
An A* Algorithm for Computing Edit Distance

between Rooted Labeled Unordered Trees�

Shoichi Higuchi1, Tomohiro Kan1, Yoshiyuki Yamamoto1, and Kouichi Hirata2

1 Graduate School of Computer Science and Systems Engineering
2 Department of Artificial Intelligence

Kyushu Institute of Technology
Kawazu 680-4, Iizuka 820-8502, Japan

{syou hig,kan,yamamoto,hirata}@dumbo.ai.kyutech.ac.jp

Abstract. In this paper, we design an A∗ algorithm for computing the
edit distance between rooted labeled unordered trees. First, we introduce
some lower bounding functions that provide the constant factor lower
bounds on the edit distance. Then, by using the lower bounding functions
as a heuristic function, we design the A∗ algorithm as the best-first search
for the edit distance search tree. Finally, we give experimental results for
the A∗ algorithm.

1 Introduction

Rooted labeled unordered trees (trees , for short) are rooted trees whose nodes are
labeled and in which only ancestor relationship are significant. Such trees arise
naturally in many fields such as glycan data or phylogenetic trees in bioinformat-
ics, chemical compounds and their properties in chemistry, object representation
and recognition in computer vision, and so on (cf., [6]). For many such applica-
tions, it is necessary to compare tree by some meaningful distance measure.

The most famous distance measure between trees is the edit distance [1,7,8,11].
The edit distance between trees (that we sometimes call the unordered tree edit
distance) is formulated as the minimum cost to transform a tree to another tree
by applying edit operations of substitutions , deletions and insertions to trees.
However, it is known that the problem of computing the unordered tree edit
distance is intractable, that is, NP-hard [8,10] and MAX SNP-hard [3,9].

In order to compare two phylogenetic trees, Horesh et al. [4] have developed
an A∗algorithm for computing the edit distance between rooted unlabeled un-
ordered trees, which is also an intractable problem. This A∗ algorithm uses three
lower bounding functions that provide constant factor lower bounds on the un-
ordered tree edit distance, including the degree histogram L1-distance introduced
by Kailing et al. [5]. Note that Kailing et al. [5] have introduced not only the

� This work is partially supported by Grand-in-Aid for Scientific Research 20500126,
21500145 and 22240010 from the Ministry of Education, Culture, Sports, Science
and Technology, Japan.

M. Okumura, D. Bekki, and K. Satoh (Eds.): JSAI-isAI 2011, LNAI 7258, pp. 186–196, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An A* Algorithm for Computing Edit Distance 187

degree histogram L1-distance but also the label histogram L1-distance as lower
bounding functions.

Motivated by this A∗algorithm [4], in this paper, we design an A∗ algorithm
for computing the edit distance between rooted labeled unordered trees. First,
we use not only three lower bounding functions introduced by Horesh et al. [4],
that is, the difference of the number of nodes [4], the degree histogram L1-
distance [4,5] and the degree histogram L∞-distance [4] but also additionally
two lower bounding functions, that is, the label histogram L1-distance [5] and
the label histogram L∞-distance. Next, we introduce the edit distance search tree
to transform the problem of finding the shortest path in a connected graph for
the standard A∗ algorithm to one of computing the unordered tree edit distance.
Then, by setting the heuristic function to the maximum value of the above 5
lower bounding functions, we design the A∗ algorithm as the best-first search for
the edit distance search tree with constructing just necessary branches.

Finally, we implement the A∗ algorithm and give experimental results for gly-
can data. Then, we compare the running time for computing the unordered tree
edit distance by the A∗ algorithm with one by the exhaustive search algorithm
designed by Shasha et al. [6] and the clique-based algorithm designed by Fuka-
gawa et al. [2]. Furthermore, we evaluate the effect of 5 lower bounding functions
in the execution of the A∗ algorithm.

2 Preliminaries

A tree is a connected graph without cycles. For a tree T = (V,E), we denote V
and E by V (T) and E(T), respectively. Also the size of T is |V | and denoted by
|T |. We sometimes denote v ∈ V (T) by v ∈ T . A rooted tree is a tree with one
node r chosen as its root . Here, we denote the root of a rooted tree T by r(T).
We denote the (complete) subtree of T rooted at v ∈ T by T (v).

For each node v in a rooted tree T with the root r, let UPT (v) be the unique
path from v to r. The parent of v(�= r) is its adjacent node on UPT (v). The
parent of the root r is undefined. We say that u is a child of v if v is the parent
of u. Two nodes with the common parent are called siblings . A leaf is a node
having no children.

Furthermore, the depth of v is the number of edges in the path from v to
r(T), that is, |UPT (v)| − 1, and the depth of T is the maximum depth for every
node in T , which we denote by d(T). Also the degree of v is the number of the
children of v, and the degree of T is the maximum degree for every node in T .

We say that a rooted tree is ordered if a left-to-right order among siblings
is given; Unordered otherwise. Also we say that a tree is labeled over Σ if each
node is assigned a symbol from a fixed finite alphabet Σ, where we denote the
label of a node v by l(v). We sometimes identify v with l(v). In this paper, we
call a rooted labeled unordered tree over Σ a tree, simply.

Definition 1 (Edit operations). Let T be a tree. Then, we call the following
three operations edit operations . Also see Figure 1.

188 S. Higuchi et al.

1. Substitution: Change the label of the node v in T (from l1 to l2).
2. Deletion: Delete a non-root node v in T (labeled by l1) with a parent v′

(labeled by l′), making the children of v become the children of v′. The
children are inserted in the place of v as a subset of the children of v′.

3. Insertion: The complement of deletion. Insert a node v (labeled by l2) as a
child of v′ (labeled by l′) in T making v the parent of a subset of the children
of v′.

For a special blank symbol ε �∈ Σ, let Σε = Σ ∪ {ε}. Then, we represent each
edit operation by l1 �→ l2, where (l1, l2) ∈ (Σε ×Σε − {(ε, ε)}). The operation is
a substitution if l1 �= ε and l2 �= ε, a deletion if l2 = ε, and an insertion if l1 = ε.

Substitution (l1 �→ l2)

��

�→
��

Deletion (l1 �→ ε) Insertion (ε �→ l2)

�
�

��

�→
�
�

�
�

�→

�
�

��

Fig. 1. Edit operations for trees

We define a cost function γ : (Σε ×Σε −{(ε, ε)}) �→ R on pairs of labels. We
constrain a cost function γ to be a metric, that is, γ(l1, l2) ≥ 0, γ(l1, l1) = 0,
γ(l1, l2) = γ(l2, l1) and γ(l1, l3) ≤ γ(l1, l2) + γ(l2, l3).

For a cost function γ, we define the cost of an edit operation by setting
γ(l1 �→ l2) = γ(l1, l2). The cost of a sequence s = s1, . . . , sk of edit operations is

given by γ(S) =

k∑

i=1

γ(si).

Definition 2 (Edit distance). Let T and S be trees and γ a cost function.
Then, the edit distance τ(T, S) between T and S under γ is defined as follow:

τ(T, S) = min

{
γ(s)

∣∣∣∣
s is a sequence of edit operations
transforming from T to S

}
.

The edit distance is closely related to the following mapping [7].

Definition 3 (Mapping). For trees T and S, we say that the triple (M,T, S)
is a mapping between T and S if M ⊆ V (T)×V (S) and every pair (v1, w1) and
(v2, w2) in M satisfies the following conditions.

1. v1 = v2 iff w1 = w2 (one-to-one condition).
2. v1 ≤ v2 iff w1 ≤ w2 (ancestor condition).

An A* Algorithm for Computing Edit Distance 189

We will use M instead of (M,T, S) when there is no confusion.

Let M be a mapping between T and S. Also let IT (resp., IS) be the set
of nodes in T (resp., S) but not in M . Then, the cost γ(M) of M is given

as
∑

(v,w)∈M

γ(l(v), l(w)) +
∑

v∈IT

γ(l(v), ε) +
∑

w∈IS

γ(ε, l(w)). Hence, it is known the

following relationship between τ(T, S) and γ(M) [7].

τ(T, S) = min{γ(M) | M is a mapping between T and S}.

3 A∗ Algorithm and Lower Bounding Functions

The A∗ algorithm is an algorithm to find the shortest path from the start node
a to the goal node z in a connected graph by using an estimated length smaller
than the actual length from a current node n to z.

For a current node n, suppose that g(n) and h(n) are the actual length of the
shortest path from a to n and one from n to z, respectively. Then, for the length
f(n) of the shortest path from a to z through n, it holds that f(n) = g(n)+h(n).
However, since f(n) is unknown in the procedure, we replace the actual length
f(n), g(n) and h(n) with the estimated length f∗(n), g∗(n) and h∗(n) satisfying
that f∗(n) = g∗(n) + h∗(n).

Since we can find g(n) in the procedure, we set g∗(n) to g(n). On the other
hand, since we cannot find h(n) in the procedure, we set h∗(n), called a heuristic
function, to a function that is guaranteed to be always smaller than h(n).

In particular, in order to design the A∗ algorithm for computing τ(T, S), in
this paper, we formulate such a heuristic function h∗ based on the following lower
bounding functions on τ . Here, throughout of this paper, we assume that a cost
function is a unit cost function μ [11] satisfying thatμ(l1, l2) = μ(l1, ε) = μ(ε, l2) =
1 for l1, l2 ∈ Σ and l1 �= l2. We can extend μ to an arbitrary cost function easily.

Definition 4 (Lower bounding function). Let T be a tree. We call the his-
togram consisting of the degree of a node and its frequency in T the degree
histogram of T . Also we call the histogram consisting of the label of a node and
its frequency in T the label histogram of T .

Let T and S be trees. Then, we define n(T, S) as
∣∣|T | − |S|∣∣, that is, the

difference between the number of nodes in T and S. Also we define the degree
histogram L1-distance d1(T, S) and the degree histogram L∞-distance d∞(T, S)
(resp., the label histogram L1-distance l1(T, S) and the label histogram L∞-
distance l∞(T, S)) as the L1- and L∞-distances between the degree (resp., label)
histograms of T and S.

Lemma 1 (Horesh et al. [4], Kailing et al. [5]). For trees T and S, the
following statements hold.

1. τ(T, S) ≥ n(T, S) [4].
2. τ(T, S) ≥ d1(T, S)/3 [4,5] and τ(T, S) ≥ d∞(T, S) [4].
3. τ(T, S) ≥ l1(T, S)/2 [5] and τ(T, S) ≥ l∞(T, S).

190 S. Higuchi et al.

Proof. It is sufficient to show that l∞(T, S) ≤ τ(T, S), that is, how many values
of l∞(T, S) change when an edit operation is applied. We denote the frequency
of the label a in a tree T by f(a, T).

When transforming from T to S by a substitution of b for a, it holds that
f(a, T)− 1 = f(a, S), f(b, T) + 1 = f(b, S) and f(c, T) = f(c, S) for every label
c except a and b. Then, it holds that l∞(T, S) ≤ 1. On the other hand, when
transforming from T to S by a deletion of a, it holds that f(a, T)− 1 = f(a, S)
and f(c, T) = f(c, S) for every label c except a. Then, it holds that l∞(T, S) ≤ 1.

Hence, it holds that l∞(T, S) ≤ τ(T, S).
�
By Lemma 1, for nodes t ∈ T and s ∈ S, we use a heuristic function h∗(t, s) in
the A∗ algorithm as the maximum value of the above 5 lower bounding functions
with constant factors of T (t) and S(s), that is:

h∗(t, s) = max

⎧
⎨

⎩

n(T (t), S(s)),
d1(T (t), S(s))/3, d∞(T (t), S(s)),
l1(T (t), S(s))/2, l∞(T (t), S(s))

⎫
⎬

⎭ . (1)

Example 1. Consider the trees T and S in Figure 2. Then, the degree histograms
and the label histograms of T and S are described as follows.

a

b

c d

b

c d

e

�

�

� � �

�

� � �

T S

Fig. 2. Trees T and S in Example 1

degree T S

0 5 6
1 0 1
2 2 0
3 1 1
4 0 1

label T S

a 1 1
b 2 2
c 2 3
d 2 1
e 1 2

The values of the lower bounding functions for r1 = r(T) and r2 = r(S) are
described as follows.

n(r1, r2) = 1, d1(r1, r2) = 5, d∞(r1, r2) = 2, l1(r1, r2) = 3, l∞(r1, r2) = 1.

Hence, it holds that h∗(r1, r2) = max{1, 5/3, 2, 3/2, 1}= 2.

An A* Algorithm for Computing Edit Distance 191

4 A∗ Algorithm for Computing the Tree Edit Distance
for Unordered Trees

In order to transform the problem of finding the shortest path to one of com-
puting τ(T, S) in the A∗ algorithm, we introduce the edit distance search tree
ET (T, S) between T and S. Suppose that every node t ∈ T and s ∈ S is num-
bered by its breadth-first search index bf T (t) and bf S(s) starting from 0.

Definition 5 (Edit distance search tree). For trees T and S, an edit distance
search tree ET (T, S) of T and S is a tree such that the depth is |T |−1, the label
of the root is 0 and every non-leaf node has |S| children labeled by ε, 1, . . . , |S|−1.

Furthermore, we say that a node v in ET (T, S) is valid if the following set
Mv of pairs of nodes in T and S forms a mapping between T and S.

Mv =

{
(t, s) ∈ T × S

∣∣∣∣
w ∈ UPET(T,S)(v)− {ε},
d(w) = bf T (t), l(w) = bf S(s)

}
.

In this paper, we identify the edit distance search tree ET (T, S) with one con-
sisting of just valid nodes, and we also call the latter the edit distance search
tree. Hence, the depth of ET (T, S) is |T | − 1 and the degree of ET (T, S) is at
most |S|. Every node v ∈ ET (T, S) denotes the pair (t, s) ∈ T × S, which is a
component of a mapping, such that d(v) = bf T (t) and l(v) = bf S(s)(�= ε).

Example 2. Consider the trees T and S in Figure 3 (left). Here, the number
attached to nodes in T and the number of nodes in S denote the breadth-first
search index of T and S, respectively.

Figure 3 (right) illustrates the edit distance search tree ET (T, S) of T and
S. For example, the path 〈0, 1, ε, 2〉 in ET (T, S) consisting of the underlined
number represents the mapping {(0, 0), (1, 1), (3, 2)} between T and S. In this
path, the node labeled with 1 at depth 1 has just one child ε, because the mapping
{(0, 0), (1, 1)} cannot contain the pair (2, 2) satisfying the ancestor condition.

� �

� �

� �

� �

� �

� �

� �

�

�

�

�

�

�

�

� � �

�

�

�

�

�

�

� �

�

�

�

T S ET (T, S)

Fig. 3. Trees T and S (left) and the edit distance search tree ET (T, S) (right) in
Example 2

We explain how to compute the values of g∗(t, s) and h∗(t, s) in the A∗ algo-
rithm. Let v be a node in ET (T, S) such that d(v) = bf T (t) and l(v) = bf S(s)
and vp the parent of v in ET (T, S) such that d(vp) = bf T (tp) and l(vp) =
bf S(sp). Also we define the set Nv(s) ⊆ S as follows.

192 S. Higuchi et al.

Nv(s) =

{
s′ ∈ S

∣∣∣∣
0 ≤ bf S(s

′) ≤ bf S(s), and
Mv ∪ {(t′, s′)} is not a mapping for every t′ ∈ T

}
.

Then, we compute g∗(t, s) as follow.

g∗(t, s) = g∗(tp, sp) + |Nv(s)|. (2)

On the other hand, consider h∗(t, s). If s �= ε, then we can compute h∗(t, s)
according to the equation (1). Otherwise, that is, in the case that s = ε, first
search for the nearest ancestor t′ ∈ UPT (t) to t in T such that d(v′) = bf T (t

′)
and l(v′) = bf S(s

′) �= ε for some v′ ∈ ET (T, S). For this t′, let v be a node
in ET (T, S) such that d(v) = t′. Also suppose that l(v) = s′, d(vp) = t′p and
l(vp) = s′p. Then, we define c(t′) as follows.

c(t′) =
{
g∗(t′p, s

′
p)− g∗(t′, s′), if l(v) �= ε,

g∗(t′p, s′p)− g∗(t′, s′) + 1, if l(v) = ε.

Then, we compute h∗(t, s) with the equation.

h∗(t, s) =

⎧
⎨

⎩

the right hand side of the equation (1), if s �= ε,

h∗(t′, s′)−
∑

t′′∈T (t′)

c(t′′), if s = ε. (3)

Hence, the A∗ algorithm computes τ(T, S) by finding the path from the root
to the leaves with the minimum estimated value f∗(t, s) = g∗(t, s) + h∗(t, s) in
ET (T, S) according to the equations (1), (2) and (3). Since the full construction
of ET (T, S) in the A∗ algorithm is too redundant, we design the A∗ algorithm
as the best-first search for ET (T, S) with constructing just necessary branches
of ET (T, S).

Finally, we summarize the A∗ algorithm for computing τ(T, S) as follows,
where L is a list of triples. Assume here that every mapping contains the pair of
the roots in T and S.

1. Add ((0, 0), g∗(0, 0), h∗(0, 0)) toL and draw the node labeled by 0 inET (T, S).
2. Select ((t, s), g∗(t, s), h∗(t, s)) in L such that g∗(t, s) + h∗(t, s) is minimum.
3. If bf T (t) = |T | − 1, then output g∗(t, s) + h∗(t, s) and halt. Otherwise:

(a) Select v ∈ ET (T, S) such that d(v) = t and l(v) = s.
(b) Draw the node u such that l(u) = ε in ET (T, S) as the child of v, and

add ((t+ 1, ε), g∗(t+ 1, ε), h∗(t+ 1, ε)) to L.
(c) For t′ ∈ T such that bf T (t

′) = d(v)+1 and for every s′ ∈ S, if s′ satisfies
that Mv ∪ {(t′, s′)} forms a mapping between T and S, then draw the
node u in ET (T, S) such that bf S(s

′) = l(u) as the child of v and add
((t′, s′), g∗(t′, s′), h∗(t′, s′)) by the equations of (1), (2) and (3) to L.

(d) Go to the statement 2.

Example 3. We apply the A∗ algorithm to compute the edit distance between T
and S in Figure 4. Here, the number attached to nodes in T and S denotes the
breadth-first search index of T and S, respectively.

An A* Algorithm for Computing Edit Distance 193

� �

� �

� �

� � � �

� �

� �

� � � �

� �

T S

Fig. 4. Trees T and S in Example 3

Then, Figure 5 illustrates the running example of the A∗ algorithm for the trees
T and S in Figure 4, with constructing the edit distance search tree ET (T, S),
from the root to leaves. Here, the number attached to a node n in ET (T, S)
denotes the value of g∗(t, s)+h∗(t, s). Now we explain the run of the A∗ algorithm
with Figure 5.

At the step (0), the A∗ algorithm adds the pair (0, 0) to a mapping and
constructs the children of 0 at depth 1 in ET (T, S).

At the step (1), the A∗ algorithm selects the path 〈0, ε〉 in ET (T, S), because
the value 1+1 of the node ε is minimum in the values at the depth 1 in ET (T, S).
Then, the A∗ algorithm adds no pair to a mapping and constructs the children
of ε at depth 2 in ET (T, S).

At the step (2), the A∗ algorithm selects the path 〈0, ε, 1〉 in ET (T, S), because
the value 2+0 of the node 1 is minimum in the values at the depth 2 in ET (T, S).
Then, the A∗ algorithm adds the pair (2, 1) to a mapping and constructs the
children of 1 at depth 3 in ET (T, S).

At the step (3), the A∗ algorithm selects the path 〈0, ε, 1, 4〉 in ET (T, S),
because the value 2 + 0 of the node 4 is minimum in the values at the depth
3 in ET (T, S). Then, the A∗ algorithm adds the pair (3, 4) to a mapping and
constructs the children of 4 at depth 4 in ET (T, S).

At the step (4), the A∗ algorithm selects the path 〈0, ε, 1, 4, 3〉 in ET (T, S),
because the value 2 + 0 of the node 3 is minimum in the values at the depth 4
in ET (T, S). Then, the A∗ algorithm adds the pair (4, 3) to a mapping.

Hence, the A∗ algorithm returns 2+0 = 2 as τ(T, S), and its mapping between
T and S is {(0, 0), (2, 1), (3, 4), (4, 3)}.

5 Experimental Results

We give experimental results by comparing the A∗ algorithm with the exhaustive
search algorithm designed by Shasha et al. [6] and the clique-based algorithm
designed by Fukagawa et al. [2]. Here, our computer environment is that OS is
Microsoft Windows 7, CPU is Core i7 920 2.67GHz and RAM is 3GB.

We use the same dataset as [2], consisting of 352 glycan data including 137
leukemia and 14 erythrocyte. While we implement both the A∗ algorithm and

194 S. Higuchi et al.

(0)

�

� �

� �

� �

� � � �

�

� �

� �

� � � �

� �

� �

� � �

(1)

�

� �

� �

� �

� � � �

�

� �

� �

� � � �

� �

�

�

�

� � �

�

� � �

�

� � �

�

� � �

�

� � �

�

� � �

(2)

�

� �

� �

� �

� � � �

�

� �

� �

� � � �

� �

�

�

�

�

� � �

�

� � �

�

� � �

�

� � �

�

� � �

�

� � �

�

� � �

� � � � � � � � �

� � �

�

� � �

(3)

�

� �

� �

� �

� � � �

�

� �

� �

� � � �

� �

�

�

�

�

�

� � �

�

� � �

�

� � �

� � � �

�

� � �

�

� � �

�

� � �

� � � � �

� � �

�

� � �

� � � � � � � � �

� � �

�

� � �

(4)

�

� �

� �

� �

� � � �

�

� �

� �

� � � �

� �

�

�

�

�

�

�

� � �

�

� � �

�

� � �

� � � �

�

� � �

� � � � � � � �

�

� � �

�

� � �

� � � � �

� � �

�

� � �

� � � � � � � � �

� � �

�

� � �

Fig. 5. The running example of the A∗ algorithm for the trees T and S in Figure4,
with constructing the edit distance search tree ET (T, S)

the exhaustive search algorithm, we cite the result of the clique-based algorithm
to the paper [2]1. Then, we obtain the result described in Table 1.

Hence, the A∗ algorithm is much efficient than the exhaustive search algo-
rithm [6] and so efficient as the clique-based algorithm [2] to compute τ . It is
advantage for the A∗ algorithm to adopt the unit cost function (and then extend
an arbitrary cost function), while the clique-based algorithm [2] depends on a
special cost function such that γ(l1, l1) = 2 and γ(l1, l2) = 1 for l1 �= l2.

Furthermore, we evaluate the effect of lower bounding functions in the A∗

algorithm. Table 2 shows the running time of the A∗ algorithm when excluding
at most one lower bounding function.

Hence, for glycan data, n(T, S) is the most effective lower bounding function.
Also d∞(T, S) and l∞(T, S) are more effective than d1(T, S)/3 and l1(T, S)/2,
respectively.

1 The computer environment of the clique-based algorithm [2] is that OS is Microsoft
Windows XP, CPU is Intel Core 2 Duo 2.8GHz and RAM is 3.48GB.

An A* Algorithm for Computing Edit Distance 195

Table 1. The running time (sec.) to compute unordered tree edit distance

all data leukemia and erythrocyte

exhaustive search algorithm [6] 2133.03 751.28
A∗ algorithm 161.56 21.36

clique-based algorithm [2] – 48.33

Table 2. The effect of lower bounding functions in the A∗ algorithm (sec.)

excluded lower bounding function all data leukemia and erythrocyte

none 161.56 21.36

n(T, S) 338.61 41.60
d1(T, S)/3 169.12 21.28
d∞(T, S) 207.06 32.64
l1(T, S)/2 176.92 21.92
l∞(T, S) 187.44 24.32

6 Conclusion

In this paper, we have designed and implemented the A∗ algorithm for com-
puting an edit distance between rooted labeled unordered trees. Then, we have
applied the A∗ algorithm to glycan data and obtained the result that the A∗

algorithm is much efficient than the exhaustive search algorithm [6] and so effi-
cient as the clique-based algorithm [2]. Furthermore, we have evaluated that
the difference of the nodes of subtrees is the most effective lower bounding
function.

It is a future work to apply the A∗ algorithm to other data such as XML
data and evaluate the effect of lower bounding functions, that is, analyze the
relationship between the structures of trees and the effect of lower bounding
functions. It is also a future work to improve the A∗ algorithm by introducing
other lower bounding functions or to design other algorithm to compute an
unordered edit distance more efficient than the A∗ algorithm.

Acknowledgment. The authors would like to thank Prof. Tetsuji Kuboyama
at Gakushuin University for his fruitful suggestion to improve the experimental
results. Also they would like to thank the anonymous reviewers of ALSIP’11 for
their valuable comments to revise this paper.

196 S. Higuchi et al.

References

1. Bille, P.: A survey on tree edit distance and related problems. Theoret. Comput.
Sci. 337, 217–239 (2005)

2. Fukagawa, D., Tamura, T., Takasu, A., Tomita, E., Akutsu, T.: A clique-based
method for the edit distance between unordered trees and its application to analysis
of glycan structures. BMC Bioinformatics 12 (2011)

3. Hirata, K., Yamamoto, Y., Kuboyama, T.: Improved MAX SNP-Hard Results for
Finding an Edit Distance between Unordered Trees. In: Giancarlo, R., Manzini, G.
(eds.) CPM 2011. LNCS, vol. 6661, pp. 402–415. Springer, Heidelberg (2011)

4. Horesh, Y., Mehr, R., Unger, R.: Designing an A∗algorithm for calculating edit
distance between rooted-unordered trees. J. Comput. Bio. 13, 1165–1176 (2006)

5. Kailing, K., Kriegel, H.-P., Schönauer, S., Seidl, T.: Efficient Similarity Search
for Hierarchical Data in Large Databases. In: Bertino, E., Christodoulakis, S.,
Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004.
LNCS, vol. 2992, pp. 676–693. Springer, Heidelberg (2004)

6. Shasha, D., Wang, J.T.-L., Zhang, K., Shih, F.Y.: Exact and approximate algo-
rithms for unordered tree matching. IEEE Trans. Sys. Man and Cybernet. 24,
668–678 (1994)

7. Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26, 422–433 (1979)
8. Zhang, K., Shasha, D.: Tree pattern matching. In: Apostolico, A., Galil, Z. (eds.)

Pattern Matching Algorithms, pp. 341–371 (1997)
9. Zhang, K., Jiang, T.: Some MAX SNP-hard results concerning unordered labeled

trees. Inform. Process. Lett. 49, 249–254 (1994)
10. Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered

labeled trees. Inform. Process. Lett. 42, 133–139 (1992)
11. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between

trees and related problems. SIAM J. Comput. 18, 1245–1262 (1989)

	An A* Algorithm for Computing Edit Distancebetween Rooted Labeled Unordered Trees
	Introduction
	Preliminaries
	A-* Algorithm and Lower Bounding Functions
	A-* Algorithm for Computing the Tree Edit Distance for Unordered Trees
	Experimental Results
	Conclusion
	References

