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Preface

The 12th International Symposium on Trends in Functional Programming (TFP)
was held in Madrid, Spain, during May 16–18, 2011. It was hosted by the Com-
puter Science Faculty of the Universidad Complutense de Madrid. In this edition,
TFP was co-located with the Second International Workshop on Foundational
and Practical Aspects of Resource Analysis (FOPARA 2011).

The TFP symposium is an international forum for researchers with interest
in all aspects of functional programming, taking a broad view of current and
future trends in the area of functional programming. It aspires to be a lively
environment for presenting the latest research results, and other contributions,
described in draft papers submitted prior to the symposium. A formal post-
symposium refereeing process then selects a high-quality set of articles between
those presented at the symposium and submitted for formal publication. This
year, 21 papers were submitted and 12 of them were accepted by the Program
Committee. These are the ones included in this volume.

The TFP symposium is the heir of the successful series of Scottish Functional
Programming Workshops. Previous TFP symposia were held in Edinburgh (UK)
in 2003, in Munich (Germany) in 2004, in Tallinn (Estonia) in 2005, in Notting-
ham (UK) in 2006, in New York (USA) in 2007, in Nijmegen (The Netherlands)
in 2008, in Komarno (Slovakia) in 2009, and in Oklahoma (USA) in 2010.

TFP pays special attention to PhD students—acknowledging their role in
developing new trends—reflected in several ways. In the first place, there is a
student paper category to identify works that are mainly produced by students.
These works receive an extra round of feedback by the Program Committee
before they are submitted to the standard review process for formal publication.
In this way, students can upgrade their papers before they are put to compete
with more ‘professional’ ones. Also, every year there is a best student paper award
to acknowledge the best work done by PhD students. This year, the award went
to Laurence E. Day and his supervisor Graham Hutton for their paper “Towards
Modular Compilers for Effects.”

We thank all the speakers, the authors, the rest of the participants, the
Program Committee, and the TFP Steering Committee for contributing to the
success of TFP 2011. We also acknowledge the generous funding and support
of our sponsors the Spanish Ministry of Science and Innovation, the Computer
Science Faculty of the Universidad Complutense, and the Fundación General de
la Universidad Complutense.

March 2012 Ricardo Peña
Rex Page
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Constraint-Free Type Error Slicing

Thomas Schilling

School of Computing
University of Kent, UK

ts319@kent.ac.uk

Abstract. Type error messages for ML-based languages tend to suffer
from imprecise error locations – the type checker reports only one of many
possible locations of an error. The notion of a type error slice corrects
this by reporting all program locations that contribute to a given error
(and no more).

Previous work on producing type error slices required the use of a
constraint-based type checker implementation. For most existing systems
this would require substantial changes to well-tested and subtle pieces of
code. In this work we show how to produce useful type error slices with
an unmodified type checker. Other tools, such as automatic correction
systems, can be layered on top of our system.

We have implemented this technique on top of the Glasgow Haskell
Compiler (GHC) and report our experiences.

1 Introduction

Consider the following ill-typed Haskell definition:

f = λx → length (x ’*’ ++ x [True])

The widely used Glasgow Haskell Compiler1 (GHC) reports the error:

Couldn’t match expected type ‘Char’ with actual type ‘[t0]’

The associated location is the expression [True]. GHC somehow decided that
the “expected type” of x’s argument should be Char. If we swap the two calls of
x, however, GHC changes its mind and decides that it expects type [Bool]:

f = λx → length (x [True] ++ x ’*’)

Couldn’t match expected type ‘[Bool]’ with actual type ‘Char’

While one might argue that the wording of the message could be improved, the
real problem is more fundamental. GHC only reports one location for the error.
In a language based on the Hindley/Milner typing discipline [7, 1], however, it
is impossible to always report the single correct location of an error; there are
1 Version 7.0.2.

R. Peña and R. Page (Eds.): TFP 2011, LNCS 7193, pp. 1–16, 2012.
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2 T. Schilling

several possible locations where changes can be made to fix an error, depending
on the intended semantics of the program.

A better notion of location for error messages in such languages are type error
slices [2, 11]: the location of an error includes all parts of the program that
contribute to it (and no more). For the first example above this would be:

f = λ x → length (x [True] ++ x ’*’ )

All the highlighted parts of the program together cause the error, and only
changes to these locations may remove the error. It is also possible to provide a
textual representation of error slices:

..(λx → ..(x [..])..(x ’*’)..)..

In this particular case, no changes to other parts of the program can possibly fix
the error.2 In general there may be multiple type error slices and finding them
all is not always feasible (see Section 2.2), but all the locations included in a
single type error slice will always be relevant to the error.

While type error slices are no replacement for a carefully worded error message
they can provide helpful complementary information and can give hints about
possible ways to understand and fix the error. From the above type error slice we
can deduce quite a bit of useful information about the error. First, it is important
that x is λ-bound and therefore has a monomorphic type. Second, it is used as
a function in two different applications. Third, the fact that the literal True is
not highlighted indicates that it is not important that x is applied to a list of
booleans, but merely that x is applied to some list.

Existing methods for constructing type error slices are based on a constraint-
based implementation of the type checker. The source program is parsed and then
translated into constraints expressing the typing rules. If the source program had
a type error then these constraints are unsolvable and it is then possible to find
a minimal unsolvable constraint set. These are the constraints that are in a sense
essential to the error. An unsolvable constraint set is minimal if removing any
constraint would make it solvable. Finally, this set is translated back into source
code locations which then form the type error slice.

While it is known that type-checking for Hindley-Milner corresponds to
constraint-solving, most implementations generate and solve these constraints
on the fly. This is insufficient for the way type error slices are constructed in the
aforementioned systems. For example, Rahli et al. [9] re-implemented a full type
checker for SML. Type checkers are complicated pieces of code and are hard to
get right. Having to maintain two implementations is usually unacceptable.

Even type checkers that are implemented in terms of explicit constraint-
generation are not immediately suitable for the construction of type error slices.
2 We could insert a shadowing binding of x, but this means actually changing the use

sites of x since they now refer to a different variable. There is indeed a presentation
issue of slices containing several variables with the same name. Such variables could
be distinguished, for instance, with colour.
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source constraints

slice minimised constraints

Fig. 1. Our method (dashed line) in relation to existing method (solid lines) of
constructng type error slices

In order to construct the type error slice, it is necessary to accurately associate
source code locations with the constraints they introduced.

In this work we present a simple method of constructing accurate type error
slices without special requirements on the type checker. Instead of translating the
source program into a set of constraints, our method works directly on the source
program. Our approach is in a sense more direct as shown in Figure 1. Instead
of translating the program into constraints, minimising these and translating
things back into an expression (solid arrows), we construct slices directly by
transforming the program itself (dashed arrow). Our approach is based on an idea
from the Seminal project [6, 5]: in order to check whether a program location
is part of the type error slice, we modify the program in a way that removes
any type constraints introduced by that location. If the modified program type
checks (or uncovers a different error), the location must be part of the type error
slice.

Coming back to our first example, to test whether the first use site of x
should be part of the error slice, we replace x by a term ⊥ that type checks
in any context. A possible such term in Haskell is (let y = y in y), but any
term of type ∀α.α will do. We obtain the following program which is sent to the
type checker.

f = λx → length (⊥ [True] ++ x ’*’)

This program does indeed type check, so we conclude that the first use site of x
must be part of the error slice. To test whether the call to length takes part in
the error we send this program to the type checker:

f = λx → ⊥ (x [True] ++ x ’*’)

This program does not type check, which means that “disabling” the reference
to length did not fix the error, and thus it is not part of the error slice. To test
whether the application of x to [True] contributes to the error, (x [True]) is
rewritten to (⊥ x [True]). That is, we keep both function and argument, but
we remove all constraints that were introduced by applying one to the other. We
obtain the program:

f = λx → ⊥ (⊥ x [True] ++ x ’*’)



4 T. Schilling

The resulting program now type checks, hence this application site must be part
of the type error slice.

Our type error slicer systematically performs such rewriting steps for every
location of the input program until a minimal set of program locations is found
which are then reported as the type error slice. Eventually we arrive at the
following program, which corresponds to the expected error slice. (The call to
++ has been removed because it has been found irrelevant to the error.)

⊥ (λx → ⊥ (⊥ x [⊥]) (x ’*’))

Because this technique is purely source-based it can also quite easily be adapted
to support some extensions to the Hindley/Milner type system.

This work makes the following contributions:

– We show how constraint-based type error slicing can be implemented while
treating the type checker as a black box (Section 2). This is predicated upon
the existence of a source-level rewriting function that simulates removal of
type checker constraints.

– As a concrete example we define such a function for a core subset of ML,
named Mini-ML (Section 3).

– We describe our findings after implementing this approach for Haskell
(Section 4).

2 From Constraint-Based to Source-Based Type Error
Slicing

Previous work [2, 9, 12] used a constraint-based type checker to construct type
error slices. Type checking is split into a constraint generation phase and a
separate constraint solving phase. Each generated constraint is annotated with
a label to relate it back to the input program.

For instance, the program (with subscripts denoting labels / source locations)

(λxl1 → (fl3 (xl4 0l5)l6 (xl7 +l8 0l9)l10)l11)l2

is translated into the following constraints:

{(t2 ≡l2 tx2 → t11), (tx2 ≡l1 tx4), (tx2 ≡l1 tx7), (t3 ≡l11 t6 → t10 → t11),
(t4 ≡l6 t5 → t6), (t4 ≡l4 tx4), (t5 ≡l5 Int), (t8 ≡l10 t7 → t9 → t10),

(t8 ≡l8 Int → Int → Int), (t7 ≡l7 tx7), (t9 ≡l9 Int)}
Because the input program is ill-typed, this constraint set is unsolvable. Each
unsolvable constraint set has at least one minimal unsolvable subset which can
be found in a number of ways. The algorithm used by Haack and Wells [2] and
Wazny [12] is based on a simple idea. Solve constraints one by one until the
constraint set becomes unsatisfiable. The constraint that was added last must
be part of the minimal unsolvable subset. Figure 2 shows the full algorithm.
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1: function minimise1(D)
2: M ← ∅
3: while satisfiable(M) do
4: C ←M
5: while satisfiable(C) do
6: e ∈ D − C
7: C ← C ∪ {e}
8: end while
9: D ← C � Discard constraints that no longer need to be considered.

10: M ←M ∪ {e}
11: end while
12: return M
13: end function

Fig. 2. Constraint minimisation algorithm after Wazny [12] and Haack and Wells [2].
It takes a constraint set D and returns a minimal unsolvable subset M ⊆ D.

The returned constraint set M is minimal because removing any constraint
from it makes it solvable. (For a proof see [2].) For the example constraints above,
the only minimal set would be:

{(tx2 ≡l1 tx4), (tx2 ≡l1 tx7), (t4 ≡l6 t5 → t6), (t4 ≡l4 tx4),
(t8 ≡l10 t7 → t9 → t10), (t8 ≡l8 Int → Int → Int), (t7 ≡l7 tx7)}

To construct the type error slice the labels of the minimal unsatisfiable set are
extracted ({l1, l4, l6, l7, l8, l10}) and the relevant locations of the source program
are highlighted. Locations not part of the slice are replaced by “ . . .”:

. . . x → . . . (x . . .) . . . (x + . . .) . . .

Note that the λ of the abstraction is not shown. This is because only one of the
two labels (l1 and l2) is part of the error slice. Each label has different constraints
attached. In Mini-ML label l1 has been chosen to encode the requirement that
x is bound monomorphically; label l2 is attached to the constraint that the
expression must have an arrow type. In this example, therefore, the error occurs
because x is monomorphic.3 It is up to the compiler writer to decide how many
labels to attach to each expression type and which constraints attach to each
label. In this example we chose to include the arrow to indicate monomorphic
binding as at issue and λ only if the function as a whole is at issue.

2.1 Source-Based Type Error Slicing

Because we only need the constraint labels and not the constraints itself, the
algorithm from Figure 2 actually does more work than we need. Instead of
3 It would be perfectly fine to not make this distinction; the notion of a type error

slice is independent of such details. However, more fine-grained placement of labels
can give the user more information about the cause of an error.
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1: function minimise2(D)
2: L← ∅
3: while satisfiable(filter(D, L)) do
4: L′ ← L
5: while satisfiable(filter(D, L′)) do
6: l ∈ labels(D) − L′

7: L′ ← L′ ∪ {l}
8: end while
9: D ← filter(D, L′)

10: L← L ∪ {l}
11: end while
12: return L
13: end function

Fig. 3. Label minimisation algorithm. The filter function is defined as: filter(C, L) =
{τ1 ≡l τ2 ∈ C | l ∈ L}

minimising constraint sets the algorithm should instead minimise label sets. A
modified version of the algorithm to do just that is shown in Figure 3.

This algorithm keeps track of a set of labels instead of a set of constraints and
uses filter to only pass the constraints with the selected labels to satisfiable. The
functions filter and satisfiable are indeed the only parts of the algorithm that
directly deal with constraints. For a given (Hindley/Milner-based) programming
language the implementation of satisfiable is provided in the form of the type
checker. If we can simulate the effect of filter by rewriting the input program,
we can construct type error slices without the need for a constraint-based type
checker implementation! It is useful to have a constraint-based specification to
define which constraints are associated with which labels, but a full implemen-
tation is not needed.

To formalise this idea we use a function e � C that translates a closed
expression e into a set of constraints C. The type checker is a function from
expressions to a success-or-failure type.

typecheck : Expr → {ok, error}

Since we are dealing only with type errors, we assume that C is unsatisfiable. We
require three properties. First, type checking must correspond exactly to solving
the constraints.

Proposition 1. Let e� C then typecheck(e) = ok if and only if satisfiable(C).

Second, we have a source-level rewriting function filterE which takes an expres-
sion and a set of labels occurring in the expression, and returns a rewritten
expression. This function must accurately simulate the effect of filter :
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Proposition 2. If e � C, filterE(e, L) � C′ and filter(C, L) = C′′, then
satisfiable(C′) if and only if satisfiable(C′′).

Note that we do not require the constraints of the filtered expression to be
the same, but only to be equivalent under satisfiable. Finally, we require that
filterE(e, L) leaves labels intact.

Proposition 3. Let L = labels(e) and L′ ⊆ L, then labels(filterE(e, L′)) = L′.

Given these assumptions it is now straightforward to show that the source-based
label minimisation algorithm of Figure 4 is equivalent to the constraint-based
algorithm of Figure 3 by simple syntactic substitution.

1: function minimise3(e)
2: L← ∅
3: while typecheck(filterE(e,L)) = ok do
4: L′ ← L
5: while typecheck(filterE(e,L′)) = ok do
6: l ∈ labels(e)− L′

7: L′ ← L′ ∪ {l}
8: end while
9: e← filterE(e, L′)

10: L← L ∪ {l}
11: end while
12: return L
13: end function

Fig. 4. Source-based Label minimisation algorithm

In Section 3 we give an example of an implementation of filterE for the simple
ML-like language Mini-ML.

A note on efficiency: assuming that satisfiable/typecheck takes time (in prac-
tise) linear in the size of its input, then the algorithm is quadratic in the number
of labels.

2.2 Multiple Type Error Slices

The algorithms in Figures 2, 3, 4 are all non-deterministic because the order
in which constraints (resp. labels) are picked is undefined. Furthermore, each
algorithm will only find a single minimal unsolvable subset, but there may in
fact be (and often are) multiple minimal unsolvable constraint sets and thus type
error slices. Consider the following ill-typed program::

λ x → (x 123, x ’a’, x [])

This program has three possible type error slices:
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λ x → ..(x 123)..(x ’a’)..
λ x → ..(x 123)..(x [])..
λ x → ..(x ’a’)..(x [])..

Which one is returned by the algorithms depends on the order in which the
constraints or labels are explored. In order to find all minimal unsolvable subsets
essentially all subsets of the input constraint/label set need to be explored. There
is room for some optimisations [12], but finding all minimal unsolvable subsets
is not feasible in general as there may be exponentially many for some input
programs [2].

Nevertheless, searching for several type error slices, perhaps coupled with a
timeout, can be helpful to the user because slices may cover different program
points. Program points that are part of many error slices may also indicate the
most likely source of an error (and can be highlighted with more intensity). In
the above example the binding site of x occurs in all slices. This suggests that
changing x to be let-bound or changing the function’s type to a higher-rank
type may be the most suitable action for fixing the error.

If an expression contains multiple errors it will contain as many (or more)
type error slices.

3 Source-Based Type Error Slicing for Mini-ML

Figure 5 defines the syntax of Mini-ML, a simple functional language with inte-
gers and polymorphic let-bindings.4 Expressions in Mini-ML are annotated with
unique labels l which identify each sub-expression. In a full language implemen-
tation this may be source location information from the parser. The typing rules
for Mini-ML are almost completely standard Hindley/Milner and are omitted
here for space reasons. The only feature is the addition of ⊥ which behaves like
a variable of type ∀α.α (and can be implemented by adding it to the initial
environment).

A constraint-based type checker translates a source program into a set of con-
straints, which are then solved in a separate step. If the constraints are solvable,
then the program type checks. If they are unsolvable, the program has a type
error.

Figure 6 defines rules for generating equality constraints for Mini-ML (adapted
from Haack and Wells [2]). These can then be solved using standard unification.
The translation returns three components:

– τ is the type assigned to the input expression.
– C is a set of equality constraints. Each equality constraint is annotated with

a label.
– Γ is a bottom-up environment It maps each free variable in the input ex-

pression to a set of type variables, one per use site.
4 This is the same language that Haack and Wells [2] used to introduce type error

slices for Hindley/Milner.
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expr ::= ⊥ Bottom
| xl Variable
| nl Integer literal
| (expr + expr)l Integer addition
| (λxl → expr)l Abstraction
| (expr expr)l Application
| (let xl = expr in expr)l Non-recursive let

τ ::= α Type variable
| Int Integer type
| τ → τ Function type

Fig. 5. Expression and type syntax for Mini-ML. Expressions are annotated with
unique labels l.

The rules in Figure 6 may look a bit dense, but they all follow quite simple
patterns. We use rule C-App to describe the basic ideas. The first step is to
generate constraints for both the expression in the function position (e1) and
the expression in the argument position (e2). The application site now creates
three additional constraints: (1) the type of e1 must be of function shape, (2)
the argument type of this function type must match the type of e2, and (3) the
result type of the application expression matches the result type of e1. These
three constraints are returned together with the combined constraints of both e1

and e2, as well as their combined environments. In fact, every constraint-based
typing rule returns all the constraints of its sub-expressions plus the additional
constraints imposed by the given syntactic construct.

The rules for C-Lit, C-Bot, C-Var and C-Add should now be straightfor-
ward to understand. The result of C-Lit is a type variable, and not simply Int,
so that it is possible to associate the label of the expression with a constraint.
This is also done in rule C-Var for the same reason.

Abstraction has two associated labels hence rule C-Abs creates constraints
annotated with different labels. Label l1 is used with the constraints that enforce
monomorphic variable binding. The constraints labelled with l1 accordingly en-
sure that each occurrence of the bound variable gets the same (mono-)type. The
label l2 encodes the requirement that the type of a lambda-abstraction is of
function shape.

Rule C-Let looks a bit daunting, but the ideas are very similar to those
of C-Abs. For each of the n use sites of the bound variable x, the constraints
generated from the expression e1 are copied and connected to the corresponding
type variables. This is equivalent to a capture avoiding substitution (i.e., inlining)
of e1 for every occurrence of x in e2. It implements the requirement that every
use site of x must be an instance of the (generalised) type of e1 and is labelled
with l1. The constraint labelled with l2 requires that the context must expect
a type compatible with e2’s type. The use of max(1, n) ensures that there is at
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expr ⇓ τ, C, Γ

β fresh

nl ⇓ β, {β ≡l Int}, ∅ C-Lit
β fresh
⊥ ⇓ β, ∅, ∅ C-Bot

β, βx fresh

xl ⇓ β, {β ≡l βx}, {x : {βx}}
C-Var

e1 ⇓ τ1, C1, Γ1 e2 ⇓ τ2, C2, Γ2 β fresh
C0 = {τ1 ≡l Int, τ2 ≡l Int, β ≡l Int}

(e1 + e2)
l ⇓ β, C0 ∪ C1 ∪ C2, Γ1 ∪ Γ2

C-Add

e1 ⇓ τ1, C1, Γ1 e2 ⇓ τ2, C2, Γ2 β, β1, β2 fresh
C0 = {τ1 ≡l τ2 → β}

(e1 e2)
l ⇓ β, C0 ∪ C1 ∪ C2, Γ1 ∪ Γ2

C-App

e ⇓ τ, C, Γ β, βx fresh
C0 = {βx ≡l1 τ | τ ∈ Γ (x)} ∪ {β ≡l2 βx → τ}

(λ xl1 → e)l2 ⇓ β, C0 ∪ C, Γ \ x
C-Abs

e1 ⇓ τ, C, Γ e2 ⇓ τ ′, C′, Γ ′ β, β1, β2 fresh
{τ ′

1, ..., τ
′
n} = Γ ′(x) k = max(1, n)

τ1, C1, Γ1 ... τk, Ck, Γk fresh variants of τ, C, Γ
Γ ′′ = Γ1 ∪ ... ∪ Γk ∪ Γ ′ \ x

C0 = {β ≡l2 τ ′} ∪ {τ ′
1 ≡l1 τ1, ..., τ

′
n ≡l1 τn}

C′′ = C0 ∪ C1 ∪ ... ∪ Ck

(let xl1 = e1 in e2)
l2 ⇓ β, C ∪ C′ ∪ C′′, Γ ′′ C-Let

(Γ1 ∪ Γ2)(x) := Γ1(x) ∪ Γ2(x)

Fig. 6. Constraint-based typing rules for Mini-ML

least one copy of the constraints generated for e1. Thus, even if there is no use
of x in e2, e1 has to type check on its own. Duplicating these constraints many
times will make a direct implementation of this constraint-generation scheme
very inefficient. A more efficient implementation can be achieved by using let-
bindings at the constraint level [8, 9].

Figure 7 defines a rewriting function satisfying Proposition 2 for the Mini-
ML language. For abstraction and let-bindings we have four rules because each
construct contains two labels. For abstractions, label l1 encodes to the monomor-
phic nature of the binding. The corresponding rewrite rules therefore shadow the
binding of x with a let and thus remove the constraint. Label l2 links the type
of the context with the type of the body e. By rewriting the body to (⊥ e) this
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F [xl]L = ⊥ l /∈ L

F [xl]L = xl l ∈ L

F [nl]L = ⊥ l /∈ L
F [nl]L = nl l ∈ L

F [(e1 + e2)
l]L = ⊥ F [e1]L F [e2]L l /∈ L

F [(e1 + e2)
l]L = (F [e1]L + F [e2]L)l l ∈ L

F [(e1 e2)
l]L = ⊥ F [e1]L F [e2]L l /∈ L

F [(e1 e2)
l]L = (F [e1]L F [e2]L)l l ∈ L

F [(λxl1 → e)l2 ]L = (λx→ let x = ⊥ in ⊥ F [e]L) l1 /∈ L, l2 /∈ L

F [(λxl1 → e)l2 ]L = (λxl1 → ⊥ F [e]L) l1 ∈ L, l2 /∈ L
F [(λxl1 → e)l2 ]L = (λx→ let x = ⊥ in F [e]L)l2 l1 /∈ L, l2 ∈ L

F [(λxl1 → e)l2 ]L = (λxl1 → F [e]L)l2 l1 ∈ L, l2 ∈ L

F [(let xl1 = e1 in e2)
l2 ]L = (let x = ⊥ F [e1]L in ⊥ F [e2]L) l1 /∈ L, l2 /∈ L

F [(let xl1 = e1 in e2)
l2 ]L = (let xl1 = F [e1]L in ⊥ F [e2]L) l1 ∈ L, l2 /∈ L

F [(let xl1 = e1 in e2)
l2 ]L = (let x = ⊥ F [e1]L in F [e2]L)l2 l1 /∈ L, l2 ∈ L

F [(let xl1 = e1 in e2)
l2 ]L = (let xl1 = F [e1]L in F [e2]L)l2 l1 ∈ L, l2 ∈ L

Fig. 7. Rewritings to filter constraints associated with a label set. Omitted labels on
expressions on the right hand side are intended to be filled with fresh labels.

connection is broken thereby disabling the constraint. All constraints introduced
by e are of course kept – only constraints labelled with l2 are removed. The same
technique is used for label l1 of a let expression which links the use sites of x
with the type of e1.

Whether it is possible to find a rewrite function satisfying Proposition 2 de-
pends in part on the syntactic flexibility of the target programming language. We
were interested in creating a type error slicer for Haskell. The following section
describes the experiences we obtained by doing this.

4 Type Error Slicing for Haskell

We have implemented a source-based type error slicer on top of the Glasgow
Haskell Compiler (GHC). Haskell is quite a large language and contains sev-
eral (main) syntactic categories: expressions, patterns, types, and statements
(in do-notation, list comprehensions, pattern guards). Implementing a full type
checker for Haskell is a large undertaking and keeping up with and supporting
GHC’s many extensions is even harder. A source-based type error slicer therefore
seems like a very promising approach. Applying our technique to a fully-fledged
language like Haskell can thus tell us if the technique is indeed practical.

The main questions we were trying to answer were whether the additional
syntactic categories would present problems, and how efficiently type error slices
can be generated.

Type error slicing is only useful for type errors that are the result of too many
conflicting constraints. Haskell’s type system also allows programs to contain
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1: function minimise4(e)
2: L← ∅
3: for l ∈ labels(e) do
4: e′ ← disableE(e, l)
5: if typecheck(e’) = ok then
6: L← L ∪ {l}
7: else
8: e← e′ � Permanently exclude label l.
9: end if

10: end for
11: return L
12: end function

Fig. 8. Minimisation Algorithm. The input e is the expression to minimise, the output
is L, the set of labels for a type error slice.

ambiguity errors that cannot be resolved by removing constraints by the type
checker. For example, in Haskell the expression show (read “42”) does not type
check. The problem is that read has type String → α for any type α that is
an instance of the Read type class. Similarly, show has type β → String for
any type β that is an instance of the Show type class. The typechecker adds
the constraint α ≡ β, but that is still not enough information to decide which
instance of Read or Show to use. This error can only be resolved by adding more
constraints, for example by adding a type annotation. Because of this limitation,
our type error slicer only produces errors for two (very common) types of errors:
unification errors (“Cannot match”) and occurs check errors.

Our type error slicer is invoked after GHC has type checked the program
(and produced errors). The user then selects an error and a slice is produced
by performing additional calls to the GHC type checker (via the GHC compiler
API). The resulting slice is then highlighted in the editor or presented in text
form.

Alternative Slicing Algorithm. We currently do not change the reported er-
ror message. This causes some interesting problems. As mentioned in Section 2.2,
there are often multiple possible error slices. It is therefore important that the
reported slice does in fact correspond to the same error that GHC found. An-
other problem is that due to the problem of ambiguity the type checker may
fail with a different kind of error. For this reason we actually use a different
algorithm from those in Section 2 for constructing type error slices.

Figure 8 shows our modified algorithm. The idea is to keep removing con-
straints (labels) until removing any constraint would make the constraint set
solvable. This, by definition, gives us a minimal unsolvable constraint set. Re-
moval of constraints is again simulated using a source-level rewriting function
disableE which can be implemented in terms of filterE :

disableE(e, l) = filterE(e, labels(e) − {l})
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In our implementation we define disableE directly, rather than using a definition
based on filterE .

This algorithm is more reliable because, in a sense, it works “outside in” by
starting with the full constraint set which is known to produce the same error.
If removing a constraint changes the error message significantly (e.g., a different
error class or a different error location) then we consider the constraint to be
not relevant to the given error. That is, we treat the type checker result as ok
instead of as error. An error message in GHC may contain inferred types and type
variables. We consider a error messages that only change slightly (e.g., renamed
type variable) to be equal and thus refer to the same error.

Performance Considerations. One disadvantage of the algorithm of Figure 8
is that it is to some extent less efficient than that of Figure 4 because it needs to
traverse all labels of the input expression. The algorithm of Figure 4 only needs
to traverse the labels until the constraints first become unsolvable. No matter
which algorithm we choose, however, a few optimisations are required to produce
type error slices for realistic programs.

Most top-level bindings are not relevant to a particular error. The body of
a top-level function with a type annotation is also initially not relevant to the
type error as the function will enter the scope of the erroneous expression with
the type specified in the signature. This gives rise to two optimisations:

– We replace the bodies of top-level bindings with type signatures with ⊥. If
such a use of a function f ends up in the error slice then we can expand
the search space to the body of f . We only do this if the user requests, this,
however. It will only lead to a more helpful slice if the type signature is
wrong.

– Top-level bindings without a type signature are handled using two strategies.
First, by taking advantage of a dependency analysis performed before type
checking by GHC we can remove all bindings not required by the erroneous
expression. Second, we can move all bindings required by the erroneous ex-
pression into a separate module M and rewrite the original module to import
M and remove all other bindings.5 The type checker now needs to type check
only a module containing a single function definition.

With these optimisations constructing type error slices can be produced in ac-
ceptable time for interactive use (a few seconds).

Slicing Type Signatures. A second potential issue is whether source-level
rewritings can actually be implemented. This essentially depends on the syntax
of the language. Haskell has four main syntactic categories: expressions, types,
patterns, and statements. Expressions present no problems; they can be handled
the same way as in Mini-ML. Statements occurring in do blocks also cause no
5 Because GHC can report multiple type errors some of these bindings may contain

type errors. We “fix” these errors using the same strategy that GHC uses which in
effect amounts to replacing the body of the erroneous binding by ⊥.
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further issues as they can be translated into expressions. Patterns are a bit
trickier because there is no equivalent of ⊥ in the constructor position. Consider
a pattern match expression:

case . . . of C x y → . . .

Similarly to function application, the constructor C may impose constraints on
the possible types of x and y. We can remove these constraints by rewriting the
program to:6

case . . . of C _ _ → case ⊥ of (x, y) → . . .

Type signatures are trickier, this time because there is no type-level equivalent
of ⊥ for any component. Type variables bound by ∀ are bound “rigidly”, that
is such a variable can only be unified with itself. What is needed is instead an
existentially bound variable, i.e., a variable that can be unified with anything.
Such variables can be simulated using source-level transformations. However,
this rewriting is rather complicated.

The basic idea is as follows. Assume we have a function unify :: ∀α.α → α →
() and a binding f . We now want to declare that f has type Either Int Char.
There are two ways we can do this. Either by using a type signature, or using
unify:

-- Same effect as declaring f :: Either Int Char
f = (42, ’x’)
where () = unify f (⊥ :: Either Int Char)

This method is clearly overly complicated, but we can now introduce a (∀-
quantified) type variable and it will behave like an existential (or unification)
variable. That is, the following program will type check:

f = (42, ’x’)
where () = unify f (⊥ :: c Int Char)

For this to work with types involving type variables we also need GHC’s “scoped
type variables” extension. Because of the complexity involved in constructing
such slices we currently do not slice type signatures. Type signatures are either
fully part of a type error slice or not at all.

5 Related Work

Many different approaches have been tried to improve error messages for Hindley-
Milner based programming languages. For space reasons we cannot list all of
them here. Instead we refer the interested reader to Heeren’s excellent sum-
mary [4] which covers work published up to 2005. Below we list related work
using type error slices and work on error messages published after 2005.
6 Recall that “_” in Haskell is the wildcard pattern.
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Type error slicing for ML-like languages was first introduced by Haack and
Wells [2]. Their work defines the concept of a type error slice and presents an
algorithm for constructing slices for Mini-ML. Rahli et al. [9] later extended this
work to cover full Standard ML by reimplementing a complete constraint-based
type checker.

Stuckey et al. [11] used type error slices to construct type error messages for
their Haskell-like language Chameleon. Chameleon’s type checker fully em-
braced the notion of constraint-based type checking and used it to introduce con-
cepts from the constraint-solving area such as constraint-handling rules (CHR)
into its dialect of Haskell. Stuckey et al. also modified the constraint minimisa-
tion algorithm to find minimal constraints that imply certain other constraints.
They use this algorithm to give hints which source code locations may be anno-
tated to resolve ambiguity errors. Many ideas and concepts of Chameleon are
explained in more detail in Wazny’s Ph.D. thesis [12].

Heeren’s type graphs [3] are also quite similar to type error slicing. Heeren
uses them to find a maximal consistent subset and uses such to pinpoint the
most likely source of an error. A maximal consistent subset can be obtained
from a minimal unsolvable subset by removing any constraint.

Our inspiration for a purely source-based approach to type error slicing came
from Lerner et al.’s Seminal project [6, 5]. This work uses the type checker as
a black box to search for a single type error message. Seminal searches through
possible rewritings and reports the smallest change that could fix an error. The
result is a very constructive error message (as it includes a way to fix the error),
but if an expression contains multiple independent errors, this approach would
return a single error often with a fix suggestion high up in the syntax tree,
far removed from the actual errors. To deal with these cases Seminal uses a
triage mode which may can be computationally expensive. A message produced
by Seminal, according to a user study, is better than the default (Caml) error
message in 13% - 19% of the cases, but also to a worse in 17% of the cases [5].

Both Heeren and Seminal produce error messages with a single suggestion
for a fix. This works great if the suggested fix is indeed the one intended by the
user, but it can be very misleading if this is not the case. Type error slices are
more objective in that they list a set of possible locations to apply a fix to, but
do not guess which one. Suggested fixes could be a complementary feature to
type error slices.

6 Future Work

Type error slices are based on the assumption that an error is caused by con-
flicting constraints. If an error is caused by missing information, then removing
constraints obviously cannot fix the error. In Haskell this is the case, e.g., for
ambiguity errors (e.g., ⊥ »= ⊥), or when adding a type class instance would help.
Such errors need to be handled differently, although type error slices can still be
used to indicate the places where additional information (e.g., type annotations)
would be helpful [12]. We plan to explore this in a type-checker implementation
agnostic way.
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Recent implementations of GHC now use a constraint-based type checker [10].
For efficiency reasons, this type checker does not generate constraints in a form
that is immediately suitable for type error slicing; for example, a constraint may
be tagged with multiple source locations. Source-based type error slicing could
be used to implement a hybrid approach. First, the constraint solver returns the
source locations of all constraints it used to arrive at an error. A source-based
slicer then minimises these constraints to derive an accurate error slice.
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Abstract. In this paper we show that a prototypical subtype relation
that can neither be defined as a least fixed point nor as a greatest fixed
point can nevertheless be defined in a dependently typed language with
inductive and coinductive types. The definition proceeds alike a fold
in functional programming, although a rather unusual one: that is not
applied to any starting object. There has been a related construction of
bisimilarity in Coq by Nakata and Uustalu recently, however, our case
is not concerned with bisimilarity but a weaker notion of similarity that
corresponds to recursive subtyping and has it’s own interesting problems.

1 Introduction

It is common in practice to have datatypes formed by nested least and greatest
fixed points. For example, consider a grammar and parse trees of derivations in
that grammar that are allowed to be infinite only below certain non-terminal
nodes. Or, a semantic model of a programming language where we distinguish
between termination and diverging computation. With dependent types, it is
possible to define types such as of grammars or parse trees. However, it is not
straightforward to define nested fixed points using implementations of inductive
and coinductive type definitions. This is mainly because these type definitions
are subject to strong syntactic checks in current implementations of dependently
typed languages. A strong restriction is made by type-checkers that require coin-
ductive type definitions to satisfy syntactic soundness constraints simple enough
to be machine-checkable. A common form of such syntactic constraints is known
simply as guards. It is often a programming challenge to avoid guardedness issues
and yet define a meaningful coinductive type. There are at least two different
methods to encode nested fixed points in type-theoretic proof assistants that are
both known as mixed induction-coinduction, the first is defined in [8] and the
second, in [18]. The former uses a programming construct of suspension com-
putation monad, while the latter seems to rely on a variant of fold function.
Suspension monad is efficient and intuitive, however, it has to be supported
by the programming language rather than simply implemented on top of it, for
which many dependently typed provers would require substantial re-engineering.
Not having a sufficient resource for rewriting the implementation of a prover,
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c© Springer-Verlag Berlin Heidelberg 2012
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we choose the second, probably not so efficient but maybe a bit more portable
method and apply the fold pattern on top of the language.

The language in question is Coq [19]. It has dependent products of the form
∀ (x : A). B where x is a variable which is bound in B; the case when x is not
free in B is denoted A → B and is a simple, non-dependent type. Also, Coq
features inductive and coinductive type definitions. For the sake of presentation,
we do not provide listings of Coq code, which would be plain ASCII. Instead,
throughout the paper, we use a human-oriented type-theoretic notation, where
Type denotes the universe of types (which is predicative), and inductive and
coinductive definitions are displayed in natural-deduction style with single and,
respectively, double lines.

Contribution. We develop a method for inductive-coinductive encoding for a
class of similarity relations exemplified in the paper by recursive subtyping of
μ-types. A mechanised version of our proofs formalised in Coq is also presented
without going through too many technical details. The method allows to in-
ternalise, in type theory, similarity relations that can neither be defined as an
inductive relation nor as a coinductive relation alone but as a relation formed
by nesting an inductive relation inside a coinductive relation or vice versa.

The motivation for this work is a better understanding of termination issues
in subtyping as an exercise in the higher-order programming style with iteration
and coiteration schemes [1] with a possibility of extensions to formalisms such
as extended regular expressions (with variables that approximate behaviour of
backreferences), and paving the way for further extensions and provably correct
practical applications. The generic approach to terms with variables allows to
completely redefine the structure of substitution for extended cases and yet keep
the same fundamental approach to subtyping (or, more generally, similarity).

Outline. In Sec. 2 we explain the subtyping relation construction method. In
Sec. 3 we define the object language of recursive types formally, using Coq as
the meta-language. In Sec. 4 we define subtyping in the meta-language. Sec. 5
contains the statement and a proof of soundness and completeness of our defi-
nition of recursive subtyping with respect to containment of finite and infinite
trees. The powerful method of monadic substitution is described in Sec. 6. In
fact, this technical section contains precise function definitions used in the earlier
sections 3 and 4. Related work on subtyping for recursive types and methods for
decision procedures is summarised in Sec. 7 where the alter ego mixed induction-
coinduction method is described as well. Finally, in Sec. 8 we give concluding
remarks. The interested reader can also refer to the accompanying Coq script
with definitions and proofs constructed for this paper at the author’s web page by
the URL http://www.cs.st-andrews.ac.uk/~vk/doc/subfold.v. The script
requires Coq with the Ssreflect [10] extension that are available as packages
in common operating systems. The Ssreflect extension does not change the
type-theoretic foundation of Coq but rather provides enhancements for the
tactic language and handy type definitions and lemmas for bounded numbers

http://www.cs.st-andrews.ac.uk/~vk/doc/subfold.v
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and tuples used in our formalisation. Therefore a proof without Ssreflect is also
possible by routine redefinition of notions already available.

Notational conventions. In the paper, we use a natural-deduction style notation
for inductive and coinductive definitions. For example, the inductive definition
of the type Σ of dependent sum is written in two steps. First, we define the
universe, of which our type is inhabitant (to the right of the semicolon):

Σ : ∀ (A : Type). (A → Type) → Type

and second, we define the constructors of the type by providing a natural deduc-
tion rule for each constructor. In the case of Σ, there is only one constructor,
and so, only one rule:

x : A
p : P x

exist x p : Σ A P

with exist being the name of the constructor. The structure of a rule is a finite
tree whose root contains the conclusion of the rule. Let us define the level of the
root of a rule to be 0. If the level of a given node in a tree is n then the level of
the roots of its immediate subtrees is n+1. The constructor exist requires three
levels, from 0 to 2, because the variable p defined at level 1 depends on another
variable x which should be defined first, at level 2. It is standard [19] to define
first the notion a dependent type (any type ∀ (x : A). B where x is free in B),
and then the notion of an inductive type. The latter can be quite involving. As a
light-weight alternative, we can define and visualise a dependent inductive type
starting from our presentation of inductive types in terms of rules as follows:

A dependent inductive type is an inductive type with at least one of its
constructors defined by a natural deduction rule containing more than 2
levels.

An inductive type corresponds to the least fixed point of the inference oper-
ator generated by the set of rules of the type definition. On the other hand,
a coinductive type is supposed to approximate the greatest fixed point of the
inference operator. At present, the type theory of Coq does not have mixed
inductive-coinductive type definitions. Types can be defined either inductively
or coinductively, and never both at the same time. This makes it easier to write
rules because we do not have a choice of rule notation once it is fixed that a type
is inductive or coinductive.

In the case of the definition of the non-dependent inductive relation tylei in
Sec. 4, constructor names are omitted for brevity especially because they do not
carry information other than that involved in theorem proving only, and we do
not refer to these names the paper.

We make an exclusion from the general level pattern by writing lines above
roots of 0-level rules, for example,

0 : N
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to indicate whether these rules are inductive or coinductive, because any 0-level
rule, even though it defines a value, is typechecked differently by Coq depending
on whether it appears in an inductive or coinductive definition.

2 The Fold Pattern

Here is the polymorphic type of the familiar list-based left fold function:

foldl : ∀ (S T : Type) (f : T → S → T ) (a : T ) (l : list S). T

(On a fundamental approach to fold, the reader is advised to refer to [4].) The
result of iterative computation of an appropriately typed function f on values
from the list l starting from a given value a is aggregated on the left.

Let us now drop the requirement that the fold starts from some object. This
removes the first argument of the function f altogether. The fold function that
we are going to construct has two dependent arguments: a function f and a
collection l (which is not quite a list) of objects of S. This description fits the
definition of the following operator ≤intro generating a coinductive relation ≤:

f : (∀ E F. R E F → E ≤ F ) l : E ≤R F

≤intro R E F f l : E ≤ F

We can see that the arguments R, E and F can be inferred from the types of f
and l. The constructor ≤intro has two dependent arguments, f and l, and yields
an object (in fact, a proof) inhabiting a particular case of relation. The function
f can indeed be seen as a mapping of a proof that from an object E we can
access another object F by the relation R to a corresponding proof that from
E we can also reach F by ≤. In other words, f is an inclusion of R into ≤.
The interpretation of the argument l is a bit more involved. Think of ≤R as a
finite relation encapsulating another, infinite one in such a way that an infinite
number of steps is possible only finitely. The latter sounds rather speculative,
however, the intuition is that E ≤R F is alike a type of finite list of certain
abstract, possibly infinite objects. Moreover, proofs of E ≤R F can be perceived
as paths from E to F . So, the function ≤intro R E F f collapses the finite
list l of possibly infinite paths to a certain infinite coinductively defined object.
Thanks to the premises of ≤intro we are able to compare elements of pairs in the
domain of ≤ in a finite number of steps possibly infinitely.

It is worth noting that having a coinductive type definition such as that of ≤
is nothing close to requiring an infinite amount of memory for objects of that
type. The shape of such an object is a regular tree which may have an infinite
unfolding but in itself is a finitely presented entity.

3 Recursive Types

Below in this section we give a proper inductive definition of recursive types,
our object language, in Coq as the the meta-language. However, first recall a
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traditional definition of the set of recursive types that uses a grammar [5,3]:

E,F ::= ⊥ | � | X | E�F | μX. E�F

whereX is a symbolic variable taken from a set of variables. The least fixed point
operator μ binds free occurrences of the variable X in E�F . This definition has
neither products nor sums that are needed for practical programming. However,
we do not consider product or sum types in this schematic implementation be-
cause their treatment follows a similar pattern compared to �, see, e.g., [3].
Moreover, we choose to replace named variables in the definition by nameless de
Brujin variables, which yields an equivalent and yet more tangible construction.

A nameless variable is essentially a number m with an upper bound n where
m represents the depth of the variable under binders in a term with at most
n free variables. We will now define an appropriate notion of bounded number.
First, take the usual inductive definition of the type of (unary) natural number:

N : Type

0 : N
n : N
S n : N

Further on in the paper, 1 + n is assumed to be convertible to S n. Natural
numbers enjoy a decidable less-than relation. It can be defined via the usual
truncated subtraction and decidable equality, that is, a relation with values true
or false of type bool. Let us recall the equality relation on natural numbers as
follows:

== : N → N → bool

0 == 0 = true

S m == S n = m == n

0 == S n = false

S m == 0 = false

The less-then relation is then a function

m < n = S m− n == 0

The type of bounded number can be defined now:

I : N → Type

m : N
p : m < n

num n m p : In
So, we have a dependent inductive type here, with the type of the variable p
depending on the value m. The type In is a special dependent pair type, sim-
pler than Σ from the Introduction, specified on the concrete boolean predicate
λ m. m < n. The proof of m < n is encoded as a boolean value. This has two
outcomes. From one side, since it is easier to reason by cases on boolean-valued
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relations than on more general relations with values in Type, this definition of
bounded number greatly facilitates proof by cases. On the other hand, compared
to the algebraic type of finite number employed, for example, in the construction
of [8], the type In is a subtype of N by the coercion

N of num (n : N) (i : In) = let num m = i

in m

This permits application of lemmas for N to statements about In without recur-
sive conversion of finite numbers to natural numbers. The question of automation
of insertion of the coercion N of nat is inessential for the constructions in the
paper.

Now we can give our working definition of recursive types by induction as
follows:

ty : N → Type

⊥ : ty n � : ty n
i : In

Xi : ty n

E : ty n F : ty n

E�F : ty n
E : ty (1 + n) F : ty (1 + n)

μ E�F : ty n

where the constructors are, respectively, the empty type ⊥, the unit type �, the
variable constructor X (indeed, we later use it without an index), the function
type constructor � and the least fixed point arrow type constructor μ � .

Recursive types have a correspondence with non-wellfounded (finite or infi-
nite) trees with the following definition by coinduction:

tree : N → Type

⊥∞ : tree n �∞ : tree n
i : In

X∞
i : tree n

t : tree n t : tree n

t�∞u : tree n

Intuitively, trees are views of μ-types unfolded ad infinitum. We denote the tree
corresponding to a type E by �E�. It is interesting to see now what is the exact
connection of types with trees. We give a definition that uses a piece of notation
from later on in this paper. We define � � corecursively using the function sbst (see
the definition in Sec. 6) of capture avoiding substitution of the second argument
for all occurrences of variable 0 in the first argument as follows:

�⊥� = ⊥∞

��� = �∞

�Xi� = X∞
i

�E�F � = �E� �
∞

�F �

�μ E�F � = �sbst E (μ E�F )� �
∞

�sbst F (μ E�F )�

The straightforward subtree relation tle n on tree n is denoted by ≤∞ (omitting
the implicit argument n):

tle n : tree n → tree n → Type
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⊥∞ ≤∞ t t ≤∞ �∞
i : In

X∞
i ≤∞ X∞

i

u1 ≤∞ t1 t2 ≤∞ u2

(t1�
∞t2) ≤∞ (u1�

∞u2)

Thus, two recursive types are in the subtype relation when their potentially infi-
nite unfoldings are in the subtree relation. Traditionally, subtyping theorems are
stated in terms of inductive limits of sequences of approximations of unfoldings
of recursive types (e.g., in [3]). Instead of using explicit induction in that way,
we rather rely on dependent types of the CIC which allow to define a powerful
monadic structure encapsulating unfolding ad infinitum. The point here, simi-
lar to an observation made by Amadio and Cardelli in [3], is that unfoldings of
recursive types are regular trees, which we treat using a mix of induction and
coinduction.

4 Definition of Recursive Subtyping

We define the weak similarity relation tyle n ⊆ ty n×ty n by folding the inductive
part of the definition into the coinductive one. Our technique is an illustration
of a generic method for folding one relation into another. For the purpose of
having notational correspondence to the Coq proofs, we decide to keep both the
Coq name for a relation and introduce a mnemonic denotation for it at the same
time for readability. In what follows, ≤R denotes tylei n R, and ≤ denotes tyle n
for an implicit parameter n.

First, we define the inductive part tylei n R of the subtyping relation (denoting
tylei n R E F by E ≤R F , suppressing the implicit argument n):

tylei : ∀ n. (ty n → ty n → Type) → ty n → ty n → Type

⊥ ≤R E E ≤R � R E F R G H
F�G ≤R E�H μ E�F ≤R unfld E F

unfld E F ≤R μ E�F E ≤R E
E ≤R F F ≤R G

E ≤R G

where unfld is the operation that unfolds a μ-redex by substituting the term
μ E�F for the variable 0 in the term E�F . This operation is defined in Sec. 6.
Having the rules for reflexivity and transitivity in the inductive part of the
subtype relation is essential for this construction. Indeed, by having these rules
explicitly, we are able to compare elements of pairs in the domain of the subtype
relation in a finite number of steps possibly infinitely. Leaving transitivity out
of the definition would collapse finite and infinite transitivity chains to infinite
ones only.

Next step is to fold the inductive relation and produce a weak similarity. This
is done by the single-constructor coinductive type:

tyle n : ty n → ty n → Type

We denote tyle n E F by E ≤ F . In the rule below, we keep arguments n,R,E, F
of the constructor despite that we can infer these from the types of other pa-
rameters because, in the proofs, we have to make partial applications of the
constructor to arguments:
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r : reflexive R t : transitive R f : ∀ E F. R E F → E ≤ F l : E ≤R F

≤intro n R r t E F f l : E ≤ F

The only introduction rule for ≤ has four hypotheses, namely, that R is reflexive,
transitive and a subrelation of ≤, and that F is ≤R-accessible from E in finitely
many steps (since ≤R is an inductive relation).

5 Soundness and Completeness

Below we give a proof outline for the Main Theorem. For particular details, the
reader can refer to the accompanying script.

Main Theorem (Soundness and completeness)

∀ (n : N) (E F : ty n). E ≤ F ↔ �E� ≤∞
�F �

Proof. “Only if” (completeness). Suppose that the following coinductive hypoth-
esis H holds:

∀ (n : N) (E F : ty n). �E� ≤∞
�F � → E ≤ F

Let us first define the following coinduction principle P :

≤intro n Q Qrefl Qtrans

where Q is the relation λ E F : ty n. �E� ≤∞
�F � (note that we abstract

over types here, not trees), and Qrefl and Qtrans are respectively a reflexivity
lemma and a transitivity lemma (each proved by straightforward coinduction).
The coinduction principle P allows us to prove statements of the kind

∀ E F : ty n.
(
∀ E F : ty n. �E� ≤∞

�F � → E ≤ F
)
→ E ≤Q F → E ≤ F

We reason by simple case analysis on �E�. The case ⊥∞ is proved by an appli-
cation of P to E, F , H and the constructor for ⊥. Most other cases are proved
by case analysis on F and either a similar argument involving the coinductive
principle P applied to a single constructor or proof by contradiction. The three
remaining cases are

1. �E1�E2� ≤∞
�μ F1�F2� → (E1�E2) ≤ (μ F1�F2)

2. �μ E1�E2� ≤∞
�F1�F2� → (μ E1�E2) ≤ (F1�F2)

3. �μ E1�E2� ≤∞
�μ F1�F2� → (μ E1�E2) ≤ (μ F1�F2)

These are proved by the application of the coinduction principle to E, F , H and
the transitivity constructor of ≤Q with the explicitly unfolded μ-term.

“If” (soundness). We start by admitting the coinductive hypothesis H :

∀ (n : N) (E F : ty n). E ≤ F → �E� ≤∞
�F �

We eliminate the assumption E ≤ F by inverse application of the rule ≤intro.
Thus we obtain a relation R on trees and 4 respective premises. By inductive
elimination of the premiss E ≤R F we arrive at the following 4 cases:
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1. E = ⊥;
2. F = �;
3. there exist E1, E2, F1 and F2 such that E = E1�E2, F = F1�F2, R F1 E1

and R E2 F2;
4. there exists E1 such that E1 = E = F .

This is proved by application of the rules of ≤R and the premises of ≤intro

saying that R is reflexive and transitive. (Thus we solve the guardedness issue
that would have arisen should we attempt to use reflexivity and transitivity of
the coinductive relation ≤∞ instead of these two premises.) Hence we have four
possibilities when E ≤∞ F can hold. The first two cases are proved by the ⊥ and
� constructors of ≤∞. The third case is proved by applying the � constructor,
the hypothesis H , and the premiss saying that R is a subrelation of ≤. The last
case is proved by reflexivity of ≤∞ (whose proof coinsides with the proof of Qrefl

from the completeness part). 	


6 Monadic Substitution

Definitions in this technical section have implicit arguments being systematically
omitted for conciseness. We implemented in Coq a generic notion of symbolic
substitution introduced in [2] for untyped lambda terms. It is based on the notion
of universe of types, that is, a function space A → Type where A can be any
given type. The type A is said to index the type Type. For effective indexing,
the index type should be countable, and for that, it suffices to consider the type
N of natural numbers. The terminology and basic notation are similar to those
of McBride [15], although we do not use the notion of a context of types of in
the definition of the universe, which makes it more generic. We call the resulting
universe stuff (referring to its abstract character):

stuff : Type

stuff = N → Type

For a given n, the intended meaning of stuff n is stuff with n variables. The
intention is to have a general category of objects such as formulas with n free
variables. Yet objects of this category are not endowed with structure making it
applicable to an as wide variety of situations as possible.

In the foundation of the method is a type of monadic structure called kit.
Here we modify the version of [15] by removing the notion of a context of types:

kit : stuff → stuff → Type

var : ∀ n. In → U n lift : ∀ n. U n → T n wk : ∀ n. U n → U (1 + n)

Kit var lift wk : kit U T
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A substitution of type sub T m n is such that it applies to stuff with at most
m variables and yields stuff with at most n variables. Hence a substitution is
essentially an m-tuple of T n, that is,

sub : stuff → N → N → Type

sub T m n = m-tuple (T n)

Here are basic functions on substitutions, with their types. We need a function to
lift a substitution to the next order. This is implemented in the function lift sub
of type

∀ (T U : stuff) (K : kit T U) m n. sub T m n → sub T (1 +m) (1 + n)

whose definition is by case analysis on K.
Next function to consider is the identity substitution id sub:

id sub : ∀ (T U : stuff) (K : kit T U) n. sub T n n

It is defined by induction on n, applying lift sub on the inductive step.
We define a substitution function sub0 that applies to stuff T with 1 + n

variables, substitutes a given term E for the variable 0, and returns stuff T with
n free variables:

sub0 : ∀ (T U : stuff) (K : kit T U) n (E : T n). sub T (1 + n) n

and the definition is simply by consing E with id sub K n.
The weakening function

wkn sub : ∀ m n T U (K : kit T U). sub T n (m+ n)

is defined by induction on m, applying id sub on the inductive basis, and tuple
mapping on the inductive step.

Substitutions can be easily endowed with structure of composition because
they take stuff and return stuff. In order to establish compositionality on substi-
tutions, we define applicative structure on substitutions which is called subApp:

subApp : stuff → Type

var : ∀ n. In → T n app : ∀ U m n. kit U T → T m → sub U m n → T n

SubApp var app : subApp T

Our next goal is to define a concrete kit on stuff T given an applicative
structure of substitutions on T . This is done in stuffKit below. We need three
components of a kit: variables, lifting and weakening. For variables, we can sim-
ply reuse those of the applicative structure. Lifting is simply the identity here.
Only weakening requires further definitions for substitution of variables.

Define a kit for variables as follows:

varKit : ∀ (T : stuff). (∀ n. In → T n) → kit I T
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varKit vr = Kit (λ n. id In) vr (rshift 1)

where rshift 1 is the operation of increment of the upper bound by 1.
Substitution of variables is defined below:

varSub : ∀ m n (T : stuff). subApp T → T m → sub I m n → T n

varSub a = let SubApp vr ap = a in ap I m n (varKit vr)

The required kit on stuff T has the following type:

stuffKit : ∀ (T : stuff). subApp T → kit T T

Its variables and lifting are as defined above. Weakening is derived from substi-
tution of variables.

stuffKit a = let SubApp vr = a in

Kit vr (λ . id)
(
λ n E. (varSub a) E (wkn sub 1 n (varKit vr))

)

Finally, for the generic applicative structure, the canonical weakening function
wkstuff from stuff with n variables to stuff with 1 + n variables is defined as
follows:

wkstuff : ∀ T (K : kit T T ) (a : subAppT) n. sub T n (1+n) → T n → T (1+ n)

wkstuff K a s = let SubApp ap = a in

λ E. (ap T n (1 + n) K) E s

A straightforward substitution strategy is implemented by the function trav be-
low that traverses a term E and applies a given substitution s. Note that, since
s is a tuple, si is a consistent notation for the i-th element of s.

trav : ∀ T m n. kit T ty → ty m → sub T m n → ty n

trav K ⊥ s = ⊥
trav K � s = �
trav K Xi s = let Kit li = K in li si

trav K (F�G) s = (trav K F s)�(trav K G s)

trav K (μ F�G) s = μ (trav K F (lift sub K s))�(trav K G (lift sub K s))

The traverse function allows to define an instance of the applicative structure
on ty that we call tyApp, in Figure 1. In the definition of tyApp, we denoted the
constructor of nameless variables by X . This is a consistent notation since we
defined, in Sec. 3, that Xi is of type ty n for a given natural number n and a
bounded number i of type In. So, X is a function of type ∀ n. In → ty n. The
monadic structure on ty can now be defined as a stuff kit specified on type ty. The
function subty0 substitutes a given μ-type E for the 0-th variable. It is defined
using the generic substitution sub0 we defined above. Weakening is specialised
on ty by the function wkty. The function sbst is capture-avoiding substitution of
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tyApp : subApp ty

tyApp = SubApp X trav

tyKit : kit ty ty

tyKit = stuffKit tyApp

subty0 : ∀ n (E : ty n). sub ty (1 + n) n

subty0 = sub0 tyKit

wkty : ∀ n. sub ty n (1 + n) → ty n → ty (1 + n)

wkty = wkstuff tyKit tyApp

subKit : kit ty ty

subKit = Kit X (λ n. id (ty n)) (λ n. wkty (wk sub n tyKit))

sbst : ∀ n. ty (1 + n) → ty n → ty n

sbst E F = trav subKit E (subty0 F )

unfld : ∀ n. ty (1 + n) → ty (1 + n) → ty n

unfld E F = sbst (E�F ) (μ E�F )

Fig. 1. The structure of substitution on ty

a given term F for all occurrences of the 0-th variable of a term E. At last, unfld
unfolds a μ-redex.

Unlike monadic presentations, named presentations of terms with holes can
be cumbersome and have limited application. Among the closest nameless but
not monadic presentations are Capretta’s polynomial expressions with metavari-
ables [6]. They require proving equality of substitutions in a context. Monadic
presentations of terms allow to have substitutions as part of the construction
and also allow for free to have a notion of a term with a hole. For example, it
can be seen that Capretta’s tree expressions with metavariables have the same
expressive power as monadic substitutions on polynomial trees.

7 Related Work

In their seminal paper [3], Amadio and Cardelli extended the partial order on
finite types to possibly infinite recursive types and showed that it is sound and
complete with respect to a certain partial order on finite and infinite trees. The
partial order on trees was defined by an infinite sequence of finite approximations
created by truncating trees at a finite depth. Two trees were defined to be in
subtree relation if and only if the partial order holds between their finite approx-
imations at all finite depths. The time complexity of this subtyping algorithm is
exponential.

The authors of [3] stated that a relation of recursive subtyping to decidable
problems on automata was not known. More exactly, the word used was “well-
known”, which may create some space for speculation. However, shortly after,
such connection was found. An efficient, O(n2)-time subtyping algorithm for
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recursive types was defined in [14] using regular term semantics. The algorithm
works by reduction of a subtyping problem to the emptiness problem of a special
automaton called term automaton. It was shown there that the automaton-
theoretic approach can be productively applied to subtyping.

It was spelt out by the authors of [5] that the interpretation of subtyping and
equality in terms of, respectively, simulation and bisimulation leads to an infer-
ence system with coinductively motivated fixpoint rules for the term language
of coercions between μ-types. This coinductive view also has a straightforward
application to regular languages [11,12] given that containment (in other words,
subtyping) and equivalence there correspond to simulation and bisimulation on
finite automata.

From the point of view of higher-order programming, nested type definitions
can be seen as instances of iteration or coiteration schemes. This view was de-
veloped in [1]. The definition of tyle is related to type definitions by Mendler
coiteration for higher ranks, a relationship that can be investigated further in
future work. In this paper, the connection is not made explicit as it would even-
tually require an implementation of generalised iteration and coiteration schemes
in the proof assistant. In comparison, the aim of our work is to use a minimalist
and standard set of tools allowing to state the soundness and completeness result
without going through a more general theory.

The soundness and completeness result allows us to tell that our definition
of syntactic subtyping is correct with respect to the tree semantics. In a proof
assistant this is only a change in representation. Since proof search is undecidable
on the universe of types in general, it is impractical, and likely impossible, to use
either of the representations for efficient proof search in a prover. Instead, we
can use the approach which is known as the two-level approach [6] or small-scale
reflection [10].

We can implement a decision procedure for a class of propositional goals
G ∈ Prop by

1. first defining a type of codes goal : Type and an interpretation function
� � : goal → Prop surjective on G,

2. and then defining a decision algorithm dec : goal → bool which can be proved
sound and complete with respect to the propositional interpretation, that is,

∀g : goal. dec g = true ↔ �g�

As a result, to prove P ∈ G, it is sufficient to compute dec g, where g is the code
for P .

Alternatively, soundness and completeness of the decision algorithms is an
object of inductive type decidable : Prop → bool → Type defined by

p : P

dT p : decidable P true

p : ¬P
dF p : decidable P false

Thus decidable P b denotes the fact that provability of P is decidable by the
algorithm b. As a side note, the above inductive type can be extended to account
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for many-valued decision algorithms, for example, three-valued ones, where one
of the values stands for the undefined result.

Common decision procedures may be based on various notions of derivative.
For example, decision procedures for regular expression containment may be
based on deterministic [11] or non-deterministic derivatives [12]. Both kinds of
derivative can be implemented in the type theory of Coq [17,13].

Alternative approach to subtyping: suspension monad. A practical approach to
nested induction-coinduction is presented in Agda [7]. The authors provide, at
the language level, a type function ∞ : Type → Type which marks a given type
as being coinductive. This type function has an interpretation as a suspension
type constructor that can be used in functional languages with eager evaluation
to model laziness. This interpretation is faithful since ∞ is supplied with delay
and force operators � : ∀ A. A → ∞A and � : ∀ A. ∞A → A respectively.

One of the immediate advantages of having the suspension monad supported
by the language is efficiency. This has also a positive effect on succinctness of
function definitions by recursion-corecursion since the implementation includes
an improved termination checker capable of inferring termination guarantees
for such function definitions. This leaves behind the more syntactically oriented
termination checker of Coq.

On the other hand, without support of suspension monad in Coq, we cannot
follow this approach there. This is why it is very interesting to find ways to use
type theory effectively without re-engineering the implementation. Also, note
that currently the suspension monad does not allow to express directly type
definitions which have an outer least fixed point and an inner greatest fixed
point because of the way the termination checker of Agda works.

8 Conclusions

We showed how a rather simple fold encoding pattern can be used to define a
prototypical subtyping relation: μ-types without products or sums. Our study is
closely related to the work of Altenkirch and Danielsson [8] who define subtyping
using a suspension computation monad inspired by semantics of programming
languages. The method with the suspension monad requires support in the way
of dedicated programming language primitives. However, it is not always prac-
tically possible for the user of a prover or dependently typed language to amend
the implementation. Here, we follow a method that allows to encode infinitary
subtyping by folding an inductive relation into a coinductive one, which can
be done using standard type-theoretic means. As with the suspension monad
method, proving soundness corresponds to the most technically advanced part
of work. The soundness argument requires to make the introduction rule for the
coinductive wrapper relation parametric not only in an abstract relation R but
also in properties of R.

It is worth noting that the presented approach of weak similarity is a natural
solution to problems arising from declaring closure properties such as transitivity
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in coinductive relations that were discussed in [9]. Indeed, with our definitions,
infinite transitivity chains do not arise.

The paper [16] discusses an issue with the current implementation of most
dependently typed systems that does not easily allow to encode bisimilarity
into substitutive equality for reasoning about corecursive functions. This can
be relevant to mixing induction and coinduction since mixing is essentially a
fold method which, in order to work under case analysis (that is, unfolding),
has to contain a reference to an abstract unfolded relation. With current imple-
mentations of dependent elimination, restoring the concrete relation behind this
abstract one corresponds to a major part of work. Meanwhile, if we had elim-
ination being able to unfold this relation automatically, this would be a clear
time-saving benefit.

We can see that the traverse function trav defined in the paper is a prototype
substitution strategy in the sense that, if we define substitution monads for other
term languages and subtype relations of interest, the traverse function may carry
some non-trivial operational meaning such as that of various matching strategies
for (possibly extended) regular expressions. One of such interesting languages is
the language of regular types [15], that is, recursive types with product and sum
datatype constructors, which can be viewed as generalising regular expressions
with non-terminating left-recursion.

Acknowledgements. I would like to thank Keiko Nakata and Niels Anders
Danielsson for their help and advice regarding theorem proving and provers,
and my TFP referees for their valuable remarks. The research is supported by
the research fellowship EU FP7 Marie Curie IEF 253162 ‘SImPL’.

References

1. Abel, A., Matthes, R., Uustalu, T.: Iteration and coiteration schemes for higher-
order and nested datatypes. Theoretical Computer Science 333(1-2), 3–66 (2005)

2. Altenkirch, T., Reus, B.: Monadic Presentations of Lambda Terms Using General-
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Abstract. Compilers for functional languages, whether strict or non-
strict, typed or untyped, need to handle many of the same problems,
for example thunks, lambda lifting, optimisation, garbage collection, and
system interaction. Although implementation techniques are by now well
understood, it remains difficult for a new functional language to exploit
these techniques without either implementing a compiler from scratch,
or attempting to fit the new language around another existing compiler.
Epic is a compiled functional language which exposes functional compi-
lation techniques to a language implementor, with a Haskell API. In this
paper we describe Epic and outline how it may be used to implement a
high level language compiler, illustrating our approach by implementing
compilers for the λ-calculus and a dynamically typed graphics language.

1 Introduction

When implementing a new programming language, whether for research pur-
poses or as a realistic general purpose language, we are inevitably faced with
the problem of executing the language. Ideally, we would like execution to be
as fast as possible, and exploit known techniques from many years of compiler
research. However, it is difficult to make use of the existing available back ends
for functional langauges, such as the STG [12,15,19] or ABC [18] machines. They
may be too low level, they may make assumptions about the source language
(e.g., its type system) or there may simply be no clearly defined API. As a result,
experimental languages such as Agda [14] have resorted to generating Haskell,
using unsafeCoerce to bypass the type system. Similarly, Cayenne [1] generated
LML bypassing the type checker. This is not ideal for several reasons: we cannot
expect to use the full power and optimisations of the underlying compiler, nor
can we expect it to exploit any specific features of our new source language, such
as the optimisation opportunities presented by rich dependent type systems [4].

Epic is a library which aims to provide the necessary features for implementing
the back-end of a functional language — thunks, closures, algebraic data types,
scope management, lambda lifting — without imposing any design choices on
the high level language designer, other than encouraging a functional style. It
provides compiler combinators, which guarantee that any output code will be
syntactically correct and well-scoped. This gives a simple method for building a
compiler for a new functional language, e.g., for experimentation with new type
systems or new domain specific languages. In this paper, we describe Epic and
its API using two example high level languages. More generally, we observe that:
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1. Recent language and type system research has typically been based on ex-
tensions of existing languages, notably Haskell. While this makes implemen-
tation easier as it builds on an existing language, it discourages significant
departures from the existing language (e.g., full dependent types). With Epic,
we encourage more radical experiments by providing a standalone path to a
realistic, efficient, language implementation.

2. A tool can become significantly more useful if it is embeddable in other
systems. A language back end is no different — by providing an API for Epic,
we make it more widely applicable. Haskell’s expressiveness, particularly
through type classes, makes it simple to provide an appropriate API for
describing the core language.

3. Epic’s small core and clearly defined API makes it a potential platform for
experimentation with optimisations and new back ends. Indeed, we avoid
implementation details in this paper. Several implementations are possible,
perhaps targetting .NET or the JVM as well as native code.

Epic was originally written as a back end for Epigram [7] (the name1 is short for
“Epigram Compiler”). It is now used by Idris [5] and as an experimental back
end for Agda. It is specifically designed for reuse by other source languages.

2 The Epic Language

Epic is based on the λ-calculus with some extensions. It supports primitives
such as strings and integers, as well as tagged unions. There are additional
control structures for specifying evaluation order, primitive loop constructs, and
calling foreign functions. Foreign function calls are annotated with types, to
assist with marshaling values between Epic and C, but otherwise there are no
type annotations and there is no type checking — as Epic is intended as an
intermediate language, it is assumed that the high level language has already
performed any necessary type checking. The abstract syntax of the core language
is given in Figure 1. We use de Bruijn telescope notation, �x , to denote a sequence
of x . Variable names are represented by x , and i , b, f , c, and str represent integer,
boolean, floating point, character and string literals respectively.

2.1 Definitions

An Epic program consists of a sequence of untyped function definitions, with
zero or more arguments. The entry point is the function main , which takes no
arguments. For example:

factorial (x ) = if x == 0 then 1
else x × factorial (x − 1)

main() = putStrLn(intToString(factorial (10)))

1 Coined by James McKinna.
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p ::= �def (Epic program) def ::= x (�x ) = t (Definition)

t ::= x (Variable) | t(�t) (Application)
| λx . t (Lambda binding) | let x = t in t (Let binding)

| Con i(�t) (Constructor) | t !i (Projection)
| t op t (Infix operator) | if t then t else t (Conditional)

| case t of �alt (Case expressions) | lazy(t) (Lazy evaluation)

| effect(t) (Effectful term) | while t t (While loops)

| x := t in t (Variable update) | foreign T str �(t : T ) (Foreign call)

| malloc t t (Allocation) | i | f | c | b | str (Constants)

alt ::= Con i(�x ) �→ t (Constructors) | i �→ t (Constants)
| default �→ t (Match anything)

op ::= + | − | × | / |== |< | ≤ |> | ≥ |<< |>>

T ::= Int | Char | Bool | Float | String (Primitives)
| Unit (Unit type)
| Ptr (Foreign pointers)
| Any (Polymorphic type)

Fig. 1. Epic syntax

The right hand side of a definition is an expression consisting of function applica-
tions, operators (arithmetic, comparison, and bit-shifting), bindings and control
structures (some low level and imperative). Functions may be partially applied.

Values. Values in an Epic program are either one of the primitives (an integer,
floating point number, character, boolean or string) or a tagged union. Tagged
unions are of the form Coni(t1, . . . , tn), where i is the tag and the�t are the fields ;
the name Con suggests “Constructor”. For example, we could represent a list
using tagged unions, with Con 0 () representing the empty list and Con 1 (x , xs)
representing a cons cell, where x is the element and xs is the tail of the list.

Tagged unions are inspected either using field projection (t !i projects the ith
field from a tagged union t) or by case analysis. E.g., to append two lists:

append(xs , ys) = case xs of
Con 0() → ys
Con 1(x , xs′) → Con 1(x , append(xs ′, ys))

Evaluation Strategy. By default, expressions are evaluated eagerly (in ap-
plicative order), i.e. arguments to functions and tagged unions are evaluated
immediately, left to right. Evaluation can instead be delayed using the lazy con-
struct. An expression lazy(t) builds a thunk for the expression t which will not
be evaluated until it needs to be inspected, typically by one of: inspection in a
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case expression or the condition in an if statement; field projection; being passed
to a foreign function; explicit evaluation with effect.An expression effect(t) eval-
uates the thunk t without updating the thunk with the result. This is to facilitate
evaluation of side-effecting expressions.

Higher Order Functions. Finally, expressions may contain λ and let bindings.
Higher order functions such as map are also permitted:

map(f , xs) = case xs of
Con 0() → Con 0()
Con 1(x , xs′) → Con 1(f (x ),map(f , xs ′))

evens(n) = let nums = take(n, countFrom(1)) in
map(λx . x × 2, nums)

2.2 Foreign Functions

Most programs eventually need to interact with the operating system. Epic pro-
vides a lightweight foreign function interface which allows interaction with exter-
nal C code. Since Epic does no type checking or inference, a foreign call requires
the argument and return types to be given explicitly. e.g. the C function:

double sin(double x);

We can call this function from Epic by giving the C name, the return type (an
Epic Float, which corresponds to a C double) and the argument type (also an
Epic Float).

sin(x ) = foreign Float ”sin” (x : Float)

2.3 Low Level Features

Epic emphasises control over safety, and therefore provides some low level fea-
tures. A high level language may wish to use these features in some performance
critical contexts, whether for sequencing side effects, implementing optimisa-
tions, or to provide run-time support code. Epic allows sequencing, while loops
and variable update, and provides a malloc construct for manual memory alloca-
tion (by default memory is garbage collected). The behaviour of malloc n t is to
create a fixed pool of n bytes, and allocate only from this pool when evaluating
t . Due to space restrictions we will not discuss these constructs further.

2.4 Haskell API

The primary interface to Epic is through a Haskell API which is used to build
expressions and programs with higher order abstract syntax (HOAS) [17]. Imple-
menting a compiler for a high level language then involves converting the abstract
syntax of a high level program into an Epic program, through these “compiler
combinators”, and implementing any run-time support as Epic functions.
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Programs and Expressions. The API allows the building of Epic programs
with an Embedded Domain Specific Language (EDSL) style interface, i.e. we
try to exploit Haskell’s syntax as far as possible. There are several possible
representations of Epic expressions. Expr is the internal abstract representation,
and Term is a representation which carries a name supply. We have a type class
EpicExpr which provides a function term for building a concrete expression
using a name supply:

type Term = State NextName Expr

class EpicExpr e where

term :: e -> Term

There are straightforward instances of EpicExpr for the internal representations
Expr and Term. There is also an instance for String, which parses concrete
syntax, which is beyond the scope of this paper. More interestingly, we can
build an instance of the type class which allows Haskell functions to be used to
build Epic functions. This means we can use Haskell names for Epic references,
and not need to worry about scoping or ambiguous name choices.

instance EpicExpr e => EpicExpr (Expr -> e) where

Alternatively, function arguments can be given explicit names, constructed with
name. A reference to a name is built with ref, and fn composes ref and name.

name :: String -> Name

ref :: Name -> Term

fn :: String -> Term

We provide an instance of EpicExpr to allow a user to give names explicitly.
This may be desirable when the abstract syntax for the high level language we
are compiling has explicit names.

instance EpicExpr e => EpicExpr ([Name], e) where

For example, the identity function can be built in either of the following ways:

id1, id2 :: Term

id1 = term (\x -> x)

id2 = term ([name "x"], fn "x")

Both forms, using Haskell functions or explicit names, can be mixed freely in an
expression. A program is a collection of named Epic expressions built using the
EpicExpr class:

type Program = [EpicDecl]

data EpicDecl = forall e. EpicExpr e => EpicFn Name e

The library provides a number of built-in definitions for some common operations
such as outputting strings and converting data types:

basic_defs :: [EpicDecl]



38 E. Brady

In this paper we use putStr and putStrLn for outputting strings, append for
concatenating strings, and intToString for integer to string conversion. We can
compile a collection of definitions to an executable, or simply execute them
directly. Execution begins with the function called main — Epic reports an
error if this function is not defined:

compile :: Program -> FilePath -> IO ()

run :: Program -> IO ()

Building Expressions. We have seen how to build λ bindings with the
EpicExpr class, using either Haskell’s λ or pairing explicitly bound names with
their scope. We now add further sub-expressions. The general form of functions
which build expressions is to create a Term, i.e. an expression which manages
its own name supply by combining arbitrary Epic expressions, i.e. instances of
EpicExpr. For example, to apply a function to an argument, we provide an
EpicExpr for the function and the argument:

infixl 5 @@

(@@) :: (EpicExpr f, EpicExpr a) => f -> a -> Term

Since Term itself is an instance of EpicExpr, we can apply a function to several
arguments through nested applications of @@, which associates to the left as
with normal Haskell function application. We have several arithmetic operators,
including arithmetic, comparison and bitwise operators, e.g.:

op_ :: (EpicExpr a, EpicExpr b) => Op -> a -> b -> Term

plus_, minus_, times_, divide_ :: Op

We follow the convention that Epic keywords and primitive operators are rep-
resented by a Haskell function with an underscore suffix. This convention arises
because we cannot use Haskell keywords such as if, let and case as function
names. For consistency, we have extended the convention to all functions and
operators. if...then...else expressions are built using the if function:

if_ :: (EpicExpr a, EpicExpr t, EpicExpr e) => a -> t -> e -> Term

For let bindings, we can either use HOAS or bind an explicit name. To achieve
this we implement a type class and instances which support both:

class LetExpr e where

let_ :: EpicExpr val => val -> e -> Term

instance EpicExpr sc => LetExpr (Name, sc)

instance LetExpr (Expr -> Term)

To build a constructor form, we apply a constructor with an integer tag to
its arguments. We build a constructor using the con function, and provide a
shorthand tuple for the common case where the tag can be ignored — as the
name suggests, this happens when building tuples and records:

con_ :: Int -> Term

tuple_ :: Term
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Case Analysis. To inspect constructor forms, or to deconstruct tuples, we use
case expressions. A case expression chooses one of the alternative executions
path depending on the value of the scrutinee, which can be any Epic expression:

case_ :: EpicExpr e => e -> [Case] -> Term

We leave the definition of Case abstract (although it is simply an Epic expression
carrying a name supply) and provide an interface for building case branches.
The scrutinee is matched against each branch, in order. To match against a
constructor form, we use the same trick as we did for λ-bindings, either allowing
Haskell to manage the scope of constructor arguments, or giving names explicitly
to arguments, or a mixture. For convenience, we make Expr and Term instances
to allow empty argument lists.

class Alternative e where

mkAlt :: Tag -> e -> Case

instance Alternative Expr

instance Alternative Term

instance Alternative e => Alternative (Expr -> e)

instance Alternative e => Alternative ([Name], e)

We can build case alternatives for constructor forms (matching a specific tag),
tuples, or integer constants (matching a specific constant), and a default case if
all other alternatives fail to match. In the following, e is an expression which
gives the argument bindings, if any, and the right hand side of the match.

con :: Alternative e => Int -> e -> Case

tuple :: Alternative e => e -> Case

constcase :: EpicExpr e => Int -> e -> Case

defaultcase :: EpicExpr e => e -> Case

3 Example—Compiling the λ-Calculus

In this section we present a compiler for the untyped λ-calculus using HOAS,
showing the fundamental features of Epic required to build a complete compiler.

3.1 Representation

Our example is an implementation of the untyped λ-calculus, plus primitive
integers and strings, and arithmetic and string operators. The Haskell repre-
sentation uses higher order abstract syntax (HOAS). We also include global
references (Ref) which refer to top level functions, function application (App),
constants (Const) and binary operators (Op):

data Lang = Lam (Lang -> Lang)

| Ref Name

| App Lang Lang

| Const Const

| Op Infix Lang Lang
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Constants can be either integers or strings:

data Const = CInt Int | CStr String

There are infix operators for arithmetic (Plus, Minus, Times and Divide), string
manipulation (Append) and comparison (Eq, Lt and Gt). The comparison oper-
ators return an integer — zero if the comparison is true, non-zero otherwise:

data Infix = Plus | Minus | Times | Divide | Append | Eq | Lt | Gt

A complete program consists of a collection of named Lang definitions:

type Defs = [(Name, Lang)]

3.2 Compilation

Our aim is to convert a collection of Defs into an executable, using the compile
or run function from the Epic API. Given an Epic Program, compile will gener-
ate an executable, and run will generate an executable then run it. Recall that
a program is a collection of named Epic declarations:

data EpicDecl = forall e. EpicExpr e => EpicFn Name e

type Program = [EpicDecl]

Our goal is to convert a Lang definition into something which is an instance
of EpicExpr. We use Term, which is an Epic expression which carries a name
supply. Most of the term construction functions in the Epic API return a Term.

build :: Lang -> Term

The full implementation of build is given in Figure 2. In general, this is a
straightforward traversal of the Lang program, converting Lang constants to
Epic constants, Lang application to Epic application, and Lang operators to the
appropriate built-in Epic operators.

build :: Lang -> Term

build (Lam f) = term (\x -> build (f (EpicRef x)))

build (EpicRef x) = term x

build (Ref n) = ref n

build (App f a) = build f @@ build a

build (Const (CInt x)) = int x

build (Const (CStr x)) = str x

build (Op Append l r) = fn "append" @@ build l @@ build r

build (Op op l r) = op_ (eOp op) (build l) (build r)

where eOp Plus = plus_

eOp Minus = minus_

...

Fig. 2. Compiling Untyped λ-calculus
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Using HOAS has the advantage that Haskell can manage scoping, but the
disadvantage that it is not straightforward to convert the abstract syntax into
another form. The Epic API also allows scope management using HOAS, so we
need to convert a function where the bound name refers to a Lang value into a
function where the bound name refers to an Epic value. The easiest solution is
to extend the Lang datatype with an Epic reference:

data Lang = ...

| EpicRef Expr

build (Lam f) = term (\x -> build (f (EpicRef x)))

To convert a Lang function to an Epic function, we build an Epic function in
which we apply the Lang function to the Epic reference for its argument. Every
reference to a name in Lang is converted to the equivalent reference to the name
in Epic. Although it seems undesirable to extend Lang in this way, this solution
is simple to implement and preserves the desirable feature that Haskell manages
scope. Compiling string append uses a built in function provided by the Epic
interface in basic defs:

build (Op Append l r) = fn "append" @@ build l @@ build r

Given build, we can translate a collection of HOAS definitions into an Epic
program, add the built-in Epic definitions and execute it directly. Recall that
there must be a main function or Epic will report an error — we therefore add
a main function which prints the value of an integer expression given at compile
time.

main_ exp = App (Ref (name "putStrLn"))

(App (Ref (name "intToString")) exp)

mkProgram :: Defs -> Lang -> Program

mkProgram ds exp = basic_defs ++

map (\ (n, d) -> EpicFn n (build d)) ds ++

[(name "main", main_ exp)]

execute :: Defs -> Lang -> IO ()

execute p exp = run (mkProgram p exp)

Alternatively, we can generate an executable. Again, the entry point is the Epic
function main:

comp :: Defs -> Lang -> IO ()

comp p exp = compile "a.out" (mkProgram p exp)

This is a compiler for a very simple language, but a compiler for a more complex
language follows the same pattern: convert the abstract syntax for each named
definition into a named Epic Term, add any required primitives (we have just
used basic defs here), and pass the collection of definitions to run or compile.
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4 Atuin—A Dynamically Typed Graphics Language

In this section we present a more detailed example language, Atuin2, and outline
how to use Epic to implement a compiler for it. Atuin is a simple imperative
language with higher order procedures and dynamic type checking, with primi-
tive operations implementing turtle graphics. The following example illustrates
the basic features of the language. The procedure repeat executes a code block
a given number of times:

repeat(num, block) {

if num > 0 {

eval block

repeat(num-1, block)

}

}

Using repeat, polygon draws a polygon with the given number of sides, a size
and a colour:

polygon(sides, size, col) {

if sides > 2 {

colour col

angle = 360/sides

repeat(sides, {

forward size

right angle

})

}

}

Programs consist of a number of procedure definitions, one of which must be
called main and take no arguments:

main() {

polygon(10,25,red)

}

4.1 Abstract Syntax

The abstract syntax of Atuin is defined by algebraic data types constructed by a
Happy-generated parser. Constants can be one of four types: integers, characters,
booleans and colours:

data Const = MkInt Int | MkChar Char

| MkBool Bool | MkCol Colour

data Colour = Black | Red | Green | Blue | ...

Atuin is an imperative language, consisting of sequences of commands applied
to expressions. We define expressions (Exp) and procedures (Turtle) mutually.

2 http://hackage.haskell.org/package/atuin

http://hackage.haskell.org/package/atuin
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Expressions can be constants or variables, and combined by infix operators.
Expressions can include code blocks to pass to higher order procedures.

data Exp = Infix Op Exp Exp | Var Id

| Const Const | Block Turtle

data Op = Plus | Minus | Times | Divide | ...

Procedures define sequences of potentially side-effecting turtle operations. There
can be procedure calls, turtle commands, and some simple control structures.
Pass defines an empty code block:

data Turtle = Call Id [Exp] | Turtle Command

| Seq Turtle Turtle | If Exp Turtle Turtle

| Let Id Exp Turtle | Eval Exp

| Pass

The turtle can be moved forward, turned left or right, or given a different pen
colour. The pen can also be raised, to allow the turtle to move without drawing.

data Command = Fd Exp | RightT Exp | LeftT Exp

| Colour Exp | PenUp | PenDown

As with the λ-calculus compiler in Section 3, a complete program consists of
a collection of definitions, where definitions include a list of formal parameters
and the program definition:

type Proc = ([Id], Turtle)

type Defs = [(Id, Proc)]

4.2 Compiling

While Atuin is a different kind of language from the λ-calculus, with complicating
factors such as a global state (the turtle), imperative features, and dynamic
type checking, the process of constructing a compiler follows the same general
recipe, i.e. define primitive operations as Epic functions, then convert each Atuin
definition into the corresponding Epic definition.

Compiling Primitives. The first step is to define primitive operations as Epic
functions. The language is dynamically typed, therefore we will need primitive
operations to check dynamically that they are operating on values of the correct
type. We define functions which construct Epic code for building values, effec-
tively using a single algebraic datatype to capture all possible run-time values
(i.e. values are “uni-typed” [20]).

mkint i = con_ 0 @@ i

mkchar c = con_ 1 @@ c

mkbool b = con_ 2 @@ b

mkcol c = con_ 3 @@ c

Correspondingly, we can extract the concrete values safely from this structure,
checking that the value is the required type, e.g.
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getInt x = case_ x [con 0 (\ (x :: Expr) -> x),

defaultcase (error_ "Not an Int")]

Similarly, getChar, getBool and getCol check and extract values of the appro-
priate type. Using these, it is simple to define primitive arithmetic operations
which check that they are operating on the correct type, and report an error
if not.

primPlus x y = mkint $ op_ plus_ (getInt x) (getInt y)

primMinus x y = mkint $ op_ minus_ (getInt x) (getInt y)

primTimes x y = mkint $ op_ times_ (getInt x) (getInt y)

primDivide x y = mkint $ op_ divide_ (getInt x) (getInt y)

Graphics Operations. We use the Simple DirectMedia Layer3 (SDL) to im-
plement graphics operations. We implement C functions to interact with SDL,
and use Epic’s foreign function interface to call these functions. For example:

void* startSDL(int x, int y);

void drawLine(void* surf, int x, int y, int ex, int ey,

int r, int g, int b, int a);

The startSDL function opens a window with the given dimensions, and returns
a pointer to a surface on which we can draw; drawLine draws a line on a surface,
between the given locations, and in the given colour, specified as red, green, blue
and alpha channels.

We represent colours as a 4-tuple (r , g, b, a). Drawing a line in Epic involves
extracting the red, green, blue and alpha components from this tuple, then calling
the C drawLine function. To make a foreign function call, we use foreign ,
giving the C function name and explicit types for each argument so that Epic
will know how to convert from internal values to C values:

drawLine :: Expr -> Expr -> Expr -> Expr -> Expr -> Expr -> Term

drawLine surf x y ex ey col

= case_ (rgba col)

[tuple (\ r g b a ->

foreign_ tyUnit "drawLine"

[(surf, tyPtr),

(x, tyInt), (y, tyInt), (ex, tyInt), (ey, tyInt),

(r, tyInt), (g, tyInt), (b, tyInt), (a, tyInt)]) ]

The turtle state is a tuple (s , x , y, d , c, p) where s is a pointer to the SDL surface,
(x , y) gives the turtle’s location, d gives its direction, c gives the colour and
p gives the pen state (a boolean, false for up and true for down). Note that
this state is not accessible by Atuin programs, so we do not dynamically check
each component. To implement the forward operation, for example, we take
the current state, update the position according to the distance given and the
current direction, and if the pen is down, draws a line from the old position to
the new position.

3 http://libsdl.org/

http://libsdl.org/
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forward :: Expr -> Expr -> Term

forward st dist = case_ st

[tuple (\ (surf :: Expr) (x :: Expr) (y :: Expr)

(dir :: Expr) (col :: Expr) (pen :: Expr) ->

let_ (op_ plus_ x (op_ times_ (getInt dist) (esin dir)))

(\x’ -> let_ (op_ plus_ y (op_ timesF_ (getInt dist) (ecos dir)))

(\y’ -> if_ pen (fn "drawLine" @@ surf @@ x @@ y

@@ x’ @@ y’ @@ col) unit_ +>

tuple_ @@ surf @@ x’ @@ y’ @@ dir @@ col @@ pen)))]

Here we have applied getInt, esin and ecos as Haskell functions, so they will
be inlined in the resulting Epic code. In contrast, drawLine is applied as a
separately defined Epic function, using Epic’s application operator (@@).

Compiling Programs. Programs return an updated turtle state, and possi-
bly perform side-effects such as drawing. An Atuin definition with arguments
a1 . . . an is translated to an Epic function with a type of the following form:

f : State → a1 → . . . → an → State

To compile a complete program, we add the primitive functions we have defined
above (line drawing, turtle movement, etc) to the list of basic Epic definitions,
and convert the user defined procedures to Epic.

prims = basic_defs ++ [EpicFn (name "initSDL") initSDL,

EpicFn (name "drawLine") drawLine,

EpicFn (name "forward") forward, ... ]

We define a type class to capture conversion of expressions, commands and full
programs into Epic terms. Programs maintain the turtle’s state (an Epic Expr),
and return a new state, so we pass this state to the compiler.

class Compile a where

compile :: Expr -> a -> Term

In general, since we have set up all of the primitive operations as Epic functions,
compiling an Atuin program consists of directly translating the abstract syntax
to the Epic equivalent, making sure the state is maintained. For example, to
compile a call we build an Epic function call and add the current state as the
first argument. Epic takes strings as identifiers, so we use fullId :: Id ->

String to convert an Atuin identifier to an Epic identifier.

compile state (Call i es) = app (fn (fullId i) @@ state) es

where app f [] = f

app f (e:es) = app (f @@ compile state e) es

Where operations are sequenced, we make sure that the state returned by the
first operation is passed to the next:

compile state (Seq x y)

= let_ (compile state x) (\state’ -> compile state’ y)
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Atuin has higher order procedures which accept code blocks as arguments. To
compile a code block, we build a function which takes the turtle state (that is,
the state at the time the block is executed, not the state at the time the block
is created). Epic’s effect function ensures that a closure is evaluated, but the
result is not updated. Evaluating the closure may have side effects which may
need to be executed again — consider the repeat function above, for example,
where the code block should be evaluated on each iteration.

compile state (Block t) = term (\st -> compile st t)

compile state (Eval e) = effect_ (compile state e @@ state)

The rest of the operations are compiled by a direct mapping to the primitives
defined earlier. Finally, the main program sets up an SDL surface, creates an
initial turtle state, and passes that state to the user-defined main function:

init_turtle surf = tuple_ @@ surf @@ int 320 @@ int 240 @@

int 180 @@ col_white @@ bool True

runMain :: Term

runMain = let_ (fn "initSDL" @@ int 640 @@ int 480)

(\surface ->

(fn (fullId (mkId "main")) @@ (init_turtle surface)) +>

flipBuffers surface +> pressAnyKey)

The full source code for Atuin and its compiler is available from Hackage.

5 Related Work

Epic is currently used by Agda and Idris [5], as well as the development version
of Epigram [7]. Initial benchmarking [6] shows that the code generated by Epic
can be competitive with Java and is not significantly worse than C. Epic uses
techniques from other functional language back ends [12,15,18] but deliberately
exposes its core language as an API to make it as reusable as possible. Although
there is always likely to be a trade off between reusability and efficiency, exposing
the API will make it easier for other language researchers to build a new compiler
quickly. As far as we are aware, Epic occupies a unique point in the design space
of code generation tools — it is sufficiently high level that it captures common
functional language abstractions without being so high level that it imposes
constraints such as a type system on the language it is compiling. Alonzo, for
example, is a prototype compiler for Agda [2] which compiles via GHC, but
requires coercions in the generated code in order for it to be accepted by GHC’s
type checker. Coq’s program extraction tool [10] also aims to generate executable
code via a high level language, similarly requiring coercions where Coq terms
can not be given a type in the high level language. In contrast, systems such as
the Lazy Virtual Machine [9], C-- [16] and LLVM [8] are designed as lower level
target languages rather than high level APIs. We could nevertheless consider
using these tools for Epic code generation.
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6 Conclusion

Epic provides a simple path for language researchers to convert experimental
languages (e.g. experimenting with new type systems or domain specific language
design) into larger scale, usable tools, by providing an API for generating a
compiler, dealing with well-understood but difficult to implement problems such
as naming and scope management, code generation, interfacing with foreign
functions and garbage collection. In this paper we have seen two examples of
languages which can be compiled via Epic, both functionally based, but with
different features. The high-level recipe for each is the same: define primitive
functions as run-time support, then translate the abstract syntax into concrete
Epic functions, using a combinator style API. In addition, we have implemented
a compiler for λΠ [11], a dependently typed language, which shows how Epic
can handle languages with more expressive type systems4.

Future Work. Since Epic is currently used in practice by a number of de-
pendently typed functional languages, future work will have an emphasis on
providing an efficient executable environment for these and related languages.
An interesting research question, for example, is whether the rich type systems
of these languages can be used to guide optimisation, and if so how to present
the information gained by the type system to the compiler.

Currently, Epic compiles to machine code via C, using the Boehm conserva-
tive garbage collector [3]. While this has been reasonably efficient in practice,
we believe that an LLVM based implementation [8,19] with accurate garbage
collection would be more appropriate as it could take advantage of functional
language features such as immutability of data.

Perhaps more importantly, as a very simple functional language Epic is a
convenient platform with which to experiment with functional compilation tech-
niques. For example, we are developing an evaluator which will be a starting
point for experimenting with supercompilation [13] and partial evaluation. Of
course, any language which uses Epic as a back end will stand to gain from
future optimisation efforts!
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Abstract. Compilers are traditionally factorised into a number of
separate phases, such as parsing, type checking, code generation, etc.
However, there is another potential factorisation that has received com-
paratively little attention: the treatment of separate language features,
such as mutable state, input/output, exceptions, concurrency and so
forth. In this article we focus on the problem of modular compilation,
in which the aim is to develop compilers for separate language features
independently, which can then be combined as required. We summarise
our progress to date, issues that have arisen, and further work.

Keywords: Modularity, Haskell, Compilation, Monads.

1 Introduction

The general concept of modularity can be defined as the degree to which the
components of a system may be separated and recombined. In the context of
computer programming, this amounts to the desire to separate the components
of a software system into independent parts whose behaviour is clearly speci-
fied, and can be combined in different ways for different applications. Modular-
ity brings many important benefits, including the ability to break down larger
problems into smaller problems, to establish the correctness of a system in terms
of the correctness of its components, and to develop general purpose components
that are reusable in different application domains.

In this article we focus on the problem of implementing programming lan-
guages themselves in a modular manner. In their seminal article, Liang, Hu-
dak and Jones showed how to implement programming language interpreters
in a modular manner, using the notion of monad transformers [9]. In contrast,
progress in the area of modular compilers has been more limited, and at present
there is no standard approach to this problem. In this article we report on our
progress to date on the problem of implementing modular compilers. In partic-
ular, the paper makes the following contributions. We show how:

– Modular syntax for a language can be defined using the à la carte approach
to extensible data types developed by Swierstra [15];

– Modular semantics for a language can be defined by combining the à la carte
and modular interpreters techniques, extending the work of Jaskelioff [8];
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– Modular compilers can be viewed as modular interpreters that produce code
corresponding to an operational semantics of the source program;

– Modular machines that execute the resulting code can be viewed as modular
interpreters that produce suitable state transformers.

We illustrate our techniques using a simple expression language with two compu-
tational features, in the form of arithmetic and exceptions. The article is aimed
at functional programmers with a basic knowledge of interpreters, compilers and
monads, but we do not assume specialist knowledge of monad transformers, mod-
ular interpreters, or the à la carte technique. We use Haskell throughout as both
a semantic metalanguage and an implementation language, as this makes the
concepts more accessible as well as executable, and eliminates the gap between
theory and practice. The Haskell code associated with the article is available
from the authors’ web pages.

2 Setting the Scene

In this section we set the scene for the rest of the paper by introducing the prob-
lem that we are trying to solve. In particular, we begin with a small arithmetic
language for which we define four components: syntax, semantics, compiler and
virtual machine. We then extend the language with a simple effect in the form of
exceptions, and observe how these four components must be changed in light of
the new effect. As we shall see, such extensions cut across all aspects and require
the modification of existing code in each case.

2.1 A Simple Compiler

Consider a simple language Expr comprising integer values and binary addition,
for which we can evaluate expressions to an integer value:

data Expr = Val Value | Add Expr Expr

type Value = Int

eval :: Expr -> Value

eval (Val n) = n

eval (Add x y) = eval x + eval y

Evaluation of expressions in this manner corresponds to giving a denotational
semantics to the Expr datatype [14]. Alternatively, expressions can be compiled
into a sequence of low-level instructions to be operated upon by a virtual ma-
chine, the behaviour of which corresponds to a (small-step) operational seman-
tics [4]. We can compile an expression to a list of operations as follows:
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type Code = [Op]

data Op = PUSH Int | ADD

comp :: Expr -> Code

comp c = comp’ c []

comp’ :: Expr -> Code -> Code

comp’ (Val n) c = PUSH n : c

comp’ (Add x y) c = comp’ x (comp’ y (ADD : c))

Note that the compiler is defined in terms of an auxiliary function comp’ that
takes an additional Code argument that plays the role of an accumulator, which
avoids the use of append (++) and leads to simpler proofs [5]. We execute the
resulting Code on a virtual machine that operates using a Stack:

type Stack = [Item]

data Item = INT Value

exec :: Code -> Stack

exec c = exec’ c []

exec’ :: Code -> Stack -> Stack

exec’ [] s = s

exec’ (PUSH n : c) s = exec’ c (INT n : s)

exec’ (ADD : c) s = let (INT y : INT x : s’) = s in

exec’ c (INT (x + y) : s’)

The correctness of the compiler can now be captured by stating that the result
of evaluating an expression is the same as first compiling, then executing, and
finally extracting the result value from the top of the Stack (using an auxiliary
function extr), which can be expressed in diagrammatic form as follows:

Expr

comp

��

eval �� V alue

Code exec
�� Stack

extr

��

2.2 Adding a New Effect

Suppose now that we wish to extend our language with a new effect, in the form
of exceptions. We consider what changes will need to be made to the languages
syntax, semantics, compiler and virtual machine as a result of this extension.
First of all, we extend the Expr datatype with two new constructors:
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data Expr = ... | Throw | Catch Expr Expr

The Throw constructor corresponds to an uncaught exception, while Catch is
a handler construct that returns the value of its first argument unless it is an
uncaught exception, in which case it returns the value of its second argument.

From a semantic point of view, adding exceptions to the language requires
changing the result type of the evaluation function from Value to Maybe Value

in order to accommodate potential failure when evaluating expressions. In turn,
we must rewrite the semantics of values and addition accordingly, and define
appropriate semantics for throwing and catching.

eval :: Expr -> Maybe Value

eval (Val n) = return n

eval (Add x y) = eval x >>= \n ->

eval y >>= \m ->

return (n + m)

eval Throw = mzero

eval (Catch x h) = eval x ‘mplus‘ eval h

In the above code, we exploit the fact that Maybe is monadic [12,16,17]. In
particular, we utilise the basic operations of the Maybe monad, namely return,
which converts a pure value into an impure result, (>>=), used to sequence
computations, mzero, corresponding to failure, and mplus, for sequential choice.

Finally, in order to compile exceptions we must introduce new operations in
the virtual machine and extend the compiler accordingly [6]:

data Op = ... | THROW | MARK Code | UNMARK

comp :: Expr -> Code

comp e = comp’ e []

comp’ :: Expr -> Code -> Code

comp’ (Val n) c = PUSH n : c

comp’ (Add x y) c = comp’ x (comp’ y (ADD : c))

comp’ Throw c = THROW : c

comp’ (Catch x h) c = MARK (comp’ h c) : comp’ x (UNMARK : c)

Intuitively, THROW is an operation that throws an exception, MARK makes a record
on the stack of the handler Code to be executed should the first argument of a
Catch fail, and UNMARK indicates that no uncaught exceptions were encountered
and hence the record of the handler Code can be removed. Note that the accu-
mulator plays a key role in the compilation of Catch, being used in two places
to represent the code to be executed after the current compilation.

Because we now need to keep track of handler code on the stack as well as
integer values, we must extend the Item datatype and also extend the virtual
machine to cope with the new operations and the potential for failure:
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data Item = ... | HAND Code

exec :: Code -> Maybe Stack

exec c = exec’ c []

exec’ :: Code -> Stack -> Maybe Stack

exec’ [] s = return s

exec’ (PUSH n : c) s = exec’ c (INT n : s)

exec’ (ADD : c) s = let (INT y : INT x : s’) = s in

exec’ c (INT (x + y) : s’)

exec’ (THROW : _) s = unwind s

exec’ (MARK h : c) s = exec’ c (HAND h : s)

exec’ (UNMARK : c) s = let (v : HAND _ : s’) = s in

exec’ c (v : s’)

The auxiliary unwind function implements the process of invoking handler code
in the case of a caught exception, by executing the topmost Code record on the
execution stack, failing if no such record exists:

unwind :: Stack -> Maybe Stack

unwind [] = mzero

unwind (INT _ : s) = unwind s

unwind (HAND h : s) = exec’ h s

2.3 The Problem

As we have seen with the simple example in the previous section, extending the
language with a new effect results in many changes to existing code. In particular,
we needed to extend three datatypes (Expr, Op and Item), change the return type
and existing definition of three functions (eval, exec and exec’), and extend
the definition of all the functions involved.

The need to modify and extend existing code for each effect we wish to intro-
duce to our language is clearly at odds with the desire to structure a compiler in
a modular manner and raises a number of problems. Most importantly, changing
code that has already been designed, implemented, tested and (ideally) proved
correct is bad practice from a software engineering point of view [18]. Moreover,
the need to change existing code requires access to the source code, and demands
familiarity with the workings of all aspects of the language rather than just the
feature being added. In the remainder of this paper we will present our work to
date on addressing the above problems.

3 Modular Effects

In the previous section, we saw one example of the idea that computational
effects can be modelled using monads. Each monad normally corresponds to a
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single effect, and because most languages involve more than one effect, the issue
of how to combine monads quickly arises. In this section, we briefly review the
approach based upon monad transformers [9].

In Haskell, monad transformers have the following definition:

class MonadTrans t where

lift :: Monad m => m a -> t m a

Intuitively, a monad transformer is a type constructor t which, when applied to
a monad m, produces a new monad t m. Monad transformers are also required
to satisfy a number of laws, but we omit the details here. Associated with every
monad transformer is the operation lift, used to convert from values in the base
monad m to the new monad t m. By way of example, the following table sum-
marises five commonly utilised computational effects, their monad transformer
types and the implementations of these types:

Effect Transformer Type Implementation

Exceptions ErrorT m a m (Maybe a)
State StateT s m a s → m (a, s)

Environment ReaderT r m a r → m a
Logging WriterT w m a m (a, w)

Continuations ContT r m a (a → m r) → m r

The general strategy is to stratify the required effects by starting with a base
monad, often the Identity monad, and applying the appropriate transformers.
There are some constraints regarding the ordering; for example, certain effects
can only occur at the innermost level and certain effects do not commute [9],
but otherwise effects can be ordered in different ways to reflect different intended
interactions between the features of the language.

To demonstrate the concept of transformers, we will examine the transformer
for exceptions in more detail. Its type constructor is declared as follows:

newtype ErrorT m a = E { run :: m (Maybe a) }

Note that ErrorT Identity is simply the Maybe monad. It is now straightfor-
ward to declare ErrorT as a member of the Monad and MonadTrans classes:

instance Monad m => Monad (ErrorT m) where

return :: a -> ErrorT m a

return a = E $ return (Just a)

(>>=) :: ErrorT m a -> (a -> ErrorT m b) -> ErrorT m b

(E m) >>= f = E $ do v <- m

case v of

Nothing -> return Nothing

Just a -> run (f a)
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instance MonadTrans ErrorT where

lift :: m a -> ErrorT m a

lift m = E $ m >>= \v -> return (Just v)

In addition to the general monadic operations, we would like access to other
primitive operations related to the particular effect that we are implementing.
In this case, we would like to be able to throw and catch exceptions, and we can
specify this by having these operations supported by an error monad class:

class Monad m => ErrorMonad m where

throw :: m a

catch :: m a -> m a -> m a

We instantiate ErrorT as a member of this class as follows:

instance Monad m => ErrorMonad (ErrorT m) where

throw :: ErrorT m a

throw = E $ return Nothing

catch :: ErrorT m a -> ErrorT m a -> ErrorT m a

x ‘catch‘ h = E $ do v <- run x

case v of

Nothing -> run h

Just a -> return v

We can also declare monad transformers as members of effect classes other than
their own. Indeed, this is the primary purpose of the lift operation. For exam-
ple, we can extend StateT to support exceptions as follows:

instance ErrorMonad m => ErrorMonad (StateT s m) where

throw :: StateT s m a

throw = lift . throw

catch :: StateT s m a -> StateT s m a -> StateT s m a

x ‘catch‘ h = S $ \s -> run x s ‘catch‘ run h s

In this manner, a monad that is constructed from a base monad using a number
of transformers comes equipped with the associated operations for all of the
constituent effects, with the necessary liftings being handled automatically.

Returning to our earlier remark that some transformers do not commute, the
semantics resulting from lifting in this manner need not be unique for a set of
transformers. For example, consider a monad supporting both exceptions and
state. Depending on the order in which this monad is constructed, we may or
may not have access to the state after an exception is thrown, as reflected in the
types s -> (Maybe a, s) and s -> Maybe (a, s). Semantic differences such
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as these are not uncommon when combining effects, and reflect the fact that the
order in which effects are performed makes an observable difference.

Now that we have reviewed how to handle effects in a modular way, let us see
how to modularise the syntax of a language.

4 Modular Syntax and Semantics

We have seen that adding extra constructors to a datatype required the mod-
ification of existing code. In this section, we review the modular approach to
datatypes and functions over them put forward by Swierstra [15], known as
datatypes à la carte, and show how it can be used to obtain modular syntax and
semantics for the language Expr previously described.

4.1 Datatypes à La Carte

The underlying structure of an algebraic datatype such as Expr can be captured
by a constructor signature. We define signature functors for the arithmetic and
exceptional components of the Expr datatype as follows:

data Arith e = Val Int | Add e e

data Except e = Throw | Catch e e

These definitions capture the non-recursive aspects of expressions, in the sense
that Val and Throw have no subexpressions, whereas Add and Catch have two.
We can easily declare Arith and Except as functors in Haskell:

class Functor f where

fmap :: (a -> b) -> f a -> f b

instance Functor Arith where

fmap :: (a -> b) -> Arith a -> Arith b

fmap f (Val n) = Val n

fmap f (Add x y) = Add (f x) (f y)

instance Functor Except where

fmap :: (a -> b) -> Except a -> Except b

fmap f Throw = Throw

fmap f (Catch x h) = Catch (f x) (f h)

For any functor f, its induced recursive datatype, Fix f, is defined as the least
fixpoint of f. In Haskell, this can be implemented as follows [11]:

newtype Fix f = In (f (Fix f))
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For example, Fix Arith is the language of integers and addition, while Fix

Except is the language comprising throwing and catching exceptions. We shall
see later on in this section how these languages can be combined.

Given a functor f, it is convenient to use a fold operator (sometimes called a
catamorphism) [10] in order to define functions over Fix f [15]:

fold :: Functor f => (f a -> a) -> Fix f -> a

fold f (In t) = f (fmap (fold f) t)

The parameter of type f a -> a is called an f -algebra, and can be intuitively
viewed as a directive for processing each constructor of a functor. Given such an
algebra and a value of type Fix f, the fold operator exploits both the functorial
and recursive characteristics of Fix to process recursive values.

The aim now is to take advantage of the above machinery to define a semantics
for our expression language in a modular fashion. Such semantics will have type
Fix f -> m Value for some functor f and monad m; we could also abstract
over the value type, but for simplicity we do not consider this here. To define
functions of this type using fold, we require an appropriate evaluation algebra,
which notion we capture by the following class declaration:

class (Monad m, Functor f) => Eval f m where

evalAlg :: f (m Value) -> m Value

Using this notion, it is now straightforward to define algebras that correspond
to the semantics for both the arithmetic and exception components:

instance Monad m => Eval Arith m where

evalAlg :: Arith (m Value) -> m Value

evalAlg (Val n) = return n

evalAlg (Add x y) = x >>= \n ->

y >>= \m ->

return (n + m)

instance ErrorMonad m => Eval Except m where

evalAlg :: Except (m Value) -> m Value

evalAlg (Throw) = throw

evalAlg (Catch x h) = x ‘catch‘ h

There are three important points to note about the above declarations. First of
all, the semantics for arithmetic have now been completely separated from the
semantics for exceptions, in particular by way of two separate instance decla-
rations. Secondly, the semantics are parametric in the underlying monad, and
can hence be used in many different contexts. And finally, the operations that
the underlying monad are required to support are explicitly qualified by class
constraints, e.g. in the case of Except the monad must be an ErrorMonad. The
latter two points generalise the work of Jaskelioff [8] from a fixed monad to an
arbitrary monad supporting the required operations, resulting in a clean sepa-
ration of the semantics of individual language components.
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With this machinery in place, we can now define a general evaluation function
of the desired type by folding an evaluation algebra:

eval :: (Monad m, Eval f m) => Fix f -> m Value

eval = fold evalAlg

Note that this function is both modular in the syntax of the language and para-
metric in the underlying monad. However, at this point we are only able to take
the fixpoints of Arith or Except, not both. We need a way to combine signature
functors, which is naturally done by taking their coproduct (disjoint sum) [9].
In Haskell, the coproduct of two functors can be defined as follows:

data (f :+: g) e = Inl (f e) | Inr (g e)

instance (Functor f, Functor g) => Functor (f :+: g) where

fmap :: (a -> b) -> (f :+: g) a -> (f :+: g) b

fmap f (Inl x) = Inl (fmap f x)

fmap g (Inr y) = Inr (fmap g y)

It is then straightforward to obtain a coproduct of evaluation algebras:

instance (Eval f m, Eval g m) => Eval (f :+: g) m where

evalAlg :: (f :+: g) (m Value) -> m Value

evalAlg (Inl x) = evalAlg x

evalAlg (Inr y) = evalAlg y

The general evaluation function can now be used to give a semantics to languages
with multiple features by simply taking the coproduct of their signature functors.
Unfortunately, there are three problems with this approach. First of all, the need
to include fixpoint and coproduct tags (In, Inl and Inr) in values is cumbersome.
For example, if we wished the concrete expression 1 + 2 to have type Fix (Arith

:+: Except), it would be represented as follows:

In (Inl (Add (In (Inl (Val 1)) (In (Inl (Val 2))))))

Secondly, the extension of an existing syntax with additional operations may
require the modification of existing tags, which breaks modularity. And finally,
Fix (f :+: g) and Fix (g :+: f) are isomorphic as languages, but require
equivalent values to be tagged in different ways. The next two sections review
how Swierstra resolves these problems [15], and shows how this can be used to
obtain modular syntax and semantics for our language.

4.2 Smart Constructors

We need a way of automating the injection of values into expressions such that
the appropriate sequences of fixpoint and coproduct tags are prepended. This
can be achieved using the concept of a subtyping relation on functors, which can
be formalised in Haskell by the following class declaration, in which the function
inj injects a value from a subtype into a supertype:



Towards Modular Compilers for Effects 59

class (Functor sub, Functor sup) => sub :<: sup where

inj :: sub a -> sup a

It is now straightforward to define instance declarations to ensure that f is a
subtype of any coproduct containing f, but we omit the details here. Using the
notion of subtyping, we can define an injection function,

inject :: (g :<: f) => g (Fix f) -> Fix f

inject = In . inj

which then allows us to define smart constructors which bypass the need to tag
values when embedding them in expressions:

val :: (Arith :<: f) => Int -> Fix f

val n = inject (Val n)

add :: (Arith :<: f) => Fix f -> Fix f -> Fix f

add x y = inject (Add x y)

throw :: (Except :<: f) => Fix f

throw = inject Throw

catch :: (Except :<: f) => Fix f -> Fix f -> Fix f

catch x h = inject (Catch x h)

Note the constraints stating that f must have the appropriate signature functor
as a subtype; for example, in the case of val, f must support arithmetic.

4.3 Putting It All Together

We have now achieved our goal of being able to define modular language syntax.
Using the smart constructors, we can define values within languages given as
fixpoints of coproducts of signature functors. For example:

ex1 :: Fix Arith

ex1 = val 18 ‘add‘ val 24

ex2 :: Fix Except

ex2 = throw ‘catch‘ throw

ex3 :: Fix (Arith :+: Except)

ex3 = throw ‘catch‘ (val 1337 ‘catch‘ throw)

The types of these expressions can be generalised using the subtyping relation,
but for simplicity we have given fixed types above. In turn, the meaning of such
expressions is given by our modular semantics:
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> eval ex1 :: Value

> 42

> eval ex2 :: Maybe Value

> Nothing

> eval ex3 :: Maybe Value

> Just 1337

Note the use of explicit typing judgements to determine the resulting monad.
Whilst we have used Identity (implicitly) and Maybe above, any monad satis-
fying the required constraints can be used, as illustrated below:

> eval ex1 :: Maybe Value

> Just 42

> eval ex2 :: [Value]

> []

5 Modular Compilers

With the techniques we have described, we can now construct a modular compiler
for our expression language. First of all, we define the Code datatype in a modular
manner as the coproduct of signature functors corresponding to the arithmetic
and exceptional operations of the virtual machine:

type Code = Fix (ARITH :+: EXCEPT :+: EMPTY)

data ARITH e = PUSH Int e | ADD e

data EXCEPT e = THROW e | MARK Code e | UNMARK e

data EMPTY e = NULL

There are two points to note about the above definitions. First of all, rather than
defining the Op type as a fixpoint (where Code is a list of operations), we have
combined the two types into a single type defined using Fix in order to allow
code to be processed using the generic fold; note that EMPTY now plays the role
of the empty list. Secondly, the first argument to MARK has explicit type Code

rather than general type e, which is undesirable as this goes against the idea of
treating code in a modular manner. However, this simplifies the definition of the
virtual machine and we will return to this point in the conclusion.

The desired type for our compiler is Fix f -> (Code -> Code) for some
signature functor f characterising the syntax of the source language. To define
such a compiler using the generic fold operator, we require an appropriate
compilation algebra, which notion we define as follows:
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class Functor f => Comp f where

compAlg :: f (Code -> Code) -> (Code -> Code)

In contrast with evaluation algebras, no underlying monads are utilised in the
above definition, because the compilation process itself does not involve the
manifestation of effects. We can now define algebras for both the arithmetic and
exceptional aspects of the compiler in the following manner:

instance Comp Arith where

compAlg :: Arith (Code -> Code) -> (Code -> Code)

compAlg (Val n) = pushc n

compAlg (Add x y) = x . y . addc

instance Comp Except where

compAlg :: Except (Code -> Code) -> (Code -> Code)

compAlg Throw = throwc

compAlg (Catch x h) = \c -> h c ‘markc‘ x (unmarkc c)

In a similar manner to the evaluation algebras defined in section 4.1, note that
these definitions are modular in the sense that the two language features are be-
ing treated completely separately from each other. We also observe that because
the carrier of the algebra is a function, the notion of appending code in the Add
case corresponds to function composition. Finally, the smart constructors pushc,
addc, etc. are defined in the obvious manner:

pushc :: Int -> Code -> Code

pushc n c = inject (PUSH n c)

addc :: Code -> Code

addc c = inject (ADD c)

The other smart constructors are defined similarly. Finally, it is now straight-
forward to define a general compilation function of the desired type by folding
a compilation algebra, supplied with an initial accumulator empty:

comp :: Comp f => Fix f -> Code

comp e = comp’ e empty

comp’ :: Comp f => Fix f -> (Code -> Code)

comp’ e = fold compAlg e

empty :: Code

empty = inject NULL

For example, applying comp to the expression ex3 from the previous section re-
sults in the following Code, in which we have removed the fixpoint and coproduct
tags In, Inl and Inr for readability:

MARK (MARK (THROW NULL) (PUSH 1337 (UNMARK NULL)))

(THROW (UNMARK NULL))
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6 Towards Modular Machines

The final component of our development is to construct a modular virtual ma-
chine for executing code produced by the modular compiler. Defining the under-
lying Stack datatype in a modular manner is straightforward:

type Stack = Fix (Integer :+: Handler :+: EMPTY)

data Integer e = VAL Int e

data Handler e = HAND Code e

As we saw in section 2.1, the virtual machine for arithmetic had type Code ->

Stack -> Stack, while in section 2.2, the extension to exceptions required mod-
ifying the type to Code -> Stack -> Maybe Stack. Generalising from these ex-
amples, we seek to define a modular execution function of type Code -> Stack

-> m Stack for an arbitrary monad m. We observe that Stack -> m Stack is
a state transformer, and define the following abbreviation:

type StackTrans m a = StateT Stack m a

Using this abbreviation, we now seek to define a general purpose execution func-
tion of type Fix f -> StackTrans m () for some signature functor f charac-
terising the syntax of the code, and where () represents a void result type. In
a similar manner to evaluation and compilation algebras that we introduced
previously, this leads to the following notion of an execution algebra,

class (Monad m, Functor f) => Exec f m where

execAlg :: f (StackTrans m ()) -> StackTrans m ()

for which we define the following three instances:

instance Monad m => Exec ARITH m where

execAlg :: ARITH (StackTrans m ()) -> StackTrans m ()

execAlg (PUSH n st) = pushs n >> st

execAlg (ADD st) = adds >> st

instance ErrorMonad m => Exec EXCEPT m where

execAlg :: EXCEPT (StackTrans m ()) -> StackTrans m ()

execAlg (THROW _) = unwinds

execAlg (MARK h st) = marks h >> st

execAlg (UNMARK st) = unmarks >> st

instance Monad m => Exec EMPTY m where

execAlg :: EMPTY (StackTrans m ()) -> StackTrans m ()

execAlg (Null) = stop
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The intention is that pushs, adds, etc. are the implementations of the semantics
for the corresponding operations of the machine, and >> is the standard monadic
operation that sequences two effectful computations and ignores their result
values (which in this case are void). We have preliminary implementations of
each of these operations but these appear more complex than necessary, and we
are in the process of trying to define these in a more elegant, structured manner.

Folding an execution algebra produces the general execution function:

exec :: (Monad m, Exec f m) => Fix f -> StackTrans m ()

exec = fold execAlg

7 Summary and Conclusion

In this article we reported on our work to date on the problem of implementing
compilers in a modular manner with respect to different computational effects
that may be supported by the source language. In particular, we showed how
modular syntax and semantics for a simple source language can be achieved
by combining the à la carte approach to extensible datatypes with the monad
transformers approach to modular interpreters, and outlined how a modular
compiler and virtual machine can be achieved using the same technology.

However, this is by no means the end of the story, and much remains to be
done. We briefly outline a number of directions for further work below.

Challenges : supporting a more modular code type in the virtual machine, as our
current version uses a fixed Code type rather than a generic fixpoint type to
simplify the implementation; and improving the implementation of the virtual
machine operations, by developing a modular approach to case analysis.

Extensions : considering other effects, such as mutable state, continuations and
languages with binding constructs, for example using a recent generalisation of
the à la carte technique for syntax with binders [2]; formalising the idea that
some effects may be ‘compiled away’ and hence are not required in the virtual
machine, such as the Maybe monad for our simple language; exploring the extent
to which defining compilers in a modular manner admits modular, and hopefully
simpler, proofs regarding their correctness; and considering other aspects of the
compilation process such as parsing and type-checking.

Other approaches : investigating how the more principled approach to lifting
monadic operations developed by Jaskelioff [7] and the modular approach to
operational semantics of Mosses [13] can be exploited in the context of modular
compilers; the relationship to Harrison’s work [3]; considering the compilation
to register machines, rather than stack machines; and exploring how dependent
types may be utilised in our development (a preliminary implementation of this
paper in Coq has recently been produced by Acerbi [1]).

Acknowledgements. We would like to thank Mauro Jaskelioff, Neil Sculthorpe,
the participants of BCTCS 2011 in Birmingham and our anonymous referees for
useful comments and suggestions; and Matteo Acerbi for implementing our work
in Coq.
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Abstract. We present Functory, a distributed computing library for
Objective Caml. The main features of this library include (1) a polymor-
phic API, (2) several implementations to adapt to different deployment
scenarios such as sequential, multi-core or network, and (3) a reliable
fault-tolerance mechanism. This paper describes the motivation behind
this work, as well as the design and implementation of the library. It also
demonstrates the potential of the library using realistic experiments.

1 Introduction

This paper introduces Functory, a generic library for distributed computing for
a widely used functional programming language, Objective Caml (OCaml for
short). This work was initially motivated by the computing needs that exist in
our own research team. Our applications include large-scale deductive program
verification, which amounts to checking the validity of a large number of logi-
cal formulas using a variety of automated theorem provers [7]. Our computing
infrastructure consists of a few powerful multi-core machines (typically 8 to 16
cores) and several desktop PCs (typically dual-core). However, for our applica-
tion needs, no existing library provides a polymorphic API with usual map/fold
higher-order operations, built-in fault-tolerance, and the ability to easily switch
between multi-core and network infrastructures. Hence we designed and imple-
mented such a library, which is the subject of this paper. The library is available
at http://functory.lri.fr/.

The distributed computing library presented in this paper is not a library that
helps in parallelizing computations. Rather, it provides facilities for reliable, dis-
tributed execution of parallelizable computations. In particular, it provides a set
of user-friendly APIs that allows distributed execution of large-scale paralleliz-
able computations, very relevant to our application needs (and also relevant to
a variety of real-world applications). Further, the distributed execution could
be over multiple cores in the same machine or over a network of machines. The
most important features of our library are the following:
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– Genericity: it allows various patterns of polymorphic computations;
– Simplicity: switching between multiple cores on the same machine and a

network of machines is as simple as changing a couple of lines of code;
– Task distribution and fault-tolerance: it provides automatic task distribu-

tion and a robust fault-tolerance mechanism, thereby relieving the user from
implementing such routines.

The application domain of such a distributed computing library is manyfold. It
serves a variety of users and a wide spectrum of needs, from desktop PCs to net-
works of machines. Typical applications would involve executing a large number
of computationally expensive tasks in a resource-optimal and time-efficient man-
ner. This is also the case in our research endeavours, that is validating thousands
of verification conditions using automated theorem provers, utilizing the com-
puting infrastructure to the maximum. It is worth noting that Functory is not
targeted at applications running on server farms, crunching enormous amounts
of data, such as Google’s MapReduce [6].

In the following, we introduce our approach to distributed computing in a
functional programming setting and distinguish it from related work.

Distributed Computing. A typical distributed computing library, as Functory,
provides the following (we borrow some terminology from Google’s MapReduce):

– A notion of tasks which denote atomic computations to be performed in a
distributed manner;

– A set of processes (possibly executing on remote machines) called workers
that perform the tasks, producing results;

– A single process called a master which is in charge of distributing the tasks
among the workers and managing results produced by the workers.

In addition to the above, distributed computing environments also implement
mechanisms for fault-tolerance, efficient storage, and distribution of tasks. This
is required to handle network failures that may occur, as well as to optimize the
usage of machines in the network. Another concern of importance is the trans-
mission of messages over the network. This requires efficient marshaling of data,
that is encoding and decoding of data for transmission over different computing
environments. It is desirable to maintain architecture independence while trans-
mitting marshalled data, as machines in a distributed computing environment
often run on different hardware architectures and make use of different software
platforms. For example, machine word size or endianness may be different across
machines on the network.

A Functional Programming Approach. Our work was initially inspired by
Google’s MapReduce1. However, our functional programming environment al-
lows us to be more generic. The main idea behind our approach is that workers
may implement any polymorphic function:

1 Ironically, Google’s approach itself was inspired by functional programming primi-
tives.
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worker: α → β

where α denotes the type of tasks and β the type of results. Then the master is
a function to handle the results together with a list of initial tasks:

master: (α → β → α list) → α list → unit

The function passed to the master is applied whenever a result is available. The
first argument is the task (of type α) and the second one its result (of type β).
It may in turn generate new tasks, hence the return type α list. The master is
executed as long as there are pending tasks.

Our library makes use of OCaml’s marshaling capabilities as much as possible.
Whenever master and worker executables are exactly the same, we can marshal
polymorphic values and closures. However, it is not always possible to have
master and workers running the same executable. In this case, we cannot marshal
closures anymore but we can still marshal polymorphic values as long as the same
version of OCaml is used to compile master and workers. When different versions
of OCaml are used, we can no longer marshal values but we can still transmit
strings between master and workers. Our library adapts to all these situations,
by providing several APIs.

Related Work. In order to compare and better distinguish Functory from others
work with related goals and motivations, we can broadly classify the related
work in this domain into:

1. Distributed Functional Languages (DFLs) — functional languages that pro-
vide built-in primitives for distribution. Examples include ML5, JoCaml,
Glasgow Distributed Haskell, Erlang, etc.

2. Libraries for existing functional languages — that could be readily used in
order to avoid implementing details like task distribution, fault-tolerance,
socket programming, etc.

Functory belongs to the second category. For reasons of completeness, though,
we first describe some existing DFLs related to functional programming.

JoCaml is one of the DFLs which provides communication primitives (like
channels) for facilitating transmission of computations. However, it does not
provide ready-made language features for fault-tolerance, which is indispens-
able in a distributed setting. The user has to include code for fault-tolerance,
as already demonstrated in some JoCaml library [10]. ML5 [11], a variant of
ML, is a programming language for distributed computing, specialized for web
programming. It provides primitives for transferring control between the client
and the server, as well as low-level primitives for marshaling the data. As in
the case before, ML5 is a programming language that offers primitives for code
mobility, and the code for distribution of computation and fault-tolerance has
to be included by the user. ML5 implements type-safe marshaling and Functory
does not, though an existing type-safe marshaling library could be used with
Functory. Glasgow Distributed Haskell (GdH) [13] is a pure distributed func-
tional language that is built on top of Glasgow Haskell and provides features
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for distributed computing. It is an extension of both Glasgow Parallel Haskell,
that supports only one process and multiple threads and Concurrent Haskell
that supports multiple processes. It also offers features for fault-tolerance - error
detection and error recovery primitives in the language.

CamlP3l [1] mixes the features of functional programming with predefined
patterns for parallel computation to offer a parallel programming environment.
Again, it is a programming language offering primitives for distributing compu-
tation to parallel processes and also to merge the results from parallel executions.
Erlang [3] is a programming language which has features for distribution and
fault-tolerance. In particular, it has features for task distribution and is more
well-known for its rich error detection primitives and the ability to support
hot-swapping. The error detection primitives of Erlang allow nodes to monitor
processes in other nodes and also facilitate automatic migration of tasks in failed
nodes to recovered or active nodes.

Any DFL above could have been used to implement our library. Our moti-
vation, though, was neither to implement our system using any existing DFL
nor to come up with a new DFL. The goal of Functory is rather to provide the
users of an existing general-purpose functional programming language, namely
OCaml, high-level user-friendly APIs that hide the messy details of task distri-
bution and fault-tolerance. We now turn to distributed computing libraries for
general purpose functional languages and weed out the distinguishing features
of Functory.

There are several implementations of Google’s MapReduce in functional pro-
gramming languages. But Functory was just inspired by Google’s MapReduce
and is not exactly a MapReduce implementation. The simplest difference comes
from the very fact that Functory does not operate on key/value pairs. Plas-
maMR [2] is an OCaml implementation of Google’s MapReduce on a distributed
file system PlasmaFS. It is able to use PlasmaFS to its advantage — the abil-
ity of the file system to handle large files and query functions that implement
data locality to optimize network traffic. However, PlasmaMR does not support
fault-tolerance which is indispensable in any distributed computing application.
Another MapReduce implementation in OCaml is Yohann Padioleau’s [12]. It is
built on top of OCamlMPI [9], while our approach uses a homemade protocol
for message passing. Currently, we have less flexibility w.r.t. deployment of the
user program than OCamlMPI; on the other hand, we provide a more generic
API together with fault-tolerance. We feel that an indispensible need for any dis-
tributed computing library is fault-tolerance, and using a homemade protocol
enables us to tune our implementation to our needs of fault-tolerance.

The iTask system [8] is a library for the functional language ‘Clean’ targeted
at distributed workflow management. The library provides a set of combinators
(some of which perform map/fold operations) that facilitate applications running
in different nodes of a distributed system to communicate, exchange information
and coordinate their computations in a type-safe manner.
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2 API

This section describes our API. We start from a simple API which is reduced to
a single higher-order polymorphic function. Then we explain how this function
is actually implemented in terms of low-level primitives, which are also provided
in our API. Conversely, we also explain how the same function can be used to
implement high-level distribution functions for map and fold operations. Finally,
we explain how our API is implemented in five different ways, according to five
different deployment scenarios.

2.1 A Generic Distribution Function

The generic distribution function in our API follows the idea sketched in the
introduction. It has the following signature:

val compute:
worker:(α → β) →
master:(α × γ → β → (α × γ) list) → (α × γ) list → unit

Tasks are pairs, of type α × γ, where the first component is passed to the
worker and the second component is local to the master. The worker function
should be pure2 and is executed in parallel in all worker processes. The function
master, on the contrary, can be impure and is only executed sequentially in the
master process. The master function typically stores results in some internal data
structure. Additionally, it may produce new tasks, as a list of type (α × γ) list,
which are then appended to the current set of pending tasks.

2.2 Low-Level Primitives

The function compute above can actually be implemented in terms of low-level
primitives, such as adding a task, adding a worker, performing some communi-
cation between master and workers, etc. These primitives are provided in our
API, such that the user can interact with the execution of the distributed com-
putation. For instance, a monitoring-like application can use these primitives
to allow observation and modification of resources (tasks, workers) during the
course of a computation. A type for distributed computations is introduced:

type (α, γ) computation

A computation is created with a function create, which accepts the same worker
and master as compute:

val create: worker:(α → β) →
master:(α × γ → β → (α × γ) list) → (α, γ) computation

Contrary to compute, it takes no list of tasks and returns immediately. Tasks
can be added later using the following function:

2 We mean observationally pure here but we allow exceptions to be raised to signal
failures.
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val add task: (α, γ) computation → α × γ → unit

A function is provided to perform one step of a given computation:

val one step: (α, γ) computation → unit

Calling this function results in one exchange of messages between master and
workers: task assignments to workers, results returned to the master, etc. A few
other functions are provided, such as status to query the status of a computation,
clear to remove all tasks, etc.

Using these low-level primitives, it is straightforward to implement the com-
pute function. Basically, it is as simple as the following:

let compute ˜worker ˜master tasks =
let c = create worker master in
List.iter (add task c) tasks;
while status c = Running do one step c done

2.3 High-Level API

In most cases, the easiest way to parallelize an execution is to make use of
operations over lists, where processing of the list elements are done in parallel.
To facilitate such a processing, our library provides most commonly used list
operations, all implemented using our generic compute function.

The most obvious operation is the traditional map operation over lists, that is
val map: f:(α → β) → α list → β list. Each task consists of the application
of function f to a list element. More interesting is a combination of map and fold
operations. For instance, we provide different flavors of function

val map fold: f:(α → β) → fold:(γ → β → γ) → γ → α list → γ

which, given two functions, an accumulator a and a list l, computes

fold...(fold(fold a (f x1))(f x2))...(f xn) (1)

for some permutation [x1, x2, ..., xn] of the list l. We assume that the f operations
are always performed in parallel. Regarding fold operations, we distinguish two
cases: either fold operations are computationally less expensive than f and we
perform them locally; or fold operations are computationally expensive and we
perform them in parallel. Thus we provide two functions map local fold and
map remote fold.

In the case of map remote fold, only one fold operation can be performed at a
time (possibly in parallel with f operations), as obvious from (1). However, there
are cases where several fold operations can be performed in parallel, as early as
intermediate results of fold operations are available. This is the case when fold
is an associative operation (which implies that types β and γ are the same).
Whenever fold is also commutative, we can perform even more fold operations
in parallel. Thus our API provides two functions map fold a and map fold ac for
these two particular cases, with types
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val map fold ac, map fold a:
f:(α → β) → fold:(β → β → β) → β → α list → β

It is rather straightforward to derive these five functions from the generic com-
pute function; we invite readers interested in details to refer to the source code.

2.4 Deployment Scenarios

Actually, our library provides not just one implementation for the API above,
but instead five different implementations depending on the deployment scenario.
The first two scenarios are the following:

1. Purely sequential execution: this is mostly intended to be a reference
implementation for performance comparisons, as well as for debugging;

2. Several cores on the same machine: this implementation is intended to
distribute the computation over a single machine and it makes use of Unix

processes;

The next three scenarios are intended for distributing the computation over a
network of machines.

3. Same executable run on master and worker machines: this implemen-
tation makes use of the ability to marshal OCaml closures and polymorphic
values.

4. Master and workers are different programs, compiled with the
same version of OCaml: we can no longer marshal closures but we can
still marshal polymorphic values. API functions are split into two sets, used
to implement master and workers respectively.

5. Master and workers are different programs, not even compiled
with the same version of OCaml: we can no longer use marshaling,
so API functions are restricted to work on strings instead of polymorphic
values.

Our library is organized into three modules: Sequential for the pure sequential
implementation, Cores for multiple cores on the same machine and Network for
a network of machines, respectively. The Network module itself is organized into
three sub-modules, called Same, Poly and Mono, corresponding to contexts 3, 4
and 5 above.

2.5 Several Libraries in One

From the description above, it is clear that our library provides several APIs of
different granularities, as well as several implementations for various deployment
scenarios. Most combinations are meaningful, resulting in thirteen possible dif-
ferent ways of using our library. For instance, one may use the low-level API on a
single multi-core machine, or use the high-level API on a network of machines all
running the same executable, etc. From the implementation point of view, there
is almost no code duplication. We are using OCaml functors to derive specific
implementations from generic ones.
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3 Implementation Details

The implementation of the Sequential module is straightforward and does not
require any explanation. The Cores module is implemented with Unix processes,
using the fork and wait system calls provided by the Unix library of OCaml. We
do not describe this implementation but rather focus on the more interesting
module Network.

3.1 Marshaling

As mentioned in Section 2, the Network module actually provides three different
implementations as sub-modules, according to three different execution scenar-
ios, the details of which are presented below:

Same. This module is used when master and workers are running the same
executable. The master and workers have to be differentiated in some manner.
We use an environment variable WORKER for this purpose. When set, it indicates
that the executable acts as a worker. At runtime, a worker immediately enters a
loop waiting for tasks from the master, without even getting into the user code.
As explained in Section 2, the master function has the following signature.

val compute: worker:(α → β) →
master:(α × γ → β → (α × γ) list) → (α × γ) list → unit

The master uses marshaling to send both a closure of type α → β and a task
of type α to the worker. The resulting strings are passed as argument f and x
in message Assign. Similarly, the worker uses marshaling to send back the result
of the computation of type β, which is the argument s in message Completed.
These messages are described in detail in Section 3.2.

Though the ability to run the same executable helps a lot in deploying the
program in different machines, it comes at a small price. Since the worker is
not getting into the user code, closures which are transmitted from the master
cannot refer to global variables in the user code. Indeed, the initialization code
for these global variables is never reached on the worker side. For instance, some
code for drawing Mandelbrot’s set could be written as follows:

let max iterations = 200
let worker si = ... draw sub-image si using max iterations ...

That is, the global function workermakes use of the global variablemax iterations.
The worker gets the function to compute from the master, namely the closure
corresponding to function worker in that case, but on the worker side the initial-
ization of max iterations is never executed.

One obvious solution is not to use global variables in the worker code. This is
not always possible, though. To overcome this, the Same sub-module also pro-
vides a Worker.compute function to start the worker loop manually from the user
code. This way, it can be started at any point, in particular after the initializa-
tion of the required global variables. Master and worker are still running the
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same executable, but are distinguished using a user-defined way (command-line
argument, environment variable, etc.).

There are situations where it is not possible to run the same executable for
master and workers. For instance, architectures or operating systems could be
different across the network. For that reason, the Network module provides two
other implementations.

Poly. When master and workers are compiled with the same version of OCaml,
we can no longer marshal closures but we can still marshal polymorphic val-
ues. Indeed, an interesting property of marshaling in OCaml is to be fully
architecture-independent, as long as a single version of OCaml is used. It is
worth pointing out that absence of marshaled closures now enables the use of
two different programs for master and workers. This is not mandatory, though,
since master and workers could still be distinguished at runtime as in the previ-
ous case.

On the worker side, the main loop is started manually using Worker.compute.
The computation to be performed on each task is given as an argument to this
function. It thus looks as follows:

Worker.compute: (α → β) → unit → unit

On the master side, the compute function is simpler than in the previous case,
as it has one argument less, and thus has the following signature.

Master.compute:
master:(α × γ → β → (α × γ) list) → (α × γ) list → unit

For realistic applications, where master and workers are completely different
programs, possibly written by different teams, this is the module of choice in
our library, since it can still pass polymorphic values over the network. The
issues of marshaling are automatically taken care of by the OCaml runtime.

The derived API presented in Section 2.3 is adapted to deal with the absence
of closures. Exactly as the compute function, each API now takes two forms, one
for the master and another for the workers. For example, map fold ac takes the
following forms.

Worker.map fold ac: f:(α → β) → fold:(β → β → β) → unit
Master.map fold ac: β → α list → β

It is the responsibility of the user to ensure consistency between master and
workers.

Mono. When master and workers are compiled using different versions of OCaml,
we can no longer use marshaling. As in the previous case, we split compute into
two functions, one for master and one for workers. In addition, values transmitted
over the network can only be strings. The signature thus takes the following form.

Worker.compute: (string → string) → unit
Master.compute: master:(string × γ → string → (string × γ) list) →
(string × γ) list → unit
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Any other datatype for tasks should be encoded to/from strings. This conver-
sion is left to the user. Note that the second component of each task is still
polymorphic (of type γ here), since it is local to the master.

3.2 Protocol

The Networkmodule implements the distributed computing library for a network
of machines. It provides a function declare workers: n:int → string → unit to fill
a table of worker machines.

The Network module is based on a traditional TCP-based client/server archi-
tecture, where each worker is a server and the master is the client of each worker.
The main execution loop is similar to the one in the Cores module, where distant
processes on remote machines correspond to sub-processes and idle cores are the
idle cores of remote workers. The master is purely sequential. In particular, when
running the user master function, it is not capable of performing any task-related
computation. This is not an issue, as we assume the master function not to be
time-consuming. The worker, on the other hand, forks a new process to execute
the task and hence can communicate with the master during its computation.
We subsequently describe issues of message transfer and fault-tolerance.

Messages sent from master to workers could be any of the following kinds:

Assign(id:int, f:string, x:string). This message assigns a new task to the worker,
the task being identified by the unique integer id. The task to be performed
is given by strings f and x, which are interpreted depending on the context.

Kill(id:int). This message tells the worker to kill the task identified by id.
Stop. This message informs the worker about completion of the computation,

so that it may choose to exit.
Ping. This message is used to check if the worker is still alive, expecting a Pong

message from the worker in return.

Messages sent by workers could be any of the following kinds:

Pong. This message is an acknowledgment for a Ping message from the master.
Completed(id:int, s:string). This message indicates the completion of a task

identified by id, with result s.
Aborted(id:int). This message informs the master that the task identified by

id is aborted, either as a response to a Kill message or because of a worker
malfunction.

Our implementation of the protocol works across different architectures, so that
master and workers could be run on completely different platforms w.r.t. endi-
anness, version of OCaml and operating system.

3.3 Fault-Tolerance

The main issue in any distributed computing environment is the ability to handle
faults, which is also a distinguishing feature of our library. The fault-tolerance
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mechanism of Functory is limited to workers; handling master failures is the
responsibility of the user, for instance by periodically logging the master’s state.
Worker faults are mainly of two kinds: either a worker is stopped, and possibly
later restarted; or a worker is temporarily or permanently unreachable on the
network. To provide fault-tolerance, our master implementation is keeping track
of the status of each worker. This status is controlled by two timeout parameters
T1 and T2 and Ping and Pong messages sent by master and workers, respectively.
There are four possible statuses for a worker:

not connected: there is no ongoing TCP connection between the master and
the worker;

alive: the worker has sent some message within T1 seconds;
pinged: the worker has not sent any message within T1 seconds and the master

has sent the worker a Ping message within T2 seconds;
unreachable: the worker has not yet responded to the Ping message (for more

than T2 seconds).

Whenever we receive a message from a worker, its status changes to alive and
its timeout value is reset.

not connected alive

pinged

unreachableconnect

ping

any msg.

pong/any msg.

lost connection

Fault tolerance is achieved by exploiting the status of workers as follows.
First, tasks are only assigned to workers with either alive or pinged status. Sec-
ond, whenever a worker executing a task t moves to status not connected or
unreachable, the task t is rescheduled, which means it is put back in the set of
pending tasks. Whenever a task is completed, any rescheduled copy of this task
is either removed from the set of pending tasks or killed if it was already assigned
to another worker.

It is worth noticing that our library is also robust w.r.t. exceptions raised by
the user-provided worker function. In that case, an Aborted message is sent to
the master and the task is rescheduled. It is the responsibility of the user to
handle such exceptions if necessary.

4 Experiments

In this section, we demonstrate the potential of using Functory on several case
studies. The source code for all these case studies is contained in the distribution,
in sub-directory tests/.

The purpose of the following experiments is to compare the various deploy-
ments, namely sequential, cores and network. For this comparison to be fair, all
computations are performed on the same machine, an 8 core Intel Xeon 3.2 GHz
running Debian Linux. The sequential implementation uses a single core. The
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multi-core implementation uses up to 8 cores of the machine. The network im-
plementation uses 8 workers running locally and a master running on a remote
machine over a LAN (which incurs communication cost).

4.1 N-Queens

The first example is the classical N -queens problem, where we compute the total
number of ways to place N queens on a N × N chessboard in such a way no
two queens attack each other. We use a standard backtracking algorithm for
this problem, which places the queens one by one starting from the first row.
Distributing the computation is thus quite easy: we consider all possible ways
to place queens on the first D rows and then perform the subsequent search in
parallel. Choosing D = 1 will result in exactly N tasks; choosing D = 2 will
result in N2−3N+2 tasks; greater values for D would result in too many tasks.

Each task only consists of three integers and its result is one integer, which is
the total number of solutions for this task. We make use of functionmap local fold
from the derived API, where f is performing the search and fold simply adds
the intermediate results. In the network configuration, we make use of the Net-
work.Same module, workers and master being the same executable.

The following table shows execution times for various values of N and our
three different implementations: Sequential, Cores, and Network. The purpose of
this experiment is to measure the speedup w.r.t. the sequential implementation.
The first column shows the value of N . The number of tasks is shown in sec-
ond column. Then the last three columns show execution times in seconds for
the three implementations. The figures within brackets show the speedup w.r.t.
sequential implementation. Speedup ratios are also displayed in Fig. 1 (note the
logarithmic scale).

N D #tasks Sequential Cores Network

16 1 16 15.2 2.04 (7.45×) 2.35 (6.47×)
2 210 15.2 2.01 (7.56×) 21.80 (0.69×)

17 1 17 107.0 17.20 (6.22×) 16.20 (6.60×)
2 240 107.0 14.00 (7.64×) 24.90 (4.30×)

18 1 18 787.0 123.00 (6.40×) 125.00 (6.30×)
2 272 787.0 103.00 (7.64×) 124.00 (6.34×)

19 1 19 6120.0 937.00 (6.53×) 940.00 (6.51×)
2 306 6130.0 796.00 (7.70×) 819.00 (7.48×)

From the table above and Fig. 1, it is clear that the Cores and Network implemen-
tations provide a significant speedup. As evident from the last row, the speedup
is almost 8, which is also the number of cores we use. It is also evident from the
last column that the Network implementation performs significantly better when
the computation time dominates in the total execution time. The two extreme
cases correspond to the second and the last row: in the second row, the com-
munication time dominates and is in fact more than 91% of the total execution
time; on the other hand, for the last row communication time amounts to just
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Fig. 1. Speedup ratios for the N-queens experiment

4.6% of the total execution time. As expected, the network implementation is
only beneficial when the computation time for each individual task is significant,
which is the case in realistic examples.

4.2 Matrix Multiplication

This benchmark was inspired by the PASCO’10 programming contest [5]. It
consists of multiplication of two square matrices of dimension 100 with integer
coefficients. Coefficients have several thousands of digits, hence we use GMP [4]
to handle operations over coefficients.

We compare the performances of two different implementations. In the first
one, called mm1, each task consists of the computation of a single coefficient of
the resultant matrix. In the second one, called mm2, each task consists of the
computation of a whole row of the resultant matrix. As a consequence, the total
number of tasks is 10, 000 for mm1 and only 100 for mm2. On the contrary, each
task result for mm1 is a single integer, while for mm2 it is a row of 100 integers.
The experimental results (in seconds) are tabulated below.

mm1 mm2
(10,000 tasks) (100 tasks)

Sequential 20.3 20.2
Cores (2 cores) 22.7 (0.89×) 11.3 (1.79×)

(4 cores) 12.3 (1.65×) 6.1 (3.31×)
(6 cores) 8.6 (2.36×) 4.3 (4.70×)
(8 cores) 8.0 (2.54×) 3.5 (5.77×)
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The difference in the number of tasks explains the differences in the speedup
ratios above. We do not include results for the network configuration, as they
do not achieve any benefit with respect to the sequential implementation. The
reason is that the communication cost dominates the computation cost in such a
way that the total execution time is always greater than 30 seconds. Indeed, irre-
spective of the implementation (mm1 or mm2), the total size of the transmitted
data is 106 integers, which in our case amounts to billions of bytes.

A less naive implementation would have the worker read the input matrices
only once, e.g. from a file, and then have the master send only row and column
indices. This would reduce the amount of transmitted data to 10, 000 integers
only.

4.3 Mandelbrot Set

Drawing the Mandelbrot set is another classical example that could be dis-
tributed easily, since the color of each point can be computed independently of
the others. This benchmark consists in drawing the fragment of the Mandelbrot
set with lower left corner (−1.1, 0.2) and upper right corner (−0.8, 0.4), as a
9, 000× 6, 000 image. If the total number of tasks t ≥ 1 is given as a parameter,
it is straight forward to split the image into t sub-images, each of which is com-
puted in parallel with and independently of the others. In our case, the image is
split into horizontal slices. Each task is thus four floating-point numbers denot-
ing the region coordinates, together with two integers denoting the dimensions
of the sub-image to be drawn. The result of the task is a matrix of pixels, of
size 54, 000, 000/t. For instance, using t = 20 tasks will result in 20 sub-images
of size 10.3 Mb each, assuming each pixel is encoded in four bytes.

The sequential computation of this image consumes 29.4 seconds. For Cores
and Network implementations, the computation times in seconds are tabulated
below.

#cores #tasks Cores Network

2 10 15.8 (1.86×) 20.3 (1.45×)
30 15.7 (1.87×) 18.7 (1.57×)
100 16.1 (1.83×) 19.8 (1.48×)

1000 19.6 (1.50×) 38.6 (0.76×)
4 10 9.50 (3.09×) 14.4 (2.04×)

30 8.26 (3.56×) 11.4 (2.58×)
100 8.37 (3.51×) 11.4 (2.58×)

1000 10.6 (2.77×) 20.5 (1.43×)
8 10 9.40 (3.13×) 12.6 (2.33×)

30 4.24 (6.93×) 7.6 (3.87×)
100 4.38 (6.71×) 7.5 (3.92×)

1000 6.86 (4.29×) 11.3 (2.60×)

The best timings are achieved for the Cores configuration, where communica-
tions happen within the same machine and are thus cheaper. There are two
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significant differences with respect to the n-queens benchmark. On one hand,
the number of tasks can be controlled more easily than in the case of n-queens.
We experimentally figured out the optimal number of tasks to be 30. On the
other hand, each computation result is an image, rather than just an integer as
in the case of n-queens. Consequently, communication costs are much greater.
In this particular experiment, the total size of the results transmitted is more
than 200 Mb.

4.4 SMT Solvers

Here we demonstrate the potential of our library for our application needs as
mentioned in the introduction. We consider 80 challenging verification conditions
(VC) obtained from the Why platform [7]. Each VC is stored in a file, which is
accessible over NFS. The purpose of the experiment is to check the validity of
each VC using several automated provers (namely Alt-Ergo, Simplify, Z3 and
CVC3).

The master program proceeds by reading the file names, turning them into
tasks by multiplying them by the number of provers, resulting in 320 tasks in
total. Each worker in turn invokes the given prover on the given file, within a
timeout limit of 1 minute. Each task completes with one of the four possible
outcomes: valid, unknown (depending on whether the VC is valid or undecided
by the prover), timeout and failure. The result of each computation is a pair
denoting the status and the time spent in the prover call. The master collects
these results and sums up the timings for each prover and each possible status.

Our computing infrastructure for this experiment consists of 3 machines with
4, 8 and 8 cores respectively, the master being run on a fourth machine. The
figure below shows the total time in minutes spent by each prover for each
possible outcome.

prover valid unknown timeout failure

Alt-ergo 406.0 3.0 11400.0 0.0
Simplify 0.5 0.4 1200.0 222.0

Z3 80.7 0.0 1800.0 1695.0
CVC3 303.0 82.7 4200.0 659.0

These figures sum up to more than 6 hours if provers were executed sequentially.
However, using our library and our 3-machine infrastructure, it completes in 22
minutes and 37 seconds, giving us a speedup of more than 16×. We are still far
away from the ideal ratio of 20× (we are using 20 cores), since some provers
are allocating a lot of memory and time spent in system calls is not accounted
for in the total observed time. However, a ratio of 16× is already a significant
improvement for our day-to-day experiments. Further a large parallelizable com-
putation could be distributed by just adding 3-4 lines of code (to just specify the
module to be used and the tasks) which is an important user-friendly feature of
the library. Further we assume files available over NFS. Intelligent distribution
of data over a network is in itself an area of research which is beyond the scope
of our work.
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5 Conclusions and Future Work

In this paper, we presented a distributed programming library for OCaml. The
main features are the genericity of the interface, which makes use of polymor-
phic higher-order functions, and the ability to easily switch between sequential,
multi-core, and network implementations. In particular, Functory allows to use
the same executable for master and workers, which makes the deployment of
small programs immediate — master and workers being only distinguished by
an environment variable. Functory also allows master and workers to be com-
pletely different programs, which is ideal for large scale deployment. Another
distinguishing feature of our library is a robust fault-tolerance mechanism which
relieves the user of cumbersome implementation details. Yet another interesting
feature of the library is the ability to add workers dynamically. Functory also
allows to cascade several distributed computations inside the same program. Fi-
nally, the low-level API of Functory can be used to write interactive programs
where one can adjust certain parameters in a GUI, like increasing or decreas-
ing the number of workers, to observe the progress in computation, resource
consumption, etc.

Future Work. There are still some interesting features that could be added to
our library.

– One is the ability to efficiently assign tasks to workers depending on resource
parameters, such as data locality, CPU power, memory, etc. This could be
achieved by providing the user with the means to control task scheduling.
This would enable Functory to scale up to MapReduce-like applications.
Currently, without any information about the tasks, the scheduling is com-
pletely arbitrary. In both Cores and Network modules, we use traditional
queues for the pending tasks; in particular, new tasks produced by the mas-
ter are appended to the end of the queue.

– Our library provides limited support for retrieving real-time information
about computations and communications. Processing and storing informa-
tion about workers and tasks locally in the master is straightforward.

– One very nice feature of Google’s MapReduce is the possibility to use redun-
dantly several idle workers on the same tasks for speedup when reaching the
end of computation. Since we already have the fault-tolerance implemented,
this optimization should be straightforward to add to our library.

We intend to enrich our library with all above features.

Acknowledgments. We are grateful to the ProVal team for support and com-
ments on early versions of the library and of this paper. We thank the anonymous
reviewers for their helpful comments and suggestions.
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Abstract. Enabling programmers to “think parallel” is critical if we are
to be able to effectively exploit future multicore/manycore architectures.
This paper introduces paraforming : a new approach to constructing par-
allel functional programs using formally-defined refactoring transforma-
tions. We introduce a number of new refactorings for Parallel Haskell that
capture common parallel abstractions, such as divide-and-conquer and
data parallelism, and show how these can be used by HaRe, the Haskell
Refactorer. Using a paraforming approach, we are able to easily obtain
significant and scalable speedups (up to 7.8 on an 8-core machine).

1 Introduction

Despite Moore’s “law” [1], uniprocessor clock speeds have now stalled. Rather
than using single processors running at ever-higher clock speeds, even consumer
laptops and desktops now have dual-, quad- or hexa-core processors. Haswell,
Intel’s next multicore architecture, will have eight cores by default. Future hard-
ware will not be slightly parallel, however, as with today’s multicore systems,
but will be massively parallel, with manycore and perhaps even megacore sys-
tems becoming mainstream. This means that programmers need to start thinking
parallel, moving away from traditional programming models where parallelism
is a bolted-on afterthought. Rather, programmers must use languages where par-
allelism is deeply embedded into the programming model from the outset. This
is a golden opportunity for purely functional languages, such as Haskell [2],
which naturally supports parallelism, and avoids many of the classical difficul-
ties with parallel programming. However, transforming parallel thoughts into
parallel functional code can still require substantial effort.

This paper introduces paraforming: using software refactoring [3] to assist the
programmer in writing efficient parallel functional programs. Refactoring tool
support gives many advantages over unaided parallel programming: it guides
the programmers through the process of writing a parallel program, without
them having to understand the exact syntax of the underlying parallel language;
it identifies general patterns of parallelism for their algorithms; it enforces sepa-
ration of concerns between application programmers (those coding the business
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logic of the application) and system programmers (those taking care of the refac-
toring tools); it reduces time-to-deploy; it can incorporate information on extra-
functional properties such as computational costs; it can automatically warn the
programmer of drastic changes in the estimated balance of parallelism; and it
helps tune existing parallel programs. All of these advantages (and more) help
programmers understand how to write parallel functional programs.

1.1 Contributions

In this paper, we show and demonstrate a number of new refactorings for Haskell
that allow programmers to refactor their original source programs into parallel
ones, choosing from a well-defined set of high-level parallel source-code trans-
formations that will gradually refine an idea into an effective parallel program.
Rather than programming blindly, the refactoring tool guides the user through
the process of making their program parallel. In this way, they will be able to
form sensible parallel programs from their initial ideas.

The main technical contributions made by this paper are:

1. we present a number of new refactorings for the HaRe [4] refactoring system
for Haskell, that help to introduce and tune Parallel Haskell programs;

2. we formally define rewrite rules for the refactorings presented in the paper;
3. we demonstrate the effectiveness of the refactorings on two worked examples,

showing good performance speedups;
4. we show how it is possible to implement common task- and data-parallelism

using the refactorings.

2 The HaRe Refactoring System for Haskell

The refactorings presented here are built on the framework of HaRe, the Haskell
Refactorer, that provides refactoring support for the full Haskell 98 standard.
Figure 1 shows a screenshot of HaRe in Emacs1 with a menu of possible refac-
torings that could be applied to the source program. HaRe currently provides
a substantial number of structural and data-type based refactorings, aimed at
refactoring pure sequential Haskell 98 programs. HaRe is built on the Progra-
matica [5] front-end for parsing, and the Strafunski library [6] for generic tree
traversals, together abstracted into a low-level refactoring API [4] for designing
and developing refactorings. This API provides the user with an Abstract Syntax
Tree (AST) for the source program together with utility functions (tree traver-
sal and tree transformations) to assist in the implementation of refactorings.
HaRe is itself written in Haskell, and the refactorings it supports can be applied
to both single and multi module projects. Application programmers use these
refactorings to “enrich” their original programs. Unlike automatic parallelisa-
tion, the application programmer chooses from a well-defined set of refactorings,
contributing to the development of a “parallel programming” attitude in appli-
cation programmers.
1 A vi version is also available.
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Fig. 1. HaRe embedded in Emacs, showing some refactorings for parallelisation

3 GpH and Evaluation Strategies

The refactorings in this paper target Glasgow parallel Haskell (GpH) [7,8], a
conservative extension to Haskell. However, they could easily be applied to other
parallel variants of Haskell, such as Eden [9], and should generalise to other
parallel functional notations. In GpH, parallelism is introduced by applying the
rpar strategy (called sparking) and evaluation order is specified by applying the
rseq strategy.

rpar :: Strategy a
rseq :: Strategy a

These strategies are always applied in the context of the Eval monad: a specific
monad for specifying evaluation order, evaluation degree and parallelism. A lift-
ing function runEval :: Eval a -> a allows the monad to be integrated into
other computations. Finally, using :: a -> Eval a -> a applies the specified
strategy to its first argument, for example, f x ‘using‘ rpar x sparks x in
parallel with f x. A full discussion of GpH and evaluation strategies is given
in [8].
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4 Refactorings for Forming Parallel Programs

This section gives a set of rewrite rules that define the new parallel refactorings
for HaRe. The refactorings fall into two categories: data parallelism (Section 4.2),
including the Introduce Data Parallelism and Introduce Clustering refactorings;
and task parallelism (Section 4.3), including the Introduce Task Parallelism,
Introduce Thresholding and Modify Evaluation Degree refactorings. The main
refactorings are Introduce Task/Data Parallelism. The other refactorings can
subsequently be used to improve parallel performance, by increasing the granu-
larity of the parallelism (Introduce Thresholding and Introduce Clustering) and
by modifying the order or degree of evaluation (Modify Evaluation Degree). In
some cases it is also useful to modify the structure of the code beforehand,
enabling a refactoring that introduces or improves parallelism.

4.1 Rewrite Rules

Each refactoring is a function taking a list of possible rewrite rules to apply
to nodes of the Abstract Syntax Tree (AST). Each rewrite rule has its own
set of conditions that state which nodes the rewrite rules can be applied to.
If the condition fails, then the AST is traversed to the next applicable node
(the traversal is top-down, which exactly corresponds with the corresponding
implementation in HaRe, using Strafunski) where the rule and conditions are
applied again. Futhermore, a transformation is applied to a node only once, so
that a transformed node is not traversed further. This prevents nodes that were
originally of the form f, being transformed into f v and then further being
transformed into f f v. If a condition fails for a rewrite rule, then subsequent
rules will also fail automatically, unless the rule is part of a choice construct,
where the failing would result in the alternative rule being attempted instead.
We define our refactoring function as follows:

Refactoring(x0 , ..., xn ) = {Rule × {Condition}}

where x0, .., xn are the arguments to the refactoring. The rewrite rules are defined
as functions over types of nodes in the AST:

D�.� :: Declaration → Declaration

E�.� :: Expr → Expr

T �.� :: Type → Type

The above functions work over nodes of an AST. In addition, some refactorings
need to choose which rewrite rules to apply. Choice is denoted by a ⊕ b where
rule a is applied first, and if that fails then b is applied instead. Sequencing, on
the other hand, states that the rules should be applied in a strict sequence. It is
denoted by a� b where rule a is applied first and then rule b.

Code syntax is separated from the rule semantics by quasi quotes, so that
�f = e� denotes a function in the AST of the form f = e. We denote substitution
as �f = e[x′/x]�, where we mean that all occurrences of x are substituted with
x’ in the expression e; here, x may either be free or bound in e, however we do
not perform substitutions within bindings in e.
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IntroDataParallelism(ρ, e) =
E� e � ⇒ � e ‘using‘ parList rdeepseq �
{typeof (e) = instanceof ([a]), parList ∈ ρ, using ∈ ρ, rdeepseq ∈ ρ}

(1)

Fig. 2. Rewrite rules for the Introduce Data Parallelism refactoring

IntroClustering(ρ, e, v) =
(D� f −→p = let decls in e �
⇒ � f c −→p = let decls in e ‘using‘ parListChunk c rdeepseq �
{c fresh , typeof (e) = instanceof ([a]), parListChunk ∈ ρ,using ∈ ρ, rdeepseq ∈ ρ}
⊕
D� f −→p = let decls in e ‘using‘ parList strat �
⇒ � f c −→p = let decls in e ‘using‘ parListChunk c strat �
{c fresh , parListChunk ∈ ρ, using ∈ ρ})
�
T �f :: τ� ⇒ � f :: Int→ τ � {}
�
E�e� ⇒ e[(f v)/f] {}

(2)

Fig. 3. Rewrite rules for the Introduce Clustering refactoring

These refactorings are implemented in HaRe, covering the full Haskell 98
standard. However, for brevity we define our transformation rules over a subset
of Haskell 98, where we omit guards and where clauses.

4.2 Data Parallelism

Introduce Data Parallelism. This refactoring attaches a (parallel) strategy to
an expression in the code, so introducing data parallelism on the result generated
by the expression. The choice of the concrete strategy is left to the programmer.
Usually, a maximally parallel strategy is the best choice, in the sense that it
generates the highest degree of parallelism or a better granularity of parallelism
(by using rdeepseq instead of rseq). Currently HaRe will issue a warning if
rdeepseq is not being applied (see Section 4.3).

The refactoring Introduce Data Parallelism is shown in Figure 2 (Rule 1). The
refactoring simply takes an expression and then transforms the expression into
a parList strategy, providing the selected expression is a list.

Introduce Clustering. This refactoring refines an already existing parList
strategy, by improving the granularity of the data parallelism. This involves using
a parListChunk strategy instead of the original parList. The new strategy takes
a cluster (or chunk) size as an argument, allowing user-defined control over the
granularity. This can be very effective in increasing parallel performance.

The refactoring is shown in Figure 3 (Rule 2) and is defined to take two
arguments: e, the expression to convert to a parListChunk; and v, the specified
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IntroduceTaskPar (ρ, x) =
D� f −→p = let decls in e �
⇒ �f −→p = let decls in (let x′ = runEval $ do {x′ ← rpar x;

return x′} in e[x′/x])�
{x ∈ ρ ∨ x ∈ decls ∨ x ∈ −→p , x′fresh}

(3)

IntroduceTaskPar ′(ρ, x, d) =
D� f −→p = let decls in e �
⇒ � f −→p = let decls[d′/d] in e[x′n+1/x] �
{x ∈ ρ ∨ x ∈ decls ∨ x ∈ −→p , d ∈ decls, x /∈ bound(d), x′fresh}

where
d′ = � (x′0, ..., x

′
n, x

′
n+1) = runEval $ do{x′0 ← rpar x0; ...; x

′
n ← rpar xn;

x′n+1 ← rpar xn+1; return (x′0, ..., x
′
n, x

′
n+1)} �

d = � (x′0, ..., x
′
n) = runEval $ do{x′0 ← rpar x0; ...; x

′
n ← rpar xn; return (x′0, ..., x

′
n)} �

(4)

Fig. 4. Rewrite rules for the Introduce Task Parallelism refactorings

cluster size. The refactoring then either attaches a parListChunk strategy to
a selected expression, or it refines a selected expression that already has an
attached parList strategy by converting it into a parListChunk. In addition to
this, the user-defined argument v is added as an argument to the parListChunk
and also as an argument to the function that defines the expression. The type of
the function is changed to reflect the new argument, and all calls to the function
are changed, so that the user-defined value is passed in as an argument.

4.3 Task Parallelism

Introduce Task Parallelism. This refactoring sparks a selected computation
by adding an Eval monad within a let expression bound on the right-hand-side
of the selected computation. The refactoring also allows for addition computa-
tions to be added as further sparks within the Eval monad. This refactoring has
two variants. The first variant, IntroduceTaskPar (defined by Rule 3 in Figure 4)
simply takes a selected computation as an argument (x). The refactoring locates
the definition, say f, that defines x and then transforms f to introduce a let ex-
pression at the deepest point on the right-hand-side (this is to retain the scope of
any bindings introduced in the Eval monad). This new let expression sparks x,
returning a handle to the sparked computation. The refactoring then substitutes
all occurrences of x for the newly sparked computation, x’. Notice that if there
was a where clause attached to the definition of f, then the introduced x’ would
not be in scope within the where clause. In this case, it would be possible to lift
the x’ let clause to the where using the Convert Let to Where refactoring [10],
and then fold occurrences of x (using Function Folding [10]) against the lifted
x’ to perform substitution in the where clause.
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IntroduceThreshold (ρ,d, x, t, v) =
D� f −→p = let decls in e� ⇒ � f x−→p = let decls[{d′; abs}/d] in e �
{t ∈ ρ ∨ t ∈ decls ∨ t ∈ −→p , d ∈ decls, t ∈ free(d), abs fresh , x fresh ,
typeof (t) = instanceof (Ord a ⇒ a), typeof (x) = instanceof (Ord a ⇒ a)}

�
T � f :: τ2� ⇒ � f :: τ1 → τ2 � {τ1 = typeof (x)}
�
E� exp � ⇒ � exp[(f v)/f] � {}
�
T � t :: τ� ⇒ � t :: Ord τ ⇒ τ � {}

where
d′ = � (x′0, ..., x

′
n) = runEval $ do{x′0 ← rabs x0; ...; x

′
n ← rabs xn; return (x′0, ..., x

′
n)}�

abs = � rabs = if t > x then rpar else rseq �
d = � (x′0, ..., x

′
n) = runEval $ do{x′0 ← rpar x0; ...; x

′
n ← rpar xn; return (x′0, ..., x

′
n)} �

(5)

Fig. 5. Rewrite rules for the Introduce Threshold refactoring

The second version, IntroduceTaskPar’ (defined by Rule 4 in Figure 4) also
takes an activated Eval monad as a second argument. Here we already have
an Eval monad in the program and we simply want to add further sparks as
additional bindings in the monad. In this case, we modify the activated Eval
monad so that it returns an additional binding in its result. This new binding
then substitutes the previous definition of x in the scope in which x is bound. It
is important to note that the introduced (and modified) Eval monad is identity
safe, in the sense that rpar simply returns a handle to a sparked computation.
Substituting occurrences of the non-sparked computation x for the new sparked
version, x’ is semantics-preserving. At both steps of this refactoring, HaRe warns
the user that the rpar annotation uses a default weak head normal form evalua-
tion strategy. This is very useful, because inexperienced users of GpH often fail
to enforce a deeper evaluation degree on data structures that should be processed
in parallel, so producing code that contains less parallelism than expected.

The case study in Section 5.2 shows an example of both steps of this refac-
toring in practice.

Introduce Thresholding. Having introduced parallelism, the programmer of-
ten needs to tune the parallel performance. In this section we discuss one common
refactoring that can be used to increase the granularity of the parallelism, i.e.
to generate larger units of parallelism. The Introduce Threshold refactoring (de-
fined by Rule 5 in Figure 5) allows the programmer to control the parallelism by
disabling it if a selected value is below a threshold limit. This limit is supplied
as a parameter to the refactoring, that is compared against the current value.

The Introduce Threshold refactoring takes a number of arguments. Here ar-
gument d is the activated evaluation monad; t is the variable that the threshold
is compared against; v is the value for the threshold; and finally x is the name of
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ModifyEvalDegree(ρ,x) =
E� f x �⇒ � (f ‘dot‘ rdeepseq) x �
{typeof (f) = Strategy a, rdeepseq ∈ ρ,dot ∈ ρ}
�
T � x :: τ� ⇒ � x :: NFData τ ⇒ τ � {}

(6)

Fig. 6. Rewrite rules for the Modify Evaluation Degree refactoring

the threshold value. The refactoring first locates the activated evaluation monad
in the Abstract Syntax Tree, and replaces it with d’, a generalised version which
replaces all occurrences of rpar and rseq to rabs instead. The definition of rabs
is also added to the same scope as the activated evaluation monad, and its body
simply returns either rpar or rseq depending on the value of a threshold guard.
The threshold name is added as an argument to the function definition that
declares the active eval monad. The argument is added in the first position of
the function, which simplifies the process of partial application. The next step is
then to change the type of the function so that it takes an extra argument for the
new threshold value. All calls to this function in the scope in which it is defined
are then replaced with calls to the new function, passing in the user-defined
threshold value. It is worth noting that a performance conscious programmer
may want to extract the parameter into a call-site specific threshold value. This
would be perfectly possible using the Introduce New Definition refactoring from
HaRe. In the final step, the type signature for the variable defining the threshold
value is modified to take an Ord constraint.

Modify Evaluation Degree. Often simply sparking computations using the
rpar strategy is not enough to obtain good parallelism. This is because rpar
uses the default Haskell reduction to weak head normal form. For example, if
we sparked two lists in a divide-and-conquer program using rpar, we would
simply obtain a handle to the spine of the lists. This would be almost useless
in a parallel program involving lists, as it would still require the lists to be
evaluated sequentially on demand. Instead, we allow the option of using the
rdeepseq evaluation strategy, that evaluates its argument to full normal form.
The refactoring Modify Evaluation Degree is shown in Figure 6 (Rule 6).

5 Refactoring Case Studies

We present two worked examples, showing how the rules presented in Section 4
can be applied to introduce task-parallelism or data-parallelism to the same se-
quential source program. Our source program is a simple symbolic computation,
sumEuler, which computes the sum over the Euler totient function, applied to a
list of integer numbers. We initially develop a data-parallel version of sumEuler
using our refactoring, and then refine this using clustering. We subsequently
develop a divide-and-conquer version using thresholding and give performance
results for both examples.
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5.1 Data Parallelism

We start with the following top-level, sequential code for sumEuler. Our perfor-
mance results are summarised in Figure 7 and discussed in Section 5.3.

sumEulerSeq :: Int -> Int

sumEulerSeq = sum . map euler . mkList

We first need to eta-expand this definition, so that the function applications
become explicit in the code. We use the existing introduce parameter refactoring
to transform the definition to one that applies all the functions to a newly
introduced parameter. The refactored code is:

sumEulerSeq :: Int -> Int

sumEulerSeq n = sum (map euler (mkList n))

Stage 1: Introducing Data Parallelism: Introducing data parallelism en-
volves identifying a sub-expression in the program that generates a compound
data structure, such as a list, and whose components should be evaluated in
parallel. For basic data structures, such as lists, the Strategies library provides
predefined data parallel strategies, which can be directly used. To introduce data
parallelism, we first select the expression map euler (mkList n) and then ap-
ply the Introduce Data Parallelism refactoring from HaRe, where Rule 1 from
Figure 2 is applied:

sumEulerPar1 :: Int -> Int

sumEulerPar1 n = sum ( map euler (mkList n)

‘using‘ parList rdeepseq )

Stage 2: Clustering: While this version of the program creates an ample
amount of parallelism, the parallelism is very fine grained and the program is
therefore not very efficient, as shown in Figure 7. This is a common problem in
early stages of exploiting data parallelism. To tune the performance of this data
parallel program, we use a general technique of clustering, encoded in a separate
refactoring. This restructures the code so that computations on a “cluster” (or
chunk) of elements in the data structure are combined to one parallel task. In our
example, we want to use one parallel thread to process an entire sub-list, rather
than just one element. By increasing the size of the computation for each task
in this way, we reduce the overhead of the parallel execution and thus improve
performance. Such clustering can be achieved in various ways. The simplest is to
replace a data parallel strategy with its clustered equivalent, that is additionally
parameterised by the cluster size. For example, on lists we can use the existing
strategy parListChunk by selecting the parList expression and performing the
Introduce Clustering refactoring. This applies Rule 2 from Figure 3 to produce:

sumEulerParListChunk :: Int -> Int -> Int

sumEulerParListChunk c n = sum (map euler (mkList n)

‘using‘

parListChunk c rdeepseq )
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5.2 Task Parallelism

The second example is a divide-and-conquer version of sumEuler, which we
use to illustrate how our refactorings apply to divide-and-conquer programs in
general. The program divides the input list into two halves, applies the Euler
totient function in the base case, and combines the results by summing them.
Our performance results are summarised in Figure 7 and discussed in Section 5.3.

sumEulerDnc :: [Int] -> Int

sumEulerDnc [] = 0

sumEulerDnc [x] = euler x

sumEulerDnc xs = s1+s2

where (left, right) = splitAt (length xs ‘div‘ 2) xs

s1 = sumEulerDnc left

s2 = sumEulerDnc right

Stage 1: Introduce Task Parallelism: The first stage in parallelising this
program is to identify which components in sumEulerDnc we would like to par-
allelise. Using the standard divide-and-conquer approach, we need to separate
out the recursive calls to sumEulerDnc in the bindings of s1 and s2, so that
s1 is sparked in parallel to the evaluation of s2. In order to do this, we need
to use the Eval monad. The first step is therefore to apply Rule 3 from Figure
4, by selecting s1 and choosing the Introduce Task Parallelism refactoring. The
refactoring introduces a new pattern-match in the where clause of sumEulerDnc:

sumEulerDnc :: [Int] -> Int

...

sumEulerDnc xs = let s1_2 = runEval $ do

s1_2 <- rpar s1

return (s1_2)

in s1_2+s2

where (left, right) = splitAt (length xs ‘div‘ 2) xs

s1 = sumEulerDnc left

s2 = sumEulerDnc right

It is important to observe that in this step the refactoring also substitutes oc-
currences of s1 within the body of sumEulerDnc so that it uses the new s1 2
binding instead. This is crucial for performance, since using s1 would ignore
the parallelism in the program. This is a common pitfall, which is circumvented
by using a refactoring-based approach. The next step is to add s2 as a binding
within the same monad, by applying Rule 4 from Figure 4. The refactoring In-
troduce Task Parallelism will let us do this using the IntroduceTaskPar’ variant
instead (Rule 4 from Figure 4); the user selects s2 within the where clause of
sumEulerDnc and selects Introduce Task Parallelism from the HaRe menu. This
time HaRe augments the existing Eval monad by adding an additional binding,
s2 2 <- rpar s2, after the original binding of s1 2 <- rpar s1. Finally, the
return statement is changed to return a tuple, where each component returns a
binding within the monad. The pattern-match is also changed to reflect this, as
is the substitution of s2 for s2 2 within the body of sumEulerDnc. The modified
code is now as follows:
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sumEulerDnc :: [Int] -> Int

...

sumEulerDnc xs = let (s1_2, s2_2) = runEval $ do

s1_2 <- rpar s1

s2_2 <- rpar s2

return (s1_2, s2_2)

in s1_2+s2_2

where ...

At each of the steps above, HaRe warns us that the evaluation degree used
with rpar is Haskell’s default reduce to weak-head-normal-form strategy. In this
example such evaluation is sufficient, because for the unstructured Int type this
amounts to a full evaluation. However, in general it is desirable to combine the
generation of parallelism with explicit specification of the evaluation degree. This
often involves full normal form evaluation using rdeepseq. Although not strictly
necessary here, we perform the corresponding refactoring (Rule 6 from Figure 6)
to demonstrate this step in the parallelisation and to future-proof sumEulerDnc.

sumEulerDnc :: [Int] -> Int

...

sumEulerDnc xs = let (s1_2, s2_2) = runEval $ do

s1_2 <- (rpar ‘dot‘ rdeepseq) s1

s2_2 <- (rpar ‘dot‘ rdeepseq) s2

return (s1_2, s2_2)

in s1_2+s2_2

where (left, right) = splitAt (length xs ‘div‘ 2) xs

s1 = sumEulerDnc left

s2 = sumEulerDnc right

Stage 2: Introduce Thresholding: Unrestricted parallelism in divide-and-
conquer programs often generates an excessive amount of fine-grained paral-
lelism, which imposes high parallelism overhead. Therefore, the programmer
tunes this initial version by introducing a threshold on the length of the input list
xs, below which no parallelism will be generated. In order to perform this trans-
formation, the programmer need only call the Introduce Threshold refactoring
from HaRe, rather than manually introducing this threshold. First the program-
mer makes the expression length xs a new definition, by using the Introduce
New Definition refactoring that is already defined in HaRe [11]. This introduces
the new definition lenXs = length xs. The programmer then selects lenXs in
the where clause of sumEulerDnc. After choosing the Introduce Threshold refac-
toring from the HaRe drop down menu, HaRe prompts for a threshold value,
where the programmer enters the value 100 and applies Rule 5 from Figure 5:

sumEulerDnc :: Int -> [Int] -> Int

...

sumEulerDnc t xs = let (s1_2, s2_2) = runEval $ do

s1_2 <- (rabs ‘dot‘ rdeepseq) s1

s2_2 <- (rabs ‘dot‘ rdeepseq) s2

return (s1_2, s2_2)
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rabs = if (lenXs > t)

then rpar

else rseq

in s1_2+s2_2

where (left, right) = splitAt (length xs ‘div‘ 2) xs

s1 = sumEulerDnc t left

s2 = sumEulerDnc t right

lenXs = length xs

The refactoring introduces the threshold as an argument to sumEulerDnc, re-
placing all calls to sumEulerDnc in the scope that it is defined with sumEulerDnc
100. The argument is added in the first position so as not to interfere with partial
applications. A new abstraction, rabs, controls the parallelism threshold.

5.3 Performance Results

All our measurements have been made on an eight-core, 8GB RAM, 6MB L2
cache, HP XW6600 Workstation comprising two Intel Xeon 5410 quad-core pro-
cessors, each running at 2.33GHz. The benchmarks run under Linux Fedora 7
using GHC 7.0.1, and parallel package 3.1.0.1 for evaluation strategies.

For both programs we measured parallelism overhead by comparing the se-
quential runtime with the runtime of a one processor parallel version. For the
data-parallel version sequential runtime is 104.63s and one processor runtime is
104.73s. For the divide-and-conquer version sequential runtime is 198.49s and
one processor runtime is 198.71s. Thus, parallelism overhead is less than 0.2%
in all cases, as expected from a highly-tuned parallel runtime-system.

The results for the data-parallel sumEuler implementation are shown in the
first two plots (from top to bottom) in Figure 7. The naive implementation
generates one task for every list element, in this example 40,000 tasks in total.
As a result, the parallelism is extremely fine-grained, i.e. each task performs only
a small amount of computation, something that can be ascertained by using
GHC’s profiling tools. The overhead of thread creation and synchronisation has
a significant impact on parallel performance, resulting in almost no speedup at
all: 1.4 on 8 cores. Based on this profiling information, some form of clustering
is essential to increase performance. Indeed, the second plot in Figure 7 exhibits
much improved speedup of 7.8 on 8 cores.

The results for the divide-and-conquer implementation of sumEuler are shown
in Figure 7. In this simple example already the initial parallel version achieves a
good speedup of 6.2 on 8 cores, although performance tails off for higher num-
bers of cores, indicating limited scalability of this version. We have observed the
importance of thresholding, in particular for massively parallel architectures,
in several larger applications [12], and this motivated our initial choice of per-
formance tuning refactorings. The reason for the good speedups with smaller
numbers of cores is that the parallel runtime-system allows for the subsump-
tion of potential parallelism by parent tasks, where the application contains an
abundance of hierarchical parallelism. This is the case in a divide-and-conquer
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Fig. 7. Speedups showing data-parallel sumEuler and divide-and-conquer sumEuler on
an 8-core machine

structure and works very well in this example, reducing the number of generated
tasks to 257 out of 85,018 sparks that are generated in total. Adding a threshold
of 100 improves speedup slightly, achieving 6.9 on 8 cores, but guaranteeing,
through user code, that no more than 80 tasks are generated.

6 Related Work

Despite the obvious advantages, there has so far been little work in the field
of applying software refactoring technology to assist parallel programming. The
earliest work on interactive tools for parallelisation stemmed from the Fortran
community, targeting loop parallelisation [13]. These interactive tools were early
transformation engines allowing users to manipulate loops in their Fortran pro-
grams by specifying what loops to interchange, align, replicate or expand. The
interactive tools typically reported to the programmer various information such
as dependence graphs, and were mainly applied to the field of numerical compu-
tation. More recent work includes Reentrancer [14]: a refactoring tool developed
by IBM for making code reentrant, which targets global data by making them
thread-safe; and Dig [15], which introduces concurrency in Java programs by
making them more thread safe, increasing throughput and improving scalabil-
ity. Software refactoring techniques have therefore only previously been applied
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in a very limited parallel setting: by applying simple transformations to intro-
duce parallel loops and thread safety in object-oriented programs. Currently,
these approaches are limited to object-oriented languages.

While there has been some work on transformational approaches, to the best
of our knowledge, there has been no previous work on applying refactoring tech-
nology to parallel functional programs. For example, Hammond et. al. [16] used
Template Haskell to apply Eden [9] skeletons to Haskell programs, using an inte-
grated cost model for selecting the transformations to apply. A similar approach
is taken by SkelML [17], which uses an automatic program synthesis for identify-
ing specific program patterns to apply to ML programs at compile time. However,
unlike refactoring, which is designed to guide the user through the structured
steps of forming (and tuning) parallel programs on a source code level, these
approaches are deployed at compile time, and so do not expose the transformed
source code to the user. This is valuable in providing the opportunity for the
programmer to further tune their parallel Haskell programs. Our approach also
differs in providing building blocks for building generalised skeletons rather than
the skeletons themselves.

The renewed interest in parallel programming has spawned several paral-
lel language extensions for Haskell that vary in the level of control they give
to the application programmer. For example the Par monad presented in [18]
uses explicit parallelism together with M-Vars for synchronisation, and demon-
strates the expressive power by implementing a Haskell level scheduler. Cloud
Haskell [19] takes an even more drastic step of lifting the entire machinery of co-
ordinating parallelism to the Haskell level. By exposing more detailed control to
the programmer, classic challenges of parallel programming also reappear. There-
fore, these models would profit even more from a refactoring-based approach to
avoid common pitfalls, or at least to warn the programmer of potential dangers.

7 Conclusions and Future Work

In principle, parallelising a Haskell program is simple: all the programmer has
to do is to introduce evaluation strategies to describe which expression could be
evaluated in parallel. In practice, however, identifying the most useful sources
of parallelism and then tuning the performance of the initial parallel code can
be tricky and often requires expertise in the parallel programming as well as
an understanding of evaluation order and degree in Haskell. The paraforming
approach described here, allows this expertise to be encoded in a way that can
assist the programmer without being prescriptive. The refactoring tool warns
the programmer to avoid common pitfalls, such as under-defining the degree of
evaluation, and gives a structured way to perform common optimisations such
as introducing thresholding in a parallel program. We have shown that this
approach can be effective for both task- and data-parallelism, giving real and
scalable speedup.

This work is still in a fairly early stage of development and there are several
directions for further work. We have described only a few simple refactorings:
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there are many more common patterns of parallelism that could be added, such
as pipelining, branch-and-bound, or dynamic workpools. We also need to investi-
gate enabling refactorings that may modify the code structure to expose parallel
refactorings. We then plan to apply the refactorings both to some of the larger
examples that we have studied in the past [8] and also to new applications so that
we can assess their usefulness in the complete process of parallelisation. In addi-
tion to the refactorings presented in this paper, we also intend on implementing
their inverses ; so, for example, it is possible to un-spark a computation that is
bound in an Eval monad, if it later shows to be too fine grained. We also aim to
provide soundness proofs both for the refactorings described here, and possibly
for other refactorings already implemented in HaRe. Finally, although we have
expressed our ideas in terms of GpH, they are, of course, much more widely
applicable. In the long term, we hope to apply the ideas described here to other
parallel dialects of Haskell, and to other language settings. Parallel refactoring
technology combined with programming at a high level of abstraction provides
a key to helping programmers think in parallel.
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Abstract. The world of finance faces the computational performance
challenge of massively expanding data volumes, extreme response time
requirements, and compute-intensive complex (risk) analyses. Simulta-
neously, new international regulatory rules require considerably more
transparency and external auditability of financial institutions, including
their software systems. To top it off, increased product variety and cus-
tomisation necessitates shorter software development cycles and higher
development productivity. In this paper, we report about Hiperfit, a
recently etablished strategic research center at the University of Copen-
hagen that attacks this triple challenge of increased performance, trans-
parency and productivity in the financial sector by a novel integration
of financial mathematics, domain-specific language technology, parallel
functional programming, and emerging massively parallel hardware.

Hiperfit seeks to contribute to effective high-performance modelling
by domain specialists, and to functional programming on highly
parallel computer architectures in particular, by pursuing a research tra-
jectory informed by the application domain of finance, but without lim-
iting its research scope, generality, or applicablity, to finance. Research
in Hiperfit draws on and aims at producing new research in its different
scientific fields, and it fosters synergies between them to deliver show-
cases of modern language technology and advanced functional methods
with the potential for disruptive impact on an area of increasing societal
importance.

1 Introduction

Today, the financial sector is confronted with fundamental computational chal-
lenges: Data volumes to be handled are growing at an exponential rate; stochastic
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simulations consume in principle limitless numbers of compute cycles; quantita-
tive and auditable risk management is becoming mandatory; real-time require-
ments hit speed-of-light limitations. At the same time, it becomes more and
more common to negotiate non-standardised financial contracts, so-called over-
the-counter (OTC) contracts. These are complex to model, manage and analyse,
and yet product development cycles have become shorter than imagined even
five years ago. This requires complex computational models, specifications and
systems that are guaranteed to be correct, transparent, rapidly developed, and
scalable on today’s and tomorrow’s hardware. What makes this a fundamentally
new and interesting scientific challenge is that the problems need to be solved si-
multaneously, and thus trade-offs between the underlying financial mathematics,
problem modelling, programming language technology, high-performance sys-
tems, and practical applicability must be explicitly accounted for.

To address these problems, we have recently established the Research Center
for Functional High-Performance Computing for Financial Information Tech-
nology (Hiperfit) at the University of Copenhagen, which brings together key
researchers in the required scientific fields – programming languages, parallel sys-
tems, and mathematical finance – with the relevant industrial partners. Our fun-
damental hypothesis is that the above-mentioned simultaneous challenges of high
transparency, high computational performance and high productivity can be
solved more easily by an integrated approach using declarative domain-specific
and high-level functional programming languages rather than by an incremental
approach building on top of historically evolved software architectures and code
bases that have originally been developed for sequential computer architectures.
The approach taken by Hiperfit is to eliminate low-level imperative program-
ming by exploiting natural parallelism in declaratively expressed solutions and
mapping it directly to emerging massively parallel commodity hardware.

1.1 Overview

In the present paper we first describe the research paradigm, strategy and or-
ganisation of Hiperfit. We then explain the integrated approach taken, and
the particular research themes we will work on (Section 3). Section 4 focuses
on the functional programming aspects: We summarise the state of the art in
language support for financial applications (Section 4.1) and give an overview of
parallel functional programming paradigms and trends (Sections 4.2 and 4.3).
In Section 5, we outline the two first project activities within Hiperfit related
to functional programming. Section 6 concludes.

2 Motivation and Background

In the year 2008, we saw one of the most severe worldwide financial crises ever.
Induced by defaults in the American real-estate market (sub-prime loans), some
investment banks collapsed and a large numbers of others were affected – taking
down many other industries and ultimately leading to a general economic crisis
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of global scale [19]. The crisis in 2008 demonstrates how complex dependencies
are built up in the financial industry and that experts can vastly misjudge the
impact of a local crash on other sectors.

2.1 Need for More Accurate Modelling in Mathematical Finance

To help avoid a repeat of the 2008 crash, financial institutions have initiated
internal activities at a massive scale. Huge sums are invested in computational
methods to improve modelling financial phenomena with all concerned parties.
While the banks already have extensive modelling and pricing activities, the
new problems establish a modelling and simulation paradigm vastly different
from the existing system. Existing systems are based on macroscopic models
and only model individual contracts in parameterised representations. The new
requirement will be a detailed system of microeconomic models of the individual
businesses and the combination of these into a global economic barometer that
identifies the value and risk in a given bank.

2.2 Need for More Financial System and Software Transparency

The financial crisis that hit the world economy in 2008 has also triggered several
new legislative initiatives that seek to govern the financial sector more carefully.
The Basel-II agreement, its successor Basel-III under preparation (as CRD II-
IV), and recently proposed SEC rules for computational models of securities
[40], impose new capital adequacy and transparency requirements on the finan-
cial sector. These new rules have impact on banks’ IT systems at all levels,
ranging from high-level modelling of financial instruments to auditable internal
risk models and their reliable implementation.

2.3 Need for More Computational Performance

Quantitative analyses in the financial industry have always called on great com-
puting power. Such analyses have usually been devised by so-called “quants”,
having a background in mathematical finance, financial engineering, mathemat-
ics and physics. Their expertise is in the fields of option pricing, calibration,
simulation, stochastic differential equations, partial differential equations, and
statistics. Only recently have we seen increased focus on the efficiency and trans-
parency of numerical and computational methods used in the analyses, which
increasingly use Monte-Carlo and other simulation techniques [21]. Reasons for
this trend lie both inside the industry, through an ever-growing competition
for achieving more and more marginal benefits, and outside, by imposing new
auditing and solvency procedures from international regulation (c.f. Section 2.2).

Recently, domain experts have started using the potentially tremendous par-
allel computing power of modern General-Purpose Graphics Processing Units
(GPGPUs), encoding their algorithms in highly platform-dependent low-level
languages. Low-level code written by a domain expert may perform well in the
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short term, but is bound to lead to over-specialised, unmaintainable systems
that do not satisfy auditing and transparency requirements. In consequence,
there is an increasing demand for high-level programming language and high-
performance systems expertise, complementing the requisite principal financial
expertise.

3 The Hiperfit Center

Funded by the Danish Council for Strategic Research,Hiperfit started its work
in January 2011. The center comprises four main research areas involving three
departments of the University of Copenhagen, five partners from the Danish
financial industry, and a French functional-programming based finance IT com-
pany. The center has been made possible by a grant by the Danish Strategic
Research Council under its Programme for Strategic Growth Technologies. The
grant provides funding for 1 permanent faculty, 3 post-doctoral and 6 PhD schol-
arship positions, totalling 33 person years spread over the different scientific
disciplines. The first Hiperfit appointments will be in place by the end of 2011.

3.1 Research Goals, Organisation, and Methodology

Research in Hiperfit aims at solving problems of today’s computing in fi-
nance in a holistic, integrated approach. Hiperfit therefore joins researchers
with state-of-the-science expertise in four research areas relevant for high-
performance financial applications: Theory and practice of mathematical fi-
nance (MF), domain-specific languages (DSL), functional programming (FP),
and high-performance systems (HPS).

A major goal of Hiperfit is to present alternatives to the above-mentioned
low-level code with platform-dependent optimisations so as to facilitate a more

Fig. 1. Relationship between research areas and research themes
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enduring development process of efficient maintainable systems. Essential ingre-
dients to achieving this are declarative languages and advanced compilation of
domain-specific abstractions. We believe that side-stepping imperative program-
ming bears the elements of a disruptive technology with drastic productivity and
performance improvement potential.

The work in HIPERFIT is organised in general research themes, which cut
across research areas and are driven by cases. Figure 1 depicts the research areas
and their relationship to our initial research themes. Cases are concrete projects
for exploration and development, either motivated by practical needs of industry
partners (problem-driven), or by the intent to evaluate novel technologies and
gather know-how for later use (technology driven). Cases may or may not contain
information protected by industry partners. They usually have focused objec-
tives adequate for Master’s thesis projects, and they realise useful and timely
short-term goals. The overarching research themes, on the other hand, are more
open-ended to foster exploratory thinking that is not entrenched in and tied to
incremental evolution of current practice. Research theme work is carried out
primarily by faculty, postdocs and Ph.D. students researchers.

3.2 Research Themes in Hiperfit

Initial discussions with our industry partners have led to identifying several
cross-cutting research themes for the start of Hiperfit, depicted in Figure 1.
Each research theme will be supported by cases, part of which are provided by
the industry partners.

Risk Scenarios. We try to describe the transition from observables (like cur-
rent prices and historical data) to scenario generation and from scenario gen-
eration to reporting and management. Adequate risk scenarios have immediate
relevance for management decisions, including deriving capital requirements to
ensure stability in unlikely and extreme situations.

Model Specification. Financial models in practical use today vary from so-
called “model-free” evaluation (prices given completely in terms of other prices)
to sophisticated stochastic processes (such as advanced multi-dimensional jump-
diffusions). We want to systematically explore and compare benefits and costs of
models for different applications (solvency, accounting, or management), paral-
lelisation and optimisation of numeric methods, and the impact of imprecisions
that might result from the latter.

Domain-Specific Languages (DSLs) for Finance. Declarative DSLs to de-
scribe a range of financial products have already come into widespread use in
the financial sector. We aim to complement these languages with similarly ex-
pressive DSLs for other financial information, and especially for financial models.
Our goal is a complete DSL framework with broad application coverage, suitable
both for internal reporting and statistics, external auditing, and computation in
large risk scenarios. We will describe the DSL approach in the financial domain,
and our goals, in more detail in Section 4.1.
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Extracting Parallelism from Declarative Specifications. The core goal
of this research theme is to analyse and transform large-scale financial computa-
tions to expose their inherent computational parallelism. Departing from work
on existing applications and domain-specific abstractions, we plan to derive a
tailor-made language for large-scale numeric computations which suits the needs
of mathematical finance, while efficiently executable on modern parallel hard-
ware. Thanks to their high-level nature, parallel functional languages appear to
be an excellent platform for this. We expect vector and matrix operations and
accumulating reductions to be the major source of parallelism at this stage, but
aim to identify more domain-specific parallelisation schemes. The DSL devel-
opment for financial models will lead to additional or modified requirements.
Typical operations for valuation (pricing) of stochastic financial models need to
be translated into the parallel operations provided. The functional approach we
take gives us a good position to formally assess correctness and precision of the
obtained results, and – to some extent – to statically estimate the translated pro-
grams’ performance. Sections 4.2 and 4.3 expand on previous and related work
in the area of parallel functional programming and parallel hardware support.

High-Performance Backends for Novel Hardware. Embracing novel par-
allel hardware like GPGPUs is an integral part of Hiperfit. Models and lan-
guage framework will be designed with execution on next-generation processors
in mind from the start, mapping the parallelism that is expressed by the func-
tional programming activities onto a number of parallel computer architectures.
In this research theme, activities will start by optimising existing algorithms and
implementations, and profit from synergies with other scientific computing activ-
ities on parallel hardware. We expect to follow a byte-code based approach and
just-in-time compilation, and ultimately intend to deliver a full high-performance
backend tailored for financial and scientific applications.

4 Functional Programming and Hiperfit

4.1 Domain-Specific Languages for Financial Applications

PervasiveTrend toDomain-SpecificLanguages. Domain-specific languages
(DSLs) capture knowledge of application experts in tailor-made constructs and
thereby offer great programing comfort. DSLs are so widespread and successful
in practice that it is easy to overlook them: Logical data modelling and declar-
ative querying, with high-level support for physical storage layout (particular
index data structures) and automatic query optimisation, as embodied in Rela-
tional Database Systems (RDBMSs); functional dependencies between atomic,
vector- and matrix-based data, with automatic incremental recomputation, as
embodied in spreadsheets; structural specification of strings, with automatic
generation of provably efficient streaming processors, as embodied in regular
expression (“lexing”) and context-free grammar (“parsing”) tools.

Programming language research has only recently discovered DSLs as a
research area and capitalised on the notion, though [32]. Simultaneously with the
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rise of the term in research, one could observe DSL technology invading profitable
commercial domains. For example, the Cryptol language [26] enables construct-
ing reliable cryptographic software and hardware implementations with ease and
high assurance. Recently, we also see some proposals for “DSLs” for parallel pro-
gramming [42], or specifically for next-generation parallel hardware, GPGPUs or
FPGAs. However, whether to really label these “DSL” is a debatable subject: A
particular target platform definitely does not constitute an application domain,
and the particular field hardly exposes characteristics which would justify DSL
development (special notation, automation, data structures [32]). We are not
aware of many scientific projects combining a proper DSL approach with novel
parallel hardware. Notable exception are a relatively new project Diderot [45] (a
“parallel DSL” for image analysis), and the Feldspar project [17] which targets
GPGPUs for high-performance signal processing using a DSL approach.

DSLs in Finance. Financial applications have been identified as a promising
DSL area relatively early. Researchers have successfully modeled and analysed
financial instruments [35], commercial contracts [2], and risk management [6]
using DSL technology. The French company LexiFi, one of the industrial partners
in Hiperfit, has matured the research on financial DSLs [35] into the language
MLFi [27], which is embedded into OCaML as a combinator library for describing
contracts and valuation (called a “domain-specific embedded language”, DSEL).

The hallmark feature of such contract languages is that they allow more com-
plex instruments/contracts/risk models to be built up by composing simpler,
often reusable, components that can be shared amongst different instruments.
Also, the same domain-specific descriptions enable different interpretations. For
instance, a description of a financial instrument in MLFi can be used both for
pricing the instrument and for backoffice automation; that is, managing when
options and obligations described in the instrument are to be exercised and when
payments are to be made or received.

Project Goal: DSL Framework for Finance. The general goal of DSLs is
to support fast implementation, extensibility, reuse across financial institutions,
maintainability and low total cost of ownership (TCO) for the domain expert
as a user. We want to create a framework for financial information applications
which covers various applications: reporting to auditors and public authorities,
data communication with clearing houses, internal reporting and statistics, com-
putations for the purpose of internal risk management, and flexible integration
for standard routines such as accounting and confirmation processing.

DSLs for financial instruments are commonly used in many companies today,
but often mix contract and valuation aspects. A crucial goal of Hiperfit is to
design similarly expressive languages to describe the stochastic models and com-
putational valuation methods, and to achieve clear separation and interfaces to-
wards a universal valuation engine. We will investigate existing DSL approaches
in the different areas and experiment with combining them to identify the lines
of separation and useful language features.
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4.2 Parallel Functional Programming in Hiperfit

Why Parallel Functional Programming Matters1

Functional programs are easy to read and understand, program construction and
code reuse are simplified (glue), and programs are transformed, optimised and
formally reasoned about with relative ease. More specific to parallel computa-
tions, the absence of side effects makes data dependencies and inherent paral-
lelism manifest, (purely) functional parallel programs have deterministic seman-
tics irrespective of the evaluation order, and reduction semantics is inherently
parallel. Last but not least, higher-order functions can nicely describe common
parallelisation patterns as skeletons [15,38], without the reader getting lost in
technical details or particularities of the concrete algorithm. In all, irrespective
of the concrete programming model, the high level of abstraction provided by
functional languages makes them suitable languages to conceptually describe
parallelism, in an executable specification.

Models, Paradigms and Classification. A number of programming models
for parallel functional programming have been developed. They can be cate-
gorised along different aspects of programming and implementation. A good cri-
terion for classifying parallel programming models is the degree of explicitness :
how much parallelism needs to be controlled and specified by the programmer.
Skillicorn and Talia [41] subdivide explicitness along several aspects: decompo-
sition, mapping, communication, and synchronisation, as increasing degrees of
explicitness for parallel subcomputations.

The main credo in functional languages being high abstraction, it is not sur-
prising that most approaches to parallelism try to limit the programmer’s con-
trol of parallelism. Parallelism should ideally be non-invasive, i.e. not require
large changes to a program’s source code. In the extreme, inherent parallelism
exploited stems from the reduction semantics, for example in parallel Haskell
(pH [1]): lazy graph reduction is changed to eager evaluation for performance.
However, experience has shown that such completely implicit approaches are
of limited use. The predominant category is a mid-level of “controlled paral-
lelism” [23], where programmers specify parallelism, while details are left to the
language implementation. In Figure 2, we provide a categorisation of parallel
functional languages that expands this semi-explicit mid-level further into sub-
categories. As another aspect, the vertical axis in the figure shows to what extent
units of computation in parallel programs are explicitly interacting.

One classical approach is to parallelise operations over special bulk data types
– data parallel languages. Examples are NESL [12], Data-parallel Haskell [14],
and its newer variant RePA [25]. Language extensions targeting GPGPUs [29,13]
also fall in this category of type-driven parallelism.

Slightly more powerful, and more involved, is to indicate inherent parallelism
in a functional program by annotations or special evaluation combinators, to
inform compiler and runtime system about whether an independent computa-
tion should be done in parallel. This is the model of Glasgow parallel Haskell

1 In reverence to Backus [7], Hughes [24] and Hammond/Michaelson [23, Introduction].
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(GpH) [44]. Evaluation strategies built on GpH [43] (recently overhauled [31])
provide slightly more control, enabling the programmer to force evaluation of
subexpressions to a certain degree (in parallel or sequentially). This facilitates
opportunistic parallel evaluation. It does not guarantee parallelism, however. In
contrast, parallelism annotations used in Concurrent Clean [37] have manda-
tory operational semantics, providing controlled parallelism. The programmer
explicitly specifies parallel scheduling; programs using controlled parallelism are
indeed parallel and expose their parallel behaviour. Skeleton-based parallelisa-
tion [15] could be included in this category since, commonly, the programmer has
to explicitly choose the algorithmic pattern implemented by a certain skeleton,
and to follow it. However, we prefer to categorise them as implicit (likewise Skil-
likorn and Talia [41]), since a skeleton’s parallel implementation is entirely hid-
den in libraries. Other examples of controlled functional parallelism are Hudak’s
para-functional programming approach and successors [33], and the language
Eden [28]. Often we find the concept of processes and channels between them
to define process networks. The language Eden [28] is the major representative
of this approach in the Haskell world. Eden retains a mostly [10] functional in-
terface, with a notion of processes specified by their input-output mapping, and
implicitly connected via channels which may transfer data as streams. It has
been demonstrated [9,8,5] that Eden provides good support for skeleton-based
programming, both for the skeleton user and as an implementation language.

Languages like Concurrent Clean and Eden are still (mostly) implicit about
the communication details and synchronisation. Going even further, we find
functional languages with explicit message-passing and concurrency. Examples
using message passing are Concurrent ML [39], Haskell-MPI, and notably Er-
lang [3]. Concurrent Haskell [36] and Haskell transactional memory (STM) use
shared memory, where threads communicate via shared mutable variables. A side
remark on our categorisation: While interaction and explicitness of parallelism
are mostly correlated, Haskell STM is the notable “outlier”. There are no STM
constructs for interaction between concurrent threads.
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In general, concurrency is a programming model which allows to separate in-
dependent (usually effectful) computations into multiple (sometimes interacting)
execution threads. Historically, this aims at supporting responsive distributed
and interactive systems, which is also useful in the absence of actual parallel exe-
cution. Concurrency constructs are often also used to achieve genuine parallelism,
speeding up a computation by executing its computational steps simultaneously
(“in parallel”) on computers with multiple processing units – and guarantee-
ing to do so. In contrast to this, concurrency can be understood as sequential
computation, but with internal nondeterministic choices for selecting the next
step. This is done by splitting the computation in a set of (sequential) threads or
(sequential) processes (threads with shared memory). Assuming the implemen-
tation executes threads in parallel, concurrency can be a good implementation
tool for parallel algorithms. Experience has shown that the large degree of con-
trol offered by concurrency abstractions and explicit message passing can prove
useful for advanced parallel functional programming [10]. Functional languages
also allow for more deterministic models to implement parallelism.

Project Goal: Tailored Parallel Functional Language. Within Hiper-

fit, we aim to develop a functional language that can be productively used to
express computations in mathematical finance, and which exposes inherent par-
allelism in these computations. Driven by the application domain of financial
modelling, we will identify common computation patterns and their potential
for parallelisation. Potentially parallel computations should be easy to extract
and transform into explicitly parallel operations on a variety of modern parallel
platforms.

In Figure 2, we have sketched the functional programming languages we ex-
pect to be most relevant for Hiperfit. Apart from functional languages we also
expect to draw on the heritage of classical bulk-data programming languages
such as APL, SETL and SQL. Principally, data parallelism [12] appears to be a
good match for the Hiperfit application domain: it enables concise and long-
term maintainable specifications of a wide variety of inherently parallelisable
computations, without committing to any particular implementation strategy
or execution environment. It facilitates correctness proofs and performance es-
timates, and, under eager evaluation, it has a useful compositional parallel cost
model. Pure data parallelism, on the other hand, is less suitable for loosely-
coupled systems. We therefore expect to also use more explicit and coarse-grained
programming models (like e.g. Eden), however avoiding the burden of explicit
message-passing and using implementation skeletons where possible.

At a later stage, we expect the DSL development for financial models to yield
additional or modified requirements. Useful abstractions and patterns of par-
allelism will be identified from working on concrete projects. Ultimately, our
language should support specific typical operations tailored to the application
domain, risk analysis and valuation in a financial context, but without hard-
wiring the application domain into it.
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4.3 Support for Multicore and Novel Parallel Hardware

In the previous section, we have motivated our functional approach by a num-
ber of historic achievements of relevance, based on more than 20 years of re-
search in parallel functional programming. Yet, it is interesting to see how much
the availability of advanced GPGPU hardware in practice changes the scientific
landscape. GPGPUs are made for SIMD-style parallel computations with minor
memory requirements. Parallel software has often been built as a match to exist-
ing well-performing and well-understood hardware. Functional approaches claim
to capture parallelism at a more abstract level, but recent publications about
GPGPU programming in functional languages focus exactly on these simple
embarrasingly parallel problems, where quick success can be expected.

Especially for accelerating financial simulations, the approach of modern GPG-
PUs appears promising; we already know that Monte Carlo methods can get mas-
sive speedups, due to their simple structure. This holds not only for finance, but
also for various scientific applications using Monte Carlo simulations, for instance
particle physics and computational geo-science. Today, we find several language
bindings to GPGPU accelerators in the Haskell research community. They re-
alise easy data parallelism on specially designated parallel vectors (Nikola [29])
or arrays (Accelerate [13]). These research prototypes deliver important insight
for future GPGPU language design and pragmatics, but we still have a way to
go towards making this research software work in practice for the average pro-
grammer or domain expert. And as mentioned, we observe an antithetic trend
in scientific computation: scientists of various disciplines choose to operate at
the lowest abstraction level API, Cuda C code.

Before GPGPUs became the prodigy of parallelism, a first wave of interest for
parallelism was induced by multicore CPUs. Having several cores is a mere nor-
mality today, yet major functional languages have only recently optimised their
multicore support. The high level of the languages, and implementation tradi-
tions, makes it sometimes very hard to optimise locality, but promising results
have been obtained [5,11,30], and even entire new projects for multicore were
set up, for instance Manticore [20]. With the movement towards OpenCL [34],
both multicore processors, GPUs, and future heterogenous manycore architec-
tures can be captured in a single computational idiom. OpenCL is supported by
major manufacturers of novel hardware, and Hiperfit will likely contribute to
advancing its development and use as an intermediate target language.

Another recent effort is the initiative to make parallel Haskell apt for wide-
spread commercial use, initiated by the Well-Typed consultancy and sponsors [4].
One of the first activities was to revive Haskell-MPI (from 2001) – which seems to
be a major industrial demand, while some researchers consider message passing
“harmful” [22]. Aiming at a higher hardware abstraction level, the latest efforts
of that project are into performance analysis tool support [16].

Various activities on parallel Haskell are going on and in diverse directions.
We believe that there is still important work to do, however. Our intention with
Hiperfit in this direction is to advertise and test various existing approaches
through prototype implementations. We will closely follow and adopt the latest
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research in parallel functional programming, and at the same time continue
work on our own high-performance backend, providing as general a platform for
processing bulk data as we can realise.

5 Project Start and First Activities

Integrating Valuation and Contract Specification. The major use case
of existing contract specification languages is valuation (pricing): determining
the value of a financial contract at any point in time, based on a stochastic
model of the future. Existing contract languages have usually been developed
together with a valuation semantics from the start. Based on a probabilistic
model of unknown variables (for instance, modelling changes in interest rate
for zero-coupon bonds), a range of possible outcomes and their probabilities is
computed. A simple stochastic method for valuation is Monte Carlo simulation,
which is inherently parallel by nature. More advanced methods might lead to a
large number of possible outcomes and are thus computationally intensive; again
massive parallelisation can hopefully lead to faster results.

Figure by Michael Flænø Werk
and Joakim Ahnfelt-Rønne

Fig. 3. Integration Overview for Contracts, PFP, and Data Parallelism

As one strand of Hiperfit activities, we are evaluating existing GPGPU sup-
port in Haskell, namely the Nikola [29] DSEL and the accelerated Haskell array
library [13], to offload vector computations to a GPGPU. Figure 3 gives an
overview of the evaluated technologies. A recently concluded Master’s thesis in
Hiperfit prototypes a Haskell system that combines existing technologies and
applies them to accelerated stochastic contract valuation. Another strand is a
domain-specific approach to Probabilistic Functional Programming (PFP) [18].
This DSEL separates the method of evaluation from the stochastic model and
is thus helpful in structuring the implementation of our intended parallel valua-
tion engine. Ultimately, we aim at producing a fully modular valuation engine,
where instruments (contracts) and models (stochastic processes) are specified
independently.
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Port of Data.Array.Accelerate to OpenCL. In view of our general goal
to use and produce open standards and open source software in Hiperfit, we
would like to pave the way towards using the standardized OpenCL [34] rather
than the proprietary Cuda for GPGPU computations. We are therefore porting
Data.Array.Accelerate [13] to OpenCL. The technology for this accelerated array
library is well understood; we expect to mainly solve technical and engineering
hurdles here. As a by-product, a new library of OpenCL bindings will be created.
At a later time, we might also be able to maturate the Nikola [29] research to
better usability by non-experts, and port it to OpenCL as well.

As discussed earlier (see Section 4.3), the GPU platform and programming
model appears to be tailored, if not rigidly limited, to data parallelism. Con-
trol structures are very limited, memory accesses are entirely explicit, recursion
is not possible, branching constructs execute both alternatives. On the other
hand, precisely these properties could provide the magic wand for cost analysis
and thereby performance prediction of parallelised valuation code. In view of
this long-term goal, it is a strategic decision to generate know-how about GPU
bindings, involving embedded compilation, in the context of Hiperfit.

Other Activities. Work has also started in other research areas of Hiperfit.
To give a general idea of what our case-based working methodology looks like in
practice, we mention a few other activities. One interesting area is to parallelise
random number generation in a reproducible manner, for use in Monte Carlo
simulations. A Hiperfit project is investigating existing research to extract best
practice on using GPGPUs for this problem. In a second strand of activities, we
aim to extract patterns and common usage from existing in-house bank software,
by inspecting and parallelising kernel routines of an in-house C++ library. In
another project, we want to take the perspective of an informed economist on the
topic of instrument valuation, by creating a survey and classification of financial
instruments and models. Parallel implementations of selected valuation models
will follow, which can be structured to reflect the generalities that have been
identified. The implementation work also serves to evaluate other declarative
parallel languages (to be determined) and to identify recurring patterns and
potentially useful features for later DSL development.

6 Conclusions

We have presented motivation, goals and methods of the Hiperfit research
center, a joint activity of researchers in mathematical finance, programming lan-
guages, parallel computing, and computer systems in collaboration with Finance
IT professionals. In order to meet new and increasing computational needs of
a complex global industry of major impact, Hiperfit aims at integrated solu-
tions that transcend a single researcher’s field of expertise, and explicitly fosters
interdisciplinarity and practical relevance through its paradigm of case-driven
research themes.
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We want to develop advanced new methods in mathematical finance and
work towards a framework of domain-specific languages to express financial in-
struments, models and valuation methods. Parallelisation techniques using a
functional approach should both lead to efficient parallel execution on novel
hardware, and leave the code accessible for proofs of semantic properties and,
to some extent, performance predictions.

The goals ofHiperfit which relate to programming languages appear to carry
the highest risk of achieving practical impact, but arguably also promise the best
long-term investment. Past research on parallelism concepts has often come to
success and innovation by focusing on particular application domains. Immediate
practical use and challenging problems derived from practice are a good touch-
stone for research. Especially because of the unique combination of advanced
programming language technology and parallelism envisioned in Hiperfit, we
consider it an exciting opportunity to perform and promote research in DSLs
and parallel functional programming, and hope to make it one of its major
showcases.

The Hiperfit Website: http://www.hiperfit.dk.
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Abstract. Although thread-safe priority queues are fundamental build-
ing blocks for many parallel algorithms, there are currently no scalable
implementations available in Haskell. An efficient structure to imple-
ment priority queues is the skiplist, which is a multi-level linked list
with shortcuts. We developed three thread-safe skiplist variants, based
on locks, software transactional memory, and atomic compare-and-swap,
respectively. In our benchmarks, the lock-based and compare-and-swap
variants scaled about equally well, while the transactional variant was
by several orders of magnitude slower.

1 Introduction

Priority queues are well-known data structures to store and retrieve elements
from some ordered set [1]. They support at least two operations: insert adds an
element to the queue, and deleteMin removes and returns the minimal element.
Priority queues are used in many parallel algorithms, where they need to be
thread-safe.

Unfortunately there are currently no scalable thread-safe priority queue
implementations available in Haskell. The main contribution of this paper is pro-
viding implementations based on skiplists [2], which are multi-leveled linked list
data structures with shortcuts to randomly chosen elements. According to Pugh
and others [3–6], both lock-based and lock-free variants of skiplists are superior
in performance to classic approaches such as the thread-safe binary heap [7]. We
implemented three variants of skiplists. One ensures thread-safety with explicit
locking, while the others are lock-free and based on software transactional mem-
ory and atomic compare-and-swap operations, respectively. As common in related
literature, we benchmarked the different variants using random (but reproducible)
insert and deleteMin operations with and without computational load in-between.
Additionally, we compared them with a naive coarse-locked heap. Unlike many
other implementations of thread-safe priority queues our queues fully support du-
plicates, i.e., multiple elements may have the same key, as they are frequently
needed in practice. We tested the correctness of our implementations with John-
son’s algorithm [8] for the single-source shortest path problem in sparse graphs.

R. Peña and R. Page (Eds.): TFP 2011, LNCS 7193, pp. 114–129, 2012.
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To briefly state our results, the lock-based and atomic compare-and-swap (CAS)
variants scale comparably well, although the CAS variant is slower in absolute
terms. The transactional variant is always slower by several orders of magnitude,
except when the computational load is so high that the synchronization time is
negligible. Surprisingly, the heap-based variant scales comparably well due to its
better cache locality.

The full source code of our implementations, as well as the shell scripts for
benchmarking and the raw benchmark results can be found at the author’s
software repository [9].

The rest of the paper is structured as follows. Section 2 describes the sequential
skiplist that we based our work on. Section 3 describes the different concurrent
skiplist variants in detail. Section 4 explains our benchmarks and discusses the
experimental results. Section 5 reviews related work and Section 6 concludes and
gives an outlook to future work.

2 Skiplists

In this section we briefly explain the non-optimized variant of the sequential
skiplist data structure first described and analyzed by Pugh [2]. For simplifica-
tion, we postpone details of handling duplicates to the next section.

A skiplist is basically an ordered linked list with additional randomly chosen
shortcuts (see Figure 1). The shortcuts speed up searches, and thus also inserts

� � �����	 
	�

Fig. 1. A skiplist of height 4 storing keys 1, 2 and 3. The elements with keys 1 and 3
have height 3, element with key 2 has height 1. There is no element with height 4.

and deletes by allowing to skip over a number of elements in one step (see
Figure 2). The search operation starts at the initial node of the list at its highest
level. It walks through nodes on the particular level until the following node has
a larger or equal key. In this case, the search continues on the preceding level.
The insert and delete operations use the (stored) predecessors at each level to
perform the well-known operations for linked-lists. The deleteMin simply deletes
and returns the first element on level 1. On insertion, the height of each node
is randomized such that 50% have height 1, 25% have height 2 and so on. That
way, skiplists have a probabilistic time complexity of O(log n) for search, insert
and delete and a worst-case time complexity of O(n), where n is the number of
stored elements.
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Fig. 2. Search for the element with key 4. By using the shortcut on level 3, keys 1 and 2
are skipped. The dashed arrows show the search order. Note that the search looks ahead
to the next node. The gray-shaded boxes mark the predecessors of the found node on
each level.

3 Concurrent Skiplist Variants

In this section we first explain the PriorityQueue typeclass common to all
implementations, and then describe our three variants of concurrent skiplists.
The following presentation is occasionally simplified; further details can be found
in the source code or the referenced papers, respectively.

3.1 The PriorityQueue Typeclass

To ease experimentation and later usage, we defined a common typeclass with
functional dependencies [10] which is implemented by all skiplist variants:

class Ord p => Prior i tyQueue pq p v | pq −> p , pq −> v where
deleteMin : : pq −> IO (Maybe (p , v ) )
insert : : p −> v −> pq −> IO ( )

The deleteMin function returns the key and value of the minimal element or
Nothing if the queue is currently empty. The insert function adds a key and
its value to the queue. In contrast to many other concurrent variants of skiplists,
we decided to support duplicates, although it increases the difficulty of a correct
implementation. The motivation was that many real-world problems, e.g. John-
son’s algorithm, need duplicates to function correctly. All implementations can
be modified to simply overwrite the value when a given key already exists. All
implementations evaluate keys and values lazy. Since the insertion of an element
needs to evaluate its key to find the correct position, this does not influence
correctness.

3.2 Lock-Based Skiplists

Our lock-based implementation is based on the original lock-based concurrent
variant of Pugh [6]. It has the advantage that a thread only needs to lock a small
portion of the skiplist and only for a short time to insert or delete a node, and
that traversal does not need locking at all. Base types are shown in Figure 3.
Each skiplist is initially empty and all pointers of the beginning node skipBegin
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data (Ord p) => Skipl ist p v = Skipl ist {
sk ipBegin : : Node p v ,
skipEnd : : Node p v

}

data (Ord p) => Node p v = Node {
nodeValue : : NodeValue p v ,
nodeId : : Unique ,
nodeGarbage : : IORef Bool
nodePointer : : Pointers p v ,
nodeLevel : : Lock Level ,

}

data NodeValue p v = Value (p , v ) | Begin | End deriving Eq
type Level = Int
type Pointers p v = IOArray Level (Lock (Node p v ) )

data Lock a = Lock {
lockValue : : IORef (Maybe a ) ,
lockLock : : MVar ( )

}

Fig. 3. Base types for the lock-based skiplist implementation

point to the end node skipEnd. Each Node holds its key-value pair (if it is not
the beginning or end node), a unique id to handle duplicates, a deletion marker
to signal deletion to other threads, its height, and references to its successors at
each level.

Pugh’s algorithm requires both the support of concurrent read access to shared
values and their exclusive locking such that other threads trying to lock are
blocked (but are still allowed to read the value). We defined a type Lock which
encapsulates a (possibly empty) modifiable value in an IORef, and use an MVar

to achieve the blocked locking [11]. Since the (sequential) insert and delete oper-
ations work on a level by level basis, locking is mainly used to control the shared
access to the successor pointers of each node as follows. Both operations first
create a vector of predecessor nodes (as marked in Figure 2).

The insert operation inserts the created node level by level, beginning with
level 1: after locking the successor pointer of the predecessor on the current level,
it sets the pointer to the newly created node and the successor of the new node
to the former successor (see Figure 4).

To implement deleteMin we use a more general helper function called delete

that allows deletion of arbitrary keys. It starts by checking the current status
of a node’s possible deletion: if nodeGarbage is false, no other thread deletes
the node and it is set. Otherwise deletion is stopped and may be repeated by
searching for another node with the same key. The found node is then removed
level by level, starting with the highest one. Note that pointers on levels larger
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Fig. 4. Locking to insert a node into the list on a particular level. a) initial state b)
Lock of successor pointer of the predecessor c) insertion of new node d) unlocking of
the locked pointer.
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Fig. 5. Deleting and locking of a node on a particular level. a) initial state b) Lock of
successor pointer of the predecessor c) setting new successor pointer of the predecessor
and creating the backreference d) unlocking of the locked pointer.

than 1 are solely shortcuts and removing them does not lead to a (partially)
corrupted skiplist. A node is thus deleted when it is removed from level 1. Since
other threads could possibly be traversing through the node currently being
deleted, a backreference is used to allow continuous traversal (see Figure 5). The
approach of marking nodes to be deleted is an optimization to marking, threads
would concurrently try to delete the node on its different levels, leading to
successfully.

The deleteMin operation simply reads the key of the successor of the begin-
ning node and tries to delete it. If it is successful, this element can be returned.
If not, another thread deleted the element simultaneously and the operation is
restarted.

Since insert proceeds level-wise and threads are allowed to insert duplicates,
there is no guarantee of the order of elements on each level (see Figure 6). When
a particular key is deleted it is crucial that the correct predecessor pointers on
each level are modified. To solve this problem we added an unique identifier to
each node, such that a search can find all correct predecessors on each level (see
Figure 7): In the given example assume we need to find the correct predecessors
of the node with key 2. On the top level the list traversal finds it in front of
the node with the unique key (1), such that further traversals will now search
predecessors which point to nodes with the same unique key.
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Fig. 6. a) External representation of a skiplist with two keys 2 b) Internal representa-
tion. Values in brackets show the unique identifiers.
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Fig. 7. By using unique identifiers, the predecessors for key 2 with identifier (1) can
be found. They are marked in gray.

3.3 Software Transactional Memory Based Skiplists

Since lock-based programming has well-known drawbacks like deadlocks and dif-
ficult debugging, interest in alternative approaches has risen in the last years.
Software Transactional Memory (STM), coming historically from database re-
search, uses the idea of transactions to allow concurrent access to shared data
structures [12]; instead of locking, functions access shared data structures in
transactions and the runtime systems takes care of consistency issues, e.g. by
restarting transactions in case of conflicts. To restrict the number of variables
that the parallel runtime system needs to take care of, (transactional) shared
values in Haskell are wrapped in a TVar and their use (i.e. reading and writing)
is only allowed inside an STM monad [13]. We developed two variants of the STM
skiplist: a naive one where the whole functionality for each operation is enclosed
in one atomic block, and a more sophisticated one where we divided the different
actions of each operation into independent blocks.

The data structures for the STM variants are similar to the lock-based ones
shown in Figure 3. Instead of IORefs and MVars to control mutable variables
and locks, TVars are used (see Figure 8).

In the naive variant there is no need for a shared variable containing the dele-
tion state since this is handled implicitly by the underlying transaction model. It
therefore allows to easily model the sequential variant, since the algorithms and
approaches can be transcribed directly by simply changing mutable variables to
TVars and enclosing the operations in an atomic block. As we discuss and explain
in Section 4, the performance of this variant is rather bad due to the possibly
long duration of each transaction and resulting high probability of conflicts and
restarts.

A more reasonable approach is to divide the transactions into independent
sub-transactions and thus to partially remodel the lock-based variant. Both the
insert and delete operations have now two phases, transactionally independent
from an STM point of view: in the first phase the predecessors for the correct
position are found and, in the case of deletion, the corresponding node is marked
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data (Ord p) => Skipl ist p v = Skipl ist {
sk ipBegin : : Node p v ,
skipEnd : : Node p v

}

data (Ord p) => Node p v = Node {
nodeValue : : NodeValue p v ,
nodeId : : Unique ,
nodePointer : : Pointers p v ,
nodeLevel : : TVar Level ,

}

type Pointers p v = TArray Level (Node p v)

Fig. 8. Base types for the STM-based skiplist implementation

as to be deleted. In the second phase, the new node is inserted at the correct
position or removed, respectively; for each level a new transaction (for the second
phase) is started.

Although it would be possible to further dissect the level-based transactions,
i.e. approaching the lock-based solution further, this would (in our opinion) con-
flict with the overall idea of transaction-based synchronization and its promise
to simplify parallel programming.

3.4 Skiplists Based on Atomic Compare and Swap Operations

While lock-based implementations of thread-safe data structures are conceptu-
ally easy to comprehend, they imply the problems mentioned in the beginning
of the last section.

As a second alternative, lock-free synchronization with atomic compare-and-
swap operations promises to deliver better performance as compared to
transaction-based synchronization due to greater control of the operations. We
used ideas for a lock-free implementation of linked lists from Harris and Fomit-
chev [3, 14]. To guarantee consistency of shared variables, atomic compare-and-
swap (CAS) and test-and-set (TAS) operations are used. A CAS checks if the
shared variable contains a particular value (usually the value of the variable read
previously) and if and only if it does, swaps it with a new one. A TAS applies a
function to the current value and swaps with the new value if the return value
of the function is true. In both cases a returned flag indicates success. Haskell
code for both CAS (from [15]) and TAS for modifying shared IORefs is shown
in Figure 9.

Types are slightly modified as compared to Figure 3. Since we are not able
to lock nodes currently being changed but still need a mechanism to at least
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atomCAS : : Eq a => IORef a −> a −> a −> IO Bool
atomCAS ptr o ld new = atomTAS ptr (==old ) new

atomTAS : : Eq a => IORef a −> ( a −> Bool ) −> a −> IO Bool
atomTAS ptr t e s t new = do

atomicModifyIORef ptr $ \ cur −>
i f t e s t cur then (new , True) else ( cur , False )

Fig. 9. Atomic compare-and-swap and test-and-set functions

data Mark = Marked | Unmarked deriving Eq
type Pointer p v = (Mark , Node p v )
type Pointers p v = IOArray Level ( IORef ( Pointer p v ) )

Fig. 10. Modification of pointers to allows annotation with a ’currently modified’-flag

check their modification, we extend a reference (pointer) with a flag. By using a
single CAS to set the flag from Unmarked to Marked, a node is marked to signal
its removal state. Many low-level implementations modify the least significant
bits of a memory address instead [3, 16, 14], but this architecture- and compiler-
dependent approach is obviously not directly possible in Haskell (with IORefs).
Instead, a pointer now contains a tuple as shown in Figure 10 and is changed as
described below.

The insert and delete operations use methods described by Harris for handling
lock-free linked lists [14]. We extend them to work on multiple levels (i.e. deletion
works level-wise downwards and insertion upwards), as explained in Section 3.2.

Both operations start by creating the vector of predecessors and then work-
ing level-wise in the specified direction. While insertion is similar to Figure 4,
deletion using CAS is more complicated, since interfering insertions can lead to
corrupt data structures (see Figure 11). The solution is to split the deletion in
two phases: one marks the node to be deleted logically, such that concurrent in-
sertions skip these nodes, and the following phase removes the node physically.
The delete operation works therefore as follows: first, the node to be deleted is
searched and logically deleted by marking the successor pointer of its predeces-
sor using CAS; it repeats if the CAS fails. It is then physically deleted (also
using CAS) by setting the pointer of the predecessor node to the successor of
the deleted node, if possible. If a concurrent operation changed the pointers and
the CAS failed, delete removes the node by searching for the key as indicated
below.

The key function used by both operations is the search for the predecessor
and successor of a node: while searching for these nodes the search also deletes
nodes that it traverses and which have been marked for removal by other threads
(see Figure 12).
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Fig. 11. Consistency problems with concurrent deletion of node 1 and insertion of
node 2: 1a) initial state 1b) Using a single CAS (modifying the successor of the Begin-
node) 1c) Concurrent insertion can lead to unreachable newly inserted nodes. Solution
using a two-phase deletion: 2a) Deletion phase 1: logically mark the node as to be
deleted 2b) After physical deletion and concurrent insertion.

3.5 Testing the Implementations

Developing concurrent algorithms is tremendously difficult. Hard to find errors,
e.g. those corrupting the data structure instead of leading to a clearly visible er-
ror (like a deadlock) can be easily overlooked.While proving the correctness of an
actual implementation is desirable, it is still a topic of ongoing research [17]. To
challenge the different skiplist variants and at least test their desired functional-
ity, we implemented Johnson’s algorithm [8], which calculates the single-source
shortest path (SSSP) in sparse graphs in parallel using a thread-safe priority
queue as its basic data structure. This algorithm uses both insert and deleteMin
operations in a realistic scenario, stresses the duplicate key support (since many
duplicate keys occur) and allows easy comparison with a desired outcome: For
reference, we developed a simple sequential implementation. We ran each test
a few hundred times with different seeds and graph sizes for all four skiplist
implementations. We did not use the algorithm for performance measurement:
Since the amount of work per extracted element is exceptionally low, Johnson’s
algorithm can be improved in this respect (and it is very reasonable to do so in
a real-world application). These improvements are a research topic on its own
right [18, 19] and out of scope of this paper.

A common tool for testing in Haskell is Quickcheck [20], however it is pri-
marily aimed at pure code and not appropriate for concurrent code using the
IO-monad. In particular, its strength of automatic test case generation (e.g. find-
ing minimal examples) does not necessarily apply to non-deterministic bugs that
are commonly found in concurrent programs.
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Fig. 12. Representation of deleting traversed nodes in a search for a node with key 3. a)
initial state. The marked nodes were marked by other threads b) state after traversal.
The search function returns the beginning node as the predecessor and node 4 as the
successor. Non-traversed nodes (e.g. node 5) are not influenced.

4 Benchmarks

We ran experiments on a 2.3 GHz 16-core AMD Opteron 6134 with 32 GB RAM
running a Linux-kernel 2.6.38-8 with GHC 7.0.3. Interpretation of the experimen-
tal outcomes was limited, since there is no parallel profiler for Haskell’s parallel
runtime system, and Threadscope [21] primarily provides information regarding
the garbage collector and overall processor utilization. Garbage collection times
were negligible and ranged from 1% up to 10% for all benchmarks.

We examined two scenarios: First we tested the scalability of the implemen-
tations with a benchmark adapted from the literature. Second we examined the
speedup using a synthetic benchmark mirroring divide-and-conquer algorithms.
As stated in Section 3.5 we deliberately did not implement a real algorithm,
since the design space even for quite simple algorithms is huge and currently
unexplored in Haskell. In addition to the variants described in Section 3 we im-
plemented a sequential heap with arrays [1] and protected by a single MVar (thus
implementing a coarse lock). The implementation allocates an array that is large
enough to store all values, eliminating the need to dynamically resize.

In our scalability benchmarks each concurrent thread performs 1000 initial
insertions, followed by 10000 operations, chosen with a 50% probability to be
deleteMin or insert. Keys were randomly chosen from the interval (0, 106). These
values and probabilities were taken from other papers, e.g. [3]. We re-run each
benchmark three times and report the average execution times. Since the thread-
specific random number generators are (re-)initialized with the same initial (but
thread-specific) seed, the same sequential operations are performed in all runs
and implementations, guaranteeing reproducibility. Since each threads performs
11000 operations, the total number of operations increases with the number
of threads and scalability is examined. We performed three experiments with
varying workload after each deleteMin operation:

In the most realistic scenario the thread that executed deleteMin receives the
key-value k and computes π on k

35000 digits. For k = 106 this calculation takes
0.002s, which is a reasonable amount of computational work. Results are shown
in Figure 13; keep in mind that the time-axes in all figures are logarithmic and
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we do not show times over 1000s to keep the lower graphs distinguishable. Both
transactional variants perform bad, since the amount of computational work
can not compensate for the overhead of the synchronization model, neverthe-
less the advantage of dissecting the transactions is clearly visible. Surprisingly
the compare-and-swap variant, which was motivated by the fact that it does
not explicitly lock and thus should outperform explicit locking, performs mag-
nitudes of orders better than the transactional variants but about three times
slower than the lock-based and heap variants. This can be explained by the
very high abstraction level of the atomic compare-and-swap operations using
IORefs (see Section 6). While the good scalability of the lock-based variant
was expected (since the implementation does not hold any global lock and
MVars are widely used and optimized) we were surprised by the good scala-
bility of the heap-based variant. While its coarse locking hurts performance, this
drawback is more than compensated by a simpler memory layout: all opera-
tions are done on a continuously allocated memory block (array) that provides
for much better spatial locality and cache usage than the small data chunks of
skiplists.

To see the influence of high contention, we omitted the workload in a second
experiment. The results are shown in Figure 14. Not surprisingly, the transac-
tional variants perform quite bad since transactions are restarted (overall or on
a per level basis) very often. The compare-and-swap variant still scales well.
Although both the heap and the lock-based variant scale better than the oth-
ers, concurrent accesses to the heap occur so often that the cache advantage
(mentioned above) disappears.

Since the amount of computational load plays a major role, it is interesting to
look at the scalability when its is even higher. We experimented with computing
π on k

2000 digits (about 0.035s for n = 106) and additionally reduced the number
of initial insertions and operations. Results are shown in Figure 15. While the
different variants converge, the overall ranking stays the same.

Our second scenario, the synthetic speedup benchmark, initially fills a pri-
ority queue with 10000 random elements. Computation takes up to 0.002s per
element using the π calculation mentioned above. If an element is extracted
from the queue for the first time, it is additionally reinserted two times with
half its value (halving its next computation time), thus mirroring a divide-and-
conquer algorithm. The results are shown in Figure 16; since the transactional
variants performed bad, they are not fully shown in this graph. In accordance
to the scalability results we see that the lock-based variant and the heap have
the best speedup although the compare-and-swap variant is quite close. Both
transactional variants show a small speedup but are three orders of magnitudes
slower.

Summarizing, both the lock-based variant and the heap-based variant perform
best. Since the lock-based variant scales better, it should be favored especially
on future large multicore and manycore systems. The compare-and-swap variant
also shows good scalability but the constant factors need to be improved to be
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Fig. 13. Scalability of priority queue im-
plementations with computational load
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Fig. 14. Scalability of priority queue im-
plementations without computational load

competitive. The transactional variants are not feasible under high contention,
but they still provide for an easy-to-develop alternative in scenarios with lower
contention.

4.1 Additional Comparisons: Difficulty and Code Size

Finally we look at our experiences regarding two non-performance oriented met-
rics: programming expense and code size.

The naive transactional variant was by far the easiest to develop. As stated in
Section 3.3 a thread-safe variant could be developed by swapping mutable vari-
ables with TVars. The dissected transactional variant follows closely. Although
we had to implement dissected level-based traversal, we still did not need to pay
attention to synchronization problems such as deadlocks. The lock-based variant
was more difficult to develop, despite the fact that it was the most researched
one and the author was experienced in this approach. It had the well-known
problems of rarely occurring deadlocks and thus difficult debugging. An advan-
tage of the lock-based approach is clear semantics: if a potential source for a bug
has been found, it is rather easy to reason about the behavior of the program
and the source of the error. The compare-and-swap variant was the most difficult
to develop: programming errors did not lead to observable deadlocks but more
often to a slightly corrupted data structure which could lead to errors much later
in the execution, making debugging and reasoning about potential errors very
difficult.

While the code size heavily depends on the developer’s programming style,
a comparison gives another view on the complexity of the implementations.
We counted all lines in each variant without comments or empty lines. The
transactional variants STM1 and STM2 were comparable with 237 and 250 lines
of code, respectively. Both other variants were significantly larger with 401 lines
each.
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Fig. 15. Scalability of priority queue im-
plementations with larger computational
load
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Fig. 16. Speedup of different priority
queue implementations

5 Related Work

An extensive amount of research has been done for performant and thread-safe
implementations of priority queues. Traditionally they are implemented using
binary heaps [1]. A well-known parallel variant which uses locks is described by
Hunt [7]. A general survey of thread-safe priority-queue implementations and a
discussion of their properties has been done by Bauer et al. [22].

A sequential and lock-based skiplist were initially developed by Pugh [2, 6].
Both implementations showed a superior performance as compared to binary
heaps. An extensive discussion of the performance characteristics of lock-based
priority queues using skiplists has been done by Lotan et al. [4]. An algorithmic
performance analysis for lock-free linked lists (and an outlook on skiplists) is
described by Fomitchev [3]. Experimental results and a comparison of the per-
formance of lock-free implementations with lock-based variants (Hunt, Lotan-
Shavit) are discussed by Sundell [5]. Both works build on the implementation of
lock-free linked lists as described by Harris [14], which itself was an algorithmic
improvement for the original work on this subject from Valois [16].

Sulzmann et al. analyzed the performance of concurrent linked list implemen-
tations in Haskell [15]. Like our work, they discuss synchronization using MVars,
IORefs and STM, but their benchmark depends more on GHC’s internal thread
scheduling. In contrast to the results discussed and explained in Section 4, the
lock-free CAS implementation outperformed the other variants.

Although priority queues are fundamental for many parallel algorithms, there
is as far as we know no prior literature about thread-safe priority queue imple-
mentations in Haskell. The common way to implement them is to protect a pure
data structure [23] with a coarse thread-safe container (e.g. an MVar or IORef),
which for example has been done in the new GHC 7 IO manager [24]. One possi-
ble reason for the lack of research is that they still work on a fairly low abstraction
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level. Haskell provides alternatives which allow for a more abstract formulation
of parallel algorithms for the price of not being able to transcribe well-known
solutions found for traditional parallel systems. Intel’s Concurrent Collections
provide a graph-based framework for formulating parallel algorithms [25], data
parallel Haskell allows to implicitly evaluate parallel array algorithms [26] and
the par-functions allows semi-implicit parallelization of functions, such that the
compiler takes care of the (manual) synchronization done in this work [27].

6 Conclusion and Future Work

We have implemented thread-safe skiplists in Haskell, based on lock-based and
lock-free synchronization techniques. Our lock-based variant uses MVars, whereas
the lock-free variants use software transactional memory (STM) and atomic
compare-and-swap operations, respectively. For STM, we developed two vari-
ants: a naive transformation of the sequential implementation and another that
dissects the transactions into independent parts. We checked the correctness of
all variants with Johnson’s algorithm for the single source shortest path problem
on sparse graphs, comparing the results with a reference implementation. Each
implementation was benchmarked using synthetic randomized operations that
allowed reproducible results.

The lock-based variant was the fastest and since it does not use any global
lock we think that it will continue to scale well with more cores. Surprisingly,
for many scenarios with low contention an implementation using a coarse-locked
heap performs comparably well (although we expect that to change with more
concurrent threads) and is easy to develop. The compare-and-swap variant scaled
well but its absolute performance suffered from a currently slow atomic compare-
and-swap operation. Until a more performant compare-and-swap operation for
mutable variables is developed (see below) we can only warn against implement-
ing lock-free models using this synchronization model, since its absolute perfor-
mance is (not yet) on par with a well-tuned lock-based variant. Although being
the easiest to develop, the transaction-based implementations do not seem to be
a good choice for synchronization of thread-safe data structures since their initial
overhead in combination with high synchronization costs under high contention
is too high.

Future work may address different related topics: first, despite their sole use as
priority queues in this work, skiplists are general dictionary structures. A com-
parison of their concurrent performance for arbitrary insertions and deletions
seems interesting. Second, GHC does not support real (fast) atomic compare-
and-swap operations using high-level abstractions. Implementing an extension
on top of IORefs using the foreign function interface (FFI) to use GCC’s atomic
operations [28] would greatly improve the performance of the CAS skiplist imple-
mentation. Additionally it would allow to implement highly scalable lock-free al-
gorithms as building blocks for concurrent algorithms. Third, implementing and
analyzing other thread-safe data structures (e.g. variants of finger trees) looks
interesting and is largely unresearched. Fourth, the current rise of (experimental)



128 M. Lesniak

manycore architectures poses the question of the scalability of our implementa-
tions to many more cores. This could be examined using Intel’s ManyCore Lab
[29] and its experimental Haskell support.
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Abstract. We present a correctness proof of Adams’ trees of bounded
balance, which are used in Haskell to implement Data.Map and Data.Set.
Our analysis includes the previously ignored join operation, and also
guarantees trees with smaller depth than the original one. Because the
Adams’ trees can be parametrized, we use benchmarking to find the
best choice of parameters. Finally, a saving memory technique based on
introducing additional data constructor is evaluated.

Keywords: Data structures, balanced binary search trees, Haskell.

1 Introduction

Adams’ trees, or trees of bounded balance ω, shortly BB-ω trees, are binary search
trees introduced in [1] and [2]. These trees are a popular choice for implementing
purely functional search structures: They are used in Haskell to implement the
Data.Map and Data.Setmodules, which are part of the standard data structure
library containers [10]. BB-ω trees are also used in data structure libraries in
Scheme and SML. According to the measurements in [9], their performance is
comparable to other alternatives such as AVL trees [3] or red-black trees [4].

Every node of BB-ω tree has subtrees of relative size bounded by ω. This
balance condition guarantees logarithmic depth, which is asymptotically optimal.

The only corectness proof (published in [1]) has several serious flaws – it
wrongly handles delete and it does not consider join. Recently a proof of a
tree similar to BB-ω tree appeared in [5], presented using Coq Proof Assistant.

Our contributions are as follows:

– We present a correctness proof of BB-ω trees. In particular, we investigate
the space of parameters and prove correctness for several chosen parameters:
for all integral parameters and also for parameters that guarantee trees with
smallest depth. Our analysis guarantees trees with lower depths than the
original one and also considers previously ignored join operation.

– We show that the depth of BB-ω trees is better than the known upper bound.
– Because the BB-ω trees are parametrized, we perform several benchmarks

to find the best choice of parameters.
– In order to save memory, we evaluate the technique of introducing additional

data constructor representing a tree of size one. This allows us to save 20-30%
of memory and even decreases the time complexity.
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2 BB-ω Trees

We expect the reader to be familiar with binary search trees, see [6] for a
comprehensive introduction.

Definition 1. A binary search tree is a tree of bounded balance ω, denoted as
BB-ω tree, if in each node the following balance condition holds:

size of the left subtree ≤ ω · size of the right subtree ,
size of the right subtree ≤ ω · size of the left subtree ,

if one subtree is empty, the size of the other one is at most 1 .
(1)

Consider a BB-ω tree of size n. The size of its left subtree is ω times the size of
its right subtree, so the size of the left subtree is at most ω

ω+1n. Therefore the
size of a BB-ω tree decreases by at least a factor of ω

ω+1 at each level, which
implies that the maximum depth of a BB-ω tree with n nodes is bounded by
log(ω+1)/ω n = 1

log2(1+1/ω) log2 n. Detailed analysis is carried out in Section 6.

The exception for empty subtrees in the definition of balance condition is not
elegant, but from the implementation point of view it is of no concern – empty
subtrees are usually represented by a special data constructor and are treated
differently anyway. Nevertheless, some modifications to the balance condition
have been proposed to get rid of the special case – most notably to use the size
of a subtree increased by one, which was proposed in [8]. We therefore define a
generalized version of the balance condition, which comprises both cases:

size of the left subtree ≤ max(1, ω · size of the right subtree+ δ) ,
size of the right subtree ≤ max(1, ω · size of the left subtree+ δ) .

(2)

The parameter δ is a nonnegative integer and if it is positive, the special case
for empty subtrees is no longer necessary. Notice that the definition with sizes
increased by one is equivalent to the generalized balance condition with δ = ω−1.

An implementation of a BB-ω tree needs to store the size of a subtree of every
node, which results in the following data-type:

���� BBTree a = Nil -- empty tree

| Node -- tree node

(BBTree a) -- left subtree

Int -- size of this tree

a -- element stored in the node

(BBTree a) -- right subtree

We also provide a function size and a smart constructor node, which constructs
a tree using a left subtree, a key, and a right subtree. The balance condition is
not checked, so it is upon the caller to ensure its validity.

size :: BBTree a -> Int

size Nil = 0

size (Node _ s _ _) = s

node :: BBTree a -> a -> BBTree a -> BBTree a

node left key right = Node left (size left + 1 + size right) key right
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3 BB-ω Tree Operations

Locating an element in a BB-ω tree works as in any binary search tree:

lookup :: Ord a => a -> BBTree a -> Maybe a

lookup k Nil = Nothing

lookup k (Node left _ key right) = ���� k ‘compare‘ key of

LT -> lookup k left

EQ -> Just key

GT -> lookup k right

When adding and removing elements to the tree, we need to ensure the valid-
ity of the balance condition. We therefore introduce another smart constructor
balance with the same functionality as node, which in addition ensures the
balance condition. To achieve efficiency, certain conditions apply when using
balance. We postpone further details until Section 4.

With such a smart constructor, the implementation of insert and delete

is straightforward. Assuming the balance smart constructor works in constant
time, insert and delete run in logarithmic time.

insert :: Ord a => a -> BBTree a -> BBTree a

insert k Nil = node Nil k Nil

insert k (Node left _ key right) = ���� k ‘compare‘ key of

LT -> balance (insert k left) key right

EQ -> node left k right

GT -> balance left key (insert k right)

delete :: Ord a => a -> BBTree a -> BBTree a

delete _ Nil = Nil

delete k (Node left _ key right) = ���� k ‘compare‘ key of

LT -> balance (delete k left) key right

EQ -> glue left right

GT -> balance left key (delete k right)

���	� glue Nil right = right

glue left Nil = left

glue left right

| size left > size right = let (key’, left’) = extractMax left

in node left’ key’ right

| otherwise = let (key’, right’) = extractMin right

in node left key’ right’

extractMin (Node Nil _ key right) = (key, right)

extractMin (Node left _ key right) = ���� extractMin left of

(min, left’) -> (min, balance left’ key right)

extractMax (Node left _ key Nil) = (key, left)

extractMax (Node left _ key right) = ���� extractMax right of

(max, right’) -> (max, balance left key right’)

When representing a set with a binary search tree, additional operations be-
sides inserting and deleting individual elements are needed. Such an operation is
join. The join operation is also a smart constructor – it constructs a tree using
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a key and left and right subtrees. However, it poses no assumptions on the sizes of
given balanced subtrees and produces a balanced BB-ω tree. The join operation
is useful when implementing union, difference and other set methods.

By utilizing the balance smart constructor once more, it is straightforward
to implement the join operation. Again, assuming balance works in constant
time, join runs in logarithmic time.

join :: BBTree a -> a -> BBTree a -> BBTree a

join Nil key right = insertMin key right

���	� insertMin key Nil = Node Nil 1 key Nil

insertMin key (Node l _ k r) = balance (insertMin key l) k r

join left key Nil = insertMax key left

���	� insertMax key Nil = Node Nil 1 key Nil

insertMax key (Node l _ k r) = balance l k (insertMax key r)

join left@(Node ll ls lk lr) key right@(Node rl rs rk rr)

| ls > omega * rs + delta = balance ll lk (join lr key right)

| rs > omega * ls + delta = balance (join left key rl) rk rr

| otherwise = node left key right

4 Rebalancing BB-ω Trees

We restore balance using standard single and double rotations. These are de-
picted in Fig. 1. The code for these rotations is straightforward, the L or R suffix
indicates the direction of the rotation (both rotations in the Fig. 1 are to the left).

Because we want the balance function to run in constant time, we introduce
following assumption – the balance can be used on subtrees that previously ful-
filled the balance condition and since then one insert, delete or join operation
was performed. So far all implementations fulfilled this condition.

Using this assumption, the balance function restores balance using either
a single or a double rotation – but a question is which one to choose. If we
perform a left rotation as in Fig. 1, a double rotation split the left son of the right
subtree into two subtrees, but a single rotation keeps it unaffected. Therefore
we choose the type of a rotation according to the size of the left son of the right
subtree.

Formally, we use a parameter α1, which we use as follows: When we want to
perform a left rotation, we examine the right subtree. If its left son is strictly
smaller than α-times the size of its right son, we perform a single rotation, and
otherwise a double rotation. The implementation follows:

balance :: BBTree a -> a -> BBTree a -> BBTree a

balance left key right

| size left + size right <= 1 = node left key right

| size right > omega * size left + delta = ���� right of

(Node rl _ _ rr) | size rl<alpha*size rr -> singleL left key right

| otherwise -> doubleL left key right

1 Our α is the inverse of α from [1].
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singleL l k (Node rl _ rk rr) = node (node l k rl) rk rr

singleR (Node ll _ lk lr) k r = node ll lk (node lr k r)

doubleL l k (Node (Node rll _ rlk rlr) _ rk rr) =

node (node l k rll) rlk (node rlr rk rr)

doubleR (Node ll _ lk (Node lrl _ lrk lrr)) k r =

node (node ll lk lrl) lrk (node lrr k r)

Fig. 1. Single and double rotations

| size left > omega * size right + delta = ���� left of

(Node ll _ _ lr) | size lr<alpha*size ll -> singleR left key right

| otherwise -> doubleR left key right

| otherwise = node left key right

5 Choosing the Parameters ω, α and δ

We call the parameters (ω, α, δ) valid, if balance can always restore the balance
condition after one insert, delete or join operation.

Ideally we would classify all parameters (ω, α, δ) as either valid or not valid,
but it is difficult to come up with complete characterization. The reason is that
when dealing with small trees, rebalancing relies on the fact that all subtrees
have integral sizes – i.e., it is fine that node with subtrees of sizes 1.5 and 2.5
cannot be rebalanced, because it does not exist.

Instead of complete characterization, we therefore rule out parameters which
are definitely not valid and then prove the validity only for several chosen pa-
rameters. It is easy to see that ω ≥ 5 and ω = 2 are not valid for any α in the
sense of the original balance condition, i.e., with δ = 0: In the situation in Fig. 2
neither single nor double rotation can restore balance.

To get a more accurate idea, we evaluated validity of parameters on all trees
up to size of 1 million – the results are displayed in Fig. 3. The code used to
generate this figure is listed in Appendix A. When choosing the parameters, the
value of ω is the most important, because it defines the height of the tree. On



Adams’ Trees Revisited 135

sin
gle

rot
ati

on

double rotation

sin
gle

rot
ati

on

double rotation

ω = 2 ω ≥ 5
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Fig. 3. The space of parameter (ω, α, δ). The values of ω and α are displayed on the
x and y axis, respectively. Every dashed square consists of four smaller squares, which
correspond to the δ values 0

2
1
3
. Black denotes non-valid parameters, white denotes

parameters which are valid for trees of size up to 1 million. For example, when ω = 4
and α = 2, δ ∈ {0, 3} is valid and δ ∈ {1, 2} is not valid.

the other hand, the value of α is quite unimportant – it affects only the internal
implementation of balance. The value of δ is kept as low as possible, since higher
values of δ increases imbalance of BB-ω trees.

After inspection of Fig. 3 we have chosen integer parameters (ω = 3, α = 2,
δ = 0) and (ω = 4, α = 2, δ = 0) and also parameters (ω = 2.5, α = 1.5, δ = 1),
where the value of ω is the smallest possible. The last parameters are not integral,
but we can perform multiplication by ω or α using right bit shift.
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5.1 Validity of w = 2.5, w = 3 and w = 4

We now prove the validity of chosen parameters (ω = 2.5, α = 1.5, δ = 1),
(ω = 3, α = 2, δ = 0) and (ω = 4, α = 2, δ = 0). Because the values of α and δ
are determined by ω, we identify these sets of parameters only by the value of ω.

n m

Consider performing balance after the balance is lost. Without loss
of generality assume the right subtree is the bigger one and denote n
and m the sizes of the left and right subtrees, respectively. We will use
the notation of the tree size and the tree itself interchangeably.

Because the balance is lost, we have now ωn+ δ < m. The insert operation
causes imbalance by exactly one element, so it is never worse than imbalance
caused by a delete operation. Therefore we have to consider only two possi-
bilities how the imbalance was caused – delete or join operation. If the last
operation was delete, we know that ωn + δ ≥ m − ω. If the last operation
was join with the subtree of size z, we know that ωn + δ ≥ m − z. During
the join operation the tree z was small enough to be recursively joined with
subtree m, so we have ωz + δ < n+ 1+ (m− z), so z < n+1+m−δ

ω+1 and therefore

m− n+m+1−δ
ω+1 < ωn+δ, m < ω+1

ω

(
ωn+ δ + n+1−δ

ω+1

)
, m < ω+1

ω

(
ωn+ n+ωδ+1

ω+1

)
,

m <
(
ω + 1 + 1

ω

)
n+ δ + 1

ω . To summarize:

m
(A)
> ωn+ δ , m− ω

(Bdel)≤ ωn+ δ , m
(Bjoin)

<
(
ω + 1 + 1

ω

)
n+ δ + 1

ω .

5.2 Correctness of a Single Rotation

Let x and y denote the subtrees of the tree m. We perform a single rotation iff
x < αy and in that case we have the following inequalities:

n
m

x y

y

n x

ωx+ δ ≥ y ⇒ (ω + 1)x+ δ
(C)

≥ m− 1 ,

x < αy ⇒ x
(D)
< α

α+1 (m− 1), y
(E)
> 1

α+1 (m− 1) .

At first we need to solve the cases where n, x or y are zero, as the balance
condition is different in that case. All such cases are shown in Fig. 4.

Fig. 4. Cases when n, x or y are zero and a single rotation is performed

In the case when all subtrees are nonempty, we need to validate the balance
condition in each of the two new trees:
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– ωn+ δ ≥ x after delete: x
(D)
< α

α+1
(m− 1)

(Bdel)≤ α
α+1

(ωn+ δ + ω − 1)

– ωn+ δ ≥ x after join: x
(D)
< α

α+1
(m− 1)

(Bjoin)

< α
α+1

(
(ω + 1 + 1

ω
)n+ δ + 1

ω
− 1

)
– ωx+ δ ≥ n: n

(A)
< m−δ

ω

(C)

≤ ω+1
ω

x+ 1
ω

– ω(n+ 1 + x) + δ ≥ y: y ≤ ωx+ δ

– ωy + δ ≥ n+ 1 + x: n+ 1 + x = n+m− y
(A)

≤ m−1
ω

+m− y = mω+1
ω

− y − 1
ω

(E)
<

((α+1)y+1)ω+1
ω

−y− 1
ω
= (α+1)(ω+1)−ω

ω
y+1. Here we used the fact that when

ω is an integer, m
(A)

≥ ωn+ δ + 1, so we have m
(A)

≥ ωn+ 1.

The third and the fourth inequalities obviously hold. To see that also the first,
second and fifth inequalities hold, we evaluate the resulting inequalities and use
the fact that the tree sizes are positive integers:

ωn+ δ ≥ x after delete ωn+ δ ≥ x after join ωy + δ ≥ n+ 1 + x
ω = 2.5 x < 3

2n+ 3
2 x < 117

50 n+ 6
25 n+ 1 + x < 5

2y + 1
ω = 3 x < 2n+ 4

3 x < 26
9 n− 4

9 n+ 1 + x < 3y + 1
ω = 4 x < 8

3n+ 2 x < 7
2n− 1

2 n+ 1 + x < 11
4 y + 1

The linear coefficients are always less or equal the required ones and it is simple
to verify that all inequalities hold also for small integer sizes.

5.3 Correctness of a Double Rotation

When performing a double rotation, we have the following inequalities:

n
m

x
y

s t

n s t y

any child a of b ⇒ (ω + 1)a+ δ
(C)

≥ b− 1 ,

any child a of b ⇒ (ω + 1)a
(D)

≤ ω(b− 1) + δ ,

x ≥ αy ⇒ x
(E)

≥ α
α+1 (m− 1), y

(F )

≤ 1
α+1 (m− 1) .

Once again we need to solve the cases when n, y, s or t are zero – we enumerate
these cases in Fig. 5.

Fig. 5. Cases when n, y, s or t are zero and a double rotation is performed

When all subtrees are nonempty we create three new trees, so we have to
check six inequalities:



138 M. Straka

– ωn+ δ ≥ s after delete: s
(D)

≤ ω
ω+1 (x−1+ δ

ω )
(D)

≤ ω
ω+1 (

ω
ω+1 (m−1+ δ

ω )−1+

δ
ω )

(Bdel)≤ ω
ω+1 (

ω
ω+1 (ωn+δ+ω−1+ δ

ω )−1+ δ
ω ) =

ω3

(ω+1)2n+
ω3+δω2−ω2+δω

(ω+1)2 + δ−ω
ω+1

– ωn+ δ ≥ s after join: s
(D)

≤ ω
ω+1 (x− 1 + δ

ω )
(D)

≤ ω
ω+1 (

ω
ω+1 (m− 1 + δ

ω )− 1 +

δ
ω )

(Bjoin)

< ω
ω+1 (

ω
ω+1 ((ω + 1+ 1

ω )n+ δ + 1
ω − 1 + δ

ω )− 1 + δ
ω ) =

ω3+ω2+ω
(ω+1)2 n+

δω2−ω2+δω+ω
(ω+1)2 + δ−ω

ω+1

– ωs+ δ ≥ n: n
(A)
< 1

ω (m − δ)
(E)

≤ 1
ω (

α+1
α x + 1 − δ)

(C)

≤ 1
ω (

α+1
α ((ω + 1)s+ δ +

1) + 1− δ) = ω+1
ω

α+1
α s+ δ+1

ω
α+1
α + 1−δ

ω

– ωt+ δ ≥ y: y ≤ x
α

(C)

≤ ω+1
α t+ δ+1

α

– ωy + δ ≥ t: t
(D)

≤ ω(x−1)+δ
ω+1 ≤ ω(ωy+δ−1)+δ

ω+1 = ω2

ω+1y + δ − ω
ω+1

– ω(n+1+s)+δ ≥ t+1+y after delete: ω(n+1+s)+δ ≥ ω(n+1)+ t
(Bdel)≥

m− δ + t ≥ x− δ + 1 + y + t

– ω(n+1+s)+δ ≥ t+1+y after join: t+1+y ≤ ωs+δ+1+y
(F )

≤ ωs+δ+1+

m−1
α+1

(Bjoin)

< ωs+δ+1+
(ω+1+ 1

ω )n+δ+ 1
ω−1

α+1 = ω2+ω+1
ω(α+1) n+1+ ω(δ−1)+1

ω(α+1) +ωs+δ

– ω(t+ 1 + y) + δ ≥ n+ 1 + s: n+ 1 + s
(A)
< m

ω + 1 + s ≤ m
ω + 1 + ωt+ δ

(C)

≤
ωt+ δ + 1 + (ω+1)y+δ+1

ω = ωt+ ω+δ+1
ω + ω+1

ω y + δ

All but the first three inequalities obviously hold for positive integral sizes. In or-
der to prove that the first three inequalities hold, we again evaluate the resulting
inequalities and use the fact that the sizes are positive integers:

ωn+ δ ≥ s after delete ωn+ δ ≥ s after join ωs+ δ ≥ n
ω = 2.5 s < 125

98 n+ 103
98 s < 195

98 n− 1
49 n < 7

3s+
4
3

ω = 3 s < 27
16n+ 3

8 s < 39
16n− 9

8 n < 2s+ 5
6

ω = 4 s < 64
25n+ 28

25 s < 84
25n− 32

25 n < 15
8 s+

5
8

The linear coefficients are less or equal than the required ones and for small
positive integral sizes the resulting inequalities imply the required ones, which
concludes the proof.

6 BB-ω Trees Height

If the balance condition holds and δ ≤ 1, we know that the size of a tree de-
creases by at least a factor of ω

ω+1 . Therefore the maximum height of a tree

is 1
log2(1+1/ω) log2 n. But this is merely an upper bound – it is frequently not

possible for the balance condition to be tight, because the tree sizes are integers.
To get an accurate estimate, we compute the maximum heights of BB-ω trees

up to size of 1 million. We used the following recursive definition:
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-- Returns the list [ max height of BB-w tree with n elements | n <- [1..] ].

heights :: Ratio Int -> Int -> [Int]

heights w d = result

���	�

result = 1 : 2 : compute_heights 3 1 result

compute_heights n r rhs@(rhs_head : rhs_tail)

| w*((n-1-(r+1))%1) + d%1 >= (r+1)%1 = compute_heights n (r+1) rhs_tail

| otherwise = 1 + rhs_head : compute_heights (n+1) r rhs

The function compute heights is given the size of the tree n, the size of the its
right subtree r and also a list of maximum heights of BB-ω trees of r and more
elements. It constructs the highest tree of size n by using the largest possible
right subtree, and then using the highest tree of such size.

The resulting heights are presented in Fig. 6. The heights are divided by
�log2 n�, so the optimal height is 1. Notice that the height of a BB-2.5 tree is
always smaller than 2 for less than million elements – such height is better than
the height of a red-black tree of the same size.

height divided by �log2 n�
size of BB-ω tree

ω = 2.5 ω = 3 ω = 4

10 1.33 1.33 1.33
100 1.57 1.67 1.86

1 000 1.70 1.90 2.30
10 000 1.84 2.00 2.54

100 000 1.86 2.13 2.63
1 000 000 1.90 2.16 2.70

upper bound 2.06 2.41 3.11

Fig. 6. Maximum heights of BB-ω trees with w = 2.5, w = 3 and w = 4

7 The Performance of BB-2.5, BB-3 and BB-4 Trees

With various possible ω to use, a search for the optimum value is in order. Is
some value of ω universally the best one or does different usage patterns call for
specific ω values?

We know that smaller values of ω result in lower trees. That seems advanta-
geous, because the time complexity of many operations is proportional to the
tree height.

In order to compare different values of ω, we measured the number of in-
vocations of balance function. We inserted and then deleted 10{1..6} elements,
in both ascending and uniformly random order, and measured the number of
invocations of balance during each phase. The results are displayed in Fig. 7.
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insert delete

w = 2.5 w = 3.0 w = 4.0 w = 2.5 w = 3.0 w = 4.0

consecutive 10 elements 25 25 26 11 12 10
random 10 elements 23 23 23 12 12 12

consecutive 102 elements 617 657 769 362 349 302
random 102 elements 542 549 562 377 376 413

consecutive 103 elements 10245 11439 13997 6554 6116 5500
random 103 elements 8700 8753 8953 7162 7177 7377

consecutive 104 elements 143685 163261 206406 94865 88487 79938
random 104 elements 121192 121623 124204 105251 105854 108362

consecutive 105 elements 1852582 2133997 2722419 1251621 1175569 1042398
random 105 elements 1554230 1562168 1595269 1395871 1402939 1434371

consecutive 106 elements 22701321 26336469 33878677 15492747 14429384 12974950
random 106 elements 18956075 19074599 19476673 17367930 17480730 17856278

Fig. 7. The number of balance calls during inserting and deleting elements

In case of ascending elements, smaller ω values perform better during insertion
– the difference between ω = 2.5 and ω = 4 is nearly 50% for large number of
elements. On the other hand, higher ω values perform better during deletion,
although the difference is only 18% at most. In case of random elements, lower
values of ω are always better, but the difference is less noticeable in this case.

We also performed the benchmark of running time of insert, lookup and
delete operations. We used the criterion package [11], a commonly used
Haskell benchmarking framework. All benchmarks were performed on a dedi-
cated machine with Intel Xeon processor and 4GB RAM, using 32-bit GHC 7.0.1.
The benchmarking process works by calling the benchmarked method on given
input data and forcing the evaluation of the result. Because the benchmarked
method can take only microseconds to execute, the benchmarking framework re-
peats the execution of the method until it takes reasonable time (imagine 50ms)
and then divides the elapsed time by the number of iterations. This process is
repeated 100 times to get the whole distribution of the time needed, and the
mean and the confidence interval are produced.

The benchmarks are similar to our previous experiment – we insert, locate
and delete 10{1..6} elements of type Int, which are both in ascending and
uniformly random order. We used the implementation of balance from the
containers package – we already improved this implementation in [9]. The re-
sulting execution times are normalised with respect to one of the implemen-
tations and presented as percentages. The overview is in Fig. 8. (Ignore the
trees with One subscript, they are explained in the next section.) Here the ge-
ometric mean of running times for all input sizes 101 to 106 is displayed. The
detailed results and the benchmark itself are available on the author’s website
http://fox.ucw.cz/papers/bbtree.

The findings are similar to the previous experiment – if the elements are in
random order, the value of ω makes little difference, and smaller values perform
slightly better. In case of ascending elements, smaller ω are better when inserting
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Fig. 8. The normalized execution times of BB-ω trees with various ω

and larger when deleting. As expected, the lookup operation runs faster for
smaller values of ω, independently on the order of elements.

8 Reducing Memory by Introducing Additional Data
Constructor

The proposed representation of a BB-ω tree provides room for improvements in
terms of memory efficiency – if the tree contains n nodes, there are n + 1 Nil

constructors in the whole tree, because every Node constructors contains two sub-
trees. We can improve the situation by introducing additional data constructor
representing a tree of size one:
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���� BBTree a = Nil -- empty tree

| One a -- tree of size one

| Node -- tree node

(BBTree a) -- left subtree

Int -- size of this tree

a -- element stored in the node

(BBTree a) -- right subtree

Leaves are represented efficiently with this data-type. However, the trees of
size 2 still require one Nil constructor.

To determine the benefit of the new data constructor we need to bound the
number of Nil constructors in the tree. A Nil constructor appears in a tree of size
2 and if there are t trees of size 2, there need to be at least (t−1) internal Nodes for
these t trees to be reachable from the root. Therefore, there can be at most n/3
Nil constructors in the tree. This implies that the number of One constructors is
between n/3 and n/2. Experimental measurements presented in Fig. 9 show that
a tree created by repeatedly inserting ascending elements contains n/2 One and
no Nil constructors, and a tree created by inserting uniformly random elements
contains approximately 0.43n One and 0.14n Nil constructors.

TOne2.5 TOne3.0 TOne4.0

any number of consecutive elements 50.0% 50.0% 50.0%

random 10 elements 45.5% 45.5% 45.5%
random 102 elements 43.6% 43.6% 43.6%
random 103 elements 43.0% 43.0% 42.8%
random 104 elements 43.0% 43.0% 43.0%
random 105 elements 42.8% 42.8% 42.9%
random 106 elements 42.9% 42.9% 42.9%

Fig. 9. The percentage of One constructors in a BB-ω tree

Considering the memory representation used by the GHC compiler, the Node
constructor occupies 5 words and One constructor occupies 2 words, so the new
representation takes 20-30% less memory. The time complexity of the new rep-
resentation is also better as shown in Fig. 8. Especially note the speedup of the
fold operation, which is the result of decreased number of Nil constructors in
the tree. The only disadvantage is the increase of the code size – but this affects
the library author only.

We could also add a fourth data constructor to represent a tree of size 2.
That would result in no Nil constructors in a nonempty tree. The disadvantage is
further code size increase (4·4 = 16 cases in join operation) and also a noticeable
time penalty – on 32bit machines GHC uses pointer tagging to distinguish data
constructors without the pointer dereference, which is described in detail in [7].
This technique works with types with at most three data constructors (and up
to 7 different constructors on 64bit machines), so it is not advantageous to add
a fourth data constructor.
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8.1 The Order of Data Constructors

When implementing the data-type with the One constructor, we found out that
the order of data constructors in the definition of the data-type notably affects the
performance. On Fig. 10, the time improvements in the benchmark from the pre-
vious section are displayed, when we reordered the constructors to the following
order: Node first, then One and Nil last.

TOne2.5 TOne3.0 TOne4.0

insert asc 5.1% 6.8% 6.6%

insert rnd 4.5% 5.2% 5.0%

lookup asc 7.4% 6.1% 6.2%

lookup rnd 6.1% 5.4% 5.4%

delete asc 5.3% 8.4% 8.5%

delete rnd 4.4% 4.8% 5.0%

fold asc 8.9% 9.5% 13.1%

fold rnd 10.1% 10.5% 9.4%

Fig. 10. The improvements of time complexity after reordering the data constructors

We believe the reason for the performance improvement is the following: When
matching data constructors, a conditional forward jump is made if the construc-
tor is not the first one from the data-type definition. Then another conditional
forward jump is made if the constructor is not the second one from the data-type
definition. In other words, it takes i− 1 conditional forward jumps to match the
i-th constructor from the data-type definition, and these forward jumps are usu-
ally mispredicted (forward jumps are expected not to be taken). It is therefore
most efficient to list the data constructor in decreasing order of their frequency.

9 Conclusions

We described balanced trees and explicitly proved their correctness for several
representative parameter combinations. For these parameters we also measured
their runtime performance. The resulting implementation (improved variant of
Data.Set and Data.Map) is comparable to other available on Hackage (detailed
list and measurements are in [9]). We also focused on memory complexity and
improved it by changing the data-type representation. During this process we
discovered the effect of the data constructors order in the data-type definition
on the performance. The implementation and benchmarks used are available on
author’s website http://fox.ucw.cz/papers/bbtree.

Several goals remain for future work. In our further efforts, we will incorpo-
rate the improvements described here in the containers package. We will also
benchmark the effect of reordering data constructors of other data structures
from the containers package – especially the IntMap, IntSet, which also use
three data constructors (preliminary measurements show 5-15% improvement).
Also the benchmark of BB-ω trees could be extended to include set operations
like union. We already described a benchmark with a union operation in [9].
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9.1 Related Work

The original weight balanced trees were described in [8], with two parameters
with values 1+

√
2 and

√
2. Because these are not integers, the resulting algorithm

is not very practical. Adams created a variant of balanced trees, the BB-ω trees,
and described them in papers [1] and [2]. Unfortunately, the proof is erroneous
– the paper concludes that for α = 2 the valid parameters are ω ≥ 4.646.

The error in the proof was known by several people, but in 2010 a bug caused
by the error in the proof was also found in the Haskell implementation – in
the Data.Set and Data.Map modules from the containers package. The recent
paper [5] deals with the correctness of the original weight balanced trees (equiv-
alent to setting δ = ω−1 in our definition) and proves in Coq, that for δ = ω−1
the only integral valid parameters are ω = 3 and α = 2. Our proof on the other
hand is explicit, and proves validity of only some chosen parameters. It covers
both the original weighted trees and Adams’ trees.
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A Generating the Fig. 3

When generating the Fig. 3 of valid parameters for all trees up to size of 1 million,
we used the following code:

max_n = 1000000

find_min x p | p x = last $ x : takeWhile p [x-1, x-2 .. 0]

| otherwise = head $ dropWhile (not . p) [x+1, x+2 ..]

test w a d = and [delete n m && join n m | n <- [0 .. max_n],

let m = flr $ max 1 (w * n + d)]

���	�

delete n m = n == 0 || rebalance (n-1) m

join n m = rebalance n (m+increment)

���	� increment = max 1 $ ceil ((n+m+1-d) / (w+1) - 1)

rebalance n m = and [rebalance’ n m x | x <- nub [x_min, x_mid - 1,

x_mid, m - 1 - x_min]]

���	� x_min = find_min (flr $ m / (w+1)) (\x -> balanced x (m-1-x))

x_mid = find_min (flr $ m * a / (a+1)) (\x -> x >= a * (m-1-x))

rebalance’ n m x

| x < a * y = balanced n x && balanced (n + 1 + x) y

| otherwise = balanced n s && balanced t y && balanced (n+1+s) (t+1+y) &&

balanced n t && balanced s y && balanced (n+1+t) (s+1+y)

���	�(y,s,t)=(m-1-x,find_min (flr$x/(w+1)) (\s->balanced s (x-1-s)),x-1-s)

balanced n m = max 1 (w * n + d) >= m && n <= max 1 (w * m + d)

flr, ceil :: Double -> Double

flr = fromInteger . floor

ceil = fromInteger . ceiling

results = [(w, a, d, test w a d) | w <- [2, 2.125 .. 5],

a <- [1, 1.125 .. 3], d <- [0 .. 3]]

It relies on the fact that when there is a tree which cannot be balanced, there
also exists a counterexample with a subtree as large as the balance condition
allows. Therefore, for a fixed value of n it is enough to try the largest possible
m and for a fixed value of m it is enough to verify that the balance condition is
restored when considering the smallest and the largest subtree causing a single
rotation and the smallest and the largest subtree causing a double rotation.
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Abstract. The use of video games to teach introduction courses to pro-
gramming and Computer Science is a trend that is currently flourishing.
One of the most successful and promising approaches uses functional
video games to get students interested and engaged in programming.
This approach is successful, in part, because functional video games pro-
vide a domain of interest to most Computer Science undergraduates
and remove the need to reason about designing state-based programs. A
plethora of examples exist that have students develop games exploiting
structural recursion which resemble such classics as Space Invaders and
Snake. Once students master the basics of structural recursion the time
comes to move beyond structural recursion to generative and accumula-
tive recursion. It is up to the instructor to harness the enthusiasm and
appetite that students have to develop more video games. This requires
finding games that require the generation of subproblems in the same
class as the input problem or that require accumulators to be success-
fully played or solved. This article presents a road map to make the
transition from structural recursion to accumulative recursion using the
N-puzzle problem as motivation to capture student enthusiasm and ex-
ploit what they have learned about program design. The N-Puzzle was
also chosen to demonstrate that informed heuristic search strategies, tra-
ditionally the domain of undergraduate courses in Artificial Intelligence,
are within the grasp of CS1 students. With proper guidance, CS1 stu-
dents can reason such an algorithm into existence instead of simply using
a textbook to study such algorithms. If the work described in this arti-
cle is replicated elsewhere, there is no doubt that it will be an exciting
time for Computer Science education and it will elevate the relevance of
functional programming in the minds of future CS professionals.

1 Introduction

Based on the teaching philosophy of program by design (PBD) put forth in the
textbook How to Design Programs (HtDP) [2], the use of functional video games
to teach introduction courses to programming and Computer Science is a trend
that is currently flourishing. At the heart of the PBD philosophy is the design
recipe–a series of steps that students can follow to design and write programs.
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These steps include the development of data definitions based on problem anal-
ysis, the development of contracts and function headers, the development of
function templates for all data definitions, the specialization of function tem-
plates to create functions, and the development and running of tests. One of
the most successful and promising implementation approaches to a PBD-based
course uses a hierarchy of successively richer student languages and functional
video games to get students interested and engaged in programming. PLT’s Dr-
Racket [4] integrates such a hierarchy of student languages for use in conjunction
with HtDP. The reader should note that students are not taught Racket, but do
learn Racket-like syntax on a need-to-know basis. This approach is successful, in
part, because the student languages allow for the generation of error messages
that are meaningful for beginners. This approach is also successful, in part, be-
cause functional video games provide a domain of interest to most Computer
Science undergraduates and remove the need to reason about designing state-
based programs. A plethora of examples exist that have students develop games
exploiting structural recursion which resemble such classics as Space Invaders
and Snake [1,6].

At the beginning of an introduction course, the focus is on solving problems
using primitive data, structures, and structural recursion. Once students master
the basics of structural recursion, the time comes to explore other forms of recur-
sion such as generative and accumulative recursion. In generative recursion, the
subproblems generated are not derived from the data structure employed and
are in the same class as the original problem (a typical example is quicksort).
One of the important consequences of this that beginners must realize is that
programs using generative recursion are not guaranteed to terminate like pro-
grams that employ structural recursion. Thus, generative recursion requires the
development of termination arguments. In accumulative recursion, one or more
accumulators are added as parameters to a function designed using structural
or generative recursion to capture information that, otherwise, would be lost
between recursive calls (a typical example is finding a path between two nodes
in a cyclic graph). An important consequence of this for beginners is that they
must realize that for each accumulator an accumulator invariant must developed
to describe the value of the accumulator. The code students write must guaran-
tee that the accumulator invariant holds for every recursive call. It is up to the
instructor to harness the enthusiasm and appetite that students have to develop
more video games to motivate these topics. This requires identifying games that
can not be played nor solved by only using structural recursion. It is important to
note, however, that the goal is not to make students masters at developing video
games. Instead, the goal is to make students interested in generative and accu-
mulative recursion by showing them how they are needed and/or used in a video
game. Surprisingly, there are not many examples in an HtDP-based curriculum
of video games that require students to go beyond structural recursion.

This article advocates the position that video games ought to be used to
motivate the need to study generative and accumulative recursion in the CS1
classroom. It presents an example on how to make the transition from structural
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Fig. 1. A Random 3-Puzzle Board Fig. 2. Sample Winning 3-Puzzle Board

recursion to generative and accumulative recursion using the N-puzzle problem
as motivation to capture student enthusiasm. This road map is used in the
curriculum at Seton Hall University that has been previously described [6]. The
primary goal is to introduce these topics in a context that exploits and reinforces
lessons on program by design, structural recursion, and abstraction. Secondary
goals are to expose students to ideas that they may encounter in upper-level
courses such as heuristics in an Artificial Intelligence course and the use of ran-
dom number generators. Section 2 briefly describes the N-puzzle game. Section 3
describes the first encounter of students with the N-puzzle game in the classroom
and discusses opportunities the game presents to reinforce the lessons of program
by design using structural recursion and abstraction. Section 4 discusses an ini-
tial strategy to finding a solution leading to the need for generative recursion.
Section 5 discusses how the need for accumulators arises and how accumulative
recursion is used in the N-puzzle game. Section 7 discusses related work and
Section 8 draws some conclusions and briefly outlines future work.

2 The N-Puzzle Game

The N-puzzle game is one that is likely to be familiar to an international milieu
of students and is simple enough that students can easily grasp how the game
works. It consists of an N ×N board with N2 − 1 tiles1 and an empty square or
blank space that does not contain a tile. Each tile contains some form of symbolic
or numeric data. Figure 1 displays a sample board using numeric tiles for the
3-puzzle2 game in which the empty space is at the center of the board. Every
N-puzzle game must also define a winning board. That is, a board that defines
the solution to the puzzle. Figure 2 displays the traditional winning board for
the numeric 3-puzzle problem.

A player can move tiles by swapping the blank space with one of its neighbors
(i.e., right, left, up, or down). The goal of the game is to make a sequence of
1 The choice of a square board is arbitrary, but facilitates developing a program.
2 It is also common to refer to this version of the puzzle as the 8-puzzle.
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A board is either:

1. empty

2. (cons number b), where b is a board

Template for functions on boards:

(define (f-on-board a-board)

(cond [(empty? a-board) ...]

[else ...(first a-board)...(rest a-board)]))

Fig. 3. Data definition for boards and a template for functions on boards

moves that leads to the winning board. A player, of course, at some point during
the game may feel stuck and the game should provide a mechanism, like a help
button, to ask the computer to make the next move. The help button, of course,
requires the program to first solve the puzzle before making a move towards the
solution on behalf of the player.

To make the game more challenging and more interesting the game can be
parameterized with a constant N. In this manner, students are free to make the
board larger or smaller according to the level of the challenge they desire. A CS1
instructor should note, however, that as N increases the effective use of the help
button decreases which can discourage some students.

3 The First Encounter with the N-Puzzle Game in CS1

Students that are presented with the N-puzzle game have gone through the first
four parts of HtDP that cover program by design with structures, structurally
recursive data types, and abstraction. They have experience designing programs
that process, for example, lists and trees as well as familiarity with basic ab-
straction patterns that involve the use of higher-order functions such as map
and filter.

When students are first presented with the N-puzzle game, they are asked
what is changing while the game is played and how it can be represented. This
leads to defining a board as a list of numbers3 and to a template for functions
on boards both of which are displayed in Figure 3. This brings the N-puzzle
game into a realm that is familiar to the students and provides an opportunity
to reinforce lessons on structural recursion.

To get students started, the first tasks they are asked to solve can be done us-
ing structural recursion and/or abstraction such as building the representation
of the winning board, finding the position of the empty space, and swapping
two tiles (eventually used to make moves). The solutions presented may vary
with some students defining such functions using structural recursion and some

3 The number in position i of the list corresponds the tile in row (quotient i N) and in
column (remainder i N).
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(define WIN (build-list N (lambda (n)

(cond [(< n (- N 1)) (+ n 1)]

[else 0]))))

; get-blank-pos: board --> number

; Purpose: To find the position of the blank

(define (get-blank-pos l)

(cond [(empty? l) (error ’get-blank-pos "Blank not found")]

[(= (car l) BLANK) 0]

[else (add1 (get-blank-pos (cdr l)))]))

; swap-tiles: board natnum natnum --> board

; Purpose: To swap the given tiles in the given board

(define (swap-tiles w i j)

(build-list N (lambda (n)

(cond [(= n i) (list-ref w j)]

[(= n j) (list-ref w i)]

[else (list-ref w n)]))))

Fig. 4. Auxiliary Functions Developed Using Structural Recursion and Abstraction

students using higher-order functions. Typical solutions for the game with nu-
meric tiles are displayed in Figure 4.

The initial encounter with the N-puzzle game also provides an opportunity
to perform data analysis that leads to the realization that more than structural
recursion is required to implement the help button. Students are asked what
does it mean to find a solution when the player requests the computer to make
the next move. After some discussion, it becomes clear that finding a solution
is finding a sequence of moves from the current board to the winning board.
Students, in general, can grasp without too much trouble the idea that finding
such a sequence of moves for board b means finding a solution for one of the
possible successors of b, childb, obtained by making a single move and adding
the move that takes b to childb. The question then becomes which move will be
chosen to generate the child of b that is to be explored.

Observe that such a strategy is no longer in the domain of structural recursion.
Structural recursion guarantees that the size of the subproblems (i.e., finding a
solution starting from childb) are smaller than the problem of finding a solution
to the original problem (i.e., finding a solution starting at b) and are derived
from the structure of the input. This is not the case, because in general some
sequences starting at b are infinite as are sequences starting at any childb and
childb is not used to build b. The question then becomes how do you solve
problems that generate subproblems that are not guaranteed to be smaller than
the original problem and are not part of the structure of the original problem.
At this point, students have entered the realm of generative recursion by simply
trying to implement a video game.
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4 Finding a Solution

After using the N-puzzle game to discover the need for generative recursion, stu-
dents are given several examples on how to design programs based on generative
recursion. Examples outlined in HtDP include quicksort, fractals, binary search,
Newton’s method, and backtracking algorithms such as traversing a graph to
find a path from node A to node C. Of these, the most relevant to finding a
solution to an N-puzzle are the backtracking algorithms, because traversing a
graph with cycles can lead to a path of infinite length precisely in the same man-
ner that some sequences of moves are infinite in the N-puzzle problem. HtDP
presents a solution to find a path from node A to node C in an acyclic graph
using a depth-first traversal and postpones finding the solution for a graph with
cycles to motivate accumulative recursion.

In the N-puzzle game, of course, we are for the most part unable to restrict our
sequences of moves to those that are finite. Students, in general, are not aware
at this point of this and can be led to develop a solution that seems reasonable.
Class discussion is focused on how to choose a successor of the current board to
find a solution. This presents the opportunity to introduce beginning students
to heuristics. A heuristic can be used to choose which child of b is chosen to
explore for a solution. It is important to remark to students that a heuristic
is a rule that estimates how many moves away the current board is from the
winning board and that is used hoping it will lead to a solution. At this point,
most students will have no way to judge this statement and simply trust the
professor. This trust opens the door for reinforcing lessons on the importance of
testing and careful design in programming. As the reader knows, this approach
is destined to immediate failure, but also to triumph after the process of iterative
refinement is started.

There is a simple heuristic students can understand and implement for the
N-puzzle problem. The heuristic chooses to explore the child of b that has the
smallest Manhattan distance. The Manhattan distance of a board is the sum of
how far away each tile is from its correct position. For example, the Manhat-
tan distance of the board in Figure 2 is 0 given that all tiles are in the correct
position. In Figure 1, tile 1 is in the right position and contributes 0 to the Man-
hattan distance while the blank space, in position 4 and whose correct position
is 8, contributes 2 to the Manhattan distance. The code to compute the Man-
hattan distance of a board is displayed in Figure 5. Observe that the code only
requires arithmetic and structural recursion on natural numbers which provides
the opportunity to reinforce material students have already seen and to make
this material relevant to their interests in video games.

Armed with the power of a heuristic, students can now delve into designing
an N-puzzle solver to implement the help button. The basic idea is that given
a board their program needs to return a non-empty list of boards, called a se-
quence, that contains all the boards in the sequence of moves from the given
board to the winning board. These ideas lead quite naturally to the design of a
depth-first search algorithm. If the given board is the same as the winning board,
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; manhattan-distance: board --> number

; Purpose: To compute the Manhattan distance of the given board

(define (manhattan-distance b)

(local

[; distance: number number --> number

; Purpose: To compute the distance between the two tile positions

(define (distance curr corr)

(+ (abs (- (quotient curr (sqrt N)) (quotient corr (sqrt N))))

(abs (- (remainder curr (sqrt N)) (remainder corr (sqrt N))))))

; adder: number --> number

; Purpose: To add all the distances of each tile

(define (adder pos)

(cond [(= pos 0) 0]

[else (+ (distance (sub1 pos)

(correct-pos (list-ref b (sub1 pos))))

(adder (sub1 pos)))]))

; correct-pos: number --> number

; Purpose: To determine the correct position of the given tile

(define (correct-pos n)

(cond [(= n 0) (sub1 N)]

[else (sub1 n)]))]

(adder N)))

Fig. 5. Code for computing the Manhattan distance of a board

then the solution is trivial: a list containing the given board. Otherwise, create
a list from the given board and the solution generated starting from the best
child of the given board. The function to generate the children of a given board
can either be done using structural recursion or map. It only entails swapping
the blank space with its neighbors. Finding the best board from a list of boards
also only requires structural recursion. A sample implementation is displayed in
Figure 6.

The benefits of using the N-puzzle to reinforce lessons from structural recur-
sion, to motivate generative recursion, and to capture the interest of students
are likely to be self-evident to any instructor at the helm of a CS1 class. Clearly,
this video game also provides the opportunity to introduce CS1 students quite
naturally to depth-first search and to heuristics-based programming which is
quite uncommon as far as the author knows. There are, however, two more ben-
efits that deserve to be mentioned. These are reinforcing the value of testing and
the value of iterative refinement. The instructor can strategically provide initial
boards to test the game and the help button. The code in Figure 6 does, indeed,
find a solution for some test boards while at the same time reveal that it fails to
return a solution for some test boards. This leads to an exploration of why the
program, which seems quite reasonable to most students, fails to return a solu-
tion for some boards and how it can be improved to guarantee that a solution
is always returned (for a legal board).
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; find-solution-dfs: board --> (listof boards)

; Purpose: To find a solution to the given board using DFS

(define (find-solution-dfs b)

(cond [(equal? b WIN) (list b)]

[else

(local [(define children (generate-children b))]

(cons b (find-solution-dfs (best-child children))))]))

; generate-children: board --> non-empty-list-of-boards

; Purpose: To generate a list of the children of the given board

(define (generate-children b)

(local [(define blank-pos (get-blank-sq-num b))]

(map (lambda (p)

(swap-tiles b blank-pos p))

(blank-neighs blank-pos))))

; best-child: non-empty-list-of-boards --> board

; Purpose: To find the board with the board with the smallest Manhattan

; distance in the given non-empty list of boards

(define (best-child lob)

(cond [(empty? (rest lob)) (car lob)]

[else

(local [(define best-of-rest (best-child (rest lob)))]

(cond [(< (manhattan-distance (car lob))

(manhattan-distance best-of-rest))

(car lob)]

[else best-of-rest]))]))

Fig. 6. Code for depth-first search for a solution without backtracking

5 The Need to Remember Leads to Accumulators

The exploration of why the program fails to return a solution to some boards
leads to the discussion of a situation like the one depicted in Figure 7. If the
current board is the one in the root of the tree, it has two children both of
which have a Manhattan distance of 18. The algorithm chooses the right child
as the board to explore. This board has three children that, from left to right,
have Manhattan distances of 20, 20, and 16. The rightmost child is chosen for
exploration as it has the smallest Manhattan distance. At this point, all students
can see the problem. The algorithm cycles through the same set of boards never
choosing a different board to escape the cycle. In other words, students under-
stand why there is an infinite recursion and why it is impossible to argue that
the algorithm terminates as is required by the design recipe for programs based
on generative recursion. Some readers may argue that developing a termination
argument ought to always be done before implementing an algorithm. At Seton
Hall, we have discovered that this is not always true. Much of it depends on
the CS-maturity that students bring to the classroom. In our CS1 course, it is
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Fig. 7. Illustration of why a depth-first path (dashed) does not lead to a solution

assumed that students have little or no background in Computer Science when
they start. For such students, theoretical termination arguments do not easily
flow. Understanding why an implemented algorithm fails, on the other hand,
presents an excellent learning experience and brings home the importance of
developing termination arguments. We conjecture that as students gain experi-
ence it becomes easier for them to visualize, before implementation, termination
arguments.

After understanding why the algorithm does not always terminate, students
are guided to think that a solution to this problem requires that all sequences
starting at the given board must be explored instead of choosing to only explore
the sequence of best children. This requires that all paths explored so far be
remembered. Through this analysis, students have entered the realm of accumu-
lative recursion and this is used as motivation to return to HtDP and study how
to design programs that exploit this new kind of recursion.

One of the functions students can develop while exploring how to design pro-
grams that use accumulative recursion is a function to present a player with
an initial board to solve in the N-puzzle problem. This presents an interesting
task, because not all possible orderings of tiles in a board are valid boards in
the N-puzzle game. In the 3-puzzle game, for example, the ordering that has
1, 2, 3 in the 0th row, 4, 5, 6, in the 1st row, and 8, 7, 0 in the 2nd row is
an invalid board. The challenge, therefore, is to design a strategy to compute
an initial board that does not simply randomly assign tiles to positions in the
board. After some discussion, a natural strategy to follow is to start from the
winning board and randomly make k valid moves. This strategy is a good one
to choose in CS1 for three reasons. The first is that it provides students at this



Functional Video Games in CS1 II 155

; make-moves: natnum board --> board

; Purpose: To create a board by making the given number of moves

; in the given board.

; ACCUMULATOR INVARIANT: b is the board created by making

(- NUM-INIT-MOVES nummoves) moves from WIN

(define (make-moves nummoves b)

(cond [(= nummoves 0) b]

[else (make-moves (sub1 nummoves) (make-a-move b))]))

; make-a-move: board --> board

; Purpose: To make a random move in the given board

(define (make-a-move b)

(local [(define blank-index (get-blank-index b))

(define neighs-indices (neighs-of blank-index))

(define move-to-index

(list-ref neighs-indices (random (length neighs-indices))))]

(swap-tiles w move-to-index blank-index)))

(define NUM-INIT-MOVES 200)

(define INIT-BOARD (make-moves NUM-INIT-MOVES WIN))

Fig. 8. An implementation for creating an initial N-puzzle board

early stage in their studies with an example of where the use of randomness is
useful. The second is that it requires an accumulator to “remember” the board
created so far. That is, after every random move a new board is created and
the new board needs to be used to make any further moves. The third is that it
brings accumulative recursion into the domain of structural recursion on natural
numbers–a familiar world for students that have followed an HtDP-based cur-
riculum. This approach, for example, is implemented by students as displayed in
Figure 8. The function make-moves is written using the design recipe for struc-
tural recursion on natural numbers to which an accumulator has been added.
As per the design recipe for designing functions using accumulative recursion,
students must develop an accumulator invariant. Although the invariant in this
case may seem straightforward to an experienced programmer, its development
by beginning students usually requires some coaching. One effective strategy is
to have students trace an example, before writing any code, to help them visual-
ize what characteristics of the parameters remain unchanged for every recursive
call. For the function make-moves in Figure 8, for example, the parameter b is an
accumulator. Initially, students are led to reason that b is the board obtained by
making a number of random moves starting from WIN. This reasoning is then re-
fined to precisely define the number of moves: (- NUM-INIT-MOVES nummoves).
Students can now argue that for every recursive call a move is made and the
number of moves is reduced by 1. Thus, they can conclude that the accumulator
invariant holds for every recursive call and that when nummoves is 0 the initial
board has been computed.
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5.1 Developing a Breadth-First Solution

The heuristic-based depth-first N-puzzle solver assumed a solution can be found
by always exploring the best successor of the current board. This assumption is
removed and all possible sequences starting at a given board are explored. This
requires that a list of all sequences generated so far be maintained. It is important
during the exploration of this idea in the classroom to have students realize
that this list of sequences must be maintained in order by length. Otherwise,
the strategy may degenerate into a depth-first search that leads to an infinite
recursion. The experienced reader will recognize that such a list is, in essence,
a queue. It presents an opportunity to develop an interface for queues, but our
success with having students reason about queues is mixed. CS1 students need
to work on several queue-based solutions to different problems to internalize
what a queue is. Therefore, we usually only mention queues in passing and allow
students to structure their reasoning using a list of sequences ordered by length.

The implementation builds on the work done for the heuristic-based depth-
first N-puzzle solver. The function find-solution-bfs takes as input a board, b,
and returns a sequence from b to WIN. To accomplish this, a helper function,
search-paths, is called that takes as input an accumulator that stores the list of
all sequences generated so far. Initially, this list of sequences contains a single
list that contains b. The function search-paths is a combination of generative
recursion and accumulative recursion. Each time the function is called, it checks
if the first board in the first sequence is WIN and, if so, it returns the first
sequence. Otherwise, the successors of the first board in the first sequence are
generated and a new sequence is generated for each successor by adding it to
the front of the first sequence. To maintain the accumulator invariant, the list
of sequences that does not include the first sequence is appended with the new
sequences generated for the recursive call. A sample implementation is displayed
in Figure 9.

Students must develop an accumulator invariant as well as an argument for
termination. The accumulator invariant is developed, as mentioned above, during
the exploration of the idea to search all possible sequences. The argument for
termination hinges on having students realize that as paths get longer the number
of moves required for one or more paths to reach the winning board gets smaller.
Thus, the number of moves required to reach the winning board will eventually
reach 0 for some path and the algorithm returns the appropriate sequence as
long as the initial board is valid.

5.2 Refining the Solution: Deriving an A*-like Algorithm

The breadth-first N-puzzle solver does find a solution for any given board, but
students soon discover that the help button is very sluggish and in some cases
extremely so. The problem, of course, is that exploring all possible sequences
starting at a given board is a great deal of work. Students can be led to realize
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; find-solution-bfs: board --> lseq

; Purpose: To find a solution to the given board

(define (find-solution-bfs b)

(local

[; search-paths: lseq --> seq

; Purpose: To find a solution to b by searching all possible paths

; ACCUMULATOR INVARIANT:

; paths is a list of all seqs generated so far starting at b from

; from the shortest to the longest in reversed order

(define (search-paths paths)

(cond [(equal? (first (first paths)) WIN) (car paths)]

[else

(local [(define children (generate-children

(first (first paths))))

(define new-paths (map (lambda (c)

(cons c (first paths)))

children))]

(search-paths (append (rest paths) new-paths)))]))]

(reverse (search-paths (list (list b))))))

Fig. 9. A breadth-first N-puzzle solver

that the number of sequences being searched surpasses 29 after 10 moves and
surpasses 219 after 20 moves4. This provides an opportunity to expose students to
the problems of exponential growth. At this point, students are asked if searching
all possible sequences and searching all possible sequences at the same time is
necessary. This is a difficult question for them to answer. Most students will say
yes to both questions, because all possible sequences must be searched. In other
words, most students at this level are unlikely to realize on their own that not
all sequences need to be searched and that not all sequences that ought to be
searched have to be simultaneously searched.

There are two main ideas that must be planted in students’ minds. The first
idea is that not every sequence needs to be explored. We draw on the expe-
rience obtained from the depth-first N-puzzle solver. If any successor, s, of a
given board, b, has been explored (i.e., the successors of s have been generated),
then the path through b to s need not be explored. The reason is that a se-
quence, of equal or shorter length, to s has already been generated. The second
idea is that we can choose to explore the most “promising” sequence first in-
stead of blindly exploring all possible sequences at the same time. This leads
the class discussion back to the Manhattan distance heuristic as a mechanism
for deciding which sequence is the most promising. The idea to always explore
the most promising sequence first is one that students in CS1 can grasp and
implement.

4 29 and 219 are, respectively, the number of leaves in a binary tree that describes the
search space after 10 and 20 moves if all boards only had two successors.
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(define (find-solution-a-star b)

(local

[(define (find-best-seq seqs)

(cond [(empty? (rest seqs)) (first seqs)]

[else

(local [(define best-of-rest (find-best-seq (rest seqs)))]

(cond [(< (manhattan-dist (first (first seqs)))

(manhattan-dist (first best-of-rest)))

(first seqs)]

[else best-of-rest]))]))

(define (search-paths visited paths)

(local [(define bstseq (find-best-seq paths))]

(cond [(equal? (first best-path) WIN) bstseq]

[else

(local

[(define children

(filter (lambda (c) (not (member c visited)))

(generate-children (first bstseq))))

(define new-seqs (map (lambda (c) (cons c bstseq))

children))]

(search-paths

(cons (first bstseq) visited)

(append new-seqs (rem-path bstseq paths))))])))]

(reverse (search-paths ’() (list (list b))))))

Fig. 10. An A* N-puzzle solver

Figure 10 displays an implementation of this strategy5. The function search-
paths requires two accumulators each with its own invariant. The accumulator
visited is a list of all the boards whose successors/children have been generated.
The accumulator paths is a list of all the sequences starting at b that may need
to be explored and that have no repeated boards in them. Both invariants,
with some guidance, can be developed by students. The development of these
invariants is likely to be the most time-consuming exercise in class. The rest of
the implementation flows faster. The code finds the best sequence in paths. If the
winning board has been reached by the best sequence, then the best sequence
is returned. Otherwise, the program filters the successors of the last board6 in
the most promising sequence to remove boards that have already been explored.
New sequences are generated using map to add each remaining successor to the
most promising sequence. Notice that both of these computations are achieved by
reinforcing lessons on abstraction that students have been exposed to in the near
past. Finally, to maintain the two accumulator invariants, the last board of the

5 Due to figure size limitations, all comments including contracts, purpose statements,
and accumulator invariants have been omitted.

6 Note that sequences are reversed making the last board in the sequence the first in
the list.
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most promising sequence is added to visited and the new sequences are appended
with sequences obtained from removing the most promising sequence from paths.
The only remaining tasks students must implement is finding the most promising
sequence and removing a sequence from a list of sequences. The first can be done
either by using accumulative recursion with an accumulator that remembers
the best sequence so far or using structural recursion. The implementation in
Figure 10 displays the latter and redesigning such a function using accumulative
recursion is left as an exercise to give students more practice. The second is a
straightforward exercise using structural recursion7.

The algorithm developed is in essence an A*-like algorithm [8,9]. That is, it
is a combination of a breadth-first strategy and a depth-first with backtrack-
ing strategy. Such algorithms are commonly referred to as informed heuristic
search strategies [9]. What is most noteworthy is the fact that the development
flows naturally from following the steps of the design recipe and iterative refine-
ment. Students reason the algorithm into existence instead of being told about
an algorithm. Such a development challenges the tacit assumption that A*-like
algorithms are too complex for beginning students to understand and, therefore,
are left as material restricted to more advanced courses such as an Introduction
to Artificial Intelligence. There is, of course, one important observation about
the N-puzzle domain that allowed us to simplify the design. Once a board is en-
countered there is no need to change its predecessor, because the cost of reaching
it through the sequence of a previous encounter is always as good or better than
the cost through the new sequence. In a full-fledged A* algorithm, the costs of
the different sequences to a board must be examined to always maintain the
sequence with the least cost.

6 Facilitating Deployment in the Classroom

The most important computational components of the presented N-puzzle solver
have been developed in this article. The remaining components have to deal
with the development of the interface with a player. The developers of HtDP
have implemented a library (or teachpack as referred to by HtDPers), called
universe, that allows students to easily develop interactive programs such as a
video game [3]. Universe envisions an animation as a series of snapshots of an
evolving world. There is a clock that at every tick displays the next snapshot of
the world. Students must define the elements of the world and define functions
for computing the next snapshot of the world when the clock ticks or when an
external event, such as a keystroke or a mouse movement, occurs. Students must
also define functions for drawing the world and for detecting the end of the
game/animation.

It is important to carefully gauge the amount of work that beginning students
are asked to do. Although the universe library truly simplifies the development of
video games, sometimes students feel overburdened by the fine details of deciding
on what tile a mouse click has occurred or of drawing the N-puzzle with a help
7 This function does not appear in Figure 10 due to space limitations for figures.
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button. If such is the case, invariably students get bogged down by writing
drawing and mouse processing functions which leads them to relegate to the
back burner the important lessons about generative and accumulative recursion.
After all, in the mind of a beginning student nothing makes sense if you can
not play the game. When faced with such a problem, the best course of action
may be to eliminate the need for students to develop these low-level functions.
This can be achieved by writing a library/teachpack specifically for the N-puzzle
problem. The teachpack ought to include all the functions necessary for drawing
the puzzle with the help button and for processing mouse events as well as
the interface with the universe teachpack. In this manner, students can focus
on the important lessons of generative and accumulative recursion. The downside
of this approach, of course, is that it reduces the opportunities to reinforce
previous lessons. An instructor must decide what the right balance is for the
students in the classroom.

7 Related Work

The most closely related work on teaching generative and accumulative recur-
sion to beginners is presented in HtDP. HtDP presents generative recursion as
programs that have recursive calls that do not operate on part of the input. In-
stead, they generate a new instance of the problem. The examples used include,
among others, moving a ball across a canvas, quicksort, fractals, and the compu-
tation of the greatest common divisor (gcd) of two numbers. Of these, the only
example that truly captures the imagination of students is fractals. The reason
is that fractals allow for a student to personalize their solutions to problems.
Problems like quicksort and gcd, although important to be exposed to, do not
permit for the personality of the student to be incorporated into their programs.
Fractals and the N-puzzle video game, allow students to personalize solutions
to their liking and that seems to be a great motivator by giving students a cre-
ative outlet to distinguish themselves and their work. The important lesson is
to strike a balance between problems that allow personalization and those that
do not. Both need to be included in a CS1 course. Problems that do not allow
personalization, force students to focus on the lessons of designing functions that
use generative recursion. Once those lessons have been presented and practiced,
it is important to give students a chance to have a little fun with problems that
allow personalization like the N-puzzle problem. In the N-puzzle problem, stu-
dents can personalize the board (e.g., letters, number, images, etc.), the color of
the tiles, and the definition of the winning board.

HtDP introduces accumulative recursion as a solution to the loss of knowledge
between recursive calls. This can lead to efficiency issues in the case of programs
designed using structural recursion or to problems not being solved in the case of
generative recursion. The examples developed include finding a path in a graph
and reversing a list. HtDP also outlines exercises that, like the work presented
in this article, require students to combine skills to design programs that exploit
structural, generative, and accumulative recursion. None of the problems are
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video-game-based, but, in fairness, HtDP was published before the development
of the universe teachpack.

To the best knowledge of the author, there have been no published attempts
to have beginning students work on the N-puzzle problem nor on developing A*-
like algorithms. The N-puzzle game has been used to motivate topics in Artificial
Intelligence and Machine Learning [5]. In addition to using the N-puzzle in an
undergraduate AI course, the authors report using the N-puzzle game in a data
structures and an algorithms course. In contrast, the approach presented in this
article targets beginning students.

8 Concluding Remarks

The teaching philosophy of program by design put forth by HtDP when applied to
the design of functional video games is a powerful combination that allows CS1
students to receive a solid introduction to programming while at the same time to
become enthusiastic about the field of Computer Science. The enthusiasm comes
from seeing in practice that what they are learning in the classroom is directly
applicable to a domain that is of interest to them. In addition, the video game
domain allows students to personalize solutions which means that students are
not all producing the exact same solution to problems. Contrast this to solving
problems in a Mathematics, Physics, or Chemistry course and it is easy to see
why students find working with video games fun, personally rewarding, and
enlightening. There are examples in the literature that illustrate how to design
animations and video games that require the use of primitive data, structures,
and structural recursion. The work described in this article is an example of
how, in the CS1 classroom, to make the transition from structural recursion
to generative and accumulative recursion using a video game as motivation to
capture student enthusiasm. The choice of game, the N-puzzle, was made to also
demonstrate that informed heuristic search strategies, traditionally the domain
of undergraduate courses in Artificial Intelligence, are within the grasp of CS1
students. Students do not simply study such an algorithm. Instead, the full
power of program by design allows CS1 students to reason such an algorithm
into existence. If this work is replicated elsewhere, there is no doubt that it
will be an exciting time for Computer Science education and it will elevate the
relevance of functional programming in the minds of future CS professionals.

Future work includes demonstrating how functional video games can be an
effective pedagogical tool for motivating and teaching distributed/parallel pro-
gramming to CS1 students. Functional programming has been identified as pro-
viding a clear and concise way to program parallel computers and distributed
computations [7,10]. It is time for this knowledge to reach down to the CS1 class-
room. The approach will assume that students have a foundation using different
forms of recursion as well as abstraction and will use the universe teachpack as
in the work described in this article. A second line of future work is to extend the
work presented in this article to other, more complex, games such as checkers
and chess. The biggest challenge in this second line of future work is identifying
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heuristics that can be understood and implemented by CS1 students. Finally, a
third line of future work focuses on the impact the use of video games in CS1
has on detecting plagiarism. The hypothesis underlining this line of work is that
a programming medium that allows for the personalization of solutions, such as
the development of video games, may make it easier for instructors to detect
plagiarized code.
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Abstract. Workflow Management Systems (WFMSs) are software ap-
plications that coordinate business processes. The coordination is based
on a workflow model, expressed in a domain-specific Workflow Descrip-
tion Language (WDL). WDLs are typically graphical languages because
the specification has to be understandable for domain experts as well as
workflow application developers. Commonly, only simple workflows can
be described while additional coding is needed to turn the description
into a running application. The iTask system is a combinator library,
embedded in Clean, to construct WFMSs. Complex workflows can be
defined declaratively from which a complete web-based application is
generated. However, the textual specification is less suitable for domain
experts who are used to graphical notations. In this paper we address
this problem and present GiN: a graphical notation for iTask workflows,
as well as a prototype implementation of a tool to construct GiN work-
flows interactively and graphically. The tool is fully integrated in the
iTask system: it is just another iTask component, and workflows created
with GiN can be subsequently added and executed dynamically as part
of other workflows.

1 Introduction

In this paper we present GiN (Graphical iTask Notation). GiN is both a graphi-
cal notation for the iTask system as well as a tool to construct iTask workflows in
an interactive and graphical way. The iTask system [18] is a combinator library,
embedded in the pure and lazy functional programming language Clean, to con-
struct Workflow Management Systems (WFMSs) in a functional style. WFMSs
are software applications that coordinate business processes. This coordination
is based on a workflow model: a formal description in a Workflow Description
Language (WDL) of the tasks that comprise a business process.

Conventional WDLs have a graphical nature. This has as advantage that their
notation is perceived as intuitive and can be used in the development process by
both workflow engineers and domain experts. Frequently, these WDLs are based
on (colored) Petri nets [2]. In contrast, the iTask EDSL uses a textual WDL. To
understand and appreciate an iTask workflow model, one needs to be trained in
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functional programming. It is our goal to make the iTask system and formalism
accessible for the workflow community. GiN is the first step in this project to
achieve this goal.

The GiN language is a hybrid language that combines graphical elements
with textual elements. Where suitable, the graphical elements are borrowed from
graphical WDLs used in the workflow community. GiN adds a few new graphical
elements that are particular to iTask. Right from the beginning we have decided
that GiN is not a visual programming language substitute for Clean. That would
defeat the purpose of GiN of being an accessible tool for domain experts who are
not trained in functional programming. Furthermore, in contrast with conven-
tional systems, the iTask system can generate a complete web-based application
from a workflow specification. In conventional systems, the graphical definition
of a workflow is only a partial specification that defines the control flow between
tasks, and hence, a significant programming effort is required to implement the
data dependencies and data flow. For these reasons we think it is reasonable that
in GiN not all parts of a workflow can be expressed graphically. The current ver-
sion of GiN is restricted to the ‘classic’ iTask combinator language core [18].
Recent extensions of the iTask API, such as run-time changes [19] and support
for GUIs and shared data [15] are not supported yet. This is future work.

The GiN tool is an interactive and graphical editor to create iTask workflows.
It supports the user with direct feedback about mistakes in the workflow under
construction. The GiN tool is integrated in the iTask system, and can be used
like any other task in a workflow.We envision that this integration is particularly
useful in the presence of change [19] when workflow engineers or managers need
to design alternative workflows quickly and correctly.

The contributions of our work are:

– We define and motivate a new hybrid WDL, GiN, that combines the salient
features of iTask with elements from the workflow community.

– We design and implement a prototype GiN tool that allows users to construct
GiN workflows while being continuously informed about the correctness of
the workflows under construction.

– We integrate the GiN tool in the iTask system. Workflows can invoke the
tool, and use the output subsequently.

The remainder of this paper is organized as follows. First, we define the GiN
language in Section 2. The GiN tool and its design choices are described in
Section 3. Section 4 defines the formal semantics and explains how to compile
GiN specifications to executable workflow applications. Related work is discussed
in Section 5. Section 6 presents conclusions and future work.

2 The GiN WDL

In this section we introduce the GiN language. We first give a concise introduc-
tion to the iTask WDL (Section 2.1), followed by the GiN WDL (Section 2.2),
and give an example of a higher-order workflow (Section 2.3).
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2.1 The iTask WDL

The iTask WDL is a combinator language, constructing basic and composite
tasks of abstract type Task a. Figure 1 shows an excerpt of the signatures of
basic tasks and task combinators. The iTask WDL is generic: the generic type
class constraint | iTask allows the framework to automatically derive a fully
operational web-based GUI for any value of any first-order data type. In Clean
both overloaded and generic constraints are placed at the end of a type signature.
For instance, in Figure 1, descr is a type constructor class, and iTask is a generic
class. The semantics of iTask is formally defined [11,19].

updateInformation :: d a → Task a | descr d & iTask a

showMessage :: d → Task Void | descr d

return :: a → Task a | iTask a

(>>=) infixl 1 :: (Task a) (a → Task b) → Task b | iTask a & iTask b

(>>|) infixl 1 :: (Task a) (Task b) → Task b | iTask a & iTask b

(-||-) infixr 3 :: (Task a) (Task a) → Task a | iTask a

(-&&-) infixr 4 :: (Task a) (Task b) → Task (a,b) | iTask a & iTask b

anyTask :: [Task a] → Task a | iTask a

allTasks :: [Task a] → Task [a] | iTask a

(@:) infix 3 :: User (Task a) → Task a | iTask a

Fig. 1. Excerpt of basic tasks and task combinators of the iTask WDL

The basic task (updateInformation descr init) generates a GUI to allow the
user to update an initial value init; the task (showMessage descr) shows a message
descr to the user and returns the Void value when terminated. The iTask WDL is
monadic, and provides the usual monadic core combinators: return lifts a value
to the task domain and >>= binds two tasks sequentially. a >>| b is shorthand for
a >>= λ_ → b, which will discard the value of task a. Tasks can be composed in
parallel. Either the result of the first completed task is returned (-||- and anyTask

combinators) or the results of all parallel tasks are collected and returned as a
whole (-&&- and allTasks). Finally, a task t can be assigned to a user u with u @: t.

2.2 The GiN WDL

Although the iTask library is a textual formalism, a graphical notation comes
naturally. We have studied a number of graphical WDLs for defining workflows
to see what graphical notation is used. These WDLs are workflow nets [1], YAWL
[3], event-driven process chains [9], and UML activity diagrams [5]. Visual ele-
ments commonly found in these languages are workflow units, depicted as boxes,
control flow relations indicated by arrows, and decision and parallel structures
indicated by separate split and merge connectors. We refer to [8] for a detailed
discussion.

In order to make GiN appealing for workflow engineers, we have adapted
graphical notation from the above mentioned WDLs. Figure 2 shows the result.
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In a GiN project, a workflow is defined by means of a collection
of host language modules and task definition diagrams. The names
of task definitions and host language modules must not overlap. A
task definition diagram (see picture to the right) introduces a task
function of name f that uses parameters ai of types αi (i ≥ 0).
The parameter-names ai are simple variable names. There are
no restrictions on the types, and they can be (higher-order) task
types as well (the example in Section 2.3 illustrates this). The
body g of the task definition diagram is a directed graph, con-
sisting of the nodes that are summarized in Figure 2 and edges
that are optionally labeled with host-language pattern expressions. Figure 3 enu-
merates the way in which the graph can be constructed by means of production
rules, denoted as (pattern ⇒ substitution). In the production rules, variables a, b
match individual nodes, p, q match (possibly empty) host-language pattern ex-
pressions on edges, and e denotes a literal host-language expression. GiN graphs
are semi-block structured: rules Parallel and Parallel list, when applied
at nesting level n, introduce subgraphs at nesting level n + 1. Any part of the
top-level graph or a parallel subgraph which matches the pattern and concerns
elements at the same nesting level, can be replaced by its substitution. The rules
may be applied any number of times. We informally discuss the semantics of the
individual elements as we go along. The formal semantics and scope rules are
presented in Section 4.

All GiN graphs are constructed from Init. The Seq rule composes tasks se-

quentially: · p→ · corresponds with · >>= λp → ·, and · → · corresponds with ·
>>| ·. The tasks enumerated in Figure 2 (a - c) can be put in sequence with-
out restriction. A task application node applies a task function f to all of its
arguments. The arguments gi are GiN graphs or host-language expressions. If f
is defined by means of a task definition diagram or f is an iTask API function
(such as updateInformation or showMessage), then the names ai of its parameters are
repeated to guide the user to fill in the correct arguments. The names are absent
in any other case, for instance when invoking a task passed as an argument to a
higher-order task. The return node corresponds directly with the return combi-
nator from Figure 1. Its argument is a host-language expression or GiN graph,
so it is possible to return tasks. Similarly, the assign node corresponds directly
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Init

Seq

a b
p

⇒ a t b
p q

if t ∈ Figure 2 (a - c)
q optional

Parallel

t1 ⇒ ∧
t1
...

tk

j

if ti ∈ Figure 2 (a - c)
j ∈ Figure 2 (h)

Parallel list

a b
p

⇒ a ∧ l j b
p q

if l ∈ Figure 2 (d - e)
j ∈ Figure 2 (h)
q optional

Let

a b
p

⇒ a

a1=g1
...

...
ak=gk

b
p

if k > 0
gi = Init ∨
gi is host expression

Case

a b
p

⇒ a e b
p q

Merge

a b
p

⇒ a b
p

Alt

e ⇒ e
p

Fig. 3. GiN graph production rules

with the @: combinator from Figure 1. Here umust be a host-language expression
of type User, and g is a GiN graph.

One can replace a single task t1 by a group of parallel tasks t1 . . . tn (n > 0)
by means of the Parallel rule. Each of these tasks is evaluated in parallel. The
termination behavior of this group is determined by means of the join node value
j which corresponds one-to-one with the parallel combinators from Figure 1: j =
∨1st corresponds with anyTask, j = ∧[] corresponds with allTasks, and j = ∧(,)

corresponds with -&&-. The group of parallel tasks can also be supplied as a list,
in which case rule Parallel list applies. Either a static list can be used, or a
list comprehension, in which x, l and the optional predicate p are host-language
expressions.

Edge-patterns introduce identifiers. Identifiers can be used or also introduced
with the Let rule and bind to either host-language expressions or new GiN
graphs. Within a let, ai = gi precedes aj = gj if i < j.

With theCase,Merge, andAlt rules loops can be constructed using guarded
choice. A case node has indegree one and positive outdegree, and a merge node
has positive indegree and outdegree one. Edges starting from a case node are
labeled with a host-language pattern expression that must have the same type
as the host-language expression inside the case node. It is allowed that the ‘last’
edge is not labeled, which corresponds with the default case. Note that ‘last’ is
determined in left-to-right, top-to-bottom order of edges.

Evaluation. The GiN language has been designed to make the iTask WDL
more accessible for workflow engineers and domain experts. The question needs
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to be answered whether we have moved sufficiently close towards the workflow
community, and, dually, whether we have not moved too far away from the
iTask WDL. We have yet to conduct experiments to verify the first question,
but we can answer the second question affirmatively. The GiN WDL is arguably
simpler than the full-blown textual iTask WDL: we do not allow currying in task
applications, pattern-matching and guards are absent in task definitions, and list
comprehensions are limited to a single generator-filter. However, the GiN WDL
still preserves the salient iTask features: parameterized tasks and higher-order
tasks can be defined and used, recursive workflows can be defined, and control
flow and data flow are tightly integrated.

2.3 Example

To illustrate GiN, we implement an English auction workflow. In this type of
auction, a number of bidders compete to purchase a ware. They are requested
to place bids of increasing price. This process is controlled by an auctioneer who
starts the opening bid. The process is terminated by the auctioneer when no
bidder puts forward a higher bid. First, we define a Bid record type:

:: Bid = { user :: User // bid is done by bidder or terminated by auctioneer
, ware :: String // name of merchandise (�= “”)
, price :: Int // price (> 0)
}

The auctionworkflow is defined in a task definition diagram (Figure 4). The auction
workflow yields a bid. The first parameter of auction, bidf, abstracts over the con-
crete way of bidding (an example could be updateInformation "Make your bid") and
illustrates the use of higher-order tasks. The auctioneer parameter is a User who
is in charge of the auction process, and starts with the opening bid. The bidders
parameter is a list of users [User] who compete to purchase a ware. Finally, current
is the currently pending Bid.

auction yields Bid
bidf is a Bid → Task Bid
auctioneeris a User
bidders is a [User]
current is a Bid

∧

foreach b

in [auctioneer:bidders]

b

bidf

current

∨1st

current = newBid

newBid.price

> current.price

newBid.user

== auctioneer
current

newBid

True

False

False

True

Fig. 4. Auction workflow example in GiN
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The auction workflow is an iterative process in which bidders and auctioneer
interact. With a list comprehension the participants (the auctioneer and all bid-
ders, denoted as [auctioneer:bidders]) are collected. Each participant is assigned
the same task (using the assign node): to enter a new bid according to the higher-
order task function bidf (using task application). The parallel list node uses the
∨1st parallel join node to determine the first person who enters a new bid. The
value of the bid is identified with the variable newBid (using a pattern-edge). The
topmost case distinction needs to inspect the new value newBid.price. If the price
is higher, it becomes the current bid (using let and looping back to the start of
the auction graph). If not, the person newBid.user who placed the bid is checked.
If she was not the auctioneer, the bid is invalid, and the process loops back to the
start of the auction graph without changing any value. Otherwise, the workflow
terminates and returns the most recent bid (using return).

3 The GiN Tool

In order to investigate whether the GiN language is useful in practice, we have
implemented a proof-of-concept tool to create and compile GiN diagrams. In
this section we discuss the editor component with which users can create and
maintain GiN diagrams. The compiler component is discussed in Section 4.

The GiN editor is based on the Oryx editor, which is part of the Oryx plat-
form [4]: an academic open source framework for business process management.
We use Oryx because it offers the standard editing functionality one expects
from such a graphical editor such as arranging and manipulation of graph ele-
ments. Reimplementing this is a duplication of effort. Besides, Oryx uses similar
web technologies as iTask, like the Ext JS web framework and the JSON data
interchange format, which facilitates integration.

Figure 5 shows a screenshot of the GiN tool. The editor consists of a drawing
canvas and a repository. The drawing canvas shows the task definition diagram
under construction. The repository shows the available node types from Figure 2.
Other task functions in the iTask API are available as task application nodes.
Workflows are compositional: both from textual and graphical workflow defini-
tions, one can import other (textual or graphically defined) modules.

While the user is constructing a workflow, the editor continuously provides her
with informative feedback. GiN diagrams can contain two sorts of errors: either
the diagram does not conform to the GiN graph structure or (combinations of)
literal host language expressions are erroneous. The first sort of error is detected
by the compilation process of a GiN diagram under construction to iTask code,
and the second sort of error by invoking the Clean compiler on the generated
code. Due to the speed of the Clean compiler, this process is not excessively time-
consuming. On a test system (Intel Core 2 Duo, 2.1 GHz), we measure response
times in the order of 100 milliseconds, which is acceptable for interactive use. The
GiN tool parses error messages that may have been generated in the two steps
and indicates the source of the error on the right spot in the GiN diagram under
construction. An example indication is visible in Figure 5, where the diagram
contains an undefined variable name.
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Fig. 5. Editing the auction example in the GiN tool embedded in the iTask system

The GiN tool is integrated in the iTask system. This has several consequences.
First, from the point of view of the iTask system, the GiN tool ‘is just another
editor’ for values of type GiNDiagram (the internal data structure that is used
to represent GiN diagrams). By adding (updateInformation "Create your workflow!"

myGiNDiagram) in any workflow definition results in the creation of the GiN tool
to allow the user to work on a GiN diagram with initial value myGiNDiagram. As
a consequence, it can be used in a meta workflow: an iTask workflow which
defines how new workflows have to be constructed. One can think of scenarios
where some people construct workflows with the GiN tool, while others have to
approve the workflow thus designed. Second, as part of such a scenario one also
wants to use such a new workflow once it has been approved. This means that
the resulting code corresponding to the new workflow has to be dynamically
plugged in into the running iTask application. Clean facilitates this by making
use of dynamic types [17] and the ability to link any value of a dynamic type
into a running application [23]. Third, this technology allows the user to browse
her repository of created workflows, and use them to build new workflows, just
by drag-and-drop in the user interface of the tool. Fourth, in the iTask project, a
first step towards adaptability has been set, by making the technical abilities to
make changes to running tasks [19]. We envision that the GiN tool is particularly
useful to make changes right on the spot, in an understandable way for end users.

4 The GiN Compiler

In this section we discuss the compilation process of GiN diagrams under con-
struction to iTask workflows. The basic idea is that the GiN tool serves as a
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GiN
editor

GiN
diagram

Pre-
processor

Clean
source
file

Clean
compiler

Executable

structural errors
compiler errors

Fig. 6. Compilation steps

preprocessor for the Clean compiler (Figure 6). The preprocessor detects ill-
structured diagrams and generates error messages. Well-structured diagrams are
compiled to textual iTask source files. The Clean compiler detects remaining er-
rors and generates error messages. Correct iTask programs are compiled to an
executable that generates a dynamic on disk that can be used for further pro-
cessing, as described in Section 3.

Internally, a diagram is represented as a graph structure of type GiNDiagram,
consisting of a set of nodes and a set of edges. In order to represent iTask
source files, we define an abstract syntax tree (AST) containing only the ele-
ments needed for the mapping. These elements are function definitions, literals,
variables, prefix and infix applications, lambda abstractions, case expressions,
let-expressions, tuples, lists and simple (one-generator) list comprehensions. Lit-
eral Clean expressions found in diagrams are stored as literal text in the AST.
By pretty-printing the AST, we obtain an iTask source file.

The preprocessor transforms the nodes and edges in the GinDiagram graph to
expressions in the AST. We have seen in Section 2 that the parallel constructs
consist of separate split and join nodes. These nodes are mapped pair-wise to
a single iTask expression. Given the fact that constructs may be arbitrarily
combined, the question is how to identify the corresponding nodes that should
map to an expression. A complicating factor is that the graph structure may
contain cycles to express loops.

A similar problem is more widely known in the workflow community. Many
WDLs used in business modeling are graph based : these WDLs use a graph struc-
ture which allows arbitrary unstructured connections between nodes. Execution-
oriented WDLs are often block based, allowing only structured compositions of
properly nested blocks. When mapping a graph-based WDL onto a block-based
WDL, the structured subgraphs need to be identified in order to map them. A
structured subgraph has a unique entry node and a unique exit node.

In [22], Vanhatalo et al describe a linear time algorithm that decomposes a
graph into a tree structure, named Process Structure Tree (PST). The branches
in the PST are the structured subgraphs, while the leaves contain the individual
nodes from the original graph.

The mapping [[g]]graph of a GiN graph g to an iTask expression takes three
steps. First, g is decomposed into a process structure tree, consisting of sub-
graphs. Second, each subgraph is classified into one out of four categories. Third,
each subgraph is mapped to a subexpression. For each category, we define a
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different mapping. The individual subexpressions are composed according to the
tree structure, resulting in an iTask expression representing the entire graph.
Note that individual nodes of GiN graphs may contain GiN graphs themselves,
for instance the return node. These graphs are mapped recursively using [[g]]graph.
We will now discuss each of the steps in detail.

First, we decompose the GiN graph into a process structure tree, using the
algorithm mentioned above. We add two restrictions: the exit node of a subgraph
cannot be a case node (to ensure each case alternative has an expression), and
individual let, parallel split, parallel join, case andmerge nodes (Figure 2 f - j) are
not decomposed to subgraphs. As an example, we show the identified subgraphs
of the auction workflow (labeled A . . .D), the individual nodes (labeled e . . . l),
together with its corresponding PST in Figure 7.

∧

foreach b

in [auctioneer:bidders]

b

bidf

current

∨1st

current = newBid

newBid.price

> current.price

newBid.user

== auctioneer
current

newBid

True

False

False

True

e
f h

i

j

k l

D

C,g

B

A

A

e B

f C

g

h

i j k D

l

Fig. 7. Subgraph decomposition and corresponding PST in the auction example

Second, we classify each subgraph in the PST decomposition, with entry node
s and exit node t, into in one of these four categories:

– Trivial subgraphs, which consist only of a single node, so s = t.
– Structured parallel subgraphs, in which s is a parallel split node, t is a parallel

join node, s splits to nodes ai, and nodes ai join to t.
– Sequential subgraphs, which do not contain any parallel split or parallel join

nodes. Hence, these graphs are purely sequential, but may contain non-block
structured branches and arbitrary cycles.

– Other subgraphs, which do not fit any of the above categories.

In the auction example, subgraph A is a sequential subgraph, B a structured
parallel subgraph, and C and D are trivial subgraphs. Graphs in the first three
categories can be mapped to iTask expressions. Other graphs from the fourth cat-
egory are rejected, and an error is reported to the user. Such graphs may con-
tain parallel branches which are not properly block structured, and thus cannot
be expressed in terms of the ‘classic’ set of core iTask combinators. These cases
could possibly be expressed using recent extensions of the iTask API [15], but this
belongs to future work.
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Map [[g]]trivial of trivial subgraphs

Task application

f

a1 g1
...

...
ak gk

= f [[g1]]graph . . . [[gk]]graph

Return

g′ = return [[g′]]graph

Assign

u

g′ = u @: [[g′]]graph

Literal

[[e]] =
e if e is a host lan-
guage expression

Map [[g]]parallel of parallel subgraphs

Parallel

∧
g1 . . . gk

j

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

anyTask [[[g1]]graph, . . . ,
[[gk]]graph] if j = ∨1st

[[g1]]graph -&&- [[g2]]graph
if j = ∧(,) and n = 2

allTasks [[[g1]]graph,. . . ,
[[gk]]graph] if j = ∧[]

Parallel list

∧
l

j

=

{
anyTask [[l]]list if j = ∨1st

allTasks [[l]]list if j = ∧[]

Map [[l]]list of lists

List

g1
...

gk

=

[ [[g1]]graph
, . . .
, [[gk]]graph
]

List comprehension

foreach x in l′

given p

g
=

[[[g]]graph \\ x←l′ | p ]
Note: if given p is absent:
[[[g]]graph \\ x←l′ ]

Map [[n]]node of nodes in sequential subgraphs

Case

e =

case e of
p1 = [[n1]]node

...
...

pk = [[nk]]node

= [[o]]node

if succ(n) = {n1, . . . , nk, o}
∧n p1→ n1 ∧ . . . ∧ n

pk→ nk

∧n → o
Merge

i = fi
−−−−−−−−−−−−→
in(n) \ {fi} \ env

if ¬ends(n)

Let

a = g =
(λa → [[n′]]node)[[g]]graph
if succ(n) = {n′}
∧¬ends(n′)

Bind

n =

[[n]]graph >>= λp → [[n′]]node

if succ(n) = {n′}
∧n p→ n′ ∧ ¬ends(n′)

Sequence

n =
[[n]]graph >>| [[n′]]node

if succ(n) = {n′}
∧n → n′ ∧ ¬ends(n′)

Terminal

n =

[[n]]graph
if succ(n) = ∅
∨( succ(n) = {n′}

∧ends(n′))

Fig. 8. Map of graphs and nodes to host language expressions
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Third, we map each of the subgraphs to a subexpression. For a subgraph g,
let entry(g) and exit(g) be respectively the entry and exit node of g, as result-
ing from the PST decomposition. For a node n, let succ(n) be the set of direct
successor nodes of n. We define the scope rules by means of two parameter-
ized sets: in(n) defines all known symbols immediately before entering n and
out(n) defines all known symbols immediately after exiting n. If g is a graph,
then in(g) = in(entry(g)) and out(g) = out(exit(g)). Suppose we have a task
definition diagram in an environment env that defines identifiers. If this diagram

has name f , arguments
−−−−−−→
ai is a αi, and body g, then in(g) = env ∪ {f} ∪ {−→ai}.

Trivial subgraphs are mapped according to the [[g]]trivial map of Figure 8. The
Task application node n has a name f and parameters g1 . . . gk, which are
GiN graphs or Clean expressions. This node is mapped to a function application,
in which the arguments are mapped recursively. The scope of the task application
is closed, hence out(n) = in(n). The Return node n maps to the monadic
return combinator. The argument g′ is mapped recursively. Its scope is closed:
out(n) = in(n). The Assign n node, which assigns a graph g′ to a user u, maps
to the @: iTask operator. The graph g′ is mapped recursively. We have in(u) =
in(g′) = in(n) and out(n) = out(g′). A Literal e allows the embedding of
literal host language expressions. Its scope is closed, so out(e) = in(e).

In structured parallel subgraphs, the parallel split node and parallel join node
j are mapped pair-wise to a corresponding iTask combinator, according to the
map [[g]]parallel of Figure 8. Each of the graphs gi in the parallel branches is
mapped recursively and put in a list. Alternatively, if there is only one branch
consisting of a List or List comprehension node l, that branch is mapped
straightforwardly to respectively a list or list comprehension, according to [[l]]list
in Figure 8. The scope of list (comprehension) is closed, so out(l) = in(l). The
scope of variables bound within a parallel branch is limited to that branch only.
This restriction avoids scope conflicts (what is the value of x if x was bound in
two parallel branches, after completion of both of them?). Hence, the scope of a
parallel graph g is closed: out(g) = in(g).

Sequential subgraphs may contain arbitrary cycles. The idea is to unfold the
paths starting from merge nodes ( ) into separate functions, defined in a let-
expression. Each edge entering such a merge node is translated to a tail-recursive
call of the corresponding function. More formally: let g be a sequential subgraph.
We define the predicate ends(n) = n is a merge node and either n = exit(g), or
there is a path from n to exit(g) consisting only of merge nodes. Let {mi} denote
the set of merge nodes in g for which ends(mi) does not hold. g is mapped to

let fi
−−−−−−−−−−−−−→
in(mi) \ {f} \ env = [[succ(mi)]]node in [[entry(g)]]node.

We define [[n]]node as a map from a node n to an expression, depending on the
context in which n occurs. [[n]]node is shown in Figure 8.

A Case node n is a direct visualization of the case-of in the host language:
given the literal expression e in node n, perform case distinction by means of the
literal patterns labeled on the outgoing edges of the node. At most one unlabeled
edge is allowed, which maps to the default case. The successor nodes denote the
alternatives, which are mapped recursively by [[n]]node. They are ordered from
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left to right, top to bottom, followed by the default case. The scope rules are
out(e) = in(e) = in(n), and for each pattern pi: in(pi) = out(e) and alternative
ni: in(ni) = out(e) ∪ free(pi ); the optional default case has in(o) = in(e).

A Merge node mi for which ¬ends(mi) holds, maps to a tail-recursive call
of the corresponding function fi in the let-expression, with arguments in(n) \
{fi} \ env . Since mi can have multiple incoming edges, in(mi) is defined as
the intersection of the sets of known symbols on each incoming edge. Hence,
a variable can only be passed across a merge node if it is known in all of its
incoming edges. The scope of Merge is closed: out(mi) = in(mi).

A Let node n suggests a mapping to the let host language construct. We
wish to allow Let-nodes in GiN which can be read like an assignment, e.g.
x = x+ 1 , which requires Let to have a non-recursive semantics. However,
let-expressions in the host language Clean are always recursive; Clean does not
have a separate letrec expression In order to get a non-recursive semantics, we
map Let nodes to a lambda abstraction and application, as shown in Let in
[[n]]node. Let nodes containing multiple definitions are simplified to a sequence
of singleton lets. The argument g of each Let node is mapped recursively. The
scope rules are in(g) = in(n), out(n) = in(n)

⋃{a}.
According to the Bind rule, a labeled edge n

p→ n′ maps to the monadic
bind operator and a lambda: n >>= λp→n′. Its scope rules are in(p) = in(n),
out(n′) = in(n′) = in(n) ∪ free(p). Likewise, the Sequence rule omits the
pattern: an unlabeled edge n → n′ maps to the monad sequence operator n >>|

n′. Its scope rules are out(n′) = in(n′) = in(n). Finally, the Terminal rule
ensures that if a node n is on a path with only merge nodes and leading to an
exit node, we stop after recursively mapping n.

For completeness, we show the translation of the auction example:

auction :: (Bid → Task Bid) User [User] Bid → Task Bid

auction bidf auctioneer bidders current =
let g bidf auctioneer bidders current =

anyTask [b @: bidf current \\ b← [auctioneer : bidders] ] >>= λnewBid →
case newBid.price> current.price of

True = (λcurrent → g bidf auctioneer bidders current) newBid

False = case newBid.user= auctioneer of
True = return current

False = g bidf auctioneer bidders current

in g bidf auctioneer bidders current

This is different from a typical task function manually written by an iTask pro-
grammer. The local function g is redundant here; instead auction could have been
called directly. Besides, the Clean language allows us to express the conditions
more compactly using guards, which are not available in GiN.

5 Related Work

Many graphical WDLs are based on directed graphs and primarily model control
flow. Data flow is added as an additional layer, in which all data is often glob-
ally accessible and stored in databases. Specifications are often partial, and hence
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require a significant additional software engineering effort in order to create a
complete executable WFMS. There exist numerous graphical WDLs: industry
standards like Event-driven Process Chains (EPCs) [13], UML activity diagrams
[5], BPMN [16], and proprietary WDLs from WFMS vendors. As explained in
Section 2, the GiN language adopts notational conventions found in these graph-
ical WDLs. Because GiN is based on the underlying iTask WDL, GiN diagrams
have an executable semantics and express both control flow and data flow. Work-
flow data is strongly typed. Recursive and higher-order workflows can be defined
graphically. GiN diagrams are hybrid, and can embed Clean code to express more
complex business rules.

BPEL is a text-only, XML-based industry standard for expressing executable
workflows based on web services. Several vendors invented their own (differ-
ent) graphical tools for BPEL, like ActiveBPEL designer and Eclipse BPEL
designer. Another approach is mapping BPEL to an existing graphical notation,
like EPCs [14] or a subset of BPMN [21]. These systems focus on the coordina-
tion of web services. In the GiN/iTask system, web services can be included as
basic tasks as well. The expressive power of the BPEL coordination language is,
compared to GiN/iTask, relatively simple. Specification of user interaction and
form handling is not part of BPEL.

We may consider the GiN language to be a visualization of a subset of a func-
tional language, with the intent to make the language more accessible for users
with limited programming knowledge. In this respect, it is similar to projects
like Visual Haskell [20], VFPE [10], Vital [7], Eros [6], and Sifflet [24]. However,
these visualizations are designed to be complete visual functional programming
languages. Therefore their granularity of diagram language is much more fine-
grained than that of GiN, which is designed specifically to support the iTask
WDL in a graphical way.

The way the GiN tool provides immediate feedback to inform the user about
errors in the GiN diagrams is very much related to the continuous validation ap-
proach by Kühne et al [12]. They define a formalism in which a set of validation
rules can be specified that are checked against an EPC model under construc-
tion. In our approach syntactic mistakes are detected in the preprocessor, and
semantic mistakes by the Clean compiler.

6 Conclusions and Future Work

The GiN language is a new WDL that mixes graphical elements (inspired by the
workflow community WDLs) with textual elements (inspired by the functional
host language) and that connects control flow with data flow. With the GiN
tool users can create GiN workflows. During this process, they are continuously
given feedback about the correctness of the diagrams under construction. The
next step in this project is to verify whether the GiN language and tool is indeed
appreciated by domain experts when it is used in concrete projects. However,
experienced programmers may prefer to create workflows directly in iTask. In
order to visualize these workflows, it would be interesting to investigate a reverse
mapping from iTask to GiN.



GiN: A Graphical Language and Tool for Defining iTask Workflows 177

GiN workflows are complete: when the specification is approved by the com-
piler, a runnable workflow is generated from it. Such newly defined approved
workflows can be dynamically added to a running WFMS. The GiN tool is ‘just
another iTask editor’. This allows one to define meta workflows: workflows for
defining workflows. Consequently, the construction, approval and use of new
workflows can be formally defined for a particular organization.
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Abstract. In functional programming one usually writes programs as
the composition of simpler functions. Consequently, the result of a func-
tion might be generated only to be consumed immediately by another
function. This potential source of inefficiency can often be eliminated
using a technique called shortcut fusion, which fuses both functions in-
volved in a composition to yield a monolithic one. In this article we
investigate how to apply shortcut fusion to applicative computations.
Applicative functors provide a model of computational effects which gen-
eralise monads, but they favour an applicative programming style. To the
best of our knowledge, this is the first time shortcut fusion is considered
in an applicative setting.

1 Introduction

One of functional programming much advocated benefits is the possibility of eas-
ily constructing large and complex programs through the combination of smaller
or simpler ones [12]. This modular approach, however, often results in programs
which are quite inefficient when compared to their monolithic counterparts: com-
positional design often involves creating an intermediate data structure which is
immediately consumed. In order to alleviate this problem, several formal tech-
niques have been developed that allow the derivation of efficient programs from
simpler modular ones. The way these techniques are usually discovered is by
identifying common patterns in programs, analyzing these patterns, and obtain-
ing algebraic laws for programs that fit the pattern [18].

Among these techniques lies shortcut fusion [11,20] which is concerned with
the elimination of unnecessary list traversals. It is based on a single transfor-
mation: the foldr/build rule which fuses the application of a uniform list-
consuming function, expressed as a fold on lists, to the result of a uniform
list-generating function, expressed in terms of the build combinator. This fusion
rule can be generalised to any inductive datatype, yielding the following generic
rule:

fold k ◦ build g = g k

Shortcut fusion has been extended to cope with cases where the intermediate
structure is produced in certain contexts. For example, shortcut fusion has been
considered for monadic computations [6,13,14], unstructured functors [7], accu-
mulations [15] and circular programs [5,19].
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A recent development is the notion of applicative functor [16]. Applicative
functors provide a novel manner in which effectful computations can be con-
structed that has gained a rapid acceptance among functional programmers.
However, shortcut fusion under an applicative context has not yet been studied.
Precisely, in this article, we investigate shortcut fusion under the context of an
applicative computation, we identify common patterns in which many applica-
tive programs are written, and give algebraic laws that apply to programs that
fit those patterns. Concretely, the contributions of this article are:

– We show how to do shortcut fusion on applicative computations.
– We identify a common pattern in applicative programs which shows the

importance and generality of traversals for generating applicative structures
and their fundamental role in applicative shortcut fusion.

– We provide a combinator (ifold ) which models the uniform consumption of
applicative computations.

The paper is organised as follows. In Section 2 we review the concept of shortcut
fusion. In Section 3 we present the notions of applicative and traversable functors.
Section 4 develops the notions of applicative shortcut fusion and applicative
structural recursion. In Sections 2 to 4 our motivating examples are on lists. In
Section 5 we show the datatype-generic formulation of the concepts and laws
presented in previous sections. Finally, in Section 6 we conclude and discuss
future work.

Throughout the paper we asume we are working in the context of a functional
language with a Haskell-like syntax and with a set-theoretic semantics in which
types are interpreted as sets and functions as set-theoretic functions.

2 Shortcut Fusion

Shortcut fusion [11] is a program transformation technique for the elimination
of intermediate data structures generated in function compositions. It is a con-
sequence of parametricity properties, known as “free theorems” [21], associated
with polymorphic functions. Given a composition fc ◦ fp, where fc is called the
consumer and fp the producer of the intermediate structure, shortcut fusion re-
quires for its application that both consumer and producer definitions conform
to determinate structural requirements. Like other fusion laws of its kind, short-
cut fusion requires that the consumer be expressible as a fold [4]. The producer,
on the other hand, is required to build the intermediate data structure using
uniquely the constructors of the datatype. This is expressed in terms of a func-
tion, called build, which carries a “template” that abstracts from the function
body the occurrences of those constructors. For example, when the intermediate
structure is a list, fold and build are given by the following definitions:

foldr :: (a → b → b) → b → [a ] → b
foldr f e [ ] = e
foldr f e (x : xs) = f x (foldr f e xs)
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build :: (∀b.(a → b → b) → b → c → b) → c → [a ]
build g = g (:) [ ]

where foldr is a well-known function pattern in functional programming [4].
The essential idea of shortcut fusion is then to replace, in the template of build,

the occurrences of the constructors of the intermediate structure ((:) and [ ] in
the case of lists) by the corresponding operations carried by the fold. The second-
order polymorphism of build ensures that the argument can only manufacture
its result by using its two arguments. For lists, shortcut fusion is expressed by
the following law, usually referred to as the fold/build law.

Law 1 (foldr/build [11])

foldr f e ◦ build g = g f e

As a result of the application of this law one obtains an equivalent definition that
computes the same as the original consumer-producer composition but avoiding
the construction of the intermediate data structure.

Example 1. To see an application of Law 1 we define a function that computes
the sum of the positionwise differences between two lists of numbers.

sumDiff :: Num a ⇒ ([a ], [a ]) → a
sumDiff ys = sum ◦ diffList
diffList :: Num a ⇒ ([a ], [a ]) → [a ]
diffList (xs, [ ]) = [ ]
diffList ([ ], y : ys) = [ ]
diffList (x : xs, y : ys) = (x − y) : diffList (xs , ys)

Function sum has the usual definition as a foldr: sum = foldr (+) 0. When
applied to a pair of lists (xs , ys), diffList computes the list of differences between
values in xs and ys , up to the shorter of the two lists. This function is a good
producer in the sense that it can be expressed in terms of build :

diffList = build gdiff
where
gdiff cons nil ( , [ ]) = nil
gdiff cons nil ([ ], ) = nil
gdiff cons nil (x : xs , y : ys) = cons (x − y) (gdiff cons nil (xs , ys))

Once we have consumer and producer expressed in terms of foldr and build we
are in a position to apply Law 1, obtaining the following definition for sumDiff :

sumDiff = gdiff (+) 0

Inlining the definition,

sumDiff ( , [ ]) = 0
sumDiff ([ ], ) = 0
sumDiff (x : xs, y : ys) = (x − y) + sumDiff (xs, ys)
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In this paper we are also interested in a generalised form of shortcut fusion
which captures the case where the intermediate data structure is generated as
part of another structure. This generalisation has been a fundamental tool for
the formulation of shortcut fusion laws for monadic programs [14,7], and for the
derivation of (monadic) circular and higher-order programs [19,5]. In this paper
our aim is to analyse this generalisation in the case when the effects are given
by applicative functors.

The generalisation of shortcut fusion [7] is based on an extended form of build.
For lists, it has the following definition:

ebuild :: Functor f ⇒ (∀b.(a → b → b) → b → c → f b) → c → f [a ]
ebuild g = g (:) [ ]

where f acts as a container of the generated list. The type requires f to be an
instance of the Functor class, which ensures that f has an associated function
fmap :: (a → b) → f a → f b that preserves composition and identity.

Law 2 (foldr/ebuild [7])

fmap (foldr f e) ◦ ebuild g = g f e

The use of fmap means that fusion acts on the occurrences of the list type within
the context structure, maintaining the context structure unchanged.

3 Applicative Functors

An applicative functor (or idiom) [16] is a type constructor f :: ∗ → ∗, equipped
with two operations:

class (Functor f ) ⇒ Applicative f where
pure :: a → f a
(�) :: f (s → t) → f s → f t

Intuitively, pure lifts a pure computation into the effectful context defined by
f and � performs an effectful application. Instances of pure and � must verify
certain laws (see e.g [16] for details).

Example 2 (Maybe). The Maybe applicative functor models failure as a compu-
tational effect.

instance Applicative Maybe where
pure = Just
(Just f )� (Just x ) = Just (f x )

� = Nothing

All monads are applicative functors, taking � to be monadic application and
pure to be return. However, there are applicative functors which are not monads,
such as the one in the following example.
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Example 3 (Ziplists). The list functor has an Applicative instance other than
the one obtained from the list monad [16]. This applicative functor models a
transposition effect, and is defined as follows:

instance Applicative [ ] where
pure x = x : pure x
(f : fs)� (x : xs) = f x : (fs � xs)

� = [ ]

An applicative action is a function of type a → f b where f is an applicative
functor. Applicative actions can be used to perform traversals over a certain class
of data structures, threading an effect through the data structure. This class of
data structures is called Traversable:

class (Functor t) ⇒ Traversable t where
traverse :: (Applicative f ) ⇒ (a → f b) → t a → f (t b)

Alternatively, this class can be defined by means of a distributive law dist ::
f (c a) → c (f a) which pulls the effects out of the data structure. The
functions dist and traverse are interdefinable, with dist = traverse id and
traverse ι = dist◦fmap ι. The latter definition gives a concise description of what
an effectful traversal does: first populate the structure with effects by mapping
the applicative action and then collect them using the distributive law.

Example 4 (Lists). Lists are Traversable data structure, as witnessed by the
following instance:

instance Traversable [ ] where
traverse ι [ ] = pure [ ]
traverse ι (x : xs) = pure (:)� ι x � traverse ι xs

Example 5 (Reciprocal List). We want to define a function that computes the
reciprocals of a given list of numbers, failing if there is any 0 value in the list.
We can think of the computation of the reciprocal of a value as an applicative
action: if the value is nonzero then a computation that produces its reciprocal
is returned, else we fail via Nothing .

recipM :: Fractional a ⇒ a → Maybe a
recipM x = if (x �≡ 0) then pure (recip x ) else Nothing

where recip ::Fractional a ⇒ a → a is such that recip x = 1 / x . We can use this
applicative action to define recipList by structural recursion:

recipList :: Fractional a ⇒ [a ] → Maybe [a ]
recipList [ ] = pure [ ]
recipList (x : xs) = pure (:)� recipM x � recipList xs
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In this definition, we recognise the application of recipM to each element in the
list, and therefore it clearly can be expressed in terms of traverse:

recipList = traverse recipM

On lists as well as on other Traversable inductive datatypes function traverse can
be seen both as a good consumer and good producer: similar to the map function
on the datatype, it traverses its input and generates its output in a uniform way.
In the remainder of this section we focus on its quality as a consumer; in the
next section we show that it is a good producer as well.

Any Traversable inductive datatype is a good consumer because it can easily
be defined as a fold. For example, for lists,

traverse ι = foldr (λx t → pure (:)� ι x � t) (pure [ ])

From this fact, we can state the following law in connection with build.

Law 3 (traverse/build for lists)

traverse ι ◦ build g = g (λx t → pure (:)� ι x � t) (pure [ ])

Proof. By the definition of traverse as a fold and Law 1. 	


Example 6 (Hermitian transpose). Given a type for complex numbers Comp, we
will define an algoritm which calculates the Hermitian or conjugate transpose of
a complex matrix.

data Real x ⇒ Comp x = x + x i

The algorithm is quite simple: first calculate the conjugate matrix and then
transpose it. The conjugate matrix is defined elementwise, taking the complex
conjugate of each entry:

hermitian :: (Real a) ⇒ [ [Comp a ] ] → [ [Comp a ] ]
hermitian = transpose ◦map (map scalarconj )

where scalarconj (a + b i) = a + (−b) i

In Example 3, we stated that the ziplists applicative function models a transpo-
sition effect. In fact, matrix transposition is a traversal with the identity function
i.e. transpose = traverse id [16]. Then, by the application of Law 3 the following
definition of the Hermitian transpose is obtained, avoiding the construction of
the intemediate matrix:

hermitian :: (Real a) ⇒ [ [Comp a ] ] → [ [Comp a ] ]
hermitian = foldr (λxs xss → pure (:)� fmap scalarconj xs � xss) (pure [ ])

where scalarconj (a + b i) = a + (−b) i
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4 Applicative Shortcut Fusion

In this section we analyse situations where the production and consumption of a
data structure is performed in the context of an applicative effect. Our aim is to
obtain a shortcut fusion law for those cases. As with monads [14,7], the extension
of shortcut fusion presented in Section 2 turns out to be an appropriate device
to achieve this goal. Again, our development in this section is performed on lists;
the datatype-generic constructions are shown in Section 5.

Applicative shortcut fusion works on those cases where the container of the
generated intermediate data structure is an applicative functor. The build func-
tion in this case is simply an instance of the extended build that we call ibuild
(for idiomatic build):

ibuild :: Applicative f ⇒ (∀b.(a → b → b) → b → c → f b) → c → f [a ]
ibuild g = g (:) [ ]

The corresponding instance of extended shortcut fusion (Law 2) is the following:

Law 4 (foldr/ibuild)

fmap (foldr f e) ◦ ibuild g = g f e

Example 7 (traverse). As mentioned at the end of Section 3, function traverse
may not only be considered a good consumer but also a good producer since it
generates its output list in a uniform way as the result of an effectful computa-
tion. In fact, it is very simple to express traverse in terms of ibuild :

traverse ι = ibuild gtrav
where
gtrav cons nil [ ] = pure nil
gtrav cons nil (x : xs) = pure cons � ι x � gtrav cons nil xs

which is the same as,

traverse ι = ibuild gtrav
where
gtrav cons nil = foldr (λx t → pure cons � ι x � t) (pure nil)

It is also interesting to see that the composition traverse ι ◦ build g, which is the
subject of Law 3, can also be expressed as an ibuild :

traverse ι ◦ build g = ibuild g ′

where g ′ f e = g (λx t → pure f � ι x � t) (pure e)

A common pattern of computation using applicative functors is the one that ap-
plies a fold after having performed an applicative traversal over a data structure.
We identify this pattern with a new program scheme that we call idiomatic fold,
which specifies an applicative notion of structural recursion. For lists,
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ifoldr :: Applicative f ⇒ (b → c → c) → c → (a → f b) → [a ] → f c
ifoldr f e ι = fmap (foldr f e) ◦ traverse ι

Using the fact that traverse can be expressed as an ibuild we can apply Law 4
obtaining as result that an ifoldr is a foldr :

ifoldr f e ι = foldr (λx t → pure f � ι x � t) (pure e) (1)

Inlining,

ifoldr f e ι [ ] = pure e
ifoldr f e ι (x : xs) = pure f � ι x � ifoldr f e ι xs

Example 8 (Sum of reciprocal list). In Example 5 we defined the function recipList
that computes the reciprocals of a list of numbers. We used the Maybe applica-
tive functor to model the possibility of failure originated by the occurrence of
some 0 in the input list. Now we want to compute the sum of the reciprocals of
a list:

sumRecips :: Fractional a ⇒ [a ] → Maybe a
sumRecips = fmap sum ◦ recipList

Since sum = foldr (+) 0 and recipList = traverse recipM , sumRecips corre-
sponds to an ifold :

sumRecips = ifoldr (+) 0 recipM

Inlining,

sumRecips [ ] = pure 0
sumRecips (x : xs) = pure (+)� recipM x � sumRecips xs

Having introduced a notion of applicative structural recursion, we can state a
shortcut fusion law associated with it.

Law 5 (ifoldr/build)

ifoldr f e ι ◦ build g = g (λx y → pure f � ι x � y) (pure e)

Proof

ifoldr f e ι ◦ build g
≡ { definition ifoldr }
fmap (foldr f e) ◦ traverse ι ◦ build g

≡ { Example 7, g ′ f e = g (λx t → pure f � ι x � t) (pure e) }
fmap (foldr f e) ◦ ibuild g ′

≡ { Law 4 }
g (λx t → pure f � ι x � t) (pure e) 	
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Example 9 (Sum of reciprocals of list differences). We now want to compose
the function that calculates the sum of reciprocals of a list of numbers, given
in Example 8, with the function that computes the differences of two list of
numbers, given in Example 1.

sumRecipsDiff :: Fractional a ⇒ ([a ], [a ]) → Maybe a
sumRecipsDiff = sumRecips ◦ diffList

Since sumRecips = ifoldr (+) 0 recipM and diffList = build gdiff , by Law 5 we
get a monolithic definition that avoids the construction of the intermediate lists:

sumRecipsDiff = gdiff (λx t → pure (+)� recipM x � t) (pure 0)

Inlining,

sumRecipsDiff ( , [ ]) = pure 0
sumRecipsDiff ([ ], ) = pure 0
sumRecipsDiff (x : xs, y : ys) = pure (+)� recipM (x − y)

� sumRecipsDiff (xs , ys)

We conclude this section by showing an example that, unlike the previous one,
does not fit the pattern fold/traverse/build : it is a case where we cannot factor
an occurrence of traverse. The example, however, needs extra structure on the
applicative functor, namely to be an instance of the Alternative class.

Example 10 (Parsing). Suppose we want to compute the exclusive OR of a se-
quence of bits that we parse from an input string. It is in the parsing phase that
effects will come into play, as we will use an applicative parser.

newtype Parser a = P {runP :: String → [(a, String)]}
instance Functor Parser where
fmap f p = P $ λcs → [(f a, cs ′) | (a, cs ′) ← runP p cs ]

instance Applicative Parser where
pure a = P $ λcs → [(a, cs)]
p � q = P $ λcs → [(f v , cs ′′) | (f , cs ′) ← runP p cs

, (v , cs ′′) ← runP q cs ′ ]
class Applicative f ⇒ Alternative f where
empty :: f a
(〈|〉) :: f a → f a → f a

instance Alternative Parser where
empty = P $ const [ ]
p〈|〉q = P $ λcs → case runP p cs ++ runP q cs of

[ ] → [ ]
x : xs → [x ]

pSym :: Char → Parser Char
pSym x = P $ λcs → case cs of
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c : cs | x ≡ c → [(c, cs)]
otherwise → [ ]

Alternatives are represented by a choice operator (〈|〉), which, for simplicity,
returns at most one result. The parser pSym parsers a determinate character.

Using these combinators we define parsers for bits and bit strings.

bitstring = pure (:)� bit � bitstring
〈|〉
pure [ ]

bit = pure (const False)� pSym ’0’

〈|〉
pure (const True)� pSym ’1’

listXor :: [Bool ] → Bool
listXor [ ] = False
listXor (b : bs) = b ‘xor ‘ listXor bs

xor :: Bool → Bool → Bool
b ‘xor ‘ b′ = (b ∧ ¬ b′) ∨ (¬ b ∧ b′)

We want to compute the composition: xorBits = fmap (listXor ) ◦ bitstring.
Since listXor = foldr xor False and bitstring can be expressed as an ibuild :

bitstring = ibuild gbits
where gbits cons nil = pure cons � bit � gbits cons nil

〈|〉
pure nil

we can apply Law 4 obtaining that xorBits = gbits xor False. Inlining,

xorBits = pure xor � bit � xorBits
〈|〉
pure False

5 The Datatype-Generic Formulation

In the previous sections, we focused our presentation on the list datatype in
order to give a comprehensive explanation of the main concepts. However, con-
structions such as fold, build and ebuild, and laws like shortcut fusion can be for-
mulated for a wide class of datatypes using a datatype-generic approach [2,3,9].

5.1 Inductive Data Types

The structure of data types can be captured using the concept of a functor. A
functor consists of a type constructor f and a map function:

class Functor f where
fmap :: (a → b) → f a → f b
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where fmap must preserves identities and compositions: fmap id = id and
fmap (f ◦ g) = fmap f ◦ fmap g. A standard example of a functor is that
formed by the list type constructor and the well-known map function.

Inductive data types correspond to least fixed points of functors. Given a data
type declaration it is possible to derive a functor f , which captures the structure
of the type, such that the data type can be seen as the least solution of the
equation x ∼= fx [1]. In Haskell, we can encode this isomorphism defining a type
constructor μ :: (∗ → ∗) → ∗ as follows:

newtype μ f = In {unIn :: f (μ f )}

Example 11 (Naturals). Given a data type for natural numbers,

data Nat = Zero | Succ Nat

its signature is given by a functor FNat defined as follows:

data FNat x = FZero | FSucc x

instance Functor FNat where
fmap f FZero = FZero
fmap f (FSucc n) = FSucc (f n)

So, alternatively, we can say that Nat = μ FNat .

For polymorphic types, it is necessary to use functors on multiple arguments to
capture their signature in order to account for type parameters. For example, for
types with one parameter we need a functor on two arguments, usually called a
bifunctor, to represent their structure.

class Bifunctor f where
bimap :: (a → b) → (c → d) → f a c → f b d

Example 12 (Lists). The structure of polymorphic lists, [a ], is captured by a
bifunctor FList ,

data FList a b = FNil | FCons a b

instance Bifunctor FList where
bimap f g FNil = FNil
bimap f g (FCons a b) = FCons (f a) (g b)

By fixing the bifunctor argument corresponding to the type parameter a (the
type of the list elements) we get a functor FList a which represents the signature
of lists of type a:

instance Functor (FList a) where
fmap f FNil = FNil
fmap f (FCons a b) = FCons a (f b)

Thus, [a ] = μ (FList a).
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5.2 Fold

Given a functor f that captures the signature of a data type and a function
k :: f a → a (called an f-algebra), we can define a program scheme, called fold
[3], which captures function definitions by structural recursion on the type μ f .

fold :: Functor f ⇒ (f a → a) → μ f → a
fold k = k ◦ fmap (fold k) ◦ unIn

The signature corresponding to a type T with n constructors is a functor that
has also n cases. The same occurs with the algebras for that functor; they are
essentially a tuple (k1, . . . , kn) of n component operations, each one with the
appropriate type. For example, an algebra for the functor FList a is a function
k :: FList a b → b of the form:

k FNil = e
k (FCons a b) = f a b

with components e :: b and f :: a → b → b. This is the reason why foldr, the fold
for lists, has type (a → b → b) → b → [a ] → b.

5.3 Shortcut Fusion

The shortcut-fusion law of Section 2 can be generalised from list to all datatypes
expressible as the (least) fixpoint of a functor [8,20]. The generic build can be
defined as follows.

build :: (Functor f ) ⇒ (∀a.(f a → a) → c → a) → c → μ f
build g = g In

Notice that the abstraction of the datatype’s constructors is represented in terms
of an f -algebra. As explained before, the idea of shortcut fusion is then to replace,
in the producer, the occurrences of the abstracted constructors by corresponding
operations in the algebra of the fold that appears as consumer. The datatype-
generic fold/build law is then:

Law 6 (fold/build [8,20])

fold k ◦ build g = g k

5.4 Extended Shortcut Fusion

The generic formulation of the extended build [7] is as follows:

ebuild :: (Functor f ,Functor h) ⇒ (∀a.(f a → a) → c → h a) → c → h (μ f )
ebuild g = g In

where h is a functor that represents the container structure of the generated
datatype. As we saw for lists, this is a natural extension of the standard build
function. Using ebuild we can state the extended shortcut fusion law:
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Law 7 (extended fold/build [7,14])

fmap (fold k) ◦ ebuild g = g k

Fusion acts on the occurrences of the internal structure, while the context struc-
ture is maintained unchanged.

5.5 Generic Traversals

It is possible to define datatype-generic traversals for parametric data structures
corresponding to fixpoints of a parametric bifunctors. In order to define traverse
generically, we must first establish when the signature of a datatype can be
traversed:

class Bifunctor s ⇒ Bitraversable s where
bitraverse :: (Applicative f ) ⇒

(a → f c) → (b → f d) → s a b → f (s c d)

Gibbons and Oliveira [10] present an equivalent characterisation: a bifunctor s is
Bitraversable if for any applicative functor c there exists a natural transformation
bidist :: s (c a) (c b) → c (s a b) which serves as a distributive law between the
signature bifunctor and the applicative functor. Such distributive law exists for
any given regular datatype and it can be defined polytipically i.e. by induction on
the structure of the signature bifunctor [2,17]. As in the case of traverse and dist
above, bitraverse and bidist are also interdefinable as bidist = bitraverse id id
and bitraverse f g = bidist ◦bimap f g. Thus, traverse can be defined generically
for all fixed points of Bitraversable functors.

traverse :: (Applicative f ,Bitraversable s) ⇒
(a → f b) → μ (s a) → f (μ (s b))

traverse ι = fold (fmap In ◦ bitraverse ι id)

Gibbons and Oliveira [10] also claim that the traverse operator captures “the
essence of the Iterator pattern” and have studied some calculational properties
of idiomatic traversals. In Section 4, we saw that traversals play an important
role in the characterisation of some common applicative forms of computation,
like applicative structural recursion, and are well suited for fusion because of the
fact of being good producers and good consumers simultaneously.

5.6 Applicative Shortcut Fusion

We define an idiomatic build to be an extended build where the container is an
applicative functor.

ibuild :: (Applicative f ) ⇒ (∀b.(s a → a) → c → a) → c → f (μ s)
ibuild g = g In

The corresponding instance of extended shortcut fusion (Law 7) results:

Law 8 (fold/ibuild)

fmap (fold φ) ◦ ibuild g = g φ
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5.7 Applicative Structural Recursion

Given a bitraversable bifunctor s , an algebra φ :: s b c → c for the functor (s b)
and an applicative action ι ::a → f b for an applicative functor f , we define ifold
by the following equation:

ifold :: (Applicative f ,Bitraversable s) ⇒
(s b c → c) → (a → f b) → μ (s a) → f c

ifold φ ι = fmap (fold φ) ◦ traverse ι

which in turn, is equivalent to the following generalization of (1):

ifold φ ι = fold (fmap φ ◦ bitraverse ι id) (2)

Associated with ifold we have the following shortcut fusion law which gives a
monolithic expression for the pattern fold/traverse/build :

Law 9 (ifold/build)

ifold φ ι ◦ build g (I)

=

fmap (fold φ) ◦ traverse ι ◦ build g (II)

=

g (fmap φ ◦ bitraverse ι id) (III)

Proof. (I) = (II) by the definition of ifold . By the definition of ifold in terms
of fold , (2), and Law 6, (I) = (III). 	

Note that in the fold/traverse/build pattern there is no need to use generalised
shortcut fusion. The traversal takes care of creating and collecting the extra
structure.

5.8 Composite Functors

Applicative Functors are closed under functor composition. Gibbons and Oliveira
[10] exploit this fact to define the sequential composition of applicative actions:

data (m � n) a = Comp {unComp ::m (n a)}
(�) :: (Functor m,Functor n) ⇒ (b → n c) → (a → m b) → a → (m � n) c
f � g = Comp ◦ fmap f ◦ g

The � operator can not only be used to compose traversals but also to show
they are, in fact, closed under sequential composition i.e.

traverse (f � g) = traverse f � traverse g (3)

Using this equation, we can derive a shortcut fusion law for the sequential com-
position of ifold and traverse as follows.

Law 10 (ifold/�/traverse)

ifold φ ι� traverse κ = ifold φ (ι� κ)

Proof (Sketch). By expanding definitions of � and ifold , using functoriality
and composition of traversals (3).
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6 Conclusions and Future Work

We have presented two approaches to shortcut fusion for applicative computa-
tions. One is based on the extended shortcut fusion law tailored to applicative
computations. We aimed at obtaining a more structured fusion law that took
into account the way applicative computations are written. By analysing several
examples we found that traversals are at the core of applicative computations.
Based on this fact we proposed the pattern fold/traverse/build as the core of
structural applicative computations and introduced a law for those patterns.
This pattern elegantly separates the pure part of the computation from the
one producing computational effects. We also introduced a notion of applicative
structural recursion as the composition of a fold with a traversal.

Future Work. The proposed pattern arose as a result of the study of several
examples found in the literature (e.g. [16,10]). Despite the elegance of the results,
we would like to obtain a more theoretically founded justification for them such
as an initial algebra semantics for ifold . Related to this is the notion of a category
of applicative computations, but this notion is still missing. Additionally we
would like to extend our results to applicative functors with extra structure,
such as the one in Example 10.
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