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Abstract This paper describes the implementation of extended pulley kinematics for
parallel cable robots. An algorithm for the extended kinematics taking into account
cable pulleys is discussed and implemented in real-time. This solution uses an iter-
ative solver which can be computationally costly, depending on convergence. The
convergence was tested for a specific geometry and successfully implemented on the
cable robot IPAnema. Accuracy of both the standard and extended kinematics were
tested according to the ISO 9283 standard. The Absolute accuracy was measured to
be 22.32 mm for the standard and 17.50 mm for the extended kinematics which shows
some improvement. A method for testing accuracy of orientations is also introduced.

1 Introduction

The kinematics of cable robots and indeed all [14] parallel robots have been subject
of research for a number of years. While inverse kinematics are trivial, forward kine-
matics are much more difficult to solve, especially within computational constraints
such as real-time capability. In general, the forward kinematics of parallel robots can
have 40 real solutions [1], which are numerically difficult to compute directly [2].
Other methods, more practical to implement, are thus consistent topics of research.
Some rely on changing geometry [12], others on interval methods [7], and also on
numerical optimization methods [3, 10].

With the increasing research on cable robots, and an ever increasing number
of prototypes, precise information regarding achievable accuracy and methods of
improvement have become more important. While accuracy and repeatability values
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Fig. 1 IPAnema Winch show-
ing the drum and cable guiding
system. As the cable exits the
winch it is passed through a
pulley which also has a verti-
cal hinge. This hinge allows
the pulley to orientate towards
the platform anchor point. In
other words, the anchor point
is always in the same plane as
the pulley

achieved in the past are good, performance can still be improved. Methods include
continuous calibration and inclinometers [4], general geometric calibration [8], and
external sensors such as an expensive non-contact laser scanning system for Cartesian
metrology used by the NIST Robocrane [13].

Robot kinematic models, both forward and inverse kinematics, have a direct
impact on accuracy. Previous implementations [10] have usually assumed perfect
points as base and platform connections. In practice cables are often guided along a
pulley as shown in Fig. 1.

Taking into account of such pulleys in kinematics has been shown in existing
models [9], but such models have yet to be implemented in real-time.

Real-time calculations pose a frequent challenge for forward kinematics especially
when optimization methods are used whose convergence is not guaranteed. Hence
research into convergence and computation time has been conducted [15].

In this paper an algorithm that takes winch pulleys into account is reviewed and
implemented in a real-time environment. To evaluate this implementation experi-
ments into the accuracy and repeatability of the IPAnema robot were performed.
These lead to marginal improvements. An angular variation test which can be applied
to any parallel machine is also introduced to evaluate the accuracy of the two kine-
matic models against each other.

2 Robot Architecture

The algorithms were tested on the cable robot IPAnema, constructed at the labora-
tories of the Fraunhofer IPA. Figure 2 shows the IPAnema cable robot, in the con-
figuration during the experiment. The numbers indicate the winch positions, and the
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Fig. 2 The Robot IPAnema pictured with the Leica LaserTracker

Table 1 Robot geometrical parameters: base vector ai and platform vector bi

Cable i Base vector ai in (m) Platform vector bi in (m)

x y z x y z
1 [−4.277 2.950 4.604]T [−0.653 0.201 −0.085]T

2 [4.335 2.951 4.480]T [0.641 0.196 −0.102]T

3 [4.029 −2.736 4.609]T [0.639 −0.052 −0.092]T

4 [−3.967 −2.733 4.737]T [−0.634 −0.117 −0.058]T

5 [−4.346 2.902 0.515]T [−0.759 0.200 0.410]T

6 [4.255 2.925 0.372]T [0.763 0.192 0.402]T

7 [3.952 −2.766 0.424]T [0.756 −0.014 0.406]T

8 [−4.033 −2.766 0.573]T [−0.750 −0.012 0.423]T

connecting cables are highlighted in red. In this exact configurations the dimensions
(Table 1) were measured.

The dimensions were determined very accurately using a Leica LaserTracker.
With this optical device the absolute position of a reflector can be determined with
an accuracy of ±15 µm + 6 µm/m.
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Fig. 3 Standard kinematik
description

3 Extended Kinematics for Cable Driven Robots

For reference, the basic kinematic algorithms are quickly introduced. On Fig. 3 the
position of anchor points on the base and the robot platform are described by vector ai

and bi respectively, and give the rope vector li for a given pose. The platform vectors
bi are in the coordinate system of the platform which is defined by the Cartesian
vector r and rotation matrix R. Since the length of the cables in the standard kinematic
model is li = ‖li‖2 simple vector algebra yields

ai − r − Rbi = li (1)

‖ai − r − Rbi‖2 = li (2)

for i = 1, . . . , m.

This suffices for the general computation of inverse kinematics under the assump-
tion that all cable connections are ideal points. This is also the basis for the standard
forward kinematics used in [10]. Here, m functions

Ψi (l, r, R) = (‖ai − r − Rbi‖2)
2 − l2

i (3)

for i = 1, . . . , m.

are combined to give

φ (l) = min
r,R

m∑

i=0

Ψi (l, r, R) , (4)
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which will minimize r, R for a given length vector l = [l1, . . . , lm]T . In very simple
terms, this is almost equivalent to considering the pre-tensed cables as linear springs
and minimizing their potential energy. Further factors such as cable stiffness need to
be taken into account for this to truly apply, but in principle the approach would be
almost identical.

To solve the forward kinematic problem, a Levenberg-Marquardt (LM) optimiza-
tion algorithm is used which can be found in [5]. This solver minimizes the objective
function φ (l) from (4) by iterative procedure

(
J(l)JT (l) + μI

)
h = −JT (l)φ(l). (5)

Where μ is a damping parameter, J(l) is the Jacobian of φ(l) in dimension x, y, z
and rotation angles a, b, c

J(l) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂Ψ1
∂x · · · ∂Ψm

∂x
∂Ψ1
∂y · · · ∂Ψm

∂y
∂Ψ1
∂z · · · ∂Ψm

∂z
∂Ψ1
∂a · · · ∂Ψm

∂a
∂Ψ1
∂b · · · ∂Ψm

∂b
∂Ψ1
∂c · · · ∂Ψm

∂c

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

T

(6)

and h is each consecutive step. This does not guarantee a solution, but has shown
good results in practice at very fast computational speeds. The lack of guaranteed
solution is a severe impact on real-time capability. For this reason a maximum number
of iteration steps (currently 100 steps) is implemented. This does not guarantee a
solution, but ensures that there exists a guaranteed maximum computation time. In
practice this maximum has not been reached, and the algorithm runs robustly in real
time.

The extended kinematics takes into account of the pulley mechanism illustrated
in Fig. 1. Where the equation for the length of cable i now reads

li = θi r p + l f i . (7)

Here the angle θi and the direct length from pulley exit point Ci to the platform
anchor point Bi are used to determine total cable length. Bi is needed in the global
coordinate frame simply

Bi = r + Rbi . (8)

There are many ways which can yield the parameters for (7) using basic trigonom-
etry on the triangles formed by points: Mi , Bi , Ci and Ai (origin of coordinate system
KA denoted by vector ai ). The one derived in [11] is applied here.

This evaluation was used in the implementation of both forward and inverse
kinematics, but deviates from the in [11] proposed method, in that it does not use
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transformation matrices to find the necessary lengths but only the vector kAz defined
by the winch coordinate system. This is necessary to fulfill the real-time constraints,
which need the equations to be evaluated as efficiently as possible. Eliminating
evaluation of the angle of rotation of the pulley mechanism around axis kAz and
subsequent matrix evaluations is expected to give faster computations. This is done
by evaluating the vector mi by

mi = ai + rpŵ (9)

where w is a vector from the origin of KA in the direction of Mi which is found by

w = (kAz × (Bi − ai )) × kAz . (10)

Hence
di = ‖Bi − mi‖2 (11)

and bz is the distance from mi to Bi along kAz given by

bz = ‖kAz · (Bi − ai ) ‖2 (12)

which helps to find

l f i =
√

r2
p × b2

z (13)

and finally

θi = arccos
l f i

di
+ arccos

bz

di
. (14)

This gives us all the dimensions needed to evaluate the inverse kinematics for each
cable using Eq. (7).

As the same method is used for the forward kinematics, the extended forward
kinematics simply replacing ‖ai − r −Rbi‖2 in Eq. (4) with the evaluation in Eq. (7)
to give Ψ̃i which yields

φ̃ (l) = min
r,R

m∑

i=0

Ψ̃i
(
l, r, R, kAz, rp

)
. (15)

The initial guess for the LM optimizer is identical to the interval based method
proposed in [10]. The full equation is implemented in the programming language c
results in >50 lines of source code and the analytic Jacobian matrix >150, and is
therefore not provided here (Fig. 4).
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Fig. 4 Kinematics of cable i

4 Validation

4.1 Computation and Convergence

To test real-time capability of this algorithm, it was first simulated on a desktop PC.
This simulation used the geometric parameters measured for the accuracy evaluation,
shown in Table 1.

The radius of the pulley was assumed to be identical for each winch and measured
at rp = 21 mm. The orientation of the winches can be seen in Fig. 2 and was assumed
to be aligned perfectly with the axes. This means winches 1 and 5 were pointing in
the negative x direction, winches 2 and 6 in the positive x direction, and winches 3,
4, 7, and 8 in the negative y direction.

For three different magnitudes of noise (0.1, 0.5 and 1 mm) the simulation was
conducted for 5,000 positions chosen at random in the presumed workspace of the
robot.

The continuous re-evaluation of the Eq. (15) through the LM solver poses the
greatest risk for real-time capability of the algorithm. Depending on the number of
iterations this can involve very many computations. Hence, the number of iterations of
the LM solver is evaluated. Figure 5 shows the number of iterations for each simulated
position. These are slightly worse than the results for the standard kinematics shown
in [10], but are generally very reasonable, rarely exceeding 20 iterations, even for
1 mm noise. A few times the maximum number of iterations of 100 was reached, but
these were most likely poses at the edge or beyond the workspace.

For this comparison it is important to note that convergence is very dependent
on geometry and individual poses. Especially poses with big orientation differences
are often at the edge of the workspace and will increase the number of necessary
iterations.

The average position error of the platform shown in Fig. 6 was almost identical to
that seen for the standard model, and is in the same order of magnitude as the noise
error applied to the cables.

When using the analytically derived Jacobian matrix, the calculations times on
a desktop pc ranged between 80 and 130µs per evaluation. While this does not
guarantee real-time capability, it is a good indication that this algorithm can be run
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Fig. 5 Histograms showing number of iterations for forward kinematics optimizer. a Noise of
0.1 mm, b Noise of 0.5 mm, c Noise of 1 mm

in real-time. The test in practice proved successful, and so accuracy and repeatability
measurements could be made. In fact, so far the algorithm running on the actual robot
experienced no missed steps, when poses and trajectories of the robot were within
the workspace.

4.2 Accuracy and Repeatability

The same LaserTracker used to determine the robot dimensions, was used to measure
the accuracy and repeatability. Both kinematic models were tested in the exact same
environment. Neither LaserTracker or the robot was moved, after the dimensions
(ai , bi ) were established. The reflector denoting the origin of both the global (at
the platform home position) and the platform coordinate system was not altered
throughout the experiment. This significantly increases the precision of the results
as any systematic errors will be the same for both sets of data. Any calibrating of the
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Fig. 6 Histograms showing number of iterations for forward kinematics optimizer. a Noise of
0.1 mm, b Noise of 0.5 mm, c Noise of 1 mm

LaserTracker would cause inaccuracies, as the measurement of reference points can
add many forms of error to the calculations.

Accuracy and Repeatability were measured according to the ISO 9283 standard.
Hence each pose was measured with 30 repetitions and through the same approach
trajectory. The standard also defines testing conditions, which were adhered to. The
calculations for the can be found in [6]. All poses had the same orientation of a =
b = c = 0.

As expected, the absolute accuracy was improved for the extended kinematic algo-
rithm, but the repeatability stayed very much the same. Table 2 shows the results for
the extended kinematic to be on average an improvement of roughly 21 %. Unfor-
tunately this is lower than was hoped, and for some poses little to no improve-
ment was seen. This indicates that other inaccuracies play an equally important
role. The elasticity in the cables, or the inaccuracies in the drive chain of each
winch would therefore provide an equal positioning error of the same magnitude
≈5 mm.
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Table 2 Absolute position-
ing accuracy of standard and
extended kinematics

Pose in (mm) Standard Extended
kinematics (mm) kinematics (mm)

x y z
[0, −1000, 1000] 11.2867 11.9711

[−800, −1000, 1000] 11.6281 12.4002
[−800, 1000, 1000] 24.5868 17.7851
[800, 1000, 1000] 21.8419 17.8160
[800, −1000, 1000] 12.1822 15.1232

[−800, 1000, 2500] 37.8695 21.6268
[800, 1000, 2500] 35.2317 21.0895
[800, −1000, 2500] 24.0249 21.5672

[−800, −1000, 2500] 21.9880 18.9035
[0, 1000, 1000] 22.5879 16.6677

Average: 22.3228 17.4950

Table 3 Repeatability of
pose for standard and
extended kinematics

Pose in (mm) Standard Extended
kinematics (mm) kinematics (mm)

x y z
[0, −1000, 1000 ] 0.6472 0.8713

[−800, −1000, 1000 ] 0.5530 0.8137
[−800, 1000, 1000 ] 0.7931 0.6726
[800, 1000, 1000 ] 0.7131 0.5677
[800, −1000, 1000 ] 0.4130 0.5095

[−800, 1000, 2500 ] 0.7690 0.4123
[800, 1000, 2500 ] 0.7753 0.4112
[800, −1000, 2500 ] 0.3559 0.3057

[−800, −1000, 2500 ] 0.6080 0.2601
[0, 1000, 1000 ] 0.3076 0.2257

Average: 0.5935 0.5050

4.2.1 Angular Variation Test

Another test that was conducted was on the orientation accuracy. Since the platform
origin was consistently measured, when the platform orientation is changed but the
position x, y, z is not, this origin should not move. This concept is illustrated in Fig. 7
where the origin indicated by the thick dot is identical for four different orientations.
This test can be implemented on any parallel kinematic machine, provided one can
measure the origin about which the platform rotations are defined easily (Table 3).

Thirty different orientations were tested with angles ranging in the ranges
−5◦ < a, b, c < 5◦. Then the same calculations as for repeatability, as in the
previous section, was used to evaluate the discrepancy in position between the
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Fig. 7 Four orientations with the identical origin for the platform coordinate system at pose [0, 0,
1,000]

Table 4 Deviation in
position at a change in
orientation

Standard kinematics Extended kinematics

Average 2.6287 2.1099

different orientations. Table 4 shows that although there is a slight improvement
for the extended kinematics, this is only 0.5 mm and therefore very marginal.

5 Conclusion

This paper presented the successful implementation of extended forward kinematics
taking into account winch pulleys in a real-time system. In addition to providing the
basic algorithm which can be implemented for any given robot structure provided it
is theoretically overconstrained and has a reasonable workspace.

The algorithm is based on a LM optimizer which uses the Jacobian of objective
function φ() the to determine a solution. The successful operation of the IPAnema
robot with this extended kinematic proves the applicability, and real-time capability.

Tests were conducted to investigate the improvement on accuracy through the use
of extended kinematics. As expected absolute accuracy was improved while the rel-
ative accuracy remained similar. While there were measurable improvements, these
were not as good as initially hoped. This means other imprecisions, inaccuracies,
uncertainties in the robot have a similar impact, on the absolute accuracy, as the
pulley mechanism. In addition a novel test was introduced and conducted to inves-
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tigate orientational accuracy. This showed only marginal improvements when using
extended kinematics.

To further improve the accuracy of the cable robot IPAnema, other factors need to
be considered such as the elasticity of the cables. This can be the subject of ongoing
research.
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