
Locality and the Complexity

of Minimalist Derivation Tree Languages

Thomas Graf

Department of Linguistics
University of California, Los Angeles

tgraf@ucla.edu

http://tgraf.bol.ucla.edu

Abstract. Minimalist grammars provide a formalization of Minimalist
syntax which allows us to study how the components of said theory affect
its expressivity. A central concern of Minimalist syntax is the locality
of the displacement operation Move. In Minimalist grammars, however,
Move is unbounded. This paper is a study of the repercussions of limiting
movement with respect to the number of slices a moved constituent
is allowed to cross, where a slice is the derivation tree equivalent of
the phrase projected by a lexical item in the derived tree. I show that
this locality condition 1) has no effect on weak generative capacity 2)
has no effect on a Minimalist derivation tree language’s recognizability
by top-down automata 3) renders Minimalist derivation tree languages
strictly locally testable, whereas their unrestricted counterparts aren’t
even locally threshold testable.

Keywords: Minimalist grammars, locality, subregular tree languages,
first-order logic, top-down tree automata.

Introduction

Even though Minimalist grammars (MGs) weren’t introduced by Stabler [16]
with the sole intent of scrutinizing the merits of ideas put forward by syntacti-
cians in the wake of Chomsky’s Minimalist Program [2], a lot of work on MGs
certainly focuses on this aspect [cf. 17]. Recently, considerable attention has also
been directed towards the role played by derivation trees in MGs [4, 7, 8]. It is
now known that every MG’s derivation tree language is regular and “almost”
closed under intersection with regular tree languages (some refinement of cat-
egory labels is usually required), but it is still an open question which class of
tree languages approximates them reasonably well. This paper combines both
research strands by taking the linguistically motivated restriction to local move-
ment as its vantage point for an examination of the structural complexity of
Minimalist derivation tree languages (MDTLs). The main result is that while
bounding the distance of movement leaves weak generative capacity unaffected,
the complexity of MDTLs is lowered to a degree where they become strictly lo-
cally testable. Since MGs are fully characterized by their MDTLs, lowering the

P. de Groote and M.-J. Nederhof (Eds.): Formal Grammar 2010/2011, LNCS 7395, pp. 208–227, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://tgraf.bol.ucla.edu

Locality and the Complexity of Minimalist Derivation Tree Languages 209

upper bound from regular to strictly locally testable may prove useful for vari-
ous practical applications operating directly on the derivation trees, in particular
parsing [9, 18, 21].

The paper is laid out as follows: After some general technical remarks, Sec. 2
introduces MGs, their derivation trees, and the important concept of slices.
Building on these notions, I define movement-free and k-local MGs, and I prove
that every MG can be converted into a k-local one. The complexity of these
derivation trees is then studied with respect to several subregular languages
classes in Sec. 3. I first show that MDTLs can be recognized by l-r-deterministic
top-down tree automata, but not by sensing tree automata, which entails non-
recognizability by deterministic top-down tree automata. Furthermore, every
k-local MG G has a strictly locally κ-testable derivation tree language, with the
value of κ depending on several parameters of G. This result is followed by a
demonstration that unrestricted MDTLs are not locally threshold testable. How-
ever, they are definable in first-order logic with predicates for left child, right
child, proper dominance, and equivalence (Sec. 4).

1 Preliminaries and Notation

As usual, N denotes the set of non-negative integers. A tree domain is a finite
subset D of N∗ such that, for w ∈ N

∗ and j ∈ N, wj ∈ D implies both w ∈ D
and wi ∈ D for all i < j. Every n ∈ D is called a node. Given nodes m,n ∈ D,
m immediately dominates n iff n = mi, i ∈ N. In this case we also say m is the
mother of n, or conversely, n is a daughter of m. The transitive closure of the
immediate dominance relation is called (proper) dominance. A node that does
not dominate any other nodes is a leaf, and the unique node that isn’t dominated
by any nodes is called the root.

Now let Σ be a ranked alphabet, i.e. every σ ∈ Σ has a unique non-negative
rank (arity); Σ(n) is the set of all n-ary symbols in Σ. A Σ-tree is a pair T :=
〈D, �〉, where D is a tree domain and � : D → Σ is a function assigning each node
n a label drawn from Σ such that �(n) ∈ Σ(d) iff n has d daughters. Usually
the alphabet will not be indicated in writing when it is irrelevant or can be
inferred from the context. Sometimes trees will be given in functional notation
such that f(t1, . . . , tn) is the tree whose root node is labeled f and immediately
dominates trees t1, . . . , tn. I denote by TΣ the set of all trees such that for n ≥ 0,
f(t1, . . . , tn) is in TΣ iff f ∈ Σ(n) and ti ∈ TΣ, 1 ≤ i ≤ n. A tree language is
some subset of TΣ.

A context C is a Σ ∪ {�}-tree, where � is a new symbol that appears on
exactly one leaf of C, designating it as the port of C. A context C with �
occurring in the configuration c := σ(t1, . . . ,�, . . . , tn), σ ∈ Σ(n) and each ti a
Σ-tree, can be composed with context C′ (written C · C′) by replacing c with
σ(t1, . . . , C

′, . . . , tn). This extends naturally to all cases where C = � and C′

is a tree rather than a context. Given a Σ-tree t := 〈D, �〉 and some node u
of t, t|u := 〈D|u, �〉 denotes the subtree rooted by u in t, such that D|u :=
{n ∈ D | u = n or u dominates n} and dominance and the labeling function are

210 T. Graf

preserved. For any tree t with nodes m and n of t such that either m = n
or m dominates n, Ct[m,n) is the context obtained from t|m by replacing t|n
by a port. If s and t are trees, r the root of s and u some node of s, then
s[u← t] := Cs[r, u) · t.

Let m and n be nodes of some tree t. A path from m to n is a sequence of
node 〈i0, . . . , ik〉 such that i0 = m, ik = n, and for all j < k, ij is the mother or
the daughter of ij+1. A path containing k nodes is of length k− 1. The distance
between nodes m and n is the length of the shortest path from m to n. The
depth of a tree t is identical to the greatest distance between the root of t and
one of its leafs.

We now move on to defining the strictly locally testable languages, following
the exposition in [21]. For each Σ-tree and choice of k ≥ 1, we define its k-factors,
or more precisely, its k-prefixes, k-forks and k-suffixes as follows:

pk(σ(t1, . . . , tn)) :=

{
σ if k = 1 or σ has no children

σ(pk−1(t1), . . . , pk−1(tn)) otherwise

fk(σ(t1, . . . , tn)) :=

⎧⎪⎨
⎪⎩
∅ if σ(t1, . . . , tn) is of

depth d < k − 1

{pk(σ(t1, . . . , tn))} ∪
⋃n

i=1 fk(ti) otherwise

sk(σ(t1, . . . , tn)) :=

⎧⎪⎨
⎪⎩
{σ(t1, . . . , tn)} ∪

⋃n
i=1 sk(ti)

if σ(t1, . . . , tn) is of depth

d < k − 1⋃m
i=1 sk(ti) otherwise

A tree language L ⊆ TΣ is strictly locally k-testable (in SLk) iff there exist three
finite subsets R, F , and S, such that t ∈ L iff pk−1(t) ∈ R, fk(t) ⊆ F , and
sk−1 ⊆ S. A language is local (in LOC) iff it is in SL2. It is locally k-threshold
testable (in LTTk) iff furthermore each k-factor must appear a specific number
of times, counting up to some fixed threshold. When the threshold is set to 1, L is
locally k-testable (in LTk). We say that L belongs to one of these classes iff there
is some k such that L is k-testable in the intended sense. Finally, L is regular iff
it is the range of a transduction computed by some linear tree transducer with
domain TΣ (the reader is referred to [5] for further details).

Definition 1. A linear tree transducer is a 5-tuple A := 〈Σ,Ω,Q,Q′, Δ〉, where
Σ and Ω are finite ranked alphabets, Q is a finite set of states, Q′ ⊆ Q the set of
final states, and Δ is a set of productions of the form f(q1(x1), . . . , qn(xn)) →
q(t), where f ∈ Σ(n), q1, . . . , qn, q ∈ Q, t ∈ TΩ∪{x1,...,xn}, and each xi occurs at
most once in t.

It is a well-known fact that LOC ⊂ SL ⊂ LT ⊂ LTT ⊂ REG.

2 Minimalist Grammars

2.1 Introduction and Examples

MGs are a highly lexicalized formalism. Every lexical item (LI) comes equipped
with a linear sequence of features that have to be “checked”, or equivalently,

Locality and the Complexity of Minimalist Derivation Tree Languages 211

“erased” in the right order. Features come in two varieties that can only be
checked by the operations Merge and Move, respectively. Merge conjoins trees,
while Move displaces subtrees. A very simple MG, for example, is instantiated
by the following lexicon.

man :: n the :: =n d ε :: = v + nom t
John :: d the :: =n d − nom ε :: = t c
John :: d − nom the :: =n d − top ε :: = t + top c
John :: d − top killed :: = d=d v

The first component of an LI denotes its phonetic exponent, the second one its
feature string. Features without a prefix represent categories (n for noun, d for
determiner, and so on). A category feature, say n, of LI l is checked whenever
Merge combines l with another LI l′ such that the respective first unchecked
features of l and l′ are n and the matching selector feature =n. This is also
the only feature configuration in which Merge may apply. Hence Merge could
combine the and man, yielding the man, which in turn can be merged with killed,
but not the and John (no compatible features at all), or killed and the (the first
unchecked feature of the is =n, which is incompatible with the =d on killed).
The feature combinatorics of the Move operation are essentially the same, with
the only difference being that Move applies to features prefixed with + and −
(licensor and licensee, respectively). Note that Merge introduces new material
into the derivation, whereas Move merely displaces old material — intuitively,
the subtree headed by an LI l with some licensee feature −f as its first unchecked
feature is moved into the specifier of the closest LI l′ that c-commands l and has
+f as its first unchecked feature.

An utterance is well-formed if it can be assigned a derivation in which all
features were checked except for the category feature of the last LI to be merged,
which must be a so-called final category (usually c). The MG above generates
the following eight sentences, and only those (assuming that c is the only final
category):

(1) a. John/The man killed John/the man.

b. John/The man, John/the man killed.

A derivation tree for one of the sentences with topicalization is given in Fig. 1.
Despite its simplicity, the feature calculus controlling Move allows for a daz-

zling array of movement configurations, in particular remnant movement, in
which some XP is extracted from some YP via Move before YP itself is moved
to a higher position. Remnant movement allows for an elegant reanalysis of
cases where apparently non-phrasal constituents end up in positions reserved for
phrases, such as in the German example below.

(2) [CP Geküssti
kissed

hatj
has

[TP der
the

Hans
John

die
the

Maria tj ti.]]
Mary.

’John kissed Mary.’

212 T. Graf

move

� merge

move

� merge

merge

John :: d − nom merge

merge

man :: n the :: = n d − top

killed :: = d =d v

ε :: = v + nom t

ε :: = t + top c

CP

DPi

D′

D

the

NP

N′

N

man

C′

C TP

DPj

D′

D

John

T′

T VP

tj V′

V

killed

ti

Fig. 1. Left: derivation tree of The man, John killed, depicted in the final format
adopted in this paper and with slices indicated by color; Right: Corresponding X′-tree

Instead of having just the V-head geküsst move into SpecCP (which is at odds
with standard assumptions about phrase structure), one can fall back to a rem-
nant movement analysis: the object moves out of the VP, followed by movement
of the remaining VP into SpecCP. At this point the VP’s only phonetic expo-
nent is its V-head, so that the end result is indistinguishable from the scenario
where only the V-head had undergone movement. For our purposes, remnant
movement is of interest because of the crucial role it plays in the proof that
every instance of Move that spans arbitrary distances can be decomposed into
a sequence of local Move steps (Thm. 1).

2.2 Minimalist Grammars, Derivation Trees, and Slices

As the focus of this paper is on the derivation trees of MGs rather than the phrase
structure trees derived via Merge and Move, the details of both operations are of
interest to us only in so far as they have ramifications for the shape of derivation
trees or the string yield (which will be important for Thm 1). Nonetheless I give
a full definition of the formalism here, staying close to the chain-based exposition
of [19]. After that I formally define MDTLs and introduce the notion of slices.

Definition 2. A Minimalist grammar is a 6-tuple G := 〈Σ,Feat ,F ,Types ,
Lex , Op〉, where
– Σ = ∅ is the alphabet,
– Feat is the union of a non-empty set Base of basic features (also called cate-

gory features) and its prefixed variants {= f | f ∈ Base}, {+f | f ∈ Base},
{−f | f ∈ Base} of selector, licensor, and licensee features, respectively,

– F ⊆ Base is a set of final categories,

Locality and the Complexity of Minimalist Derivation Tree Languages 213

– Types := {::, :} distinguishes lexical from derived expressions,
– the lexicon Lex is a finite subset of Σ∗ × {::} × Feat∗,
– and Op is the set of generating functions to be defined below.

A chain is a triple in Σ∗ × Types × Feat∗, and C denotes the set of all chains
(whence Lex ⊂ C). Non-empty sequences of chains will be referred to as expres-
sions, the set of which is called E.

The set Op of generating functions consists of the operations merge and move,
which are the respective unions of the following functions, with s, t ∈ Σ∗, · ∈
Types, f ∈ Base, γ ∈ Feat∗, δ ∈ Feat+, and chains α1, . . . , αk, ι1, . . . , ιk,
0 ≤ k, l:

s :: = fγ t · f, ι1, . . . , ιk
merge1

st : γ, ι1, . . . , ιk

s : = fγ, α1, . . . , αk t · f, ι1, . . . , ιl
merge2

ts : γ, α1, . . . , αk, ι1, . . . , ιl

s · = fγ, α1, . . . , αk t · fδ, ι1, . . . , ιl
merge3

s : γ, α1, . . . , αk, t : δ, ι1, . . . , ιl

s : +fγ, α1, . . . , αi−1,t : −f, αi+1, . . . , αk
move1

ts : γ, α1, . . . , αi−1, αi+1, αk

s : +fγ, α1, . . . , αi−1,t : −fδ, αi+1, . . . , αk
move2

s : γ, α1, . . . , αi−1, t : δ, αi+1, . . . , αk

Furthermore, all chains must satisfy the Shortest Move Constraint (SMC), ac-
cording to which no two chains in the domain of move display the same li-
censee feature −f as their first feature. The string language generated by G is
L(G) := {σ | 〈σ · c〉 ∈ closure(Lex ,Op), · ∈ Types , c ∈ F}.
MGs and MCFGs [15] have the same weak generative capacity [6, 12]. In fact,
for every MG there exists a strongly equivalent MCFG, but not the other way
round. In a certain sense, then, one may view MGs as a narrowly restricted
way of specifying MCFGs. A more peculiar fact about MGs is that in order
for l ∈ Lex to occur in a well-formed derivation, its feature string must be in
{+f,= f | f ∈ Base}∗ ×Base× {−f | f ∈ Base}∗. I will implicitly invoke this
fact several times throughout the paper.

I now turn to the derivation trees of an MG, defining them in two steps.

Definition 3. Given an MG G := 〈Σ,Feat , F,Types ,Lex ,Op〉, the largest sub-
set of TE satisfying the following conditions is called the string-annotated deriva-
tion tree language sder(G) of G:

– For every leaf node n, �(n) = 〈l〉, l ∈ Lex .
– For every subtree m(d1, . . . , dn), n ≥ 1, op(d1, . . . , dn) is defined for exactly

one op ∈ {merge,move} and �(n) = op(d1, . . . , dn).
– For n the root node, �(n) = 〈σ : c〉, where σ ∈ Σ∗ and c ∈ F.

214 T. Graf

Definition 4. Given an MG G, its Minimalist derivation tree language mder(G)
is the set of trees obtained from sder(G) by the map μ:

– μ(〈l〉) = l, where l ∈ Lex
– μ(e(e1, . . . , en)) = op(μ(e1), . . . , μ(en)), where e, e1, . . . , en ∈ E, n ≥ 1, and

op is the unique operation in Op such that op(e1, . . . , en) = e

As was first observed in [8], every MDTL is regular. The basic idea is to equip a
bottom-up tree automaton with states corresponding to the feature components
of the string-annotated derivation trees (there are only finitely many thanks to
the SMC) and have its transition rules recast the conditions imposed on Merge
and Move by the feature calculus. Interestingly, an MG’s set of derived trees —
which is not regular — can be obtained from its MDTL in an efficient way using
a multi bottom-up tree transducer. This in turn means that MDTLs are the key
to capturing MGs by finite-state means.

In [4], the concept of slices is introduced. Intuitively, slice(l) is the derivation
tree equivalent of the phrase projected by l in the derived tree (using the standard
linguistic notion of projection). That is to say, slices mark the subpart of the
derivation that l has control over by virtue of its selector and licensor features (cf.
Fig. 1 on page 212). From this perspective a derivation tree language is simply
the result of combining slices in all possible ways such that none of conditions
imposed on Merge and Move by the feature calculus are violated.

Definition 5. Given a Minimalist derivation tree T := 〈D, �〉 and LI l occurring
in T , the slice of l is the pair slice(l) := 〈S, �〉, where S ⊆ D, l ∈ S, and if node
n ∈ D immediately dominates a node s ∈ S, then n ∈ S iff the operation denoted
by �(n) erased a selector or licensor feature on l. The unique n ∈ S that is not
dominated by any n′ ∈ S is called the slice root of l.

The following properties hold of slices for every MG G [cf. 4]:

– Let |γ| denote the length of the longest γ such that there is some l ∈ LexG

with feature string γcδ, γ, δ ∈ Feat∗, c ∈ Base. Then for every t ∈ mder(G)
and slice s := 〈S, �〉 of t, 1 ≤ |S| ≤ |γ|+ 1.

– Every tree t ∈ mder(G) is partitioned into slices.
– All slices are continuous (i.e. if node y is the child of x and the mother of z

such that x and z belong to the same slice s, then y also belongs to s).

As the order of siblings is irrelevant in derivation trees, I stipulate for the sake
of simplicity that all slices are strictly right-branching. Moreover, I assume that
derivation trees are strictly binary branching, as this simplifies the math at
various points in this paper — a small change which is easily accommodated by
mapping move(t) to move(, t), where is a new symbol not in Lex ∪Op.

Now given an LI l, node n is the kth node of slice(l) iff the shortest path
from n to l is the sequence 〈n1, . . . , nk, l〉 such that n = n1 and no ni is a left
daughter, 1 ≤ i ≤ k. Furthermore, n is associated to feature f iff n is the ith

node of slice(l) and f is the ith feature of l. Two features g and h are said to
match iff there is a feature f ∈ Base such that either g = +f and h = −f or
g = = f and h = f . Finally, a node n matches an LI l iff for some feature g of l,
n is associated to a feature matching g.

Locality and the Complexity of Minimalist Derivation Tree Languages 215

2.3 Locality and Subclasses of Derivation Tree Languages

If one builds on the notion of slices, a natural way of imposing locality condi-
tions on movement suggests itself. Take any MG G, t ∈ mder(G), and sup-
pose that l is an LI occurring in t with licensee features −f1, . . . ,−fn. Let
move[l] := 〈move1, . . . ,moven〉 be the sequence of Move nodes in t such that
the operation denoted by movei checked feature −fi on l, 1 ≤ i ≤ n. An MG G
is k-local or of locality rank k, k ≥ 1, iff it holds for every t ∈ mder(G) and LI l
occurring in t with move[l] := 〈move1, . . . ,moven〉 that no more than k−1 slices
intervene between mi and mi+1 in 〈m0,m1, . . . ,mn〉 := 〈l〉 ·move[l], 0 ≤ i < n.
Equivalently, the shortest path from movei to movei+1 may contain at most
k left branches. If G is k-local, we also say that movement in G is k-local or
k-bounded. An MG G is movement-free iff no tree in mder(G) contains a node
labeled move. It is unrestricted iff it is neither movement-free nor k-local for any
k ≥ 1. This terminology extends to MDTLs in the natural way. By mdtl[merge]
and mdtl[merge,move(k)] I denote, respectively, the class of all movement-free
MDTLs and the class of all k-local MDTLs. The class of all MDTLs is simply
denoted by mdtl[merge,move].

The notion of k-boundedness is motivated by the linguistic assumption that
movement is successive-cyclic. In (3), for instance, the wh-phrase may not move
from its base position to the beginning of the utterance in one fell swoop but
rather has to land in every CP.

(3) Which professori did John say [CP ti that Bill told him [CP ti that Mary
has a crush on ti]]

This assumption can be used to explain various syntactic, semantic and even
morphological phenomena, for instance embedded inversion, stranding of quan-
tifiers, binding ambiguities and complementizer agreement [cf. 3]. The following
contrast provides a very simple example.

(4) a. [CP2 Wheni did John ti tell you [CP1 whoj Mary will meet tj?]]

b. * [CP2 Wheni did John tell you [CP1 whoj Mary will ti meet tj?]]

In (4a), when originates in the matrix clause and moves directly to the corre-
sponding SpecCP position, while who does the same in the embedded clause.
In (4b), when is supposed to originate in the embedded clause together with
who, but now they cannot both move into CP-specifiers. In one case, who moves
first, so that it fills SpecCP1. As a consequence, when cannot move to SpecCP2

due to successive cyclicity requiring it to go through the SpecCP1 first, which
is already filled by who. In the other case, where moves first but on its way to
SpecCP2 it leaves a trace in SpecCP1 so that the latter is no longer available
as a landing site to who. The details of the analysis have changed significantly
over the years, and recently it has even been argued that CPs do not matter for
cyclicity [3], but the basic idea that long-distance movement is in fact a sequence
of local movement steps has remained unaltered.

If one ignores adjuncts, the kind of cyclicity involved in the examples above
can be reinterpreted as wh-movement being 3-local: every clause consists of the

216 T. Graf

slices CP, TP, VP, so movement from one CP to the next creates paths con-
taining 3 left branches. The analogy between successive-cyclic movement and
the restriction to k-locality is far from perfect, of course. Among other things,
successive-cyclic movement is relativized to specific positions, whereas k-locality
only cares about distance. But if the value of k is carefully chosen and combined
with certain regular constraints on derivation trees [4, 7] that prevent movement
from skipping, say, CP slices, a reasonably close approximation can be achieved.

Surprisingly, every MG can be translated into a weakly equivalent 1-local one.
The idea is that instead of having subtree s move directly to its target position
t, s can hitch a ride by being selected by another LI l. As long as the string
component of l is empty, this will have no effect on the string yield. This reduces
unbounded movement to k-local movement, which in turn can easily be reduced
to 1-local movement.

Theorem 1. For every unrestricted MG G, there is an MG G′ of locality rank
1 that defines the same string language.

Proof. I sketch two linear (bottom-up) transducers τ and τ ′. The former does
most of the work by translating every t ∈ mder(G) into its corresponding
max(E)-local t′, where max(E) is the maximum length of expressions gener-
ated by G (i.e. the maximum number of chains per expression). The latter then
rewrites t′ as the 1-local t′′. Since MDTLs are regular, and the image of a regular
language under a linear transduction is itself regular, the output of τ · τ ′ is, too.
This set is then intersected with mder(G′′), where LexG′′ := Ωτ ′ \ OpG′′ and
FG′′ := FG. The result of this intersection can then be automatically converted
into a new MG, our G′ [4, 7].

The idea underlying τ is that unbounded movement can be localized by cre-
ating intermediary landing sites which have no effect on the string language.
The main task of the transducer is to insert those intermediate landing sites
and transfer (a subset of) the features of each moving element to its landing
site. By definition there are at most n = max(E) − 1 moving elements at any
given point in the derivation. Each state of τ consists of 1) n components qi that
memorize the feature string of the moving items and which of them have already
been reinstantiated, 2) the expression the current node evaluates too (modulo
the string component), 3) a boolean flag b that indicates whether some LI had
the new licensee feature −s0 added to its feature string.

Suppose we are at a node in the derivation tree t that belongs to the slice
of LI l := σ :: γcδ and that there are 0 ≤ m ≤ n moving LIs li := σ ::
γiciδi, where 1 ≤ i ≤ m and c, ci ∈ Base and σ, σi ∈ Σ and δi is of the
form −fi1 , . . . ,−fik , k ≥ 1. For each i and 1 ≤ u ≤ v ≤ k, we define new LIs
lci [u, v] := ε :: = c +fiu c −si −fiu δi[u+1, v], where −si is a new licensee feature
and δi[u + 1, v] := −fiu+1 , . . . ,−fiv . Given a feature string φ := f1, . . . , fk, we
furthermore let q(j, φ) := f1, . . . , fj • fj+1 . . . fk, 0 ≤ j ≤ k.

The transducer τ now has to perform the following steps: First, if l is not
itself among the moving elements, τ non-deterministically replaces it by l̂ :=
ε :: γc − s0 and switches the boolean flag b in its state from 0 to 1. If either
m = 0 and b = 1 or m ≥ 1 and b = 0, τ aborts at the slice root of l̂/l.

Locality and the Complexity of Minimalist Derivation Tree Languages 217

Second, τ replaces each li carrying more than one licensee feature by l̂i :=
σi :: γci − fi1 and stores q(0, δi[1, k]) in qi. Third, when τ reaches the slice

root of l/l̂, it inserts C(lcm[um, vm]) · . . . · C(lc1[u1, v1]), where C(lci [ui, vi]) :=
move(,merge(�, lci [ui, vi])), and ui must be such that q(ui − 1, δi[1, k]) is the
string stored in qi. The value of vi is chosen non-deterministically — in order
for τ not to abort it must hold that every fij can get checked later on without
further intermediate movement sites for all j ≤ vi but not for j = vi + 1 (this
is easily verified, as τ keeps track of licensor features in the second component
of its states). With the insertion of C(lci [ui, vi]), qi is updated to q(vi, δi[1, k]).
So far then, τ has introduced new slices slice(lci [ui, vi]) that function as the

respective landing sites for each li, or rather, their impoverished counterpart l̂i.
The fourth step requires τ to insert the context C(sc[m, b]) above C(lm[um, vm]),
where sc[j, b] := ε :: = c + s1−b . . . + sj c for 1 ≤ j ≤ n, and C(sc[j, b]) :=
move(,�)·︸ ︷︷ ︸
j + b times

merge(�, sc[j, b]).

This enforces remnant movement of l/l̂ and all l̂i, allowing each slice(lci [k]) to
move freely later on without carrying along any other parts of the derived tree
(which would induce a change in the string yield). The procedure as outlined
above is iterated (with the value of c varying with l) until no more features need
to be checked off. Since there are at most n = max(E)−1 moving elements in G,

no LI li (including l/l̂) has to cross more than n slices in order to check its −fi1
feature against lci [u, v] or its −si feature against sc[j, b]. Thus every instance of
move is max(E)-bounded.

All instances of (k + 1)-bounded movement, 1 ≤ k ≤ max(E), can be made
1-local as follows. Assume that slices slice(l1), . . . slice(lk) intervene between l :=
σ :: γcδ and its next occurrence. Then τ ′ has to prefix δ with k new movement
licensee features −l1 . . . − lk, and for each lci [u, v] (1 ≤ i ≤ k) add +li to the
end of its feature string and move(,�) above its slice root. If several LIs move
through a slice, the number of licensor features andMove nodes has to be adapted
accordingly. Crucially, both the number of moving elements and the distance
between LIs and individual occurrences is finitely bounded, so this strategy can
easily be carried out by a non-deterministic linear transducer. ��

3 (Un)Definability in Some Subregular Language Classes

3.1 Deterministic Top-Down Automata

Since MDTLs are regular, they can be recognized by non-deterministic top-down
tree automata [cf. 5]. As we will see now, top-down non-determinism can be dis-
pensed with only if it is compensated for by unbounded look-ahead. I consider
two common variants of the standard deterministic top-down tree automaton
(DTDA), both of which are more powerful than DTDAs but do not recognize
all regular languages. One is the sensing tree automaton (STA) [11], which may
also take the labels of a node’s children into account in order to decide which
states should be assigned to them, while the other is the l-r-deterministic DTDA

218 T. Graf

(lrDTDA) [13], which allows for a limited kind of non-determinism. The classes
of languages recognized by STAs and lrDTDAs are incomparable, but can easily
be characterized in descriptive terms. For this reason, I focus on the languages
themselves rather than the automata, and no further technical details of the lat-
ter will be discussed here (the interested reader is referred to [11] and references
therein).

Definition 6. Given a node v of some Σ-tree t, lsibt(u) is the string consisting
of the label of u’s left sister (if it exists) followed by the label of u, and rsibt(u) is
the string consisting of the label of u and the label of its right sister (if it exists).
Let u1, . . . , un be the shortest path of nodes extending from the root to v such
that u1 is the root and un = v. Let � and ♣ be two new symbols not in Σ. By
spinet(v) we denote the string recursively defined by

spinet(u1) = lsibt(u1)�rsibt(u1)

spinet(u1, . . . , un) = spinet(u1, . . . , un−1) ♣ lsibt(un) � rsibt(un)

A regular tree language L is spine-closed iff it holds for all trees s, t ∈ L and
nodes u and v belonging to s and t, respectively, that spines(u) = spinet(v)
implies s[u← t|v] ∈ L.

Definition 7. A regular tree language L is homogeneous iff it holds that if
t[u ← a(t1, t2)] ∈ L, t[u ← a(s1, t2)] ∈ L and t[u ← a(t1, s2)] ∈ L, then also
t[u← a(s1, s2)] ∈ L.

Proposition 1. A regular tree language L is recognizable by

– an STA iff L is spine-closed [10].
– an lrDTDA iff L is homogeneous [13].

Thanks to these characterizations, results for MDTLs are easily obtained.

Theorem 2. mdtl[merge] and the class of tree languages recognized by STAs
are incomparable.

Proof. Let grammar G be defined by the following LIs (with names in square
brackets for reference) and FG := {a, b}:

[a0] a :: a [a1] a :: = a a [a2] a :: = a =a a
[b0] b :: b [b1] b :: =b b [b2] b :: = b =b b

Consider the derivation tree ta := merge1(merge2(a0, a1),merge3(a0, a2)) and
its counterpart tb := merge1(merge2(b0, b1),merge3(b0, b2)) — the indices are
for the reader’s convenience. Even though spineta(merge2) = spinetb(merge2), it
holds that merge1(merge2(b0, b1),merge3(a0, a2)) /∈ mder(G), so mder(G) is not
spine-closed. ��

Theorem 3. Every L ∈ mdtl[merge,move] is recognized by some lrDTDA.

Locality and the Complexity of Minimalist Derivation Tree Languages 219

Proof. I show that every MDTL is homogeneous. For a = move, closure is triv-
ially satisfied. So let a = merge. Merge depends only on the distribution of
category and selector features, and there is no way to distribute these over t1,
t2, s1 and s2 such that the fourth tree would be an illicit instance of Merge: In
order for Merge to be licensed, one of t1 or t2 must have some category feature
c as its first unchecked feature, and the other one the matching selector feature
= c. Assume w.l.o.g. that t2 carries the selector feature = c. Then s1 must also
have feature c, and s2 feature = c. We also know that s1 and t1 on the one hand
and s2 and t2 on the other agree on all features following these selector/licensor
features, since the derivations differ only w.r.t. the subtree rooted by a. It follows
that Merger of s1 and s2 is licit, so the required closure property obtains. ��
Martens et al. [11] point out a peculiar property of languages recognized by
lrTDAs but not by STAs: in order to determine which states should be assigned
to the children of the root, one has to look arbitrarily deep into at least one
of the subtrees dominated by the root. This is indeed typical of unrestricted
MDTLs, where movement features at the very bottom of a derivation introduce
dependencies that — given the impoverished nature of the interior node labels —
cannot be predicted deterministically in a top-down fashion without unbounded
look-ahead. The class of lrTDAs overshoots the mark, though, as it fails to draw
a distinction even between mdtl[merge,move] and mdtl[merge].

3.2 Strictly Local and Locally Threshold Testable Languages

Let us now traverse the subregular hierarchy from the bottom instead, starting
with LOC and subsequently moving on to SL and LTT. As lrTDAs before, local
sets lack the granularity to distinguish any of the subclasses of MDTLs. But
where the lrTDAs universally succeeded, local sets universally fail.

Theorem 4. mdtl[merge] and the class of local sets are incomparable.

Proof. Consider any movement-free MDTL L with a derivation containing a sub-
tree of the form t := merge(l,merge). As we require slices to be right-branching,
l contains no selector or licensor features. Furthermore, the finiteness of the lexi-
con establishes an upper bound |γ|+1 on the size of slices. However, LOC = SL2,
so if L ∈ LOC, t could be composed with itself arbitrarily often, yielding slices
of unbounded size. ��
The shortcomings of LOC can be circumvented, though, by extending the size
of the locality domain, i.e. by moving to SLk for some sufficiently large k > 2.
Let |δ| be the maximum number of licensee features that may occur on a single
LI, analogously to |γ|. Given a k-local MG, set κ := (|γ|+ 1) ∗ (|δ| ∗ k + 1) + 1.

Theorem 5. Every L ∈ mdtl[merge,move(k)] is strictly κ-local.

Before we may proceed to the actual proof, the notion of occurrences must be
introduced. Intuitively, the occurrences of an LI l are merely the Move nodes
in the derivation tree that operated on one of l’s licensee features. It does not

220 T. Graf

take much insight to realize that the first occurrence of l has to be some Move
node that dominates it (otherwise l’s licensee features could not be operated
on) and is not included in slice(l) (no LI may license its own movement). One
can even require the first occurrence to be the very first Move node satisfying
these properties, thanks to the SMC (the reader might want to reflect on this
for a moment). The reasoning is similar for all other occurrences, with the sole
exception that closeness is now relativized to the previous occurrence. In more
formal terms: Given an LI l := σ :: γcδ with c ∈ Base and δ := −f1, . . . ,−fn,
its occurrences occi, 1 ≤ i ≤ n, are such that

– occ1 is the first node labeled move that matches −f1 and properly dominates
the slice root of l.

– occi is the first node labeled move that matches −fi and properly dominates
occi−1.

Note that every well-formed MDTL obeys the following two conditions:

– M1 : For every LI l with 1 ≤ n ≤ |δ| licensee features, there exist nodes
m1, . . . ,mn labeled move such that mi is the ith occurrence of l, 1 ≤ i ≤ n.

– M2 : For every node m labeled move, there is exactly one LI l such that m
is an occurrence of l.

In fact, the implication holds in both directions.

Lemma 1. For every MG G it holds that if t ∈ TLexG∪{merge,move} is a com-
bination of well-formed slices and respects all constraints on the distribution of
Merge nodes, then it is well-formed iff M1 and M2 are satisfied.

Proof. As just discussed the left-to-right direction poses little challenge. In the
other direction, I show that μ−1 is well-defined on t and maps it to a well-formed
s ∈ sder(G). For LIs and Merge nodes, μ−1 is well-defined by assumption if it
is well-defined for Move nodes. From the definition of move and the SMC it
follows that μ−1(move(, t2)) (the expression returned by move when applied to
μ−1(t2)) is well-defined only if the root of t2 is an expression consisting of at least
two chains such that 1) its first chain has some feature +f as its first feature
and 2) the feature component of exactly one chain begins with −f . However,
the former follows from the well-formedness of slices, while the latter is enforced
by M2; in particular, if the SMC were violated, some Move node would be an
occurrence for more than one LI. This establishes that μ−1 is well-defined for
all nodes. Now μ−1(t) can be ungrammatical only if the label of the root node
contains some licensor or licensee features. The former is ruled out by M2 and the
initial assumption that all slices are well-formed, whence every licensor feature
is instantiated by a Move node. In the latter case, there must be some licensee
feature without an occurrence in t, which is blocked by M1. ��
Now we can finally move on to the proof of Thm. 5.

Proof. Given some k-local MG G with L := mder(G) ∈ mdtl[merge,move(k)],
let κ-factors(L) be the set containing all κ-factors of L, and F the corresponding

Locality and the Complexity of Minimalist Derivation Tree Languages 221

strictly κ-local language built from these κ-factors. It is obvious that F ⊇ L, so
one only needs to show that F ⊆ L. Trivially, t ∈ L iff t ∈ F for all trees t of
depth d ≤ κ. For this reason, only trees of size greater than κ will be considered.

Assume towards a contradiction that F ⊆ L, i.e. there is a t such that F �
t /∈ L. Clearly F � t /∈ L iff some condition enforced by merge or move on the
combination of slices is violated, as the general restrictions on tree geometry
(distribution of labels, length and directionality of slices) are always satisfied by
virtue of κ always exceeding |γ| + 1. I now consider all possible cases. In each
case, I use the fact that the constraints imposed by merge and move operate
over a domain of bounded size less than κ, so that if t ∈ F violated one of them,
one of its κ-factors would have to exhibit this violation, which is impossible as
κ-factors(F) = κ-factors(L).

Case 1 [Merge]: merge is illicit only if there is an internal node n labeled
merge in slice(l) such that the shortest path from n to l is of length 1 ≤ i, the
ith feature of l is +f for some f ∈ Base, and there is no LI l′ such that the left
daughter of n belongs to slice(l′) and l′ carries feature f . But the size of every
slice is at most |γ|+ 1, so the distance between n and l is at most |γ|, and that
between n and l′ at most |γ|+1. Hence a factor of size |γ|+2 is sufficient, which
is less than κ. So if we found such a configuration, it would be part of some
κi ∈ κ-factors(F) = κ-factors(L). Contradiction.

Case 2 [Move]: Conditions M1 and M2 can be split into three subcases.
Case 2.1 [Too few occurrences]: Assume that LI l has j ≤ |δ| licensee fea-

tures but only i < j occurrences. Since L ∈ mdtl[merge,move(k)], the shortest
path spanning from any LI to its last occurrence includes nodes from at most
|δ| ∗ k+1 distinct slices. Since the size of no slice minus its LI exceeds |γ|, some
factor κi of size greater than (|γ| ∗ |δ| ∗ k) + (|γ|+1) ≤ κ must exhibit the illicit
configuration, yet κi /∈ κ-factors(L).

Case 2.2 [Too many Move nodes]: Assume that for some Move node m
there is no LI l such that m is an occurrence of l. This is simply the reverse of
Case 2.1, where we obtain a violation if it holds for no LI l in any κi that m is one
of its occurrences. But then at least one of these κi cannot be in κ-factors(L).

Case 2.3 [SMC violation]: The SMC is violated whenever there are two
distinct items l and l′ for which Move node m is an occurrence. As 2.2, this is
just a special case of 2.1. ��

We now have a very good approximation of mdtl[merge,move(k)] for any choice
of k > 0. They are not local, or equivalently, strictly 2-locally testable, but
they are strictly κ-locally testable, where κ depends on k and the maxima of
licensor and licensee features, respectively. But what about mdtl[merge,move]
in general?

To readers acquainted with MGs it will hardly be surprising that unrestricted
MDTLs are not strictly locally testable. Nor is it particularly difficult to demon-
strate that they even fail to be locally threshold testable. In [1], it was proved
that closure under k-guarded swaps is a necessary condition for a language to
be definable in FOmod [S1, S2] — that is to say, first-order logic with unary pred-
icates for all labels, binary predicates for the left child and right child relations,

222 T. Graf

respectively, and the ability to perform modulo counting. Evidently FOmod

[S1, S2] is a proper extension of FO[S1, S2], and definability in the latter fully
characterizes the locally threshold testable languages [20]. So no language that
isn’t closed under k-guarded swaps is locally threshold testable.

Definition 8. Let t := C ·Δ1 ·Δ·Δ2 ·T be the composition of trees C := Ct[a, x),
Δ1 := Ct[x, y), Δ := Ct[y, x

′), Δ2 := Ct[x
′, y′) and T := t|y′ . The vertical swap

of t between [x, y) and [x′, y′) is the tree t′ := C ·Δ2 ·Δ ·Δ1 · T . If the subtrees
rooted at x and x′ are identical up to and including depth k, and the same holds
for the subtrees rooted at y and y′, then the vertical swap is k-guarded.

Theorem 6. mdtl[merge,move] and the class of tree languages definable in
FOmod [S1, S2] are incomparable.

Proof. Consider a grammar containing (at least) the following four items:

a :: a a :: a − b a :: = a a a :: = a + b a

I restrict my attention to those derivation trees in which movement occurs ex-
actly once. Pick any k ∈ N. Then there is some derivation tree that can be
factored as above such that Δ1 contains the movement node at some depth
m > k, Δ2 contains the corresponding LI a :: a − b at some depth n > k,
C = Δ = T , and the depth of Δ and T exceeds k. Given this configuration,
the vertical swap of Δ1 and Δ2 is k-guarded, yet t′ := C · Δ2 · Δ · Δ1 · T is
not a Minimalist derivation tree, as the movement node no longer dominates
a :: a − b, thereby negating closure under k-guarded swaps. ��
The insufficiency of FOmod [S1, S2] puts a strong lower bound on the complexity
of mdtl[merge,move]. In the next section, I show that enriching FO[S1, S2] with
proper dominance and equivalence is all it takes to make mdtl[merge,move]
first-order definable.

4 Definability in First-Order Logic

I start with an FO[S1, S2] theory of mdtl[merge], which is then extended to
FO[S1, S2, <,≈] for mdtl[merge,move]. Given an MG G, FO[S1, S2] is defined
over ordered binary branching trees in the standard way, with the signature
containing a unary predicate p for each p ∈ Λ := LexG ∪OpG ∪ {} and binary
predicates S1 and S2 for the left and right child relation, respectively. The equiv-
alence relation is superfluous for mdtl[merge]. I write x �1 y instead of S1(x, y),
and similarly for S2. Moreover, x � y iff x �1 y ∨ x �2 y.

First a number of constraints are established to ensure that every node has
exactly one label drawn from Λ, and that the arity of the labels is respected
(it suffices only to restrict nullary symbols to leaves, as this entails that binary
symbols can be assigned only to interior nodes). Furthermore, may be assigned
to a node if and only if it is the left daughter of a Move node.

∀x
[(∨

u∈Λ

u(x)
)
∧

∧
u∈Λ

(
u(x)→

∧
v∈Λ\{u}

¬v(x)
)]

Locality and the Complexity of Minimalist Derivation Tree Languages 223

∀x
[∨
u∈Λ\{merge,move}

u(x)↔ ¬∃y[x � y]
]

∀x∀y[(y)↔ move(x) ∧ x �1 y
]

As was pointed out in Sec. 2, MDTLs can be viewed as the result of combining
the slices defined by LIs in all possible ways such that the constraints of the
feature calculus are respected. Hence I first define the shape of slices before
moving on to the feature conditions enforced by Merge. To simplify this task, I
use ↘n φ(x) as a shorthand for “φ holds at the node reached from x by taking
n steps down the right branch”. The analogous ↙n φ(x) moves us down the
left branch instead, while ↖n φ(x) moves us upwards only along a right branch.
Intuitively,↘, ↙ and ↖ can be viewed as first-order implementations of modal
diamond operators.

↘0 φ(x)↔ φ(x)

↘n φ(x)↔ ∃y[x �2 y∧ ↘n−1 φ(y)]

Recall that all slices are strictly right-branching and never exceed size |γ| + 1.
This is equivalent to saying that there is no node that is at least |γ|+1 S2-steps
away from a node satisfying a tautology �.
¬∃x[↘|γ|+1 �(x)]

Next, every interior node n must be licensed by a feature of the LI of the slice
containing n. Again a special notational device proves useful: for any feature f ,
fi(x) holds iff for some l ∈ LexG whose ith feature is f , l(x) is true (the index
will be suppressed whenever the position of the feature is irrelevant). Now let
slr i(x)↔

∨
f∈Base= fi(x) and lcr i(x)↔

∨
f∈Base+fi(x).

∀x
[(

merge(x)→
∨

1≤i≤|γ|
↘i slr i(x)

)
∧
(
move(x)→

∨
1≤i≤|γ|

↘i lcr i(x)
)]

Besides the evident restriction on the distribution of merge and move, the for-
mula above also ensures that no l ∈ Λ without selector or licensor features can
ever be a right leaf.

We still have to establish a minimum size on slices, though, which is easily
accomplished by requiring every selector/licensor feature to license a unique
interior node.

∀x
[∧
1≤i≤|γ|

((
slr i(x)→↖i merge(x)

) ∧ (
lcr i(x)→↖i move(x)

))]

Note that this also prevents every LI with selector or licensor features from
occurring on a left branch. The topmost slice in the derivation is also subject to
the condition that the category of its LI must be final.

∀x
[
¬∃y[y � x]→

∨
c∈F

0≤i≤|γ|

↘i c(x)
]

224 T. Graf

So far, then, our first-order theory enforces the correct minimum/maximum size
of slices for every l ∈ LexG and fixes their branching direction and node labels.
For mdtl[merge], it only remains to capture the feature dependencies imposed
by Merge: the category feature of the LI of the slice on the left branch has to
match the selector feature of the LI found along the right branch.

∀x
[
merge(x)→

∧
c∈Base

(
↙1

∨
0≤i≤|γ|

↘i c(x)↔
∨

1≤j≤|γ|
↘j = cj(x))

)]

Extending this basis to unrestricted MDTLs is surprisingly easy using the notion
of occurrences we encountered earlier on. First, proper dominance and equiva-
lence are added to the signature of FO[S1, S2], yielding FO[S1, S2, <,≈]. As
before, I use infix notation for all binary relations, so instead of < (x, y) I write
x �+ y. For every i ≤ |δ|, matchi(x, y) denotes that x is associated to a feature
that matches the ith licensee feature of y.

matchi(x, y)↔∨
f∈Base

(∧
c∈Base

1≤j≤|γ|+1

(
cj(y)→ −fj+i(y)

) ∧move(x) ∧
∨

1≤g≤|γ|
↘g +fg(x)

)

Furthermore, the predicate x � y ↔ ∃z, ∃z′[(x�+z∨x ≈ z)∧z�1z′∧(z�+y∨z ≈
y)
]
holds of x and y iff x properly dominates y and they belong to different slices.

Building on these two notions, it is a straightforward task to recast the definition
of occurrences in first-order terms.

occ1(x, l)↔ match1 (x, l) ∧ x � l ∧ ¬∃y
[
x �+ y ∧match1 (y, l) ∧ y � l

]

occi(x, l)↔ x �+ l ∧matchi(x, l) ∧ ∃y
[
x �+ y ∧ occi−1(y, l)∧

¬∃z[x �+ z ∧ z �+ y ∧ matchi(z, l)
]]

In line with Lem. 1, constraining the distribution of move requires but three
formulas that demand, respectively, that every licensee feature has a matching
move node, that every mode node has a matching licensee feature, and that no
movement node can be matched against more than one licensee feature (SMC).
It is only this very last condition that depends on the equivalence predicate as
there is no other first-order definable way of distinguishing nodes (the use of
equivalence in the definition of � is merely a matter of convenience and can
easily be avoided).

∀x
[∧

c∈Base
1≤i≤|γ|+1

(
ci(x)→

∧
f∈Base
0≤j≤|δ|

(
− fi+j(x)→ ∃y

[
occj(y, x)

]))]

Locality and the Complexity of Minimalist Derivation Tree Languages 225

∀x
[
move(x)→ ∃l[∨

1≤i≤|δ|
occi(x, l)

]]

∀x∀l
[∧
1≤i≤|δ|

(
occi(x, l)→ ∀l′

[∧
j∈[|δ|]\{0,i}

¬occj(x, l′)∧
(
occi(x, l

′)→ l ≈ l′
)])]

5 Conclusion

The results reported herein highlight the rather indirect relation between MDTLs
and the string languages they derive. MGs without movement yield context-free
string languages, whereas even bounded movement is sufficient to generate all
multiple context-free languages. At the level of tree languages, however, both
movement-free and k-local MGs are strictly locally testable, whereas unrestricted
movement leads to an increase in complexity that pushes MDTLs out of the
realm of local threshold testability (see Fig. 2 on the next page).1

As my results posit a split between k-local and unrestricted MGs on the level
of derivation trees, they seem to vindicate the assumption commonly made by
syntacticians that locality restrictions on movement are a fundamental prop-
erty of natural language that keeps computational complexity in check. On the
other hand, weak generative capacity remains unaffected, and the locality rank
is immaterial, as all local grammars can be made 1-local. Further work is needed
before a full understanding can be reached as to how derivational complexity may
interact with string language complexity, what measure of complexity should be
used, and how this relates to syntactic proposals.

It must also be pointed out that alternative representations of Minimalist
derivation trees could conceivably paint a different picture. Eventually, one would
like to have a better understanding as to which aspects of a derivation tree lan-
guage genuinely reflect the complexity of the derivational machinery underlying
the MG formalism and which are just notational quirks. By probing different
formats for Minimalist derivation trees we might also unearth new connections
between MGs and Tree Adjoining Grammar, an area that has recently enjoyed
increased interest.
1 The strictly local nature of movement-free and k-local MDTLs also implies that they
can be recognized by deterministic tree-walking automata. I conjecture that this
does not carry over to unrestricted MDTLs unless the automata are enriched with
two weak pebbles. In particular, non-deterministic tree-walking automata cannot
recognize unrestricted MDTLs: The fundamental problem one faces while sifting
through a derivation tree with unrestricted movement in a sequential manner is that
either 1) the automaton has to keep track of an unbounded number of features when
performing a brute-force search for an LI matching a given movement node, or 2)
it gets lost in the derivation tree and cannot make its way back to the movement
node in question. This makes it impossible to ensure that every movement node is an
occurrence for exactly one LI, and non-determinism offers no remedy. The addition
of two pebbles, on the other hand, allows the automaton to mark the movement node
and the LI that was inspected last, so that the automaton can always find its way
back and can infer from the position of the second pebble which LIs have already
been looked at.

226 T. Graf

REG = Star-Free

lrDTDASTA

DTDA

FO[S1, S2, <]

LTT = FO[S1, S2]

FOmod [S1, S2]

SL

LOC

mdtl[merge ,move]

mdtl[merge]

mdtl[merge ,move(k)]

[14]

[20]

[11]

Thm.5

Sec. 4Thm. 3

T
hm

.
6

[11]

Thm. 4

T
h
m
.
2

a b a is properly included in b
a b a and b are incomparable

Fig. 2. MDTLs in the subregular space of strictly binary branching tree languages
(references omitted for obvious relations)

Acknowledgments. My thanks go to Ed Stabler and the three anonymous
reviewers for their helpful criticism. The research reported herein was supported
by a DOC-fellowship of the Austrian Academy of Sciences.

References

[1] Benedikt, M., Segoufin, L.: Regular tree languages definable in FO and in FOmod.
ACM Transactions in Computational Logic 11, 1–32 (2009)

[2] Chomsky, N.: The Minimalist Program. MIT Press, Cambridge (1995)
[3] den Dikken, M.: Arguments for successive-cyclic movement through SpecCP. A

critical review. Linguistic Variation Yearbook 9, 89–126 (2009)
[4] Graf, T.: Closure properties of minimalist derivation tree languages. In: Pogodalla,

S., Prost, J.-P. (eds.) LACL 2011. Lecture Notes in Computer Science (LNAI),
vol. 6736, pp. 96–111. Springer, Heidelberg (2011)

[5] Gécseg, F., Steinby, M.: Tree Automata. Academei Kaido, Budapest (1984)
[6] Harkema, H.: A Characterization of Minimalist Languages. In: de Groote, P.,

Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 193–211.
Springer, Heidelberg (2001)

[7] Kobele, G.M.: Minimalist Tree Languages Are Closed Under Intersection with
Recognizable Tree Languages. In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011.
LNCS, vol. 6736, pp. 129–144. Springer, Heidelberg (2011)

Locality and the Complexity of Minimalist Derivation Tree Languages 227

[8] Kobele, G.M., Retoré, C., Salvati, S.: An automata-theoretic approach to mini-
malism. In: Rogers, J., Kepser, S. (eds.) Model Theoretic Syntax at 10, pp. 71–80
(2007)

[9] Mainguy, T.: A probabilistic top-down parser for Minimalist grammars (2010),
arXiv:1010.1826v1

[10] Martens, W.: Static Analysis of XML Transformation- and Schema Languages.
Ph.D. thesis, Hasselt University (2006)

[11] Martens, W., Neven, F., Schwentick, T.: Deterministic top-down tree automata:
Past, present, and future. In: Proceedings of Logic and Automata, pp. 505–530
(2008)

[12] Michaelis, J.: Transforming linear context-free rewriting systems into minimalist
grammars. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS
(LNAI), vol. 2099, pp. 228–244. Springer, Heidelberg (2001)

[13] Nivat, M., Podelski, A.: Minimal ascending and descending tree automata. SIAM
Journal on Computing 26, 39–58 (1997)

[14] Potthoff, A., Thomas, W.: Regular tree languages without unary symbols are
star-free. In: Proceedings of the 9th International Symposium on Fundamentals
of Computation Theory, pp. 396–405 (1993)

[15] Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free gram-
mars. Theoretical Computer Science 88, 191–229 (1991)

[16] Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS
(LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)

[17] Stabler, E.P.: Computational perspectives on minimalism. In: Boeckx, C. (ed.)
Oxford Handbook of Linguistic Minimalism, pp. 617–643. Oxford University Press,
Oxford (2011)

[18] Stabler, E.P.: Top-down recognizers for MCFGs and MGs. In: Workshop on Cog-
nitive Modeling and Computational Linguistics, pp. 39–48. ACL, Portland (2011)

[19] Stabler, E.P., Keenan, E.: Structural similarity. Theoretical Computer Science 293,
345–363 (2003)

[20] Thomas, W.: Languages, automata and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, New York
(1997)

[21] Verdú-Mas, J.L., Carrasco, R.C., Calera-Rubio, J.: Parsing with probabilistic
strictly locally testable tree languages. IEEE Transactions on Pattern Analysis
and Machine Intelligence 27, 1040–1050 (2005)

	Locality and the Complexity of Minimalist Derivation Tree Languages
	Preliminaries and Notation
	Minimalist Grammars
	Introduction and Examples
	Minimalist Grammars, Derivation Trees, and Slices
	Locality and Subclasses of Derivation Tree Languages

	(Un)Definability in Some Subregular Language Classes
	Deterministic Top-Down Automata
	Strictly Local and Locally Threshold Testable Languages

	Definability in First-Order Logic
	Conclusion
	References

