen. 1)
e0:

[e||p1<-e1, . . . , pn<-en]

e′0 → e1,

ei → pi, pi
no→ ei, pi

yes→ ei+1,

ei
ret→ ei−1,

e → e1,
(i ∈ [1, ..., n], en+1 = e)

(List gen. 2)

e0:
[e||p1<-e1, f(1,0), . . . , f(1,m1)

...
pn<-en, f(n,0), . . . , f(1,mn)]

e′0 → e1,

ei → pi, pi
no→ ei,

ei
ret→ ei−1,

pi
yes→ f(i,0),

f(i,j−1)
yes→ f(i,j), f(i,mi)

yes→ ei+1,

f(i,0)
no→ ei, f(i,j)

no→ ei,
e → e1,
(i ∈ [1, ..., n], j ∈ [1, ..., mi], n,mi ∈ N
en+1 = e)

(List gen. 3)
e0:

[e||f(0,0), . . . , f(0,m0),
p1<-e1, . . . , pn<-en]

ei → pi, pi
no→ ei, pi

yes→ ei+1,

ei
ret→ ei−1,

e′0 → f(0,0),

f(0,j−1)
yes→ f(0,j), f(0,m0)

yes→ e1,

f(0,0)
no→ e0, f(0,j)

no→ e0,
e → e1,
(i ∈ [1, ..., n], j ∈ [1, ..., m0], n,m0 ∈ N
en+1 = e)

Fig. 30. Control-Flow Graph building rules (cont.)

Unary Operator. There are only a few unary operators in Erlang, like +, -,
bnot, not, etc. In the case of the unary operators (Figure 29: (Unary op.)), first
the subexpression is evaluated (e′0 → e1), then the unary operator is applied on
the evaluated subexpression (e1 → e0).

Left Associative Infix Expression. The rule in Figure 29: (Left assoc. op.)
describes the control-flow in left associative expressions. The language is strict,
the subexpressions are evaluated first from left to right order (e1 → e2) and
then the operator (e2 → e0). The subexpressions are evaluated from left to right
order.

If there is a sequence of left associative operators with the same precedence,
the sequence of operators are evaluated from left to right order. First the first
two subexpressions (e1 → e2) of the first operator are evaluated and the operator
is applied to these values (e2 → ◦1), then the previous result and the result of
the third subexpression (◦1 → e3) using the second operator (e3 → ◦3) and so
on. The left associative infix expressions are: /, *, div, rem, band, and, etc.

Right Associative Infix Expression. The rule in Figure 29: (Right assoc.
op.) describes the control-flow in right associative expressions. The language is
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strict, the subexpressions are evaluated first and next the operator. The subex-
pressions are evaluated from left to right order.

If there is a sequence of right associative operators with the same precedence,
the sequence of subexpressions is evaluated(e1 → e2, e2 → e3, . . ., en−1 → en)
and then the operators are evaluated from right to left order. First the result of
the last two subexpressions using the last operator is evaluated, next the previous
result and the third subexpression and so on (◦n−1 → ◦n−2, . . ., ◦2 → ◦1). The
right associative operators are: ++, --, =, !, etc.

Comparative Infix Expression. The comparative infix expressions are nei-
ther left nor right associative. The rule in Figure 29: (Comp. infix op.) describes
the control-flow of these expressions. The two subexpressions are evaluated first
from left to right order, then the comparison is evaluated. There are comparison
expressions like: <, >, =<, >=, etc.

Short-Circuit Expressions (Andalso, Orelse). The evaluation of the lan-
guage is strict, but there are two short-circuit infix expressions. The first of
them is expression andalso (Figure 29: (Andalso op.)), which evaluates its left
argument first. If it evaluates to true the control is given to the right argu-

ment (e1
yes→ e2), otherwise it returns with the result false and lets the right

expression non-evaluated (e1
no→ e0).

The second short-circuit expression is orelse (Figure 29: (Orelse op.)). It
evaluates the left argument and if it evaluates to false, it continues with evalu-
ating the right argument (e1

no→ e2), otherwise returns with result true and lets

the right argument non-evaluated (e1
yes→ e0).

Send Operator (!). The control-flow of the send operator is described in
Figure 29: (Send op.). The send operator is right associative, but we describe its
control-flow separately. The message sending has side effect and may affect the
control-flow of other processes. By analysing the sent messages we can improve
the accuracy of our analysis, thus where the send expression is detected the edge
is labelled with send tag. The evaluation of the send expression is analogous to
the right associative expressions. First the subexpressions are evaluated from left
to right order, then the send expressions are evaluated from right to left order.
The return value of the send expression is the sent value.

Parenthesis. With parentheses we can modify the precedence of the expres-
sions. The control-flow rules for this expression are described in Figure 29:
(Parenthesis). We first evaluate the expression in the parentheses and then the
parent expression gets the control.

Tuple Expression. The n-tuples are to couple coherent data with fixed size
of elements, such as messages, etc. The control-flow of the n-tuples are defined
in Figure 29: (Tuple exp.). The elements of the tuple expression are evaluated
from left to right order and then it resumes the control to the parent expression,
which constructs the tuple.
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List Expression. The control-flow of list expressions (Figure 29: (List exp.))
is similar to the n-tuples. The elements of the list are evaluated and then the
control is passed to the parent expression.

List Comprehension. The control-flow rules for building the CFG of the list
comprehension is defined in Figure 30: (List gen. 1), (List gen. 2) and (List
gen. 3) rules. The list comprehension is composed of the head expression, which
is an arbitrary expression, and a list of qualifiers. A qualifier is a list of either
a generator or a filter expression. These three rules cover every possible list
comprehension constructs and can be combined. The first rule (List gen. 1)
describes the control-flow between the generator expressions, the second rule
(List gen. 2) describes the control-flow among generator and filter expressions
and among filter expressions, the third rule (List gen. 3) describes the case when
the first element in a qualifier list is a filter expression.

The qualifiers are evaluated in left to right order. If the qualifier is a generator,
its list expression is evaluated first (for example: (e0 → e1)). It tries to match the
values against its pattern (e1 → p1). If it succeeds, then continues with the next
qualifier, which can be either a generator or a filter expression. If none of the
values match the pattern, then it resumes the control to its preceding expression

(for example the e1
ret→ e0).

If the qualifier is a filter expression, it is evaluated. If it evaluates to true the
control is resumed by the next qualifier, which can be either a generator or a
filter expression. For example:

– to the next filter expression (f(i,j)
yes→ f(i,j+1)) or

– to the list expression of the next generator (f(i,j)
yes→ ei+1)

If the filter expression evaluates to false the control is resumed to the closest
generator situated to its left. For example: f(i,j)

no→ ei).
If the end of the qualifier list is reached and even the last qualifier meets the

requirements, the head expression is evaluated ((f(n,mn)
yes→ e) or (pn

yes→ e)) and
again the control is handed to the first qualifier (e → e1).

Function. In Erlang the function may have several function clauses as the pat-
tern matching and the guard expressions play a special role in control-flow and
branching of possible execution paths. The rules for constructing the control-flow
graph of the functions is described in Figure 31:(Function). The actual parame-
ters are matched against the formal parameters/patterns and guard expressions
sequentially. If the pattern matches, then the guard expression is evaluated. If
the guard evaluates to true this clause will be chosen for evaluation. If either
the pattern matching fails or the guard expression evaluates to false the control
flows to the next function clause. The expressions in the body of the function are
evaluated sequentially and subexpressions are evaluated according to the rules
described in this section. The return value of the function is the last evaluated
expression from its body.
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Expressions Control-Flow Edges

(Function)

f/n:
f(p11, . . . , p

1
n) when g1 →

e11, . . . , e
1
l1
;

...
f(pm1 , . . . , pmn ) when gm →

em1 , . . . , emlm .

f/n → p11,

{p11, . . . , p1n}
yes→ g1,

{p11, . . . , p1n}
no→ {p21, . . . , p2n},

...

{pm−1
1 , . . . , pm−1

n } yes→ gm−1,

{pm−1
1 , . . . , pm−1

n } no→ {pm1 , . . . , pmn },

{pm1 , . . . , pmn } yes→ gm,

{pm1 , . . . , pmn } no→ error,

g1
yes→ e11,

g1
no→ {p21, . . . , p2n},

...

gm−1 yes→ em−1
1 ,

gm−1 no→ {pm1 , . . . , pmn },

gm
yes→ em1 ,

gm
no→ error,

e11 → e12, . . . , e1l1−1 → e1l1 ,
...
em1 → em2 , . . . , emlm−1 → emlm ,

e1l1 → ret f/n,
...
emlm → ret f/n,

(Fun. call)
e0:

ef(e1, . . . , en)

e′0 → ef ,
ef → e1,
e1 → e2, . . . , en−1 → en,

en
call→ e0,

Fig. 31. Control-Flow Graph building rules (cont.)

Function Call. The rules of the control-flow in a function application is defined
in Figure 31: (Fun. call). First the expression that defines the module and name of
the function is evaluated (e′0 → ef ), then the evaluation of the actual parameters
follows. The actual parameters are evaluated from left to right order ((e1 → e2),
. . ., (en−1 → en)). Then the evaluation should pass to the called function. There-

fore, the (en
call→ e0) edge indicates an interfunctional control-flow, which should

be considered during the building of the control dependency graph.



Static Analysis of Complex Software Systems Implemented in Erlang 497

Expressions Control-Flow Edges

(Case exp.)

e0:
case e of

p1 when g1 → e11, . . . , e
1
l1
;

...
pn when gn → en1 , . . . , e

n
ln

end

e′0
e→, e → p1,

p1
yes→ g1, p1

no→ p2,
...

pn1

yes→ gn−1, pn−1
no→ pn,

pn
yes→ gn, pn

no→ error,

g1
yes→ e11, g1

no→ p2,
...

gn−1
yes→ en−1

1 , gn−1
no→ pn,

gn
yes→ en1 , gn

no→ error,

e11 → e12, . . . , e1l1−1 → e1l1 ,
...
en1 → en2 , . . . , enln−1 → enln ,

e1l1 → ret case,
...
enln → ret case,
ret case → e0

(Receive exp.)

e0:
receive

p1 when g1 → e11, . . . , e
1
l1
;

...
pn when gn → en1 , . . . , e

n
ln

end

e′0
rec→ p1,

...
Similarly as at rule (Case exp.)
...

e1l1 → ret receive,
...
enln → ret receive,
ret receive → e0

Fig. 32. Control-Flow Graph building rules (cont.)

Case Expression. The rules for building the control-flow for the case expression
is described in Figure 32: (Case exp.). First the head expression is evaluated, then
the return value of the evaluated head expression is matched against the patterns.
The control flow of the pattern matching is analogous to the one described at
the (Function) rule. The branch of the first matching pattern and optional guard
that evaluates to true will be evaluated. If the pattern does not match or the
guard is evaluated to false the next pattern is examined. The return value of
the case expression is the value of the last expression of the evaluated branch.
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Receive Expression. The rules of control-flow of the receive expression are
described in Figure 32: (Receive exp). The receive expression tries to remove a
message from the message queue and matches it against the patterns and guards
similarly as the case expression. The execution of the process may hang until it
receives an appropriate message, thus the receiving is marked with the special
label rec in the control-flow.
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Abstract. A classic layout for complex software applications usually in-
volves a set of fine-tuned performance-optimized routines that are com-
bined and controlled from a higher layer in a lightweight fashion. As
the application grows, reliable operation, portability, and maintainabil-
ity gets to be a real concern. However, this can be tamed by abstracting
away from the platform-dependent details by modelling the components
and their relation on a higher level. Using a functional programming lan-
guage combined with the technique of language embedding may be an
answer when implementation of such solution comes in question [1][2].
In this design, the component descriptions may be captured by an ade-
quate embedded domain-specific language that compiles to a lower-level
language but there also has to be a way for composition and therefore
getting a complete working application out of them. In this paper, we
propose a method for extending compiled embedded domain-specific lan-
guages into a stand-alone system with minimal effort.

1 Introduction

Nowadays it pays off to describe domain-specific algorithms, especially complex
ones in a dedicated domain-specific programming language (DSL). Such lan-
guages may be expressed in terms of another language (that is called a host or
meta-language) by embedding. It promises ease of maintainability and portabil-
ity, and it is usually associated with efficient code generation. Though describing
algorithms themselves is not enough to achieve that ultimate goal: one must be
able to build a larger system out of them so whole applications might be con-
structed this way. It requires a way to express the relation between the previously
captured algorithms, including some support for running them on top of an op-
erating system or even bare hardware.

In this paper, we discuss this approach and as our contribution to the topic, we
propose a simple methodology for connecting programs written in DSLs. That
way we can show how to extend those little programs into larger systems with
minimal added efforts (Section 2) at the expense of setting certain constraints
on the language to be used (Section 5). We then construct a model from the
constraints that can be used for adding execution support in view of the given
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composition (Section 3). We believe a definite advantage of the solution is that
there is no generic run-time support needed, and most of its relevant pieces can
be derived and generated. Besides that it offers a comfortable and reliable way
of building applications it becomes especially useful when we are talking about
construction of low-level ones, e.g. operating systems (Section 4).

To motivate and investigate this approach, we are going to use three differ-
ent layers of languages: the meta-language, Haskell, which implements a glue
language Flow, which coordinates DSL programs with a specified interface of
which Feldspar is an example. Haskell is a well-known contemporary functional
programming language that is a popular choice for embedding languages and
features a sophisticated type system to reliably support all the underlying work.
Flow captures schemes referred above and provides a way to connect DSL pro-
grams into a dataflow network. Feldspar is a high-level domain-specific language
for digital signal processing [3]. It is embedded in Haskell and it has a code gen-
erator for ISO C99. It targets signal processing platforms and puts emphasis on
formulating vector algorithms.

To justify our choice, we note that recent works of Simon Marlow et al. [10]
[11] show that expressing workflow systems in functional languages is still a
hot research topic indeed. The Par monad is an extensive and generic tool to
support parallel programming in a very efficient way. It does not do any I/O
hence it is considered pure and therefore it can be used at many different places
to describe similar (even dynamic) data-flow networks, where a scheduler can be
also specified. However, it uses many tricks (like IORefs) to make it work inside
Haskell and does not care about code generation. On the contrary, our proposed
model tries to avoid most monadic features and rather concentrates on how to
build automatically generated programs with a simpler run-time system in the
background.

2 Sketching Up a Dataflow

Let us suppose we want to build a simple audio processing application from DSL
programs written in Feldspar (shown on Figure 1). This application reads digi-
tized stereo sound data from the computer’s sound card, applies a given effect to
it then writes the result back to the sound card, emitting the transformed sound
it read previously. Since our computer possibly supports concurrent execution of
programs via multi-threading, we plan to parallelize the processing by splitting
the input signal by its left and right channels. Thus we get two identical lines
of processing to handle the corresponding channels. We also decompose those
lines into smaller steps where the spectrum of the signal is calculated first then
followed by the effect, and finally it is transformed back to a waveform.

As a language focusing only on the digital signal processing elements, Feldspar
clearly misses the support for every aspects of the application in question. By
looking at Figure 1, we can note that while contents of each small box may be
written in Feldspar, their combinations and the circle-shaped elements may not.
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Audio Processing Application

Left Channel

Right Channel

Sound
Input

Split
Sound
Output

FFT

FFT

Merge

Effect IFFT

Effect IFFT

Fig. 1. An overview of a sample audio processing application

This where a glue language, Flow comes to the rescue. The Flow language
builds upon combinators that help to describe data dependency graphs of com-
putations as nodes. We are going to call such graphs dataflows. They always
stand for a loop in an event-driven system that receives some input to produce
some output as an answer. With Flow, our goal would be to make it easy to
construct such applications from an existing set of algorithms. In the optimal
case, it would even fit into a few lines of code.

audioproc = split --< (processing, processing) >-- merge

where processing = fft --> effect --> ifft

And that is it!

2.1 Basic Flow Combinators

Let us observe the previous code snippet more closely. The whole application is
named audioproc – it is a top-level Haskell function that also represents a Flow

program. Each small box from Figure 1 is added as additional Haskell functions
that represent a node in the dataflow graph. Note that we did a small trick here
(for the sake of clarity) because the nodes are not directly Feldspar programs,
they first have to be lifted (by a liftFeld combinator) to be part of a flow
network.

(split,merge) = (liftFeld splitF,liftFeld mergeF)

merge = liftFeld effectF

(fft,ifft) = (liftFeld fftF, liftFeld ifftF)

In this application, the liftFeld function is used to fit Feldspar programs with
signature of α→ β, i.e. with programs that get an input (of type α) and produce
an output (of type β). The role of lifting is to wrap the input and the output
of the little programs to use that common data type for communication inside
the graph. Such types are represented by a restricted set of conventional Haskell
types, that we call “Flow types”.
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For some programs, either the input or the output type may be complex, for
example a tuple, that has a special meaning in the Flow language. Programs
producing a tuple are considered splitters and programs taking a tuple are con-
sidered mergers. This makes it possible to express an explicit (i.e. programmer-
controlled) way of decomposing a piece of data into multiple parts to be processed
in parallel in the later segments of the graph. Such programs may be glued by
using the --< combinator.

split --< (processing, processing)

In this example, split reads the input, splits it into two, and passes each part
to an instance of the audio processing line, described by processing, written
with an ordinary Haskell pair. The results are then combined by using the >--

combinator that denotes the opposite direction.

(processing, processing) >-- merge

Steps in processing are connected by the --> combinator. It is to describe
a sequence of various computation stages, like in our example, a Fast Fourier
Transform followed by an effect, and an inverse FFT. Note that even sequentially
connected components may run in parallel if the communication between them
is asynchronous, viz. their execution may overlap in that case.

processing = fft --> effect --> ifft

2.2 Running a Flow

One may also notice that circle-shaped nodes of Figure 1 are completely missing
from the resulted code. It is because they are the implicit source and sink nodes
for the graph. The input arrives to the application through the source node,
and the output is sent to the output node. They are treated as open nodes of
the graph. Such nodes do not have concrete programs associated in this high-
level view, though they may be substituted by suitable producer and consumer
functions in Haskell.

This latter becomes useful when we would like to see how a flow is working,
i.e. when we want to simulate a behavior of a flow. Flow-graphs may be run
and analyzed directly in a Haskell interpreter e.g. GHCi (for the Glasgow Haskell
Compiler) by using the simulate and eject functions.

*Audioproc> let input = [[1..5 :: Float],[1..5]]

*Audioproc> eject (simulate audioproc input !! 31)

[[2.3,3.8,5.3,6.8,8.3],[9.8,11.3,12.8,14.3,15.8]]

The simulate function performs the computation represented by audioproc

endlessly, since such a system never stops. Thus we pick only one of the generated
states and use the eject function to access the output value in that step. It
can be also seen that both the input and the output represent simple vectors
(of size 5).
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2.3 Introducing Dynamism

Now we have seen a compact example of how to create a simple data-flow graph.
Though it has been quite static in its nature: the flow always behaves the same
way, it only depends on the input data. Hence we may want to improve it by
introducing support for more dynamism.

Audio Processing Application

Left Channel

Right Channel

Effect:
Null

Bandpass
Octave Up

...

Effect:
Null

Bandpass
Octave Up

...

Events

Sound
Input

Split

Sound
Output

FFT

FFT

Merge

IFFT

IFFT

Fig. 2. An overview of the audio processing application, extended with dynamism

To motivate this, let us extend our audio processing application with a per-
channel switching between multiple effects in run time (see Figure 2). This does
not require too much modification, only the effect has to be factored out from
processing and extended to support switching between effects. That is imple-
mented on the level of the DSL, i.e. in Feldspar.

null = ...
bandpass = ...
octaveUp = ...

fxLeftF :: Data Index -> DVector (Complex Float) -> DVector (Complex Float)
fxLeftF e input = (e == 0) ? (null, (e == 1) ? (bandpass, octaveUp))

fxRightF :: Data Index -> DVector (Complex Float) -> DVector (Complex Float)
fxRightF e input = (e == 0) ? (null, (e == 1) ? (bandpass, octaveUp))

The processing component shall then be split into processLeft and pro-

cessRight, because they are going to maintain two different states, each storing
an index for the currently used effect.

processLeft = fft --> effectLeft --> ifft

processRight = fft --> effectRight --> ifft

audioproc’ = split --< (processLeft, processRight) >-- merge
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Note that effectLeft and effectRight have one more argument. They have a
different signature to the Feldspar programs introduced above, γ → α→ β. We
already know that programs map input data (of type α) to output data (of type
β). The additional argument (of type γ) is a configuration for the given program
that may be changed while the system is running.

effectLeft = liftFeld $ \(e,_) -> fxLeftF e

effectRight = liftFeld $ \(_,e) -> fxRightF e

where liftFeld now receives a shared configuration as a parameter besides the
input. Similarly to the data passed between the wrapped programs, the global
configuration is also expressed in the common data type because it has to be
independent of the employed DSLs. For our extended application, it can be given
as follows.

audioprocConfig = (0, 0)

where the corresponding elements of the Haskell pair refer to each of the initial
states of the effects for the channels.

As it has been shown, by introducing a global state, i.e. a system-wide config-
uration, there we got a way to directly affect on the behavior of the flow network
in run time by modifying the elements of that state. Note that programs in the
flow cannot modify the global state in the Flow language, it can be only changed
from outside of the graph. There can be an extended version of the previously
presented simulate function called simulate’ given where we can also specify
the global configuration as an infinite list of states to be consumed at each step of
the simulation. Elements of that list represent actual states of the configuration
at given moments. With this approach, it is also possible to represent system
events as changes in the global configuration.

*Audioproc> let input = [[1..5 :: Float],[1..5]]

*Audioproc> let config = repeat audioprocConfig

*Audioproc> eject (simulate’ audioproc’ input config !! 31)

[[2.3,3.8,5.3,6.8,8.3],[9.8,11.3,12.8,14.3,15.8]]

Let us add that dependency graphs may be represented in many other ways, Flow
is just an example of that. As one may have noted by looking at the example,
Flow is basically a “point-free” (tacit) language. In our opinion, this contributes
to a succinct formulation of processing pipelines that may be enhanced further
by adding more Arrow-like combinators [12], and support for loops. It is possibly
straightforward to use for programmers educated in functional programming, but
others may also find them intuitive. That has not yet been investigated but left
to future work for now.

3 Translation to Abstract Programs

Given that the data dependency graph is described, there shall be also a way to
compile it down to a less abstract platform in order to make it run on a given
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hardware. The intermediate representation used on that level will be called an
abstract program for the rest of the document.

Abstract programs have two main components, tasks and channels. A task
represents a run-to-completion operation to be performed on a single processing
unit without interruption. This idea follows the typical hardware setup where
processing units do not provide support or provide only a limited support for
preemptive execution (e.g. the Cell Broadband Engine). Such units usually excel
in pure computation tasks with less branching, instead.

Tasks use channels to forward data between each other. In that sense, tasks
are like closed expression or closures : the free variables (parameters) of the en-
capsulated functions are bound by the values coming from the channels and the
global configuration. Note that every task implicitly shares the same system-wide
configuration. Channels are important for establishing asynchronicity between
nodes, though they also force serialization and deserialization of data at the same
time. Hence the compiler may lose the opportunity to remove intermediate data
structures between nodes and it has to implement certain optimizations on pass-
ing data to avoid unnecessary copying. However, in some cases it is inevitable,
and it may even result in a better overall resource utilization.

3.1 Graph Decomposition

Tasks and channels are derived from the graph by decomposition: each node
paired up with its incoming and outgoing edges (as channels) is turned into a
task. In Figure 3, such a decomposition is shown for the audioproc example. As
we mentioned above, source and sink nodes (marked with grey) are not part of
the original graph given by the user therefore they automatically became open
nodes. For tasks, it implies that they do not have DSL programs associated thus
they shall be expressed in the target language we are compiling to. However, we
will have to generate wrappers for those programs too, as there must be a way
for them to access the channels. This will be described later, in Section 4.

Task 1 Task 2
Task 3 Task 4

Task 5 Task 6 Task 7

Task 8 Task 9 Task 10Sound
input

Split
Chn. 1 Sound

output

FFT
(left)

Chn. 2

FFT
(rght)

Chn. 3 Merge
Chn. 11

Effect
(left)

Chn. 4 IFFT
(left)

Chn. 5

Chn. 9

Effect
(rght)

Chn. 7 IFFT
(rght)

Chn. 8

Chn. 10

Fig. 3. Decomposing the audio processing application into tasks and channels

3.2 Execution Model

Following the decomposition of the data dependency graph into tasks and chan-
nels, the result has to be prepared for execution by multiple processing units. A
näıve solution would be to launch a thread for each of the tasks (and no further
processing would be needed), but it is not considered a good practice to spawn
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an arbitrary number of threads in general – as it may waste resources and cause
longer times in context switching (if it is possible at all) for example. For better
performance, it is rather recommended to not to execute more threads at a time
than the number of the processing units in the hardware.

To cope with this question, the traditional thread pooling pattern is used,
where a fixed number of threads is created and started to perform a number
of tasks that is usually organized as a queue. Threads are considered “worker
processes” or simply “workers”.Workers grab tasks from the common task queue,
execute them, then present the results to somewhere. Because workers may pull
in new tasks when they are ready with the previous one, this scheme offers
sharing the load between processing units dynamically. And due to its nature, it
does not have to be specified in the program itself, instead it can be incorporated
as an implicit part of the model. This approach also plays well with heterogenous
computer systems, where there is a general-purpose control unit to distribute
and dispatch the work to units that are heavily optimized to data processing
operations.

Execution of a task involves reading from the input channels, running the
encapsulated program, and finally writing the result to the output channels.
Channels have to work as FIFO (First-In-First-Out) queues that may have a
fixed length. Channels block writing when they are full, and they block reading
when they are empty. When any of the task’s (input or output) channel is blocked
then the contained program itself cannot run, so its execution is skipped.

3.3 Scheduling

In order to schedule tasks for execution, task pools are built up for the applica-
tion. A task pool is a set of tasks that can be run independently of each other,
potentially in parallel. Workers are assigned to task pools as they get their jobs to
be handled from there. There may be more workers per task pool, hence workers
may “steal” work from each other. Since tasks are closed over their parameters,
any worker may run any task, that will not change the output.

There are two primary operations for task pools that may affect on the actual
performance.

– take. Get a task from the task pool. If the pool is empty – that is, everything
from the pool has been assigned to fellow workers –, suspend execution of
the given worker for a specified time and try again.

– drop. Put a completed task back to the pool. It shall always succeed as there
must be enough place for tasks in the pool.

Note that any task may be chosen from the pool. It would be the job of a
scheduler to pick a task for a worker, however, it is not required as it can be
expressed with take and drop. Let take the first task from the pool, while drop
concatenates the completed tasks to the end of the pool. This way we get a
regular round robin scheme, see Figure 4. Obviously, it may be enhanced further
to implement more sophisticated scheduling scenarios, but this is now outside of
the focus of this document, and is left for future work.
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task pool

t1

Worker

take

t4t3t2 t1

drop

Fig. 4. Operation of a worker over a task pool

3.4 Memory Management

In addition to processor time, tasks usually require a chunk of memory for op-
eration. A generic layout for tasks is shown in Figure 5. There we can see that
tasks work with input and output buffers. The former is used for reading values
from channels (there can be more), and the latter is used for storing results of
the wrapped program. Size of the buffers may be derived from the size of the
type of values they store. It may be then multiplied by a chunk size if multiple
values travel on the channel in a single pass (thus some space has to be reserved
for them in the memory).

Task

Program

input
buffers

output
buffers

heap

Fig. 5. Task memory layout in general

The contained program itself may also have its own memory requirements.
It is called heap in Figure 5, which acts as a temporary storage area when the
program is being run. Heap is passed to the program so it does not have use
its own stack for calculations that require large amount of memory. However,
an exact size for this cannot be told in advance in the data-flow layer, so the
program has to provide hints.

Tasks get memory assigned when they are executed by a worker, and workers
will allocate memory only on their start. That is, workers have to have enough
memory allocated to be able to run any task in the pool they work in, since
reallocating memory for each task may degrade their performance, and would
also require some support for dynamic memory management. Assuming that
sizes for the buffers and the program can be statically determined in compilation
time, it can be given how much memory is needed for a given worker. It can be
expressed by M(·) as follows.
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M(w) = max

⎧⎨
⎩

np∑
i=0

S(I(p, i)) +

mp∑
j=0

S(O(p, o)) + S(H(p))

∣∣∣∣∣ p ∈ P (w)

⎫⎬
⎭

where w is the worker, p is a program from a set of programs that the worker
may run (P (w)), S(·) specifies size for a given entity, H(·) gives all program
allocations (size of the program heap), I(·, ·) and O(·, ·) gives the nth input and
output buffers for p, respectively.

Because of the maximum function, certain programs with high memory needs
may give rise to a sub-optimal memory usage. For example, if there is only a few
large-memory programs then assigned workers may allocate too much memory
because they may want to run them. That is, when memory requirements are
not uniformly distributed for programs, worker allocations will take the largest
one that may be a waste. We do not investigate that problem in detail in this
document.

4 Code Generation

Code generation depends on the target language and platform. Our approach
does not restrict the choice of the target language, the only requirement is that
there must be a mapping to it from the abstract program representation. For the
rest of the document, we will use the C programming language as an example.

In the previous examples on audioproc we have not yet mentioned the types
for the expressions we used. Let us now investigate the type of audioproc’.

*Audioproc> :type audioproc’

audioproc’ :: Flow [Float] [Float] (Int8,Int8) C

As we can see here, it contains information on the following: the input and
output types for the Flow, the type for the global configuration, and the type
of the Flow itself, which is C in this case. Note that the input, output and the
global configuration types are expressed in Flow types that are implemented for
the given platform.

The “Flow type” can be imagined as a “tag” for each sub-flow that signals
the target. When designing Flows, it can be enforced via static typing of Haskell
that only program parts (where programs can be considered trivial sub-flows)
with the same target language are combined. In addition, this information is also
exploited by the glue code generation as Flow has to have built-in support for
the given target, similarly to the DSLs employed in the network. Thus the user
can select only the languages that are supported for the data-flow graphs.

For each target platform, there must be at least a compile function imple-
mented. It generates code for the given platform based on a file name of the
constructed flow, specified as a regular Haskell String. It has to be invoked
with an initial global configuration. For the C platform, it generates a C source
code and a C header file.

*Audioproc> compile audioproc’ audioprocConfig "audioproc"
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4.1 Eliminating Redundancy

During the phase of code generation, it may happen easily that the same program
is used at multiple places in the same flow. That is, tasks may share programs
they contain. This is a consequence of the sharing properties of Haskell expres-
sions. If this phenomenon goes unnoticed, the generated code may get bloated
easily. Hence it is advised to support elimination of redundant code. A simple
algorithm to resolve the problem is as follows.

– Create a look-up table for compiled code. Let this table store all the previ-
ously compiled program bodies as plain strings. Initially it is empty.

– When code generation for a program is finished then search for it in the
table. The efficiency of the search may be improved by using a specialized
data structure, e.g. a balanced search tree.

• If it is found then return the position in the table and generate only a
call to the given program routine. Program names can be produced in a
systematic way, using a template, e.g. prog N where N is the position in
the table.

• It it is not found then insert the generated body to the table and add
the body to the generated code, and place a reference to it at the task’s
code generation.

When generating code for the program body, the name itself should be omitted
as it may not be specific to the given program. A name is added only after
the redundancy elimination algorithm has been run. Note that there could be
hashes computed for program bodies. However, we should be careful with hashes
as they may collide. A potential solution to amend collision of hashes is to do a
full equality test on equivalence of hashes.

In summary, this method is better than the user manually naming programs
in the graph. It is less prone to error (as it is automatic) and it may even spot
duplicates when they are results of two different high-level code.

4.2 Interaction with User Code

Besides the considerations on how to generate code for data-flow graphs, we must
discuss some of the details on how to supplement the missing parts required for
getting a running binary program. The interface between automatically gener-
ated code and user-supplemented parts is the generated header file (in case of
C), but it supposed that similar concept can be given for other back-ends.

The generated C header file (audioproc.h) contains the declaration for the
global configuration. It can be seen that the configuration elements for audioproc
is mapped to single char types in C. The order of elements in the declaration
matches the order of their enumeration in the source n-tuple. Preserving the
ordering is important since we want to provide a way for the user to interact
with the generated source. It is the responsibility of the user to feed the network
with data, consume its output and optionally change the elements of the global
configuration to regulate the behavior of the flow.
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#ifndef __AUDIOPROC_H__

#define __AUDIOPROC_H__

struct configuration {

char cf_0;

char cf_1;

};

extern struct configuration config;

int controller(int argc, char** argv);

void f_0(struct configuration* config, float* b0, size_t b0_insz,

size_t* b0_ousz);

void f_1(struct configuration* config, float* b0, size_t b0_insz,

size_t* b0_ousz);

#endif // __AUDIOPROC_H__

As we can see in the generated code for our example application, there has to be
a function named controller() defined. Its purpose is manifold. It controls the
life time of the system: before it is started, the necessary initialization routines
are run, and after it is finished, the run-time system shuts itself down, termi-
nating the whole program. It accesses the internals of the global configuration
therefore it may change the parameters for the flow network in run time. It can
be considered a main() function for the application.

There can be also seen some function prototypes. Those are the open nodes
of the network that the user has to implement. For audioproc, the f 0() func-
tion should implement reading data (in floating-point format) from the sound
card, while the f 1() function should implement writing data to there. These
operations are not described by the Flow language, hence they must be added
by the user.

5 Fitting a DSL to the Flow

As a result of the discussed topics above we have implicitly touched many re-
quirements and constraints on domain-specific languages to be used in a Flow

network. Let us now make them here explicit while introducing the key elements
of the language interface to be implemented.

First of all, there is a common data type – the Flow type – employed in the
graph to connect DSL programs. That type must be able to connect programs
written in different little languages; thus it must be independent of them – and
the languages used in the network do not know about each other, too. Hence
each language has to provide a mapping for all of its specific types.

class FlowType (T l a) => DSLType l a where

type T l a

fromDSL :: l -> a -> T l a

toDSL :: l -> T l a -> a
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The DSLType type class is used to describe such mapping between the types of
the DSL and the Flow indexed with the given language. When running a data-
flow network, the functions fromDSL and toDSL implement the conversion for the
data type a for the language l. The type T l a corresponds to the Flow type for
the DSL type. As it has been noted before, the Flow types are restricted Haskell
types, formulated by the FlowType type class.

For example, we map the floating-point type of Feldspar to a Flow type as
follows.

getDataRep :: Syntactic a => a -> DataRep

getDataRep = dataRep . eval

instance DSLType Feldspar (Data Float) where

type T Feldspar (Data Float) = Float

fromDSL _ = (getDataRep -> FloatData x) = x

toDSL _ = value x

The next layer of building up a language binding is the definition of an instance
for the PrimNode type class. The PrimNode class briefly summarizes all the re-
quirements for the language. Note that besides the source (l) and the target
language (t) there is also a p type variable. The p data type is used to tag the
DSL program in question with the values of l and t for later processing.

class Backend t => PrimNode p l t where

run :: (DSLType l a, DSLType l b, DSLType l c) =>

p a b c l t -> T l c -> T l a -> T l b

-- for code generation

compile :: p a b c l t -> ID -> (Types t, Name, Body t)

finalize :: p a b c l t -> Name -> Body t -> Definition t

heapInfo :: p a b c l t -> [FwType]

PrimNodes may be created from programs of language l of type γ → α → β if
l has an instance for the Liftable type class.

class Backend t => Liftable l a b c t where

liftPN :: (DSLType l a, DSLType l b, DSLType l c) =>

l -> ID -> (c -> a -> b) -> PrimNode (T l a) (T l b) (T l c) t

The liftPN function is employed inside the generic lift function where an
unique identifier (ID) is assigned to each lifted program, resulting in the final
type of the Flow.

type Flow a b c t = State ID (PrimFlow a b c t)

For example, this is how we got the liftFeld function used in our Feldspar
application (see 2.1, 2.3).
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5.1 The PrimNode Type Class

Let us take a look at the PrimNode functions. In order to be able to simulate
a flow there must be way to simulate the DSL programs themselves. Therefore
it is required to have a function to run them, i.e. map them to regular Haskell
functions. For Feldspar, that is equivalent to using its interpreter, specified by
the eval function.

For the code generation, the rest of the functions in the PrimNode type class
have to be defined. The compilation of programs is divided into three phases due
to the redundancy elimination and the generation of task wrapper code. First,
the compile function turns a DSL program to a target-language program with
a given identifier, as specified by the Backend instance of the target. Though
it is even possible to combine programs expressed in multiple DSLs, the target
language has to be the same for all.

class Backend t where

type Types t

type Body t

type Definition t

The Backend type class groups the types used during the code generation –
which may be taken as an abstract description of a simple sub-routine-oriented
programming language. It consists of optional type declarations (Types t) that
may be required for the routine body (Body t) then finally turned into a defini-
tion (Definition t) on the target language.

For example, the C backend is defined by the following instance.

instance Backend C where

type Types = CTypes

type Body C = String

type Definition C = String

As it is shown above, the function body and definition are technically represented
as strings in the C backend. The unusual type here is CTypes (which is not
detailed further) that may be reasoned as follows. It is used to collect all the
type definitions from the resulting function as multiple definitions of the same
type has to eliminated somehow – otherwise it may give us incorrect C code
that cannot be compiled. As a consequence, it implies checking for equivalence
on type definitions. Rendering those definitions as strings then parsing them
back may not result in an optimal solution, so it is more logical to ask for their
abstract representation, and that is what CTypes captures here.

In the second phase, the finalize function may be invoked to put the pre-
viously translated body and its name together to a complete definition. It is
because of the redundancy elimination (see 4.1). The program is first compiled
without its name so the body can be checked for being redundant, and if it is
not, then it is combined with its name. Note that the name may be derived from
the unique identifier of the node encapsulating the program.
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Finally, in the third phase, the glue code for the tasks is generated. As men-
tioned earlier, each task contains a DSL program, and it communicates data to
other tasks in the decomposed network (see Section 3). That is, tasks still have
to maintain a mapping between DSL and Flow types in the backend. The generic
task code manages the connected channels and receives a piece of memory for
the program to be run. So only a wrapper function similar to the one below has
to be written for each DSL.

wrapper ::

Identifier -> (CfgType,[(CID,ChanType)],[(CID,ChanType)]) ->

Identifier -> ([FwType],[FwType],[FwType]) ->

Definition C

The first set of parameters represent type information for the outer interface,
i.e. types for the global configuration (CfgType), and the input and output
channels ((CID, ChanType)), with a name for the corresponding C function
(Identifier). Note that the outer interface is actually the same as one has
to implement for the open nodes (see 4.2). The second set of parameters rep-
resent type information for the inner interface, i.e. types that the DSL pro-
gram to be wrapped has: input, output, and heap (FwType), and its name in
C (Identifier). That latter is where the heapInfo from PrimNode is utilized.
The result of heapInfo is to tell the compiler what type of data is expected to
be used during the execution of the program.

The wrapper function should connect these outer and inner interfaces based
on its arguments. In our current implementation, it can be expressed via an
abstract C program that sets up values before calling the DSL program. For
example, in case of Feldspar, besides the regular input and output parameters
there has to be a C struct passed, filled with pointers to segments of memory
that the compiled Feldspar program may use while it is running.

6 Related Work

It is typical for embedded systems that the operating system is prepared to be
deployed on the given hardware. Solutions based on microkernels basically pro-
vide some support for this. A prominent representative of this approach is Enea
OSE [9] which is one of the most widely used real-time operating system in the
industry. The primitives featured in the Enea OSE architecture is very similar
to the ones we have captured in our model (processes and message passing be-
tween them), and the implementation is very sophisticated, featuring a modular,
layered, fault-tolerant, distributed, event-driven, deterministic architecture with
task monitoring and optimizing memory usage. Another promising attempt is
ArchiDeS (Architecture, Deployment, Scheduling) [8] which is a research frame-
work written in C++ for building large stream-processing systems on multicore
processors. It supports run-time configuration of the constructed application.
The key concepts for ArchiDeS are the interface ports and interface port types,
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containing a dedicated message handler to specify the run-time behavior for the
given port. Interfaces can be assigned to single or shared component modules
that are the first-class entities in the system. There is also a replaceable scheduler
and a run-time system paired up with the components that supports different,
large-scale multicore chips and application-specific scheduling. It features both
data and pipeline parallelism, similar to our solution.

However, a drawback of these tools from our perpective is that they still
have to be programmed in C/C++, i.e. though the modular design provides
nice abstractions as building blocks, due to the nature of those programming
languages it is hard for the compiler to figure out how to optimize the constructed
applications further, like removing intermediate data structure when they are not
needed or performing similar simplifications in the application. Besides that, the
application code still has to be written in C or C++ which tends to be more
error-prone and “noisy” compared to high-level and domain-specific languages.

On the contrary, it is a well-known technique to use domain-specific languages
to generate code for operating systems. The Barrelfish operating system is the
result of a research project to explore possibilities in structuring operating sys-
tems for today’s and the future’s hardware. Barrelfish features a development
framework, named Filet-of-Fish [6], to address the aforementioned problems. In
this framework, the authors have chosen a similar approach to ours: essentially,
they embedded C into a functional language, which was Haskell. Filet-of-Fish
gives strong static guarantees on that the generated code is valid by construc-
tion and it can be always compiled. Opposed to our approach, both Barrelfish
and Filet-of-Fish solves the problem for generic operating systems, while we are
focusing only on concepts that are specific to the domain.

As a related project, Ptolemy [7] studies modeling, simulation, and design
of concurrent, real-time, embedded systems, focusing on assembly of concurrent
components, and using well-defined models of computation that govern the in-
teraction between the components. Ptolemy is based on the principles of object-
oriented programming and it has a recent implementation in Java. Although it
solves many problems (e.g. scheduling) related to the development of operating
system for digital signal processing applications and even supports code gener-
ation beyond simulation, it still can be only considered a generic research on
finding an appropriate modeling language for such systems, and not a way of
how to provide reliable and clever compilation for the components, which is our
focus. Nevertheless, results of the Ptolemy project can be re-used here to take
some of the computation-related aspects of the elements to be modeled resolved.

7 Conclusion and Future Work

We have presented our proposed method for constructing larger applications
from smaller programs written in domain-specific languages. As we have also
seen, only the programs themselves and their data dependency relation has to
be defined. The execution may be worked out procedurally as we have expressed



Extending Little Languages into Big Systems 515

it in terms of tasks and channels. Though the solution is not complete: one
still has to feed the generated graph with input and configuration information,
while consuming its output. From view-point of simulation, it is convenient as
we only need to build a list out of input and configuration information. For
code generation, it leaves open nodes that the user shall add in order to get a
working executable. We can hopefully find a solution to resolve this, and find a
solution that works well with both approaches. For the generated code, we also
have implicit scheduling aided by grain of static analysis. But this is far from
perfect, and it needs to be profiled and the emerging performance problems will
have to be addressed. We have only given a few rule-of-thumbs for reaching an
ideal performance, but it has to be researched properly in the future.

Finally we would like to thank Andor Pénzes, Gergely Dévai, and Máté Tejfel,
Tamás Kozsik from the Feldspar Group, and the anonymous reviewers who con-
tributed much to the development of this paper and the related implementation
with their comments and work. This work is being supported by Ericsson Soft-
ware Research, Ericsson Business Network Units and SSF (Sweden), the Hungar-
ian National Development Agency (KMOP-2008-1.1.2), Programul Operaţional
Sectional Dezvoltarea Resurselor Umane 2007–2013 (POSDRU/6/1.5/S/3-2008,
Romania).
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Abstract. In this paper we deal the recursion and corecursion in func-
tional programming. We discuss about the morphisms which express the
recursion or corecursion, resp. We apply the linear logic which provides
a logical perspective on computational issues such as control of resources
and order of evaluation. The most important feature of linear logic is that
formulae are considered as actions and its truth value depends on an in-
ternal state of a dynamic system. In this paper we present an alternative
way of computation based on algebras and coalgebras. The correctness
of our approaches we show by Curry-Howard correspondence.
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1 Introduction

Linear logic provides a logical perspective on computational issues such as control
of resources and order of evaluation. In classical logic treats the sentences that
are always true or false; but in linear logic the truth value depends on an internal
state of a dynamic system. We showed in [12] a new alternative way of computing
factorial based on hylomorphism by using the algebras and coalgebras. Because
of the checking, the correctness of the program is the most important phase of
transformation into logical formulae. In this contribution we present correctness
of this computing by Curry-Howard correspondence [13].

2 Basic Notions

We start our approach with the well-known notion from universal algebra: a
many-typed signature (the signature in the following text). A signature Σ =
(T,F) consists of a finite set T of the basic types needed for a problem solution
denoted by symbols σ, τ . . . and of a finite set F of function symbols. Each
function symbol f ∈ F is of the form f : σ1, . . . , σn → τ for some natural n.
Generally, we distinct in a signature the constructor operations which tell us how
to generate data elements; the deconstructor operations, also called observers or
transition functions that tell us what we can observe about data elements; and
the derived operations.
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2.1 Category Theory

Algebraic and coalgebraic concepts are based on category theory [1]. A category
C is mathematical structure consisting of objects, e.g. A,B, . . . and morphisms of
the form f : A→ B between them. Every object has the identity morphism and
morphisms are composable. Morphisms between categories are called functors,
e.g. a functor F : C → D from a category C into a category D which preserves
the structure.

2.2 Linear Logic

Girard’s linear logic [4] has offered great promise, as a formalism particularly
well-suited to serve at the interface between logic and computer science. This
paradigm has been a cornerstone of new approach concerning connections be-
tween intuitionistic logic, functional programming and category theory [2]. We
consider here intuitionistic linear logic because it is very suitable for describing
of the program execution. Precisely, reduction of linear terms corresponding to
proofs in intuitionistic linear logic can be regarded as a computation of pro-
grams [12]. The interpretation in linear logic is of hypotheses as resources: every
hypothesis must be consumed exactly once in a proof. Its the most important
feature is that formulae are considered as actions. That differs from usual logic
where the governing judgment is of truth, which may be freely used as many
times as necessary. Linear logic uses the causal implication: the formula ϕ−◦ψ of
linear logic means that the ϕ is being consumed to produce the resource ψ. Thus,
the formula ϕ after the implication does not hold. Linear logic uses two conjunc-
tions: multiplicative ϕ⊗ ψ expressing that both actions will be performed; and
additive one ϕ�ψ expressing that only one of two actions will be performed and
we shall decide which one. Intuitionistic linear logic uses additive disjunction
ϕ ⊕ ψ which expresses that only one of two actions will be performed but we
cannot decide which one.

3 Algebras and Coalgebras

The rôle of the computer program is carrying on the instructions under whose the
computer system is to perform some required computations. The essential idea
of the behavioral theory is to determine the relations between internal states and
their observable properties. The internal states of system are often hidden. Many
formal structures have been introduced to capture the state-based dynamics, e.g.
automata, transition systems, Petri nets, etc. Horst Reichel firstly introduced
the notion of behavior in the algebraic specifications [11]. The execution of a
computer program causes a generation of some behavior that can be observed
typically as a computer’s input and output [5]. The observation of program
behavior can be formalized by using the coalgebras. Program is considered as
an element of the initial algebra arising from the used programming language.
In other words it is an inductively defined set P of terms [9] which forms a
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suitable algebra F (P ) → P where F is an endofunctor constructed over the
signature. Then data type is completely determined by its constructors, algebraic
operations, going into data type. Each language construct corresponds to certain
dynamics captured in coalgebras. The behavior of programs is described by the
final coalgebra P → G(P ) where the functor G captures the kind of behavior that
can be observed. Shortly, generated computer behavior amounts to the repeated
evaluation of a (coinductively defined) coalgebraic structure on an algebra of
terms. The state can be observed via the visible values and can be modified. In
coalgebra it is realized using destructor operations pointing out of the structure.

3.1 Initial Algebras

Let F be an endofunctor from C to C. An algebra with the signature F (or an
F -algebra for short) is a pair (A,α) where A called the carrier is an object and
the algebra structure α : FA → A is a morphism in C. For any two F -algebras
(A,α) and (C, γ), a morphism f : A → C is said to be a homomorphism of
F -algebras from (A,α) to (C, γ), so the following diagram at Fig. 1 commutes.

FA
α � A

FC

Ff

�

γ
� C

f

�

Fig. 1. Diagram of algebras

It follows from the diagram at Fig. 1 that it holds the equality α◦ f = Ff ◦γ.
An F -algebra is said to be an initial F -algebra if it is an initial object of the
categoryAlg(F ) of F -algebras. The existence of initial algebra of the endofunctor
is constrained by the fact that initial algebras, when they exist, must fulfill
some important properties: they are unique up to isomorphism and the initial
algebra has an inverse. It follows from the first property that there exists at
most one initial F -algebra. Because from the initial F -algebra exists unique
homomorphism to every F -algebra, the initial F -algebra is the initial object in
the category Alg. The second property was proven by J. Lambek and it says
that the initial F -algebra is the least fixed point of the endofunctor F .
The initiality provides a general framework for induction and recursion. Given a
functor F , the existence of the initial F -algebra (μF, inF ) means that for any F -
algebra (A,α) there exists a unique homomorphism of algebras from (μF, inF )
into (A,α). Following [15], we denote this homomorphism by (cata α)F . This
morphism is called catamorphisms. The morphism (cata α)F : μF → A is char-
acterized by the universal property [15]:

inF ◦ f = Ff ◦ α ⇔ f = (cata α)F .
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The type information is summarized in the following commutative diagram
at Fig. 2.

FμF
inF� μF

FA

Ff

�

α
� A

f

�

Fig. 2. Diagram of initial algebra and catamorphism

3.2 Final Coalgebras

Coalgebras are dual structures to algebras. Let F be an endofunctor from C

to C. A coalgebra with the signature F (an F -coalgebra for short) is a pair
(U,ϕ), where U called the state space is an object and ϕ : U → FU called
the coalgebra structure (or coalgebra dynamics) is a morphism in C. For any
two F -coalgebras (T, ψ) and (U,ϕ), a morphism f : T → U is said to be a
homomorphism from (T, ψ) to (U,ϕ) between F -coalgebras, so the following
diagram at Fig. 3 commutes.

U
ϕ � FU

T

f

�

ψ
� FT

Ff

�

Fig. 3. Diagram of coalgebras

and it holds the equality ϕ ◦ Ff = f ◦ ψ.
The F -coalgebras and the homomorphisms between them form a category.

The category Coalg(F ) is the category whose objects are the F -coalgebras and
morphisms are the homomorphisms between them. Composition and identities
are inherited from C. An F -coalgebra is said to be a final F -coalgebra if it is the
final object of the category Coalg(F ).

The existence of the final F -coalgebra (νF, outF ) means that for any F -
coalgebra (U,ϕ) there exists a unique homomorphism of coalgebras from (U,ϕ)
to (νF, outF ). This homomorphism is usually denoted by (ana ϕ)F and is called
anamorphism. The anamorphism (ana ϕ)F : U → νF is characterized by the
universal property [15]:

f ◦ outF = ϕ ◦ Ff ⇔ f = (ana ϕ)F .

The type information is summarized in the following diagram at Fig. 4.
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U
ϕ � FU

νF

f

�

outF
� F νF

Ff

�

Fig. 4. Diagram of final coalgebra and anamorphism

3.3 Hylomorphism

The hylomorphism recursion pattern was firstly defined in [15]. Given an F -
coalgebra ϕ : U → FU and an F -algebra α : FA → A, the hylomorphism
denoted by hylo(α, ϕ)F is the least arrow f : U → A that makes the following
diagram at Fig. 5 commute.

FU � ϕ
U

FA

Ff

�

α
� A

hylo(α, ϕ)

�

Fig. 5. Diagram of hylomorphism

The hylomorphism is defined as a composition of an anamorphism and a
catamorphism [15]:

hylo(α, ϕ)F = (cata α)F ◦ (ana ϕ)F .

The hylomorphism captures general recursion by producing the complex data
structure and then processing it.

4 The Computation and Logical Proof

By using the Curry-Howard correspondence [13] we are able to consider proofs as
programs and execution of a program as a logical deduction in considered logical
system. The first step in the design solution is constructing the type theory that
we will use for a given problem. The types together with operations over them
we enclose into a signature Σ = (T,F).

4.1 An Alternative Method for the Factorial Calculation

Here we show an alternative method for the factorial calculation based on alge-
bras and coalgebras. The signature consists of a finite set of the basic types:
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T = {int, intList, Ω}
and of a set of function symbols:

F = { ==: intList, intList→ Ω,
=: int, int→ Ω,
join : int, intList→ intList,
∗ : int, int→ int,
pred : int→ int,
head : intList→ int,
tail : intList→ intList } .

For our alternative method for computation the factorial we need terms, which
represent catamorphism and anamorphism. The function fact is based on hylo-
morphism; it is a composition of two functions. Listed functions are named by
morphisms which they represent, namely: cata and ana, resp.

Anamorphism. An anamorphism usually represents a corecursive function
that starts with a single input (here int) and it returns more complex output,
here a wide list (intList). The function ana is of type int→ intList.
The definition of function ana is as follows:

ana(n) = if (n = 0) then ana = emptyList
elseif (n = 1) then ana = [1]
else ana = join(n, ana(pred n))

Typed term that represents the function ana has the following form:

n : int � if (n = 0) then ε elseif (n = 1) then [1] else join(n, ana(pred n)).

Formula representing the function ana is:

(ϕ1 −◦ ψ1) � (ϕ2 −◦ ψ2) � ((ϕ⊥
1 ⊗ ϕ⊥

2 )−◦ ψ3)

where

ϕ1 : (n = 0) ϕ2 : (n = 1)
ψ1 : ana = ε ψ2 : ana = [1] ψ3 : ana = join(n, ana(pred n))

Catamorphism. By applying the catamorphism in the informatics, we get a
recursive function that starts with a list (here intList) and it returns a single
numerical output (here int). The function cata is of type intList→ int.

Definition of this function:

cata(list) = if (list = emptyList) then cata = 1
else cata = head(list) ∗ cata(tail(list))

Typed term that represents the function cata has the following form:

l : intList � if (list == ε) then 1 else head(list) ∗ cata(tail(list)).
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Formula representing the function cata(l) is:

(θ −◦ α)�(θ⊥ −◦ β)

where

θ : list = emptyList α : cata = 1 β : cata = head(list) ∗ cata(tail(list)).

Function for Calculating the Factorial. The composition of functions ana a
cata creates a function fact for the factorial computation. The function generates
a list of natural numbers by increments from 1 to number n, and simultaneously
the list is eliminated by the multiplication operation between elements of the
list. The function is of type int→ intList→ int.
Definiton of the function fact:

fact(n) = cata(ana(n)) = if (ana(n) == emptyList) then fact = 1
else fact = n ∗ cata(ana(predn))

Typed term that represents the function cata has the following form:

n : int � if (ana(n) == ε) then 1 else n ∗ cata(ana(pred n)).

Formula representing the function fact is:

((ϕ1 −◦ ψ1)−◦ α) � ((ϕ2 −◦ ψ2)−◦ α) � (((ϕ⊥
1 ⊗ ϕ⊥

2 )−◦ ψ3)−◦ β).

The Proof. A part of the logical proof of the given formula in the section 4.1
is at Fig. 6.

Fig. 6. Proof of formula expressing alternative factorial computation

When the formula is proven it means that our program is correct and it does
not need any verification.

5 Implementation in OCaml

In this section we show the implementation of our method for the factorial
calculating. We use the object-oriented functional language OCaml [6].
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5.1 The Function ana

This function is defined as follows: if the argument of the function ana is 0 then
it returns an empty list. If the argument is 1 then ana generates a list containing
only 1 as item. Otherwise, ana generates a list with new element appended. The
implementation of the function ana is:

l e t r e c ana n =
match n with
| 0 −> [ ]
| 1 −> [ 1 ]
| n −> n : : ana (n−1 ) ; ;

5.2 The Function cata

This function takes as an argument a list of factors of the type int and returns
the result of multiplicative operations over the list by multiplication of values
from the input list. The result of the function is an element of the type int which
is the result of multiplication of elements in the list. The implementation of the
function cata is:

l e t r e c cata l i s t =
match l i s t with
| [ ] −> 1
| head : : t a i l −> head ∗ ( cata t a i l ) ; ;

5.3 The Function fact

The function fact has been defined as composition of cata and ana; written in
OCaml as cata(ana(n)). The definition of this hylomorphism function fact is
as follows:

l e t f a c t n =
cata ( ana n ) ; ;

Execution of this function with input value 4 is:

# f a c t 4 ; ;
− : i n t = 24

We can see that our alternative method of programming based on hylomorphism
provides the expected results. Because the corresponding formulae have been
proven in linear logic as a formula representing one function we can say that our
function is correct.
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6 Basic Concepts about Action Semantics

The framework of action semantics has been initially developed at the University
of Aarhus by Peter D. Mosses, in collaboration with David Watt from Univer-
sity of Glasgow. An action semantics is a framework for the formal description of
programming languages. Its main advantage over other frameworks is pragmatic:
action-semantic descriptions (ASDs) can scale up easy to real programming lan-
guages [3,7,10,14]. This is due to the inherent extensibility and modifiability of
ASDs, ensuring that extensions and changes to the described language require
only proportionate changes in its description. On the other hand, adding an
unforeseen construct to a language may require a reformulation of the entire
description in denotational or operational semantics expressed in [8].

Action semantics is fully equivalent with other semantic methods, like denota-
tional semantics, operational semantics or axiomatic semantics. Fundamentals of
action semantics are actions which are essentially dynamic computational enti-
ties. They incorporate the performance of computational behavior, using values
passed to them to generate new values that reflect changes in the state of the
computation. So the performance of an action directly represents the information
of processing the behavior and reflects the gradual, step-wise nature of compu-
tation: each step of an action performance may access and/or change the current
information. Other semantic entities used in action semantics are yielders and
data. The data entities consist of mathematical values, such as integers, Boolean
values, and abstract cells representing memory locations, that embody parti-
cles of information. Yielders encompass unevaluated pieces of data whose values
depend on the current information incorporating the state of the computation.
Yielders are occurring in actions and may access, but they are not allowed to
change the current information.

A performance of an action which may be part of an enclosing action either
completes (normal termination), escapes (exceptional termination), fails (aban-
doning an alternative) or diverges (deadlock).

The different kinds of information give rise to so called facets of actions which
have been classified according to [7]. They are focusing on the processing of at
most one kind of information at a time. The standard notation for specifying
actions consists of primitive actions and action combinators. Action combinators
combine existing actions, normally using infix notation, to control the order
which sub-actions are performed in as well as the data flow to and from their
sub-actions. Action combinators are used to define sequential, selective, iterative,
and block structuring control flow as well as to manage the flow of information
between actions. The standard symbols used in action notation are ordinary
English words. In fact, action notation is very near to natural language:

– terms standing for actions form imperative verb phrases involving conjunc-
tions and adverbs, e.g. check it and then escape;

– terms standing for data and yielders form noun phrases, e.g. the items of

the given list.
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These simple principles for choice of symbols provide a surprisingly grammatical
fragment of English, allowing specifications of actions to be made fluently read-
able. The informal appearance and suggestive words of action notation should
encourage programmers to read it. Compared to other formalisms, such as λ-
notation, action notation may appear to lack conciseness.

7 Action Semantics in Functional Paradigm

Action semantics can be successfully used also for the description of functional
programs. In action semantics we use generally three main actions for the de-
scription of programming languages:

– execute - used for executing of statements;
– elaborate - used with declarations;
– evaluate - used for evaluating expressions.

In functional paradigm we use only two main actions: evaluate and elaborate.
Action execute is not important in functional paradigm. Typical for functional
programs is that they do not deal the storage. Therefore we will not use actions
of imperative facet for allocating memory locations, storing values and getting
values from cells in memory in our action semantics descriptions of functional
programs.

Important for functional paradigm is an evaluating of the expressions and
elaborating functions. To allow referring them in the program code, they are as-
sociated to names (identifiers). These associations are called bindings. A binding
can be global, when declared at the top level of the source code, or local, when
declared in a let or letrec expressions that contain it. The difference between let
and letrec expressions is that in the latter mutual recursion is allowed.

We provide this description of evaluation of simple expression:

elaborate�let I:Var = E:Expression� =
evaluate � E �

then bind I to the given value

After declaration we are able to use it anytime in our program. The value is
bound to its identifier, so we can get the value of this expression simply by using
evaluate action:

evaluate� I:Var � =
give the value bound to I

Description of function with one argument should seem like this:

elaborate�let If:Var Ip1:Var = E:Expression� =
evaluate�E�

then bind If to the given value

In the expression E is used parameter of the function which value we can get
simply with action evaluate:
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evaluate� Ip1:Var � =
give the value bound to Ip1

7.1 The Description in Action Semantics

Let E1 be the substitution for the function ana:

E1 = match n with

| 0 -> []
| 1 -> [1]
| n -> n :: ana (n-1)

We elaborate the function declaration in Action semantics as:

elaborate � let rec ana n = E1� =
recursively bind ana to

closure of

abstraction of

evaluate�E1� =
recursively bind ana to

closure of

abstraction of

evaluate�E1�

and the evaluation of the action evaluate�E1� is:

evaluate� match n with | 0 − > [] | 1 − > [1] | n − > n :: ana(n− 1) � =
evaluate �n�

and then

(check the given value is equal to the number 0
and then give the empty list

or

check the given value is equal to the number 1
and then add the number 1 to the list)
or

check the given value is greater than the number 1
and then add the given number to the list

before

add evaluate �ana (n− 1)� to the list

The description of function cata in Action semantics is analogous. First we define
a substitution E2 for the cata function as follows:

Let E2 = match myList with

| [] -> 1
| head :: tail -> head * (cata tail)

We also define primitive actions head and tail for the treatment the data struc-
ture list:
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head list = give the first element of the list

which gives the first element of the given list, and

tail list =
remove first element from the list then give the list

which gives the tail of the list, i.e. all elements except the first one are being
returned. Now we are able to elaborate the declaration of the function cata and
we obtain full description of it in Action semantics:

elaborate � let rec cata myList = E2� =
recursively bind cata to

closure of

abstraction of

evaluate�E2�

The evaluation of the action �E2� is defined as follows:

evaluate�E2� =
give the value bound to myList
and then

give the TruthV alue of (the given list is empty)
then

check the given TruthV alue
and then give the number 1

or

check not the given TruthV alue
and then

give the multiplication of

(head the given list

and

evaluate� cata (tail the given list)�)

Finally, we define the function fact for the computation of the factorial. The
elaboration of the function fact declaration is:

elaborate � let fact n = cata (ana n)� =
evaluate �cata (ana n)�
then

bind fact n to the given value =

evaluate �ana n�

before

evaluate �cata (the given list)�
then

bind fact n to the given value

where the actions evaluate�ana n� and evaluate�cata myList� are being eval-
uated in the following way:
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evaluate �ana n�

give the value bound to

closure of

abstraction of

evaluate�E1�

evaluate �cata myList�
give the value bound to

closure of

abstraction of

evaluate�E2�

After defining all actions necessary for the description of the factorial computa-
tion we present an example for the factorial of given input value.

7.2 Example in Action Semantics

In this section we present the evaluation of factorial for the input value n = 4.
Our alternative method of the factorial computation was defined in chapter 4.1.

evaluate � fact n = cata (ana n)�s [n �→ 4] =
give the value bound to

evaluate �cata (ana n)� =

give the value bound to

(evaluate �ana n�s [n �→ 4]
before

evaluate �cata (the given list)�)

The evaluation of the function ana n for the input value n = 4 is:

evaluate�ana x�s [n �→ 4] =

give the value bound to

closure of

abstraction of

evaluate�E1�s [n �→ 4] =

give the value bound to

closure of

abstraction of

give the value bound to n s [n �→ 4]
and then

check the given number is greater than the number 1
and then add the given number to the list

before

add evaluate �ana (n− 1)�s [n �→ 4, list �→ [4]] to the list = . . .

After repeating these steps we obtain the last step of computation:
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give the value bound to

closure of

abstraction of

give the list [4, 3, 2, 1]

The final state is s [n �→ 1, list �→ [4, 3, 2, 1]].
In next step, the action evaluate �cata list�s [list �→ [4, 3, 2, 1]] is being eval-

uated. The actions head and tail which have been defined in chapter 7.1 are
being used.

evaluate �cata list�s [list �→ [4, 3, 2, 1]]
give the value bound to

closure of

abstraction of

evaluate�E2�=

give the value bound to

closure of

abstraction of

give the TruthV alue of (list is empty)
then

check not the given TruthV alue
and then

give the multiplication of

(head list s [list �→ [4, 3, 2, 1]]
and evaluate �cata (tail list)�s [list �→ [4, 3, 2, 1]]) = . . .

And we again repeat those steps. Finally we obtain:

give the value bound to

closure of

abstraction of

give the TruthV alue of (list is empty)
then

check the given TruthV alue
and then

give the multiplication of

(the number 4 and the number 3
and the number 2 and the number 1) =

give the value bound to

closure of

abstraction of

give the number 24

The final state is s [n �→ 24].
We can see that the description in action semantics seems to be very long,

it is very good readable for the programmers and the results obtained by this
method are correct and they correspond to real computations.
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8 Conclusion

In this paper we have focused on the analysis of recursion and corecursion. We
described the recursion by catamorphisms and the corecursion as a dual method
of recursion by final coalgebras and anamorphisms. To define the relationship be-
tween recursion and corecursion we used algebras and coalgebras which are dual
structures. The exact relation between algebra and coalgebra we defined by con-
structing the hylomorphism which is based on the unique coalgebra-to-algebra
morphism. We presented an alternative method of how to make a computation
of recursive functions by special mathematical structures - the algebras and coal-
gebras with the relation between them expressed by recursive coalgebras. In the
last chapters we showed an unusual example for calculating the factorial of num-
ber n with our new alternative method using anamorphism, catamorphism and
hylomorphism; the description of this method we presented in action semantics.
Our future research will be the exact categorical formulation of those princi-
ples by using the structures for the construction of the algebras and coalgebras:
monads and comonads.
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