

Lecture Notes in Computer Science 7395
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

FoLLI Publications on Logic, Language and Information

Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Valentin Goranko, Technical University, Lynbgy, Denmark

Erich Grädel, RWTH Aachen University, Germany

Michael Moortgat, Utrecht University, The Netherlands

Subline Area Editors

Nick Bezhanishvili, Imperial College London, UK

Anuj Dawar, University of Cambridge, UK

Philippe de Groote, Inria-Lorraine, Nancy, France

Gerhard Jäger, University of Tübingen, Germany

Fenrong Liu, Tsinghua University, Beijing, China

Eric Pacuit, Tilburg University, The Netherlands

Ruy de Queiroz, Universidade Federal de Pernambuco, Brazil

Ram Ramanujam, Institute of Mathematical Sciences, Chennai, India

Philippe de Groote Mark-Jan Nederhof (Eds.)

Formal Grammar
15th and 16th International Conferences
FG 2010, Copenhagen, Denmark, August 2010
FG 2011, Ljubljana, Slovenia, August 2011
Revised Selected Papers

13

Volume Editors

Philippe de Groote
INRIA Nancy - Grand Est
615 rue du Jardin Botanique
54600 Villers-ls-Nancy, France
E-mail: degroote@loria.fr

Mark-Jan Nederhof
University of St. Andrews
School of Computer Science
North Haugh, St. Andrews
Fife, KY16 9SX, Scotland
E-mail: mjn@cs.st-andrews.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-32023-1 e-ISBN 978-3-642-32024-8
DOI 10.1007/978-3-642-32024-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012942344

CR Subject Classification (1998): F.4.1-3, I.1, I.2.7

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The Formal Grammar conference series provides a forum for the presentation
of new and original research on formal grammar, mathematical linguistics, and
the application of formal and mathematical methods to the study of natural
language.

FG 2010, the 15th conference on Formal Grammar, was held in Copenhagen,
Denmark, during August 7–8, 2010. The conference consisted in 14 contributed
papers (selected out of 34 submissions), and one invited talk by Mats Rooth.

FG 2011, the 16th conference on Formal Grammar, was held in Ljubljana,
Slovenia, during August 6–7, 2011. The conference consisted in six contributed
papers (selected out of 16 submissions), and two invited talks by Thomas Ede
Zimmermann and Jeroen Groenendijk.

We would like to thank the people who made the 15th and 16th FG confer-
ences possible: the three invited speakers, the members of the Program Com-
mittees, and the members of the ESSLLI 2010 and ESSLLI 2011 Organizing
Committees.

May 2012 Philippe de Groote
Mark-Jan Nederhof

FG 2010 Organization

Program Committee

Wojciech Buszkowski Adam Mickiewicz University, Poland
Berthold Crysmann University of Bonn, Germany
Alexandre Dikovsky University of Nantes, France
Denys Duchier University of Orléans, France
Annie Foret IRISA - University of Rennes 1, France
Nissim Francez Technion, Israel
Makoto Kanazawa National Institute of Informatics, Japan
Stephan Kepser Codecentric AG, Germany
Valia Kordoni Saarland University, Saarbrücken, Germany
Marco Kuhlmann Uppsala University, Sweden
Glyn Morrill UPC, Barcelona Tech, Spain
Stefan Müller Free University of Berlin, Germany
Gerald Penn University of Toronto, Canada
Frank Richter University of Tübingen, Germany
Manfred Sailer University of Göttingen, Germany
Edward Stabler UCLA, USA
Hans-Jörg Tiede Illinois Wesleyan University, USA
Jesse Tseng CNRS - CLLE-ERSS, France
Shuly Wintner University of Haifa, Israel

Standing Committee

Philippe de Groote INRIA Nancy - Grand Est, France
Markus Egg Humboldt-Universität Berlin, Germany
Laura Kallmeyer University of Tübingen, Germany
Mark-Jan Nederhof University of St. Andrews, UK

FG 2011 Organization

Program Committee

Berthold Crysmann University of Bonn, Germany
Alexandre Dikovsky University of Nantes, France
Denys Duchier University of Orléans, France
Annie Foret IRISA - University of Rennes 1, France
Nissim Francez Technion, Israel
Laura Kallmeyer University of Düsseldorf, Germany
Makoto Kanazawa National Institute of Informatics, Japan
Stephan Kepser University of Tübingen, Germany
Valia Kordoni Saarland University, Saarbrücken, Germany
Marco Kuhlmann Uppsala University, Sweden
Glyn Morrill UPC, Barcelona Tech, Spain
Stefan Müller Free University of Berlin, Germany
Gerald Penn University of Toronto, Canada
Christian Retoré University of Bordeaux 1, France
Manfred Sailer University of Göttingen, Germany
Edward Stabler UCLA, USA
Anders Søgaard University of Copenhagen, Denmark
Jesse Tseng CNRS - CLLE-ERSS, France

Standing Committee

Philippe de Groote INRIA Nancy - Grand Est, France
Markus Egg Humboldt-Universität Berlin, Germany
Mark-Jan Nederhof University of St. Andrews, UK
Frank Richter University of Tübingen, Germany

Table of Contents

Formal Grammar 2010: Contributed Papers

Polarized Montagovian Semantics for the Lambek-Grishin Calculus 1
Arno Bastenhof

Two Models of Learning Iterated Dependencies . 17
Denis Béchet, Alexander Dikovsky, and Annie Foret

The Lambek-Grishin Calculus Is NP-Complete . 33
Jeroen Bransen

Resumption and Island-Hood in Hausa . 50
Berthold Crysmann

Iterated Dependencies and Kleene Iteration . 66
Michael Dekhtyar, Alexander Dikovsky, and Boris Karlov

Property Grammar Parsing Seen as a Constraint Optimization
Problem . 82

Denys Duchier, Thi-Bich-Hanh Dao, Yannick Parmentier, and
Willy Lesaint

Reference-Set Constraints as Linear Tree Transductions via Controlled
Optimality Systems . 97

Thomas Graf

Hyperintensional Dynamic Semantics: Analyzing Definiteness with
Enriched Contexts . 114

Scott Martin and Carl Pollard

Distinguishing Phenogrammar from Tectogrammar Simplifies
the Analysis of Interrogatives . 130

Vedrana Mihaliček and Carl Pollard

Generalized Discontinuity . 146
Glyn Morrill and Oriol Valent́ın

Controlling Extraction in Abstract Categorial Grammars 162
Sylvain Pogodalla and Florent Pompigne

Plural Quantifications and Generalized Quantifiers 178
Byeong-Uk Yi

Polynomial Time Learning of Some Multiple Context-Free Languages
with a Minimally Adequate Teacher . 192

Ryo Yoshinaka and Alexander Clark

XII Table of Contents

Formal Grammar 2011: Contributed Papers

Locality and the Complexity of Minimalist Derivation Tree
Languages . 208

Thomas Graf

Building a Formal Grammar for a Polysynthetic Language 228
Petr Homola

Eliminating Ditransitives . 243
András Kornai

Lambek Grammars with the Unit . 262
Stepan Kuznetsov

Resolving Plural Ambiguities by Type Reconstruction 267
Hans Leiß

Weak Familiarity and Anaphoric Accessibility in Dynamic Semantics . . . 287
Scott Martin

Author Index . 307

Polarized Montagovian Semantics

for the Lambek-Grishin Calculus

Arno Bastenhof

Utrecht University

Abstract. Grishin ([9]) proposed enriching the Lambek calculus with
multiplicative disjunction (par) and coresiduals. Applications to linguis-
tics were discussed by Moortgat ([14]), who spoke of the Lambek-Grishin
calculus (LG). In this paper, we adapt Girard’s polarity-sensitive dou-
ble negation embedding for classical logic ([7]) to extract a compositional
Montagovian semantics from a display calculus for focused proof search
([1]) in LG. We seize the opportunity to illustrate our approach along-
side an analysis of extraction, providing linguistic motivation for linear
distributivity of tensor over par ([3]), thus answering a question of [10].
We conclude by comparing our proposal to that of [2], where alternative
semantic interpretations of LG are considered on the basis of call-by-
name and call-by-value evaluation strategies.

Inspired by Lambek’s syntactic calculus, Categorial type logics ([13]) aim at
a proof-theoretic explanation of natural language syntax: syntactic categories
and grammaticality are identified with formulas and provability. Typically, they
show an intuitionistic bias towards asymmetric consequence, relating a struc-
tured configuration of hypotheses (a constituent) to a single conclusion (its
category). The Lambek-Grishin calculus (LG, [14]) breaks with this tradition
by restoring symmetry, rendering available (possibly) multiple conclusions. �1
briefly recapitulates material on LG from [14] and [15].

In this article, we couple LG with a Montagovian semantics.1 Presented in
�2, its main ingredients are focused proof search [1] and a double negation trans-
lation along the lines of [7] and [19], employing polarities to keep the number of
negations low. In �3, we illustrate our semantics alongside an analysis of extrac-
tion inspired by linear distributivity principles ([3]). Finally, �4 compares our
approach to the competing proposal of [2].

1 The Lambek-Grishin Calculus

Lambek’s (non-associative) syntactic calculus ((N)L, [11], [12]) combines lin-
guistic inquiry with the mathematical rigour of proof theory, identifying syn-
tactic categories and derivations by formulas and proofs respectively. On the
logical side, (N)L has been identified as (non-associative,)non-commutative
multiplicative intuitionistic linear logic, its formulas generated as follows:

1 Understanding Montagovian semantics in a broad sense, we take as its keywords
model-theoretic and compositional. Our emphasis in this article lies on the latter.

P. de Groote and M.-J. Nederhof (Eds.): Formal Grammar 2010/2011, LNCS 7395, pp. 1–16, 2012.
� Springer-Verlag Berlin Heidelberg 2012

2 A. Bastenhof

A..E ∶∶= p Atoms/propositional variables
∣ (A�B) Multiplicative conjunction/tensor
∣ (B/A) ∣ (A/B) Left and right implication/division

Among NL’s recent offspring we find the Lambek-Grishin calculus (LG) of [14],
inspired by Grishin’s ([9]) extension of Lambek’s vocabulary with a multiplica-
tive disjunction (par) and coimplications/subtractions. Combined with the recent
addition of (co)negations proposed in [15], the definition of formulas now reads

A..E ∶∶= p Atoms
∣ (A�B) ∣ (A�B) Tensor vs. par
∣ (A/B) ∣ (B �A) Right division vs. left subtraction
∣ (B/A) ∣ (A�B) Left division vs. right subtraction
∣

0B ∣ B1 Left negation vs. right conegation
∣ B0

∣
1B Right negation vs. left conegation

Derivability (≤) satisfies the obvious preorder laws:

A ≤ A
Refl A ≤ B B ≤ C

A ≤ C
Trans

Logical constants group into families with independent algebraic interest. The
connectives {�, /, /} constitute a residuated family with parent �, while {�,�,�}
embodies the dual concept of a coresiduated family. Finally, {0⋅, ⋅0} and {⋅1, 1⋅}
represent Galois-connected and dually Galois-connected pairs respectively.2

B ≤ A/C

A�B ≤ C
r

A ≤ C/B
r

C �B ≤ A

C ≤ A�B
cr

A�C ≤ B
cr

A ≤ 0B

B ≤ A0
gc

A1
≤ B

1B ≤ A
dgc

Among the derived rules of inference, we find the monotonicity laws:

A ≤ B C ≤D

A�C ≤ B �D
A/D ≤ B/C
D/A ≤ C/B

m A ≤ B C ≤D

A�C ≤ B �D
A�D ≤ B �C
D�A ≤ C �B

m A ≤ B
0B ≤ 0A
B0
≤ A0

m A ≤ B

B1
≤ A1

1B ≤ 1A

m

LG differs most prominently from NL in the existence of an order-reversing
duality: an involution ⋅∞ on formulas s.t. A ≤ B iff B∞ ≤ A∞, realized by3

p A�B A/B B/A 0B B0

p B �A B �A A�B B1 1B
∞

A reasonable way of extending LG would be to allow connectives of different
families to interact. Postulates licensing linear distributivity of � over � ([3], [6])
come to mind, each being self-dual under ⋅∞ (thus preserving arrow-reversal):

2 Throughout this text, a double line indicates derivability to go in both ways. Simi-
larly, in (m) below, the same premises are to be understood as deriving each of the
inequalities listed under the horizontal line.

3 The present formulation, adopted from [15], abbreviates a list of defining equations
(A�B)∞ = B∞ �A∞, (B �A)∞ = A∞ �B∞, etc.

Polarized Montagovian Semantics for the Lambek-Grishin Calculus 3

(A�B)�C ≤ A� (B �C) A� (B �C) ≤ (A�B)�C
(A�B)�C ≤ (A�C)�B A� (B �C) ≤ B � (A�C)

�3 further explores the relation LG/linguistics, providing as a case analysis for
our Montagovian semantics of �2 a sample grammar providing linguistic sup-
port for the above linear distributivity principles. As for their proof-theoretic
motivation, we note that the following generalizations of Cut become derivable:

A ≤ E �B B �D ≤ C
A�D ≤ E �C

A ≤ B �E D�B ≤ C
D�A ≤ C �E

A ≤ B �E B �D ≤ C
A�D ≤ C �E

A ≤ E �B D�B ≤ C
D�A ≤ E �C

For example, suppose A ≤ E �B and B�D ≤ C. From monotonicity and linear
distributivity we then deduce

A�D ≤ (E �B)�D ≤ E � (B �D) ≤ E �C

2 Derivational Montagovian Semantics

We split our semantics into a derivational and a lexical component. The former
is hard-wired into the grammar architecture and tells us how each inference
rule builds the denotation of its conclusion (the derived constituent) from those
of its premises (the direct subconstituents). The descriptive linguist gives the
base of the recursion: the lexical semantics, specifying the denotations of words.
Leaving lexical issues aside until �3, we define a λ-term labeled sequent calculus
for simultaneously representing the proofs and the derivational semantics of LG.
Summarized in Figure 3, its main features (and primary influences) are as follows:

1. It is, first and foremost, a display calculus along the lines of [8] and [14]. In
particular, the notion of sequent is generalized so as to accommodate struc-
tural counterparts for each of the logical connectives. Display postulates then
allow to pick out any hypothesis (conclusion) as the whole of the sequent’s
antecedent (consequent).

2. Our sequents are labeled by linear λ-terms for representing compositional
meaning construction, adapting the polarity-sensitive double negation trans-
lations of [7] and [19].

3. We fake a one(/left)-sided sequent presentation to more closely reflect the
target calculus of semantic interpretation. To this end, we adapt to our needs
de Groote and Lamarche’s one(/right)-sided sequents for classical NL ([5]).

4. In contrast with the works cited, our inference rules accommodate focused
proof search ([1]), thus eliminating to a large extent the trivial rule permu-
tations for which sequent calculi are notorious.

We proceed step by step, starting with a specification of the target language for
the double negation translation.

4 A. Bastenhof

τx ⊢ x ∶ τ
Ax

Γ ⊢M ∶ ¬τ Δ ⊢ N ∶ τ
Γ,Δ ⊢ (M N) ∶ �

¬E
Γ, τx ⊢M ∶ �

Γ ⊢ λxτM ∶ ¬τ
¬I

Δ ⊢ N ∶ σ1 � σ2 Γ,σx1 , σ
y
2 ⊢M ∶ τ

Γ,Δ ⊢ (case N of xσ1 � yσ2 .M) ∶ τ
�E

Γ ⊢M ∶ τ Δ ⊢ N ∶ σ
Γ,Δ ⊢ ⟨M �N⟩ ∶ τ � σ

�I

(λxM N) →β M[N/x]
case ⟨N1 �N2⟩ of x� y.M →β M[N1/x,N2/y]
((case M1 of x� y.M2) N) →c case M1 of x� y.(M2 N)

case (case N1 of x� y.N2) of u� v.M →c case N1 of x� y.case N2 of u� v.M

Fig. 1. Target language: typing rules and reductions. The c-conversions correspond to
the obligatory commutative conversions of Prawitz ([17]).

Target Language. Instructions for meaning composition will be phrased in
the linear λ-calculus of Figure 1, simply referred to as LP. Note that, through
the Curry-Howard isomorphism, we may as well speak of a Natural Deduction
presentation of multiplicative intuitionistic linear logic. Types τ, σ include mul-
tiplicative products τ � σ and minimal negations ¬τ , the latter understood as
linear implications τ ⊸
 with result a distinguished atom
:

τ, σ ∶∶= p ∣
 ∣ (τ � σ) ∣ ¬τ

We have understood LP to inherit all atoms p of LG. TermsM are typed relative
to contexts Γ,Δ: multisets {τx1

1 , . . . , τxn
n } of type assignments τ1, . . . , τn to the

free variables x1, . . . , xn in M . We often omit the braces { } and loosely write
Γ,Δ for multiset union. Terms in context are represented by sequents Γ ⊢M ∶ τ ,
satisfying the linearity constraint that each variable in Γ is to occur free in M
exactly once. We often write Γ ⊢LP M ∶ τ to indicate Γ ⊢M ∶ τ is well-typed.

From Formulas to Types: Introducing Polarities. In defining the type ⟦A⟧
associated with a formula A, we will parameterize over the following partitioning
of non-atomic formulas, speaking of a positive/negative polarity:

Positive(ly polar): A�B,A�B,B �A,A1, 1A (Metavariables P,Q)
Negative(ly polar): A�B,B/A,A/B, 0A,A0 (Metavariables K,L)

Notice that the dual of a positive formula under ⋅∞ is negative and vice versa,
motivating our choice of terminology. In other words, through order reversal, a
positive formula on one side of the inequality sign has a negative counterpart
behaving alike on the other side. In fact, we shall see that all positive formulas
share proof-theoretic behavior, as do all negative formulas.

We define ⟦A⟧ relative to the polarities ε(
�→

B) of A’s direct subformulae
�→

B (+ if
positive, − if negative). Roughly, a connective expects its polarity to be preserved

Polarized Montagovian Semantics for the Lambek-Grishin Calculus 5

Table 1. Interpreting LG’s formulas by LP’s types

ε(A) ε(B) ⟦A�B⟧
⟦B �A⟧
⟦A�B⟧

⟦A�B⟧
⟦A/B⟧
⟦B/A⟧

⟦0B⟧
⟦B0⟧

⟦B1⟧
⟦1B⟧

− − ¬⟦A⟧� ¬⟦B⟧ ¬⟦A⟧� ⟦B⟧ ⟦A⟧� ⟦B⟧ ⟦A⟧� ¬⟦B⟧ ¬⟦B⟧ ⟦B⟧

− + ¬⟦A⟧� ⟦B⟧ ¬⟦A⟧� ¬⟦B⟧ ⟦A⟧� ¬⟦B⟧ ⟦A⟧� ⟦B⟧ ⟦B⟧ ¬⟦B⟧

+ − ⟦A⟧� ¬⟦B⟧ ⟦A⟧� ⟦B⟧ ¬⟦A⟧� ⟦B⟧ ¬⟦A⟧� ¬⟦B⟧ − −

+ + ⟦A⟧� ⟦B⟧ ⟦A⟧� ¬⟦B⟧ ¬⟦A⟧� ¬⟦B⟧ ¬⟦A⟧� ⟦B⟧ − −

by an argument when upward monotone, while reversed when downward mono-
tone. This is the default case, and is underlined for each connective separately
in Table 1. Deviations are recorded by marking the offending argument by ¬.
In practice, we sometimes loosely refer by ⟦A⟧ to some type isomorphic to it
through commutativity and associativity of � in LP.

We face a choice in extending the positive/negative distinction to atoms: if
assigned positive bias (i.e., ε(p) is chosen +), ⟦p⟧ = p, while ⟦p⟧ = ¬p with negative
bias (ε(p) = −). To keep our semantics free from superfluous negations, we go
with the former option.

Antecedent and Consequent Structures. Conforming to the existence of
⋅
∞, we consider sequents harboring possible multitudes of both hypotheses (or
inputs) and conclusions (outputs). We draw from disjoint collections of variables
(written x, y, z, possiby sub- or superscripted) and covariables (ε, κ, ν) to repre-
sent in- and outputs by labeled formulas Ax and Aε. The latter combine into
(antecedent)structures Γ,Δ and co(nsequent)structures Π,Σ, as specified by4

Γ,Δ ∶∶= Ax ∣ (Γ ●Δ) ∣ (Γ � Σ) ∣ (Π � Γ) ∣ Π� ∣ �Σ Structures
Π,Σ ∶∶= Aε ∣ (Σ ○Π) ∣ (Π ⟜ Γ) ∣ (Δ⊸Π) ∣ Δ⊸ ∣ ⟜Γ Costructures

The various constructors involved are seen as structural counterparts for the
logical connectives via the the following translation tables:

F (⋅) F (⋅) F (⋅)
Ax A Aε A Δ⊸ 0F (Δ)
Γ ●Δ F (Γ)� F (Δ) Σ ○Π F (Π)� F (Σ) ⟜Γ F (Γ)0

Π � Γ F (Π)� F (Γ) Π ⟜ Γ F (Γ)/F (Π) Π� F (Π)1

Γ � Σ F (Γ)� F (Σ) Δ⊸Π F (Π)/F (Δ) �Σ 1F (Σ)

We have sided with display calculi ([8]) in rejecting the standard practice of
allowing only conjunction (in the antecedent) and disjunction (consequent) to

4 The reader eager to indulge in notational overloading may note that the symbols ●,○
suffice for representing each of the binary structural operations. E.g., Γ ●Δ, Γ ●Σ
and Γ ●Δ are unambiguously recognized as Γ ●Δ, Γ � Σ and Π � Γ respectively.

6 A. Bastenhof

be understood structurally. The association of types ⟦A⟧with formulaeA extends
to a mapping of (co)structures into LP-contexts. In the base case, we stipulate5

⟦Ax⟧ = {
{⟦A⟧x} if ε(A) = +
{¬⟦A⟧x} if ε(A) = −

⟦Aε⟧ = {
{¬⟦A⟧ε} if ε(A) = +
{⟦A⟧ε} if ε(A) = −

while structural connectives collapse into multiset union. The underlying intu-
ition: inputs occupy the downward monotone arguments of an implication, while
outputs instantiate the upward monotone ones (see also the entries for implica-
tions in Table 1).

The Display Property. We assert inequalities F (Γ) ≤ F (Π) through sequents
Γ,Π ⊢ M or Π,Γ ⊢ M (the relative ordering of Γ,Π being irrelevant), where
⟦Γ ⟧, ⟦Π⟧ ⊢LP M ∶
. Our use of structural counterparts for (co)implications
scatters in- and outputs all over the sequent, as opposed to nicely partitioning
them into (the yields of) the antecedent and consequent structures. Instead,
the following display postulates, mapping to (co)residuation and (co)Galois laws
under F , allow each input (output) to be displayed as the whole of the antecedent
(consequent):

Γ,Π ⊢M

Π,Γ ⊢M

Γ,Δ⊸ ⊢M
⟜Γ,Δ ⊢M

�Σ,Π ⊢M

Σ,Π� ⊢M

Γ ●Δ,Π ⊢M

Γ,Δ⊸Π ⊢M

Π,Γ ●Δ ⊢M

Π ⟜ Γ,Δ ⊢M

Γ,Σ ○Π ⊢M

Γ � Σ,Π ⊢M

Σ ○Π,Γ ⊢M

Σ,Π � Γ ⊢M

Sequents Γ,Π ⊢ M and Δ,Σ ⊢ M are declared display-equivalent iff they are
interderivable using only the display postulates, a fact we often abbreviate

Γ,Π ⊢M

Δ,Σ ⊢M
dp

The display property now reads: for any input Ax appearing in Γ,Π ⊢M , there
exists some Σ such that Σ,Ax ⊢ M and Γ,Π ⊢ M are display-equivalent, and
similarly for outputs.

Focused Proof Search. We shall allow a displayed hypothesis or conclusion
to inhabit the righthand zone of ⊢, named the stoup, after [7]. Thus, Γ ⊢M ∶ A
and Π ⊢M ∶ A are sequents, provided

⟦Γ ⟧ ⊢LP M ∶ ⟦A⟧ and ⟦Π⟧ ⊢LP M ∶ ¬⟦A⟧ if ε(A) = +
⟦Γ ⟧ ⊢LP M ∶ ¬⟦A⟧ and ⟦Π⟧ ⊢LP M ∶ ⟦A⟧ if ε(A) = −

The presence of a stoup implements Andreoli’s concept of focused proof search
([1]). That is, when working one’s way backwards from the desired conclusion

5 We assume each (co)variable of LG to have been uniquely associated with a variable
of LP. The details of this correspondence are abstracted away from in our notation:
the context is to differentiate between LG’s (co)variables and their LP counterparts.

Polarized Montagovian Semantics for the Lambek-Grishin Calculus 7

to the premises, one commits to the contents of the stoup (the focus) as the
main formula: the only (logical) inference rules deriving a sequent Γ ⊢M ∶ A or
Π ⊢M ∶ A are those introducing A, and focus propagates to the subformulas of
A appearing in the premises. The pay-off: a reduction of the search space.

We need structural rules for managing the contents of the stoup. As will
be argued below, focusing is relevant only for the negative inputs and positive
outputs. Thus, we have decision rules for moving the latter inside the stoup, and
reaction rules for taking their duals out:

Π ⊢M ∶K
Π,Kx ⊢ (x M)

D●
Γ ⊢M ∶ P

Γ,P ε ⊢ (ε M)
D○

Π,P x ⊢M

Π ⊢ λx⟦P ⟧M ∶ P
R●

Γ,Kε ⊢M

Γ ⊢ λε⟦K⟧M ∶K
R○

Logical Inferences. Each connective has its meaning defined by two types of
rules: one infering it from its structural countepart (affecting the positive inputs
and negative outputs) and one introducing it alongside its structural counterpart
via monotonicity (targeting negative inputs and positive outputs). In reference to
Smullyan’s unified notation ([18]), we speak of rules of type α and β respectively.
The former preserve provability of the conclusion in their premises and hence
come for free in proof search, meaning we may apply them nondeterministically.
In contrast, the order in which the available β-type rules are tried may well
affect success. Not all of the non-determinism involved is meaningful, however,
as witnessed by the trivial permutations of β-type rules involving disjoint active
formulas. Their domain of influence we therefore restrict to the stoup.6 It follows
that we may interpret term construction under (α) and (β) by the LP-inferences
(�E) and (�I) respectively. Using the meta-variables

ϕ,ψ, ρ for variables and covariables
and Θ,Θ1,Θ2 for antecedent and consequent structures,

we may formalize the above intuitions by the following tables and rule schemata:
and for the unary connectives (overloading the α,β notation):

Θ,αϕ αψ1 αρ2 ∗
Π,A�Bx Ay Bz ●
Γ,A/Bε By Aν ⊸
Γ,B/Aε Aκ Bz ⟜
Γ,A�Bε Bκ Aν ○
Π,B �Ax Bκ Az �
Π,A�Bx Ay Bν �

β Θ1, β1 Θ2, β2 ∗
A�B Γ,A Δ,B ●

A/B Δ,B Π,A ⊸

B/A Π,A Δ,B ⟜

A�B Σ,B Π,A ○

B �A Σ,B Γ,A �

A�B Γ,A Σ,B �

Θ,αψ1 ∗α
ρ
2 ⊢M

Θ,αϕ ⊢ case ϕ of ψ� ρ.M
α

Θ1 ⊢M ∶ β1 Θ2 ⊢ N ∶ β2
Θ1 ∗Θ2 ⊢ ⟨M �N⟩ ∶ β

β

6 While reducing the search space, it is not immediate that completeness w.r.t. prov-
ability in LG is preserved. We return to this issue at the end of this section.

8 A. Bastenhof

Π,P y ●Qz ⊢M

Π,P �Qx ⊢ case x of y⟦P ⟧ � z⟦Q⟧.M
α

Γ ⊢M ∶ P Δ ⊢ N ∶ Q

Γ ●Δ ⊢ ⟨M �N⟩ ∶ P �Q
β

Π,P y ●Lz ⊢M

Π,P �Lx ⊢ case x of y⟦P ⟧ � z¬⟦L⟧.M
α Γ ⊢M ∶ P

Δ,Lν ⊢N

Δ ⊢ λν⟦L⟧M ∶ L
R○

Γ ●Δ ⊢ ⟨M � λν⟦L⟧N⟩ ∶ P �L
β

Π,Ky ●Qz ⊢M

Π,K �Qx ⊢ case x of y¬⟦K⟧ � z⟦Q⟧.M
α

Γ,Kκ ⊢M

Γ ⊢ λκ⟦K⟧M ∶K
R○

Δ ⊢ N ∶ Q

Γ ●Δ ⊢ ⟨λκ⟦K⟧M �N⟩ ∶K �Q
β

Π,Ky ●Lz ⊢M

Π,K �Lx ⊢ case x of y¬⟦K⟧ � z¬⟦L⟧.M
α

Γ,Kκ ⊢M

Γ ⊢ λκ⟦K⟧M ∶K
R○

Δ,Lν ⊢ N

Δ ⊢ λν⟦L⟧M ∶ L
R○

Γ ●Δ ⊢ ⟨λκ⟦K⟧.M � λν⟦L⟧N⟩ ∶K �L
β

Fig. 2. Checking all possible instantiations of (α), (β) for �. We also mention obliga-
tory reactions (R●,R○) in the premises of (β).

Θ,αϕ αψ1 ⋅
∗

Γ, 0A
ε
Ay ⋅⊸

Γ,A0ε Ay ⟜⋅

Π,A1x Aκ ⋅�

Π, 1A
x
Aκ �⋅

β Θ,β1 ⋅
∗

0A Δ,A ⋅⊸

A0 Δ,A ⟜

⋅

A1 Σ,A ⋅�
1A Σ,A �

⋅

Θ,αψ∗1 ⊢M

Θ,αϕ ⊢M[ϕ/ψ]
α

Θ ⊢M ∶ β1
Θ∗ ⊢M ∶ β

β

Well-definedness is established through a case-by-case analysis. To illustrate,
Figure 2 checks all possible instantiations of (α), (β) for �. Finally, assigning
positive bias to atoms implies Axioms have their conclusion placed in focus:

px ⊢ x ∶ p
Ax

Soundness and Completeness. In what preceded, we have already informally
motivated soundness w.r.t. �1’s algebraic formulation of LG. Completeness is
demonstrated in a companion paper under preparation. Roughly, we define a
syntactic phase model wherein every truth is associated with a Cut-free focused
proof, similar to [16].

3 Case Analysis: Extraction

We illustrate our semantics of �2 alongside an analysis of extraction phenomena.
Syntactically, their treatment in NL necessitates controlled associativity and
commutativity ([13]). Kurtonina and Moortgat (K&M, [10]) ask whether the
same results are obtainable in LG from having � and � interact through lin-
ear distributivity. We work out the details of such an approach, after first having

Polarized Montagovian Semantics for the Lambek-Grishin Calculus 9

px ⊢ x ∶ p
Ax

Γ,Π ⊢M

Π,Γ ⊢M

Γ ●Δ,Π ⊢M

Γ,Δ⊸Π ⊢M

Π,Γ ●Δ ⊢M

Π ⟜ Γ,Δ ⊢M

Γ,Σ ○Π ⊢M

Γ � Σ,Π ⊢M

Σ ○Π,Γ ⊢M

Σ,Π � Γ ⊢M

Π ⊢M ∶K

Π,Kx ⊢ λx⟦K⟧M
D●

Γ ⊢M ∶ P

Γ,P ε ⊢ λε⟦P ⟧M
D○

Π,P x ⊢M

Π ⊢ (x M) ∶ P
R●

Γ,Kε ⊢M

Γ ⊢ (ε M) ∶K
R○

Θ,αψ1 ∗ α
ρ
2 ⊢M

Θ,αϕ ⊢ case ϕ of ψ � ρ.M
α

Θ1 ⊢M ∶ β1 Θ2 ⊢ N ∶ β2

Θ1 ∗Θ2 ⊢ ⟨M �N⟩ ∶ β
β

Θ,αψ∗1 ⊢M

Θ,αϕ ⊢M[ϕ/ψ]
α

Θ ⊢M ∶ β1

Θ∗ ⊢M ∶ β
β

Fig. 3. An overview of the term-labeled sequent calculus for LG. An easy induction
shows that terms labeling derivable sequents are in (β-)normal form.

pointed out a flaw in an alternative proposal by K&M. As illustration, we work
out the derivational and lexical semantics of several sample sentences.

The Good. We first consider a case that already works fine in NL. The follow-
ing complex noun demonstrates extraction out of (subordinate) subject position:

(1) (the) mathematician who founded intuitionism

We analyze (1) into a binary branching tree, categorizing the words as follows:

mathematician [who [invented intuitionism]]

n (n/n)/(np/s) (np/s)/np np

employing atoms s (categorizing sentences), np (noun phrases) and n (nouns).
Note the directionality in the category np/s assigned to the gapped clause (as
selected for by who), seeing as the np gap occurs in a left branch. Figure 6
demonstrates (1), with bracketing as indicated above, to be categorizable by n,
referring to the ’macro’ from Figure 4 for deriving transitive clauses.

We proceed with a specification of the lexical semantics. Linearity no longer
applies at this stage, as our means of referring to the world around us is not
so restricted. Thus, we allow access to the full repertoire of the simply-typed
λ-calculus, augmented with logical constants for the propositional connectives.
Concretely, lexical denotations are built over types

τ, σ ∶∶= e ∣ t ∣ (τ × σ) ∣ (τ → σ)

10 A. Bastenhof

su ⊢ u ∶ s
Ax

sν , su ⊢ (ν u)
D○

sν ⊢ λu(ν u) ∶ s
R●

npx ⊢ x ∶ np
Ax

sν ⟜ npx ⊢ ⟨λu(ν u)� x⟩ ∶ np/s
β

npz ⊢ z ∶ np
Ax

npz ⊸ (sν ⟜ npx) ⊢ ⟨z � ⟨λu(ν u)� x⟩⟩ ∶ (np/s)/np
β

npz ⊸ (sν ⟜ npx), (np/s)/npz ⊢ (y ⟨z � ⟨λu(ν u)� x⟩⟩)
D●

npx ● ((np/s)/npy ● npz), sν ⊢ (y ⟨z � ⟨λu(ν u)� x⟩⟩)
dp

Fig. 4. Derivation of a transitive clause in an SVO language

where e, t interpret (a fixed set of) entities and (Boolean) truth values respec-
tively. The linear types and terms of �2 carry over straightforwardly: interpret
,
τ �σ and ¬τ by t, τ ×σ and τ → t, with terms ⟨M �N⟩ and case N of x� y.M
being replaced by pairs ⟨M,N⟩ and projections M[π1(N)/x,π2(N)/y]. The re-
maining atoms s, np and n we interpret by t (sentences denote truth values), e
(noun phrases denote entities) and e→ t (nouns denote first-order properties) re-
spectively. Abbreviating λxτ×σM[π1(x)/y, π2(x)/z] by λ⟨y, z⟩M and types τ → t
by ¬τ , the linear terms of �2 remain practically unchanged. For instance, delin-
earization of the term found in Figure 6 for (1) gives

(w ⟨λ⟨κ, b⟩(f ⟨i, ⟨λz(κ z), b⟩⟩), ⟨λy(ν y),m⟩⟩)

the free variables w, f , i and m ranging over the denotations of who, founded,
intuitionism and mathematician. Since words act as inputs, those categorized
P (K) are interpreted by a closed term M of type ⟦P ⟧ (¬⟦K⟧). These remarks
motivate the following lexical entries, conveniently written as nonlogical axioms:

mathematician ⊢ mathematician ∶ n
who ⊢ λ⟨Q, ⟨ν,P ⟩⟩(ν λx((P x) ∧ (Q ⟨λpp,x⟩))) ∶ (n/n)/(np/s)

founded ⊢ λ⟨y, ⟨q, x⟩⟩(q ((founded y) x)) ∶ (np/s)/np
intuitionism ⊢ intuitionism ∶ np

We applied the familiar trick of switching fonts to abstract away from certain
interpretations, yielding constants mathematician (type ¬e), founded (e →
¬e) and intuitionism (e). If we take the nonlogical axiom perspective seriously,
lexical substitution proceeds via Cut. Simplifying, we directly substitute terms
for the free variables m,w, f and i, yielding, after β-reduction, the term (with
free variable γ corresponding to the assigned category n)

(γ λx((mathematician x) ∧ ((founded intuitionism) x))),

The Bad. Cases of non-subject extraction are illustrated in (2) and (3) below:

(2) (the) law that Brouwer rejected
(3) (the) mathematician whom TNT pictured on a post stamp

Polarized Montagovian Semantics for the Lambek-Grishin Calculus 11

While tempting to categorize that and whom by (n/n)/(s/np) (noticing the gap
now occurs in a right branch), we find that derivability of (2) then necessitates
rebracketing (mentioning also the dual concept for reasons of symmetry):

(A�B)�C ≤ A� (B �C) A� (B �C) ≤ (A�B)�C
A� (B �C) ≤ (A�B)�C (A�B)�C ≤ A� (B �C)

Worse yet, (3) requires (weak) commutativity for its derivability:

(A�B)�C ≤ (A�C)�B (A�C)�B ≤ (A�B)�C
A� (B �C) ≤ B � (A�C) B � (A�C) ≤ A� (B �C)

Said principles, however, contradict the resource sensitive nature of linguistic
reality. Kurtonina and Moortgat (K&M, [10]), working in LG, questioned the
viability of a different solution: revise the categorization of whom such that
recourse need be made only to linear distributivity of � over � (or mixed asso-
ciativity and commutativity, if you will):

(A�B)�C ≤ A� (B �C) (A�B)�C ≤ (A�C)�B
A� (B �C) ≤ (A�B)�C A� (B �C) ≤ B � (A�C)

As observed by Moortgat (using a slightly different syntax), the presence of
(co)implications allows a presentation in the following rule format:

Π � Γ,Δ⊸ Σ ⊢M

Γ ●Δ,Σ ○Π ⊢M
(�, /)

Δ� Σ,Π ⟜ Γ ⊢M

Γ ●Δ,Σ ○Π ⊢M
(�, /)

Π �Δ,Σ ⟜ Γ ⊢M

Γ ●Δ,Σ ○Π ⊢M
(�, /)

Γ � Σ,Δ⊸Π ⊢M

Γ ●Δ,Σ ○Π ⊢M
(�, /)

K&M suggested in particular to categorize whom by (n/n)/((s� s)� (s/np)).
However, their analysis assumes (�, /), (�, /), (�, /) and (�, /) to be invertible,
thereby seriously compromising the resource sensitivity of LG, as illustrated by
the derivable inferences of Figure 5 (and similar ones under ⋅∞).

The Analysis. We propose a solution to K&M’s challenge by categorizing
whom using not only the (co)residuated families of connectives, but also the
Galois connected pair 0

⋅, ⋅0. In particular, we have in mind the following lexicon
for (2):

law ⊢ law ∶ n
that ⊢ λ⟨Q, ⟨ν,P ⟩⟩(ν λx((P x) ∧ (Q ⟨λpp,x⟩))) ∶ (n/n)/(s�

0np)
Brouwer ⊢ brouwer ∶ np
rejected ⊢ λ⟨y, ⟨q, x⟩⟩(q ((rejected y) x)) ∶ (np/s)/np

employing constants law, brouwer and rejected of types ¬e, e and e → ¬e.
Note the formula s�

0np (selected for by that) categorizing the gapped clause;
had the gap occurred in a left branch, we would have used np0�s instead. Figure
6 gives the derivation. Lexical substitution and β-reduction yield

12 A. Bastenhof

Γ2 ● (Γ1 ● Γ3),Σ ○Π ⊢M

Π � (Γ1 ● Γ3),Σ ⟜ Γ2 ⊢M
(�, /)

Γ1 ● Γ3, (Σ ⟜ Γ2) ○Π ⊢M
dp

Γ3 � (Σ ⟜ Γ2),Π � Γ1 ⊢M
(�, /)

(Π ⟜ Γ1) � Γ3,Σ ⟜ Γ2 ⊢M
dp

Γ2 ● Γ3,Σ ○ (Π ⟜ Γ1) ⊢M
(�, /)

(Γ2 ● Γ3) � Σ,Π ⟜ Γ1 ⊢M
dp

Γ1 ● (Γ2 ● Γ3),Σ ○Π ⊢M
(�, /)

(Γ1 ● Γ2) ● Γ3,Σ ○Π ⊢M

Π � (Γ1 ● Γ2), Γ3 ⊸ Σ ⊢M
(�, /)

Γ1 ● Γ2, (Γ3 ⊸ Σ) ○Π ⊢M
dp

Γ2 � (Γ3 ⊸ Σ),Π ⟜ Γ1 ⊢M
(�, /)

(Π ⟜ Γ1) � Γ2, Γ3 ⊸ Σ ⊢M
dp

Γ2 ● Γ3,Σ ○ (Π ⟜ Γ1) ⊢M
(�, /)

(Γ2 ● Γ3) � Σ,Π ⟜ Γ1 ⊢M
dp

Γ1 ● (Γ2 ● Γ3),Σ ○Π ⊢M
(�, /)

Fig. 5. Illustrating the structural collapse induced by making (�, /), (�, /), (�, /) and
(�, /) invertible

(γ λx((law x) ∧ ((rejected x) brouwer)))

Like K&M, we have, in Figure 6, not relied exclusively on linear distributivity:
the (dual) Galois connected pairs now go ’halfway De Morgan’, as explicated by
the following three equivalent groups of axioms

(A�B)1 ≤ 0B �
0A A�

0B ≤ A�B A/B ≤ A�
0B

1
(A�B) ≤ B0

�A0 B0
�A ≤ B �A B/A ≤ B0

�A
A1

�B1
≤

0
(B �A) B �A ≤ B1

/A B1
�A ≤ B �A

1A�
1B ≤ (B �A)0 B �A ≤ B/1A A�

1B ≤ A�B

Note their independence of their converses (i.e., with ≤ turned around). The
following equivalent presentation in rule format is adapted from [15]:

Γ ●Δ,Π ⊢M

Γ �Π,Δ⊸ ⊢M
(�, 0⋅)

Γ ●Δ,Π ⊢M

Π �Δ,⟜Γ ⊢M
(�, ⋅0)

Γ ●Δ,Π ⊢M

Δ�Π,⟜Γ ⊢M
(�, ⋅0)

Γ ●Δ,Π ⊢M

Π � Γ,Δ⊸ ⊢M
(�, 0⋅)

The intuition behind our analysis is as follows. If we were to also adopt the
converses of the above De Morgan axioms (turning ≤ around), same-sort asso-
ciativity and weak commutativity would find equivalent presentations as

(A�B)� 0C ≤ A� (B �
0C) (A�B)� 0C ≤ (A�

0C)�B
A0

� (B �C) ≤ (A0
�B)�C A0

� (B �C) ≤ B � (A0
�C)

Going only halfway with De Morgan, however, the above inferences remain
derivable (by virtue of linear distributivity) and useful (by composing with
A�

0B ≤ A�B and B0
�A ≤ B �A), but without inducing a collapse. Indeed,

none of the derivabilities of Figure 5 carry over, and neither do the variations

(Γ1 ● Γ2) ● Γ3,Σ ○
⟜Π ⊢M

Γ1 ● (Γ2 ● Γ3),Σ ○
⟜Π ⊢M

Γ2 ● (Γ1 ● Γ3),Σ ○
⟜Π ⊢M

Γ1 ● (Γ2 ● Γ3),Σ ○
⟜Π ⊢M

Polarized Montagovian Semantics for the Lambek-Grishin Calculus 13

n
p
b
●
((
n
p
/s
)/
n
p
f
●
n
p
i
),
sκ
⊢
(f
⟨i

�
⟨λ
z
(κ

z
)
�
b⟩
⟩)

tv

(n
p
/s
)/
n
p
f
●
n
p
i
,s
κ
⟜

n
p
b
⊢
(f
⟨i

�
⟨λ
z
(κ

z
)
�
b⟩
⟩)

d
p

(n
p
/s
)/
n
p
f
●
n
p
i
,n

p
/s
δ
⊢
c
a
se

δ
o
f
κ

�
b.
(f
⟨i

�
⟨λ
z
(κ

z
)
�
b⟩
⟩)

α

(n
p
/s
)/
n
p
f
●
n
p
i
⊢
λ
⟨κ

�
b⟩
(f
⟨i

�
⟨λ
z
(κ

z
)
�
b⟩
⟩)
∶n

p
/s

R
○

n
y
⊢
y
∶n

A
x

n
ν
,n
y
⊢
(ν

y
)
D
○

n
ν
⊢
λ
y
(ν

y
)
∶n

R
●

n
m
⊢
m
∶n

A
x

n
ν
⟜
n
m
⊢
⟨λ
y
(ν

y
)
�
m
⟩
∶n
/n
∶
β

((
n
p
/s
)/
n
p
f
●
n
p
i
)
⊸
(n
ν
⟜
n
m
)
⊢
⟨λ
⟨κ

�
b⟩
(f
⟨i

�
⟨λ
z
(κ

z
)
�
b⟩
⟩)

�
⟨λ
y
(ν

y
)
�
m
⟩⟩
∶(
n
/n
)/
(n

p
/s
)
β

((
n
p
/s
)/
n
p
f
●
n
p
i
)
⊸
(n
ν
⟜
n
m
),
(n
/n
)/
(n

p
/s
)w
⊢
(w
⟨λ
⟨κ

�
b⟩
(f
⟨i

�
⟨λ
z
(κ

z
)
�
b⟩
⟩)

�
⟨λ
y
(ν

y
)
�
m
⟩⟩
)
D
●

n
m
●
((
n
/n
)/
(n

p
/s
)w
●
((
n
p
/s
)/
n
p
f
●
n
p
i
))
,n
ν
⊢
(w
⟨λ
⟨κ

�
b⟩
(f
⟨i

�
⟨λ
z
(κ

z
)
�
b⟩
⟩)

�
⟨λ
y
(ν

y
)
�
m
⟩⟩
)

d
p

n
p
b
●
((
n
p
/s
)/
n
p
r
●
n
p
e
),
sκ
⊢
(r
⟨e

�
⟨λ
z
(κ

z
)
�
b⟩
⟩)

tv

(s
κ
⟜

n
p
b
)
�
(n

p
/s
)/
n
p
r
,(
n
p
e
)⊸
⊢
(r
⟨e

�
⟨λ
z
(κ

z
)

�
b⟩
⟩)
(�
,0
⋅)
,d
p

(s
κ
⟜

n
p
b
)
�
(n

p
/s
)/
n
p
r
,0
n
p
ε
⊢
(r
⟨ε

�
⟨λ
z
(κ

z
)

�
b⟩
⟩)

α

n
p
b
●
(n

p
/s
)/
n
p
r
,0
n
p
ε
○
sκ
⊢
c
a
se

δ
o
f
ε

�
κ
.(
r
⟨ε

�
⟨λ
z
(κ

z
)
�
b⟩
⟩)
(�
,/
),
d
p

n
p
b
●
(n

p
/s
)/
n
p
r
,s

�
0
n
p
δ
⊢
c
a
se

δ
o
f
ε

�
κ
.(
r
⟨ε

�
⟨λ
z
(κ

z
)
�
b⟩
⟩)

α

n
p
b
●
(n

p
/s
)/
n
p
r
⊢
λ
⟨ε

�
κ
⟩(
r
⟨ε

�
⟨λ
z
(κ

z
)

�
b⟩
⟩)
∶s

�
0
n
p

R
○

n
y
⊢
y
∶n

A
x

n
ν
,n
y
⊢
(ν

y
)
D
○

n
ν
⊢
λ
y
(ν

y
)
∶n

R
●

n
l
⊢
l
∶n

A
x

n
ν
⟜
n
l
⊢
⟨λ
y
(ν

y
)
�
l⟩
∶n
/n
∶
β

(n
p
b
●
(n

p
/s
)/
n
p
r
)
⊸
(n
ν
⟜
n
l)
⊢
⟨λ
⟨ε

�
κ
⟩(
r
⟨ε

�
⟨λ
z
(κ

z
)

�
b⟩
⟩)

�
⟨λ
y
(ν

y
)
�
l⟩
⟩
∶(
n
/n
)/
(s

�
0
n
p
)

β

(n
p
b
●
(n

p
/s
)/
n
p
r
)
⊸
(n
ν
⟜
n
l
),
(n
/n
)/
(s

�
0
n
p
)t
⊢
(t
⟨λ
⟨ε

�
κ
⟩(
r
⟨ε

�
⟨λ
z
(κ

z
)
�
b⟩
⟩)

�
⟨λ
y
(ν

y
)
�
l⟩
⟩)

D
●

n
l
●
((
n
/n
)/
(s

�
0
n
p
)t
●
(n

p
b
●
(n

p
/s
)/
n
p
r
))
,n
ν
⊢
(t
⟨λ
⟨ε

�
κ
⟩(
r
⟨ε

�
⟨λ
z
(κ

z
)
�
b⟩
⟩)

�
⟨λ
y
(ν

y
)
�
l⟩
⟩)

d
p

F
ig
.
6
.
D
er
iv
a
ti
o
n
s
o
f
co
m
p
le
x
n
o
u
n
s
d
em

o
n
st
ra
ti
n
g
(p

er
ip
h
er
a
l)

su
b
je
ct

a
n
d
n
o
n
-s
u
b
je
ct

ex
tr
a
ct
io
n
re
sp

ec
ti
v
el
y.

W
o
rd
s
(o
r
ra
th
er
,
th
e

fo
rm

u
la
s
re
p
re
se
n
ti
n
g
th
ei
r
ca
te
g
o
ri
es
)
a
p
p
ea
r
a
s
h
y
p
o
th
es
es
,
g
ro
u
p
in
g
to
g
et
h
er

in
to

b
in
a
ry

b
ra
n
ch

in
g
tr
ee

st
ru
ct
u
re
s
v
ia

th
e
st
ru
ct
u
ra
l

co
u
n
te
rp
a
rt
●
o
f

�
.
T
h
e
ch

o
se
n

va
ri
a
b
le

n
a
m
es

a
re

m
ea
n
t
to

b
e
su
g
g
es
ti
v
e
o
f
th
e
w
o
rd
s
th
ey

re
p
re
se
n
t.

A
p
p
li
ca
ti
o
n
s
o
f
(t
v
)
re
fe
r
to

F
ig
u
re

4
.

14 A. Bastenhof

as an exhaustive exploration of the search space will tell, noting we need only
consider structural rules.

By virtue of the mixed commutativity involved in some of the linear dis-
tributivity postulates, it should be clear our formula (n/n)/(s�

0np) for that
in (2) also applies to whom in (3), the latter example involving non-peripheral
extraction. For reasons of space, we leave its analysis as an exercise.

LGT. (Call-by-name)

pε ⊢ ε ∶ p
Ax

Π ⊢M ∶ A
Π,Ax ⊢ (x M)

D

Π,Ax ●By ⊢M

Π ⊢ λ⟨x� y⟩M ∶ A�B
�
●

Γ,Aε ⊢M Δ,Bκ ⊢ N

Γ ●Δ,A�Bν ⊢ (ν ⟨λεM � λκN⟩)
�
○

Γ,Aε ⊸ By ⊢M

Γ,B/Aν ⊢ case ν of ε� y.M
/○

Δ,Bε ⊢ N Π ⊢M ∶ A

Π ⊸ Δ ⊢ ⟨λεN �M⟩ ∶ B/A
/●

Γ,Bκ ○Aε ⊢M

Γ,A�Bν ⊢ case γ of β � α.M
�
○

Σ ⊢ N ∶ B Π ⊢M ∶ A
Σ ○Π ⊢ ⟨N �M⟩ ∶ A�B

�
●

Π,Ay � Bν ⊢M

Π ⊢ λ⟨y � ν⟩M ∶ A�B
�
●

Σ ⊢N ∶ B Γ,Aε ⊢M

Γ � Σ,A�Bν ⊢ (ν ⟨N � λεM⟩)
�
○

LGQ. (Call-by-value)

px ⊢ x ∶ p
Ax

Γ ⊢M ∶ A
Γ,Aε ⊢ (ε M)

D

Π,Ay ●Bz ⊢M

Π,A�Bx ⊢ case x of y � z.M
�
●

Γ ⊢M ∶ A Δ ⊢ N ∶ B
Γ ●Δ ⊢ ⟨M �N⟩ ∶ A�B

�
○

Γ,Aε ⟜ By ⊢M

Γ ⊢ λ⟨ε� y⟩M ∶ B/A
/○

Δ ⊢N ∶ B Π,Ax ⊢M

Π ⟜Δ,B/Az ⊢ (z ⟨N � λxM⟩)
/●

Γ,Bκ ○Aε ⊢M

Γ ⊢ λ⟨κ� ε⟩M ∶ A�B
�
○

Σ,By ⊢ N Π,Ax ⊢M

Σ ○Π,A�Bz ⊢ (z ⟨λyN � λxM⟩)
�
●

Π,Ax� Bκ ⊢M

Π,A�Bz ⊢ case z of x� κ.M
�
●

Σ,Bz ⊢ N Γ ⊢M ∶ A

Γ � Σ ⊢ ⟨λzN �M⟩ ∶ A�B
�
○

Fig. 7. Explicating the CBN and CBV interpretations of ([2]) through the display
calculi LGT and LGQ. For reasons of space, we discuss only the binary connectives
and have refrained from mentioning the display postulates (see Figure 3). In addition,
only rules for /,� are explicated, those for /,� being similar.

Polarized Montagovian Semantics for the Lambek-Grishin Calculus 15

4 Comparison

Bernardi and Moortgat (B&M, [2]) alternatively propose designing a Montago-
vian semantics for LG on the assumption that all formulae are of equal polarity:
either all negative, inducing a call-by-name translation (CBN), or all positive,
corresponding to call-by-value (CBV). Thus, the corresponding maps ⌊⋅⌋ and ⌈⋅⌉
restrict to the top- and bottom levels respectively of the polarity table in �2,
inserting additional negations for positives in CBN and negatives in CBV:

⌊⋅⌋ (CBN) ⌈⋅⌉ (CBV)
p ¬p p
A/B,B/A ¬⌊B⌋� ⌊A⌋ ¬(⌈B⌉� ¬⌈A⌉)
B �A,A�B ¬(⌊B⌋� ¬⌊A⌋) ¬⌈B⌉� ⌈A⌉

B&M code their derivations inside a variation of Curien and Herbelin’s λ̄μμ̃-
calculus. However, to facilitate comparison with our own approach, we express
in Figure 7 B&M’s CBN and CBV translations by ’stouped’ display calculi LGT
and LGQ, named after their obvious sources of inspiration [4]. Sequents, as well
as their display equivalences, carry over straightforwardly from �2, their inter-
pretations being as before. In particular, atomic (co)structures are interpreted

⌊Ax⌋ = {¬⌊A⌋x} ⌊Aε⌋ = {⌊A⌋ε}
⌈Ax⌉ = {⌈A⌉x} ⌈Aε⌉ = {¬⌈A⌉ε}

The differences between the various display calculi of Figures 3 and 7 are now
reduced to the maintenance of the stoup. In particular, LGT, considering all
formulas negative, allows only hypotheses inside, whereas LGQ restricts the
contents of the stoup to conclusions.

In comparing the various proposals at the level of the lexical semantics, the
polarized approach often amounts to the more economic one. For instance, a
ditransitive verb like offered, categorized ((np/s)/np)/np (abbreviated dtv), re-
ceives denotations of types ¬⌊dtv⌋ (CBN), ⌈dtv⌉ (CBV) and ¬⟦dtv⟧ (polarized):

CBN: λ⟨Z, ⟨Y, ⟨X,q⟩⟩⟩(Z λz(Y λy(X λx(q (((offered z) y) x)))))
CBV: λ⟨z, Y ⟩(Y λ⟨y,X⟩(X λ⟨x, q⟩(q (((offered z) y) x))))

polarized: λ⟨z, ⟨y, ⟨q, x⟩⟩⟩(q (((offered z) y) x))

Acknowledgements. This work has benefited from discussions with Michael
Moortgat, Jeroen Bransen and Vincent van Oostrom, as well as from comments
from two anonymous referees. All remaining errors are my own.

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation 2(3), 297–347 (1992)

2. Bernardi, R., Moortgat, M.: Continuation Semantics for Symmetric Categorial
Grammar. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS, vol. 4576,
pp. 53–71. Springer, Heidelberg (2007)

16 A. Bastenhof

3. Cockett, J.R.B., Seely, R.A.G.: Weakly distributive categories. Journal of Pure and
Applied Algebra, 45–65 (1991)

4. Danos, V., Joinet, J.-B., Schellinx, H.: LKQ and LKT: Sequent calculi for second
order logic based upon dual linear decompositions of classical implication. In: Pro-
ceedings of the workshop on Advances in Linear Logic, New York, NY, USA, pp.
211–224. Cambridge University Press (1995)

5. De Groote, P., Lamarche, F.: Classical Non Associative Lambek Calculus. Studia
Logica 71, 355–388 (2002)

6. Došen, K., Petrić, Z.: Proof-theoretical Coherence. King’s College Publications
(2004)

7. Girard, J.-Y.: A new constructive logic: Classical logic. Mathematical Structures
in Computer Science 1(3), 255–296 (1991)

8. Goré, R.: Substructural logics on display. Logic Journal of the IGPL 6(3), 451–504
(1998)

9. Grishin, V.N.: On a generalization of the Ajdukiewicz-Lambek system. In:
Mikhailov, A.I. (ed.) Studies in Nonclassical Logics and Formal Systems, Nauka,
Moscow, pp. 315–334 (1983)

10. Kurtonina, N., Moortgat, M.: Relational semantics for the Lambek-Grishin calcu-
lus. Mathematics of Language. Citeseerx (2007), doi:10.1.1.92.3297

11. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65, 154–169 (1958)

12. Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (eds.) tructure of
Language and its Mathematical Aspects, Proceedings of the Twelfth Symposium
in Applied Mathematics (1961)

13. Moortgat, M.: Categorial type logics. In: Handbook of Logic and Language, pp.
93–177. Elsevier (1997)

14. Moortgat, M.: Symmetric categorial grammar. Journal of Philosophical
Logic 38(6), 681–710 (2009)

15. Moortgat, M.: Symmetric categorial grammar: residuation and Galois connections.
Linguistic Analysis. Special Issue Dedicated to Jim Lambek 36(1-4) (2010)

16. Okada, M.: A uniform semantic proof for cut-elimination and completeness of var-
ious first and higher order logics. Theoretical Computer Science 281(1-2), 471–498
(2002)

17. Prawitz, D.: Natural Deduction. Dover Publications (2006)
18. Smullyan, R.M.: First–Order Logic. Springer (1968); Revised edn. Dover Press, NY

(1994)
19. Reus, B., Lafont, Y., Streichter, T.: Continuation semantics or expressing implica-

tion by negation. Technical Report 93-21. University of Munich (1993)

Two Models of Learning Iterated Dependencies

Denis Béchet1, Alexander Dikovsky1, and Annie Foret2

1 LINA UMR CNRS 6241, Université de Nantes, France
{Denis.Bechet,Alexandre.Dikovsky}@univ-nantes.fr

2 IRISA, Université de Rennes1, France
Annie.Foret@irisa.fr

Abstract. We study the learnability problem in the family of Categorial
Dependency Grammars (CDG), a class of categorial grammars defining
unlimited dependency structures. CDG satisfying a reasonable condition
on iterated (i.e., repeatable and optional) dependencies are shown to be
incrementally learnable in the limit.

1 Introduction

The idea of grammatical inference is as follows. A class of languages defined using
a class of grammars G is learnable if there exists a learning algorithm φ from
finite sets of words generated by the target grammar G0 ∈ G to hypothetical
grammars in G, such that (i) the sequence of languages generated by the output
grammars converges to the target language L(G0) and (ii) this is true for any
increasing enumeration of finite sublanguages of L(G0).

This concept due to E.M. Gold [8] is also called learning from strings.
More generally, the hypothetical grammars may be generated from finite sets
of structures defined by the target grammar. This kind of learning is called
learning from structures. Both concepts were intensively studied (see ex-
cellent surveys in [1] and [10]). Most results are pessimistic. In particular, any
family of grammars generating all finite languages and at least one infinite lan-
guage (as it is the case of all classical grammars) is not learnable from strings.
Nevertheless, due to several sufficient conditions of learnability, such as finite
elasticity [15,12] and finite thickness [14], some interesting positive re-
sults were obtained. In particular, k-rule string and term generating grammars
are learnable from strings for every k [14] and k-rigid (i.e. assigning no more
than k types per word) classical categorial grammars (CG) are learnable from
so called “function-argument” structures and also from strings [4,10].

In this paper we study the learnability problem in the family of Categorial
Dependency Grammars (CDG) introduced in [7]. CDG is a class of categorial
grammars defining unlimited dependency structures. In [3] it is shown that, in
contrast with the classical categorial grammars, the rigid (i.e. 1-rigid) CDG are
not learnable. This negative effect is due to the use of iterated subtypes which
express the iterated dependencies i.e. unlimited repeatable optional dependen-
cies (those of noun modifiers and of verb circumstantials). On the other hand,
it is also shown that the k-rigid CDG with iteration-free types are learnable

P. de Groote and M.-J. Nederhof (Eds.): Formal Grammar 2010/2011, LNCS 7395, pp. 17–32, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

18 D. Béchet, A. Dikovsky, and A. Foret

from the so called “dependency nets” (an analogue of the function-argument
structures adapted to CDG) and also from strings. However, the iteration-free
CDG cannot be considered as an acceptable compromise because the linguis-
tically relevant dependency grammars must express the iterated dependencies.
Below we propose a pragmatic solution of the learnability problem for CDG
with iterated dependency subtypes. It consists in limiting the family of CDG
to the grammars satisfying a strong condition on the iterated dependencies. In-
tuitively, in the grammars satisfying this condition, the iterated dependencies
and the dependencies repeatable at least K times for some fixed K are indis-
cernible. This constraint, called below K-star-revealing, is more or less generally
accepted in the traditional dependency syntax (cf. [11], where K = 2). For the
class of K-star-revealing CDG, we show an algorithm which incrementally learns
the target CDG from the dependency structures in which the iteration is not
marked. We compare this new model of learning grammars from structures with
the traditional model as applied to iterated dependencies. As one might expect,
the CDG with unlimited iterated dependencies are not learnable from input
functor/argument-like structures. Moreover, this is true even for the rigid CDG.

2 Background

2.1 Categorial Dependency Grammars

Categorial dependency grammars [6] may be seen as an assignment to words
of first order dependency types of the form: t = [lm\ . . . \l1\g/r1/ . . . /rn]P .
Intuitively, w �→ [α\d\β]P means that the word w has a left subordinate through
dependency d (similar for the right subtypes [α/d/β]P). The head subtype g in
w �→ [α\g/β]P intuitively means that w is governed through dependency g. In
this way t defines all local (projective) dependencies of a word.

Example 1. For instance, the assignment:
in �→ [c−copul/prepos−in], the �→ [det], Word �→ [det\pred]
beginning �→ [det\prepos−in], was �→ [c−copul\S/pred]
determines the projective dependency structure in 1.

Fig. 1. Projective dependency structure

The intuitive meaning of subtype P , called potential, is that it defines the distant
(non-projective, discontinuous) dependencies of the word w. P is a string of
polarized valencies, i.e. of symbols of four kinds: ↙ d (left negative valency d),
↘d (right negative valency d), ↖d (left positive valency d), ↗d (right positive

Learning Iterated Dependencies 19

valency d). Intuitively, v =↖ d requires a subordinate through dependency d
situated somewhere on the left, whereas the dual valency v̆ =↙ d requires a
governor through the same dependency d situated somewhere on the right. So
together they describe the discontinuous dependency d. Similar for the other
pairs of dual valencies. For negative valencies ↙ d,↘ d are provided a special
kind of subtypes #(↙d), #(↘d). Intuitively, they serve to check the adjacency
of a distant word subordinate through discontinuous dependency d to a host
word. The dependencies of these types are called anchor. A primitive dependency
type is either a local dependency name d or its iteration d∗ or an anchor type
#(v).

Example 2. For instance, the assignment:
elle �→ [pred], la �→ [#(↙clit−a−obj)]↙clit−a−obj,
lui �→ [#(↙clit−3d−obj)]↙clit−3d−obj, donnée �→ [aux]↖clit−3d−obj↖clit−a−obj,
a �→ [#(↙clit−3d−obj)\#(↙clit−a−obj)\pred\S/aux−a−d]
determines the non projective DS in Fig. 2.1

(fr. ∗she itg=fem to him has given)

Fig. 2. Non-projective dependency structure

Definition 1. Let w = a1 . . . an be a string, W be the set of all occurrences
of symbols in w and C = {d1, . . . , dm} be a set of dependency names. A graph
D = (W,E) with labeled arcs is a dependency structure (DS) of w if it has a
root, i.e. a node a0 ∈ W such that (i) for any node a ∈ W, a 	= a0, there is a
path from a0 to a and (ii) there is no arc (a′, d, a0).2 An arc (a1, d, a2) ∈ E is
called dependency d from a1 to a2. The linear order on W induced by w is the
precedence order on D.

Definition 2. Let C be a set of local dependency names and V be a set of
valency names.

The expressions of the form ↙ v, ↖ v, ↘ v, ↗ v, where v ∈ V, are called
polarized valencies. ↖ v and ↗ v are positive, ↙ v and ↘ v are negative; ↖ v
and ↙v are left, ↗v and ↘v are right. Two polarized valencies with the same
valency name and orientation, but with the opposite signs are dual.

An expression of one of the forms #(↙ v), #(↘ v), v ∈ V, is called anchor
type or just anchor. An expression of the form d∗ where d ∈ C, is called iterated
dependency type.

1 Anchors are not displayed for a better readability.
2 Evidently, every DS is connected and has a unique root.

20 D. Béchet, A. Dikovsky, and A. Foret

Local dependency names, iterated dependency types and anchor types are prim-
itive types.

An expression of the form t = [lm\ . . . \l1\H/ . . . /r1 . . . /rn] in which m,n ≥
0, l1, . . . , lm, r1, . . . , rn are primitive types and H is either a local dependency
name or an anchor type, is called basic dependency type. l1, . . . , lm and r1, . . . , rn
are respectively left and right argument subtypes of t. H is called head subtype
of t (or head type for short).

A (possibly empty) string P of polarized valencies is called potential.3

A dependency type is an expression BP in which B is a basic dependency
type and P is a potential. CAT(C,V) and B(C) will denote respectively the set
of all dependency types over C and V and the set of all basic dependency types
over C.

CDG are defined using the following calculus of dependency types 4

Ll. CP1 [C\β]P2 � [β]P1P2

Il. CP1 [C∗\β]P2 � [C∗\β]P1P2

Ωl. [C∗\β]P � [β]P

Dl. αP1(↙C)P (↖C)P2 � αP1PP2 , if the potential (↙C)P (↖C) satisfies the
following pairing rule FA (first available):

FA : P has no occurrences of ↙C,↖C.

Ll is the classical elimination rule. Eliminating the argument subtype C 	= #(α)
it constructs the (projective) dependency C and concatenates the potentials.
C = #(α) creates the anchor dependency. Il derives k > 0 instances of C.
Ωl serves for the case k = 0. Dl creates discontinuous dependencies. It pairs
and eliminates dual valencies with name C satisfying the rule FA to create the
discontinuous dependency C.

Definition 3. A categorial dependency grammar (CDG) is a system G= (W,C,
S, λ), where W is a finite set of words, C is a finite set of local dependency names
containing the selected name S (an axiom), and λ, called lexicon, is a finite sub-
stitution on W such that λ(a) ⊂ CAT(C,V) for each word a ∈ W.

For a DS D and a string x, let G(D, x) denote the relation: D is constructed
in a proof Γ � S for some Γ ∈ λ(x). Then the language generated by G is the
set L(G)=df {w || ∃D G(D,w)} and the DS-language generated by G is the set
Δ(G)=df {D || ∃w G(D,w)}. D(CDG) and L(CDG) will denote the families of
DS-languages and languages generated by these grammars.

Example 3. For instance, the proof in Fig. 3 shows that the DS in Fig. 2 belongs
to the DS-language generated by a grammar containing the type assignments
shown above for the french sentence Elle la lui a donnée.

3 In fact, the potentials should be defined as multi-sets. We define them as strings in
order to simplify definitions and notation. Nevertheless, to make the things clear,
below we will present potentials in the normal form, where all left valencies precede
all right valencies.

4 We show left-oriented rules. The right-oriented are symmetrical.

Learning Iterated Dependencies 21

[pred]

[#l(↙clit−a−obj)]↙clit−a−obj
[#l(↙clit−3d−obj)]↙clit−3d−obj [#l(↙clit−3d−obj)\#l(↙clit−a−obj)\pred\S/aux−a−d]

(Ll)
[#l(↙clit−a−obj)\pred\S/aux−a−d]↙clit−3d−obj

(Ll)
[pred\S/aux−a−d]↙clit−a−obj↙clit−3d−obj

(Ll)
[S/aux−a−d]↙clit−a−obj↙clit−3d−obj [aux−a−d]↖clit−3d−obj↖clit−a−obj

(Lr)
[S]↙clit−a−obj↙clit−3d−obj↖clit−3d−obj↖clit−a−obj

(Dl × 2)
S

Fig. 3. Dependency structure correctness proof

CDG are very expressive. Evidently, they generate all CF-languages. They can
also generate non-CF languages.

Example 4. [7]. The CDG:
a �→ A↙A, [A\A]↙A, b �→ [B/C]↖A, [A\S/C]↖A, c �→ C, [B\C]
generates the language {anbncn | n > 0}.5

Seemingly, the family L(CDG) of CDG-languages is different from that of the
mildly context sensitive languages [9,13] generated by multi-component TAG,
linear CF rewrite systems and some other grammars. L(CDG) contains non-
TAG languages, e.g. L(m) = {an1an2 ...anm || n ≥ 1} for all m > 0. In particular,
it contains the language MIX = {w ∈ {a, b, c}+ || |w|a = |w|b = |w|c} [2], for
which E. Bach has conjectured that it is not mildly CS. On the other hand,
[5] conjectures that this family does not contain the TAG language Lcopy =
{xx || x ∈ {a, b}∗}. This comparison shows a specific nature of the valencies’
pairing rule FA. It can be expressed in terms of valencies’ bracketing. For this,
one should interpret ↙ d and ↗ d as left brackets and ↖ d and ↘ d as right
brackets. A potential is balanced if it is well bracketed in the usual sense.

CDG have an important property formulated in terms of two images of se-
quences of types γ: the local projection ‖γ‖l and the valency projection ‖γ‖v:
1. ‖ε‖l = ‖ε‖v = ε; ‖αγ‖l = ‖α‖l‖γ‖l and ‖αγ‖v = ‖α‖v‖γ‖v for a type α.
2. ‖CP ‖l = C et ‖CP ‖v = P for every type CP .

Theorem 1. [5,6] For a CDG G with lexicon λ and a string x, x ∈ L(G) iff
there is Γ ∈ λ(x) such that ‖Γ‖l is reduced to S without the rule D and ‖Γ‖v is
balanced.

On this property resides a polynomial time parsing algorithm for CDG [5,6].
It is important to understand why the iterated subtypes are unavoidable in

dependency grammars. This is due to one of the basic principles of dependency
syntax, which concerns the optional repeatable dependencies (cf. [11]): all mod-
ifiers of a noun n share n as their governor and, similar, all circonstants of
a verb v share v as their governor. For instance, in the dependency structure
in Figure 4 there are three circonstants dependent on the same verb fallait
(fr. had to). In particular, this means that the iterated dependencies cannot
be simulated through recursive types. Indeed, a �→ [α\d] and b �→ [d\β] de-
rives the dependency a

d←− b for ab. Therefore, the recursive types derive

5 One can see that the DS may be not trees.

22 D. Béchet, A. Dikovsky, and A. Foret

sequenced dependencies. E.g., v �→ [c1\S], c �→ [c1\c1], [c1] derives for ccccv the

DS: contradicting the above mentioned principle.

2.2 Learnability, Finite Elasticity and Limit Points

With every grammar G ∈ C is related an observation set Φ(G) of G. This
may be the generated language L(G) or an image of the constituent or depen-
dency structures generated by G. Below we call training sequence for G an
enumeration of Φ(G). An algorithm A is an inference algorithm for C if, for
every grammar G ∈ C, A applies to its training sequences σ of Φ(G) and, for
every initial subsequence σ[i] = {s1, . . . , si} of σ, it returns a hypothetical

grammar A(σ[i]) ∈ C. A learns a target grammar G ∈ C if on any train-
ing sequence σ for G A stabilizes on a grammar A(σ[T]) ≡ G.6 The grammar
lim
i→∞

A(σ[i]) = A(σ[T]) returned at the stabilization step is the limit grammar.

A learns C if it learns every grammar in C. C is learnable if there is an inference
algorithm learning C.

Learnability and unlearnability properties have been widely studied from a
theoretical point of view. In particular, in [15,12] was introduced finite elastic-
ity, a property of classes of languages implying their learnability. The following
elegant presentation of this property is cited from [10].

Definition 4 (Finite Elasticity). A class L of languages has infinite elasticity
iff ∃(ei)i∈N an infinite sequence of sentences, ∃(Li)i∈N an infinite sequence of
languages of L such that ∀i ∈ N : ei 	∈ Li and {e0, . . . , ei−1} ⊆ Li. A class has
finite elasticity iff it has not infinite elasticity.

Theorem 2. [Wright 1989] A class that is not learnable has infinite elasticity.

Corollary 1. A class that has finite elasticity is learnable.

The finite elasticity can be extended from a class to every class obtained by
a finite-valued relation7. We use here a version of the theorem that has been
proved in [10] and is useful for various kinds of languages (strings, structures,
nets) that can be described by lists of elements over some alphabets.

Theorem 3. [Kanazawa 1998] Let L be a class of languages over Γ that has
finite elasticity, and let R ⊆ Σ∗ × Γ ∗ be a finite-valued relation. Then the class
of languages {R−1[L] = {s ∈ Σ∗ | ∃u ∈ L ∧ (s, u) ∈ R} | L ∈ L} has finite
elasticity.

6 A stabilizes on σ on step T means that T is the minimal number t for which
there is no t1 > t such that A(σ[t1]) �= A(σ[t]).

7 A relation R ⊆ Σ∗×Γ ∗ is finite-valued iff for every s ∈ Σ∗, there are at most finitely
many u ∈ Γ ∗ such that (s, u) ∈ R.

Learning Iterated Dependencies 23

Definition 5 (Limit Points). A class L of languages has a limit point iff there
exists an infinite sequence (Ln)n∈N of languages in L and a language L ∈ L such
that: L0 � L1 . . . � ... � Ln � . . . and L =

⋃
n∈N Ln (L is a limit point of L).

Limit Points Imply Unlearnability. If the languages of the grammars in a class
G have a limit point then the class G is unlearnable. 8

2.3 Limit Points for CDGs with Iterated Subtypes

In [3] it is shown that, in contrast with the classical categorial grammars, the
rigid (i.e. 1-rigid) CDG are not learnable. This negative effect is due to the
use of iterated subtypes. We recall the limit point construction of [3] concerning
iterative subtypes and discuss it later.

Definition 6. Let S, A, B be local dependency names. We define G′
n, G

′
∗ by:

C′
0 = S

C′
n+1 = C′

n / A
∗ / B∗

G′
0 = {a �→ A, b �→ B, c �→ C′

0}
G′
n = {a �→ A, b �→ B, c �→ [C′

n]}
G′∗ = {a �→ A, b �→ A, c �→ [S / A∗]}

Theorem 4. These constructions yield a limit point as follows [3]:
L(G′

n) = {c(b∗a∗)k | k ≤ n} and L(G′∗) = c{b, a}∗

Corollary 2. The constructions show the non-learnability from strings for the
classes of (rigid) grammars allowing iterative subtypes (A∗).

We observe that in these constructions, the number of iterative subtypes (A∗)
is not bound.

3 Incremental Learning

Below we show an incremental algorithm strongly learning CDG from DS. This
means that Δ(G) serves as the observation set Φ(G) and that the limit grammar
is strongly equivalent to the target grammar. From the very beginning, it should
be clear that, in contrast with the constituent structure grammars and also with
the classical CG, the existence of such learning algorithm is not guaranteed be-
cause, due to the iterated subtypes, the straightforward arguments of subtypes’
set cardinality do not work. In particular, even the rigid CDG (monotonic with
respect to the subgrammar partial order (PO)) do not satisfy the finite thickness
condition. On the other hand, the learning algorithm A below is incremental in
the sense that every next hypothetical CDG A(σ[i+1]) is an “extension” of the
preceding grammar A(σ[i]) and it is so without any rigidity constraint.
Incremental learning algorithms are rare. Those we know, are unification based
and apply only to rigid grammars (cf. [4] and [3]). They cannot be considered as
practical (at least for the NLP) because the real application grammars are never
rigid. In the cases when the k-rigid learnability is a consequence of the rigid

8 This implies that the class has infinite elasticity.

24 D. Béchet, A. Dikovsky, and A. Foret

learnability, it is only of a theoretical interest because the existence of a learning
algorithm is based on the Kanazawa’s finite-valued-relation reduction [10].

Our notion of incrementality is based on a partial “flexibility” order � on
CDGs. Basically, the order corresponds to grammar expansion in the sense that
G1 � G2 means that G2 defines no less dependency structures than G1 and at
least as precise dependency structures as G1. This PO is the reflexive-transitive
closure of the following preorder < .

Definition 7. For a type t = [lm\ · · · l1\g/r1 · · · /rn]P a dependency name c,

i ≥ 0, 0 ≤ j ≤ m, let t
(i\,j)
c = [lm\ · · · \lj\c · · · \c\lj−1\ · · · l1\g/r1 · · · /rn]P (i

times) and t
(∗\,j)
c = [lm\ · · · \lj\c∗ \lj−1\ · · · l1\g/r1 · · · /rn]P . Respectively, for

0 ≤ k ≤ n t
(i/,k)
c = [lm\ · · · l1\g/r1 · · · /rk−1/c · · · /c/rk/ · · · /rn]P and t

(∗/,k)
c =

[lm\ · · · l1\g/r1 · · · /rk−1/c∗ /rk/ · · · /rn]P . Then:
1. t

(i\,j)
c < t

(∗\,j)
c and t

(i/,k)
c < t

(∗/,k)
c for all i ≥ 0, 0 ≤ j ≤ m and 0 ≤ k ≤ n

2. τ < τ ′ for sets of types τ, τ ′, if either:
(i) τ ′ = τ ∪ {t} for a type t /∈ τ or
(ii) τ = τ0 ∪ {t′} and τ ′ = τ0 ∪ {t′′}

for a set of types τ0 and some types t′, t′′ such that t′ < t′′.
3. λ < λ′ for two type assignments λ and λ′, if λ(w′) < λ′(w′) for a word w′

and λ(w) = λ′(w) for all words w 	= w′.
4. � is the PO which is the reflexive-transitive closure of the preorder < .

It is not difficult to prove that the expressive power of CDG monotonically grows
with respect to this PO.

Proposition 1. Let G1 and G2 be two CDG such that G1 � G2. Then Δ(G1) ⊆
Δ(G2) and L(G1) ⊆ L(G2).

The flexibility PO � serves to define the following main notion of incremental
learning.

Definition 8. Let A be an inference algorithm for CDG from DS and σ be a
training sequence for a CDG G.
1. A is monotonic on σ if A(σ[i]) � A(σ[j]) for all i ≤ j.
2. A is faithful on σ if Δ(A(σ[i])) ⊆ Δ(G) for all i.
3. A is expansive on σ if σ[i] ⊆ Δ(A(σ[i])) for all i.

Definition 9. Let G1 and G2 be two CDG, G1 ≡s G2 iff Δ(G1) = Δ(G2).

Theorem 5. Let σ be a training sequence for a CDG G. If an inference algo-
rithm A is monotonic, faithful, and expansive on σ, and if A stabilizes on σ then
lim
i→∞

A(σ[i]) ≡s G.

Proof. Indeed, stabilization implies that lim
i→∞

A(σ[i])= A(σ[T]) for some T. Then

Δ(A(σ[T])) ⊆ Δ(G) because of faithfulness. At the same time, by expansiveness

and monotonicity, Δ(G) = σ =
∞⋃
i=1

σ[i] ⊆
∞⋃
i=1

Δ(A(σ[i])) ⊆
T⋃
i=1

Δ(A(σ[i])) ⊆

Δ(A(σ[T])).

Learning Iterated Dependencies 25

(fr. ∗now all the evenings when he took her home he had to enter [M.Proust])

Fig. 4. Iterated circumstantial dependency

As we explain it in Section 4, the unlearnability of rigid or k-rigid CDG is due
to the use of iterated types. Such types are unavoidable in real grammars (cf.
the iterated dependency circ in Fig. 4). But in particular in the real appli-
cation grammars, the iterated types have very special properties. Firstly, the
discontinuous dependencies are never iterated. Secondly, in natural languages,
the optional constructions repeated successively several times (two or more) are
exactly those iterated. This is the resource we use to resolve the learnability
problem. To formalize these properties we need some notations and definitions.
The main definition concerns a restriction on the class of grammars that is
learned. This class corresponds to grammars where an argument that is used at
least K times in a DS must be an iterated argument. Such grammars are called
K-star-revealing grammars.

Definition 10
1. Repetition blocks (R-blocks) : For d ∈ C,

LBd = {t1\ · · · \ti || i > 0, t1, . . . , ti ∈ {d} ∪ {x∗ || x ∈ C}}

and symmetrically for RBd.
2. Patterns: Patterns are defined exactly as types, but in the place of C, we use
G, where G is the set of gaps G = {<d> || d ∈ C}. Moreover, for any α, β, P
and d, [α\ <d> \ <d> \β]P and [α/ <d> / <d> /β]P are not patterns.
3. Vicinity: Let D be a DS in which an occurrence of a word w has :
the incoming local dependency h (or the axiom S), the left projective dependen-
cies or anchors lk, . . . , l1 (in this order), the right projective dependencies or
anchors r1, . . . , rm (in this order), and discontinuous dependencies p1(d1), . . . ,
pn(dn), where p1, . . . , pn are polarities and d1, . . . , dn ∈ V are valency names.
Then the vicinity of w in D is the type

V (w,D) = [l1\ . . . \lk\h/rm/ . . . /r1]P ,
in which P is a permutation of p1(d1), . . . , pn(dn) in a standard lexicographical
order, for instance, compatible with the polarity order ↖ < ↘ < ↙ < ↗.
4. Superposition and indexed occurrences of R-blocks :
(i) Let π be a pattern, β1, . . . , βk be R-blocks and < d1 >, . . . , < dk > be gaps.
Then π(<d1>← β1, . . . , < dk>← βk) is the expression resulting from π by the

26 D. Béchet, A. Dikovsky, and A. Foret

parallel substitution of the R-blocks for the corresponding gaps.(ii) Let E be a
type or a vicinity. Then π is superposable on E if:

E = π(<d1>← β1, . . . , <dk>← βk)
for some <d1>, . . . , <dk>, β1, . . . , βk.

A vicinity corresponds to the part of a type that is used in a DS. The superposi-
tion, in this context, puts together in an R-block a list of dependencies with the
same name some of which may be defined by iterative types. For instance, the
verb fallait in the DS in Fig. 4 has the vicinity [pred\circ\circ\circ\S/a−obj].
The pattern superposable on this vicinity is π = [< pred > \ < circ > \S/ <
a−obj >] and the corresponding type is obtained through the following substi-
tution:

π(<pred>← pred,<circ>← circ\circ\circ,<a−obj>← a−obj).
The vicinity of the participle ramenée is [aux−a/l−obj]↖clit−a−obj. It is the same
as the type:

[aux−a/ <l−obj>]↖clit−a−obj(<l−obj>← l−obj).

Proposition 2. For every vicinity V there is a single pattern π superposable on
V and a single decomposition (R-decomposition)

V = π(<d1>← β1, . . . , <dk>← βk)
P

Proposition 3. For D ∈ Δ(G) and an occurrence w of a word in D, let
V (w,D) = π(< d1 >← β1, . . . , < dk >← βk)

P be the R-decomposition of the
vicinity of w in D. Then, for every type t∈λ(w) which can be used in a proof of
D for w, there exists a permutation P ′ of P such that πP

′
is superposable on t.

Notation. Let G be a CDG with lexicon λ, w be a word and t be a type. Then
Gtw denotes the CDG with lexicon λ ∪ {w �→ t}.

Definition 11. Let K > 1 be an integer. We define a CDG CK(G), the K-
star-generalization of G, by recursively adding for every word w and every
local dependency name d the types

[l1\ · · · \la\d∗\m1\ · · · \mb\h/r1/ · · · /rc]P

and

[l1\ · · · \la\m1\ · · · \mb\h/r1/ · · · /rc]P

when w has a type assignment w �→ t, where

t = [l1\ · · · \la\t1\ · · · \tk\m1\ · · · \mb\h/r1/ · · · /rc]P ,

every t1, . . . , tk is either d or some iterated dependency type x∗ and among
t1, . . . , tk there are at least K occurrences of d or at least one occur-
rence of d∗. Symmetrically, we also add the corresponding types if t1, . . . , tk
appear in the right part of t.

Learning Iterated Dependencies 27

For instance, with K = 2, for the type [a\b∗\a\S/a∗], we add [a\a\S/a∗] and
[a\b∗\a\S] but also [a∗\S/a∗] and [S/a∗]. Recursively, we also add [a\a\S],
[a∗\S] and [S]. The size of CK(G) can be exponential with respect to the size of
G.

Definition 12. Let K > 1 be an integer. CDG G is K-star-revealing if
CK(G) ≡s G

For instance, if we define the grammar G(t) by A �→ [a], B �→ [b], C �→ t, where
t is a type, then we can prove that:

– G([a∗\S/a∗]), G([a∗\b∗\a∗\S]) and G([a∗\b\a∗\S]) are all 2-star-revealing,
– G([a∗\a\S]), G([a∗\b∗\a\S]) and G([a\b∗\a\S]) are not 2-star-revealing.

We see that in a K-star-revealing grammar, one and the same iterated subtype
d∗ may be used in a type several times. Usually, each occurrence is not in the
same block as the local dependency name d. Besides this, there should be less
than K occurrences of d in a block if there is no occurrence of d∗ and this block
is separated from other blocks by types that are not iterated.

Theorem 6. The class CDGK→∗ of K-star-revealing CDG is (incrementally)
learnable from DS.

To prove the theorem, we present an inference algorithm TGE(K) (see Fig. 5)
which, for every next DS in a training sequence, transforms the observed local,
anchor and discontinuous dependencies of every word into a type with repeated
local dependencies by introducing iteration for each group of at least K local
dependencies with the same name. TGE(K) is learning CDGK→∗ due to the
following two statements.

Lemma 1. The inference algorithm TGE(K) is monotonic, faithful and expan-
sive on every training sequence σ of a K-star-revealing CDG.

Proof. By definition, the algorithm TGE(K) is monotonic (the lexicon is always
extended). It is expansive because for σ[i], we add types to the grammar that

are based on the vicinities of the words of σ[i]. Thus, σ[i] ⊆ Δ(TGE(K)(σ[i])).

To prove that TGE(K) is faithful for σ[i] of Δ(G) = Δ(CK(G)), we have to

remark that TGE(K)(σ[i]) � CK(G).

Lemma 2. The inference algorithm TGE(K) stabilizes on every training se-
quence σ of a K-star-revealing CDG.

Proof. Because CK(G) has a finite number of types, the number of corresponding
patterns is also finite. Thus the number of patterns that correspond to the DS in
Δ(CK(G)) (and of course in σ) is also finite. Because the R-blocks are generalized

using ∗ by TGE(K) when their length is greater or equal to K, the number of
R-blocks used by TGE(K) is finite. Thus the number of generated types is finite
and the algorithm certainly stabilizes.

28 D. Béchet, A. Dikovsky, and A. Foret

Algorithm TGE(K) (type-generalize-expand):
Input: σ[i] (σ being a training sequence).
Output: CDG TGE(K)(σ[i]).
let GH = (WH ,CH , S, λH) where
WH := ∅; CH := {S}; λH := ∅; k := 0

(loop) for i ≥ 0 //Infinite loop on σ
let σ[i+ 1] = σ[i] ·D;
let (x,E) = D;
(loop) for every w ∈ x

WH :=WH ∪ {w};
let V (w,D) = π(<d1>← β1, . . . , <dk>← βk)

P

(loop) for j := 1, . . . , k
if βj ∈ LDd ∪RDd and length(βj) ≥ K

then γj := d∗ // generalization

else γj := βj end end

let tw := π(<d1>← γ1, . . . , <dk>← γk)
P // typing

λH(w) := λH(w) ∪ {tw}; // expansion

end end

Fig. 5. Inference algorithm TGE(K)

4 Learnability from Positive Examples

Below we study the problem of learning CDG from positive examples of struc-
tures analogous to the FA-structures used for learning of categorial grammars.

4.1 Original Algorithm on Functor-Argument Data

An FA structure over an alphabet Σ is a binary tree where each leaf is an element
of Σ and each internal node is labelled by the name of the binary rule.

Background - RG Algorithm. We recall Buszkowski’s Algorithm called RG
as in [10] it is defined for AB grammars, based on /e and \e (binary elimination
rules, like the local rules of CDG Lr and Ll, without potentials) :

/e : A / B,B ⇒ A and \e : B,B \A ⇒ A

The RG algorithm takes a set D of functor-argument structures as positive
examples and returns a rigid grammar RG(D) compatible with the input if there
is one (compatible means that D is in the set of functor-argument structures
generated by the grammar).

Sketch of RG-Algorithm, Computing RG(D):

1. assign S to the root of each structure
2. assign distinct variables to argument nodes
3. compute the other types on functor nodes according to /e and \e
4. collect the types assigned to each symbol, this provides GF (D)

Learning Iterated Dependencies 29

5. unify (classical unification) the types assigned to the same symbol in GF (D),
and compute the most general unifier σmgu of this family of types.

6. The algorithm fails if unification fails, otherwise the result is the application
of σmgu to the types of GF (D) : RG(D) = σmgu(GF (D)).

4.2 Functor-Argument Structures for CDG with Iterated Subtypes

Definition 13. Let D be a dependency structure proof, ending in a type t. The
labelled functor-argument structure associated to D, lfaiter(D), is defined
by induction on the length of the dependency proof D considering its last rule :

- if D has no rule, it is a type t assigned to a word w, let lfaiter(D) = w ;
- if the last rule is: cP1 [c \ β]P2 � [β]P1P2 , by induction let D1 be a dependency

structure proof for cP1 and T1= lfaiter(D1) ; and let D2 be a dependency structure
proof for [c \ β]P2 and T2=lfaiter(D2) : then lfaiter(D) is the tree with root
labelled by Ll

[c] and subtrees T1, T2 ;
- if the last rule is: [c∗ \ β]P2 � [β]P2 , by induction let D2 be a dependency

structure proof for [c∗ \ β]P2 and T2=lfaiter(D2) : then lfaiter(D) is T2 ;
- if the last rule is: cP1 [c∗ \ β]P2 � [c∗ \ β]P1P2 , by induction let D1 be a de-

pendency structure proof for cP1 and T1= lfaiter(D1) and let D2 be a dependency
structure proof for [c∗ \ β]P2 and T2=lfaiter(D2) : lfaiter(D) is the tree with root
labelled by Ll

[c] and subtrees T1, T2 ;
- we define similarly the function lfaiter when the last rule is on the right,

using / and Lr instead of \ and Ll ;
- if the last rule is the one with potentials, lfaiter(D) is taken as the image of

the proof above.

The functor-argument structure faiter(D) is the one obtained from lfaiter(D)
(the labelled one) by erasing the labels [c].

Example 5. Let λ(John)=N , λ(ran)=[N \S/A∗], λ(fast)=λ(yesterday)=A,
then s′3 = Ll

[N](John,L
r
[A](L

r
[A](ran, fast), yesterday) (labelled structure)

and s3 = Ll(John,Lr(Lr(ran, fast), yesterday) are associated to D1 below :

D1 :

N

[N \ S / A∗] A
Ir

[N \ S / A∗] A
Ir

[N \ S / A∗]
Ωr

[N \ S]
Ll

S

(dependency structure)

4.3 On RG-Like Algorithms and Iteration

Example 6. We consider the following functor-argument structures :

s1 = Ll(John, ran)
s2 = Ll(John,Lr(ran, fast))

30 D. Béchet, A. Dikovsky, and A. Foret

s3 = Ll(John,Lr(Lr(ran, fast), yesterday)
s4 = Ll(John,Lr(Lr(Lr(ran, fast), yesterday), nearby)

An RG-like algorithm could compute the following assignments and grammar
from {s1, s2, s3}:

Ll(John : X1, ran : X1 \ S) : S
Ll(John : X ′

1,L
r(ran : X ′

1 \ S / X2, fast : X2) : X
′
1 \ S) : S

Ll(John : X”1,L
r(Lr(ran : X”1 \ S / X”2 / X

′
2, fast : X

′
2) : X”1 \ S / X”2,

yesterday : X”2) : X”1 \ S) : S

general form unification
flat rigid grammar
for 2-iteration

John X1, X
′
1, X”1 X1 = X ′

1 = X”1 X1

ran
X1 \ S
X ′

1 \ S / X2

X”1 \ S / X”2 / X
′
2

fails
X1 \ S / X∗

2

with X2 = X ′
2 = X”2

fast X2, X
′
2 X2 X2

yesterday X”2 X”2 X2

Notice that the next example s4 would not change the type of ran.

In fact, such an RG-like algorithm, when the class of grammars is restricted to
rigid grammars, when positive examples are functor-argument structures (with-
out dependency names), cannot converge (in the sense of Gold).

This can be seen, as explained below, using the same grammars as in the
limit point construction for string languages in [3], involving iterated dependency
types. In fact, the functor-argument structures are all flat structures, with only
/ operators.

C′
0 = S

C′
n+1 = C′

n / A
∗ / B∗

G′
0 = {a �→ A, b �→ B, c �→ C′

0}
G′
n = {a �→ A, b �→ B, c �→ [C′

n]}
G′∗ = {a �→ A, b �→ A, c �→ [S / A∗]}

Positive structured examples are then of the form :

c, Lr(c, b), Lr(Lr(c, b), b), Lr(c, a),Lr(Lr(c, a), a), Lr(Lr(c, b), a), . . .

Definition 14. We define flatLr and flatLr
[A]

on words by : flatLr(x1) = x1
=flatLr

[A]
(x1) for words of length 1, and flatLr(x1.w1) = Lr(x, f latLr(w1)) ;

flatLr
[A]

(x1.w1) = Lr
[A](x, f latLr

[A]
(w1)) ; we extend the notation flatLr and

flatLr
[A]

to sets of words (as the set of word images).

Let FL(G) denote the language of functor-arguments structures of G.

Theorem 7. FL(G′
n)=flatLr({c(b∗a∗)k | k ≤ n})andFL(G′

∗)=flatLr(c{b, a}∗)

Corollary 3. The limit point establishes the non-learnability from functor-
argument structures for the underlying classes of (rigid) grammars: those al-
lowing iterated dependency types (A∗).

A Limit Point, for Labelled Functor-Arguments Structures. If we drop
restrictions such as k-rigid, and consider learnability from labelled functor-
arguments structures, we have a limit point as follows :

Learning Iterated Dependencies 31

C0 = S
Cn+1 = (Cn / A)

G0 = {a �→ A, c �→ C0}
Gn = {a �→ A, c �→ [Cn], c �→ [Cn−1], . . . c �→ C0}
G∗ = {a �→ [A], c �→ [S / A∗]}

In fact, the functor-argument structures are all flat structures, with only /
operators and always the same label A.

Let LFL(G) denote the language of labelled functor-argument structures of G.

Theorem 8. LFL(Gn) = flatLr
[A]

({c ak | k ≤ n}) and LFL(G∗) =
flatLr

[A]
(c a∗)

Corollary 4. The limit point establishes the non-learnability from labelled
functor-argument structures for the underlying classes of grammars: those al-
lowing iterated dependency types (A∗).

The similar question for rigid or k-rigid CDG with iteration is left open.

4.4 Bounds and String Learnability

A List-Like Simulation. In order to simulate an iterated type such that :

[β / a∗]P0aP1 . . . aPn � [β]P0P1...Pn

we can distinguish two types, one type a for a first use in a sequence and one
type a \ a for next uses in a sequence of elements of type a, as in :

John ran fast yesterday nearby
n n \ s / a a a \ a a \ a

Bounds. As a corollary, for a class of CDG without potentials for which the
number of iterated types is bound by a fixed N , the simulation leads to a class
of grammars without iterated types, which is also k-rigid: the number of assign-
ments per word is bound by a large but fixed number (k = 2N). This means
that the class of rigid CDG allowing at most N iterated types is learnable from
strings. This fact also extends to k-rigid CDG, not only to rigid (1-rigid) CDG.

5 Conclusion

In this paper, we propose a new model of incremental learning of categorial
dependency grammars with unlimited iterated types from input dependency
structures without marked iteration. The model reflects the real situation of
deterministic inference of a dependency grammar from a dependency treebank.
The learnability sufficient condition of K-star-revealing we use, is widely ac-
cepted in traditional linguistics for small K, which makes this model interesting
for practical purposes. As shows our study, the more traditional unification based
learning from function-argument structures fails even for rigid categorial depen-
dency grammars with unlimited iterated types.

On the other hand, in this paper, the K-star-revealing condition is defined in
“semantic” terms. It is an interesting question, whether one can find a simple
syntactic formulation.

32 D. Béchet, A. Dikovsky, and A. Foret

References

1. Angluin, D.: Inductive inference of formal languages from positive data. Informa-
tion and Control 45, 117–135 (1980)

2. Béchet, D., Dikovsky, A., Foret, A.: Dependency Structure Grammars. In: Blache,
P., Stabler, E.P., Busquets, J.V., Moot, R. (eds.) LACL 2005. LNCS (LNAI),
vol. 3492, pp. 18–34. Springer, Heidelberg (2005)

3. Béchet, D., Dikovsky, A., Foret, A., Moreau, E.: On learning discontinuous depen-
dencies from positive data. In: Proc. of the 9th Intern. Conf. “Formal Grammar
2004” (FG 2004), Nancy, France, pp. 1–16 (August 2004)

4. Buszkowski, W., Penn, G.: Categorial grammars determined from linguistic data
by unification. Studia Logica 49, 431–454 (1990)

5. Dekhtyar, M., Dikovsky, A.: Categorial dependency grammars. In: Proc. of Intern.
Conf. on Categorial Grammars, Montpellier, pp. 76–91 (2004)

6. Dekhtyar, M., Dikovsky, A.: Generalized Categorial Dependency Grammars. In:
Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science.
LNCS, vol. 4800, pp. 230–255. Springer, Heidelberg (2008)

7. Dikovsky, A.: Dependencies as categories. In: Recent Advances in Dependency
Grammars (COLING 2004) Workshop, pp. 90–97 (2004)

8. Gold, E.M.: Language identification in the limit. Information and Control 10,
447–474 (1967)

9. Joshi, A.K., Shanker, V.K., Weir, D.J.: The convergence of mildly context-sensitive
grammar formalisms. In: Foundational Issues in Natural Language Processing,
Cambridge, MA, pp. 31–81 (1991)

10. Kanazawa, M.: Learnable classes of categorial grammars. Studies in Logic, Lan-
guage and Information. FoLLI & CSLI (1998)

11. Mel’čuk, I.: Dependency Syntax. SUNY Press, Albany (1988)
12. Motoki, T., Shinohara, T., Wright, K.: The correct definition of finite elasticity:

Corrigendum to identification of unions. In: The fourth Annual Workshop on Com-
putational Learning Theory, San Mateo, Calif, p. 375 (1991)

13. Shanker, V.K., Weir, D.J.: The equivalence of four extensions of context-free gram-
mars. Mathematical Systems Theory 27, 511–545 (1994)

14. Shinohara, T.: Inductive inference of monotonic formal systems from positive data.
New Generation Computing 8(4), 371–384 (1991)

15. Wright, K.: Identifications of unions of languages drawn from an identifiable class.
In: The 1989 Workshop on Computational Learning Theory, San Mateo, Calif, pp.
328–333 (1989)

The Lambek-Grishin Calculus Is NP-Complete

Jeroen Bransen

Utrecht University, The Netherlands

Abstract. The Lambek-Grishin calculus LG is the symmetric extension
of the non-associative Lambek calculus NL. In this paper we prove that
the derivability problem for LG is NP-complete.

1 Introduction

In his 1958 and 1961 papers, Lambek formulated two versions of the Syntac-
tic Calculus : in (Lambek, 1958), types are assigned to strings, which are then
combined by an associative operation; in (Lambek, 1961), types are assigned to
phrases (bracketed strings), and the composition operation is non-associative.
We refer to these two versions as L and NL respectively.

As for generative power, Kandulski (1988) proved that NL defines exactly the
context-free languages. Pentus (1993) showed that this also holds for associative
L. As for the complexity of the derivability problem, de Groote (1999) showed
that for NL this belongs to PTIME; for L, Pentus (2003) proves that the problem
is NP-complete and Savateev (2009) shows that NP-completeness also holds for
the product-free fragment of L.

It is well known that some natural language phenomena require generative
capacity beyond context-free. Several extensions of the Syntactic Calculus have
been proposed to deal with such phenomena. In this paper we look at the
Lambek-Grishin calculus LG (Moortgat, 2007, 2009). LG is a symmetric exten-
sion of the nonassociative Lambek calculus NL. In addition to ⊗, \, / (product,
left and right division), LG has dual operations ⊕,�,� (coproduct, left and
right difference). These two families are related by linear distributivity princi-
ples. Melissen (2009) shows that all languages which are the intersection of a
context-free language and the permutation closure of a context-free language
are recognizable in LG. This places the lower bound for LG recognition beyond
LTAG. The upper bound is still open.

The key result of the present paper is a proof that the derivability problem
for LG is NP-complete. This will be shown by means of a reduction from SAT.1

2 Lambek-Grishin Calculus

We define the formula language of LG as follows.

1 This paper has been written as a result of my Master thesis supervised by Michael
Moortgat. I would like to thank him, Rosalie Iemhoff and Arno Bastenhof for com-
ments and I acknowledge that any errors are my own.

P. de Groote and M.-J. Nederhof (Eds.): Formal Grammar 2010/2011, LNCS 7395, pp. 33–49, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

34 J. Bransen

Let V ar be a set of primitive types, we use lowercase letters to refer to an
element of V ar. Let formulas be constructed using primitive types and the binary
connectives ⊗, /, \, ⊕, � and � as follows:

A,B ::= p | A⊗ B | A/B | B\A | A⊕B | A�B | B �A

The sets of input and output structures are constructed using formulas and the
binary structural connectives · ⊗ ·, ·/·, ·\·, · ⊕ ·, · � · and · � · as follows:

(input) X,Y ::= A | X · ⊗ · Y | X · � · P | P · � ·X

(output) P,Q ::= A | P · ⊕ ·Q | P · / ·X | X · \ · P

The sequents of the calculus are of the form X → P , and as usual we write
�LG X → P to indicate that the sequent X → P is derivable in LG. The
axioms and inference rules are presented in Figure 1, where we use the display
logic from (Goré, 1998), but with different symbols for the structural connectives.

It has been proven by Moortgat (2007) that we have Cut admissibility for
LG. This means that for every derivation using the Cut -rule, there exists a
corresponding derivation that is Cut-free. Therefore we will assume that the
Cut-rule is not needed anywhere in a derivation.

3 Preliminaries

3.1 Derivation Length

We will first show that for every derivable sequent there exists a Cut-free deriva-
tion that is polynomial in the length of the sequent. The length of a sequent ϕ,
denoted as |ϕ|, is defined as the number of (formula and structural) connectives
used to construct this sequent. A subscript will be used to indicate that we count
only certain connectives, for example |ϕ|⊗.

Lemma 1. If �LG ϕ there exists a derivation with exactly |ϕ| logical rules.

Proof. If �LG ϕ then there exists a Cut-free derivation for ϕ. Because every
logical rule removes one logical connective and there are no rules that introduce
logical connectives, this derivation contains |ϕ| logical rules. ��

Lemma 2. If �LG ϕ there exists a derivation with at most 1
4 |ϕ|2 Grishin

interactions.

Proof. Let us take a closer look at the Grishin interaction principles. First of
all, it is not hard to see that the interactions are irreversible. Also note that
the interactions happen between the families of input connectives {⊗, /, \} and
output connectives {⊕,�,�} and that the Grishin interaction principles are the
only rules of inference that apply on both families. So, on any pair of one input
and one output connective, at most one Grishin interaction principle can be
applied.

The Lambek-Grishin Calculus Is NP-Complete 35

p→ p Ax

X → A A→ P
X → P

Cut

Y → X · \ · P
X · ⊗ · Y → P

r

X → P · / · Y r

X · � ·Q→ P

X → P · ⊕ ·Q dr

P ·� ·X → Q
dr

(a) Display rules

X · ⊗ · Y → P · ⊕ ·Q
X · � ·Q→ P · / · Y d� / X · ⊗ · Y → P · ⊕ ·Q

Y · � ·Q→ X · \ · P d� \

X · ⊗ · Y → P · ⊕ ·Q
P ·� ·X → Q · / · Y d� /

X · ⊗ · Y → P · ⊕ ·Q
P ·� · Y → X · \ ·Q d� \

(b) Distributivity rules (Grishin interaction principles)

A · ⊗ · B → P

A⊗B → P
⊗L X → B · ⊕ · A

X → B ⊕A ⊕R

X → A · / ·B
X → A/B

/R
B ·� · A→ P

B �A→ P
�L

X → B · \ · A
X → B\A \R A · � ·B → P

A�B → P
�L

X → A Y → B
X · ⊗ · Y → A⊗B ⊗R

B → P A→ Q

B ⊕ A→ P · ⊕ ·Q ⊕L

X → A B → P
B/A→ P · / ·X /L X → B A→ P

P ·� ·X → A�B
�R

X → A B → P
A\B → X · \ · P \L X → B A→ P

X · � · P → B � A �R

(c) Logical rules

Fig. 1. The Lambek-Grishin calculus inference rules

36 J. Bransen

If �LG ϕ there exists a Cut-free derivation of ϕ. The maximum number of
possible Grishin interactions in 1 Cut-free derivation is reached when a Grishin
interaction is applied on every pair of one input and one output connective.
Thus, the maximum number of Grishin interactions in one Cut-free derivation
is |ϕ|{⊗,/,\} · |ϕ|{⊕,�,�}.

By definition, |ϕ|{⊗,/,\}+|ϕ|{⊕,�,�} = |ϕ|, so the maximum value of |ϕ|{⊗,/,\} ·
|ϕ|{⊕,�,�} is reached when |ϕ|{⊗,/,\} = |ϕ|{⊕,�,�} = |ϕ|

2 . Then the total number

of Grishin interactions in 1 derivation is |ϕ|
2 · |ϕ|

2 = 1
4 |ϕ|2, so any Cut-free deriva-

tion of ϕ will contain at most 1
4 |ϕ|2 Grishin interactions. ��

Lemma 3. In a derivation of sequent ϕ at most 2|ϕ| display rules are needed
to display any of the structural parts.

Proof. A structural part in sequent ϕ is nested under at most |ϕ| structural
connectives. For each of these connectives, one or two r or dr rules can display
the desired part, after which the next connective is visible. Thus, at most 2|ϕ|
display rules are needed to display any of the structural parts.

Lemma 4. If �LG ϕ there exists a Cut-free derivation of length O(|ϕ|3).

Proof. ¿From Lemma 1 and Lemma 2 we know that there exists a derivation
with at most |ϕ| logical rules and 1

4 |ϕ|2 Grishin interactions. Thus, the derivation
consists of |ϕ| + 1

4 |ϕ|2 rules, with between each pair of consecutive rules the
display rules. From Lemma 3 we know that at most 2|ϕ| display rules are needed
to display any of the structural parts. So, at most 2|ϕ|·(|ϕ|+ 1

4 |ϕ|2) = 2|ϕ|2+ 1
2 |ϕ|3

derivation steps are needed in the shortest possible Cut-free derivation for this
sequent, and this is in O(|ϕ|3). ��

3.2 Additional Notations

Let us first introduce some additional notations to make the proofs shorter and
easier readable.

Let us call an input structure X which does not contain any structural oper-
ators except for · ⊗ · a ⊗-structure. A ⊗-structure can be seen as a binary tree
with · ⊗ · in the internal nodes and formulas in the leafs. Formally we define
⊗-structures U and V as:

U, V ::= A | U · ⊗ · V

We define X [] and P [] as the input and output structures X and P with a hole
in one of their leafs. Formally:

X [] ::= [] | X [] · ⊗ · Y | Y · ⊗ ·X [] | X [] · � ·Q | Y · � ·P [] | Q · � ·X [] | P [] ·� ·Y

P [] ::= [] | P [] · ⊕ ·Q | Q · ⊕ · P [] | P [] · / · Y | Q · / ·X [] | Y · \ · P [] | X [] · \ ·Q

The Lambek-Grishin Calculus Is NP-Complete 37

This notation is similar to the one of de Groote (1999) but with structures. If
X [] is a structure with a hole, we write X [Y] for X [] with its hole filled with
structure Y . We will write X⊗[] for a ⊗-structure with a hole.

Furthermore, we extend the definition of hole to formulas, and define A[] as
a formula A with a hole in it, in a similar manner as for structures. Hence, by
A[B] we mean the formula A[] with its hole filled by formula B.

In order to distinguish between input and output polarity formulas, we write
A• for a formula with input polarity and A◦ for a formula with output polarity.
Note that for structures this is already defined by using X and Y for input
polarity and P and Q for output polarity. This can be extended to formulas in
a similar way, and we will use this notation only in cases where the polarity is
not clear from the context.

3.3 Derived Rules of Inference

Now we will show and prove some derived rules of inference of LG.

Lemma 5. If �LG A → B and we want to derive X⊗[A] → P , we can replace
A by B in X⊗[]. We have the inference rule below:

A → B X⊗[B] → P

X⊗[A] → P
Repl

Proof. We consider three cases:

1. If X⊗[A] = A, it is simply the cut-rule:

A → B B → P
A → P

Cut

2. If X⊗[A] = Y ⊗[A] · ⊗ · V , we can move V to the righthand-side and use
induction to prove the sequent:

A → B

Y ⊗[B] · ⊗ · V → P

Y ⊗[B] → P · / · V
r

Y ⊗[A] → P · / · V
Repl

Y ⊗[A] · ⊗ · V → P
r

3. If X⊗[A] = U · ⊗ · Y ⊗[A], we can move U to the righthand-side and use
induction to prove the sequent:

A → B

U · ⊗ · Y ⊗[B] → P

Y ⊗[B] → U · \ · P
r

Y ⊗[A] → U · \ · P
Repl

U · ⊗ · Y ⊗[A] → P
r

��

38 J. Bransen

Lemma 6. If we want to derive X⊗[A � B] → P , then we can move the ex-
pression �B out of the ⊗-structure. We have the inference rule below:

X⊗[A] · � ·B → P

X⊗[A� B] → P
Move

Proof. We consider three cases:

1. If X⊗[A�B] = A�B, then this is simply the �L-rule:

A · � · B → Y
A�B → Y

�L

2. If X⊗[A�B] = Y ⊗[A�B] ·⊗ ·V , we can move V to the righthand-side and
use induction together with the Grishin interaction principles to prove the
sequent:

(Y ⊗[A] · ⊗ · V) · � · B → P

Y ⊗[A] · ⊗ · V → P · ⊕ ·B dr

Y ⊗[A] · � ·B → P · / · V
d� /

Y ⊗[A�B] → P · / · V Move

Y ⊗[A�B] · ⊗ · V → P
r

3. If X⊗[A�B] = U ·⊗ ·Y ⊗[A�B], we can move U to the righthand-side and
use induction together with the Grishin interaction principles to prove the
sequent:

(U · ⊗ · Y ⊗[A]) · � ·B → P

U · ⊗ · Y ⊗[A] → P · ⊕ ·B dr

Y ⊗[A] · � ·B → U · \ · P
d� \

Y ⊗[A�B] → U · \ · P Move

U · ⊗ · Y ⊗[A� B] → P
r

��
Lemma 7. �LG A1 ⊗ (A2 ⊗ . . . (An−1 ⊗ An)) → P iff �LG A1 · ⊗ · (A2 · ⊗ ·
. . . (An−1 · ⊗ · An)) → P

Proof. The if -part can be derived by the application of n− 1 times the ⊗L rule
together with the r rule:

A1 · ⊗ · (A2 · ⊗ · . . . (An−1 · ⊗ · An)) → P

An−1 · ⊗ · An → . . . · \ · (A2 · \ · (A1 · \ · P)) r
∗

An−1 ⊗An → . . . · \ · (A2 · \ · (A1 · \ · P)) ⊗L

. . . (An−1 ⊗An) → A2 · \ · (A1 · \ · P)
. . .

A2 · ⊗ · . . . (An−1 ⊗An) → A1 · \ · P
r

A2 ⊗ . . . (An−1 ⊗An) → A1 · \ · P ⊗L

A1 · ⊗ · (A2 ⊗ . . . (An−1 ⊗An)) → P
r

A1 ⊗ (A2 ⊗ . . . (An−1 ⊗An)) → P
⊗L

The Lambek-Grishin Calculus Is NP-Complete 39

The only-if -part can be derived by application of n − 1 times the ⊗R rule fol-
lowed by a Cut:

A1 → A1

A2 → A2

An−1 → An−1 An → An
An−1 · ⊗ · An → An−1 ⊗An

⊗R

. . . (An−1 · ⊗ · An) → . . . (An−1 ⊗An)
. . .

A2 · ⊗ · . . . (An−1 · ⊗ ·An) → A2 ⊗ . . . (An−1 ⊗An)
⊗R

A1 · ⊗ · (A2 · ⊗ · . . . (An−1 · ⊗ ·An)) → A1 ⊗ (A2 ⊗ . . . (An−1 ⊗An))
⊗R

A1 ⊗ (A2 ⊗ . . . (An−1 ⊗An)) → P

A1 · ⊗ · (A2 · ⊗ · . . . (An−1 · ⊗ · An)) → P
Cut

Note that because of the Cut elimination theorem, there exists a cut-free deriva-
tion for this sequent. ��

3.4 Type Similarity

The type simililarity relation ∼, introduced by Lambek (1958), is the reflexive
transitive symmetric closure of the derivability relation. Formally we define this
as:

Definition 1. A ∼ B iff there exists a sequence C1 . . . Cn(1 ≤ i ≤ n) such that
C1 = A, Cn = B and Ci → Ci+1 or Ci+1 → Ci for all 1 ≤ i < n.

It was proved by Lambek that A ∼ B iff one of the following equivalent state-
ments holds (the so-called diamond property):

∃C such that A → C and B → C (join)

∃D such that D → A and D → B (meet)

This diamond property will be used in the reduction from SAT to create a choice
for a truthvalue of a variable.

Definition 2. If A ∼ B and C is the join type of A and B so that A → C and

B → C, we define A
C
� B = (A/((C/C)\C)) ⊗ ((C/C)\B) as the meet type of

A and B.

This is also the solution given by Lambek (1958) for the associative system L,
but in fact this is the shortest solution for the non-associative system NL (Foret,
2003).

Lemma 8. If A ∼ B with join-type C and �LG A → P or �LG B → P , then

we also have �LG A
C
� B → P . We can write this as a derived rule of inference:

A → P or B → P

A
C
� B → P

Meet

40 J. Bransen

Proof

1. If A → P :

C → C C → C
C/C → C · / · C /L

C/C → C/C
/R

B → C

(C/C)\B → (C/C) · \ · C \L

(C/C)\B → (C/C)\C \R
A → P

A/((C/C)\C) → P · / · ((C/C)\B)
/L

(A/((C/C)\C)) · ⊗ · ((C/C)\B) → P
r

(A/((C/C)\C)) ⊗ ((C/C)\B) → P
⊗L

2. If B → P :

A → C

C → C C → C
C/C → C · / · C /L

(C/C) · ⊗ · C → C
r

C → (C/C) · \ · C
r

C → (C/C)\C \R

A/((C/C)\C) → C · / · C /L

A/((C/C)\C) → C/C
/R

B → P

(C/C)\B → (A/((C/C)\C)) · \ · P \L

(A/((C/C)\C)) · ⊗ · ((C/C)\B) → P
r

(A/((C/C)\C)) ⊗ ((C/C)\B) → P
⊗L

��
The following lemma is the key lemma of this paper, and its use will become
clear to the reader in the construction of Section 4.

Lemma 9. If �LG A
C
� B → P then �LG A → P or �LG B → P , if it is not

the case that:

– P = P ′[A′[(A1 ⊗A2)
◦]]

– �LG A/((C/C)\C) → A1

– �LG (C/C)\B → A2

Proof. We have that �LG (A/((C/C)\C))⊗ ((C/C)\B) → P , so from Lemma 7
we know that �LG (A/((C/C)\C)) · ⊗ · ((C/C)\B) → P . Remark that this also
means that there exists a cut-free derivation for this sequent. By case analysis
on the derivation we will show that if �LG (A/((C/C)\C)) ·⊗·((C/C)\B) → P ,
then �LG A → P or �LG B → P , under the assumption that P is not of the
form that is explicitly excluded in this lemma.

We will look at the derivations in a top-down way, and we will do case analysis
on the rules that are applied to the sequent. We will show that in all cases

we could change the derivation in such way that the meet-type A
C
� B in the

conclusion could have immediately been replaced by either A or B.

The Lambek-Grishin Calculus Is NP-Complete 41

The first case is where a logical rule is applied on the lefthand-side of the
sequent. At a certain point in the derivation, possibly when P is an atom, one
of the following three rules must be applied:

1. The ⊗R rule, but then P = A1 ⊗A2 and in order to come to a derivation it
must be the case that �LG A/((C/C)\C) → A1 and �LG (C/C)\B → A2.
However, this is explicitly excluded in this lemma so this can never be the
case.

2. The /L rule, in this case first the r rule is applied so that we have
�LG A/((C/C)\C) → P · / · ((C/C)\B). Now if the /L rule is applied, we
must have that �LG A → P .

3. The \L rule, in this case first the r rule is applied so that we have
�LG (C/C)\B → (A/((C/C)\C)) · \ · P . Now if the \L rule is applied, we
must have that �LG B → P .

The second case is where a logical rule is applied on the righthand-side of the
sequent. Let δ = {r, dr, d� /, d� \, d� /, d� \} and let δ∗ indicate a (possibly
empty) sequence of structural residuation steps and Grishin interactions. For
example for the �R rule there are two possibilities:

– The lefthand-side ends up in the first premisse of the �R rule:

(A/((C/C)\C)) · ⊗ · ((C/C)\B) → P ′′[A′]
P ′[(A/((C/C)\C)) · ⊗ · ((C/C)\B)] → A′ δ∗

B′ → Q

P ′[(A/((C/C)\C)) · ⊗ · ((C/C)\B)] · � ·Q → A′ �B′ �R

(A/((C/C)\C)) · ⊗ · ((C/C)\B) → P [A′ �B′] δ∗

In order to be able to apply the �R rule, we need to have a formula of the
form A′ � B′ on the righthand-side. In the first step all structural rules are
applied to display this formula in the righthand-side, and we assume that in
the lefthand-side the meet-type ends up in the first structural part (inside a
structure with the remaining parts from P that we call P ′). After the �R
rule has been applied, we can again display our meet-type in the lefthand-
side of the formula by moving all other structural parts from P ′ back to the
righthand-side (P ′′).

In this case it must be that �LG (A/((C/C)\C))·⊗·((C/C)\B) → P ′′[A′],
so from this lemma we know that in this case also �LG A → P ′′[A′] or
�LG B → P ′′[A′]. In the case that �LG A → P ′′[A′], we can show that
�LG A → P [A′ � B′] as follows:

A → P ′′[A′]
P ′[A] → A′ δ∗ B′ → Q

P ′[A] · � ·Q → A′ �B′ �R

A → P [A′ �B′]
δ∗

The case for B is similar.

42 J. Bransen

– The lefthand-side ends up in the second premisse of the �R rule:

Q → A′
(A/((C/C)\C)) · ⊗ · ((C/C)\B) → P ′′[B′]
B′ → P ′[(A/((C/C)\C)) · ⊗ · ((C/C)\B)]

δ∗

Q · � · P ′[(A/((C/C)\C)) · ⊗ · ((C/C)\B)] → A′ �B′ �R

(A/((C/C)\C)) · ⊗ · ((C/C)\B) → P [A′ �B′] δ∗

This case is similar to the other case, except that the meet-type ends up in
the other premisse. Note that, although in this case it is temporarily moved
to the righthand-side, the meet-type will still be in an input polarity position
and can therefore be displayed in the lefthand-side again.

In this case it must be that �LG (A/((C/C)\C))·⊗·((C/C)\B) → P ′′[B′],
and from this lemma we know that in this case also �LG A → P ′′[B′] or
�LG B → P ′′[B′]. In the case that �LG A → P ′′[B′], we can show that
�LG A → P [A′ � B′] as follows:

Q → A′
A → P ′′[B′]
B′ → P ′[A] δ

∗

Q · � · P ′[A] → A′ �B′ �R

A → P [A′ �B′] δ∗

The case for B is similar.

The cases for the other logical rules are similar. ��

4 Reduction from SAT to LG

In this section we will show that we can reduce a Boolean formula in conjunctive
normal form to a sequent of the Lambek-Grishin calculus, so that the correspond-
ing LG sequent is provable if and only if the CNF formula is satisfiable. This
has already been done for the associative system L by Pentus (2003) with a
similar construction.

Let ϕ = c1 ∧ . . . ∧ cn be a Boolean formula in conjunctive normal form with
clauses c1 . . . cn and variables x1 . . . xm. For all 1 ≤ j ≤ m let ¬0xj stand for
the literal ¬xj and ¬1xj stand for the literal xj . Now 〈t1, . . . , tm〉 ∈ {0, 1}m is
a satisfying assignment for ϕ if and only if for every 1 ≤ i ≤ n there exists a
1 ≤ j ≤ m such that the literal ¬tjxj appears in clause ci.

Let pi (for 1 ≤ i ≤ n) be distinct primitive types from V ar. We now define
the following families of types:

The Lambek-Grishin Calculus Is NP-Complete 43

Eij(t) �
{
pi � (pi � pi) if ¬txj appears in clause ci

pi otherwise
if 1 ≤ i ≤ n, 1 ≤ j ≤ m
and t ∈ {0, 1}

Ej(t) � E1
j (t) ⊗ (E2

j (t) ⊗ (. . . (En−1
j (t) ⊗ Enj (t)))) if 1 ≤ j ≤ m and t∈{0, 1}

Hj � p1 ⊗ (p2 ⊗ (. . . (pn−1 ⊗ pn))) if 1 ≤ j ≤ m

Fj � Ej(1)
Hj

� Ej(0) if 1 ≤ j ≤ m

G0 � H1 ⊗ (H2 ⊗ (. . . (Hm−1 ⊗Hm)))

Gi � Gi−1 � (pi � pi) if 1 ≤ i ≤ n

Let ϕ̄ = F1 ⊗ (F2 ⊗ (. . . (Fm−1 ⊗Fm))) → Gn be the LG sequent corresponding
to the Boolean formula ϕ. We now claim that the � ϕ if and only if �LG ϕ̄.

4.1 Example

Let us take the Boolean formula (x1∨¬x2)∧(¬x1∨¬x2) as an example. We have
the primitive types {p1, p2} and the types as shown in Figure 2. The formula is
satisfiable (for example with the assignment 〈1, 0〉), thus �LG F1 ⊗ F2 → G2. A
sketch of the derivation is given in Figure 2, some parts are proved in lemma’s
later on.

4.2 Intuition

Let us give some intuitions for the different parts of the construction, and a
brief idea of why this would work. The basic idea is that on the lefthand-side
we create a type for each literal (Fj is the formula for literal j), which will in
the end result in the base type Hj , so F1 ⊗ (F2 ⊗ (. . . (Fm−1 ⊗ Fm))) will result
in G0. However, on the righthand-side we have an occurence of the expression
�(pi�pi) for each clause i, so in order to come to a derivation, we need to apply
the �R rule for every clause i.

Each literal on the lefthand-side will result in either Ej(1) (xj is true) or
Ej(0) (xj is false). This choice is created using a join type Hj such that �LG
Ej(1) → Hj and �LG Ej(0) → Hj , which we use to construct the meet type Fj .
It can be shown that in this case �LG Fj → Ej(1) and �LG Fj → Ej(0), i.e.
in the original formula we can replace Fj by either Ej(1) or Ej(0), giving us a
choice for the truthvalue of xj .

Let us assume that we need x1 = true to satisfy the formula, so on the
lefthand-side we need to replace Fj by E1(1). E1(1) will be the product of exactly
n parts, one for each clause (E1

1 (1) . . . E
n
1 (1)). Here E

i
1(1) is pi � (pi � pi) iff x1

does appear in clause i, and pi otherwise. The first thing that should be noticed
is that �LG pi� (pi� pi) → pi, so we can rewrite all pi� (pi� pi) into pi so that
�LG E1(1) → H1.

However, we can also use the type pi� (pi�pi) to facilitate the application of
the �R rule on the occurrence of the expression �(pi�pi) in the righthand-side.
From Lemma 6 we know that �LG X⊗[pi � (pi � pi)] → Gi if �LG X⊗[pi] · � ·

44 J. Bransen

E
1
(0
)
=

p
1
⊗

(p
2
�

(p
2

�
p
2
))

E
1
(1
)
=

(p
1
�

(p
1

�
p
1
))

⊗
p
2

E
2
(0
)
=

(p
1
�

(p
1

�
p
1
))

⊗
(p

2
�

(p
2

�
p
2
))

E
2
(1
)
=

p
1
⊗

p
2

H
1
=

p
1
⊗

p
2

H
2
=

p
1
⊗

p
2

F
1
=

E
1
(1
)
H

1 �
E

1
(0
)

F
2
=

E
2
(1
)
H

2 �
E

2
(0
)

G
2
=

((
H

1
⊗

H
2
)
�

(p
1

�
p
1
))

�
(p

2
�

p
2
)

p
1
→

p
1

p
1
→

p
1

p
1
·�

·p
1
→

p
1

�
p
1

�
R

p
1
→

p
1
·⊕

·(
p
1

�
p
1
)

d
r

p
1
·�

·(
p
1

�
p
1
)
→

p
1

d
r

p
1
�

(p
1

�
p
1
)
→

p
1

�L
p
2
→

p
2

(p
1
�

(p
1

�
p
1
))

·⊗
·p

2
→

p
1
⊗

p
2

⊗R

(p
1
�

(p
1

�
p
1
))

⊗
p
2
→

p
1
⊗

p
2

⊗L

E
1
(1
)
→

H
1

D
ef

F
1
→

H
1

1
2

p
1
→

p
1

p
2
→

p
2

p
1
·⊗

·p
2
→

p
1
⊗

p
2

⊗R
p
1
·⊗

·p
2
→

H
2

D
ef

F
1
·⊗

·(
p
1
·⊗

·p
2
)
→

H
1
⊗

H
2

⊗R
p
1

�
p
1
→

p
1

�
p
1

(F
1
·⊗

·(
p
1
·⊗

·p
2
))

·�
·(
p
1

�
p
1
)
→

(H
1
⊗

H
2
)
�

(p
1

�
p
1
)

�R

(F
1
·⊗

·(
p
1
·⊗

·p
2
))

·�
·(
p
1

�
p
1
)
→

G
1

D
ef

F
1
·⊗

·(
(p

1
�

(p
1

�
p
1
))

·⊗
·p

2
)
→

G
1

M
o
v
e

p
2

�
p
2
→

p
2

�
p
2

(F
1
·⊗

·(
(p

1
�

(p
1

�
p
1
))

·⊗
·p

2
))

·�
·(
p
2

�
p
2
)
→

G
1
�

(p
2

�
p
2
)

�R

(F
1
·⊗

·(
(p

1
�

(p
1

�
p
1
))

·⊗
·p

2
))

·�
·(
p
2

�
p
2
)
→

G
2

D
ef

F
1
·⊗

·(
(p

1
�

(p
1

�
p
1
))

·⊗
·(
p
2
�

(p
2

�
p
2
))
)
→

G
2

M
o
v
e

(p
1
�

(p
1

�
p
1
))

·⊗
·(
p
2
�

(p
2

�
p
2
))

→
F
1
·\

·G
2

r

(p
1
�

(p
1

�
p
1
))

⊗
(p

2
�

(p
2

�
p
2
))

→
F
1
·\

·G
2

⊗L

F
1
·⊗

·(
(p

1
�

(p
1

�
p
1
))

⊗
(p

2
�

(p
2

�
p
2
))
)
→

G
2

r

F
1
·⊗

·E
2
(0
)
→

G
2

D
ef

F
2
→

E
2
(0
)

1
2

F
1
·⊗

·F
2
→

G
2

R
ep

l

F
1
⊗

F
2
→

G
2

⊗L

F
ig
.
2
.
S
k
et
ch

p
ro
o
f
fo
r
L
G

se
q
u
en

t
co
rr
es
p
o
n
d
in
g
to

(x
1
∨
¬x

2
)
∧
(¬
x
1
∨
¬x

2
)

The Lambek-Grishin Calculus Is NP-Complete 45

(pi � pi) → Gi, so if the expression �Y occurs somewhere in a ⊗-structure we
can move it to the outside. Hence, from the occurrence of pi � (pi � pi) on the
lefthand-side we can move �(pi � pi) to the outside of the ⊗-structure and pi
will be left behind within the original structure (just as if we rewrote it to pi).
However, the sequent is now of the form X⊗[pi] ·� · (pi� pi) → Gi−1 � (pi� pi),
so after applying the �R rule we have X⊗[pi] → Gi−1.

Now if the original CNF formula is satisfiable, we can use the meet types on
the lefthand-side to derive the correct value of Ej(1) or Ej(0) for all j. If this
assignment indeed satisfies the formula, then for each i the formula pi� (pi�pi)
will appear at least once. Hence, for all occurrences of the expression �(pi � pi)
on the righthand-side we can apply the �R rule, after which the rest of the
pi � (pi � pi) can be rewritten to pi in order to derive the base type.

If the formula is not satisfiable, then there will be no way to have the pi�(pi�
pi) types on the lefthand-side for all i, so there will be at least one occurence of
�(pi � pi) on the righthand-side where we cannot apply the �R rule. Because
the � will be the main connective we cannot apply any other rule, and we will
never come to a valid derivation.

Note that the meet type Fj provides an explicit switch, so we first have to
replace it by either Ej(1) or Ej(0) before we can do anything else with it. This
guarantees that if �LG ϕ̄, there also must be some assignment 〈t1, . . . , tm〉 ∈
{0, 1}m such that �LG E1(t1)⊗ (E2(t2)⊗ (. . . (Em−1(tm−1)⊗Em(tm)))) → Gn,
which means that 〈t1, . . . , tm〉 is a satisfying assigment for ϕ.

5 Proof

We will now prove the main claim that � ϕ if and only if �LG ϕ̄. First we will
prove that if � ϕ, then �LG ϕ̄.

5.1 Only If-Part

Let us assume that � ϕ, so there is an assignment 〈t1, . . . , tm〉 ∈ {0, 1}m that
satisfies ϕ.

Lemma 10. If 1 ≤ i ≤ n, 1 ≤ j ≤ m and t ∈ {0, 1} then �LG Eij(t) → pi.

Proof. We consider two cases:

1. If Eij(t) = pi this is simply the axiom rule.

2. If Eij(t) = pi � (pi � pi) we can prove it as follows:

pi → pi pi → pi
pi · � · pi → pi � pi

�R

pi → pi · ⊕ · (pi � pi)
dr

pi · � · (pi � pi) → pi
dr

pi � (pi � pi) → pi
�L

��

46 J. Bransen

Lemma 11. If 1 ≤ j ≤ m and t ∈ {0, 1}, then �LG Ej(t) → Hj.

Proof. ¿From Lemma 7 we know that we can turn Ej(t) into a ⊗-structure. From
Lemma 10 we know that �LG Eij(t) → pi, so using Lemma 5 we can replace all

Eij(t) by pi in Ej(t) after which we can apply the ⊗R rule n− 1 times to prove
the lemma. ��

Lemma 12. If 1 ≤ j ≤ m, then �LG Fj → Ej(tj)

Proof. ¿From Lemma 11 we know that �LG Ej(1) → Hj and �LG Ej(0) → Hj ,
so Ej(1) ∼ Ej(0) with join-type Hj . Now from Lemma 8 we know that �LG
Ej(1)

Hj

� Ej(0) → Ej(1) and �LG Ej(1)
Hj

� Ej(0) → Ej(0). ��

Lemma 13. We can replace each Fj in ϕ̄ by Ej(tj), so:

E1(t1) · ⊗ · (E2(t2) · ⊗ · (. . . (Em−1(tm−1) · ⊗ ·Em(tm)))) → Gn

F1 ⊗ (F2 ⊗ (. . . (Fm−1 ⊗ Fm))) → Gn

Proof. This can be proven by using Lemma 7 to turn it into a ⊗-structure, and
then apply Lemma 12 in combination with Lemma 5 m times. ��

Lemma 14. In E1(t1) · ⊗ · (E2(t2) · ⊗ · (. . . (Em−1(tm−1) · ⊗ ·Em(tm)))) → Gn,
there is at least one occurrence of pi � (pi � pi) in the lefthand-side for every
1 ≤ i ≤ n.

Proof. This sequence of E1(t1), . . . , Em(tm) represents the truthvalue of all vari-
ables, and because this is a satisfying assignment, for all i there is at least
one index k such that ¬tkxk appears in clause i. By definition we have that
Eik(tk) = pi � (pi � pi). ��

Definition 3. Y ij � Ej(tj) with every occurrence of pk � (pk � pk) replaced by
pk for all i < k ≤ n

Lemma 15. �LG Y 0
1 · ⊗ · (Y 0

2 · ⊗ · (. . . (Y 0
m−1 · ⊗ · Y 0

m))) → G0

Proof. Because Y 0
j = Hj by definition for all 1 ≤ j ≤ m and G0 = H1 ⊗ (H2 ⊗

(. . . (Hm−1⊗Hm))), this can be proven by applying the ⊗R rule m−1 times. ��

Lemma 16. If �LG Y i−1
1 · ⊗ · (Y i−1

2 · ⊗ · (. . . (Y i−1
m−1 · ⊗ · Y i−1

m))) → Gi−1, then
�LG Y i1 · ⊗ · (Y i2 · ⊗ · (. . . (Y im−1 · ⊗ · Y im))) → Gi

Proof. ¿From Lemma 14 we know that pi � (pi � pi) occurs in Y
i
1 · ⊗ · (Y i2 · ⊗ ·

(. . . (Y im−1 · ⊗ · Y im))) (because the Y ij parts are Ej(tj) but with pk � (pk � pk)
replaced by pk only for k > i). Using Lemma 6 we can move the expression
�(pi � pi) to the outside of the lefthand-side of the sequent, after which we can
apply the �R-rule. After this we can replace all other occurrences of pi�(pi�pi)
by pi using Lemma 10 and Lemma 5. This process can be summarized as:

The Lambek-Grishin Calculus Is NP-Complete 47

Y i−1
1 · ⊗ · (Y i−1

2 · ⊗ · (. . . (Y i−1
m−1 · ⊗ · Y i−1

m)))→ Gi−1 pi � pi → pi � pi

(Y i−1
1 · ⊗ · (Y i−1

2 · ⊗ · (. . . (Y i−1
m−1 · ⊗ · Y i−1

m)))) · � · (pi � pi)→ Gi−1 � (pi � pi)
�R

Y i−1
1 · ⊗ · (Y i−1

2 · ⊗ · (. . . (Y i−1
m−1 · ⊗ · Y i−1

m))) · � · (pi � pi)→ Gi
Def

Y i1 · ⊗ · (Y i2 · ⊗ · (. . . (Y im−1 · ⊗ · Y im)))→ Gi
14, 6, 10, 5

��

Lemma 17. �LG Y n1 · ⊗ · (Y n2 · ⊗ · (. . . (Y nm−1 · ⊗ · Y nm))) → Gn

Proof. We can prove this using induction with Lemma 15 as base and Lemma 16
as induction step. ��

Lemma 18. If � ϕ, then �LG ϕ̄,

Proof. ¿From Lemma 17 we know that �LG Y n1 · ⊗ · (Y n2 · ⊗ · (. . . (Y nm−1 · ⊗ ·
Y nm))) → Gn, and because by definition Y nj = Ej(tj), we also have that �LG
E1(t1) ·⊗ · (E2(t2) ·⊗ · (. . . (Em−1(tm−1) ·⊗ ·Em(tm)))) → Gn. Finally combining
this with Lemma 13 we have that �LG ϕ̄ = F1⊗ (F2⊗ (. . . (Fm−1⊗Fm))) → Gn,
using the assumption that � ϕ. ��

5.2 If-Part

For the if part we will need to prove that if �LG ϕ̄, then � ϕ. Let us now assume
that �LG ϕ̄.

Lemma 19. If �LG X → P ′[(P �Y)◦], then there exist a Q such that Q is part
of X or P ′ (possibly inside a formula in X or P ′) and �LG Y → Q.

Proof. The only rule that matches a � in the righthand-side is the �R rule,
so somewhere in the derivation this rule must be applied on the occurrence of
P � Y . Because this rule needs a · � · connective in the lefthand-side, we know
that if �LG X → P ′[(P � Y)◦] it must be the case that we can turn this into
X ′ · � ·Q → P � Y such that �LG Y → Q. ��

Lemma 20. If �LG E1(t1)·⊗·(E2(t2)·⊗·(. . . (Em−1(tm−1)·⊗·Em(tm))) → Gn,
then there is an occurrence pi � (pi � pi) on the lefthand-side at least once for
all 1 ≤ i ≤ n.

Proof. Gn by definition contains an occurrence of the expression �(pi � pi) for
all 1 ≤ i ≤ n. From Lemma 19 we know that somewhere in the sequent we need
an occurrence of a structure Q such that �LG pi�pi → Q. From the construction
it is obvious that the only possible type for Q is in this case pi� pi, and it came
from the occurrence of pi � (pi � pi) on the lefthand-side. ��

Lemma 21. If �LG E1(t1)·⊗·(E2(t2)·⊗·(. . . (Em−1(tm−1)·⊗·Em(tm))) → Gn,
then 〈t1, t2, . . . , tm−1, tm〉 is a satisfying assignment for the CNF formula.

48 J. Bransen

Proof. ¿From Lemma 20 we know that there is a pi�(pi�pi) in the lefthand-side
of the formula for all 1 ≤ i ≤ n. From the definition we know that for each i
there is an index j such that Eij(tj) = pi � (pi � pi), and this means that ¬tjxj
appears in clause i, so all clauses are satisfied. Hence, this choice of t1 . . . tm is a
satisfying assignment. ��

Lemma 22. If 1 ≤ j ≤ m and �LG X⊗[Fj] → Gn, then �LG X⊗[Ej(0)] → Gn
or �LG X⊗[Ej(1)] → Gn.

Proof. We know that X⊗[Fj] is a ⊗-structure, so we can apply the r rule several
times to move all but the Fj-part to the righthand-side. We then have that
�LG Fj → . . . · \ · Gn · / · From Lemma 9 we know that we now have that
�LG Ej(0) → . . . · \ ·Gn · / · . . . or �LG Ej(1) → . . . · \ · Gn · / · Finally we
can apply the r rule again to move all parts back to the lefthand-side, to show
that �LG X⊗[Ej(0)] → Gn or �LG X⊗[Ej(1)] → Gn.

Note that, in order for Lemma 9 to apply, we have to show that this sequent
satisfies the constraints. Gn does contain A1 ⊗A2 with output polarity, however
the only connectives in A1 and A2 are ⊗. Because no rules apply on A/((C/
C)\C) → A′

1 ⊗ A′′
1 , we have that 	�LG A/((C/C)\C) → A1. In X⊗[], the only

⊗ connectives are within other Fk, however these have an input polarity and do
not break the constraints either.

So, in all cases Fj provides an explicit switch, which means that the truthvalue
of a variable can only be changed in all clauses simultanously. ��

Lemma 23. If �LG ϕ̄, then � ϕ.

Proof. ¿From Lemma 22 we know that all derivations will first need to replace
each Fj by either Ej(1) or Ej(0). This means that if �LG F1⊗(F2⊗(. . . (Fm−1⊗
Fm))) → Gn, then also �LG E1(t1) · ⊗ · (E2(t2) · ⊗ · (. . . (Em−1(tm−1) · ⊗ ·
Em(tm))) → Gn for some 〈t1, t2, . . . , tm−1, tm〉 ∈ {0, 1}m. From Lemma 21 we
know that this is a satisfying assignment for ϕ, so if we assume that �LG ϕ̄, then
� ϕ. ��

6 Conclusion

Theorem 1. LG is NP-complete.

Proof. ¿From Lemma 4 we know that for every derivable sequent there exists
a proof that is of polynomial length, so the derivability problem for LG is in
NP . From Lemma 18 and Lemma 23 we can conclude that we can reduce SAT
to LG. Because SAT is a known NP-hard problem (Garey and Johnson, 1979),
and our reduction is polynomial, we can conclude that derivability for LG is
also NP-hard.

Combining these two facts we conclude that the derivability problem for LG
is NP-complete. ��

The Lambek-Grishin Calculus Is NP-Complete 49

References

de Groote, P.: The Non-Associative Lambek Calculus with Product in Polynomial
Time. In: Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 128–
139. Springer, Heidelberg (1999)

Foret, A.: On the computation of joins for non associative Lambek categorial grammars.
In: Proceedings of the 17th International Workshop on Unification (UNIF 2003),
Valencia, Spain, June 8-9 (2003)

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York (1979)

Goré, R.: Substructural logics on display. Logic Jnl IGPL 6(3), 451–504 (1998)
Kandulski, M.: The non-associative Lambek calculus. Categorial Grammar, Linguistic

and Literary Studies in Eastern Europe (LLSEE) 25, 141–151 (1988)
Lambek, J.: The Mathematics of Sentence Structure. American Mathematical

Monthly 65, 154–170 (1958)
Lambek, J.: On the calculus of syntactic types. In: Structure of Language and Its

Mathematical Aspects, pp. 166–178 (1961)
Melissen, M.: The Generative Capacity of the Lambek–Grishin Calculus: A New Lower

Bound. In: de Groote, P., Egg, M., Kallmeyer, L. (eds.) Formal Grammar. LNCS,
vol. 5591, pp. 118–132. Springer, Heidelberg (2011)

Moortgat, M.: Symmetries in Natural Language Syntax and Semantics: The Lambek-
Grishin Calculus. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS,
vol. 4576, pp. 264–284. Springer, Heidelberg (2007)

Moortgat, M.: Symmetric categorial grammar. Journal of Philosophical Logic 38(6),
681–710 (2009)

Pentus, M.: Lambek grammars are context free. In: Proceedings of the 8th Annual
IEEE Symposium on Logic in Computer Science, pp. 429–433. IEEE Computer
Society Press, Los Alamitos (1993)

Pentus, M.: Lambek calculus is NP-complete. CUNY Ph.D. Program in Computer
Science Technical Report TR–2003005. CUNY Graduate Center, New York (2003)

Savateev, Y.: Product-Free Lambek Calculus Is NP-Complete. In: Artemov, S., Nerode,
A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 380–394. Springer, Heidelberg (2008)

Resumption and Island-Hood in Hausa�

Berthold Crysmann

Universität Bonn
Poppelsdorfer Allee 47, D–53115 Bonn

crysmann@uni-bonn.de

Abstract. In this paper, I shall discuss the status of Hausa resump-
tive pronouns. I shall argue that the asymmetry between island-sensitive
wh-extraction and island-insensitive relativisation is best captured at
the filler site, rather than at the gap site. The analysis proposed here
builds crucially on recent HPSG work on island-insensitive rightward
movement, arguing in favour of anaphoric processes within a theory of
extraction.

1 Introduction

Unbounded dependency constructions in Hausa1 make use of two different strate-
gies: besides standard extraction as a nonlocal relation between the filler and a
phonologically empty gap, the language also recognises a resumptive pronoun
strategy, where a pronominal is found at the extraction site.

Resumptive elements can be free pronominals, bound pronominal affixes, or
even null pronominals.2 The choice of resumptive pronoun (free, bound, null)
depends on morphological and syntactic properties of the head governing the
extraction site: independent pronouns are used as objects of prepositions, bound

� A great many thanks to the anonymous reviewers, as well as to the audience of
Formal Grammar 2010 for their stimulating and helpful comments, in particular
Irina Agafonova and Carl Pollard. I am also gratefully indebted to Stefan Müller for
his remarks on an earlier version of this paper.

1 Hausa is an Afroasiatic language spoken mainly in Northern Nigeria and bordering
areas of Niger. Both tone (high, low, falling) and length (long vs. short) are lexically
and grammatically distinctive. Following common practise, I shall mark low tone
with a grave accent and falling tone with a circumflex. Vowels unmarked for tone
are high. Length distinctions are signalled by macron.

I shall make use of the following inventory of morphological tags in the glosses:
l = “genitive linker”, s = singular, p = plural, m = masculine, f = feminine, do
= direct object, io = indirect object, iom = indirect object marker, g = genitive,
rel = relativiser, comp = complementiser, foc = focus marker, cpl = completive
aspect, cont = continuative aspect, hab = habitual, fut = future.

2 Hausa is a null subject and null object language (Tuller, 1986): while both human
and non-human subjects can be dropped with equal ease, object drop observes a re-
striction to non-human referents. Interpretation of null arguments is always specific,
i.e. not generic (Jaggar, 2001).

P. de Groote and M.-J. Nederhof (Eds.): Formal Grammar 2010/2011, LNCS 7395, pp. 50–65, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Resumption and Island-Hood in Hausa 51

pronominals are used for complements of nouns as well as human (animate)
complements of verbs and verbal nouns, whereas null pronominals are used for
subjects and inanimate objects of verbs and verbal nouns.

I shall first discuss the properties of overt resumptive pronouns, followed by
a discussion of the admittedly more subtle null anaphora.

1.1 Overt Resumptive Pronouns

Complements of Prepositions. Among the constructions that make regular
use of resumption, extraction from PP features prominently: in Hausa, three
classes of prepositions can be distinguished, depending on their behaviour in
unbounded dependency constructions. While all prepositions can be pied-piped
along with their complements in focus fronting, wh-fronting and relativisation
(Newman, 2000; Jaggar, 2001), for basic locative prepositions, such as à or dàgà,
this seems to be the only option.

(1) a. [à
at

Kan`̄o]i
Kano

akà
4.cpl

hàifē
give.birth

ǹı
1.s.do

∅i
∅

‘It was in Kano I was born’ (Jaggar, 2001)

b. *Kan`̄oi
Kano

akà
4.cpl

hàifē
give.birth

ǹı
1.s.do

à
at

sh̄ıi
3.s.m

/
/
∅i
∅

Non-locative basic prepositions, such as dà or gàrē do not permit extraction of
their complement by way of a filler-gap dependency. Extraction is possible with
these prepositions, if a resumptive pronominal is used instead of a gap.

(2) a. [dà
with

sàndā]i
stick

sukà
3.p.cpl

d`̄okē
beat

sh̀ı
3.s.do

∅i

‘It was a stick they beat him with.’ (Jaggar, 2001)

b. sàndāi
stick

sukà
3.p.cpl

d`̄okē
beat

sh̀ı
3.s.do

dà
with

itai
3.s.f

/
/
*∅i
∅

‘It was a stick they beat him with.’ (Jaggar, 2001)

The third class of prepositions, the extensive set of so-called “genitive preposi-
tions” (Newman, 2000) or “prepositional nouns” (Wolff, 1993), feature in filler-
gap dependencies, along-side pied-piping and resumptive pronoun strategies.3

(3) a. [ciki-n
inside-l

àdak`̄a]i
box

mukàn
1.p.hab

sâ
put

kuâi-n-mù
money-l-1.p.g

∅i

‘It’s inside a box we usually put our money.’ (Jaggar, 2001)

b. àdak`̄ai
box

mukàn
1.p.hab

sâ
put

kuâi-n-mù
money-l-1p

ciki-n-tài
inside-l-3.s.f.g

/
/
ciki ∅i
inside ∅

‘It’s inside a box we usually put our money.’ (Jaggar, 2001)

3 The presence of the genitive linker is an instance of a general property of the lan-
guage, namely marking in situ direct objects of nouns, verbs, and adjectives. See, e.g.,
Newman (2000) and Jaggar (2001) for an extensive overview, as well as Crysmann
(2005a, in press) for a unified formal analysis.

52 B. Crysmann

The form of the resumptive pronoun is always identical to the one normally
used with a particular preposition, a generalisation which holds for resumptive
pronominals across the board. Genitive prepositions take bound pronominals
from the possessive set (also used with nouns), gà/gàrē takes bound pronominals
from the accusative set (otherwise used with verbs) and all other prepositions
take free pronouns from the independent set. Note, however, that basic preposi-
tions that fail to feature in a resumptive pronoun strategy may still combine with
pronominal objects, as long as this does not involve a long-distance dependency
(e.g., dàgà ita ‘from her’; Newman, 2000).

Before we proceed, I would like to briefly take stock of what we have estab-
lished thus far: first, whether or not gaps or resumptive pronouns are licit, is
mainly a lexical matter, depending on the governing preposition. Second, for
prepositions that permit stranding, use of a resumptive pronoun is an equally
viable option.

Complements of Nouns. The second major context in which resumptive
pronouns surface in Hausa involves complements of nouns, including possessors.

(4) a. [’ya-r
daughter-l

w`̄a]i
who

ka
2.m.cpl

àurā
marry

∅i ?

‘Whose daughter did you marry?’ (Jaggar, 2001)

b. w`̄ai
who

ka
2.m.cpl

àuri
marry

’ya-r-sài
daughter.f-l.f-3.s.m.g

/
/
*’yā ∅i?
daughter.f ∅

‘Whose daughter did you marry?’ (Jaggar, 2001)

(5) Audùi
Audu

nē
foc

na
1.s.cpl

âinkà
sew

r̀̄ıga-r-sài
gown.f-l.f-3.s.m.g

/
/
*r̀̄ıgā ∅i.
gown.f ∅

‘It’s Audu whose gown I’ve sewn’

In wh-constructions, the governing nominal head can either be pied-piped along
with the wh-pronoun, or a resumptive pronoun can be used at the extraction
site. Extraction by filler-gap dependency, however, is impossible for complements
of nouns.

The same holds for focus fronting: again, use of a resumptive pronoun is
obligatory.4

Human Complements of Verbs. Objects of verbs, dynamic nouns, and verbal
nouns can extract by way of a filler-gap dependency.5

(6) a. yāròni
boy

dà
rel

sukà
3.p.cpl

d`̄okā
beat up

∅i yan`̄a
3.s.m.cont

as̀ıbit̀ı
hospital

‘The boy they beat up is in hospital’ (Jaggar, 2001, p. 534)

4 It is not clear to me at present, whether pied-piping would be an option here. Al-
though it is perfectly acceptable to focus-front the entire complex NP, it remains to
be clarified, whether this leads to an extension of the focus domain or not.

5 Human direct objects cannot be pro-dropped in Hausa. Thus, whenever we encounter
a zero realisation at the gap-site, we can be sure that we are not dealing with an
instance of null anaphora.

Resumption and Island-Hood in Hausa 53

b. g`̄a
there is

yārinyàri
girl

dà
rel

nak`̄e
1.s.cont

sô
want.vn

∅i

‘There’s the girl I love.’ (Jaggar, 2001, p. 534)

c. ı̀nā
where

littāf̀ıni
book

dà
rel

kak`̄e
2.s.m.cont

màgan`̄a
talking

∅i

‘Where is the book you’re talking about?’ (Jaggar, 2001, p. 534)

Jaggar (2001, p. 534) observes that “deletion is [...] the strongly preferred strat-
egy for relativisation on direct objects.” Although Jaggar does not provide any
positive or negative examples for resumptive pronoun use, the wording suggests
that this option is not ruled out per se, but rather highly infrequent in simple
extraction contexts.

However, once we consider long extraction, we do find cases where resump-
tion is indeed the only option: Tuller (1986) reports the following data, involving
extraction across non-bridge verbs where the gap strategy leads to ungrammat-
icality, but resumption is fine.

(7) g`̄a
there are

yârân
children

dà
rel

Àli
Ali

ya
3.s.cpl

raâ`̄a
whisper

miǹı
1.s.io

wai
comp

ya
3.s.cpl

gan-sù
see-3.p.do

/
/

*gan̄ı ∅
see ∅

gida-n
house-l

giy`̄a
beer

‘Here are the children that Ali whispered to me that he saw in the bar.’(Tuller,

1986, p. 169; tone added)

One possible explanation for the marginal status of overt resumptives in direct
object function would be to assume that the use of resumption is but a “last
resort” device (Shlonsky, 1992) whose main purpose is to circumvent island
violations. Yet, overt human direct object resumptive pronouns can also be found
in constructions which are slightly more complex than the simple short extraction
examples given above, but which nevertheless do not involve any extraction
islands, as in the following examples of extraction from a sentential complement
of a bridge verb:

(8) mùtumı̀ni
man

dà
rel

â`̄al̀ıbai
students

sukà
3.p.cpl

san
know

cˆ̄ewā
comp

mālàma-r-sù
teacher-l.f-3.p.gen

tan`̄a
3.s.f.cont

sô-n-sài
like.vn-l-3.s.m.gen

/
/
sô ∅i
like.vn

‘the man that the students know that their teacher likes’ (Newman, 2000, p. 539)

Similar observations can be made with across-the-board extraction from coordi-
nate structures:

(9) [àbōk̄ı-n-ā]i
friend-l-1.s.gen

dà
rel

na
1.s.cpl

z̀ıyart`̄a
visit

∅i
but

àmmā
1.s.neg.cpl

bàn
find

s`̄amē
3.s.m.do

sh̀ıi
at

à
home

gidā
neg

ba

‘my friend that I visited but did not find at home’ (Newman, 2000, p. 539)

54 B. Crysmann

(10) mùtumı̀ni
man

dà
rel

na
1.s.cpl

bā
give

sh̀ıi
3.s.m.do

aro-n
lending-l

bàrgō-nā
blanket-l.1.s.g

àmmā
but

duk dà
in spite of

hakà
that

∅i
∅

yak`̄e
3.s.m.cont

ĵın
feel-l

sanȳı
cold

‘the man whom I lent my blanket but who still felt cold’ (Newman, 2000, p. 540)

The apparent marginality of resumption in highly local contexts observed by
Hausa is highly reminiscent of similar restrictions on subject resumptives in the
highest clause in Hebrew (Borer, 1984) and Irish McCloskey (1990). Note, more-
over, that in all the three examples cited above, a zero gap is equally possible.
Thus, a “last resort” account is anything but likely.

Turning to indirect objects, extraction using a filler-gap dependency is again
the preferred option. However, in contrast to direct objects, resumptive pronouns
are cited to be much more common (Jaggar, 2001; Newman, 2000).

(11) mut`̄anêni
men

dà
rel

sukà
3.p.cpl

Îi
refuse

sayar
sell

musùi
3.p.io

/
/
wà ∅i
iom ∅

dà
with

àbinci
food

sukà
3.p.cpl

f̀ıta
left

‘the men they refused to sell food to left.’ (Jaggar, 2001, p. 534)

To sum up our observations regarding objects of verbs, we find that gaps are
possible in general, and that at least with indirect objects, resumption is equally
possible. For direct objects, resumption appears marginal in cases of short ex-
traction. It should be clear, however, that resumption is more than just a rescue
device, given its presence in structures without any relevant extraction island.

1.2 Null Anaphora in Extraction

Hausa is a null subject language (Tuller, 1986; Jaggar, 2001): tense/aspect/mood
(TAM) markers are inflected for person, number, and gender, often exhibiting fu-
sion between agreement and TAM marking: in some paradigms, TAM categories
are only expressed suprasegmentally in terms of tone and/or length distinctions.
Discourse-salient subjects are typically suppressed. Pronominal subjects are ei-
ther dislocated topics, or else ex situ focused constituents.

With respect to subject extraction, Tuller (1986) observes that Hausa, just
like Italian, is not subject to the that-t effect. Given the pro-drop property this
is an entirely expected pattern. In contrast to Italian, however, this does not
correlate with free inversion of the subject.

(12) a. w`̄a
who

kik`̄e
2.s.f.cont

tsàmmāǹ̄ı
thinking

(wai/cˆ̄ewā)
comp

∅ yā
3.s.m.cpl

tàfi
go

Kan`̄o
Kano

‘Who do you think went to Kano?’ (Tuller, 1986, p. 152-3; tone added)

b. w`̄a
who

Ābù
Abu

ta
3.s.f.cpl

tàmbay`̄a
ask

kō
comp

∅ yā
3.s.m.cpl

tàfi
go

Kan`̄o
Kano

‘Who did Abu ask went to Kano?’ (Tuller, 1986, p. 153; tone added)

In addition to subject-drop, Hausa also features object-drop, although there is a
restriction to non-human referents, as illustrated by the examples below, where
the sentences in b. are answers to the questions raised in a.

Resumption and Island-Hood in Hausa 55

(13) a. Kā
2.s.m.cpl

ga
see

littāf̀ın-n
book-l

Mūsa?
Musa

‘Did you see Musa’s book?’

b. Ī,
Yes

nā
1.s.cpl

gan
see

sh̀ı.
3.s.m

/ Ī,
Yes

nā
1.s.cpl

gan̄ı
see

‘Yes, I saw it.’ (Tuller, 1986, p. 61; tone added)

(14) a. Kā
2.s.m.cpl

ga
see

Îanè-n
brother-l

Mūsa?
Musa

‘Did you see Musa’s brother?’

b. Ī,
Yes

nā
1.s.cpl

gan
see

sh̀ı.
3.s.m

/ *Ī,
Yes

nā
1.s.cpl

gan̄ı
see

‘Yes, I saw him.’ (Tuller, 1986, p. 62; tone added)

The central observation, however, made by Tuller (1986) regarding pro-dropped
subjects and objects pertains to the fact that long relativisation out of relative
clauses is possible in Hausa just in those cases where the respective complement
may be pro-dropped. I.e., relativisation of subjects and non-human objects is
insensitive to the island nature of relative clauses, whereas relativisation of hu-
man objects is not: Since null pronominals are blocked in this case, an overt
resumptive must be used instead.

(15) ? g`̄a
here.is

m`̄atâri
woman

dà
rel

ka
2.s.m.cpl

bā
give

ǹı
me

littāf̀ınj
book

dà
rel

m`̄alàmai
teachers

sukà
3.p.cpl

san
know

mùtumı̀nk
man

dà
rel
∅i ta

3.s.f.cpl
rub`̄utā
write

wà
for
∅k ∅j

‘Here’s the woman that you gave me the book the teachers know the man
she wrote it for.’ (Tuller, 1986, p. 84; tone added)

(16) ? g`̄a
here.is

littāf̀ınj
book

dà
REL

ka
2.S.M.CPL

gwad`̄a
show

miǹı
1.s.io

m`̄atâri
woman

dà
rel

m`̄alàmai
teachers

sukà
3.p.cpl

san
know

mùtumı̀nk
man

dà
rel
∅i ta

3.s.f.cpl
rub`̄utā
write

wà
iom
∅k ∅j

‘Here’s the book that you showed me the woman the teachers know the man
she wrote it for.’ (Tuller, 1986, p. 84; tone added)

(17) g`̄a
here.is

mùtumı̀nj
man

dà
rel

ka
2.s.m.cpl

ga
see

yārinyàri
girl

dà
rel
∅i ta

3.s.f.cpl

san sh̀ıj
know 3.s.m.do

/
/
*san̄ı ∅j
know ∅

‘Here’s the man that you saw the girl that knows him.’ (Tuller, 1986, p. 85;

tone added)

Similarly, indirect objects, which do not permit pro-drop either, equally disallow
long distance relativisation without an overt resumptive pronoun.

(18) g`̄a
here.is

tābōb̂ınj
cigarettes

dà
rel

Àli
Ali

ya
3.s.m.cpl

san
know

mùtumı̀ni
man

dà
REL

∅i zâi
3.s.m.fut

ȳı
do

musùj
3.p.io

/
/
*wà ∅j
iom ∅

kwāl̄ı
box

‘Here are the cigarettes that Ali knows the man that will make a box for.’

(Tuller, 1986, p. 84; tone added)

56 B. Crysmann

Long distance relativisation of subjects and non-human objects extends to wh-
islands, again without the need for an overt resumptive pronoun:

(19) a. littāf̀ınj
book

dà
rel

ka
2.s.m.cpl

san
know

w`̄ai
who

∅i ya
3.s.m.cpl

rub`̄utā
write

∅j

‘the book that you know who wrote (it)’ (Tuller, 1986, p. 80; tone
added)

b. mùtumı̀ni
man

dà
rel

ka
2.s.m.cpl

san
know

m`̄ej
what

∅i ya
3.s.m.cpl

rub`̄utā
write

∅j

‘the man that you know what (he) wrote’ (Tuller, 1986, p. 80; tone
added)

Tuller (1986) argues that the absence of island effects in long distance relativisa-
tion of subjects and non-human objects can be directly related to the fact that
these complements can be pro-dropped. Thus, she claims that null pronominals
in Hausa serve an additional function of null resumptive pronouns in relativisa-
tion.

A most important finding of Tuller’s is that while long relativisation out of
these islands is possible, wh-extraction is not:

(20) a. * wànè
which

littāf̀̄ıj
book

ka
2.s.m.cpl

san
know

w`̄ai
who

∅i ya
3.s.m.cpl

rub`̄utā
write

∅j

‘which book do you know who wrote’ (Tuller, 1986, p. 80; tone added)

b. * wànè
which

mùtûmi

man
ka
2.s.m.cpl

san
know

m`̄ej
what

∅i ya
3.s.m.cpl

rub`̄utā
write

∅j

‘which man do you know what wrote’ (Tuller, 1986, p. 80; tone added)

(21) * wànè
which

mùtûmi

man
ka
2.s.m.cpl

bā
give

ǹı
1.s.do

littāf̀ınj
book

dà
rel
∅i ya

3.s.m.cpl
rub`̄utā
write

∅j

‘Which man did you give me the book that wrote’ (Tuller, 1986, p. 81; tone
added)

Interestingly enough, focus fronting patterns with wh-extraction in this respect:

(22) a. * wani
a

mùtûmi

man
ka
2.s.m.cpl

bā
give

ǹı
me

littāf̀ınj
book

dà
rel
∅i ya

3.s.m.cpl
rub`̄utā
write

∅j

‘A man, you gave me the book that wrote’ (Tuller, 1986, p. 81; tone
added)

b. * wani
a

mùtûmi

man
ka
2.s.m.cpl

san
know

m`̄ej
what

∅i ya
3.s.m.cpl

rub`̄utā
write

∅j

‘A man, you know what wrote’ (Tuller, 1986, p. 81; tone added)

The inability of wh-phrases and focused constituents to undergo long extrac-
tion out of relative clauses does not appear to be a distinguishing property of
null anaphora. Long distance wh- extraction is equally impossible with overt
resumptive pronouns.

(23) a. w`̄aj
who

ka
2.s.m.cpl

yi
do

màgan`̄a
talking

dà
with

sh̄ıj
3.s.m

‘Who did you talk with?’ (Tuller, 1986, p. 158; tone added)

Resumption and Island-Hood in Hausa 57

b. * w`̄aj
who

ka
2.s.m.cpl

san
know

m`̄atâri
woman

dà
rel
∅i ta

3.s.f.cpl
yi
do

màgan`̄a
talking

dà
with

sh̄ıj
3.s.m

‘Who do you know the woman that talked to him’ (Tuller, 1986, p. 159;
tone added)

(24) a. w`̄aj
who

ka
2.s.m.cpl

karàntà
read

littāf̀ı-n-sàj
book-l-3.s.m.g

‘Whose book did you read?’ (Tuller, 1986, p. 158; tone added)

b. * w`̄aj
who

ka
2.s.m.cpl

ga
see

yˆ̄arâni
children

dà
rel
∅i sukà

3.p.cpl
Îōnè
burn

littāf̀ı-n-sàj
book-l-3.s.m.g

‘Who did you see the children that burnt his book’ (Tuller, 1986,
p. 159; tone added)

To summarise the empirical findings, resumptive pronouns in Hausa — be they
null or overt — may license long relativisation out of relative clauses and wh-
islands. Neither covert nor overt resumption, however, is capable of licensing
long wh- or focus movement out of extraction islands, despite the fact that overt
resumption of focused or wh-phrases is generally possible.

2 Previous Analyses

2.1 Resumption: Extraction or Anaphora?

The possibility for resumption to escape island constraint violations is an ob-
servation that has been made repeatedly in the literature. In order to model
this apparent difference between filler-gap constructions and resumption, it has
been repeatedly suggested to regard the latter as an anaphoric process distinct
from movement (e.g. Borer, 1984; Sells, 1984). Within the framework of HPSG
(Pollard and Sag, 1994), Vaillette (2001a,b) argues in favour of an analysis of
Hebrew and Irish resumptives in terms of unbounded dependencies (UDCs),
using a non-local feature resump akin to the standard slash feature. A dis-
tinguishing property of the non-local resump feature is, however, that it is a
set of semantic indices, rather than full-fledged local values, thereby capturing
the basic intuition inherent to the anaphoric binding approach. In contrast to
Vaillette, Taghvaipour (2004, 2005) suggests to do away with the resump fea-
ture and encode both types of UDCs as slash dependencies, distinguished in
terms of diacritic nonlocal features indicating the type of gap (not percolated)
and the type of unbounded dependency construction (percolated). The decision
not to percolate information about how the foot of the dependency is realised
(resumptive or gap) is motivated by the observation that ATB-extraction from
coordinate structures may equate SLASH values corresponding to a gap in one
conjunct, and a resumptive in the other. However, since island effects in Hausa
are sensitive to the type of gap, whereas ATB-extraction in Hausa (cf. (9)) is
not, it is clear that there is no trivial modification of Taghvaipour’s approach to
Persian that can account for both constructions at the same time.

58 B. Crysmann

In her GB analysis, Tuller (1986) suggests that Hausa actually has two dif-
ferent strategies for resumption. The first such strategy, according to Tuller, is
witnessed by relative clause constructions: since subjacency restrictions are obvi-
ously not obeyed with long-distance relativisation, Tuller (1986) concludes that
movement cannot be involved. Instead she claims that relative clauses in Hausa
may be base-generated. The second resumptive strategy operative in Hausa is
treated by Tuller (1986) as an S-structure phenomenon: since wh-extraction and
focus fronting obviously obey subjacency, she concludes that these constructions
must involve movement. In wh-constructions, Tuller (1986) motivates insertion
of resumptive pronouns by virtue of the ECP. Following an earlier proposal by
Koopman (1982) she argues that the resumptive pronouns that surface when
the complement of a noun or preposition is extracted should best be analysed
as “spelling out traces as pronouns”. In those cases where null pronouns are
independently possible, apparent surface violations of the ECP obtain, like, e.g.,
exemptions to the that-t effect. As an alternative to trace spell-out, Tuller (1986)
considers Ā-binding between an operator and a resumptive, but, as suggested
by footnote 31 (p. 158/217), it seems to be the less preferred analytic option.

There are several arguments that can be raised against Tuller’s analysis of
Hausa resumption. First, the postulation of two different resumptive processes
that show a high degree in overlap regarding the resumptive elements involved
is quite ad hoc: any theory of Hausa resumption that can be cast in terms of
a single process must therefore seem preferable. Second, the exact conditions
under which a resumptive pronoun is related to the antecedent noun remain
opaque. It appears counter-intuitive at least that the more unbounded process
(relativisation) should involve base-generation, whereas the one bounded at least
by subjacency (wh-extraction) is regarded as a movement process. Third, if re-
sumptive pronouns are conceived as spell-out of traces (R-expressions), it re-
mains unexplained why the form of pronoun chosen is always the same as that
of plain, non-resumptive pronouns used in the same surface-syntactic context.
Fourth, in cases where no ECP violation could arise, Tuller (1986)’s analysis
always assigns two distinct analyses, one involving a standard trace, the other a
trace spelled out as an empty pronominal. Since the two analyses have the same
semantic interpretation, we are actually facing a spurious ambiguity here.

Instead of postulating three different processes (traces, pronominal spell-out
of trace, and base-generation) I shall suggest a treatment in terms of a single
process, namely non-local feature percolation. Different locality restrictions on
relativisation and wh-/focus fronting will be attributed to the permeability of
head-filler structures towards quasi-anaphoric resumptives.

2.2 Anaphoric Processes in Rightward Movement

Apparent violations of subjacency, in particular extraction out of complex NPs
and adjunct islands have also been reported for relative clause extraposition, a
rightward oriented process. This unexpected behaviour with respect to Bound-
ing Theory has notoriously been problematic for movement (Baltin, 2001) and
base-generation approaches alike (Culicover and Rochemont, 1990), albeit for

Resumption and Island-Hood in Hausa 59

slightly different reasons. An alternative theory of relative clause extraposition
that does not suffer from these problems regards relative clause extraposition
as a clause-bound anaphoric process. Accounts along these lines have been pro-
posed in various forms for English (Wittenburg, 1987; Kiss, 2003) and German
(Kiss, 2005). What is common to all these approaches is that nouns indiscrim-
inately percolate their semantic indices within the local clause, to be picked up
(modified) by the extraposed relative clause. At sentence boundaries, percolated
indices that have not yet been retrieved are simply discarded which captures
the clause-boundedness of the phenomenon together with the fact that modi-
fication by a relative clause is truly optional. Furthermore, it has been shown
that an anaphoric approach is also computationally much more attractive than
its movement-based alternatives (Crysmann, 2005b).

Most recently, I have proposed (Crysmann, to appear) to reconcile the
anaphoric approach advanced by Kiss (2005) with movement-based approaches
to complement clause extraposition (e.g. Keller, 1995). Given that both these
rightward-oriented processes are subject to Ross (1967)’s Right Roof Constraint,
I have suggested to model them using a single non-local feature. Differences with
respect to island constraints, in particular adjunct islands, are related to a dif-
ference in the status of percolated material: light semantic indices in the case
of relative clause extraposition vs. full local values in the case of complement
extraposition. Bounding nodes, such as the adjunct daughter in a head-adjunct
structure are constrained to be permeable for “light” indices but impermeable
for “heavier” full local values.

Since one of the recurring intuitions in the literature on resumption is to ex-
ploit the inherently anaphoric nature of resumptive pronouns in order to provide
an explanation for the reduced sensitivity towards islands, it makes perfect sense
to explore whether such a move cannot also be fruitfully applied to the case of
anaphoric processes within relative clauses.

In the remainder of this paper I shall therefore develop a theory of resumption
that extends the aforementioned work on extraposition towards a treatment of
resumption. I shall propose that difference with respect to island-hood can be
related to the nature of percolated material, i.e., a distinction between “heavier”
true gaps and “lighter” resumptive elements.

3 Analysis

Before we embark on our formal analysis, which is cast within the framework of
HPSG (Pollard and Sag, 1987, 1994), let me briefly summarise the desiderata of
an analysis of Hausa resumption: first, resumptive use should be a modelled as a
systematic property of all pronominal elements independent of their mode of re-
alisation as null pronouns, bound affixes, or independent words. Second, spurious
ambiguity between filler-gap analyses and null anaphora should be avoided. Since
locality restrictions on filler-gap dependencies appear to be more strict than those
operative for anaphoric processes, the problem of spurious ambiguity can only be
avoided on principled grounds, if the scope of null anaphora is extended at the

60 B. Crysmann

expense of filler-gap constructions. Third, if constraints on island-hood are best
captured in terms of properties of the filler and intervening boundary nodes, such
constraints should not be replicated at the extraction site in terms of local ambi-
guity.

In order to address our first desideratum, we need to settle on a lexical rep-
resentation that does not crucially distinguish between resumptive and non-
resumptive uses of any particular pronominal realisation. Vaillette (2001a) has
suggested that in Hebrew, every pronoun can be subjected to a lexical rule de-
riving a resumptive variant for it. Since in Hausa resumptive elements are not
always lexical items (they can be independent pronouns, pronominal affixes, or
null anaphors), a solution along these lines would be suboptimal. Instead, I shall
build on a proposal by Miller and Sag (1997) who suggest that synsem values
can be classified according to their mode of realisation: canonical-s(yn)s(em),
which corresponds to in-situ lexical complements and gap-s(yn)s(em), which
corresponds to non-locally realised material. Orthogonal to this distinction, I
shall postulate a distinction into nonpronominal and pronominal (pron(oun)-
s(yn)s(em)) which cuts across the previous distinction between gaps and canon-
ical synsem objects in a multiple-inheritance hierarchy. Following the standard
HPSG theory of extraction (Sag, 1997; Ginzburg and Sag, 2001), I shall assume
that gap-ss have their local value reentrant with the singleton member of their
slash set.

(25) gap-ss →
⎡
⎣loc 1

nloc
{

1

}
⎤
⎦

In a resumptive pronoun language such as Hausa, any pronominal can, in prin-
ciple, foot a non-local dependency. Building on the analogy with rightward
anaphoric processes as exemplified by relative clause extraposition, I shall sug-
gest that Hausa pronominals may percolate their index value, to be picked up
by an antecedent higher in the clause.

(26) pron(oun)-ss →

⎡
⎢⎢⎢⎢⎢⎢⎣

loc

[
cont

[
hook

[
index i

]]]

nloc

⎡
⎣inh | slash

{ }
∨
⎧⎨
⎩
[
cont

[
hook

[
index i

]]]⎫⎬
⎭

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

Building on my earlier work on rightward movement, I will also incorporate a
distinction of local values according to weight: more specifically, I shall distin-
guish two subtypes of local, namely full-local, which has both cat and cont as
appropriate attributes, and an impoverished index-local which crucially fails to
incorporate syntactic information (cat) and where the semantic contribution is
limited to index features (empty rels list).6 While synsem objects will always

6 I shall assume Minimal Recursion Semantics (Copestake et al., 2005) as meaning
representation language.

Resumption and Island-Hood in Hausa 61

select full-local as the type of the local attribute they introduce, slash ele-
ments (just like the extra elements of Crysmann to appear) are underspecified
as to the type of local objects they can contain.

(27)
[
local

cont mrs

]

����
����

[
full-local

cat cat

] ⎡
⎣index-local
cont

[
rels 〈〉

]
⎤
⎦

synsem →
[
loc full-local

]

For lexical pronouns, the reentrancy between the pronoun’s INDEX with that of
its slash element will be introduced by the lexical entry of the pronoun directly
(requiring the pronoun’s SYNSEM value to be of type pron-ss), whereas for
pronominal affixes and null pronominals it will be introduced by virtue of a
valence-reducing lexical rule, along the lines given below. Of course, this general
rule type will be further differentiated to introduce appropriate exponents for
bound pronominals, depending on the category of the host (noun or verb) and
the index features of the pronominal complement. For null object pronominals,
application will be restricted to the sort of non-human referents.

(28)

⎡
⎢⎢⎣
arg-st

〈
..., 0 , ...

〉

synsem

[
loc |cat |comps 1 ⊕

〈
0 pron-ss

〉
⊕ 2

]
⎤
⎥⎥⎦

�→
[
synsem

[
loc |cat |comps 1 ⊕ 2

]]

Following the head-driven theory of extraction advanced by Sag (1997) and
Ginzburg and Sag (2001), the (anaphoric) slashes introduced by lexical pronouns
or (null) pronominal lexical rules will be amalgamated from the ARG-ST list onto
the slash set of the head. Further percolation will be effected by the Generalised
Head Feature Principle.

Alongside introduction of the indices of pronominals, I shall also postulate at
least one lexical slash insertion rule dedicated to human direct object comple-
ments.7 Since human direct objects cannot enter into the same kinds of anaphoric
relations as overt pronouns and null subjects and non-human objects do, this
difference will be signalled by a sortal feature. Note that such a sortal distinction
is independently required to ensure proper selection of wh-pronouns in Hausa,
i.e. w`̄a ‘who’ vs. m`̄e ‘what’.

7 In addition to this lexical slash introduction rule, I shall also postulate a syntactic
rule for adjunct extraction (Levine, 2003), in order to cover, inter alia, PP pied-
piping.

62 B. Crysmann

(29)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

arg-st
〈
..., 0 , ...

〉

ss

⎡
⎢⎢⎢⎣l |cat

⎡
⎢⎢⎣
head noun ∨ verb

comps 1 ⊕
〈

0

[
gap-ss

loc | cont |hook | ind | sort hum

]〉
⊕ 2

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�→
[
ss

[
l | cat |comps 1 ⊕ 2

]]

Since we allow both full sharing of local values and mere index sharing, we
need to make sure that fillers binding full-local SLASH elements are properly
terminated at the bottom of the dependency. In order to enforce reentrancy with
a local value, I shall introduce the following constraint:

(30)

⎡
⎢⎢⎢⎢⎣

loc
[
cont |hook | index i

]

nloc

⎡
⎣inh | sl

⎧⎨
⎩
[
full-local

cont |hook | index i

]⎫⎬
⎭

⎤
⎦

⎤
⎥⎥⎥⎥⎦→

⎡
⎢⎣
loc l

nloc

[
inh | sl

{
l

}]
⎤
⎥⎦

Having discussed how slash dependencies are introduced and percolated, I shall
now turn to the representation of filler-head structures, i.e., those structures
where filler-gap dependencies, be they resumptive or not, will be bound off. In
the most general case, a filler must at least bind an index contributed by a gap,
a situation that holds both for (anaphoric) resumption and extraction proper.

(31) filler-head-struc →⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ss
[
nloc | inh | slash set(index-local)

]

dtrs

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

filler-dtr
[
l | cont |hook | index i

]

hd-dtr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
ss

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

l |cat

⎡
⎢⎢⎣
hd

[
prd +

]

subj 〈〉
comps 〈〉

⎤
⎥⎥⎦

nloc |to-bind | slash
{[

cont |hook | index i

]}

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Recall from our discussion of the data that we observed a fundamental asymme-
try between true gaps (zero human direct objects) and overt or covert resump-
tion: while UDCs involving non-resumptive gaps cannot escape any extraction
islands, those involving resumption can. Given our distinction of local values
into full-local and impoverished index-local, the selective permeability of filler-
head structures towards light indices can be modelled straightforwardly as a
constraint on the mother’s slash value.

The first subtype of filler-head structures to be considered are relative-head
structures:

Resumption and Island-Hood in Hausa 63

(32) rel-head-struc →⎡
⎢⎢⎢⎣

filler-head-struc

dtrs

⎡
⎣filler-dtr

⎡
⎣l |cont |hook | index i index

nloc | inh |rel
{
i

}
⎤
⎦
⎤
⎦

⎤
⎥⎥⎥⎦

As depicted above, relative filler-head structures inherit most of their constraints
from head-filler-struc, mainly adding a restriction for the filler to contribute a
non-eventual index. Since relative filler-head structures do not equate the filler’s
local value with the head-daughter’s to-bind|slash, there is no coercion to
full-local, and, therefore, relative fillers can easily bind either full-local or index-
local slash elements, i.e., long-distance percolated indices originating inside an
extraction island. In sum, this underspecification will enable the relative pronoun
to bind true gaps (e.g. human direct objects), as well as resumptive elements.

Wh-extraction and focus fronting, by contrast, cannot apply long distance out
of wh-islands or relative clauses. If our above characterisation of the permeability
of filler-head structures is correct, we can represent the island-sensitivity of these
latter processes by requiring these fillers to have their local value reentrant
with the head daughter’s to-bind|slash. Taking the case of wh-fillers as an
example8, we can model this selectivity using the standard constraint on filler-
head structures familiar from English (Pollard and Sag, 1994):

(33) wh-head-struc →

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

filler-head-struc

dtrs

⎡
⎢⎢⎢⎢⎢⎣
filler-dtr

⎡
⎣l l

nloc | inh |que
{
[]
}
⎤
⎦

hd-dtr

[
ss |nloc |to-bind | slash

{
l

}]

⎤
⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since gaps introduced by pronominal synsems are underspecified for their local
value, they can also function as gaps for wh-fillers. Needless to say that proper
gaps, being of type full-local by means of rentrancy with a sign’s local value,
can also be bound by a wh-phrase. Once percolation of non-local features crosses
a filler-head structure, all elements in slash are forced to be interpreted as light
index-local elements, thereby deriving the island-sensitivity of wh-expressions.

The underspecification approach advocated here, where slash values lexically
contributed by pronominals subsume the slash value characteristic of gaps,
readily accounts for ATB extraction: as witnessed by (9), Hausa, just like Hebrew
(Sells, 1984; Vaillette, 2001a) or Persian (Taghvaipour, 2005), allows a gap in
one conjunct with a resumptive in the other. In contrast to Vaillette (2001a),
the present approach can capture this directly using the standard Coordination
Principle of Pollard and Sag (1994) without any disjunctive specifications.

8 A more general version covering both wh-expressions and focused fillers can probably
be formulated quite easily by means of reference to information structure, given that
wh-expression are inherently focused, but relative phrases are most likely not.

64 B. Crysmann

4 Conclusion

In this paper we have argued in favour of an approach to resumption in Hausa
where pronominal elements are typically underspecified with respect to their
status as pronominals, light “anaphoric” elements and full-fledged resumptive
gaps, by means of optionally introducing a slash dependency which minimally
contains the pronoun’s index, but which can be further restricted to involve full
sharing of local values. Given the underspecification at the gap site, differences
with respect to island-hood are defined instead as properties of fillers: while wh-
fillers and focus fronted constituents coerce the gaps they bind to be full local
values, relative pronouns do not do so. The observed asymmetry between island-
sensitive wh-extraction and island-insensitive relativisation was easily captured
then by a single constraint on head-filler-structures to be permeable for light
indices, yet opaque for full local values.

The analysis advanced here builds crucially on the notion of percolation of
“anaphoric” indices. This approach not only paves the way for an analysis which
is entirely free of any spurious ambiguity between gap and resumptive analyses
of null pronominals, but it also connects the anaphoric nature of resumptive
processes to similar phenomena in the area of rightward movement, namely rel-
ative clause extraposition, which happens to be equally insensitive to island
constraints.

References

Baltin, M.: Extraposition, the right roof constraint, result clauses, relative clause ex-
traposition, and pp extraposition. ms., New York University (2001)

Borer, H.: Restrictive relatives in Modern Hebrew. NLLT 2, 219–260 (1984)
Copestake, A., Flickinger, D., Pollard, C., Sag, I.: Minimal recursion semantics: an

introduction. Research on Language and Computation 3(4), 281–332 (2005)
Crysmann, B.: An inflectional approach to Hausa final vowel shortening. In: Booij, G.,

van Marle, J. (eds.) Yearbook of Morphology 2004, pp. 73–112. Kluwer (2005a)
Crysmann, B.: Relative clause extraposition in German: An efficient and portable im-

plementation. Research on Language and Computation 3(1), 61–82 (2005b)
Crysmann, B.: A Unified Account of Hausa Genitive Constructions. In: de Groote,

P., Egg, M., Kallmeyer, L. (eds.) Formal Grammar. LNCS, vol. 5591, pp. 102–117.
Springer, Heidelberg (2011)

Crysmann, B.: On the locality of complement clause and relative clause extraposition.
In: Webelhuth, G., Sailer, M., Walker, H. (eds.) Rightward Movement in a Compar-
ative Perspective. John Benjamins, Amsterdam (to appear)

Culicover, P., Rochemont, M.: Extraposition and the complement principle. Linguistic
Inquiry 21, 23–47 (1990)

Ginzburg, J., Sag, I.: Interrogative Investigations: the Form, Meaning and Use of En-
glish Interrogatives. CSLI publications, Stanford (2001)

Jaggar, P.: Hausa. John Benjamins, Amsterdam (2001)
Keller, F.: Towards an account of extraposition in HPSG. In: Proceedings of the Ninth

Meeting of the European ACL, pp. 301–306. Association for Computational Linguis-
tics, Dublin (1995)

Resumption and Island-Hood in Hausa 65

Kiss, T.: Phrasal typology and the interaction of topicalization, wh-movement, and
extraposition. In: Kim, J.-B., Wechsler, S. (eds.) Proceedings of the 9th Interna-
tional Conference on Head-Driven Phrase Structure Grammar, Kyung Hee Univer-
sity, Seoul, August 5-7, CSLI Publications, Stanford (2002)

Kiss, T.: Semantic constraints on relative clause extraposition. Natural Language and
Linguistic Theory 23, 281–334 (2005)

Koopman, H.: Control from COMP and comparative syntax. The Linguistic Review 2,
365–391 (1982)

Levine, R.D.: Adjunct valents: cumulative scoping adverbial constructions and im-
possible descriptions. In: Kim, J., Wechsler, S. (eds.) The Proceedings of the 9th
International Conference on Head-Driven Phrase Structure Grammar, pp. 209–232.
CSLI Publications, Stanford (2003)

McCloskey, J.: Resumptive pronouns, a’-binding and levels of representation in Irish.
In: Hendrick, R. (ed.) The Syntax of the Modern Celtic Languages. Syntax and
Semantics, vol. 23. Academic Press, London (1990)

Miller, P., Sag, I.: French clitic movement without clitics or movement. Natural Lan-
guage and Linguistic Theory 15(3), 573–639 (1997)

Newman, P.: The Hausa Language. An Encyclopedic Reference Grammar. Yale Uni-
versity Press, New Haven (2000)

Pollard, C., Sag, I.: Information–Based Syntax and Semantics, vol. 1. CSLI, Stanford
(1987)

Pollard, C., Sag, I.: Head–Driven Phrase Structure Grammar. CSLI and University of
Chicago Press, Stanford (1994)

Ross, J.R.: Constraints on Variables in Syntax. PhD thesis, MIT (1967)
Sag, I.: English relative clause constructions. Journal of Linguistics 33(2), 431–484

(1997)
Sells, P.: Syntax and Semantics of Resumptive Pronouns. PhD thesis. University of

Massachusetts at Amherst (1984)
Shlonsky, U.: Resumptive pronouns as a last resort. Linguistic Inquiry 23, 443–468

(1992)
Taghvaipour, M.: An HPSG analysis of Persian relative clauses. In: Müller, S. (ed.)

Proceedings of the HPSG 2004 Conference, Center for Computational Linguistics,
Katholieke Universiteit Leuven, pp. 274–293. CSLI Publications, Stanford (2004)

Taghvaipour, M.A.: Persian free relatives. In: Müller, S. (ed.) The Proceedings of the
12th International Conference on Head-Driven Phrase Structure Grammar, Depart-
ment of Informatics, University of Lisbon, pp. 364–374. CSLI Publications, Stanford
(2005)

Tuller, L.A.: Bijective Relations in Universal Grammar and the Syntax of Hausa. PhD
thesis. UCLA, Ann Arbor (1986)

Vaillette, N.: Hebrew relative clauses in HPSG. In: Flickinger, D., Kathol, A. (eds.) The
Proceedings of the 7th International Conference on Head-Driven Phrase Structure
Grammar, pp. 305–324. CSLI Publications, Stanford (2001a)

Vaillette, N.: Irish gaps and resumptive pronouns in HPSG. In: Van Eynde, F., Beer-
mann, D., Hellan, L. (eds.) The Proceedings of the 8th International Conference on
Head-Driven Phrase Structure Grammar, pp. 284–299. CSLI Publications, Stanford
(2001b)

Wittenburg, K.: Extraposition from NP as anaphora. In: Huck, G., Ojeda, A. (eds.)
Discontinuous Constituency. Syntax and Semantics, vol. 20, pp. 428–445. Academic
Press, New York (1987)

Wolff, E.: Referenzgrammatik des Hausa. LIT, Münster (1993)

Iterated Dependencies and Kleene Iteration

Michael Dekhtyar1, Alexander Dikovsky2, and Boris Karlov1,

1 Dept. of Computer Science, Tver State University, Tver, Russia, 170000
Michael.Dekhtyar@tversu.ru, bnkarlov@gmail.com

2 LINA CNRS UMR 6241, Université de Nantes
Alexandre.Dikovsky@univ-nantes.fr

Abstract. Categorial Dependency Grammars (CDG) is a class of simple
and expressive categorial grammars defining projective and discontinuous
dependency structures in a strongly compositional way. They are more
expressive than CF-grammars, are polynomial time recognizable and dif-
ferent from the mildly context sensitive grammars. CDG languages are
proved to be closed under all AFL operations, but iteration. In this
paper, we explain the connection between the iteration closure and the
iterated dependencies (optional repeatable dependencies, inevitable in
dependency syntax) and show that the CDG extended by a natural
multimodal rule define an AFL, but the membership problem in this
extended family is NP-complete.

Keywords: Dependency Grammar, Categorial Dependency Grammar,
Iterated Dependency, Iteration.

1 Introduction

In this paper are studied iterated, i.e. optional repeatable dependencies, such

as modifier dependencies of nouns (e.g. optional
modif←− dependencies and

circumstantial dependencies of verbs (e.g. fits
circ−→ well). The main question

is whether the dependency grammars expressing such dependencies generate
languages closed under Kleene iteration, or more generally, is there a direct
connection between the former and the latter. It should be made clear what do
we mean by “express iterated dependencies”. In fact, in the traditional linguistics
it is generally accepted that the ultimately repeatable modifiers / circumstantials
share the same governor (e.g. see [12]). I.e., the adequate dependency structure
for a tall blond young girl is that in Fig. 1(a) and not that in Fig. 1(b).1

� This work was sponsored by the Russian Fundamental Studies Foundation (Grants
No. 10-01-00532-a and 08-01-00241-a).

1 By indirection, this means that the dependency structures corresponding to the tradi-
tional recursive types of modifiers / circumstantials used in the categorial grammars
[1,16], in Lambek grammar [11] and, more generally, in the type logical grammars in-
terfacing the semantics of Montague [14] are not adequate from the traditional lin-
guistic point of view. In [13] this structural defect is amended using types extended
with modalities, but the resulting calculus is computationally untractable.

P. de Groote and M.-J. Nederhof (Eds.): Formal Grammar 2010/2011, LNCS 7395, pp. 66–81, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Iterated Dependencies and Kleene Iteration 67

(a)

(b)

Fig. 1. Dependency structures: iterative vs. recursive

As it concerns the grammars not expressing discontinuous (crossing) depen-
dencies and generating exactly the context-free languages, such as for instance
the link grammars [15], the question is trivially answered in the positive sense.
For the (rare) grammars expressing discontinuous dependencies, there is no gen-
eral solution. E.g., for constraint grammars with NP-hard membership prob-
lem2, such as topological dependency grammars [7], the answer is positive. But
for polynomially analyzed dependency grammars expressing discontinuous de-
pendencies the problem needs a specific solution for every particular class.

In this paper, we try to establish a connection between the iterated dependen-
cies and the Kleene star closure in the class of categorial dependency grammars
(CDG) [6]. CDG are categorial grammars based on a simple calculus of depen-
dency types. They express unlimited discontinuous dependencies using simple
polarized valencies’ pairing rules and are polynomially parsed. CDG express
iterated dependencies explicitly through iterated types of the form t∗. For in-
stance, in Fig. 1(a), for the word girl is used the type [modif ∗ \det\S], S being
the axiom. It may seem that in the presence of such iterated types the generated
languages are immediately closed under the Kleene iteration. This illusion has let
down the authors of [3] who stated that the CDG languages constitute an AFL,
and in particular are closed under iteration.3 As we show below, in general, the
direct closure construction doesn’t work because of the CDG’s valency pairing
rule. We arrive to find rather a minimal modality extension of the basic CDG
for which we finally prove the iteration closure property. However, the resulting
extended CDG turn out to be NP -complete.

2 Basics of Dependency Structures

Tesnière [17] was the first who systematically described the sentence struc-
ture in terms of named binary relations between words (dependencies). When
two words w1 and w2 are related in a sentence through dependency relation

2 Membership problem in a family F is the problem w ∈ L(G) for a given grammar
G ∈ F (not to confuse with the “uniform membership problem” {< w,G > |w ∈
L(G), G ∈ F}).

3 This is the only assertion in [3] stated without proof because of its “evidence”.

68 M. Dekhtyar, A. Dikovsky, and B. Karlov

d (denoted w1
d−→ w2), w1 is the governor (also called head) and w2 is the

subordinate. Intuitively, the dependency d encodes constraints on lexical and
grammatical features of w1 and w2, on their precedence order, pronominaliza-
tion, context, etc. which together mean that “w1 licenses w2” (see [12] for a
detailed exposition). A dependency structure (DS) is a graph of dependency
relations between words in the sentence. For instance, the sentence In the be-

ginning was the Word has the DS in Fig. 2, in which was
pred−→ Word stands

for the predicative dependency between the copula was and the subject Word .
There is no general agreement on the notion of DS: sometimes it is separated
from the precedence order in the sentence, sometimes it is linearly ordered by
the precedence, most people require it be a tree (the tradition going back to
[17]), some others do not (cf. [8]) because without this constraint one can define
mixed structures (e.g. taking in account the co-reference). When a DS is a tree
it is called dependency tree (DT).

CDG use DS linearly ordered by the precedence order in the sentence. With-
out this order some fundamental properties of DS cannot be expressed. This is
the case of one of the most important properties of DS, called projectivity.
This property is expressed in terms of the immediate dominance relation: w1 ⇒
w2 ≡ ∃d (w1

d−→ w2) and of its reflexive-transitive closure ⇒∗ called
dominance. A DT of a sentence x is projective if, for every word w in x, the set
of all words dominated by w: proj(w) = {w′ || w ⇒∗ w′} (called projection of
w) is an interval of x with respect to the precedence order. In all languages, the
majority of DS are projective DT (an example is given in Fig. 2). But even if this
is true, the projectivity is not a norm. Non-projective dependencies are often due
to discontinuous constructions such as comparatives (cf. more..than in English
or negation ne..pas in French). They are also caused by verb complements’ dis-
location, clefting, scrambling, conversion of complements into clitics and other
regular constructions marking for a communicative structure of sentences. We
show two examples of non-projective DT in Figs. 3, 4.

Fig. 2. A projective DT

Definition 1. Let w = a1 . . . an be a string, W be the set of all occurrences of
symbols in w and C = {d1, . . . , dm} be a set of dependency names. A graph
D = (W,E) with labeled arcs is a DS of w if it has a root, i.e. a node a0 ∈ W
such that (i) for any node a ∈ W, a 	= a0, there is a path from a0 to a and (ii)
there is no arc (a′, d, a0).4 An arc (a1, d, a2) ∈ E is called dependency d from
a1 to a2. The linear order on W induced by w is the precedence order on D.

4 Evidently, every DS is connected and has a unique root.

Iterated Dependencies and Kleene Iteration 69

Fig. 3. A non-projective DT in English

Fig. 4. A non-projective DT in French (∗she itfem to-him has given)

3 Categorial Dependency Grammars

As all categorial grammars, the categorial dependency grammars (CDG) may
be seen as assignments of dependency types to words. Every dependency type
assigned to a word w defines its possible local neighborhood in grammatically
correct DS. The neighborhood of w consists of the incoming dependency, i.e.
the dependency relation d through which w is subordinate to a word G, its
governor, and also of a sequence of outgoing dependencies, i.e. the dependency
relations di through which w governs a subordinate word wi. For instance, the
type assignment:

in �→ [c−copul/prepos−in], the �→ [det], beginning �→ [det\prepos−in],
was �→ [c−copul\S/pred], Word �→ [det\pred]
determines the DS in Fig. 2. In particular, the type [c−copul/ prepos−in] of in
defines its local neighborhood, where c−copul is the incoming dependency and
prepos−in is the right outgoing dependency. The verb was in the root has the
head type S which serves as the grammar’s axiom. CDG use iteration to express
all kinds of repetitive dependencies and in particular the coordination relations.
This provides more adequate DS than those traditionally defined in categorial
grammars through recursive types [X/X]. For instance, the type assignment:
a �→ [det], tall, slim, young �→ [modif], girl �→ [modif ∗\det S] determines the
DT in Fig. 1(a). Remark that in the canonical categorial grammars the types of
articles and adjectives are functional.

In CDG, the non-projective dependencies are expressed using so called polar-
ized valencies. Namely, in order that a wordGmay govern through a discontinous
dependency d a word D situated somewhere on its right, D should have a type
declaring the positive valency ↗ d, whereas its subordinate D should have a
type declaring the negative valency ↘d. Together these dual valencies define
the discontinous dependency d. By the way, the pairing itself of dual valencies

70 M. Dekhtyar, A. Dikovsky, and B. Karlov

is not enough to express the constraints of adjacency of the distant subordinate
to a host word (anchor constraints). For this, in CDG are used the anchor

types of the form #(↘d) treated in the same way as the local dependencies. So
the general form of CDG dependency types is [l1\l2\ . . . \H/ . . . /r2/r1]P , where
the head type H defines the incoming dependency, li and ri are respectively
the left and the right outgoing dependencies or anchors and P is the potential,
i.e. a string of polarized valencies defining incoming and outgoing discontinuous
long distance dependencies.5 We show two examples of non-projective DT in
Figs. 3, 4. E.g., the non projective DT in Fig. 4 is defined by the assignment:

elle �→ [pred]
la �→ [#(↙clit−a−obj)]↙clit−a−obj
lui �→ [#(↙clit−3d−obj)]↙clit−3d−obj
a �→ [#(↙clit−3d−obj)\#(↙clit−a−obj)\pred\S/aux]
donnée �→ [aux]↖clit−3d−obj↖clit−a−obj.

Definition 2. Let C be a set of local dependency names and V be a set of
valency names.

The expressions of the form ↙ v, ↖ v, ↘ v, ↗ v, where v ∈ V, are called
polarized valencies. ↖v and ↗v are positive, ↙v and ↘v are negative;
↖ v and ↙ v are left, ↗ v and ↘ v are right. Two polarized valencies with
the same valency name and orientation, but with the opposite signs are dual.

An expression of one of the forms #(↙v), #(↘v), v ∈ V, is called anchor

type or just anchor. An expression of the form d∗ where d ∈ C, is called
iterated dependency type.

Local dependency names, iterated dependency types and anchor types are
primitive types.

An expression of the form t = [lm\ . . . \l1\H/ . . . /r1 . . . /rn] in whichm,n ≥ 0,
l1, . . . , lm, r1, . . . , rn are primitive types and H is either a local dependency name
or an anchor type, or empty, is called basic dependency type. l1, . . . , lm and
r1, . . . , rn are respectively left and right argument subtypes of t. If nonempty, H
is called head subtype of t (or head type for short).

A (possibly empty) string P of polarized valencies is called potential.
A dependency type is an expression BP in which B is a basic dependency

type and P is a potential. CAT(C,V) and B(C) will denote respectively the set
of all dependency types over C and V and the set of all basic dependency types
over C.

CDG are defined using the following calculus of dependency types 6

Ll. CP1 [C\β]P2 � [β]P1P2

Il. CP1 [C∗\β]P2 � [C∗\β]P1P2

Ωl. [C∗\β]P � [β]P

5 All subtypes being dependency names or iterated, this means that the CDG types
are first order.

6 We show left-oriented rules. The right-oriented are symmetrical.

Iterated Dependencies and Kleene Iteration 71

Dl. αP1(↙C)P (↖C)P2 � αP1PP2 , if the potential (↙C)P (↖C) satisfies the
following pairing rule FA (first available):

FA : P has no occurrences of ↙C,↖C.

Ll is the classical elimination rule. Eliminating the argument subtype C 	= #(α)
it constructs the (projective) dependency C and concatenates the potentials.
C = #(α) creates the anchor dependency. Il derives k > 0 instances of C. Ωl

serves for the case k = 0. Dl creates discontinuous dependencies. It pairs
and eliminates dual valencies with name C satisfying the rule FA to create the
discontinuous dependency C.

Definition 3. A categorial dependency grammar (CDG)7 is a system G =
(W,C, S, λ), where W is a finite set of words, C is a finite set of local depen-
dency names containing the selected name S (an axiom), and λ, called lexicon,
is a finite substitution on W such that λ(a) ⊂ CAT(C,V) for each word a ∈ W.

For a DS D and a string x ∈ W ∗, let G(D, x) denote the relation: D is
constructed in a proof Γ � S for some Γ ∈ λ(x). Then the language generated
by G is the set L(G)=df {w || ∃D G(D,w)} and the DS-language generated by G
is the set Δ(G)=df {D || ∃w G(D,w)}. D(CDG) and L(CDG) will denote the
families of DS-languages and languages generated by these grammars.

Below we cite from [4,3] several examples and facts showing that CDG are very
expressive. Evidently, they generate all context-free languages. They can also
generate non-CF languages.

Fig. 5. DS for a3b3c3

Example 1. The CDG Gabc : a �→ A↙A, [A\A]↙A, b �→ [B/C]↖A, [A\S/C]↖A,
c �→ C, [B\C] generates the language {anbncn | n > 0}. E.g., Gabc(D(3), a3b3c3)
holds for the DS in Fig 5 and the string a3b3c3 due to the proof in Fig. 6.

Seemingly, L(CDG) is different from mildly context-sensitive languages [9,18]
generated by multi-component TAG, linear CF rewrite systems and some other
grammars. L(CDG) contains non-TAG languages, e.g. L(m) = {an1an2 ...anm || n ≥
1} for allm > 0. In particular, it contains the languageMIX = {w ∈ {a, b, c}+ ||
|w|a = |w|b = |w|c} [2], for which E. Bach has conjecture that it is not mildly
CS. On the other hand, in [3] it is conjectured that this family does not contain
the copy language Lcopy = {xx || x ∈ {a, b}∗}, which is TAG. This comparison

7 They are called generalized CDG in [3] in order to distinguish them from CDG
generating DT, which we do not consider here.

72 M. Dekhtyar, A. Dikovsky, and B. Karlov

[A]↙A [A\A]↙A
(Ll)

[A]↙A↙A [A\A]↙A
(Ll)

[A]↙A↙A↙A
[A\S/C]↖A

[B/C]↖A

[B/C]↖AC
(Lr)

B↖A [B\C]
(Ll)

C↖A
(Lr)

B↖A↖A [B\C]
(Ll)

C↖A↖A
(Ll)

[A\S]↖A↖A↖A
(Ll)

[S]↙A↙A↙A↖A↖A↖A
(Dl × 3)

S

Fig. 6. DS correctness proof

shows a specific nature of the valencies’ pairing rule FA. This rule implies an
important property of independence of basic types and of polarized valencies
expressed in terms of projections of types and ‘‘well-bracketing’’ criteria
for potentials.

For every type α and every sequence of types γ the local projection ‖γ‖l
and the valency projection ‖γ‖v are defined as follows:

1. ‖ε‖l = ‖ε‖v = ε; ‖αγ‖l = ‖α‖l‖γ‖l and ‖αγ‖v = ‖α‖v‖γ‖v.
2. ‖CP ‖l = C et ‖CP ‖v = P for every type CP .

To speak about “well-bracketing” of potentials, it is useful to interpret ↙d and
↗d as left brackets and ↖d and ↘d as right brackets. Then a potential
is balanced if it is well bracketed in the usual sense.

Let c be the projective core of the dependency calculus, consisting of the rules
L, I and Ω and �c denote the provability relation in this sub-calculus. Then the
projections independence property of CDG [3] is formulated as follows.

Theorem 1. [3] For a CDG G with lexicon λ and a string x, x ∈ L(G) iff there
is Γ ∈ λ(x) such that ‖Γ‖l �∗

c S and ‖Γ‖v is balanced.

On this property resides a polynomial time parsing algorithm for CDG [3].

4 Problem of Iteration and a Multimodal Solution

As we saw, the types of CDG admit iterated subtypes. So it may seem that the
family of CDG languages is trivially closed under Kleene iteration. To see why
the straightforward construction does not work, let us consider the CDG:

a �→ A↙A, [A\A]↙A,
b �→ [B/C]↖A, [A\S1/C]↖A, [A\S/S1/C]↖A,
c �→ C, [B\C]
It may seem that L(G) = L(Gabc)L(Gabc), but it is not so because it contains,
for example, the string aaabbccabbcc which has the DS in Fig. 7. We see that this
effect is due to the fact that dual valencies may sometimes be paired across the
limits of concatenated / iterated strings and not within the limits, as needed. Of

Iterated Dependencies and Kleene Iteration 73

Fig. 7. DS of aaabbccabbcc

course, one can easily avoid this effect by renaming the valencies ↙A and ↖A.
Indeed, this may work for concatenation and for any finite power L(Gabc)

k, but
this won’t work for L(Gabc)

∗.
Now that the source of the problem is found, we will try to use possibly

economical means to express the constraint of a “limit impenetrable for discon-
tinuous dependencies”. For that, we will follow the proposal of [5] where are
introduced the so called multimodal CDG in which it is possible that every
polarized valency has its own pairing rule (pairing mode).

Definition 4. G=(W,C, S, λ, μ) is a multimodal CDG (mmCDG) if (W,C, S, λ)
is a CDG, in which are admitted empty head types ε, and μ is a function assign-
ing to each polarized valency α a pairing principle Mα. There are rules Dl

Mα

and Dr
Mα

in the multimodal dependency calculus �μ for every valency α used
in μ. The language (DS-language) generated by G using a set of modes M is
denoted LM (G) (ΔM (G)). mmCDGM is the family of all such mmCDG.

For instance, in [5] the calculus rule Dl is replaced by a new rule DFCl in which
in the place of the pairing rule FA is used the following pairing rule FCl (first
cross):

DFCl . αP1(↙C)P (↖C)P2 � αP1PP2 ,

if P1(↙C)P (↖C) satisfies the pairing rule

FCl : P1 has no occurrences of ↙C and P has no occurrences of ↖C.

This rule was used to show that the so called unlimited cross-serial depend-

encies in Dutch are naturally expressed in mmCDG.
In this section we will show how the iteration problem can be resolved using

multimodal CDG. For this, we will use negative mode pairing rules FAC:π(C)

which pair dual valenciesC under the negative condition that the resulting discon-
tinous dependency C does not cross the discontinuous dependencies belonging
to a fixed list π(C). More precisely, in the discontinuous dependency rule

DFAl
C:π(C)

αP1(↙C)P (↖C)P2 � αP1PP2 ,

(↙C)P (↖C) satisfies the pairing rule FAC:π(C):

P has no occurrences of ↙C,↖C and also of ↙A,↖A,↗A,↘A for all A ∈ π(C).

The mmCDG with this pairing rule will be denoted (W,C, S, λ, μ, π).

74 M. Dekhtyar, A. Dikovsky, and B. Karlov

Our purpose is to prove that the family L(mmCDG−FA) of languages generated
by mmCDG with the negative mode pairing rules is closed under iteration.

First of all, we remark that the projections’ independence property in Theorem
1 also holds for the mmCDG with the negative modes. Indeed, it is not difficult
to see that the proof of this Theorem in [5] may be extended to mmCDG with
the rules FAC:π(C) in a straightforward way.

Then, as it shows the following Lemma, one can consider without loss of
generality only mmCDG in Greibach normal form.

Lemma 1. [2,10] For every CDG G there is an equivalent CDG 8 G′ such that
every type has one of the forms: [A]P , [A/B]P or [A/B/C]P where B,C are
primitive types different from S.

Theorem 2. L(mmCDG−FA) is closed under iteration.

Proof. Let us suppose that G = (W,C, S, λ, μ, π) is an mmCDG in the normal
form. We will define from G a sequence of mmCDG Gi = (W,Ci, S, λi, μ, π) by
the following induction on i.
I. i = 1. λ1 = λ ∪ {w �→ [S/A′/α]P || (w �→ [S/A/α]P) ∈ λ} for a new local
dependency name A′ ∈ C1.
II. i > 1. Let A′

1, . . . , A
′
k ∈ Ci be all new local dependency names in the grammar

Gi. Let us first consider the auxiliary extended lexicon

λ′′i+1 = λi ∪ {w �→ [A′
j/B]P || (w �→ [Aj/B]P) ∈ λi, 1 ≤ j ≤ k} ∪

{w �→ [A′
j/B/C]

P || (w �→ [Aj/B/C]
P) ∈ λi, 1 ≤ j ≤ k}. Then let us set

λi+1 = λ′′i+1 ∪ {w �→ [A′
j/A

′/α]P || (w �→ [A′
j/A/α]

P) ∈ λ′′i+1}.

New types A′
j , A

′ are added to Ci+1. This construction converges to a mmCDG
Gm = (W,Cm, S, λm, μ, π), m ≤ |C|. Let b /∈ Cm be a new local dependency
name. Let us consider an auxiliary mmCDG G′

m = (W,Cm ∪ {b}, S, λ′m, μ′, π′)
constructed from Gm as follows. In λm, every type [A′]P is replaced by [A′]P↘b,
every type [S/A′/α]P is replaced by [S/A′/α]↗bP and every type [S]P is replaced
by [S]↗bP↘b. Let also π′(A) = π(A) ∪ {b} for all A ∈ Cm ∪ {b}. Now, the
mmCDG G′ defining the iteration of L(G) can be defined as follows. G′ =
(W,Cm ∪ {b, S0}, S0, λ

′, μ′, π′), where λ′ = λ′m ∪ {w �→ [S0/S ∗ /α]P || (w �→
[S/α]P) ∈ λ′m}.

Let us prove that L(G′) = L(G)∗.

Lemma 2. If in G′
m γ1 . . . γn �∗ [A]P , where A ∈ C, then there are no types A′

in γ1 . . . γn.

Proof. By straightforward induction on n. E.g., if γ1 = [A/B]P1 , then γ2 . . . γn �∗

[B]P1 , B ∈ C and therefore, there are no types A′ in γ2 . . . γn.

Lemma 3. Let γ1 . . . γn �∗ [A′]P in G′
m. Then γn = [X ′]P

′↘b and there are no
occurrences of b in the potentials of types γ1 . . . γn−1.

8 Here equivalent corresponds to weakly equivalent, i.e. generating the same lan-
guage (possibly not the same DS-language).

Iterated Dependencies and Kleene Iteration 75

Proof. By induction on n.
When n = 1, γ1 = [X ′]P

′↘b and P = P ′ ↘ b by construction.
Let γ1 . . . γn+1 �∗ [A′]P in G′

m.
1) If γ1 = [A′/B′]P1 , then γ2 . . . γn+1 �∗ [B′]P2 . By hypothesis, γn+1 = [X ′]P

′↘b

and potentials of γ2 . . . γn+1 do not contain b. P1 does contain b by construction.
2) If γ1 = [A′/B′/C]P1 , then γ2 . . . γr �∗ [C]P2 and γr+1 . . . γn+1 �∗ [B′]P3 for
some r. By hypothesis, γn+1 = [X ′]P

′↘b and potentials of γr+1 . . . γn do not
contain b. By Lemma 2, γ2 . . . γr do not contain subtypes Y ′ so their potentials
do not contain b by construction. P1 also does not contain b by construction.
3) Other cases are impossible when the derived type has the form [A′]P .

Lemma 4. Let Γ = γ1 . . . γn ∈ λ′m(w) and Γ �∗
G′

m
[A]P or Γ �∗

G′
m

[A′]P↘b for

some A 	= S. Then there is Γ ′ = γ′1 . . . γ′n ∈ λ(w) such that Γ ′ �∗
G [A]P .

Proof. If Γ �∗
G′

m
[A]P , then by Lemma 2 the types γ1, . . . , γn may also be as-

signed in G. So Γ ′ = Γ in this case.
When Γ �∗

G′
m
[A′]P↘b, the proof proceeds by induction on n.

For n = 1, γ1 = [A′]P↘b and γ′1 = [A]P .
Let Γ = γ1 . . . γn+1 �∗

G′
m
[A′]P↘b for some A 	= S.

1) γ1 = [A′/B′]P1 . Then γ2 . . . γn+1 �∗
G′

m
[B′]P2↘b. By hypothesis, there is

a proof γ′2 . . . γ
′
n+1 �∗

G [B]P2 . Let us set γ′1 = [A/B]P1 . Then γ′1 . . . γ
′
n+1 �∗

G

[A/B]P1 [B]P2 �G [A]P1P2 = [A]P .
2) Case γ1 = [A′/B′/C]P1 is similar.

Lemma 5. Let Γ = γ1 . . . γn ∈ λ(w), Γ �∗
G [A]P and A′ ∈ C′

m. Then there is
Γ ′ = γ′1 . . . γ

′
n ∈ λ′m(w) such that Γ ′ �∗

G′
m
[A′]P↘b.

Proof. Induction on n.
For n = 1, γ1 = [A]P . So we can set γ′1 = [A′]P↘b.
Let Γ = γ1 . . . γn+1.
1) γ1 = [A/B]P1 . Then γ2 . . . γn+1 �∗

G [B]P2 , where P1P2 = P. As A′ ∈ C′
m, B

′

is also added by construction: B′ ∈ C′
m. By hypothesis, there is γ′2 . . . γ

′
n+1 such

that γ2 . . . γn+1 �∗
G′

m
[B′]P2↘b. Let us set γ′1 = [A′/B′]P1 . Then γ′1 . . . γ

′
n+1 �∗

G′
m

[A′/B′]P1 [B′]P2↘b �G′
m
[A′]P1P2↘b = [A]P↘b.

2) γ1 = [A/B/C]P1 . In this case, γ2 . . . γr �∗
G [C]P2 , γr+1 . . . γn+1 �∗

G [B]P3

and P1P2P3 = P. All types of G not containing S remain in G′
m. Besides this,

B′ ∈ C′
m. Therefore, there is γ′2 . . . γ

′
r such that γ′2 . . . γ

′
r �∗

G′
m

[C]P2 (γ′i = γi)

and γ′r+1 . . . γ
′
n+1 such that γ′r+1 . . . γ

′
n+1 �∗

G′
m

[B′]P3↘b (induction hypothesis).

So γ′1 . . . γ
′
n+1 �∗

G′
m
[A′/B′/C]P1 [C]P2 [B′]P3↘b �∗

G′
m
[A′]P1P2P3↘b = [A′]P↘b.

Lemma 6. L(G′
m) = L(G).

Proof. [⇒]. Let w = w1 . . . wn ∈ L(G′
m). Then there is γ1 . . . γn ∈ λ′m(w) such

that γ1 . . . γn �∗
G′

m
[S].

1) If γ1 = [S]↗bP↘b, then we should just replace it by [S]P .

76 M. Dekhtyar, A. Dikovsky, and B. Karlov

2) Let γ1 = [S/A′]↗bP1 . Then γ2 . . . γn �∗
G′

m
[A′]P2↘b and the potential P1P2 is

balanced. By Lemma 4, there is γ′2 . . . γ′n ∈ λ(w2 . . . wn) such that γ′2 . . . γ′n �∗
G

[A]P2 . Let us set γ′1 = [S/A]P1 ∈ λ(w1). Then γ′1 . . . γ
′
n �∗

G [S/A]P1 [A]P2 �G
[S]P1P2 �∗

G [S].
3) The case γ1 = [S/A′/B]↗bP1 is similar. So w ∈ L(G).
[⇐]. Let w = w1 . . . wn ∈ L(G). Then there is γ1 . . . γn ∈ λ(w) such that
γ1 . . . γn �∗

G [S].
1) If γ1 = [S]P , we can just replace it by [S]↗bP↘b.
Let us prove the case 3) γ1 = [S/A/B]P1 (case 2) is similar). In this case,
γ2 . . . γr �∗

G [B]P2 and γr+1 . . . γn �∗
G [A]P3 for some r and the potential P1P2P3

is balanced. In G′
m w1 has the type γ′1 = [S/A′/B]↗bP1 ∈ λ′m(w1). As all types

without S are kept in G′
m, we have γ2 . . . γr ∈ λ′m(w2 . . . wr) and γ2 . . . γr �∗

G′
m

[B]P2 . So we set γ′2 = γ2, . . . , γ
′
r = γr. Besides this, by Lemma 5, there is

γ′r+1 . . . γ
′
n ∈ λ′m(wr+1 . . . wn) such that γ′r+1 . . . γ

′
n �∗

G′
m
[A′]P3↘b. Then γ′1 . . . γ

′
n

�∗
G′

m
[S/A′/B]↗bP1 [B]P2 [A′]P3↘b �∗

G′
m

[S]↗bP1P2P3↘b �∗
G′

m
[S]. Therefore, w ∈

L(G′
m).

By this Lemma, it is now sufficient to prove that L(G′
m)∗ = L(G′).

[⇒] L(G′
m)∗ ⊆ L(G′). This inclusion is rather evident. If x = x1 . . . xn ∈ L(G′

m)∗

and x1, . . . , xn ∈ L(G′
m), then there are type assignments Γi ∈ λ′m(xi) such that

Γi �∗
G′

m
[S], 1 ≤ i ≤ n. The first type in Γ1 has the form [S/α]↗bP1 . We will

replace this type by [S0/S ∗ /α]↗bP1 obtaining a new sequence Γ ′
1 ∈ λ′(x1) such

that Γ ′
1 �G′ [S0/S∗]. Now we can assign to x the sequence Γ ′

1Γ2 . . . Γn ∈ λ′(x)
such that Γ ′

1Γ2 . . . Γn �∗
G′ [S0/S∗][S] . . . [S] �∗

G′ [S0].
[⇐] L(G′) ⊆ L(G′

m)∗. x ∈ L(G′) means that there is Γ ∈ λ′(x) such that
Γ �∗

G′ [S0]. We can decompose this proof into the subproofs which eliminate
consecutive iterated S: Γ = Γ1 . . . Γn, where Γi ∈ λ′(xi) 1 ≤ i ≤ n, and Γ1 �∗

G′

[S0/S∗]P1 , Γj �∗
G′ [S]Pj , 2 ≤ j ≤ n. For all i, 1 ≤ i ≤ n, there also exist

proofs Γi �∗
G′

m
[S]Pi in which the potentials Pi are balanced. Indeed, if |xi| > 1,

then Γi = [S/α1]
↗bP 1

i [α2]
P 2

i . . . [αk−i]P
k−1
i [A′]P

k
i ↘b. The last type has the form

[A′]P
k
i ↘b due to Lemma 3. By Lemmas 2,3 the potential P 1

i . . . P
k
i does not

contain occurrences of b. So by definition of the rule FAC:π(C) this potential is
balanced. Therefore, Pi is balanced too. If otherwise |xi| = 1, then Pi =↗ bP ′

i ↘
b is also balanced. As a result, Γi �∗

G′
m

[S], i.e. xi ∈ L(G′
m) for all i, 1 ≤ i ≤ n,

and so x ∈ L(G′
m)∗.

Corollary 1. The family of mmCDG−FA-languages is an AFL.

Proof. By Theorem 2 and Theorem 4 in [3].

5 Expressiveness of mmCDG with Negative Modes

The negative constraints used for the iteration closure turn out to be rather
expressive. E.g., using such constraints one can generate an exponential length
strings language.

Iterated Dependencies and Kleene Iteration 77

Let Lexp = {101021 . . . 102n1 || n > 1} and Gexp be the following grammar:

1 �→ [S/A1]
↗X , [D1/C]

↗Y , [B/A]↘X↗X , [D/C]↘Y↗Y , [B/A2]
↘X↗X ,

[D/C2]
↘Y↗Y , [A2]

↘X↘Y , [C2]
↘X↘Y

0 �→ [A1/D1]
↗B↗B, [A/A]↘A↗B↗B, [A/D]↘A↗B↗B, [C/C]↘B↗A↗A,

[C/B]↘B↗A↗A, [A2/A2]
↘A, [C2/C2]

↘B

In this mmCDG is used the FA pairing rule with two negative modalities:
π(X) = {A}, π(Y) = {B}. The intuitive idea is that every 0 takes one nega-
tive valency (↘A or ↘B) and puts out two positive valencies (↗B or ↗A).
A and B are alternated in order that zeros in the same block couldn’t be linked
by a dependency. In order that a zero were linked with another zero in the next
block, the consecutive symbols 1 are linked by discontinuous dependenciesX (for
even blocks) or Y (for odd blocks). Due to the negative modalities π, X does not
let pass dependency A and Y does not let pass B. As a result, L(Gexp) = Lexp.
A formal proof of this equality is a consequence of the following fact.

Lemma 7. Let w ∈ L(Gexp), w = w′w′′ and w′ = 10i11 . . . 10ik1, where ij ≥ 0.
Let Γ ∈ λGexp(w), Γ �∗

Gexp
[S] and Γ = Γ ′Γ ′′, where Γ ′ = λGexp(w

′) and

Γ ′′ = λGexp(w
′′). Then:

1) ij = 2j−1 for 1 ≤ j ≤ k. 2) If w′′ 	= ε and k is odd, then ‖Γ ′‖v �∗↗X(↗
B)2

k ↗ Y 9 and to the last 1 in w′ is assigned in Γ ′ one of types: [D1/C]
↗Y ,

[D/C]↘Y↗Y or [D/C2]
↘Y↗Y . 3) If w′′ 	= ε and k is even, then ‖Γ ′‖v �∗↗Y (↗

A)2
k ↗X and to the last 1 in w′ is assigned in Γ ′ one of types: [B/A]↘X↗X or

[B/A2]
↘X↗X .

Proof. By induction on k.

Corollary 2. Languages in L(mmCDG−FA) may be not semilinear.

It should be remarked that the problem of semilinearity is still open for CDG.
The example of Lexp suggests that languages in L(mmCDG−FA) may be

rather complex. Indeed, we prove that the membership problem in this family is
NP-complete.

Theorem 3. Membership problem for mmCDG−FA is NP-complete.

Proof. [NP − hardness]. We will reduce the problem of satisfiability of 3−
CNF to the membership problem for mmCDG−FA. For this, we will define an
mmCDG−FA-grammarG(3) and, for every 3−CNF Φ, we will construct a string
w(Φ) such that w(Φ) ∈ L(G(3)) iff Φ ∈ SAT. This is a definition of G(3):

Dictionary:W = {∗, x, x̄, y, b, f, F}.
x corresponds to occurrences of the propositional letters in the clauses of 3−CNF .
x̄ corresponds to occurrences of the negated propositional letters. y corresponds
to the propositional letters which have no occurrences in a clause. The following

9 I.e. the valency projection is reducible to this string of valencies.

78 M. Dekhtyar, A. Dikovsky, and B. Karlov

example explains how the clauses are coded using these symbols. Supposing that
there are only seven letters x1, . . . , x7, the clause x2 ∨¬x4 ∨x7 is represented by
the string yxyx̄yyx. For a clause C, g(C) will denote the string representing C.

Elementary types:
C = {S, 0, 1, 0′, 1′, A,B, T }.

Modes:
π(0) = {1}, π(1) = {0}, π(0′) = {1′}, π(1′) = {0′}. Intuitively, these negative
modes mean that the dependencies 0 and 1 (respectively, 0′ and 1′) cannot cross.

Lexicon λ:

F �→ [S],
b �→ {[ε]↗0, [ε]↗1},

f �→

⎧⎪⎪⎨
⎪⎪⎩
[ε]↘0,
[ε]↘0′ ,
[ε]↘1,
[ε]↘1′

⎫⎪⎪⎬
⎪⎪⎭

∗ �→ [T \ε]

y �→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[A\A]↘1↗1′ ,
[A\A]↘0↗0′ ,
[A/A]↘1↗1′ ,
[A/A]↘0↗0′ ,
[A]↘1↗1′ ,
[A]↘0↗0′ ,

[B\B]↘1′↗1,
[B\B]↘0′↗0,
[B/B]↘1′↗1,
[B/B]↘0′↗0,
[B]↘1′↗1,
[B]↘0′↗0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

x �→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[A\T/A]↘1↗1′ ,
[A\A]↘1↗1′ ,
[A\A]↘0↗0′ ,
[A/A]↘1↗1′ ,
[A/A]↘0↗0′ ,
[A\T]↘1↗1′,
[A]↘1↗1′ ,
[A]↘0↗0′ ,
[T/A]↘1↗1′ ,

[B\T/B]↘1′↗1,
[B\B]↘1′↗1,
[B\B]↘0′↗0,
[B/B]↘1′↗1,
[B/B]↘0′↗0,
[B\T]↘1′↗1,
[B]↘1′↗1,
[B]↘0′↗0,
[T/B]↘1′↗1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x̄ �→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[A\T/A]↘0↗0′ ,
[A\A]↘1↗1′ ,
[A\A]↘0↗0′ ,
[A/A]↘1↗1′ ,
[A/A]↘0↗0′ ,
[A\T]↘0↗0′,
[A]↘1↗1′ ,
[A]↘0↗0′ ,
[T/A]↘0↗0′ ,

[B\T/B]↘0′↗0,
[B\B]↘1′↗1,
[B\B]↘0′↗0,
[B/B]↘1′↗1,
[B/B]↘0′↗0,
[B\T]↘0′↗0,
[B]↘1′↗1,
[B]↘0′↗0,
[T/B]↘0′↗0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Let Φ = C1∧. . .∧Cm be a 3−CNF with propositional letters inX = {x1, . . . , xn}.

String w(Φ) encoding Φ:
w(Φ) = bnFg(C1)

R ∗ g(C2) ∗ · · · ∗ g(Cm)(R) ∗ fn, where every even member i is
g(Ci) and every odd member i is the mirror image of g(Ci).

Lemma 8. Φ is satisfiable iff w(Φ) ∈ L(G(3)).

Proof. 1. If Φ is satisfied by values x = v1, . . . , xn = vn, we assign to every
occurrence i of b in w(Φ) the type [ε]↗vi . The choice of types for the symbols x,
x̄ and y depends on the number j of the block g(Cj) in w(Φ) and on the position
of their occurrence in the block. If j is odd, then the assigned type has argument
subtypes A, otherwise it has argument subtypes B. We show the exact choice of
types trough an example. Let us suppose that j is odd (the other case is similar).
The clause Cj is made true by some literal xi or ¬xi. In the first case, for the

occurrence i of x in g(Cj) is selected the type [T/A]↘1↗1′ when i = 1, the type

[A\T]↘1↗1′ when i = n and [A\T/A]↘1↗1′ otherwise. In the second case, the
corresponding types will be [T/A]↘0↗0′ , [A\T]↘0↗0′ and [A\T/A]↘0↗0′ . Every

Iterated Dependencies and Kleene Iteration 79

other symbol in a position k 	= i will have a type t↘vk↗v
′
k , where t is one of

the basic types [A], [A\A], [A/A]. For instance, if x1 = 0, x2 = 1, x3 = 0 and
g(Cj) = xyx̄, then the first x has the type [A]↘0↗0′ , y has the type [A\A]↘1↗1′

and the second x has the type [A\T]↘0↗0′. Finally, [S] is assigned to F , [T \ε] is
assigned to ∗ and for every 1 ≤ i ≤ n, if m is odd, then for the occurrence i of f
we choose the type [ε]↘v

′
i , otherwise we choose the type [ε]↘vn−i+1 . Let us denote

by Γ (Φ, v1, . . . , vn) the string of types assigned in this manner to the string w(Φ)
and by Γ (Cj , v1, . . . , vn) the substring of types assigned to g(Ci). It is not difficult
to see that Γ (Φ, v1, . . . , vn) � S. Indeed, the potentials of the types assigned to
n consecutive occurrences of b send the positive valencies encoding the values
vi of the corresponding propositional letters xi. These valencies are intercepted
by the dual negative valencies of the types chosen for the letters x, x̄ and y in
the closest block g(C1). Due to the definition of the modes π, the discontinuous
dependencies 0 do not cross the discontinuous dependencies 1. This means that
the valencies will be intercepted in the inverse order. Then every letter in g(C1)
receiving the valency v will send on the positive valency v′ and again, because
the discontinuous dependencies 0′ do not cross the discontinuous dependencies
1′, the valencies will be intercepted in the inverse order (i.e. in the original order
of the symbols b), etc. till the symbols f . This means that all valencies will be
paired and eliminated. Besides this, Γ (Cj , v1, . . . , vn) � [T]Pj for some Pj and
for every 1 ≤ j ≤ m. Finally, every type [T] is eliminated by the type assigned
to the corresponding occurrence of ∗. So by Theorem 1, Γ (Φ, v1, . . . , vn) � S.

2. Let Φ be not satisfiable. Let us assume that w(Φ) ∈ L(G(3)). Then the
types assigned to the occurrences of symbols b correspond to the assignments of
the coded values to the corresponding propositional letters. Let us suppose that
Cj0 is the first false clause in Φ. Without loss of generality, we can suppose that
j0 is odd. Let Γ be a string of types assigned to w(Φ) in G(3) and Γj0 be its
substring of types assigned to g(Cj0)

R∗. Then Γj0 must reduce to [ε]Pj0 for some
potential Pj0 . Therefore, there should be an occurrence i of one of the symbols
x or x̄ to which is assigned a type with the head dependency T , for instance
the type [A\T/A]↘1↗1′ (or respectively [A\T/A]↘0↗0′). But, to be eliminated,
this type needs paring the valency ↘1 (respectively ↘0), which is impossible,
because Cj0 is false, so the value of xi is dual to the choice of valencies. This
means that the potential in Γ cannot be balanced. Hence, w(Φ) /∈ L(G(φ)).

[NP −completeness]. Let us define the following relation ≺ on the set of discon-
tinuous dependencies (i.e. pairs of the form a(d) =↗d ↘d or a(d) =↙d ↖d):
a(d1) ≺π a(d2) if the two dependencies cross and d1 ∈ π(d2). With respect to
the pairing rule FA, this relation means that a(d1) must be paired before a(d2).
More precisely, the following proposition holds:

Lemma 9. A potential P is balanced with respect to FAl
C:π(C) with negative

modalities π iff there is such pairing of valencies in P that ≺π has no circles on
crossing dependencies.

So the nondeterministic polynomial algorithm for membership w ∈ L(G) is as
follows:

80 M. Dekhtyar, A. Dikovsky, and B. Karlov

1) guess Γ ∈ λ(w),
2) check ‖Γ‖l �c [S],
3) guess a pairing of valencies in ‖Γ‖∗v,
4) check that it is balanced and
5) check that ≺π has no circles on crossing dependencies.

By the way, using these techniques we can define a mmCDG−FA generating
the language {wwRw || w ∈ {a, b}+} and, for every Turing machine, define
a mmCDG−FA generating the “protocols” of its computations. We can also
generate the copy language Lcopy using the pairing rule FCπ with negative
modes.

6 Conclusion

This study shows that the class of mmCDG−FA-grammars may serve as a gen-
eral theoretical frame for categorial dependency grammars, in which the lan-
guages form an AFL, may be not semilinear and the membership problem is
NP-complete. Meanwhile, its subset of polynomially parsed mmCDG without
negative modes is perfectly adequate and sufficient for practical use because in
the text corpora and more generally, in the written speech the sentences are ex-
plicitly separated by punctuation markers. So they are analyzed independently.
As to the iterated constructions in the sentences, they are immediately defin-
able through the primitive iterated types. On the other hand, for this subfamily
mmCDG, the problems of semilinearity, of closure under iteration and of inclu-
sion Lcopy ∈ L(mmCDG) still rest open.

The two main lessons of this study are that:

(a) checking individual long distance discontinuous dependencies is a polyno-
mial time task, whereas checking interaction of at least four of them may be
untractable;
(b) for categorial dependency grammars, their closure under Kleene iteration
may be obtained by prohibition of crossing one selected discontinuous depen-
dency.

Acknowledgements. We are grateful to an anonymous reviewer who checked
the proofs and pointed out several imprecisions and misprints.

References

1. Bar-Hillel, Y., Gaifman, H., Shamir, E.: On categorial and phrase structure gram-
mars. Bull. Res. Council Israel 9F, 1–16 (1960)

2. Béchet, D., Dikovsky, A.J., Foret, A.: Dependency Structure Grammars. In: Blache,
P., Stabler, E.P., Busquets, J.V., Moot, R. (eds.) LACL 2005. LNCS (LNAI),
vol. 3492, pp. 18–34. Springer, Heidelberg (2005)

3. Dekhtyar, M., Dikovsky, A.: Generalized Categorial Dependency Grammars. In:
Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science.
LNCS, vol. 4800, pp. 230–255. Springer, Heidelberg (2008)

Iterated Dependencies and Kleene Iteration 81

4. Dekhtyar, M., Dikovsky, A.: Categorial dependency grammars. In: Moortgat, M.,
Prince, V. (eds.) Proc. of Intern. Conf. on Categorial Grammars, Montpellier,
pp. 76–91 (2004)

5. Dikovsky, A.: Multimodal categorial dependency grammars. In: Proc. of the 12th
Conference on Formal Grammar, Dublin, Ireland, pp. 1–12 (2007)

6. Dikovsky, A.: Dependencies as categories. In: Duchier, D., Kruijff, G.-J.M. (eds.)
Recent Advances in Dependency Grammars (COLING 2004) Workshop, pp. 90–97
(2004)

7. Duchier, D., Debusmann, R.: Topological dependency trees: A constraint-based
account of linear precedence. In: Proc. of the 39th Intern. Conf. (ACL 2001),
pp. 180–187. ACL & Morgan Kaufman (2001)

8. Hudson, R.A.: Word Grammar. Basil Blackwell, Oxford-New York (1984)
9. Joshi, A.K., Shanker, V.K., Weir, D.J.: The convergence of mildly context-sensitive

grammar formalisms. In: Sells, P., Shieber, S., Wasow, T. (eds.) Foundational Issues
in Natural Language Processing, pp. 31–81. MIT Press, Cambridge (1991)

10. Karlov, B.N.: Normal forms and automata for categorial dependency grammars.
In: Vestnik Tverskogo Gosudarstvennogo Universiteta (Annals of Tver State Uni-
versity). Applied Mathematics, vol. 35 (95), pp. 23–43 (2008) (in Russ.)

11. Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure
of Languages and its Mathematical Aspects, pp. 166–178. American Mathematical
Society, Providence (1961)

12. Mel’čuk, I.: Dependency Syntax. SUNY Press, Albany (1988)
13. Moortgat, M., Morrill, G.V.: Heads and phrases. Type calculus for dependency

and constituent structure. Ms OTS, Utrecht (1991)
14. Morrill, G.V.: Type Logical Grammar. Categorial Logic of Signs. Kluwer, Dor-

drecht (1994)
15. Sleator, D., Temperly, D.: Parsing English with a Link Grammar. In: Proc. IWPT

1993, pp. 277–291 (1993)
16. Steedman, M., Baldridge, J.: Combinatory categorial grammar. In: Brown, K. (ed.)

Encyclopedia of Language and Linguistics, vol. 2, pp. 610–622. Elsevier, Oxford
(2006)

17. Tesnière, L.: Éléments de syntaxe structurale. Librairie C. Klincksieck, Paris (1959)
18. Vijay-Shanker, K., Weir, D.J.: The equivalence of four extensions of context-free

grammars. Mathematical Systems Theory 27, 511–545 (1994)

Property Grammar Parsing Seen

as a Constraint Optimization Problem

Denys Duchier, Thi-Bich-Hanh Dao, Yannick Parmentier, and Willy Lesaint

Centre, Val de Loire Université,
LIFO, Université d’Orléans, Bât. 3IA, Rue Léonard de Vinci,

F-45 067 Orléans Cedex 2, France
{denys.duchier,thi-bich-hanh.dao,

yannick.parmentier,willy.lesaint}@univ-orleans.fr
http://www.univ-orleans.fr/lifo

Abstract. Blache [1] introduced Property Grammar as a formalism
where linguistic information is represented in terms of non hierarchical
constraints. This feature gives it an adequate expressive power to handle
complex linguistic phenomena, such as long distance dependencies, and
also agrammatical sentences [2].

Recently, Duchier et al. [3] proposed a model-theoretic semantics for
property grammar. The present paper follows up on that work and ex-
plains how to turn such a formalization into a constraint optimization
problem, solvable using constraint programming techniques. This natu-
rally leads to an implementation of a fully constraint-based parser for
property grammars.

Keywords: Parsing, Property Grammar, Constraint Satisfaction.

1 Introduction

Formal grammars typically limit their scope to well-formed utterances. As noted
by [4], formal grammars in the style of generative-enumerative syntax, as they
focus on generating well-formed models, are intrinsically ill-suited for provid-
ing accounts of ill-formed utterances. Formal grammars in the style of model-
theoretic syntax, on the contrary, as they focus on judging models according
to the constraints that they satisfy, are naturally well-suited to accommodate
quasi-expressions.

Blache [2] proposed Property Grammars (PG) as a constrained-based for-
malism for analyzing both grammatical and agrammatical utterances. Prost [5]
developed an approach based on PG and capable not only of providing analyses
for any utterances, but also of making accurate judgements of grammaticality
about them. Duchier et al. [3] provided model-theoretical semantics for PG and
a formal logical account of Prost’s work. In this paper, we show how such a
formalization can be converted into a Constraint Optimization Problem, thus
yielding a constraint-based parser that finds optimal parses using classical con-
straint programming techniques, such as branch-and-bound.

P. de Groote and M.-J. Nederhof (Eds.): Formal Grammar 2010/2011, LNCS 7395, pp. 82–96, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.univ-orleans.fr/lifo

Property Grammar Parsing Seen as a Constraint Optimization Problem 83

The use of constraint-based techniques for parsing is not new in itself, one may
cite the seminal work of Duchier [6] on Dependency Grammar parsing, or that
of Debusmann et al. [7] on Tree Adjoining Grammar parsing, or more recently
that of Parmentier and Maier [8], who proposed constraint-based extensions to
Range Concatenation Grammar parsing. Nonetheless, PG parsing was lacking
such a constraint-based axiomatization.1

The paper is organized as follows. We first introduce property grammars (sec-
tion 2). In section 3, we then summarize the model-theoretic semantics of PG,
as defined by Duchier et al. [3]. This semantics is used to define PG parsing
as a Constraint Optimization Problem. This definition will be based on two
types of constraints : tree-shapedness constraints, introduced in section 4, and
property-related constraints, introduced in section 5. We then report on the im-
plementation of a constraint-based parser using the Gecode library in section 6.
In section 7, we compare our work with existing parsing environments for PG.
Finally, in section 8, we conclude with some experimental results and hints about
future work.

2 Property Grammars

Property grammar [2] is a grammatical formalism where the relations between
constituents are expressed in terms of local constraints2, called properties, which
can be independently violated. This makes it possible to describe agrammatical
utterances (that is, whose description would not respect the whole set of con-
straints), and also to associate a given description with a grammaticality score
(ratio between satisfied and unsatisfied constraints).

These constraints rely on linguistic observations, such as linear precedence
between constituents, coocurrency between constituents, exclusion between con-
stituents, etc. As suggested by Duchier et al. [3], a property grammar can be
usefully understood as exploding classical phrase structure rules into collections
of fine-grained properties. Each property has the form A : ψ meaning that, in a
syntactic tree, for a node of category A, the constraint ψ applies to its children.

For each node of category A, we consider the following properties:

Obligation A : $B at least one B child

Uniqueness A : B! at most one B child

1 Note that a first experiment of constraint-based axiomatization of PG was done by
Dahl and Blache [16], we give more information on this later in section 7.

2 Several attemps at characterizing syntactic trees through a system of constraints
were developed in the late nineties. Among these, one may cite D-Tree Substitu-
tion Grammar (DSG) [9], and Tree Description Grammar (TDG) [10]. The main
difference between these formalisms and PG is that the latter has been designed to
provide a way to handle agrammatical sentences. Furthermore, in DSG and TDG,
constraints are expressed using dominance-based tree descriptions, while PG’s con-
straints are applied to syntactic categories.

84 D. Duchier et al.

Linearity A : B ≺ C B children precede C children

Requirement A : B ⇒ C if a B child, then also a C child

Exclusion A : B 	⇔ C B and C children are mutually exclusive

Constituency A : S children must have categories in S

As an example, let us consider the context free rules NP → D N and NP → N

describing the relation between a noun and a determiner. They are translated
into the following 7 properties:

(1)NP : {D, N}, (2)NP : D!, (3)NP : $N, (4)NP : N!, (5)NP : D ≺ N, (6)D : {}, (7)N : {}.
(1) indicates that noun phrases only contain nouns or determiners, (2) states
that in a noun phrase, there is at most one determiner. (3) and (4) say that in
a noun phrase, there is exactly one noun. (5) indicates that, in a noun phrase,
a determiner precedes a noun. Finally (6) and (7) state that determiners and
nouns are leaf nodes in a valid syntactic tree.

In this context, if we only consider syntactic trees whose root has category
NP, there are only two trees satisfying all properties:

NP

D N

NP

N

We note that these syntactic trees are not lexicalized. In case we want to describe
lexicalized trees, we can add some more lexical properties, such as

cat(apple) = N

which defines the word apple as being a noun.

About the complexity of PG parsing. Deep parsing with PG has been shown to be
theoretically exponential in the number of categories of the grammar and the size
of the sentence to parse [11]. As we shall see in section 7, existing approaches to
deep parsing with PG usually rely on heuristics to reduce complexity in practice.
In our approach, we want to avoid such heuristics. We are interested in studying
the logical consequences of representation choices made in PG, while developing
a parsing architecture for PG fully relying on constraint-satisfaction.

3 Model-Theoretic Semantics of Property Grammar

In this section, we give a summary of the model-theoretic semantics of PG de-
veloped by Duchier et al. [3].

First, recall that PGs are interpreted over syntactic tree structures. Two types
of models are considered, according to whether we want to enforce the satisfac-
tion of all grammatical properties or not : strong models and loose models (the
latter corresponding to the modelization of agrammatical utterances).

Property Grammar Parsing Seen as a Constraint Optimization Problem 85

Strong models. A syntax tree τ is a strong model of a grammar G iff for every
node of τ and every property of G, if that property is pertinent at that node,
then it is also satisfied. The evaluation of the pertinence of a property depends
on the type of the property. We consider 3 types of properties :

Type 1 : those which apply to a given node, such as obligation. For these prop-
erties, the pertinence only depends on the category of that node,

Type 2 : those which apply to a given couple of nodes (mother-daughter), such
as requirement and constituency. For these properties, the pertinence de-
pends on the category of the mother node, and that of its daughter nodes,

Type 3 : those which apply to a given triple of nodes (mother, daughter1,
daughter2), such as linearity, exclusion and uniqueness. For these proper-
ties, the pertinence depends on the category of the mother node, and those
of its daughter nodes.

Hence, when a node n has more than 2 children, a given property of type 3 has
to be considered for every triple of nodes (n, ,). We call the pair consisting
of a property ψ and such a tuple (i.e., singleton, couple or triple of nodes), an
instance of property. For example, the property NP : D ≺ N yields for every node
as many instances as there are pairs of children. Such an instance is pertinent
iff the mother node is of category NP and its children of categories D and N

respectively. In addition, it is satisfied if the first child precedes the second one.
Later in this paper, we will represent the instance of a property A : ψ at a

node n using the following notation (nx refers to a daughter node of n) :

A : ψ@〈n〉 if ψ is of type 1
A : ψ@〈n, n1〉 if ψ is of type 2
A : ψ@〈n, n1, n2〉 if ψ is of type 3

To sum up, every property is instantiated in every possible way at every node.
Furthermore, as mentioned above, in a strong model every property instantiation
that is pertinent has to be satisfied.

Loose models. Unlike strong models, in a loose model of a grammar, for a given
utterance, every instance of property which is pertinent does not have to be
satisfied. More precisely, a loose model is a syntax tree of maximal fitness, where
fitness is the ratio of satisfied instances among those which are pertinent.

For a more detailed definition of this model-theoretic semantics of PG, we
refer the reader to [3] . In the next sections, we show how this formalization of
PG can be converted into a Constraint Optimization Problem, thus yielding a
constraint-based parser that finds optimal parses.

4 Representing Tree Models Using a Grid

Our approach needs to enumerate candidate tree models, and to retain only
those of maximal fitness. Since we do not know a priori the number of nodes of

86 D. Duchier et al.

our models, we propose to use a grid as a substrate, and to enumerate the trees
which can be laid out on this grid.

For an utterance of m words, we know that each tree model has m leaves (PG
do not use ε nodes). Unfortunately, we do not know the maximum depth of each
tree model. We may use some heuristics to automatically assign a value n to
the tree depth3. We chose to parametrize the associated parsing problem with a
maximum tree depth n. Fixing this parameter allows us to layout a model over
a subset of the nodes of an n×m grid. To represent our tree model, we will use
a matrix W such that wij (with 1 ≤ i ≤ n, and 1 ≤ j ≤ m) refers to the node
located at position (i, j) on the grid (rows and columns are numbered starting
from 1, coordinate (1,1) being in the bottom-left corner). As an illustration of
such a layout, see Fig. 1. We present in this section the constraints used to build
a tree model on an n×m grid.

n
↑

→ m(1,1)
N V D N

Peter eats the apple

S

NP

VP

NP

Fig. 1. Parse tree laid on a grid

Active nodes. Let V be the set of all nodes. A node is active if it is used by the
model and inactive otherwise. We write V + for the set of active nodes and V −

for the rest. We have:

V = V + & V −

where & represents “disjoint union”. Following the modeling technique of [12],
for each node w, we write ↓w for it’s children, ↓+w for its descendants, ↓∗w for w
and its descendants. Dually, we write ↑w for w’s parents, ↑+w for its ancestors,
↑∗w for w and its ancestors. Constraints relating these sets are:

↓+w = &{↓∗w′ | w′ ∈ ↓w} ↓∗w = {w} & ↓+w

↑+w = &{↑∗w′ | w′ ∈ ↑w} ↑∗w = {w} & ↑+w

3 Due to the intrinsic recursive nature of language, the possibility to find an adequate
depth value, i.e. not too big to prevent useless computations, and not too small to
avoid missing solutions, is an open question.

Property Grammar Parsing Seen as a Constraint Optimization Problem 87

Disjoint unions are justified by the fact that we are interested in tree models
(i.e., we do not allow for cycles). We additionally enforce the duality between
ancestors and descendants:

w ∈ ↑w′ ⇔ w′ ∈ ↓w

and that each node has at most one parent:

|↑w′| ≤ 1

Inactive nodes have neither parents nor children:

w ∈ V − ⇒ ↓w = ↑w = ∅

Since the root of the tree is still unknown, we write R for the set of root nodes.
A tree model must have a single root:

|R| = 1

and the root node cannot be a child of any node:

V + = R & (&{↓w | w ∈ V })

Projection. We write ⇓w for the set of columns occupied by the tree anchored
in w. As leaf nodes are located on the first row, their projection corresponds to
their column, and only it :

⇓w1j = {j}

There are no interleaving projections (hence the disjoint union):

⇓wij = &{⇓w | w ∈ ↓wij} 1 < j ≤ m

There are no holes in the projection of any node (trees are projective):

convex(⇓w) ∀w ∈ V

Dealing with symmetries. There are many ways of laying out a given tree on a
grid. For instance, a four-node and three-leaf tree has among others the following
layouts :

In order to have a unique way of laying out a tree, we add specific anti-symmetric
constraints (the models satisfying these constraints are called rectangular trees) :

1. all leaves are located on the first row of the grid (i.e., the bottom row),

88 D. Duchier et al.

2. the left-most daughter of any node is located on the same column as its
mother node (this implies the subtree of a given node n occupies columns
on the right of n),

3. every node is above any of its descendant nodes (this implies the subtree of
a given node n occupies rows that are below that of n),

4. every internal node must have a daughter node in the row directly below
(this implies there are no empty rows below the root node).

As an illustration, among the following trees, only the first one is a rectangular
tree (the second tree violates condition 2, the third one condition 3 and the
fourth one condition 4) :

How these 4 conditions are represented in our axiomatization? First, let us write
c(w) for the column of node w and �(w) for its line:

c(wij) = j �(wij) = i

(1) The words are linked to the bottom row of the grid, which contains the leaves
of the tree. These must all be active:

{w1j | 1 ≤ j ≤ m} ⊆ V +

(2) Any active node must be placed in the column of the left-most leaf of its
subtree:

wij ∈ V + ⇔ j = min⇓wij

This stipulation and the fact (3) every node is above of its descendants are
translated by constraints on the domains of variables. As mentioned above, the
descendants of a node n are on the down-right part of the grid with respect to n.
The dual holds, that is the ancestors of a node n are on the upper-left part of
the grid with respect to n:

↓+wij ⊆ {wlk | 1 ≤ l < i, j ≤ k ≤ m}
↑+wij ⊆ {wlk | i < l ≤ n, 1 ≤ k ≤ j}

(4) Any active non-bottom node has at least one child at the level just below:

wij ∈ V + ⇔ i− 1 ∈ {�(w) | w ∈ ↓wij} 1 < i ≤ n

Property Grammar Parsing Seen as a Constraint Optimization Problem 89

Categories. In order to model syntax trees, we also need to assign to each active
node a syntactic category. For simplicity, we will assign the category none to all
and only the inactive nodes:

cat(w) = none ⇔ w ∈ V −

For active nodes, the category will be assigned via property-related constraints,
which are introduced in the next section. Finally, words are related to leaves via
their category:

cat(w1j) = cat(wordj)

where wordj refers to the jth word of the sentence to parse.

5 Handling Instances of Properties

Recall that each property has the form A : ψ, which means that for a node of
category A, the constraint ψ applies to its children. For example the property
A : B ≺ C is intended to mean that, for a non-leaf node of category A and any
two daughters of this node labeled respectively with categories B and C, then
the one labelled with B must precede the one labeled with C. Clearly, for each
node of category A, this property must be checked for every pair of its daughters.
This corresponds to the notion of instances of a property introduced earlier in
section 3.

An instance of a property is a pair of the property and a tuple of nodes to
which it is applied. An instance is pertinent if the node where it is instantiated
is active (i.e., belongs to V +) and the parameter nodes of its tuple have the
categories stipulated in the property. An instance is satisfied if the property is
satisfied. For each instance I we define two boolean variables P (I) and S(I)
denoting respectively its pertinence and its pertinence and satisfaction.

In the following paragraphs,we translate each property of PG into a set of
constraints for our constraint optimization problem.

Properties of type 1. Let us start with properties of type 1, that is to say, whose
instance depends on a single node. The only such property is obligation.

Obligation. The property A : $B yields instances I of the form:

(A : $B)@〈wi0j0〉

It is pertinent if wi0j0 is an active node labelled with A:

P (I) ⇔ (wi0j0 ∈ V + ∧ cat(wi0j0) = A)

It is satisfied if at least one of its children is labelled with B:

S(I) ⇔ (P (I) ∧
∨

wij∈↓wi0j0

cat(wij) = B)

90 D. Duchier et al.

Properties of type 2. Let us continue with properties of type 2, whose instance de-
pends on a couple of nodes. These corresponds to requirement and constituency.

Requirement. The property A : B ⇒ C yields instances I of the form:

(A : B ⇒ C)@〈wi0j0 , wi1j1〉

It is pertinent only if wi0j0 is active and wi1j1 is one of its children and their
categories correspond:

P (I) ⇔
(

wi0j0 ∈ V + ∧ wi1j1 ∈ ↓wi0j0∧
cat(wi0j0) = A ∧ cat(wi1j1) = B

)

It is satisfied if one of wi0j0 ’s children is labelled with C:

S(I) ⇔ (P (I) ∧
∨

wij∈↓wi0j0

cat(wij) = C)

Constituency. The property A : S yields instances I of the form:

(A : B ≺ C)@〈wi0j0 , wi1j1〉

It is pertinent only if wi0j0 is active and labelled with A and wi1j1 is one of its
children:

P (I) ⇔
(
wi0j0 ∈ V + ∧ wi1j1 ∈ ↓wi0j0∧

cat(wi0j0) = A

)

It is satisfied if the category of wi1j1 is in S:

S(I) ⇔ (P (I) ∧ cat(wi1j1) ∈ S)

Properties of type 3. Let us finish with properties of type 3, whose instance
depends on a triple of nodes. These properties are linearity, uniqueness and
exclusion.

Linearity. The property A : B ≺ C yields instances I of the form:

(A : B ≺ C)@〈wi0j0 , wi1j1 , wi2j2〉

I is pertinent if wi0j0 is active, wi1j1 and wi2j2 are its children, and each node is
labelled with the corresponding category:

P (I) ⇔

⎛
⎜⎝ wi0j0 ∈ V + ∧ wi1j1 ∈ ↓wi0j0∧
wi2j2 ∈ ↓wi0j0 ∧ cat(wi0j0) = A∧
cat(wi1j1) = B ∧ cat(wi2j2) = C

⎞
⎟⎠

Its satisfaction depends on whether the node wi1j1 precedes wi2j2 or not. It is
thus defined as:

S(I) ⇔ (P (I) ∧ j1 < j2)

Property Grammar Parsing Seen as a Constraint Optimization Problem 91

Uniqueness. The property A : B! yields instances I of the form:

(A : B!)@〈wi0j0 , wi1j1 , wi2j2〉

It is active only if wi0j0 is active and labelled with A and wi1j1 and wi2j2 are its
children and are labelled with B:

P (I) ⇔

⎛
⎜⎝ wi0j0 ∈ V + ∧ wi1j1 ∈ ↓wi0j0∧
wi2j2 ∈ ↓wi0j0 ∧ cat(wi0j0) = A∧
cat(wi1j1) = B ∧ cat(wi2j2) = B

⎞
⎟⎠

It is satisfied if wi1j1 and wi2j2 are the same node:

S(I) ⇔ (P (I) ∧ wi1j1 = wi2j2)

Exclusion. The property A : B 	⇔ C yields instances I of the form:

(A : B 	⇔ C)@〈wi0j0 , wi1j1 , wi2j2〉

It is pertinent only if wi0j0 is active and labelled with A and wi1j1 and wi2j2 are
its children where either wi1j1 is labelled with B or wi2j2 is labelled with C:

P (I) ⇔

⎛
⎜⎝ wi0j0 ∈ V + ∧ wi1j1 ∈ ↓wi0j0∧
wi2j2 ∈ ↓wi0j0 ∧ cat(wi0j0) = A∧
(cat(wi1j1) = B ∨ cat(wi2j2) = C)

⎞
⎟⎠

Its satisfaction relies on the fact that the two children does not both have the
incompatible categories:

S(I) ⇔ P (I) ∧ (cat(wi1j1) 	= B ∨ cat(wi2j2) 	= C)

In other terms, if wi1j1 is labelled with B then wi2j2 cannot be labelled with C,
and if wi2j2 is labelled with C then wi1j1 cannot be labelled with B.

As was mentioned in section 3, in the loose semantics of PG, we want to com-
pute models with the best fitness. To do this, we add an optimization constraint.

Optimization Constraint. To account for the loose semantics of PG, a prop-
erty instance counts if it is pertinent, it counts positively if satisfied, negatively
otherwise. Let I be the set of all property instances, I0 the subset of pertinent
instances and I+ the subset of positive instances. We want to find models which
maximize the ratio |I+|/|I0|.

Since for each instance I, the variables P (I) and S(I) are boolean, their reified
value is either 0 or 1. We can calculate the cardinality of these sets the following
way:

|I0| =
∑
I∈I

P (I) |I+| =
∑
I∈I

S(I)

92 D. Duchier et al.

6 Implementation

The approach described so far has been implemented using the Gecode constraint
programming library [13].

Each node wij of the grid is identified with an integer k = (i − 1) × m + j
(where m is the width of the grid). The set of nodes V is defined as V =
{1, . . . , n × m}. V + and V − are two set variables such that V +, V − ⊆ V . All
the constraints related to these sets are implemented using Gecode’s API. The
relations ↓, ↓+, ↓∗ and ↑, ↑+, ↑∗ are encoded using arrays of set variables, whose
indexes are nodes of the grid. We also use arrays of set variables to encode
property-related constraints. As there are many types of constraints and many
instances to consider, the computation of the indexes is slightly more complex
than the ones used for tree-shapedness constraints. Definitions of P (I) and S(I)
are realized using reified constraints. The search for an optimal parse is achieved
using the branch-and-bound search strategy to maximize the ratio |I+|/|I0|.

An example search tree for the grammatical utterance “Peter eats the

apple” is given in Fig. 2. The graphical representation of the search tree has
been built by Gist, the Gecode Interactive Search Tool [14]. On this figure, round
nodes represent choice points, square and triangle-shaped nodes failures, and
diamond-shaped nodes solutions of the constraint optimization problem (in this
example, the last diamond on the right refers to the optimal solution).

Fig. 2. Example search tree

Property Grammar Parsing Seen as a Constraint Optimization Problem 93

To give an illustration of the complexity of the constraint optimization prob-
lem4 for the parse example of Fig. 2 (sentence “Peter eats the apple”, and
grammar having 19 properties handling 6 categories), the search tree has about
450, 000 nodes, among which 7 are solutions. The optimal syntactic tree is rep-
resented in Fig. 3.

Fig. 3. Optimal syntactic tree for “Peter eats the apple”

As the parser is still in an early development stage, we do not have any
benchmark. As mentioned above, there are many instances of property to handle,
that is to say, many constraints to evaluate. In practice, our parser can relatively
quickly find a syntactic tree (in less than a second for the example above), but
the proof of optimality can take about a minute.5 While we are mainly interested
in exploring the logical consequences of representation choices made in PG (that
is, without using any heuristic to reduce complexity), we are also interested in
improving the computation of optimal parses, either by:

– parallelizing the exploration of the search tree,
– or enriching the information associated with lexical entries, for example by

using a Part-Of-Speech tagger.

The parser is freely available on demand, and released under the terms of the
GNU General Public License.

7 Comparison with Existing Work

Among the different approaches to PG parsing, one may cite the seminal work
of Blache and Balfourier [15]. This work was later followed by a series of papers

4 Our PG parsing algorithm using constraint-satisfaction is clearly exponential as all
candidate trees are enumerated.

5 These results are obtained on a 2.6 Ghz processor with 4 Gb of RAM.

94 D. Duchier et al.

by Dahl and Blache [16], Estratat and Henocque [17], Van Rullen [11,18], Blache
and Rauzy [19], and more recently Prost [5].

The main difference between these approaches and our work, is that, apart
from [16] and [17], they do not rely on a model-theoretic formal semantics of
PG. They rather apply well-known efficient parsing techniques and heuristics
to PG. Thus, [15] uses a constraint selection process to incrementally build the
syntactic tree of a sentence. [11,18] include hybrid approaches mixing deep and
shallow parsing. In [19], the authors propose to extend symbolic parsing with
probabilities on syntactic categories. [5] uses a chart-based parsing algorithm,
where the items contain optimal sub-trees, used to derive a complete syntactic
tree.

A first attempt to use a constraint satisfaction-based approach to PG pars-
ing is [16]. In their work, the authors encode the input PG into a set of rules
for the Constraint Handling Rule system [20]. Their encoding makes it possi-
ble to directly interpret the PG in terms of satisfied / relaxed constraints on
syntactic categories. On top of this interpretation, they use rewriting rules to
propagate constraint satisfaction / relaxation, and a syntactic tree is built as
a side effect. The main difference with our approach lies in the fact that the
authors control the way a constraint is selected for evaluation, while we rely
on classical constraint-based techniques such as branch-and-bound to select and
propagate constraint evaluations. That is, we clearly distinguish the definition
of the constraint satisfaction problem from its resolution.

Another constraint-based approach to PG parsing is [17]. In their work, the
authors translate a PG into a model in the Object Constraint Language (OCL).
This model is interpreted as a configuration problem, which is fed to a config-
urator. The latter solves the constraints lying in the input model. The result
is a valid syntactic structure. Contrary to our approach, or that of [16], this
OCL-encoding does not allow for relaxed constraints. Hence, it only computes
syntactic structures that satisfy the whole set of constraints. In other terms,
it cannot make full advantage of the PG formalism, which describes natural
language in terms of local constraints that can be violated. This feature is par-
ticularly useful when dealing with agrammatical sentences such as those spoken
language often contain.

8 Conclusion

Duchier et al. [3] provided precise model-theoretical semantics for property gram-
mars. In this paper, we extend that work and show how such a formalization can
be converted into a Constraint Optimization Problem, thus yielding a constraint-
based parser capable of finding optimal parses using classical constraint-based
techniques such as branch-and-bound. Furthermore, we have implemented this
convertion and are able to experiment with analyzing both grammatical and
agrammatical utterances.

The work described here is still at an early stage of development. It is not
intended to compete with high-performance parsers, but rather to serve as an

Property Grammar Parsing Seen as a Constraint Optimization Problem 95

experimental platform for grammar development and linguistic modeling, where
logical consequences are not accidentally hidden by the effect of performance-
oriented heuristics.

In a near future, we plan to work on the definition and implementation of an
extension to branch-and-bound, in order to keep not only one but all syntactic
trees having the maximum fitness.

Acknowledgments. We are grateful to Sylvie Billot, Matthieu Lopez, Jean-
Philippe Prost, Isabelle Tellier and three anonymous reviewers for useful com-
ments on this work.

References

1. Blache, P.: Constraints, Linguistic Theories, and Natural Language Processing.
In: Christodoulakis, D.N. (ed.) NLP 2000. LNCS (LNAI), vol. 1835, pp. 221–232.
Springer, Heidelberg (2000)

2. Blache, P.: Property Grammars: A Fully Constraint-Based Theory. In: Chris-
tiansen, H., Skadhauge, P.R., Villadsen, J. (eds.) CSLP 2005. LNCS (LNAI),
vol. 3438, pp. 1–16. Springer, Heidelberg (2005)

3. Duchier, D., Prost, J.-P., Dao, T.-B.-H.: A Model-Theoretic Framework for Gram-
maticality Judgements. In: De Groote, P., Egg, M., Kallmeyer, L., Penn, G. (eds.)
Formal Grammar. LNCS, vol. 5591, pp. 17–30. Springer, Heidelberg (2011)

4. Pullum, G., Scholz, B.: On the Distinction between Model-Theoretic and
Generative-Enumerative Syntactic Frameworks. In: de Groote, P., Morrill, G., Re-
toré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 17–43. Springer, Heidel-
berg (2001)

5. Prost, J.-P.: Modelling Syntactic Gradience with Loose Constraint-based Parsing.
PhD Thesis, Macquarie University, Sydney, Australia, and Université de Provence.
Aix-en-Provence, France (2008)

6. Duchier, D.: Axiomatizing Dependency Parsing Using Set Constraints. In: 6th
Meeting on Mathematics of Language, Orlando, pp. 115–126 (1999)

7. Debusmann, R., Duchier, D., Kuhlmann, M., Thater, S.: TAG Parsing as Model
Enumeration. In: 7th International Workshop on Tree-Adjoining Grammar and
Related Formalisms - TAG+7, Vancouver, pp. 148–154 (2004)

8. Parmentier, Y., Maier, W.: Using Constraints over Finite Sets of Integers for Range
Concatenation Grammar Parsing. In: Nordström, B., Ranta, A. (eds.) GoTAL
2008. LNCS (LNAI), vol. 5221, pp. 360–365. Springer, Heidelberg (2008)

9. Rambow, O.: D-tree Substitution Grammars. J. Comp. Ling. 27(1), 89–121 (2001)
10. Kallmeyer, L.: Local Tree Description Grammars: a Local Extension of TAG Al-

lowing Underspecified Dominance Relations. J. Grammars 4, 85–137 (2001)
11. Van Rullen, T.: Vers une Analyse Syntaxique à Granularité Variable. PhD Thesis.

Université de Provence, Aix-Marseille 1, France (2005)
12. Duchier, D.: Configuration of Labeled Trees Under Lexicalized Constraints And

Principles. J. of Research on Lang. and Comp. 1(3/4), 307–336 (2003)
13. Gecode Team: Gecode: Generic Constraint Development Environment (2010),

http://www.gecode.org

14. Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and Programming with Gecode.
Gecode documentation (2010), http://www.gecode.org/doc-latest/MPG.pdf

http://www.gecode.org
http://www.gecode.org/doc-latest/MPG.pdf

96 D. Duchier et al.

15. Blache, P., Balfourier, J.-M.: Property Grammars: a Flexible Constraint-Based
Approach to Parsing. In: 7th International Workshop on Parsing Technologies -
IWPT 2001, Beijing (2001)

16. Dahl, V., Blache, P.: Directly Executable Constraint Based Grammars. Program-
mation en Logique Avec Contraintes. Journées Francophones de Programmation
Logique et par Contraintes 2004 - JFPLC 2004, Hermès (2004)

17. Estratat, M., Henocque, L.: Parsing Languages with a Configurator. In: European
Conference for Artificial Intelligence - ECAI 2004, Valencia (2004)

18. Van Rullen, T., Blache, P., Balfourier, J.-M.: Constraint-Based Parsing as an Ef-
ficient Solution: Results from the Parsing Evaluation Campaign EASy. In: 5th
International Conference on Language Resources and Evaluation - LREC 2006,
Genoa (2006)

19. Blache, P., Rauzy, S.: Mécanismes de Contrôle pour l’Analyse en Grammaires
de Propriétés. In: 13e Conférence sur le Traitement Automatique des Langues
Naturelles - TALN 2006, Leuven (2006)

20. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press (2009)

Reference-Set Constraints as Linear Tree
Transductions via Controlled Optimality Systems

Thomas Graf

Department of Linguistics,
University of California, Los Angeles

tgraf@ucla.edu
http://tgraf.bol.ucla.edu

Abstract. Reference-set constraints are a special class of constraints
used in Minimalist syntax. They extend the notion of well-formedness
beyond the level of single trees: When presented with some phrase struc-
ture tree, they compute its set of competing output candidates and deter-
mine the optimal output(s) according to some economy metric. Doubts
have frequently been raised in the literature whether such constraints
are computationally tractable [4]. I define a subclass of Optimality Sys-
tems (OSs) that is sufficiently powerful to accommodate a wide range of
reference-set constraints and show that these OSs are globally optimal
[5], a prerequisite for them being computable by linear tree transducers.
As regular and linear context-free tree languages are closed under linear
tree transductions, this marks an important step towards showing that
the expressivity of various syntactic formalisms is not increased by adding
reference-set constraints. In the second half of the paper, I demonstrate
the feasibility of the OS-approach by exhibiting an efficiently computable
OS for a prominent reference-set constraint, Focus Economy [10].

Keywords: Optimality Systems, Tree Transducers, Reference-Set Con-
straints, Transderivationality, Modeling.

1 Introduction

Out of all the items in a syntactician’s toolbox, reference-set constraints are
probably the most peculiar one. When handed some syntactic tree, a reference-
set constraint does not determine its well-formedness from inspection of the tree
itself. Instead, it constructs a reference set — a set containing a number of trees
competing against each other — and chooses the optimal candidate from said
set.

Consider Fewest Steps [1]. The reference set that this constraint constructs
for any given tree t consists of t itself and all the trees that were assembled from
the same lexical items as t. All the trees in the reference set are then ranked
by the number of movement steps that occurred during their assembly (this is
usually identical to the number of traces they contain), and the tree(s) with the
fewest instances of movement is (are) chosen as the winner. All other trees are
flagged as ungrammatical, including t if it did not emerge as a winner.

P. de Groote and M.-J. Nederhof (Eds.): Formal Grammar 2010/2011, LNCS 7395, pp. 97–113, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://tgraf.bol.ucla.edu

98 T. Graf

Another reference-set constraint is Focus Economy [10], which accounts for the
empirical fact that neutral stress is compatible with more discourse situations
than shifted stress. Take a look at the utterances in (1), where main stress
is indicated by bold face. Example (1a) can serve as an answer to various
questions, among others “What’s going on?” and “What did your neighbor buy?”.
Yet the virtually identical (1b), in which the main stress falls on the subject
rather than the object, is compatible only with the question “Who bought a
book?”. These contrasts indicate a difference as to which constituents may be
focused, i.e. can be interpreted as providing new information.

(1) a. My neighbor bought a book.
b. My neighbor bought a book.

Focus Economy derives the relevant contrast by stipulating that first, any con-
stituent containing the node carrying the sentential main stress can be focused,
and second, in a tree in which stress was shifted from the neutral position, a
constituent may be focused only if it cannot be focused in the original tree with
unshifted stress. In (1a), the object, the VP and the entire sentence can be fo-
cused, since these are the constituents containing the main stress carrier. In (1b),
the main stress is contained by the subject and the entire sentence, however, only
the former may be focused because focusing of the the latter is already a licit
option in the neutral stress counterpart (1a).

This esoteric behavior of reference-set constraints coupled with a distinct lack
of formal work on their properties has led to various conjectures that they are
computationally intractable [4]. In this paper, I refute these claims by showing
how reference-set constraints can be emulated by a new variant of Optimality
Systems (OSs), and I contend that this route paves the way for reference-set con-
straints to be implemented as finite-state devices; linear bottom-up tree trans-
ducers (lbutts), to be precise. Lbutts are of interest for theoretical as well as
practical purposes because both regular and linear context-free tree languages
are known to be closed under linear transductions, so applying a linear transducer
to a regular/linear context-free tree language yields a regular/linear context-free
tree language again. On a theoretical level, this provides us with new insights
into the nature of reference-set constraints, while on a practical level, it ensures
that adding reference-set constraints to a grammar does not jeopardize its com-
putability. I support my claim by exhibiting a formal model of Focus Economy
as an lbutt. My results shed new light on reference-set computation as well as
on Optimality Systems and should be of interest to readers from various formal
backgrounds, foremost computational phonology and Minimalist grammars.

The paper is laid out as follows: After the preliminaries section, which due
to space restrictions has to be shorter than is befitting, I give a brief introduc-
tion to OSs before introducing my own variant, controlled OSs, in Sec. 4. The
mathematical core results of this section are a new characterization of the im-
portant property of global optimality and a simplification of Jäger’s theorem [5]
regarding the properties of an OS that jointly ensure that it does not exceed the
power of linear tree transducers. In the last section, I show how to model Focus
Economy as such a restricted OS.

Reference-Set Constraints as Tree Transductions 99

2 Preliminaries and Notation

Let me introduce some notational conventions first. Given a relation R, its do-
main is denoted by dom(R), its range by ran(R). For any a ∈ dom(R), we let
aR := {b | 〈a, b〉 ∈ R}, unless R is a function, in which case aR = R(a). The
composition of two relations R and S is R ◦ S := {〈a, c〉 | 〈a, b〉 ∈ R, 〈b, c〉 ∈ S}.
The diagonal of some set A is id(A) := {〈a, a〉 | a ∈ A}.

Tree languages and tree transductions form an integral part of this paper, how-
ever, the technical machinery is mostly hidden behind the optimality-theoretic
front-end so that only a cursory familiarity with the subject matter is required.
Nevertheless the reader is advised to consult [3] and [7] for further details. I also
assume that the reader is knowledgeable about string languages and generalized
sequential machines.

Definition 1. A context-free tree grammar (CFTG) is defined to be a 4-tuple
G := 〈Σ, F, S, Δ〉, where Σ and F are disjoint, finite, ranked alphabets of termi-
nals and non-terminals, respectively, and S ∈ F is the start symbol. Furthermore,
Δ is a finite set of productions of the form F (x1, . . . , xn) → t, where F is of
rank n, and t is a tree with the node labels drawn from Σ ∪ F ∪ {x1, . . . , xn}.
A production is linear if each variable in its left-hand side occurs at most once in
its right-hand side. A CFTG is linear if each production is linear. A CFTG is a
regular tree grammar (RTG) if all non-terminals are of rank 0. A tree language
is regular iff it is generated by an RTG, and every regular tree language has a
context-free language as its string yield.

Definition 2. A bottom-up tree transducer is a 5-tuple A := 〈Σ, Ω, Q, Q′, Δ〉,
where Σ and Ω are finite ranked alphabets, Q is a finite set of states, and
Q′ ⊆ Q the set of final states. By Δ we denote a set of productions of the form
f(q1(x1), . . . , qn(xn)) → q(t(x1, . . . , xn)), where f ∈ Σ is of rank n, q1, . . . , qn, q ∈
Q, and t(x1, . . . , xn) is a tree with the node labels drawn from Ω ∪ {x1, . . . , xn}.
Definition 3. A top-down tree transducer is 5-tuple A := 〈Σ, Ω, Q, Q′, Δ〉,
where Σ, Ω and Q are as before, Q′ ⊆ Q is the set of initial states, and
all productions in Δ are of the form q(f(x1, . . . , xn)) → t, where f ∈ Σ
is of rank n, q ∈ Q and t is a tree with the node labels drawn from Ω ∪
{q(x) | q ∈ Q, x ∈ {x1, . . . , xn}}.
As with CFTGs, a production is linear if each variable in its left-hand side occurs
at most once in its right-hand side. A transducer is linear if each production is
linear. I denote a linear bottom-up/top-down tree transducer by lbutt/ltdtt.
The class of ltdtts is properly contained in the class of lbutts, which in turn
is closed under union and composition. The domain and the range of an lbutt
are both recognizable, i.e. regular tree languages. The relation τ induced by a
(linear) tree transducer is called a (linear) tree transduction. For a bottom-up
tree transducer, the graph of τ consists of pairs 〈s, t〉 such that s and t are Σ-
and Ω-labeled trees, respectively, and for some q ∈ Q′, q(t) can be obtained from
s by finitely many applications of productions δ ∈ Δ. The definition is almost

100 T. Graf

unchanged for top-down tree transducers, except that we require that t can be
obtained from q(s). In a slight abuse of terminology, I call a relation rational
iff it is a finite-state string transduction or a linear tree transduction. For any
recognizable tree language L, id(A) is a rational relation. Furthermore, both
regular string/tree languages and linear context-free tree languages are closed
under rational relations.

In Sec. 5.2, I make good use of L2
K,P [11], an incarnation of monadic second-

order logic (MSO) specifically designed for linguistic purposes. MSO is the ex-
tension of first-order logic with monadic second-order variables and predicates
as well as quantification over them such that the first-order variables represent
nodes in the tree and the second-order variables and predicates sets of nodes. A
set of finite strings/trees is definable in MSO iff it is regular. Specifics of L2

K,P

will be briefly introduced in the relevant section. See [11] for further background.

3 Traditional Perspective on Optimality Systems

OSs were introduced independently by [2] and [6] as a formalization of Opti-
mality Theory (OT). In OT, well-formed expressions are no longer derived from
underlying representations through iterated applications of string rewrite rules,
as was the case with SPE. Instead, underlying representations — which are usu-
ally referred to as inputs — are assigned a set of output candidates by a relation
called generator, abbreviated Gen. This set is subsequently narrowed down by
a sequence of constraints c1, . . . , cn until only the optimal output candidates
remain. This narrowing-down process proceeds in a fashion such that only the
candidates that incurred the least number of violations of constraint ci are taken
into account for the evaluation of ci+1. Thus every constraint acts as a (violable)
filter on the set of output candidates, with the important addendum that the
order in which the filters are applied is crucial in determining optimality.

Consider the example in Fig. 1, which depicts an OT evaluation of output
candidates using the tableau notation. Here some input i is assigned three output
candidates o1, o2 and o3. The OT grammar uses only three constraints c1, c2

and c3. Constraint c1 is applied first. Candidates o2 and o3 each violate it once,
however, o1 violates it twice. Thus o2 and o3 are the output candidates incurring
the least number of violations of the constraint and are allowed to proceed to
the next round of the evaluation. Candidate o1, on the other hand, is ruled out
and does not participate in further evaluations. Neither o2 nor o3 violate c2 (nor
does o1, but this is immaterial since it has previously been discarded), so neither
is filtered out. In the third round, o2 and o3 are evaluated with respect to c3.
Each of them violates the constraint once, but since there is no candidate that
fares better than them (again, o1 is not taken into consideration anymore), they
also survive this round of the evaluation. Thus, o2 and o3 are the optimal output
candidates for i. If c3 had been applied before c1, on the other hand, o2 and o3

would lose out against o1.
With this intuitive understanding of OT grammars under our belt, the for-

mal definitions of OSs and their output language (not to be confused with the
candidate language ran(Gen)) are straight-forward.

Reference-Set Constraints as Tree Transductions 101

i c1 c2 c3

o1 2 0 0
o2 1 0 1
o3 1 0 1

Fig. 1. Example of an OT evaluation in tableau notation

Definition 4. An optimality system over languages L and L′ is a pair O :=
〈Gen, C〉 with Gen ⊆ L × L′ and C := 〈c1, . . . , cn〉 a linearly ordered sequence
of functions ci : Gen → N. For a, b ∈ Gen, a <O b iff there is a 1 ≤ k ≤ n such
that ck(a) < ck(b) and for all j < k, cj(a) = cj(b).

Definition 5. Given an optimality system O := 〈Gen, C〉, 〈i, o〉 is optimal with
respect to O iff both 〈i, o〉 ∈ Gen and there is no o′ such that 〈i, o′〉 ∈ Gen and
〈i, o′〉 <O 〈i, o〉. The output language of O is ran({〈i, o〉 | 〈i, o〉 is optimal with
respect to O}).

The important insight of [2] as well as [6], which was later improved upon by [5,
7, 13], is that an OS as defined above can be understood to define a transduction
from a set of inputs to its set of optimal output candidates. Moreover, if the OS
is suitably restricted, it is guaranteed to define a rational relation, which implies
its efficient computability.

Theorem 6. Let O := 〈Gen, C〉 be an OS such that

– dom(Gen) is a regular string language, or a regular/linear context-free tree
language, and

– Gen is a rational relation, and
– all c ∈ C are output-markedness constraints, and
– each c ∈ C defines a rational relation on ran(Gen), and
– O is globally optimal.

Then the transduction τ induced by the OS is a rational relation and ran(τ)
belongs to the same formal language class as dom(τ).

As the reader might have guessed, the use of τ here is carried over straight-
forwardly from tree transducers, meaning that τ := {〈i, o〉 | 〈i, o〉 is optimal with
respect to O}. The theorem also makes reference to two notions we have not
encountered yet at all, output-markedness and global optimality. The former is
easily defined.

Definition 7. Given an OS O := 〈Gen, C〉, c ∈ C is an output-markedness
constraint iff c(〈i, o〉) = c(〈i′, o〉) for all 〈i, o〉 , 〈i′, o〉 ∈ Gen.

Global optimality, on the other hand, requires a lot of finite-state machinery to
be in place before it can be made formally precise, which would lead us off track
here. For our purposes it is sufficient to know that an OS is globally optimal
iff for every optimal output candidate o it holds that there is no input i such
that o is an output candidate for i but not an optimal one. The curious reader
is referred to [5] for a more rigorous definition.

102 T. Graf

4 Controlled Optimality Systems

OSs are perfectly capable of modeling reference-set constraints. The reference
set for any input i is defined by iGen, and the evaluation metric can straightfor-
wardly be implemented as a sequence of constraints. Fewest Steps, for instance,
can be viewed as an OS in which a tree t is related by Gen to all the trees
that were constructed from the same lexical items as t, including t itself. Besides
that, the OS has only one constraint ∗

Trace, which punishes traces. As a con-
sequence, only the trees with the least number of traces will be preserved, and
these are the optimal output candidates for t. While this short example shows
that OSs can get the job done, the way output candidates are specified for
reference-set constraints actually relies on additional structure — the reference
sets — that is only indirectly represented by Gen. In the following I introduce
controlled OSs as a variant of standard OSs that is closer to reference-set com-
putation by making reference sets prime citizens of OSs and demoting Gen to
an ancillary relation that is directly computed from them.

We observe first that many reference-set constraints allow for distinct inputs
to be assigned the same reference set. Hence it makes sense to map entire sets
of inputs to reference sets, rather than the individual inputs themselves. Let us
call such a set of inputs a reference type. An OS can then be defined by reference
types and a function mapping them to reference sets:

Definition 8 (Controlled Optimality Systems). An F -controlled optimal-
ity system over languages L, L′ is a 4-tuple O[F] := 〈Gen, C, F , γ〉, where

– Gen and C are defined as usual,
– F is a family of non-empty subsets of L, each of which we call a reference

type,
– the control map γ : F → ℘(L′) \ {∅} associates every reference type with a

reference set, i.e. a set of output candidates,
– the following conditions are satisfied

• exhaustivity:
⋃

X∈F X = L
• bootstrapping: xGen =

⋃
x∈X∈F Xγ

Every controlled OS can be translated into a canonical OS by discarding its
third and fourth component (i.e. F and the control map γ). In the other di-
rection, a controlled OS can be obtained from every canonical OS by setting
F := {{i} | i ∈ L} and γ : {i} �→ iGen. So the only difference between the two
is that controlled OSs modularize Gen by specifying it through reference types
and the control map.

Now that OSs operate (at least partially) at the level of sets, it will often
be interesting to talk about the set of optimal output candidates assigned to
some reference type, rather than one particular input. But whereas the set of
optimal output candidates is always well-defined for inputs — for any input i
this set is given by iτ — we have to be more careful when lifting it to reference
types, because distinct inputs that belong to the same reference type may not
necessarily be assigned the same optimal output candidates. Such a situation

Reference-Set Constraints as Tree Transductions 103

might arise in OSs with faithfulness or input-markedness constraints, which are
sensitive to properties of the input, or when two inputs i and j are of reference
type X , but in addition j is also of reference type Y . Given this ambiguity, one
has to distinguish between the set of output candidates that are optimal for at
least one member of reference type X , and the set of output candidates that are
optimal for all members of reference type X . The former is the up-transduction
Xτ↑ :=

⋃
x∈X xτ , the latter the down-transduction Xτ↓ :=

⋂
x∈X xτ .

At this point it might be worthwhile to work through a simple example.
Fig. 2 on the following page depicts a controlled OS and the distinct steps of
its computation. We are given a collection of reference types consisting of
Red := {i1, i2, i3, i4, i5, i6}, Sienna := {i4}, Teal := {i5, i6, i7}, Purple :=
{i8}, and Lime := {i7, i9, i10}. The reference sets are Blue := {o1, o2, o3},
Orange := {o3, o4, o5, o6, o7}, Green := {o6, o7}, and Brown := {o8, o9}.
Finally, the graph of γ consists of the pairs 〈Red,Blue〉, 〈Sienna,Brown〉,
〈Teal,Green〉, 〈Purple,Brown〉, and 〈Lime,Orange〉. Note that a refer-
ence type may overlap with another reference type or even be a proper subset of
it, and the same holds for reference sets. This means that an input can belong
to several reference types at once. Consequently, xGen may be a superset of
Xγ for every reference type X that contains x, as is the case for i4, say, but
not for i7, even though both are assigned exactly two reference types. Input i4 is
related by Gen to all outputs contained in Redγ∪Siennaγ = Blue∪Brown =
{o1, o2, o3, o8, o9}, whereas i7 is related to Limeγ∪Tealγ = Orange∪Green =
Orange = {o3, o4, o5, o6, o7}. As soon as Gen has been determined from the
reference types and the control map, the computation proceeds as usual with
the constraints of the OS filtering out all suboptimal candidates.

Interestingly, almost all reference-set constraints fall into two classes with
respect to how reference types and reference sets are distributed. In the case
of Fewest Steps, where the input language is also the candidate language, each
reference type is mapped to itself, that is to say, there is no distinction between
reference types and reference sets. A constraint like Focus Economy, on the
other hand, requires not only the input language and the candidate language to
be disjoint, but also all reference sets and reference types. A natural unification
of these two subclasses is available in the form of output joint preservation.

Definition 9. An F-controlled optimality system is output joint preserving iff
for all distinct X, Y ∈ F , Xγ ∩ Y γ = ∅ → X ∩ Y = ∅.

The OS depicted in Fig. 2 on the next page fails output joint preservation. It is
clearly violated by Sienna and Purple, which are disjoint yet mapped to the
same reference set, Brown. It isn’t respected by Red and Lime, either, which
are mapped to Blue and Orange, respectively, the intersection of which is
non-empty even though Red and Lime are disjoint.

Output joint preservation is certainly general enough a property to encompass
the kinds of controlled OSs we are interested in. In the following, I show that
it is also sufficiently restrictive to establish a link to the crucial notion of global
optimality.

104 T. Graf

i9 c1 c2 c3

o1 1 3 2
o2 0 0 3
o3 2 0 0
o8 0 0 3
o9 0 1 0

i7 c1 c2 c3

o1 1 3 2
o2 0 0 3
o3 2 0 0
o8 0 0 3
o9 0 1 0

i1 i2 i3

i4

i5 i6
i7

i8

i9
i10

o1 o2 o3

o4

o5
o6

o7

o8

o9

Reference Types Reference Sets

Evaluation Output Language

i4 c1 c2 c3

o1 1 3 2
o2 0 0 3
o3 2 0 0
o8 0 0 3
o9 0 1 0

o2

o4

o6

o7

o8

yi
eld

s

yields

Fig. 2. Example of a controlled OS. Gen is defined in a modular fashion using reference
types, reference sets, and the control map γ from reference types to reference sets.

Definition 10. An F-controlled OS is type-level optimal iff Xτ↑ � Xγ = Xτ↓ �
Xγ for all X ∈ F .

Lemma 11. Let O[F] an F-controlled OS. Then O[F] is type-level optimal only
if it is globally optimal.

Proof. We prove the contrapositive. If O[F] is not type-level optimal, then it
holds for some X ∈ F that Xτ↑ � Xγ = Xτ↓ � Xγ. But this implies that
there are x, y ∈ X and z ∈ Xγ such that xτ � z /∈ yτ , which is an unequivocal
violation of global optimality. ��
Theorem 12. Every output joint preserving OS is type-level optimal iff it is
globally optimal.

Proof. The right-to-left direction follows from Lemma 11. We prove the contra-
positive of the other direction. If O[F] fails global optimality, then there are
x, y ∈ L and z ∈ L′ such that 〈x, z〉 , 〈y, z〉 ∈ Gen yet xτ � z /∈ yτ . W.l.o.g.
let x ∈ X and y ∈ Y , X, Y ∈ F , whence z ∈ Xγ ∩ Y γ. As O[F] is output
joint preserving, Xγ ∩ Y γ = ∅ entails X ∩ Y = ∅. Pick some p ∈ X ∩ Y . Now
if O[F] is type-level optimal, then it holds that Xτ↑ � Xγ = Xτ↓ � Xγ and
Y τ↑ � Y γ = Y τ↓ � Y γ, so z ∈ xτ implies z ∈ pτ , whereas z /∈ yτ implies z /∈ pτ .
Contradiction. It follows that O[F] is not type-level optimal. ��

Reference-Set Constraints as Tree Transductions 105

Intuitively, type-level optimality ensures that optimality is fixed for entire refer-
ence types, so the individual inputs can be ignored for determining optimality.
However, it is too weak a restriction to rule out disagreement between reference
types that are mapped to overlapping reference sets, so output joint preserva-
tion has to step in; it guarantees that if two reference types X and Y share
at least one output candidates, there exists some input p belonging to both X
and Y that will be faced by conflicting requirements if X and Y disagree with
respect to which candidates in Xγ ∩ Y γ they deem optimal (since the OS is
type-level optimal, optimality can be specified for entire reference types rather
than their members). It should be easy to see that the conditions jointly imply
global optimality.

Given our interest in using controlled OS to investigate the computability
of reference-set constraints, it would be advantageous if we could read off the
constraints right away whether they yield type-level optimality. This is indeed
very easy to do thanks to the following entailment.

Lemma 13. Let O[F] := 〈Gen, C, F , γ〉 an F-controlled OS such that every
c ∈ C is an output-markedness constraint. Then O[F] is type-level optimal.

Proof. Assume the opposite. Then for some X ∈ F , Xτ↑ � Xγ = Xτ↓ � Xγ,
whence there are x, y ∈ X and z ∈ Xγ with xτ � z /∈ yτ . But this is the case
only if there is some c ∈ C such that c(〈x, z〉) = c(〈y, z〉), i.e. c isn’t an output-
markedness constraint. ��
Corollary 14. Let O[F] := 〈Gen, C, F , γ〉 an output joint preserving OS such
that every c ∈ C is an output-markedness constraint. Then O[F] is globally
optimal.

Combining these results, we arrive at the equivalent of Thm. 6 for F -controlled
OSs.

Corollary 15. Let O[F] := 〈Gen, C, F , γ〉 an F-controlled OS such that

– dom(Gen) is a regular string language, or a regular/linear context-free tree
language, and

– Gen is a rational relation, and
– all c ∈ C are output-markedness constraints, and
– each c ∈ C defines a rational relation on ran(Gen), and
– O[F] is output joint preserving.

Then the transduction τ induced by the OS is a rational relation and ran(τ)
belongs to the same formal language class as dom(τ).

In sum, then, not only do output joint preserving OSs look like a solid base for
modeling reference-set constraints, they also have the neat property that the
global optimality check is redundant, thanks to Lem. 13. As it is pretty easy to
determine for any given reference-set constraint whether it can be modeled by
output-markedness constraints alone, the decisive factor in their implementation
are the transducers for the constraints and Gen. If those transducers each define
a rational relation, so does the entire optimality system.

106 T. Graf

5 Application to Reference-Set Computation

5.1 Focus Economy Explained

Focus Economy [10] was briefly discussed in the introduction. It is invoked in
order to account for the fact that sentences such as (2a), (2b) and (2c) below
differ with respect to what is given and what is new information. Once again
main stress is marked by boldface.

(2) a. My friend bought a red car.
b. My friend bought a red car.
c. My friend bought a red car.

That these utterances are associated to different information structures is wit-
nessed by the fact that for instance only (2a) is compatible with the question
“What happened?”.

The full-blown Focus Economy system (rather than the simplified sketch given
in the introduction) accounts for the data as follows. First, the Main Stress Rule
demands that in every pair of sister nodes, the “syntactically more embedded”
node [10, p.133] is assigned strong stress, its sister weak stress (marked in the
phrase structure tree by subscripted S and W, respectively). If a node has no
sister, it is always assigned strong stress (in Minimalist syntax, this will be the
case only for the root node, as all Minimalist trees are strictly binary branching).
Main stress then falls on the unique leaf node that is connected to the root node
by a path of nodes that have an S-subscript. See Fig. 3 for an example.

TPS

DPW

myW friendS

T′
S

TW VPS

boughtW DPS

aW D′
S

redW carS

Fig. 3. The stress-annotated phrase structure tree for (2a)

The notion of being syntactically more embedded isn’t explicitly defined in
the literature. It is stated in passing, though, that “. . . main stress falls on the
most embedded constituent on the recursive side of the tree” [10, p.133]. While
this is rather vague, it is presumably meant to convey that, at least for English,
in which complements follow the heads they are introduced by, the right sister
node is assigned strong stress as long as it isn’t an adjunct. This interpretation
seems to be in line with the empirical facts.

Reference-Set Constraints as Tree Transductions 107

The second integral part of the proposal is the operation Stress Shift, which
shifts the main stress to some leaf node n by assigning all nodes on the path
from n to the root strong stress and demoting the sisters of these nodes to
weakly stressed nodes. For instance, the tree for “My friend bought a red car”
is obtained from the tree in Fig. 3 by changing myW and friendS to myS and
friendW , respectively, and DPW and T′

S to DPS and T′
W , respectively.

While Stress Shift could be invoked to move stress from anaphoric elements
to their left sister as in (3), this burden is put on a separate rule, for inde-
pendent reasons. The rule in question is called Anaphoric Destressing and obli-
gatorily assigns weak stress to anaphoric nodes, where a node is anaphoric iff
it is “. . . D[iscourse]-linked to an accessible discourse entity” [10, p.147]. Thus
Anaphoric Destressing not only accounts for the unstressed anaphor in (3), but
also for the special behavior of stress in cases of parallelism.

(3) John killed her.

(4) First Paul bought a red car.

a. Then John bought one.

b. * Then John bought one.

The overall system now works as follows. Given a phrase structure tree that
has not been annotated for stress yet, one first applies Anaphoric Destressing
to make sure that all d-linked constituents are assigned weak stress and thus
cannot carry main stress. Next the Main Stress Rule is invoked to assign every
node in the tree either W or S. Note that the Main Stress Rule cannot overwrite
previously assigned labels, so if some node n has been labeled W by Anaphoric
Destressing, the Main Stress Rule has to assign S to the sister of n. Now that
the tree is fully annotated, we compute its focus set, the set of constituents that
may be focused.

(5) Focus Projection
Given some stress-annotated tree t, its focus set is the set of nodes re-
flexively dominating the node carrying main stress.

The focus set of “My friend bought a red car”, for instance, contains [car], [.D′

red car], [.DP a red car], [.VP bought a red car] and [.TP My friend bought a
red car]. For “Then John bought one”, on the other hand, it consists only of
[John] and [.TP Then John bought one].

At this point, Stress Shift may optionally take place. After the main stress
has been shifted, however, the focus set has to be computed all over again, and
this time the procedure involves reference-set computation.

(6) Focus Projection Redux
Given some stress-annotated tree t′ that was obtained from tree t by
Stress Shift, the focus set of t′ contains all the nodes reflexively domi-
nating the node carrying main stress which aren’t already contained in
the focus set of t.

108 T. Graf

So if “Then John bought one” had been obtained by Stress Shift from [.TP Then
John bought one] rather than Anaphoric Destressing, its focus set would have
contained only [John], because [.TP Then John bought one] already belongs
to the focus set of “Then John bought one”. As an easy exercise, the reader
may want to draw annotated trees for the examples in (2) and compute their
focus sets.

5.2 A Model of Focus Economy

After this general overview, the time has come to formalize Focus Economy. In
order to precisely model Focus Economy, though, I have to make some simplify-
ing assumptions, for reasons that are entirely independent from the restrictions
of OSs. First, I stipulate that adjuncts are explicitly marked as such by a sub-
script A on their label. This is simply a matter of convenience, as it reduces
the complexity of the transducers and makes my model independent from the
theoretical status of adjuncts in syntax.

Second, I decided to take movement out of the picture, because the interac-
tion of focus and movement is not touched upon in [10], so there is no original
material to formalize. Incidentally, movement seems to introduce several inter-
esting complications (e.g. mandatory main stress for topicalized constituents).
The end of this section contains a brief discussion as to whether my model can
be extended to capture theories involving movement.

The last simplification concerns Anaphoric Destressing. While the destress-
ing of pronominal (and possibly covert) elements is easy to accommodate, the
invoked notion of d-linking is impossible to capture in any model that oper-
ates on isolated syntactic trees. Devising a working model of discourse struc-
ture vastly exceeds the scope of this contribution. Also, the role of d-linking in
anaphoric destressing is of little importance to this paper, which focuses on the
reference-set computational aspects of Focus Economy. Thus my implementation
will allow almost any constituent to be anaphorically distressed and leave the
task of matching trees to appropriate discourse contexts to an external theory
of d-linking that remains to be specified.

With these provisions made explicit, the formalization of Focus Economy as
a controlled OS can commence. The input language is supposedly derived by
some movement-free Minimalist grammar E for English [12] in which interior
nodes are given explicit category labels (once more for the sake of convenience).
As Minimalist grammars without remnant movement generate regular tree lan-
guages [8], it is safe to assume that Minimalist grammars without any kind of
movement do so, too.

Next I define Gen as the composition of four linear transducers corresponding
to Anaphoric Distressing, the Main Stress Rule, Stress Shift, and Focus Projec-
tion, respectively. Given a tree t derived by E , the transducer cascade computes
all logically possible variants of t with respect to stress assignment and then
computes the focus in a local way. This means that Gen actually overgenerates
with respect to focus, a problem that we have to take care of at a letter step.

Reference-Set Constraints as Tree Transductions 109

Anaphoric Distressing is modeled by a non-deterministic ltdtt that may ran-
domly add a subscript D to a node’s label in order to mark it as anaphoric. The
only condition is that if a node is labeled as anaphoric, all the nodes it properly
dominates must be marked as such, too.

Definition 16. Let Σ := ΣL ∪ ΣA be the vocabulary of the Minimalist gram-
mar E that generated the input language, where ΣL contains all lexical items
and category labels and ΣA their counterparts explicitly labeled as adjuncts.
Anaphoric Destressing is the ltdtt D where ΣD := Σ, ΩD is the union of Σ
and ΣD := {σD | σ ∈ Σ}, Q := {qi, qd}, Q′ := {qi}, and ΔD contains the rules
below, with σ ∈ Σ and σD ∈ ΣD and α{x,y} to be read as “αx or αy”:

qi(σ(x, y)) → σ(qi(x), qi(y)) qi(σ) → σ

q{i,d}(σ(x, y)) → σD(qd(x), qd(y)) q{i,d}(σ) → σD

The transducer for the Main Stress Rule is non-deterministic, too, but it proceeds
in a bottom-up manner. It does not alter nodes subscripted by A or D, but if
it encounters a leaf node without a subscript, it randomly adds the subscript S
or W to its label. However, W is allowed to occur only on left sisters, whereas S
is mostly restricted to right sisters and may surface on a left sister just in case
the right sister is already marked by A or D. Note that we could easily define
a different stress pattern, maybe even parametrized with respect to category
labels, to incorporate stress assignment rules from other languages.

Definition 17. Main Stress is the lbutt M where ΣM := ΩD, ΩM is the union
of Σ, ΣD and Σ∗ := {σS , σW | σ ∈ Σ}, Q := {qs, qu, qw}, Q′ := {qs} and ΔM
contains the following rules, with σ ∈ Σ, σA ∈ ΣA, σx ∈ {σx | σ ∈ Σ} for
x ∈ {D, S, W}, and αa...z(βa′...z′ , . . . , ζa′′,...,z′′) to be read as “αa(βa′ , . . . , ζa′′) or
. . . or αz(βz′ , . . . , ζz′′)”:

σA → qu(σA) σA(qu(x), qu(y)) → qu(σA(x, y))
σD → qu(σD) σD(qu(x), qu(y)) → qu(σD(x, y))

σ → qsw(σSW) σ(q{u,w}(x), qs(y)) → qsw(σSW (x, y))
σ(qs(x), qu(y)) → qsw(σSW (x, y))

Stress Shift is best implemented as a non-deterministic ltdtt that may randomly
switch the subscripts of two S/W-annotated sisters.

Definition 18. Stress Shift is the ltdtt S where ΣS = ΩS = ΩM, Q :=
{qi, qs, qw}, Q′ := {qs}, and ΔS contains the rules below, with σ ∈ ΣS and
σ∗ ∈ Σ∗:

qs(σ∗(x, y)) → σSSS(qisw(x), qiws(y)) qs(σ∗) → σS

qw(σ∗(x, y)) → σW (qi(x), qi(y)) qw(σ∗) → σW

qi(σ(x, y)) → σ(qi(x), qi(y)) qi(σ) → σ

The last component is Focus Projection, a non-deterministic ltdtt with two
states, qf and qg. The transducer starts at the root in qf . Whenever a node

110 T. Graf

n is subscripted by W, the transducer switches into qg at this node and stays
in the state for all nodes dominated by n. As long as the transducer is in qf , it
may randomly add a superscript F to a label to indicate that it is focused. Right
afterward, it changes into qg and never leaves this state again. Rather than as-
sociating a stress-annotated tree with a set of constituents that can be focused,
Focus Projection now generates multiple trees that differ only with respect to
which constituent along the path of S-labeled nodes is focus-marked.

Definition 19. Focus Projection is the ltdtt F , where ΣF = ΩS , ΩF is the
union of ΩS and ΩF

S := {ωF | ω ∈ ΩS}, Q := {qf , qg}, Q′ := {qf}, and ΔF
contains the rules below, with σ ∈ ΣF and σS ∈ ΣF \ {σS | σ ∈ Σ}:

qf (σS(x, y)) → σS(qf (x), qf (y))

qf (σS(x, y)) → σF
S (qg(x), qg(x)) qf (σS) → σF

S

qf (σS(x, y)) → σS(qg(x), qg(x)) qf (σS) → σS

qg(σ(x, y)) → σ(qg(x), qg(y)) qg(σ) → σ

All four transducers are linear, whence they can be composed into a single lin-
ear transducer modeling Gen. Expanding on what was said above about the
inner workings of Gen, we now see that for any tree t in the input language,
tGen is the set of stress-annotated trees in which, first, some subtrees may be
marked as adjuncts or anaphorical material (or both) and thus do not carry
stress information, second, there is exactly one path from the root to some leaf
such that every node in the path is labeled by S, and third, exactly one node
belonging to this path is marked as focused. The reader should have no problem
verifying that in terms of controlled OSs, all reference types are singleton and
their reference-sets do not overlap, i.e. output joint preservation and type-level
optimality are satisfied.

Now it only remains for us to implement Focus Projection Redux. In the
original account, Focus Projection Redux applied directly to the output of Stress
Shift, i.e. trees without focus information, and the task at hand was to assign
the correct focus. In my system, on the other hand, every tree is fed into Focus
Projection and marked accordingly for focus. This leads to overgeneration for
trees in which Stress Shift has taken place — a node may carry focus even if
it could also do so in the tree without shifted main stress. Consequently, the
focus set of “John died”, for instance, turns out to contain both [John] and
[.TP John died] rather than just the former. Under my proposal, then, Focus
Projection Redux is faced with the burden of filtering out focus information
instead of assigning it. In other words, Focus Projection Redux is a constraint.
This is accomplished by defining a regular tree language Lc such that when
Gen is composed with the diagonal of Lc (which is guaranteed to be a linear
transduction), only trees with licit focus marking are preserved; said regular
language is easily specified in the monadic second-order logic L2

K,P [11].
First one defines two predicates, StressPath and FocusPath. The former picks

out the path from the root to the leaf carrying main stress, whereas the latter
refers to the path from the root to the leaf that would carry main stress in

Reference-Set Constraints as Tree Transductions 111

the absence of stress shift. This implies that FocusPath replicates some of the
information that is already encoded in the Main Stress transducer. Note that in
the definitions below, A(x), D(x) and S(x) are predicates picking out all nodes
with subscript A, D, S, respectively, x � y denotes “x is the parent of y”, x ≺ y
“x is the left sibling of y”, and �∗ the reflexive transitive closure of �.

Path(X) ↔ ∃x
[
X(x) ∧ ¬∃y[y � x]

]
∧ ∃!x

[
X(x) ∧ ¬∃y[x � y]

]
∧

∀x, y, z
[(

X(x) ∧ X(y) → x �∗ y ∨ y �∗ x
) ∧ (

X(x) ∧ ¬X(z) → ¬(z �∗ x)
)]

StressPath(X) ↔ Path(X) ∧ ∀x[X(x) → S(x)]

FocusPath(X) ↔ Path(X) ∧ ∀x, y, z
[
X(x) ∧ x � y ∧ x � z →(

(A(y) ∨ D(y)) → X(z)
) ∧ (¬A(y) ∧ ¬D(y) ∧ y ≺ z → X(z)

)]
In a tree where no stress shift has taken place, StressPath and FocusPath are true
of the same subsets and any node contained by them may be focused. After an
application of the Stress Shift rule, however, the two paths are no longer identical,
although their intersection is never empty (it has to contain at least the root
node). In this case, then, the only valid targets for focus are those nodes of the
StressPath that are not contained in the FocusPath. This is formally expressed
by the L2

K,P sentence φ below. Just like A(x), D(x) and S(x) before, F (x) is a
predicate defining a particular set of nodes, this time the set of nodes labeled by
some ωF ∈ ΩF

S . I furthermore use X ≈ Y as a shorthand for ∀x[X(x) ↔ Y (x)].

φ := ∀x, X, Y [F (x)∧X(x)∧StressPath(X)∧FocusPath(Y) → (Y (x) → X ≈ Y)]

Note that φ by itself does not properly restrict the distribution of focus. First
of all, there is no requirement that exactly one node must be focused. Second,
nodes outside StressPath may carry focus, in which case no restrictions apply to
them at all. Finally, StressPath and FocusPath may be empty, because we have
not made any assumptions about the distribution of labels. Crucially, though,
φ behaves as expected over the trees in the candidate language. Thus taking
the diagonal of the language licensed by φ and composing it with Gen filters
out all illicit foci, and only those. Since the diagonal over a regular language
is a linear transduction, the transduction obtained by the composition is too.
This establishes the computational feasibility of Focus Economy when the input
language is a regular tree language.

So far I have left open the question, though, how movement fits into the pic-
ture. First of all, it cannot be ruled out a priori that the interaction of movement
and focus are so intricate on a linguistic level that significant modifications have
to be made to the original version of Focus Economy. On a formal level, this
would mean that the transduction itself would have to be changed. In this case,
it makes little sense to speculate how my model could be extended to accom-
modate movement, so let us instead assume that Focus Economy can remain

112 T. Graf

virtually unaltered and it is only the input language that has to be modified. In
my model, the input language is a regular tree language by virtue of being gen-
erated by a Minimalist grammar without movement. But note that Minimalist
grammars with movement generate regular tree languages, too, in the presence
of a ban against more exotic kinds of movement such as remnant movement or
head movement [8]. Thus the restriction to regular tree languages itself does not
preclude us from accommodating most instances of movement.1

6 Conclusion

I have shown that despite claims to the contrary, reference-set constraints aren’t
computationally intractable. Controlled OSs were introduced as a formal model
for reference-set constraints. I gave a new characterization of global optimality
for the subclass of output joint preserving OSs, which is general enough to ac-
commodate most reference-set constraints. The shift in perspective induced by
controlled OSs made it apparent that out of the five conditions that jointly guar-
antee for an OS to stay within the limits of linear tree transductions, three are
almost trivially satisfied by reference-set constraints, with the only problematic
areas being the power of Gen and the rankings induced by the constraints on the
range of Gen. A model of a prominent reference-set constraint, Focus Economy,
showed that at least for some constraints those point aren’t problematic, either.
These new results suggest that reference-set constraints are significantly better
behaved than is usually believed.

Acknowledgements. I am greatly indebted to Ed Stabler, Ed Keenan and
Uwe Mönnich as well as the two anonymous reviewers for their motivational
comments and helpful criticism. The research reported herein was supported by
a DOC-fellowship of the Austrian Academy of Sciences.

References

[1] Chomsky, N.: The Minimalist Program. MIT Press, Cambridge (1995)
[2] Frank, R., Satta, G.: Optimality theory and the generative complexity of con-

straint violability. Computational Linguistics 24, 307–315 (1998)
[3] Gécseg, F., Steinby, M.: Tree Automata. Academei Kaido, Budapest (1984)
[4] Johnson, D., Lappin, S.: Local Constraints vs. Economy. CSLI, Stanford (1999)

1 If we want the full expressive power of Minimalist grammars, then the best strategy
is to express Focus Economy as a constraint over derivation trees, since for every
Minimalist grammar the set of derivation trees it licenses forms a regular language
that fully determines the tree yield of the grammar [9]. The only difference between
Minimalist derivation trees and movement-free phrase structure trees as derived
above is that the latter are unordered. Hence, if we require that linear order (which
can be easily determined from the labels of the leaves) is directly reflected in the
derivation trees, the formalization above carries over unaltered to derivation trees
and may be extended as desired to deal with instances of movement.

Reference-Set Constraints as Tree Transductions 113

[5] Jäger, G.: Gradient constraints in finite state OT: The unidirectional and the bidi-
rectional case. In: Kaufmann, I., Stiebels, B. (eds.) More than Words. A Festschrift
for Dieter Wunderlich, pp. 299–325. Akademie Verlag, Berlin (2002)

[6] Karttunen, L.: The proper treatment of optimality in computational phonology
(1998); manuscript, Xerox Research Center Europe

[7] Kepser, S., Mönnich, U.: Closure properties of linear context-free tree languages
with an application to optimality theory. Theoretical Computer Science 354, 82–97
(2006)

[8] Kobele, G.M.: Without Remnant Movement, mGs are Context-Free. In: Ebert, C.,
Jäger, G., Michaelis, J. (eds.) MOL 10. LNCS, vol. 6149, pp. 160–173. Springer,
Heidelberg (2010)

[9] Kobele, G.M., Retoré, C., Salvati, S.: An automata-theoretic approach to mini-
malism. In: Rogers, J., Kepser, S. (eds.) Model Theoretic Syntax at 10, pp. 71–80
(2007); Workshop Organized as Part of the Europen Summer School on Logic,
Language and Information (ESSLLI 2007), Dublin, Ireland, August 6-17 (2007)

[10] Reinhart, T.: Interface Strategies: Optimal and Costly Computations. MIT Press,
Cambridge (2006)

[11] Rogers, J.: A Descriptive Approach to Language-Theoretic Complexity. CSLI,
Stanford (1998)

[12] Stabler, E.P., Keenan, E.: Structural similarity. Theoretical Computer Science 293,
345–363 (2003)

[13] Wartena, C.: A note on the complexity of optimality systems. In: Blutner, R.,
Jäger, G. (eds.) Studies in Optimality Theory, pp. 64–72. University of Potsdam,
Potsdam (2000)

Hyperintensional Dynamic Semantics�

Analyzing Definiteness with Enriched Contexts

Scott Martin and Carl Pollard

Department of Linguistics
Ohio State University Columbus, OH 43210 USA
{scott,pollard}@ling.ohio-state.edu

Abstract. We present a dynamic semantic theory formalized in higher
order logic that synthesizes aspects of de Groote’s continuation-based
dynamics and Pollard’s hyperintensional semantics. In this theory, we
rely on an enriched notion of discourse context inspired by the work of
Heim and Roberts. We show how to use this enriched context to improve
on de Groote’s treatment of English definite anaphora by modeling it as
presupposition fulfillment.

Keywords: discourse, context, presupposition, definite anaphora, higher
order logic.

1 Introduction

As Muskens [14,15] showed, many of the insights of dynamic semantic theo-
ries such as Kamp’s discourse representation theory (DRT, [9,10]) and Heim’s
file change semantics (FCS, [6,7]) can be formalized within the well-understood
framework of classical higher order logic (HOL) of Church [1], Henkin [8], and
Gallin [2] that is familiar to Montague semanticists. Also working within HOL,
de Groote [4] showed that the description of context update could be stream-
lined by modeling right contexts by analogy with the continuations employed in
programming language semantics [27].

Though both Muskens’ and de Groote’s work are positive developments in
the sense of helping to integrate dynamic notions into mainstream semantic the-
ory, both fall short in modeling how definite anaphora works in discourse, which
was one of the two central problems that Kamp and Heim originally set out to
solve. (The other was to characterize the novelty of indefinite descriptions.) For
Muskens, definite pronouns are simply ambiguous with respect to which accessi-
ble and sortally appropriate discourse referent they ‘pick up’. The trouble with
this theory is that, empirically, definite anaphora is generally not ambiguous; if
it were, it would fail to serve its communicative purpose.

� For advice and clarifying discussion, we are especially grateful to Craige Roberts,
E. Allyn Smith, Michael White, to our comrades in the Ohio State Logic, Lan-
guage, Information and Computation discussion group, and to the participants of
the CAuLD Workshop on Logical Methods for Discourse.

P. de Groote and M.-J. Nederhof (Eds.): Formal Grammar 2010/2011, LNCS 7395, pp. 114–129, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Hyperintensional Dynamic Semantics 115

De Groote fares no better. On his account, the antecedent of a pronoun is
picked out by an oracular choice function sel from among the sortally correct
candidate entities (de Groote does not have discourse referents as distinct from
entities in his theory). At first one might think the weakness of this account is
that it doesn’t tell us anything about what choice function this oracle actually is.
But in fact it is worse than that, because it is easy to show that no choice function
is the right one. That is because, in general, the antecedent of a definite pronoun
fails to be uniquely determined by the set of sortally appropriate candidate
entities. Consider, e.g., the following two narratives:

(A) 1. A donkey and a mule walked in.

2. The donkey was sad.

3. It brayed.

(B) 1. A donkey and a mule walked in.

2. The mule was sad.

3. It brayed.

In both (A) and (B), the set of candidate antecedents consists of two nonhuman
entities, a donkey and a mule. In each narrative, one of the candidates has
been rendered more salient by virtue of having been re-invoked by a definite
description. And in each narrative, the anaphora resolves to the more salient,
‘definitized’ entity. But the choice function only ‘knows about’ the members of
the set of candidates and their sortal properties, not about their relative salience
in the discourse at hand. So it cannot pick the right antecedent both times.

In our view, the weaknesses of Muskens’ and de Groote’s theories arise be-
cause they fail to build in a notion of context that is sufficiently rich to support
a satisfactory account of presuppositions, the conditions on contexts that must
be satisfied in order for utterances to be felicitous. In this paper, we suggest a
revision and extension of de Groote’s theory that copes with definite anaphora
by building in a (slightly) more articulated discourse model inspired by proposals
due to Craige Roberts [20]. However, the work reported in this paper is part of a
larger research program, joint with Roberts and E. Allyn Smith, aimed at con-
structing formally explicit, categorially-based, natural language grammars that
deal effectively with projective aspects of meaning [22]. Besides Roberts’ work
on modeling discourse contexts, this research program also builds on Pollard’s
[19,18] hyperintensional semantics (relevant aspects of which are sketched be-
low), and on ‘pheno-tecto grammar’ (PTG; [17,3,16,24]) the line of development
in categorial grammar that distinguishes concrete syntax from combinatorics
(not touched upon in this paper).

The rest of this paper is organized as follows. We present some facts about
English definiteness presuppositions in Sect. 2. In Sect. 3, we formally lay out
our hyperintensional dynamic semantic theory of discourse. Specific machinery
for dealing with definiteness is introduced in Sect. 4 that handles some of the
cases introduced in Sect. 2. Section 5 concludes and promises future work.

116 S. Martin and C. Pollard

2 Facts about Definiteness Presuppositions in English

We take discourse contexts to be comprised of information that is mutual to the
interlocutors participating in a discourse, made available either linguistically (i.e.
what has been previously uttered by the interlocutors) or non-linguistically (i.e.
sense data and world knowledge). Our view of presuppositions is influenced by
the work of Stalnaker [25] and later Heim [6,7] in which the presuppositions of
a sentence are taken to be those conditions that must be met by any discourse
context in which it is to be felicitously interpreted. For Stalnaker, these con-
ditions are based on what the interlocutors are able to infer from the context.
Similarly, Heim formally expresses this notion by modeling discourse contexts as
the conjunction of the propositions asserted by the interlocutors, and dynamic
meanings as partial functions from contexts to contexts. The domains of these
partial functions are determined by the presuppositions of the sentences they
interpret.

A wide range of presuppositional phenomena has been discussed in the philo-
sophical and linguistic literature, including (to name just a few) factivity (i.e.
verbs like suck, know and realize that take sentences as their complements), pre-
supposition ‘projection’ and ‘cancellation’, and the presuppositions associated
with definite descriptions (i.e. expressions such as proper names, the English defi-
nite article the, and pronouns such as it that presuppose that a suitable anaphoric
antecedent is available in the discourse context in which they occur [21]). Here,
we consider only presuppositions of definiteness, which encompasses—in senses
to be made precise—familiarity and unique greatest salience. To take the most
simple example, if

(C) # It brayed

is uttered out of the blue and in the absence of some perceptible nonhuman
entity in the immediate surroundings that might plausibly have brayed, the
presupposition of the pronoun is not fulfilled and so the utterance is infelicitous.
Such a familiarity presupposition need not be globally satisfied, but instead can
be satisfied locally (roughly: within the scope of one or more operators) as in

(D) No donkey denies it brays.

For this reason the familiarity presuppositions associated with definite anaphora
are usually taken to have to do with the availability not of entities per se but
rather of “discourse referents”, a notion which the ambient theory must make
precise.

Definites also presuppose more than just the familiarity of the intended dis-
course referent:

(E) 1. I saw the donkey.

2. What donkey?

3. # Oh, just some donkey out in a field on the way to Upper Sandusky.

Hyperintensional Dynamic Semantics 117

Even if the utterances in (E) are situated within a discourse where donkeys have
been mentioned or in the presence of one or more donkeys that could serve as
resolution targets for the donkey, the use of the definite article is infelicitous
unless there is one that is uniquely most salient among all the others in the
discourse context.

Another dimension to uniqueness is related to the fact that both it and the
also presuppose as their respective anaphoric antecedents a discourse referent
that meets certain sortal restrictions. The discourses in (F) and (G) demonstrate
these presuppositions:

(F) 1. A donkey had a red blanket.

2. A mule had a blue blanket.

3.

{
The donkey

It

}
snorted.

(G) 1. A donkey had a red blanket.

2. Another donkey had a blue blanket.

3.

⎧⎨
⎩

The donkey with the blue blanket
The donkey
It

⎫⎬
⎭ snorted.

In (F), salience alone is not enough to decide whether a donkey or a mule an-
tecedes the pronoun it. The identity of the antecedent must also be uniquely
determinable from the discourse context, but since it can be anteceded by any
nonhuman entity in English, the noun phrase the donkey is used instead to un-
ambiguously single out the pronoun’s unique antecedent. The discourse in (G)
is a variant of (F) where the property of being a donkey is not enough to dis-
ambiguate the antecedent because of the uniqueness presuppositions associated
with the and it. These examples show that sortal restrictions, even potentially
complex ones, play a role in determining the unique greatest salience of DRs
when they are considered as targets for anaphora resolution.

Finally, the absurd discourse in (H) shows that the definite article identifies
not just a familiar and uniquely most salient individual, but one with a certain
specified property:

(H) 1. I saw the donkey.

2. What donkey?

3. # That llama we always see on the way to Findlay.

Here, it is infelicitous to use the noun phrase the donkey to identify the llama
even if it is the most salient individual in the utterance context because it does
not have the property of being a donkey.

3 Hyperintensional Dynamic Semantics

Our formalization of discourse dynamics builds on the hyperintensional theory
of (static) meaning given by Pollard [19,18]. Like Montague semantics [13], this

118 S. Martin and C. Pollard

semantic theory is couched in HOL and has a basic type e for entities as well as
the truth-value type t provided by the underlying logic.1

But unlike Montague semantics, we follow Thomason [28] in assuming a basic
type p for (static) propositions (but no basic type for worlds).2 Following Lam-
bek and Scott [11], we also assume (1) a natural number type ω; (2) the type
constructors U (unit type) and × (cartesian product) in addition to the usual →
(exponential); and (3) separation-style subtyping.3 Subtypes are usually written
in the form {x ∈ T | ϕ[x]} where ϕ[x] is a formula (boolean term) possibly with
x free. Additionally, we make use of dependent coproduct types parameterized
by the natural number type, written

∐
n Tn.

From the typed lambda calculus that underlies the HOL, we have the usual
pairing and projection functions; applications are written (f a) rather than f(a).
Successive applications associate to the left; e.g (f a b) abbreviates ((f a) b).

The type of propositions is axiomatized as a preboolean algebra (like a
boolean algebra, but without antisymmetry), preordered by the entailment re-
lation entails : p → p → t. The propositional connectives and quantifiers are
written as boldface versions of the usual (boolean) connectives of the underlying
logic: i.e. ¬, ∧, ∨, →, ∃, and ∀; true denotes a greatest element relative to the
entailment preorder (a necessary truth).

Following Heim, we use natural numbers (type ω) as discourse referents (here-
after, DRs). The type ω is equipped with the usual linear order < and the suc-
cessor function suc : ω → ω. Additionally, for each natural number n, we define
the type of the first n natural numbers as a subtype of ω:

ωn =def {i ∈ ω | i < n}

These types will be used for the domains of anchors (functions from DRs to
entities; we eschew the term ‘assignment function’ commonly used in the lin-
guistic literature because arguments of these functions are not object-language
variables).

We adopt the convention that applications and pairings associate to the left
and abstractions associate to the right. Parentheses are sometimes abbreviated
using . in the usual way (e.g., λx.M) or omitted altogether when no confusion
can arise. When a term contains multiple embedded λ-abstractions of the form
λaλbλcM , we collapse them together as λabcM .

1 For expository simplicity, we depart from Pollard in not distinguishing between
the extensional type e and the corresponding hyperintensional type i (individual
concepts).

2 Using separation subtyping, we can define the type of worlds as a certain subtype
of the type p→ t (sets of propositions), but this will not be needed here.

3 Thus if A is a type and a an A-predicate (closed term of type A→ t), then there is
a type Aa interpreted as the subset of the interpretation of A that has the interpre-
tation of a as its characteristic function; and there is a constant μa that denotes the
subset embedding.

Hyperintensional Dynamic Semantics 119

3.1 Information Structures

To advance from static to dynamic semantics, we need to extend our ontology
to model contexts. Our notion of context is a simplified version of Roberts’
discourse information structures [20], which are in turn inspired by the work
of Lewis [12], here called simply structures.4 A structure is a tuple consisting
of (1) an anchor of entities to a set of DR’s, (2) a salience preorder on those
DR’s called the resolution preorder (so-called because it will be used to resolve
definite anaphora), and (3) a proposition, the common ground, which (following
Stalnaker [26]) is the conjunction of all the propositions that are taken by the
interlocutors to be mutually agreed upon. The common ground includes not
only propositions explicitly asserted and accepted in the discourse, but also
encyclopedic knowledge about the world that is assumed as shared background.

To make this notion of structure more precise, we begin by defining the type of
n-ary anchors αn to be the type of functions from the first n discourse referents
to entities:

αn =def ωn → e

α =def

∐
n

αn

An n-ary anchor can be extended to include a new DR mapped to a specified
entity using the function •n : αn → e → α(suc n) (written infix), that is subject
to the axiom schema

� ∀n:ω∀a:αn∀x:e∀m:ω(suc n)
.(a •n x)m =

{
x if m = n
(a m) otherwise

To track the relative salience of the DRs in the domain ωn of an anchor, we
use a preorder on ωn. For arbitrary n : ω, an n-ary resolution is just a preorder
(reflexive, transitive relation) on the set of DRs:

ρn =def {r ∈ ωn → ωn → t | (preordern r)}

Note that this is a subtype of the type of binary relations on ωn; here (preordernr)
is a formula which says of the binary relation r on ωn that it is a preorder.

� ∀n:ω∀r:ωn→ωn→t.(preordern r) = ∀i,j,k:ωn .(i r i ∧ ((i r j ∧ j r k) → i r k))

Below, we will see that DRs which are “higher” in the resolution preorder are
“better” candidates for subsequent definite anaphora.

The function �n : ρn → ρ(suc n) is used to extend a resolution to the next
larger domain, subject to the following schemata:

� ∀n:ω∀r:ρn .n (�n r) n

� ∀n:ω∀r:ρn∀l,m:ωn .(¬(m (�n r) n)) ∧ (l (�n r)m = l r m)

4 At this stage, we omit Roberts’ moves, domain goals, QUD stack, etc.

120 S. Martin and C. Pollard

Resolution extension thus occurs in a noncommittal way: for a resolution r : ρn,
the extended resolution (�n r) has n reflexively as high as itself, but leaves n
incomparable to every m < n.

Information structures combine an n-ary anchor and resolution with a proposi-
tion, the common ground of the discourse. The type σn, mnemonic for structure,
is a triple defined as:

σn =def αn × ρn × p

σ =def

∐
n

σn

The type σ combines all the types σn together as a single type. The type σ
plays a role analogous to that of γ (left contexts) in de Groote’s type-theoretic
dynamics [4], but enriches his notion of left context to include salience and a
common ground in addition to a set of DRs.5

The function nextn : σn → ω gives the length (size of the domain) of the
anchor of an n-ary structure:

� ∀n:ω∀s:σn .(nextn s) = n

In dynamic interpretations, the size of an anchor’s domain is used as the “next”
DR.

The functions a : σ → α (for anchor), r : σ → ρ (for resolution) and c : σ → p
(for common ground) are just the projections from σ to its three components.
As an abbreviation, we write [n]s to denote the entity (a s n) that is the image
of the DR n under the anchor of the structure s. When no confusion can arise,
we usually drop the subscript s and write simply [n].

To extend a structure with a new entity (i.e., introduce a new discourse refer-
ent and anchor it to a certain entity), we use the function ::n : σn → e → σ(suc n):

� ∀n:ω. ::n= λsx 〈(a s) •n x, �n (r s), (c s)〉

This enriched replacement for de Groote’s :: extends both a structure’s anchor
and its resolution, whereas de Groote’s version just adds an entity to an existing
set of entities. The function + : σ → p → σ adds the ability to update the
common ground of a structure with a new proposition:

� + = λsp 〈(a s), (r s), (c s)∧ p〉

where ∧ is conjunction or propositions, not truth values. Together, these two
functions share the work of adding a DR to a context (::) and mutually-accepted
information about a context’s DRs (+). They play a central role in the defini-
tions of the dynamic existential quantifier exists and the dynamic counterparts
of static propositions, discussed below. We often omit parentheses around appli-
cations involving :: and + since they both associate to the left.

5 Actually, de Groote’s theory has no DRs as distinct from entities, but we have been
unable to see how to manage without such a distinction.

Hyperintensional Dynamic Semantics 121

3.2 Continuations and Dynamic Semantics

The type κ of continuations is the type of functions from structures to proposi-
tions:

κ =def σ → p

Modulo replacement of de Groote’s γ (left contexts) and o (truth values) by
σ and p respectively, our continuations are direct analogs of his right contexts
(γ → o). The null continuation is λstrue.

We use the following to recursively notate n-ary static properties, for each
n : ω:

r0 =def p

r(suc n) =def e → rn

Note that nullary static properties are simply (static) propositions. A dynamic
proposition (type π), also known as an update, maps a structure and a con-
tinuation to a (static) proposition:

π =def σ → κ → p

This is a direct analog of de Groote’s type Ω. Extending Muskens [14,15], we
define the type of n-ary dynamic relations in an way analogous to static
properties:

δ0 =def π

δ(suc n) =def ω → δn

In terms of their types, the difference between static and dynamic properties is
that the base type for dynamic properties is π rather than p, and the type of
arguments to dynamic properties is ω (of DRs) rather than e (of entities). Note
that nullary dynamic properties are dynamic propositions. We abbreviate δ1,
the type of unary dynamic properties, as simply δ.

The dynamicizer functions dyn take an n-ary static property to its dynamic
counterpart:

� dyn0 = λpsk.p ∧ (k (s+ p)) : r0 → δ0

� ∀n:ω.dyn(suc n) = λRn.dynn (R [n]) : r(suc n) → δ(suc n)

This definitions of the dyn functions reflect the fact that utterances in natural
language (modeled in our theory by dynamic propositions) update the discourse
context with their content. As a mnemonic, we abbreviate the dynamicization
of a static property by the same name as its static counterpart except that the
name is written in smallcaps. For instance:

� rain = (dyn0 rain) = λsk.rain ∧ (k (s+ rain))

� snow = (dyn0 snow) = λsk.snow ∧ (k (s+ snow))

� donkey = (dyn1 donkey) = λnsk.(donkey [n])∧ (k (s+ (donkey [n])))

� bray = (dyn1 bray) = λnsk.(bray [n])∧ (k (s+ (bray [n])))

� own = (dyn2 own) = λnmsk.(own [n] [m])∧ (k (s+ (own [n] [m])))

122 S. Martin and C. Pollard

These examples show how dynamic propositions and properties interact with the
structure of the utterance context they are situated inside. The common ground
is always updated by a dynamic meaning via + with the proffered content (cf.
[20]) and passed to the rest of the discourse (in the form of the continuation k).
In the case of the dynamic properties donkey, bray and own, these expect an
argument that is not an entity but instead a natural number (i.e., DR) which is
mapped to an entity by the anchor (a s).

The static propositional content of a dynamic proposition in context is re-
trieved using the staticizer function stat : σ → π → p, a direct analog of de
Groote’s READ [5]:

� stat = λsA.A s λstrue

This function gives the dynamic proposition A access to the context s, but then
“throws away” the rest of the discourse by specifying the null continuation as
its κ-type argument. For example, assuming that the context s : σ is such that
[n]s = x for some n : ω, we calculate the static content of (donkeyn) as follows:

stat s (donkey n) = stat s λsk.(donkey [n])∧ (k (s+ (donkey [n])))

= stat s λsk.(donkey x)∧ (k (s+ (donkey x)))

= λsk((donkey x)∧ (k (s+ (donkey x)))) s λstrue

= λk((donkey x)∧ (k (s+ (donkey x)))) λstrue

= (donkey x)∧ (λstrue (s+ (donkey x)))

= (donkey x)∧ true

≡ donkey x

where ≡ denotes propositional equivalence (mutual entailment). This example
shows why stat is not defined for every structure s and dynamic proposition A,
only those where A can be resolved to a static proposition based on the contents
of s. Here, donkey must accesses the structure passed to stat to determine the
entity that its anchor maps n to.

Dynamic Conjunction. For conjoining dynamic propositions, we likewise fol-
low de Groote in defining dynamic and : π → π → π to compose the meanings
of two dynamic propositions over a structure and a discourse continuation:

� and = λABsk.A s (λs.B s k) (1)

The continuation passed to the first conjunct A is the second conjunct B with its
structure (type σ) argument abstracted over. In addition to conjoining utterances
to form discourses, and plays a central role in our dynamic indefinite, given in
(3), below.

Hyperintensional Dynamic Semantics 123

To demonstrate dynamic conjunction in action, we take rain = (dyn0 rain)
and snow = (dyn0 snow). The conjunction of rain and snow is then as follows:

� rain and snow : π

= λsk.rain s (λs.snow s k)

= λsk(λsk(rain ∧ (k (s+ rain))) s (λs.snow s k))

= λsk(λk(rain∧ (k (s+ rain))) (λs.snow s k))

= λsk.rain∧ (λs(snow s k) (s+ rain))

= λsk.rain∧ (λsk(snow ∧ (k (s+ snow))) (s+ rain) k)

= λsk.rain∧ (λk(snow ∧ (k (s+ rain+ snow))) k)

= λsk.rain∧ snow∧ (k (s+ rain+ snow))

= λsk.rain∧ snow∧ (k 〈(a s), (r s), (c s)∧ rain∧ snow〉)

It is important to note that, at this example shows, and ensures that the content
proffered by rain is available in the common ground of the structure (s+ rain)
that is passed to snow.

The Dynamic Existential Quantifier. Our replacement for de Groote’s Σ is
exists : δ → π:

� exists = λDsk.∃ λx.D (next s) (s :: x) k (2)

This version of the dynamic existential quantifier introduces a DR using :: to
extend both the anchor and resolution of the current structure. We examine
exists donkey for an example of the behavior of exists:

� exists donkey : δ

= λsk.∃ λx.donkey (next s) (s :: x) k

= λsk.∃ λx.(donkey [(next s)]s::x)∧ (k (s :: x+ (donkey [(next s)]s::x)))

= λsk.∃ λx.(donkey x)∧ (k (s :: x+ (donkey x)))

= λsk.∃ λx.(donkey x)∧ (k 〈(a s) • x, � (r s), (c s)∧ (donkey x)〉)

Note that [(next s)]s::x necessarily reduces to the entity variable x because the
anchor of (s :: x) always maps (next s) to x, the complexity of s itself notwith-
standing.

We use exists and and to model the English indefinite article a as the dy-
namic generalized determiner a : δ → δ → π:

� a = λDE .exists λn.(D n) and (E n) (3)

124 S. Martin and C. Pollard

This definition ensures, via and, that the scope E inherits whatever extensions
are made to the structure by the restriction D. We illustrate the effects of the
indefinite article a by applying it to donkey = (dyn1 donkey) to yield:

� a donkey : δ → π

= λE .exists λn.(donkey n) and (E n)

= λEsk.∃ λx.(λn((donkey n) and (E n)) (next s)) (s :: x) k

= λEsk.∃ λx.((donkey (next s)) and (E (next s))) (s :: x) k

= λEsk.∃ λx.(donkey x)∧ (E (next s) (s :: x+ (donkey x)) k)

= λEsk.∃ λx.(donkey x)∧ (E (next s) 〈(a s) • x, � (r s), c s∧ (donkey x)〉 k)

Note that the sortal restriction imposed by the noun on the new DR is part
of the common ground passed to the scope. We next apply a donkey to the
dynamic property walk = (dyn1 walk):

� (a donkey walk) : π

= exists λn.(donkey n) and (walk n)

= λsk.∃ λx.((donkey (next s)) and (walk (next s))) (s :: x) k

= λsk.∃ λx.(donkey x)∧ (walk x) ∧ (k (s :: x+ (donkey x) + (walk x)))

= λsk.∃λx.(donkey x)∧ (walk x)∧ k 〈(a s) • x, � (r s), (c s)∧ donkey x∧ walk x〉

In this example, the division of labor between exists and and in the definition
of a is apparent, with exists extending the anchor and resolution and and
accumulating the additions to the CG made by the dynamic properties donkey
and walk.

4 Modeling Definiteness

With our hyperintensional dynamic semantic theory in place, we are ready to
extend it to handle definiteness presuppositions in English. We examine both
definite pronominal anaphora with it and the definite determiner the.

4.1 Definite Anaphora with It

Rather than adopting an analog of de Groote’s sel to model English it, which
cannot possibly select the “right” DR from a left context (see Sect. 1, above),
we define dynamic it : δ → π as follows:

� it = λDs.D (def s nonhuman) s (4)

where nonhuman = (dyn1 nonhuman) and defn : σn → δ → ωn is the definite-
ness operator, defined as follows:

� defn = λsD.
⊔
(r s)

λi:ωn .(c s) entails (stat s (D i)) (5)

Hyperintensional Dynamic Semantics 125

(Recall that entails : p → p → t is the entailment relation between (static) propo-
sitions.) For each r : ρn, the operator

⊔
r : (ωn → t) → ωn takes a subset of the

first n DRs and returns the unique greatest element (if any) with respect to the
(restriction of the) preorder r on ωn. Thus for a structure s and a dynamic prop-
erty D, the def operator returns the highest DR (if any) in the resolution (r s)
whose image under the current anchor (a s) can be inferred from the common
ground (c s) to have the staticized counterpart of the property D.

As defined in (4), it selects the most salient inferably nonhuman discourse
referent from a given structure. This is because, as (5) shows, it is equivalent to

λDs.D (
⊔
(r s)

λi:ωn((c s) entails (nonhuman (a s i)))) s

We can assume that the static proposition (every donkey nonhuman) reflecting
the common world knowledge that every donkey is nonhuman is in every common
ground we would consider, where every is as given in [19]. This ensures that def
will allow it to select a donkey as its antecedent, as desired.

We demonstrate by applying this definition of it in the interpretation of the
following example:

(I) 1. A donkey enters.

2. It brays.

With donkey = (dyn1donkey), enter = (dyn1enter), and bray = (dyn1bray),
we analyze (I) as:

� (a donkey enter) and (it bray) : π

To see how it retrieves its antecedent from context, we examine the rightmost
application:

� it bray : π (6)

= λs.bray (def s nonhuman) s

= λs.λnsk((bray [n])∧ (k (s+ (bray [n])))) (def s nonhuman) s

= λsk.(bray [(def s nonhuman)])∧ (k (s+ (bray [(def s nonhuman)])))

Here, it ensures that the argument to bray is the most salient nonhuman en-
tity in the discourse context. Recall from the example analysis given above
of (a donkey walk) that a donkey updates the common ground passed to
it bray with the proposition that [n] is a donkey. The full reduction of the
dynamic interpretation of (I) in is then:

� (a donkey enter) and (it bray) : π (7)

= (exists λn((donkey n) and (enter n))) and (it bray)

= λsk.∃ λx.(donkey x)∧ (enter x)

∧ (bray [(def ς nonhuman)])∧ (k (ς + (bray [(def ς nonhuman)])))

126 S. Martin and C. Pollard

where ς = s :: x+(donkeyx)+(enterx) is the structure passed to it bray (shown
in (6)). Since the CG of ς contains the proposition (donkey x), the definiteness
operator def is able to select the DR that is the preimage of x as the most
salient nonhuman in the context it is passed. With [(def ς nonhuman)]ς = x,
we can reduce the term in (7) interpreting the discourse in (I) to:

λsk.∃ λx.(donkey x) ∧ (enter x)∧ (bray x)∧ (k (ς + (bray x))) : π

Thus it selects its antecedent based on its definiteness presuppositions, yielding
the desired truth conditions for (I). The definition of it in (4) also captures the
infelicity of (C), where it is used without a salient antecedent, because there is
no DR that can be inferred from context to be nonhuman.

4.2 The Definite Determiner

We also use def to model the English definite determiner the as the : δ → δ → π:

� the = λDEs.(λn((D n) and (E n)) (def s D)) s (8)

This translation of the resembles the indefinite determiner a in (3) in that the
meanings of the dynamic properties D and E are composed via and. The main
difference is that while a uses exists to introduce a new DR, the uses def from
(5) to select the most salient DR from the discourse context with the property
D. Using and to pass this DR to both properties ensures that any modifications
to the structure that result from D are inherited by E, as would be necessary in
the interpretation of an utterance like The donkey that has a red blanket chews
it.

In the discourse in (J), which is a simplification of (A), (B), and (F), the noun
phrase the donkey can only refer to one of the discourse referents introduced prior
to its use:

(J) 1. A donkey enters.

2. A mule enters.

3. The donkey brays.

To model this discourse, we first define the dynamic properties mule =
(dyn1 mule) and enter = (dyn1 enter). With a and the as in (3) and (8), and
and as in (1) used to conjoin utterances, we have the following dynamic meaning
for the discourse in (J):

� ((a donkey enter) and (a mule enter)) and (the donkey bray) : π
(9)

We start with the leftmost conjunct of the discourse:

� (a donkey enter) : π (10)

= λsk.∃ λx.(donkey x) ∧ (enter x)∧ (k (s :: x+ (donkey x) + (enter x)))

= λsk.∃ λx.(donkey x) ∧ (enter x)

∧ (k 〈(a s) • x, � (r s), (c s)∧ (donkey x) ∧ (enter x)〉)

Hyperintensional Dynamic Semantics 127

Combining the term in (10) with the entire left conjunct of the discourse, we
have:

� (a donkey enter) and (a mule enter) : π (11)

= λsk.∃ λx.(donkey x)∧ (enter x)∧ (∃ λy.(mule y)∧ (enter y)∧ (k ς))

where ς represents the structure that results from the application of and in (11):

ς = s :: x+ (donkey x) + (enter x) :: y + (mule y) + (enter y)

= 〈(a s) • x • y, � (� (r s)), (c s)∧ (donkey x)∧ (enter x)∧ (mule y)∧ (enter y)〉

The right conjunct then uses the to select the most salient donkey from the
preceding discourse, applying bray to it:

� (the donkey bray) : π (12)

= λsk.(λn((donkey n) and (bray n)) (def s donkey)) s k

= λsk.((donkey (def s donkey)) and (bray (def s donkey))) s k

= λsk.(donkey [(def s donkey)])∧ (bray [(def s donkey)])

∧ (k (s+ (donkey [(def s donkey)]) + (bray [(def s donkey)])))

The structure ς passed to (the donkey bray) by the preceding discourse in (11)
is such that [(def ς donkey)]ς = x because the CG of ς contains the proposition
(donkeyx) but does not contain any proposition in which the property donkey is
applied to an entity other than x. Hence we arrive at the final reduction of the
term in (9) that models the entirety of the discourse (J):

λsk.∃ λx.donkey x∧ enter x∧ (∃ λy .mule y ∧ enter y ∧ donkey x∧ bray x∧ k ς ′)

where ς ′ = ς+(donkeyx)+(brayx) is the structure extending ς that results from
applying and to the left (11) and right (12) conjuncts of the discourse.

Note that, in this example, the dynamic definite determiner the picks out the
most salient DR from the structure it is given that has the property specified as
its argument (i.e., donkey). However, as (F3) shows, substituting the pronoun it
for the donkeymakes the discourse infelicitous. Our theory captures this infelicity
because it only requires its antecedent to have the property nonhuman, which is
weaker than the property donkey with respect to entailment. With it replacing
the donkey in the right conjunct of (9), def would be incapable of selecting
a unique nonhuman DR from ς since two DRs would then have the property
nonhuman (namely, the mule and the donkey). The infelicitous examples in
(E) through (H) can be ruled out for similar reasons.

5 Conclusion and Future Work

We have presented a dynamic theory of discourse meaning formulated in higher
order logic that incorporates aspects of de Groote’s continuation-based theory

128 S. Martin and C. Pollard

and Pollard’s hyperintensional semantics. Drawing on the work of Heim and
Roberts, our theory provides an enriched notion of discourse context that in-
cludes discourse referents ordered by relative salience and a common ground of
mutually accepted content. We have shown how this enriched context allows the
definiteness presuppositions in English associated with the pronoun it and the
determiner the to be captured in a way that is faithful to the facts. The resulting
theory repairs the inadequate treatment of anaphora resolution in de Groote’s
work based on the oracular sel function.

In future work, we will continue our collaboration with Roberts and Smith on
developing a general, categorially based theory of projective meaning. The next
avenues for this research include spelling out how relative salience is adjusted by
re-invoking a previously introduced DR (see the discussion of (A) and (B) in Sect.
1) and integrating the hyperintensional dynamic semantic theory introduced here
with a fully compositional theory of English grammar that takes e.g. quantifier
scope, unbounded dependencies, and prosodically encoded information structure
into account. We will then apply this theory to a wider range of presuppositional
phenomena, including the factivity of certain sentential complement verbs (e.g.
suck, know, realize), the ‘projection’ of presuppositions occurring within e.g. the
scope of a negation, and the phenomenon known as farmer-donkey asymmetry
[23] that is associated with the celebrated ‘donkey sentences’ (e.g. Most farmers
who own a donkey beat it).

References

1. Church, A.: A formulation of the simple theory of types. Journal of Symbolic
Logic 5, 56–68 (1940)

2. Gallin, D.: Intensional and Higher Order Modal Logic. North-Holland, Amsterdam
(1975)

3. de Groote, P.: Towards abstract categorial grammars. In: 39th Annual Meeting
and 10th Conference of the European Chapter, Proceedings of the Conference on
Association for Computational Linguistics (2001)

4. de Groote, P.: Towards a Montagovian account of dynamics. In: Proceedings of
Semantics and Linguistic Theory, vol. 16 (2006)

5. de Groote, P.: Typing binding and anaphora: Dynamic contexts as λμ-terms. Pre-
sented at the ESSLLI Workshop on Symmetric Calculi and Ludics for Semantic
Interpretation (2008)

6. Heim, I.: The Semantics of Definite and Indefinite Noun Phrases. Ph.D. thesis.
University of Massachusetts, Amherst (1982)

7. Heim, I.: File change semantics and the familiarity theory of definiteness. In: Mean-
ing, Use and the Interpretation of Language. Walter de Gruyter, Berlin (1983)

8. Henkin, L.: Completeness in the theory of types. Journal of Symbolic Logic 15,
81–91 (1950)

9. Kamp, H.: A theory of truth and semantic representation. In: Groenendijk, J.,
Janssen, T., Stokhof, M. (eds.) Formal Methods in the Study of Language. Math-
ematisch Centrum, Amsterdam (1981)

10. Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer Academic Publishers, Dor-
drecht (1993)

Hyperintensional Dynamic Semantics 129

11. Lambek, J., Scott, P.: Introduction to Higher-Order Categorical Logic. Cambridge
University Press, Cambridge (1986)

12. Lewis, D.: Scorekeeping in a language game. In: Baüerle, R., Egli, U., von Stechow,
A. (eds.) Semantics from a Different Point of View. Springer, Berlin (1979)

13. Montague, R.: The proper treatment of quantification in ordinary English. In:
Hintikka, K., Moravcsik, J., Suppes, P. (eds.) Approaches to Natural Language, D.
Reidel, Dordrecht (1973)

14. Muskens, R.: Categorial grammar and discourse representation theory. In: Pro-
ceedings of COLING (1994)

15. Muskens, R.: Combining Montague semantics and discourse representation theory.
Linguistics and Philosophy 19, 143–186 (1996)

16. Muskens, R.: Separating syntax and combinatorics in categorial grammar. Research
on Language and Computation 5, 267–285 (2007)

17. Oehrle, R.T.: Term-labeled categorial type systems. Linguistics and Philoso-
phy 17(6), 633–678 (1994)

18. Pollard, C.: Hyperintensional Questions. In: Hodges, W., de Queiroz, R. (eds.)
WoLLic 2008. LNCS (LNAI), vol. 5110, pp. 272–285. Springer, Heidelberg (2008)

19. Pollard, C.: Hyperintensions. Journal of Logic and Computation 18(2), 257–282
(2008)

20. Roberts, C.: Information structure in discourse: Towards an integrated formal the-
ory of pragmatics. In: Papers in Semantics. Working Papers in Linguistics, vol. 49,
Ohio State University, Department of Linguistics (1996)

21. Roberts, C.: Pronouns as definites. In: Reimer, M., Bezuidenhout, A. (eds.) De-
scriptions and Beyond, pp. 503–543. Oxford University Press (2004)

22. Roberts, C., Simons, M., Beaver, D., Tonhauser, J.: Presupposition, conventional
implicature, and beyond: A unified account of projection. In: Klinedinst, N., Roth-
schild, D. (eds.) Proceedings of New Directions in the Theory of Presupposition.
ESSLLI workshop (2009)

23. Rooth, M.: NP interpretation in Montague grammar, file change semantics, and
situation semantics. In: Gärdenfors, P. (ed.) Generalized Quantifiers. Reidel, Dor-
drecht (1987)

24. Smith, E.A.: Correlational Comparison in English. Ph.D. thesis. Ohio State Uni-
versity (2010)

25. Stalnaker, R.: Presuppositions. Journal of Philosophical Logic 2(4) (1973)
26. Stalnaker, R.: Assertion. Syntax and Semantics 9: Pragmatics, 315–332 (1978)
27. Strachey, C., Wadsworth, C.P.: Continuations: A mathematical semantics for han-

dling full jumps. Programming Research Group Technical Monograph PRG-11,
Oxford University Computing Lab (1974)

28. Thomason, R.: A model theory for propositional attitudes. Linguistics and Philos-
ophy 4, 47–70 (1980)

Distinguishing Phenogrammar from

Tectogrammar Simplifies the Analysis
of Interrogatives

Vedrana Mihaliček and Carl Pollard

The Ohio State University, Department of Linguistics, Columbus OH 43210, USA
{vedrana,pollard}@ling.ohio-state.edu

Abstract. Oehrle (1994) introduced a categorial grammar architecture
in which word order is represented using the terms of a typed λ-calculus
and the syntactic type system is based on linear logic. In this paper,
we use a variant of this architecture to analyze interrogatives in En-
glish and Chinese. We show that separating word order (phenogrammar)
and syntactic combinatorics (tectogrammar) in this way brings out the
underlying similarities between different question-forming strategies. In
particular, the difference between wh extraction (overt movement) and
wh in situ (covert movement) turns out to be purely phenogrammatical.

1 Introduction

Oehrle (1994) introduced a categorial grammar (CG) architecture in which
word order (not just meaning) is represented using the terms of a typed λ-
calculus. Variants of this architecture have since been employed in a variety of
CG frameworks, including abstract categorial grammar (ACG, de Groote 2001),
λ-grammar (λG, Muskens 2003, 2007b), higher-order grammar (HOG, Pollard
2004), and pheno-tecto distinguished CG (PTDCG, Smith 2010). Some salient
commonalities of these approaches include the following: (i) a clear separation
of tectogrammar (roughly, abstract syntactic combinatorics) and phenogrammar
(roughly, word order)1; (ii) an implementation of Montague’s (1974) ‘lowering’
analysis of quantification in terms of β-reduction in the phenogrammatical calcu-
lus (exemplified by (12) below); (iii) uniform treatment of medial and peripheral
extraction by phenogrammatical lowering of the null string into the ‘trace’ po-
sition; and (iv) a tectogrammatical type system based on linear logic, made
possible by the ‘outsourcing’ to the phenogrammar of much of the work done
by directionality and/or multimodality of the tectogrammar in other CG frame-
works (e.g. Moortgat 1997, Morrill et al 2007, Baldridge 2002).

Works such as Oehrle 1994, de Groote 2001 and Muskens 2003, 2007b are
largely programmatic in nature. However, Smith 2010 shows by example that

1 The terms ‘tectogrammar’ and ‘phenogrammar’ are meant to suggest an affinity
with the programmatic suggestions of Curry (1961), who employed the terms ‘tec-
togrammatical structure’ and ‘phenogrammatical structure’. The analogous ACG
(λG) notions are ‘abstract syntax’ (‘combinatorics’) and ‘concrete syntax’ (‘syntax’).

P. de Groote and M.-J. Nederhof (Eds.): Formal Grammar 2010/2011, LNCS 7395, pp. 130–145, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Distinguishing Phenogrammar from Tectogrammar 131

the pheno-tecto-distinguished style of CG (hereafter, PTG) can also be a practi-
cal framework for describing highly complex linguistic phenomena (specifically,
remnant comparative and correlational comparative constructions) in a way that
highlights the underlying simplicity of the combinatorics and compositional se-
mantics, by representing the difference between lowering and extraction as purely
phenogrammatical.

In this paper, we try to make the same point, with respect to a different
set of phenomena, namely cross-linguistic variation in the form of interrogative
sentences, with special attention to multiple constituent questions and so-called
Baker ambiguities. Because of space limitations, we here omit inessential details
and discuss only two languages, English and Chinese.

Unlike other CG approaches, both mainstream and PTG, we drop the tradi-
tional requirement that there be a function mapping tectogrammatical types to
semantic types. Demanding that every semantic difference be reflected in tec-
togrammar, in our opinion, lacks empirical motivation and unnecessarily com-
plicates the tectogrammar. Additionally, we foresake the standard (and usually,
mostly extensional) Montague semantics in favor of a hyperintensional form
of possible-worlds semantics with propositions (rather than worlds) as a basic
type.2

What emerges is a surprisingly simple and uniform analysis of interrogatives
in the two languages. On our analysis, English and Chinese constituent questions
are essentially identical semantically and tectogrammatically, with phenogram-
mar identified as the sole locus of variation. That is, the difference between wh
fronting and wh in situ is analyzed as a purely phenogrammatical difference.

The rest of the paper is organized as follows. In Section 2 we introduce the
framework in more detail, including a brief review of some standard PTG fea-
tures. In Section 3 we present the relevant data, which are analyzed in Section 4.
Section 5 evaluates the framework and the analysis, and outlines some directions
for future research.

2 An Overview of the Framework

The version of PTG we employ resembles λG (not ACG), in making no use of
tectogrammatical terms. Thus, our ‘signs’ (the things the grammar proves) are
triples consisting of a typed pheno term, a tecto type, and a typed semantic term
(the pheno and semantic types are suppressed whenever no confusion results from
so doing). However we depart from λG (as described in Muskens (2003 2007b) by
(i) adopting a slightly different notation, (ii) dropping Muskens’ Kripke models
for the phenogrammatical terms in favor of standard (Henkin) models for the
higher-order theory of a free monoid; and (iii) allowing for a relational interface
between tectogrammar and semantics whereby a single tectogrammatical type
may correspond to multiple semantic types.

2 We think this choice greatly simplifies the compositional semantics of interrogatives,
but space limitations prevent us from defending that belief here.

132 V. Mihaliček and C. Pollard

2.1 Phenogrammar

Phenogrammar is implemented as a classical higher-order theory (and therefore
a typed λ calculus) with one basic type for strings, Str (besides the truth-value
type t provided by higher-order logic (HOL)).

The pheno components of words (lexical signs) are treated in terms of non-
logical constants of type Str, e.g. chris, robin, liked, slept, who, whether,
etc. The constants ◦:Str→Str→Str and e : Str are axiomatized as the (binary,
associative) operation of a free monoid and its two-sided identity respectively.

We use p, q, r as variables of type Str, and f , g as variables of type Str→Str.
We call terms of this calculus pheno terms (cf. Oehrle’s (1994) φ terms). A
transitive English verb such as liked is associated with the following pheno term:

� λpλqq ◦ liked ◦ p : Str → Str → Str

This pheno term requires that the first argument of liked – its object – concate-
nate to the right of liked, and its second argument – its subject – to the left of
liked, so we get the expected subject–verb–object order.

2.2 Tectogrammar

The tectogrammatical signature is obtained by closing the set of basic types N,
NP, S and S̄ under the linear implication�. TypeN is associated with common
nouns (book, dog), and NP with noun phrases (Chris, Robin). Type NP�S
corresponds to intransitive finite verbs and verb phrases (slept, liked Robin), and
type NP�NP�S to transitive finite verbs (liked). Type S is reserved for root
clauses, declarative (Chris liked Robin.) or interrogative (Who did Chris like?),
while S̄ corresponds to embedded clauses, again — declarative (that Chris liked
Robin) or interrogative (who Chris liked).

Note that the tecto type of a transitive verb merely requires that it combine
with two noun phrases, but does not determine the relative word order of the
verb and its arguments since this is handled entirely within the phenogrammar.

We ignore the distinction between declaratives and interrogatives in the tec-
togrammar because we assume a nonfunctional relation between tecto types and
semantic types. So it is possible for, say, the tectogrammatical type S to cor-
respond to the semantic type of either declaratives or interrogatives. The two
kinds of utterances are then distinguished in terms of semantic types and that
is how overgeneration is prevented. At the same type, the tectogrammar is kept
maximally simple.

2.3 Semantics

We assume a hyperintensional semantic theory along the lines of Pollard 2008a.3

While we believe this choice to be well motivated (we direct the reader to Pol-
lard 2008a for a detailed discussion of problems with traditional possible world

3 See Thomason 1980 and Muskens 2005, 2007a for versions of hyperintensional se-
mantics with somewhat different technical assumptions.

Distinguishing Phenogrammar from Tectogrammar 133

semantics), the analysis of interrogatives presented here is also compatible with
a more mainstream Montague-style possible world semantics.

The most important departure from the standard possible world semantics is
treating propositions as primitive and constructing possible worlds as certain sets
of propositions, instead of the other way around. On our approach, propositions
are modelled as members of a pre-boolean algebra pre-ordered by entailment.
Entailment is axiomatized as a reflexive, transitive, but not antisymmetric rela-
tion on propositions. This way, it is possible for equivalent (mutully entailing)
propositions to be distinct.

This hyperintensional semantic theory is expressed in a classical HOL with e
(entities) and p (propositions)4 as the basic types (other than the truth-value
type t provided by the logic).5 The kind of HOL we employ follows Lambek and
Scott (1986) in also having a basic type n (natural numbers) and machinery for
forming (separation-style) subtypes.6 Additionally, we make use of dependent
product and coproduct types parametrized by the natural number type.

We recursively define the function Ext mapping hyperintensional types (i.e.
e, p and any implicative types constructed out of these) to the corresponding
extensional types. Here, A and B are metavariables over hyperintensional types:

(1) a. Ext(e) = e

b. Ext(p) = t

c. Ext(A → B) = A → Ext(B)

The type of possible worlds w is constructed out of the basic types in such a
way that the interpretation of the type w is the set of ultrafilters of the pre-
boolean prealgebra that interprets the type p. Specifically, w =def [p → t]u,
where u : (p → t) → t is a predicate on sets of propositions that picks out those
sets of propositions that are ultrafilters (see Pollard (2008a) for details of this
construction).

Concomitantly, we introduce a family of constants extA : A → w → Ext(A)
(where the type variable A ranges over the hyperintensional types) interpreted as
a polymorphic function that maps a hyperintension and a world to the extension
of that hyperintension at that world, as follows:

(2) a. � ∀x:e∀w:w[exte(x)(w) = x]

b. � ∀p:p∀w:w[extp(p)(w) = p@w]

4 The type p is axiomatized so as to form a boolean preorder where the constants
and, or and not denote the greatest lower bound, least upper bound and complement
(involutive negation) operation, respectively.

5 For expository simplicity, we depart from Pollard 2008a in not distinguishing between
the extensional type e and the corresponding hyperintensional type i (individual
concepts). In particular, the meaning of a name is the same as its reference.

6 Thus if A is a type and a an A-predicate (closed term of type A→ t), then there is a
type Aa interpreted as the subset of the intepretation of A that has the interpretation
of a as its characteristic function; and there is a constant μa that denotes the subset
embedding.

134 V. Mihaliček and C. Pollard

c. � ∀f :A→B∀w:w[extA→B(f)(w) = λx:AextB(f(x))(w)]

Here the notation ‘p@w’ abbreviates μu(w)(p), where μu denotes the embedding
of the set of worlds into the set of sets of propositions.

As for question meanings, we adopt an elaboration of the general approach
of Pollard 2008b, which in turn modifies and refines the ‘set of true answers’
approach of Karttunen 1977. We present the details in Section 4.

2.4 A Small Example

Before moving on to the analysis of questions, we illustrate how the grammar
works with a toy example. As in λG, a representation of a linguistic expression
(or a sign) consists of a pheno term, a tecto type, and a semantic term. Lexical
entries are written in the form:

(3) � pheno term;TectoType; semantic term

We make use of the following logical rules whose tecto components are the
Gentzen sequent-style natural deduction rules for the implicative fragment of
linear logic, while the pheno (semantic) labels are just recipes for composition-
ally constructing the word order (meaning) representations.7

(4) [Ax]
v;T; v � v;T; v

(5)
Γ � f;T � T′; f Δ � a;T; a

[�E]
Γ,Δ � f(a);T′; f(a)

(6)
Γ, a;T; a � f;T′; f

[�I]
Γ � λaf;T � T′;λaf

Here is a toy lexicon for English:

(7) � chris;NP; chris

� robin;NP; robin

� λpp ◦ slept;NP � S; sleep

� λrλpp ◦ liked ◦ r;NP � NP � S; like

� dog;N; dog

� λpλff(every ◦ p);N � (NP � S) � S; every

� λpλff(a ◦ p);N � (NP � S) � S; exists

� λff(everyone); (NP � S) � S; every(person)

� λff(someone); (NP � S) � S; exists(person)

7 Compare [�E] to pointwise application and [�I] to pointwise abstraction in Muskens
2007b. The three rules also roughly correspond to Trace, Merge and Move respec-
tively in mainstream generative grammar.

Distinguishing Phenogrammar from Tectogrammar 135

Given the rules and these lexical entries we can derive the following by means
of [� E] and β reduction in the pheno logic (to enhance readability, we freely
β-reduce pheno and semantic terms in derivations):

(8) a. � chris ◦ slept;S; sleep(chris)
b. � chris ◦ liked ◦ robin;S; like(robin)(chris)

The hyperintensional generalized quantifiers � every : (e → p) → (e → p) → p
and � exists : (e → p) → (e → p) → p given in the lexicon above are related to
their extensional counterparts via the following meaning postulates:

(9) a. ∀P∀Q∀w[every(P)(Q)@w = ∀x(P (x)@w → Q(x)@w)]

b. ∀P∀Q∀w[exists(P)(Q)@w = ∃x(P (x)@w ∧Q(x)@w)]

Below we show the entire proof of Robin liked a dog, to illustrate the mechanism
for scoping in situ semantic operators which will be relevant to our analysis of
interrogatives. First we assemble the quantificational noun phrase a dog:

(10)
� λpλff(a ◦ p);N � (NP � S) � S; exists � dog;N; dog

[�E]
� λff(a ◦ dog); (NP � S) � S; exists(dog)

We make use of [Ax] to introduce a hypothesis corresponding to the object
argument of the verb. Intuitively, this is the slot that the quantificational object
will eventually lower itself into.

(11) � λrλpp ◦ liked ◦ r;NP � NP � S; like
[Ax]

q;NP;x � q;NP;x
[�E]

q;NP;x � λpp ◦ liked ◦ q;NP � S; like(x)

Then we proceed to combine the verb phrase missing its object, with its subject
Robin. In a step of [�I] we discharge the object hypothesis, λ abstracting on
the free variables in the pheno and the semantic term. The quantificational noun
phrase a dog can now scope over λxsee(x)(robin), but its pheno term ensures that
it is lowered into the object gap in one step of β reduction in the pheno logic.
By ‘gap’ we simply mean a λ bound variable in a pheno term.

(12)
(10)

(11) � robin;NP; robin
[�E]

q;NP;x � robin ◦ liked ◦ q;S; like(x)(robin)
[�I]� λqrobin ◦ liked ◦ q;NP � S;λxlike(x)(robin)
[�E]� robin ◦ liked ◦ a ◦ dog;S; exists(dog)(λxlike(x)(robin))

We easily predict the ambiguity of a sentence with two quantificational expres-
sions such as Everyone saw a dog. Since the context is a multiset and not a list,
the subject and the object hypothesis that would be introduced in the proof of
this sentence can be discharged in either order. If the object hypothesis is dis-
charged first, we get the reading in (13). If the subject hypothesis is discharged
first, we get the reading in (14). In both cases, the word order is the same since
the quantificational expressions just lower themselves into the appropriate gap
of their argument.

136 V. Mihaliček and C. Pollard

(13) � everyone ◦ saw ◦ a ◦ dog;S; every(person)(λxexists(dog)(λysaw(y)(x)))
(14) � everyone ◦ saw ◦ a ◦ dog;S; exists(dog)(λyevery(person)(λxsaw(y)(x)))

3 The Data

In this section, we briefly describe the data we will account for in Section 4. Due
to considerations of space, we mainly focus on embedded interrogatives.

3.1 Interrogatives in Chinese

Like English, Chinese is an SVO language:

(15) Zhangsan
Zhangsan

xihuan
like

Lisi.
Lisi

‘Zhangsan likes Lisi.’

Unlike English, Chinese has distinct interrogative verb forms which reduplicate
the first syllable of the verb, with the morpheme bu ‘not’ separating the two
copies. These forms are employed in polar questions, both root and embedded.
The only difference between declaratives and polar interrogatives is the form of
the finite verb (e.g. xihuan vs. xi-bu-xihuan).

(16) a. Zhangsan
Zhangsan

xi-bu-xihuan
like?

Lisi?
Lisi

‘Does Zhangsan like Lisi?’

b. Chunsheng
Chunsheng

xiang-zhidao
wonder

Zhangsan
Zhangsan

xi-bu-xihuan
like?

Lisi?
Lisi

‘Chunsheng wonders whether Zhangsan likes Lisi.’

Constituent questions contain interrogative (wh) expressions such as shenme
‘what’ or shei ‘who’. These interrogative expressions appear in situ, i.e. in the
same place in the clause where their non-interrogative counterparts appear. This
is true of both main and embedded clauses:

(17) a. Zhangsan
Zhangsan

xihuan
like

shenme?
what

‘What does Zhangsan like?’

b. Shei
who

xihuan
like

shenme?
what

‘Who likes what?’

c. Zhangsan
Zhangsan

xiang-zhidao
wonder

Lisi
Lisi

xihuan
like

shei.
who

‘Zhansang wonders who Lisi likes.’

Distinguishing Phenogrammar from Tectogrammar 137

Chinese wh-expressions can have arbitrarily wide scope, constrained solely by
the properties of the embedding verb(s).

(18) Zhangsan
Zhangsan

xiang-zhidao
wonder

shei
who

xihuan
like

shenme./?
what

‘Zhangsan wonders who likes what.’
‘Who does Zhangsan wonder what (that person) likes?’
‘What does Zhangsan wonder who likes?’

The preceding example is three-ways ambiguous. Both embedded wh expressions
can have embedded scope. On this interpretation, the main clause is declarative,
and the embedded clause is a binary constituent question. Alternatively, either of
the embedded wh expressions can have root scope, resulting in an interpretation
where both the main and the embedded clause are unary constituent questions.
It is impossible, however, for both embedded wh-expressions to have root scope,
since the embedding verb xiang-zhidao ‘wonder’ can only take interrogative but
not declarative complements (much like its English counterpart).

3.2 Interrogatives in English

In English, embedded polar interrogatives are formed by means of the interrog-
ative ‘complementizer’ whether, which takes a sentential complement, e.g. Chris
wonders whether Robin likes Sandy.

In constituent questions, in contrast to Chinese, wh-expressions are not all
in situ. Rather, a wh expression must occur on the extreme left periphery of a
clause, and take scope at that clause, in order for the clause to be interpreted as
a constituent question. Adopting an HPSG usage, we call such a left-peripheral
wh expression a filler.8

(19) a. Chris wonders who Robin likes.

b. * Chris wonders Robin likes who.

(20) a. Chris wonders who Robin gave what.

b. * Chris wonders Robin gave who what.

c. * Chris wonders who what Robin gave.

By definition, a filler wh-expression can only have surface scope. By contrast, an
in situ wh-expression can scope at or wider than the minimal clause in which
it occurs, but the latter option is available only if the clause at which it scopes
also has a filler:

(21) Chris wonders whox likes whaty.

8 In mainstream generative grammar, such wh-expressions are analyzed as having
undergone overt wh movement (string-vacuous movement in case the wh-expression
in question is the subject of the root clause). Note that not every extreme left-
peripheral wh expression is a filler. For example, in Who thought which dog barked?,
which dog is not a filler, but rather an in situ wh expression with root scope.

138 V. Mihaliček and C. Pollard

a. ‘Chris wonders who likes what’

b. # ‘For which person x does Chris wonder which thing y is such that
x likes y?’

c. # ‘For which thing y does Chris wonder which person x is such that
x likes y?’

(22) Whox wonders whoy likes whatz?

a. ‘Which person x is such that x wonders which person y and which
thing z are such that y likes z?’
possible answer : Chris.

b. ‘Which person x and which thing z are such that x wonders which
person y is such that y likes z?’
possible answer : Chris wonders who likes beer.

c. # ‘Which person x and which person y are such that x wonders which
thing z is such that y likes z?’
impossible answer : Chris wonders what Robin likes.

4 The Analysis

4.1 Polar Questions

Semantic Assumptions. Like Karttunen 1977, we analyze polar questions
(meanings of both root and embedded polar interrogative clauses) as having
extensions which are singleton sets of true answers. On our hyperintensional
approach, this means that polar questions have the type p → p, so that the
extension at some world w is then a set of propositions (p → t) – intuitively,
the set of true answers to it. Thus, e.g. whether Chris slept or Did Chris sleep?
denotes at some w a set with exactly one member: either the proposition that
Chris slept or that he didn’t, whichever is true at w. We abbreviate the polar
question type p → p as k0.

(23) k0 = p → p

Now we introduce the constant � whether : p → k0 together with the following
meaning postulate (nonlogical axiom):

(24) � whether = λqλp[p and ((p eqp q) or (p eqp (not q)))]

In the definition of whether we made use of the propositional connectives and,
or and not that translate the English sentential connectives and, or and it’s not
the case that. The following theorems (which follow directly from the facts that
(i) the propositions form a preboolean algebra, and (ii) worlds are ultrafilters)
relate these propositional connectives to their extensional counterparts:

(25) a. � ∀p∀q∀w[(p and q)@w = (p@w ∧ q@w)]
b. � ∀p∀q∀w[(p or q)@w = (p@w ∨ q@w)]

Distinguishing Phenogrammar from Tectogrammar 139

c. � ∀p∀w[(not p)@w = ¬(p@w)]

We also made use of the constant eqp (we omit the subscript when the type is
clear from the context). This is one of a family of constants eqA of
type A → A → p which are used to express, for each hyperintensional meaning
type A, propositions that two meanings of type A are one and the same meaning.
The following meaning postulate states that at any world w, the extension of
eqA at w is the ordinary equality relation on things of type A:

(26) � ∀w∀x∀y[(x eq y)@w = (x = y)]

English Polar Questions. The constant whether is used as the semantics of
the English interrogative complementizer whether, which has the following lexical
entry:

� λp(whether ◦ p);S � S̄;whether

Now we can generate embedded polar questions in English, such as:

(27) � whether ◦ chris ◦ slept;S̄;whether(sleep(chris))

The semantic term denotes a singleton set of propositions, as desired:

(28) � ∀wwhether(sleep(chris)))@w =
λp[p@w ∧ ((p = sleep(chris)) ∨ (p = (not(sleep(chris)))))]

Embedded interrogatives in English are assigned a distinct tectogrammatical
type from root questions, since they are not interchangeable - whether Chris
slept cannot be a root question, and Did Chris sleep? cannot be an embedded
question, hence we must distinguish between S̄ and S. (Of course, the same
tectogrammatical distinction is made for declarative clauses.)

Chinese Polar Questions. In Chinese, root and embedded polar interrogatives
are interchangeable so they are both assigned to the same tectogrammatical
type S9. Since there is no interrogative complementizer in Chinese, whether is
packaged into the semantic term of the interrogative verb forms, which as we
saw are distinct form from their declarative forming counterparts. We give the
following toy lexicon for Chinese:

� zhangsan;NP; zhangsan

� lisi;NP; lisi

� λpλqq ◦ xihuan ◦ p;NP � NP � S; like

� λpλqq ◦ xi-bu-xihuan ◦ p;NP � NP � S;λxλywhether(like(x)(y))

9 This is true of reduplicative interrogatives in Chinese, discussed in this paper. Polar
interrogatives formed using the particle ma can only be root interrogatives.

140 V. Mihaliček and C. Pollard

Now we can derive the following examples:

(29) a. � zhangsan ◦ xihuan ◦ lisi;S; like(lisi)(zhangsan)
b. � zhangsan ◦ xi-bu-xihuan ◦ lisi;S;whether(like(lisi)(zhangsan))

In sum, the difference between English and Chinese embedded polar interroga-
tives is that (i) English distinguishes (tectogrammatically) between embedded
and root interrogatives, while Chinese does not, and (ii) the form that con-
tributes the interrogative meaning is the interrogative complementizer whether
in English, while in Chinese it is the distinct verbal form.

4.2 Constituent Questions

Semantic Assumptions. We analyze n-ary questions as having extensions
which are (curried) functions from n individuals to a singleton set of proposi-
tions. Recall that k0 is the type of polar questions. We define the type of n-ary
constituent question as follows:

(30) kn+1 = e → kn

For example, the hyperintensional meaning type of a unary constituent question
such as who slept is a function from individuals to properties of propositions
(type e → k0). Such a question denotes at any world w a function from individu-
als to a singleton set of propositions (type e → p → t), mapping each individual
x to the singleton set whose member is either the proposition that x slept or the
proposition that x didn’t sleep, whichever is true at w.

The type of questions, k, is then defined to be the dependent coproduct of all
question types, indexed by the natural numbers:

(31) k =def
∐
n:n kn

Like quantificational expressions, wh expressions take scope. But unlike quan-
tificational expressions, which bind an entity variable in a proposition to yield
a proposition, wh expressions do not have a fixed result type. For example, in a
unary constituent question, the unique wh expression binds an entity variable in
proposition to yield a term of type k1; in a binary constituent question, one wh
expression will yield a term of type k1 while the other one will bind an entity
variable in that term to yield a term of type k2.

We first define the wh expression that scopes over propositions to yield a unary
wh question. Its semantic argument type is the same as for quantificational noun
phrases (e → p), but its result type is k1.

(32) � who′ = λPλxλp[(person x) and (whether (Px) p)]

Combining who′ with λx(sleep x) : e → p we get the desired meaning:

(33) � who′(λx(sleep x)) = λxλp[(person x) and (whether (sleep x) p)]

Distinguishing Phenogrammar from Tectogrammar 141

Unlike who′ which combines with individual properties to yield unary questions,
wh expressions that form (n+2)-ary constituent questions must combine with
(n+1)-ary constituent questions ‘missing’ an entity argument. So they combine
with terms of type e → kn+1 to yield terms of type kn+2. Note that e → kn+1 is
exactly the type kn+2.

More formally, we recursively define a family of constants whon : kn+2 → kn+2

for wh expressions that scope over constituent questions and yield constituent
questions. In the recursion clause, we make use of the polymorphic function
perA,B,C : (A → B → C) → (B → A → C) that permutes the first two
arguments of a function:

(34) � per = λfλxλy(f y x)

(35) a. � who0 = λkλxλyλp[(person x) and (k x y p)]

b. � whon+1 = λk[per λx.whon(per k x)]

Essentially, all that whon does is require of its argument’s first argument that it
be a person. We package all the constants whon together into a single dependent
product type:

(36) � who = λn:n.whon :
∏
n:n(kn+2 → kn+2)

For ease of exposition, we started with the meanings of the interrogative pronoun
who. The generalization to the interrogative determiner which is straightforward:

(37) � which′ = λQλPλxλp[(Qx) and (whether (Px) p)]

(38) a. � which0 = λQλkλxλyλp[(Q x) and (k x y p)]

b. � whichn+1 = λQλk[per λxwhichn(Q)(per k x)]

(39) � which = λn:n.whichn :
∏
n:n[(e → p) → (kn+2 → kn+2)]

We leave it to the reader to formulate the semantic constants needed for the
interrogative pronoun what.

English Constituent Questions. Recall that in English there is exactly one
filler wh expression per constituent question. Any other ones appear in situ. We
straightforwardly account for this fact by associating the filler with the semantic
term who′, and the in situ ones with the semantic term who, intuitively one of
the whon constants.

Since the semantic argument and result type of who′ are distinct ((e → p) vs.
k1), it is impossible for two fillers to occur in the same clause. And since all whon
constants require that there already be a constituent question for them to scope
over, and who′ is the unique constant that turns propositions into constituent
questions, the presence of a filler wh expression is necessary for any in situ ones to
occur. So, we guarantee that there is exactly one filler per constituent question.

Following Muskens 2007b, the fronting of the filler to the left periphery is
accomplished entirely in the phenogrammar. We give the following lexical entries
for English wh expressions:

142 V. Mihaliček and C. Pollard

(40) English filler wh-expressions:

� λf [who ◦ f(e)]; (NP � S) �S̄;who′

� λf [what ◦ f(e)]; (NP � S) �S̄;what′

� λpλf [which ◦ p ◦ f(e)];N � (NP � S) �S̄;which′

(41) English in situ wh-expressions:

� λf [f(who)]; (NP � S) �S̄;who

� λf [f(what)]; (NP � S) �S̄;what

� λpλf [f(which ◦ p)];N � (NP � S) �S̄;which

Note that the pheno terms of in situ wh-expressions have the same structure as
those of quantificational noun phrases. So, the in situ wh-expressions just lower
themselves into the appropriate gap of their argument.

The pheno terms of the filler expressions are different. Instead of lowering
themselves into the gap of their argument, they concatenate themselves to the
left of their argument after feeding it the empty string e which effectively plugs
the existing gap. This is how preposing of the fillers is accomplished. So, here
are the kinds of embedded questions that our grammar can now generate:

(42) unary constituent questions

a. � who ◦ liked ◦ robin;S̄;who′(λx(like(robin)(x))
b. � which ◦ dog ◦ slept;S̄;which′(dog)(λx(sleep(x))
c. � which ◦ dog ◦ chris ◦ liked;S̄;which′(dog)(λx(like(x)(chris))

(43) binary constituent questions

a. � who ◦ liked ◦ who;S̄;who0(λywho′(λx(like(y)(x))))
b. � which ◦ dog ◦ who ◦ liked;S̄;who0(λywhich′(dog)(λx(like(x)(y))))

Given the pheno terms of filler wh-expressions, we automatically predict that
they must scope over the clause on whose left periphery they occur. The in
situ expressions, on the other hand, can scope higher than their surface position
would suggest, since they can lower themselves into the right gap from virtually
anywhere.

However, because of the semantic typing, the in situ wh-expressions are de-
pendent on there already being some filler in the clause over which they are to
scope. So we predict that they can only scope higher than their surface position
would suggest in case the matrix clause already contains a filler wh-expression
(in accordance with the data laid out in the preceding section).

Suppose we have the following lexical entry for wonders :

� λpλqq ◦ wonders ◦ p; S̄ � NP � S;wonder

where wonder has type k → e → p. Then we correctly predict the ambiguity
of embedded clauses such as who wonders which dog liked what (as in Robin
asked me who wonders which dog liked what), depending on whether what has
embedded or matrix scope. Below we show the two derivable semantic terms:

Distinguishing Phenogrammar from Tectogrammar 143

(44) who wonders which dog liked what

a. � who′(λzwonder(what0(λy(which′(dog)(λx(like(y)(x))))(z))) : k1
b. � what0(λywho

′(λzwonder((which′(dog)(λx(like(y)(x))))(z))) : k2

Chinese Constituent Questions. Unlike English, Chinese has no filler wh-
expressions, but only in situ ones. So, all wh expressions are assigned to the
same kind of pheno term and are systematically ambiguous between who′ and
who (what′ and what). We add the following lexical entries:

(45) Chinese wh pronouns

� λf [f(shei)]; (NP � S) �S;who′

� λf [f(shei)]; (NP � S) �S;who

� λf [f(shenme)]; (NP � S) �S;what′

� λf [f(shenme)]; (NP � S) �S;what

Now we can generate examples like the following:

(46) a. ‘what Zhangsan likes’/‘What does Zhangsan like?’

� zhangsan ◦ xihuan ◦ shenme;S;what′(λxlike(x)(zhangsan))
b. ‘who likes Lisi’/‘Who likes Lisi?’

� shei ◦ xihuan ◦ lisi;S;who′(λxlike(lisi)(x))
c. ‘who likes what’/‘Who likes what?’

� shei ◦ xihuan ◦ shenme;S;what0(λywho′(λxlike(y)(x)))
� shei ◦ xihuan ◦ shenme;S;who0(λxwhat′(λy like(y)(x)))

Note the insignificant ambiguity of binary questions such as the one in (46c)
depending on which wh expression is scoped first.10

Since all wh expressions in Chinese lower themselves into their argument’s
gap, they can scope arbitrarily high. We give the following lexical entry for
xiang-zhidao ‘wonder’:

� λpλqq ◦ xiang-zhidao ◦ p;S� NP � S;wonder

Our grammar predicts that embedded wh expressions can in fact have root scope.
All of the following semantic terms are derivable for the sentence in (47):

(47) Zhangsan xiang-zhidao shei xihuan shenme./?

a. ‘Zhangsan wonders who likes what.’

� wonder(what0(λywho
′(λxlike(y)(x))))(zhangsan)

� wonder(who0(λxwhat
′(λy like(y)(x))))(zhangsan)

b. ‘Who does Zhangsan wonder what (that person) likes?’

10 Insignificant in the sense that, at any world w, the two readings have the same
extension.

144 V. Mihaliček and C. Pollard

� who0(λxwonder(what
′(λy like(y)(x)))(zhangsan))

c. ‘What does Zhangsan wonder who likes?’

� what0(λywonder(who
′(λxlike(y)(x)))(zhangsan))

It is, however, impossible for both embedded wh expressions to have root scope,
not because of the tectogrammatical type of xiang-zhidao, but because of its
semantic type: it needs an argument of type k.

5 Discussion and Conclusion

We hope to have shown that PTG is a suitable framework for analyses of com-
plex linguistic phenomena such as interrogatives. The explicit separation of
phenogrammar and tectogrammar allows for a surprisingly simple analysis of
vastly different strategies for forming wh questions, bringing out uniformities in
combinatorics and interpretation of questions in English and Chinese, while iden-
tifying phenogrammar as the locus of cross-linguistic variation. The difference
between overt and covert movement is analyzed as a purely phenogrammatical
lexical difference.

In comparison to Vermaat’s (2005) multi-modal approach, our tectogrammar
is considerably simpler, with a single order-insensitive type constructor and just
a handful of linguistically motivated types. While in this paper we cannot even
approach the empirical breadth of Vermaat (2005), we would like to extend the
analysis of interrogatives presented here to languages with different question-
forming strategies, e.g. multiple-fronting languages such as Serbo-Croatian.

Japanese also presents an interesting case because, while it is a wh in situ
language, it makes use of question markers (e.g. ka) which occur both in polar
and constituent questions. It has been claimed that wh-expressions must scope
at the minimal clause that contains them and is marked as a question (e.g.
Nishigauchi 1990), but this is not uncontroversial (see Takahashi 1993, Kitagawa
2005).

If the scope of Japanese wh-expressions really is thus constrained, the archi-
tecture we employ in this paper will have to be elaborated in some way to allow
for restrictions on the scope of in situ operators. We would like to suggest that
this may be accomplished by recoding our analysis into a ‘direct-style’ frame-
work where in situ operators are not type-raised in phenogrammar, but rather
are scoped via (nonconfluent) reduction in the semantic calculus using polymor-
phic shift operators. Some such mechanism may then also be used to account
for any other scope island effects.

References

Baldridge, Jason, Lexically Specied Derivational Control in Combinatory Categorial
Grammar. Ph.D. thesis. University of Edinburgh (2002)

Curry, H.: Some logical aspects of grammatical structure. In: Jakobson, R. (ed.) Struc-
ture of Language and Its Mathematical Aspects (1961)

Distinguishing Phenogrammar from Tectogrammar 145

de Groote, P.: Towards Abstract Categorial Grammar. In: Proceedings of ACL (2001)
Karttunen, L.: Syntax and semantics of questions. Linguistics and Philosophy 1, 1

(1977)
Kitagawa, Y.: Prosody, syntax and pragmatics of WH-questions. English Linguistics 22,

2 (2005) (in Japanese)
Joachim, L., Scott, P.J.: Introduction to Higher Order Categorical Logic. Cambridge

University Press (1986)
Montague, R.: The proper treatment of quantification in English. In: Thomason, R.

(ed.) Formal Philosophy: Selected Papers of Richard Montague, pp. 247–270. Yale
University Press, New Haven (1974)

Moortgat, M.: Generalized quantification and discontinuous type constructors. In:
Bunt, H., van Horck, A. (eds.) Discontinuous Constituency. Mouton de Gruyter
(1996)

Moortgat, M.: Categorial type logics. In: van Benthem, J., ter Meulen, A. (eds.) Hand-
book of Logic and Language. Elsevier, Amsterdam (1997)

Glyn, M., Fada, M., Valentin, O.: Nondeterministic discontinuous Lambek calculus. In:
Proceedings of the Seventh International Workshop on Computational Semantics
(IWCS 2007), Tilburg (2007)

Muskens, R.: Language, lambdas, and logic. In: Kruijff, G.-J., Oehrle, R. (eds.) Re-
source Sensitivity in Binding and Anaphora. Studies in Linguistics and Philosophy.
Kluwer (2003)

Muskens, R.: Sense and the computation of reference. Linguistics and Philosophy 28,
4 (2005)

Muskens, R.: Intensional models for the theory of types. The Journal of Symbolic
Logic 72, 1 (2007a)

Muskens, R.: Separating syntax and combinatorics in categorial grammar. Research on
Language and Computation 5, 3 (2007b)

Nishigauchi, T.: Quantification in the Theory of Grammar. Kluwer, Dordrecht (1990)
Oehrle, R.: Term-labeled categorial type systems. Linguistics and Philosophy 17, 6

(1994)
Pollard, C.: Type-Logical HPSG. In: Jäger, G., Monachesi, P., Penn, G., Wintner, S.

(eds.) Proceedings of Formal Grammar 2004, pp. 107–124. European Summer School
in Language, Logic, and Information, Nancy (2004)

Pollard, C.: Hyperintensions. Journal of Logic and Computation 18, 2 (2008a)
Pollard, C.: Hyperintensional Questions. In: Hodges, W., de Queiroz, R. (eds.) WoLLic

2008. LNCS (LNAI), vol. 5110, pp. 272–285. Springer, Heidelberg (2008)
Smith, E.A.: Correlational Comparison in English. Ph.D. dissertation, Department of

Linguistics. The Ohio State University (2010)
Takahashi, D.: Movement of WH-phrases in Japanese. Natural Language and Linguistic

Theory 11, 4 (1993)
Thomason, R.: A model theory for propositional attitudes. Linguistics and Philoso-

phy 4, 1 (1980)
Vermaat, W.: The Logic of Variation. A Cross-Linguistic Account of Wh-Question

Formation. Ph.D. thesis. Utrecht Institute of Linguistics OTS, Utrecht University
(2005)

Generalized Discontinuity

Glyn Morrill1 and Oriol Valent́ın2

1 Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

morrill@lsi.upc.edu

http: //www-lsi.upc.edu/~morrill/
2 Barcelona Media, Centre d’Innovació

Universitat Pompeu Fabra
oriol.valentin@upf.edu

Abstract. We define and study a calculus of discontinuity, a version
of displacement calculus, which is a logic of segmented strings in ex-
actly the same sense that the Lambek calculus is a logic of strings. Like
the Lambek calculus, the displacement calculus is a sequence logic free
of structural rules, and enjoys Cut-elimination and its corollaries: the
subformula property, decidability, and the finite reading property. The
foci of this paper are a formulation with a finite number of connectives,
and consideration of how to extend the calculus with defined connectives
while preserving its good properties.

1 Introduction: Architecture of Logical Grammar

An argument in logic comprises some premises and a conclusion; for example:1

(1) a. All men are mortal.
Socrates is a man.
Socrates is mortal.

b. All men are mortal.
Socrates is mortal.
Socrates is a man.

If in an argument the truth of the premises guarantees the truth of the conclusion,
the argument is logical. If the truth of the premises does not guarantee the truth
of the conclusion, the argument is not logical. The argument (1a) is logical:
independently of the facts of the real world, who Socrates is, etc., if the premises
are true then the conclusion must be true. The argument (1b) is not logical:
again disregarding how the world actually is, it is possible for the premises to
be true but the conclusion false.

In a logical theory premises and conclusions are represented by formulas, and
we then call an argument a sequent. For example, corresponding to (1) there are
the sequents:

(2) a. ∀x(Hx → Mx), Hs ⇒ Ms
b. ∀x(Hx → Mx),Ms ⇒ Hs

1 The research reported in the present paper was supported by DGICYT project
SESAAME-BAR (TIN2008-06582-C03-01).

P. de Groote and M.-J. Nederhof (Eds.): Formal Grammar 2010/2011, LNCS 7395, pp. 146–161, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Generalized Discontinuity 147

If a sequent Γ ⇒ A is logical we call it a theorem and write � Γ ⇒ A. If it is not
logical it is not a theorem and we write 	� Γ ⇒ A. Thus a logical theory takes
the form shown in Figure 1.

sequents

theorems

��

��

Fig. 1. Logic

A sentence comprises a string of words. Some strings of words are well-formed
as sentences and we say they are grammatical, for example John walks ; others
are not well-formed as sentences and we say they are ungrammatical, for example
*walks John. Thus grammar takes the form shown in Figure 2.

strings

sentences

��

��

Fig. 2. Grammar

Given a subset of a domain, such as the subset of sequents that are theorems
or the subset of strings that are sentences, there is the associated computational
decision problem of determining whether an element of the domain belongs to
the subset.

A reduction of one problem to another is an answer-preserving mapping from
the domain of the first problem to the domain of the second problem. Thus a
reduction sends members to members and nonmembers to nonmembers as shown
in Figure 3. The existence of a reduction from one problem to a second means
that the first problem can be solved by the composition of an algorithm for the
second problem with an algorithm computing the reduction.

Logical grammar is a reduction of grammar to logic: a string is a sentence
if and only if an associated sequent (or one of a set of associated sequents)
is a theorem, as shown in Figure 4. Hence in logical grammar, determining
grammatical properties is reduced to theorem-proving.

148 G. Morrill and O. Valent́ın

��

��

��

��
�

�

Fig. 3. Reduction

strings

sentences

��

��
sequents

theorems

��

��
�

�

Fig. 4. Logical grammar

2 Logic of Strings: The Lambek Calculus L

Logic of strings is provided by the calculus of Lambek (1958)[4]. We consider a
variant L which is multiplicative intuitionistic noncommutative linear logic.

The types F of L are defined and interpreted as subsets of the set of strings
over a vocabulary as follows, where 0 is the empty string:

(3) F ::= F\F [A\C] = {s2| ∀s1 ∈ [A], s1+s2 ∈ [C]} under
F ::= F/F [C/B] = {s1| ∀s2 ∈ [B], s1+s2 ∈ [C]} over
F ::= F•F [A•B] = {s1+s2| s1 ∈ [A] & s2 ∈ [B]} product
F ::= I [I] = {0} product unit

The set O of configurations is defined as follows, where Λ is the empty string:2

(4) O ::= Λ | F | O,O

A sequent Γ ⇒ A comprises an antecedent configuration Γ and a succedent type
A. The sequent calculus of L is as shown in Figure 5, where Δ(Γ) signifies a
configuration Δ with a distinguished subconfiguration Γ .

The Cut-elimination property of a logic is that every theorem has a Cut-free
proof. Lambek (1958)[4] proved Cut-elimination for L without the product unit
I; Lambek (1969)[5] showed that there is also Cut-elimination when the product
unit is included. Cut-elimination has a series of good consequences.

Firstly, Cut-elimination means that the calculus has the subformula property:
that every theorem has a proof containing only its subformulas. This is so because

2 Note that this grammar is ambiguous, but that this does not matter because the
product is associative.

Generalized Discontinuity 149

id
A ⇒ A

Γ ⇒ A Δ(A) ⇒ B
Cut

Δ(Γ) ⇒ B

Γ ⇒ A Δ(C) ⇒ D
\L

Δ(Γ,A\C) ⇒ D

A,Γ ⇒ C
\R

Γ ⇒ A\C

Γ ⇒ B Δ(C) ⇒ D
/L

Δ(C/B, Γ) ⇒ D

Γ,B ⇒ C
/R

Γ ⇒ C/B

Δ(A,B) ⇒ D
•L

Δ(A•B) ⇒ D

Γ ⇒ A Δ ⇒ B
•R

Γ,Δ ⇒ A•B

Δ(Λ) ⇒ A
IL

Δ(I) ⇒ A
IR

Λ ⇒ I

Fig. 5. Sequent calculus for L

every rule except Cut has the property that every type in the premises is either
the same as, or is an immediate subtype of, a type in the conclusion. Thus
every Cut-free proof has the subformula property, and by Cut-elimination every
theorem has a Cut-free proof.

Secondly, Cut-elimination means that the calculus is decidable. Cut-eliminat-
ion does not always have this consequence, for example full propositional linear
logic enjoys Cut-elimination but is not decidable. But it follows in the present
case because of the finiteness of the Cut-free search space without contraction.
Every rule except Cut has the property that when a sequent is matched against
the conclusions of the rule, there are only a finite number of premises from which
it could have been inferred by the rule. The space of Cut-free backward chaining
sequent proof search is finite. Thus, whether a sequent has a Cut-free proof can
be determined in finite time, and by Cut-elimination a sequent is a theorem if
and only if it has a Cut-free proof.

Thirdly, Cut-elimination means that the calculus has the finite reading prop-
erty. Again, this does not always hold, for example intuitionistic propositional
logic enjoys Cut-elimination but not the finite reading property. But here there
is no contraction. Curry-Howard categorial semantics compositionally associates
each proof with a derivational semantics which is its homomorphic image as an
intuitionistic proof or typed lambda term. Equivalence of such semantic readings
is preserved by Cut-elimination. Since the Cut-free sequent proof search space is
finite, every sequent can have only a finite number of nonequivalent proofs, and
hence only a finite number of semantic readings.

The Lambek calculus L thus has good proof-theoretic properties as a logic of
strings, but as is well known, logical syntax and semantics developed on this basis
does not accommodate non-peripheral discontinuities. For example, a relative
pronoun type R/(S/N) will produce unboundedly long-distance extraction from

150 G. Morrill and O. Valent́ın

clause-final positions, but not clause-medial extraction such as man who John
saw today. And a quantifier phrase type S/(N\S) will produce subject position
quantification, and a further quantifier phrase type (S/N)\S will produce in
addition sentence-final quantification, but neither of these types will produce
sentence-medial quantification such as John introduced everyone to Mary.

Overall, the Lambek calculus cannot accommodate the syntax and semantics
of:

(5) Discontinuous idioms (Mary gave the man the cold shoulder). Quantification
(John gave every book to Mary; Mary thinks someone left ; Everyone loves
someone). VP ellipsis (John slept before Mary did ; John slept and Mary
did too). Medial extraction (dog that Mary saw today). Pied-piping (moun-
tain the painting of which by Cezanne John sold for $10,000,000. Appos-
itive relativization (John, who jogs, sneezed). Parentheticals (Fortunately,
John has perseverance; John, fortunately, has perseverance; John has, for-
tunately, perseverance; John has perseverance, fortunately). Gapping (John
studies logic, and Charles, phonetics). Comparative subdeletion (John ate
more donuts than Mary bought bagels). Reflexivization (John sent himself
flowers).

Furthermore, since the Lambek calculus is context-free in generative power
(Pentus 1992)[15] it cannot generate cross-serial dependencies as in Dutch and
Swiss-German (Sheiber 1985[16]).

3 Logic of Segmented Strings: The Displacement Calculus
D

By segmented strings we mean strings over a vocabulary containing a distin-
guished symbol 1 which we call the separator. We define the sort of a segmented
string as the number of separators it contains. Henceforth, by ‘string’ we shall
mean ‘segmented string’.

Morrill and Valent́ın (2010)[11] defines displacement calculus with k-ary wrap-
ping, k > 0, meaning wrapping around the kth separator. Here we consider a
variant D which is a logic of segmented strings which has continuous connectives
{\, /, •} for concatenation and discontinuous connectives {↓k, ↑k,,k}k∈{>,<} for
left and right wrapping. The characteristic feature of this variant is that it has
only a finite number of connectives. We consider also here some defined connec-
tives for which rules are compiled.

The concatenation of a string of sort i with a string of sort j is a string of sort
i + j. But in addition to concatenation, we define on (segmented) strings two
operations of intercalation or ‘wrap’. Where α and β are segmented strings and
the sort of α is at least 1, we define the left wrap of α around β, α ×> β as the
result of replacing the leftmost separator in α by β, and we define the right wrap
of α around β, α×< β as the result of replacing the rightmost separator in α by
β. For example:

(6) before+1+left+1+slept×< the+man = before+1+left+the+man+ slept

Generalized Discontinuity 151

The types of D are sorted into types Fi of sort i interpreted as sets of strings of
sort i as shown in Figure 6 where k ∈ {>,<}; the left hand column displays the
definition of the types in Backus-Naur form, and [A] where A is a type represents
the natural syntactical interpretation of a type in terms of (separated) strings.
The set O of configurations is defined as follows, where [] is the metalinguistic

Fj ::= Fi\Fi+j [A\C] = {s2| ∀s1 ∈ [A], s1+s2 ∈ [C]} under
Fi ::= Fi+j/Fj [C/B] = {s1| ∀s2 ∈ [B], s1+s2 ∈ [C]} over
Fi+j ::= Fi•Fj [A•B] = {s1+s2| s1 ∈ [A] & s2 ∈ [B]} product
F0 ::= I [I] = {0} product unit
Fj ::= Fi+1↓kFi+j [A↓kC] = {s2| ∀s1 ∈ [A], s1×ks2 ∈ [C]} infix
Fi+1 ::= Fi+j↑kFj [C↑kB] = {s1| ∀s2 ∈ [B], s1×ks2 ∈ [C]} extract
Fi+j ::= Fi+1�kFj [A�kB] = {s1×ks2| s1 ∈ [A] & s2 ∈ [B]} disc. product
F1 ::= J [J] = {1} disc. prod. unit

Fig. 6. Types of the displacement calculus D and their interpretation

separator:

(7) O ::= Λ | [] | F0 | Fi+1{O : . . . : O︸ ︷︷ ︸
i+1 O′s

} | O,O

A{Δ1 : . . . : Δn} interpreted syntactically is formed by strings α0+β1+α1+ · · ·+
αn−1+βn+αn where α0+1+α1+ · · ·+αn−1+1+αn ∈ A and β1 ∈ Δ1, . . . , βn ∈
Δn. Where A is a type we call its sort sA. The figure

−→
A of a type A is defined

by:

(8)
−→
A =

⎧⎪⎨
⎪⎩
A if sA = 0
A{[] : . . . : []︸ ︷︷ ︸

sA []’s

} if sA > 0

The sort of a configuration is the number of metalinguistic separators it contains.
Where Γ and Φ are configurations and the sort of Γ is at least 1, Γ |>Φ signifies
the configuration which is the result of replacing the leftmost separator in Γ by
Φ, and Γ |<Φ signifies the configuration which is the result of replacing the right-
most separator in Γ by Φ. Where Γ is a configuration of sort i and Φ1, . . . , Φi are
configurations, the generalized wrap Γ ⊗ 〈Φ1, . . . , Φi〉 is the result of simultane-
ously replacing the successive separators in Γ by Φ1, . . . , Φi respectively. Δ〈Γ 〉
abbreviates Δ0(Γ ⊗ 〈Δ1, . . . , Δi〉). Thus where the usual distinguished occur-
rence notation Δ(Γ) represents a subconfiguration Γ with an external context
Δ, our distinguished hyperconfiguration notatation Δ〈Γ 〉 represents a subcon-
figuration Γ with external context Δ0 and also internal contexts Δ1, . . . , Δi. A
sequent Γ ⇒ A comprises an antecedent configuration Γ of sort i and a succe-
dent type A of sort i. The sequent calculus for the calculus of displacement D
is as shown in Figure 7 where k ∈ {>,<}. Like L, D has no structural rules.

152 G. Morrill and O. Valent́ın

id−→
A ⇒ A

Γ ⇒ A Δ〈−→A〉 ⇒ B
Cut

Δ〈Γ 〉 ⇒ B

Γ ⇒ A Δ〈−→C 〉 ⇒ D
\L

Δ〈Γ,−−→A\C〉 ⇒ D

−→
A,Γ ⇒ C

\R
Γ ⇒ A\C

Γ ⇒ B Δ〈−→C 〉 ⇒ D
/L

Δ〈−−→C/B, Γ 〉 ⇒ D

Γ,
−→
B ⇒ C

/R
Γ ⇒ C/B

Δ〈−→A,−→B 〉 ⇒ D
•L

Δ〈−−→A•B〉 ⇒ D

Γ1 ⇒ A Γ2 ⇒ B
•R

Γ1, Γ2 ⇒ A•B

Δ〈Λ〉 ⇒ A
IL

Δ〈−→I 〉 ⇒ A
IR

Λ ⇒ I

Γ ⇒ A Δ〈−→C 〉 ⇒ D
↓kL

Δ〈Γ |k−−−→A↓kC〉 ⇒ D

−→
A |kΓ ⇒ C

↓kR
Γ ⇒ A↓kC

Γ ⇒ B Δ〈−→C 〉 ⇒ D
↑kL

Δ〈−−−→C↑kB|kΓ 〉 ⇒ D

Γ |k−→B ⇒ C
↑kR

Γ ⇒ C↑kB

Δ〈−→A |k−→B 〉 ⇒ D
�kL

Δ〈−−−−→A�kB〉 ⇒ D

Γ1 ⇒ A Γ2 ⇒ B
�kR

Γ1|kΓ2 ⇒ A�kB

Δ〈[]〉 ⇒ A
JL

Δ〈−→J 〉 ⇒ A

JR
[] ⇒ J

Fig. 7. Sequent calculus for D

Morrill and Valent́ın (2010)[11] proves Cut-elimination for the k-ary displace-
ment calculus, k > 0, and the variant D considered here enjoys Cut-elimination
by the same reasoning since left wrap is the same as first wrap, and right wrap
is k-ary wrap with k the corresponding maximal sort; see Morrill, Valent́ın and
Fadda (forthcoming, appendix)[13]. As a consequence D, like L, enjoys in addi-
tion the subformula property, decidability, and the finite reading property. The
calculus of displacement provides basic analyses of all of the phenomena item-
ized in (5) (Morrill and Valent́ın 2010[11], Morrill 2010 chapter 6[14], Morrill,
Valent́ın and Fadda forthcoming[13]). Furthermore it analyses verb raising and
cross-serial dependencies (Morrill, Valent́ın and Fadda 2009)[12].

Generalized Discontinuity 153

4 Examples

When s is of sort 1, s×> s
′ = s×< s

′ which we may write s× s′. Hence, when
sA = 1, A↓>C ⇔ A↓<C, which we abbreviate A↓C; and when sC − sB = 1,
C↑>B ⇔ C↑<B, which we may abbreviate C↑B; and when sA = 1, A,>B ⇔
A,<B, which we may write A,B.

Our first example is of a discontinuous idiom, where the lexicon has to assign
give . . . the cold shoulder a non-compositional meaning ‘shun’:

(9) mary+gave+the+man+the+cold+shoulder : S

Lexical insertion yields the following sequent, which is labelled with the lexical
semantics:

(10) N : m, (N\S)↑N{N/CN : ι,CN : man} : shunned ⇒ S

This has a proof as follows.

(11)
CN ⇒ CN N ⇒ N

/L
N/CN ,CN ⇒ N

N ⇒ N S ⇒ S
\L

N,N\S ⇒ S
↑L

N, (N\S)↑N{N/CN ,CN } ⇒ S

This delivers the semantics:

(12) ((shunned (ι man)) m)

Consider medial extraction:

(13) dog+that+mary+saw+today : CN

An associated semantically annotated sequent may be as follows:

(14) CN : dog , (CN \CN)/((S↑N),I) : λAλBλC[(B C) ∧ (π1A C)], N : m,
(N\S)/N : saw , (N\S)\(N\S) : λAλB(today (A B)) ⇒ CN

This has the sequent derivation given in Figure 8. This yields semantics:

(15) λC[(dog C) ∧ (today ((saw C) m))]

Consider medial quantification:

(16) john+gave+every+book+to+mary : S

An associated semantically annotated sequent may be as follows:

(17) N : j , (N\S)/(N•PP) : λA((gave π2A) π1A), ((S↑N)↓S)/CN :
λAλB∀C[(A C) → (B C)],CN : book ,PP/N : λAA, N : m ⇒ S

This has the sequent derivation given in Figure 9. This yields semantics:

(18) ∀C[(book C) → (((gave m) C) j)]

154 G. Morrill and O. Valent́ın

N ⇒ N

N ⇒ N S ⇒ S

\L
N,N\S ⇒ S

\R
N\S ⇒ N\S

N ⇒ N S ⇒ S

\L
N,N\S ⇒ S

\L
N,N\S, (N\S)\(N\S) ⇒ S

/L

N, (N\S)/N,N, (N\S)\(N\S) ⇒ S

↑R
N, (N\S)/N, [], (N\S)\(N\S) ⇒ S↑N

IR

⇒ I

�R
N, (N\S)/N, (N\S)\(N\S) ⇒ (S↑N)�I

CN ⇒ CN CN ⇒ CN

\L
CN ,CN\CN ⇒ CN

/L

CN , (CN\CN)/((S↑N)�I), N, (N\S)/N, (N\S)\(N\S) ⇒ CN

Fig. 8. Derivation of medial extraction

CN ⇒ CN

N ⇒ N

N ⇒ N PP ⇒ PP
/L

PP/N,N ⇒ PP
•R

N,PP/N,N ⇒ N•PP

N ⇒ N S ⇒ S
\L

N,N\S ⇒ S
/L

N, (N\S)/(N•PP), N,PP/N,N ⇒ S
↑R

N, (N\S)/(N•PP), [],PP/N,N ⇒ S↑N S ⇒ S
↓L

N, (N\S)/(N•PP), (S↑N)↓S,PP/N,N ⇒ S
/L

N, (N\S)/(N•PP), ((S↑N)↓S)/CN ,CN ,PP/N,N ⇒ S

Fig. 9. Derivation of medial quantification

5 Defined Nondeterministic Continuous and
Discontinuous Connectives

Let us consider a categorial displacement calculus including additives (Girard
1987)[3] which we call displacement calculus with additives (DA):

(19) Fi := Fi&Fi | Fi⊕Fi

(20)
Γ 〈−→A 〉 ⇒ C

&L1
Γ 〈−−−→A&B〉 ⇒ C

Γ 〈−→B 〉 ⇒ C
&L2

Γ 〈−−−→A&B〉 ⇒ C

Γ ⇒ A Γ ⇒ B
&R

Γ ⇒ A&B

Γ 〈−→A 〉 ⇒ C Γ 〈−→B 〉 ⇒ C
⊕L

Γ 〈−−−→A⊕B〉 ⇒ C

Generalized Discontinuity 155

Γ ⇒ A
⊕L1

Γ ⇒ A⊕B
Γ ⇒ B

⊕L2
Γ ⇒ A⊕B

Then we may define nondeterministic continuous and discontinuous connectives
as follows, where +(s1, s2, s3) if and only if s3 = s1+s2 or s3 = s2+s1, and
×(s1, s2, s3) if and only if s3 = s1 ×> s2 or s3 = s2 ×< s1.

(21) B
A =df (A\B)&(B/A) {s| ∀s′ ∈ A, s3,+(s, s′, s3) ⇒ s3 ∈ B}

nondeterministic concatenation
A⊗B =df (A•B)⊕(B•A) {s3| ∃s1 ∈ A, s2 ∈ B,+(s1, s2, s3)}

nondeterministic product
A⇓C =df (A↓>C)&(A↓<C) {s2| ∀s1 ∈ A, s3,×(s1, s2, s3) ⇒ s3 ∈ C}

nondeterministic infix
C⇑B =df (C↑>B)&(C↑<B) {s1| ∀s2 ∈ B, s3,×(s1, s2, s3) ⇒ s3 ∈ C}

nondeterministic extract
A�B =df (A,>B)⊕(A,<B) {s3| ∃s1 ∈ A, s2 ∈ B,×(s1, s2, s3)}

nondeterministic disc. product

These have the derived rules shown in Figure 10 where k ∈ {>,<}. We call the
displacement calculus extended with nondeterministic connectives the nondeter-
ministic displacement calculus ND.

Γ ⇒ A Δ〈−→C 〉 ⇒ D

L1

Δ〈Γ,

−→
C

A
〉 ⇒ D

Γ ⇒ A Δ〈−→C〉 ⇒ D

L2

Δ〈
−→
C

A
, Γ 〉 ⇒ D

−→
A, Γ ⇒ C Γ,

−→
A ⇒ C

R

Γ ⇒
C

A

Δ〈−→A,
−→
B〉 ⇒ D Δ〈−→B,

−→
A〉 ⇒ D

⊗L

Δ〈−−−−→
A ⊗ B〉 ⇒ D

Γ1 ⇒ A Γ2 ⇒ B

⊗R1

Γ1, Γ2 ⇒ A ⊗ B

Γ1 ⇒ B Γ2 ⇒ A

⊗R2

Γ1, Γ2 ⇒ A ⊗ B

Γ ⇒ A Δ〈−→C〉 ⇒ D

⇓L

Δ〈Γ |k
−−−→
A⇓C〉 ⇒ D

−→
A|>Γ ⇒ C

−→
A|<Γ ⇒ C

⇓R

Γ ⇒ A⇓C

Γ ⇒ B Δ〈−→C〉 ⇒ D

⇑L

Δ〈−−−→C⇑B|kΓ 〉 ⇒ D

Γ |>
−→
B ⇒ C Γ |<

−→
B ⇒ C

⇑R

Γ ⇒ C⇑B

Δ〈−→A |>
−→
B〉 ⇒ D Δ〈−→A |<

−→
B〉 ⇒ D

�L

Δ〈−−−→
A�B〉 ⇒ D

Γ1 ⇒ A Γ2 ⇒ B

�R

Γ1|kΓ2 ⇒ A�B

Fig. 10. Derived rules for the defined nondeterministic continuous and discontinuous
connectives of ND

Concerning Cut-elimination for the nondeterministic rules, the usual Lambek-
style reasoning applies. For example, using the method and definition of

156 G. Morrill and O. Valent́ın

Cut-degree in Morrill and Valent́ın (2010)[11], here we mention how the non-
deterministic extract and discontinuous product behave in the Cut elimination
steps. We show one case of principal Cut and one case of permutation conver-
sion. Observe that in the last conversion the logical rule and the Cut rule are
permuted by two Cuts and one logical rule, contrary to what is standard, but
as required both Cut-degrees are lower.

– ⇑ principal cut case:

Δ|>
−→
A ⇒ B Δ|<

−→
A ⇒ B

⇑R

Δ ⇒ B⇑A

Γ ⇒ A Θ〈−→B 〉
⇑L

Θ〈−−−→B⇑A|kΓ 〉 ⇒ C

Cut

Θ〈Δ|kΓ 〉 ⇒ C

�

Γ ⇒ A

Δ|k
−→
A ⇒ B Θ〈−→B〉 ⇒ C

Cut

Θ〈Δ|k
−→
A〉 ⇒ C

Cut

Θ〈Δ|kΓ〉 ⇒ C

– � permutation conversion case:

Δ〈−→B |>
−→
C 〉 ⇒ A Δ〈−→B |<

−→
C 〉 ⇒ A

�L

Δ〈−−−−→B � C〉 ⇒ A Θ〈−→A〉 ⇒ D

Cut

Θ〈Δ〈−−−−→
B � C〉〉 ⇒ D

�

Δ〈−→B |>
−→
C 〉 ⇒ A Θ〈−→A〉 ⇒ D

Cut

Θ〈Δ〈−→B |>
−→
C 〉〉 ⇒ D

Δ〈−→B |<
−→
C 〉 ⇒ A Θ〈−→A〉 ⇒ D

Cut

Θ〈Δ〈−→B |<
−→
C 〉〉 ⇒ D

�L

Θ〈Δ〈−−−−→
B � C〉〉 ⇒ D

By way of linguistic applications, a functor of type B
A can concatenate with its

argument A either to the left or to the right to form a B. For example, in Catalan
subjects can appear either preverbally or clause-finally (Barcelona creix or Creix
Barcelona “Barcelona expands/grows”). This generalization may be captured
by assigning a verb phrase such as creix the type S

N . And a nondeterministic
concatenation product type A⊗B comprises an A concatenated with a B or a B
concatenated with an A. For example, in English two prepositional complements
may appear in either order (talks to John about Mary or talks about Mary to
John). This generalization may be captured by assigning a verb such as talks
the type VP/(PP to ⊗ PPabout).

5.1 Embedding Translation between ND and DA

We propose the following embedding translation (·)� : ND −→ DA which we
define recursively:3

3 We assume a convention of precedence whereby the multiplicative connectives take
higher priority than the additives.

Generalized Discontinuity 157

(A)� = A for atomic types A
(B⇑A)� = B�↑>A�&B�↑<A�
(A⇓B)� = A�↓>B�&A�↓<B�
(A�B)� = A�,>B

� ⊕A�,<B
�

(BA)
� = A�\B�&B�/A�

(A⊗B)� = A� •B� ⊕B� •A�
(A � B)� = A� � B� where � is any other binary connective

We have the following interesting result:

Lemma 1. The (·)� embedding is faithful.

Proof. ¿FromND toDA, hypersequent derivations translate without any trou-
ble while preserving provability. Let us suppose now that we have a DA provable
hypersequent which corresponds to the image by (·)� of a ND hypersequent, i.e.
Δ� ⇒ A� where Δ and A are in the language of ND. We want to prove that
if Δ� ⇒ A� is DA-provable then Δ ⇒ A is ND provable. Since the Cut rule
is admissible in DA, we can assume only DA Cut-free provable hypersequents
Δ� ⇒ A�. The proof is by induction on the length (or height) of Cut-free DA
derivations. If the length is 0 there is nothing to prove. If the end-hypersequent
is derived by a multiplicative inference there is no problem. We analyze then the
cases where the last rule is an additive rule:4

• Left rules:

– Case where the additive active formula corresponds to (A⇑B)� =
A�↑>B� & A�↑<B�:5

Δ�〈
−−−−−→
A�↑<B�〉 ⇒ C�

&L2

Δ�〈
−−−−−−−−−−−−−−→
A�↑>B� & A�↑<B�〉 ⇒ C�

By induction hypothesis (i.h.), Δ〈−−−−→A↑<B〉 ⇒ C is derivable in the system

without additives. Since
−−−→
A⇑B ⇒ A↑<B is ND-provable, we can apply the

Cut rule as follows:

−−−→
A⇑B ⇒ A↑<B Δ〈−−−−→A↑<B〉 ⇒ C

Cut
Δ〈−−−→A⇑B〉 ⇒ C

– Case where the additive active formula corresponds to (A�B)� = A� ,>

B� ⊕A� ,< B
�:

Δ�〈A,> B〉 ⇒ C� Δ�〈A,< B〉 ⇒ C�

�L
Δ�〈A,> B ⊕A,< B〉 ⇒ C�

4 By way of example we only consider some cases of nondeterministic discontinuous
rules: nondeterministic ⇓ and continuous connectives are similar.

5 The other case of the & left rule, i.e. &L1, is completely similar.

158 G. Morrill and O. Valent́ın

By i.h. Δ〈A,>B〉 ⇒ C and Δ〈A,< B〉 ⇒ C are ND-provable. Moreover,

the hypersequents
−→
A |k

−→
B ⇒ A ,k B for k ∈ {>,<} are ND-provable. By

Cut we have Δ〈−→A |>
−→
B 〉 ⇒ C and Δ〈−→A |<

−→
B 〉 ⇒ C. Applying then the left

� rule we have:

Δ〈−→A |>
−→
B 〉 ⇒ C Δ〈−→A |<

−→
B 〉 ⇒ C

�L
Δ〈−−−→A�B〉 ⇒ C

• Right rules:

– Case where the additive formula corresponds to (A⇑B)�=A�↑>B�&A�↑<B� :

Δ� ⇒ A�↑>B� Δ� ⇒ A�↑<B�
&R

Δ� ⇒ A�↑>B�&A�↑<B

By i.h. we have that the hypersequents Δ ⇒ A↑>B and Δ ⇒ A↑<B are
ND-provable. We then apply the right ⇑ rule:

Δ ⇒ A↑>B Δ ⇒ A↑<B ⇑R
Δ ⇒ A⇑B

– Case where the additive active formula corresponds to (A�B)� = A� ,>

B� ⊕A� ,< B
�:6

Δ� ⇒ A� ,< B
�

⊕R2
Δ� ⇒ A� ,> B

� ⊕ A� ,< B
�

By i.h. Δ ⇒ A ,< B. Now it is ND-provable that
−−−−−→
A,< B ⇒ A�B. Then

by Cut:

Δ ⇒ A,< B
−−−−−→
A,< B ⇒ A�B

Cut
Δ ⇒ A�B

�

6 Defined Unary Connectives

We may define unary connectives as follows:

6 Without loss of generality we suppose that the instance of the last right ⊕ rule is
⊕R2.

Generalized Discontinuity 159

(22) �−1A =df J\A {s| 1+s ∈ A}
right projection

�−1A =df A/J {s|s+1 ∈ A}
left projection

�A =df J•A {1+s| s ∈ A}
right injection

�A =df A•J {s+1| s ∈ A}
left injection

ˇ>A =df A↑>I {s| s×> 0 ∈ A}
first split

ˇ<A =df A↑<I {s| s×< 0 ∈ A}
last split

ˆ>A =df A,>I {s×> 0| s ∈ A}
first bridge

ˆ<A =df A,<I {s×< 0| s ∈ A}
last bridge

The derived rules of inference can be compiled straightforwardly. Some interde-
finabilities are as follows:

(23) B
A ⇔ �−1�−1((B↑A)⇑I) when sB = 1

A⊗B ⇔ (��A�I),B
A\B ⇔ �−1(B↑>A)
B/A ⇔ �−1(B↑<A)

When sA = 0, ˇ>A ⇔ ˇ<A, which we abbreviate ˇA; and when sA = 1,
ˆ>A ⇔ ˆ<A, which we abbreviate ˆA. By way of linguistic application, to pro-
duce particle shift (rings up Mary or rings Mary up) we may assign rings+1+up
the type �−1(ˇVP⇑N).

7 Discussion

The defined connectives considered in this paper facilitate more concise lexical
entries, but since they are defined they do not in any way increase the expres-
sivity of the displacement calculus (with additives). But in addition, the use
of defined connectives with their derived rules can eliminate bureaucracy in se-
quent derivations in the case of the introduction of the additives. Consider the
two following derivations which are equal modulo some permutations:

D1 �

A ⇒ A B{[]} ⇒ B

↑>

B↑>A{A : []} ⇒ B

&L

(B↑>A)&(B↑<A){A : []} ⇒ B C{[]} ⇒ C

/L

C/B, (B↑>A)&(B↑<A){A : []} ⇒ C

D2 �
C{[]} ⇒ C

A ⇒ A B{[]} ⇒ B

↑>

B↑>A{A : []} ⇒ B

/L

C/B, (B↑>A){A : []} ⇒ C

&L

C/B, (B↑>A)&(B↑<A){A : []} ⇒ C

160 G. Morrill and O. Valent́ın

Observe that both derivations D1 and D2 are essentially the same. The only
(inessencial) difference is the permutations steps of the additive connective &
and the forward slash connective /. In D1 the left rule &L precedes the left
rule /L, whereas in D2 the left rule /L precedes the left rule &L. These would
have the same corresponding derivation for defined connectives. It follows then
that derived or compiled rules for defined connectives eliminate some undesirable
bureaucracy in the derivations.

The displacement calculus has been formulated in this paper in terms of
first and last wrap, as opposed to the k-ary wrap, k > 0, of Morrill and Va-
lent́ın (2010)[11], and has a finite rather than an infinite number of connectives.
This last version of displacement calculus draws together ideas spanning three
decades:

(24) – Bach (1981, 1984)[1], [2]: the idea of categorial connectives for discon-
tinuity/wrapping; wrap, extract, infix.

– Moortgat (1988)[6]: first type logical account of extract and infix discon-
tinuous connectives (string interpretation and sequent calculus).

– Morrill and Merenciano (1996)[10]: sorts; bridge and split.
– Morrill (2002)[8]: separators; unboundedly many points of discontinuity.
– Morrill, Fadda and Valent́ın (2007)[9]: nondeterministic discontinuity.
– Morrill, Valent́ın and Fadda (2009)[12]: projection and injection.
– Morrill and Valent́ın (2010)[11]: product and discontinuous product units,

Cut-elimination.

This road to discontinuity has respected fully intuitionism, residuation, and nat-
ural algebraic string models. Further logical and mathematical properties of the
resulting system remain to be studied, and it also remains to be seen whether it
may be necessary to appeal to continuation semantics or classical (symmetric)
calculi (Moortgat 2009)[7].

References

1. Bach, E.: Discontinuous constituents in generalized categorial grammars. In: Burke,
V.A., Pustejovsky, J. (eds.) Proceedings of the 11th Annual Meeting of the North
Eastern Linguistics Society, New York, pp. 1–12. GLSA Publications, Department
of Linguistics, University of Massachussets at Amherst, Amherst, Massachussets
(1981)

2. Bach, E.: Some Generalizations of Categorial Grammars. In: Landman, F., Velt-
man, F. (eds.) Varieties of Formal Semantics: Proceedings of the Fourth Amster-
dam Colloquium, pp. 1–23. Foris, Dordrecht (1984); Reprinted in Savitch, W.J.,
Bach, E., Marsh, W., Safran-Naveh, G., (eds.) The Formal Complexity of Natural
Language, pp. 251–279. D. Reidel, Dordrecht (1987)

3. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
4. Lambek, J.: The mathematics of sentence structure. American Mathematical

Monthly 65, 154–170 (1958); Reprinted in Buszkowski, W., Marciszewski, W., van
Benthem, J., (eds.) Categorial Grammar. Linguistic & Literary Studies in Eastern
Europe, vol. 25 153–172. John Benjamins, Amsterdam (1988)

Generalized Discontinuity 161

5. Lambek, J.: Deductive systems and categories, II: Standard constructions and
closed categories. In: Hilton, P. (ed.) Category Theory, Homology Theory and
Applications. Lecture Notes in Mathematics, vol. 86, pp. 76–122. Springer (1969)

6. Moortgat, M.: Categorial Investigations: Logical and Linguistic Aspects of the
Lambek Calculus. Foris, Dordrecht, PhD thesis. Universiteit van Amsterdam
(1988)

7. Moortgat, M.: Symmetric categorial grammar. Journal of Philosophical Logic
(2009)

8. Morrill, G.: Towards Generalised Discontinuity. In: Jäger, G., Monachesi, P., Penn,
G., Wintner, S. (eds.) Proceedings of the 7th Conference on Formal Grammar,
Trento, ESSLLI, pp. 103–111 (2002)

9. Morrill, G., Fadda, M., Valent́ın, O.: Nondeterministic Discontinuous Lambek Cal-
culus. In: Geertzen, J., Thijsse, E., Bunt, H., Schiffrin, A. (eds.) Proceedings of the
Seventh International Workshop on Computational Semantics, IWCS 2007, pp.
129–141. Tilburg University (2007)

10. Morrill, G., Merenciano, J.-M.: Generalising discontinuity. Traitement Automa-
tique des Langues 37(2), 119–143 (1996)

11. Morrill, G., Valent́ın, O.: Displacement calculus. Linguistic Analysis (forthcoming)
12. Morrill, G., Valent́ın, O., Fadda, M.: Dutch Grammar and Processing: A Case

Study in TLG. In: Bosch, P., Gabelaia, D., Lang, J. (eds.) TbiLLC 2007. LNCS
(LNAI), vol. 5422, pp. 272–286. Springer, Heidelberg (2009)

13. Morrill, G., Valent́ın, O., Fadda, M.: The Displacement Calculus. Journal of Logic,
Language and Information (forthcoming)

14. Morrill, G.V.: Categorial Grammar: Logical Syntax, Semantics, and Processing.
Oxford University Press, Oxford (2010)

15. Pentus, M.: Lambek grammars are context-free. Technical report, Dept. Math.
Logic, Steklov Math. Institute, Moskow (1992); Also published as ILLC Report,
University of Amsterdam, 1993, and in Proceedings Eighth Annual IEEE Sympo-
sium on Logic in Computer Science, Montreal (1993)

16. Shieber, S.: Evidence Against the Context-Freeness of Natural Language. Linguis-
tics and Philosophy 8, 333–343 (1985); Reprinted in Savitch, W.J., Bach, E.,
Marsh, W., Safran-Naveh, G., (eds.) The Formal Complexity of Natural Language,
pp. 320–334. D. Reidel, Dordrecht (1987)

Controlling Extraction in Abstract Categorial
Grammars

Sylvain Pogodalla1 and Florent Pompigne2

1 LORIA/INRIA Nancy – Grand Est
sylvain.pogodalla@inria.fr

2 LORIA/Nancy Université
florent.pompigne@loria.fr

Abstract. This paper proposes an approach to control extraction in the frame-
work of Abstract Categorial Grammar (ACG). As examples, we consider embed-
ded wh-extraction, multiple wh-extraction and tensed-clauses as scope islands.
The approach relies on an extended type system for ACG that introduces depen-
dent types and advocates for a treatment at a rather abstract (tectogrammatical)
level. Then we discuss approaches that put control at the object (phenogrammat-
ical) level, using appropriate calculi.

1 Introduction

In pursuing [2]’s program of separating the combinatorial part of grammars, the tec-
togrammatical level, from the one that realizes the operations on the surface structures,
the phenogrammatical level, the two independently formulated frameworks of Lambda
Grammar (LG) [20,21] and Abstract Categorial Grammar (ACG) [3] propose to con-
sider the implicative fragment of linear logic as the underlying tectogrammatical cal-
culus. While interleaving the phenogrammatical and the tectogrammatical levels as in
standard Categorial Grammar and Lambek calculus (CG) [13,16] leads to using a di-
rected (or non-commutative) calculus, both LG and ACG rather rely on a non-directed
(or commutative) calculus.

As immediate outcome of this choice, extraction is easily available, in particular
from medial position whereas CG permits only for peripheral extraction. So even if CG
and Lambek grammars are known for their powerful treatment of extraction, LG and
ACG extend these capabilities.

However, it is a common observation that extractions are not completely free in natu-
ral language in general. The power of hypothetical reasoning of Lambek calculus based
grammars itself is sometimes too strong [1, p. 207]. Directionality of the calculus is not
sufficient to model all kinds of islands to extraction, for instance with coordinate struc-
tures, and it overgenerates. Because of the presence of hypothetical reasoning in the
LG and ACG frameworks, the question arises whether those frameworks overgenerate
as well and, because they do, how to control extraction in those frameworks.

This paper aims at providing some solution to control extraction in the framework
of ACG for various cases, including tensed-clauses as scope islands, embedded wh-
extraction and multiple wh-extraction. The solution relies on an extended type sys-
tem for ACG that Sect. 2 presents together with the ACG basics. We emphasize there

P. de Groote and M.-J. Nederhof (Eds.): Formal Grammar 2010/2011, LNCS 7395, pp. 162–177, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Controlling Extraction in Abstract Categorial Grammars 163

the compositional1 flexibility of ACG and present a treatment at a rather abstract (tec-
togrammatical) level. Then Sect. 3 describes the examples and the solutions we provide.
Our account focuses on using dependent types, both in a rather limited and in a more
general setting. Section 4 compares our approach with related works. We first discuss
approaches that put control at the phenogrammatical level, using appropriate calculi,
then discuss other ACG models that use the same kind of architectures as the one we
propose. We also discuss ways of importing solutions developed in the the CG frame-
works.

2 ACG: Definitions and Properties

The ACG formalism lies within the scope of type-theoretic grammars [13,2,15,25]. In
addition to relying on a small set of mathematical primitives from type-theory and λ-
calculus, an important property concerns the direct control it provides over the parse
structures of the grammar. This control is at the heart of the present proposal.

2.1 Definitions

The definitions we provide here follow [3] together with the type-theoretic extension
of [4,7] providing the dependent product2.

Definition 1. The set of kinds K, the set of types T and the set of terms T are defined
as:

K ::= type | (T)K
T ::= a | (λx.T) | (T T)|(T � T) | (Π x : T)T
T ::= c | x | (λ0x.T) | (λx.T) | (T T)

where a ranges over atomic types and c over constants 3.

Assume for instance a type Gender and the three terms masc, fem and neut of this type. We
then can define np with kind (Gender)type that derives three types: np masc, np fem and
np neut. np can be seen as a feature structure whose gender value is still missing while
John can be seen as a term of type np masc, i.e. a feature structure where the value of
the Gender feature has been set to masc. On the other hand, an intransitive verb ac-
cepts as subject a noun phrase with any gender. So its type is typically (Πx : Gender)
(npx� s).

Definition 2 (Signature). A raw signature is a sequence of declarations of the form
’a : K’or of the form ’c : α’, where a ranges over atomic types, c over constants, K
over kinds and α over types.

Let Σ be a raw signature. We write AΣ (resp. CΣ) for the set of atomic types (resp.
constants) declared in Σ and write KΣ (resp. TΣ and ΛΣ) for the set of well-formed

1 As in functional composition, not as in the compositionality principle.
2 We don’t use the record and variant types they introduced.
3 λ0x.T denotes the linear abstraction and λx.T the non-linear one. (Πx : α) denotes a univer-

sal quantification over variables of type α.

164 S. Pogodalla and F. Pompigne

kinds (resp. well-kinded types and well-typed terms). In case Σ correctly introduces
well-formed kinds and well-kinded types, it is said to be a well-formed signature.

We also define κΣ (resp. τΣ) the function that assigns kinds to atomic types (resp.
that assigns types to constants).

There is no room here to give the typing rules detailed in [4,7], but the ones used in the
next sections are quite straightforward. They all are instances of the following deriva-
tion (the sequent �Σ (SLEEPS masc)JOHN : s is said to be derivable) assuming the raw
signature Σ of Table 1:

�Σ SLEEPS : (Πx : Gender) (npx� s) �Σ masc : Gender

�Σ SLEEPS masc : np masc � s �Σ JOHN : np masc

�Σ (SLEEPS masc)JOHN : s

Table 1. Raw signature example

Σ : Gender : type masc, fem : Gender JOHN : np masc

np : (Gender)type SLEEPS : (Πx : Gender) (npx� s)

Definition 3 (Lexicon). A lexicon from ΣA to ΣO is a pair 〈η, θ〉 where:

– η is a morphism form AΣA to TΣO (we also note η its unique extension to TΣA);
– θ is a morphism form CΣA to ΛΣO (we also note θ its unique extension to ΛΣA);
– for every c ∈ CΣA , θ(c) is of type η(τΣA(c));
– for every a ∈ AΣA , the kind of η(a) is η̃(κΣA(a)) where η̃ : KΣA → KΣO is

defined by η̃(type) = type and η̃((α)K) = (η(α))η̃(K).

Definition 4 (Abstract Categorial Grammar). An abstract categorial grammar is a
quadruple G = 〈ΣA, ΣO,L , s〉 where:

1. ΣA andΣO are two well-formed signatures: the abstract vocabulary and the object
vocabulary, respectively;

2. L : ΣA → ΣO is a lexicon from the abstract vocabulary to the object vocabulary;
3. s ∈ TΣA (in the abstract vocabulary) is the distinguished type of the grammar.

While the object vocabulary specifies the surface structures of the grammars (e.g. strings
or trees), the abstract vocabulary specifies the parse structures (e.g. trees, but more gen-
erally proof trees as in CG). The lexicon specifies how to map the parse structures to
the surface structures.

Definition 5 (Languages). An ACG G = 〈ΣA, ΣO,L , s〉 defines two languages:

– the abstract language: A(G) = {t ∈ ΛΣA | �ΣA t : s is derivable}
– the object language, which is the image of the abstract language by the lexicon:

O(G) = {t ∈ ΛΣO | ∃u ∈ A(G). t = L (u)}

Controlling Extraction in Abstract Categorial Grammars 165

The expressive power and the complexity of ACG have been intensively studied, in
particular for 2nd-order ACG. This class of ACG corresponds to a subclass of the ACG
where linear implication (�) is the unique type constructor (core ACG). While the
parsing problem for the latter reduces to provability in the Multiplicative Exponential
fragment of Linear Logic (MELL) [27], which is still unknown, parsing of 2nd-order
ACG is polynomial and the generated languages correspond to mildly context-sensitive
languages [5,27,10]4.

Extending the typing system with dependent products results in a Turing-complete
formalism. The problem of identifying interesting and tractable fragments for this ex-
tended type system is ongoing work that we don’t address in this paper. However, a
signature where types only depend on finitely inhabited types (as in the former exam-
ple, np depends on the finitely inhabited type Gender) can be expressed in core ACG
and complexity results can be transfered. The model we propose in Sect. 3.3 has this
property. For the other cases where the number of inhabitants is infinite, an actual im-
plementation could take into account an upper bound for the number of extractions in
the same spirit as [8,19] relate the processing load with the number of unresolved de-
pendencies while processing a sentence, and could reduce these cases to the finite one.

2.2 Grammatical Architecture

Since they both are higher-order signatures, the abstract vocabulary and the object one
don’t show any structural difference. This property makes ACG composition a quite
natural operation. Figure 1(a) exemplifies the first way to compose two ACG: the object
vocabulary of the first ACG G1 is the abstract vocabulary of the second ACG G2. Its
objectives are twofold:

– either a term u ∈ A(G2) has at least one antecedent by the lexicon of G1 in A(G1)
(or even two or more antecedents) and G2 ◦ G1 provides more analysis to a same
object term of O(G2) than G2 does. [24,6] use this architecture to model scope
ambiguity using higher-order types for quantified noun phrases at the level of ΣA1

while their type remains low at the level of ΣA2 ;
– or a term u ∈ A(G2) has no antecedent by the lexicon of G1 in A(G1). It means that

G2 ◦G1 somehow discards some analysis given by G2 of an object term of ΛO2 . We
have chosen this architecture in this paper for that purpose: while some constructs
are accepted by GSyn (to be defined in Sect. 3.1), an additional control at a more
abstract level discard them.

Figure 1(b) illustrates the second way to compose two ACG: G1 and G2 share the same
abstract vocabulary, hence define the same abstract language. This architecture arises
in particular when one of the ACG specifies the syntactic structures and the other one
specifies the semantic structures. The shared abstract vocabulary hence specifies the
syntax-semantics interface. [23,6] precisely consider this architecture with that aim.
Note that this architecture for the syntax-semantics interface corresponds to the presen-
tation of synchronous TAG as a bi-morphic architecture [30].

4 There are other decidable classes we don’t discuss here.

166 S. Pogodalla and F. Pompigne

ΛΣA1

ΛΣO1
= ΛΣA2

ΛΣO2

G1

G2

(a) First composition mode

ΛΣA2
= ΛΣA1

ΛΣO1
ΛΣO2

G1 G2

(b) Second composition mode

Fig. 1. Various ways of composing ACG

Finally, mixing the two ways of composition is also possible, as Fig. 2 illustrates.
Because the ACG for the semantics is linked at the highest level in Fig. 2(b), this archi-
tecture has been used in [24] and [6] to model semantic ambiguity while keeping at an
intermediate level a non-ambiguous syntactic type for quantifiers. Indeed the semantics
needs in that case to attach to the place where ambiguity already arised.

On the other hand, if the syntax-semantics interface takes place at an intermediate
level such as in Fig. 2(a) the highest ACG can provide further control on the acceptable
structures: while some syntactic constructs could be easily given a semantics, it might
happen that they’re forbidden in some languages. Hence the need of another control that
discards those constructs. This paper uses such an architecture and we show first how
to set a fairly standard syntax-semantics interface and second how to provide additional
control without changing anything to this interface.

Note that in both cases, because the composition of two ACG is itself an ACG, these
architectures boil down to the one of Fig. 1(b). However, keeping a multi-level architec-
ture helps in providing some modularity for grammatical engineering, either by reusing
components as in Fig. 2(a) (where the syntax-semantics interface is not affected by the
supplementary control provided by the most abstract ACG) or by providing intermedi-
ate components as in Fig. 2(b) (such as the low-order type for quantifiers, contrary to
CG)5.

ΛΣA0

ΛΣO0
=ΛΣA1

=ΛΣA2

ΛΣO1
ΛΣO2

G0

G1
G2

(a) First combination

ΛΣA0
=ΛΣA2

ΛΣO0
=ΛΣA1

ΛΣO1

ΛΣO2

G0

G1

G2

(b) Second combination

Fig. 2. Mixing composition modes

5 However, for sake of simplicity, we don’t use this intermediate level here and directly adopt
the standard higher-order type for quantified noun-phrases.

Controlling Extraction in Abstract Categorial Grammars 167

3 Examples

3.1 The Syntax-Semantics Interface

Following the architecture presented in Sect. 2.2, we first briefly define the two ACG
sharing the same abstract language defining the general syntax-semantics interface we
use. Since the scope of this paper is rather the control of this interface, we don’t enter the
details here. It’s enough to say that we basically follow standard categorial grammar ap-
proaches except that the linear non-directional implication replaces the two directional
implications6. We define GSyn = 〈ΣSyn, ΣString,L Syn, s〉 the ACG that relates syntac-
tic structures together with their surface realization. Table 2 presentsΣSyn the signature
for the parse structures,ΣString the signature for surface realization, and L Syn the lex-
icon that relates them.

Table 2. ΣSyn, ΣString (σ stands for the type of string, + for the concatenation operation and ε
for the empty string) and L Syn (obvious interpretations are omitted)

ΣSyn :
s, np, n : type Cso, Cev : (np � s) � s Cloves : np � np � s
CMary, CJohn : np Cwho : (np � s) � n � n Csays : s � np � s

ΣString :
σ : type
/Mary/, /John/, /someone/, ε, /everyone//loves/, /who/, /says/ : σ
+ : σ � σ � σ

L Syn :
s, np, n :=Syn σ CMary :=Syn /Mary/
Cso :=Syn λ

0p.p /someone/ Cloves :=Syn λ
0os.s+ /loves/+ o

Cwho :=Syn λ
0pn.n+ /who/+ (p ε) Csays :=Syn λ

0cs.s+ /says/+ c

In situ operators such as quantifiers have the property to (semantically) take scope
over complex (surface) expressions they are part of. In (1) for instance, the quantified
noun phrase (QNP), while subpart of the whole sentence, has the existential quantifier
of its semantic contribution taking scope over the whole proposition as in (1-a).

(1) Mary loves someone

a. ∃x.love mx
b. Cso(λ

0x.Cloves xCMary)

The way CG model these phenomena is to type QNP with the higher-order type (np �
s) � s, whose first argument is a sentence missing an NP. Such an argument can
be represented by a λ-term starting with an abstraction λ0x.t with x occurring (free)
in t that plays the role of any non quantified NP having the surface position of the
QNP. So, in the previous example, t would represent the expression Mary loves x, and

6 ACG manages word order at the surface level. For discussion on relations between ACG and
CG, see [26].

168 S. Pogodalla and F. Pompigne

the representation of (1) is (1-b). We leave it to the reader to check that the string
representation is indeed the image by L Syn of (1-b).

The case of wh-words where the movement is overt is dealt with in almost the same
way: the first argument is a sentence missing an NP. The difference (overt vs. covert)
rests in what is provided to this first argument to get the surface form: in the case of
covert movements, there is an actual realization with the QNP form (see L Syn(Cso))
while there is no realization of overt movements (see L Syn(Cwho)). However, in both
cases, the abstract structure contains a variable that is abstracted over. In the sequel of
this paper, we refer to the variable as the extracted variable, or as the variable available
for extraction.

We also define GSem = 〈ΣSyn, ΣSem,L Sem, s〉 the ACG that relates syntactic struc-
tures together with their semantic interpretation. As expected, GSyn and GSem share the
abstract vocabularyΣSyn presented in Table 2. Table 3 presents ΣSem the signature for
logical formulas and L Sem the lexicon that relates them. This lexicon associates (1-b)
with its meaning (1-a).

Table 3. ΣSem and L Sem

ΣSem :
e, t : type m, j : e ∀,∃ : (e→ t) � t
∧,⇒ : t� t� t love : e� e� t say : t � e� t

L Sem :
s :=Sem t np :=Sem e
n :=Sem e� t CMary :=Sem m
Cso :=Sem λ0p.∀x.p x Cloves :=Sem λ0os.s(λ0x.o(λ0y.love x y))
Cwho :=Sem λ0pn.λx.(nx) ∧ (p x) Csays :=Sem λ0cs.say x c

Because GSyn is a straightforward adaptation of standard treatments of quantification
and relativization in CG, it overgenerates as well. Indeed, when building a term using
free variables, those variables can be arbitrarily deep in the term, and can be abstracted
over in any order (resulting in particular in scope ambiguity), as close of the top level as
we want. However, natural languages are not completely free with that respect, and the
next sections are devoted to deal with some of these cases and to show how to introduce
some control.

The principle we adopt is based on the following observation: operators triggering
extractions get the general pattern (α � β) � γ for their type. However, not all
elements of a same type α can be extracted. For instance, if α is np, it is required
sometimes to be nominative and sometimes to be accusative. These constraints can be
accomodated adding feature structures (here dependent types) to the syntactic type.

But this is not enough since β might also express some additional constaints. For
instance, if β is s, extraction is sometimes possible under the assumption that no other
extraction occured. This can also be expressed using feature structures added to s.

Finally, it might happen that not all combinations for the constraints on α and β are
possible, meaning that the extraction constraints are described by a relation, distinct

Controlling Extraction in Abstract Categorial Grammars 169

from the cartesian product, between their feature structures. For instance extraction of
the subject inside a clause is possible provided this is the very subject of that clause.
Dependent types allows us to implement such relations. This approach shares a lot of
similarities with [17]s’ usage of first order linar logic where first order variables also
implements some kind of relation between constituents.

3.2 Tensed Clauses as Scope Islands for Quantifiers

(2) is a first example of such a constraint. It is indeed sometimes considered that in such
sentences, the QNP everyone should not be able to take scope over someone, or even
says as in (2-b) and (2-c): the QNP everyone cannot take its scope outside its minimal
tensed sentence7.

(2) Someone said everyone loves Mary

a. Cso(λ
0x.Csays (Cev(λ

0y.Cloves CMary y))x)
∃x.say x (∀y.love ym)

b. *Cso(λ
0x.Cev(λ

0y.Csays (Cloves CMary y)x))
*∃x.∀y.sayx (love ym)

c. *Cev(λ
0y.Cso(λ

0x.Csays (Cloves CMary y)x))
*∀y.∃x.sayx (love ym)

The fact that a QNP cannot take its scope outside its minimal tensed sentence means
that whenever such a sentence is argument of a verb like says, it should not contain
any free variable, hence any variable available for extraction, anymore. To model that,
we decorate the s and np types with an integer feature that contains the actual number
of free variables of type np occurring in it. Because any np introduced by the lexicon
is decorated by 0, np with a feature strictly greater than 0 can only be introduced by
hypothetical reasoning, hence by free variables. A clause without any left free variable
is then of type s decorated with 0: this is required for the first argument of the verb says
for instance.

In order to avoid changing the syntax-semantics interface we defined in Sect. 3.1,
we implement the control using a more abstract level. This level introduces the counter
feature using a new signatureΣCont1 , as Table 4 shows. The new types are very similar
to the ones of ΣSyn (Table 2) except that they now depend on an integer meant to de-
note the number of free variables occurring in the subterms. We then define GCont1 =
〈ΣCont1 , ΣSyn,L Cont1 , s 0〉 the ACG that realizes the control over the syntactic struc-
tures. Lexicon L Cont1 (Table 4) basically removes the dependent product and trans-
formsΣCont1 into ΣSyn.

Having constants producing terms of type s i like Dloves, where the feature indicates
the number of current free variables that can be abstracted over in the subterms they
are the head of, we are now in position of controlling the scope of QNP. Because the
sentence argument of Dsays is required to carry 0 free variables, all the quantified vari-
ables must have met their scope-taking operator before the resulting term is passed as
argument, preventing them from escaping the scope island.

7 This is arguable, and the tensed clauses island may be less straightforward, but this point is not
ours here.

170 S. Pogodalla and F. Pompigne

Table 4. ΣCont1 and L Cont1

ΣCont1 :
int : type s, np, n : (int)type
next : int � int Dloves : (Πi, j : int) (np i� np j � s (i+ j))
+ : int � int � int Dso, Dev : (Πi : int) ((np 1 � s (next i)) � s i)
DJohn, DMary : np 0 Dsays : (Πi : int) (s 0 � np i� s i)

L Cont1 :
s :=Cont1 λx. s np :=Cont1 λx. np
n :=Cont1 λx. n Dx :=Cont1 Cx

(3) is a well-typed term (of type s 0) of ΛΣCont1
. It has the same structure as (2-a)

which, indeed, is its image by L Cont1 . On the other hand, the type np 0 � s 0 of (4)
(that would be the counterpart of the subterm of (2-c)) prevents it from being argument
of a quantifier. Here, Dsays requires y to be of type np 0 in order to have its argument
Dlove 0 0DMary y of type s 0.

(3) Dso 0 (λ0x.Dsays 1 (Dev 0 (λ
0y.

s 1︷ ︸︸ ︷
Dlove 0 1DMary

np 1︷︸︸︷
y)︸ ︷︷ ︸

np 1�s 1

)

︸ ︷︷ ︸
s 0

np 1︷︸︸︷
x)

︸ ︷︷ ︸
np 1�s 1

(4) λ0y. Dso 0 (λ
0x.Dsays 1

s 0︷ ︸︸ ︷
(Dlove 0 0DMary

np 0︷︸︸︷
y)

np 1︷︸︸︷
x)︸ ︷︷ ︸

np 1�s 1︸ ︷︷ ︸
s 0

This example could be easily adapted to other tensed clauses, as if-clauses or relative
clauses. The next examples use the same principle: all types depend on a feature that ex-
presses whether some free variables in the subterms are available for extraction. Then,
wh-words put the condition on how many of them are simultaneously possible for ex-
traction to take place while islands still require this number to be set to 0.

Note that in each case, we introduce a new feature for the particular phenomenon un-
der study. Using record types (that np, n and s would depend on) with a proper field for
each of them makes the different solutions work together without any interaction. Fea-
ture structures for each type might of course become complex, however this complexity
can be dealt with in a very modular way.

3.3 Rooted and Embedded Wh-Extraction

We now focus on extractions in relative clauses, in which a distinction should be made
between rooted extractions and embedded extractions: while an embedded object can be

Controlling Extraction in Abstract Categorial Grammars 171

extracted by a relative pronoun, embedded subjects cannot. Only main-clause subjects
(rooted subjects) can be extracted. This is illustrated in:

(5) *The man who1 John said that t1 loves Mary sleeps
*Csleep (Cthe (Cwho(λ

0x.Csay that (Clove CMary x)CJohn)Cman))

(6) The man whom1 John said that Mary loves t1 sleeps
Csleep (Cthe (Cwhom(λ

0x.Csay that (Clove xCMary) CJohn)Cman))

Relative clauses are extraction islands, so we know that acceptable terms should never
have more than one free variable available to extraction in the same clause. Hence we
don’t need an unbound counter for them and we use instead a 3-valued type that dis-
tinguishes: the absence of extraction, the existence of a rooted extraction, and the ex-
istence of an embedded one. The new abstract signature is given in Table 5 (for the
sake of clarity, who will only refer to subject extraction and case is omitted). The corre-
sponding ACG GCont2 = 〈ΣCont2 , ΣSyn,L Cont2 , s no〉 is built in the same way as the
previous example.

Table 5. ΣCont2

ΣCont2 :
value, extraction : type Dsleeps : (Πx : value) (npx� s (f x cst))
var, cst : value Dloves : (Πx, y : value)

(npx� np y � s (f x y))
no, root, emb : extraction Dthe : (Πx : value) (nx� np x)
np, n : (value)type Dsays that : (Πx : extraction, y : value) (sx)
s : (extraction)type � np y � s (g x y)
Dman : n cst Dwho : (np var � s root) � n cst � n cst

DJohn, DMary : np cst Dwhom : (np var � s root) � n cst � n cst

D′
whom : (np var � s emb) � n cst � n cst

with f :

⎧⎨
⎩

var x −→ root

cst var−→ root

cst cst−→ no

g :

⎧⎨
⎩

no var−→ root root cst−→ emb

no cst−→ no emb var−→ emb

root var−→ root emb cst−→ emb

The behavior of a transitive verb such as Dloves is to percolate the information that
a free variable occurs in its parameters. So the resulting type depends on no only when
both the subject and the object don’t themselves depend on a var term. Function f in
Table 5 implements it.

Verbs requiring subordinate clauses as Dsays that also needs to percolate the informa-
tion as to whether a free variable occurs in the main clause and/or if a free variable
occurs in the subordinate clause (in that case, the extraction is embedded). Function g
in Table 5 implements these conditions.

Finally, relative pronouns need to check the type of their argument. In particular sub-
ject extractor can’t accept an argument clause with type (np var � s emb) while other
pronouns can. This prevents extractions of embedded subject from being

172 S. Pogodalla and F. Pompigne

generated while extraction of embedded objects can, as shown with the abstract term (7)
of type s no associated to (6).

(7) Dsleep cstDthe cst (D′
whom (λ0x.

s emb︷ ︸︸ ︷
Dsays that root cst (Dlove var cst

np var︷︸︸︷
x DMary)︸ ︷︷ ︸

s root

DJohn)

︸ ︷︷ ︸
np var �s emb

Dman)

On the other hand, Dsays that (Dlove DMary x)DJohn is typable only with type s emb or s no

(because DJohn is of type np cst), hence λ0x.Dsays that (Dlove xDMary)DJohn cannot be
of type np var � s root and cannot be an argument of Dwho. Then (5) cannot get an
antecedent by L Cont2

8.
The same technique can be used to model the fact that a nominative interrogative

pronoun can form a root question with a sentence that is missing its main clause subject
as in (8) but not with one that is missing an embedded subject as in (9).

(8) Who left?

(9) *Who1 Mary said that t1 left?

3.4 Multiple Extraction

Nested-dependencies constraints, exemplified in (10) and (11), specify that only the
leftmost trace can be bound (for sake of clarity, we forget here about the control verb
nature of know).

(10) Which1 problems does John know whom2 to talk to t2 about t1?

a. Cwhich? Cproblems (λ
0x.Cknow (Cwhom? (λ

0y. Cto talk to about y x))CJohn)

(11) *Whom1 does John know which2 problems to talk to t1 about t2?

a. *Cwhom? (λ
0y. Cknow (Cwhich? Cproblems (λ

0x.Cto talk to about y x))CJohn)

The interrogative extraction follows a first in last out pattern. Despite the close relation
of this pattern to the linear order of the sentence, we again implement control at the
abstract level. As in Sect. 3.2, extractions are associated with counters that reflect the
argument position in the canonical form. Table 6 describes the abstract signature for
modelling these cases and GCont3 = 〈ΣCont3 , ΣSyn,L Cont3 , s 0〉 is defined the usual
way.

Basically, pronouns and their traces get the same counter value. The type of the
interrogative pronouns requires sequences of them to have increasing values, greater
numbers being abstracted first.

Let us consider a term t = Dto talk to about i j y x (to be read as to talk to y about x)
of type q(h i j) with y of type np i and x of type np j. We show that in order to extract
both x and y (and bind them with interrogative pronouns), y has to be extracted first:

8 The felicity of The man who John said loves Mary sleeps, without the complementizer, sug-
gests a type assignment to Dsays that does not switch the dependant product to emb the way
Dsays that does.

Controlling Extraction in Abstract Categorial Grammars 173

Table 6. ΣCont3

int : type np, n, s, q : (int)type
DJohn : np 0 Dto talk to about : (Πi, j : int) (np i� np j � q (h i j))
Dproblems : n 0 Dknow : (Πi, j : int) (q i� np j � q (h i j))
next : int � int Dwhom? : (Πi : int) ((np (next i) � q (next i)) � q i)

Dwhich? : (Πi : int) (n 0 � (np (next i) � q (next i)) � q i)

h :

⎧⎨
⎩
i 0−→ i
0 j−→ j
next i j−→ next i

– let’s assume x is extracted first. The type of the result is np j � q i. Making it a
suitable argument of an interrogative pronoun requires i = j. But the application
results in a term of type q (i − 1). Then an abstraction of y would result in a term
of type np i� q (i− 1) that cannot be argument of another interrogative pronoun.
Hence (11-a) can’t have an antecedent by L Cont3 ;

– let’s now assume that y is extracted first. The type of the result is np i � q i, and
when argument of an interrogative pronoun, it results in a term of type q (i − 1).
The result of abstracting then over x is a term of type np j � q (i − 1). To have
the latter a suitable argument for an interrogative pronoun requires that j = i − 1,
or i = next j.
Then, provided i ≥ 2,

Dwhich? (i− 2)Dproblems

(λ0x.Dknow (i− 1) 0 (Dwhom? (i− 1) (λ0y.Dto talk to about i (i− 1) y x))DJohn)

is typable (of type q (i− 2)) and is an antecedent of (10-a) by L Cont3 .

4 Related Approaches

4.1 Parallel Architectures

In this section, we wish to contrast our approach that modifies the abstract level with ap-
proaches in which control comes from a specific calculus at the object level. One of this
approach specifically relates to the LG framework [22] and aims at introducing Multi-
modal Categorial Grammar (MMCG) [16] analysis at the phenogrammatical level. The
other approach [12] also builds on MMCG analysis. It can actually bee seen as a parallel
framework where the both the tectogrammatical level and the phenogrammatical level
are MMCG. What is of interest to us is the proposal permitting phonological changes
at the phenogrammatical level while the tectogrammatical one is unchanged.

In order to compare the three approaches, it is convenient to introduce the following
notations:

Definition 6 (Signs and languages). A sign s = 〈a, o,m〉 is a triple where:

174 S. Pogodalla and F. Pompigne

– a is a term belonging to the tectogrammatical level
– o is a term belonging to the phenogrammatical level describing the surface form

associated to a
– m is a term belonging to the phenogrammatical level describing the logical form

associated to a

In the case of LG and ACG, a is a linear λ-term whereas it is a MMCG proof term
in [12].

In all frameworks, a sign s = 〈a, o,m〉 belong to the language whenever a is of a
distinguished type s. Following [22], we call it a generated sign.

It is easy to see that in ACG and the approach we developed, o is a λ-term, possibly
using the string concatenation operation.

On the other hand, [22] makes o be a multimodal logical formula build from con-
stants and (unary and binary) logical connectives. It not only includes a special binary
connective ◦ basically representing concatenation, but also any other required connec-
tive, in particular families of �i and �i operators. Then, the phenogrammatical level
can be provided with a consequence relation . and also, as is standard in MMCG,
with proper axioms, or postulates. It can then inherit all models of this framework such
as [18]’s one for controlling extraction.

Hence, for any sign s = 〈a, o,m〉, it is possible to define a notion of derivability:

Definition 7 (Derivable and string-meaning signs). Let s = 〈a, o,m〉 be a generated
sign and o′ a logical formula such that o . o′. Then s′ = 〈a, o′,m〉 is called a derivable
sign.

Let s = 〈a, o,m〉 be a sign such that o is made only from constants and ◦. Then o is
said to be readable9 and s is said to be a string-meaning sign.

From that perspective, what is now of interest is not the generated signs as such but
rather the string-meaning signs. In particular, if s = 〈a, o,m〉 is a generated sign, the
interesting question is whether there exist some o′ with o . o′ and o′ readable. If such
an o′ exists, then s is expressible, otherwise it is not.

[22, example (35)] is very similar to Example (2). Its analysis is as follows: (2-a),
(2-b) and (2-c) are all possible abstract terms so that sa = 〈(2-a), oa,ma〉, sb =
〈(2-b), ob,mb〉 and sc = 〈(2-c), oc,mc〉 are all generated signs. However, there is no
readable o such that ob . o or oc . o because ob and oc make use of different kinds
of modalities that don’t interact through postulates. Hence sb and sc can be generated
but don’t have any readable (or pronounceable) form and only sa gives rise to a string-
meaning sign and is expressible. The approach of [12] is very similar except that the
phenogrammatical level is an algebra with a preorder whose maximal elements are the
only pronounceable ones.

4.2 Continuation Semantics

In order to take into account constraints on scope related to scope ambiguity and polar
sensitivity, [29] uses control operators, in particular delimited continuations with shift
and reset operators in the semantic calculus.

9 [12] defines pronounceable because it deals with phonology rather than with strings.

Controlling Extraction in Abstract Categorial Grammars 175

Parallel architecture such as LG or ACG could also make use of such operators in the
syntactic calculus, achieving some of the effects we described. However, applying the
continuation-passing style (CPS) transform to those constructs results in a significant
increase of the order of types. The impact on the parsing complexity should then be
studied carefully in order to get tractable fragments.

4.3 TAG and Lambek Grammars in ACG

We also wish to relate our proposal with similar architectures that have been proposed
to model other grammatical formalisms, namely Minimalist Grammars (MG) [31], Tree
Adjoining Grammar (TAG) [9], and non-associative Lambek grammars (NL) [14] .

In order to study MG from a logical point of view, [28] studies MG derivations in
the ACG framework. Derivations are described at an abstract level (using move and
merge operations) and are further interpreted to get the syntactic representation and
the semantic representation at object levels. But rather than giving a direct translation,
it is possible to add an intermediate level that corresponds to what is shared between
syntax and semantics, but that contains much more than only MG derivations. This is
reminiscent of the architecture of Fig. 2(a).

An other example where such an architecture takes place is given in [11] where a first
abstract level specifies a syntax-semantics interface for TAG. However, this interface is
not constrained enough and accept more than just TAG derivations. Then more abstract
levels are added to control the derivations and accept only TAG, local MCTAG and
non-local MCTAG.

The encoding of NL into ACG [26] also involves such an architecture. It defines a
syntax-semantics interface very close to the one proposed here, and a more abstract level
controls in turn this interface in order to discard derivations that are not NL derivations.
This last result gives another interesting link to MMCG at a tectogrammatical level
rather than at a phenogrammatical one as described in Sect. 4.1, in particular in the
case of extraction because of the relation between NL and the calculus with the bracket
operator of [18] to deal with islands.

5 Conclusion

Studying constraints related to extraction phenomena, we propose to use dependent
types to implement them at an abstract level in the ACG framework. Using dependent
types allows us to get finer control on derivations and to discard overgenerating ones.
The same methodology has been used to model constraints related to bounding scope
displacement, wh-extraction and multiple wh-extraction. This approach, where what
appears as constraints at the surface level are rendered at an abstract level, contrasts
with other approaches where a derivability notion on surface forms is introduced, and
where some of the surface forms get the special status of readable.

Interestingly, these two ways to introduce or relax control on derivations are com-
pletely orthogonal, hence they could be used together. This gives rise to the question of
determining the most appropriate approach given one particular phenomena. Answers
could come both from linguistic considerations and from tractability issues of the un-
derlying calculi. Another question is whether the relational semantics behind MMCG

176 S. Pogodalla and F. Pompigne

could be used, together with the dependent types, to model MMCG derivations within
the ACG framework.

Acknowledgments. We would like to thank Carl Pollard and Philippe de Groote for
fruitful discussions on earlier versions of this paper.

References

1. Carpenter, B.: Type-Logical Semantics. The MIT Press (1997)
2. Curry, H.B.: Some logical aspects of grammatical structure. In: Jakobson, R. (ed.) Struc-

ture of Language and its Mathematical Aspects: Proceedings of the Twelfth Symposium in
Applied Mathematics, pp. 56–68. American Mathematical Society (1961)

3. de Groote, P.: Towards Abstract Categorial Grammars. In: 39th Annual Meeting and 10th
Conference of the European Chapter, Proceedings of the Conference on Association for
Computational Linguistics, pp. 148–155 (2001)

4. de Groote, P., Maarek, S.: Type-theoretic extensions of Abstract Categorial Grammars. In:
Proceedings of New Directions in Type-Theoretic Grammars, pp. 18–30 (2007),
http://let.uvt.nl/general/people/rmuskens/ndttg/ndttg2007.pdf

5. de Groote, P., Pogodalla, S.: On the expressive power of abstract categorial grammars: Repre-
senting context-free formalisms. Journal of Logic, Language and Information 13(4), 421–438
(2004), http://hal.inria.fr/inria-00112956/fr/

6. de Groote, P., Pogodalla, S., Pollard, C.: On the Syntax-Semantics Interface: From Conver-
gent Grammar to Abstract Categorial Grammar. In: Ono, H., Kanazawa, M., de Queiroz, R.
(eds.) WoLLIC 2009. LNCS, vol. 5514, pp. 182–196. Springer, Heidelberg (2009),
http://hal.inria.fr/inria-00390490/en/

7. de Groote, P., Maarek, S., Yoshinaka, R.: On Two Extensions of Abstract Categorial Gram-
mars. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp.
273–287. Springer, Heidelberg (2007)

8. Johnson, M.: Proof nets and the complexity of processing center embedded constructions.
Journal of Logic, Language and Information 7(4) (1998)

9. Joshi, A.K., Schabes, Y.: Tree-adjoining grammars. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, ch. 2. Springer (1997)

10. Kanazawa, M.: Parsing and generation as datalog queries. In: Proceedings of the 45th Annual
Meeting of the Association of Computational Linguistics (ACL), pp. 176–183. Association
for Computational Linguistics, Prague (2007),
http://www.aclweb.org/anthology/P/P07/P07-1023

11. Kanazawa, M., Pogodalla, S.: Advances in Abstract Categorial Grammars: Language theory
and linguistic modelling. In: ESSLLI 2009, Bordeaux, France. Lecture Notes (2009),
http://www.loria.fr/equipes/calligramme/acg/publications/
esslli-09/2009-esslli-acg-week-2-part-2.pdf

12. Kubota, Y., Pollard, C.: Phonological Interpretation into Preordered Algebrasa. In: Ebert, C.,
Jäger, G., Michaelis, J. (eds.) MOL 10. LNCS, vol. 6149, pp. 200–209. Springer, Heidelberg
(2010)

13. Lambek, J.: The mathematics of sentence structure. American Mathematical Monthly 65(3),
154–170 (1958)

14. Lambek, J.: On the calculus of syntactic types. In: Jacobsen, R. (ed.) Structure of Language
and its Mathematical Aspects. Proceedings of Symposia in Applied Mathematics, vol. XII.
American Mathematical Society (1961)

http://let.uvt.nl/general/people/rmuskens/ndttg/ndttg2007.pdf
http://hal.inria.fr/inria-00112956/fr/
http://hal.inria.fr/inria-00390490/en/
http://www.aclweb.org/anthology/P/P07/P07-1023
http://www.loria.fr/equipes/calligramme/acg/publications/esslli-09/2009-esslli-acg-week-2-part-2.pdf
http://www.loria.fr/equipes/calligramme/acg/publications/esslli-09/2009-esslli-acg-week-2-part-2.pdf

Controlling Extraction in Abstract Categorial Grammars 177

15. Montague, R.: The proper treatment of quantification in ordinary english. In: Formal Phi-
losophy: Selected Papers of Richard Montague. Yale University Press (1974); re-edited in
Formal Semantics: The Essential Readings, Portner, P., Partee, B.H., (eds.) Blackwell Pub-
lishers (2002)

16. Moortgat, M.: Categorial type logics. In: van Benthem, J., ter Meulen, A. (eds.) Handbook
of Logic and Language, pp. 93–177. Elsevier Science Publishers, Amsterdam (1996)

17. Moot, R., Piazza, M.: Linguistic applications of first order intuitionistic linear logic. Journal
of Logic, Language and Information 10, 211–232 (2001)

18. Morrill, G.: Categorial formalisation of relativisation: Islands, extraction sites and pied pip-
ing. Tech. Rep. LSI-92-23-R, Departament de Llenguatges i Sistemes Informàtics, Universi-
tat Politècnica de Catalunya (1992)

19. Morrill, G.V.: Incremental processing and acceptability. Computational Linguistics 26(3),
319–338 (2000)

20. Muskens, R.: Lambda Grammars and the Syntax-Semantics Interface. In: van Rooy, R.,
Stokhof, M. (eds.) Proceedings of the Thirteenth Amsterdam Colloquium, Amsterdam, pp.
150–155 (2001)

21. Muskens, R.: Lambdas, Language, and Logic. In: Kruijff, G.J., Oehrle, R. (eds.) Resource
Sensitivity in Binding and Anaphora. Studies in Linguistics and Philosophy, pp. 23–54.
Kluwer (2003)

22. Muskens, R.: Separating syntax and combinatorics in categorial grammar. Research on Lan-
guage and Computation 5(3), 267–285 (2007)

23. Pogodalla, S.: Computing semantic representation: Towards ACG abstract terms as deriva-
tion trees. In: Proceedings of the Seventh International Workshop on Tree Adjoining Gram-
mar and Related Formalisms (TAG+7), pp. 64–71 (May 2004),
http://www.cs.rutgers.edu/TAG+7/papers/pogodalla.pdf

24. Pogodalla, S.: Generalizing a proof-theoretic account of scope ambiguity. In: Geertzen, J.,
Thijsse, E., Bunt, H., Schiffrin, A. (eds.) Proceedings of the 7th International Workshop
on Computational Semantics - IWCS 2007, pp. 154–165. Tilburg University, Deparment of
Communication and Information Sciences (2007),
http://hal.inria.fr/inria-00112898

25. Ranta, A.: Type Theoretical Grammar. Oxford University Press (1994)
26. Retoré, C., Salvati, S.: A faithful representation of non-associative lambek grammars in ab-

stract categorial grammars. Journal of Logic, Language and Information 19(2), 185–200
(2010), http://www.springerlink.com/content/f48544n414594gw4/

27. Salvati, S.: Problèmes de filtrage et problèmes d’analyse pour les grammaires catégorielles
abstraites. Ph.D. thesis. Institut National Polytechnique de Lorraine (2005)

28. Salvati, S.: Minimalist Grammars in the Light of Logic. In: Pogodalla, S., Quatrini, M.,
Retoré, C. (eds.) Logic and Grammar. LNCS, vol. 6700, pp. 81–117. Springer, Heidelberg
(2011)

29. Shan, C.C.: Delimited continuations in natural language: Quantification and polarity sen-
sitivity. In: Thielecke, H. (ed.) Proceedings of the 4th continuations workshop, pp. 55–64.
School of Computer Science, University of Birmingham (2004)

30. Shieber, S.M.: Unifying synchronous tree-adjoining grammars and tree transducers via bi-
morphisms. In: Proceedings of the 11th Conference of the European Chapter of the Associ-
ation for Computational Linguistics (EACL 2006), Trento, Italy, April 3-7 (2006),
http://www.aclweb.org/anthology-new/E/E06/E06-1048.pdf

31. Stabler, E.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS (LNAI),
vol. 1328, pp. 68–95. Springer, Heidelberg (1997)

http://www.cs.rutgers.edu/TAG+7/papers/pogodalla.pdf
http://hal.inria.fr/inria-00112898
http://www.springerlink.com/content/f48544n414594gw4/
http://www.aclweb.org/anthology-new/E/E06/E06-1048.pdf

P. de Groote and M.-J. Nederhof (Eds.): Formal Grammar 2010/2011, LNCS 7395, pp. 178–191, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Plural Quantifications and Generalized Quantifiers

Byeong-Uk Yi

Department of Philosophy, University of Toronto, 170 St George St,
Toronto, ON M5R 2M8, Canada

b.yi@utoronto.ca

Abstract. This paper discusses two important results about expressive
limitations of elementary languages due to David Kaplan, and clarifies how they
relate to the expressive power of plural constructions of natural languages.
Kaplan proved that such plural quantifications as the following cannot be
paraphrased into elementary languages:

 Most things are funny. (1)

 Some critics admire only one another. (2)

The proof that (1) cannot be paraphrased into elementary languages is often taken
to support the generalized quantifier approach to natural languages, and the proof
that (2) cannot be so paraphrased is usually taken to mean that (2) is a
second-order sentence. The paper presents an alternative interpretation: Kaplan’s
results provide important steps toward clarifying the expressive power of plural
constructions of natural languages vis-à-vis their singular cousins. In doing so,
the paper compares and contrasts (regimented) plural languages with generalized
quantifier languages, and plural logic with second-order logic.

Keywords: semantics, natural language, plural construction, plural logic,
Geach-Kaplan sentence, generalized quantifier theory, Rescher quantifier, plural
quantifier, the semantics of ‘most’.

1 Introduction

Plural constructions (in short, plurals) are as prevalent in natural languages as singular
constructions (in short, singulars). This contrasts natural languages with the usual
symbolic languages, e.g., elementary languages or their higher-order extensions. 1
These are singular languages, languages with no counterparts of natural language
plurals, because they result from regimenting singular fragments of natural languages
(e.g., Greek, German, or English).2 But it is commonly thought that the lack of plurals

1 What I call elementary languages are often called first-order languages. I avoid this

terminology, because it suggests contrasts only with higher-order languages.
2 Some natural languages (e.g., Chinese, Japanese, or Korean) have neither singulars nor plurals,

because they have no grammatical number system. This does not mean that those languages,
like the usual symbolic languages, have no counterparts of plurals or that they have no
expressions for talking about many things (as such).

 Plural Quantifications and Generalized Quantifiers 179

in the usual symbolic languages result in no deficiency in their expressive power. There
is no need to add counterparts of natural language plurals to symbolic languages, some
might hold, because plurals are more or less devices for abbreviating their singular
cousins: ‘Ali and Baba are funny’ and ‘All boys are funny’, for example, are more or
less abbreviations of ‘Ali is funny and Baba is funny’ and ‘Every boy is funny’,
respectively. But there are more recalcitrant plurals, plurals that cannot be considered
abbreviations of singulars, e.g., ‘The scientists who discovered the structure of DNA
cooperated’ or ‘All the boys cooperated to lift a piano.’ So I reject the traditional view
of plurals as abbreviation devices, and propose an alternative view that departs
radically from the tradition that one can trace back to Aristotle through Gottlob Frege.
Plurals, on my view, are not redundant devices, but fundamental linguistic devices that
enrich our expressive power, and help to extend the limits of our thoughts. They
belong to basic linguistic categories that complement the categories to which their
singular cousins belong, and have a distinct semantic function: plurals are by and large
devices for talking about many things (as such), whereas singulars are more or less
devices for talking about one thing (‘at a time’).3 It has been a few decades since
David Kaplan established two important limitations of elementary languages by
considering natural language plurals. In this paper, I ruminate on his results to clarify
the expressive power of plurals.

2 Expressive Limitations of Elementary Languages

Elementary languages can be taken to have five kinds of primitive expressions:

(a) Singular Constants: ‘a’, ‘b’, etc.
(b) Singular Variables: ‘x’, ‘y’, ‘z’, etc. .
(c) Predicates

(i) 1-place predicates: ‘B1’, ‘C1’, ‘F1’, etc.
(ii) 2-place predicates: ‘=’, ‘A2’, etc.
(iii) 3-place predicates: ‘G3’, etc.

Etc.
(d) Boolean Sentential Connectives: ‘¬’, ‘∧’, etc.
(e) Elementary Quantifiers: the singular existential ‘∃’, and the singular

universal ‘∀’

The constants amount to proper names of natural languages, e.g., ‘Ali’ or ‘Baba’;
variables to singular pronouns, e.g., ‘he’, ‘she’, or ‘it’, as used anaphorically (as in ‘A
boy loves a girl, and she is happy’); the predicates to verbs (or verb phrases) in the
singular form, e.g., ‘is a boy’, ‘is identical with’, ‘admires’, or ‘gives ... to —’; and the
quantifiers to ‘something’ and ‘everything’. ‘Something is a funny boy’, for example,
can be paraphrased by the elementary language sentence ‘∃x[B(x) ∧ F(x)]’, where ‘B’
and ‘F’ are counterparts of ‘is a boy’ and ‘is funny’, respectively.4 Elementary

3 See, e.g., Yi [17]–[20] for an account of plurals based on the view sketched in this paragraph.
4 The superscript of a predicate is omitted, if the number of its argument places is clear from the

context.

180 B.-U. Yi

languages, note, have no quantifier that directly amounts to the determiner ‘every’ in,
e.g., ‘Every boy is funny’, but this determiner can be defined in elementary languages,
as is well-known. ‘Every boy is funny’ can be paraphrased by the universal
conditional ‘∀x[B(x) → F(x)]’, which amounts to ‘Everything is such that if it is a boy,
then it is funny.’

Now, say that natural language sentences (e.g., ‘Something is a funny boy’, ‘Every
boy is funny’) are elementary, if they can be paraphrased into elementary languages.
Kaplan showed that the following plural constructions are not elementary:

Most are funny. (1a)

Most boys are funny. (1b)

Some critics admire only one another.5 (2)

He showed that these cannot be paraphrased into elementary languages with predicates
amounting to ‘is a boy’ and ‘is funny’ (e.g., ‘B’ and ‘F’). An important feature of
elementary languages that one can use to obtain such a result is that their logic,
elementary logic, is compact, that is,

Compactness of elementary logic:

If some sentences of an elementary language L logically imply a sentence of
L, then there are finitely many sentences among the former that logically
imply the latter.

So if a sentence is logically implied by infinitely many elementary sentences, but not by
any finitely many sentences among them, this means that the sentence is not
elementary.

Now, consider (1a) and (1b). Rescher [12] considers two quantifiers that roughly
amount to the two uses of ‘most’ in these sentences. (1a) might be considered an
abbreviation of a sentence in which a noun (in the plural form) follows ‘most’ (e.g.,
(1b) or ‘Most things are funny’). But one might regard ‘most’ in (1a) as a unary
quantifier, one that, like ‘everything’, can combine with one (1-place) predicate (in the
plural form) to form a sentence. Rescher proposes to add to elementary languages a
new quantifier, ‘M’, that corresponds to ‘most’ in (1a), so construed. Using the
quantifier, which came to be known as (Rescher’s) plurality quantifier,6 he puts (1a) as
follows:

MxF(x) (1a*)

5 (2) can be paraphrased by ‘There are some critics each one of whom is a critic, and admires

something only if it is one of them but is not identical with him- or herself.’
6 Rescher says that sentences with the quantifier ‘M’ involve “the new mode of

plurality-quantification”, but calls the quantifier itself “M-quantifier” ([13], 373). Kaplan
[6]–[7] calls it “the plurality quantifier”.

 Plural Quantifications and Generalized Quantifiers 181

where ‘F’ is an elementary language predicate amounting to ‘is funny’. He takes the
quantification Mxφ(x) to say that “the set of individuals for which φ is true has a greater
cardinality than the set for which it is false” ([12], 373). And he states that the
quantifier ‘M’ cannot be defined in elementary languages (ibid., 374), which means that
(1a) and the like are not elementary,7 but without indication of how to prove it. The
statement was proved by Kaplan [6].8 Here is a simple proof: ‘¬MxF(x) ∧ Mx[F(x) ∨
x=a]’ is satisfiable in any finite model, but in no infinite model; but elementary
languages, whose logic is compact, have no such sentence.9

In response to Kaplan’s result, some might argue that the quantifier ‘most’ (or ‘M’)
is not definable in elementary languages because it is not a logical but a mathematical
expression. They might hold that (1a), for example, is a statement about numbers or
sets: it means that the number of funny things is greater than the number of non-funny
things (or that the cardinality of the set of funny things is greater than the cardinality of
the set of non-funny things). If so, they might conclude, Kaplan’s result merely
confirms the well-known limitations of elementary languages in expressing
mathematical truths, e.g., the mathematical induction principle, which helps to give a
categorical characterization of arithmetical truths.

Although it might seem plausible that ‘most’ has an implicit reference to numbers or
sets, it does not seem plausible to hold the same about ‘some’ in (2). This sentence
does not seem to pertain to mathematics at all. So Boolos says that (2) and the like,
unlike (1), “look as if they ‘ought to’ be symbolizable” in elementary languages ([3],
433; original italics). But Kaplan proved that they are not.10 (2), which came to be
known as the Geach-Kaplan sentence, cannot be paraphrased into elementary
languages with counterparts of ‘is a critic’ and ‘admires’ (e.g., ‘C1’ and ‘A2’).

7 To relate the undefinability of ‘M’ to the natural language quantifier ‘most’, it is necessary to

assume that the former (as Rescher explains it) captures the latter. This is a controversial
assumption; I think ‘most’ is usually used to mean nearly all, rather than more than half or a
majority (of). (Westerståhl [15] holds that it is an ambiguous expression with two readings,
which I doubt.) But we can take Rescher’s plurality quantifier to correspond to ‘more than
half’ or ‘a majority’, and the Rescher-Kaplan result to pertain to this quantifier.

8 Kaplan [6] gives sketches of proofs of this and other interesting facts about languages that
contain ‘M’. It is straightforward to define ‘most’ in (1a) in terms of the binary determiner
‘most’ in (1b); (1a) is equivalent to ‘Most things that are identical with themselves are funny.’
So Kaplan’s proof of the undefinability of the former extends to the latter.

9 Rescher ([13], 374) does not introduce a symbolic counterpart of the binary determiner ‘most’
in (1b), but he states that it cannot be defined in elementary languages or even their extensions
that result from adding ‘M’. Barwise & Cooper ([2], 214f) prove this, and note that Kaplan
proved it in 1965, but did not publish the proof. (Barwise & Cooper’s proof yields a stronger
result.)

10 Kaplan communicated his proof to Quine. Quine ([11], 238f) states Kaplan’s result, and
argues that (2) is a sentence about sets or classes of critics. Kaplan’s proof is reproduced in
Boolos ([3], 432f). See also Almog [1].

182 B.-U. Yi

His proof begins by paraphrasing (2) by a second-order sentence:

∃2X{∃xX(x) ∧ ∀x[X(x) → C(x)] ∧ ∀x∀y[X(x) ∧ A(x, y) → x≠y ∧ X(y)]} (2a)

where ‘X’ is a second-order variable, and ‘∃2’ the second-order existential quantifier.
By replacing ‘C(x)’ and ‘A(x, y)’ in (2a) with ‘N(x) ∧ x≠0’ and ‘S(x, y)’, where ‘N’ and
‘S’ amount to ‘is a natural number’ and ‘is a successor of’,11 respectively, we can get
the following:12

∃2X{∃xX(x) ∧ ∀x[X(x) → N(x) ∧ x≠0] ∧ ∀x∀y[X(x) ∧ S(x, y) → x≠y ∧ X(y)]} (2a*)

which amounts to ‘Some non-zero natural numbers are successors only of one another.’
So if (2a) can be paraphrased into elementary languages with ‘C’ and ‘A’, so can (2a*)
into those with ‘N’ and ‘S’. But (2a*) cannot; its negation is equivalent to the
second-order mathematical induction principle, which cannot be expressed in them.13

Most of those who discuss Kaplan’s proof take it to show that (2) also turns out to be
a covert statement of a mathematical fact. It is commonly held that (2) is a
second-order sentence, comparable to (2a), which has the second-order existential
quantifier ‘∃2’, and it is usual to take second-order quantifiers to range over sets (or
classes), e.g., sets of critics.

But Kaplan’s proof does not support the conclusion that (2) is a second-order
sentence or a sentence that implies the existence of a non-empty set (or class) of critics.
To see this, consider the following sentences:

Ezra is a critic, Thomas is a critic, Ezra is not Thomas, Ezra admires only

Thomas, and Thomas admires only Ezra.
(2.1)

Ezra and Thomas are critics who admire only one another. (2.2)

We can intuitively see that (2.1) logically implies (2.2), and that (2.2) logically implies
(2). So (2.1) must logically imply (2). If so, (2) cannot imply the existence of a set
because (2.1), which has straightforward elementary language counterparts, does not
do so.14 And we can prove that (2) is not elementary without assuming that it can be
paraphrased by a second-order sentence (e.g., (2a)). Consider the following series of
infinitely many elementary language sentences:

11 A natural number x is said to be a successor of a natural number y, if x = y + 1.
12 (2a*) is slightly different from the arithmetical sentence used in Kaplan’s proof. See the

sentence (C) in Boolos (1984, 432). But it is straightforward to see that they are logically
equivalent.

13 The mathematical induction principle, added to the other Dedekind-Peano axioms, which are
elementary, yields a categorical characterization of arithmetical truths. But one cannot give a
categorical characterization of arithmetical truths in an elementary language, which can be
proved using the compactness of elementary logic.

14 For an elaboration of this argument, see Yi ([18], Ch. 1). See also Yi [17] & [19].

 Plural Quantifications and Generalized Quantifiers 183

c1 is a critic who admires only c2 . (3.1)

c2 is a critic who admires only c3 . (3.2)

.

cn is a critic who admires only cn+1 . (3.n)

.

where ‘c1’, ‘c2’, ‘c3’, etc. are different proper names. We can intuitively see that these
sentences, taken together, logically imply (2): if they hold, then c1, c2, c3, etc. are critics
who admire only one another. But no finitely many sentences among them logically
imply (2): (3.1)-(3.n), for example, do not logically imply that cn+1 is a critic who
admires nothing but c1, c2, . . ., cn+1. So (2) cannot be paraphrased into elementary
languages, whose logic is compact.15

Now, some might think that (2) is non-elementary only because it concerns cases
involving infinitely many things. Then those who think, plausibly or not, that we are
not concerned with any such cases outside mathematics might argue that elementary
languages are powerful enough as long as we do not engage in higher mathematical
enterprise, and restrict our domain of discourse to finite domains.16 It would be wrong
to do so. There is no elementary language sentence that agrees with (2) even on all
finite domains. We can show this by applying basic results of Finite Model Theory.17

3 From Singular Languages to Plural Languages

The Geach-Kaplan sentence (2), we have seen, cannot be paraphrased into elementary
languages. This is usually taken to show that it is a second-order sentence with an
implicit quantification over sets of critics. But there is no good reason to take it to be a
second-order sentence by taking the plural quantifier ‘some’ in the sentence as a
second-order quantifier. Although Kaplan’s proof of its non-elementary character
proceeds by paraphrasing it by its second-order analogue, there are alternative, more
direct proofs that do not rest on the paraphrase as we have seen. By contrast, there is a
clear contrast between the plural constructions involved in (2) and the singular
constructions involved in, e.g., (2.1)–(2.2) and (3.1)–(3.n), which have straightforward
elementary language counterparts. So there is a good reason to take Kaplan’s result on
(2) to show the limitations of singulars (especially those incorporated into elementary

15 See Yi [21], which argues that logic is not axiomatizable, for an elaboration of this argument.

See also Yi ([20], 262).
16 Sol Feferman once made this response.
17 See Appendix, where it is also proved that no elementary language sentence agrees with

‘MxF(x)’ on all finite models.

184 B.-U. Yi

languages) vis-à-vis plurals.18 If so, it would be useful to develop plural extensions of
elementary languages, symbolic languages that have refinements of natural language
plurals while containing elementary languages as their singular fragments, to give a
theory of the logical relations pertaining to plurals, e.g., those that relate (2) to
(2.1)-(2.2) or those that relate (2) to the sentences in (3). I have presented such
languages by regimenting basic plural constructions of natural languages, and
characterized their logic in some other publications.19 Let me explain the basics of
those symbolic languages, called (first-order) plural languages,20 to show that they
have natural paraphrases of basic plural constructions of natural languages.

Plural languages extend elementary languages by including plural cousins of
singular variables, predicates, and quantifiers of elementary languages:

(b*) plural variables: ‘xs’, ‘ys’, ‘zs’, etc.21
(c*) plural predicates: ‘C1’ (for ‘to cooperate’), ‘Η2’ (for ‘is one of”),

‘D2’ (for ‘to discover’), ‘L2’ (for ‘to lift’), ‘W2’ (for ‘to write’), etc.
(e*) plural quantifiers: the existential ‘Σ’, and the universal ‘Π’

Plural variables are refinements of the plural pronoun ‘they’ as used anaphorically (as
in ‘Some scientists worked in Britain, and they discovered the structure of DNA’,
where ‘they’ takes ‘some scientists’ as the antecedent). Plural quantifiers, which bind
plural variables, are refinements of ‘some things’ and ‘any things’. And plural
predicates are refinements of usual natural language predicates (e.g., ‘to discover’).
That is, they can combine with plural terms (e.g., ‘they’) as in the above-mentioned
sentence, and have one or more argument places that admit a plural term: the only
argument place of ‘C1’, the first argument place of ‘D2’, the second argument place of
‘Η2’, etc. 22 Elementary language predicates, by contrast, are refinements of the
singular forms of natural language predicates (e.g., ‘is funny’ or ‘admires’), and have
no argument place that admits plural terms; so they can combine only with singular
terms (i.e., singular constants or variables).

One of the plural predicates, ‘Η2’, which amounts to ‘is one of’, has a special logical
significance. Like the elementary language predicate ‘=’, it is a logical predicate.
And we can use it to define complex plural predicates that result from ‘expanding’
singular predicates. We can define the plural (or neutral) expansion πN of π as
follows:

18 Kaplan’s results do not suffice to show that we cannot accommodate natural language plurals

into the usual, singular higher-order languages. But we can add to Kaplan’s results other
results that show this. See, e.g., Yi ([17], 172-4) and ([19], 472-6).

19 See, e.g., Yi [17]–[20].
20 The logic of plural languages is called plural logic.
21 I add ‘s’ to a lower-case letter of English alphabet to write a plural variable, but plural

variables, like singular variables, are simple expressions with no components of semantic
significance.

22 Such argument places are called plural argument places. The plural argument places (of
plural language predicates) are neutral ones, that is, they admit singular terms as well.

 Plural Quantifications and Generalized Quantifiers 185

 Def. 1 (neutral expansion):
 πN(xs) ≡df ∀y[Η(y, xs) → π(y)] (to use the λ notation, πN =df λxs∀y[Η(y, xs) → π(y)]) .

Then the neural expansion ‘CN’ of the elementary language counterpart ‘C’ of ‘is a
critic’, for example, amounts to the predicate ‘are critics’ (or, more precisely, ‘to be
critics), which can be taken to paraphrase ‘to be such that any one of them is a critic’.

Now, we can paraphrase (2) into plural languages with ‘C’ and ‘A’ as follows:

Σxs{CN(xs) ∧ ∀x∀y[Η(x, xs) ∧ A(x, y) → x≠y ∧ Η(y, xs)]} .23 (2*)

This amounts to an English sentences that we can see is a natural paraphrase of (2):
‘Some things are such that they are critics (i.e., any one of them is a critic), and any one
of them admires something only if the latter is not the former and is one of them.’24

We can now consider sentences with ‘most’, such as those mentioned above:

Most are funny. (1a)

Most boys are funny. (1b)

These sentences involve plurals, as much as (2) does.25 But Rescher’s symbolic
counterpart of (1a), ‘MxF(x)’, results from reducing (1a) into a singular construction.
The so-called plurality quantifier ‘M’, like the elementary quantifiers ‘∃’ and ‘∀’, is a
singular quantifier, one that can combine with singular variables (e.g., ‘x’), but not with
plural variables (e.g., ‘xs’).26 Rescher was working in the framework of the incipient
generalized quantifier theory, 27 which adds quantifiers to elementary languages
without changing their underlying singular character. Similarly, the generalized
quantifier theory introduces a quantifier that corresponds to the use of ‘most’ in (1b),
‘Qmost’, as a binary quantifier that is on a par with the elementary language quantifiers
except that it takes two elementary language predicates. (This is called the Rescher
quantifier.) One can then paraphrase (1b) as follows:

Qmostx(B(x), F(x)) . (1b*)

23 That is, Σxs{∀y[Η(y, xs) → C(y)] ∧ ∀x∀y[Η(x, xs) ∧ A(x, y) → x≠y ∧ Η(y, xs)]} .
24 Using this paraphrase of (2) while analyzing the logic of the expressions involved in (2*), we

can explain that (2.1) implies (2) while (2) does not imply the existence of a set of critics.
25 Note that ‘most’ is used as the superlative of ‘many’, rather than of ‘much’, in (1a)–(1b). The

quantifier as so used combines only with plurals.
26 As a result, Rescher’s English reading of ‘Maφ(a)’ (or ‘Mxφ(x)’) is incoherent and vacillating.

He reads it sometimes as “For most individuals a . . . φa” ([12], 373; original italics, my
underline), and sometimes as “For most x’s (of the empty domain D) φx” ([12], 374). In the
latter sentence, it seems that he spontaneously uses ‘x’s’ as a plural variable. Plurals die
hard!

27 Rescher mentions Mostowski [10], who introduces generalized quantifiers and consider them
(singular) second-order predicates that take elementary language predicates as arguments.

186 B.-U. Yi

Because it ignores the plural character of ‘most’, the generalized quantifier theory
cannot give a proper treatment of siblings of (1a)–(1b) that involve predicates whose
analogues cannot be found in elementary languages, such as the following (where
‘Bob’ refers to a huge piano):

Most of the boys lifted Bob. (1c)

Most of the boys who surrounded Bob lifted Bob. (1d)

One cannot paraphrase these into generalized quantifier languages (where ‘b’, ‘L’, and
‘S’ amount to ‘Bob’, ‘lifted’, and ‘surrounded’, respectively) as follows:

Qmostx(B(x), L(x, b)) . (1c*)

Qmostx(S(x, b), L(x, b)) . (1d*)

(1c*) amounts to ‘Most of the boys individually lifted Bob’ (or ‘Every one of some
things that are most of the boys lifted Bob’). But this is not equivalent to (1c), which is
true if most of the boys (none of whom can lift Bob) cooperated to lift Bob. Similarly,
(1d*) cannot be taken to paraphrase (1d), because it amounts to ‘Most of the boys who
each surrounds Bob individually lifted Bob.’

To deal with this problem, advocates of the generalized quantifier theory might
consider building up their languages on plural languages.28 But those who embrace
plurals as peers of singulars need not revert to the generalized quantifier approach to
accommodate ‘most’ and the like. They can take a natural approach unconstrained by
its bias for singulars.

In plural languages, we can introduce a one-place plural predicate, ‘Most1’, and a
two-place one, ‘Most2’, that amount to ‘most’ in (1a) and (1b), respectively. Then
‘Most1(xs)’ amounts to ‘They are most (of all the things)’, and ‘Most2(xs, ys)’ to ‘The
former are most of the latter’ (where ‘the former’ and ‘the latter’ are used as anaphoric
pronouns).29 And we can paraphrase (1a) into plural languages with ‘Most1’ and the
singular predicate ‘F’ as follows:

Σxs[Most1(xs) ! FN(xs)] (1*a)

where ‘FN’ is the neutral expansion of ‘F’. This amounts to ‘There are some things that
are most (of all the things), and they (each) are funny’, which (1a) can be taken to
paraphrase. Similarly, we can paraphrase (1b) as follows:

28 McKay ([9], Ch. 5) takes this approach.
29 The 1-place predicate ‘Most1’ can be defined in terms of the 2-place ‘Most2’:

Most1(xs) ≡df Σys[∀zΗ(z, ys) ∧ Most2(xs, ys)] .

 Plural Quantifications and Generalized Quantifiers 187

Σxs{∀z[Η(z, xs) ↔ B(z)] ∧ Σys[Most2(ys, xs) ∧ FN(xs)]} (1*b)

which amounts to ‘There are some things of which anything is one if and only if it is a
boy, and there are some things that are most of the former, and are funny’, which (1b)
can be taken to paraphrase.

Moreover, we can give a parallel paraphrase of (1c) into plural languages as follows:

Σxs{∀z[Η(z, xs) ↔ B(z)] ∧ Σys[Most2(ys, xs) ∧ L(ys, b)]} (1*c)

where ‘L’ is a two-place plural predicate that amounts to ‘surrounded’, as used in ‘They
surrounded Bob’. (1*c) differs from (1*b) in an important respect: while (1*c) has
this plural predicate, (1*b) has no undefined plural predicate except ‘Most2’, of which
‘Qmost’ is an analogue.30 So (1c) (or, equivalently, (1*c)) cannot be paraphrased into
the usual generalized quantifier languages while (1b) (or, equivalently, (1*b)) can, just
as ‘Some boys lifted Bob’ cannot be paraphrased into elementary languages while
‘Some boys are funny’ can.

Note that (1b*) and (1c*) amount to ‘Most of the boys lifted Bob’ and ‘Most of the
boys are funny’, respectively, because ‘They are (all) the boys’ can be taken to
paraphrase ‘They are some things of which anything is one if and only if it is a boy.’
So it is useful to introduce symbolic counterparts of the plural definite description ‘the
boys’ and the like. Let ‘<x: B(x)>’ be the symbolic counterpart of ‘the boys’. Then
we can use it to abbreviate ‘∀z[Η(z, xs) ↔ B(z)]’ in (1*b) and (1*c) as follows:31

Σys[Most2(ys, <x: Bx>) ∧ FN(xs)] (or, λxs{Σys[Most2(ys, xs) ∧ FN(xs)]}(<x: Bx>)) . (1*b*)

Σys[Most2(ys, <x: Bx>) ∧ L(ys, b)] (or, λxs{Σys[Most2(ys, xs) ∧ L(ys, b)]}(<x: Bx>)) . (1*c*)

Now, some things are, e.g., the boys if and only if they are things of which anything is
one if and only if it is a boy. So we can give a contextual definition of the definite
description ‘<x: B(x)>’ and the like in plural languages as follows:

 Def. 2 (Plural definite descriptions of the first kind)
 π(<x: φ(x)>) ≡df Σxs{∀z[Η(z, xs) ↔ φ(z)] ∧ π(xs)}, where π is a predicate.

Applying this to (1*b*) and (1*c*) yields (1*b) and (1*c), respectively.32, 33

30 ‘FN’ is a plural predicate, but is introduced as defined in terms of the singular predicate ‘F’

(with logical expressions of plural languages).
31 In both (1*b*) and (1*c*), ‘<x: Bx>’ takes the widest scope.
32 Using the definite description, we can give a simple formulation of (1*a): ‘Most1(<x: F(x)>).’

Applying Def. 2 (together with Def. 1) to this yields a straightforward logical equivalent of
(1*a).

188 B.-U. Yi

The plural definite description in (1d), ‘the boys who surrounded Bob’, requires a
different treatment. It cannot be analyzed in the same way as, e.g., ‘the boys’.
Compare the following:

Something is one of the boys if and only if it is a boy. (a)

Something is one of the boys who surrounded Bob if and only if it is a boy who
surrounded Bob.

(b)

Although (a) is a logical truth, which provides the basis for Def. 2, (2) might be false.
So it is necessary to give a different analysis of (1d) to paraphrase it into plural
languages. Now, we can introduce into plural languages plural definite descriptions of
another kind, those that amount to ‘the boys who surrounded Bob’ and the like. Let
‘(Izs)S(zs, b)’, for example, be a definite description that amounts to this. Using this,
we can paraphrase (1d) as follows:

Σys[Most2(ys, (Ixs)S(xs, b)) ∧ L(ys, b)] (or, λxs{Σys[Most2(ys, xs) ∧ L(ys,

b)]}((Ixs)S(xs, b)) .
(1*d)

This, which results from replacing ‘<x: Bx>’ in (1*c*) with ‘(Ixs)S(xs, b)’, amounts to
‘There are some things that are most of the boys who surrounded Bob, and they lifted
Bob.’ And one can give a contextual definite of plural definite descriptions of the
second kind as well in plural languages. Here is the definition as applied to ‘(Ixs)S(xs,
b)’:34

33 (1*b) (or, equivalently, (1*b*)) implies the existence of a boy. So ‘Every boy is funny’,

which does not imply the existence of a boy, does not imply ‘Most boys are funny’ on my
analysis. The generalized quantifier analysis of ‘most’ yields the same result. Moreover,
the usual generalized quantifier account consider ‘all’ in ‘All boys are funny’ or ‘All the boys
are funny’ a mere variant of ‘every’ to take these sentences to be equivalents of ‘Every boy is
funny’ that fail to imply (1b). But we can treat ‘all’ (which combines only with plural forms
of count nouns) like ‘most’. In plural languages, we can introduce a two-place plural
predicate, ‘All2’, that amounts to ‘are all of’ in, e.g., ‘They are all of my friends.’ We can
then take ‘All boys are funny’ to be equivalent to ‘All the boys are funny’, and paraphrase it
by ‘Σxs[All(xs, <x: Bx>) ∧ FN(xs)]’. And we can define ‘All2’ using only logical expressions
of plural languages as follows:

All2(xs, ys) ≡df ∀z[Η(z, xs) ↔ Η(z, ys)] (or All2 =df λxs,ys∀z[Η(z, xs) ↔ Η(z, ys)])

 For some things are all of, e.g., my friends if and only if any one of them is one of my friends,
and vice versa. We can then show that ‘Σxs[All(xs, <x: Bx>) ∧ FN(xs)]’ is logically
equivalent to ‘∃xB(x) ∧ ∀x[B(x) → F(x)]’, and implies (1*b) (for ‘Πxs.Most(xs, xs)’ or ‘Any
things are most of themselves’ is a logical truth).

34 See Yi ([20], sc. 4) for the definition and general discussions of plural definite descriptions.

 Plural Quantifications and Generalized Quantifiers 189

Def. 3 (Plural definite descriptions of the second kind [an example])
π((Ixs)S(xs, b)) ≡df Σxs{Πzs[S(zs, b) ↔ zs ≈ xs)] ∧ π(xs)}, where π

is a predicate.

Here ‘zs ≈ xs’ abbreviates ‘∀y[Η(y, zs) ↔ Η(y, xs)]’ (‘≈’ can be used to paraphrase ‘to
be the same things as’). Applying the definition to (1*d) yield the following:

Σxs{∀zs[S(zs, b) ↔ zs ≈ xs)] ∧ Σys[Most2(ys, xs) ∧ L(ys, b)]} . (1*d*)

This amounts to, roughly, ‘There are some things that lifted Bob, and they are most of
the things that are the same as some things if and only if these surrounded Bob.’

Now, note that the plural language analysis of ‘most’ explains the fact that ‘most’ is
a so-called conservative quantifier: (1b) is equivalent to ‘Most of the boys are boys and
are funny’, because any things that are most of the boys must be boys. Although the
generalized quantifier theory attributes conservativity to ‘most’, however, its
conservativity has an important limitation in scope: (1d) is not equivalent to ‘Most of
the boys who surrounded Bob are boys who surrounded Bob and lifted Bob.’ The
plural language analysis of ‘most’ explains this limitation as well: those who are most
of the boys who surrounded Bob might not themselves suffice to surround it.
Proponents of the generalized quantifier theory fail to note the limitation, let alone
explain it, because they in effect begin by placing, e.g., (1d) beyond the scope of the
theory because it cannot be put in their favorite languages. But it would be wrong to
hold that ‘most’ is used differently in (1d) than in (1b) and (1c). My plural language
analysis of the quantifier explains the logical disparity as arising from the difference in
the logical character between two kinds of definite descriptions.

Acknowledgments. I would like to thank Yiannis Moschovakis for suggesting the
possibility of applying finite model theory to the Geach-Kaplan sentence, and Tom
McKay and anonymous referees for Formal Grammar 10 for comments on earlier
versions of this paper. The work for this paper was supported in part by an ACLS
Fellowship that I held in 2009-10. The support of the fellowship is hereby gratefully
acknowledged.

I wish to dedicate this paper to David Kaplan.

References

1. Almog, J.: The complexity of marketplace logic. Linguistics and Philosophy 20, 545–569
(1997)

2. Barwise, J., Cooper, R.: Generalized quantifiers and natural language. Linguistics and
Philosophy 4, 159–219 (1981)

3. Boolos, G.: To be is to be a value of a variable (or to be some values of some variables).
Journal of Philosophy 81, 430–449 (1984)

4. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd revised edn. Springer, Berlin (1999)
5. Fagin, R.: Finite-model theory – a personal perspective. Theoretical Computer Science 116,

3–31 (1993)

190 B.-U. Yi

6. Kaplan, D.: Rescher’s plurality-quantification (Abstract). Journal of Symbolic Logic 31,
153–154 (1966)

7. Kaplan, D.: Generalized plurality quantification (Abstract). Journal of Symbolic Logic 31,
154–155 (1966)

8. Keenan, E.L., Stavi, J.: A semantic characterization of natural language determiners.
Linguistics and Philosophy 9, 253–326 (1986)

9. McKay, T.: Plural Predication. Oxford University Press, Oxford (2006)
10. Mostowski, A.: On a generalization of quantifiers. Fundamenta Mathematicae 44, 12–36

(1957)
11. Quine, W.V.: Methods of Logic, 3rd edn. London, RKP (1974)
12. Rescher, N.: Plurality-quantification (Abstract). Journal of Symbolic Logic 27, 373–374

(1962)
13. Rescher, N.: Plurality quantification revisited. Philosophical Inquiry 26, 1–6 (2004)
14. Väänänen, J.: A Short Course on Finite Model Theory. Manuscript Based on Lectures in

1993-1994 (1994),
http://www.math.helsinki.fi/logic/people/jouko.vaananen/
shortcourse.pdf

15. Westerståhl, D.: Logical constants in quantifier languages. Linguistics and Philosophy 8,
387–413 (1985)

16. Westerståhl, D.: Quantifiers in formal and natural languages. In: Gabbay, D., Guethner, F.
(eds.) The Handbook of Philosophical Logic, vol. IV, pp. 1–131. Reidel, Dordrecht (1989)

17. Yi, B.-U.: Is two a property? Journal of Philosophy 95, 163–190 (1999)
18. Yi, B.-U.: Understanding the Many. Routledge, New York & London (2002)
19. Yi, B.-U.: The logic and meaning of plurals. Part I. Journal of Philosophical Logic 34,

459–506 (2005)
20. Yi, B.-U.: The logic and meaning of plurals. Part II. Journal of Philosophical Logic 35,

239–288 (2006)
21. Yi, B.-U.: Is logic axiomatizable? unpublished manuscript

Appendix

We can use some basic results of finite model theory to show the following:

(A) There is no elementary language sentence that agrees with Rescher’s
“plurality” quantification ‘MxF(x)’ on all finite models.

(B) There is no elementary sentence that agrees with the Geach-Kaplan
sentence (2), ‘Some critics admire only one another’, on all finite
domains.

Let LF be the elementary language whose only non-logical expression is ‘F1’, and LA
the elementary language whose only non-logical expression is ‘A2’. Then a model M
of LF is a pair <DM, FM> such that DM is a non-empty set and FM a subset of DM; and a
model M of LA a pair <DM, AM> such that DM is a non-empty set and AM a subset of

 Plural Quantifications and Generalized Quantifiers 191

DM×DM. Say that a model M is finite, if its domain, DM, is a finite set. Then we can
show the following:35

(A*) There is no sentence φ of LF such that any finite model M of LF

satisfies φ if and only if |DM\FM| = |FM|.

But ‘¬MxF(x) ∧ ¬Mx¬F(x)’ is such a sentence. So (A) holds. To state a theorem
that we can use to show (B), it is useful to use the following notions:

Definitions: Let M (=<DM, AM>) be a model of LA. Then

1. M is a graph, if for any members a and b of DM, not AM(a, a), and if AM(a, b), then
AM(b, a).

2. There is a path between a and b, if a and b are members of DM and either AM(a, b) or
there are finitely many members x1, x2, ..., xn-1, xn of DM such that AM(a, x1), A

M(x1,
x2), ..., A

M(xn-1, xn), A
M(xn, y).

3. A graph is connected, if there is a path between any two members of DM.

Then the following is a theorem of finite model theory:36

(B*) There is no sentence φ of LA such that any finite model M of LA
satisfies φ if and only if M is a connected graph.

Now, if there is an elementary language sentence that agrees with (2) on all finite
models, then there is an elementary language sentence that agrees with the following on
all finite models:

 There is something such that there are some things that are not identical with it that

admire only one another.

(And we may assume such a sentence is a sentence of LA.) So let φ be a sentence of LA
that agrees with the above sentence on all finite models. Then let φ* be [∀x¬A(x, x) ∧
∀x∀y(A(x, y) ↔ A(y, x)) ∧ φ]. Then a finite model M of LA satisfies φ* if and only if
M is a connected graph, which violates (B*). So (B) holds.

35 This is a variant of the theorem of undefinability of the class of even-numbered models

(among finite models). For a proof of the theorem, see, e.g., Väänänen ([14], 6). We can
prove it using compactness of elementary logic.

36 See, e.g., Ebbinghaus & Flum ([4], 22f) or Väänänen ([14], 9) for a proof.

Polynomial Time Learning of Some Multiple

Context-Free Languages with a Minimally
Adequate Teacher

Ryo Yoshinaka1,	 and Alexander Clark2

1 MINATO Discrete Structure Manipulation System Project,
ERATO, Japan Science and Technology Agency

ryoshinaka@erato.ist.hokudai.ac.jp
2 Department of Computer Science, Royal Holloway, University of London

alexc@cs.rhul.ac.uk

Abstract. We present an algorithm for the inference of some Multi-
ple Context-Free Grammars from Membership and Equivalence Queries,
using the Minimally Adequate Teacher model of Angluin. This is an ex-
tension of the congruence based methods for learning some Context-Free
Grammars proposed by Clark (ICGI 2010). We define the natural exten-
sion of the syntactic congruence to tuples of strings, and demonstrate
we can efficiently learn the class of Multiple Context-Free Grammars
where the non-terminals correspond to the congruence classes under this
relation.

1 Introduction

In this paper we look at efficient algorithms for the inference of multiple context
free grammars (mcfgs). Mcfgs are a natural extension of context free gram-
mars (cfgs), where the non-terminal symbols derive tuples of strings, which are
then combined with each other in a limited range of ways. Since some natural
language phenomena were found not to be context-free, the notion of mildly
context-sensitive languages was proposed and studied for better describing nat-
ural languages, while keeping tractability [1]. Mcfgs are regarded as a represen-
tative mildly context-sensitive formalism, which has many equivalent formalisms
such as linear context-free rewriting systems [2], multicomponent tree adjoining
grammars [3,4], minimalist grammars [5], hyperedge replacement grammars [6],
etc.

In recent years, there has been rapid progress in the field of context-free
grammatical inference using techniques of distributional learning. The first result
along these lines was given by Clark and Eyraud [7]. They showed a polynomial

� He is concurrently working in Graduate School of Information Science and Tech-
nology, Hokkaido University. This work was supported in part by Grant-in-Aid for
Young Scientists (B-20700124) from the Ministry of Education, Culture, Sports,
Science and Technology of Japan.

P. de Groote andM.-J. Nederhof (Eds.): Formal Grammar 2010/2011, LNCS 7395, pp. 192–207, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Polynomial Time Learning of Some Multiple Context-Free Languages 193

identification in the limit result from positive data alone for a class of languages
called the substitutable context free languages.

We assume we have a finite non-empty alphabet Σ and an extra hole or gap
symbol, �, which is not in Σ. A context is a string with one hole in, written
as l�r, and the distribution of a string u in a language L is defined as L/u =
{ l�r | lur ∈ L }. There is a natural congruence relation called the syntactic
congruence which is defined as u ≡L v iff L/u = L/v.

The learning approach of Clark and Eyraud is based on the following obser-
vations:

Lemma 1. If u ≡L u
′ then uw ≡L u

′w. If u ≡L u
′ and v ≡L v

′ then uv ≡L u
′v′.

This means that it is trivial to construct a cfg where the non-terminals cor-
respond to congruence classes under this relation, as we can construct rules of
the form [uv] → [u], [v]. All rules of this form will be valid since [u][v] ⊆ [uv] by
Lemma 1.

Let us consider now the language Lc = {wcwc | w ∈ {a, b}∗ }. This is a slight
variant of the classic copy language which is not context-free. It is formally
similar to the constructions in Swiss German which established that the class of
natural languages is not included in the class of context-free languages and is
thus a classic test case for linguistic representation [8, 9].

We will extend the approach by considering relationships not between strings,
but between tuples of strings. Here for concreteness we will consider the case of
tuples of dimension 2, i.e. pairs; but in the remainder of the paper we will define
this for tuples of arbitrary dimension.

Let 〈u, v〉 be an ordered pair of strings. We define L/〈u, v〉 = { l�m�r |
lumvr ∈ L } and we then define an equivalence relation between pairs of strings
which is analogous to the syntactic congruence: 〈u, v〉 ≡L 〈u′, v′〉 iff L/〈u, v〉 =
L/〈u′, v′〉.

Note that when we consider Lc it is easy to see that 〈c, c〉 ≡Lc 〈ac, ac〉 ≡Lc

〈bc, bc〉, but that 〈a, a〉 is not congruent to 〈b, b〉, since for example ��caac is in
L/〈a, a〉 but not L/〈b, b〉.

Just as with Lemma 1 above, this congruence has interesting properties.

Lemma 2. If 〈u, v〉 ≡L 〈u′, v′〉 and 〈x, y〉 ≡L 〈x′, y′〉, then 〈ux, vy〉 ≡L

〈u′x′, v′y′〉.

Note that there is now more than one way of combining these two elements. If
they are single strings, then there are only two ways – uv and vu. When there
are multiple strings we can combine them in many different ways. For example,
it is also the case that 〈uxy, v〉 ≡L 〈u′x′y′, v′〉, but in general, it is not the case
that 〈uyx, v〉 ≡L 〈u′y′x′, v′〉.

In the specific case of Lemma 2 we can consider the concatenation operation
as a function f : (Σ∗ × Σ∗)2 → Σ∗ × Σ∗ defined as f(〈u, v〉, 〈x, y〉) = 〈ux, vy〉.
If we use the notation w for tuples then the lemma says that if u ≡L u′ and
v ≡L v′, then f(u,v) ≡L f(u

′,v′).

194 R. Yoshinaka and A. Clark

We can then generalise Lemma 2 to all functions f that satisfy a certain set
of conditions; as we discuss formally later on, these must be linear regular and
non-permuting.

Our learning algorithm will work by constructing an mcfg where each non-
terminal generates a congruence class of tuples of strings.

For our learning model, we will use in this paper the Minimally Adequate
Teacher (mat) model introduced by Angluin in [10]. This model assumes the
existence of a teacher who can answer two sorts of queries: first, the learner
can ask Membership Queries (mqs), where the learner queries whether a given
string is in the target language or not, and secondly the learner can ask Equiv-
alence Queries (eqs), where the learner queries whether a particular hypothesis
is correct or not; if the hypothesis is not correct, then the teacher will give a
counter-example to the learner. The learner is required to use only a limited
amount of computation before terminating – in particular there must be a poly-
nomial p such that the total amount of computation used is less than p(n, �),
where n is the size of the target representation, and � is the length of the longest
counter-example returned by the teacher.

This model is rather abstract; but it has a number of important advantages
that make it appropriate for this paper. First of all, it is a very restrictive model.
There are strong negative results [11] that show that certain natural classes –
regular grammars, cfgs are not learnable under this mat paradigm. Secondly, it
is also permissive – it allows reasonably large classes of languages to be learned.
Angluin’s famous lstar algorithm for the inference of regular languages is a
classic and well-studied algorithm, and one of the great success stories of gram-
matical inference.

Finally, if we look at the history of regular and context-free grammatical
inference it appears to work well as a substitute for more realistic probabilistic
models. Probabilistic dfas turn out to be pac-learnable under a very rigorous
model [12], albeit stratified by certain parameters. Thus though this model is
unrealistic it seems a good intermediate step, and it is technically easy to work
with.

The main result of this paper is a polynomial mat learning algorithm for
a class of mcfgs. In Section 2 we will introduce our notation. Our learning
algorithm is discussed in Section 3. We conclude this paper in Section 4.

2 Preliminaries

2.1 Basic Definitions and Notations

The set of non-negative integers is denoted by N and this paper will consider
only numbers in N. The cardinality of a set S is denoted by |S|. If w is a string
over an alphabet Σ, |w| denotes its length. ∅ is the empty set and λ is the
empty string. Σ∗ denotes the set of all strings over Σ. We write Σ+ = Σ∗−{λ},
Σk = {w ∈ Σ∗ | |w| = k } and Σ≤k = {w ∈ Σ∗ | |w| ≤ k }. Any subset of
Σ∗ is called a language (over Σ). If L is a finite language, its size is defined
as ‖L‖ = |L| +

∑
w∈L |w|. An m-word is an m-tuple of strings and we denote

Polynomial Time Learning of Some Multiple Context-Free Languages 195

the set of m-words by (Σ∗)〈m〉. Similarly we define (·)〈∗〉, (·)〈+〉, (·)〈≤m〉. Any
m-word is called a multiword. Thus (Σ∗)〈∗〉 denotes the set of all multiwords.
For w = 〈w1, . . . , wm〉 ∈ (Σ∗)〈m〉, |w| denotes its length m and ‖w‖ denotes
its size m +

∑
1≤i≤m |wi|. We use the symbol �, assuming that � /∈ Σ, for

representing a “hole”, which is supposed to be replaced by another string. We
write Σ� for Σ ∪ {�}. A string x over Σ� is called an m-context if x contains
m occurrences of �. m-contexts are also called multicontexts. For an m-context
x = x0�x1� . . .�xm with x0, . . . , xm ∈ Σ∗ and an m-word y = 〈y1, . . . , ym〉 ∈
(Σ∗

�)
〈m〉, we define

x , y = x0y1x1 . . . ynxn

and say that y is a sub-multiword of x , y. Note that � is the empty context
and we have � , 〈y〉 = y for any y ∈ Σ∗. For L ⊆ Σ∗ and p ≥ 1, we define

S≤p(L) = {y ∈ (Σ+)〈≤p〉 | x , y ∈ L for some x ∈ Σ∗
� },

C≤p(L) = { x ∈ Σ∗
� | x , y ∈ L for some y ∈ (Σ+)〈≤p〉 },

and for y ∈ (Σ∗)〈∗〉, we define

L/y = { x ∈ Σ∗
� | x , y ∈ L }.

Obviously computation of S≤p(L) can be done in O(‖L‖2p) time if L is finite.

2.2 Linear Regular Functions

Let us suppose a countably infinite set Z of variables disjoint from Σ. A function
f from (Σ∗)〈m1〉 × · · · × (Σ∗)〈mn〉 to (Σ∗)〈m〉 is said to be linear, if there is
〈α1, . . . , αm〉 ∈ ((Σ ∪ { zij ∈ Z | 1 ≤ i ≤ n, 1 ≤ j ≤ mi })∗)〈m〉 such that each
variable zij occurs at most once in 〈α1, . . . , αm〉 and

f(w1, . . . ,wn) = 〈α1[z := w], . . . , αm[z := w]〉

for any wi = 〈wi1, . . . , wimi〉 ∈ (Σ∗)〈mi〉 with 1 ≤ i ≤ n, where αk[z := w]
denotes the string obtained by replacing each variable zij with the string wij .
We call f linear regular if every variable zij occurs in 〈α1, . . . , αm〉. We say that
f is λ-free when no αk from 〈α1, . . . , αm〉 is λ. A linear regular function f is
said to be non-permuting, if zij always occurs to the left of zi(j+1) in α1 . . . αm
for 1 ≤ i ≤ n and 1 ≤ j < mi. The rank rank(f) of f is defined to be n and the
size size(f) of f is ‖〈α1, . . . , αm〉‖.

Example 1. Among the functions defined below, where a, b ∈ Σ, f is not linear,
while g and h are linear regular. Moreover h is λ-free and non-permuting.

f(〈z11, z12〉, 〈z21〉) = 〈z11z12, z11z21z11〉,
g(〈z11, z12〉, 〈z21〉) = 〈z12, z11bz21, λ〉,
h(〈z11, z12〉, 〈z21〉) = 〈a, z11bz21, z12〉.

196 R. Yoshinaka and A. Clark

The following lemma is the generalization of Lemmas 1 and 2 mentioned in the
introduction, on which our approach is based.

Lemma 3. For any language L ⊆ Σ∗ and any u1, . . . ,un,v1, . . . ,vn ∈ (Σ∗)〈∗〉

such that |ui| = |vi| and L/ui = L/vi for all i, we have L/f(u1, . . . ,un) =
L/f(v1, . . . ,vn) for any non-permuting linear regular function f .

Proof. Let mi = |ui| = |vi|. Suppose that x ∈ L/f(u1, . . . ,un), i.e., x ,
f(u1, . . . ,un) ∈ L. The following inference is allowed:

x , f(�〈m1〉,u2, . . . ,un) ∈ L/u1 = L/v1 =⇒ x , f(v1,u2, . . . ,un) ∈ L

=⇒ x , f(v1,�〈m2〉,u3, . . . ,un) ∈ L/u2 = L/v2 =⇒
x , f(v1,v2,u3, . . . ,un) ∈ L =⇒ . . . =⇒ x , f(v1, . . . ,vn) ∈ L.

Hence x ∈ L/f(v1, . . . ,vn). ��

2.3 Multiple Context-Free Grammars

A multiple context-free grammar (mcfg) is a tuple G = 〈Σ, Vdim, F, P, I〉, where
– Σ is a finite set of terminal symbols,
– Vdim = 〈V, dim〉 is the pair of a finite set V of nonterminal symbols and a

function dim giving a positive integer, called a dimension, to each element
of V ,

– F is a finite set of linear functions,1

– P is a finite set of rules of the formA → f(B1, . . . , Bn) whereA,B1, . . . , Bn ∈
V and f ∈ F maps (Σ∗)〈dim(B1)〉 × · · · × (Σ∗)〈dim(Bn)〉 to (Σ∗)〈dim(A)〉,

– I is a subset of V and all elements of I have dimension 1. Elements of I are
called initial symbols.

We note that our definition of mcfgs is slightly different from the original [13],
where grammars have exactly one initial symbol, but this change does not affect
the generative capacity of mcfgs.

We will simply write V for Vdim if no confusion occurs. If a rule has a function
f , then its right hand side must have rank(f) occurrences of nonterminals by
definition. If rank(f) = 0 and f() = v, we may write A → v instead of A →
f(). If rank(f) = 1 and f is the identity, we may write A → B instead of
A → f(B), where dim(A) = dim(B). The size ‖G‖ of G is defined as ‖G‖ =
|P |+

∑
ρ∈P size(ρ) where size(A → f(B1, . . . , Bn)) = size(f) + n+ 1.

For A ∈ V , A-derivation trees are recursively defined as follows:

– If a rule π ∈ P has the form A → w, then π is an A-derivation tree for w.
We call w the yield of π.

– If a rule π ∈ P has the form A → f(B1, . . . , Bn) and ti is a Bi-derivation
tree for wi for all i = 1, . . . , n, then the tree whose root is π with immediate
subtrees t1, . . . , tn from left to right, which we write as π(t1, . . . , tn), is an
A-derivation tree for f(w1, . . . ,wn), which is called the yield of π(t1, . . . , tn).

1 We identify a function with its name for convenience.

Polynomial Time Learning of Some Multiple Context-Free Languages 197

– nothing else is an A-derivation tree.

For all A ∈ V we define

L(G,A) = {w ∈ (Σ∗)〈dim(A)〉 | there is an A-derivation tree for w }.

The language L(G) generated by G means the set {w ∈ Σ∗ | 〈w〉 ∈ L(G,S) with
S ∈ I }, which is called a multiple context-free language (mcfl). If S ∈ I, an
S-derivation tree for 〈w〉 is simply called a derivation tree for w ∈ L(G). Two
grammars G and G′ are equivalent if L(G) = L(G′).

This paper assumes that all linear functions in F are linear regular, λ-free and
non-permuting. In fact those assumptions do not affect their generative capacity
modulo λ [13, 14].

We denote by G(p, r) the collection of mcfgs G whose nonterminals are as-
signed a dimension at most p and whose functions have a rank at most r. Then
we define L(p, r) = {L(G) | G ∈ G(p, r) }, We also write G(p, ∗) =

⋃
r∈N

G(p, r)
and L(p, ∗) =

⋃
r∈N

L(p, r). The class of context-free grammars (cfgs) is iden-
tified with G(1, ∗) and all cfgs in Chomsky normal form are in G(1, 2). Thus
L(1, 2) = L(1, ∗).

Example 2. Let G be the mcfg 〈Σ, V, F, P, {S}〉 over Σ = {a, b, c, d} whose rules
are

π1 : S → f(A,B) with f(〈z11, z12〉, 〈z21, z22〉) = 〈z11z21z12z22〉,
π2 : A → g(A) with g(〈z1, z2〉) = 〈az1, cz2〉, π3 : A → 〈a, c〉,
π4 : B → h(B) with h(〈z1, z2〉) = 〈z1b, z2d〉, π5 : B → 〈b, d〉,

where V = {S,A,B} with dim(S) = 1, dim(A) = dim(B) = 2, and F consists
of f , g, h and the constant functions appearing in the rules π3 and π5. One can
see, for example, aabccd ∈ L(G) thanks to the derivation tree π1(π2(π3), π5):
〈a, c〉 ∈ L(G,A) by π3, 〈aa, cc〉 ∈ L(G,A) by π2, 〈b, d〉 ∈ L(G,B) by π5 and
〈aabccd〉 ∈ L(G,S) by π1. We have L(G) = { ambncmdn | m,n ≥ 1 }.

Seki et al. [13] and Rambow and Satta [15] have investigated the hierarchy of
mcfls.

Proposition 1 (Seki et al. [13], Rambow and Satta [15]).
For p ≥ 1, L(p, ∗) � L(p+ 1, ∗).
For p ≥ 2, r ≥ 1, L(p, r) � L(p, r + 1) except for L(2, 2) = L(2, 3).
For p ≥ 1, r ≥ 3 and 1 ≤ k ≤ r − 2, L(p, r) ⊆ L((k + 1)p, r − k).

Theorem 1 (Seki et al. [13], Kaji et al. [16]). Let p and r be fixed. It is
decidable in O(‖G‖2|w|p(r+1)) time whether w ∈ L(G) for any mcfg G ∈ G(p, r)
and w ∈ Σ∗.

2.4 Congruential Multiple Context-Free Grammars

Now we introduce the languages of our learning target.

198 R. Yoshinaka and A. Clark

Definition 1. We say that an mcfg G ∈ G(p, r) is p-congruential if for every
nonterminal A and any u,v ∈ L(G,A), it holds that L(G)/u = L(G)/v.

In a p-congruential mcfg (p-cmcfg or cmcfg for short), one can merge two
nonterminals A and B without changing the language when L(G)/u = L(G)/v
for u ∈ L(G,A) and v ∈ L(G,B).

We let CG(p, r) denote the class of p-cmcfgs from G(p, r) and CL(p, r) the
corresponding class of languages. Our learning target is CL(p, r) for each p, r ≥ 1.
The class CL(1, 2) corresponds to congruential cfls introduced by Clark [17],
which include all regular languages.

The grammar G in Example 2 is 2-congruential. It is easy to see that for any
〈am, cm〉 ∈ L(G,A), we have

L(G)/〈am, cm〉 = { ai�ajbnck�cldn | i+ j = k + l ≥ 0 and n ≥ 1 },

which is independent of m. Similarly one sees that all elements of L(G,B) share
the same set of multicontexts. Obviously L(G)/〈ambncmdn〉 = {� } for any
〈ambncmdn〉 ∈ L(G,S).

Another example of a cmcfl is Lc = {wcwc | w ∈ {a, b}∗ } ∈ CL(2, 1).
On the other hand, neither L1 = { ambn | 1 ≤ m ≤ n } nor L2 = { anbn |
n ≥ 1 } ∪ { anb2n | n ≥ 1 } is p-congruential for any p. We now explain why
L2 	∈ CL(∗, ∗). A similar discussion is applicable to L1. If an mcfg generates L2,
it must have a nonterminal that derives multiwords u and v that have different
number of occurrences of a. Then it is not hard to see that u and v do not share
the same set of multicontexts. However { anbnc | n ≥ 1 } ∪ { anb2nd | n ≥ 1 } ∈
L(1, 1) ∩ CL(2, 1)− CL(1, ∗).

3 Learning of Congruential Multiple Context-Free
Grammars with a Minimally Adequate Teacher

3.1 Minimally Adequate Teacher

Our learning model is based on Angluin’s mat learning [18]. A learner has a
teacher who answers two kinds of queries from the learner: membership queries
(mqs) and equivalence queries (eqs). An instance of an mq is a string w over
Σ and the teacher answers “Yes” if w ∈ L∗ and otherwise “No”, where we
use L∗ to refer to the learning target. An instance of an eq is a grammar Ĝ
and the teacher answers “Yes” if L(Ĝ) = L∗ and otherwise returns a counter-
example w ∈ (L∗ − L(Ĝ)) ∪ (L(Ĝ) − L∗). If w ∈ L∗ − L(Ĝ), then it is called a
positive counter-example, and if w ∈ L(Ĝ) − L∗, it is called a negative counter-
example. The teacher is supposed to answer every query in constant time. The
learning process finishes when the teacher answers “Yes” to an eq. In this
learning scheme, we fix a class G of grammars representing our learning targets
and require a learner to output a correct grammar in polynomial time in ‖G∗‖
and � where G∗ is a smallest grammar in G such that L(G∗) = L∗ and � is the
length of the longest counter-example given by the teacher.

Polynomial Time Learning of Some Multiple Context-Free Languages 199

We remark that we do not restrict instances of eqs to grammars in the class
G. Queries of this type are often called extended eqs to emphasize the difference
from the restricted type of eqs.

3.2 Hypotheses

Hereafter we arbitrarily fix two natural numbers p ≥ 1 and r ≥ 1. Let L∗ ⊆ Σ∗ be
the target language from CL(p, r). Our learning algorithm computes grammars
in G(p, r) from three parameters K ⊆ S≤p(L∗), X ⊆ C≤p(L∗) and L∗ where K
and X are always finite. Of course we cannot take L∗ as a part of the input,
but in fact a finite number of mqs is enough to construct the following mcfg
Gr(K,X,L∗) = 〈Σ, V, F, P, I〉. The set of nonterminal symbols is V = K and
we will write [[v]] instead of v for clarifying that it means a nonterminal symbol
(indexed with v). The dimension dim([[v]]) is |v|. The set of initial symbols is

I = { [[〈w〉]] | 〈w〉 ∈ K and w ∈ L∗ },

where every element of I is of dimension 1. The set F of functions consists of all
the λ-free and non-permuting functions that appear in the definition of P . The
rules of P are divided into the following two types:

– (Type I) [[v]] → f([[v1]], . . . , [[vn]]), if 0 ≤ n ≤ r, v,v1, . . . ,vn ∈ K and
v = f(v1, . . . ,vn) for f λ-free and non-permuting;

– (Type II) [[u]] → [[v]], if L∗/u ∩X = L∗/v ∩X and u,v ∈ K,

where rules of the form [[v]] → [[v]] are of Type I and Type II at the same time,
but they are anyway superfluous. Obviously rules of Type II form an equivalence
relation in V . One can merge nonterminals in each equivalence class to compact
the grammar, but the results are slightly easier to present in this non-compact
form.

We want each nonterminal symbol [[v]] to derive v. Here the construction
of I appears to be trivial: initial symbols derive elements of K if and only if
they are in the language L∗. This property is realized by the rules of Type I.
For example, for p = r = 2 and K = S≤2({ab}), one has the following rules
π1, . . . , π5 of Type I that have [[〈a, b〉]] on their left hand side:

π1 : [[〈a, b〉]] → 〈a, b〉,
π2 : [[〈a, b〉]] → fa([[〈b〉]]) with fa(〈z〉) = 〈a, z〉,
π3 : [[〈a, b〉]] → fb([[〈a〉]]) with fb(〈z〉) = 〈z, b〉,
π4 : [[〈a, b〉]] → g([[〈a〉]], [[〈b〉]]) with g(〈z1〉, 〈z2〉) = 〈z1, z2〉,
π5 : [[〈a, b〉]] → [[〈a, b〉]],

where π1 indeed derives 〈a, b〉, while π5 is superfluous. Instead of deriving 〈a, b〉
directly by π1, one can derive it by two steps with π3 and π6 : [[〈a〉]] → 〈a〉 (or
π2 and π7 : [[〈b〉]] → 〈b〉), or by three steps by π4, π6 and π7. One may regard
application of rules of Type I as a decomposition of the multiword that appears

200 R. Yoshinaka and A. Clark

on its left hand side. It is easy to see that there are finitely many rules of Type I,
because K is finite and nonterminals on the right hand side of a rule are all
λ-free sub-multiwords of that on the left hand side. If the grammar had only
rules of Type I, then it should derive all and only elements of I.

The intuition behind rules of Type II is explained as follows. If L∗/u = L∗/v,
then L∗ is closed under exchanging occurrences of v and u in any strings, and
such an exchange is realized by the two symmetric rules [[u]] → [[v]] and [[v]] → [[u]]
of Type II. The algorithm cannot check whether L∗/u = L∗/v in finitely many
steps, but it can approximate this relation by L∗/u ∩X = L∗/v ∩X which we
can check using mqs, because X is finite. Clearly L∗/u = L∗/v implies that
L∗/u∩X = L∗/v∩X , but the inverse is not true. We say that a rule [[u]] → [[v]]
of Type II is incorrect (with respect to L∗) if L∗/u 	= L∗/v.

In this construction of Gr(K,X,L∗), the initial symbols are determined by K
and L∗ and the rules of Type I are constructed solely by K, while X is used
only for determining rules of Type II. Our algorithm monotonically increases K
which will monotonically increase the set of rules, and monotonically increases
X which will decrease the set of rules of Type II.

3.3 Observation Tables

The process of computing rules of Type II can be handled by a collection of
matrices, called observation tables. For each dimension m ≤ p, we have an ob-
servation table Tm. Let Km and Xm be the sets of m-words from K and m-
contexts from X , respectively. The rows of the table Tm are indexed with the
elements of Km and the columns are indexed with the elements of Xm. For each
pair u,v ∈ Km, to compare the sets L∗/u ∩ X and L∗/v ∩ X , one needs to
know whether x , u ∈ L∗ or not for all of x ∈ Xm. The membership of x , u
is recorded in the corresponding entry of the observation table with the aid of
an mq. By comparing the entries of the rows indexed with u and v, one can
determine whether the grammar should have the rule [[u]] → [[v]].

Example 3. Let p = 2, r = 1 and

L∗ = { ambncmdn | m+ n ≥ 1 } ∈ CL(2, 1).

Indeed L∗ is generated by the 2-cmcfg G∗ ∈ CG(2, 1) whose rules are

S → f(E) with f(〈z1, z2〉) = 〈z1z2〉,
E → ga(E) with ga(〈z1, z2〉) = 〈az1, cz2〉, E → 〈a, c〉,
E → gb(E) with gb(〈z1, z2〉) = 〈z1b, z2d〉, E → 〈b, d〉

and whose initial symbol is S only.
Let Ĝ = G1(K,X,L∗) for

K = { 〈abcd〉, 〈a, c〉, 〈b, d〉, 〈ab, cd〉, 〈aab, ccd〉 },
X = {�, a�bc�d, ab�cd� }.

Polynomial Time Learning of Some Multiple Context-Free Languages 201

We have the following rules of Type I:

π1 : [[〈abcd〉]] → 〈abcd〉, π2 : [[〈abcd〉]] → f([[〈ab, cd〉]]),
π3 : [[〈abcd〉]] → f ◦ gb([[〈a, c〉]]), π4 : [[〈abcd〉]] → f ◦ ga([[〈b, d〉]]),

π5 : [[〈a, c〉]] → 〈a, c〉, π6 : [[〈b, d〉]] → 〈b, d〉, π7 : [[〈ab, cd〉]] → 〈ab, cd〉,
π8 : [[〈ab, cd〉]] → gb([[〈a, c〉]]), π9 : [[〈ab, cd〉]] → ga([[〈b, d〉]]),

π10 : [[〈aab, ccd〉]] → 〈aab, ccd〉, π11 : [[〈aab, ccd〉]] → ga([[〈ab, cd〉]]),
π12 : [[〈aab, ccd〉]] → gaa([[〈b, d〉]]) with gaa(〈z1, z2〉) = 〈aaz1, ccz2〉,
π13 : [[〈aab, ccd〉]] → h1([[〈a, c〉]]) with h1(〈z1, z2〉) = 〈z1ab, z2cd〉,
π14 : [[〈aab, ccd〉]] → h2([[〈a, c〉]]) with h2(〈z1, z2〉) = 〈z1ab, cz2d〉,
π15 : [[〈aab, ccd〉]] → h3([[〈a, c〉]]) with h3(〈z1, z2〉) = 〈az1b, z2cd〉,
π16 : [[〈aab, ccd〉]] → h4([[〈a, c〉]]) with h4(〈z1, z2〉) = 〈az1b, cz2d〉,

where superfluous rules of the form [[v]] → [[v]] are suppressed. On the other hand
we have the following observation tables:

T1 �
〈abcd〉 1

T2 a�bc�d ab�cd�
〈a, c〉 1 0
〈b, d〉 1 1

〈ab, cd〉 1 0
〈aab, ccd〉 1 0

Thus the three nonterminals [[〈a, c〉]], [[〈ab, cd〉]] and [[〈aab, ccd〉]] can be identified
thanks to the corresponding rules of Type II.

ρ1 : [[〈a, c〉]] → [[〈ab, cd〉]], ρ2 : [[〈a, c〉]] → [[〈aab, ccd〉]], ρ3 : [[〈ab, cd〉]] → [[〈aab, ccd〉]],
ρ4 : [[〈ab, cd〉]] → [[〈a, c〉]], ρ5 : [[〈aab, ccd〉]] → [[〈a, c〉]], ρ6 : [[〈aab, ccd〉]] → [[〈ab, cd〉]].

The unique initial symbol of Ĝ is [[〈abcd〉]].
Let us see some derivations of Ĝ. Derivation trees of the form

(m−1)-times︷ ︸︸ ︷
ρ3(π11(. . . (ρ3(π11(ρ4(π5)))) . . .))

give us 〈am, cm〉 ∈ L([[〈ab, cd〉]]) for all m ≥ 1. Similarly

n-times︷ ︸︸ ︷
π8(ρ1(. . . (π8(ρ1(

(m−1)-times︷ ︸︸ ︷
ρ3(π11(. . . (ρ3(π11(ρ4(π5)))) . . .))))) . . .))

give us 〈ambn, cmdn〉 ∈ L([[〈ab, cd〉]]) for all n ≥ 0. Finally by applying π2, we
see ambncmdn ∈ L(Ĝ).

However the rules ρ1, ρ2, ρ4, ρ5 of Type II, which involve [[〈a, c〉]], are all in-
correct, because �ab�cd ∈ L∗/〈a, c〉 − L∗/〈ab, cd〉 = L∗/〈a, c〉 − L∗/〈aab, ccd〉.
In fact the derivation tree π2(ρ3(π13(ρ1(π7)))), for instance, yields ababcdcd ∈
L(Ĝ)− L∗.

202 R. Yoshinaka and A. Clark

Lemma 4. One can compute Ĝ = Gr(K,X,L∗) in polynomial time in ‖K‖ and
‖X‖.

Proof. We first estimate the number of rules of Type I that have a fixed [[v]] on the
left hand side, which are of the form [[v]] → f([[v1]], . . . , [[vn]]). Roughly speaking,
this is the number of ways to decompose v into sub-multiwords v1, . . . ,vn with
the aid of a linear regular function f . Once one has fixed where the occurrence of
each component from v1, . . . ,vn starts and ends in v, the function f is uniquely
determined. We have at most pr components in v1, . . . ,vn, hence the number
of ways to determine such starting and ending points are at most ‖v‖2pr. Thus,
the number of rules of Type I is at most O(|K|�2pr) where � is the maximal size
of elements of K. Clearly the description size of each rule is at most O(�).

One can construct the observation tables by at most |K||X | mqs. Then one
can determine initial symbols and rules of Type II in polynomial time. ��

The next subsection discusses how our learner determines K and X .

3.4 Undergeneralization

The problems that we have to deal with are undergeneralization and overgeneral-
ization. We first show when the data are sufficient to avoid undergeneralization.

Lemma 5. Let G∗ ∈ CG(p, r) be such that L(G∗) = L∗. If a finite set D ⊆ L∗
is such that every rule of G∗ occurs in a derivation tree for some w ∈ D, then
for any X such that � ∈ X, we have L∗ ⊆ L(Ĝ) where Ĝ = Gr(S≤p(D), X, L∗).

Proof. Let G∗ = 〈Σ, V∗, F∗, P∗, I∗〉 andK = S≤p(D). By induction we show that
if w ∈ L(G∗, A), then w ∈ L(Ĝ, [[v]]) for some v ∈ L(G∗, A) ∩K. In particular
when A ∈ I∗, [[v]] will be an initial symbol of Ĝ, so this proves the lemma.

Suppose that π(t1, . . . , tn) is an A-derivation tree forw of G∗ where π is of the
form A → f(B1, . . . , Bn) and ti is a Bi-derivation tree for wi for all i = 1, . . . , n.
By induction hypothesis, there are ui ∈ L(G∗, Bi)∩K such that wi ∈ L(Ĝ, [[ui]])
for all i. On the other hand, by the assumption, we have w ∈ D that is derived
by using π, which can be represented as

w = x , v = x , f(v1, . . . ,vn)

where vi ∈ L(G∗, Bi)∩K for all i = 1, . . . , n and f(v1, . . . ,vn) ∈ L(G∗, A)∩K.
Let v = f(v1, . . . ,vn). Then Ĝ has the rule

[[v]] → f([[v1]], . . . , [[vn]])

of Type I and moreover rules [[vi]] → [[ui]] of Type II for all i = 1, . . . , n whatever
X is, since G∗ is a cmcfg. By applying those rules of Types I and II to wi ∈
L(Ĝ, [[ui]]) for i = 1, . . . , n, we obtain w ∈ L(Ĝ, [[v]]) with v ∈ L(G∗, A)∩K. ��

When our algorithm gets a positive counter-example w ∈ L∗ −L(Ĝ), it adds all
multiwords in S≤p({w}) to K.

Polynomial Time Learning of Some Multiple Context-Free Languages 203

3.5 Overgeneralization

Overgeneralization is a little more difficult to treat. Because overgeneralization
is caused by incorrect rules of Type II, we must add appropriate multicontexts
to X in order to remove them.

Suppose that our conjecture Ĝ is a correct cmcfg for the target L∗. Then it
must satisfy that

– for any [[v]] ∈ V and any u ∈ L(Ĝ, [[v]]), it holds that L∗/u = L∗/v.

When we get a negative counter-example w from the teacher, this means that we
have 〈w〉 ∈ L(Ĝ, [[〈v〉]]) for some initial symbol [[〈v〉]], but � ∈ L∗/〈v〉 − L∗/〈w〉.
The triple ([[〈v〉]], 〈w〉,�) is a witness for the fact that Ĝ does not satisfy the
above desired property. It is not hard to see by Lemma 3 that in such a case Ĝ
must have an incorrect rule of Type II which is used for deriving w. In order to
find such an incorrect rule, we first parse the string w with Ĝ and get a derivation
tree t for w. We then look for an incorrect rule in t that causes this violation
by recursively searching t in a topdown manner as described below, where the
initial value of x is �.

Suppose that we have a pair (t, x) such that t is a [[v]]-derivation tree for
u and x ∈ L∗/v − L∗/u. We have two cases.

Case 1. Suppose that t = π(t1, . . . , tn) for some rule π of Type I.
Then, there are [[v1]], . . . , [[vn]] ∈ V , u1, . . . ,un ∈ (Σ+)〈∗〉 and f such
that
– π is of the form [[v]] → f([[v1]], . . . , [[vn]]), i.e., v = f(v1, . . . ,vn),
– u = f(u1, . . . ,un),
– ti is a [[vi]]-derivation tree for ui for i = 1, . . . , n.

By the assumption we have

x , v = x , f(v1, . . . ,vn) ∈ L∗,
x, u = x , f(u1, . . . ,un) 	∈ L∗.

This means that n cannot be 0. One can find k such that

x, f(v1, . . . ,vk−1,vk,uk+1, . . . ,un) ∈ L∗,
x , f(v1, . . . ,vk−1,uk,uk+1, . . . ,un) 	∈ L∗.

That is, for

x′ = x , f(v1, . . . ,vk−1,�〈|vk|〉,uk+1, . . . ,un),

we have x′ ∈ L/vk − L/uk. We then recurse with (tk, x′).
Case 2. Suppose that t = π(t′) where π : [[v]] → [[v′]] is a rule of

Type II. Then t′ is a [[v′]]-derivation tree for u. If x,v′ 	∈ L∗, this means
that [[v]] → [[v′]] is an incorrect rule, because x ∈ L∗/v−L∗/v′. We then
add x to X for removing the incorrect rules [[v]] → [[v′]] and [[v′]] → [[v]].
Otherwise, we know that x ∈ L∗/v′ − L∗/u. We recurse with (t′, x).

204 R. Yoshinaka and A. Clark

We use FindContext(Ĝ, w) to refer to this procedure for computing a multicon-
text that witnesses incorrect rules from a negative counter-example w. The size
of the output x is bounded by |w|� for � = max{ ‖v‖ | v ∈ K }, because x is
obtained from w by replacing some occurrences of nonempty sub-multiwords ui
by vi ∈ K and an occurrence of a sub-multiword by a hole �. The procedure
FindContext contains parsing as a subroutine. We can use any of polynomial-
time parsing algorithms for mcfgs proposed so far, e.g., [13, 19].

Lemma 6. FindContext(Ĝ, w) runs in polynomial time in |w| and ‖Ĝ‖.

3.6 Algorithm

We are now ready to describe the overall structure of our algorithm. The pseu-
docode is presented in Algorithm 1.

Algorithm 1. Learn CL(p, r)

let K := ∅; X := {�}; Ĝ = Gr(K,X,L∗);
while the teacher does not answer “Yes” to the eq on Ĝ do

let w be the counter-example from the teacher;
if w ∈ L∗ −L(Ĝ) then

let K := K ∪ S≤p({w});
else

let X := X ∪ {FindContext(Ĝ, w)};
end if
let Ĝ = Gr(K,X,L∗);

end while
output Ĝ;

Let G∗ = 〈Σ, V∗, F∗, P∗, I∗〉 ∈ CG(p, r) represent the learning target L∗.

Lemma 7. The algorithm receives a positive counter-example at most |P∗| times.
The cardinality of K is bounded by O(|P∗|�2p), where � is the length of a longest
positive counter-example given so far.

Proof. The proof of Lemma 5 in fact claims that any of the rules of G∗ that
are used for deriving positive counter-examples can be simulated by Ĝ. That is,
whenever the learner gets a positive counter-example w from the teacher, there
is a rule of G∗ that is used for deriving w but not used for any of previously
presented positive counter-examples. Therefore the learner receives a positive
counter-example at most |P∗| times.

It is easy to see that |S≤p({w})| ∈ O(|w|2p). Hence |K| ∈ O(|P∗|�2p) where �
is the length of a longest positive counter-example given so far. ��

Lemma 8. The number of times that the algorithm receives a negative counter-
example and the cardinality of X are both bounded by O(|P∗|�2p).

Polynomial Time Learning of Some Multiple Context-Free Languages 205

Proof. Each time the learner receives a negative counter-example, one element
is added to X and some incorrect rules of Type II are removed. That is, the
number of equivalence classes induced by rules of Type II is increased. Because
there can be at most |K| equivalence classes in V , the learner expands X at
most |K| times, that is, |X | ∈ O(|P∗|�2p) by Lemma 7. ��

Theorem 2. Our algorithm outputs a grammar representing the target language
L∗ and halts in polynomial time in ‖G∗‖ and � where G∗ ∈ CG(p, r) is a grammar
representing L∗ and � is the length of a longest counter-example from the teacher.

Proof. By Lemmas 4 and 6, each time the learner receives a counter-example, it
computes the next conjecture in polynomial time in ‖G∗‖ and �. By Lemmas 7
and 8, it asks eqs at most polynomial times in ‖G∗‖ and �. All in all, it runs in
polynomial time in ‖G∗‖ and �. The correctness of the output of the algorithm
is guaranteed by the teacher. ��

3.7 Slight Enhancement

Let us say that L ∈ L(p, r) is almost p-congruential if L ∈ CL(p, r) where $ is a
new marker not in Σ. While every language in CL(p, r) is almost p-congruential,
the converse does not hold. An example in the difference is Lcopy = {ww ∈
{a, b, ā, b̄}∗ | w ∈ {a, b}∗ }, where · denotes the homomorphism that maps a, b
to ā, b̄, respectively. One can easily modify our learning algorithm so that it learns
all almost p-congruential languages in L(p, r) just by assuming the marker $ on
the head and the tail on each counter-example.

4 Conclusion

This work is based on a combination of the mat algorithm for learning congru-
ential cfgs presented in [17] and the algorithm for learning some sorts of mcfgs
from positive data and mqs in [20].

The conjecture Ĝ of our algorithm is not always consistent with the observa-
tion tables in the sense that it might be the case L(Ĝ)∩(X,K) 	= L∗∩(X,K).
For x ∈ X and y ∈ K, one can regard x , y ∈ L∗ − L(Ĝ) as a positive counter-
example and x,y ∈ L(Ĝ)−L∗ as a negative counter-example. One can modify
our algorithm so that the conjecture is always consistent by substituting this
self-diagnosis method for eqs to the teacher. Eqs will be used only when the
learner does not find any inconsistency. Verification of the consistency can be
done in polynomial time, however we do not employ this idea in our algorithm,
because each time the learner extracts a counter-example from the observation
tables, they will be recursively expanded and this might cause exponential-time
computation, when the size of a counter-example computed by the learner is not
considered to be a parameter of the input size.

Lemma 3 offers another method for finding incorrect rules in some cases with-
out getting a negative counter-example from the teacher. That is, if there are
rules of Type I [[u]] → f([[u1]], . . . , [[un]]) and [[v]] → f([[v1]], . . . , [[vn]]) such that

206 R. Yoshinaka and A. Clark

L∗/ui ∩ X = L∗/vi ∩ X for all i and L∗/u ∩ X 	= L∗/v ∩ X , then one knows
that [[uk]] → [[vk]] is an incorrect rule for some k. Yet we do not take this idea
into our algorithm for the same reason discussed in the previous paragraph.

In Clark et al. [21] the approach uses representational primitives that corre-
spond not to congruence classes but to elements of the form:

{ v | L/v ⊇ L/u } (1)

An advantage of using congruence classes is that any element of the class will be
as good as any other element; if we use the idea of (1), we cannot be sure that
we will get the right elements, and it is difficult to get a pure mat result.

Distributional lattice grammars (dlgs) are another interesting development in
the field of rich language classes that are also learnable [22]. While these models
can represent some non-context-free languages, it is not yet clear whether they
are rich enough to account for the sorts of cross-serial dependency that occur in
natural languages; they are basically context free grammars, with an additional
operation, somewhat analogous to that of Conjunctive Grammars [23].

We suggest two directions for future research: a pac-learning result along the
lines of the pac result for nts languages in [24] seems like a natural extension,
since mcfgs have a natural stochastic variant. Secondly, combining dlgs and
mcfgs might be possible – we would need to replace the single concatenation
operation in dlgs with a more complex range of operations that reflect the
variety of ways that tuples of strings can be combined.

We also note that given the well-known relationship between synchronous
cfgs and mcfgs [25] this algorithm gives as a special case the first learning
algorithm for learning synchronous context free grammars, and therefore of
syntax-directed translation schemes. Given the current interest in syntax-based
statistical machine translation, we intend to explore further this particular class
of algorithms.

Acknowledgement. The authors are very grateful to Anna Kasprzik and the
anonymous reviewers for valuable comments and suggestions on a draft of this
paper.

References

1. Joshi, A.K.: Tree adjoining grammars: how much context-sensitivity is required to
provide reasonable structural descriptions? In: Dowty, D.R., Karttunen, L., Zwicky,
A. (eds.) Natural Language Parsing, pp. 206–250. Cambridge University Press,
Cambridge (1985)

2. Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions
produced by various grammatical formalisms. In: Proceedings of the 25th An-
nual Meeting of Association for Computational Linguistics, Stanford, pp. 104–111
(1987)

3. Joshi, A.K., Levy, L.S., Takahashi, M.: Tree adjunct grammars. Journal of Com-
puter and System Sciences 10(1), 136–163 (1975)

Polynomial Time Learning of Some Multiple Context-Free Languages 207

4. Joshi, A.K.: An introduction to tree adjoining grammars. In: Manaster-Ramer, A.
(ed.) Mathematics of Languge. John Benjamins (1987)

5. Stabler, E.P.: Derivational Minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS
(LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)

6. Engelfriet, J., Heyker, L.: The string generating power of context-free hypergraph
grammars. Journal of Computer and System Sciences 43(2), 328–360 (1991)

7. Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable
context-free languages. Journal of Machine Learning Research 8, 1725–1745 (2007)

8. Huybrechts, R.A.C.: The weak inadequacy of context-free phrase structure gram-
mars. In: de Haan, G., Trommelen, M., Zonneveld, W. (eds.) Van Periferie naar
Kern, Foris, Dordrecht, Holland (1984)

9. Shieber, S.M.: Evidence against the context-freeness of natural language. Linguis-
tics and Philosophy 8, 333–343 (1985)

10. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

11. Angluin, D., Kharitonov, M.: When won’t membership queries help? Journal of
Computer and System Sciences 50(2), 336–355 (1995)

12. Clark, A., Thollard, F.: PAC-learnability of probabilistic deterministic finite state
automata. Journal of Machine Learning Research 5, 473–497 (2004)

13. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoretical Computer Science 88(2), 191–229 (1991)

14. Kracht, M.: The Mathematics of Language. Studies in Generative Grammar,
vol. 63, pp. 408–409. Mouton de Gruyter (2003)

15. Rambow, O., Satta, G.: Independent parallelism in finite copying parallel rewriting
systems. Theoretical Computer Science 223(1-2), 87–120 (1999)

16. Kaji, Y., Nakanishi, R., Seki, H., Kasami, T.: The universal recognition problems
for parallel multiple context-free grammars and for their subclasses. IEICE Trans-
action on Information and Systems E75-D(7), 499–508 (1992)

17. Clark, A.: Distributional learning of some context-free languages with a minimally
adequate teacher. In: Proceedings of the ICGI, Valencia, Spain (September 2010)

18. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

19. Kanazawa, M.: A prefix-correct earley recognizer for multiple context-free gram-
mars. In: Proceedings of the Ninth International Workshop on Tree Adjoining
Grammars and Related Formalisms, pp. 49–56 (2008)

20. Yoshinaka, R.: Polynomial-Time Identification of Multiple Context-Free Languages
from Positive Data and Membership Queries. In: Sempere, J.M., Garćıa, P. (eds.)
ICGI 2010. LNCS, vol. 6339, pp. 230–244. Springer, Heidelberg (2010)

21. Clark, A., Eyraud, R., Habrard, A.: A Polynomial Algorithm for the Inference of
Context Free Languages. In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008.
LNCS (LNAI), vol. 5278, pp. 29–42. Springer, Heidelberg (2008)

22. Clark, A.: A learnable representation for syntax using residuated lattices. In: Pro-
ceedings of the 14th Conference on Formal Grammar, Bordeaux, France (2009)

23. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Com-
binatorics 6(4), 519–535 (2001)

24. Clark, A.: PAC-Learning Unambiguous NTS Languages. In: Sakakibara, Y.,
Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI),
vol. 4201, pp. 59–71. Springer, Heidelberg (2006)

25. Melamed, I.D.: Multitext grammars and synchronous parsers. In: Proceedings of
NAACL/HLT, pp. 79–86 (2003)

Locality and the Complexity

of Minimalist Derivation Tree Languages

Thomas Graf

Department of Linguistics
University of California, Los Angeles

tgraf@ucla.edu

http://tgraf.bol.ucla.edu

Abstract. Minimalist grammars provide a formalization of Minimalist
syntax which allows us to study how the components of said theory affect
its expressivity. A central concern of Minimalist syntax is the locality
of the displacement operation Move. In Minimalist grammars, however,
Move is unbounded. This paper is a study of the repercussions of limiting
movement with respect to the number of slices a moved constituent
is allowed to cross, where a slice is the derivation tree equivalent of
the phrase projected by a lexical item in the derived tree. I show that
this locality condition 1) has no effect on weak generative capacity 2)
has no effect on a Minimalist derivation tree language’s recognizability
by top-down automata 3) renders Minimalist derivation tree languages
strictly locally testable, whereas their unrestricted counterparts aren’t
even locally threshold testable.

Keywords: Minimalist grammars, locality, subregular tree languages,
first-order logic, top-down tree automata.

Introduction

Even though Minimalist grammars (MGs) weren’t introduced by Stabler [16]
with the sole intent of scrutinizing the merits of ideas put forward by syntacti-
cians in the wake of Chomsky’s Minimalist Program [2], a lot of work on MGs
certainly focuses on this aspect [cf. 17]. Recently, considerable attention has also
been directed towards the role played by derivation trees in MGs [4, 7, 8]. It is
now known that every MG’s derivation tree language is regular and “almost”
closed under intersection with regular tree languages (some refinement of cat-
egory labels is usually required), but it is still an open question which class of
tree languages approximates them reasonably well. This paper combines both
research strands by taking the linguistically motivated restriction to local move-
ment as its vantage point for an examination of the structural complexity of
Minimalist derivation tree languages (MDTLs). The main result is that while
bounding the distance of movement leaves weak generative capacity unaffected,
the complexity of MDTLs is lowered to a degree where they become strictly lo-
cally testable. Since MGs are fully characterized by their MDTLs, lowering the

P. de Groote and M.-J. Nederhof (Eds.): Formal Grammar 2010/2011, LNCS 7395, pp. 208–227, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://tgraf.bol.ucla.edu

Locality and the Complexity of Minimalist Derivation Tree Languages 209

upper bound from regular to strictly locally testable may prove useful for vari-
ous practical applications operating directly on the derivation trees, in particular
parsing [9, 18, 21].

The paper is laid out as follows: After some general technical remarks, Sec. 2
introduces MGs, their derivation trees, and the important concept of slices.
Building on these notions, I define movement-free and k-local MGs, and I prove
that every MG can be converted into a k-local one. The complexity of these
derivation trees is then studied with respect to several subregular languages
classes in Sec. 3. I first show that MDTLs can be recognized by l-r-deterministic
top-down tree automata, but not by sensing tree automata, which entails non-
recognizability by deterministic top-down tree automata. Furthermore, every
k-local MG G has a strictly locally κ-testable derivation tree language, with the
value of κ depending on several parameters of G. This result is followed by a
demonstration that unrestricted MDTLs are not locally threshold testable. How-
ever, they are definable in first-order logic with predicates for left child, right
child, proper dominance, and equivalence (Sec. 4).

1 Preliminaries and Notation

As usual, N denotes the set of non-negative integers. A tree domain is a finite
subset D of N∗ such that, for w ∈ N∗ and j ∈ N, wj ∈ D implies both w ∈ D
and wi ∈ D for all i < j. Every n ∈ D is called a node. Given nodes m,n ∈ D,
m immediately dominates n iff n = mi, i ∈ N. In this case we also say m is the
mother of n, or conversely, n is a daughter of m. The transitive closure of the
immediate dominance relation is called (proper) dominance. A node that does
not dominate any other nodes is a leaf, and the unique node that isn’t dominated
by any nodes is called the root.

Now let Σ be a ranked alphabet, i.e. every σ ∈ Σ has a unique non-negative
rank (arity); Σ(n) is the set of all n-ary symbols in Σ. A Σ-tree is a pair T :=
〈D, �〉, where D is a tree domain and � : D → Σ is a function assigning each node
n a label drawn from Σ such that �(n) ∈ Σ(d) iff n has d daughters. Usually
the alphabet will not be indicated in writing when it is irrelevant or can be
inferred from the context. Sometimes trees will be given in functional notation
such that f(t1, . . . , tn) is the tree whose root node is labeled f and immediately
dominates trees t1, . . . , tn. I denote by TΣ the set of all trees such that for n ≥ 0,
f(t1, . . . , tn) is in TΣ iff f ∈ Σ(n) and ti ∈ TΣ, 1 ≤ i ≤ n. A tree language is
some subset of TΣ.

A context C is a Σ ∪ {�}-tree, where � is a new symbol that appears on
exactly one leaf of C, designating it as the port of C. A context C with �
occurring in the configuration c := σ(t1, . . . ,�, . . . , tn), σ ∈ Σ(n) and each ti a
Σ-tree, can be composed with context C′ (written C · C′) by replacing c with
σ(t1, . . . , C

′, . . . , tn). This extends naturally to all cases where C = � and C′

is a tree rather than a context. Given a Σ-tree t := 〈D, �〉 and some node u
of t, t|u := 〈D|u, �〉 denotes the subtree rooted by u in t, such that D|u :=
{n ∈ D | u = n or u dominates n} and dominance and the labeling function are

210 T. Graf

preserved. For any tree t with nodes m and n of t such that either m = n
or m dominates n, Ct[m,n) is the context obtained from t|m by replacing t|n
by a port. If s and t are trees, r the root of s and u some node of s, then
s[u ← t] := Cs[r, u) · t.

Let m and n be nodes of some tree t. A path from m to n is a sequence of
node 〈i0, . . . , ik〉 such that i0 = m, ik = n, and for all j < k, ij is the mother or
the daughter of ij+1. A path containing k nodes is of length k− 1. The distance
between nodes m and n is the length of the shortest path from m to n. The
depth of a tree t is identical to the greatest distance between the root of t and
one of its leafs.

We now move on to defining the strictly locally testable languages, following
the exposition in [21]. For each Σ-tree and choice of k ≥ 1, we define its k-factors,
or more precisely, its k-prefixes, k-forks and k-suffixes as follows:

pk(σ(t1, . . . , tn)) :=

{
σ if k = 1 or σ has no children

σ(pk−1(t1), . . . , pk−1(tn)) otherwise

fk(σ(t1, . . . , tn)) :=

⎧⎪⎨
⎪⎩

∅
if σ(t1, . . . , tn) is of

depth d < k − 1

{pk(σ(t1, . . . , tn))} ∪
⋃n
i=1 fk(ti) otherwise

sk(σ(t1, . . . , tn)) :=

⎧⎪⎨
⎪⎩

{σ(t1, . . . , tn)} ∪
⋃n
i=1 sk(ti)

if σ(t1, . . . , tn) is of depth

d < k − 1⋃m
i=1 sk(ti) otherwise

A tree language L ⊆ TΣ is strictly locally k-testable (in SLk) iff there exist three
finite subsets R, F , and S, such that t ∈ L iff pk−1(t) ∈ R, fk(t) ⊆ F , and
sk−1 ⊆ S. A language is local (in LOC) iff it is in SL2. It is locally k-threshold
testable (in LTTk) iff furthermore each k-factor must appear a specific number
of times, counting up to some fixed threshold. When the threshold is set to 1, L is
locally k-testable (in LTk). We say that L belongs to one of these classes iff there
is some k such that L is k-testable in the intended sense. Finally, L is regular iff
it is the range of a transduction computed by some linear tree transducer with
domain TΣ (the reader is referred to [5] for further details).

Definition 1. A linear tree transducer is a 5-tuple A := 〈Σ,Ω,Q,Q′, Δ〉, where
Σ and Ω are finite ranked alphabets, Q is a finite set of states, Q′ ⊆ Q the set of
final states, and Δ is a set of productions of the form f(q1(x1), . . . , qn(xn)) →
q(t), where f ∈ Σ(n), q1, . . . , qn, q ∈ Q, t ∈ TΩ∪{x1,...,xn}, and each xi occurs at
most once in t.

It is a well-known fact that LOC ⊂ SL ⊂ LT ⊂ LTT ⊂ REG.

2 Minimalist Grammars

2.1 Introduction and Examples

MGs are a highly lexicalized formalism. Every lexical item (LI) comes equipped
with a linear sequence of features that have to be “checked”, or equivalently,

Locality and the Complexity of Minimalist Derivation Tree Languages 211

“erased” in the right order. Features come in two varieties that can only be
checked by the operations Merge and Move, respectively. Merge conjoins trees,
while Move displaces subtrees. A very simple MG, for example, is instantiated
by the following lexicon.

man :: n the :: =n d ε :: = v + nom t
John :: d the :: =n d − nom ε :: = t c
John :: d − nom the :: =n d − top ε :: = t + top c
John :: d − top killed :: = d=d v

The first component of an LI denotes its phonetic exponent, the second one its
feature string. Features without a prefix represent categories (n for noun, d for
determiner, and so on). A category feature, say n, of LI l is checked whenever
Merge combines l with another LI l′ such that the respective first unchecked
features of l and l′ are n and the matching selector feature =n. This is also
the only feature configuration in which Merge may apply. Hence Merge could
combine the and man, yielding the man, which in turn can be merged with killed,
but not the and John (no compatible features at all), or killed and the (the first
unchecked feature of the is =n, which is incompatible with the =d on killed).
The feature combinatorics of the Move operation are essentially the same, with
the only difference being that Move applies to features prefixed with + and −
(licensor and licensee, respectively). Note that Merge introduces new material
into the derivation, whereas Move merely displaces old material — intuitively,
the subtree headed by an LI l with some licensee feature −f as its first unchecked
feature is moved into the specifier of the closest LI l′ that c-commands l and has
+f as its first unchecked feature.

An utterance is well-formed if it can be assigned a derivation in which all
features were checked except for the category feature of the last LI to be merged,
which must be a so-called final category (usually c). The MG above generates
the following eight sentences, and only those (assuming that c is the only final
category):

(1) a. John/The man killed John/the man.

b. John/The man, John/the man killed.

A derivation tree for one of the sentences with topicalization is given in Fig. 1.
Despite its simplicity, the feature calculus controlling Move allows for a daz-

zling array of movement configurations, in particular remnant movement, in
which some XP is extracted from some YP via Move before YP itself is moved
to a higher position. Remnant movement allows for an elegant reanalysis of
cases where apparently non-phrasal constituents end up in positions reserved for
phrases, such as in the German example below.

(2) [CP Geküssti
kissed

hatj
has

[TP der
the

Hans
John

die
the

Maria tj ti.]]
Mary.

’John kissed Mary.’

212 T. Graf

move

� merge

move

� merge

merge

John :: d − nom merge

merge

man :: n the :: = n d − top

killed :: = d =d v

ε :: = v + nom t

ε :: = t + top c

CP

DPi

D′

D

the

NP

N′

N

man

C′

C TP

DPj

D′

D

John

T′

T VP

tj V′

V

killed

ti

Fig. 1. Left: derivation tree of The man, John killed, depicted in the final format
adopted in this paper and with slices indicated by color; Right: Corresponding X′-tree

Instead of having just the V-head geküsst move into SpecCP (which is at odds
with standard assumptions about phrase structure), one can fall back to a rem-
nant movement analysis: the object moves out of the VP, followed by movement
of the remaining VP into SpecCP. At this point the VP’s only phonetic expo-
nent is its V-head, so that the end result is indistinguishable from the scenario
where only the V-head had undergone movement. For our purposes, remnant
movement is of interest because of the crucial role it plays in the proof that
every instance of Move that spans arbitrary distances can be decomposed into
a sequence of local Move steps (Thm. 1).

2.2 Minimalist Grammars, Derivation Trees, and Slices

As the focus of this paper is on the derivation trees of MGs rather than the phrase
structure trees derived via Merge and Move, the details of both operations are of
interest to us only in so far as they have ramifications for the shape of derivation
trees or the string yield (which will be important for Thm 1). Nonetheless I give
a full definition of the formalism here, staying close to the chain-based exposition
of [19]. After that I formally define MDTLs and introduce the notion of slices.

Definition 2. A Minimalist grammar is a 6-tuple G := 〈Σ,Feat ,F ,Types ,
Lex , Op〉, where

– Σ 	= ∅ is the alphabet,
– Feat is the union of a non-empty set Base of basic features (also called cate-

gory features) and its prefixed variants {= f | f ∈ Base}, {+f | f ∈ Base},
{−f | f ∈ Base} of selector, licensor, and licensee features, respectively,

– F ⊆ Base is a set of final categories,

Locality and the Complexity of Minimalist Derivation Tree Languages 213

– Types := {::, :} distinguishes lexical from derived expressions,
– the lexicon Lex is a finite subset of Σ∗ × {::} × Feat∗,
– and Op is the set of generating functions to be defined below.

A chain is a triple in Σ∗ × Types × Feat∗, and C denotes the set of all chains
(whence Lex ⊂ C). Non-empty sequences of chains will be referred to as expres-
sions, the set of which is called E.

The set Op of generating functions consists of the operations merge and move,
which are the respective unions of the following functions, with s, t ∈ Σ∗, · ∈
Types, f ∈ Base, γ ∈ Feat∗, δ ∈ Feat+, and chains α1, . . . , αk, ι1, . . . , ιk,
0 ≤ k, l:

s :: = fγ t · f, ι1, . . . , ιk
merge1

st : γ, ι1, . . . , ιk

s : = fγ, α1, . . . , αk t · f, ι1, . . . , ιl
merge2

ts : γ, α1, . . . , αk, ι1, . . . , ιl

s · = fγ, α1, . . . , αk t · fδ, ι1, . . . , ιl
merge3

s : γ, α1, . . . , αk, t : δ, ι1, . . . , ιl

s : +fγ, α1, . . . , αi−1,t : −f, αi+1, . . . , αk
move1

ts : γ, α1, . . . , αi−1, αi+1, αk

s : +fγ, α1, . . . , αi−1,t : −fδ, αi+1, . . . , αk
move2

s : γ, α1, . . . , αi−1, t : δ, αi+1, . . . , αk

Furthermore, all chains must satisfy the Shortest Move Constraint (SMC), ac-
cording to which no two chains in the domain of move display the same li-
censee feature −f as their first feature. The string language generated by G is
L(G) := {σ | 〈σ · c〉 ∈ closure(Lex ,Op), · ∈ Types , c ∈ F}.

MGs and MCFGs [15] have the same weak generative capacity [6, 12]. In fact,
for every MG there exists a strongly equivalent MCFG, but not the other way
round. In a certain sense, then, one may view MGs as a narrowly restricted
way of specifying MCFGs. A more peculiar fact about MGs is that in order
for l ∈ Lex to occur in a well-formed derivation, its feature string must be in
{+f,= f | f ∈ Base}∗ ×Base× {−f | f ∈ Base}∗. I will implicitly invoke this
fact several times throughout the paper.

I now turn to the derivation trees of an MG, defining them in two steps.

Definition 3. Given an MG G := 〈Σ,Feat , F,Types ,Lex ,Op〉, the largest sub-
set of TE satisfying the following conditions is called the string-annotated deriva-
tion tree language sder(G) of G:

– For every leaf node n, �(n) = 〈l〉, l ∈ Lex .
– For every subtree m(d1, . . . , dn), n ≥ 1, op(d1, . . . , dn) is defined for exactly

one op ∈ {merge,move} and �(n) = op(d1, . . . , dn).
– For n the root node, �(n) = 〈σ : c〉, where σ ∈ Σ∗ and c ∈ F.

214 T. Graf

Definition 4. Given an MG G, its Minimalist derivation tree language mder(G)
is the set of trees obtained from sder(G) by the map μ:

– μ(〈l〉) = l, where l ∈ Lex
– μ(e(e1, . . . , en)) = op(μ(e1), . . . , μ(en)), where e, e1, . . . , en ∈ E, n ≥ 1, and

op is the unique operation in Op such that op(e1, . . . , en) = e

As was first observed in [8], every MDTL is regular. The basic idea is to equip a
bottom-up tree automaton with states corresponding to the feature components
of the string-annotated derivation trees (there are only finitely many thanks to
the SMC) and have its transition rules recast the conditions imposed on Merge
and Move by the feature calculus. Interestingly, an MG’s set of derived trees —
which is not regular — can be obtained from its MDTL in an efficient way using
a multi bottom-up tree transducer. This in turn means that MDTLs are the key
to capturing MGs by finite-state means.

In [4], the concept of slices is introduced. Intuitively, slice(l) is the derivation
tree equivalent of the phrase projected by l in the derived tree (using the standard
linguistic notion of projection). That is to say, slices mark the subpart of the
derivation that l has control over by virtue of its selector and licensor features (cf.
Fig. 1 on page 212). From this perspective a derivation tree language is simply
the result of combining slices in all possible ways such that none of conditions
imposed on Merge and Move by the feature calculus are violated.

Definition 5. Given a Minimalist derivation tree T := 〈D, �〉 and LI l occurring
in T , the slice of l is the pair slice(l) := 〈S, �〉, where S ⊆ D, l ∈ S, and if node
n ∈ D immediately dominates a node s ∈ S, then n ∈ S iff the operation denoted
by �(n) erased a selector or licensor feature on l. The unique n ∈ S that is not
dominated by any n′ ∈ S is called the slice root of l.

The following properties hold of slices for every MG G [cf. 4]:

– Let |γ| denote the length of the longest γ such that there is some l ∈ LexG
with feature string γcδ, γ, δ ∈ Feat∗, c ∈ Base. Then for every t ∈ mder(G)
and slice s := 〈S, �〉 of t, 1 ≤ |S| ≤ |γ|+ 1.

– Every tree t ∈ mder(G) is partitioned into slices.
– All slices are continuous (i.e. if node y is the child of x and the mother of z

such that x and z belong to the same slice s, then y also belongs to s).

As the order of siblings is irrelevant in derivation trees, I stipulate for the sake
of simplicity that all slices are strictly right-branching. Moreover, I assume that
derivation trees are strictly binary branching, as this simplifies the math at
various points in this paper — a small change which is easily accommodated by
mapping move(t) to move(�, t), where � is a new symbol not in Lex ∪ Op.

Now given an LI l, node n is the kth node of slice(l) iff the shortest path
from n to l is the sequence 〈n1, . . . , nk, l〉 such that n = n1 and no ni is a left
daughter, 1 ≤ i ≤ k. Furthermore, n is associated to feature f iff n is the ith

node of slice(l) and f is the ith feature of l. Two features g and h are said to
match iff there is a feature f ∈ Base such that either g = +f and h = −f or
g = = f and h = f . Finally, a node n matches an LI l iff for some feature g of l,
n is associated to a feature matching g.

Locality and the Complexity of Minimalist Derivation Tree Languages 215

2.3 Locality and Subclasses of Derivation Tree Languages

If one builds on the notion of slices, a natural way of imposing locality condi-
tions on movement suggests itself. Take any MG G, t ∈ mder(G), and sup-
pose that l is an LI occurring in t with licensee features −f1, . . . ,−fn. Let
move[l] := 〈move1, . . . ,moven〉 be the sequence of Move nodes in t such that
the operation denoted by movei checked feature −fi on l, 1 ≤ i ≤ n. An MG G
is k-local or of locality rank k, k ≥ 1, iff it holds for every t ∈ mder(G) and LI l
occurring in t with move[l] := 〈move1, . . . ,moven〉 that no more than k−1 slices
intervene between mi and mi+1 in 〈m0,m1, . . . ,mn〉 := 〈l〉 · move[l], 0 ≤ i < n.
Equivalently, the shortest path from movei to movei+1 may contain at most
k left branches. If G is k-local, we also say that movement in G is k-local or
k-bounded. An MG G is movement-free iff no tree in mder(G) contains a node
labeled move. It is unrestricted iff it is neither movement-free nor k-local for any
k ≥ 1. This terminology extends to MDTLs in the natural way. By mdtl[merge]
and mdtl[merge,move(k)] I denote, respectively, the class of all movement-free
MDTLs and the class of all k-local MDTLs. The class of all MDTLs is simply
denoted by mdtl[merge,move].

The notion of k-boundedness is motivated by the linguistic assumption that
movement is successive-cyclic. In (3), for instance, the wh-phrase may not move
from its base position to the beginning of the utterance in one fell swoop but
rather has to land in every CP.

(3) Which professori did John say [CP ti that Bill told him [CP ti that Mary
has a crush on ti]]

This assumption can be used to explain various syntactic, semantic and even
morphological phenomena, for instance embedded inversion, stranding of quan-
tifiers, binding ambiguities and complementizer agreement [cf. 3]. The following
contrast provides a very simple example.

(4) a. [CP2 Wheni did John ti tell you [CP1 whoj Mary will meet tj?]]

b. * [CP2 Wheni did John tell you [CP1 whoj Mary will ti meet tj?]]

In (4a), when originates in the matrix clause and moves directly to the corre-
sponding SpecCP position, while who does the same in the embedded clause.
In (4b), when is supposed to originate in the embedded clause together with
who, but now they cannot both move into CP-specifiers. In one case, who moves
first, so that it fills SpecCP1. As a consequence, when cannot move to SpecCP2

due to successive cyclicity requiring it to go through the SpecCP1 first, which
is already filled by who. In the other case, where moves first but on its way to
SpecCP2 it leaves a trace in SpecCP1 so that the latter is no longer available
as a landing site to who. The details of the analysis have changed significantly
over the years, and recently it has even been argued that CPs do not matter for
cyclicity [3], but the basic idea that long-distance movement is in fact a sequence
of local movement steps has remained unaltered.

If one ignores adjuncts, the kind of cyclicity involved in the examples above
can be reinterpreted as wh-movement being 3-local: every clause consists of the

216 T. Graf

slices CP, TP, VP, so movement from one CP to the next creates paths con-
taining 3 left branches. The analogy between successive-cyclic movement and
the restriction to k-locality is far from perfect, of course. Among other things,
successive-cyclic movement is relativized to specific positions, whereas k-locality
only cares about distance. But if the value of k is carefully chosen and combined
with certain regular constraints on derivation trees [4, 7] that prevent movement
from skipping, say, CP slices, a reasonably close approximation can be achieved.

Surprisingly, every MG can be translated into a weakly equivalent 1-local one.
The idea is that instead of having subtree s move directly to its target position
t, s can hitch a ride by being selected by another LI l. As long as the string
component of l is empty, this will have no effect on the string yield. This reduces
unbounded movement to k-local movement, which in turn can easily be reduced
to 1-local movement.

Theorem 1. For every unrestricted MG G, there is an MG G′ of locality rank
1 that defines the same string language.

Proof. I sketch two linear (bottom-up) transducers τ and τ ′. The former does
most of the work by translating every t ∈ mder(G) into its corresponding
max(E)-local t′, where max(E) is the maximum length of expressions gener-
ated by G (i.e. the maximum number of chains per expression). The latter then
rewrites t′ as the 1-local t′′. Since MDTLs are regular, and the image of a regular
language under a linear transduction is itself regular, the output of τ · τ ′ is, too.
This set is then intersected with mder(G′′), where LexG′′ := Ωτ ′ \ OpG′′ and
FG′′ := FG. The result of this intersection can then be automatically converted
into a new MG, our G′ [4, 7].

The idea underlying τ is that unbounded movement can be localized by cre-
ating intermediary landing sites which have no effect on the string language.
The main task of the transducer is to insert those intermediate landing sites
and transfer (a subset of) the features of each moving element to its landing
site. By definition there are at most n = max(E) − 1 moving elements at any
given point in the derivation. Each state of τ consists of 1) n components qi that
memorize the feature string of the moving items and which of them have already
been reinstantiated, 2) the expression the current node evaluates too (modulo
the string component), 3) a boolean flag b that indicates whether some LI had
the new licensee feature −s0 added to its feature string.

Suppose we are at a node in the derivation tree t that belongs to the slice
of LI l := σ :: γcδ and that there are 0 ≤ m ≤ n moving LIs li := σ ::
γiciδi, where 1 ≤ i ≤ m and c, ci ∈ Base and σ, σi ∈ Σ and δi is of the
form −fi1 , . . . ,−fik , k ≥ 1. For each i and 1 ≤ u ≤ v ≤ k, we define new LIs
lci [u, v] := ε :: = c +fiu c −si −fiu δi[u+1, v], where −si is a new licensee feature
and δi[u + 1, v] := −fiu+1 , . . . ,−fiv . Given a feature string φ := f1, . . . , fk, we
furthermore let q(j, φ) := f1, . . . , fj • fj+1 . . . fk, 0 ≤ j ≤ k.

The transducer τ now has to perform the following steps: First, if l is not
itself among the moving elements, τ non-deterministically replaces it by l̂ :=
ε :: γc − s0 and switches the boolean flag b in its state from 0 to 1. If either
m = 0 and b = 1 or m ≥ 1 and b = 0, τ aborts at the slice root of l̂/l.

Locality and the Complexity of Minimalist Derivation Tree Languages 217

Second, τ replaces each li carrying more than one licensee feature by l̂i :=
σi :: γci − fi1 and stores q(0, δi[1, k]) in qi. Third, when τ reaches the slice

root of l/l̂, it inserts C(lcm[um, vm]) · . . . · C(lc1[u1, v1]), where C(lci [ui, vi]) :=
move(�,merge(�, lci [ui, vi])), and ui must be such that q(ui − 1, δi[1, k]) is the
string stored in qi. The value of vi is chosen non-deterministically — in order
for τ not to abort it must hold that every fij can get checked later on without
further intermediate movement sites for all j ≤ vi but not for j = vi + 1 (this
is easily verified, as τ keeps track of licensor features in the second component
of its states). With the insertion of C(lci [ui, vi]), qi is updated to q(vi, δi[1, k]).
So far then, τ has introduced new slices slice(lci [ui, vi]) that function as the

respective landing sites for each li, or rather, their impoverished counterpart l̂i.
The fourth step requires τ to insert the context C(sc[m, b]) above C(lm[um, vm]),
where sc[j, b] := ε :: = c + s1−b . . . + sj c for 1 ≤ j ≤ n, and C(sc[j, b]) :=
move(�,�)·︸ ︷︷ ︸
j + b times

merge(�, sc[j, b]).

This enforces remnant movement of l/l̂ and all l̂i, allowing each slice(lci [k]) to
move freely later on without carrying along any other parts of the derived tree
(which would induce a change in the string yield). The procedure as outlined
above is iterated (with the value of c varying with l) until no more features need
to be checked off. Since there are at most n = max(E)−1 moving elements in G,

no LI li (including l/l̂) has to cross more than n slices in order to check its −fi1
feature against lci [u, v] or its −si feature against sc[j, b]. Thus every instance of
move is max(E)-bounded.

All instances of (k + 1)-bounded movement, 1 ≤ k ≤ max(E), can be made
1-local as follows. Assume that slices slice(l1), . . . slice(lk) intervene between l :=
σ :: γcδ and its next occurrence. Then τ ′ has to prefix δ with k new movement
licensee features −l1 . . . − lk, and for each lci [u, v] (1 ≤ i ≤ k) add +li to the
end of its feature string and move(�,�) above its slice root. If several LIs move
through a slice, the number of licensor features andMove nodes has to be adapted
accordingly. Crucially, both the number of moving elements and the distance
between LIs and individual occurrences is finitely bounded, so this strategy can
easily be carried out by a non-deterministic linear transducer. ��

3 (Un)Definability in Some Subregular Language Classes

3.1 Deterministic Top-Down Automata

Since MDTLs are regular, they can be recognized by non-deterministic top-down
tree automata [cf. 5]. As we will see now, top-down non-determinism can be dis-
pensed with only if it is compensated for by unbounded look-ahead. I consider
two common variants of the standard deterministic top-down tree automaton
(DTDA), both of which are more powerful than DTDAs but do not recognize
all regular languages. One is the sensing tree automaton (STA) [11], which may
also take the labels of a node’s children into account in order to decide which
states should be assigned to them, while the other is the l-r-deterministic DTDA

218 T. Graf

(lrDTDA) [13], which allows for a limited kind of non-determinism. The classes
of languages recognized by STAs and lrDTDAs are incomparable, but can easily
be characterized in descriptive terms. For this reason, I focus on the languages
themselves rather than the automata, and no further technical details of the lat-
ter will be discussed here (the interested reader is referred to [11] and references
therein).

Definition 6. Given a node v of some Σ-tree t, lsibt(u) is the string consisting
of the label of u’s left sister (if it exists) followed by the label of u, and rsibt(u) is
the string consisting of the label of u and the label of its right sister (if it exists).
Let u1, . . . , un be the shortest path of nodes extending from the root to v such
that u1 is the root and un = v. Let � and ♣ be two new symbols not in Σ. By
spinet(v) we denote the string recursively defined by

spinet(u1) = lsibt(u1)�rsibt(u1)

spinet(u1, . . . , un) = spinet(u1, . . . , un−1) ♣ lsibt(un) � rsibt(un)

A regular tree language L is spine-closed iff it holds for all trees s, t ∈ L and
nodes u and v belonging to s and t, respectively, that spines(u) = spinet(v)
implies s[u ← t|v] ∈ L.

Definition 7. A regular tree language L is homogeneous iff it holds that if
t[u ← a(t1, t2)] ∈ L, t[u ← a(s1, t2)] ∈ L and t[u ← a(t1, s2)] ∈ L, then also
t[u ← a(s1, s2)] ∈ L.

Proposition 1. A regular tree language L is recognizable by

– an STA iff L is spine-closed [10].
– an lrDTDA iff L is homogeneous [13].

Thanks to these characterizations, results for MDTLs are easily obtained.

Theorem 2. mdtl[merge] and the class of tree languages recognized by STAs
are incomparable.

Proof. Let grammar G be defined by the following LIs (with names in square
brackets for reference) and FG := {a, b}:

[a0] a :: a [a1] a :: = a a [a2] a :: = a =a a
[b0] b :: b [b1] b :: =b b [b2] b :: = b =b b

Consider the derivation tree ta := merge1(merge2(a0, a1),merge3(a0, a2)) and
its counterpart tb := merge1(merge2(b0, b1),merge3(b0, b2)) — the indices are
for the reader’s convenience. Even though spineta(merge2) = spinetb(merge2), it
holds that merge1(merge2(b0, b1),merge3(a0, a2)) /∈ mder(G), so mder(G) is not
spine-closed. ��

Theorem 3. Every L ∈ mdtl[merge,move] is recognized by some lrDTDA.

Locality and the Complexity of Minimalist Derivation Tree Languages 219

Proof. I show that every MDTL is homogeneous. For a = move, closure is triv-
ially satisfied. So let a = merge. Merge depends only on the distribution of
category and selector features, and there is no way to distribute these over t1,
t2, s1 and s2 such that the fourth tree would be an illicit instance of Merge: In
order for Merge to be licensed, one of t1 or t2 must have some category feature
c as its first unchecked feature, and the other one the matching selector feature
= c. Assume w.l.o.g. that t2 carries the selector feature = c. Then s1 must also
have feature c, and s2 feature = c. We also know that s1 and t1 on the one hand
and s2 and t2 on the other agree on all features following these selector/licensor
features, since the derivations differ only w.r.t. the subtree rooted by a. It follows
that Merger of s1 and s2 is licit, so the required closure property obtains. ��

Martens et al. [11] point out a peculiar property of languages recognized by
lrTDAs but not by STAs: in order to determine which states should be assigned
to the children of the root, one has to look arbitrarily deep into at least one
of the subtrees dominated by the root. This is indeed typical of unrestricted
MDTLs, where movement features at the very bottom of a derivation introduce
dependencies that — given the impoverished nature of the interior node labels —
cannot be predicted deterministically in a top-down fashion without unbounded
look-ahead. The class of lrTDAs overshoots the mark, though, as it fails to draw
a distinction even between mdtl[merge,move] and mdtl[merge].

3.2 Strictly Local and Locally Threshold Testable Languages

Let us now traverse the subregular hierarchy from the bottom instead, starting
with LOC and subsequently moving on to SL and LTT. As lrTDAs before, local
sets lack the granularity to distinguish any of the subclasses of MDTLs. But
where the lrTDAs universally succeeded, local sets universally fail.

Theorem 4. mdtl[merge] and the class of local sets are incomparable.

Proof. Consider any movement-free MDTL L with a derivation containing a sub-
tree of the form t := merge(l,merge). As we require slices to be right-branching,
l contains no selector or licensor features. Furthermore, the finiteness of the lexi-
con establishes an upper bound |γ|+1 on the size of slices. However, LOC = SL2,
so if L ∈ LOC, t could be composed with itself arbitrarily often, yielding slices
of unbounded size. ��

The shortcomings of LOC can be circumvented, though, by extending the size
of the locality domain, i.e. by moving to SLk for some sufficiently large k > 2.
Let |δ| be the maximum number of licensee features that may occur on a single
LI, analogously to |γ|. Given a k-local MG, set κ := (|γ|+ 1) ∗ (|δ| ∗ k + 1) + 1.

Theorem 5. Every L ∈ mdtl[merge,move(k)] is strictly κ-local.

Before we may proceed to the actual proof, the notion of occurrences must be
introduced. Intuitively, the occurrences of an LI l are merely the Move nodes
in the derivation tree that operated on one of l’s licensee features. It does not

220 T. Graf

take much insight to realize that the first occurrence of l has to be some Move
node that dominates it (otherwise l’s licensee features could not be operated
on) and is not included in slice(l) (no LI may license its own movement). One
can even require the first occurrence to be the very first Move node satisfying
these properties, thanks to the SMC (the reader might want to reflect on this
for a moment). The reasoning is similar for all other occurrences, with the sole
exception that closeness is now relativized to the previous occurrence. In more
formal terms: Given an LI l := σ :: γcδ with c ∈ Base and δ := −f1, . . . ,−fn,
its occurrences occi, 1 ≤ i ≤ n, are such that

– occ1 is the first node labeled move that matches −f1 and properly dominates
the slice root of l.

– occi is the first node labeled move that matches −fi and properly dominates
occi−1.

Note that every well-formed MDTL obeys the following two conditions:

– M1 : For every LI l with 1 ≤ n ≤ |δ| licensee features, there exist nodes
m1, . . . ,mn labeled move such that mi is the i

th occurrence of l, 1 ≤ i ≤ n.
– M2 : For every node m labeled move, there is exactly one LI l such that m

is an occurrence of l.

In fact, the implication holds in both directions.

Lemma 1. For every MG G it holds that if t ∈ TLexG∪{merge,move} is a com-
bination of well-formed slices and respects all constraints on the distribution of
Merge nodes, then it is well-formed iff M1 and M2 are satisfied.

Proof. As just discussed the left-to-right direction poses little challenge. In the
other direction, I show that μ−1 is well-defined on t and maps it to a well-formed
s ∈ sder(G). For LIs and Merge nodes, μ−1 is well-defined by assumption if it
is well-defined for Move nodes. From the definition of move and the SMC it
follows that μ−1(move(�, t2)) (the expression returned by move when applied to
μ−1(t2)) is well-defined only if the root of t2 is an expression consisting of at least
two chains such that 1) its first chain has some feature +f as its first feature
and 2) the feature component of exactly one chain begins with −f . However,
the former follows from the well-formedness of slices, while the latter is enforced
by M2; in particular, if the SMC were violated, some Move node would be an
occurrence for more than one LI. This establishes that μ−1 is well-defined for
all nodes. Now μ−1(t) can be ungrammatical only if the label of the root node
contains some licensor or licensee features. The former is ruled out by M2 and the
initial assumption that all slices are well-formed, whence every licensor feature
is instantiated by a Move node. In the latter case, there must be some licensee
feature without an occurrence in t, which is blocked by M1. ��

Now we can finally move on to the proof of Thm. 5.

Proof. Given some k-local MG G with L := mder(G) ∈ mdtl[merge,move(k)],
let κ-factors(L) be the set containing all κ-factors of L, and F the corresponding

Locality and the Complexity of Minimalist Derivation Tree Languages 221

strictly κ-local language built from these κ-factors. It is obvious that F ⊇ L, so
one only needs to show that F ⊆ L. Trivially, t ∈ L iff t ∈ F for all trees t of
depth d ≤ κ. For this reason, only trees of size greater than κ will be considered.

Assume towards a contradiction that F 	⊆ L, i.e. there is a t such that F 2
t /∈ L. Clearly F 2 t /∈ L iff some condition enforced by merge or move on the
combination of slices is violated, as the general restrictions on tree geometry
(distribution of labels, length and directionality of slices) are always satisfied by
virtue of κ always exceeding |γ| + 1. I now consider all possible cases. In each
case, I use the fact that the constraints imposed by merge and move operate
over a domain of bounded size less than κ, so that if t ∈ F violated one of them,
one of its κ-factors would have to exhibit this violation, which is impossible as
κ-factors(F) = κ-factors(L).

Case 1 [Merge]: merge is illicit only if there is an internal node n labeled
merge in slice(l) such that the shortest path from n to l is of length 1 ≤ i, the
ith feature of l is +f for some f ∈ Base, and there is no LI l′ such that the left
daughter of n belongs to slice(l′) and l′ carries feature f . But the size of every
slice is at most |γ|+ 1, so the distance between n and l is at most |γ|, and that
between n and l′ at most |γ|+1. Hence a factor of size |γ|+2 is sufficient, which
is less than κ. So if we found such a configuration, it would be part of some
κi ∈ κ-factors(F) = κ-factors(L). Contradiction.

Case 2 [Move]: Conditions M1 and M2 can be split into three subcases.
Case 2.1 [Too few occurrences]: Assume that LI l has j ≤ |δ| licensee fea-

tures but only i < j occurrences. Since L ∈ mdtl[merge,move(k)], the shortest
path spanning from any LI to its last occurrence includes nodes from at most
|δ| ∗ k+1 distinct slices. Since the size of no slice minus its LI exceeds |γ|, some
factor κi of size greater than (|γ| ∗ |δ| ∗ k) + (|γ|+1) ≤ κ must exhibit the illicit
configuration, yet κi /∈ κ-factors(L).

Case 2.2 [Too many Move nodes]: Assume that for some Move node m
there is no LI l such that m is an occurrence of l. This is simply the reverse of
Case 2.1, where we obtain a violation if it holds for no LI l in any κi thatm is one
of its occurrences. But then at least one of these κi cannot be in κ-factors(L).

Case 2.3 [SMC violation]: The SMC is violated whenever there are two
distinct items l and l′ for which Move node m is an occurrence. As 2.2, this is
just a special case of 2.1. ��

We now have a very good approximation of mdtl[merge,move(k)] for any choice
of k > 0. They are not local, or equivalently, strictly 2-locally testable, but
they are strictly κ-locally testable, where κ depends on k and the maxima of
licensor and licensee features, respectively. But what about mdtl[merge,move]
in general?

To readers acquainted with MGs it will hardly be surprising that unrestricted
MDTLs are not strictly locally testable. Nor is it particularly difficult to demon-
strate that they even fail to be locally threshold testable. In [1], it was proved
that closure under k-guarded swaps is a necessary condition for a language to
be definable in FOmod [S1, S2] — that is to say, first-order logic with unary pred-
icates for all labels, binary predicates for the left child and right child relations,

222 T. Graf

respectively, and the ability to perform modulo counting. Evidently FOmod

[S1, S2] is a proper extension of FO[S1, S2], and definability in the latter fully
characterizes the locally threshold testable languages [20]. So no language that
isn’t closed under k-guarded swaps is locally threshold testable.

Definition 8. Let t := C ·Δ1 ·Δ·Δ2 ·T be the composition of trees C := Ct[a, x),
Δ1 := Ct[x, y), Δ := Ct[y, x

′), Δ2 := Ct[x
′, y′) and T := t|y′ . The vertical swap

of t between [x, y) and [x′, y′) is the tree t′ := C ·Δ2 ·Δ ·Δ1 · T . If the subtrees
rooted at x and x′ are identical up to and including depth k, and the same holds
for the subtrees rooted at y and y′, then the vertical swap is k-guarded.

Theorem 6. mdtl[merge,move] and the class of tree languages definable in
FOmod [S1, S2] are incomparable.

Proof. Consider a grammar containing (at least) the following four items:

a :: a a :: a − b a :: = a a a :: = a + b a

I restrict my attention to those derivation trees in which movement occurs ex-
actly once. Pick any k ∈ N. Then there is some derivation tree that can be
factored as above such that Δ1 contains the movement node at some depth
m > k, Δ2 contains the corresponding LI a :: a − b at some depth n > k,
C = Δ = T , and the depth of Δ and T exceeds k. Given this configuration,
the vertical swap of Δ1 and Δ2 is k-guarded, yet t′ := C · Δ2 · Δ · Δ1 · T is
not a Minimalist derivation tree, as the movement node no longer dominates
a :: a − b, thereby negating closure under k-guarded swaps. ��

The insufficiency of FOmod [S1, S2] puts a strong lower bound on the complexity
of mdtl[merge,move]. In the next section, I show that enriching FO[S1, S2] with
proper dominance and equivalence is all it takes to make mdtl[merge,move]
first-order definable.

4 Definability in First-Order Logic

I start with an FO[S1, S2] theory of mdtl[merge], which is then extended to
FO[S1, S2, <,≈] for mdtl[merge,move]. Given an MG G, FO[S1, S2] is defined
over ordered binary branching trees in the standard way, with the signature
containing a unary predicate p for each p ∈ Λ := LexG ∪ OpG ∪ {�} and binary
predicates S1 and S2 for the left and right child relation, respectively. The equiv-
alence relation is superfluous for mdtl[merge]. I write x �1 y instead of S1(x, y),
and similarly for S2. Moreover, x � y iff x �1 y ∨ x �2 y.

First a number of constraints are established to ensure that every node has
exactly one label drawn from Λ, and that the arity of the labels is respected
(it suffices only to restrict nullary symbols to leaves, as this entails that binary
symbols can be assigned only to interior nodes). Furthermore, � may be assigned
to a node if and only if it is the left daughter of a Move node.

∀x
[(∨

u∈Λ
u(x)

)
∧
∧
u∈Λ

(
u(x) →

∧
v∈Λ\{u}

¬v(x)
)]

Locality and the Complexity of Minimalist Derivation Tree Languages 223

∀x
[∨
u∈Λ\{merge,move}

u(x) ↔ ¬∃y[x � y]
]

∀x∀y
[
�(y) ↔ move(x) ∧ x �1 y

]
As was pointed out in Sec. 2, MDTLs can be viewed as the result of combining
the slices defined by LIs in all possible ways such that the constraints of the
feature calculus are respected. Hence I first define the shape of slices before
moving on to the feature conditions enforced by Merge. To simplify this task, I
use ↘n φ(x) as a shorthand for “φ holds at the node reached from x by taking
n steps down the right branch”. The analogous ↙n φ(x) moves us down the
left branch instead, while ↖n φ(x) moves us upwards only along a right branch.
Intuitively, ↘, ↙ and ↖ can be viewed as first-order implementations of modal
diamond operators.

↘0 φ(x) ↔ φ(x)

↘n φ(x) ↔ ∃y[x �2 y∧ ↘n−1 φ(y)]

Recall that all slices are strictly right-branching and never exceed size |γ| + 1.
This is equivalent to saying that there is no node that is at least |γ|+1 S2-steps
away from a node satisfying a tautology 5.

¬∃x[↘|γ|+1 5(x)]

Next, every interior node n must be licensed by a feature of the LI of the slice
containing n. Again a special notational device proves useful: for any feature f ,
fi(x) holds iff for some l ∈ LexG whose ith feature is f , l(x) is true (the index
will be suppressed whenever the position of the feature is irrelevant). Now let
slr i(x) ↔

∨
f∈Base= fi(x) and lcr i(x) ↔

∨
f∈Base+fi(x).

∀x
[(

merge(x) →
∨

1≤i≤|γ|
↘i slr i(x)

)
∧
(
move(x) →

∨
1≤i≤|γ|

↘i lcr i(x)
)]

Besides the evident restriction on the distribution of merge and move, the for-
mula above also ensures that no l ∈ Λ without selector or licensor features can
ever be a right leaf.

We still have to establish a minimum size on slices, though, which is easily
accomplished by requiring every selector/licensor feature to license a unique
interior node.

∀x
[∧
1≤i≤|γ|

((
slr i(x) →↖i merge(x)

)
∧
(
lcr i(x) →↖i move(x)

))]

Note that this also prevents every LI with selector or licensor features from
occurring on a left branch. The topmost slice in the derivation is also subject to
the condition that the category of its LI must be final.

∀x
[
¬∃y[y � x] →

∨
c∈F

0≤i≤|γ|

↘i c(x)
]

224 T. Graf

So far, then, our first-order theory enforces the correct minimum/maximum size
of slices for every l ∈ LexG and fixes their branching direction and node labels.
For mdtl[merge], it only remains to capture the feature dependencies imposed
by Merge: the category feature of the LI of the slice on the left branch has to
match the selector feature of the LI found along the right branch.

∀x
[
merge(x) →

∧
c∈Base

(
↙1

∨
0≤i≤|γ|

↘i c(x) ↔
∨

1≤j≤|γ|
↘j = cj(x))

)]

Extending this basis to unrestricted MDTLs is surprisingly easy using the notion
of occurrences we encountered earlier on. First, proper dominance and equiva-
lence are added to the signature of FO[S1, S2], yielding FO[S1, S2, <,≈]. As
before, I use infix notation for all binary relations, so instead of < (x, y) I write
x �+ y. For every i ≤ |δ|, matchi(x, y) denotes that x is associated to a feature
that matches the ith licensee feature of y.

matchi(x, y) ↔∨
f∈Base

(∧
c∈Base

1≤j≤|γ|+1

(
cj(y) → −fj+i(y)

)
∧move(x) ∧

∨
1≤g≤|γ|

↘g +fg(x)
)

Furthermore, the predicate x � y ↔ ∃z, ∃z′
[
(x�+z∨x ≈ z)∧z�1z′∧(z�+y∨z ≈

y)
]
holds of x and y iff x properly dominates y and they belong to different slices.

Building on these two notions, it is a straightforward task to recast the definition
of occurrences in first-order terms.

occ1(x, l) ↔ match1 (x, l) ∧ x � l ∧ ¬∃y
[
x �+ y ∧ match1 (y, l) ∧ y � l

]

occi(x, l) ↔ x �+ l ∧ matchi(x, l) ∧ ∃y
[
x �+ y ∧ occi−1(y, l)∧

¬∃z
[
x �+ z ∧ z �+ y ∧ matchi(z, l)

]]
In line with Lem. 1, constraining the distribution of move requires but three
formulas that demand, respectively, that every licensee feature has a matching
move node, that every mode node has a matching licensee feature, and that no
movement node can be matched against more than one licensee feature (SMC).
It is only this very last condition that depends on the equivalence predicate as
there is no other first-order definable way of distinguishing nodes (the use of
equivalence in the definition of � is merely a matter of convenience and can
easily be avoided).

∀x
[∧

c∈Base
1≤i≤|γ|+1

(
ci(x) →

∧
f∈Base
0≤j≤|δ|

(
− fi+j(x) → ∃y

[
occj(y, x)

]))]

Locality and the Complexity of Minimalist Derivation Tree Languages 225

∀x
[
move(x) → ∃l

[∨
1≤i≤|δ|

occi(x, l)
]]

∀x∀l
[∧
1≤i≤|δ|

(
occi(x, l) → ∀l′

[∧
j∈[|δ|]\{0,i}

¬occj(x, l′)∧
(
occi(x, l

′) → l ≈ l′
)])]

5 Conclusion

The results reported herein highlight the rather indirect relation between MDTLs
and the string languages they derive. MGs without movement yield context-free
string languages, whereas even bounded movement is sufficient to generate all
multiple context-free languages. At the level of tree languages, however, both
movement-free and k-local MGs are strictly locally testable, whereas unrestricted
movement leads to an increase in complexity that pushes MDTLs out of the
realm of local threshold testability (see Fig. 2 on the next page).1

As my results posit a split between k-local and unrestricted MGs on the level
of derivation trees, they seem to vindicate the assumption commonly made by
syntacticians that locality restrictions on movement are a fundamental prop-
erty of natural language that keeps computational complexity in check. On the
other hand, weak generative capacity remains unaffected, and the locality rank
is immaterial, as all local grammars can be made 1-local. Further work is needed
before a full understanding can be reached as to how derivational complexity may
interact with string language complexity, what measure of complexity should be
used, and how this relates to syntactic proposals.

It must also be pointed out that alternative representations of Minimalist
derivation trees could conceivably paint a different picture. Eventually, one would
like to have a better understanding as to which aspects of a derivation tree lan-
guage genuinely reflect the complexity of the derivational machinery underlying
the MG formalism and which are just notational quirks. By probing different
formats for Minimalist derivation trees we might also unearth new connections
between MGs and Tree Adjoining Grammar, an area that has recently enjoyed
increased interest.
1 The strictly local nature of movement-free and k-local MDTLs also implies that they
can be recognized by deterministic tree-walking automata. I conjecture that this
does not carry over to unrestricted MDTLs unless the automata are enriched with
two weak pebbles. In particular, non-deterministic tree-walking automata cannot
recognize unrestricted MDTLs: The fundamental problem one faces while sifting
through a derivation tree with unrestricted movement in a sequential manner is that
either 1) the automaton has to keep track of an unbounded number of features when
performing a brute-force search for an LI matching a given movement node, or 2)
it gets lost in the derivation tree and cannot make its way back to the movement
node in question. This makes it impossible to ensure that every movement node is an
occurrence for exactly one LI, and non-determinism offers no remedy. The addition
of two pebbles, on the other hand, allows the automaton to mark the movement node
and the LI that was inspected last, so that the automaton can always find its way
back and can infer from the position of the second pebble which LIs have already
been looked at.

226 T. Graf

REG = Star-Free

lrDTDASTA

DTDA

FO[S1, S2, <]

LTT = FO[S1, S2]

FOmod [S1, S2]

SL

LOC

mdtl[merge ,move]

mdtl[merge]

mdtl[merge ,move(k)]

[14]

[20]

[11]

Thm.5

Sec. 4Thm. 3

T
hm

.
6

[11]

Thm. 4

T
h
m
.
2

a b a is properly included in b
a b a and b are incomparable

Fig. 2. MDTLs in the subregular space of strictly binary branching tree languages
(references omitted for obvious relations)

Acknowledgments. My thanks go to Ed Stabler and the three anonymous
reviewers for their helpful criticism. The research reported herein was supported
by a DOC-fellowship of the Austrian Academy of Sciences.

References

[1] Benedikt, M., Segoufin, L.: Regular tree languages definable in FO and in FOmod.
ACM Transactions in Computational Logic 11, 1–32 (2009)

[2] Chomsky, N.: The Minimalist Program. MIT Press, Cambridge (1995)
[3] den Dikken, M.: Arguments for successive-cyclic movement through SpecCP. A

critical review. Linguistic Variation Yearbook 9, 89–126 (2009)
[4] Graf, T.: Closure properties of minimalist derivation tree languages. In: Pogodalla,

S., Prost, J.-P. (eds.) LACL 2011. Lecture Notes in Computer Science (LNAI),
vol. 6736, pp. 96–111. Springer, Heidelberg (2011)

[5] Gécseg, F., Steinby, M.: Tree Automata. Academei Kaido, Budapest (1984)
[6] Harkema, H.: A Characterization of Minimalist Languages. In: de Groote, P.,

Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 193–211.
Springer, Heidelberg (2001)

[7] Kobele, G.M.: Minimalist Tree Languages Are Closed Under Intersection with
Recognizable Tree Languages. In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011.
LNCS, vol. 6736, pp. 129–144. Springer, Heidelberg (2011)

Locality and the Complexity of Minimalist Derivation Tree Languages 227

[8] Kobele, G.M., Retoré, C., Salvati, S.: An automata-theoretic approach to mini-
malism. In: Rogers, J., Kepser, S. (eds.) Model Theoretic Syntax at 10, pp. 71–80
(2007)

[9] Mainguy, T.: A probabilistic top-down parser for Minimalist grammars (2010),
arXiv:1010.1826v1

[10] Martens, W.: Static Analysis of XML Transformation- and Schema Languages.
Ph.D. thesis, Hasselt University (2006)

[11] Martens, W., Neven, F., Schwentick, T.: Deterministic top-down tree automata:
Past, present, and future. In: Proceedings of Logic and Automata, pp. 505–530
(2008)

[12] Michaelis, J.: Transforming linear context-free rewriting systems into minimalist
grammars. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS
(LNAI), vol. 2099, pp. 228–244. Springer, Heidelberg (2001)

[13] Nivat, M., Podelski, A.: Minimal ascending and descending tree automata. SIAM
Journal on Computing 26, 39–58 (1997)

[14] Potthoff, A., Thomas, W.: Regular tree languages without unary symbols are
star-free. In: Proceedings of the 9th International Symposium on Fundamentals
of Computation Theory, pp. 396–405 (1993)

[15] Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free gram-
mars. Theoretical Computer Science 88, 191–229 (1991)

[16] Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS
(LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)

[17] Stabler, E.P.: Computational perspectives on minimalism. In: Boeckx, C. (ed.)
Oxford Handbook of Linguistic Minimalism, pp. 617–643. Oxford University Press,
Oxford (2011)

[18] Stabler, E.P.: Top-down recognizers for MCFGs and MGs. In: Workshop on Cog-
nitive Modeling and Computational Linguistics, pp. 39–48. ACL, Portland (2011)

[19] Stabler, E.P., Keenan, E.: Structural similarity. Theoretical Computer Science 293,
345–363 (2003)

[20] Thomas, W.: Languages, automata and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, New York
(1997)

[21] Verdú-Mas, J.L., Carrasco, R.C., Calera-Rubio, J.: Parsing with probabilistic
strictly locally testable tree languages. IEEE Transactions on Pattern Analysis
and Machine Intelligence 27, 1040–1050 (2005)

Building a Formal Grammar for a Polysynthetic
Language

Petr Homola	

Codesign, s.r.o.
phomola@codesign.cz

Abstract. We present the results of a project of building a lexical-functional
grammar of Aymara, an Amerindian language. There was almost no research
on Aymara in computational linguistics to date. The goal of the project is two-
fold: First, we want to provide a formal description of the language. Second, NLP
resources (lexicon and grammar) are being developed that could be used in ma-
chine translation and other NLP tasks. The paper presents formal description of
selected properties of Aymara which are uncommon in well-researched Western
languages. Furthermore, we present an abstract linguistic representation in the
LFG framework which is less language specific than f-structures.

1 Introduction

Aymara is an Amerindian language spoken in Bolivia, Chile and Peru by approx. two
million people. It is a polysynthetic language that has many lexical and structural sim-
ilarities with Quechua but the often suggested genetic relationship between these lan-
guages is still disputed.

The only research on Aymara in the field of computational linguistics we know about
is the project described in [2].1 The presented project uses Lexical-Functional Gram-
mar (LFG) [15, 3] to formally describe the lexicon, morphology and syntax of Aymara
in a manner suitable for natural language processing (NLP). The grammar we have
implemented is capable of parsing complex sentences with embedded clauses.

Aymara is a polysynthetic language with a very complicated system of polypersonal
agreement (see Section 3.5 for a brief description). A rare property of words in Aymara
is the so-called vowel elision (sometimes called ‘subtractive morphology’) which is
quite hard to describe formally. We show how vowel elision can be dealt with in the
lexicon.

The paper is organized as follows: Section 2 is a brief introduction to LFG. Section 3
presents selected properties of Aymara, many of them absent from well-researched
languages such as English, and their formal analysis in LFG. Section 4 introduces
a dependency-based abstraction of f-structures which brings formal grammars closer
cross-linguistically. Finally, we conclude in Section 5 and give an outlook for further
research.
� I am very indebted to the anonymous reviewers for their valuable comments.
1 There is also the system Atamiri [8, 9, 10] which uses Aymara as internal representation of

translated sentences.

P. de Groote and M.-J. Nederhof (Eds.): Formal Grammar 2010/2011, LNCS 7395, pp. 228–242, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Building a Formal Grammar for a Polysynthetic Language 229

2 Lexical Functional Grammar

LFG is a linguistic formalism suitable for theoretical linguistics as well as NLP. An
LFG grammar consists of a lexicon and a set of context-free phrase structure rules that
are annotated with functional constraints. The lexicon deals with the morphology of
languages (which is particularly important for languages with rich inflection) whereas
phrase structure rules deal with syntax.

For example, the English sentence The dog chases a cat, given the rules and lexical
entries in (1), would yield the c(constituent)-structure in (2).

(1)

S → NP VP
VP → V NP
NP → D N
D → the | a
N → dog | cat
V → chases

(2) S

NP

D

the

N

dog

VP

V

chases

NP

D

a

N

cat

After having added functional annotations to the rules (illustrated in (3)2), we get the
f(unctional)-structure in (4).

(3)

S → NP VP
(↑ SUBJ) = ↓ ↑=↓

VP → V NP
↑=↓ (↑ OBJ) = ↓

NP → D N
(↑ SPEC) = ↓ ↑=↓

(4)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PRED ‘chase〈(↑SUBJ)(↑OBJ)〉’
TENSE PRES

SUBJ

⎡
⎣PRED ‘dog’

SPEC
[
DEF +

]⎤⎦
OBJ

⎡
⎣PRED ‘cat’

SPEC
[
DEF –

]⎤⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2 The symbol ↑ designates the f-structures associated with the mother node in the c-structure
and ↓ designates the f-structure associated with the current node (on the right-hand side of the
rule).

230 P. Homola

It should be noted that while f-structures are somewhat universal across languages, c-
structures are language specific (since they encode synsemantic words, word order and
inner structure of phrases). In Aymara, which does not have a VP, (5)3 would have the
c-structure given in (6) but its f-structure would be the same as the English one in (4).

(5) Anux
dog-TOP

phis-w
cat-ELI,FOC

kat-u
chase-NFUT3→3

“The dog chases a cat.”

(6) S

NP

N

dog

NP

N

cat

V

chases

As can be seen, the c-structure in (6) is flat. Moreover, Aymara does not have articles,
but there are discourse markers (the suffixes -x for topic and -w for focus in (5)) that
are part of the word, hence their function is encoded in the lexicon (see Section 3.10 for
examples).

We agree with [20] that c-structures represent the process of syntactic derivation
whereas f-structures (which roughly correspond to dependency trees in depedency-
based grammars, see Section 4) are the result of this derivation. As has been suggested
by [11], at least for some languages, phrase structures encode only word order (at the
clause level).

A very good description of various practical problems associated with writing a for-
mal grammar is [5].

3 Some Properties of Aymara

In this section, we focus on some properties of Aymara at the level of morphology
and syntax which are mostly absent from Western languages such as English, and
sketch their analysis in LFG. A detailed description of the language can be found in
[12, 1, 6, 4].

3.1 Agglutinative Morphology

Aymara has a very rich inflection. Suffixes of various categories can be chained to build
up long words that would be expressed by a sentence in languages like English. For
example, alanxarusksmawa (ala-ni-xaru-si-ka-sma-wa) means “I am preparing myself
to go and buy it for you”.

In concordance with the principle of lexical integrity [3], we deal with morphology
in the lexicon. [14] has suggested to use word-internal (sublexical) rules to analyze
structurally complex words in agglutinative languages. We have adopted this analysis.

3 In the glosses, NFUT3→3 means non-future tense. The numbers express the person of the sub-
ject and an additional argument, mostly object.

Building a Formal Grammar for a Polysynthetic Language 231

3.2 Vowel Elision

Aymara uses vowel elision as morphosyntacic marking. As illustrated in (7) and (8),
there are minimal pairs that make phrases differ syntactically and semantically.

(7) aycha
meat

manq’a-ni
eater

“who eats much meat”

(8) aych
meat-ELI

manq’a-ni
eat-FUT3→3

“(s)he will eat meat”

There are three types of vowel elision that interact with each other. Object elision marks
a noun or pronoun as direct object, such as in (9) (as opposed to (10)).

(9) khit-s
whom-ELI,FOC

uñj-i
see-NFUT3→3

“Whom does he/she see?”

(10) khiti-s
who

uñj-i
see-NFUT3→3

“Who does see him/her?”

Noun compound elision occurrs in NPs. The final vowel of noun attributes gets elided
if they have three or more syllables, as illustrated in (11) and (12).

(11) aymar
Aymara-ELI

aru
language

(vs. *aymara aru)

“the Aymara language”

(12) qala
stone

uta
house

(vs. *qal uta)

“stone house”

Complement elision is applied to all words that are arguments or adjuncts of a verb
except for the final word of a clause, as in (13).4

(13) ut
house-ELI

sara-sk-ta
go-PRG-NFUT3→3

(vs. *uta saraskta)

“stone house”

Whereas object elision concerns the nucleus of a word (the stem with an optional pos-
sessive and/or plural suffix), noun compound and complement elisions concern the final
vowel of a word (the vowel of the last suffix or the stem if there are no suffixes). Vowel
elision is dealt with in the lexicon. As for noun compound elision, all nouns with more
than two syllables get (↑ COMPEL) = + if the final vowel of the word nucleus is elided
and (↑ COMPEL) = − if it is not. Nouns with two vowels do not define this attribute,
i.e., it can be unified with both values. The corresponding rule for compound nouns is
given in (14).

4 Object and noun compound elision has the gloss ELI in examples.

232 P. Homola

(14)
N′ → (N′) N

(↑ MOD) = ↓ ↑=↓
(↓ COMPEL) = +

3.3 Differential Object Marking

In Aymara, animate and inanimate direct objects are marked differently. Animate ob-
jects get the allative suffix (in other cases, the allative has the function of the dative
which is a common case of grammaticalization, cf. [13]).5 For example, the object
in (15) is marked whereas the object in (16) is unmarked:

(15) jila-ma-r
brother-POSS2-ALL

uñj-ta
see-NFUT1→3

“I see/saw your brother.”

(16) uta-m
house-POSS2,ELI

uñj-ta
see-NFUT1→3

“I see/saw your house.”

The corresponding rules for direct objects are presented in (17).6 Note that the first rule
can apply to both animate and inamimate objects since differential object marking is
optional.

(17)

VP → V , NP
↑=↓ (↑ OBJ) = ↓

(↓ OBJEL) = +
(↓ CASE) = −

VP → V , NP
↑=↓ (↑ OBJ) = ↓

(↓ ANIM) = +
(↓ CASE) = ALL

3.4 Case Stacking

Case stacking occurrs with coordinated nouns, as in (18), where both nouns have two
case suffixes: comitative and allative.

(18) jila-ma-mpi-r
brother-POSS2-COM-ALL

kullaka-ma-mpi-ru
sister-POSS2-COM-ALL

“to your brother and sister”

In our grammar, we deal with case stacking in the lexicon (such a wordform is assigned
the allative case but it is also marked as a member of NP coordination). As with differ-
ential object marking, the use of the comitative suffix -mpi is not obligatory.

5 Differential object marking in Aymara is widespread but not obligatory.
6 The comma means that the order of V and NP is not significant.

Building a Formal Grammar for a Polysynthetic Language 233

3.5 Polypersonal Agreement

Being a polysynthetic language, Aymara has polypersonal conjugation, i.e., the finite
verb agrees with the subject and with another argument which may be the object (direct
or indirect) or an oblique argument. An example is given in (19).

(19) Uñj-sma
see-NFUT1→2

“I see/saw you.”

The morpholexical entry for uñjsma is given in (20).7 Note that the PRED value for both
subject and object is optional.8

(20)

uñjsma V (↑PRED) =‘uñjaña〈(↑SUBJ)(↑OBJ)〉’
(↑TAM TENSE) = NON-FUT

(↑TAM MOOD) = INDIC

((↑SUBJ PRED) = ‘PRO’)
(↑SUBJ PERS) = 1
((↑OBJ PRED) = ‘PRO’)
(↑OBJ PERS) = 2

The verb agrees with the subject and with the most animate argument which may be
a patient, addressee or source, e.g., um chur-äma-FUT1→2 “I will give you water” (ad-
dresse), aych al-äma-FUT1→2 “I will buy meat from you” (source) etc. However, there
are verbal suffixes which can make the verb agree with other arguments, such as the ben-
eficiary, e.g., jupa-r aych chura-rap-itäta-BEN-FUT2→1 “You will give him bread for
me” (the verb agrees with the beneficiary instead of the addressee jupa-r-ALL “him”).
All these agreement rules are encoded in the lexicon.

3.6 Causatives

Causative constructions are analyzed as biclausal in our grammar because the causative
suffix -ya can be used recursively, as illustrated in (21).

(21) yat-ta,
know-NFUT2→3

yati-y-ta,
inform-CAUS-NFUT2→3

yati-ya-y-ta
make-to-inform-CAUS-CAUS-NFUT2→3

“you know/knew (it), you inform(ed) (someone about something), you make/made
(someonei) inform (somebodyj about something)”

The causee has the comitative case if the verb is transitive, as illustrated in (22).

(22) Naya-x
I-TOP

Mariya-mp
Maria-COM

Juwanti-r
Juan-ALL

lich
milk-ELI

chura-y-ä.
give-CAUS-NFUT1→3

“I will make Maria give milk to Juan.”

7 TAM means Tense-Aspect-Mood.
8 Both arguments can be dropped.

234 P. Homola

Causative verbs are analyzed by a sublexical grammar. Hence the sentence in (22) has
the f-structure given in (23).

(23)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PRED ‘CAUS〈(↑SUBJ)(↑OBJ)(↑XCOMP)〉’
TENSE NFUT

SUBJ
[
“nayax”

]
OBJ 1

[
“Mariya”

]

XCOMP

⎡
⎢⎢⎢⎢⎢⎢⎣

PRED ‘churaña〈(↑SUBJ)(↑OBJ)(↑OBL)〉’
SUBJ 1

OBJ
[
“lichi”

]
OBL

[
“Juwanti”

]

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.7 Converbs

Converbs are non-finite verb forms which express a secondary process as an adjunct of
the process expressed by the main (finite) verb. In Aymara, converbs usually have the
suffix -sina or -sa, as illustrated in (24) and (25).9

(24) Uta-r
house-ALL

juta-sin
come-CONV

phay-i.
cook-NFUT3→3

“After coming home, (s)he cooked.”

(25) Jacha-sa-x
cry-CONV-TOP

sarx-i.
leave-NFUT3→3

“While crying, (s)he left.”

The subject of the converb is usually the subject of the main verb, so the f-structure
of the converb is an open adjunct (XADJ) in the f-structure of the main verb and the
corresponding rule contains the constraint (↑ SUBJ) = (↑ XADJ SUBJ).10

3.8 Free Word Order

At the clause level, the word order in Aymara is not restricted although SOV is preferred.
There is also no evidence for a VP, thus we assume a flat phrase structure. The rule for
matrix clauses is given in (26).11

9 There are other converb suffixes such as -ipana, but we ignore them in our grammar for now
as they are rarely used in the dialect of La Paz which we are focusing on.

10 Their can be more than one converb in an f-structure. In LFG, (X)ADJs are sets.
11 In the functional annotation, κ is either ‘−’ (no case) or a semantic case and GF is the corre-

sponding grammatical function. Note that there may be a complementizer at the beginning or
at the end of the clause. At most one complementizer can be present due to the LFG uniqueness
condition (otherwise there would be conflicting PRED values).

Building a Formal Grammar for a Polysynthetic Language 235

(26)
S → (C) C+ (C)

↑=↓ ↑=↓

where C is V ∨ NP | S
↑=↓ (↓ CASE) = κ ⇒ (↑ GF) =↓

As can be seen, word order in a clause is free with the exception of an optional comple-
mentizer (see (27) and (28)) which can be placed at the beginning of the clause or at its
end.

(27) Ukat
then

jut-i
come-NFUT3→3

“Then (s)he came.”

(28) Jut-ät
come-FUT2→3

ukaxa. . .
if

“If you will come. . . ”

There are no discontinuous constituents and complement clauses can be embedded in
the matrix sentence. Since Aymara is not discourse-configurational (see the next sub-
section), the word order, despite of being free, is usually unmarked (SOV) and if it is
different then mostly for stylistic reasons.

3.9 Relative and Complement Clauses

Relative and complement clauses are formally almost identical so we describe them
together. There are two types of them: Finite and non-finite (with a nominalized verb).
Non-finite verbs agree only with the subject (unlike finite verbs, see Section 3.5 above).
A relative clause is illustrated in (29).12

(29) Qillqa-ña-j
write-NREL-1POSS

liwr
book-ELI

chur-äma
give-NFUT1→2

“I will give you the book which I will write.”

Relative and complement clauses begin usually with the subject (which is optional)
in locative and end with the verb which is marked for tense (realized vs. non-realized
event) and person of the subject, as desrcribed by the rule in (30).13

(30)
S → (NP) C∗ V

(↑ SUBJ) =↓ ↑=↓
(↓ CASE) = LOC (↑ PERS) = (↑ SUBJ PERS)

where C is V ∨ NP | S
↑=↓ (↓ CASE) = κ ⇒ (↑ GF) =↓

12 NREL designates a nominalized verb which expresses a non-realized (future) event (marked
with the suffix -ña).

13 The category S is used because a standalone clause with a nominalized verb expresses the
obligative mood.

236 P. Homola

Thus (31) has the c-structure shown in (32). Note that the complement clause is a COMP

(i.e., it has its own SUBJ) in the f-structure of the main verb yattwa “I know”.

(31) Naya-x
I-TOP

Mariya-n
Maria-LOC

Chukiawu-r
La Paz-ALL

kuti-ta-p
return-REL-3POSS

yat-t-wa
know-NFUT1→3-FOC

“I know that Maria came back to La Paz.”

(32) S

(↑ SUBJ) =↓
NP

nayax

(↑ COMP) =↓
S

(↑ SUBJ) =↓
NP

Mariyan

↓∈ (↑ ADJ)
NP

Chukiyawur

↑=↓
V

kutitap

↑=↓
V

yattwa

Finite relative and complement clauses end respectively with the complementizer uka
or uk,14 as in (33).

(33) Mariya-x
Maria-TOP

utj-k-i
live-SUB-NFUT3→3

uka
COMPL

uta-r
house-ALL

sara-ni
go-NFUT3→3,FOC

“(S)he will go to the house where Maria lives.”

3.10 Topic-Focus Articulation

We have adopted the approach proposed by [18]. Thus we use an i(nformation)-structure
to approximate topic-focus articulation (TFA).15

A simple example of two sentences which differ only in TFA is given in (34) (the
word qullqirï is a verbalized noun).

(34) Juma-x
you-SG,TOP

qillq-irï-ta-wa
be-a-writer-AG-NFUT2→3-FOC

“You are a writer.”

Juma-w
you-SG,FOC

qillq-irï-ta-xa
be-a-writer-AG-NFUT2→3-TOP

“It is you who is the writer.”

14 Additionally, the verb is marked as subordinate (SUB).
15 The difference is that we use only two discourse functions, TOP and FOC, with the possibility

for words being discourse-unspecified (the term ‘discourse-neutral’ is used sometimes). This
is exactly how morphological marking of TFA works in Aymara.

Building a Formal Grammar for a Polysynthetic Language 237

The morpholexical entries for jumax and jupaw and corresponding i-structures for the
sentences in (34) are given in (35) and (36), respectively.16

(35)
jumax PRON (↑PRED) = ‘PRO’

(↑PERS) = 2
(↑PRED FN) ∈ (↑iTOP)

⎡
⎢⎣TOP

{
‘jumax’

}
FOC

{
‘qillqiri’

}
⎤
⎥⎦

(36)
jumaw PRON (↑PRED) = ‘PRO’

(↑PERS) = 2
(↑PRED FN) ∈ (↑iFOC)

⎡
⎢⎣TOP

{
‘qillqiri’

}
FOC

{
‘jumax’

}
⎤
⎥⎦

The i-structure is very important for correct translation. For example, the sentence
Chachax liwrw liyi would be translated as “The man read(s) a book” whereas Chachaw
liwrx liyi would be better translated as “The book is/was read by a man”.17

4 Lexical Mapping Theory and D-Structures

Although f-structures abstract to some extent from language specific features (such as
differential object marking, see (37) where the Spanish dative phrase and the Polish
genitive phrase would be in accusative in German), there are still many differences
even between relatively closely related languages.18

(37) Ayer
yesterday

visité
visit-PAST,1SG

a
to

Juan
Juan

“I visited Juan yesterday.”

Nie
NEG

mam
have-PRES,1SG

samochodu
car-SG,GEN

“I don’t have a car.”
16 According to a LFG convention, FN represents the lemma of the PRED value (the subcatego-

rization information is omitted).
17 Unlike some other languages with morphological topic and/or focus markers, such as Japanese

(cf. examples from [19]: Taroo-wa-TOP sono hon-o-ACC yondeiru “Taroo is reading that
book.” vs. Sono hon-wa-TOP Taroo-ga-NOM yondeiru “That book, Taroo is reading”), Aymara
allows their co-occurrence with case suffixes without limitation.

18 For example, the East Baltic language Latvian has only agent-less passives (i.e., in LFG, it
completely lacks OBLag, cf. [7]), whereas its closest and partially mutually intelligible relative
Lithuanian has and frequently uses agents in passives.

238 P. Homola

[16] have suggested a method of translating f-structures between languages.19 However,
their approach has been heavily criticized [21, 22]. [24] examine the use of a(rgument)-
structures in machine translation (MT). In LFG, a-structures are another level of linguis-
tic representation which provides the lexico-syntactic interface. The mapping between
a-structures and f-structures is defined by the so-called Lexical Mapping Theory (LMT;
see [3]). We will give a brief overview of LMT here.

LFG assumes that there is a prominence hierarchy of semantic roles. We use the
hierarchy shown in (38) (proposed by [3]):

(38) agent 6 beneficiary 6 experiencer/goal 6 instrument 6 patient/theme 6 locative

Argument grammatical functions (GF) are assigned features objective and restricted as
in (39). The markedness hierarchy of GFs is given in (40).

(39)
-r +r

-o SUBJ OBLθ
+o OBJ OBJθ

(40) SUBJ 6 OBJ, OBLθ 6 OBJθ

Verbs in LFG have an a-structure that expresses their valence. The arguments of each
verb are ordered according to the hierarchy in (38) and annotated with -o, -r, +o, +r.
General LMT principles determine how the arguments are mapped onto GFs. The initial
role is mapped onto SUBJ if classified with [−o]. Otherwise, the leftmost role classified
[−r] is mapped onto SUBJ. Other roles are mapped onto the lowest compatible GF ac-
cording to the hierarchy in (40). There are two other constraints: Every verb must have
a SUBJ and each role must be associated with a unique function, and conversely.

For example, the verb pound would have the a-structure and mapping shown in (41).

(41)
pound 〈 x

[-o]
y

[-r]
〉

SUBJ OBJ

[3] argues that LMT allows for natural treatment of passives, ditransitives and other
constructions which have been handled by lexical rules in earlier version of LFG.

We use the information provided by f-structures, i-structures, c-structures and
a-structures to create a dependency-based representation of parsed sentences (a tec-
togrammatical tree in the terminology of [23]). The main reason is that we already have
a module that generates English and Spanish sentences from (tectogrammatical) syntax
trees. Furthermore, [25] present promising results of MT using tectogrammatics.

In the following, we will use the term d(ependency)-structure to refer to dependency
trees. Table 1 gives a brief overview of which information at different levels of linguistic
representation in LFG is used in d-structures.

19 The idea is to parse the source sentence, adapt the f-structure to the target language and gener-
ate the target sentence. [17] have shown that LFG generation produces context-free languages.

Building a Formal Grammar for a Polysynthetic Language 239

Table 1. Information provided by LFG layers to d-structures

LFG layer information reflected in d-structures
c-structure original word order
f-structure dependencies and coreferences between phrases
i-structure topic-focus articulation
a-structure valence (semantic roles and their mapping to GFs)

D-structures do not carry any additional information except for the data already
present at the four levels given in Table 1 but they are less language specific. The skele-
ton of a d-structure is provided by the f-structure. According to a generally accepted
principle of deep syntax (tectogrammatics) only autosemantic (content) words are rep-
resented by nodes in d-structures. In LFG, autosemantic words are associated with pro-
jections of lexical categories, i.e., f-structures with the PRED attribute (see [3] for a
detailed discussion of lexical and functional categories and the so-called ‘coheads’).
Thus a d-structure derived from (4) (repeated here as (42) for convenience) would have
three nodes for the words dog, chases and cat.

(42)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PRED ‘chase〈(↑SUBJ)(↑OBJ)〉’
TENSE PRES

SUBJ

⎡
⎣PRED ‘dog’

SPEC
[
DEF +

]⎤⎦
OBJ

⎡
⎣PRED ‘cat’

SPEC
[
DEF –

]⎤⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The edges are labelled with semantic roles. This is possible due to the bi-uniqueness
of the mapping between roles and GFs (see above). However, there is one exception:
The initial role is assigned a special label which we call ‘actor’ (ACT, which is equva-
lent to what [3] calls ‘logical subject’). This partially reflects the shifting of actants in
tectogrammatics as defined by [23].

So far, we have an unordered tree (f-structures are unordered by definition).20 We
define an ordering based on information structure, as proposed for deep syntax by [23].
Thus we use the i-structure to define a partial ordering on the nodes of the d-structure
(TOP ≺ ‘discourse-unspecified’ ≺ FOC). The nodes in each of the three topic-focus do-

20 Generally, the skeleton rendered by f-structures may contain a cycle, i.e., a node with more
the one mother node. This is how LFG handles coreferences, such as in the sentence I want
to go home where the complement clause is an open complement (XCOMP) in the f-structure
of ‘want’ and (↑ SUBJ) = (↑ XCOMP SUBJ). To obtain a well-formed tree, we reflect the
path of length 1 in the f-structure as an edge and the remaining (conflicting) functional paths
as co-references.

240 P. Homola

mains are ordered according to their original ordering in the sentence (which is captured
by c-structures).21

The resulting d-structure is given in (43).22

(43)
•

ACT

��
��
��
��
��

PAT

��
��

��
��

��

�
�
�
�
�
�

•

�
�
� •

�
�
�

dog chases cat

Let us briefly point out some properties of d-structures as defined above. Most of them
directly correspond to properties of deep syntax (tectogrammatical) trees.

1. There is a bi-unique mapping between d-structure nodes and autosemantic (con-
tent) words. Synsemantic (auxiliary/function) words are represented as attributes
of nodes. This is a direct consequence of LFG ‘coheads’.

2. ‘Dropped’ words (e.g., subject and/or object pronouns in so-called pro-drop lan-
guages) are re-established in d-structures as a consequence of the LFG Principle
of Completeness since PRED attributes are instantiated in the lexicon if needed
(cf. [3]).

3. Edge labels in d-structures reflect semantic relations rather the GFs which are more
language specific.

4. The ordering of d-structure nodes is partially determined by topic-focus
articulation.

However, there are several differences. Note that d-structures can be non-projective
(tectogrammatical trees are projective by definition [23]) which is a direct consequence
of how long-distance dependencies are represented in f-structures. Furthermore, one
word can be represented by more than one d-structure node (for example, in languages
with incorporation).

[5] give a detailed description of the process of parallel grammar development. In our
approach, the correspondence between original LFG structures and d-structures poses
some (mostly technical) limitations on grammar writers. For example, f-structures of
synsemantic words (functional categories) must be ‘coheads’ of their functional cate-
gories (however, this is a general requirement in modern LFG according to [3]). Also,
GFs must conform to the strict constraints imposed by LMT.

Table 2 shows how many c-structures, f-structures and d-structures are identical (two
d-structures are identical if they have the same structure and edge labels) in a parallel

21 In free word-order languages, NPs and PPs usually have more rigid word order than clause
arguments and adjuncts, thus in an MT system, the module for syntactic synthesis of the target
language would reorder the d-structure according to language specific word-order rules.

22 For the sake of simplicity, we present only the tree structure. Attributes in the original f-
structure other then PRED are attached directly to the corresponding nodes.

Building a Formal Grammar for a Polysynthetic Language 241

Table 2. Identical c-, f- and d-structures in a parallel corpus

level identical representation
c-structure 7.8%
f-structure 38.3%
d-structure 69.5%

Aymara-Spanish corpus of 1,000 sentences. The Spanish grammar has been developed
for this experiment.

5 Conclusions and Further Research

We have presented a formal grammar for Aymara and pointed out some interesting
properties of the language and how they can be dealt with in the LFG framework.

As can be seen, the LFG framework can be easily used to develop formal grammars
of polysynthetic languages such as Aymara. While the rules we have developed cover
a large part of the Aymara syntax, the lexicon we have now needs to be expaned. Cur-
rently, we are focusing on refining sublexical rules, i.e., rules that handle word-internal
morphosyntax.

We have chosen LFG for our grammar because it has a solid formal linguistic foun-
dation while providing grammars that can be directly used in NLP. However, we are
developing the grammar for use in MT and LFG’s f-structures are still relatively
language-specific. To overcome this limitation, we have developed a fully automatic
procedure which induces d(ependency)-structures (deep syntax trees) that represent a
higher level of abstraction. Our d-structures are not only more suitable for cross-lingual
NLP tasks such as MT but they also disclose that LFG is, in its core, a dependency-based
formalism.

References

[1] Adelaar, W.: The Languages of the Andes. Cambridge University Press (2007)
[2] Beesley, K.R.: Finite-state Morphological Analysis and Generation for Aymara. In: Pro-

ceedings of the Global Symposium on Promoting the Multilingual Internet (2006)
[3] Bresnan, J.: Lexical-Functional Syntax. Blackwell Textbooks in Linguistics, New York

(2001)
[4] Briggs, L.T.: Dialectal Variation in the Aymara Language of Bolivia and Peru. Ph.D. thesis.

University of Florida (1976)
[5] Butt, M., King, T.H., Niño, M.E., Segond, F.: A Grammar Writer’s Cookbook. CSLI Publi-

cations (1999)
[6] Cerrón-Palomino, R., Carvajal, J.C.: Aimara. In: Crevels, M., Muysken, P. (eds.) Lenguas

de Bolivia. Plural Editores, La Paz, Bolivia (2009)
[7] Forssman, B.: Lettische Grammatik. Verlag J.H. Roell, Dettelbach (2001)
[8] Guzmán de Rojas, I.: ATAMIRI — interlingual MT using the Aymara language. In: New

Directions in Machine Translation (1988)
[9] Guzmán de Rojas, I.: El Software de Traducción Multilingüe ATAMIRI. In: Proceedings of

the VII Simposio Ibero-Americano de Terminologia e Indústrias da Língua (2000)

242 P. Homola

[10] Guzmán de Rojas, I.: Experience with language implementations in ATAMIRI. In: Proceed-
ings of the Workshop on Bolivian & Rhondonian Languages (2006)

[11] Hale, K.L.: Warlpiri and the grammar of non-configurational languages. Natural Language
& Linguistic Theory 1, 5–47 (1983)

[12] Hardman, M., Vásquez, J., de Dios, J.Y.: Aymara. Compendio de estructura fonológica y
gramatical. Instituto de Lengua y Cultura Aymara (2001)

[13] Heine, B., Kuteva, T.: World Lexicon of Grammaticalization. Cambridge University Press
(2002)

[14] Ishikawa, A.: Complex Predicates and Lexical Operations in Japanese. Ph.D. thesis. Stan-
ford University (1985)

[15] Kaplan, R.M., Bresnan, J.: Lexical-Functional Grammar: A formal system for grammatical
representation. In: Bresnan, J. (ed.) Mental Representation of Grammatical Relations. MIT
Press, Cambridge (1982)

[16] Kaplan, R.M., Netter, K., Wedekind, J., Zaenen, A.: Translation By Structural Correspon-
dences. In: Proceedings of 4th EACL, pp. 272–281 (1989)

[17] Kaplan, R.M., Wedekind, J.: LFG Generation Produces Context-free Languages. In: Pro-
ceedings of COLING 2000, Saarbrücken (2000)

[18] King, T.H.: Focus Domains and Information Structure. In: Butt, M., King, T.H. (eds.) Pro-
ceedings of the LFG Conference (1997)

[19] Kroeger, P.R.: Analyzing Syntax. Cambridge University Press (2004)
[20] Kruijff, G.K.: A Dependency-based Grammar. Tech. rep. Charles University, Prague, Czech

Republic (2000)
[21] Sadler, L., Crookston, I., Arnold, D., Way, A.: LFG and Translation. University of Texas at

Austin, pp. 11–13. LRC (1990)
[22] Sadler, L., Thompson, H.S.: Structural Non-Correspondence In Translation. In: Proceed-

ings of the 5th Conference of the European Chapter of the Association for Computational
Linguistics, pp. 293–298 (1991)

[23] Sgall, P., Hajičová, E., Panevová, J.: The Meaning of the Sentence in Its Semantic and
Pragmatic Aspects. D. Reider Publishing Company (1986)

[24] Wong, S.H.S., Hancox, P.: An Investigation into the Use of Argument Structure and Lexical
Mapping Theory for Machine Translation. In: Proceedings of the 12th Pacific Asia Confer-
ence on Linguistics, Information and Computation, Singapore (1998)

[25] Žabokrtský, Z., Ptáček, J., Pajas, P.: TectoMT: Highly Modular MT System with Tectogram-
matics Used as Transfer Layer. In: ACL 2008 WMT: Proceedings of the Third Workshop
on Statistical Machine Translation, pp. 167–170. Association for Computational Linguis-
tics, Columbus (2008)

Eliminating Ditransitives

András Kornai

Harvard University Institute for Quantitative Social Science
and Computer and Automation Research Institute, Hungarian Academy of Sciences

andras@kornai.com

Abstract. We discuss how higher arity verbs such as give or promise
can be treated in an algebraic framework that admits only unary and
binary relations and does not rely on event variables.

Introduction

Until the groundbreaking work of Russell (1900), ideas of semantic represen-
tation centered on the Aristotelian notion that the predicate inheres in (is at-
tributed to) the subject. In modern terminology, this amounts to admitting only
unary relations such as dog(x) or barks(y) and treating binary relations such as
marry(x,y) as the conjunction of unaries marry(x) & marry(y). (For greater
clarity, unaries will be given in typewriter and binaries in small caps font.)
As Russell pointed out, such an analysis will of necessity treat all binary rela-
tions as symmetrical, with intolerable consequences for those relations that are
asymmetrical such as greater than(x,y) or father of(x,y). A Davidsonian
analysis trivially eliminates ditransitives and higher arity verbs, but only at the
price of introducing an event variable, a step of dubious utility for statives like
has. We follow Russell in admitting at least one asymmetric relation, which we
will denote ‘<’, and perhaps a handful of others such as has(x,y) ‘x possesses y’
at(x,y) ‘x is at location y’, cause(x,y), etc.

While we are obviously not disputing Russell’s key observation, we believe
the remedy he proposed was far too radical, throwing out all the linguistic in-
sight that comes with the subject/predicate analysis. In this paper we propose
to retrench, both in terms of drastically reducing the number of available binary
relations and in terms of eliminating ternary and higher order relations entirely.
To illustrate the main ideas in Section 1 we begin with a typical higher arity
verb, promise, which is generally treated as involving at least three, but possibly
as many as five, open slots: an agent, the promissor; a recipient, to whom the
promise is made; the object of the promise; and perhaps an issue date and a
term date as in Alice promised Carol on Monday that she will get her twenty
bucks back before Friday. In Section 2 we present the tectogrammar, which has
its roots in the decomposition technique long familiar from generative semantics
(Lakoff 1968), whereby kill is analyzed as ‘cause to die’ and give as ‘cause to
have’ – we discuss what makes the current model immune to Fodor’s (1970)
critique. In Section 3 we present the formal model using a classic generalization

P. de Groote and M.-J. Nederhof (Eds.): Formal Grammar 2010/2011, LNCS 7395, pp. 243–261, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

244 A. Kornai

of finite state automata (FSA) and finite state transducers (FST), machines
(Eilenberg 1974). In the concluding Section 4 we discuss how this approach dif-
fers both from the standard model-theoretic approach and the less standard, but
widely used systems of knowledge representation by semantic networks such as
presented in Quillian (1969), Brachman (1979), or Sowa (2000), which retain a
fundamentally Aristotelian character. We argue that the elimination of ditransi-
tives makes possible a fundamental simplification in the network mechanism in
that we no longer need to deal with hypergraphs where ‘edges’ could be node
sets of arbitrary size – ordinary graphs will suffice.

1 The Semantics of Promise

What does it mean to make, and keep promises? As Rawls (1955:16) puts it,
“The point of the practice is to abdicate one’s title to act in accordance with
utilitarian and prudential considerations in order that the future may be tied
down and plans coordinated in advance”. Our goal is not to dispute what Rawls
says, indeed we take this to be a perfectly reasonable explanation of why the
social practice of promise keeping is useful, our goal here is simply to explicate all
the hidden implicational background assumed by Rawls and by users of English
in general.

A promise is a commitment to some future action or some state of affairs
that can be brought about by such action. It is assumed that the promissor is
someone who can either perform the action in an agentive fashion, or that the
promise pertains to the actions of someone or something under the control of the
promissor. Thus I will have the car ready by 8AM tomorrow or No, he won’t make
a mess are well-formed promises, while Water boils at 100 degrees centigrade I
promise is dubious usage, and You will win the lottery/I will cure your cancer
are suspect on their face. To make an explicit promise encompasses an implicit
statement by the promissor that they be capable of either performing the action
themselves, or be capable of inducing someone/something to perform it for them.
We will not have much to say about those cases, such as promising the boiling
point of water, that can be paraphrased as ‘I’m informing you’, beyond the
simple observation that this pertains to the knowledge state of the promissor,
and in fact the promissor would be the first to admit this. But we are crucially
interested in cases such as I will cure your cancer or I promise eternal life where
the ability of the promissor to deliver is in grave doubt.

Let X be a predicate of some sort, and let P (A,X, T0, T) be the statement
‘at time T0 A promises X will hold at time T ’. We need at least a concept of
linear order of time (since I promise you won’t have to wear a scarf tomorrow is
meaningful in a way that I promise you didn’t have to wear a scarf yesterday is
not) and the condition T0 < T . Further, we need a notion of agency that restricts
the overall set of promises to keepable ones, thus distinguishing I promise I will
bring the book tomorrow from I promise I will win the lottery tomorrow. Broadly
speaking, there are actions (or states of affairs – from here on we will just speak of
‘matters’) that are within our power, and there are matters that are not: fetching

Eliminating Ditransitives 245

a physical object generally falls in the first category, suddenly becoming wealthy
falls in the second. We need a predicate C(A,X, T) which means ‘agent A can
control matter X at time T ’. Such control can be physical, as in the case of
bringing the book, or purely notional, as in the case of a judge declaring some
contract null and void. It is here that the emptiness of the promise about the
boiling point of water becomes evident: clearly, whatever this boiling point is
(actually, it is 99.97 ◦C at normal atmospheric pressure), there is no person who
can change it.

So far, we have P (A,X, T0, T) ⇒ C(A,X, T) where the ⇒ is some sort of
normative implication: U ⇒ V means that if U is reasonable we can reasonably
expect V or, what is the same, if V does not hold U cannot be reasonably
expected. Thus, a reasonable person A will not promise that someone will win
the lottery because we (any reasonable person, A inclusive) don’t expect that A
can control the outcome of the drawing. If A is an employee of the sweepstakes
company the expectations are different, and a (criminal) promise can possibly
be made, but we’d still want to know a great deal more about the causal chain
whereby this control over the drawing (or perhaps over the recording or the
announcement of the results) is exerted. Notice that the test of reasonableness
is not any different for those cases where our default assumption is the presence,
rather than the absence, of control: we assume owners control their dogs and
parents control their babies, yet we remain slightly dubious in regards to promises
such as He won’t make a mess precisely because we don’t necessarily see the
promissor as having the requisite degree of control over the matter.

For control, at minimum we need a matter that can be both ways: unless
we haveM(X,T) andM(¬X,T) (whereM is some possibility operator ‘might’)
there cannot be any controller ofX . What doesM(X,T) mean? CertainlyX(T),
the fact that X holds at T , is sufficient to guarantee that X might hold at T ,
but it is either the case that X(T) or it is the case that ¬X(T) so knowing
the state of the matter X at T is insufficient – this is well-traveled ground in
modal logic. If the only possible worlds are the states of the actual world at
different time instances, M(X,T) implies ∃T1X(T1) ∧ ∃T2¬X(T2). If there are
different alternatives with different timelines this becomes more complicated, but
for our purposes we can get by with the simple view and our simple notion of
natural or default implication ⇒. Fortunately, we already have a different time
instance at hand, namely the time T0 when the promise is made. The thesis we
will defend here includes the somewhat radical abductive inference that this is
all that is required: the whole modal apparatus can be dispensed with in favor
of the view that a promise is actually a promise to change, P (A,X, T0, T) ⇒
(¬X(T0) ∧X(T)).

At first blush, such a view seems to disallow all promises aimed at keeping
some state of affairs intact. Since our goal is to offer a theory of ordinary language
use, ignoring canonical cases of promises, such as marital vows, which are rather
clearly aimed at preserving a certain state of affairs, is not an option, and we
need to discuss how these fit in our model. The key issue, as we shall see, is the
semantics of the modal operator might, which, as we will argue, already carries

246 A. Kornai

this implication of change. Before turning to this, let us simplify the example a
bit. Marital vows are rather complex in that they require the presence of two
agents and have an aspect of mutuality, so to simplify matters we use a promise
of (continued) non-smoking as our example. We claim that the difference be-
tween a promise to quit, This was my last cigarette, where smokes(T0) is to be
followed by ¬ smokes(T) for T > T0, and a promise to stay the course, where
the expectation is the exact same ¬ smokes(T) for T > T0, is a matter of accom-
modation: what is hearer assumes in such cases is that the non-smoking behavior
at T0 (the time of making the promise) was accidental. We make this argument
indirectly: suppose that ¬ smokes(T0) was not accidental, it was already the re-
sult of a promise. But renewal of a promise would be an empty gesture, for either
the original promise was valid, in which case it remains binding for all future
times, or it was not, in which case we cannot reasonably expect the promissor
to upheld the renewed promise in light of non-performance on the earlier one.
Therefore, by the usual quality implicature, we assume that any promissor is a
non-accidental non-smoker for the first time. A general consequence of this line
of argument is that it is pragmatically impossible to re-promise something.

Turning to the modalM we see that ∃T1X(T1)∧∃T2¬X(T2) does not exhaust
the meaning of M(X,T). First of all, if this were sufficient, from ∃T1X(T1) ∧
∃T2¬X(T2) we could concludeM(X,T ′) with any time T ′, whereas when we say
John might come Tuesday this is certainly not implicationally equivalent with
John might come Wednesday. Rather, might implies both agency and causal
control, so that when John might come this means both that it is within his
power to come and that unless he sets his mind on this it won’t happen. This
logic, being embedded in the lexical definition of the word might, is so strong
that it extends even to cases where our contemporary thinking fails to see causal
control, let alone agency and free will, to be at play. Consider the weather. When
we say The sun might shine what this means is that the Sun, as an agent, can
decide to come out from hiding behind the tree. The reference to the traditional
children’s song “Oh Mister Sun, Sun, Mister Golden Sun” may imply to some
readers that the primitive animistic viewpoint whereby the Sun has the power
to change its behavior is a vestigial remnant of a mode of thought restricted
to kindergarten, yet the Wall Street Journal will use the exact same language
about how stocks may rise or how the market can wipe out the gains it made in
the past two weeks.

So far, we have a unary modal operator M(X) that simply abbreviates the
fact that some matter X might come about, a binary modal operator M(X,T)
that says it might come about at time T , and a ternary operator M(A,X, T)
that says that it might come about at time T by the agency of A. For the
sake of completeness we could also add a binary operator M(A,X) that says
X might happen because of the agency of A but leaves the time unspecified.
The standard approach would be to take the operator with the maximum arity
as basic and define the others as special cases with some of the argument slots
of the basic operator filled by some default value or quantified over. Here we
take the opposite tack, and argue that the basic operator has just one slot, for

Eliminating Ditransitives 247

the matter X , and that the other slots are inherited from this simply because
‘matters’ in our sense can have agents, times, etc. But before getting into the
details of this mechanism in Section 2, let us summarize what we have so far:
promise is an ordinary verb whose agent X is also assumed, by default, to be
the causal agent who brings about the promised matter X . The object X of the
promise is typically expressed by an infinitival (as in She promised to come), a
future tensed that-clause (as in She promised that she will come) or simply as
some noun phrase or combination of noun phrases (as in She promised complete
immunity in return for a full confession). The time of making the promise, T0 is
in the past relative to the time T that is relevant for the object of the promise,
and from P (A,X, T0, T) we can conclude (⇒) both C(A,X, T) and ¬X(T0).

Under the assumptions made here predicate arguments are handled quite
differently from the way one would naively assign the participant roles. In the
case of immunity, we assume the promissor p is in a position to cause some
suspect s to have immunity against prosecution q for some misdeed d, and that
it is s who needs to confess to d. Yet the sentence is perfectly compatible with a
more loose assignment of roles, namely that the actual misdeed was committed
by some kingpin k, and s is merely a witness to this, his greatest supposed
crime being the withholding of evidence. This d′, being an accessory after the
fact, is of course also a misdeed, but the only full-force implication from the
lexical content of immunity is that there is some misdeed m that could trigger
prosecution against which s needs immunity, not that m = d or m = d′. The
hypothesis m = d is merely the most economical one on the part of the hearer
(requiring a minimum amount of matters to keep track of) but one that can be
defeased as soon as new evidence comes to light.

2 The Tectogrammar of Promise

Our method of analysis relies on unary (intransitive) predicates such as pro-

mise(X), prosecute(Y), commit(Z), misdeed(W), immune(V) and so forth,
and on some lexical implications, expressed in terms of binary (transitive) pred-
icates of what it means to do or have these things. (For now, we retain func-
tion/argument notation with variables to present these, but the formal system
defined in Section 3 will not make use of variables.) Since to the mathematical
logician the temptation to look at these as instances of Currying is almost irre-
sistible, we want to make clear at the outset that in what follows the operation
A(B) ‘apply A to B’ does not imply in any way that some intermediate function
which takes functions as arguments was created. In fact, there is no implication
that A or B are functions, and as we argue in Section 3, it is better to think
of them as algebraic structures of a particular kind, machines (Eilenberg 1974).
Yet somehow, with or without variables, the function-argument structure needs
to be specified, which is precisely the task of tectogrammar (Curry 1961).

In order to deal with the external (subject) argument, we introduce an op-
erator make for which the external argument is obligatory. Taking the nominal
meaning of promise as basic, this means that to promise is derived from this

248 A. Kornai

nominal by application of the (morphologically implicit) make: the expression
s promises X will be analyzed as make(s,promise(X)). The use of implicit op-
erators has a long tradition, going back at least to generative semantics where
the standard analysis of kill was ‘cause to die’. The use of unary operators is
less widespread, and implies a significant departure from the standard mode of
analysis whereby She promised immunity for a confession would be analyzed as
immunity being the object of the promise, and confession as a free adverbial,
outside the subcategorization frame of promise. The unary mode of analysis
forces us assume that there is a single element, immunity for a confession, that
is the object of the promise. What this means is that we must recognize an-
other silent element, one that we will call deal, ‘something for something’, as
an integral part of the analysis. This is confirmed by the communicative ease of
introducing a definite description in a following sentence The deal was rejected.
Further analysis of deal as ‘trade presented by the offeror as advantageous to the
other party’ would be possible, but we do not pursue this here, since the main
idea, that a promise has a single matter as its object, is already clear.

The same analysis is offered in regards to the time parameters, which are
also standardly viewed as free adverbials. It is clear that the making of the
promise has a temporal parameter. All finite verbs have an inflectional slot for
this purpose, so this much is clear irrespective of one’s stance on using an implicit
make operator. This is the parameter we denoted by T0 above. A consequence
of our analysis is that if the object X has a time parameter T this is part of the
promise, rather than being a free adverbial: if ¬X(T) the promise is considered
unfulfilled.

Again, the same analytic method can be applied to the causation predicate
C(A,X, T): instead of three direct arguments, we assume that the agent A is the
subject of a head operator make and the object X may, but need not, carry a
temporal parameter of its own. There are many subtle issues concerning temporal
causation, e.g. when by placing a bomb in Bob’s car on Monday Alice causes Bob
to die on Tuesday, but we can largely skirt these as the central issue here is the
promise, rather than the causal control required to keep it. It is worth keeping in
mind that the typical failure mode of promises is not by failure to exert causal
control but rather bad faith or forgetting: in most cases of broken promises the
promissor could have done the right thing but didn’t, out of forgetfulness, or
simply because the promise was not in earnest to begin with.

Finally, the same method works forM : there is a single argument, some matter
X that might come about, but there is no time parameter other than the one
that X may bring in, and for agentless cases there is no agent either. Thus It
might rain is formulated M(rain) and It might not rain is formulated M(¬rain).
Based on the analysis offered so far, these two mean the same. However, if we
consider the agentful cases, such as John might insist on a vegetarian meal,
which is M(John insists) and John might not insist on a vegetarian meal, which
isM(John ¬ insists) the implications are very different: in the first case we better
tell the caterers is reasonable, in the second maybe we don’t have to bother the
caterers is. Notice, however, that these implications concern our future plans not

Eliminating Ditransitives 249

those of the agent: for the might rain case we better set up a tent is reasonable,
for the might not rain case maybe we don’t have to set up a tent is. What is
really at stake are the plans of the hearer (irrespective of whether the act is by
God or by John) to which we turn now.

In Rawls’ words, promises are means to tie down the future. Simply put,
P (A,X, T0, T) is kept by X ⇒ X(T) or, by contraposition, it is reasonable to
infer that the promise was not kept (or no promise was made) if we observe
¬X(T). By the analysis presented above, both time and agent parameters can
be eliminated from the argument structure: a promise X is kept if X , broken
if ¬X . If Alice promises Carol twenty dollars, and Bob, a mutual friend, gives
it to Carol the next day saying that it came from Alice, Carol will consider
Alice’s promise kept. If Bob just leaves the money on Carol’s desk, Carol will
not particularly know (or care) whether it came directly from Alice or not, she
will likely assume that it did. However, if Carol finds the twenty dollar bill
on the pavement she will not assume that Alice kept her promise. What this
little example shows that the assumption of causation is still very much part
of the meaning of promise. But if P (A,X, T0, T) ⇒ C(A,X, T) is now replaced
by P (X) ⇒ C(X), what means do we have to guarantee the identity of the
promissor and the causer?

To answer this question we must invoke the external argument (Roeper 1987,
Sichel 2009). Recall that the object of the promising, the matter X, is a promise
because the promissor A made this promise. How did A make the promise?
Obviously, she was doing things with words, she said I promise. It is evident that
the agent of a performative is the performer, and the way to create a performative
is by saying it. Rather than analyzing s promises X as make(s, promise(X))
we will take into account the specific manner of making and analyze it as say(s,
promise(X)) or better yet, say(s, P) where the object of the saying happens
to be a promise P . Notice that the exact same analysis is available for other
performatives such as deny or name (as in I name this ship Marie Celeste): all
that is required is to have a denial, or a name, as the object of saying.

Saying requires a recipient the same way causation requires an agent. It is
possible that the default recipient is everyone, as in proclaim, or some higher
power, as in swear, and in fact swearing (an oath) is meaningless without the
assumption of such a higher power. But in the cases of central interest, com-
munication between individuals for the purpose of making plans, promises are
made to the hearer by the speaker, and the implication P (X) ⇒ C(X) can be
kept: the maker of the promise, the sayer, is the person held responsible for caus-
ing X to come about. Given our larger commitment to eliminate higher arity
predicates, introducing a ditransitive say(A,O,R) is a step of dubious utility. To
simplify the analysis, we therefore take say to be analogous to give and analyze
it as ‘give words’. By giving a physical object X to R we create a situation where
has(R,X) will be true. By giving our word, we create a promise.

Adding the recipient to the picture, the analysis becomes s promises X to R
meaning s causes R to have s’s word that X or simply cause(R, has(s,word(X)).

250 A. Kornai

It is not necessary for the promise to be addressed to the recipient, in fact a
strong promise may explicitly invoke some higher recipient such as God. The
real issue is how this giving of words, especially to beings whose very existence
is doubtful, can nevertheless facilitate ‘tying down the future’. As Rawls argues,
a promise is a promise to refrain from reevaluating later i.e. to go with the
valuation at the time of the promising. When Alice says on Monday Carol you
will get your twenty bucks back before Friday what this means that on Monday
Alice values highly Carol’s having the money by Friday, and will do things to
make this happen, such as going to the ATM and withdraw cash on Tuesday, or
begging Bob to loan her a twenty on Wednesday so that she can pay Carol back.

Generative semanticists were largely content to use natural language para-
phrases, saying kill means ‘cause to die’. Here we sketched a theory that is only
slightly more formal, saying x kill y means ‘x CAUSE die(y). By introduc-
ing explicit role variables, and typographically encoding the distinction between
unary and binary predicates, the notation is more capable of exposing the tec-
togrammar than reliance on the infinitival to. This actually neutralizes a central
point of Fodor’s (1970) critique of the generative semantics analysis, because
arguments concerning the placement of pronouns are no longer applicable. (As
a matter of fact, subsequent developments in binding theory also rendered this
kind of criticism irrelevant.)

The key reason for using to in the paraphrase was the commitment that gener-
ative semantics had to utilizing phrase-markers (context-free trees) as underlying
structures, and the assumption that deep structure is the appropriate place to fix
the lexical category of the words (Lakoff 1968). It is clear from the foregoing that
we are quite content treating promise as entirely neutral between nominal and
verbal, and forming the verbal version by zero affixation of make. This is one
point where the work presented here departs quite strikingly from the generative
semantics tradition, reaching back straight to Pān. ini, who also was a generative
semanticist in the sense of deriving surface form from underlying meaning, but
was also more of a morphologist, deriving both nominal and verbal forms from
the same root.

Fodor’s final argument is based on on the perceived arbitrariness of the de-
composition: why stop at ‘cause to die’, why not go to ‘cause not to live’ or
‘cause not to have life functions’ and so on? This criticism is pertinent not just
to generative semantics, but in fact to any system where the meaning of one
entity is described in terms of other entities. There are two known ways out:
first, designating a fixed set of primitives where decomposition stops. This is
the approach taken both by the Longman Dictionary of Contemporary English,
where a set of about two thousand primitives is used (Boguraev and Briscoe
1989), and by the NSM school (Wierzbicka 1985). The second way out is to use
an algebraic, rather than logic-based, theory of decomposition (Kornai 2010a),
which is immune to the charge of arbitrariness of primitives the same way linear
spaces are independent of the choice of basis we use to present them: the choice
is arbitrary, but one choice is just as good as the other.

Eliminating Ditransitives 251

3 The Formal Model

For Russell, whose chief interest was with providing logical foundations for math-
ematics and the sciences, the Aristotelian maxim of Leibniz that predicates are
inherent in their subject was completely untenable, since such an assumption
would make it impossible to handle asymmetric cases like the predicate father.
The differences between Mick fathered Mixon and Mixon fathered Mick are eas-
ily seen in the implications (defaults) associated with the superordinate (parent)
and subordinate (child) slots: the former is assumed to be independent of the
latter (already existed before the act of fathering took place), the latter is as-
sumed to be dependent on the former, the former controls the latter (in the same
everyday sense of control that we used so far, not in the grammatical sense), and
not the other way around, etc.

In our treatment of verbs, it will indeed be necessary to admit at least one
asymmetric relation, which we will denote ‘<’, and perhaps a handful of others
such as has(x,y) ‘x possesses y’ or at(x,y) ‘x is at location y’. At the same time,
we are more parsimonious with relations than Russell, for whom the existence
of a single asymmetrical relation was sufficient reason to open the floodgates
and admit all kinds of relations, and presented a theory in which no ternary
relations are used in the definiens. We illustrated our method of analysis on a
hard case, promise, that is standardly thought to require at least three, and
possibly as many as five, arguments, and argued that at the tectogrammatical
level it has only one argument, the thing that is being promised. All other
arguments are linked in either externally (the promissor, by the matrix verb
make) or recursively, by invoking the frame of the act of promise-making (which
we analyzed as an act of giving words), or the frame of the matter being promised.

To round out this picture what we need is a theory of the representational
objects, one that describes how semantic representations are formed, maintained,
and destroyed (see 3.1) and a theory of bookkeeping that tells us how such objects
can act as slot-fillers in the tectogrammar (see 3.2). (Ideally, we would also want
an account of the phenogrammar, how all these steps are realized on the surface,
but this is clearly beyond the scope of this paper.)

3.1 Representation by Machines

Fortunately, a good theory of representational objects is already at hand: these
are the machines of Eilenberg (1974). In brief, a machine is a mapping between
the alphabet of some FSA and the relation monoid of some set X. Eilenberg
intended machines to be an algebraic formulation of the flowcharts widely used
at the time for describing the structure of computer programs – we will use them
to represent the meaning of morphemes, words, phrases, sentences, and texts
alike. The FSA is used as the control of the device just as in Turing Machines,
and the relations are best thought of as transformations of the base set X that
the machine is about.

Definition 1. A machine with an alphabet Σ over a base set X is given by an
input set Y; an output set Z; a relation α : Y → X called the input code; a relation

http://en.wikipedia.org/wiki/Flowchart

252 A. Kornai

ω : X → Z called the output code; a finite state automaton 〈S, T, I, F 〉 over Σ
called the control FSA; and a mappingM of each σ ∈ Σ to some φ ∈ Φ ≤ 2X×X .

Since our objects are semantic representations for natural language expressions
rather than flowcharts, we need to tweak this definition a bit. As we are not
dealing with the phenogrammar, we can safely ignore the input and output
mappings, which are primarily formal tools for transducing input to, and output
from, the machine. This will simplify the definition, but we also need to compli-
cate it a bit: we need to be more specific about the base set X , whose elements
will be called partitions, and we will need to designate one of these partitions as
the head. One partition (conventionally numbered as the 0th member of the set
X) will contain the phonological form (printname) of the machine, the other(s)
will store information relating to the argument(s).

We will call the machines so defined lexemes, and informally it is best to think
of these as monolingual dictionary entries (see Kornai 2010). One characteristic
difference between the model-theoretic and the more cognitively inspired theo-
ries of lexical semantics is the type structure: Montague Grammar relies on a
strict set of intensional and extensional types, with n-ary predicates and rela-
tions, while lexical semantics is generally conceived of in network terms, with
only two main types, graph nodes corresponding to lexemes, and graph edges
corresponding to various links, directed or undirected. From the perspective of
strict typing, it is natural to ask how property bundles are composed: for exam-
ple, if properties correspond to qualia, is it simply the case that adjectives are
qualia and nouns are bundles of qualia? From the perspective of the essentially
type-free network theory, the main question is to sort out the kinds of links
permitted by the model (Woods 1975). Here we will try to sketch an answer to
both kinds of questions.

Primitive lexemes come in two subvarieties, unary and binary: the classes will
be denoted by U and B and the instances written in typewriter font and
small caps respectively. Most lexical entries, not just nouns, adjectives, and
intransitive verbs, but also verbs of higher arity (transitives, ditransitives, etc.),
both in predicative and in substantive forms, are viewed as unary, and the binary
category is reserved primarily for adpositions (both pre- and postpositions) and
case markers. With adpositions, it is very hard to see how expressions signifying
pure spatial relations such as under or near could be given a satisfying model
without reference to the pairs of objects standing in the named relation, and
from a grammatical perspective it is quite clear that case markers behave very
similarly (for a modern summary, see Anderson 2006). There are a few stray
examples elsewhere in the system of grammatical formatives, such as the posses-
sive relation, generally not regarded a true case, and the comparative morpheme
-er, but it is clear that on the whole binary lexemes are restricted to a small,
closed subset of function words, while the large, productive classes of content
words are all unary under the analysis offered here.

Definition 2. The surface syntax of lexemes can be summarized in a Context-
Free Grammar (V,Σ,R, S) as follows. The nonterminals V are the start symbol
S; the binary relation symbols B which can include ‘<’, cause, has, ... etc.

Eliminating Ditransitives 253

taken from some small fixed inventory of deep cases, thematic roles, grammatical
functions, or similarly conceived linkers; and the unary relation symbols collected
in U . Variables ranging over V will be taken from the end of the Latin alphabet,
v, w, x, y, z. The terminals are the grouping brackets ‘[’ and ‘]’, the derivation
history parentheses ‘(’ and ‘)’, and we introduce a special terminating operator ‘;’
to form a terminal v; from any nonterminal v. The rule S → U |B|λ handles the
decision to use unary or binary predicates, or perhaps none at all. The operation
of attribution is captured in the rule schema w → w; [S∗] which produces the
list defining w. (This requires the CFG to be extended in the usual sense that
regular expressions are permitted on the right hand side, so the rule really means
w → w; []|w; [S]|w; [SS]|...) Finally, the operation of predication is handled by
u → u; (S) for unary, and v → Sv;S for binary nonterminals.

Our interest is both with the terminal yield of the grammar (V,Σ,R, S) and
the sentential forms that still contain nonterminals. The meaning postulates are
specific instances of the attributive rule schema w → w; [S∗] which produces the
list defining w and the predicative schemas u → u; (S) and v → Sv;S. Whenever
such a postulate is used, the definiendum x is terminated (replaced by the ter-
minal x; and thus no longer available for further rewriting), but the substantive
terms that occur in the definiens are still in nonterminal form. Before draw-
ing many conclusions from the fact that the syntax is defined as context-free
it is worth emphasizing that this is pure syntax. Thus, dog eq four-legged,

animal, hairy, barks, bites, faithful, inferior is a well-formed equa-
tional formula defining the dog, but so is cat eq barks – the syntax is entirely
neutral as to whether this is true or what sense it makes. The standard method
of trying to make sense of such formulas would be to interpret them in model
structures, and failure to do so is generally seen as failure of connecting language
to reality (Lewis 1970, Andrews 2003). Yet, as we have argued elsewhere (Kornai
2010b), such an effort is bound to misfire wherever we encounter language that
is not about reality.

Consider Pappus tried to square the circle/trisect the angle/swallow a melon.
In one case, we see Pappus intently studying the works of Hippocrates, in the
other we see him studying Apollonius, and in the third case we see him in the
vegetable patch desperately looking for an undersized melon in preparation for
the task – clearly the truth conditions are quite different. We may very well
imagine a possible world where throats are wider or melons are smaller, but we
know it for a fact that squaring the circle and trisecting the angle are logically
impossible tasks. Yet to search for a proof, be it positive or negative, is quite
feasible, and the two searches lead us into different directions early on: squaring
the circle begins with the Hippocratic lunes, and culminates in Lindemann’s 1882
proof, while trisecting the angle begins with the Conics of Apollonius and does
not terminate until Wantzel’s 1832 proof. The problem is not with nonexistent
objects such as superwide throats, for which the intensional treatment of opacity
works fine, but also necessarily nonexistent objects whose extension is empty
at every index. (To make matters worse, we rarely know in advance whether
something fails to exist by accident or of necessity.)

254 A. Kornai

In truth, it is not just the existence of hard hyperintensionals that stands in the
way of ever completing the program of model-theoretic semantics – the failure of
this approach is more evident from ordinary sentences than from subtle technical
notions concerning hyperintensionals, which may yet get resolved by work such
as Pollard (2008). Consider, for example, the following statement, (Jonathan
Raban, NYRB 04/12/07): There is in Sullivan’s makeup [] an Oxford debater’s
ready access to the rhetoric of condescending scorn. Clearly, this is a completely
meaningful, non-paradoxical sentence, which conveys good information about
Sullivan to the readers of the New York Review, yet attempts to analyze it in
terms of satisfaction in model structures are fruitless. It is quite unclear who is,
and who isn’t, an Oxford debater, or how we could go about distinguishing an
Oxford from a Harvard debater in terms of the set of people involved (especially
as most debaters are perfectly capable of switching between the various styles of
debate). The same can be asked about every constituent of the sentence: where
is, in a model structure, someone’s makeup, and what kind of objects r are we
sifting through to determine whether r is or is not part of Sullivan’s makeup?
What is scorn, and are Lewis’ (1970) remarks on Markerese really exemplars
of the condescending variety, or are they, perhaps, well reasoned and not at all
scornful?

The semantics that attaches to the lexeme-based representations defined
above by purely syntactic means is of a different kind. We may not have a
full understanding of the relation x has ready access to y, but we do know that
having ready access to something means that the possessor can deploy it swiftly
and with little effort. What the sentence means is simply that Raban has studied
the writings of Sullivan and found him capable of doing so, in fact as capable as
those highly skilled in the style of debate practiced at the Oxford Union where
condescension and scorn are approved, even appreciated, rhetorical tools. It is
basically left to the reader to supply their own understanding of condescension
and scorn, and there is no reason to believe that this understanding is framed
in terms of specifying at every index whether something is condescending or
scornful. Rather, these terms are either primitives, or again defined by meaning
postulates.

A defining characteristic of this network of definitions is that little semantic
distinction can be made between verbs like to promise, to prosecute, to commit,
to (be/make) immune, to *misdo, their substantive forms promising, prosecut-
ing/prosecution, commitment, immunity, *misdoing, and their cognate objects
the promise, the prosecution, the commitment, the misdeed. In this respect, the
underlying type system proposed here is considerably less strict than that of
Lakoff (1968), where deep structure was assumed to be the appropriate place
for fixing the lexical categories of the words. But this kind of loose typing, the
necessity of which is a central claim in Turner (1983, 1985), is quite suitable
for a purely lexical theory, like that of Pān. ini, which can capture the essential
grammatical parallelism between active, passive, and stative constructions (see
Kiparsky 2002:2.2). We also stay close to the Pān. inian model in assuming that
the argument structure, such as it is, is created by the linkers. To illustrate

Eliminating Ditransitives 255

the mechanism, consider give(x,y,z), which is standardly analyzed as as ‘trans-
ferring possession of y from x to z’. From our perspective, such an analysis is
assuming too much, because when we say The idea gave him the shivers one
cannot reasonably conclude that the shivers were originally in the idea’s posses-
sion, and when we say Mary gave him typhoid, we cannot conclude that Mary
ceased to have typhoid just by giving it to him. Thus we have a simpler analysis,
cause(x,has(z,y)) ‘cause to have’ where cause is used to denote the agentive
linker.

It is worth noting that the formalism offered above does not rely on func-
tion/argument notation and variables at all. To do away with these entirely,
we already fixed the notation: since the binary operators can be written infix,
while unary operators are written prefix, parens are sufficient to fix the location
(though not the identity) of the variables: a formula such as x cause(z has y),
can be reduced to cause(has). The example is only illustrative of the formal
mechanism – this is not the place to recapitulate the subtleties of causation
discussed in Talmy (1988), Jackendoff (1990:72) and elsewhere in the linguistic
literature. By assuming right association most parens can be omitted, only those
signaling left association need be retained to disambiguate application order if
necessary (so far we have not found actual examples). For grouping, braces will
be used, so that the conjunctive feature bundles defining nouns can be kept
together. Such a tight notation does not leave a great deal of room for scope am-
biguities, but as we have argued in some detail elsewhere (Kornai 2010a), this
entails little loss in that universally quantified expressions, outside the technical
language of mathematics, are read generically rather than episodically.

Eliminating variables is a significant step toward bringing the formalism closer
to the network diagram notation familiar from many works in lexical semantics
and Knowledge Representation (for a good selection, see Findler 1979, Brachman
and Levesque 1985). We cannot discuss the network aspect of the theory here in
sufficient detail, but we note that in the machine formalism the proliferation of
links, characteristic of many network theories, is kept under strict control. This
is achieved by two means: first, is a links are derived rather than primitive (see
Kornai 2010), and second, by the elimination of ditransitives.

Were we to permit ditransitives and higher arity predicates as primitives, we
would need as many kinds of links as the maximum arity predicate has argu-
ments, and to the extent this number is treated as an unlimited resource (as in
some analyses of serial verbs) we would need to countenance an infinite number
of link types. As it is, we are restricting the theory to only two kinds of links:
those corresponding to substitution of the first argument, and those correspond-
ing to the substitution of the second (as a matter of fact, ergative/absolutive
classification of links would be just as feasible, but we do not pursue this alter-
native here).

3.2 Slot-Filling

The only fundamental aspect of the theory not discussed so far is the book-
keeping, how to specify which empty slot in a machine corresponds to which

256 A. Kornai

verbal argument, how to guarantee that no slot gets filled twice, and in case of
obligatory arguments, how to guarantee that the slot does get filled. Recall that
Definition 1 contains two moving parts, an FSA and a base set X , as well as a
mapping from the alphabet of the automaton to the set of relations over X . This,
we claim, is already sufficient for the purposes of tectogrammar. Unaries, by their
very nature, have only one slot to be filled, so linking something there requires
no traffic signals: wherever X is an unary and Y is an arbitrary machine X(Y)
is obtained by placing an instance of Y on the one and only non-phonological
partition of X .

For the binary case, consider Mick fathered Mixon and assume that father is
a relational noun or that to father is a transitive verb. What we wish to obtain
(using infix notation) is Mick father Mixon rather than Mixon father Mick

or Mixon, Mick father or something else. We will ignore the tense marking,
and we will assume a rather sophisticated phenogrammar that has already suc-
ceeded in turning the surface expression into Mick-nom, Mixon-acc, father.
In English, the nominative and accusative linking is provided by word order, in
other languages it may very well be provided by overt case marking. (In fact,
it is slightly wrong to use the terms nominative and accusative in that the two
slots may as well be linked by ergative and absolutive case, but this affects only
the phenogrammar of the language in question, not the mechanism proposed
here.)

It is sufficient for the alphabet of the control automaton of the father ma-
chine to distinguish three elements, those NPs that are nominatively marked,
for which we use the letter n, those accusatively marked, for which we use the
letter a, and all others, denoted by o (see Fig 1). Since to father is transitive, the
control FSA will be a square, with a start state we denote by �, an accepting
state •, and two other states serving as counters for unfilled valences. The lan-
guage accepted by the automaton is the shuffle product of exactly one a, exactly
one n, and an arbitrary number of os.

◦

o

�� a �� •

o

��

�
o

��

n

��

a �� ◦

n

��

o

��

Fig. 1. FSA for transitive verbs

The control is used to define a mini-language that checks the tectogrammatic
conditions: for example for verbs that alternate in transitivity such as eat the
top left state could also be defined accepting, so that Mick ate, unlike *Mick
fathered, would come out as grammatical.

The mapping M is also part of the bookkeeping mechanism. Continuing with
the example of father, let us denote the two partitions 1 and 2. The relations
possible over these include F = {(1, 1), (1, 2), (2, 1), (2, 2)}; I = {(1, 1), (2, 2)};

Eliminating Ditransitives 257

P = {(2, 2)} and Q = {(1, 1), } (there are a total of 16 relations over two
elements, but the others need not concern us here). Here we map by M the
letter o on the identity relation I, the letter a on the projection P and the letter
n on the projection Q. As we build up a string, we are also building up a product
of relations, so from starting the full relation F , by the time we multiplied with
exactly one P , one Q, and any number of Is, we arrive at the empty relation.
The mechanism is flexible enough to handle complex relation-changing verbal
affixation rules such as passivization or causativization.

Finally, let us consider how the ‘cause to have’ analysis of give is formalized
using machines. The square FSA of Fig. 1 is replaced by a cube, whose edges are
now labeled n(ominative), d(ative), a(ccusative), and o(ther), though the loops
labeled o that appear over each vertex are omitted from the figure for clarity.

◦ n ��

d ��

◦

d

��

�
a 		���� n ��

d

��

◦
a 		����

d

��

◦ n �� •

◦ n ��

a 		����
◦
a 		����

Fig. 2. FSA for give

Assuming all three arguments are obligatory, there is only one accepting state,
the bottom back right corner of the cube. The base set X has three members
(not counting the phonological partition), which are obtained by substituting
the has machine in the second (subordinate) partition of the cause machine. In
a network diagram, this is depicted as Fig 3 below, with nodes both for binary
and unary machines, and different coloring (straight vs. dotted) of the edges to
make clear which edge originates in the first, and which in the second partition
of the binaries.

cause

��

�� has

��

�� y

x z

Fig. 3. Base set for give(x,y,z)

4 Conclusions

Since grammars need to capture tectogrammatical generalizations, some form of
slot-filling mechanism, such as the f -structure of LFG or the subcat mechanism
of HPSG, is clearly needed for dealing with predicate-argument structure. In-
deed, the need is felt so strongly that a variety of linguistic theories such as case
grammar (Anderson 2006), valency theory (Somers 1987) and tagmemics (Pike

258 A. Kornai

1960) posited slot filling as the basic (and in some cases, the only) mechanism
for describing syntactic phenomena.

¿From a formal standpoint the most immediate mechanism for slot-filling is
to use some kind of variable binding term operators, typically lambdas, as in
λxλyλz give(x, y, z). Once we take this step, the elimination of ditransitives,
and indeed the elimination of transitives, becomes a trivial matter of curry-
ing, and attention is shifted to other aspects of the system: as is well known
(Marsh and Partee 1984), variable binding itself is a formally complex operation,
with attendant difficulties for creating effective parsing/generation/acquisition
algorithms.

In the machine formalism propounded here it would actually be possible to
have ditransitives or even higher arity predicates, but only at a computational
cost that increases superexponentially. For technical reasons n-ary predicates
require machines with base set cardinality |X | = n+ 1 (the 0th slot is used for
storing the phonological, morphological, and other position-independent infor-
mation) so the number of distinct binary relations φ is 29 = 512, the number of
ternaries would be 216 = 65, 536, the number of quaternaries 225 = 33, 554, 432
and so on.

Note that the empirical distribution of higher arity verbs drops off rather
sharply: in English we have tens of thousands of intransitive and transitive
verbs, but only a few hundred ditransitives, and only a handful of candidates
for tritrasitive or higher arity. Following Schank (1973), the single most fre-
quent class is physical transfer (PTRANS) verbs such as give, get, bring and
negative PTRANS such us bar, block, keep – altogether less than thirty exam-
ples including portmanteau manner-qualified forms such as throw, toss and mail
where the indirect object is arguably optional. The next most frequent class is
mental transfer (MTRANS) verbs like signal, promise, inform, show followed by
transfer of possession (ATRANS) verbs such as award, bequeath, remit and their
negatives such as begrudge, deny. or refuse. The M and A classes already show
signs of morphological complexity, and in languages that have overt causative or
benefactive morphology the higher arity classes are somewhat larger, but still a
small fraction in terms of token frequency.

This faster than exponential frequency dropoff is hard to grasp from the
variable-binding standpoint, where currying is always available, but makes per-
fect sense from the machine standpoint, where creating (acquiring) and operating
(during parsing and generation) larger machines would require disproportionally
larger resources. In this regard, the current work fits far better with variable-free
(Szabolcsi 1987, Jacobson 1999, Steedman 2001) than with mainstream seman-
tics. However, the fit is far from perfect, in that machines are best thought of
as a means of capturing the structure of meaning postulates, rather than as
a calculus for compositional meaning. Of the two, we actually consider lexical
(non-compositional) structure the higher priority task, given that the primary
information source in a sentence, responsible for over 85% of the information
conveyed, is the choice of the words, rather than the grammatical structure,

Eliminating Ditransitives 259

which accounts of less than 15% (see Kornai 2010 for how these numbers are
obtained).

Altogether, the theory presented here fits better with the ‘cognitive’ approach
pursued by Jackendoff, Talmy, Langacker, Fauconnier, Lakoff, Wierzbicka, and
many others, and with the whole network tradition of Knowledge Representation
originating with Quillian (1967) and Schank (1973). One issue that has put
the cognitive work on a less than equal footing with the Montague Grammar
tradition was the naive formalism (famously dubbed ‘markerese’ by Lewis 1970),
and part of our goal is to provide a formal apparatus that is capable of restating
the linguistic insights of the cognitive work in a theory that is sufficiently formal
for computer implementation.

Readers familiar with the history of network theories will know that one of the
key implementational issues is the variety of links permitted in the system (see
in particular Woods 1975), and in this regard the elimination of ditransitives is
a key step. In a network graph, every edge from a node x to some node y and
bearing the label l is of necessity an ordered triple (l, a, b) i.e. an information
structure with three slots. A theory that makes the claim that these are not
unanalyzed primitives but can be built from simpler, binary structures enables
reduction of complexity across the whole system. Specifically, we claim that
there are only two kinds of links (depicted by full vs. dotted lines in Fig.3),
corresponding to the superordinate (first) and the subordinate (second) slot of
binary relations. There is no claim that first always means ‘1’ or subject, and
second means ‘2’ or object, the formal theory presented here is quite capable
of handling mismatches such as experiencer subjects. The claim is simply that
there is never a ‘3’ or indirect object on a par with the first two arguments.

To summarize, we have repurposed Eilenberg’s machines as a simple, variable-
free mechanism for decomposing the meaning of higher arity relations and keep-
ing track of the tectogrammar (function-argument structure). This is the hard
case: extending the system to adjectival and adverbial modifiers is trivial and
requires no further machinery (see Kornai 2010). The result is a formalism con-
ducive to the style of grammatical analysis familiar from Pān. ini and from gen-
erative semantics, and capable of encoding the semantic insights developed from
Aristotle to contemporary knowledge representation and cognitive semantics.

Acknowledgments. We thank Donca Steriade (MIT) for comments on an
earlier draft. Work supported by OTKA grants #77476 (Algebra and algorithms)
and #82333 (Semantic language technologies).

References

References

Anderson, J.: Modern grammars of case: a retrospective. Oxford University Press
(2006)

Andrews, A.: Model-theoretic semantics as structural semantics. ms, ANU (2003)

260 A. Kornai

Boguraev, B.K., Briscoe, E.J.: Computational Lexicography for Natural Language Pro-
cessing. Longman (1989)

Brachman, R.: On the epistemological status of semantic networks (1979)
Brachman, R., Levesque, H.: Readings in knowledge representation. Kaufman Publish-

ers Inc., Los Altos (1985)
Curry, H.B.: Some logical aspects of grammatical structure. In: Jakobson, R. (ed.)

Structure of Language and its Mathematical Aspects, pp. 56–68. American Mathe-
matical Society, Providence (1961)

Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press (1974)
Findler, N.: Associative Networks: Representation and Use of Knowledge by Comput-

ers. Academic Press (1979)
Fodor, J.: Three reasons for not deriving “kill” from “cause to die”. Linguistic In-

quiry 1(4), 429–438 (1970)
Graham, A.C.: Two Chinese Philosophers, London (1958)
Jackendoff, R.S.: Semantic Structures. MIT Press (1990)
Jacobson, P.: Towards a variable-free semantics. Linguistics and Philosophy 22, 117–

184 (1999)
Kiparsky, P.: On the Architecture of {P}\={a}\d{n}ini’s grammar. ms, Stanford Uni-

versity (2002)
Kornai, A.: Mathematical Linguistics. Springer (2008)
Kornai, A.: The algebra of lexical semantics. In: Jäger, G., Michaelis, J. (eds.) Pro-

ceedings of the 11th Mathematics of Language Workshop. FoLLI Lecture Notes in
Artificial Intelligence. Springer (2010a)

Kornai, A.: The treatment of ordinary quantification in English proper. Hungarian
Review of Philosophy 54(4), 150–162 (2010b)

Lakoff, G.: Pronouns and reference (1968)
Lewis, D.: General semantics. Synthese 22(1), 18–67 (1970)
Marsh, W., Partee, B.: How non-context-free is variable binding? In: Cobler, M., MacK-

aye, S., Wescoat, M. (eds.) Proceedings of the West Coast Conference on Formal
Linguistics III, pp. 179–190 (1984)

Pike, K.: Language in Relation to a Unified Theory of the Structure of Human Behavior.
Mouton, The Hague (1960)

Pollard, C.: Hyperintensions. Journal of Logic and Computation 18(2), 257–282 (2008)
Quillian, M.R.: The teachable language comprehender. Communications of the

ACM 12, 459–476 (1969)
Rawls, J.: Two concepts of rules. The Philosophical Review 64(1), 3–32 (1955)
Roeper, T.: Implict arguments and the head-complement relation. Linguistic In-

quiry 18, 267–310 (1987)
Russell, B.: The Philosophy of Leibniz. Allen und Andwin (1900)
Schank, R.: The Fourteen Primitive Actions and Their Inferences. Stanford AI Lab

Memo 183 (1973)
Sichel, I.: New evidence for the structural realization of the implicit external argument

in nominalizations. Linguistic Inguiry 40(4), 712–723 (2009)
Somers, H.L.: Valency and case in computational linguistics. Edinburgh University

Press (1987)
Sowa, J.: Knowledge representation: logical, philosophical, and computational founda-

tions, vol. 594. MIT Press (2000)
Steedman, M.: The Syntactic Process. MIT Press (2001)
Szabolcsi, A.: Bound variables in syntax – are there any? In: Gronendijk, J., Stokhof,

M., Veltman, F. (eds.) Proceedings of the 6th Amsterdam Colloquium. Institute for
Language, Logic, and Information, Amsterdam, pp. 331–351 (1987)

Eliminating Ditransitives 261

Talmy, L.: Force dynamics in language and cognition. Cognitive Science 12(1), 49–100
(1988)

Turner, R.: Montague semantics, nominalisations and Scott’s domains. Linguistics and
Philosophy 6, 259–288 (1983)

Turner, R.: Three theories of nominalized predicates. Studia Logica 44(2), 165–186
(1985)

Wierzbicka, A.: Lexicography and conceptual analysis. Karoma, Ann Arbor (1985)
Woods, W.A.: What’s in a link: Foundations for semantic networks. Representation

and Understanding: Studies in Cognitive Science, 35–82 (1975)

Lambek Grammars with the Unit

Stepan Kuznetsov

Department of Mathematical Logic and Theory of Algorithms,
Faculty of Mechanics and Mathematics, Moscow State University

skuzn@inbox.ru

Abstract. Pentus’ theorem states that any language generated by a
Lambek grammar is context-free. We present a substitution that reduces
the Lambek calculus enriched with the unit constant to the variant of the
Lambek calculus that does not contain the unit (but still allows empty
premises), and use this substitution to prove that any language generated
by a categorial grammar based on the Lambek calculus with the unit is
context-free.

1 L∗-Grammars

We consider the calculus L∗ (the Lambek calculus that allows empty premises) —
a variant of the calculus L introduced in [4]. The set Pr = {p1, p2, p3, . . . } is called
the set of primitive types. Types of L∗ are built from primitive types using three
binary connectives: \ (left division), / (right division), and · (multiplication);
we shall denote the set of all types by Tp. Capital letters (A,B, . . .) range
over types. Capital Greek letters range over finite (possibly empty) sequences
of types; Λ stands for the empty sequence. Expressions of the form Γ → C are
called sequents of L∗.

Axioms: A → A.
Rules:

AΠ → B
Π → A \B (→ \) Π → A ΓBΔ → C

ΓΠ(A \B)Δ → C
(\ →)

ΠA → B
Π → B /A

(→ /) Π → A ΓBΔ → C
Γ (B /A)ΠΔ → C

(/ →)

Π → A Δ → B
ΠΔ → A ·B (→ ·) ΓABΔ → C

Γ (A · B)Δ → C
(· →)

Now let us define the notion of an L∗-grammar. We call an alphabet an arbitrary
finite non-empty set. The set of all words over the alphabet Σ (i. e., finite se-
quences of elements of Σ) is denoted by Σ∗. Any subset of Σ∗ is called a formal
language over Σ.

Definition 1. An L∗-grammar is a triple G = 〈Σ,H,�〉, where Σ is an al-
phabet, H ∈ Tp, and � is a finite correspondence between Tp and Σ (i. e.,
� ⊂ Tp×Σ). The language generated by G is the set of all words a1 . . . an over
Σ for which there exist types B1, . . . , Bn such that L∗ � B1 . . . Bn → H and
Bi � ai for all i ≤ n. We shall denote this language by L(G).

P. de Groote and M.-J. Nederhof (Eds.): Formal Grammar 2010/2011, LNCS 7395, pp. 262–266, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Lambek Grammars with the Unit 263

We also consider context-free grammars:

Definition 2. A context-free grammar is a quadruple G = 〈N,Σ, P, S〉, where
N and Σ are two disjoint alphabets, P ⊂ N × (N ∪Σ)∗, P is finite, and S ∈ N .
We define a binary relation ⇒G as follows: for all ω, ψ ∈ (N ∪ Σ)∗ we have
ω ⇒G ψ if and only if ω = ηAθ, ψ = ηβθ, and 〈A, β〉 ∈ P for some A ∈ N ,
β, η, θ ∈ (N ∪Σ)∗. The binary relation ⇒∗

G is the reflexive transitive closure of
⇒G. The language L(G) = {w ∈ Σ∗ | S ⇒∗

G w} is the language generated by
G. Such languages are called context-free.

These two notions of formal grammar are equivalent in the following sense (this
is proved in [3] using methods from [1], [2], and [7]):

Theorem 1. A formal language is context-free if and only if it is generated by
some L∗-grammar.

The original Lambek calculus L is obtained from L∗ by adding the restriction
Π 	= Λ on the rules (→ \) and (→ /). The notion of L-grammar is defined
similarly to the notion of L∗-grammar.

Theorem 2. A formal language without the empty word is context-free if and
only if it is generated by some L-grammar.

The “if” part in Theorem 2 is proved in [2] using the construction from [1] and
the “only if” part is proved in [7].

The “only if” part in Theorem 1 is proved by the same argument as the “only
if” part in Theorem 2. Now we sketch the proof of the “if” part. If a languageM
is context-free and does not contain the empty word, then, by Theorem 2, there
exists an L-grammar G, such that M = L(G). Moreover, this grammar has the
property that the rules (→ \) and (→ /) do not appear in derivations used to
check whether particular words belong to L(G). Hence, L(G) will not change if
we consider G as an L∗-grammar. Some extra work is needed to handle the case
where M contains the empty word (it is done in the unpublished paper [3]).

2 L1-Grammars

In this section we consider the calculus L1 (the Lambek calculus with the unit).
By Tp1 we denote the set of types generated from primitive types and the
constant 1 (unit) using the connectives \, /, and ·. We shall now use Tp1 instead
of Tp. The calculus L1 is obtained from L∗ by adding an extra axiom → 1
(denoted by (→ 1)) and an extra rule

ΓΔ → C
Γ1Δ → C

(1 →)
.

The calculus L1 was introduced by Lambek in [5].
It is easy to see that L1 is a conservative extension of L∗. Therefore, due

to Theorem 2, the class of context-free languages is contained in the class of
L1-languages. We shall prove the converse statement.

264 S. Kuznetsov

Theorem 3. Every L1-language is context-free.

Due to Theorem 2 it is sufficient to prove that for any L1-language there exists
an L∗-grammar. To do this, we shall build a substitution that reduces derivability
in L1 to derivability in L∗.

Let A be a syntactic object (a type, a sequence of types, a sequent, or a
grammar). By A [z := A] we denote A with type A substituted for z (here z ∈
Pr∪{1}). The notation A [z1 := A1, z2 := A2, . . .] means that all substitutions
are performed simultaneously.

Theorem 4. For any sequent Π → C built from types that belong to Tp1 and
for any primitive type q not occurring in Π → C, the following equivalence holds:

L1 � Π → C ⇐⇒ L∗ �
(
Π → C

)
[pi := (1 · pi) · 1][1 := q \ q].

(Here and further the shorthand “pi := (1 · pi) · pi” means that the substitution
is performed for every i.)

Before proving Theorems 3 and 4, we introduce some notions and establish
several lemmas.

Two types A,B ∈ Tp1 are equivalent (denotation: A ↔ B), iff L1 � A → B
and L1 � B → A. In L1 there holds the rule of equivalent substitution: if
L1 � (Π → C)[z := A] and A ↔ B, then L1 � (Π → C)[z := B]. In particular,
if z ↔ B and L1 � Π → C, then L1 � (Π → C)[z := B].

The rule (1 →) can be considered a special case of the weakening rule. Any
L1-derivation can be rebuilt in such a way that all applications of this rule will
immediately follow the axioms. In other words, the L1 calculus can be equiva-
lently formulated without the (1 →) rule and with two extra series of axioms:
1k → 1 (k ≥ 0) and 1kpi1

m → pi (k,m ≥ 0, i ≥ 1). We denote them (→ 1)w
and (ax)w, respectively. Further we shall use this new calculus for L1.

Consider an auxiliary calculus L−
1 which is obtained from L∗ by adding axioms

(→ 1)w. It is clear that L
−
1 is a fragment of L1.

Lemma 1. For every sequent Π → C built from types that belong to Tp1 the
following equivalences hold:

L1 � Π → C ⇐⇒ L1 �
(
Π → C

)
[pi := (1 · pi) · 1]

⇐⇒ L−1 �
(
Π → C

)
[pi := (1 · pi) · 1].

Proof. The first equivalence follows from the fact that pi ↔ (1 · pi) · 1.
In the second equivalence the right-to-left implication is obvious. Let us prove

the other one: we shall deduce the third statement from the first one (which is
equivalent to the second one). We substitute (1 · pi) · 1 in the L1-derivation of
Π → C. It is easy to see that this substitution conserves the (→ 1)w axioms
and all rules. Now it is sufficient to check that the result of such a substitution
in (ax)w is derivable in L−

1 :

Lambek Grammars with the Unit 265

1k+1 → 1 pi → pi

1k+1 pi → 1 · pi
(→ ·)

1m+1 → 1

1k 1 pi 1
m+1 → (1 · pi) · 1

(→ ·)

1k (1 · pi)11m → (1 · pi) · 1
(· →)

1k
(
(1 · pi) · 1

)
1m → (1 · pi) · 1

(· →)

The next two lemmas essentially repeat the argument from [6] about the closed
(without variables but with constants) fragment of multiplicative cyclic linear
logic.

Lemma 2. If L−
1 � Π → C and q ∈ Pr, then L∗ � (Π → C)[1 := q \ q].

Proof. Perform the substitution in the L−
1 -derivation of Π → C. Axioms (ax)w

and rules of inference will remain untouched. Axioms (→ 1)w will transform into
sequents (q \ q)k → q \ q, which are derivable in L∗:

q → q

q → q

q → q

q → q q → q

q (q \ q) → q
(\ →)

...

(\ →)

q (q \ q) . . . (q \ q) → q
(\ →)

q (q \ q) (q \ q) . . . (q \ q) → q
(\ →)

q (q \ q) (q \ q) (q \ q) . . . (q \ q) → q
(\ →)

(q \ q) (q \ q) (q \ q) . . . (q \ q) → q \ q (→ \)

Lemma 3. If L∗ � (Π → C)[1 := q \ q] and q is a primitive type that does not
occur in Π → C, then L1 � Π → C.

Proof. Let L∗ � (Π → C)[1 := q \ q]. Consider the sequent (Π → C)[1 :=
q \ q][q := 1]. On the one hand, it is derivable in L1, since (Π → C)[1 := q \ q]
is derivable in L1 (due to the conservativity of L1 over L∗) and the substitution
rule is valid in L1. On the other hand, the sequent involved is actually (Π →
C)[1 := 1 \1], because occurrences of q could appear only inside the types q \ q
that are substituted for 1. Therefore the derivability of this sequent in L1 is
equivalent to the derivability of Π → C (since 1 ↔ 1 \1).
Proof (of Theorem 4).

L1 � Π → C =⇒ L−1 �
(
Π → C

)
[pi := (1 · pi) · 1]

=⇒ L∗ �
(
Π → C

)
[pi := (1 · pi) · 1][1 := q \ q]

=⇒ L1 �
(
Π → C

)
[p1 := (1 · pi) · 1] =⇒ L1 � Π → C.

Here the first and the fourth implications hold due to Lemma 1, the second one
holds due to Lemma 2, and the third one holds due to Lemma 3.

Proof (of Theorem 3). Let M = L(G) for some L1-grammar G. The language
M is generated by the L∗-grammar G[pi := (1 · pi) · 1][1 := q \ q] where q is a
primitive type that is not used in G.

266 S. Kuznetsov

Acknowledgments. I am most grateful to Prof. M. Pentus for guiding me into
the subject and constant attention to my studies.

This work was supported by the Russian Foundation for Basic Research [08-
01-00399], by the Presidential Council for Support of Leading Scientific Schools
[NSh-65648.2010.1], and by the Scientific and Technological Cooperation Pro-
gramme Switzerland–Russia [STCP-CH-RU].

References

1. Bar-Hillel, Y., Gaifman, C., Shamir, E.: On categorial and phrase-structure gram-
mars. Bull. Res. Council Israel Sect. F 9F, 1–16 (1960)

2. Buszkowski, W.: The equivalence of unidirectional Lambek categorial grammars
and context-free grammars. Zeitschr. für math. Logik und Grundl. der Math. 31,
369–384 (1985)

3. Kuznetsov, S.: Lambek grammars with one division and one primitive type. Unpub-
lished manuscript (2010)

4. Lambek, J.: The mathematics of sentence structure. American Math. Monthly 65(3),
154–170 (1958)

5. Lambek, J.: Deductive systems and categories II: Standard constructions and closed
categories. In: Hilton, P. (ed.) Category Theory, Homology Theory and Their Ap-
plications I. Lect. Notes Math., vol. 86, pp. 76–122. Springer, Berlin (1969)

6. Métayer, F.: Polynomial equivalence among systems LLNC, LLNCa and LLNC0.
Theor. Comput. Sci. 227(1), 221–229 (1999)

7. Pentus, M.: Lambek grammars are context free. In: Proc. of the 8th Annual IEEE
Symposium on Logic in Computer Science, pp. 429–433. IEEE Computer Society
Press, Los Alamitos (1993)

Resolving Plural Ambiguities

by Type Reconstruction

Hans Leiß

Centrum für Informations- und Sprachverarbeitung
Universität München

Oettingenstr. 67, D-80538 München, Germany

Abstract. We describe a type reconstruction algorithm for a fragment
of natural language. It is based on Hindley’s algorithm for simple types,
but extends it with subtyping and overloading. We extend one of Mon-
tague’s fragments of English by plural noun phrases which may have
several types and by overloaded verbs to allow for distributed and non-
distributed readings of noun phrases and verb arguments. We demon-
strate how type reconstruction can select suitable meanings of subject
noun phrases depending on the meaning of verb phrases. Thus, type
reconstruction enables us to handle some violations of Frege’s composi-
tionality principle.

1 Introduction

Some plural noun phrases have different readings:

– distributive: John and Mary dream a nightmare (each)
– reciprocal: John and Mary like each other
– collective: John and Mary play chess (together)

Montague[12] only treated the distributive reading: the noun phrase meaning is
obtained by abstraction from the predicate, and the predicate must be a prop-
erty of individuals. However, this abstraction cannot be applied to a symmetric
relation between individuals or to a group of individuals (assuming groups are
not individuals of the same kind), so we need different meanings for the recipro-
cal and collective reading. This poses the question how to represent the meaning
of the noun phrase: do we need different meanings for different contexts, and if
so, how many differences have to be made? Frege’s compositionality principle
appears to be violated here, since the context has an impact on the meaning of
the noun phrase.

We approach this problem in the following way. Based on a distinction between
types of verb arguments –individual, pair and group arguments–, we infer types
of verb phrases. Assuming there are only finitely many base types (subtypes
of individuals), there are only finitely many types of verb phrases or types of
contexts for a noun phrase. Abstracting from those, we arrive at finitely many
λ-terms that represent the meanings of a noun phrase in these types of contexts.

P. de Groote and M.-J. Nederhof (Eds.): Formal Grammar 2010/2011, LNCS 7395, pp. 267–286, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

268 H. Leiß

The exact number and form of these terms depend on the structure of the noun
phrase, of course, and each has a different type. Since we have to assume that
the same verb can have different types –for example, because it is applicable to
groups as well as to individuals, or to individuals of different type–, verb phrases
will also have a number of different meanings. To analyse a sentence, we compute
the possible meanings of noun phrase and context and compare their types. Only
those meanings whose types match are suitable meanings in the given situation;
here, matching means that the type of an argument of a function is a subtype
of the functions argument-type.

We develop this idea to some extent in an extension of Montague’s PTQ-
grammar, focussing on the distinction between distributive and reciprocal read-
ings of plural noun phrases. Some actual programming examples are presented
at the end.

2 The Extensional Version of Montague’s PTQ

We first recall part of (the extensional fragment of) Montague’s PTQ-fragment
of English[12]. The grammar has two basic syntactic categories, individual names
e and sentences t. From these, complex syntactic categories can be built using
two binary constructors, / and //. Among the complex categories are common
nouns CN := t//e, intransitive verbs and verb phrases IV := t/e, noun phrases
or terms T := t/IV , transitive verb phrases TV := IV /T , and determiners
DET := T/CN .

There are atomic expressions of some of these categories, like

hen, John : e, walk : IV , love : TV , woman : CN , every : DET .

Complex expressions of a given category can be built according to a number of
syntactic construction rules of the form

(S Nr.)
α1 : A1, . . . , αk : Ak

α : A
,

where α1, . . . , αk are expressions (strings) of categories A1, . . . , Ak, respectively,
and from these the complex expression α of category A is formed by some func-
tions to modify and concatenate strings.

To give meanings to the expressions, each syntactic category A is translated
to a simple type A′ over the basic types e and t, using

e′ := e, t′ := t, (A/B)′ := (B′ → A′), (A//B)′ := (B′ → A′).

Each expression e of category A is translated to a λ-term e′ of type A′. For
example, pronouns are translated to variables, he′n := xn : e, individual names,
common nouns and intransitive verbs to constants

John′ := john’ : e, woman′ := woman’ : e → t, walk′ := walk’ : e → t.

Resolving Plural Ambiguities by Type Reconstruction 269

Constants of categories DET and TV with complex argument category are
translated to appropriate λ-terms of higher-order types:

every′ := λNe→tλP e→t∀xe(Nx → Px) : DET ′ = (e → t) → ((e → t) → t).

Since we are only dealing with the extensional fragment, we assume that for
each constant v : TV there is a first-order extensional predicate v∗ : e → (e → t)
which determines the translation of v to a higher-order object v′ : T ′ → (e → t)
by v′ := λP (e→t)→tλxe.P (λye.v∗(y)(x)), for example

love′ := λP (e→t)→tλxe.P (λye.love∗(y)(x)).

Writing, as usual, v(x1, x2) for v(x2)(x1) when v : (C/C1)/C2, this amounts to
a “meaning postulate”

∃ve→(e→t)
∗ ∀P (e→t)→t∀xe(v′(x, P) ↔ P (λye.v∗(x, y))).

The translation of a complex expression is defined by translation rules

(T Nr.)
α′
1 : A′

1, . . . , α
′
k : A′

k

α′ : A′

which build the translation of α from the translation of its constituent expres-
sions α1, . . . , αk in the corresponding syntactic construction (S Nr.). We use the
following subset of Montague’s rules (with rule numbers as in [12]):

(S 1)
α : e

α : T
(T 1)

α′ : e
λP e→t.P (α′) : (e → t) → t

(S 2)
δ : DET, ξ : CN

δ ξ : T
(T 2)

δ′ : (CN ′ → T ′), ξ′ : CN ′

δ′(ξ′) : T ′

(S 3)n
ξ : CN, ϕ : t

ξ such that ϕ[hen/he] : CN
(T 3)n

ξ′ : CN ′, ϕ′ : t
λxen(ξ

′(xn) ∧ ϕ′) : CN ′

(S 4)
α : T, δ : IV

α δ3.sg : t
(T 4)

α′ : T ′, δ′ : IV ′

α′(δ′) : t

(S 5)
δ : TV, β : T

δ βacc : IV
(T 5)

δ′ : (T ′ → IV ′), β′ : T ′

δ′(β′) : IV ′

(S 11)a
ϕ : t, ψ : t

ϕ and ψ : t
(T 11)a

ϕ′ : t, ψ′ : t
(ϕ′ ∧ ψ′) : t

(S 11)b
ϕ : t, ψ : t

ϕ or ψ : t
(T 11)b

ϕ′ : t, ψ′ : t
(ϕ′ ∨ ψ′) : t

(S 12)a
δ : IV, γ : IV

δ and γ : IV
(T 12)a

δ′ : e → t, γ′ : e → t

λxe(δ′(x) ∧ γ′(x)) : e → t

270 H. Leiß

(S 12)b
δ : IV, γ : IV

δ or γ : IV
(T 12)b

δ′ : e → t, γ′ : e → t

λxe(δ′(x) ∨ γ′(x)) : e → t

(S 13)
α : T, β : T

α or β : T
(T 13)

α′ : T ′, β′ : T ′

λP e→t(α′(P) ∨ β′(P)) : T ′

(S 14)n
α : T, ϕ : t, hen ∈ free(ϕ)

ϕ[hen/α] : t
(T 14)n

α′ : T ′, ϕ′ : t, xn ∈ free(ϕ′)
α′(λxen.ϕ

′) : t

The two substitution operations [hen/he] in (S 3)n and [hen/α] in (S 14)n are
not spelled out here and differ slightly; depending on the gender of the common
noun ξ in (S 3)n, ϕ[hen/he] is to replace the leftmost occurrence of hen in ϕ
by he or she and adjust the remaining ones by suitable (personal or reflexive)
pronouns, while ϕ[hen/α] is to replace the leftmost occurrence of hen in ϕ by α
and adjust the remaining ones by suitable (personal or reflexive) pronouns.

Where needed, we assume a category of ditransitive verb phrases DTV :=
TV /T , with the construction and translation rules as for transitive verbs:

(S 5’)
δ : DTV, β : T

δ to βdat : TV
(T 5’)

δ′ : (T ′ → TV ′), β′ : T ′

δ′(β′) : TV ′

For constants v : DTV , an extensional ternary relation v∗ : e → (e → (e → t)) is
assumed that determines the translation –using v∗(x, y, z) for v∗(z)(y)(x)– via

v′ = λQT
′
λPT

′
λxe.Q(λze.P (λye.v∗(x, y, z))) : T ′ → (T ′ → (e → t)) = DTV ′.

This gives the dative object of a ditransitive verb scope over the accusative
object, and both are in the scope of the subject. However, since we are not
dealing with intensional verbs here, where it is important that quantified object
noun phrases are “in the scope of the verb”, we can restrict α : T in (S 4) and
β : T in (S 5) and (S 5’) to be pronouns, and use (S 14)n to add noun phrases
with the scope at will.

2.1 Different Meanings of Plural Noun Phrases

Montague’s rules deal with singular noun phrases only. For example, noun phrases
can be combined by or with (S 13), but there is no rule to combine noun
phrases by and. By adding conjunction and further constructions of plural noun
phrases, expressions with several meanings arise. In general, a plural noun phrase
translates to several λ-terms of different types. We distinguish three different
readings of plural noun phrases:

(i) In the distributive reading, the plural noun phrase acts as a function ap-
plied to properties of individuals, hence NP′ = (e → t) → t. For ex-
ample, for a common noun N and a predicate P , ((most N) P) means
most(x : e,N(x), P (x)), i.e. the application of the predicate is distributed
to the individuals in the restriction set of the noun phrase.

Resolving Plural Ambiguities by Type Reconstruction 271

(ii) In the group reading, the plural noun phrase acts as a function applied to
properties of groups of individuals, hence NP′ = (g(e) → t) → t, where g(e)
is the type of groups of individuals. Treating groups as finite sets, ((the N)
P) means P ({x : e | N(x)}), and ((a, b and c) P) means P ({a, b, c}).

(iii) In the reciprocal or pair reading, the plural noun phrase acts as a function
applied to properties of pairs of individuals, hence NP′ = (p(e) → t) → t,
where p(e) is the type of unordered pairs of objects of type e. The pair
reading is often triggered by a reciprocal pronoun, as in She introduced the
guests to each other, but need not be, as in John and Bill are neighbours.

Which of the three readings a plural noun phrase np : NPpl can have depends
on its form; some forms, like the conjunction of proper names, admit all three
readings. Thus, the meaning of a noun phrase, or at least the selection among
its possible meanings, depends on the context of use, and does not strictly obey
Frege’s compositionality principle.

For simplicity, below we use ordered pairs instead of unordered ones, and
lists instead of finite sets. That is, we use 〈x, y〉 : e × e instead of {x, y} : p(e)
and quantifiers over ordered pairs instead of quantifiers over unordered pairs.
Likewise, we use the type e∗ of lists of individuals as g(e), and assume a predicate
member : e → (e∗ → t) and list comprehension [x | N(x)] to go from a predicate
N : e → t to a group. However, the only essential point for our purpose is that
we can distinguish individuals, pairs and groups by their type.

2.2 Verb Types and Overloaded Verbs

An important syntactic difference between formal and natural languages is that
in logic, quantifiers construct formulas, while in natural languages, they con-
struct noun phrases, and these, like terms in logic, occur as arguments of pred-
icates resp. complements of verbs. Montague[12] interpreted intransitive verbs
and verb phrases as properties of individuals, IV′,VP′ := e → t, and noun
phrases as properties of those, T ′ := (e → t) → t, so that the predication con-
struction np · vp : t =: S becomes the application of a function np : T ′ to
an argument vp : VP′. Montague’s translation rules for simple sentences with
compound subject, for example

((every man) walks)
′
= (λP e→t∀xe(man′(x) → P (x)))(λxe.walk′(x)),

((John or Mary) talks)
′
= λP e→t(P (john′) ∨ P (mary′))(λx.talk′(x)),

always distribute the predicate to the variable or constant individual parts of
the noun phrase, to which the predicate can be applied in accordance with the
types. Thus, Montague’s PTQ has noun phrases in singular only, which are given
the distributive reading.

For plural noun phrases, however, as mentioned in the previous section, we
can distinguish at least three readings. Which of these is the correct one for a
particular occurrence? Since the noun phrase occupies an argument position of
a verb (or adjective or noun), it is often possible to choose among the meanings
according to the argument type of this verb (or adjective or noun, respectively).

272 H. Leiß

We distinguish between individual type e, pair type p(e), or group type g(e),
respectively. For example, we may have love : e → (e → t), but be alike : p(e) →
t, and meet : g(e) → t. Moreover, we admit overloaded verbs, i.e. verbs with
several types. For example, we may have the transitive marry : e → (e → t) as
well as the intransitive reciprocal marry : p(e) → t (i.e. marry each other), and
both welcome : e → (e → t) with individual and welcome : e → (g(e) → t) with
group object type.1

Predicates of type p(e) → t may either be basic verbs, nouns, or adjectives, as
in marry, resemble, neighbour, sibling, or parallel, similar, or constructed from tran-
sitive or ditransitive verbs and a reciprocal pronoun. Often[4,13], the reciprocal
pronoun is interpreted as a generalized quantifier of type 〈1, 2〉, i.e. reci(A,R)
expresses a relation between sets A and binary relations R of individuals, such
as

|A| ≥ 2 ∧ A2 \ Id ⊆ R,

|A| ≥ 2 ∧ A2 \ Id ⊆ R+, or

|A| ≥ 2 ∧ ∀x ∈ A∃y ∈ A (y 	= x ∧ 〈x, y〉 ∈ R ∩ R̆ \ Id),

where R+ is the transitive closure and R̆ the converse of R. We deviate from
this view and consider the reciprocal pronoun as a predicate transformer

reci : (e → (e → t)) → (p(e) → t)

which takes a binary relation to a unary predicate on unordered pairs. Below,
we interprete reci as mapping a binary relation R to its symmetric irreflexive
kernel R ∩ R̆ \ Id, so that reci(R) : p(e) → t is the predicate P obtained from
R by

P{x, y} : ⇐⇒ R(x, y) ∧R(y, x) ∧ x 	= y.

Other interpretations, like the “ordering reciprocal” of spatial prepositions, viz.
on top of each other, might be chosen depending on semantic properties of the
input relation R, cf. [13]. How the predicate reci(R) interacts with the subject
noun phrase is left to the predication construction and may depend on the struc-
ture of the noun phrase. Basically, we distribute reci(R) to pairs of individuals of
the restriction set of the plural noun phrase: for example, ((most N) (R (each

other))) means2

most({x, y} : p(e), N(x) ∧N(y) ∧ x 	= y,R(x, y) ∧R(y, x) ∧ x 	= y).

Of course, nouns also can be overloaded, for example child : e → (e → t) vs.
child : e → (p(e) → t). Hence the plural John and Mary can have different
readings in the object position of child, resp. the noun child is distributed or not:

1 See Franconi[5] for an approach where different readings of a verb are coded by
applying operators to the verb.

2 Note that we need binary determiners with symmetric restriction relations anyway,
viz. most siblings are alike.

Resolving Plural Ambiguities by Type Reconstruction 273

the children of John and Mary versus the common children of John and Mary. In
the grammar below, we only deal with overloaded verbs.

Besides distinguishing between individuals e, pairs p(e) and groups g(e), it
is often useful to structure the type of individuals by subtypes. Subtypes give
another source of overloading. For example, with a subtypem ≤ e of humans and
a subtype s ≤ e of unanimated objects, a verb like to rise ought to be overloaded
as rise : s → t, rise : m → t for The sun rises vs. John rose from the table. For
each subtype σ ≤ e, subtypes p(σ) ≤ p(e) and g(σ) ≤ g(e) arise. We postpone
subtypes to section 3.1.

2.3 Choosing among Noun Phrase Meaning

For each occurrence of a plural noun phrase np : NPpl a particular one of its
possible meanings, distributive, pair or group reading, has to be chosen. The
proper choice depends on the noun phrase’s types as well as the type of the verb
argument place at which it occurs. In the predication construction np · vp : S,
say, we inspect the type of the subject position: if the vp : VP is a property of
individuals, we read the np distributively, if the vp : VP is a symmetric binary
relation, the np is read as (quantification over) a set of pairs; and if the vp is a
group property, then the np is read as a group or quantification over groups. So
we need three readings of np : NPpl, of types (p(e) → t) → t, (e → t) → t , and
(g(e) → t) → t.

While the pairwise reading largely depends on overt reciprocals, distinctions
between distributive and group reading depend on the type of verb argument at
which the plural noun phrase occurs; if the verb is overloaded, several readings
may still be possible for the noun phrase.

2.4 Extension of PTQ by Plural Noun Phrases and Reciprocal
Pronouns

In order to extend the PTQ-fragment to some plural noun phrases, we need to
refine syntactic categories by features, add constants and syntax rules to con-
struct expressions of these categories, and add translations into typed λ-calculus.
We only add the number feature, which is relevant for the semantics; morpho-
logical features like case are handled implicitly through the string combination
functions.

(i) We need to refine syntactic categories by features and translate them to
suitable types.

First, we split the category IVpl into IVe, IVe×e and IVe∗ according to
the argument type: e for distributive, e× e for reciprocal, and e∗ for group
reading, and translate them to

IV ′
e := e → t, IV ′

e×e := e × e → t, IV ′
e∗ := e∗ → t.

274 H. Leiß

This then gives rise to a corresponding splitting of complex categories, like

Te := t/IVe, Te×e := t/IVe×e, Te∗ := t/IVe∗ ,

TVe,e := IVe/Te, TVe,e∗ := IVe/Te∗ , TVe∗,e := IVe∗/Te

etc., so that

T ′
e := T ′ = (e → t) → t, T ′

e×e := (e× e → t) → t, T ′
e∗ := (e∗ → t) → t

and, for example,

TV ′
e,e∗ = (IVe/Te∗)

′ = (T ′
e∗ → IV ′

e) = ((e∗ → t) → t) → (e → t).

If we split noun phrases in singular noun phrases Tsg and plural noun prases
Tpl, we can identify Montague’s category T with Tsg and further split Tpl
into Te

3 for those with distributive reading, Te×e for those with reciprocal
reading, and Te∗ for those with group reading.

(ii) We need to add constants of these new categories and give their translation
to typed λ-terms.

a) constants for plural determiners:4

(the : DET e)
′ := λNe→tλP e→t.all(xe, N(x), P (x))

(the : DET e×e)
′ := λNe→tλP e×e→t.all(〈x, y〉e×e, N{x, y}, P (x, y))

(the : DET e∗)
′ := λNe→tλP e

∗→t.P [xe | N(x)]

(all : DET e)
′ := λNe→tλP e→t.all(xe, N(x), P (x))

(all : DET e×e)
′ := λNe→tλP e×e→t.all(〈x, y〉e×e, N{x, y}, P (x, y))

(some : DET e)
′ := λNe→tλP e→t.ex(〈x, y〉e×e, N{x, y}, P{x, y}),

(some : DET e×e)
′ := λNe→tλP e×e→t.ex(〈x, y〉e×e, N{x, y}, P (x, y))

(most : DET e)
′ := λNe→tλP e→tmost(xe, N(x), P (x))

(most : DET e×e)
′ := λNe→tλP e×e→tmost(〈x, y〉e×e, N{x, y}, P (x, y))

Here, Ne→t{x, y} is an abbreviation for the formula N(x)∧N(y)∧x 	= y,
and P e

∗→t[xe | N(x)] means application of P to the group formed from
the extension of Ne→t.

b) constants for verbs with reciprocal or collective argument types:

marry : IVe×e, be similar : IVe×e, collect : TVe,e∗ , agree on : TVe∗,e.

3 Sometimes we use Te as if it included the singular noun phrases, so that v : DTVe,e,e
can be used with singular as well as plural complements; in subject position, agree-
ment with the verb must be achieved by the string combination functions.

4 We don’t add determiners of arbitrary type to suppress searching through higher-
order domains. But for subtypes σ ≤ e, it may be useful to have special determiners
DETσ, for example to distinguish interrogatives who and what.

Resolving Plural Ambiguities by Type Reconstruction 275

Note that some of the verbs with reciprocal subject have transitive
analogs:

marry : TV , be similar to : TV .

From the transitive analogs the reciprocal version arise by adding an
implicit “each other”.

c) constants for common nouns in plural that denote symmetric binary
relations:

neighbours : CN e×e, friends : CN e×e, siblings : CN e×e.

They can be used in combination with an optional reciprocal pronoun
complement. To build definite noun phrases from these relational nouns,
variants like

(most : DET e×e)
′ := λNe×e→tλP e×e→t.most(〈x, y〉e×e, N(x, y), P (x, y))

of the plural determiners are needed. (cf. remark 1 below).

(iii) We need new rules to construct and translate compound expressions of these
categories.
The reciprocal pronoun is used to build intransitive verbs with pair subjects
from transitive verbs with individual arguments, and transitive verbs with
pair objects from ditransitive verbs:

(S reci)1
δ : TVe,e

δ each other : IVe×e
(S reci)2

δ : DTVe,e,e
δ to each other : TVe,e×e

.

With these rules we can get, for example,

know each other : IVe×e from know : TVe,e, and

introduce to each other : TVe,e×e from introduce to : DTVe,e,e.

Since transitive verbs δ : TV = IV /T = (t/e)/T and ditransitive verbs
need a subject of category e but objects of category T = t/(t/e), we have
to “type-raise” xe to xT

′
:= λP e→t.P (x) for the objects in the translation:

(T reci)1
δ′ : TV ′

e,e

λ〈x, y〉e×e(δ′(x, yT ′
) ∧ δ′(y, xT ′

) ∧ x 	= y) : IV ′
e×e

(T reci)2
δ′ : DTV ′

e,e,e

λR(e×e→t)→tλze.R(λ〈x, y〉e×e(δ′(z, xT ′
, yT

′
) ∧

δ′(z, yT
′
, xT

′
) ∧ x 	= y)) : TV ′

e,e×e

For example, if δ : TV is a constant and δ∗ : e → (e → t) the assumed
extensional relation with

δ′ = λPT
′
.λxe.P (λye.δ∗(x, y)) : TV ′,

276 H. Leiß

then

δ′(xe, yT
′
) = δ′(yT

′
)(x) = yT

′
(λye.δ∗(x, y)) = δ∗(x, y)

and hence

(δ each other)′ = λ〈x, y〉e×e(δ∗(x, y) ∧ δ∗(y, x) ∧ x 	= y) : IV ′
e×e.

Thus, on the level of individuals, (T reci)1 corresponds to the transition
from the δ∗ to its symmetric irreflexive kernel, according to

δ∗ : e → (e → t)

λ〈x, y〉e×e(δ∗(x, y) ∧ δ∗(y, x) ∧ x 	= y) : e× e → t = IVe×e
′ .

The same holds for (T reci)2 and the symmetric irreflexive kernel of a ternary
relation δ∗ with respect to the object arguments, except that the object of
is of category Te×e.
Moreover, rules like (S 12) to construct boolean combinations of IVs and
TVs, have to be extended to the new categories IVe×e, TVe,e, TVe,e×e etc.,
so that we can build, for example,

TheyTe×e (neither (are married)IV e×e nor (know each other)IV e×e).

For singular terms, reflexive pronouns and the transition to the reflexive
kernel of a binary relation can be added in a similar way:

(S refl)1,n
δ : TV

δ himselfn : IV
(T refl)1,n

δ
′
: TV

′

λxe
n.δ

′(xn, x
T ′
n) : IV ′

(S refl)2,n
δ : DTV

δ to himselfn : TV
(T reci)2,n

δ′ : DTV ′

λP (e→t)→tλxe
n.P (λye.δ′(xn, y

T ′
, xT ′

n)) : TV ′

Suitable adjustments to (S 14)n are needed: when a term α : T is inserted
for hen at the subject position of a reflexive predicate, himself n has to be
adapted to the gender and number of α.

(iv) We need rules to construct and translate plural noun phrases, where pl ∈
{e, e× e, e∗}:

(S 1)a,e
α : T, β : T

α and β : Te
(T 1)a,e

α′ : T, β′ : T
λP e→t (α′(P) ∧ β′(P))

(S 1)a,e×e
α : T, β : T

α and β : Te×e
(T 1)a,e×e

α′ : T ′, β′ : T ′

λRe×e→t.α′(λxe.β′(λye.R(x, y)))

(S 1)a,e∗
α : e, β : e

α and β : Te∗
(T 1)a,e∗

α′ : e, β′ : e
λP e

∗→t.P ([α′, β′])
.

Resolving Plural Ambiguities by Type Reconstruction 277

(S 2)pl
δ : DET pl, ξ : CN

δ ξpl : Tpl
(T 2)pl

δ′ : (CN ′ → T ′
pl), ξ′ : CN ′

δ′(ξ′) : T ′
pl

(S 13)a,pl
α : Tpl, β : Tpl
α and β : Tpl

(T 13)a,pl
α′ : T ′

pl, β′ : T ′
pl

λP pl→t (α′(P) ∧ β′(P))

(S 13)b,pl
α : Tpl, β : Tpl

α or β : Tpl
(T 13)b,pl

α′ : T ′
pl, β′ : T ′

pl

λP pl→t (α′(P) ∨ β′(P))

(v) We need new rules to construct and translate basic sentences with plural
subject or object. Montague’s rules have to be refined accordingly, for ex-
ample

(S 4)pl
α : Tpl δ : IVpl

α δ : t
(T 4)pl

α′ : T ′
pl δ′ : IV ′

pl

α′(δ′) : t
.

Likewise for (S 5), (S 3) and (S 14). For the latter two, we need plural pro-
nouns theyn,m : e×e that translate to pairs 〈xn, xm〉 of individual variables.

Remark 1. In (S 2)pl and the translation of determiners, we used separate cat-
egories DET pl = Tpl/CN , pl ∈ {e, e × e, e∗}, of determiners, but –to ease the
parsing a bit– a single category for common nouns. More systematically, one
could use DET pl := Tpl/CN pl generally (not just for symmetric relational nouns)
together with coercion rules:

(S CN)e
ξ : CN

ξpl : CN e

(T CN)e
ξ′ : CN ′

ξ′ : CN e
′

(S CN)e∗
ξ : CN

ξpl : CN e∗
(T CN)e∗

ξ′ : CN ′

λxe
∗
.∀ye(y ∈ x → ξ′(y)) : CN e∗

′

(S CN)e×e
ξ : CN

ξpl : CN e×e
(T CN)e×e

ξ′ : CN ′

λ〈x, y〉e×e(ξ′(x) ∧ ξ′(y) ∧ x 	= y) : CN e×e
′

Notice, however, that except for the definite article, we did not add plural de-
terminers for groups, as quantification over groups seems to afford a different
form, as in (many (groups of CN e∗)) : Te∗ . We thus avoid the need to search
through a large power set of individuals and restrict ourselves to groups that are
explicitly named or can be obtained from a definable property of its members
by comprehension.

Example 1. Using rule (T 1)a,e×e, ((John and Mary) love each other) translates
to (love each other)′(john′,mary′). By the same rule, ((John and every student)
love each other) (cf. [9], p.270) translates to

all (x, student′(x), (love each other)′(john′, x)).

Notice that (T 1)a,e×e gives different meanings to (every man and some woman)
Te×e and (some woman and every man)

Te×e , as it gives the left conjunct wide
scope – not what a homomorphism would do!

278 H. Leiß

Example 2. A plural noun phrase np : Te×e with reciprocal reading takes a
predicate vp : IVe×e of individual pairs as argument; the determiners DET e×e
distribute the predicate vp to individual pairs in the restriction set: (most children
like each other) translates to

most(〈x, y〉, child′(x) ∧ child′(y) ∧ x 	= y, (like each other)′(x, y)).

Likwise, ordinary predicates p : IVe are distributed to individual components of
complex noun phrases of category Te or T . Binary quantifiers are necessary for
interrogatives: Which children are siblings? has to be answered by a set of pairs,
not by a set of individuals.

Example 3. Rules (S 13)pl permit us to have homogeneous plural noun phrase
coordinations, where both coordinates get the same pl-reading. By (T 13)pl , the
meaning is a pointwise combination of those of the coordinates, so that many
men or most women fight each other translates to many men fight each other or
most women fight each other. We did not include inhomogeneous noun phrase
coordinations, such as (npTe and npTe×e) or (npTe×e or npT), although perhaps
those of the form (npTe and/or npT) have a clear meaning.

3 Type Reconstruction

The meaning(s) of an expression α of the above fragment PTQ+ are the typed
λ-terms α′ that can be assigned to α according to the translation rules. However,
as in programming, it is helpful to compute the meanings in two phases. In the
first phase, translate the parse tree into an untyped λ-term, and in the second
phase, reconstruct the possible typings of the untyped term from the (known)
types of its constants. The untyped terms are given by

t, s ::= c (constants)
| x (variables)
| (t · s) (applications)
| λx.t (abstractions)
| f(t1, . . . , tn) (algebraic terms)
| 〈s, t〉 (pairs)
| λ〈x, y〉.t (abstraction over pairs)
| [t1, . . . , tn] (lists)

Pairs and lists are included for simplicity of notation, but could be simulated
with suitable constants (and reduction rules). Algebraic terms are included as a
special case, since the interpretation of their function constants f will depend on
a given first-order structure (the “database”). Formulas are included via “logical”
constants ¬, ∧, ∨, →, ↔ for the boolean connectives and generalized quantifiers
ex, all, most , i.e. ¬ϕ := (¬·ϕ) and most(x, ϕ, ψ) := ((most ·λxϕ) ·λxψ) etc. are
formulas. Moreover, a cardinality quantifier card is used to express |{x | ϕ}| ≤ n
by formulas card(x, ϕ, n) where n is a constant. In addition to formula-building
quantifiers, we also use two interrogative quantifiers wh and whn to build the

Resolving Plural Ambiguities by Type Reconstruction 279

questions wh(x, ϕ, ψ) asking for the set (resp. list) of objects x which satisfy ϕ
and ψ, and the question whn(x, ϕ, ψ) asking for the number of elements in the
set returned by wh(x, ϕ, ψ).

The intented interpretations of formulas and questions are type structures
based on a finite universe of individuals. Although definable higher-order func-
tions are needed, we do not wish to perform searching and quantification over
those, but stick to “database”-queries with first-order quantification.

3.1 Simple Types and Subtyping Rules

Among our base types, we need nat , t (Bool), e (entities). Among the complex
types we need functions (σ → τ), pairs (σ × τ) at least as argument types of
functions, and homogeneous lists σ∗.

We use a finite set of base types and a partial ordering among them, such that
nat and t neither have nor are subtypes, and e is the top element among the
remaining base types. A subtype context is a finite list of subtyping assumptions
σ ≤ τ , extending the partial ordering among base types. To derive subtyping
statements, we use the following rules for structural subtyping:

(≤basic)
σ ≤ τ,Δ � σ ≤ τ

(≤basic)
Δ � σ ≤ τ

σ′ ≤ τ ′, Δ � σ ≤ τ
(≤∗)

Δ � σ ≤ τ

Δ � σ∗ ≤ τ∗

(≤×)
Δ � σ ≤ σ′ Δ � τ ≤ τ ′

Δ � (σ × τ) ≤ (σ′ × τ ′)
(≤→)

Δ � σ ≤ σ′ Δ � τ ≤ τ ′

Δ � (σ′ → τ) ≤ (σ → τ ′)

We assume a fixed subtyping context Δ in the typing rules below.

3.2 Typing Rules

A type context Γ is a list of typing assumptions x : τ with variable x and type
τ . A type σ is a type of the term s in the context Γ , if Γ � s : σ according to the
following rules; this is only possible if the context contains typing assumptions
for all free variables of s. To type a term which binds a variable x, the context
is temporarily extended by a typing assumption x : σ and the body of the term
is typed in the extended context. A context is searched from left to right to find
an assumption for a free variable x, and only the first assumption of the form
x : σ is used. Thus, all free occurrences of x in the scope of its binding get the
same type, and assumptions for x from bindings of wider scope are hidden in
the rest of the context.

For simplicity of description, a context may also contain typing assumptions
c : σ for constants c. A constant may be (finitely) overloaded, i.e. there may be
several assumptions for the same constant, and the typing rules below allow to
find all of them. The two list constructors [] and [· | ·] are built into the language
with special typing rules, so that we have homogeneous lists of any type.

280 H. Leiß

(Var)
x : σ, Γ � x : σ

(Var)
x 	≡ y, Γ � x : σ

y : τ, Γ � x : σ

(Const)
c : σ, Γ � c : σ (Const)

Γ � c : σ
d : τ, Γ � c : σ (Nat)

n ∈ N

Γ � n : nat

(App)
Γ � f : ρ → σ, Γ � t : τ, Δ � τ ≤ ρ

Γ � (f · t) : σ (Abs)
x : ρ, Γ � t : τ

Γ � λx t : (ρ → τ)

(f)
Γ � f : σ1 × . . .× σn → σ, Γ � ti : τi, Δ � τi ≤ σi (1 ≤ i ≤ n)

Γ � f(t1, . . . , tn) : σ

(nil)
Γ � [] : σ∗ (cons)

Γ � r : σ∗ Γ � h : σ

Γ � [h|r] : σ∗

(∧) Γ � ϕ : t, Γ � ψ : t

Γ � (ϕ ∧ ψ) : t (∨) Γ � ϕ : t, Γ � ψ : t

Γ � (ϕ ∨ ψ) : t (¬) Γ � ϕ : t

Γ � ¬ϕ : t

(→)
Γ � ϕ : t, Γ � ψ : t

Γ � (ϕ → ψ) : t
(↔)

Γ � ϕ : t, Γ � ψ : t

Γ � (ϕ ↔ ψ) : t

(∃) x : σ, Γ � ϕ : t, x : σ, Γ � ψ : t

Γ � ex(x : σ, ϕ, ψ) : t
(∀) x : σ, Γ � ϕ : t, x : σ, Γ � ψ : t

Γ � all(x : σ, ϕ, ψ) : t

(most)
x : σ, Γ � ϕ : t, x : σ, Γ � ψ : t

Γ � most(x : σ, ϕ, ψ) : t
(card)

x : σ, Γ � ϕ : t, Γ � n : nat

Γ � card(x : σ, ϕ, n) : t

(wh)
x : σ, Γ � ϕ : t, x : σ, Γ � ψ : t

Γ � wh(x : σ, ϕ, ψ) : σ∗ (whn)
x : σ, Γ � ϕ : t, x : σ, Γ � ψ : t

Γ � whn(x : σ, ϕ, ψ) : nat

Since we want to use structured variables 〈x, y〉 for pairs (and avoid decompo-
sition functions), variants of the abstraction and quantification rules are needed
as well, such as

(Abs×)
x : σ, y : τ, Γ � r : ρ

Γ � λ〈x, y〉.r : σ × τ → ρ
.

Verbs with different categories, in particular with arguments that may be read
both collectively and distributively, are captured by the typing rule (f), where
f is the predicate constant of the verb.

Remark 2. In the quantifier rules (Q), for Q ∈ {ex , all ,most ,wh,whn}, it may
be more natural to let the type of the quantified “search” variable be determined
by the restriction predicate ϕ, and let the scope ψ have a less restrictive type:

(Q,≤)
x : σ, Γ � ϕ : t, x : τ, Γ � ψ : t, Δ � σ ≤ τ

Γ � Q(x : σ, ϕ, ψ) : t
.

Resolving Plural Ambiguities by Type Reconstruction 281

3.3 Type Reconstruction

Hindley’s[7] type reconstruction algorithm for simply typed λ-calculus assigns
a type variable to each subterm of its untyped input term and an equational
constraint α = (β → γ) for each application (fα · tβ)γ , and then solves the
constraints by unification. If a solution exists, there is a most general one, the
principal type scheme of the input term. The algorithm is often presented as
a function type(Γ, t) which takes a type context Γ and an untyped term t and
either fails or returns a pair (U, τ) where U : TypeV ar → Type is the most
general substitution such that UΓ � t : τ .

We adapt this algorithm in two respects: (i) each non-logical constant may
have finitely many types, all of which must be closed (i.e. without type vari-
ables), and (ii) a subtype relation based on the structure of type expressions
and on a partial order among base types is used when typing application terms
(and generalized quantifiers, perhaps). By (i), we can have verb constants with
different types for the same argument, and by (ii), functions can be applied to
arguments whose type is a subtype of the function’s argument type. Obviously
terms no longer have a principal type scheme, but it seems clear that each term
has a finite number of type schemes whose instances are the types of the term.

Thus, in our setting, type reconstruction means that given a typing context Γ
and an untyped term t, a list of pairs (U, τ) is constructed where U : TypeV ar →
Type and τ is a type such that UΓ � t : τ according to the typing rules. We
assume that type assumptions c : σ for constants c have closed types σ, and for
each free variable x of t, there is a single type assumption x : σ in Γ , where
σ need not be closed. In the following selection of defining clauses for type, we
write type(Γ, e) � (U, τ) for (U, τ) ∈ type(Γ, e), and use α, β for “fresh” type
variables:

type([x : σ, Γ], x) � (Id, σ)

type([y : σ, Γ], x) � let (S, τ) ← type(Γ, x) in (S, τ) (for y 	≡ x)

type(Γ, λx.t) � let (S, τ) ← type([x : α, Γ], t) in (S, (Sα → τ))

type(Γ, λ〈x, y〉.t)� let (S, τ) ← type([x : α, y : β, Γ], t) in (S, (Sα× Sβ → τ))

type(Γ, (t · s)) � let (S, σ) ← type(Γ, s)

(T, τ) ← type(SΓ, t)

U = subtype(TSΓ, τ, (Tσ → α))

in (UTS,Uα)

type(Γ,Q(x, ϕ, ψ)) � let (S, (σ → τ)) ← type(Γ, λxϕ),

(S′, (σ′ → τ ′)) ← type(SΓ, λxψ)

U = subtype(S′SΓ, (σ′ → τ ′), S′(σ → τ))

V = unify(U(σ′ → τ ′), (α → t)) (where t = bool)

in (V US′S, V α∗)

282 H. Leiß

type(Γ, f(t1, . . . , tn)) � let (S1, τ1) ← type(Γ, t1), . . . ,

(Sn, τn) ← type(Sn−1 · · ·S1Γ, tn)

(Id, σ1 × · · · × σn → σ) ← type(Γ, f)

U = subtype(Sn · · ·S1Γ, (σ1 × · · · × σn → σ),

(τ1 × · · · × τn → α))

in (USn · · ·S1, Uα)

In type-checking applications (f ·t) and algebraic terms f(t1, . . . , tn), the purpose
of subtype is to weaken the type of an argument to the corresponding argument
type of the function.

subtype(Γ, σ → τ, σ′ → τ ′) := let S = subtype(Γ, σ′, σ)

T = subtype(SΓ, Sτ, Sτ ′)

in TS

subtype(Γ, σ × τ, σ′ × τ ′) := let S = subtype(Γ, σ, σ′)

T = subtype(SΓ, Sτ, Sτ ′)

in TS

subtype(Γ, σ∗, τ∗) := let S = subtype(Γ, σ, τ) in S

subtype(Γ, σ, τ) := Id, if σ and τ are base types and Δ � σ ≤ τ

subtype(Γ, σ, τ) := unify(σ, τ), else .

Note that subtype is functional and instantiates variable arguments through uni-
fication. Note also that overloading is restricted to constants; free and abstracted
variables must be used with the same type at each occurrence.

Example 4. Let Δ contain m ≤ h, h ≤ e, s ≤ e, and Γ = {v : h × s → t, v :
s × m → t, p : m → t, d : α} where α is a type variable. Then the ques-
tion “which p’s stand in relation v to d?”, wh(x, p(x), v(x, d)), is typed in the
context Γ as follows: type(Γ, λx.p(x)) = {(Id,m → t)}, type(Γ, λx.v(x, d)) =
{([α/s], h → t), ([α/m], s → t)}, subtype([α/s]Γ, (h → t), (m → t)) = Id and
subtype([α/m]Γ, (s → t), (m → t)) fails. Hence, type(Γ,wh(x, p(x),
v(x, d))) = {([α/s],m∗)}.

3.4 Application

We demonstrate the effect of type reconstruction on an example involving both
reciprocal and reflexive pronouns. Our implementation differs slightly from the
description above: it does not fully implement the quantifying-in rule (S 14), but
produces a traditional parse tree with noun phrases in place, then adds untyped
λ-terms (with various relative scopes for the noun phrases), and finally types
these λ-terms. The reciprocal only transforms a pair-predicate to its symmetric

Resolving Plural Ambiguities by Type Reconstruction 283

kernel; the switch from a transitve verb to a pair-predicate is done on the fly
when combining the verb with its objects.

Example 5. The interrogative plural determiner which in Which barbers who
shave themselves shave each other? has two readings, leading to two readings
of the subject noun phrase, one expecting a property of individuals, and the
other expecting a property of pairs of individuals.5. Only the second reading, of
type (m*m->t)->list(m*m), can be applied to the meaning of the (not explicitly
represented) verb phrase shave each other, whose type is m*m->t.

?- debug(typisieren), parses.

|: welche Barbiere, die sich rasieren, rasieren einander.

Baum:

s([qu], [praes, ind, vz])

+ qu((X, Y):m*m,

barbier(X)&rasieren(X, X)& (barbier(Y)&rasieren(Y, Y)),

rasieren(X, Y)&rasieren(Y, X)):list(m*m)

np([qu, 3, mask], [pl, nom])

+ lam(X: (m->t), qu(Y:m, barbier(Y)&rasieren(Y, Y), X*Y)):

((m->t)->list(m))

+ lam(X: (m*m->t), qu((Y, Z):m*m,

barbier(Y)&rasieren(Y, Y)&barbier(Z)&rasieren(Z, Z),

X* (Y, Z))): ((m*m->t)->list(m*m))

det([qu], [mask, pl, nom]) welche

+ lam(X: (Y->t), lam(Z: (Y->t), qu(A1:Y, X*A1, Z*A1))):

((Y->t)-> (Y->t)->list(Y))

+ lam(X: (Y->t), lam(Z: (Y*Y->t),

qu((A1, B1):Y*Y, X*A1&X*B1, Z*(A1, B1))))

: ((Y->t)-> (Y*Y->t)->list(Y*Y))

n([mask], [pl, nom]) ’Barbiere’

+ lam(X:m, barbier(X)): (m->t)

s([rel(mask, pl)], [praes, ind, vl])

+ lam(X:m, rasieren(X, X)): (m->t)

np([rel(mask, pl), 3, mask], [pl, nom])

+ lam(X: (Y->Z), lam(A1:Y, X*A1)): ((Y->Z)->Y->Z)

pron([rel], [mask, pl, nom]) die

+ lam(X: (Y->Z), lam(A1:Y, X*A1)): ((Y->Z)->Y->Z)

np([refl, 3, mask], [sg, akk])

+ lam(X: (Y->Z), lam(A1:Y, X*A1)): ((Y->Z)->Y->Z)

pron([refl], [mask, sg, akk]) sich

+ lam(X: (Y->Z), lam(A1:Y, X*A1)): ((Y->Z)->Y->Z)

v([nom, akk], [3, pl, praes, ind]) rasieren

+ lam(X:m, lam(Y:m, rasieren(X, Y))): (m->m->t)

v([nom, akk], [3, pl, praes, ind]) rasieren

5 Meaning terms are marked with + and written underneath the nodes of the syntax
tree. m is the type of humans, a subtype of e.

284 H. Leiß

+ lam(X:m, lam(Y:m, rasieren(X, Y))): (m->m->t)

np([rezi, 3, mask], [pl, akk])

+ lam(X: (Y*Y->t), lam((Z, A1):Y*Y, X* (Z, A1)&X* (A1, Z))):

((Y*Y->t)->Y*Y->t)

pron([rezi], [mask, pl, akk]) einander

+ lam(X: (Y*Y->t), lam((Z, A1):Y*Y, X* (Z, A1)&X* (A1, Z))):

((Y*Y->t)->Y*Y->t)

4 Conclusion and Open Questions

In a framework like Montague’s where noun phrases are functionals applying to
properties provided by verb phrases, the existence of verbs of different logical
types implies that noun phrases may have several meanings, differing in their
argument type (at least). In particular, this occurs when verb arguments may
be individuals, pairs, or groups, or when the domain of individuals is structured
by subtypes. Adapting type inference algorithms for programming languages, we
can resolve some of the ambiguities of (in particular: plural) noun phrases.

Given that we use a modest modification of Hindley’s algorithm, it seems
plausible that the set of typings of a term can be described by finitely many
type schemes, and that these can be computed efficiently from the input term.
However, we havn’t yet tried to prove this. On the practical side, there is a
question of when and how to report type errors: if function and argument each
can have several types, should one suppress all type error messages as long as
one compatible combination of types remains, and if not, how should one report
errors relative to a particular choice of function and argument type?

From the linguistic point of view, the typing system presented here is not
quite satisfying in that we assume that abstractions are monomorphic.. But a
single plural noun phrases may be “used” with several types in its scope, as in

(John and Mary)?→t (like Bill)e→t but (don’t like each other)e×e→t,

so that we cannot generally select one of its possible types, here (e → t) → t and
(e× e → t) → t. One might try to use intersection types [2] to type the subject
here; but we have no well-typed verb phrase in the first place.

5 Related Work

In Link’s[10] influential algebraic semantics of plural noun phrases, individuals
are atoms and groups are suprema of sets of atoms in a complete lattice. Unless
atoms and non-atoms are seen as types, this is rather incompatible with our
way of distinguishing individuals, pairs and groups by their type. Kamp and
Reyle[8] let plural noun phrases be ambiguous between distributive and collec-
tive readings, where the former provides the predicate with an atomic discourse
referent, the latter with a non-atomic one. Using underspecified discourse rep-
resentation structures, Frank and Reyle[6] formulate a semantics principle for

Resolving Plural Ambiguities by Type Reconstruction 285

HPSG where likewise the “argument type” of the verb is determined only when
the corresponding noun phrase is disambiguated. Chaves[1] modifies this account
by letting plural noun phrases be collective (introduce non-atomic discourse ref-
erents) generally and by locating plural disambiguation in the lexical entries of
verbs: they may require atomic or non-atomic noun phrase arguments or admit
both via underspecification. A special plural resolution constraint resolves the
underspecification and relates the discourse referent of the noun phrase with the
argument type of the verb. Our overloading of verbs is technically simpler; how-
ever, we generate all readings of a noun phrase and let type reconstruction filter
out the ones compatible with the verb’s types. The constraint-based approach
aims at a more compact description of the set of all readings.

Plural noun phrases with the pairwise reading occur in mathematical texts,
where symmetric predicates are frequent. Cramer and Schröder[3] present a
plural disambiguation algorithm for such cases, using discourse representation
structures. We think that our type reconstruction algorithm ought to be able to
correctly select the pairwise reading in most of their examples.

The functional programming community has studied type reconstruction for
various extensions of the system of simple types. Mitchell [11] showed that type
reconstruction for simple types with a subsumption rule

Γ � t : σ, σ ≤ τ

Γ � t : τ
,

where ≤ is a partial order on the set of types, reduces to solving a set of inequal-
ities over the set of types, and if the partial order is generated by its restriction
to base types, it reduces to solving a set of inequalities over the set of base types,
which can be done in NEXPTIME by nondeterministic choice. Tiuryn and Wand
[15] give a DEXPTIME algorithm for the more general problem of type recon-
struction for recursive types and a partial order generated by a subtype relation
on base types; however, constants must not be overloaded. Smith[14] gives an
extension of the Hindley/Milner type system (for λ-terms with local declara-
tions) that covers both subtyping and overloading. Its principal type schemes
have unversal type quantifiers bounded by a set of inequality constraints to re-
strict type instantiations; since the solvability of constraints is undecidable in
general, restrictions on overloading (and subtyping) have to be imposed to make
it (efficiently) decidable. Since we have no local declarations, it seems best to
relate our system to Mitchell’s, by replacing an overloaded constant by different
non-overloaded constants. But our way of solving subtype constraints through
unification is somewhat ad-hoc and not equivalent to satisfiability.

Acknowledgement. I thank Shuqian Wu for pushing me to write down this
material and a referee for the hint to [14].

References

1. Chaves, R.P.: DRT and underspecification of plural ambiguities. In: Bunt, H.,
Geertzen, J., Thijse, E. (eds.) Proceedings of the 6th IWCS, pp. 78–89 (2005)

286 H. Leiß

2. Coppo, M., Giannini, P.: Principal types and unification for simple intersection
type systems. Information and Computation 122(1), 70–96 (1995)

3. Cramer, M., Schröder, B.: Interpreting plurals in the Naproche CNL (2010),
http://staff.um.edu.mt/mros1/cnl2010/TALKS/Plurals_in_Naproche.pdf

4. Dalrymple, M., Kanazawa, M., Kim, Y., Mchombo, S., Peters, S.: Reciprocal ex-
pressions and the concept of reciprocity. Linguistics and Philosophy 21(2), 159–210
(1998)

5. Franconi, E.: A treatment of plurals and plural quantifications based on a theory
of collections. Minds and Machines, special issue on Knowledge Representation for
Natural Language Processing 3(4), 453–474 (1993)

6. Frank, A., Reyle, U.: Principle based semantics for HPSG. In: Proceedings of the
6th Meeting of the Association for Computational Linguistics, European Chapter,
pp. 9–16 (1995)

7. Hindley, R.: The principal type-scheme of an object in combinatory logic. Trans-
actions of the American Mathematical Society 146, 29–60 (1969)

8. Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer (1983)
9. Keenan, E.L., Faltz, L.M.: Boolean Semantics for Natural Language. D. Reidel,

Dordrecht (1985)
10. Link, G.: Algebraic Semantics for Language and Philosophy. CSLI Publications

(1989)
11. Mitchell, J.: Type infernce with simple subtypes. Journal of Functional Program-

ming 1, 245–285 (1991)
12. Montague, R.: The proper treatment of quantification in ordinary english. In:

Thomason, R. (ed.) Formal Philosophy. Selected Papers of Richard Montague.
Yale Univ. Press (1974)

13. Sabato, S., Winter, Y.: From semantic restrictions to reciprocal meanings. In:
Rogers, J. (ed.) Proceedings FG-MoL 2005. 10th Conference on Formal Grammar
and 9th Meeting on Mathematics of Language. CSLI online publications (2005)

14. Smith, G.S.: Principal type schemes for functional programs with overloading and
subtyping. Science of Computer Programming 23, 197–226 (1994)

15. Tiuryn, J., Wand, M.: Type reconstruction with recursive types and atomic sub-
typing. In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) CAAP 1993, FASE 1993, and
TAPSOFT 1993. LNCS, vol. 668, pp. 686–701. Springer, Heidelberg (1993)

http://staff.um.edu.mt/mros1/cnl2010/TALKS/Plurals_in_Naproche.pdf

Weak Familiarity and Anaphoric Accessibility

in Dynamic Semantics�

Scott Martin

Department of Linguistics
Ohio State University

Columbus, Ohio 43210 USA
http://www.ling.ohio-state.edu/~scott/

Abstract. The accessibility constraints imposed on anaphora by dy-
namic theories of discourse are too strong because they rule out many
perfectly felicitous cases. Several attempts have been made by previous
authors to rectify this situation using various tactics. This paper pro-
poses a more viable approach that involves replacing Heim’s notion of
familiarity with a generalized variant due to Roberts. This approach is
formalized in hyperintensional dynamic semantics, and a fragment is laid
out that successfully deals with some problematic examples.

Keywords: Anaphora, accessibility, familiarity, dynamic semantics,
discourse.

1 Overview

Dynamic theories such as discourse representation theory (DRT: Kamp 1981,
Kamp and Reyle 1993), file change semantics (FCS: Heim 1982, 1983), and
dynamic Montague grammar (DMG: Groenendijk and Stokhof 1991) are able to
successfully treat ‘donkey anaphora’ because they appropriately constrain cross-
clausal anaphoric links. Unfortunately, for certain classes of examples, these
constraints are too strong. A number of attempts have been made to appropri-
ate loosen these constraints in different frameworks using widely varying tactics,
including scope extensions, so-called ‘E-type’ pronouns, and presupposition ac-
commodation.

I argue below that these previous attempts miss an empirical generalization
due to Roberts (2003) that many cases of seemingly inaccessible anaphora can
be described by a weak variant of Heim’s familiarity. I then show how Roberts’
weak version of familiarity can be incorporated into a formal model of discourse
following Martin and Pollard (in press, to appear). A fragment shows how the
extended theory can deal with some recalcitrant counterexamples to Heim’s
familiarity-based theory. I also examine the possibility of further extending this
theory with Roberts’ informational uniqueness and give a discussion of its
interaction with certain pragmatic effects.

� Thanks to Carl Pollard for comments on an earlier draft, and to Craige Roberts for
discussion of the relevant data. Of course, any errors are my own.

P. de Groote and M.-J. Nederhof (Eds.): Formal Grammar 2010/2011, LNCS 7395, pp. 287–306, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

288 S. Martin

The rest of this paper is organized as follows. Section 2 describes the problem
of anaphora occurring across inaccessible domains with motivating examples, and
then lays out some other attempts to deal with it. In section 3, I discuss Heim’s
notion of (strong) familiarity and contrast it with Roberts’ generalization of it to
weak familiarity. An overview of Martin and Pollard’s hyperintensional dynamic
semantics (HDS) is given in section 4, along with some proposed extensions for
modeling weak familiarity. This extended framework is then applied to some
examples of anaphora across inaccessible domains in section 5, and a discussion
of some apparent cases of overgeneration is provided. Section 6 summarizes and
indicates some avenues for possible future work.

2 The Problem of Anaphora across Inaccessible Domains

One of the central triumphs of dynamic semantic theories in the tradition of
DRT, FCS, and DMG is that they make pronominal anaphora possible only
under certain conditions. This notion of anaphoric accessibility explains the
difference in felicity between the examples in (A) and (B).

(A) If Pedro owns

{
a

#every

}
donkeyi he beats iti.

(Kamp 1981, examples 1, 17)

(B) 1. Everybody found a cati and kept iti.

2. #Iti ran away.
(Heim 1983, example 5)

In these examples, the quantifying expression every limits the anaphoric acces-
sibility of discourse referents (DRs) introduced within its scope. The quantifier
no exhibits similar behavior:

(C) 1.

{
A

#No

}
donkeyi brays.

2. Itsi name is Chiquita.

In (C), as in (A) and (B), a quantifying expression constrains the scope of
DRs occurring in its scope in a way that the indefinite does not. Although it
is encoded differently in each, DRT, FCS, and DMG tell very similar stories
to explain these facts. These dynamic accounts of anaphoric accessibility rest
on the same basic idea that indefinites introduce DRs and quantifiers limit the
scope of DRs. Indefinites themselves do not place bounds on DR scope because
they are treated either as non-quantifying (and thus as scopeless) or as extending
their scope across discourse (unless they are outscoped by a ‘true’ quantifier).
Many authors have subsequently adopted the essential details of this treatment
of anaphoric accessibility (Chierchia 1992, 1995; van der Sandt 1992; Muskens
1994, 1996; Geurts 1999; Beaver 2001; de Groote 2006, 2008, among others).

Weak Familiarity and Anaphoric Accessibility in Dynamic Semantics 289

However, the treatment of anaphoric accessibility found in dynamic semantics
is not without problems, as the following ‘bathroom’ example1 shows.

(D) Either there’s no bathroomi in this house or iti’s in a funny place.
(Roberts 1989)

Examples like (D) seem to pose a direct counterexample to anaphoric inaccessi-
bility: a DR introduced in the scope of a quantifier (here, no) is clearly accessible
from pronouns that occur outside of the quantifier’s scope. Unless somehow elab-
orated, a dynamic theory in the tradition of DRT/FCS/DMG would incorrectly
predict that bathroom cannot serve as an antecedent for it.

This problem isn’t simply limited to disjunctions or intrasentential anaphora,
as (E) shows.

(E) 1. Every farmer owns a donkey.

2. Pedro is a farmer, and his donkey is brown.

The discourse in (E) is unproblematic. But the anaphoric accessibility constraints
in dynamic theories would predict that the anaphora associated with his donkey
is not resolvable. Yet we seem to have no problem understanding that Pedro’s
donkey ownership is a result of his being a farmer and the fact that, as previously
mentioned, all farmers have a donkey. Various attempts have been made to
square the idea of anaphoric accessibility with problematic examples like (D)
and (E). I examine some of these attempts in the next section.

2.1 Some Attempts to Rectify the Problem

Groenendijk and Stokhof (1991) entertain the possibility of accounting for
certain cases of anaphora in inaccessible domains by allowing some dynamic
quantifiers and connectives to extend their scope further than the accessibility
constraints dictate. The resulting extension of DMG accounts for the anaphora
in examples involving disjunction such as (D), but it also gives rise to other
undesirable predictions. For instance, the scope-extension variant of their the-
ory is unable to rule out cases where anaphora is truly inaccessible, such as the
following.

(F) 1. Every farmer owns a donkeyi.

2. # Pedro is a farmer, and he beats iti.

(G) 1. Every farmeri owns a donkey.

2. # The farmeri’s name is ‘Pedro.’

For both (F) and (G), the proposed extension to DMG would allow the pronoun
in the second utterance to have as its antecedent the indicated DR in the first
utterance.

1 Example (D) is attributed to Barbara Partee both by Roberts and by Chierchia
(1995, p. 8), who gives a slight variant of it. A similar class of examples is discussed
by Evans (1977).

290 S. Martin

In Chierchia (1995), an ambiguity is posited for pronouns between the “dy-
namically bound” case (in which the accessibility constraints are followed) and
the ‘E-type’ case of e.g. Cooper (1979), in which anaphora across inaccessible
domains is allowable in certain cases. Chierchia successfully applies his theory
both to donkey anaphora and to the bathroom sentence (D), and although he
does not treat parallel examples, a straightforward account of (E) in Chierchia’s
theory using an E-type pronoun for his is not beyond imagination. However, even
leaving aside the arguments advanced by Roberts (2004) against the viability of
the E-type approach in general, it would be desirable if a single mechanism could
account for discourse anaphora without needing an ambiguity between dynami-
cally bound and E-type pronouns. Below, I argue that such a unified treatment
of pronominal anaphora in discourse is possible.

Lastly, an approach to bathroom sentences like (D) is laid out in Geurts
(1999), which in turn is an extension of the presuppositional DRT of van der
Sandt (1992). In this theory, the anaphora in (D) is treated as an instance of
presupposition accommodation: an antecedent for the pronoun it is added to
the right disjunct in order to allow felicitous interpretation. I would argue that
construing such examples as involving accommodation is somewhat odd, since
felicitous interpretation actually seems to require an overt (non-accommodated)
antecedent. To illustrate this, consider the following example, which contains
only the right disjunct of (D).

(H) #It’s in a funny place.

The use of the pronoun in (H) gives rise to infelicity because no antecedent
can be found. Yet Geurts seems to predict that an antecedent would simply be
accommodated in a way similar to the accommodation that his theory predicts
for (D). Similarly, Geurts predicts that an antecedent for his donkey in (E) must
be accommodated into the global discourse context in order for it to be felicitous.
Yet the fact that Pedro is a farmer, coupled with the fact that every farmer owns
a donkey, seems to be what allows the anaphora in his donkey to be resolved. I
present an account below in which the seemingly accessible NPs a bathroom in
(D) and a donkey in (E) are crucial to permitting the observed anaphoric links.

3 Strong and Weak Familiarity

For Heim (1982), a semantic representation containing a definite NP (e.g., a
pronoun) requires for its felicity that the definite NP be familiar in the discourse
context. Following Roberts (2003), I refer to Heim’s notion of familiarity as
the strong variant, for reasons that are clarified below. The details of Heim’s
formalization of strong familiarity are given in Defintion 1.

Definition 1 (Strong Familiarity). Let i be the index of a definite NP d in
a semantic representation r. Then the DR i is strongly familiar in a discourse
context c iff

Weak Familiarity and Anaphoric Accessibility in Dynamic Semantics 291

1. The DR i is among the active DRs in c, and
2. If d has descriptive content, then c entails that i has the relevant descriptive

content.

Heim’s familiarity has the effect of requiring pronouns and other definites to
have an adequate, previously established antecedent in the discourse context.
The dynamic meanings of quantifiers, conditionals, etc. are then set up in a
way that guarantees the anaphoric accessibility conditions discussed in section
2, above.

Taking (B) as an example, Heim’s theory correctly predicts the felicity of the
first occurrence of it and the infelicity of the second occurrence. The first it is
meets the familiarity condition because an antecedent DR, introduced by every,
is accessible. The second, however, is infelicitous because it occurs outside the
scope of every, where no antecedent DR is available.

The problem of accounting for anaphora in inaccessible domains arises for
Heim’s theory as a direct result of her formulation of familiarity and the acces-
sibility conditions on anaphora. For example, the familiarity condition requires
that his donkey in (E) have an accessible DR in the discourse context that has
the property of being a donkey. But since the donkey-DR introduced by a donkey
in the first sentence of (E) has its accessibility limited by the scope of every, the
occurrence of his donkey in the second utterance does not meet the familiarity
condition. This is the reason Heim’s theory incorrectly predicts infelicity for (E).
The bathroom example (D) represents an analogous situation: the quantifier no
limits the scope of the bathroom-DR introduced in the first conjunct, which re-
sults in the pronoun it failing to satisfy the condition for familiarity imposed on
definites. Here again, Heim’s theory predicts infelicity for a perfectly felicitous
discourse.

Roberts (2003) reworks Heim’s familiarity condition on definites into a more
general notion of “weak” familiarity. In Definition 2, I give a simplified version
of Roberts’ formalization of this idea.

Definition 2 (Weak Familiarity). Let i be the index of a definite NP d in
a semantic representation r. Then the DR i is weakly familiar iff c entails the
existence of an entity bearing the descriptive content of d (if any).

As this definition shows, for a definite to be weakly familiar in a certain discourse
context, the context does not necessarily have to contain an active DR with
the relevant descriptive content, if any. Weak familiarity only requires that the
discourse context entails that an entity bearing the relevant description exists.

For example, supplanting Heim’s strong familiarity with Roberts’ weak fa-
miliarity renders examples like (E) felicitous. The definite his donkey meets the
weak familiarity condition because the discourse context entails that a donkey
exists that is owned by Pedro. Example (D) is also felicitous under weak fa-
miliarity for a similar reason. Although the would-be antecedent a bathroom is
inaccessible, its use in the first disjunct results in a discourse context that entails
the existence of a bathroom. This entailment allows the pronoun it in the second
disjunct to satisfy the weak familiarity condition.

292 S. Martin

As Roberts notes, the strong version of the familiarity condition, coupled with
Heim’s definitions for e.g. quantifiers, is essentially just anaphoric accessibility.
The reason weak familiarity is called ‘weak’ is that it subsumes strong familiarity:
a definite’s being strongly familiar entails that it is weakly familiar, but not the
other way around. In the next section, I implement Roberts’ more general weak
familiarity into an essentially Heim-like formal theory of discourse.

4 A Formalization in Hyperintensional Dynamic
Semantics

To formalize weak familiarity, I extend the hyperintensional dynamic semantics
(HDS) of Martin and Pollard (in press, to appear), which implements a version
of Heim’s strong familiarity condition for definites. HDS is a theory of discourse
built on the hyperintensional (static) semantics of Pollard (2008a, 2008b) that
additionally extends the Montagovian dynamics of de Groote (2006, 2008). It
is expressed in a classical higher-order logic (HOL) in the tradition of Church
(1940), Henkin (1950), and Montague (1973) that is augmented with some of
the extensions proposed by Lambek and Scott (1986), as I describe below. The
next four sections are mostly review of HDS. Below, in section 4.5, I propose
extensions to HDS for dealing with weak familiarity.

As usual, pairing is denoted by 〈 , 〉. For f a function with argument x, ap-
plication is written (f x) rather than the usual f(x). Application associates to
the left, so that (f x y) becomes shorthand for ((f x) y). Variables that are
λ-abstracted over are written as subscripts on the lambda, following Lambek
and Scott. Successive λ-abstractions are usually simplified by collapsing the
abstracted variables together onto a single lambda, so that λxyz.M is written
instead of λxλyλz.M . I sometimes use the . symbol to abbreviate parentheses
in the usual way, with e.g. λx.M N shorthand for λx(M N). Lastly, parentheses
denoting application are sometimes omitted altogether when no confusion can
arise.

4.1 Types and Constants

The basic types e of entities and t of truth values are inherited from the un-
derlying logic, as are the usual type constructors U (unit), × (product), and →
(exponential). HDS follows Lambek and Scott (1986) in adopting the following
extensions to HOL:

– The type natural number type ω, which is linearly ordered by < and equipped
with the successor function suc : ω → ω.

– Lambda-definable subtypes: for any type A, if ϕ is a formula with x : A free,
then {x ∈ A | ϕ} denotes the subtype consisting of those inhabitants of A
for which ϕ is true.

A partial function from A to B is written A ⇀ B, i.e., as a function from a certain
subtype of A to B. I also use dependent coproduct types parameterized by ω,

Weak Familiarity and Anaphoric Accessibility in Dynamic Semantics 293

so that
∐
n∈ω Tn denotes the dependent coproduct type whose cofactors are all

the types Tn, for n a natural number. I sometimes drop the subscript denoting
the natural number parameter when the parameter is clear from context.

Discourses generally involve a set of DRs. Accordingly, I introduce a set of
subsets of ω:

ωn =def {i ∈ ω | i < n}

Since natural numbers are used to represent DRs, the type ωn is intuitively the
first n DRs.

The type an of n-anchors are mappings from the first n DRs to entities,
analogous to Heim’s assignments.

an =def ωn → e

The constant functions •n : an → e → a(suc n) extend an anchor to map the
‘next’ DR to a specified entity, subject to the following axioms:

� ∀n∈ω∀a∈an∀x∈e.(a •n x) n = x

� ∀n∈ω∀a∈an∀x∈e∀m:ωn .(a •n x)m = (a m)

These axioms together ensure that for an n-anchor a, the extended anchor (a•nx)
maps n to x, and that none of the original mappings in a are altered.

Relative salience for the DRs in an n-anchor is encoded by an n-resolution
rn, axiomatized as the subtype of binary relations on ωn that are preorders (this
property is denoted by preon):

rn =def {r ∈ ωn → ωn → t | (preon r)}

Analogously to anchors, an n-resolution can be extended to cover the ‘next’ DR
using �n : rn → r(suc n). For an n-resolution r, (�n r) is the resolution just like
r except that n is added and axiomatized to be only as salient as itself (and
unrelated to any m < n).

I adopt the basic type p of propositions from Pollard’s (2008b) static se-
mantics. This type, which is preordered by the entailment relation entails :
p → p → t, is used to model the common ground (CG) following Stalnaker
(1978). Certain natural language entailments are central to the analysis of ana-
phora I propose below. The hyperintensional entailment axioms pertaining to
the (translations of the) English ‘logic words’ that impact the analysis I propose
in section 5 are given in Equations 1 through 5.

� ∀p∈p.p entails p (1)

� ∀p,q,r∈p.(p entails q) → ((q entails r) → (p entails r)) (2)

� ∀p,q∈p.(p and q) entails p (3)

� ∀p,q∈p.(p and q) entails q (4)

� ∀p∈p.(not (not p)) entails p (5)

294 S. Martin

The first two of these simply state that the entailment relation on p forms a
preorder (reflexive, transitive relation). Equations 3 and 4 require that a con-
junction of two propositions entails either conjunct, and Equation 5 axiomatizes
double negation elimination. See Pollard (2008b, (42)–(44)) for a complete ax-
iomatization of entails.

Discourse contexts are defined as tuples of an anchor, resolution, and a CG,
inspired both by Heim and by Lewis (1979).

cn =def an × rn × p

c =def

∐
n∈ω

cn

For each n ∈ ω, a discourse context of type cn is one that ‘knows about’ the first
n DRs. The type c is simply the type of n-contexts of any arity.

Several functions are useful in HDS for managing discourse contexts. The
projection functions for the three components of a context are mnemonically
abbreviated as a : c → a (for anchor), r : c → r (for resolution) and p : c → p
(for proposition). As a shorthand, I further abbreviate (acn), the entity anchoring
the DR n in the context c, as follows.

� ∀m∈ω∀c∈cm∀n∈ωm .[n]c = (a c n)

As long as no confusion is possible, I usually drop the subscript c and write
simply [n]. The ‘next’ DR for an n-context is always the natural number n,
retrievable by nextn:

� ∀n∈ω∀c∈cn .(nextn c) = n

The constants ::n and +n are used to extend the anchor/resolution and CG of
a context, respectively:

� ∀n∈ω. ::n = λcx 〈(a c) •n x, �n (r c), (p c)〉
� ∀n∈ω.+n = λcp 〈(a c), (r c), (p c) and p〉

These axioms ensure that ::n maps a specified entity to the ‘next’ DR and adds
it to the resolution, while +n adds a specified proposition to the CG.

Lastly, the definedness check ↓ : (A ⇀ B) → A → t (written infix) tests
whether a given partial function is defined for a given argument.

� ↓ = λfx.dom f x

Where for a given partial function f : A ⇀ B, (dom f) is the characteristic
function of the subset of A that is the domain of f .

4.2 Context-Dependent Propositions, Updates, and Dynamic
Propositions

Context-Dependent Propositions (CDPs), type k, are partial functions
from contexts to propositions.

Weak Familiarity and Anaphoric Accessibility in Dynamic Semantics 295

k =def c⇀ p

The partiality of this type reflects the fact that an utterance is sensitive to the
discourse context in which it is situated: not every context is suitable to yield an
interpretation for a given utterance, only those where conditions like familiarity
are met. The empty CDP 5 =def λc.true ‘throws away’ whatever context it is
passed, returning the contentless proposition true (a necessary truth).

Updates, of type u, map CDPs to CDPs:

u =def k → k

The type u is used to model the dynamic meanings of declarative sentences.
Dynamic properties are the dynamicized analogs of static properties, where

static properties is defined as follows:

R0 =def p

R(suc n) =def e → Rn

Note that in particular, nullary properties are equated with propositions, and
the arity of a static proposition is simply the number of arguments of type e it
takes. The type hierarchy for dynamic properties is obtained from the one for
static properties by replacing the base type p with the type u of updates, and
replacing the argument type e with the type ω of DRs:

d0 =def u

d(suc n) =def ω → dn

Again, note that nullary dynamic properties are just updates. Since d1 is used
most frequently, I write d to abbreviate the type d1.

The dynamicizer functions dynn map a static property of arity n to its
dynamic counterpart:

dyn0 =def λpkc.p and (k (c+ p)) : R0 → d0

∀n:ω.dyn(suc n) =def λRm.(dynn (R [m])) : R(suc n) → d(suc n)

(Here, and is Pollard’s (2008b) propositional conjunction.) I write static propo-
sitions in lowercase sans-serif (e.g. donkey) and their dynamic counterparts in
smallcaps (e.g., donkey). Some examples of dynamicization:

rain =def (dyn0 rain) = λkc.rain and (k (c+ rain))

donkey =def (dyn1 donkey) = λnkc.(donkey [n]) and (k (c+ (donkey [n])))

own =def (dyn2 own) = λmnkc.(own [m] [n]) and (k (c+ (own [m] [n])))

These examples show the central feature of dynamic properties: the static prof-
fered content is added to the discourse context that is used for evaluating
subsequent updates.

296 S. Martin

Reducing a dynamic proposition to its static counterpart is handled by the
staticizer function stat : u → k, which is defined as follows:

stat =def λu.u5

The partiality of stat reflects the fact that a dynamic proposition can only be
reduced to a static proposition in contexts that satisfy its presuppositions. To
demonstrate, consider (for a hypothetical DR n) the staticizer applied to the
dynamic proposition (donkey n):

n : ω � (stat (donkey n)) = (λkc.(donkey [n]) and (k (c+ (donkey [n]))) 5)

= λc.((donkey [n]) and (5 (c+ (donkey [n]))))

= λc.(donkey [n]) and true

≡ λc.donkey [n]

where ≡ denotes equivalence of CDPs.

4.3 Connectives and Quantifiers

The dynamic conjunction and : u → u → u essentially amounts to composition
of updates, as it is for Muskens (1994, 1996):

and =def λuvk.u (v k) (6)

The effect of dynamic conjunction is that the modifications to the discourse con-
text made by the first conjunct are available to the second conjunct. For example
(again with a hypothetical DR n), the conjunction (donkeyn) and (brayn) : u
is treated as follows:

n : ω � (donkey n) and (bray n)

= λkc.(donkey n) ((bray n) k) c

= λkc.(λkc(donkey [n] and k (c+ donkey [n])) λc(bray [n] and k (c+ bray [n]))) c

= λkc.(donkey [n]) and (bray [n]) and k (c+ donkey [n] + bray [n])

(Here, donkey = (dyn1 donkey) and bray = (dyn1 bray).)
The dynamic existential quantifier exists : d → u introduces the ‘next’ DR:

exists =def λDkc.exists λx.D (next c) k (c :: x) (7)

As Equation 7 shows, the dynamic existential introduces a new DR mapped to
an entity that is existentially bound at the propositional level. This new DR is
added to the discourse context that is used by subsequent updates.

Dynamic negation limits the accessibility of DRs introduced within its scope,
while negating the proffered content of its complement but propagating any
presuppositions.

Weak Familiarity and Anaphoric Accessibility in Dynamic Semantics 297

not =def λukλc | (u k)↓c.dyn0 (not (stat u c)) k c (8)

The partiality condition (u k) ↓ c on the variable c is designed to require
that any presuppositions of the complement of not become presuppositions
of the dynamic negation. This is best illustrated with an example, as follows for
(donkey n).

n : ω � (not (donkey n))

= λkλc | ((donkey n) k)↓c.dyn0 (not (stat c (donkey n))) k c

= λkλc | ((donkey n) k)↓c.(not (donkey [n])) and (k (c+ (not (donkey [n]))))

Here, the (static) proffered content of (donkey n) is negated and this negation
is added to the CG of the discourse context passed to the incoming update. As
the condition on the variable c shows, (not (donkey n)) also requires of the
incoming update that the DR n can be retrieved from the discourse context
used to interpret it. Note that if the complement of not introduced any DRs,
these new DRs would be unavailable to subsequent updates, as desired.

I also extend HDS with a dynamic disjunction, which will be used below to
analyze a bathroom example like (D).

or =def λuv.not ((not u) and (not v)) (9)

This definition is analogous to the treatment of dynamic disjunction by
Groenendijk and Stokhof (1991).

4.4 Dynamic Generalized Determiners

To model the English discourse meanings, several dynamic generalized
determiners (all of type d → d → u) are needed. First, the dynamic indefinite
article a:

a =def λDE .exists λn.(D n) and (E n) (10)

Similarly to the usual treatment of the generalized indefinite determiner in static
semantics, the dynamic indefinite introduces a new DR and passes it to two
conjoined dynamic properties. There is no need to state a novelty condition for
indefinites, as Heim (1982) does, because the newly-introduced DR will always
be as yet unused (see Equation 7, above).

I use the dynamic negation not and the definition of a in Equation 10 to
build the dynamic generalized quantifier no, which models the meaning of the
generalized determiner no.

no =def λDE .not (aD E) (11)

Along with and and exists, dynamic negation is also used to build the dynamic
universal every : d → d → u.

298 S. Martin

every =def λDE .not (exists λn.(D n) and (not (E n))) (12)

This definition ensures that any DR that has the property specified in the re-
strictor D also has the property in the restrictor E. (Note that this definition
of the dynamic universal yields only the so-called ‘strong’ readings for donkey
sentences, but describing how the ‘weak’ readings arise is well beyond the scope
of this paper. See e.g. Rooth (1987), Chierchia (1992), and Kanazawa (1994) for
discussion.)

4.5 Extensions for Modeling Weak Familiarity

The dynamic generalized quantifier meaning its : d → u uses the def operator
to select the uniquely most salient nonhuman DR in the discourse context:

its =def λDkλc | (def nonhuman)↓c.D (def nonhuman c) k c (13)

The difference between the definition of it used here is that a partiality condition
is used on the variable c to explicitly require that the context contain a DR with
the property nonhuman. Since this is the strong version of Heim’s familiarity
condition (see Definition 1), I also add the subscript s. The ω-parameterized
definiteness operator defn : d → c⇀ ωn is defined as follows to yield the most
salient DR in the discourse context with a given dynamic property:

defn =def λDc.
⊔
(r c)

λi∈ωn .(p c) entails (stat (D i) c) (14)

where
⊔

(r c) denotes the unique least upper bound operation on the resolution
preorder of the context c. Note that defn is partial, since for any given dynamic
property D and context c, there may be no DR that is uniquely most salient
among the DRs with the property D according to c’s resolution.

To model weak familiarity for the pronoun it, I add a separate definition for
it that is built on top of the strongly familiar version in Equation 13.

itw =def λDkλc | ϕ.exists λx.(nonhuman x) and its D k (c :: x+ nonhuman x)
(15)

Here the condition ϕ on the context variable c is as follows:

ϕ = (¬ ((its D k) ↓ c)) ∧ ((p c) entails (exists λx.nonhuman x))

In this weak version of it, the condition ϕ that describes which contexts it is
defined for is broken into a conjunction.

The first conjunct (¬ ((its D k) ↓ c)) ensures that the strongly familiar its

is not defined. This is done in order to force the strong familiarity version to
be used whenever an overt discourse referent is actually present in the context,
rather than merely being entailed. This clause is important since itw has the

Weak Familiarity and Anaphoric Accessibility in Dynamic Semantics 299

potential to introduce DRs. Without it, the weak familiarity it in Equation 15
could introduce DRs into a context when a suitable antecedent already existed.

The second conjunct expresses Roberts’ (2003) notion of weak familiarity
as given in Definition 2: the CG of the discourse context must entail that a
nonhuman entity exists. The body of the abstract of itw just invokes the strong
version with a modified context that contains a newly introduced nonhuman
DR. So the fundamental difference between the strong and weak versions of it
are that one references a DR present in the context, and another introduces a
new DR based on certain existential entailments of the CG.

I extend HDS to handle anaphora by possessive determiners by giving strong
and weak versions of the pronoun his. The strong familiarity version of the
dynamic generalized determiner hiss resembles the strong version of it in its in
Equation 13.

hiss =def λDEkλc | ϕ.E (def λn((D n) and (poss n (def male c))) c) k c (16)

(Here, male = (dyn1 male) and poss = (dyn2 poss), where poss : R2 is the
two-place static relation of possession). For Equation 16, the condition on the
context variable c is represented by

ϕ = ((def D) ↓ c) ∧ ((def male) ↓ c)

As the partiality condition ϕ shows, hiss is only defined for contexts where both
a male DR and a DR with the property D are overtly accessible. This strong
version of his takes two dynamic properties as arguments to return an update.
It then applies the second dynamic property to the most salient DR with the
property D that is possessed by the most salient male DR.

As for it, the weak familiarity version of his is defined in terms of the strong
version hiss.

hisw =def λDEkλc | ϕ.exists λx.
((D (next c) and (poss (next c) [def male c])) k (c :: x)) and

hiss D E k (c :: x+ (stat (D (next c) and (poss (next c) [def male c])) c :: x))

In the case of hisw, the definedness condition ϕ on c is

ϕ = (¬ ((hiss D E k) ↓ c))
∧ (p c) entails exists λx.stat (D (next c) and poss (next c) [def male c]) c :: x

This version requires that the strong version of his is undefined in the discourse
context it is passed. In particular, this implies that there is no uniquely most
salient DR overtly represented in the context that bears the property D. It
further requires that the CG entails the existence of an entity possessed by the
uniquely most salient male DR, and that the possessed entity additionally has
the property D. Similarly to the weak version of it, hisw invokes the strong his
with a modified context that is extended with a DR bearing the weakly entailed
property.

300 S. Martin

5 A Small Fragment Demonstrating Weak Familiarity

The weak familiarity version of it is best illustrated with an example.

(I) Either no donkey is walking around, or it’s braying.

The example discourse in (I) is a simplification of bathroom examples of the
kind in (D). But the principle is the same: no DR is accessible to serve as the
anaphoric antecedent of the pronoun it. Noting that donkey = (dyn1 donkey),
walk = (dyn1 walk), and bray = (dyn1 bray), the dynamic meaning of (I) is
as follows.

� (no donkey walk) or (itw bray)

= (not (a donkey walk)) or (itw bray)

= not (not (not (a donkey walk))) and (not (itw bray))

Note that the left conjunct of the argument to the widest-scope negation is the
dynamic double negation of a donkey walks :

� not (not (exists λn.(donkey n) and (walk n)))

≡ λkc(not (not (exists λx((donkey x) and (walk x))))) and (k (c+#))

Here, the proposition contributed to the CG by the first conjunct is represented
as

= not (not (exists λx.(donkey x) and (walk x)))

This proposition, along with the axiomatization of entailment for and and not in
Equations 3, 4 and 5, together mean that the CG of the discourse context passed
to the right disjunct entails the proposition existsλx.(donkeyx) and (walkx). This
entailment therefore satisfies the requirement of the weak familiarity version of it
that the CG must entail the existence of a nonhuman (with the assumption that
any discourse context we would ever practically consider contains only nonhuman
donkeys).

In view of this, (itw bray) in the right disjunct reduces as follows, where the
conditions on the context are suppressed for readability since they are satisfied.

� (itw bray) = λkc.exists λx.(nonhuman x) and (its bray k κ)

= λkc.exists λx.(nonhuman x) and (bray (def nonhuman κ) k κ)

Here κ = c+# :: x+ (nonhuman x) is the updated context produced by itw in
the second conjunct, which in turn contains the proposition # contributed by
the first conjunct. Clearly, the conditions placed on the discourse context by its

are satisfied since the CG contains the information that the newly-introduced
DR is nonhuman.

To demonstrate that this weak familiarity treatment extends to other definites
besides pronouns, consider the following example, a simplification of (E).

Weak Familiarity and Anaphoric Accessibility in Dynamic Semantics 301

(J) 1. Every man owns a donkey.

2. One man beats his donkey.

In (J), as in (E), the antecedent for his donkey is not overtly present in the
discourse context, but is only inferable from entailments introduced by the first
utterance.

Equation 17 shows an HDS analysis of the discourse in (J) that uses the weak
familiarity variant of his.

� every man λj .a donkey λi.own i j and a man λj .hisw donkey λi.beat i j
(17)

Starting with the analysis of the first utterance (J1) shows the entailment it
introduces.

� every man λj .a donkey λi.own i j

= not (exists λn.(man n)

and (not (exists λm.(donkeym) and ownmn))

≡ λkc(not (exists λx((man x)

and (not (exists λy((donkey y) and (own y x))))))) and (k (c+#))

Here, man = (dyn1man) and the variable # represents the modifications to the
discourse context made by the utterance in (J1):

= not (exists λx.(man x) and (not (exists λy.(donkey y) and (own y x))))

This modified context, which is passed to the second utterance, is crucial because
it contains an entailment that for each man, there exists some donkey that
man owns. It is this entailment which allows the use of the weak familiarity
version hisw. Importantly, though the weak familiarity his is defined in the
second utterance of (J), the strong version is not. This is because the discourse
context c+# passed to (J2) does not contain a DR with the property of being
a donkey owned by the uniquely most salient male. However, the existence of
such an individual is entailed by the CG.

The analysis of (J2) is repeated in Equation 18.

� a man λj .hisw donkey λi.beat i j : u (18)

To show how the weak version of his allows the desired anaphoric reference, I
start by reducing a subterm:

� λj .hisw donkey λi.beat i j

= λjkc.exists λy.(donkey y) and (poss y [def male c])

and ((hiss donkey λi.beat i j) k κ)

= λjkc.exists λy.(donkey y) and (poss y [def male c])

and ((beat (def λn(donkey n and poss n (def male κ)) κ) j) k κ)

302 S. Martin

where κ = c :: y + (donkey y) and (poss y [def male c]) represents the context
as modified by hisw donkey, and the constraints placed on c by hisw are sup-
pressed since they are satisfied. This reduction shows how the weak version of
his interacts with the strong version: the DR j is required by hiss to beat the
most salient donkey possessed by the most salient male, and hisw provides a
context extended with an entity y that has exactly that property.

The reduction of the full term in Equation 18 is then as follows:

� a man λj .hisw donkey λi.beat i j

= exists λn.(man n) and (hisw donkey λi.beat i n)

= λkc.exists λx.(man x) and exists λy.(donkey y) and (poss y x) and (beat y x)

and (k (c+# :: x+ (man x) :: y + (donkey y) and (poss y x) + (beat y x)))

Here, the proposition # is the contribution to the CG made by the first ut-
terance (as shown in the analysis of (J1), above) that permits the use of the
weakly familiar version of his. Note that the first argument man to the dynamic
indefinite a allows def in the second argument to select the most salient male
DR in κ.

5.1 Overgeneration and Pragmatic Effects

Carl Pollard (personal communication) points out that the approach to weak
familiarity I describe here seems to overgenerate. He gives (K) as an example.

(K) 1. Not every donkey brays.

2. # It’s brown.

This discourse is clearly odd, because the pronoun seems to lack an anaphoric
antecedent. Yet the theory I have presented thus far licenses (K) because an
entailment is present that permits the weak familiarity version of it to be used in
analyzing (K2). To see why, note that the following analysis of (K1) is permitted
in HDS with the extensions I propose:

� not (every donkey bray)

= not (not (exists λn.(donkey n) and (not (bray n))))

≡ λkc.(not (not (exists λx.(donkey x) and (not (bray x))))) and (k (c+#))

Here, the updates made to the context are represented by

= not (not (exists λx.(donkey x) and (not (bray x))))

Similarly as for the analysis of (I), above, this means that the resulting CG
entails the proposition existsλx.(donkeyx) and (not (brayx)). It is this entailment
that incorrectly allows the conditions imposed by itw to be met for (K).

By way of illuminating this seeming overgeneration, consider the difference
between the bathroom example (D), repeated here, and the discourses in (L).

Weak Familiarity and Anaphoric Accessibility in Dynamic Semantics 303

(D) Either there’s no bathroomi in this house, or iti’s in a funny place.

(L) 1. Either there is no seati in this theater that isn’t taken, or ?iti’s in
the front row.

2. Either there are no seats in this theater that aren’t taken, or #it’s
in the front row.

The discourses in (D) and (L) are only mild variants of one another, yet (D)
is perfectly felicitous, (L1) is somewhat odd, and (L2) is infelicitous. A similar
class of examples is due to Barbara Partee:

(M) 1. I lost ten marbles and found only nine of them.

2.

{
The missing marble

?It

}
is probably under the sofa.

In (M), the missing marble can be anaphorically referenced by a sufficiently
descriptive definite NP. But the descriptively impoverished it does not seem to
suffice.

In attempting to explain away the apparent overgeneration in (K) in light
of the difference in judgments reflected in these discourses, an appeal could be
made to the informational uniqueness of Roberts (2003). Such a move would
involve arguing that (K) is infelicitous because weak familiarity alone is not
enough, and that definite NPs also presuppose that their antecedents are unique
among the DRs in the context that are contextually entailed to have the relevant
descriptive content. Since, in the discourses in (K) and (L), it is impossible to tell
whether the existential entailment only applies to a single weakly familiar DR,
attempting to anaphorically reference the weakly entailed DR with a uniqueness-
presupposing pronoun like it results in a presupposition failure. Example (M)
is similar, except that there are multiple possible antecedents for it that are
overtly (and not merely weakly) familiar. So in (K), there could be multiple
non-braying donkeys; in (L), more than one seat could be available; and in (M),
it is insufficient to pick out the marble that is probably under the sofa.

For cases like (M), in which overtly familiar DRs are present, HDS correctly
requires that a candidate antecedent be informationally unique (see the axiom-
atization of def in Equation 14). Ascribing the infelicity in (K) and (L) to
informational uniqueness in an analogous way seems promising, but it leaves
open one obvious question: what about the original bathroom example (D)? It
does not seem reasonable to assume for any house that either it does not have
a bathroom or it has a unique bathroom that is in a funny place. The house
could easily have multiple bathrooms, all situated in odd locales. Yet, as men-
tioned above, the discourse in (D) is completely felicitous. In fact, it would seem
strange in the extreme to follow up (D) with the question Which bathroom are
you referring to?, possibly because (D) does not seem to be about a specific
bathroom, just one that might be locatable.

I would argue that such apparent counterexamples to the informational
uniqueness requirement are due to pragmatic effects. In the case of (D), a kind of

304 S. Martin

pragmatically conditioned informational uniqueness is likely responsible for the
felicity of the use of it. It is straightforward to imagine a discourse context for
(D) in which the interlocutors are not so much interested in whether the house
in question has a unique bathroom, but whether there is one that is usually
designated for guests to use that can be located. Such a pragmatic explanation
would be unavailable for examples like (L), because none of the (possibly mul-
tiple) available seats is in any sense expected by convention. Likewise, for (K),
there is no designated non-braying donkey that can be picked out from all of the
possible non-brayers.

However, I stop short of building Roberts’ informational uniqueness into the
lexical meaning of the weakly familiar versions of it and his. It seems preferable
for the semantics to generate readings for felicitous discourses like (D), even
if it means licensing some infelicitous examples like (L). My argument for this
is simply that it is the job of the semantic theory to generate readings, and
that pragmatic effects are beyond its scope. Since examples like (D), in which
a pronoun is used even when there is no informational uniqueness, may well
be at least as common as the examples like (K) where the lack of informational
uniqueness is problematic, it does not seem appropriate to forcefully exclude one
class of examples or another.

6 Conclusions and Remaining Issues

The extension to hyperintensional dynamic semantics I present in this paper
represents the first attempt I am aware of to implement Roberts’ (2003) weak
familiarity in a dynamic framework. The resulting formal model lays out a
fragment that deals with problematic examples of anaphora across inaccessible
domains in a way that only mildly extends Heim’s (1982) familiarity condition
on definites. Rather than resort to tactics like scope extension, E-type pronouns,
or presupposition accommodation, this account allows all definites to be con-
strued by two similar mechanisms: anaphoric links are licensed by entailments
of the common ground, and an overt DR is only required to be present in certain
cases. The apparent cases of overgeneration of this approach seem less like true
overgeneration and more like instances of pragmatic effects.

One formal issue that remains is that the dynamic meanings posited for it
and his seem very similar. Each has two cases, one of which requires an overtly
accessible DR in the discourse context with a certain property, the other merely
requires the existence of an entity with that property. Since both function so
similarly, it seems desirable to find a way to unify and simplify their definitions
that clarifies this deep similarity between them. Another topic for future work
is to explain the apparent similarity between certain aspects of the approach
described here and the tactic for modeling proper names via presupposition
accommodation given by de Groote and Lebedeva (2010).

Finally, the account I give here should be expanded to deal with problematic
examples of the kind pointed out by Groenendijk and Stokhof (1991, (46)).

Weak Familiarity and Anaphoric Accessibility in Dynamic Semantics 305

(N) Every player chooses a pawn. He puts it on square one.

In cases like these, there is neither an overly accessible DR available to serve as
the anaphoric antecedent of he, nor is the existence of an antecedent entailed
by the CG. It seems that weak familiarity, as formulated here, cannot capture
this instance of anaphora across an inaccessible domain any more than strong
familiarity can.

References

Beaver, D.I.: Presupposition and Assertion in Dynamic Semantics. CSLI Publications
(2001)

Chierchia, G.: Anaphora and dynamic binding. Linguistics and Philosophy 15, 111–183
(1992)

Chierchia, G.: The Dynamics of Meaning: Anaphora, Presupposition, and the Theory
of Grammar. University of Chicago Press (1995)

Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic 5,
56–68 (1940)

Cooper, R.: The interpretation of pronouns. Syntax and Semantics 10, 61–92 (1979)
Evans, G.: Pronouns, quantifiers and relative clauses. Canadian Journal of Philoso-

phy 7, 467–536 (1977)
Geurts, B.: Presuppositions and Pronouns. Current Research in the Seman-

tics/Pragmatics Interface, vol. 3. Elsevier (1999)
Groenendijk, J., Stokhof, M.: Dynamic Montague grammar. In: Stokhof, M., Groe-

nendijk, J., Beaver, D. (eds.) DYANA Report R2.2.A: Quantification and Anaphora
I. Centre for Cognitive Science, University of Edinburgh (1991)

de Groote, P.: Towards a Montagovian account of dynamics. In: Proceedings of Seman-
tics and Linguistic Theory, vol. 16 (2006)

de Groote, P.: Typing binding and anaphora: Dynamic contexts as λμ-terms. Presented
at the ESSLLI Workshop on Symmetric Calculi and Ludics for Semantic Interpre-
tation (2008)

de Groote, P., Lebedeva, E.: Presupposition accommodation as exception handling.
In: Proceedings of SIGDIAL 2010: the 11th Annual Meeting of the Special Interest
Group on Discourse and Dialogue (2010)

Heim, I.: The Semantics of Definite and Indefinite Noun Phrases. Ph.D. thesis. Uni-
versity of Massachusetts, Amherst (1982)

Heim, I.: File change semantics and the familiarity theory of definiteness. In: Meaning,
Use and the Interpretation of Language. Walter de Gruyter, Berlin (1983)

Henkin, L.: Completeness in the theory of types. Journal of Symbolic Logic 15, 81–91
(1950)

Kamp, H.: A theory of truth and semantic representation. In: Groenendijk, J., Janssen,
T., Stokhof, M. (eds.) Formal Methods in the Study of Language. Mathematisch
Centrum, Amsterdam (1981)

Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer Academic Publishers, Dordrecht
(1993)

Kanazawa, M.: Weak vs. strong readings of donkey sentences and monotonicity infer-
ence in a dynamic setting. Linguistics and Philosophy 17(2), 109–158 (1994)

Lambek, J., Scott, P.: Introduction to Higher-Order Categorical Logic. Cambridge
University Press (1986)

306 S. Martin

Lewis, D.: Scorekeeping in a language game. Journal of Philosophical Logic 8, 339–359
(1979)

Martin, S., Pollard, C.: Hyperintensional Dynamic Semantics: Analyzing Definiteness
with Enriched Contexts. In: de Groote, P., Nederhof, M.-J. (eds.) Formal Grammar
2010/2011. LNCS, vol. 7395, pp. 114–129. Springer, Heidelberg (2012)

Martin, S., Pollard, C.: A higher-order theory of presupposition. Studia Logica Special
Issue on Logic and Natural Language (to appear)

Montague, R.: The proper treatment of quantification in ordinary English. In: Hintikka,
K., Moravcsik, J., Suppes, P. (eds.) Approaches to Natural Language, D. Reidel,
Dordrecht (1973)

Muskens, R.: Categorial grammar and discourse representation theory. In: Proceedings
of COLING (1994)

Muskens, R.: Combining Montague semantics and discourse representation theory. Lin-
guistics and Philosophy 19, 143–186 (1996)

Pollard, C.: Hyperintensional Questions. In: Hodges, W., de Queiroz, R. (eds.) WoLLIC
2008. LNCS (LNAI), vol. 5110, pp. 272–285. Springer, Heidelberg (2008)

Pollard, C.: Hyperintensions. Journal of Logic and Computation 18(2), 257–282 (2008)
Roberts, C.: Modal subordination and pronominal anaphora in discourse. Linguistics

and Philosophy 12, 683–721 (1989)
Roberts, C.: Uniqueness in definite noun phrases. Linguistics and Philosophy 26(3),

287–350 (2003)
Roberts, C.: Pronouns as definites. In: Reimer, M., Bezuidenhout, A. (eds.) Descrip-

tions and Beyond. Oxford University Press (2004)
Rooth, M.: Noun phrase interpretation in Montague grammar, file change semantics,

and situation semantics. In: Gärdenfors, P. (ed.) Generalized Quantifiers. Reidel,
Dordrecht (1987)

van der Sandt, R.A.: Presupposition projection as anaphora resolution. Journal of
Semantics 9, 333–377 (1992)

Stalnaker, R.: Assertion. Syntax and Semantics 9: Pragmatics, 315–332 (1978)

Author Index

Bastenhof, Arno 1
Béchet, Denis 17
Bransen, Jeroen 33

Clark, Alexander 192
Crysmann, Berthold 50

Dao, Thi-Bich-Hanh 82
Dekhtyar, Michael 66
Dikovsky, Alexander 17, 66
Duchier, Denys 82

Foret, Annie 17

Graf, Thomas 97, 208

Homola, Petr 228

Karlov, Boris 66
Kornai, András 243
Kuznetsov, Stepan 262

Leiß, Hans 267
Lesaint, Willy 82

Martin, Scott 114, 287
Mihaliček, Vedrana 130
Morrill, Glyn 146

Parmentier, Yannick 82
Pogodalla, Sylvain 162
Pollard, Carl 114, 130
Pompigne, Florent 162

Valent́ın, Oriol 146

Yi, Byeong-Uk 178
Yoshinaka, Ryo 192

	Title
	Preface
	FG 2010 Organization
	Table of Contents
	Formal Grammar 2010: Contributed Papers
	Polarized Montagovian Semantics for the Lambek-Grishin Calculus
	The Lambek-Grishin Calculus
	Derivational Montagovian Semantics
	Case Analysis: Extraction
	Comparison
	References

	Two Models of Learning Iterated Dependencies
	Introduction
	Background
	Categorial Dependency Grammars
	Learnability, Finite Elasticity and Limit Points
	Limit Points for CDGs with Iterated Subtypes

	Incremental Learning
	Learnability from Positive Examples
	Original Algorithm on Functor-Argument Data
	Functor-Argument Structures for CDG with Iterated Subtypes
	On RG-Like Algorithms and Iteration
	Bounds and String Learnability

	Conclusion
	References

	The Lambek-Grishin Calculus Is NP-Complete
	Introduction
	Lambek-Grishin Calculus
	Preliminaries
	Derivation Length
	Additional Notations
	Derived Rules of Inference
	Type Similarity

	Reduction from SAT to LG
	Example
	Intuition

	Proof
	Only If-Part
	If-Part

	Conclusion
	References

	Resumption and Island-Hood in Hausa
	Introduction
	Overt Resumptive Pronouns
	Null Anaphora in Extraction

	Previous Analyses
	Resumption: Extraction or Anaphora?
	Anaphoric Processes in Rightward Movement

	Analysis
	Conclusion
	References

	Iterated Dependencies and Kleene Iteration
	Introduction
	Basics of Dependency Structures
	Categorial Dependency Grammars
	Problem of Iteration and a Multimodal Solution
	Expressiveness of mmCDG with Negative Modes
	Conclusion
	References

	Property Grammar Parsing Seen as a Constraint Optimization Problem
	Introduction
	Property Grammars
	Model-Theoretic Semantics of Property Grammar
	Representing Tree Models Using a Grid
	Handling Instances of Properties
	Implementation
	Comparison with Existing Work
	Conclusion
	References

	Reference-Set Constraints as Linear Tree Transductions via Controlled Optimality Systems
	Introduction
	Preliminaries and Notation
	Traditional Perspective on Optimality Systems
	Controlled Optimality Systems
	Application to Reference-Set Computation
	Focus Economy Explained
	A Model of Focus Economy

	Conclusion
	References

	Hyperintensional Dynamic Semantics
	Introduction
	Facts about Definiteness Presuppositions in English
	Hyperintensional Dynamic Semantics
	Information Structures
	Continuations and Dynamic Semantics

	Modeling Definiteness
	Definite Anaphora with It
	The Definite Determiner

	Conclusion and Future Work
	References

	Distinguishing Phenogrammar from Tectogrammar Simplifies the Analysis of Interrogatives
	Introduction
	An Overview of the Framework
	Phenogrammar
	Tectogrammar
	Semantics
	A Small Example

	The Data
	Interrogatives in Chinese
	Interrogatives in English

	The Analysis
	Polar Questions
	Constituent Questions

	Discussion and Conclusion
	References

	Generalized Discontinuity
	Introduction: Architecture of Logical Grammar
	Logic of Strings: The Lambek Calculus L
	Logic of Segmented Strings: The Displacement Calculus D
	Examples
	Defined Nondeterministic Continuous and Discontinuous Connectives
	Embedding Translation between ND and DA

	Defined Unary Connectives
	Discussion
	References

	Controlling Extraction in Abstract Categorial Grammars
	Introduction
	ACG: Definitions and Properties
	Definitions
	Grammatical Architecture

	Examples
	The Syntax-Semantics Interface
	Tensed Clauses as Scope Islands for Quantifiers
	Rooted and Embedded Wh-Extraction
	Multiple Extraction

	Related Approaches
	Parallel Architectures
	Continuation Semantics
	TAG and Lambek Grammars in ACG

	Conclusion
	References

	Plural Quantifications and Generalized Quantifiers
	Introduction
	Expressive Limitations of Elementary Languages
	From Singular Languages to Plural Languages
	References

	Polynomial Time Learning of Some Multiple Context-Free Languages with a Minimally Adequate Teacher
	Introduction
	Preliminaries
	Basic Definitions and Notations
	Linear Regular Functions
	Multiple Context-Free Grammars
	Congruential Multiple Context-Free Grammars

	Learning of Congruential Multiple Context-Free Grammars with a Minimally Adequate Teacher
	Minimally Adequate Teacher
	Hypotheses
	Observation Tables
	Undergeneralization
	Overgeneralization
	Algorithm
	Slight Enhancement

	Conclusion
	References

	Formal Grammar 2011: Contributed Papers
	Locality and the Complexity of Minimalist Derivation Tree Languages
	Preliminaries and Notation
	Minimalist Grammars
	Introduction and Examples
	Minimalist Grammars, Derivation Trees, and Slices
	Locality and Subclasses of Derivation Tree Languages

	(Un)Definability in Some Subregular Language Classes
	Deterministic Top-Down Automata
	Strictly Local and Locally Threshold Testable Languages

	Definability in First-Order Logic
	Conclusion
	References

	Building a Formal Grammar for a Polysynthetic Language
	Introduction
	Lexical Functional Grammar
	Some Properties of Aymara
	Agglutinative Morphology
	Vowel Elision
	Differential Object Marking
	Case Stacking
	Polypersonal Agreement
	Causatives
	Converbs
	Free Word Order
	Relative and Complement Clauses
	Topic-Focus Articulation

	Lexical Mapping Theory and D-Structures
	Conclusions and Further Research
	References

	Eliminating Ditransitives
	The Semantics of Promise
	The Tectogrammar of Promise
	The Formal Model
	Representation by Machines
	Slot-Filling

	Conclusions
	References

	Lambek Grammars with the Unit
	L-Grammars
	L1-Grammars
	References

	Resolving Plural Ambiguities by Type Reconstruction
	Introduction
	The Extensional Version of Montague's PTQ
	Different Meanings of Plural Noun Phrases
	Verb Types and Overloaded Verbs
	Choosing among Noun Phrase Meaning
	Extension of PTQ by Plural Noun Phrases and Reciprocal Pronouns

	Type Reconstruction
	Simple Types and Subtyping Rules
	Typing Rules
	Type Reconstruction
	Application

	Conclusion and Open Questions
	Related Work
	References

	Weak Familiarity and Anaphoric Accessibility in Dynamic Semantics
	Overview
	The Problem of Anaphora across Inaccessible Domains
	Some Attempts to Rectify the Problem

	Strong and Weak Familiarity
	A Formalization in Hyperintensional Dynamic Semantics
	Types and Constants
	Context-Dependent Propositions, Updates, and Dynamic Propositions
	Connectives and Quantifiers
	Dynamic Generalized Determiners
	Extensions for Modeling Weak Familiarity

	A Small Fragment Demonstrating Weak Familiarity
	Overgeneration and Pragmatic Effects

	Conclusions and Remaining Issues
	References

	Author Index

