
N.T. Nguyen (Ed.): Transactions on CCI VII, LNCS 7270, pp. 61–81, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Engineering Multi-Agent Systems
through Statecharts-Based JADE Agents and Tools

Giancarlo Fortino, Francesco Rango, and Wilma Russo

Dept. of Electronics, Informatics and Systems (DEIS) – University of Calabria,
Via P. Bucci, cubo 41C, 87036 Rende (CS), Italy

{g.fortino,w.russo}@unical.it, frango@si.deis.unical.it

Abstract. The JADE framework, which is one of the most used in the AOSE
community to program and execute multi-agent systems (MASs), still needs to
be further supported by methods and tools for enabling a more effective
modeling and prototyping of JADE-based MASs. In this paper we propose a
framework and a related tool supporting a Statecharts-based development of
JADE-based MAS with the purpose of providing an effective approach for
engineering multi-agent systems and leveraging agent-oriented development
methodologies and processes adopting JADE as target agent platform. In
particular, a framework for programming JADE behaviors through a variant of
the Statecharts, named Distilled StateCharts (DSCs), has been first developed
by enhancing the JADE add-on HSMBehaviour. Then, to enable rapid
prototyping of JADE agents, a visual tool for DSCs has been extended with
translation rules based on the developed framework that allows to automatically
translate DSC specifications into DSC-based JADE behaviors. The proposed
approach is exemplified through a case study concerning an agent-based
meeting organization system.

Keywords: Statecharts, Software agents, JADE, Visual programming, Automatic
code generation, CASE tool.

1 Introduction

In the last decade the agent oriented software engineering (AOSE) research area has
produced a rich set of methodologies and tools that can be actually exploited for the
development of complex software systems in terms of multi-agent systems (MASs)
[1]. In parallel with AOSE, the mainstream software engineering area has driven
UML 2.0 [2] along with related methodologies and tools to become the de facto
standard for the development of software systems. In particular, the UML state
machines, derived from the Harel’s Statecharts [3], are an effective and widely
adopted formalism for the specification of active component behaviors and protocols
in general-purpose and real-time systems. It is widely recognized that the benefits
provided by Statecharts for engineering complex software systems are mainly visual
programming, executable specifications, protocol-oriented specifications, and a set of
CASE tools facilitating software development. In this context, to effectively develop

62 G. Fortino, F. Rango, and W. Russo

multi-agent systems (MAS), models, frameworks and tools are needed to support
flexible and rigorous specifications and subsequent implementations of agent
behaviors and agent-to-agent interaction protocols [4]. Thus the use of Statecharts-
based models, frameworks and tools for the development of MASs could provide the
same benefits in the AOSE research area as those provided in the context of
traditional software engineering. However, in the AOSE research area, Statecharts are
still under-used to specify agent behaviors and protocols even though some proposed
agent models founded on different types of state machines are available [5, 6, 7, 8,
9, 10, 12].

In this paper we propose programming frameworks and techniques supporting a
Statecharts-based development of JADE-based MASs. The main contribution of this
paper is twofold: (i) the integration of Statecharts and MASs to deliver the same
important benefits provided by Statecharts for the engineering of traditional software
systems; (ii) the definition of a Statecharts-driven development method for the JADE
platform which is one of the most used agent platform in the agent community.
Moreover, the proposed approach can be fruitfully exploited to leverage already
existing agent-oriented development methodologies and processes adopting JADE as
target agent platform (e.g. INGENIAS [16], PASSI [17], MESSAGE [18]). In
particular, a framework for programming JADE behaviors through the Distilled
StateCharts (DSCs) formalism, named DistilledStateChartBehaviour, has been
developed by enhancing the JADE HSMBehaviour. To enable rapid prototyping of
JADE agents, a CASE tool obtained by enhancing the ELDATool with a new
component based on the DistilledStateChartBehaviour for automatic code generation
of DSC-based behaviors into JADE code, is made available. The proposed approach
is exemplified through a case study regarding an agent-based meeting organization
system.

The rest of this paper is organized as follows. Section 2 discusses and compares
related work. In section 3, after an introduction of the basic concepts of the Distilled
StateCharts formalism, the JADE DistilledStateChartBehaviour is described. In
section 4 a CASE tool-driven approach for engineering JADE-based MAS from
modeling to implementation, is presented. Section 5 details a case study exemplifying
the proposed Statecharts-based approach and provides an experimental evaluation of
the scalability of the developed MAS. Finally, conclusions are drawn and on-going
work delineated.

2 Related Work

To date several proposals are available which provide frameworks based on state
machines to design and implement agent behaviors and interactions. Among such
proposals, the most known and interesting ones are the JADE FSMBehaviour [5], the
SmartAgent framework [6], the ELDA agent model [7], and the Bond agent framework
[8]. In particular, the JADE framework [5], one of the most used agent-oriented
framework in academy and industry, provides the FSMBehaviour [9] for the modeling
of agent behaviors based on finite state machines (FSMs). However agent behavior
programming is not flexible as it does not rely on ECA (Event-Condition-Action)-rule

 Engineering Multi-Agent Systems through Statecharts-Based JADE Agents and Tools 63

based transitions, and does not provide important mechanisms for reducing behavior
complexity such as well-structured OR-decomposition and history entrances. In
particular, although states of the FSMBehaviour can be FSMBehaviours or other
behaviors, mechanisms for handling this induced state hierarchy are not provided. The
SmartAgent model [10, 6] extends the JADE CompositeBehaviour and provides a
behavior based on hierarchical state machines driven by ECA rules, named
HSMBehaviour. However, the HSMBehaviour does not even support shallow and deep
history entrance mechanisms, useful for reducing behavior complexity even further and
for transparently archiving agent states. In addition, although visual modeling and
emulation of HSMBehaviour agents can be done with the provided HSMEditor [11],
automatic translation of modeled agents into JADE code is not supported. The ELDA
(Event-driven Lightweight Distilled Statecharts-based Agents) agent model [7] is based
on a Statecharts-like machine, providing or-decomposition and history entrance
mechanisms, named Distilled StateCharts [12] suitable for the modeling of lightweight
agents for distributed computing. Moreover, they can be effectively modeled through
the ELDATool, a graphical tool for visual specification, automatic code translation and
simulation of ELDA-based systems [13]. However, an ELDA-based execution platform
is not yet available so confining the use of ELDA agents in the MAS simulation
domain. The behavior of the Bond agents [8] is based on a multi-plane state machine
where each plane is modeled as an FSM. However, the Bond agent model does not offer
the state hierarchy, history mechanisms, and tools for automating agent prototyping.
Finally other previous agent frameworks are ZEUS [14], which provides an execution
subsystem for non-hierarchical state machine-based agents, and the JACKAL
conversation engine that also uses a state machine model [15]. In Table 1 a comparison
in terms of behavioral, interaction and mobility models among the aforementioned
frameworks is provided. In particular, the differences about behavioral models are those
discussed above whereas, with respect to the interaction models, they are mainly based
on messages apart from Bond and ELDA which rely on multiple coordination models
(not only messages but also tuple spaces and publish/subscribe); moreover, the mobility
model is of the weak type apart from ELDA which allows for coarse-grain strong
mobility [7].

Table 1. Comparison among state machine oriented frameworks

64 G. Fortino, F. Rango, and W. Russo

3 Statecharts-Based JADE Agents

In this section, the DSC formalism, which provides a powerful and rich set of
modeling concepts enabling an effective specification of agent behavior, is
overviewed. Then, the proposed framework for programming DSC-based JADE
agents, which enhances JADE with the benefits deriving from Statecharts, is described.

Fig. 1. A FIPA compliant DSC-based agent behavior

3.1 The Distilled StateCharts Model

The Distilled StateCharts (DSCs) formalism [12] is derived from the Harel’s
Statecharts through a distillation process, purposely carried out for the modeling of
lightweight mobile agent behavior, which led to the following structural/semantics
differences between Statecharts and DSCs:

• State entry and exit actions as well as activities are empty so actions can be only
hooked to transitions;

• Each composite state has a pseudo initial state from which the default entrance of
the composite state originates;

• Transitions (apart from default entrances and default history entrances) are
always labeled by an event;

• Default entrance and default history entrances can only be labeled with an action;
• And-decomposition of states and related synchronization modeling constructs are

not used as DSCs were introduced for supporting the behavioral modeling of
single-threaded agents;

• Run-to-completion step semantics, defined according to the UML state machines
semantics [19], are adopted.

A DSC-based agent behavior relies on an enhanced basic template built according to
the FIPA agent lifecycle [20] which JADE agents are compliant with (see Figure 1).
In particular, the ACTIVE state, in which an agent carries out its goal-oriented tasks,
is always entered through a deep history entrance (H*) whose default history entrance

 Engineering Multi-Agent Systems through Statecharts-Based JADE Agents and Tools 65

targets the active DSC (ADSC) state, which actually models the active agent
behavior. The default entrance of ACTIVE targeting H* allows restoring the agent
execution state after agent migration and, in general, after agent suspension.

3.2 A Framework for Programming DSC-Based JADE Agents

A new JADE behavior, named DistilledStateChartBehaviour, has been defined to
program JADE agents through the DSC formalism. In particular, the
DistilledStateChartBehaviour, which is defined by enhancing the HSMBehaviour [10,
6] with the DSC mechanisms, specifically implements the history mechanisms that
allow a partial (through shallow history H) or full (through deep history H*) recovery
of the state history when re-entering into any state previously exited.

Fig. 2. Simplified class diagram of the JADE DistilledStateChartBehaviour

66 G. Fortino, F. Rango, and W. Russo

Figure 2 shows a simplified UML class diagram of the DistilledStateChartBehaviour.
In particular, the DistilledStateChartBehaviour inherits from the JADE
CompositeBehaviour and includes both a set of nested DistilledStateChartBehaviours
and other Behaviours, which represent the states of the DSC. It maintains the list of
transitions, represented by the DistilledStateChartTransition class, and handles the
event-driven mechanism for transition firing which also determines the current state of
the DSC state machine at run-time. As it is shown in Figure 3, an event E, instance of
the ACLMessage class, is fetched from the JADE event queue by the dispatcher
component of the DistilledStateChartBehaviour and delivered to the DSC current state
(S1) so triggering a state transition to a new state (S2) if the guard C holds.

In the following a detailed description of the main mechanisms (state management,
behavior scheduling, event handling, transition firing and history entrances) of the
DistilledStateChartBehaviour is presented.

Fig. 3. The event handling scheme

State Management. Any type of JADE behavior can be added as simple, initial or
final state to the DistilledStatechartsBehaviour through the methods addState,
addInitialState and addFinalState, respectively. The createRootForDSCTemplate
method automatically builds the root of the DistilledStatechartsBehaviour that allows
entering into the active state through the deep history entrance (see Figure 1). The
initialAction method allows inserting an initial action on the default entrance. The
methods onEnd, onStart and action should be kept empty.

Behaviour Scheduling. The DistilledStateChartBehaviour receives the thread of
control from the JADE run-time system through the invocation of the action method
according to the cooperative concurrency mechanism of JADE. The action method of
the DistilledStateChartBehaviour, in turn, invokes the action method of the current
state; the DistilledStateChartBehaviour starts executing the initial state, activates
other states by following the fired transitions and, finally, terminates when enters into
one of its final states. On the invocation of the action method of the current behavior,
the Wrapper object, which encapsulates each simple state, allows checking all
transitions outcoming from the current state and executing the fireable transitions
(through the findAndFireTransition method). This mechanism allows implementing
the UML state machine rule: “as soon as a transition is able to fire, it does”. Indeed,
the actual implementation is based on the single-threaded model of JADE, which does
not support preemption of an action execution.

 Engineering Multi-Agent Systems through Statecharts-Based JADE Agents and Tools 67

Event Handling. An important feature of the DSC state machines is the event driven
mechanism for triggering transitions. An event can be represented as a regular JADE
ACLMessage so enabling the reuse of the message queuing mechanism of JADE (see
Figure 3): when the DistilledStateChartBehaviour is checking for a transition firing,
the receive method of JADE is invoked to fetch the first message in the queue, which
is then passed to the transitions to check if one of them can be fired. The main issue of
such mechanism is the integration of behaviors as states. In particular, as an event
message in queue is fetched through the receive method, if this method is invoked
inside the action method, it can interfere with the transition firing mechanism.
Moreover, if a message/event is received in a state in which the event is not expected,
the two following options, which can be set in the DistilledStateChartBehaviour
constructor are possible: the event is re-inserted into the queue
(putbackMessage=true) so that it could be fetched by another state that is able to
handle it, or it is discharged (putbackMessage=false). The same event handling
mechanism can be also used when an agent has multiple behaviors for the purpose of
avoiding important event losses. In this case, the message template mechanism based
on selective filters for events can be used. In particular, each behavior performs a
receive operation with a different message template so as to fetch only the events it is
able to handle.

Transition Firing. A transition is represented by the DistilledStateChartTransition
class and is added through the addTransition method which takes as parameters
the transition to be added and the source state. The target state is defined
at DistilledStateChartTransition creation and can be at any level of the
hierarchy so supporting the specification of inter-level state transitions. The
DistilledStateChartTransition unifies the mechanisms of trigger event and guard into
the trigger(Behaviour source, ACLMessage event) method, where source is the
transition source state and event is the transition triggering event. The trigger method
checks for the transition firing and, if the check is successful, the action method of
DistilledStateChartTransition, which can contain the action hooked to the transition,
is invoked. The check based on both the trigger and findAndFireTransition methods
not only involves the current state but also all the states, from the inner to
the outer, encapsulating it. The DistilledStateChartPerformativeTransition and
DistilledStateChartTemplateTransition classes extend DistilledStateChartTransition
providing a new version of the trigger method that allows to check respectively if the
received event respects a specific performative or MessageTemplate.

History Entrances. The DistilledStateChartBehaviour includes the
defaultDeepHistoryEntrance and the defaultShallowHistoryEntrance referring to the
states (or behaviors) associated to the deep and shallow history entrances, respectively.
To restore the state history, the lastState variable of a composite state of the
DistilledStateChartBehaviour type, which stores a reference to the last visited state
before exiting the composite state, is used. Moreover, the DistilledStateChartTransition
includes the two constants DEEP_HISTORY and SHALLOW_HISTORY that indicate
that the target composite state is to be entered through the deep or shallow history.

68 G. Fortino, F. Rango, and W. Russo

4 CASE Tool-Driven Development of DSC-Based JADE Agents

The development of DSC-based JADE agents relies on the process reported in
Figure 4 which is organized in the following three phases:

- The Modeling phase produces the DSC-based MAS Model on the basis of the
High-Level System Design which can be defined either ad-hoc or by means of
other methodologies which also support the analysis and high-level design phases
[17, 18, 16]. In particular, the DSC-based MAS Model is specified through the
DSC formalism and the JADE API.

- The Coding phase works out the DSC-based MAS Model and automatically
produces the JADE MAS code according to the DistilledStateChartBehaviour.

- The Deployment and Execution phase is fully supported by the JADE Platform to
run the developed MAS. A careful evaluation of the obtained Testing Results
(e.g. execution traces, performance indices, etc) with respect to the functional and
non-functional requirements could lead to a further iteration step which starts
from a new (re)modeling activity.

[iterate]

[done]

DSC-based MAS
Model

JADE M AS
Code

Results

DSC Formalism
JADE API

JADE DistilledStateChartBehaviour
JADE API

JADE Platform

Phases:

Workproducts:

Models&Frameworks:

CASE Tool: DSC-based CASE Tool

High-leve l
Sys te m Design

Modeling Coding Deployment &
Execution

Fig. 4. The CASE-driven development process

The first two phases are fully supported by the DSC-based CASE tool that makes
it available (i) the visual modeling of the DSC-based behavior of the agents
composing the MAS under-development and (ii) the automatic translation of the
modeled agent behaviors into ready-to-be-executed JADE code according to the
DistilledStatechartsBehaviour framework.

The CASE tool is obtained by enhancing the ELDATool [7], a graphical tool for
visual specification, automatic code translation and simulation of ELDA-based
systems, with a new component named CodeGeneratorForJADE embedded into the
ELDAEditor plug-in. This important facility, which is not offered by the
HSMBehaviour graphical tools [11], makes the programming of Statecharts-based
JADE agents easier than manual programming of the HSMBehaviour and
DistilledStateChartBehaviour based on complex programming patterns.

As the ELDATool is based on the ELDA agent model [7], the specific event types,
exploitable for the modeling phase, are: (i) the ELDAEventMSG, which represents

 Engineering Multi-Agent Systems through Statecharts-Based JADE Agents and Tools 69

asynchronous messages; (ii) the ELDAEventInternal, which represents self-triggering
events. Both kinds of events derive from the ELDAEvent class and are inserted into
an ACLMessage as message content. Moreover it is worth noting that the
specification of state variables, actions, guards, events and functions is based on the
Java language and the JADE API.

5 A Case Study: An Agent-Based Meeting Organization System

In this section the DSC-based development of an agent-based meeting organization
system, in which agents coordinate to arrange meetings, is proposed. The developed
MAS is derived from a case study based on a meeting participant protocol proposed
in [21, 11]. In particular, the MAS is based on three types of agents (see Figure 5): (i)
MeetingRequester (MRA), which is the meeting organizer; (ii) MeetingBroker
(MBA), which arranges meetings on the basis of the MRA requests; (iii)
MeetingParticipant (MPA), which represents a meeting participant.

Fig. 5. Class diagram of multi-agent meeting system

In the following subsections we first describe the agent interactions for the meeting
arrangement and detail the agent behaviors and, then, provide some implementation
details of the agent-based system along with an experimental performance evaluation
aiming at analyzing the MAS scalability.

5.1 Agent Interactions

The defined agents interact with each other to fulfill a meeting arrangement that can
be constituted by one or more iterations (i.e. an iteration is an attempt to arrange a
given meeting driven by the MRA requests). The interaction protocol is defined
through the sequence diagrams reported in Figures 6-8 that show successful and
unsuccessful cases. Figure 6 shows the 1-iteration successful interaction scenario in
which a meeting is arranged with two participants (even though it can be generalized
to n-participants). In particular, after the Request sent by the MRA to the MBA, the
successful event flow is: the Propose event is sent by the MBA to the two MPAs that,
in turns, accept it and send the AcceptProposal event to the MBA that finalizes the
meeting and sends out the Confirm event to the accepting MPAs and MRA.

In Figure 7, the 2-iteration successful interaction scenario, in which a meeting is
arranged with three participants, is reported. Differently from the previous interaction
scenario, here the MPA1 refuses the proposal by sending the RejectProposal event to
the MBA that, in turn, send the AskForRequest event to the MRA to have information
about new potential participants. After receiving such information the MBA therefore
sends out a Propose event to MPA3 that accepts it.

70 G. Fortino, F. Rango, and W. Russo

Fig. 6. Sequence diagram of agent interactions: successful case after 1-iteration

Fig. 7. Sequence diagram of agent interactions: successful case after 2-iterations

 Engineering Multi-Agent Systems through Statecharts-Based JADE Agents and Tools 71

Finally, in Figure 8, the unsuccessful interaction scenario, in which a meeting is
being arranged with three participants, is shown. MPA2, MPA3 and MPA4 refuse the
proposal so that after three additional requests (the maximum fixed number of
attempts) the arrangement of the meeting fails.

Fig. 8. Sequence diagram of agent interactions: unsuccessful case

5.2 Agent Behaviors

While the behaviors of the MRA (see Figure 9) and MPA (see Figure 10) are
straightforward, more complexity is retained by the MBA behavior (see Figure 11). In
particular, each behavior is described in terms of a DSC diagram, state variables and
actions. Moreover, Table 2 summarizes the event-based interaction relationships

72 G. Fortino, F. Rango, and W. Russo

Table 2. Event-based interaction relationships among agents

among agents, specifying the event source agent, which generates the event, and the
event target agent, which receives and handles the event.

According to the MRA behavior (see Figure 9 and Tables 3-4), the MRA sends a
Request event to the MBA (see action sendRequest) containing all needed
information (potential participants, minimum number of participants, meeting topic,
and chosen date) related to the appointment to arrange and waits for the meeting
confirmation. As soon as the MRA receives the AskForRequest event, it will send out
a new or modified Request (see action sendRequest). The reception of the Confirm
event signals an arranged meeting (action meetingDone) whereas the Cancel event
signals a failure in organizing a meeting (action meetingCanceled).

According to the MPA behavior (see Figure 10 and Tables 5-6), in the Started
state, the MPA can receive the Propose even to check an appointment (see action
checkAppointment) or to refuse it. As soon as it receives the Confirm event, the
MPA finalizes the appointment set-up (see action fixAppointment).

As described above, the MBA manages the meeting arrangement requests sent by
the MRA, and coordinates the MPAs. The MBA behavior (see Figure 11 and Tables 7-
8) starts in the Negotiation composite state and acts as follows: upon the reception of
the Request event, the MBA sends all the MPAs a Propose event containing the
appointment to schedule (action sendPropose), starts a timer (action
initializeTimer) and finally goes into the Arrange composite state. The MPAs
send the MBA an AcceptProposal event to accept the appointment or a RejectProposal
event to refuse it (see Figure 10). On the basis of the received responses, the MBA
accepts (action acceptParticipant) or excludes (action excludeParticipant)
the participants and, when it receives all the responses or when the timeout associated
to the set timer expires (action sendArrangementDone), sends an ArrangementDone
event to itself to carry out the final operations (see action completeArrangement)
for the current appointment as follows:

• If at least M MPAs have accepted the appointment, the meeting organization is
successfully done; then, the MBA sends a Confirm event to the MRA and to the
accepting MPAs, which schedule the appointment in their rosters (see Figure 10).

• If the appointment has been accepted by less than M MPA and it is not yet reached
the maximum limit of N requests of new participants sent to the MRA, the MBA
issues a request of new participants to the MRA by sending it an AskForRequest
event. Then, the MRA sends a new Request event to the MBA indicating new
participants for the same appointment (see Figure 9). This way, the MBA can retry
to schedule the appointment involving the new provided participants.

 Engineering Multi-Agent Systems through Statecharts-Based JADE Agents and Tools 73

• If the appointment has been accepted by less than M MPA and it is reached the
maximum limit of N requests of new participants sent to the MRA, the appointment
is canceled and a Cancel event is sent to the accepting MPAs and MRA.

Fig. 9. The state diagram of the DSC-based behavior of the MRA

Table 3. Variables of the DSC-based behavior of the MRA

STATE VARIABLES
ROOT String meetingBroker

PrincipalState Appointment currentAppointment

Table 4. Actions and functions of the DSC-based behavior of the MRA

ACTIONS

sendRequest
if (currentAppointment == null) {
 String description = getDescription();
 Calendar date = getDate();
 int n = getNumberOfParticipants();
 java.util.ArrayList<AID> participantsList = new java.util.ArrayList<AID>();
 for(int i = 1; i <= n; i++){
 String nickname = getNickname(i);
 participantsList.add(new AID(nickname, AID.ISLOCALNAME));
 }
 currentAppointment = new Appointment(participantsList, date, description);
 java.util.ArrayList<AID> target = new java.util.ArrayList<AID>();
 target.add(new AID(meetingBroker, AID.ISLOCALNAME));
 Request msg = new Request(self(), target, currentAppointment);
 generate(msg);
}
else {
 int n = getNumberOfParticipants();
 java.util.ArrayList<AID> participantsList = new java.util.ArrayList<AID>();
 for(int i = 1; i <= n; i++){
 String nickname = getNickname(i);
 participantsList.add(new AID(nickname, AID.ISLOCALNAME));
 }
 currentAppointment = new Appointment(participantsList,
 currentAppointment.getDate(), currentAppointment.getDescription());
 java.util.ArrayList<AID> target = new java.util.ArrayList<AID>();
 target.add(new AID(meetingBroker, AID.ISLOCALNAME));
 Request msg = new Request(self(), target, currentAppointment);
 generate(msg);
}

meetingDone (omissis)

meetingCancelled (omissis)

74 G. Fortino, F. Rango, and W. Russo

Fig. 10. The state diagram of the DSC-based behavior of the MPA

Table 5. Variables of the DSC-based behavior of the MPA

STATE VARIABLES
PrincipalState java.util.Hashtable myCalendar = new java.util.Hashtable()

Appointment currentAppointment

Table 6. Actions and functions of the DSC-based behavior of the MPA

ACTIONS

checkAppointment
Propose p = (Propose) e;
currentAppointment = (Appointment) p.getData();
AID meetingBroker = p.getSource();
if(myCalendar.containsKey(getKey(currentAppointment.getDate()))){
 java.util.ArrayList<AID> target = new java.util.ArrayList<AID>();
 target.add(meetingBroker);
 RejectProposal msg = new RejectProposal(self(), target, null);
 generate(msg);
 java.util.ArrayList<AID> target2 = new java.util.ArrayList<AID>();
 target2.add(self());
 Cancel msg2 = new Cancel(self(), target2, null);
 generate(msg2);
} else{
 java.util.ArrayList<AID> target = new java.util.ArrayList<AID>();
 target.add(meetingBroker);
 AcceptProposal msg = new AcceptProposal(self(), target, null);
 generate(msg);
}

fixAppointment
myCalendar.put(getKey(currentAppointment.getDate()), currentAppointment);

queueEvent
java.util.ArrayList<AID> target = new java.util.ArrayList<AID>();
target.add(self());
e.setTarget(target);
generate(e);

 Engineering Multi-Agent Systems through Statecharts-Based JADE Agents and Tools 75

Fig. 11. The state diagram of the DSC-based behavior of the MBA

Table 7. Variables of the DSC-based behavior of the MBA

STATE VARIABLES
ROOT int contResponses

int contRequestsToMeetingRequester

WakerBehaviour timer

AID meetingRequester

int M, N

Arrange ArrayList<AID> acceptedParticipants

After the completion of the completeArrangement action, the MBA goes back into
the Negotiation composite state. The shallow history entrance (H) provides a
powerful modeling solution when the Arrange composite state is to be re-entered due
to a new Request related to the same appointment. In particular, when a new Request
event is received, the MBA goes into the most recently left simple state of the

76 G. Fortino, F. Rango, and W. Russo

Table 8. Actions and functions of the DSC-based behavior of the MBA

ACTIONS

sendPropose

Request r = (Request) e; Appointment app = (Appointment) r.getData();
contResponses = app.getParticipantsList().size();meetingRequester = r.getSource();
java.util.ArrayList<AID> target = new java.util.ArrayList<AID>();
for(int i=0; i < app.getParticipantsList().size(); i++)
 target.add(app.getParticipantsList().get(i));
Propose msg = new Propose(self(), target, app); generate(msg);
initializeTimer(e);
initializeTimer

timer = new WakerBehaviour(myAgent, 30000){
 protected void onWake() {
 java.util.ArrayList<AID> target = new java.util.ArrayList<AID>();
 target.add(self());
 TimeOut msg = new TimeOut(self(), target, null); generate(msg);
 }}; myAgent.addBehaviour(timer);
acceptParticipant

acceptedParticipants.add(e.getSource()); contResponses--;
if(contResponses == 0){
 java.util.ArrayList<AID> target = new java.util.ArrayList<AID>();
 target.add(self());
 ArrangementDone msg = new ArrangementDone(self(), target, null); generate(msg);}
excludeParticipant

contResponses--;
if(contResponses == 0){
 java.util.ArrayList<AID> target = new java.util.ArrayList<AID>();
 target.add(self());
 ArrangementDone msg = new ArrangementDone(self(), target, null); generate(msg);}
sendArrangementDone

java.util.ArrayList<AID> target = new java.util.ArrayList<AID>();
target.add(self());
ArrangementDone msg = new ArrangementDone(self(), target, null); generate(msg);
completeArrangement

myAgent.removeBehaviour(timer);
if(acceptedParticipants.size() >= M){
 java.util.ArrayList<AID> target = new java.util.ArrayList<AID>();
 target.addAll(acceptedParticipants); target.add(meetingRequester);
 Confirm msg = new Confirm(self(), target, null); generate(msg);
 contRequestsToMeetingRequester = 0;
 acceptedParticipants = new java.util.ArrayList<AID>();
} else{
 if(contRequestsToMeetingRequester > N){
 java.util.ArrayList<AID> target = new java.util.ArrayList<AID>();
 target.addAll(acceptedParticipants); target.add(meetingRequester);
 Cancel msg = new Cancel(self(), target, null); generate(msg);
 contRequestsToMeetingRequester = 0;
 acceptedParticipants = new java.util.ArrayList<AID>();
 } else{
 contRequestsToMeetingRequester++;
 java.util.ArrayList<AID> target = new java.util.ArrayList<AID>();
 target.add(meetingRequester);
 AskForRequest msg = new AskForRequest(self(), target, null); generate(msg);}}
init

contRequestsToMeetingRequester = 0;
acceptedParticipants = new java.util.ArrayList<AID>();
queueEvent

java.util.ArrayList<AID> target = new java.util.ArrayList<AID>();
target.add(self()); e.setTarget(target); generate(e);

 Engineering Multi-Agent Systems through Statecharts-Based JADE Agents and Tools 77

Arrange state, recovering exactly the same state variables and DSC status so
continuing from the previous arrangement state without discontinuity. Moreover, if
the Request event is received in the Arrange state, i.e. a Request from a different
MRA is received, the MBA enqueues the Request.

5.3 MAS Implementation

The implementation of the meeting organization MAS is completely supported by the
enhanced ELDATool features of visual modeling and automatic code generation.
Figure 12 reports a screenshot of ELDATool containing the fully developed system
described above. In particular, in the package explorer there are two folders: (i)
Meeting DSC containing the set of graphical DSC agent behaviors
(MeetingBroker.dsc, MeetingParticipant.dsc, MeetingRequester.dsc) and their related
actions, events, functions, and guards; (ii) Meeting_DSC_JADE_Implementation
containing the generated source code (src package). In the central panel, the
MeetingBroker.dsc is visualized (the complete diagram is reported in Figure 11).
Finally in the bottom panel, an excerpt of the generated code of the MeetingBroker is
reported. The code of the DistilledStateChartBehaviour framework along with the
generated source code of the meeting organization MAS is downloadable as (official)
Jade add-on from [22].

Fig. 12. A screenshot of the CASE tool showing the developed system

78 G. Fortino, F. Rango, and W. Russo

5.4 MAS Evaluation

The developed system was evaluated on a real experimental testbed composed of 50
workstations with the same hardware/software configuration (Windows XP
Professional SP2 32-bit, CPU MD Athlon 64x2 dual-core 2.90GHz, RAM 4GB, JRE
1.6.0) interconnected by a 100Mbps switched Fast Ethernet. In particular, the goal of
the evaluation was to compute the main application performance index, namely
Meeting Arrangement Time (MAT), characterizing the speed with which the system
replies to a user request, and analyze it by increasing the scale of the system. To this
purpose, a supplemental monitoring agent-based architecture, which is able to collect
statistical data about the application execution, was also developed and deployed atop
the experimental testbed. The test runs were executed by varying the number of
MRAs (and consequently the number of MBAs as there is a mapping 1-to-1 between
MRAs and MBAs) and the number of MPAs. The number of MRAs was varied in the
range [1..1000], whereas the number of MPAs was in the range [1..50]. In particular,
each MPA was launched in its own JADE container, whereas all MRAs were
launched in one different JADE container as well as all MBAs. Moreover, to avoid
unbalance in the MPA behavior, only the successful case after 1-iteration was
considered (see Section 5.1), so MPAs always agree to a meeting participation
proposal as soon as they receive it.

The obtained results for the MAT index, averaged over 30 execution runs, are
reported in Figure 13. As expected, MAT increases by increasing the number of
MRAs and MPAs. In particular, the system with 1000 MRAs in parallel degrades its
performance quadratically with the number of MPAs.

Fig. 13. Scalability evaluation of the system: meeting arrangement time by increasing the scale
of the system

 Engineering Multi-Agent Systems through Statecharts-Based JADE Agents and Tools 79

The MAS was also developed by using only the basic JADE framework without
using the DistilledStatechartsBehaviour framework and evaluated on the same testbed
with the same parameter setting. Performance evaluation results show an overlap of
the performances of the DSC-based MAS and the JADE-based MAS so that the
proposed framework does not introduce further overhead onto the system and system
performances only rely on the JADE run-time infrastructure.

6 Conclusion

This paper has proposed programming techniques and tools based on Statecharts for
the rapid development of JADE MASs. In particular, a new JADE behavior, named
DistilledStateChartBehaviour, has been defined which is based on the Distilled
StateCharts formalism providing hierarchical state machines including history
mechanisms and features for enabling an automatic restoring of the agent execution
state. The proposed DistilledStateChartBehaviour JADE add-on has been obtained on
the basis of the HSMBehaviour that was purposely debugged and optimized.
Moreover, the availability of a CASE tool, which supports the specification phase of
JADE agent behaviors based on the DistilledStateChartBehaviour and their automatic
translation into code, facilitates programming and enables rapid prototyping. As the
JADE platform is one of the most used agent platform in the AOSE community to
program and execute distributed agent systems, the paper proposal contributes to (i)
enrich already existing agent-oriented methodologies having JADE as target platform
with tools for further automating MAS development and (ii) foster a wider
introduction and exploitation of Statecharts-based techniques for agents.

The effectiveness of the proposed approach for the development of MAS has been
demonstrated through a case study concerning with a well-known agent-based meeting
arrangement application. Specifically, the DSC-based modeling allows for a
simplification of the MAS design and the availability of a visual tool supporting the
development lifecycle of MAS allows for the automatic code generation so enabling
rapid prototyping. Moreover, the exploitation of the DistilledStatechartsBehaviour
facilitates the development of MAS in which agents interact through well-defined
protocols as DSCs are a formalism well suited for defining agent protocols. This
claimed effectiveness was directly experimented by also developing the MAS for
meeting arrangement by means of the basic JADE framework. The developed DSC-
based MAS and the basic JADE-based MAS have been also deployed and executed on
an experimental testbed to analyze the system scalability. The obtained results show
that scalability is only affected by the JADE run-time architecture as performances of
the two developed systems overlap. Thus, the DistilledStatechartsBehaviour
framework does not introduce any performance penalty.

Future work is geared at (i) integrating Statecharts-based modeling and the defined
techniques within an MDD-driven agent-oriented methodology such as INGENIAS;
(ii) defining a reverse engineering technique to obtain the DSC-based agent visual
model from the agent source code compliant to the DistilledStateChartBehaviour.

80 G. Fortino, F. Rango, and W. Russo

References

1. Zambonelli, F., Omicini, A.: Challenges and Research Directions in Agent-Oriented
Software Engineering. Autonomous Agents and Multi-Agent Systems 9(3), 253–283
(2004)

2. Ambler, S.W.: The Elements of UML 2.0 Style. Cambridge University Press (2005)
3. Harel, D., Gery, E.: Executable Object Modeling with Statecharts. IEEE Computer 30(7),

31–42 (1997)
4. Luck, M., McBurney, P., Preist, C.: A manifesto for agent technology: towards next

generation computing. Autonomous Agents and Multi-Agent Systems 9(3), 203–252
(2004)

5. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE.
Wiley (2007)

6. Griss, M., Fonseca, S., Cowan, D., Kessler, R.: SmartAgent: Extending the JADE agent
behavior model. In: Proc. of the Agent Oriented Software Engineering Workshop,
Conference in Systems, Cybernetics and Informatics, Orlando, Florida (July 2002)

7. Fortino, G., Garro, A., Mascillaro, S., Russo, W.: Using Event-driven Lightweight DSC-
based Agents for MAS Modeling. International Journal on Agent Oriented Software
Engineering 4(2) (2010)

8. Boloni, L., Marinescu, D.C.: A component agent model – from theory to implementation.
In: Müller, J., Petta, P. (eds.) Proc. of the Second International Symposium from Agent
Theory to Agent Implementation (2000); Trappl, R. (ed.): Proc. of Cybernetics and
Systems, Austrian Society of Cybernetic Studies, Vienna, pp. 663–639 (March 2000)

9. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi agent systems with a FIPA-
compliant agent framework. Software Practice and Experience 31, 103–128 (2001)

10. Griss, M., Fonseca, S., Cowan, D., Kessler, R.: Using UML State Machines Models for
More Precise and Flexible JADE Agent Behaviors. In: AAMAS AOSE Workshop,
Bologna, Italy (July 2002)

11. Kessler, R., Griss, M., Remick, B., Delucchi, R.: A Hierarchical State Machine using
JADE Behaviours with Animation Visualization. Technical report, University of Utah
(2004)

12. Fortino, G., Russo, W., Zimeo, E.: A statecharts-based software development process for
mobile agents. Information and Software Technology 46(13), 907–921 (2004)

13. Fortino, G., Garro, A., Mascillaro, S., Russo, W.: ELDATool: A Statecharts-based Tool
for Prototyping Multi-Agent Systems. In: Proc. of the Workshop on Objects and Agents
(WOA 2007), Genova, Italy, September 24-25 (2007)

14. Nwana, H., Nduma, D., Lee, L., Collis, J.: ZEUS: a toolkit for building distributed multi-
agent systems. Artificial Intelligence Journal 13(1), 129–186 (1999)

15. Cost, R.S., Finin, T., Labrou, Y., Luan, X., Peng, Y., Soboroff, I., Mayfield, J.,
Boughannam, A.: Jackal: A Java-Based Tool for Agent Development. In: Working Notes
of the Workshop on Tools for Developing Agents, AAAI 1998 (1998)

16. García-Magariño, I., Gómez-Sanz, J.J., Fuentes-Fernández, R.: Model transformations for
improving multi-agent system development in INGENIAS. In: Gomez-Sanz, J.J. (ed.)
AOSE 2009. LNCS, vol. 6038, pp. 51–65. Springer, Heidelberg (2011)

17. Cossentino, M.: From Requirements to Code with the PASSI Methodology. In:
Henderson-Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies. Idea Group Inc.,
Hershey (2005)

 Engineering Multi-Agent Systems through Statecharts-Based JADE Agents and Tools 81

18. Caire, G., Coulier, W., Garijo, F., Gómez-Sanz, J., Pavón, J., Kearney, P., Massonet, P.:
The Message Methodology. In: Bergenti, F., Gleizes, M.-P., Zambonelli, F. (eds.)
Methodologies and Software Engineering for Agent Systems The Agent-Oriented
Software Engineering Handbook, vol. 11, pp. 177–194. Springer (2006)

19. Eshuis, R.: Reconciling statechart semantics. Science of Computer Programming 74(3),
65–99 (2009)

20. FIPA (Foundation for Intelligent Physical Agents), FIPA Agent Management Support for
Mobility Specification, Document FIPA DC00087C (2002/05/10) (2002),
http://www.fipa.org/

21. Fonseca, S., Griss, M., Letsinger, R.: Agent Behavior Architectures A MAS Framework
Comparison, Technical report, N. HPL-2001-332, University of Utah (2001)

22. The JADE DistilledStateChartBehaviour add-on, documentation and software (2010),
http://jade.tilab.com/

	Engineering Multi-Agent Systems
through Statecharts-Based JADE Agents and Tools
	Introduction
	Related Work
	Statecharts-Based JADE Agents
	The Distilled StateCharts Model
	A Framework for Programming DSC-Based JADE Agents

	CASE Tool-Driven Development of DSC-Based JADE Agents
	A Case Study: An Agent-Based Meeting Organization System
	Agent Interactions
	Agent Behaviors
	MAS Implementation
	MAS Evaluation

	Conclusion
	References

